Linux on Z and LinuxONE

Device Drivers, Features, and Commands
on Ubuntu Server 22.04 LTS

.||I

Note

Before using this document, be sure to read the information in “Notices” on page 801.

This edition applies to Ubuntu Server 22.04 LTS and to all subsequent releases and modifications until otherwise
indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2023.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

SUMMAry of Changes......ccciiiiiuiiiuiiiiiiiiiiiiniiiiiiiiiieiieeieiiresisstastsesrssssesssessanes vii
About this documeNt.........cccuiiiiiiiiiiiiiiiiiiiiiiiiiitesriiritsestsesrasrassasns iX
[T IR CT=T 1 T=T = 1 oo T o =T o 1 £ 3R 1
Chapter 1. How devices are accesSed DY LINUX....cuuiiiieeiiieeiiiieccteeecteeseieesereessveessreessareessaseessnseesnnsaeens 3
Chapter 2. DEVICES IN SYSTS. .ttt ettt e e e e e e te e e e e e e e tae e e atee e ateeesstaeesstaesassesenntaeennsens 7
Chapter 3. Device auto-configuration for Linux in LPAR MOdE........cccceeeiiieeiiiieecieeeciee e 21
Chapter 4. Kernel and module Parameters.........uicieeeiieeeiieeecieeecte et esite e e ste e e seae e e sraeesssaeesentee e nseeennees 25
Part 2. Booting and shutdoWN........ccciiiuiiiiiiiiiiieiiiiiiiiiiiiiiiiciiieiieiiesiececscsessnnns 33
Chapter 5. CONSOLE AEVICE AIVEIS.....iiciiieeiieeecieee ettt e e e rre e e ste e e sre e e tae e e ate e s ateessaeeesseeenseeenseesnees 35
Chapter 6. Initial program loader for IBM Z - Zipla...uoieeecieeccieeccieeccteecctee ettt e e et 57
Chapter 7. BOOTING LINUX..cccuieieieeieieeceieeeeteeceieeeeteesetteesetteeseseeesseeesseeessaessseessassessnseessnseessnseessnseessnsens 89
Chapter 8. ShULAOWN ACTIONS.......iiiciieccieecteeee ettt e rte e e tre e e et e e e abe e s aaeessaeesseeesnsaeessseean 119
Chapter 9. The diag288 watChdog deViCe driVer.....cccuuiiiiuieieiieecieeceeecte e e et 123
Chapter 10. KASLR SUPPOIt..cuuiiiciieeeciieeeiieee ittt eeitteeestteestteeesaeeessaeesstesesteesseeessssssnssessnssaeenssesensseesnnees 127
(o T G T3 (0] - 1= TN 129
Chapter 11. DASD dEVICE IVET.....ciiiiieeiieeeciee et et e ee et e e tee e s be e e s be e e s abae e e sbaeesabaeesasaeeenseeesaseeesnsens 131
Chapter 12. SCSI-over-Fibre Channel deviCe AriVEr.......ccuiiiciee ettt e 169
Chapter 13. Storage-class Memory deVICE AIVET.....cccuiiccieieiieeccieee ettt ectee e eetee e etre e eree e e raeeevaeeeans 213
Chapter 14. Managing NVME QEVICES.......uiiiiieriiieeiiieecieeecteeecteessteesssteessteesssseesssseeessseesnssessnssassnsseen 217
Chapter 15. Channel-attached tape deviCe driVer......iicuiiieiieiccee et 219
Part 4. NetWOrKing......cciciieiieiieiiiiiiiiiiiiiiiiieiieiienieniecascsecsssssstsstsssassassassssssnssnns 229
Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets........ccovvvrvverreenveriieeneennnnn 231
Chapter 17. OSA-Express SNMP subagent SUPPOIt.....c.uiiccieeeiiieeciieeciee et e eteeeetee e teeeevee e steeeeseeeens 299
Chapter 18. LAN channel station device AriVEr.......ocuiicciie ettt et 309
Chapter 19. AF_IUCV address family SUPPOI......ccuiiiciieiciiecciee et eeteeeeteesevte e sevae e s reeeseaaeeeans 315

Chapter 20.
Chapter 21.

Chapter 22.

Chapter 23.
Chapter 24.
Chapter 25.
Chapter 26.
Chapter 27.
Chapter 28.
Chapter 29.
Chapter 30.
Chapter 31.
Chapter 32.

Chapter 33.

Chapter 34.
Chapter 35.
Chapter 36.
Chapter 37.
Chapter 38.
Chapter 39.
Chapter 40.
Chapter 41.
Chapter 42.

Chapter 43.

Chapter 44.

5]\ 4 (03 o1 70) {olo] =T U] o] o o] u S 319
RDMA over Converged EtherNet.. ...ttt 331
Internal shared Memory deViCe ArVEN.....uuiii e e et e e e 335

Part 5. SYStem Fr@SOUICES....ccuitiuieiiirteieraitetetacsiretecasscresscsssssesessssssessssssssesesasssss 337

MaANAZING CPUS...eiiiiiiieiieeeiieeette ettt s et st e e st e e s bt e e s bt e e sbaeesbaeesasaeessseesseeesseeesnseeenn 339
=T aaTe] VAN aTo) 1 o] LU =S PSPPSR 345
Persistent device CONfIGUrATION.......iiiiiiiiiiiiiiecce et e s ee e saeeesane 351
HUZE-PAZE SUPPOIM . .ceiiieetieee ettt ettt te e et e e e e te e s e s et e e e st e e e e s nneeee e s nseeeeseanneeeas 365
S/390 hypervisor file SYSTEM.....ucii e e ee e e e e e e e nraee s 369
IO] 3o Voot 11 Y/ a o 1] a1 1= o o PSS 375
Identifying the IBM Z hardWare........couciiieiieinieeciececieesite st ssaee s saaeessaeesneee s 377
HMC mMedia deViCe ArVETN . ..o ittt sttt s s s s as 379
Data compression with the Integrated Accelerator for ZEDC.......ccccevvvieviiieniieeniieennnneen. 383
Data compression with GeNWQE and ZEDC EXPresSS....cccccuuieeeeecireeeeecirieeeeecveeeeeeecnveeeeeenns 389
08 B ot o] Y1 U] o] o o SRRt 397

Part 6. z/VM virtual server integration.......ccccceieiininiiniiecinieniecieninicncinccncnecnenne. 403

b4 VA oo (1T o) £ TSRS 405
Writing Kernel APPLDATA FECOIAS. ...ciiiiiiiiiieriiieriteessieessreessteessieeessseeessseeesssseesssseesssseenas 409
WIItING Z/VM MONITOI FECOIUS...ciicuiiiiiiieicieeicieereteesete e sete e seiteeseieeesereeesateeseseeeseseeesaseeesans 415
Reading z/VM MONITOI FECOTUS. ..ciciiiiciieiciee ittt esete e seaee e seaee e seaeeesaeeesneeesneaesans 419
Z/VM recording deVICE AIIVET.....ciiiiieiiiiercieesiee st sstt st e st esste e ssbeessbeesssteessabeessnsaesas 425
4 AV \ IV Y A g=Tolo] fo o [2\Vi ot= Ko [{1V Z=T S 433
Z/VM DCSS AEVICE AIIVET . .ciiiiiiiieeeeeeeeeeeeee et ee e s saa s s b sseeeeeas 435
Z/VM CP iNterface deVICE AIIVEIuueeeeeeeeeeeeee ettt s s e e s e e e e e e e e eaeeeees 445
Z/VM CP special messages UEVENT SUPPOI......civiiiirieeirrieeiniieeeeieeesieessieessseesssseesssseessne 447
Cooperative Memory Man@gemMENT.. .o i ieeeiieeeireeerieessreesseeesseeesseeessseeesssnessssnesssees 451

Part 7. KVM virtual server integration......ccccecevieiiiincieniecieniniiniincincncncresnecneees. 453

KVM Virtualization ON IBM Z....ooo oottt ettt ee s s

Chapter 45. The virtual channel SUDSYSTEM...ccc...uiiiiiicieee e e e e e rree s 461

Chapter 46. The virtio CCW transSport deVIiCe AriVET......iccuiiieeicciiiee ettt e e e e eeeee e e e eaee e e e eennes 465
Chapter 47. Setting up Ubuntu Server 22.04 LTS @s @ KVM hOST.....coiiviiiiiiiiiiieiiriee e seeee e 473
Chapter 48. Setting up a KVM host for VFIO pass-through........cccceeieviiiniiiiniiiiiieeeccee e 475
= T R TR =T =T od 1] 4) T 485
Chapter 49. Generic cryptographiC deViCe AriVET.....ccuuiiiiuieieiieieieeete ettt see e ee e s saee e s aees 487
Chapter 50. Pseudorandom number generator device driVer........uucveeriieeriieeinieeeie e 517
Chapter 51. True random-number generator deVIiCE AriVET......c.uiiruierrriieeriieeeniteereeeeeeesreeesreeeseaeens 521
Chapter 52. Protected KeY deVICE AVcui ittt ettt e e s e re e e s e e nbe e e e s e abaee e e sensaaeeeens 523
Chapter 53. Hardware-accelerated in-kernel cryptography......ccccceiirienniienniiecsee e 529
Chapter 54. Instruction eXecution ProtECTION.......ciii i ciieeeeccieee e e e eecreee e e reee e e e ebaee e e e enreeeeean 533
Part 9. Performance measurement using hardware facilities.......c.ccccceevvcrecrnnnnnne. 535
Chapter 55. Channel measurement faCility.....cccieecieeiieciiee et ee e e baee e e e enees 537
Chapter 56. Using the CPU-measurement faCilitieS.....c.ccveciiiriieiniiiinieecite et seee e 541
Part 10. Diagnostics and troubleshooting......c...ccccccieiieiiniieiieiieiiniincincciccncnciennees 547
Chapter 57. Logging I/O subchannel status information........ccoecveevrieeiniiennieennee e 549
Chapter 58. Control program identifiCation.......occcueiicieiiiieineeere e s 551
Chapter 59. Displaying system infOrmMation......cocciiirieiriieiiieeessee e sree e ee e ee s s bee e saees 555
Chapter 60. Avoiding cOmMMON PItFALLS....cccciiiiiiiiiiee e ssree e sre e e seeeeeane 559
Chapter 61. Creating a Kernel dUMIP....cccuei ittt e s e st e s ee e ssaeeessabeesssseessaseess 563
Part 11. Reference.........cceireenirenniieniieniiieiiieinieineeiieeiteeistseistasissssssessessessssnnes 565
Chapter 62. Commands for LINUX ON IBM Z......ooi ittt erttee e eevtee e s e ensae e e s e snnea e e s e ennres 567
Chapter 63. Selected Kernel Parameters..... ... ciiiee et e e et e e et ee e e e esraee s e e enseeeeeeenneens 773
Chapter 64. LINUX dia8N0SE COUR USE...uuuiiiiiiiriiieriiteriieesiieesseeesseeesssseessseeesssseesssseessseesssseesssseesssaesas 795
Appendix A. AcCesSIbIlity...ccciciiieiiniiiieiiieiiiiiieiiiiiietieteniteiietiteiteteetestecassessecans 797
Appendix B. Understanding syntax diagrams.......ccccceceieeiieirenienienienienieniacaecaecnens 799
NOTICES.cuuiiniiiiiiiitirtirtirecre ettt ree e reetseeeserassstassseasessnsesansenansenes 801
GlOSSANY . uiuuiuieuieiinienteneetanreratestecasrossssassssassessssassesssssssssasssssssassssassassssassassssassasas 803

vi

Summary of changes

This revision includes maintenance and editorial changes. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

What's new for Ubuntu Server 22.04 LTS

This revision reflects changes related to Ubuntu Server 22.04 LTS compared to Ubuntu Server 20.04 LTS.

Booting and shutdown

You can now define variables for kernel parameters in a boot record. See “Parameter overview” on page
71, and “zipl environment - Variables for the kernel command line” on page 82.

As of z15° and LinuxONE III, you can use NVMe boot devices, see “Booting in LPAR mode from an NVMe
device” on page 96.

NVMe disks are now supported as a stand-alone dump devices, see “Preparing a dump device” on page
67.

You can now re-IPL from a PCle-attached NVMe IPL device without clearing memory, see “Attributes for
nvme” on page 115.

For SCSI boot devices, new sections describe how use the HMC Web Services API to boot Linux in LPAR
mode and in a DPM partition, and how to boot Linux in a DPM partition using the HMC GUI, see “Using
the HMC Web Services API to boot in LPAR mode” on page 103 and “Booting Linux in a DPM partition”
on page 103.

By default, hotplug memory is now offline after a reboot, see “Memory state and reboot” on page 346.
This change is related to a new re-IPL configuration option, clear, for CCW and FCP re-IPL devices, see
“chreipl - Modify the re-IPL configuration” on page 574.

SCSI over Fibre-Channel

A new toolset can help you to use multipath information for re-IPL path failover on a running Linux
instance, see “Automatic path failover for re-IPL from an FC-attached SCSI disk” on page 114.

Network

You can now query the Fibre Channel Endpoint Security (FCES) capability of I/O channel-paths, see
“Checking the FCES status of a CHPID” on page 18, and examine the FCES state of a connection to a
DASD device, see “Querying the encryption setting of a channel path” on page 161.

You can now use an HSCI interface as a base device for a MacVTap or an OpenVSwitch connection to
multiple KVM guests, see “Using an HSCI interface as a base device for MacVTap or OpenVSwitch” on
page 284.

You can now display statistical information about SMC-R and SMC-D connections, see “Obtaining
statistics for SMC connections” on page 327.

SMC-R connections now support failover scenarios through multiple SMC-R links, see Chapter 21,
“RDMA over Converged Ethernet,” on page 331.

New commands display information about SMC-R and SMC-D link groups and devices, see “smcd -
Display information about SMC-D link groups and devices” on page 713 and “smcr - Display information
about SMC-R” on page 717.

General I/0

Automatic recovery and an enhanced zpcictl command help you to manage malfunctioning PCI
devices, see “Recovering a PCle device” on page 399.

The zds£fs command can now use z/OSMF REST services to provide read access to DASDs while they
are online to a z/OS°® instance, see “zdsfs - Mount a z/OS DASD” on page 749.

© Copyright IBM Corp. 2000, 2023 vii

« PCIe devices and cryptographic devices are now set online automatically during the boot process of
Linux in an LPAR in DPM mode. You can enforce the previous behavior through the rd.zdev=no-auto
kernel parameter, see “rd.zdev=no-auto - Override initial device availability for DPM mode” on page
786.

System resources

« Server Time Protocol (STP) can now process leap seconds for Linux in LPAR mode, see “Leap second
handling” on page 376.

Security

« New sysfs attributes indicate whether a Linux instance detects its environment as consistent with that
of a secure guest or host, see “Indicators for IBM Secure Execution mode” on page 459.

« The zcrypt device driver now waits until the initial scan of the available crypto adapters is complete.
Thus, pkey services can provide a seamless root file system encryption at boot time. New uevents notify
user space about important AP bus changes. See “Displaying information about the AP bus” on page
497.

« You can now control the LPAR configuration state of cryptographic devices from Linux, see “Setting the
LPAR configuration status” on page 503.

- The pkey device driver can now generate protected keys from CCA and EP11 elliptic-curve cryptography
(ECC) secure keys, see “Investigating master key states and verification patterns” on page 501 and
“External programming interfaces ” on page 526.

Changed Information

« With version 2.20.0, the s390-tools package depends on version 3 of the FUSE library. As a
consequence, you can no longer use the nonempty option for the cmsfs-fuse, hmcdxvfs and zdsfs
commands.

This revision also includes maintenance and editorial changes.

Deleted Information

« The geth device driver no longer supports OSN devices. The OSN information has been removed.

viii Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this document

This publication describes the device drivers, features, and commands available to Ubuntu Server 22.04
LTS for the control of IBM Z® devices and attachments. Unless stated otherwise, in this book the terms
device drivers and features are understood to refer to device drivers and features for Ubuntu Server 22.04
LTS. Some of the functionality described here requires kernel 5.4.0-45.49 or newer. This kernel update is
shipped with Ubuntu Server 22.04 LTS.

For details about IBM tested Linux environments, see www.ibm.com/systems/z/os/linux/resources/
testedplatforms.html.

Unless stated otherwise, all IBM z/VM® related information in this document assumes a current z/VM
version, see www.vm.ibm.com/techinfo/lpmigr/vmleos.html.

For more specific information about the device driver structure, see the documents in the kernel source
tree at 1inux-doc/s390. After installing the linux-doc package, the absolute path is typically: /ust/
share/doc/linux-doc/s390.

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

How this document is organized

The first part of this document contains general and overview information for the z/Architecture® specific
device drivers.

Part two contains chapters about device drivers and features that are used in the context of booting and
shutting down Linux.

Part three contains chapters specific to individual storage device drivers.
Part four contains chapters specific to individual network device drivers.

Part five contains chapters about device drivers and features that help to manage the resources of the
real or virtual hardware.

Part six contains chapters that describe device drivers and features in support of z/VM virtual server
integration.

Part seven contains chapters that describe device drivers and features in support of KVM virtual server
integration. Topics cover both Linux as a KVM host and Linux as a KVM guest.

Part eight contains chapters about device drivers and features that support security aspects of Ubuntu
Server 22.04 LTS.

Part nine contains chapters about assessing the performance of Ubuntu Server 22.04 LTS.

Part ten contains chapters about device drivers and features that are used in the context of diagnostics
and problem solving.

Part eleven contains chapters with reference information about commands, kernel parameters, and Linux
use of DIAG calls.

Who should read this document

Most of the information in this document is intended for system administrators who want to configure
Ubuntu Server 22.04 LTS on IBM Z and LinuxONE, but also for developers that aim to exploit this platform.

The following general assumptions are made about your background knowledge:

« You have an understanding of basic computer architecture, operating systems, and programs.
 You have an understanding of Linux and IBM Z terminology.

© Copyright IBM Corp. 2000, 2023 ix

https://www.ibm.com/support/pages/linux-ibm-z-tested-platforms
https://www.ibm.com/support/pages/linux-ibm-z-tested-platforms
https://www.vm.ibm.com/techinfo/lpmigr/vmleos.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html

* You are familiar with Linux device driver software.
* You are familiar with the IBM Z devices attached to your system.

Programmers: Some sections are of interest primarily to specialists who want to program extensions to
the device drivers and features.

Hypervisor-specific information

This publication provides information for Linux in LPAR mode and for Linux as a guest of z/VM or KVM.

Information in this publication applies to all hypervisor environments, unless indicated otherwise. Parts
and chapters that do not apply to all environments state this exception at the beginning. Lesser
differences between environments are detailed within the description.

Linux in LPAR mode

Processor Resource/Systems Manager (PR/SM) technology always divides IBM Z hardware resources into
one or more logical partitions (LPARs). Linux in LPAR mode runs directly in an LPAR.

Linux on z/VM

The z/VM hypervisor is an IBM Z operating system that can run in an LPAR and provide IBM Z virtual
machines. Linux on z/VM runs as a guest in a z/VM guest virtual machine.

z/VM virtualizes z/Architecture and IBM Z devices to its guests, so most of what applies to Linux in LPAR
mode also applies to Linux as a z/VM guest.

Depending on your z/VM virtual machine definition and on your z/VM version and service level, a
particular z/VM guest might not provide all of the described features. See ibm.com/vm/newfunction/
index.html about upcoming and available new function for z/VM.

For information that exclusively applies to Linux on z/VM, see Part 6, “z/VM virtual server integration,” on
page 403.

Linux on KVM

Linux in LPAR mode can be set up as a KVM host that provides KVM virtual servers. Linux on KVM runs as a
guest in a KVM virtual server. For information about managing KVM virtual servers, see the documentation
of your KVM host distribution and KVM Virtual Server Management, SC34-2752.

KVM virtual servers on IBM Z present many mainframe devices as generalized virtio devices to their
guests. To Linux, these virtio devices resemble virtio devices on other hardware architectures more than
the underlying mainframe devices. Therefore, entire parts and chapters of this publication do not apply to
Linux on KVM.

Depending on your KVM host and on your virtual server configuration, a particular KVM guest might not
provide all of the described features.

For information that exclusively applies to Linux on KVM, see Part 7, “KVM virtual server integration,” on
page 453.

Conventions and assumptions used in this publication

This summarizes the styles, highlighting, and assumptions used throughout this publication.

Authority

Most of the tasks described in this document require a user with root authority. In particular, writing to
procfs, and writing to most of the described sysfs attributes requires root authority.

Throughout this document, it is assumed that you have root authority.

X About this document

https://www.ibm.com/vm/newfunction/index.html
https://www.ibm.com/vm/newfunction/index.html

Terminology

In this publication, the term booting is used for running boot loader code that loads the Linux operating
system. IPL is used for issuing an IPL command to load boot loader code or a stand-alone dump utility.
See also “IPL and booting” on page 89.

sysfs and procfs

In this publication, the mount point for the virtual Linux file system sysfs is assumed to be /sys.
Correspondingly, the mount point for procfs is assumed to be /proc.

debugfs

This document assumes that debugfs has been mounted at /sys/kernel/debug.

To mount debugfs, you can use this command:

mount none -t debugfs /sys/kernel/debug

To mount debugfs persistently, add the following to /etc/fstabh:

debugfs /sys/kernel/debug debugfs auto 0 0

The Linux source tree

Useful documentation can be found in the Linux source tree. To install the kernel source, issue:

apt install linux-source

Number prefixes

In this publication, KB means 1024 bytes, MB means 1,048,576 bytes, and GB means 1,073,741,824
bytes.

Hexadecimal numbers

Mainframe publications and Linux publications tend to use different styles for writing hexadecimal
numbers. Thirty-one, for example, would typically read X'1F"'in a mainframe publication and 0x1fin a
Linux publication.

Because the Linux style is required in many commands and is also used in some code samples, the Linux
style is used throughout this publication.

Highlighting
This publication uses the following highlighting styles:
« Paths and URLs are highlighted in monospace.
- Variables are highlighted in <italics within angled brackets>.
- Commands in text are highlighted in monospace bold.
« Input and output as normally seen on a computer screen is shown
within a screen frame.

Prompts are shown as hash signs:
i

About this document xi

xii Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 1. General concepts

This information at an overview level describes concepts that apply across different device drivers and
kernel features.

Newest version

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

© Copyright IBM Corp. 2000, 2023

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html

2 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 1. How devices are accessed by Linux

Applications on Linux access character and block devices through device nodes, and network devices
through network interfaces.

Device nodes and major/minor numbers

The Linux kernel represents character and block devices as pairs of numbers <major>:<minor>.

Some major numbers are reserved for particular device drivers. Other major numbers are dynamically
assigned to a device driver when Linux boots. For example, major number 94 is always the major number
for DASD devices while the device driver for channel-attached tape devices has no fixed major number. A
major number can also be shared by multiple device drivers. See /proc/devices to find out how major
numbers are assigned on a running Linux instance.

The device driver uses the minor number <minor> to distinguish individual physical or logical devices. For
example, the DASD device driver assigns four minor numbers to each DASD: one to the DASD as a whole
and the other three for up to three partitions.

Device drivers assign device names to their devices, according to a device driver-specific naming scheme
(see, for example, “DASD naming scheme” on page 136). Each device name is associated with a minor
number (see Figure 1 on page 3).

Linux kernel

Device driver

<nhame>

<major>:<minor> <minor> >)
Ik Device

Figure 1. Minor numbers and device names

User space programs access character and block devices through device nodes also referred to as device
special files. When a device node is created, it is associated with a major and minor number (see Figure 2

on page 3).
User space Linux kernel
Device driver
Frogram pmsrm— <naf"ne>)
j}OI">. <minor> <minors >
/devi<name> /

Figure 2. Device nodes

Ubuntu Server 22.04 LTS uses udev to create device nodes for you. Standard device nodes match the
device name that is used by the kernel, but different or additional nodes might be created by special udev
rules. See the udev man page for more details.

Network interfaces

The Linux kernel representation of a network device is an interface.

© Copyright IBM Corp. 2000, 2023 3

Linux , ,
Network device driver

_| Network
| adapter

device

A/

Interface

Figure 3. Interfaces

When a network device is defined, it is associated with a real or virtual network adapter (see Figure 3
on page 4). You can configure the adapter properties for a particular network device through the device
representation in sysfs (see “Device directories” on page 9).

You activate or deactivate a connection by addressing the interface with ip or an equivalent command. All
interfaces that are provided by the IBM Z specific network device drivers are interfaces for the Internet
Protocol (IP).

Predictable network device names

Ubuntu Server 22.04 LTS uses predictable interface names for network devices. These names are stable
across reboots and network adapter replacements.

Predictable naming is enabled by default. In this naming scheme, a mainframe network device has an
interface name of the following form:

<pf><type><bus_id>
For example:
encf5f0

Where:

<pf>
A two-character prefix for the network type. The type can be one of the following:

en - Ethernet
ww - WAN
sl - serial line

<type>
The device type. The device type of channel command word (CCW) devices is c. For PCle devices, the
type is s. For an introduction to mainframe devices in Linux, see “Device categories” on page 7.
<bus_id>
The bus ID identifies the device within the scope of a Linux instance. For a CCW device on Ubuntu, bus
IDs can take different forms, depending on the subchannel set through which the device is accessed.
For subchannel set 0, the bus ID is the device number with stripped leading zeroes. For all other

subchannel sets, the bus ID is the subchannel set ID followed by a dot, followed by the 4-digit device
number.

Examples:

« Device number 0009 on subchannel set 0 has the bus ID 9
« Device number 0b41 on subchannel set 2 has the bus ID 2.0b41

As of Ubuntu Server 22.04, network interface names for RoCE devices follow the naming scheme
described in “Network interface names” on page 332.

You can use 1szdev or 1scss =-ato obtain a list of the network devices in your system.

4 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Matching devices with the corresponding interfaces

If you define multiple interfaces on a Linux instance, you must keep track of the interface names assigned
to your network devices.

Ubuntu Server 22.04 LTS uses predictable network interface names, which make it easy to match network
devices with their interface names. The interface names are preserved across reboots.

How to keep track of the mapping differs depending on the network device driver. For geth, you can use
the 1szdev qeth command (see “lszdev - Display IBM Z device configurations” on page 682) or the
1sqgeth command (see “Isqeth - List geth-based network devices” on page 665)command to obtain a
mapping.

For virtio_net, which handles all network devices on a KVM guest, see “Mapping interfaces to CCW
devices” on page 468.

After you set a device online (or create an IUCV device), issue dmesg to find the associated interface
name in the messages that are issued in response to the device being set online (or created for IUCV).

For each IUCV network device and all other network devices that are online, a symbolic link of the

form /sys/class/net/<interface>/device where <interface> is the interface name is created. This
link points to a sysfs directory that represents the corresponding network device. You can read this
symbolic link with xreadlink to confirm that an interface name corresponds to a particular network
device.

Main steps for setting up a network interface

The main steps apply to all network device drivers that are based on ccwgroup devices (geth and lcs
devices). How to perform a particular step can be different for the different device drivers.

The steps that follow apply to Linux on z/VM and to Linux in LPAR mode. For Linux on KVM, these steps
are performed for you on the KVM host. The steps can be different for the different device drivers.

The main steps are:

1. Create a network device by combining suitable subchannels into a group device. The device driver then
creates directories that represent the device in sysfs.

2. Configure the device through its attributes in sysfs. See “Device views in sysfs” on page 11. Some
devices have attributes that can or must be set later when the device is online or when the connection
is active.

3. Set the device online. This step associates the device with an interface name and thus makes the
device known to the Linux network stack. For devices that are associated with a physical network
adapter it also initializes the adapter for the network interface.

4. Configure and activate the interface. This step adds interface properties like IP addresses, netmasks,
and MTU to the network interface and moves the network interface into state "up". The interface is
then ready for user space (socket) programs to run connections and transfer data across it.

The preferred tool to use for device configuration is the chzdev command that is provided with Ubuntu
Server 22.04 LTS, see Chapter 25, “Persistent device configuration,” on page 351.

Chapter 1. How devices are accessed by Linux 5

6 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 2. Devices in sysfs

Most Linux device drivers create structures in sysfs. These structures hold information about individual
devices and are also used to configure and control the devices.

Device categories

The /sys/devices directory includes several device categories that are specific to z/Architecture.

Figure 4 on page 7 illustrates a part of sysfs.

drivers subtrees for virtio
device drivers
evices and devices

" subtrees for channel subsystem
drivers)) . . -
device drivers, including virtio_ccw,

devices and devices

subtrees for
‘I@ group device drivers
L‘M and devices

drivers | eubtrees for
/sys —| iucv iucv device drivers

devices and devices

-d rivers | subtrees for
E pci device drivers
L‘“W—C%F and devices

_ subtrees for
scm scm device drivers
devices and devices

X btree for all channel subsytem
devices }—| c520 F ou
4{ attached devices and CHFIDs

Figure 4. sysfs

/sys/bus and /sys/devices are common Linux directories. The directories following /sys/bus sort
the device drivers according to the categories of devices they control. The sysfs branch for a particular
category might be missing if there is no device for that category.

AP devices
are adjunct processors used for cryptographic operations.

virtio devices

are virtualized devices as used on KVM guests. This branch lists devices with names virtio<n> that
represent the virtio aspects of virtio-ccw devices.

© Copyright IBM Corp. 2000, 2023

The CCW aspects of virtio-ccw devices are represented by corresponding devices in
the /sys/bus/ccw branch, with device bus-IDs as device names. This publication uses the
representation in the /sys/bus/ccw branch to work with virtio-ccw devices.

CCW devices
are devices that can be addressed with channel-command words (CCWs). These devices use a single
subchannel on the mainframe's channel subsystem.

CCW group devices
are devices that use multiple subchannels on the mainframe's channel subsystem.

IUCV devices

are devices for virtual connections between z/VM guest virtual machines within an IBM mainframe.
IUCV devices do not use the channel subsystem.

PCI devices
represent PCle devices, for example, a 10GbE RoCE Express device. In sysfs, PCle devices are listed
in the /pci directory rather than the /pcie directory.

Table 1 on page 8 lists the z/Architecture specific device drivers that have representation in sysfs:

Table 1. Device drivers with representation in sysfs

Device driver Category sysfs directories

3215 console Cccw /sys/bus/ccw/drivers/3215
3270 console CCwW /sys/bus/ccw/drivers/3270
DASD CCw

/sys/bus/ccw/drivers/dasd-eckd
/sys/bus/ccw/drivers/dasd-fba

SCSI-over-Fibre Channel CCWwW /sys/bus/ccw/drivers/zfcp

Storage class memory supporting SCM /sys/bus/scm/drivers/scm_block
Flash Express

Channel-attached tape ccw /sys/bus/ccw/drivers/tape_34xx
/sys/bus/ccw/drivers/tape_3590

Cryptographic AP /sys/bus/ap/drivers/cexba
/sys/bus/ap/drivers/cex5c
/sys/bus/ap/drivers/cex5p
/sys/bus/ap/drivers/cex4a
/sys/bus/ap/drivers/cex4c
/sys/bus/ap/drivers/cex4p
/sys/bus/ap/drivers/cex3a
/sys/bus/ap/drivers/cex3c
/sys/bus/ap/drivers/pcixcc

virtio CCW transport device driver CCWwW /sys/bus/ccw/drivers/virtio_ccw

DCSS n/a /sys/devices/dcssbhlk

z/VM recording IUCcv /sys/bus/iucv/drivers/vmlogrdr

geth (OSA-Express features and CCW group /sys/bus/ccwgroup/drivers/qeth

HiperSockets)

LCS CCW group /sys/bus/ccwgroup/drivers/1cs

10GbE RoCE Express devices for PCI sys/bus/pci/drivers/mlx4_cozre

Mellanox ConnectX-3 EN (mlx4_en)

8 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 1. Device drivers with representation in sysfs (continued)

Device driver Category sysfs directories

10 GbE RoCE Express2 devices PCI sys/bus/pci/drivers/mlx5_cozre
for Mellanox ConnectX-4 EN

(mIx5_core)

Internal Shared Memory PCI /sys/bus/pci/drivers/ism
NVMe PCI /sys/bus/pci/drivers/nvme

Some device drivers do not relate to physical devices that are connected through the channel subsystem.
Their representation in sysfs differs from the CCW and CCW group devices, for example, the Cryptographic
device drivers have their own category, AP.

The following sections provide more details about devices and their representation in sysfs.

Device directories

Each device that is known to Linux is represented by a directory in sysfs.

For CCW and CCW group devices the name of the directory is a bus ID that identifies the device within
the scope of a Linux instance. For a CCW device, the bus ID is the device's device number with a leading
"0.<n>.", where <n> is the subchannel set ID. For example, 0.1.0ab1.

CCW group devices are associated with multiple device numbers. For CCW group devices, the bus ID is
the primary device number with a leading "0.<n>.", where <n> is the subchannel set ID.

“Device views in sysfs” on page 11 tells you where you can find the device directories with their
attributes in sysfs.

Device attributes
The device directories contain attributes. You control a device by setting its attributes.

Some attributes are common to all devices in a device category, other attributes are specific to a
particular device driver. The following attributes are common to all CCW devices:

online
You use this attribute to set the device online or offline. To set a device online, write the value 1 to its
online attribute. To set a device offline, write the value 0 to its online attribute.

cutype
specifies the control unit type and model, if applicable. This attribute is read-only.

cmb_enable
enables I/0O data collection for the device. See “Enabling, resetting, and switching off data collection’
on page 538 for details.

i

devtype
specifies the device type and model, if applicable. This attribute is read-only.

availability
indicates whether the device can be used. The following values are possible:

good
This is the normal state. The device can be used.

boxed
DASD only: The device is locked by another operating system instance and cannot be used until
the lock is surrendered or the DASD is accessed by force (see “Accessing DASD by force” on page
145).

Chapter 2. Devices in sysfs 9

no device
Applies to disconnected devices only. The device disappears after a machine check and the device
driver requests to keep the device online anyway. Changes back to "good" when the device returns
after another machine check and the device driver accepts the device back.

no path
Applies to disconnected devices only. After a machine check or a logical vary off, no path remains
to the device. However, the device driver keeps the device online. Changes back to "good" when
the path returns after another machine check or logical vary on and the device driver accepts the
device back.

modalias

contains the module alias for the device. It is of the format:
ccw:t<cu_type>m<cu_model>
or

ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Setting attributes

Directly write to attributes or, for CCW devices, use a command to set attribute values.

About this task
Because the KVM hypervisor hides many aspects of physical devices that back virtio devices, the scope
for setting device attributes for these devices on KVM guests is limited.

Procedure

You can set a writable attribute by writing the designated value to the corresponding attribute file.

For CCW devices, you can also use the chzdev or the chccwdev command (see “chzdev - Configure
IBM Z devices” on page 584 and “chccwdev - Set CCW device attributes” on page 569) to set
attributes.

With a single chzdev or chccwdev command you can:

— Set an attribute for multiple devices

— Set multiple attributes for a device, including setting the device online
— Set multiple attributes for multiple devices

Working with newly available devices

Errors can occur if you try to work with a device before its sysfs representation is completely initialized.

About this task

When new devices become available to a running Linux instance, some time elapses until the
corresponding device directories and their attributes are created in sysfs. Errors can occur if you attempt
to work with a device for which the sysfs structures are not present or are not complete. These errors are
most likely to occur and most difficult to handle when you are configuring devices with scripts.

Procedure

Use the following steps before you work with a newly available device to avoid such errors:
1. Attach the device, for example, with a z/VM CP ATTACH command or by dynamically attaching a device

to a KVM virtual server.

2. Assure that the sysfs structures for the new device are complete:

40 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo 1 > /proc/cio_settle

This command returns control after all pending updates to sysfs are complete.

Tip: For CCW devices, you can omit this step if you then use chccwdev (see “chccwdev - Set CCW
device attributes” on page 569) to work with the devices. chccwdev triggers cio_settle for you and
waits for cio_settle to complete.

Results

You can now work with the new device. For example, you can set the device online or set attributes for the
device.

Device views in sysfs

sysfs provides multiple views of device specific data.

The most important views are:

 “Device driver view” on page 11

 “Device category view” on page 12

« “Device view” on page 12

« “Channel subsystem view” on page 12

Many paths in sysfs contain device bus-IDs to identify devices. Device bus-IDs of subchannel-attached
devices are of the form:

0.<n>.<devno>

where <n> is the subchannel set-ID and <devno> is the device number.

Device driver view
This view groups devices by the device drivers that control them.
The device driver view is of the form:
/sys/bus/<bus>/dxrivexrs/<driver>/<device_bus_1id>
where:

<bus>
is the device category, for example, ccw or ccwgroup.

<driver>
is a name that specifies an individual device driver or the device driver component that controls the
device (see Table 1 on page 8).

<device_bus_id>
identifies an individual device (see “Device directories” on page 9).

Note: DCSSs are not represented in this view.

Examples

« This example shows the path for an ECKD type DASD device:
/sys/bus/ccw/drivers/dasd-eckd/0.0.b100

« This example shows the path for a geth device:
/sys/bus/ccwgroup/drivers/qeth/0.0.a100

« This example shows the path for a cryptographic device (a CEX3A card):
/sys/bus/ap/drivers/cex3a/card3b

Chapter 2. Devices in sysfs 11

Device category view
This view groups devices by major categories that can span multiple device drivers.

The device category view does not sort the devices according to their device drivers. All devices of the
same category are contained in a single directory. The device category view is of the form:

/sys/bus/<bus>/devices/<device_bus_id>
where:

<bus>

is the device category, for example, ccw or ccwgroup.
<device_bus_id>

identifies an individual device (see “Device directories” on page 9).

Notes:

« DCSSs are not represented in this view.
« /sys/bus/ccw/devices includes virtio CCW devices.

Examples

« This example shows the path for a CCW device.
/sys/bus/ccw/devices/0.0.b100

 This example shows the path for a CCW group device.
/sys/bus/ccwgroup/devices/0.0.a100

« This example shows the path for a cryptographic device:
/sys/bus/ap/devices/card3b

Device view

This view sorts devices according to their device drivers, but independent from the device category. It also
includes logical devices that are not categorized.

The device view is of the form:
/sys/devices/<driver>/<device>

where:

<driver>
is @ name that specifies an individual device driver or the device driver component that controls the
device.

<device>
identifies an individual device. The name of this directory can be a device bus-ID or the name of a
DCSS or IUCV device.

Examples

« This example shows the path for a geth device.
/sys/devices/geth/0.0.a100

 This example shows the path for a DCSS block device.
/sys/devices/dcssblk/mydcss
Channel subsystem view
The channel subsystem view shows the relationship between subchannels and devices.
The channel subsystem view is of the form:

/sys/devices/cssO/<subchannel>

42 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

where:

<subchannel>
is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.

I/0 subchannels show the devices in relation to their respective subchannel sets and subchannels. An I/O
subchannel is of the form:

/sys/devices/css0O/<subchannel>/<device_bus_id>
where:

<subchannel>
is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.

<device_bus_id>

is a device number with a leading "0.<n>.", where <n> is the subchannel set ID (see “Device
directories” on page 9).

Examples

« This example shows a CCW device with device number 0xb100 that is associated with a subchannel
0x0001.
/sys/devices/css0/0.0.0001/0.0.b100

« This example shows a CCW device with device number 0xb200 that is associated with a subchannel
0x0001 in subchannel set 1.
/sys/devices/css0/0.1.0001/0.1.b200

« The entries for a group device show as separate subchannels. If a CCW group device uses three
subchannels 0x0002, 0x0003, and 0x0004 the subchannel information could be:

/sys/devices/css0/0.0.0002/0.0.a100
/sys/devices/css0/0.0.0003/0.0.a101
/sys/devices/css0/0.0.0004/0.0.a102

Each subchannel is associated with a device number. Only the primary device number is used for the
bus ID of the device in the device driver view and the device view.

« This example lists the information available for a non-I/O subchannel with which no device is
associated:

1s /sys/devices/css0/0.0.ff00/
bus driver modalias subsystem type uevent

Subchannel attributes

There are sysfs attributes that represent subchannel properties, including common attributes and
information specific to the subchannel type.

Subchannels have two common attributes:

type
The subchannel type, which is a numerical value, for example:

« 0 for an I/O subchannel
« 1 for a CHSC subchannel
« 3 for an EADM subchannel

modalias
The module alias for the device of the form css:t<n>, where <n> is the subchannel type (for example,
Oor1l).

These two attributes are the only ones that are always present. Some subchannels, like I/O subchannels,
might contain devices and further attributes.

Chapter 2. Devices in sysfs 13

Apart from the bus ID of the attached device, I/O subchannel directories typically contain these
attributes:

chpids
is a list of the channel-path identifiers (CHPIDs) through with the device is connected. See also
“Channel path ID information” on page 15.

pimpampom
provides the path installed, path available, and path operational masks. See z/Architecture Principles
of Operation, SA22-7832 for details about the masks.

Channel path measurement

For Linux in LPAR mode and Linux on z/VM, a sysfs attribute controls the channel path measurement
facility of the channel subsystem.

/sys/devices/css0O/cm_enable

With the cm_enable attribute you can enable and disable the extended channel-path measurement
facility. It can take the following values:

0
Deactivates the measurement facility and remove the measurement-related attributes for the channel
paths. No action if measurements are not active.

Attempts to activate the measurement facility and create the measurement-related attributes for the
channel paths. No action if measurements are already active.

If a machine does not support extended channel-path measurements the cm_enable attribute is not
created.

Two sysfs attributes are added for each channel path object:

cmg
Specifies the channel measurement group or unknown if no characteristics are available.

shared
Specifies whether the channel path is shared between LPARs or unknown if no characteristics are
available.

If measurements are active, two more sysfs attributes are created for each channel path object:

measurement
A binary sysfs attribute that contains the extended channel-path measurement data for the channel
path. It consists of eight 32-bit values and must always be read in its entirety, or 0 will be returned.

measurement_chars
A binary sysfs attribute that is either empty, or contains the channel measurement group dependent
characteristics for the channel path, if the channel measurement group is 2 or 3. If not empty, it
consists of five 32-bit values.

Examples

« To turn measurements on issue:

echo 1 > /sys/devices/cssO/cm_enable

« To turn measurements off issue:

echo 0 > /sys/devices/cssO/cm_enable

14 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Channel path ID information

All CHPIDs that are known to Linux are shown alongside the subchannels in the /sys/devices/css0
directory.

The directories that represent the CHPIDs have the form:
/sys/devices/css0O/chp0O.<chpid>

where <chpid> is a two digit hexadecimal CHPID.

Example: /sys/devices/css0/chp0.4a

Setting a CHPID logically online or offline

Directories that represent CHPIDs contain a status attribute that you can use to set the CHPID logically
online or offline.

Before you begin
Do not set all CHPIDs that connect a vital device offline. For example, Linux will crash if you set all CHPIDs
for the root device offline.

About this task

When a CHPID has been set logically offline from a particular Linux instance, the CHPID is, in effect,
offline for this Linux instance. A CHPID that is shared by multiple operating system instances can be
logically online to some instances and offline to others. A CHPID can also be logically online to Linux while
it has been varied off at the SE.

Procedure

Issue a command of this form:

echo <value> > /sys/devices/cssO/chpO.<CHPID>/status

where:

<CHPID»>
is a two digit hexadecimal CHPID.

<value>
is either on or off.

Examples

« To set a CHPID Ox4a logically offline issue:

echo off > /sys/devices/cssO/chp0.4a/status

 To read the status attribute to confirm that the CHPID is logically offline issue:

cat /sys/devices/cssO/chp0.4a/status
offline

« To set the same CHPID logically online issue:

echo on > /sys/devices/cssO/chp0.4a/status

 To read the status attribute to confirm that the CHPID is logically online issue:

cat /sys/devices/cssO/chp0.4a/status
online

Chapter 2. Devices in sysfs 15

Configuring a CHPID on LPAR

For Linux in LPAR mode, directories that represent CHPIDs contain a configure attribute that you can
use to query and change the configuration state of I/O channel-paths.

About this task
The following configuration changes are supported:

« From standby to configured ("configure")
« From configured to standby ("deconfigure")

Procedure

Issue a command of this form:

echo <value> > /sys/devices/css0/chpO.<CHPID>/configure

where:

<CHPID>

is a two digit hexadecimal CHPID.
<value>

is either 1 or 0.

To query and set the configure value using commands, see “chchp - Change channel path status” on page
571 and “Ilschp - List channel paths” on page 650.

Examples

« To set a channel path with the ID 0x40 to standby issue:

echo 0 > /sys/devices/cssO/chp0.40/configure

This operation is equivalent to performing a Configure Channel Path Off operation on the Hardware
Management Console.

- To read the configure attribute to confirm that the channel path has been set to standby issue:

cat /sys/devices/css0/chp0.40/configure
0

 To set the same CHPID to configured issue:

echo 1 > /sys/devices/cssO/chp0.40/configure

This operation is equivalent to performing a Configure Channel Path On operation on the Hardware
Management Console.

- To read the status attribute to confirm that the CHPID has been set to configured issue:

cat /sys/devices/css0/chp0.40/configure
1

Finding the physical channel associated with a CHPID

Use the mapping of physical channel IDs (PCHID) to CHPIDs to find the hardware from the CHPID number
or the CHPID numbers from the PCHID.

16 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
A CHPID is associated with either a physical port or with an internal connection defined inside the
mainframe, such as HiperSockets. See Figure 5 on page 17. You can determine the PCHID or internal
channel ID number that is associated with a CHPID number.

Mainframe Storage server

LPAR 2 LPAR 1

| Control unit

31

—Channel path
PCHID

CHFPID
Internal channel |D

fe
0704 T

Figure 5. Relationships between CHPIDs, PCHIDs, and internal channel ID numbers.

Knowing the PCHID number can be useful in the following situations:

« When Linux indicates that a CHPID is in an error state, you can use the PCHID number to identify the
associated hardware.

« When a hardware interface requires service action, the PCHID mapping can be used to determine which
CHPIDs and I/O devices will be affected.

The internal channel ID number can be useful to determine which CHPIDs are connected to the same
communication path, such as a HiperSockets link.

Procedure

To find the physical channel ID corresponding to a CHPID, either:
- Display the mapping of all CHPIDs to PCHIDs. Issue the 1schp command:

lschp

« Find the channel-ID related files for the CHPID.

These sysfs files are located under /sys/devices/css0Q/chp0.<num>, where <num> is the two-
digit, lowercase, hexadecimal CHPID number. There are two attribute files:
chid

The channel ID number.

chid_external
A flag that indicates whether this CHPID is associated with an internal channel ID (value 0) or a
physical channel ID (value 1).

The sysfs attribute files are not created when no channel ID information is available to Linux. For Linux
in LPAR mode, this information is always available. For Linux on z/VM and Linux on KVM, the availability
depends on the configuration and on the hypervisor version.

Example

The 1schp command shows channel ID information in a column labeled PCHID. Internal channel IDs are
enclosed in brackets. If no channel ID information is available, the column shows "-".

Chapter 2. Devices in sysfs 17

lschp
CHPID Vary Cfg. Type Cmg Shared PCHID

0.30 1 1 1b 2 1 0390
0.31 1 1 1b 2 1 0392
0.32 1 1 1b 2 1 0510
0.33 1 1 1b 2 1 0512
0.34 1 0 1b = = 0580
0.fc 1 1 24 3 1 (0702)
0.£d 1 1 24 3 1 (0703)
0.fe 1 1 24 3 1 (0704)

This example shows that CHPID 30 is associated with PCHID 0390, while CHPID fe is associated with
internal channel ID 0704.

Alternatively, check the channel ID sysfs files, for example for CHPID 30:

cat /sys/devices/css0/chp0.30/chid

0390

cat /sys/devices/css0/chp0.30/chid_external
1

Checking the FCES status of a CHPID

For Linux on IBM Z, directories that represent CHPIDs contain a read-only attribute, esc, that you can use
to query the Fibre Channel Endpoint Security capability of I/O channel-paths.

About this task

The esc sysfs attribute can have the following values:

0
FCES is not supported.

1
The channel path supports authentication.

20r3
The channel path supports authentication and encryption.

Procedure
« Toread the FCES status of a CHPID, issue:

cat /sys/devices/css0O/chp0O.<CHPID>/esc

For example:

cat /sys/devices/css0/chp0.34/esc
2

CCW hotplug events

A hotplug event is generated when a CCW device appears or disappears with a machine check.
The hotplug events provide the following variables:

CU_TYPE
for the control unit type of the device that appeared or disappeared.

CU_MODEL
for the control unit model of the device that appeared or disappeared.

DEV_TYPE
for the type of the device that appeared or disappeared.

48 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

DEV_MODEL
for the model of the device that appeared or disappeared.

MODALIAS
for the module alias of the device that appeared or disappeared. The module
alias is the same value that is contained in /sys/devices/css0/<subchannel_id>/
<device_bus_id>/modalias andis of the format ccw:t<cu_type>m<cu_model> or
ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Hotplug events can be used, for example, for:

« Automatically setting devices online as they appear
« Automatically loading driver modules for which devices have appeared

Chapter 2. Devices in sysfs 19

20 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 3. Device auto-configuration for Linux in
LPAR mode

As of z14 and LinuxONE II, you can store device configuration data for Linux in LPAR mode on the Support
Element (SE).

You provide this configuration data through a hardware management console (HMC) interface in Dynamic
Partition Manager (DPM) mode. This data can then be processed automatically by Linux during the boot
process.

The Ubuntu Server installer makes use of the auto-configuration data as specified on the HMC interface
and enables all devices listed.

Making devices available to Linux

Devices must be configured on the hardware and in Linux before they can be used.

Defining devices to an LPAR

Typical IBM Z and LinuxONE systems run numerous operating system instances in parallel and connect
to a considerable number of storage, network, and other peripheral devices. In this environment, device
access must be controlled.

« Workload isolation demands selective and controlled device access.

« Operating systems expend cycles, time, and memory to manage each device. For example, on Linux,
udev creates structures for each registered device.

Data centers with discrete host systems can use physical cabling between hosts and peripheral devices to
manage device access. On IBM Z and LinuxONE systems with their logical partitions (LPARs), much of this
cabling would need to be within the hardware system itself.

Instead of cables, a hardware configuration controls which LPAR has access to which I/O device. The
hardware configuration is specified in an input/output configuration data set (IOCDS). Traditionally,
I0CDSs are created with the hardware configuration definition (HCD) program.

DPM: The IBM Z or LinuxONE firmware automatically processes the device-configuration data you provide
on the HMC interface, and creates and activates a corresponding IOCDS for you.

Controlling device availability on Linux

The hardware configuration already limits the I/O devices that are available to a Linux instance. The
cio_ignore feature provides another control point on Linux. With cio_ignore, you can create and
maintain a list of devices to be ignored by Linux.

DPM: If cio_ignore is active, the list of devices to be ignored by Linux is automatically adjusted, at
boot-time, to accommodate all devices that are configured on the HMC interface. If available to the
hardware, these devices become available to Linux and are set online.

To enforce the current cio_ignore list, you can use the rd.zdev=no-auto kernel parameter to
disregard auto-configuration for devices on Linux. This parameter also affects the initial online state

of PCIe devices and cryptographic devices, see “rd.zdev=no-auto - Override initial device availability for
DPM mode” on page 786.

Configuring devices on Linux

On arunning Linux instance, you can use the chzdev command to configure individual devices. With
the 1szdev command you can display the device settings. These tools distinguish different types of
configurations.

© Copyright IBM Corp. 2000, 2023 21

Active configuration
The current configuration, which might include settings that do not persist across reboots.

Persistent configuration
The configuration to be applied when the Linux instance is booted.

DPM only: Auto-configuration
The configuration as specified on the HMC interface.

chzdev provides a richer set of configuration options than the HMC interface. The active and persistent
settings are often a fine-tuned version of the auto-configuration.

Overriding the auto-configuration
You can override the auto-configuration for a device with a persistent configuration.

For devices that come online early in the boot process, use the zdev:early device attribute to ensure
that this persistent configuration is available at this early stage (see “chzdev - Configure IBM Z devices”

on page 584).

Managing auto-configuration data

Use the 1szdev and chzdev commands to manage auto-configuration data.

Displaying auto-configuration data
The 1szdev command can display auto-configuration data.

Use the 1szdev command with the - -auto-conf option to display a list of devices for which auto-
configuration data is available.

Example:

lszdev --auto-conf

TYPE ID AUTO
dasd-eckd 0.0.ec30 yes
dasd-eckd 0.0.ec31 yes

Auto-configuration settings can be overridden with settings in the persistent configuration. Omit the
--auto-conf option to find out for which devices auto-configuration is effective:

Example:

lszdev

TYPE ID ON PERS NAMES
dasd-eckd 0.0.ec30 yes yes dasda
dasd-eckd 0.0.ec31 yes auto dasdb
dasd-eckd 0.0.ec32 yes no dasdc
geth 0.0.f5f0:0.0.£5f1:0.0.£f5f2 yes no enccf5f0
generic-ccw 0.0.0009 yes no

In the example, auto-configuration data is effective for only one device, 0. 0. ec31. Effective auto-
configuration data is indicated through the value auto in the PERS column of the command output.

The 1szdev output for detailed information about a device includes a separate column, AUTOCONF, for
auto-configuration data, if available.

Example:

22 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

1lszdev -i 0.0.ec31
DEVICE dasd-eckd 0.0.ec31

Names :

Modules : dasd_eckd_mod dasd_mod

Online : no

Exists . yes

Persistent : no

Auto-configured . yes

ATTRIBUTE ACTIVE PERSISTENT AUTOCONF
cmb_enable "o - -
eer_enabled "o" - -
erplog "o" - -
failfast o = =
last_known_reservation_state "none" - -
Online II1II - II1II
raw_track_access o = =
readonly "o - -
reservation_policy "ignore" - -
use_diag "o - -

If the AUTOCONF column is omitted, no auto-configuration data is available for this device. You can force
the column with the - -auto-conf option.

You can access the raw auto-configuration data through sysfs at /sys/firmware/sclp_sd/config/
data. For example, you can use this sysfs attribute as a source for importing auto-configuration data with
the chzdev command:

chzdev --import /sys/firmware/sclp_sd/config/data --auto-conf

Modifying the auto-configuration

Persistent changes to the auto-configuration can be made only through the hardware interface through
which the original device configuration is specified. Such changes are applied with the next reboot.

To refresh the raw auto-configuration in sysfs at /sys/firmware/sclp_sd/config/data, target an
echo command at /sys/firmware/sclp_sd/config/reload.

echo 1 > /sys/firmware/sclp_sd/config/reload
You can use chzdev with the -d and - -auto-conf options to temporarily remove the auto-configuration
for a device.

Example:

chzdev -d --auto-conf 0.0.ec31
Deconfiguring devices in the auto-configuration only
ECKD DASD 0.0.ec31 deconfigured

Auto-configuration settings are then not applied when the device appears. These configuration changes
do not remove the corresponding configuration data on the SE. The auto-configuration data for the device
is restored with the next reboot.

Overriding the auto-configuration for devices that are used early in the boot
process

With chzdev, you can override settings from the auto-configuration in the active configuration or
persistently. Some persistent settings for devices that are set online early in the boot process must be
included in the initial RAM disk.

Use the chzdev command to set the zdev: early device attribute for such devices.

Example:

Chapter 3. Device auto-configuration for Linux in LPAR mode 23

chzdev -e dasd-fba e030 zdev:early=1

FBA DASD 0.0.e030 configured

Note: The initial RAM-disk must be updated for these changes to take effect:
- FBA DASD 0.0.e030

Update initial RAM-disk now? (yes/no) yes

Do not indiscriminately include configuration settings in the initial RAM disk. To remove settings for a
device, remove the zdev:eaxrly attribute from the device settings.

Example:

chzdev -e dasd-fba e030 --remove-attribute zdev:early

FBA DASD 0.0.e030 configured

Note: The initial RAM-disk must be updated for these changes to take effect:
- FBA DASD 0.0.e030

Update initial RAM-disk now? (yes/no) yes

Use the 1szdev command to list all devices that are configured with the zdev:early attribute.

Example:
lszdev --by-attr zdev:early=1
TYPE ID ON PERS NAMES

dasd-fba 0.0.e030 yes yes dasda
zfcp-lun 0.0.1911:0x50050763070845e3:0x4082409100000000 no yes

24 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 4. Kernel and module parameters

Kernel and module parameters are used to configure the kernel and kernel modules.

Individual kernel parameters or module parameters are single keywords, or keyword-value pairs of the
form keyword=<value> with no blank. Blanks separate consecutive parameters.

Kernel parameters and module parameters are encoded as strings of ASCII characters. For tape or the
z/VM reader as a boot device, the parameters can also be encoded in EBCDIC.

Use kernel parameters to configure the base kernel and any optional kernel parts that have been compiled
into the kernel image. Use module parameters to configure separate kernel modules. Do not confuse
kernel and module parameters. Although a module parameter can have the same syntax as a related
kernel parameter, kernel and module parameters are specified and processed differently.

Kernel parameters

Different methods are available to configure the base kernel and all modules that have been compiled into
the kernel.

Where possible, this document describes kernel parameters with the device driver or feature to which
they apply. Kernel parameters that apply to the base kernel or cannot be attributed to a particular device
driver or feature are described in Chapter 63, “Selected kernel parameters,” on page 773. You can also
find descriptions for most of the kernel parameters in the kernel -parameters.txt file, which is part of
the admin-guide in the 1inux-doc package.

Specifying kernel parameters
There are different methods for passing kernel parameters to Linux.

« Including kernel parameters in a boot configuration
 Using a kernel parameter file
« Specifying kernel parameters when booting Linux

Kernel parameters that you specify when booting Linux are not persistent. To define a permanent set of
kernel parameters for a Linux instance, include these parameters in the boot configuration.

Note: Ubuntu Server, zipl, or the installer; especially autoinstall, might set required kernel parameters for
you. Parameters that you specify might interfere with these settings. Read /proc/cmdline to find out
which parameters were used to start a running Linux instance.

Including kernel parameters in a boot configuration
Use the zipl tool to create Linux boot configurations for IBM mainframe systems.

Which sources of kernel parameters you can use depends on the mode in which you run zipl. See “zipl
modes and syntax overview” on page 58 for details.

A boot configuration can include up to 895 characters of kernel parameters. See also “How kernel
parameters from different sources are combined” on page 28.

Running zipl in configuration-file mode

In configuration-file mode, you issue the zipl command with command arguments that identify a section
in a zipl configuration-file or a Boot Loader Specification (BLS) snippet, see “BLS configuration snippets”
on page 80.

The possible sources of kernel parameters depend on where the details of the boot configuration are
specified, in a zipl configuration-file section or in a BLS snippet.

© Copyright IBM Corp. 2000, 2023 25

zipl configuration-file section
Boot configurations in a zipl configuration-file section have three potential sources of kernel
parameters, as illustrated in Figure 6 on page 26.

zipl in configuration-file mode

W&T_B sccept
boot configuration
kernel kernel
parameters parameters

include 2

kernel
parameters
1-2-3

zipl configuration file command line

D

kernel
parameters
1

kernel parameter file

Figure 6. Sources of kernel parameters: zip! configuration-file section

zipl concatenates the kernel parameters from these sources in the following order:
1. Parameters that are specified in the kernel parameter file
2. Parameters that are specified in the zipl configuration-file
3. Parameters that are specified on the command line
BLS snippet

Boot configurations in a BLS snippet have two potential sources of kernel parameters, as illustrated in
Figure 7 on page 26.

zipl in configuration-file mode

kernel
parameters

get data accept 1-2
boot configuration
kernel kernel
parameters parameters
1
BLS snippet command line

Figure 7. Sources of kernel parameters: BLS snippet

zipl concatenates the kernel parameters from these sources in the following order:

1. Parameters that are specified in the BLS snippet
2. Parameters that are specified on the command line

See “zipl modes and syntax overview” on page 58 for details about the zipl command modes.

Running zipl in command-line mode
In command-line mode, you specify the details about the boot configuration to be created as arguments
for the zipl command.

As shown in Figure 8 on page 27, there are two sources of kernel parameters for zipl in command-line
mode.

26 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl in command-line mode

kernel
parameters
1-2

get data accept

boot configuration
kernel kernel
parameters parameters
1
kernel parameter file command line

Figure 8. Sources of kernel parameters for zipl in command-line mode

In command-line mode, zipl concatenates the kernel parameters in the order:

1. Parameters that are specified in the kernel parameter file
2. Parameters that are specified on the command line

See “zipl modes and syntax overview” on page 58 for details about the zipl command modes.

Using a kernel parameter file in the z/VM reader
For booting Linux from the z/VM reader, you can use a kernel parameter file in the reader.

See “Booting from the z/VM reader” on page 110 for more details.

Specifying kernel parameters when booting Linux

Depending on the boot device and whether you boot Linux in a z/VM guest virtual machine or in LPAR
mode, you can provide kernel parameters when you start the boot process.

zipl interactive boot menu on DASD
When booting Linux on z/VM or in LPAR mode with a zipl interactive boot menu on a DASD boot
device, you can display the menu and specify kernel parameters as you select a boot configuration.
See “DASD menu configuration example for z/VM” on page 108 and “DASD menu configuration for
LPAR” on page 94 for details.

z/VM guest virtual machine with a CCW boot device
When booting Linux in a z/VM guest virtual machine from a CCW boot device, you can use the PARM
parameter of the IPL command to specify kernel parameters. CCW boot devices include DASD, tape,
and the z/VM reader.

For details, see the subsection of “Booting Linux in a z/VM guest virtual machine” on page 106 that
applies to your boot device.

z/VM guest virtual machine with a SCSI boot device
When booting Linux in a z/VM guest virtual machine from a SCSI boot device, you can use the SET
LOADDEV command with the SCPDATA option to specify kernel parameters. See “Booting from a SCSI
device” on page 108 for details.

LPAR mode with a SCSI boot device
When booting Linux in LPAR mode from a SCSI boot device, you can specify kernel parameters in the
Operating system specific load parameters field on the HMC Load panel. See Figure 31 on page 95.

Kernel parameters as entered from a CMS or CP session are interpreted as lowercase on Linux.

Adding kernel parameters to a boot configuration
When booting a Linux instance, you can specify kernel parameters that are used in addition to the
parameters in the boot configuration.

By default, the kernel parameters you specify when booting are concatenated to the end of the kernel
parameters in your boot configuration. In total, the combined kernel parameter string that is used for
booting can be up to 4096 characters.

Chapter 4. Kernel and module parameters 27

If kernel parameters are specified in a combination of methods, they are concatenated in the following
order:
1. Kernel parameters that have been included in the boot configuration with zipl
2. DASD only: zipl kernel parameters that are specified with the interactive boot menu
3. Depending on where you are booting Linux:
- z/VM: kernel parameters that are specified with the PARM parameter for CCW boot devices; kernel
parameters that are specified as SCPDATA for SCSI boot devices
« LPAR: kernel parameters that are specified on the HMC Load panel for SCSI boot devices
If the combined kernel parameter string contains conflicting settings, the last specification in the

string overrides preceding ones. Thus, you can specify a kernel parameter when booting to override an
unwanted setting in the boot configuration.

Examples

« If the kernel parameters in your boot configuration include possible_cpus=8 but you specify
possible_cpus=2 when booting, Linux uses possible_cpus=2.

« If the kernel parameters in your boot configuration include resume=/dev/dasda2 to specify a disk
from which to resume the Linux instance when it has been suspended, you can circumvent the resume
process by specifying noresume when booting.

Replacing all kernel parameters in a boot configuration
Kernel parameters that you specify when booting can completely replace the kernel parameters in your
boot configuration.

To replace all kernel parameters in your boot configuration, specify the new parameter string with a
leading equal sign (=).

Note: This feature is intended for expert users who want to test a set of parameters. By replacing all
parameters, you might inadvertently omit parameters that the boot configuration requires. Furthermore,
you might omit parameters other than kernel parameters that Ubuntu Server includes in the parameter
string for use by the init process.

Read /proc/cmdline to find out with which parameters a running Linux instance was started (see also
“Displaying the current kernel parameter line” on page 29).

How kernel parameters from different sources are combined
If kernel parameters are specified in a combination of methods, they are concatenated in a specific order.

1. Kernel parameters that have been included in the boot configuration (see “Including kernel
parameters in a boot configuration” on page 25).

The kernel parameters in the boot configuration cannot exceed 895 characters. If more then 895
characters are specified, the excessive characters are truncated.

2. LPAR or z/VM: Kernel parameters that you specify through the HMC or through z/VM interfaces (see
“Specifying kernel parameters when booting Linux” on page 27).

For DASD boot devices you can specify up to 64 characters (z/VM only); for SCSI boot devices you can
specify up to 3452 characters.

In total, the combined kernel parameter string that is passed to the Linux kernel for booting can be up to
4096 characters.

Multiple specifications for the same parameter

For some kernel parameters, multiple instances in the kernel parameter string are treated cumulatively.
For example, multiple specifications for cio_ignore= are all processed and combined.

28 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Conflicting kernel parameters

If the kernel parameter string contains kernel parameters with mutually exclusive settings, the last
specification in the string overrides preceding ones. Thus, you can specify a kernel parameter when
booting to override an unwanted setting in the boot configuration.

Example: If the kernel parameters in your boot configuration include possible_cpus=8 but you specify
possible_cpus=2 when booting, Linux uses possible_cpus=2.

Parameters other than kernel parameters

Parameters on the kernel parameter string that the kernel does not recognize as kernel parameters
are ignored by the kernel and made available to user space programs. How multiple specifications and
conflicts are resolved for such parameters depends on the program that evaluates them.

Examples for kernel parameters

Typical parameters that are used for booting Ubuntu Server 22.04 LTS configure the console and the root
file system.
boot_image=<integer>

to specify the zipl menu section for booting.

conmode=<mode>, condev=<cuu>, console=<name>
to set up the Linux console. See “Console kernel parameter syntax” on page 43 for details.

ramdisk_size=<size>
to specify the size of the initial RAM disk.

ro
to mount the root file system read-only.

root=<rootdevice>
to specify the device to be mounted as the root file system.

Displaying the current kernel parameter line

Read /proc/cmdline to find out with which kernel parameters a running Linux instance was booted.

About this task

Apart from kernel parameters, which are evaluated by the Linux kernel, the kernel parameter line can
contain parameters that are evaluated by user space programs, for example modprobe.

See also “Displaying current IPL parameters” on page 111 about displaying the parameters that were
used to IPL and boot the running Linux instance.

Example

cat /proc/cmdline
crashkernel=1G-:128M root=/dev/disk/by-path/ccw-0.0.5f50-partl BOOT_IMAGE=0

Kernel parameters for rebooting

When rebooting, you can use the current kernel parameters or an alternative set of kernel parameters.
By default, Linux uses the current kernel parameters for rebooting. See “Rebooting from an alternative
source” on page 114 about setting up Linux to use different kernel parameters for re-IPL and the
associated reboot.

Module parameters

Use module parameters to configure kernel modules that are compiled as separate modules that can be
loaded by the kernel.

Chapter 4. Kernel and module parameters 29

Separate kernel modules must be loaded before they can be used. Many modules are loaded
automatically by Ubuntu Server 22.04 LTS when they are needed.

To keep the module parameters in the context of the device driver or feature module to which they apply,
this information describes module parameters as part of the syntax you would use to load the module
with modprobe.

To find the separate kernel modules for Ubuntu Server 22.04 LTS, list the contents of the subdirectories

of /1ib/modules/<kernel-release>/kernel/drivers/s390 in the Linux file system. In the path,
<kernel-release> denotes the kernel level. You can query the value for <kernel-release> with uname -«.

You can combine the commands into one:

ls -la /lib/modules/$(uname -r)/kernel/drivers/s390

Specifying module parameters

You can specify module parameters with modprobe or on the kernel parameter line.

Specifying module parameters with modprobe

If you load a module explicitly with a modpxrobe command, you can specify the module parameters as
command arguments.

Module parameters that are specified as arguments to modpzxobe are effective only until the module is
unloaded.

Note: Parameters that you specify as command arguments might interfere with parameters that Ubuntu
Server 22.04 LTS sets for you.

Module parameters on the kernel parameter line

Parameters that the kernel does not recognize as kernel parameters are ignored by the kernel and made
available to user space programs.

One of these user space programs is modprobe. modprobe interprets module parameters that are
specified on the kernel parameter line if they are qualified with a leading module prefix and a dot.

For example, if the DASD device driver is compiled as a separate module, you can include a specification
with dasd_mod.dasd= on the kernel parameter line. modprobe evaluates this specification as the dasd=
module parameter when the dasd_mod module is loaded.

For some device drivers and features, the module parameters and their corresponding kernel parameters
follow a naming convention that makes them effective regardless of whether the device driver or feature
is compiled into the kernel or as a separate module. An example is the zfcp.datarouter= kernel
parameter with its corresponding datarouter= module parameter.

If the SCSI-over-Fibre Channel device driver (zfcp device driver) is compiled into the kernel,
zfcp.datarouter=is recognized as a kernel parameter. If the zfcp device driver is compiled as a
separate module, modprobe interprets zfcp.datarouter= as the datarouter= parameter to be used
when the zfcp module is loaded.

Note: Ubuntu Server 22.04 LTS might set required module parameters for you. Parameters that you
specify on the kernel parameter line might interfere with these settings.

Including module parameters in a boot configuration

Module parameters for modules that are required early during the boot process must be included in the
boot configuration.

About this task

Ubuntu Server uses an initial RAM disk when booting.

30 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Ubuntu Server runs update-initramfs and zipl for you when saving changes you have made.

Procedure

Perform these steps to provide module parameters for modules that are included in the initial RAM disk:
1. Make your configuration changes, for example with the chzdev command.
2. If Ubuntu Server does not perform this task for you:

a) Run update-initramfs to create an initial RAM disk that includes the module parameters.
For example:

update-initramfs -k all -u

Tip: Use -k all to ensure that all kernel and initrd combinations on the system are updated.
b) Run zipl to include the new RAM disk in your boot configuration.

Displaying information about the modules
Loaded modules can export module parameter settings to sysfs. Not all parameters are visible.

The parameters for modules are available as sysfs attributes of the form:

/sys/module/<module name>/parameters/<parameter name>

Before you begin
You can display information about modules that fulfill these prerequisites:

« The module must be loaded.
« The module must export the parameters to sysfs.

Procedure

To find and display the parameters for a module, follow these steps:
1. Optional: Confirm that the module of interest is loaded by issuing a command of this form:

lsmod | grep <module_name>

where <module_name> is the name of the module.
2. Optional: Get an overview of the parameters for the module by issuing a command of this form:

modinfo <module_name>

3. Check if the module of interest exports parameters to sysfs. Issue a command of the form:

1ls /sys/module/<module_name>/parameters

4. If the previous command listed parameters, you can display the value for the parameter of interest.
Issue a command of the form:

cat /sys/module/<module_name>/parameters/<parameter name>

Example

« To list the module parameters for the ap module, issue:

Chapter 4. Kernel and module parameters 31

1ls /sys/module/ap/parameters
domain

« To display the value of the domain parameter, issue:

cat /sys/module/ap/parameters/domain
1

32 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 2. Booting and shutdown

These device drivers and features are useful in the context of booting and shutting down instances of
Ubuntu Server 22.04 LTS.
Newest version

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions

For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 33

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

34 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 5. Console device drivers

The console device drivers support terminal devices for basic Linux control, for example, for booting
Linux, for troubleshooting, and for displaying Linux kernel messages.

Linux in LPAR mode

The only interface to a Linux instance in an LPAR before the boot process is completed is the Hardware

Management Console (HMC), see Figure 9 on page 35. After the boot process has completed, you

typically use a network connection to access Linux through a user login, for example, in an SSH session.

The possible connections depend on the configuration of your part

IEM Hardware Management Console

icular Linux instance.

Operating System Messages X

< Systems Management > M35

) Welcome Partitions

[E] m Systems Management

@ = B

Select ~ |Name

. B % 2 (4] (2] o [Glrre

a &) M35LP52

M: P!
{1 Custom Groups O COCTEEE
(] 5, M35LP54

B HMC Majagement

) Tasks v || Views v

~ | Activation Profie
M35LP52
M35LPS3
M35LP54

M35LPS5

T | e

§i} service Management

[5) Tasks Indel

M35LP56

M35LP57

M35LP58

M35LP59

M35LP60

Tasks: M35LP55

Image Details
Toggle Lock

N

Selected |
hardware e ™=
system

Load from Removable Medbadx Server
estar
leset Cle:
ar
Stop All Processors

Selected LFAR

Figure 9. Hardware Management Console

Linux on z/VM

& Monitor
Monitor System Events

Operating System Messages

Integrated ASCII Console

With Linux on z/VM, you typically use a 3270 terminal or terminal emulator to log in to z/VM first. From the
3270 terminal, you IPL the Linux boot device. Again, after boot you typically use a network connection to

access Linux through a user login rather than a 3270 terminal.

Linux on KVM

You initiate the boot process for Linux as a KVM guest on IBM Z when you start the KVM virtual server
through a virsh command on the KVM host. The --console of the vixrsh start command option

gives you access to a terminal that displays the kernel messages.

After the boot process has completed, a guest is usually accessed through a user login, for example, in an
SSH session. The possible connections depend on the configuration of your particular Linux instance.

Console features

The console device drivers support several types of terminal devices.

© Copyright IBM Corp. 2000, 2023

35

HMC applets
You can use two applets.

Operating System Messages
This applet provides a line-mode terminal. See Figure 10 on page 36 for an example.

Integrated ASCII Console
This applet provides a full-screen mode terminal. It is useful, for example, for interactive
commands.

These HMC applets are accessed through the service-call logical processor (SCLP) console interface.

3270 terminal
This terminal can be based on physical 3270 terminal hardware or a 3270 terminal emulation.

z/VM can use the 3270 terminal as a 3270 device or perform a protocol translation and use it as a
3215 device. As a 3215 device it is a line-mode terminal for the United States code page (037).

The iucvconn program
You can use the iucvconn program from Linux on z/VM to access terminal devices on other Linux
instances that run as guests of the same z/VM system.

For information about the iucvconn program, see How to Set up a Terminal Server Environment on
z/VM, SC34-2596.

virsh command on the KVM host
For Linux on KVM, you can access the console through a virsh command on the KVM host. See “Using
virsh on a KVM host” on page 40.

The console device drivers support these terminals as output devices for Linux kernel messages.

IEM Hardware Management Console

Home Operating System Messa... [2 X

Operating System Messages

s O0000000000000000000000000000000

al: 443 Selected: @

"3
@
3
2

Close Help
Read hmccust

Figure 10. Linux kernel messages on the HMC Operating System Messages applet

36 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

What you should know about the console device drivers

The console concepts, naming conventions, and terminology overview help you to understand the tasks
you might have to perform with console and terminal devices.

Console terminology
Terminal and console have special meanings in Linux.

Linux terminal
An input/output device through which users interact with Linux and Linux applications. Login
programs and shells typically run on Linux terminals and provide access to the Linux system.

Linux console
An output-only device to which the Linux kernel can write kernel messages. Linux console devices can
be associated with Linux terminal devices. Thus, console output can be displayed on a Linux terminal.

Mainframe terminal
Any device that gives a user access to operating systems and applications that run on a mainframe. A
mainframe terminal can be a physical device such as a 3270 terminal hardware that is linked to the
mainframe through a controller. It can also be a terminal emulator on a workstation that is connected
through a network. For example, you access z/OS through a mainframe terminal.

Hardware Management Console (HMC)
A device that gives a system programmer control over IBM Z hardware resources, for example, LPARs.
The HMC is a web application on a web server that is connected to the support element (SE). The
HMC can be accessed from the SE but more commonly is accessed from a workstation within a secure
network.

On the mainframe, the Linux console and Linux terminals can both be connected to a mainframe terminal.

Before you have a Linux terminal - the zipl boot menu
Do not confuse the zipl boot menu with a Linux terminal.

Depending on your setup, a zipl boot menu might be displayed when you perform an IPL. The zipl boot
menu is part of the boot loader that loads the Linux kernel and is displayed before a Linux terminal is set
up. The zipl boot menu is very limited in its functions. For example, there is no way to specify uppercase
letters because all input is converted to lowercase characters. For more details about booting Linux, see
Chapter 7, “Booting Linux,” on page 89. For more information about the zipl boot menu, see Chapter 6,
“Initial program loader for IBM Z - zipl,” on page 57.

Device and console names
Each terminal device driver can provide a single console device.

Table 2 on page 37 lists the terminal device drivers and the corresponding device names and console

names.
Table 2. Device and console names
Device driver Device name Console name
SCLP line-mode terminal device driver sclp_Lline0 ttySO
SCLP VT220 terminal device driver ttysclpO ttyS1
3215 line-mode terminal device driver ttySO ttySO
3270 terminal device driver 3270/ttyl to 3270/ tty3270
tty<N>
z/VM IUCV HVC device driver hvcO to hvc7 hvcO
virtio-console device driver hvcO to hve<n> hvcO

Chapter 5. Console device drivers 37

As shown in Table 2 on page 37, the console with name ttyS0 can be provided either by the SCLP console
device driver or by the 3215 line-mode terminal device driver. The system environment and settings
determine which device driver provides ttyS0. For details, see the information about the conmode kernel
parameter in “Console kernel parameter syntax” on page 43.

Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvc0 is associated with
a console.

Of the 3270/tty<N> terminal devices only 3270/ttyl is associated with a console.

Device nodes
Applications, for example, login programs, access terminal devices by device nodes.

For example, with the default conmode settings, udev creates the following device nodes:

Table 3. Device nodes created by udev
Device driver LPAR z/VM KVM
SCLP line-mode terminal device driver | /dev/ n/a /dev/
sclp_line® sclp_line0®
SCLP VT220 terminal device driver /dev/ttysclpO | /dev/ttysclp0 /dev/ttysclp0®
3215 line-mode terminal device driver | n/a /dev/ttySO n/a
3270 terminal device driver /dev/3270/ /dev/3270/ttyl to /dev/3270/
ttylto /dev/3270/tty<N> ttylto /dev/
/dev/3270/ 3270/tty<N>
tty<N>
z/VM IUCV HVC device driver n/a /dev/hvcOto /dev/ n/a
hvc7
virtio-console device driver n/a n/a /dev/hvcO
to /dev/hvc<n>

For Linux running in LPAR mode, the 3270 terminal device node is only created if a real terminal is
available.

Terminal modes

The Linux terminals that are provided by the console device drivers include line-mode terminals, block-
mode terminals, and full-screen mode terminals.

On a full-screen mode terminal, pressing any key immediately results in data being sent to the terminal.
Also, terminal output can be positioned anywhere on the screen. This feature facilitates advanced
interactive capability for terminal-based applications like the vi editor.

On aline-mode terminal, the user first types a full line, and then presses Enter to indicate that the line is
complete. The device driver then issues a read to get the line, adds a new line, and hands over the input to
the generic TTY routines. Line-mode terminals provide fewer capabilities than full-screen or block mode
terminals and are intended as a backup for emergencies.

The terminal that is provided by the 3270 terminal device driver is a traditional IBM mainframe block-
mode terminal. Block-mode terminals provide full-screen output support and users can type input in
predefined fields on the screen. Other than on typical full-screen mode terminals, no input is passed on
until the user presses Enter. The terminal that is provided by the 3270 terminal device driver provides
limited support for full-screen applications. For example, the ned editor is supported, but not vi.

Table 4 on page 39 summarizes when to expect which terminal mode.

38 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 4. Terminal modes

command)

Accessed through Environment Device driver Mode

Operating System Messages | LPAR SCLP line-mode Line mode

applet on the HMC terminal device driver

z/VM emulation of the HMC z/VVM SCLP line-mode Line mode

Operating System Messages terminal device driver

applet

Integrated ASCII Console z/VM or LPAR SCLP VT220 terminal Full-screen

applet on the HMC device driver mode

KVM host (for example, KVM SCLP line-mode Line mode

using the virsh console terminal device driver

command)

KVM host (for example, KVM SCLP VT220 terminal Full-screen

using the virsh console device driver mode

command)

3270 terminal hardware or z/VM with CONMODE=3215 | 3215 line-mode Line mode

emulation or KVM terminal device driver

3270 terminal hardware or z/VM with CONMODE=3270 | 3270 terminal device Block mode

emulation or KVM driver

iucvconn program z/VVM z/VM IUCV HVC device | Full-screen
driver mode

KVM host (for example, KVM virtio-console device Full-screen

using the virsh console driver mode

The 3270 terminal device driver provides three different views. See “Switching the views of the 3270
terminal device driver” on page 50 for details.

How console devices are accessed

How you can access console devices depends on your environment.

The diagrams in the following sections omit device drivers that are not relevant for the particular access

scenario.

Using the HMC for Linux in an LPAR

You can use two applets on the HMC to access terminal devices on Linux instances that run directly in an

LPAR.

Figure 11 on page 40 shows the possible terminal devices for Linux instances that run directly in an

LPAR.

Chapter 5. Console device drivers 39

w HMC Linux

%, Operating System 1 SCLF line-mode
Workstation Peﬁelﬁgaggﬁ Ml terminal device driver

Int ted NGRS SCLF V1220
W PRSaii YS! | 4ol devics driver

Figure 11. Accessing terminal devices on Linux in an LPAR from the HMC

/N

/N

The Operating System Messages applet accesses the device that is provided by the SCLP line-mode
terminal device driver. The Integrated ASCII console applet accesses the device that is provided by the
SCLP VT220 terminal device driver.

Using the HMC for Linux on z/VM

You can use the HMC Integrated ASCII Console applet to access terminal devices on Linux instances
that run as z/VM guests.

While the ASCII system console is attached to the z/VM guest virtual machine where the Linux instance
runs, you can access the ttyS1 terminal device from the HMC Integrated ASCII Console applet (see
Figure 12 on page 40).

Workstation

Browser w. &\ I|

HMC z/VYM

Operating System ;

P M@%@agga Linux

ATTACH SYSASCII —
Int ted . S] SCLP V1220
AéqCﬁ@ggngole : > _tyo —J terminal device driver

Figure 12. Accessing terminal devices from the HMC for Linux on z/VM

Use the CP ATTACH SYSASCII command to attach the ASCII system console to your z/VM guest virtual
machine.

Using virsh on a KVM host

You can use the virsh console command on a KVM host to access an sclp or virtio based terminal
on a KVM guest.

40 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Linux kernel (host)

Linux kernel (guest)

SCLP VT220 terminal device driver | |SCLP line-mode terminal device driver |virtio_console device driver
| Console device driver! | Console device driver! ,4’/1@@2
i ([ttys!) | \jtyeflpOj i [ttys0 | | \?clp_\[iner " hveO /L
v~ N\

User space (guest) L/ cerial

shell

User space (host)

Figure 13. Using virsh to access a KVM guest console

Figure 13 on page 41, shows a KVM guest with three device drivers that can provide a console. The
terminal that is accessed by the virsh console command depends on the guest configuration. For
details, see KVM Virtual Server Management, SC34-2752.

In a common setup, the virsh console command opens a connection to the device that is provided
by the SCLP VT220 terminal device driver. This device also becomes associated with the generic /dev/
console device node.

Whether your Linux instance uses this device as the device to which Linux kernel messages are written
depends on the Linux configuration. Use the console= parameter to control which devices are activated
to receive Linux kernel messages (see in “Console kernel parameter syntax” on page 43).

Using a 3270 terminal emulation for Linux on z/VM
For Linux on z/VM, you can use a 3270 terminal emulation to access a console device.

Figure 14 on page 41 illustrates how z/VM can handle the 3270 communication.

% z/VM .
o Linux
Workstation

\
I

J

(e}
\08 - .
N S) 5215 line-mode
5270 B CONMODE:5215$%*§ A ttye0 | terminal device driver
terqni)gal A N S
emulation = J— .
——— 98 =L CONMODE=3270 foyzzzo) S50 bemical
B0
.) S ttva0 | SCLP line-mode
___J > VINFUT J ”"»M—Jtermimald(ﬁvice driver

Figure 14. Accessing terminal devices from a 3270 device

Note: Figure 14 on page 41 shows two console devices with the name ttyS0O. Only one of these devices
can be present at any one time.

CONMODE=3215
translates between the 3270 protocol and the 3215 protocol and connects the 3270 terminal
emulation to the 3215 line-mode terminal device driver in the Linux kernel.

You can use the conmode= kernel parameter to make the kernel issue the corresponding z/VM CP
command.

Chapter 5. Console device drivers 41

CONMODE=3270
connects the 3270 terminal emulation to the 3270 terminal device driver in the Linux kernel.

You can use the conmode= kernel parameter to make the kernel issue the corresponding z/VM CP
command.

VINPUT
is a z/VM CP command that directs input to the ttySO device provided by the SCLP line-mode terminal
device driver. In a default z/VM environment, ttyS0 is provided by the 3215 line-mode terminal device
driver. You can use the conmode= kernel parameter to make the SCLP line-mode terminal device
driver provide ttySO0.

The terminal device drivers continue to support 3270 terminal hardware, which, if available at your
installation, can be used instead of a 3270 terminal emulation.

For information about the conmode= kernel parameter, see “Console kernel parameter syntax” on page
43.

Using a 3270 terminal emulation for Linux on KVM

For Linux on IBM Z as a KVM guest, you can use a 3270 terminal emulation to access a console device
through the 3270 or 3215 terminal device driver.

The following figure illustrates how Linux on KVM can handle the 3270 communication.

KVM host

@ KVYM guest

Workstation . {%‘ 5215 line-mode

3270) terminal device driver
terminal ~a| 3270
emulation protocol

(mAA 2270 terminal
>(tty3270) device driver

Figure 15. Accessing terminal devices from virt-manager

Using iucvconn on Linux on z/VM

On Linux on z/VM, you can access the terminal devices that are provided by the z/VM IUCV Hypervisor
Console (HVC) device driver.

z/IVM
v\ Lihux Linux
/BN
shell

z/YM IUCY HVYC device driver
Workstation [(hve7)
5) p
Terminal ' L hve
seo5i0n IUCVC/QHH | hveO J
— ww

Figure 16. Accessing terminal devices from a peer Linux instance

As illustrated in Figure 16 on page 42, you access the devices with the iucvconn program from
another Linux instance. Both Linux instances are guests of the same z/VM system. IUCV provides the

42 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

communication between the two Linux instances. With this setup, you can access terminal devices on
Linux instances with no external network connection.

Note: Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvcO can be
activated to receive Linux kernel messages.

Setting up the console device drivers

You configure the console device drivers through kernel parameters. You also might have to enable user
logins on terminals, and ensure suitable terminal settings.

Console kernel parameter syntax

Use the console kernel parameters to configure the console device drivers, line-mode terminals, and HVC
terminal devices.

Console kernel parameter syntax

L] L 2
conmode= hwe console= <console_name>

sclp

A

),

»

3215
3270

lp_con_drop=1 sclp_con_pages=6
[~ [s,
condev= <devno> J L sclp_con_drop=0 J L sclp_con_pages= <n> —J

hvc_iucv=1 ﬁ

—~

'T

hve_iucv= <number_of devices> J

L hvc_iucv_allow= <z/VM user ID>

Notes:

I

1 Specify the conmode= parameter for Linux on z/VM only.

2 1f you specify both the conmode= and the console= parameter, specify them in the sequence
that is shown, conmode= first.

3The sclp_con_pages=and sclp_con_drop= parameters apply only to the SCLP line-mode
terminal device driver and to the SCLP VT220 terminal device driver.

4The hvc_iucv=and hvc_iucv_allow= kernel parameters apply only to terminal devices that
are provided by the z/VM IUCV HVC device driver.

where:

conmode
specifies which one of the line-mode or block-mode terminal devices is present and provided by

which device driver.
A Linux kernel might include multiple console device drivers that can provide a line-mode terminal:

Chapter 5. Console device drivers 43

« SCLP line-mode terminal device driver
« 3215 line-mode terminal device driver
« 3270 terminal device driver

On a running Linux instance, only one of these device drivers can provide a device. Table 5 on page
44 shows how the device driver that is used by default depends on the environment.

Table 5. Default device driver for the line-mode terminal device

Mode Default
LPAR SCLP line-mode terminal device driver
z/VM 3215 line-mode terminal device driver or 3270 terminal device driver,

depending on the z/VM guest's console settings (the CONMODE field in the
output of #CP QUERY TERMINAL).

If the device driver you specify with the conmode= kernel parameter
contradicts the CONMODE z/VM setting, z/VM is reconfigured to match the
specification for the kernel parameter.

KVM SCLP line-mode terminal device driver

You can use the conmode= parameter to override the default for Linux on z/VM. Do not change the
default for Linux on KVM or for Linux in LPAR mode.

sclp or hwc
specifies the SCLP line-mode terminal device driver.

You need this specification if you want to use the z/VM CP VINPUT command (“Using a z/VM
emulation of the HMC Operating System Messages applet” on page 53).

3270
specifies the 3270 device driver.

3215
specifies the 3215 device driver.

console=<console_name>
specifies the console devices to be activated to receive Linux kernel messages. If present, ttySO0 is
always activated to receive Linux kernel messages and, by default, it is also the preferred console.

The preferred console is used as an initial terminal device, beginning at the stage of the boot process
when the initialization procedures run. Messages from programs that run at this stage are displayed
on the preferred console only. Multiple terminal devices can be activated to receive Linux kernel
messages, but only one of the activated terminal devices can be the preferred console.

If you specify conmode=3270, there is no console with name ttyS0.

If you want console devices other than ttySO0 to be activated to receive Linux kernel messages,
specify a console statement for each of these other devices. The last console statement designates
the preferred console.

If you specify one or more console parameters and you want to keep ttySO0 as the preferred console,
add a console parameter for ttySO0 as the last console parameter. Otherwise, you do not need a
console parameter for ttySo0.

<console_name> is the console name that is associated with the terminal device to be activated to
receive Linux kernel messages. Of the terminal devices that are provided by the z/VM IUCV HVC
device driver, only hvcO can be activated. Specify the console names as shown in Table 2 on page 37.

condev=<devno>
specifies the CCW device to be chosen from several defined 3270 consoles. By default the first device
that is found is chosen. Omit this parameter if there is only one device, or if any device is acceptable.

44 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

sclp_con_drop
governs the behavior of the SCLP line-mode and VT220 terminal device driver if either of them runs
out of output buffer pages. The trade-off is between slowing down Linux and losing console output.
Possible values are 0 and 1 (default).

0
assures complete console output by pausing until used output buffer pages are written to an
output device and can be reused without loss.

1

avoids system pauses by overwriting used output buffer pages, even if the content was never
written to an output device.

You can use the sclp_con_pages= parameter to set the number of output buffers.

sclp_con_pages=<n>
specifies the number of 4-KB memory pages to be used as the output buffer for the SCLP line-mode
and VT220 terminal. Depending on the line length, each output buffer can hold multiple lines. Use
many buffer pages for a kernel with frequent phases of producing console output faster than it can be
written to the output device.

Depending on the setting for the sc1p_con_drop=, running out of pages can slow down Linux or
cause it to lose console output.

The value is a positive integer. The default is 6.

hvc_iucv=<number_of_devices>
specifies the number of terminal devices that are provided by the z/VM IUCV HVC device driver.
<number_of _devices> is an integer in the range 0 - 8. Specify 0 to switch off the z/VM IUCV HVC device
driver.

hvc_iucv_allow=<z/VM user ID>,<z/VM user ID>, ...
specifies an initial list of z/VM guest virtual machines that are allowed to connect to HVC terminal
devices. If this parameter is omitted, any z/VM guest virtual machine that is authorized to establish
the required IUCV connection is also allowed to connect. On the running system, you can change this
list with the chiucvallow command. See How to Set up a Terminal Server Environment on z/VM,
SC34-2596 for more information.
Examples
« To activate ttyS1 in addition to ttyS0, and to use ttyS1 as the preferred console, specify:
console=ttyS1
« To activate ttyS1 in addition to ttyS0, and to keep ttySO as the preferred console, specify:
console=ttyS1 console=ttyS0O
« To use an emulated HMC Operating System Messages applet in a z/VM environment, specify:

conmode=sclp

« To activate hvcO in addition to ttyS0, use hvc0 as the preferred console, configure the z/VM IUCV HVC
device driver to provide four devices, and limit the z/VM guest virtual machines that can connect to HVC
terminal devices to 1xtservl and 1xtserv2, specify:

console=hvcO hvc_iucv=4 hvc_iucv_allow=1xtservl,lxtserv2

« The following specification selects the SCLP line-mode terminal and configures 32 4-KB pages (128 KB)
for the output buffer. If buffer pages run out, the SCLP line-mode terminal device driver does not wait
for pages to be written to an output device. Instead of pausing, it reuses output buffer pages at the
expense of losing content.

console=sclp sclp_con_pages=32 sclp_con_drop=1

Chapter 5. Console device drivers 45

Setting up a z/VM guest virtual machine for iucvconn

Because the iucvconn program uses z/VM IUCV to access Linux, you must set up your z/VM guest virtual
machine for IUCV.

See “Setting up your z/VM guest virtual machine for IUCV” on page 316 for details about setting up the
z/VM guest virtual machine.

For information about accessing Linux through the iucvtty program rather than through the z/VM IUCV
HVC device driver, see How to Set up a Terminal Server Environment on z/VM, SC34-2596 or the man
pages for the iucvtty and iucvconn commands.

Setting up a line-mode terminal
The line-mode terminals are primarily intended for booting Linux.

The preferred user access to a running instance of Ubuntu Server 22.04 LTS is through a user login
that runs, for example, in an SSH session. See “Terminal modes” on page 38 for information about the
available line-mode terminals.

Tip: If the terminal does not provide the expected output, ensure that dumb is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=dumb

Setting up a full-screen mode terminal

The full-screen terminal can be used for full-screen text editors, such as vi, and terminal-based full-
screen system administration tools.

See “Terminal modes” on page 38 for information about the available full-screen mode terminals.

Tip: If the terminal does not provide the expected output, ensure that 1inux is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=linux

Setting up a terminal provided by the 3270 terminal device driver

The terminal that is provided by the 3270 terminal device driver is not a line-mode terminal, but it is also
not a typical full-screen mode terminal.

The terminal provides limited support for full-screen applications. For example, the ned editor is
supported, but not vi.

Tip: If the terminal does not provide the expected output, ensure that 1inux is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=linux

Enabling user logins

Use systemd service units to enable terminals for user access.

About this task

You must explicitly enable user logins for the HVC terminals hvcl to hvc7 and for any dynamically
attached virtual or real 3270 terminals.

46 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

On all other terminals that are available in your environment systemd automatically enables user logins
for you. In particular you do not need to enable user logins for the following terminals:

e hvcO
- 3270/ttyl
- Terminals that are available in KVM guests

Enabling user logins for 3270 terminals

Instantiate getty services for terminals to allow user logins.

Procedure

Perform these steps to use a getty service for enabling user logins on any dynamically added real or
virtual 3270 terminals:

1. Enable the new getty service by issuing a command of this form:

systemctl enable serial-getty@<terminal>.service

where <terminal> specifies one of the 3270-tty<N> terminals and <N> is an integer greater than 1.

Note: You specify terminal 3270/tty<N> as 3270-tty<N>.
2. Optional: Start the new getty service by issuing a command of this form:

systemctl start serial-getty@<terminal>.service

Results
At the next system start, systemd automatically starts the getty service for you.

Example
For 3270/tty2, issue:

systemctl enable serial-getty@3270-tty2.service
systemctl start serial-getty@3270-tty2.service

Preventing respawns for non-operational HVC terminals

If you enable user logins on a HVC terminal that is not available or not operational, systemd keeps
respawning the getty program.

About this task

If user logins are enabled on unavailable HVC terminals hvcl to hvc7, systemd might keep respawning
the getty program. To be free to change the conditions that affect the availability of these terminals, use
the ttyrun service to enable user logins for them. HVC IUCV terminals are operational only in a z/VM
environment, and they depend on the hvc_iucv= kernel parameter (see “Console kernel parameter
syntax” on page 43).

Any other unavailable terminals with enabled user login, including hvc0, do not cause problems with
systemd.

Procedure

Perform these steps to use a ttyrun service for enabling user logins on a terminal:
1. Enable the ttyrun service by issuing a command of this form:

Chapter 5. Console device drivers 47

systemctl enable ttyrun-getty@hvc<n>.service

where hvc<n> specifies one of the terminals hvcl to hvc?7.
2. Optional: Start the new service by issuing a command of this form:

systemctl start ttyrun-getty@hvc<n>.service

Results
At the next system start, systemd starts the ttyrun service for hvc<n>. The ttyrun service starts a getty
only if this terminal is available.

Example
For hvcl, issue:

systemctl enable ttyrun-getty@hvcl.service
systemctl start ttyrun-getty@hvcl.service

Setting up the code page for an x3270 emulation on Linux

For accessing z/VM from Linux through the x3270 terminal emulation, you must add a number of settings
to the .Xdefaults file to get the correct code translation.

Add these settings:

! X3270 keymap and charset settings for Linux
x3270.charset: us-intl

x3270.keymap: circumfix

x3270.keymap.circumfix: :<key>asciicircum: Key("~A")\n

Working with Linux terminals

You might have to work with different types of Linux terminals, and use special functions on these
terminals.

« “Using the terminal applets on the HMC” on page 48

« “Accessing terminal devices over z/VM IUCV” on page 49

 “Switching the views of the 3270 terminal device driver” on page 50

- “Setting a CCW terminal device online or offline” on page 50

- “Entering control and special characters on line-mode terminals” on page 51

« “Using the magic sysrequest feature” on page 51

« “Using a z/VM emulation of the HMC Operating System Messages applet” on page 53
« “Using a 3270 terminalin 3215 mode” on page 55

Using the terminal applets on the HMC

You should be aware of some aspects of the line-mode and the full-screen mode terminal when using the
corresponding applets on the HMC.

The following statements apply to both the line-mode terminal and the full-screen mode terminal on the
HMC:

« On an HMC, you can open each applet only once.

« Within an LPAR, there can be only one active terminal session for each applet, even if multiple HMCs are
used.

A particular Linux instance supports only one active terminal session for each applet.

48 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

« Slow performance of the HMC is often due to a busy console or increased network traffic.
The following statements apply to the full-screen mode terminal only:

« QOutput that is written by Linux while the terminal window is closed is not displayed. Therefore, a
newly opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

« The terminal window shows only 24 lines and does not provide a scroll bar. To scroll up, press
Shift+PgUp; to scroll down, press Shift+PgDn.

Security hint: Always end a terminal session by explicitly logging off (for example, type "exit" and press
Enter). Simply closing the applet leaves the session active and the next user to open the applet resumes
the existing session without a logon.

Accessing terminal devices over z/VM IUCV

Use z/VM IUCV to access hypervisor console (HVC) terminal devices, which are provided by the z/VM
IUCV HVC device driver.

About this task

For information about accessing terminal devices that are provided by the iucvtty program see How to Set
up a Terminal Server Environment on z/VM, SC34-2596.

You access HVC terminal devices from a Linux instance where the iucvconn program is installed. The
Linux instance with the terminal device to be accessed and the Linux instance with the iucvconn program
must both run as guests of the same z/VM system. The two guest virtual machines must be configured
such that IUCV communication is permitted between them.

Procedure

Perform these steps to access an HVC terminal device over z/VM IUCV:
1. Open a terminal session on the Linux instance where the iucvconn program is installed.
2. Enter a command of this form:

iucvconn <guest_ID> <terminal_ID>

where:

<guest_ID>
specifies the z/VM guest virtual machine on which the Linux instance with the HVC terminal device
to be accessed runs.

<terminal_ID>
specifies an identifier for the terminal device to be accessed. HVC terminal device names are of the
form hvcn where nis an integer in the range 0-7. The corresponding terminal IDs are Inxhvcn.

Example: To access HVC terminal device hvcO on a Linux instance that runs on a z/VM guest virtual
machine LXGUEST1, enter:

iucvconn LXGUEST1 1lnxhvcO

For more details and further parameters of the iucvconn command, see the iucvconn man page or
How to Set up a Terminal Server Environment on z/VM, SC34-2596.

3. Press Enter to obtain a prompt.

Output that is written by Linux while the terminal window is closed, is not displayed. Therefore, a
newly opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

Chapter 5. Console device drivers 49

Security hint

Always end terminal sessions by explicitly logging off (for example, type exit and press Enter). If logging

off results in a new login prompt, press Control and Underscore (Ctrl+_), then press B to close the login
window. Simply closing the terminal window for a hvcO terminal device that was activated for Linux kernel
messages leaves the device active. The terminal session can then be reopened without a login.

Switching the views of the 3270 terminal device driver
The 3270 terminal device driver provides three different views for Linux on z/VM.

Use function key 3 (PF3) to switch between the views (see Figure 17 on page 50).

Linux kernel
messages

PF3 x

Terminal 1/0
view

Full-screen
application

view _/

Figure 17. Switching views of the 3270 terminal device driver

The availability of the individual views depends on the configuration options that were selected when the
kernel was compiled. In addition, the Linux kernel messages view is available only if the terminal device is
activated for Linux kernel messages.

The full-screen application view is available only if there is an application that uses this view, for example,
the ned editor. Be aware that the 3270 terminal provides only limited full-screen support. The full-screen

application view of the 3270 terminal is not intended for applications that require vt220 capabilities. The

application itself must create the 3270 data stream.

For the Linux kernel messages view and the terminal I/O view, you can use the PF7 key to scroll backward
and the PF8 key to scroll forward. The scroll buffers are fixed at four pages (16 KB) for the Linux kernel
messages view and five pages (20 KB) for the terminal I/O view. When the buffer is full and more terminal
data needs to be printed, the oldest lines are removed until there is enough room. The number of lines in
the history, therefore, vary. Scrolling in the full-screen application view depends on the application.

You cannot issue z/VM CP commands from any of the three views that are provided by the 3270 terminal
device driver. If you want to issue CP commands, use the PA1 key to switch to the CP READ mode.

Setting a CCW terminal device online or offline

The 3270 terminal device driver uses CCW devices and provides them as CCW terminal devices.

About this task
This section applies to Linux on z/VM. A CCW terminal device can be:
« The tty3270 terminal device that can be activated for receiving Linux kernel messages.

If this device exists, it comes online early during the Linux boot process. In a default z/VM environment,
the device number for this device is 0009. In sysfs, it is represented as /sys/bus/ccw/drivers/
3270/0.0.0009. You need not set this device online and you must not set it offline.

« CCW terminal devices through which users can log in to Linux with the CP DIAL command.
These devices are defined with the CP DEF GRAF command. They are represented in sysfs
as /sys/bus/ccw/drivers/3270/0.<n>.<devno> where <n> is the subchannel set ID and

<devno> is the virtual device number. By setting these devices online, you enable them for user logins.
If you set a device offline, it can no longer be used for user login.

50 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

See z/VM: CP Commands and Utilities Reference, SC24-6268 for more information about the DEF GRAF

and DIAL commands.

Procedure

You can use the chccwdev command (see “chccwdev - Set CCW device attributes” on page 569) to set a
CCW terminal device online or offline. Alternatively, you can write 1 to the device's online attribute to set it

online, or O to set it offline.

Examples

» To set a CCW terminal device ©0.0.7b01 online, issue:

i# chccwdev -e 0.0.7b01

Alternatively issue:

echo 1 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

« To set a CCW terminal device 0.0.7b01 offline, issue:

i# chccwdev -d 0.0.7b01

Alternatively issue:

echo 0 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

Entering control and special characters on line-mode terminals

Line-mode terminals do not have a control (Ctrl) key. Without a control key, you cannot enter control

characters directly.

Also, pressing the Enter key adds a newline character to your input string. Some applications do not
tolerate such trailing newline characters.

Table 6 on page 51 summarizes how you can use the caret character (*) to enter some control
characters and to enter strings without appended newline characters.

Table 6. Control and special characters on line-mode terminals

For the key Enter Usage

combination

Ctrl+C ~c Cancel the process that is running in the foreground of the terminal.
Ctrl+D ~d Generate an end of file (EOF) indication.

Ctrl+z Nz Stop a process.

n/a ~n Suppresses the automatic generation of a new line. Thus, you can

enter single characters; for example, the characters that are needed
for yes/no answers in some utilities.

Note: For a 3215 line-mode terminal in 3215 mode, you must use United States code page (037).

Using the magic sysrequest feature

Whether magic sysrequest functions are available and how to call them depends on your terminal.

« To call the magic sysrequest functions on the VT220 terminal or on hvcO, enter the single character
Ctrl+o followed by the character for the particular function.

Chapter 5. Console device drivers 51

You can call the magic sysrequest functions from the hvcO terminal device if it is present and is
activated to receive Linux kernel messages.

« To call the magic sysrequest functions on a line-mode terminal, enter the 2 characters "~-" (caret and
hyphen) followed by a third character that specifies the particular function.

Table 7 on page 52 provides an overview of the commands for the magic sysrequest functions:

Table 7. Magic sysrequest functions

On line-mode
terminals, enter

On hvcO and the VT220 To

terminal, enter

~-b [Ctrltop Re-IPL immediately (see “Isreipl - List IPL and re-
IPL settings” on page 666).

N-c (Ctrilsde Crash through a forced kernel panic.

N-s (Ctritolg Emergency sync all file systems.

N-u (Ctrl+oy Emergency remount all mounted file systems
read-only.

N-t (Ctrlzat Show task info.

A-m (Cirliom Show memory.

A Set the console log level.

followed by a digit
(0-9)

followed by a digit
(0-9)

N-e [Ctritde Send the TERM signal to end all tasks except init.
N1 (Ctrito)i Send the KILL signal to end all tasks except init.
~-p Ctrl=dp See “Obtaining details about the CPU-

measurement facilities” on page 545.

Note: In Table 7 on page 52 means pressing O while holding down the control key.

Table 7 on page 52 lists the main magic sysrequest functions that are known to work on Ubuntu Server

22.04 LTS. For a more comprehensive list of functions, see /1inux-doc/html/_sources/admin-
guide/sysrq.rst.txt inthe 1inux-doc package. Some of the listed functions might not work on your

system.

Activating and deactivating the magic sysrequest feature

Use the sysxq procfs attribute to activate or deactivate the magic sysrequest feature.

Procedure

Issue the following command to activate the magic sysrequest feature:

echo 1 > /proc/sys/kernel/sysrq

Issue the following command to deactivate the magic sysrequest feature:

echo 0 > /proc/sys/kernel/sysrq

52 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Triggering magic sysrequest functions from procfs

You can trigger the magic sysrequest functions through procfs.

Procedure
Write the character for the particular function to /proc/sysrq-trigger.

You can use this interface even if the magic sysrequest feature is not activated as described in “Activating
and deactivating the magic sysrequest feature” on page 52.

Example
To set the console log level to 9, enter:

echo 9 > /proc/sysrq-trigger

Using a z/VM emulation of the HMC Operating System Messages applet

You can use the Operating System Messages applet emulation; for example, if the 3215 terminal is not
operational.

About this task

The preferred terminal devices for Linux instances that run as z/VM guests are provided by the 3215 or
3270 terminal device drivers.

The emulation requires a terminal device that is provided by the SCLP line-mode terminal device driver.
To use the emulation, you must override the default device driver for z/VM environments (see “Console
kernel parameter syntax” on page 43).

For the emulation, you use the z/VM CP VINPUT command instead of the graphical user interface at the
Support Element or HMC. Type any input to the operating system with a leading CP VINPUT.

The examples in the sections that follow show the input line of a 3270 terminal or terminal emulator (for
example, x3270). Omit the leading #CP if you are in CP read mode. For more information about VINPUT,
see z/VM: CP Commands and Utilities Reference, SC24-6268.

Priority and non-priority commands

VINPUT commands require a VMSG (non-priority) or PVMSG (priority) specification.

Operating systems that accept this specification, process priority commands with a higher priority than
non-priority commands.

The hardware console driver can accept both if supported by the hardware console within the specific
machine or virtual machine.

Linux does not distinguish between priority and non-priority commands.

Example

The specifications:

#CP VINPUT VMSG LS -L

and

#CP VINPUT PVMSG LS -L

Chapter 5. Console device drivers 53

are equivalent.

Case conversion

All lowercase characters are converted by z/VM to uppercase. To compensate for this effect, the console
device driver converts all input to lowercase.

For example, if you type VInput VMSG echo $PATH, the device driver gets ECHO $PATH and converts it
intoecho $path.

Linux and bash are case-sensitive and require some specifications with uppercase characters. To include
uppercase characters in a command, use the percent sign (%) as a delimiter. The console device driver
interprets characters that are enclosed by percent signs as uppercase.

This behavior and the delimiter are adjustable at build-time by editing the driver sources.

Examples

In the following examples, the first line shows the user input. The second line shows what the device
driver receives after the case conversion by CP. The third line shows the command that is processed by
bash.

« fkcp vinput vmsg 1ls -1
CP VINPUT VMSG LS -L
1s -1

» The following input would result in a bash command that contains a variable $path, which is not defined
in lowercase:

#kcp vinput vmsg echo $PATH
CP VINPUT VMSG ECHO $PATH
echo $path

To obtain the correct bash command enclose the uppercase string with the conversion escape
character:

ficp vinput vmsg echo $%PATHY%
CP VINPUT VMSG ECHO $9%PATH%
echo $PATH
Using the escape character

The quotation mark (") is the standard CP escape character. To include the escape character in a
command that is passed to Linux, you must type it twice.
Example

The following command passes a string in double quotation marks to be echoed.

J#cp vinput pvmsg echo ""here is ""$0
CP VINPUT PVMSG ECHO "HERE IS "$0
echo "here is "$0

here is -bash

In the example, $0 resolves to the name of the current process.

Using the end-of-line character

To include the end-of-line character in the command that is passed to Linux, you must specify it with a
leading escape character.

54 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If you are using the standard settings according to “Using a 3270 terminal in 3215 mode” on page 55,
you must specify "# to pass # to Linux.

If you specify the end-of-line character without a leading escape character, z/VM CP interprets it as an
end-of-line character that ends the VINPUT command.

Example
In this example, a number sign is intended to mark the begin of a comment in the bash command. This
character is misinterpreted as the beginning of a second command.

f#cp vinput pvmsg echo ""%N%umber signs start bash comments"" #like this one
CP VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS"

LIKE THIS ONE

HCPCMDOO1E Unknown CP command: LIKE

The escape character prevents the number sign from being interpreted as an end-of-line character:

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" "#like this one
VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS" #LIKE THIS ONE

echo "Number signs start bash comments" #like this one

Number signs start bash comments

Simulating the Enter and Spacebar keys
You can use the CP VINPUT command to simulate the Enter and Spacebar keys.

Simulate the Enter key by entering a blank followed by \n:

#CP VINPUT VMSG \n

Simulate the Spacebar key by entering two blanks followed by \n:

#CP VINPUT VMSG \n

Using a 3270 terminal in 3215 mode

The z/VM control program (CP) defines five characters as line-editing symbols. Use the CP QUERY
TERMINAL command to see the current settings.

The default line-editing symbols depend on your terminal emulator. You can reassign the symbols by
changing the settings of LINEND, TABCHAR, CHARDEL, LINEDEL, or ESCAPE with the CP TERMINAL
command. Table 8 on page 55 shows the most commonly used settings:

Table 8. Line edit characters

Character Symbol Usage

LINEND The end of line character. With this character, you can enter several logical
lines at once.

| TABCHAR The logical tab character.

@ CHARDEL The character delete symbol deletes the preceding character.

[or¢ LINEDEL The line delete symbol deletes everything back to and including the previous
LINEND symbol or the start of the input. "[" is common for ASCII terminals and
"¢" for EBCDIC terminals.

. ESCAPE The escape character. With this character, you can enter a line-edit symbol as a
normal character.

Chapter 5. Console device drivers 55

To enter a line-edit symbol, you must precede it with the escape character. In particular, to enter the
escape character you must type it twice.
Examples

The following examples assume the settings of Table 8 on page 55 with the opening square bracket
character ([) as the "delete line" character.

- To specify a tab character specify:
ol
« To specify a double quotation mark character, specify:
- If you type the character string:
#(CP HALT#CP ZIPL 190[#CP IPL 1@290 PARM vmpoff=""MSG OP REBOOT"#IPL 290""
the actual commands that are received by CP are:

CP HALT
CP IPL 290 PARM vmpoff="MSG OP REBOOT#IPL 290"

56 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 6. Initial program loader for IBM Z - zipl

Use zipl to prepare a boot device with a Linux program loader or to prepare a dump device.

Linux on IBM Z as a KVM guest does not support dump devices with stand-alone dump tools. Instead of
preparing a dump device with the zipl tool you can also use the kdump infrastructure. To use kdump, no
preparation with zipl is necessary. For more information about the kdump infrastructure and the dump
tools that zipl installs, see Using the Dump Tools, SC33-8412.

You can simulate a zipl command to test a configuration before you apply the command to an actual
device (see dry-run).

zipl supports the following devices:

« Enhanced Count Key Data (ECKD) DASDs with fixed block Linux disk layout (LDL)
« ECKD DASDs with z/OS-compliant compatible disk layout (CDL)

« Fixed Block Access (FBA) DASDs

« Magnetic tape subsystems compatible with IBM3480, IBM3490, or IBM3590 (boot and dump devices
only)

e SCSIdisk with PC-BIOS disk layout or GPT layout
« PCIe-attached NVMe devices.

Usage

The zipl tool has base functions that can be called from the command line or in configuration-file mode.
There are generic parameters and parameters that are specific to particular base functions.

zipl base functions

For each base function, there is a short and a long command-line option and, with one exception, a
corresponding configuration-file option.

Table 9. zipl base functions

Base function Command line Command line Configuration Environment
short option long option file option

Install a boot loader -1 --image image= LPAR

See “Preparing a boot device” on f</\>/|$|4

page 60 for details.

Prepare a DASD, SCSI, NVMe, or -d --dumpto dumpto= LPAR

tape dump device z/VM

See “Preparing a dump device”

on page 67 for details.

Prepare a list of ECKD volumes -M --mvdump mvdump= LPAR

for a multi-volume dump z/VM

See “Preparing a multi-volume
dump on ECKD DASD” on page
69 for details.

© Copyright IBM Corp. 2000, 2023 57

Table 9. zipl base functions (continued)

Base function Command line Command line Configuration Environment
short option long option file option
Install a menu configuration -m --menu (None) LPAR
z/VM

See “Installing a menu
configuration” on page 70 for
details.

KVM

zipl modes and syntax overview
zipl can operate in command-line mode or in configuration-file mode.
Command-line mode
To run zipl in command-line mode, specify one of the following base functions::
=i
see “Preparing a boot device” on page 60
-d
see “Preparing a dump device” on page 67

-M
see “Preparing a multi-volume dump on ECKD DASD” on page 69

Configuration-file mode
To run zipl in configuration-file mode, omit the base function or specify the -m base function (see
“Configuration file structure” on page 75).

In this mode, zipl processes a zipl configuration file and, optionally, one or more Boot Loader
Specification (BLS) snippets. BLS snippets are always processed as part of a menu configuration.

For more information about the zipl configuration file, see “Configuration file structure” on page 75.

For more information about BLS snippets, see “BLS configuration snippets” on page 80.

zipl syntax overview

»— zipl L J L J I parameters when omitting base function l—r—N
-V --dry-run

—-i i_parameters

——-d d_parameters

——-M M_parameters

—-m m_parameters

parameters when omitting base function

#

58 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

n f_ -c /etc/zipl.conf 1 j f_ -b /boot/loader/entries Zj
L -c <config_file> J L -b<bls_dir> J

3
[default]

»
»

J f L -P <parameters> 4 J L -aSJ ;

L <configuration>

R f_ =S auto j g
Lo T
-S <mode>

»—rd

Notes:

1 You can change the default configuration file with the ZIPLCONF environment variable.
2 You can change the default directory with the BOOT environment variable.

3 If no configuration is specified, zipl uses the configuration in the [defaultboot] section of the
configuration file (see “Configuration file structure” on page 75).

41n a boot configuration only.
51In a boot configuration or a menu configuration only.

Where:

-c <config_file>
specifies the zipl configuration file to be used.
-b <bls_dir>
specifies a directory to be searched for files with BLS snippets.

<configuration>
identifies a particular IPL or menu configuration in a zipl configuration-file.

-P <parameters>

can optionally be used to provide kernel parameters in a boot configuration section. See “How kernel
parameters from different sources are combined” on page 63 for information about how kernel
parameters specified with the =P option are combined with any kernel parameters specified in the
configuration file.

If you provide multiple parameters, separate them with a blank and enclose them within single
quotation marks (') or double quotation marks ().

in a boot configuration section, adds kernel image, kernel parameter file, and initial RAM disk to the
bootmap file. Use this option when these files are spread across multiple disks to ensure that they are
available at IPL time. Specifying this option significantly increases the size of the bootmap file that is
created in the target directory.

-S <mode> or --secure <mode>
SCSI IPL disk device for LPAR only: Controls the format of the boot data that zipl writes to the IPL
device. <mode> takes the following values:

auto
Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

Chapter 6. Initial program loader for IBM Z - zipl 59

Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.
-n
suppresses confirmation prompts that require operator responses to allow unattended processing (for
example, for processing DASD or tape dump configuration sections).
-V
provides verbose command output.
==dry-run
simulates a zipl command. Use this option to test a configuration without overwriting data on your
device.

During simulation, zipl performs all command processing and issues error messages where
appropriate. Data is temporarily written to the target directory and is cleared up when the command
simulation is completed.

-V
displays version information.

-h
displays help information.

The basic functions and their parameters are described in detail in the following sections.

See “Parameter overview” on page 71 for a summary of the short and long command line options and
their configuration file equivalents.

Examples

« To process the default configuration in the default configuration file (/etc/zipl.conf, unless
specified otherwise with the environment variable ZIPLCONF) issue:

zipl

« To process the default configuration in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf

« To process a configuration [myconf] in the default configuration file issue:

zipl myconf

« To process a configuration [myconf] in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf myconf

« To simulate processing a configuration [myconf] in a configuration file /etc/myxmp.conf issue:
zipl --dry-run -c /etc/myxmp.conf myconf
Preparing a boot device

Use zipl with the -i (--image) command-line option or with the image= configuration-file option to
prepare a boot device.

60 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl command line syntax for preparing a boot device

,0x10000
»— zipl — -i <image> f_ j >
L ,<image_addr> J

-t <directory> >
1
l—{ Base device parameters }—J J

-T <tape_node>

A 4

L -r <ramdisk> J]
L ,<initrd_adar> J

A 4

»
»

L -P <parameters> J

L ,<parm_adadr> J

--environment /etc/ziplenv -S auto

(— ,0x1000 j
L -p <parmfile> J
f_

A 4

1,
L --environment — <env_file> J L -k auto J L -a J L -S <mode> J

Notes:

1 Additional parameters that are used only if -t specifies a logical device as a target. See “Using
base device parameters” on page 65.

To prepare a device as a boot device, you must specify:

The location <image>
of the Linux kernel image on the file system.

A target <directory> or <tape_node>
zipl installs the boot loader code on the device that contains the specified directory <directory> or to
the specified tape device <tape_node>.

For KVM guests, the target device can be a virtual block device or a VFIO pass-trough DASD. For
details, see KVM Virtual Server Management, SC34-2752.

Optionally, you can also specify:

A kernel image address <image_addr>
to which the kernel image is loaded at IPL time. The default address is 0x10000.

The RAM disk location <ramdisk>
of an initial RAM disk image (initrd) on the file system.

A RAM disk image address <initrd_addr>
to which the RAM disk image is loaded at IPL time. If you do not specify this parameter, zipl
investigates the location of other components and calculates a suitable address for you.

Kernel parameters
to be used at IPL time. If you provide multiple parameters, separate them with a blank and enclose
them within single quotation marks (') or double quotation marks (").

You can specify parameters <parameters> directly on the command line. Instead or in addition,
you can specify a location <parmfile> of a kernel parameter file on the file system. See “How
kernel parameters from different sources are combined” on page 63 for a discussion of how zipl
combines multiple kernel parameter specifications.

Chapter 6. Initial program loader for IBM Z - zipl 61

A parameter address <parm_addr>
to which the kernel parameters are loaded at IPL time. The default address is 0x1000.

A zipl environment file <env_file>
to be used, see “zipl environment - Variables for the kernel command line” on page 82. The default
location is /etc/ziplenv.

An option -k auto
to install a kdump kernel that can be used as a stand-alone dump tool. You can IPL this kernel in
an LPAR or guest virtual machine. With the IPL, you create a dump of a previously running operating
system instance that was configured with a reserved memory area for kdump. For Linux, this memory
area is reserved with the crashkernel= kernel parameter.

Note: For SCSI disks, the accumulated size of the kernel and ramdisk must not exceed 16 MB.

An option -a
to add the kernel image, kernel parameter file, and initial RAM disk to the bootmap file. Use this option
when these files are spread across multiple disks to ensure that they are available at IPL time. This
option is available on the command line only. Specifying this option significantly increases the size of
the bootmap file that is created in the target directory.

An option -S
SCSI IPL device for LPAR only: Controls the zipl secure boot support. <mode> takes the following
values:

auto
Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

1
Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

1]

Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.

See “Parameter overview” on page 71 for a summary of the parameters. This summary includes the long
options that you can use on the command line.

zipl configuration file syntax

Figure 18 on page 62 summarizes how to specify a boot configuration within a configuration file section.
Required specifications are shown in bold. See “Configuration file structure” on page 75 for more details
about the configuration file.

[<section_name>]

image=<image>, <image_addr>
ramdisk=<ramdisk>,<initrd_addr>
parmfile=<parmfile>, <parm_addr>
parameters=<parameters>

Next line for devices other than tape only
target=<directory>

Next line for tape devices only
tape=<tape_node>

Next line for stand-alone kdump only
kdump=auto

Next line for secure boot only
secure=<mode>

Figure 18. zipl syntax for preparing a boot device - configuration file mode

62 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example

The following command identifies the location of the kernel image as /boot/mnt/image-2, identifies
the location of an initial RAM disk as /boot/mnt/initxrd, specifies a kernel parameter file /boot/mnt/
parmf-2, and writes the required boot loader code to /boot. At IPL time, the initial RAM disk is to be
loaded to address 0x900000 rather than an address that is calculated by zipl. Kernel image, initial RAM
disk, and the kernel parameter file are to be copied to the bootmap file on the target directory /boot
rather than being referenced.

zipl -i /boot/mnt/image-2 -r /boot/mnt/initrd,0x900000 -p /boot/mnt/parmf-2 -t /boot -a

An equivalent section in a configuration file might look like this example:

[boot2]

image=/boot/mnt/image-2
ramdisk=/boot/mnt/initrd, Ox900000
paramfile=/boot/mnt/parmf-2
target=/boot

There is no configuration file equivalent for option -a. To use this option for a boot configuration in a
configuration file, it must be specified with the zipl command that processes the configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf boot2 -a

How kernel parameters from different sources are combined
zipl allows for multiple sources of kernel parameters when preparing boot devices.

In command-line mode, you can use two possible sources of kernel parameters. The parameters are
processed in the following order:

1. Parameters in the kernel parameter file (specified with the -p or --paxrmfile option)
2. Parameters that are specified on the command line (specified with the =P or - -parametexrs option)

In configuration file mode, the possible sources of kernel parameters depend on where the configuration
is specified, in a zipl configuration-file section or in a BLS snippet. The parameters are processed in the
following order:

For a zipl configuration-file section

1. Parameters in the kernel parameter file (specified with the paxmfile= option)

2. Parameters that are specified in the configuration section (specified with the parametexrs=
option)

3. Parameters that are specified on the command line (specified with the =P or --parameters
option)
For a BLS snippet

1. Parameters that are specified in the snippet (specified with the options option)

2. Parameters that are specified on the command line (specified with the -P or --parameters
option)

Parameters from different sources are concatenated and passed to the kernel in one string. At IPL
time, the combined kernel parameter string is loaded to address 0x1000, unless an alternate address is
provided.

For more information about the different sources of kernel parameters, see “Including kernel parameters
in a boot configuration” on page 25.

Chapter 6. Initial program loader for IBM Z - zipl 63

Preparing a logical device as a boot device
A logical device is a block device that represents one or more real devices.

If your boot directory is on a logical DASD or SCSI device, zipl cannot detect all required information about
the underlying real device or devices and needs extra input.

Logical devices can be two DASDs combined into a logical mirror volume. Another examples are a
linear mapping of a partition to a real device or a more complex mapping hierarchy. Logical devices are
controlled by a device mapper.

Blocks on the logical device must map to blocks on the underlying real device or devices linearly. If two
blocks on the logical device are adjacent, they must also be adjacent on the underlying real devices. This
requirement excludes mappings such as striping.

You always boot from a real device. zipl must be able to write to that device, starting at block 0. In a
logical device setup, starting at the top of the mapping hierarchy, the first block device that grants access
to block 0 (and subsequent blocks) is the base device, see Figure 19 on page 64.

mirror volume
Block O

<—— base device ldev/idasda?

| daeda‘ | dasdb ‘ pot@ntial IPL devices —> dasda
L BlockO ' Block 0 Block O

Figure 19. Definition of base device

A base device can have the following mappings:

- A mapping to a part of a real device that contains block 0
« A mapping to one complete real device
- A mapping to multiple real devices.

For a mapping to multiple real devices all the real devices must share the device characteristics and
contain the same data (for example, a mirror setup). The mapping can also be to parts of the devices if
these parts contain block 0. The mapping must not combine multiple devices into one large device.

The zipl command needs the device node of the base device and information about the physical
characteristics of the underlying real devices. For most logical boot devices, a helper script automatically
provides all the required information to zipl for you (see “Using a helper script” on page 64).

If you decide not to use the supplied helper script, or want to write your own helper script, you can use
parameters to supply the base device information to zipl, see “Using base device parameters” on page
65 and “Writing your own helper script” on page 66.

Using a helper script
zipl provides a helper script, zipl_helpexr.device-mapper, that detects the required information
and provides it to zipl for you.

The helper script is used automatically when you run zipl to prepare a boot device. Specify the
parameters for the kernel image, parameter file, initial RAM disk, and target as usual. See “Preparing
a boot device” on page 60 for details about the parameters.

64 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Assuming an example device for which the location of the kernel image is /boot/image-5, the location
of an initial RAM disk as /boot/initrd-5, a kernel parameter file /boot/parmf-5, and which writes
the required boot loader code to /boot and is a device mapper device, the command then becomes:

zipl -i /boot/image-5 -r /boot/initrd-5 -p /boot/parmf-5 -t /boot
The corresponding configuration file section becomes:

[boot5]
image=/boot/image-5
ramdisk=/boot/initrd-5
paramfile=/boot/parmf-5
target=/boot

Using base device parameters
You can use parameters to supply the base device information to zipl directly.

The following command syntax for the base device parameters is used for logical boot devices. It extends
the zipl syntax as shown in “Preparing a boot device” on page 60.

Base device parameters

»w— --targetbase <targetbase node> — --targettype —»

LDL --targetgeometry <cylinders>,<heads>,<sectors>
o T
FBA
L SCSI —J

»— --targetblocksize <targetblocksize> — --targetoffset <targetoffset> >«

You must specify the following device information:

The device node <targetbase_node>
of the base device, either by using the standard device name or in form of the major and minor

number, separated by a colon (3).
Example: The device node specification for the device might be /dev/dm-0 and the equivalent
specification as major and minor numbers might be 253:0.

The device type
of the base device. The following specifications are valid:

LDL
for ECKD type DASD with the Linux disk layout.

CDL
for ECKD type DASD with the compatible disk layout.

FBA
for FBA type DASD.

SCSI
for FCP-attached SCSI disks.

LDL and CDL only: The disk geometry <cylinders>,<heads>,<sectors>
of the base device in cylinders, heads, and sectors.

The block size <targetblocksize>
in bytes per block of the base device.

Chapter 6. Initial program loader for IBM Z - zipl 65

The offset <targetoffset>
in blocks between the start of the physical device and the start of the topmost logical device in the
mapping hierarchy.

Figure 20 on page 66 shows how to specify this information in a configuration file.

[<section_name>]

image=<image>, <image_addr>
ramdisk=<ramdisk>,<initrd_addr>
parmfile=<parmfile>, <parm_addr>
parameters=<parameters>

target=<directory>
targetbase=<targetbase_node>
targettype=LDL|CDL|FBA|SCSI

Next line for target types LDL and CDL only
targetgeometry=<cylinders>, <heads>,<sectors>
targetblocksize=<targetblocksize>
targetoffset=<targetoffset>

Figure 20. zipl syntax for preparing a logical device as a boot device- configuration file mode

Example

The example command identifies the location of the kernel image as /boot/image-5, identifies the
location of an initial RAM disk as /boot/initrd-5, specifies a kernel parameter file /boot/parmf-5,
and writes the required boot loader code to /boot.

The command specifies the following information about the base device: the device node is /dev/dm-3,
the device has the compatible disk layout, there are 6678 cylinders, there are 15 heads, there are 12
sectors, and the topmost logical device in the mapping hierarchy begins with an offset of 24 blocks from
the start of the base device.

zipl -i /boot/image-5 -r /boot/initrd-5 -p /boot/parmf-5 -t /boot --targetbase /dev/dm-3 \
--targettype CDL --targetgeometry 6678,15,12 --targetblocksize=4096 --targetoffset 24

Note: Instead of using the continuation sign (\) at the end of the first line, you might want to specify the
entire command on a single line.

An equivalent section in a configuration file might look like this example:

[boot5]
image=/boot/image-5
ramdisk=/boot/initrd-5
paramfile=/boot/parmf-5
target=/boot
targetbase=/dev/dm-3
targettype=CDL
targetgeometry=6678,15,12
targetblocksize=4096
targetoffset=24

Writing your own helper script

You can write your own helper script for device drivers that provide logical devices. The helper script must
conform to a set of rules.

« The script must accept the name of the target directory as an argument. From this specification, it must
determine a suitable base device. See “Using base device parameters” on page 65.

 The script must write the following base device <parameter>=<value> pairs to stdout as ASCII text.
Each pair must be written on a separate line.

- targetbase=<targetbase_node>
- targettype=<type> where type can be LDL, CDL, FBA, or SCSI.

66 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

- targetgeometry=<cylinders>,<heads>,<sectors> (For LDL and CDL only)
— targetblocksize=<blocksize>
— targetoffset=<offset>

See “Using base device parameters” on page 65 for the meaning of the base device parameters.

« The script must be named zipl_helper. <device> where <device> is the device name as specified
in /proc/devices.

« The script must bein /1ib/s390-tools.

Preparing a dump device

Use zipl with the -d (- -dumpto) command-line option or with the dumpto= configuration-file option to
prepare a DASD, SCSI or NVMe disk, or tape dump device.

zipl command line syntax for preparing a dump device
»— zipl — -d <dump_device>
L ,<size>J L -n —j L 1

Notes:

»d
>4

-P dump_debug= </eve/> J

1 For SCSI dump devices only

To prepare a DASD device, SCSI disk, NVMe disk, or channel-attached tape dump device, you must
specify:

The device node <dump_device>
of the DASD device, SCSI disk partition, NVMe disk partition, or channel-attached tape device to be
prepared as a dump device. zipl deletes all data on the partition or tape and installs the boot loader
code there.

Note:

« If the dump device is an ECKD disk with fixed-block layout (LDL), a dump overwrites the dump
utility. You must reinstall the dump utility before you can use the device for another dump.

« If the dump device is a tape, SCSI disk, NVMe disk, FBA disk, or ECKD disk with the compatible disk
layout (CDL), you do not need to reinstall the dump utility after every dump.
« If the dump device is an NVMe disk and depending on your HMC version, you might have to prepare
a partition in namespace 1 to be able to trigger an LPAR dump from the HMC GUL.
Optionally, you can also specify:

An option -n
to suppress confirmation prompts to allow unattended processing (for example, from a script). This
option is available on the command line only.

A limit <size>
for the amount of memory to be dumped. The value is a decimal number that can optionally be
suffixed with K for kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the next
megabyte boundary.

If you limit the dump size below the amount of memory that is used by the system to be dumped, the
resulting dump is incomplete.

Note: For SCSI and NVMe dump devices, the "size" option is not available.
SCSI dump tool parameter:

dump_debug=<level>
sets the level of debug messages during the dump process. <level> is an integer in the range 1 - 6. Use
higher numbers for more detailed messages. The default is 2.

Chapter 6. Initial program loader for IBM Z - zipl 67

DASD device, SCSI disk, NVMe disk, or tape dump devices are not formatted with a file system so no
target directory can be specified. See Using the Dump Tools, SC33-8412 for details about processing
these dumps.

See “Parameter overview” on page 71 for a summary of the parameters. The summary includes the long
options that you can use on the command line.

Figure 21 on page 68 summarizes how to specify a DASD, SCSI, or tape dump configuration in a
configuration file. See “Configuration file structure” on page 75 for a more comprehensive discussion of
the configuration file.

[<section_name>]
dumpto=<dump_device>,<size>

Figure 21. zipl syntax for preparing a dump device - configuration file mode

DASD example

The following command prepares a DASD partition /dev/dasdcl as a dump device and suppresses
confirmation prompts that require an operator response:

zipl -d /dev/dasdcl -n

An equivalent section in a configuration file might look like this example:

[dumpdasd]
dumpto=/dev/dasdcl

There is no configuration file equivalent for option =n. To use this option for a DASD or tape dump

configuration in a configuration file, it must be specified with the zipl command that processes the
configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf dumpdasd -n

SCSI example

The following command prepares a SCSI partition
/dev/mapper/36005076303ffd40100000000000020¢c0-partl as a dump device:

zipl -d /dev/mapper/36005076303ffd40100000000000020c0-partl

An equivalent section in a configuration file might look like this example:

[dumpscsi]
dumpto=/dev/mapper/36005076303ffd40100000000000020¢c0-partl

If the configuration file is called /etc/myxmp.conf, the zipl command that processes the configuration
would be:

zipl -c /etc/myxmp.conf dumpscsi

NVMe disk example

The following command prepares an NVMe disk partition /dev/nvme®nlpl as a dump device:

68 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl -d /dev/nvmeOnlpl

An equivalent section in a configuration file might look like this example:

[dumpnvme]
dumpto=/dev/nvmeOnipl

If the configuration file is called /etc/myxmp.conf, the zipl command that processes the configuration
would be:

zipl -c /etc/myxmp.conf dumpnvme

Preparing a multi-volume dump on ECKD DASD

Use zipl with the =M (- -mvdump) command-line option or with the mvdump= configuration-file option to
prepare a multi-volume dump on ECKD DASD.

zipl command line syntax for preparing devices for a multi-volume dump

»— ﬂpl———I::———::]——— -M <dump_device list> >«
-f 1——,<ske>——Jr 1‘— 'n‘—j

To prepare a set of DASD devices for a multi-volume dump, you must specify:

-M <dump_device_list>
specifies a file that contains the device nodes of the dump partitions, separated by one or more
line feed characters (0x0a). zipl writes a dump signature to each involved partition and installs the
stand-alone multi-volume dump tool on each involved volume. Duplicate partitions are not allowed. A
maximum of 32 partitions can be listed. The volumes must be formatted with cdl and use block size
4096.

Optionally, you can also specify:

-f or --force
to force that no signature checking takes place when dumping. Any data on all involved partitions is
overwritten without warning.

-n
to suppress confirmation prompts to allow unattended processing (for example, from a script). This
option is available on the command line only.

<size>
for the amount of memory to be dumped. The value is a decimal number that can optionally be
suffixed with K for kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the next
megabyte boundary.

If you limit the dump size below the amount of memory that is used by the system to be dumped, the
resulting dump is incomplete.

DASD or tape dump devices are not formatted with a file system so no target directory can be specified.
See Using the Dump Tools, SC33-8412 for details about processing these dumps.

See “Parameter overview” on page 71 for a summary of the parameters. This summary includes the long
options that you can use on the command line.

Figure 22 on page 70 summarizes how to specify a multi-volume DASD dump configuration in a
configuration file. See “Configuration file structure” on page 75 for a more comprehensive discussion
of the configuration file.

Chapter 6. Initial program loader for IBM Z - zipl 69

[<section_name>]
mvdump=<dump_device_list>,<size>

Figure 22. zipl syntax for preparing DASD devices for a multi-volume dump - configuration file mode

Example
The following command prepares two DASD partitions /dev/dasdcl, /dev/dasddl for a multi-volume
dump and suppresses confirmation prompts that require an operator response:

zipl -M mvdump.conf -n

where the mvdump . conf file contains the two partitions, separated by line breaks:

/dev/dasdcl
/dev/dasddl

An equivalent section in a configuration file might look like this example:

[multi_volume_dump]
mvdump=mvdump.conf

There is no configuration file equivalent for option =n. To use this option for a multi-volume DASD dump
configuration in a configuration file, it must be specified with the zipl command that processes the
configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf multi_volume_dump -n

Installing a menu configuration
Use zipl with the -m (- -menu) command-line option to install a menu configuration.

To prepare a menu configuration, you need a configuration file that includes at least one menu section
(see “Menu configurations” on page 77) or with a default section that supports an automatic menu (see
“Default section” on page 75).

zipl syntax for installing a menu configuration

. 1 2
f_ -c /etc/zipl.conf T f_ -b /boot/loader/entries j
»— zipl — -m <menu_name> >
L——--c<ameLmb> ———J L-——————-b<'b/s_d'ir> _—

.

Notes:

1You can change the default configuration file with the ZIPLCONF environment variable.
2 You can change the default directory with the BOOT environment variable.

Where:

-m or --menu <menu_name>
specifies the menu that defines the menu configuration in the configuration file.

70 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-c or --config <config_file>
specifies the configuration file where the menu configuration is defined. The default, /etc/
zipl.coni, can be changed with the ZIPLCONF environment variable.

-b <bls_dir>
specifies a directory to be searched for files with BLS snippets.

-a or --add-files
adds the kernel image file, parmfile, and initial RAM disk image to the bootmap files in the respective
target directories instead of referencing them. Use this option if the files are spread across disks to
ensure that the files are available at IPL time. Specifying this option significantly increases the size of
the bootmap file that is created in the target directory.

Example

Using the sample configuration file of Figure 23 on page 79, you could install a menu configuration with:

zipl -m menul

Parameter overview

You might need to know all zipl options and how to specify them on the command line, in the zipl
configuration file, or in a BLS snippet..

Option Explanation

oA Causes kernel image, kernel parameter file, and initial RAM
(_ngmand fine: disk to be added to the bootmap file in the target directory
--add-files rather than being referenced from this file.

Use this option when these files are spread across multiple
disks to ensure that they are available at IPL time. Specifying
this option significantly increases the size of the bootmap file
that is created in the target directory.

. Specifies the directory where zipl finds files with BLS
C d line: . .
-ETZEndiane snippets. You can change the default directory, /boot/
- —blsdir=<bls dir> loader/entries, with the BOOT environment variable.

See “BLS configuration snippets” on page 80.

Specifies the configuration file. You can change the default
configuration file /etc/zipl.conf with the environment
variable ZIPLCONF.

Command line:
-c <config_file>
--config=<config_file>

Specifies a configuration section in a zipl configuration-file or a

line: i
Command line BLS snippet to be processed.

<configuration>
A configuration section in a zipl configuration-file is specified
through its section name. A BLS snippet is specified through
the value of its title option within the snippet.

Chapter 6. Initial program loader for IBM Z - zipl 71

Option

Explanation

Command line:
-d <dump_device>[,<size>]
- -dumpto=<dump_device>[,<size>]

zipl configuration-file:
dumpto=<dump_device>[,<size>]

Specifies the DASD partition, SCSI disk partition, NVMe disk
partition, or tape device to which a dump is to be written after
IPL.

The optional size specification limits the amount of memory

to be dumped. The value is a decimal number that can
optionally be suffixed with K for kilobytes, M for megabytes,

or G for gigabytes. The value is rounded to the next megabyte
boundary. If you limit the dump size below the amount of
memory that is used by the system to be dumped, the resulting
dump is incomplete. If no limit is provided, all of the available
physical memory is dumped.

See “Preparing a dump device” on page 67 and Using the Dump
Tools, SC33-8412 for details.

Command line:
--environment

Specifies the location of a zipl environment file, see “zipl
environment - Variables for the kernel command line” on page
82. The default location is /fetc/ziplenv.

Command line:
-h
--help

Displays help information.

Command line:
-1 <image>[,<image_addr>]
- -image=<image>|[,<image_addr>]

zipl configuration-file:
image=<image>|[,<image_addr>]

BLS snippet:
linux <image>

Specifies the location of the Linux kernel image on the file
system.

In command-line mode or in a zipl configuration-file section
you can optionally specify a memory location after IPL. The
default memory address is 0x10000.

See “Preparing a boot device” on page 60 for details.

Command line:
-k auto
- -kdump=auto

zipl configuration-file:
kdump=auto

Installs a kdump kernel that can be used as a stand-alone
dump tool. You can IPL this kernel in an LPAR or guest virtual
machine to create a dump of a previously running operating
system instance that has been configured with a reserved
memory area for kdump. For Linux, this memory area is
reserved with the crashkernel= kernel parameter.

See “Preparing a boot device” on page 60 for details.

Command line:
-m <menu_name>
- -menu=<menu_name>

Specifies the name of the menu that defines a
menu configuration in the configuration file (see “Menu
configurations” on page 77).

72 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Option

Explanation

Command line:
-M <dump_device_list>[,<size>]
- -mvdump=<dump_device_list>[,<size>]

zipl configuration-file:
mvdump=<dump_device_list>[,<size>]

Specifies a file with a list of DASD partitions to which a dump is
to be written after IPL.

The optional size specification limits the amount of memory

to be dumped. The value is a decimal number that can
optionally be suffixed with K for kilobytes, M for megabytes,

or G for gigabytes. The value is rounded to the next megabyte
boundary. If you limit the dump size below the amount of
memory that is used by the system to be dumped, the resulting
dump is incomplete. If no limit is provided, all of the available
physical memory is dumped.

See “Preparing a multi-volume dump on ECKD DASD” on page
69 and Using the Dump Tools, SC33-8412 for details.

Command line:
-n
--noninteractive

n/a

Suppresses all confirmation prompts (for example, when
preparing a DASD or tape dump device).

Command line:
-p <parmfile>[,<parm_addr>]
--parmfile=<parmfile>[,<parm_addr>]

zipl configuration-file:
parmfile=<parmfile>[,<parm_addr>]

In a boot configuration, specifies the location of a kernel
parameter file.

You can specify multiple sources of kernel parameters. For
more information, see “How kernel parameters from different
sources are combined” on page 63.

The optional <parm_addr> specifies the memory address
where the combined kernel parameter list is to be loaded at
IPL time.

Command line:
-P <parameters>
--parameters=<parameters>

zipl configuration-file:
parameters=<parameters>

BLS snippet:
options <parameters>

In a boot configuration, specifies kernel parameters.

Individual parameters are single keywords or have the

form key=value, without spaces. If you provide multiple
parameters, separate them with a blank and enclose them
within single quotation marks (') or double quotation marks (").

You can specify multiple sources of kernel parameters. For
more information, see “How kernel parameters from different
sources are combined” on page 63.

Command line:

-1 <ramdisk>[,<initrd_addr>]
- -ramdisk=<ramdisk>[,<initrd_addr>

zipl configuration-file:
ramdisk=<ramdisk>[,<initrd_addr>

BLS snippet:
initrd <ramdisk>

Specifies the location of the initial RAM disk (initrd) on the file
system.

In command-line mode or in a zipl configuration-file section
you can optionally specify a memory location after IPL.

If you do not specify a memory address, zipl investigates
the location of other components and calculates a suitable
address for you.

Chapter 6. Initial program loader for IBM Z - zipl 73

Option

Explanation

-S <mode>
--secure=<mode>

secure=auto|0|1

In an LPAR boot configuration, controls the format of the boot
data that zipl writes to a SCSI IPL disk or NVMe IPL device. You
can specify the following values for <mode>:

auto
Uses the secure-boot enabled format if the zipl command
is issued on a mainframe with secure-boot support. This is
the default.

1
Enforces the secure-boot enabled format regardless of
mainframe support. Use this option to prepare boot
devices for systems other than the one you are working
on. Disks with this format cannot be booted on machines
z14 or earlier.

0

Enforces the traditional format, that does not support
secure boot, regardless of mainframe support. Disks with
this format can be booted on all machines but cannot be
used for secure boot.

Command line:
-t <directory>
--target=<directory>

zipl configuration-file:
target=<directory>

Specifies the target directory where zipl creates boot-
relevant files. The boot loader is installed on the disk that
contains the target directory.

Command line:

- -targetbase=<targetbase_node>

zipl configuration-file:
targetbase=<targetbase_node>

For logical boot devices, specifies the device node of the base
device, either by using the standard device name or in form of
the major and minor number, separated by a colon (:).

See “Using base device parameters” on page 65 for details.

Command line:
--targetblocksize=<targetblocksize>

zipl configuration-file:
targetblocksize=<targetblocksize>

For logical boot devices, specifies the bytes per block of the
base device.

See “Using base device parameters” on page 65 for details.

Command line:
targetgeometry=<cylinders>,<heads>,<sec
tors>

zipl configuration-file:
targetgeometry=<cylinders>,<heads>,<sec
tors>

For logical boot devices that map to ECKD type base devices,
specifies the disk geometry of the base device in cylinders,
heads, and sectors.

See “Using base device parameters” on page 65 for details.

74 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Option

Explanation

Command line:
- -targetoffset=<targetoffset>

zipl configuration-file:
targetoffset=<targetoffset>

For logical boot devices, specifies the offset in blocks between
the start of the physical device and the start of the logical
device.

See “Using base device parameters” on page 65 for details.

Command line:
--targettype=<type>

zipl configuration-file:
targettype=<type>

For logical boot devices, specifies the device type of the base
device.

See “Using base device parameters” on page 65 for details.

Command line:
-T <tape_node>
- -tape=<tape_node>

zipl configuration-file:
tape=<tape_node>

Specifies the tape device where zipl installs the boot loader
code.

Command line:
-V
--version

Prints version information.

Command line:
-V
--verbose

Provides more detailed command output.

If you call zipl in configuration file mode without specifying a configuration file, the default /etc/
zipl.confis used. You can change the default configuration file with the environment variable

ZIPLCONF.

Configuration file structure

A zipl configuration file comprises a default section and one or more sections with IPL configurations. In
addition, there can be sections that define menu configurations.

[defaultboot]

a default section that defines what is to be done if the configuration file is called without a section

specification.
[<configuration>]

one or more sections that describe IPL configurations.

<menu_name>

optionally, one or more menu sections that describe menu configurations.

A configuration file section consists of a section identifier and one or more option lines. Option lines are
valid only as part of a section. Blank lines are permitted, and lines that begin with the number sign (#) are
treated as comments and ignored. Option specifications consist of keyword=value pairs. There can but
need not be blanks before and after the equal sign (=) of an option specification.

Default section

The default section consists of the section identifier, [defaultboot], followed by a single option line.

Chapter 6. Initial program loader for IBM Z - zipl 75

The option line specifies one of these mutually exclusive options:

default=<section_name>
where <section_name> is one of the IPL configurations described in the configuration file. If the
configuration file is called without a section specification, an IPL device is prepared according to this
IPL configuration.

If you specify a target parameter with this option, <section_name> is ignored and a menu with all
DASD and SCSI IPL sections is built as for the defaultauto option.

defaultmenu=<menu_name>
where <menu_name> is the name of a menu configuration that is described in the configuration file.
If the configuration file is called without a section specification, IPL devices are prepared according to
this menu configuration. The defaultmenu option tolerates but does not require target parameters
for the individual IPL sections.

defaultauto
If the configuration file is called without a section specification, a menu configuration is built. This
configuration contains all DASD and SCSI IPL configurations in the configuration file. In the menu,
these configurations appear in the order in which they appear in the configuration file.

The defaultauto option requires an additional option line with the target parameter. You can add
further option lines with the default, prompt, and timeout parameters. These parameters have
the same meaning as in “Menu configurations” on page 77.

The defaultauto option tolerates but does not require target parameters for the individual
IPL sections. The resulting menu configuration is always written to the directory specified with the
target parameter line within the default section.

As for configuration sections, extra parameters might be required for logical boot devices (see
“Preparing a logical device as a boot device” on page 64).

Examples

- This default specification points to a boot configuration boot1 as the default.

[defaultboot]
default=bootl

- This default specification points to a menu configuration with a menu menul as the default.

[defaultboot]
defaultmenu=menul

- This default specification creates a menu with all IPL sections in the configuration file. The first IPL
configuration in the automatically created menu is the default.

[defaultboot]
defaultauto
target=/boot
default=1

IPL configurations

An IPL configuration has a section identifier that consists of a section name within square brackets and is
followed by one or more option lines.

Each configuration includes one of the following mutually exclusive options that determine the type of IPL
configuration:

image=<image>
Defines a boot configuration. See “Preparing a boot device” on page 60 for details.

dumpto=<dump_device>
Defines a DASD, SCSI, NVMe, or tape dump configuration. For details, see “Preparing a dump device”
on page 67.

76 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

mvdump=<dump_device_list>
Defines a multi-volume DASD dump configuration. See “Preparing a multi-volume dump on ECKD
DASD” on page 69 for details.

KVM: For KVM guests, image= is the only supported option.

Additional parameters might be required for logical boot devices (see “Preparing a logical device as a boot
device” on page 64).

Menu configurations

For DASD and SCSI devices, you can define a menu configuration. A menu configuration has a section
identifier that consists of a menu name with a leading colon.

The identifier is followed by one or more lines with references to IPL configurations in the same zipl
configuration-file or to BLS snippets. The menu configuration can also include one or more option lines.

target=<directory>
specifies a device where a boot loader is installed that handles multiple IPL configurations. For menu
configurations, the target options of the referenced IPL configurations are ignored.

<i>=<configuration>
specifies a menu item. A menu includes one and more lines that specify the menu items.

<configuration> is the name of an IPL configuration that is described in the same configuration file.
You can specify multiple boot configurations. For SCSI target devices, you can also specify one or
more SCSI dump configurations. You cannot include DASD dump configurations as menu items.

<i> is the configuration number. The configuration number sequentially numbers the menu items,
beginning with 1 for the first item. When initiating an IPL from a menu configuration, you can specify
the configuration number of the menu item you want to use.

default=<n>
specifies the configuration number of one of the configurations in the menu to define it as the default
configuration. If this option is omitted, the first configuration in the menu is the default configuration.

prompt=<flag>
for a DASD target device, determines whether the menu is displayed when an IPL is performed. Menus
cannot be displayed for SCSI target devices.

For prompt=1 the menu is displayed, for prompt=0 it is suppressed. If this option is omitted, the menu
is not displayed. Independent of this parameter, the operator can force a menu to be displayed by
specifying "prompt" in place of a configuration number for an IPL configuration to be used.

If the menu of a menu configuration is not displayed, the operator can either specify the configuration
number of an IPL configuration or the default configuration is used.

timeout=<seconds>
for a DASD target device and a displayed menu, specifies the time in seconds, after which the default
configuration is IPLed, if no configuration has been specified by the operator. If this option is omitted
orif O is specified as the timeout, the menu stays displayed indefinitely on the operator console and
no IPL is performed until the operator specifies an IPL configuration.

secure=<mode>
In an LPAR boot configuration, controls the format of the boot data that zipl writes to a SCSI IPL
device. You can specify the following values for <mode>:

auto
Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

Chapter 6. Initial program loader for IBM Z - zipl 77

0
Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.

As for any configuration section, additional parameters might be required for logical boot devices (see
“Preparing a logical device as a boot device” on page 64).

Example

Figure 23 on page 79 shows a sample configuration file that defines multiple configuration sections and
two menu configurations.

78 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

[defaultboot]
defaultmenu=menul

First boot configuration (DASD)
[boot1]

ramdisk=/boot/initxd
parameters='root=/dev/ram0 ro'
image=/boot/image-1

target=/boot

Second boot configuration (SCSI)
[boot2]

image=/boot/mnt/image-2
ramdisk=/boot/mnt/initrd, ©x900000
parmfile=/boot/mnt/parmf-2
target=/boot

Third boot configuration (DASD)
[boot3]

image=/boot/mnt/image-3
ramdisk=/boot/mnt/initrd
parmfile=/boot/mnt/parmf-3
target=/boot

Configuration for dumping to tape
[dumptape]
dumpto=/dev/xtibm0

Configuration for dumping to DASD
[dumpdasd]
dumpto=/dev/dasdcl

Configuration for multi-volume dumping to DASD
[multi_volume_dump]
mvdump=sample_dump_conf

Configuration for dumping to SCSI disk
[dumpscsi]
dumpto=/dev/mapper/36005076303ffd40100000000000020¢c0-partl

Configuration for dumping to NVMe
[dumpnvme]
dumpto=/dev/nvmeOnipl

Menu containing the SCSI boot and SCSI dump configurations
:menul

1=dumpscsi

2=boot2

target=/boot

default=2

Menu containing two DASD boot configurations
:menu2

1=bootl

2=boot3

target=/boot

default=1

prompt=1

timeout=30

Figure 23. Sample /etc/zipl.conf file

The following commands assume that the configuration file of the sample is the default configuration file.

« Call zipl to use the default configuration file settings:

zipl

Result: zipl reads the default option from the [defaultboot] section and selects the :menul
section. It then installs a menu configuration with a boot configuration and a SCSI dump configuration.

« Call zipl to install a menu configuration (see also “Installing a menu configuration” on page 70):

Chapter 6. Initial program loader for IBM Z - zipl 79

zipl -m menu2

Result: zipl selects the :menu2 section. It then installs a menu configuration with two DASD
boot configurations. “DASD menu configuration example for z/VM” on page 108 and “DASD menu
configuration for LPAR” on page 94 illustrate what this menu looks like when it is displayed.

« Call zipl to install a boot loader for boot configuration [boot2]:

zipl boot2

Result: zipl selects the [boot2] section. It then installs a boot loader that loads copies of /
boot/mnt/image-2, /boot/mnt/initxd, and /boot/mnt/parmf-2.

 Call zipl to prepare a tape that can be IPLed for a tape dump:
zipl dumptape

Result: zipl selects the [dumptape] section and prepares a dump tape on /dev/rtibm@.
« Call zipl to prepare a DASD dump device:

zipl dumpdasd -n

Result: zipl selects the [dumpdasd] section and prepares the dump device /dev/dasdc1.
Confirmation prompts that require an operator response are suppressed.

« Call zipl to prepare a SCSI dump device:

zipl dumpscsi
Result: zipl selects the [dumpscsi] section and prepares the dump device. The associated dump is

created in the dump partition
/dev/mapper/36005076303ffd40100000000000020c0-partl.

BLS configuration snippets

Using Boot Loader Specification (BLS) snippets, you can add boot configurations to zipl without editing
existing configuration files.

BLS snippets are provided as configuration files in a directory that is shared across all installed operating
system instances. You add a boot configuration to zipl by adding a file with a BLS snippet to this
directory, /boot/loader/entries by default.

Files that contain BLS snippets can have any name, but must have the file extension . conf.
To avoid naming conflicts and to provide a hint about the content, a common naming
convention includes the value of /etc/machine-1id, the kernel version, and an operating
system identifier in the name. For example, one such file might be /boot/loader/entries/
22be12d5d204461a9da34£3¢c3£d30£f9-5.5.0-10.5390.cont.

Depending on your distribution, the Linux installation process might create a file with a BLS snippet for
you.

BLS options

Table 10 on page 81 shows the subset of BLS options that are relevant to Linux on IBM Z.

80 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 10. BLS parameters and zipl equivalents

Option Description zipl configuration file
equivalent
title A meaningful identifier for the IPL configuration. Section name as

specified within square

BLS configuration file title specifications together brackets ([])

with their zipl configuration file equivalents must be
unigue within the scope of a zipl command call.

The title must be the first specification within a BLS
configuration file.

version Specifies a version in human readable format. For none
example, use the output of the uname =-x command.

The processing order of BLS snippets is based

on an alphanumeric assessment of the values of
this parameter. The intention is to make the latest
operating system version the default.

This item is optional.

linux Path to a Linux kernel. image=
initxd Path to an initial RAM disk. This item is optional. ramdisk=
options Kernel parameters. This item is optional. parameters=
Snippet syntax

Lines start with an option keyword, followed by a blank, followed by a value. The first line must specify
the title option. The configuration file can include empty lines and comment lines. Comment lines start
with a number sign (#).

BLS snippet example

title Linux <version> test kernel

#This is a comment line and is ignored

version <version>-test

linux /boot/22bel2d5d204461a9da34f3c3fd30ff9/kernels/linux-<version>
initrd /boot/22bel12d5d204461a9da34£3c3£d30ff9/initrds/ramfs-<version>.im
options dasd=0.0.a01b root=/dev/dasda cio_ignore=all, !condev

Complementing BLS snippets through a zipl configuration file

You must use a zipl configuration file to complement the specifications in a BLS snippet with the target=
parameter. Use the default section of the zipl configuration file to set target=.

Depending on your distribution, zipl might be installed with a default configuration file at /etc/
zipl.conf, with a content similar to the following example:

[defaultboot]
defaultauto
prompt=1
timeout=5
target=/boot
secure=auto

Optionally, you can specify the secure= option.

Chapter 6. Initial program loader for IBM Z - zipl 81

zipl environment - Variables for the kernel command line

zipl prepares an IPL device by installing boot data and a boot record that points to this data. The boot data
includes kernel parameter lines.

The straightforward way to activate any changed parameter line is to rerun zipl. However, you can avoid
rerunning zipl. For this, define variable parts of your parameter line (such as numerical values of timeouts)
with zipl environment variables and define those variables in a special boot data component, called a zipl
environment block.

Once the zipl environment block is installed along with other zipl components, you don't need to rerun
zipl to change the variable parts: All you have to do is redefine the variables and update only the installed
environment block.

Hence, a zipl environment block contains specifications for resolving variables in the kernel command
line. These specifications apply to all menu entries that you create and install with zipl.

The installed zipl environment block is interpreted at boot time. zipl creates the zipl environment block
from a zipl environment file on the administrative Linux instance, from which you run zipl. See “Creating
variables for the kernel command line” on page 82.

Using the zipl environment feature, you can:

« Modify a zipl environment block without rerunning zipl. For example, see “Modifying a zipl environment
block with zipl-editenv” on page 85.

« Define common options for the kernel-command line across multiple boot menu entries, see
“Specifying common variables across multiple boot menu entries” on page 86.

- Add placeholder variables for future use, see “Specifying variables for future use” on page 87.

Figure 24 on page 82 shows the relationship between the zipl environment file and zipl environment
block.

Administrative Linux instance

letclziplenv IPL device

zipl

environment zip[

file environment
block

zipl ... IPL
Ne—

zipl-editenv

Booted Linux instance

Figure 24. zipl environment block and file

Use the zipl-editenv command to modify the zipl environment block directly.

For information about the zipl-editenv command, see “zipl-editenv - Edit the zipl environment block”
on page 757.

Creating variables for the kernel command line

You can modify the kernel command line, substituting its parts with variables.

82 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task

Variables have the form $$<keyword>% in the kernel command line and are replaced during boot

with the value associated with <keyword>. If no value is defined for <keyword>, it is replaced with a
whitespace. The <keyword>=<value> pairs that zipl writes to the environment block are stored in the
zipl environment file (see “zipl environment file syntax” on page 84).

You can specify variables through:

 The zipl configuration file (/etc/zipl.conf)
 Kernel parameter file

BLS snippets (boot/loader/entries/..)
The DASD boot menu

Do not specify variables through:

« The SCSI 0S-specific parameters field (SCP DATA)
« The VMPARM IPL parameter

Example

This example shows how to replace variable parts in the kernel command line with variables. The original
installation is unaffected. The example shows a snippet of the kernel parameters, other parameters can
be included, for example parameters that are automatically appended by an earlier stage of the boot
process.

1. Assume that a parameter specification is as follows:
root=/dev/dasdal panic=9

2. Assume you might want to boot with another root partition and different values of panic time-out.
Then, you would replace "/dev/dasdal" and "panic=9" with variables. Assume that you choose the
keywords ROOT and PANIC_TIMEOUT for them, respectively.

Replace the parameters in the original command line with variables as follows:

root=$$R0O0T? $IPANIC_TIMEOUT?

You can replace a whole parameter as with ${PANIC_TIMEOUT} or just the parameter value as with
${ROOT}. Now you must give the variables values. Use a zipl environment file to do this.

3. Use your favorite text editor to set up a zipl environment file. For details about the file syntax, see “zipl
environment file syntax” on page 84.

Assume you create a zipl environment file /etc/ziplenv. Now use the keywords you chose before,
ROOT and PANIC_TIMEOUT, to set values. For example:

cat /etc/ziplenv
RO0T=/dev/dasdal
PANIC_TIMEOUT=panic=9

4. Prepare a block device for IPL with zipl. Run zipl.

5. Reboot the system with the prepared boot configuration, log in, and display the current command line:

cat /proc/cmdline
root=/dev/dasdal panic=9 ...

Figure 25 on page 84 illustrates the process of replacing specifications in the command line with
variables.

Chapter 6. Initial program loader for IBM Z - zipl 83

Command line:

root=/dev/dasdal panic=9 —~
Add variables

root=${ROOT} ${PANIC_TIMEOUT} <«

/etc/ziplenv

ROOT=/dev/dasdal
PANIC_TIMEOUT=panic=9

[PL device

ROOT=/dev/dasdal
PANICiTIMEOUT:paDiC:9

zipl

IPL

Linux instance k////

#cat /proc/cmdline
root=/dev/dasdal panic=9 ...

Figure 25. Variables on the command line

Results

During the IPL process, the variables ${ROOT} and ${PANIC_TIMEOUT} resolved to /dev/dasdal and
panic=9 respectively, according to the keyword definitions in the zipl environment block. This ensures
that the original installation works as before, but you can now boot with another root partition and
different values of panic timeout by changing the zipl environment block. For an example of how to
change the zipl environment block, see “Modifying a zipl environment block with zipl-editenv” on page
85.

zipl environment file syntax
zipl reads the zipl environment file to add the zipl environment block to the boot data.

The default location of the file is /etc/ziplenv. To use afile at a different location, use the zipl
command option --environment.

The file contains lines of keyword-value pairs, <keyword>=<value>, with each pair on a separate line.
On each line, the keyword is the sequence of characters that precedes the first equal sign (=). The
maximum number of keyword-value pairs for one boot partition is 512.

You can modify a zipl environment file with any text editor. An example file might look as follows:
é66T=/dev/dasda1
CRASH=256M
PANIC_TIMEOUT=panic=8
PANIC_TIMEOUT=panic=9
RESERVED=
The keywords must satisfy the following requirements:

« Consist of uppercase letters A - Z, digits 0 - 9, and the "_" (underscore).
« Must not begin with a digit.

Lines beginning with "#" are ignored, as are lines without a keyword.

If lines contain identical keywords, the last line overrides preceding ones. For example, in the example file
from before, of the two entries for PANIC_TIMEOUT, the entry PANIC_TIMEOUT=panic=9 would be used.

84 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Creating a boot record with a missing, or empty, zipl environment file results in an empty zipl environment
block in the boot data. At boot time, all variables that cannot be resolved are removed from the command
line.

If the zipl environment file defines more than 512 keyword-value pairs, or if the environment defined by
that file exceeds one file-system block, zipl fails to import the file.
Modifying a zipl environment block with zipl-editenv

Use the zipl-editenv command to modify the installed zipl environment block.

About this task
Assume you have the same zipl environment file as before, with the ROOT and PANIC_TIMEOUT keywords
defined:

cat /etc/ziplenv
RO0T=/dev/dasdal
PANIC_TIMEOUT=panic=9

For details about the file syntax, see “zipl environment file syntax” on page 84.

Further, assume that you ran zipl, and the zipl environment block is created. Now you would like to use
another root partition and another value for the panic time-out.

Procedure

1. Optional: Display the current zipl environment block by using the zipl-editenv command:

zipl-editenv --list
ROOT=/dev/dasdal
PANIC_TIMEOUT=panic=9

If no option -t is specified, zipl-editenv assumes that the environment was installed in the /boot
directory. To specify a different directory, use the -t option.

2. Use the zipl-editenv command to change the values for ROOT and PANIC_TIMEOUT.
For example, to set the root partition to /dev/dasdc?2 and the panic time-out to 8, issue the following
commands:

zipl-editenv -s ROOT=/dev/dasdc2
zipl-editenv -s PANIC_TIMEOUT=panic=8

To check that everything is correct, display the modified zipl environment block:

zipl-editenv --list
RO0T=/dev/dasdc2
PANIC_TIMEOUT=panic=8

3. Reboot the system, log in, and display the current command line:

cat /proc/cmdline
root=/dev/dasdc2 panic=8 ...

The root partition and panic time-out were set to the new values.

The process for modifying the environment block with zipl-editenv is illustrated in Figure 26 on
page 86

Chapter 6. Initial program loader for IBM Z - zipl 85

IPL device

zipl-editenv

L—# zipl-editenv -s ROOT=/dev/dasdc2 ROOT=/dev/dasdc2
zipl-editenv -s PANIC TIMEOUT=8 PANIC_TIMEOUT=panic=8

IPL

Lihux instance

#cat /proc/cmdline
root=/dev/dasdc2 panic=8 ...

Figure 26. Changing values for keywords that replace specifications in the kernel command line.

Results

You can repeatedly modify the zipl environment block to IPL the Linux instance with different kernel
command lines without rerunning zipl.

What to do next
You can define keyword-value pairs for common parameters for the kernel-command line across multiple
boot menu entries, see “Specifying common variables across multiple boot menu entries” on page 86.

You can also equip the zipl environment file with keyword-value pairs for future use, see “Specifying
variables for future use” on page 87.

Specifying common variables across multiple boot menu entries

The zipl environment feature is useful in the case of multiple boot menu entries.

Procedure

1. Create a zipl environment file that holds only the keyword-value pairs for common variables.
For example:

cat /etc/ziplenv
COMMON=nosmt

2. Introduce the ${COMMON? variable to the kernel parameters in the boot menu configurations.

[defaultboot]
defaultauto
target=/boot

First boot configuration (DASD)
[boot1]

ramdisk=/boot/initrd
parameters='root=/dev/ram@ ro $§{COMMON?'
image=/boot/image-1

target=/boot

Second boot configuration (DASD)
[boot2]

image=/boot/mnt/image-3
ramdisk=/boot/mnt/initrd
parmfile=/boot/mnt/parmf-3
target=/boot

For the boot2 configuration section, the parmfile option specifies a kernel parameter file that
contains kernel parameters, including the $$COMMON? variable, for example:

86 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /boot/mnt/parmf-3
CRASH=256M
PANIC_TIMEOUT=panic=8
$$COMMON}
3. Call zipl to install multiple boot configurations that include the $§COMMON? variable.
For example, to make ziplinstall both boot configuration boot1 and boot2:

zipl

At boot time, the $§COMMON? variable is replaced by nosmt, as specified in the installed zipl
environment block by the keyword COMMON.

Results
The zipl environment block now defines the COMMON keyword:

zipl-editenv --list
ééMMON=nosmt

IPL any boot configuration that uses a command line with the $§COMMON? variable, and display the actual
command line:

cat /proc/cmdline
. hosmt ...

To not have nosmt set, first ensure that the environment file does not define the COMMON variable, or
defines it as an empty string:

cat /etc/ziplenv
COMMON=

Then install the boot record.

However, if you do not want to re-install the boot record, you can either set the COMMON variable to the
empty string in the already installed zipl environment block:

zipl-editenv -s COMMON=
zipl-editenv -1
COMMON=

Or remove it from the zipl environment block:

zipl-editenv -u COMMON
zipl-editenv -1

Specifying variables for future use

You can extend a zipl environment file to include keywords that are not used yet, but can be in the future.

About this task

You can add keywords for future use by setting them to empty strings. Using such reserved keywords
helps you avoid boot record re-installation in the future, when you want to add more parameters to the
kernel command line.

Procedure

1. Assume the same command line as before:

Chapter 6. Initial program loader for IBM Z - zipl 87

root=/dev/dasdal panic=9

To add a variable that can be used in the future, add one or more variables to the command line, for
example $$MYVARIABLE_1% $$MYVARIABLE_2%:

root=/dev/dasdal panic=9 ${MYVARIABLE_1} ${MYVARIABLE_2%

Ensure that all variables are separated by blanks from other variables.
2. Use a zipl environment file to set values for the keywords.

You now need to define keyword-value pairs for these variables in a zipl environment file. Keyword-
value pairs set to the empty string resolve to the empty string until you define values for them:

cat /etc/ziplenv
root=/dev/dasdal
panic=9
MYVARIABLE_1=
MYVARIABLE_2=

3. Reboot with the prepared boot configuration, and log in.

Display the command line that was used for the currently running Linux instance. You notice that the
original command line is unchanged:

cat /proc/cmdline
root=/dev/dasdal panic=9 ...

Results
The original installation works as before, but you can now use zipl-editenv to assign a value in the zipl
environment block for a specific IPL device. For example:

zipl-editenv --set MYVARIABLE_l=console=ttyS1
zipl-editenv --list

root=/dev/dasdal

panic=9

MYVARIABLE_1=console=ttyS1

MYVARIABLE_2=

The value for a reserved keyword must be the complete kernel parameter specification. For many kernel
parameters this is a <parameter>=<parameter_value> pair, for example panic=9.

After rebooting, you can see that the new value was applied to the installation as it shows up in the
command line:

cat /proc/cmdline
root=/dev/dasdal panic=9 console=ttyS1 ...

88 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 7. Booting Linux

The options and requirements you have for booting Linux depend on your platform, LPAR, z/VM, or KVM,
and on your boot medium.

For details about setting up a z/VM guest virtual machine for Linux, see z/VM: Getting Started with Linux
on System z°, SC24-6287, the chapter about creating your first z/VM guest virtual machine for Linux and
installing Linux.

For details about setting up a KVM virtual server, see KVM Virtual Server Management, SC34-2752.

IPL and booting

On IBM Z, you usually start booting Linux by performing an Initial Program Load (IPL) from an IPL device.

A traditional IPL device contains all data that is required to start an IBM Z operating system or a stand-
alone program. For Linux this includes a kernel image, possibly an initial RAM disk and kernel parameters,
and a boot loader.

For SCSI IPL disks, NVMe devices, and generally for IPL of a KVM guest, the boot loader code is supplied
by the hypervisor and not required on the IPL device.

Figure 27 on page 89 summarizes the main steps of the boot process for a traditional IPL device.

termory metmory memory
Linux
kernel
image
; boot loader boot loader
- code code
TPl A TRl A e
(IFL device (IPL device
Linux Linux
kernel kernel
image image
boot loader boot loader
code code
\v/ \v/
(1) IPL: (2) Boot procese: (3) Boot procese:
loads boot loads Linux Boot loader code passes
loader code kernel image control to Linux

Figure 27. IPL and boot process

The IPL process accesses the IPL device and loads the Linux boot loader code to the mainframe memory.
The boot loader code then gets control and loads the Linux kernel. At the end of the boot process Linux
gets control.

Use the zipl tool to prepare DASD, SCSI, NVMe, and tape devices as IPL devices for booting Linux or for
dumping. For more information about zipl, see Chapter 6, “Initial program loader for IBM Z - zipl,” on

page 57.

© Copyright IBM Corp. 2000, 2023 89

LPAR

If your Linux instance is to run in an LPAR, you can circumvent the IPL and use the Support Element (SE)
to copy the Linux kernel to the mainframe memory (see “Loading Linux from removable media or from an
FTP server” on page 99).

You can use secure boot if you IPL from a SCSI device. For more information, see “Secure boot” on page
99.

KVM

For Linux on IBM Z as a KVM guest, an IPL is initiated by starting a virtual server on the KVM hypervisor.

The hypervisor first assigns resources to the virtual hardware, then it loads s390-ccw. img into the
memory of the new virtual hardware. For KVM guests, s390-ccw. img takes the role of the boot loader. If
needed, s390-ccw. img loads s390-netboot. img to retrieve boot data over the network.

LPAR and z/VM

An IPL can also start a dump process. See Using the Dump Tools, SC33-8412 for more information about
dumps. You can find the latest version of this document on IBM Documentation at:
ibm.com/docs/en/linux-on-systems?topic=tools-upstream-kernel.

Control point and boot medium

The control point from where you can start the IPL depends on your hypervisor environment.

LPAR
For Linux in LPAR mode, the control point is the mainframe's Support Element (SE) or an attached
Hardware Management Console (HMC).
z/VM
For Linux on z/VM, the control point is the control program (CP) of the hosting z/VM system.
KVM
For Linux on KVM, the control point is the KVM host.

The media that can be used as boot devices also depends on the hypervisor. Table 11 on page 90
provides an overview of the possibilities:

Table 11. Boot media

Medium LPAR z/VM guest KVM guest
DASD v v v
tape \ \4

SCSI v v

NVMe \

CD-ROM/DVD/FTP v

z/VM reader Vv

virtio block device Y
virtio SCSI device v
In the table:

« As of z14, a SCSI boot device is an FC-attached disk. Support for an FC-attached CD-ROM or DVD drive
as a boot device is available on IBM Z hardware prior to z14.

« CD-ROM/DVD/FTP can be the CD-ROM or DVD drive of the SE or HMC, or it can be a remote FTP server.

90 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdt.html

« Avirtio block device can be backed by an ISO image in the KVM host file system or by any IPL device
that was prepared with zipl.

Typically, booting from removable media applies to initial installation of Linux. Booting from DASD or SCSI
disk devices usually applies to previously installed Linux instances.

Menu configurations

If you use zipl to prepare a DASD or SCSI boot device, you can define a menu configuration.

A boot device with a menu configuration can hold the code for multiple boot configurations. For SCSI and
NVMe disks, the menu can also include one or more system dumpers.

Each boot and dump configuration in a menu is associated with a configuration number. At IPL time, you
can specify a configuration number to select the configuration to be used.

For menu configurations on DASD, you can display a menu with the configuration numbers (see “DASD
menu configuration example for z/VM” on page 108 and “DASD menu configuration for LPAR” on page
94). For menu configurations on SCSI devices, you need to know the configuration numbers without
being able to display the menus.

See “Menu configurations” on page 77 for information about defining menu configurations.

Boot data

To boot Linux, you generally need a kernel image, boot loader code, kernel parameters, and an initial RAM
disk image.

For sequential I/O boot devices, z/VM reader and tape, the order in which this data is provided is
significant. For random access devices, there is no required order.

On Ubuntu Server 22.04 LTS, kernel images are installed into the /boot directory and are named
vmlinuz-<version>, where <version> is the same as the output of the uname -x command. There

is often more than one kernel image installed; the currently active kernel image is indicated by a symbolic
link named 'vmlinuz' (without version suffix). For information about where to find the images and how to
start an installation, see the Ubuntu Installation Guide, see:

« For LPAR: https://ubuntu.com/server/docs/install/s390x-lpar
« For z/VM: https://ubuntu.com/server/docs/install/s390x-zvm

https://help.ubuntu.com/18.04/installation-guide/s390x

Boot loader code
A kernel image is usually compiled to contain boot loader code for a particular boot device.

For example, there are Linux configuration menu options to compile boot loader code for tape or for the
z/VM reader into the kernel image.

If your kernel image does not include any boot loader code or if you want to boot a kernel image from a
device that does not correspond to the included boot loader code, you can provide alternate boot loader
code separate from the kernel image.

You can use zipl to prepare boot devices with separate DASD, SCSI, or tape boot loader code. You can
then boot from DASD, SCSI, or tape regardless of the boot loader code in the kernel image.
Kernel parameters

The kernel parameters are in form of an ASCII text string. If the boot device is tape or the z/VM reader, the
string can also be encoded in EBCDIC.

Individual kernel parameters are single keywords or keyword/value pairs of the form keyword=<value>
with no blank. Blanks are used to separate consecutive parameters.

Chapter 7. Booting Linux 91

https://ubuntu.com/server/docs/install/s390x-lpar
https://ubuntu.com/server/docs/install/s390x-zvm
https://help.ubuntu.com/18.04/installation-guide/s390x

If you use the zipl command to prepare your boot device, you can provide kernel parameters on the
command line, in a parameter file, and in a zipl configuration file.

See Chapter 4, “Kernel and module parameters,” on page 25, Chapter 6, “Initial program loader for IBM Z
- zipl,” on page 57, or the zipl and zipl.conf man pages for more details.

Initial RAM disk image

An initial RAM disk holds files, programs, or modules that are not included in the kernel image but are
required for booting.

For example, booting from DASD requires the DASD device driver. If you want to boot from DASD but the
DASD device driver has not been compiled into your kernel, you must provide the DASD device driver
module on an initial RAM disk. If your image contains all files, programs, and modules that are needed for
booting, you do not need an initial RAM disk.

Ubuntu Server provides a RAM disk in /boot, named initxrd.img-<version>, where <version> is the
same as the output of the uname -x command. There is often more than one RAM disk installed, the
currently active RAM disk is indicated by a symbolic link named initxd. img, without version suffix.

Rebuilding the initial RAM disk image

Configuration changes might apply to components that are required in the boot process before the root
file system is mounted. For Ubuntu Server 22.04 LTS, such components and their configuration are
provided through an initial RAM disk.

Procedure

Issue update-initramfs -u to update the initial RAM disk of your target kernel.
The command also updates the bootloader record.

Tip: Use the -k all option to ensure that all kernel and initrd combinations on the system are updated.

Booting Linux in LPAR mode

You can boot Linux in LPAR mode from a Hardware Management Console (HMC) or Support Element (SE).

About this task

The following description refers to an HMC, but the same steps also apply to an SE.

Booting from DASD
Use the SE or HMC to boot Linux in LPAR mode from a DASD boot device.

Before you begin
You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

Procedure

Perform these steps to boot from a DASD boot device:

1. In the navigation pane of the HMC, expand Systems Management and select the hardware system
that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load (see Figure 28 on page 93).

92 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IEM Hardware Management Console

Operating System Messages X

= Systems Management > M35

3 Weicome Partitions

] ! jif‘ Management | (= B (2 2 4 2 [@ e) Tasks v | [Views v
Select ~ |Name ~ | Status ~ | Activation Profile

—
M35LP52 © © Operating M35LP52

o)
e e o O &) M3sLPS3 © @ Operating M35LP53
[l &% M35LPS4 © ® Not activated M35LP54

B HMC Minagement

¥ | masLpssl ‘ © (© Operating M35LP55

%, servi t
i} service Management 2, WIS ©) Not activated M35LPS6

[Tasks In 2 ® Not activated M35LP57
&) M35LP58 [SXE ptions M35LP58
&) M3sLP59 M35LP59

&) M35LPE0 M35LP60

0|0 000

Tasks: M35LP55

1) Select
hardware
system

2) Select LPAR -

3) Click Load

Figure 28. Load task on the HMC
4. Select load type Standard load as shown in Figure 29 on page 93.

Select the Clear the main memory on this partition before loading it check box only if you must clear
memory. Memory clearing can considerably prolong the IPL procedure.

|¥]| Load - M35:M35LP55 n
| CPC: M35

Image: M35LP55

Load type: @ Standard load

O SCSl load
O SCSI dump

[IClear the main memory on this partition before loading it
[IStore status
Load address: +| 1E711

Load parameter:

| Time-out value: [gQ E 60 to 600
seconds

OK | Reset ‘ Cancel | Help |

Figure 29. Load panel for booting from DASD
5. Enter the device number of the DASD boot device in the Load address field.

To IPL from a subchannel set other than 0, specify five digits: The subchannel set ID followed by the
device number, for example 1E711.

6. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your DASD boot configuration within the menu in the Load parameter field.

Configuration number 0 specifies the default configuration. Depending on the menu configuration,
omitting this option might display the menu or select the default configuration. Specifying "prompt"
instead of a configuration number forces the menu to be displayed.

When the menu is displayed, you can specify additional kernel parameters (see “DASD menu
configuration for LPAR” on page 94). These additional kernel parameters are appended to the

Chapter 7. Booting Linux 93

parameters you might have provided in a parameter file. The combined parameter string must not
exceed 895 bytes.
See “Menu configurations” on page 77 for more details about menu configurations.

7. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your DASD boot configuration within the menu in the Load parameter field.

8. Click OK to start the boot process.

DASD menu configuration for LPAR

This example illustrates how menu2 in the sample configuration file in Figure 23 on page 79 is displayed
on the HMC or SE:

zIPL interactive boot menu
0. default (bootl)

1. bootl
2. boot3

Please choose (default will boot in 30 seconds): 2
You choose a configuration by specifying the configuration number. For example, to boot configuration
boot3 specify 2.

You can also specify additional kernel parameters by appending them to the configuration number. For
example, you can specify:

2 maxcpus=1

These parameters are concatenated to the end of the existing kernel parameters that are used by your
boot configuration when booting Linux.

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Booting from SCSI
Use the SE or HMC to boot Linux in LPAR from a SCSI boot device.

Before you begin

 You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

For information about boot devices, see Table 11 on page 90.
« You must have the SCSI IPL feature (FC9904) installed.

Procedure

Perform these steps to boot from a SCSI boot device:

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the
mainframe system that you want to work with. A table of LPARs is displayed on the Images tab in the
content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown inFigure 30 on page 95.

94 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IEM Hardware Management Console

Operating System Messages X

@ e
@ Systems Management > M35
5 Welcome Partitions
=] !]:f’ Management & (= % we| ol gl o @ 2 (| Fiter Tasks v || Views v
Select ~ |Name ~ | status ~ | Activation Profile
3
5 (]) MIsLPS2 © © operating M35LP52
© © Operating M35LP53
@ (% Custol Groups O &) M35LPS3 S (@ Operating
[m] & M35LPS4 © ® Not activated M35LP54
B HMC Minagement
P | masipsskl | © © operating MI5LPSS
4 1
R [a] o VIBLRE © ® Not activated M35LP56
) Tasks In m s5 M35LP: © & Not activated M35LP57
(i) M35LPS8 © ® Exceptions M35LP58
m| &) M35LPS9 © ® Exceptions M35LP59
(]) M35LPEO (Operating M35LP60
= D\ Aot activatad \1351 081
|
Tasks: M35LP55 B
1) 66[661; \mee Details & Daily & Operational Customization
oggle Lock Activate Configure Channel Path ON/O#f
h d 4 Deactivate Customize/Delete Activation Profiles
araware [Grouping Logical Processor Add
Hardware Messages & Monitor
t Operating System Messages Monitor System Events
system

@ Recovery

2) Select LFAR o repme vee

ASCII Console
ﬁ\ lvo wable Media or Server
PSW Restart
Reset Clear
Start All Processors

3) Click Load

Figure 30. Load task on the HMC
4. Select load type SCSI as shown in Figure 31 on page 95.
A SCSI device can be a disk or an FC-attached CD-ROM or DVD drive.

|§| Load - M35:M35LP55
CPC: M35

Image: M35LP55

Load type: (O Standard load

@ SCSl load
O SCSI dump

[IClear the main memory on this partition before loading it

Load address: + FCO00

Load parameter:

Worldwide port name: E005076300c20b8e
Logical unit number: 5241000000000000
Boot program selector: 0

Boot record logical block address: 0

Operating system specific load parameters:

OK \ Reset | Cancel \ Help \

Figure 31. Load panel with SCSI feature enabled — for booting from a SCSI disk

5. Enter the device number of the FCP channel through which the SCSI disk is accessed in the Load
address field.

6. Enter the WWPN of the SCSI disk in the World wide port name field.
7. Enter the LUN of the SCSI disk in the Logical unit number field.

8. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your SCSI boot configuration within the menu in the Boot program selector field.

Configuration number 0 specifies the default configuration.

See “Menu configurations” on page 77 for more details about menu configurations.

Chapter 7. Booting Linux 95

9. Type kernel parameters in the Operating system specific load parameters field.

These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux. The combined parameter string must not exceed 4096
bytes.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in the Operating system specific load parameters field.

10. Accept the defaults for the remaining fields.

11. Click OK to start the boot process.

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Booting in LPAR mode from an NVMe device
Use the SE or HMC to boot Linux in LPAR mode from a Non-Volatile Memory Express (NVMe) device.

Before you begin

« NVMe IPL devices are supported as of LinuxONE III with the firmware upgrade of November 2020.
» You need an NVMe device that is prepared with zipl (see “Preparing a boot device” on page 60).

« If you are using the HMC in Dynamic Partitioning Mode (DPM), ensure that the NVMe device to boot from
is of type "boot".

Procedure

Perform these steps to boot from an NVMe boot device:

1. In the navigation pane of the HMC, expand Systems Management and select the hardware system
that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown in the following graphic:

96 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Hardware Management Console

Operating System Messages X

€ 3 Systems Management > M35
Partitions.

(2 =) (@ (0 8 [2 (4 (o) [@] T) || (e) [Vews~]

Select ~ |Name ~ | status ~ | Activation Profile
(] &) MI5LP52 © @ operating M35LP52
O &) M35LPS3 © (@ Operating M35LP53
O 55, M35LP54 © ® Not activated M35LP54
2 \m | © © operating MI5LPSS
(] 5%, M3ELARE © & Not activated M35LP56
O s, M35LP! © & Not activated M35LP57
(]) M3sLPS8 © ® Exceptions M35LP58
O &) M3I5LP59 © ® Exceptions M35LP59
(] &) M35LPEO © © operating M35LP60
— 2 1iocinc, O Nt activatad 2351 081

Tasks: M35LP55 =]

1) 6 6] CCt UMDIC Details & Daily & Operational Customization
Toggle Lock Activate Configure Channel Path On/Off
h d E Deactivate Customize/Delete Activation Profiles
araware Grouping Logical Processor Add
Hardware Messages & Monitor
Operating System Messages
system Reee N Worior Sysem Evets

Recovery

a
2) Select LPAR teesiemoe e

ASCII Console
.. o wable Media or Server
PSW Restart
Reset Clear
Start All Processors

Stop All Processors

3) Click Load

Figure 32. Load task on the HMC
4. On the Load panel, select load type NVMe load.

Select the Clear the main memory on this partition before loading it check box only if you must
clear memory. Memory clearing can considerably prolong the IPL procedure.

1IEM SE Q SEARCH FAVORITES
Load - S5C01
Load - SSCO01
Image: Ss8COM1
Load type: Standard load
SCSl load
SCSI dump
© NVMe load
NVMe dump

Enable Secure Boot for Linux
Clear the main memory on this partition before loading it

Load address: *|‘3— j

Load parameter:; |

Boot program selector: |0

Boot record logical block address: |O

Operating system specific load parameters |

.
OK | [Reset | | Cancel | | Help |

Figure 33. Load panel for NVMe load
5. Enter the PCle function ID of the NVMe device in the Load address field. You can omit leading zeroes.

Chapter 7. Booting Linux 97

6. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your boot configuration within the menu in the Boot program selector field.

Configuration number 0 specifies the default configuration.

See “Menu configurations” on page 77 for more details about menu configurations.
7. For boot images in the secure-boot format, select the Enable Secure Boot for Linux option.
8. Type kernel parameters in the Operating system specific load parameters field.

These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in the Operating system specific load parameters field.

9. Accept the defaults for the remaining fields.
10. Click OK to start the boot process.

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Booting from tape

You can boot Linux in LPAR mode from tape.

Before you begin
You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

Procedure

Perform these steps to boot from a tape boot device:

1. In the navigation pane of the HMC, expand Systems Management and select the hardware system
that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown in Figure 34 on page 99.

98 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IEM Hardware Management Console

Operating System Messages X

= Systems Management > M35

3 Weicome Partitions

wmmm & = B [2 5] 2] (# & e T)| [Tasksw |[Views~

Select ~ |Name ~ | status ~ | Activation Profile
(] &) M35LP52 © @ Operating M35LP52
O &) M3sLPS3 © @ Operating M35LP53
a &5y M35LPS4 © ® Not activated M35LP54
v &) masLPss (el ‘ © (© Operating M35LP55
O &5, MI5LARE © ® Not activat M35LP56
0 55s M35LP! O ® M35LP57
[l &) MI5LPS8 M35LP58
O &) M35LPS9 M35LPS9
(i) MI5LPE0 M35LPE0
=

Tasks: M35LP55

1) Select o
hardware |
system

2) Select LPAR -

eset
Start
Stop Al Pr

3) Click Load

Figure 34. Load task on the HMC
4. Select the load type Standard load (see Figure 29 on page 93).

Select the Clear the main memory on this partition before loading it check box only if you must clear
memory. Memory clearing can considerably prolong the IPL procedure.

5. Enter the device number of the tape boot device in the Load address field.
6. Click OK to start the boot process.

What to do next

Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Secure boot

As of z15 and LinuxONE III, the operating system loader verifies that components that are loaded from
SCSI disks or NVMe devices come from a trusted source. You can cancel loading for components that
cannot be verified.

With secure boot enabled, an IPL fails if a component containing code is not signed or cannot be verified.

For details about how to prepare a device for secure boot, see “zipl modes and syntax overview” on page
58.

To check if a Linux instance was IPLed with secure boot, see “Displaying current IPL parameters” on page
111.

Kernel interfaces are restricted in a kernel that is prepared for secure boot. In particular, in a kernel
prepared for secure boot, all kernel modules must be signed by Canonical. You cannot load modules that
are not signed by Canonical, like lin_tape.

KVM: You can IPL a KVM guest from a device with the secure boot format, but sighatures are not verified.

Loading Linux from removable media or from an FTP server

Instead of a boot loader, you can use SE functions to copy the Linux kernel image to your LPAR memory.
After the Linux kernel is loaded, Linux is started using restart PSW.

Chapter 7. Booting Linux 99

Before you begin

You need installation data that includes a special file with installation information (with extension "ins").
This file can be in different locations:

« On adisk thatis inserted in the CD-ROM or DVD drive of the system where the HMC runs

« In the file system of an FTP server that you can access through FTP from your HMC system

The .ins file contains a mapping of the location of installation data on the disk or FTP server and the
memory locations where the data is to be copied.

Procedure

Perform these steps:

1. In the navigation pane of the HMC, expand Systems Management and select the hardware system
that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load from Removable Media or Server (see Figure 35
on page 100).

IEM Hardware Management Console

Operating System Messages X

& Systems Management > M35

3 Weicome Partitions

a |f ?‘L!f’ Management

@ ;] Custok Groups
B HMC Management
i} service Management

[Tasks Ini

1) Select
hardware
system

4

) =
Select ~ |Name

(] &) M35LP52
O &) M35LP53
(] &5, M35LP54
v &) MasLPs5)

& B % 2 4] (2 (B (] Clrmer

<

&5, M35LARE

&) M35LP59

-
-

(] &) M35LP58
-

(] &) M35LPEO
—

Tasks: M35LP55

~ | status

Llass w L Vows 2]
~ | Activation Profile
© Operating M35LP52
© © Operating M35LP53
() Not activated

l © (© Operating

%) Not activated

M35LP54
M35LPSS
M35LPS6
> ® Not activated M35LPS7
® Exceptions M35LPS8
© ® Exceptions M35LP59
) (@ Operating M35LP60

2\ Mot activat, o Mas1 BR1

Image Details
Toggle Lock

& Recovery
Access Removable Media
Integrated 3270 Console
Integrated ASCII Console
L

2) Select LFAR

oad
Load from Removable Media or Server

E Operational Customization
Configure Channel Path On/Off
Customize/Delete Activation Profiles
Logical Processor Add

& Monitor
Monitor System Events

Reset Clear
Start Al Processors
Stop Al Processors

\

3) Click Load from Removable Media or Server

Figure 35. Load from Removable Media or Server task on the HMC
4. Specify the source of the code to be loaded.

« For loading from a CD-ROM or DVD drive

a. Select Hardware Management Console removable media (see Figure 36 on page 101).

100 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

’ Load from Removable Media or Server (]

Use this task to load operating system software or utility programs from removable media or
an FTP server.

Select the source of the software:
@ Hardware Management Console removable media

O Hardware Management Console removable media and assign for operating system use
OFTP Server

Host name:+
User name:+
Password: +
Account:

File path:’

OK | | Cancel | | Help |

Figure 36. Load from Removable Media or Server panel

b. Enter the path for the directory where the "ins-file" is in the File location field. You can leave
this field blank if the "ins-file" is in the root directory of the file system on the CD-ROM or DVD.
« Foraninitial installation from removable media at the HMC

a. Select Hardware Management Console removable media and assign for operating system
use (see Figure 36 on page 101).

b. Enter the path for the directory where the "ins-file" is in the File location field. You can leave
this field blank if the "ins-file" is in the root directory of the file system on the removable media.

The installation CD or DVD must hold a distribution that supports an installation from the HMC.
« For loading from an FTP server
a. Select FTP Server.

b. Enter the IP address or host name of the FTP server with the installation code in the Host name
entry field.

c. Enter your user ID for the FTP server in the User name entry field.
d. Enter your password for the FTP server in the Password entry field.
e. If required by your FTP server, type your account information in the Account entry field.

f. Enter the path for the directory where the "ins-file" resides in the file location entry field. You
can leave this field blank if the file is in the FTP server's root directory.

5. Click Continue to display the Select Software to Install panel (Figure 37 on page 101).

= Load from Removable Media or Server - Select Software
¥ | to Install L

Select the software to install.
Select Name Description

* Distribution/DVD/min.ins Linux on System z
OK Cancel | Help

Figure 37. Select Software to Install panel
6. Select the "ins-file" to be used.
7. Click OK to start loading Linux.

Chapter 7. Booting Linux 101

Results

Ubuntu Server configuration scripts take over, if present.

102 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Using the HMC Web Services API to boot in LPAR mode

You can boot Linux in LPAR mode remotely by using the HMC Web Services API. For information about the
API, see Hardware Management Console Web Services API for your IBM Z or LinuxONE hardware.

You can find a client application that uses this API at https://github.com/zhmcclient/zhmccli - installable
using pip or apt. The examples that follow are based on this application, which provides the zhmc
command as its user interface.

Hint: The zhmc command is case sensitive. For hardware and partition specifications, use the
capitalization as shown in the HMC interface and the corresponding HMC API queries.

Booting from a SCSI boot device

The following example makes these assumptions about the hardware system, LPAR, and boot device:
e The name of the IBM Z or LinuxONE system is M35.

« The name of the LPAR is m351p55.

« An FC-attached SCSI disk is prepared, with zipl, as a boot device.

The LUN of the disk is 0x5241000000000000

« The disk is accessed through WWPN 0x5005076300c20b8e.

« The FCP device to access the disk has a bus ID 0.0.FCO00.

To start the IPL and boot process, issue:

zhmc 1lpar scsi-load M35 m351p55 FCOO 5005076300c20b8e 5241000000000000
To view the operating system messages, issue:

zhmc lpar console M35 m351p55

For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Booting Linux in a DPM partition

You can boot Linux in a DPM partition from a Hardware Management Console (HMC).

Booting in a DPM partition from a SCSI boot device

You can boot Linux in a Dynamic Partition Manager (DPM) partition from an FC-attached SCSI disk using
the Hardware Management Console (HMC).

Before you begin

« You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60). For more
information about SCSI boot devices, see Table 11 on page 90.

« You must have the SCSI IPL feature (FC9904) installed.

« SCSI boot devices are FC-attached disk volumes. In DPM mode, the HMC interface presents such disk
volumes as part of SAN storage groups. To set up a SCSI disk as a boot device, you must know its
storage group and the UUID that identifies it.

Chapter 7. Booting Linux 103

https://github.com/zhmcclient/zhmccli

About this task

In Dynamic Partition Manager (DPM) mode, the boot process is initiated by the Start task for the partition.
Before you can run the Start task, you must configure a boot volume for the partition. Subsequent boot
processes for the partition use the configured boot volume configuration.

The steps that follow assume DPM version R3.1 or later. For more information about DPM, see Dynamic
Partition Manager (DPM) Guide for your IBM Z or LinuxONE hardware.

Procedure

Perform these steps to set up and boot from a SCSI boot device for a DPM partition:

1. On the HMC, navigate to your partition.
a) Expand Systems Management and select the hardware system that you want to work with.
a) Select your partition on the Partitions tab in the content area.

2. Unless it is already configured, set up the boot device.
a) In the Tasks area, click Partition Details (see Figure 38 on page 104).

Q SEARCH FAVORITES

E E
@ Systems Management > T46
5 Welcome Partitions || Monitor
= [ﬂ Systems Management @ ;t; +? j = m. Iﬁ | Filter Tasks » Views v
E Mg N P M C
E T46 Select ~ | Name -~ | Status - | Processors ~ [(A o ™ e Description ~
B T e & t46ip78 =) (%) stopped 4 40 461p78
e . g 3 weip7alel ©) (@) Active 4| 16.0| b || b t46p79
anagemen -
B 146 (=) () Activ 16.0 ‘| '3
1} Service Management C g usipso D) @ Active 1 160 o] p= 1461p80 I
[Max Page Size:|500 Total: 75 Filtered: 75 Selected: 1
[E=]

Partition Details E Configuration

Delete Partition
& Monitor
Monitor System Events

Grouping
Operating System Messages

Start

Stop

[Operational Customization

Customize Scheduled Operations

Figure 38. Task area on the HMC
b) In the left navigation pane of the Partition Details panel, select Boot to open the Boot tab.

104 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

§6% Partition Details - t46lp79

General =~ Boot
Status Boot from: < Storage Group(SAM) ! v
Controls
Secure Boot: 1
Processors
Memory
=5 ﬁ E Actions
Network
Name Type Partitions Shareable Total Capacity Description Fulfillment State
Storage
O] ECP 1 Dedicated 220.0 GiB Q Complete
sg79_ds8k32_dedicated_lim
Cryptos on DSBk32 for
partition t46lp79
Boot Volume UUID Capacity Description
(@ 6005076309FFD4350000000000007888 50
E () 6005076309FFD4350000000000007889 50
() 6005076309FFD435000000000000780A 20
Tatal 3 Boot Volumes
Advanced Boot Settings
Boot program selector (0-30)k
Boot record logical block address | |
(16-char hexadecimal number):
IPL Load parameter {max & char): | |
05 Load parameter (max 256 char):
Related Tasks
Start
System Details
Manage Adapters 4
Manitor System Time-out value (60-600 seconds):
0K Apply Cancel Help

Figure 39. Boot tab of the Partition Details panel
¢) From the Boot from drop-down list, select "Storage Group(SAN)".

d) Optional: For boot images in the secure-boot format, select the Secure Boot option. For more
information about secure boot, see “Secure boot” on page 99.

e) In the Storage Group section, select a storage group and a boot volume.

f) Boot configurations only: The Boot program selector field applies only to boot configurations that
are part of a menu configuration that is created by zipl.

Enter the configuration number that identifies the boot configuration within the menu into this field.
Configuration number 0 specifies the default configuration.
See “Menu configurations” on page 77 for more details about menu configurations.

g) Type kernel parameters in the OS Load parameter field.

These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in this field.

h) Accept the defaults for the remaining fields.

With a configured boot device, you can boot according to step “3” on page 105. Alternatively, you can
boot with the zhme command, see “Using the HMC Web Services API to boot in DPM mode” on page
106.

3. Boot from the configured boot device.

a) Go to the HMC Task area for your partition.
b) Expand the Daily section, and click Start.

Chapter 7. Booting Linux 105

c) Optional: Check the output on the preferred console (see “Console kernel parameter syntax” on
page 43) to monitor the boot progress.

For information about IPL progress messages that are issued before the Linux kernel gets control,
see Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

What to do next

You can repeatedly boot with the configured boot device settings. Proceed according to step “3” on page
105.

To change the boot device settings, proceed according to step “2” on page 104.

Using the HMC Web Services API to boot in DPM mode

You can boot Linux in a DPM partition remotely by using the HMC Web Services API. For information about
the API, see Hardware Management Console Web Services API for your IBM Z or LinuxONE hardware.

You can find a client application that uses this API at https://github.com/zhmcclient/zhmccli - installable
using pip or apt.. The examples that follow are based on this application, which provides the zhmc
command as its user interface.

Hint: The zhmc command is case sensitive. For hardware and partition specifications, use the
capitalization as shown in the HMC interface and the corresponding HMC API queries.

Booting from the configured boot device

The following example makes these assumptions about the hardware system, LPAR, and boot device:
« The name of the IBM Z or LinuxONE system is T46.

« The name of the DPM partition is t46dp79.

« A boot device has been configured for this DPM partition. For information about configuring boot devices
for DPM partitions, see step “2” on page 104 in “Booting in a DPM partition from a SCSI boot device” on
page 103.

To start the IPL and boot process, issue:

zhmc partition start T46 t46dp79

To view the operating system messages, issue:
zhmc partition console T46 t46dp79
For SCSI boot devices: For information about IPL progress messages that are issued before the

Linux kernel gets control, see Small Computer Systems Interface (SCSI) IPL Machine Loader Messages,
SC28-7006.

Booting Linux in a z/VM guest virtual machine

Boot Linux in a z/VM guest virtual machine by issuing CP commands from a CMS or CP session.

For more general information about z/VM guest environments for Linux, see z/VM: Getting Started with
Linux on System z, SC24-6287.

Booting from a tape device

Boot Linux by issuing the IPL command with a tape boot device. The boot data on the tape must be
arranged in a specific order.

106 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://github.com/zhmcclient/zhmccli

Before you begin

You need a tape that is prepared as a boot device. A tape boot device must contain the following items in
the specified order: in the specified order:

1. Tape boot loader code
The tape boot loader code is included in the s390-tools package on developerWorks®.
. Tape mark
. Kernel image
. Tape mark
. Kernel parameters (optional)
. Tape mark
. Initial RAM disk (optional)
. Tape mark

0 N o o A WM

9. Tape mark

All tape marks are required even if an optional item is omitted. For example, if you do not provide an initial
RAM disk image, the end of the boot information is marked with three consecutive tape marks. zipl
prepared tapes conform to this layout.

Procedure

Perform these steps to start the boot process:

1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the boot device is accessible to your z/VM guest virtual machine.

3. Ensure that the correct tape is inserted and rewound.

4. Issue a command of this form:

{#cp i <devno> clear parm <kernel_parameters>

where

<devno>
is the device number of the boot device as seen by the guest virtual machine.

parm <kernel_parameters>
is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters that are used by your boot configuration (see “Preparing a boot device” on page
60 for information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

Booting from a DASD

Boot Linux by issuing the IPL command with a DASD boot device. You can specify additional parameters
with the IPL command.

Before you begin
You need a DASD boot device prepared with zipl (see “Preparing a boot device” on page 60).

Procedure

Perform these steps to start the boot process:

1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the boot device is accessible to your z/VM guest virtual machine.

3. Issue a command of this form:

Chapter 7. Booting Linux 107

#cp i <devno> clear loadparm <n> parm <kernel_parameters>

where:

<devno>
specifies the device number of the boot device as seen by the guest.

loadparm <n»>
is applicable to menu configurations only. Omit this parameter if you are not working with a menu
configuration.

Configuration number @ specifies the default configuration. Depending on the menu configuration,
omitting this option might display the menu or select the default configuration. Specifying prompt
instead of a configuration number forces the menu to be displayed.

When the menu is displayed, you can specify additional kernel parameters (see “DASD menu
configuration example for z/VM” on page 108). These additional kernel parameters are appended
to the parameters you might have provided in a parameter file. The combined parameter string
must not exceed 895 bytes.

See “Menu configurations” on page 77 for more details about menu configurations.

parm <kernel_parameters>
is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters used by your boot configuration (see “Preparing a boot device” on page 60 for
information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

DASD menu configuration example for z/VM
Use the VI VMSG z/VM CP command to choose a boot configuration from a menu configuration.

This example illustrates how menu2 in the sample configuration file in Figure 23 on page 79 is displayed
on the z/VM guest virtual machine console:

00: zIPL interactive boot menu

00:

00: 0. default (bootl)

00:

00: 1. bootl

00: 2. boot3

00:

00: Note: VM users please use 'd#cp vi vmsg <input>'

00:

00: Please choose (default will boot in 30 seconds): #cp vi vmsg 2

You choose a configuration by specifying the configuration number. For example, to boot configuration
boot3 specify

#cp vi vmsg 2

You can also specify additional kernel parameters by appending them to the configuration number. For
example, you can specify:

#cp vi vmsg 2 maxcpus=1

These parameters are concatenated to the end of the existing kernel parameters that are used by your
boot configuration when booting Linux.

Booting from a SCSI device

Boot Linux by issuing the IPL command with an FCP channel as the IPL device. You must specify the
target port and LUN for the boot device in advance by setting the z/VM CP LOADDEV parameter.

108 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
You need a SCSI boot device that is prepared with zipl (see “Preparing a boot device” on page 60). For
more information about SCSI boot devices, see Table 11 on page 90.

Procedure

Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.

2. Ensure that the FCP channel that provides access to the SCSI boot disk is accessible to your z/VM
guest virtual machine.

3. Specify the target port and LUN of the SCSI boot disk.
Enter a command of this form:

{#cp set loaddev portname <wwpn> lun <lun>

where:

<wwpn>
specifies the world wide port name (WWPN) of the target port in hexadecimal format. A blank
separates the first eight digits from the final eight digits.

<lun>
specifies the LUN of the SCSI boot disk in hexadecimal format. A blank separating the first eight
digits from the final eight digits.

Example: To specify a WWPN 0x5005076300c20b8e and a LUN 0x5241000000000000:

#cp set loaddev portname 50050763 00c20b8e lun 52410000 00000000

4. Optional for menu configurations: Specify the boot configuration (boot program in z/VM terminology)
to be used. Enter a command of this form:

{#cp set loaddev bootprog <n>

where <n> specifies the configuration number of the boot configuration. Omitting the bootprog
parameter or specifying the value 0 selects the default configuration. For more information about
menu configurations, see “Menu configurations” on page 77.

Example: To select a configuration with configuration number 2 from a menu configuration:

{#fcp set loaddev bootprog 2

5. Optional: Specify kernel parameters.

J#cp set loaddev scpdata <APPEND|NEW> '<kernel_parameters>'

where:

<kernel_parameters>
specifies a set of kernel parameters to be stored as system control program data (SCPDATA).
When booting Linux, these kernel parameters are concatenated to the end of the existing kernel
parameters that are used by your boot configuration.

<kernel_parameters> must contain ASCII characters only. If characters other than ASCII
characters are present, the boot process ignores the SCPDATA.

<kernel_parameters> as entered from a CMS or CP session is interpreted as lowercase on Linux.
If you require uppercase characters in the kernel parameters, run the SET LOADDEV command
from a REXX script instead. In the REXX script, use the "address command" statement. See z/VM:
REXX/VM Reference, SC24-6314 and z/VM: REXX/VM User's Guide, SC24-6315 for details.

Chapter 7. Booting Linux 109

Optional: APPEND
appends kernel parameters to existing SCPDATA. This is the default.

Optional: NEW
replaces existing SCPDATA.

Examples:

« To append kernel parameter novx to the current SCPDATA:

#cp set loaddev scpdata 'novx'

 Toreplace the current SCPDATA with the kernel parameter novx:

#cp set loaddev scpdata NEW 'novx'

For a subsequent IPL command, this kernel parameter is concatenated to the end of the existing
kernel parameters in your boot configuration.

6. Start the IPL and boot process by entering a command of this form:

#cp i <devno>

where <devno> is the device number of the FCP channel that provides access to the SCSI boot disk.

For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Tip
You can specify the target port and LUN of the SCSI boot disk, a boot configuration, and SCPDATA all with

a single SET LOADDEV command. See z/VM: CP Commands and Utilities Reference, SC24-6268 for more
information about the SET LOADDEV command.

Booting from the z/VM reader

Boot Linux by issuing the IPL command with the z/VM reader as the IPL device. You first must transfer the
boot data to the reader.

Before you begin
You need the following files, all in record format £ixed 80:

e Linux kernel image
« Kernel parameters (optional)
« Initial RAM disk image (optional)

About this task

This information is a summary of how to boot Linux from a z/VM reader. For more details, see the
Redpaper Building Linux Systems under IBM VM, REDP-0120.

Procedure

Proceed like this to boot Linux from a z/VM reader:

1. Establish a CMS session with the guest where you want to boot Linux.

2. Transfer the kernel image, kernel parameters, and the initial RAM disk image to your guest.
You can obtain the files from a shared minidisk or use:
« The z/VM sendfile facility.
« An FTP file transfer in binary mode.

410 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Files that are sent to your reader contain a file header that you must remove before you can use them
for booting. Receive files that you obtain through your z/VM reader to a minidisk.

3. Set up the reader as a boot device.
a) Ensure that your reader is empty.
b) Direct the output of the punch device to the reader. Issue:

spool pun * rdr
c) Use the CMS PUNCH command to transfer each of the required files to the reader.
Be sure to use the "no header" option to omit the file headers.

First transfer the kernel image.
Second transfer the kernel parameters.
Third transfer the initial RAM disk image, if present.

For each file, issue a command of this form:

pun <file_name> <file_type> <file_mode> (noh

d) Optional: Ensure that the contents of the reader remain fixed.

change rdr all keep nohold

If you omit this step, all files are deleted from the reader during the IPL that follows.
4. Issue the IPL command:

ipl 000c clear parm <kernel_parameters>

where:

0x000c
is the device number of the reader.

parm <kernel_parameters>
is an optional 64-hyte string of kernel parameters to be concatenated to the end of the existing

kernel parameters that are used by your boot configuration (see “Preparing a boot device” on page
60 for information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

Booting Linux on KVM

You boot Linux as a KVM guest on IBM Z from the KVM host, by starting a KVM virtual server.

About this task
For information about managing virtual servers, see KVM Virtual Server Management, SC34-2752.

Displaying current IPL parameters

To display the IPL parameters, use the 1sxreipl command with the -1 option. Alternatively, a sysfs
interface is available.

For more information about the 1sxreipl command, see “Isreipl - List IPL and re-IPL settings” on page
666. In sysfs, information about IPL parameters is available in subdirectories of /sys/firmware/ipl.

/sys/firmware/ipl/ipl_type

The /sys/firmware/ipl/ipl_type file contains the device type from which the kernel was booted.
The following values are possible:

Chapter 7. Booting Linux 111

ccw
The IPL device is a CCW device, for example, a DASD, the z/VM reader, or a virtio block device.

fcp
The IPL device is an FCP device.

hvme
The IPL device is an NVMe device.

unknown
The IPL device is not known.

Depending on the IPL type, there might be more files in /sys/firmware/ipl/.

Further attributes for IPL type ccw
For IPL from a CCW device, the following attributes are present:
device

Contains the bus ID of the CCW device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.1234

loadparm
Contains up to 8 characters for the loadparm that is used for selecting from a zipl boot menu during
IPL of a CCW device, for example:

cat /sys/firmware/ipl/loadparm
1

parm

Contains additional kernel parameters that are specified with the PARM parameter when booting with
the z/VM CP IPL command.

Further attributes for IPL type fcp

For IPL from an FCP-attached SCSI device, the following attributes are present: (also see Chapter 12,
“SCSI-over-Fibre Channel device driver,” on page 169 for details):

binary_parameter
Contains the information of the preceding files in binary format.

bootprog

Contains the boot program number. Used for selecting from a zipl boot menu during IPL of a SCSI disk
device.

br_lba
Contains the logical block address of the boot record on the boot device (usually 0).

device
Contains the bus ID of the FCP device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.50dc

has_secure
Indicates whether the host environment supports secure boot. If the value is 1, secure boot is
supported and the secure-boot enabled format can be used. See “Secure boot” on page 99.

lun
Contains the LUN used for IPL, for example:

112 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/firmware/ipl/lun
0x5010000000000000

scp_data
Contains additional kernel parameters, if any, that are used when booting from a SCSI device. For
information about how SCPDATA can be set see the following sections:

« “Booting from a SCSI device” on page 108 for z/VM
« “Booting from SCSI” on page 94 for LPAR
« “chreipl - Modify the re-IPL configuration” on page 574

secure
Read the sysfs attribute
/sys/firmware/ipl/secure to check whether the Linux instance was IPLed with secure boot.
Issue the following command:

cat /sys/firmware/ipl/secure
1

If the value is 1, Linux was IPLed with secure boot.

wwpn
Contains the WWPN used for IPL, for example:

cat /sys/firmware/ipl/wwpn
0x5005076300c20b8e

Further attributes for IPL type nvme
For IPL from an NVMe device, the following attributes are present:

binary_parameter
Contains the information of the other attributes a in binary format.

bootprog
Contains the boot program number that was used for selecting from a zipl boot menu during IPL of the
NVMe device.

br_lba

Contains the logical block address of the boot record on the boot device (usually 0).
fid

PCIe function ID of the NVMe device.

has_secure
Indication of whether the host environment supports secure boot. If the value is 1, secure boot is
supported and the secure-boot enabled format can be used, see “Secure boot” on page 99.

loadpaxrm
Contains up to 8 characters for the loadparm.

nsid
NVMe name space ID of the NVMe device. Name space IDs are assigned by NVMe disk controllers to
divide a physical NVMe device into multiple logical devices.

scp_data
Contains any additional kernel parameters that were used when booting from the NVMe device, for
example:

cat /sys/firmware/ipl/scp_data
novx

See “Booting in LPAR mode from an NVMe device” on page 96.

Chapter 7. Booting Linux 113

A leading equal sign (=) indicates that the existing kernel parameters used by the boot configuration
were ignored and the kernel parameters of the scp_data attribute were the only kernel parameters
used for booting Linux.

secure
Indicates secure-boot mode. If the value is 1, the Linux instance was IPLed with secure boot.

Rebooting from an alternative source

When you reboot Linux, the system conventionally boots from the last used location. However, you can
configure an alternative device to be used for re-IPL instead of the last used IPL device.

Before you start:

« Linux must be compiled to support rebooting from an alternative source. This feature is built into the
kernel by default.

« The IBM Z hardware must have zfcp IPL support for re-IPL from SCSI devices.

Use the chreipl tool to configure the re-IPL device. For more information about the chrxeipl tool, see
“chreipl - Modify the re-IPL configuration” on page 574.

Alternatively, you can use a sysfs interface. In sysfs, the virtual configuration files are located
under /sys/firmware/reipl. To configure, write strings into the configuration files. The following
re-IPL types can be set with the /sys/firmware/reipl/reipl_type attribute:

ccw
For ccw devices such as DASDs that are attached through ESCON or FICON®, and for virtio block
devices on KVM guests.

fcp
For FCP SCSI devices. For information about boot devices, see Table 11 on page 90.

nvme
For PCIe-attached NVMe devices.

nss
For Named Saved Systems (z/VM only)

For each supported re-IPL type a sysfs directory is created under /sys/firmware/reipl that contains
the configuration attributes for the device. The directory name is the same as the name of the re-IPL type.

When Linux is booted, the re-IPL attributes are set by default to the values of the boot device, which can
be found under /sys/firmware/ipl.

Automatic path failover for re-IPL from an FC-attached SCSI disk

The chxeipl-£fcp-mpath tool set helps you to use multipath information for re-IPL path failover on a
running Linux instance. When the configured re-IPL path becomes unavailable it automatically changes
the configured re-IPL path to a different operational path to the same volume.

To use the tool set, install the s390-tools-chreipl-fcp-mpath sub-package from s390-tools.
Disable the feature by un-installing the sub-package. For more information, see man chreipl-fcp-
mpath.

Attributes for ccw
You can find the attributes for re-IPL type ccw in the /sys/firmware/reipl/ccw sysfs directory.

device
Device number of the re-IPL device. For example, 0.0.7412 or 0.1.5119.

loadparm
Up to eight characters for the loadparm used to select the boot configuration in the zipl menu (if
available).

114 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

paxrm
A 64-byte string of kernel parameters that is concatenated to the boot command-line. The PARM
parameter can be set only for Linux on z/VM. See also “Specifying kernel parameters when booting
Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration
is ignored and the boot process uses the kernel parameters in the parm attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

With memory clearing enabled, all hotplug memory is offline after the reboot. Without memory
clearing, the online status of hotplug memory is preserved. For more information, see “Memory state
and reboot” on page 346.

Attributes for fcp
You can find the attributes for re-IPL type fcp in the /sys/firmware/reipl/£fcp sysfs directory.

device
Device number of the FCP device that is used for re-IPL. For example, 0.0.7412.

Note: IPL is possible only from subchannel set 0.

wwpn
World wide port number of the FCP re-IPL device.

lun
Logical unit number of the FCP re-IPL device.

bootprog
Boot program selector. Used to select the boot configuration in the zipl menu (if available).

br_lba
Boot record logical block address. Master boot record. Is always 0 for Linux.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

Regardless of the setting for memory clearing, all hotplug memory is offline after the reboot. For more
information, see “Memory state and reboot” on page 346.

This attribute is present only for Linux in LPAR mode on z14 or later hardware.

loadpaxrm
Up to eight characters for the loadparm.

scp_data
Kernel parameters to be used for the next FCP re-IPL. See also “Specifying kernel parameters when
booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Attributes for nvme
You can find the attributes for re-IPL type nvme in the /sys/firmware/reipl/nvme sysfs directory.

bootprog
Boot program selector. Used to select the boot configuration in the zipl menu (if available).

Chapter 7. Booting Linux 115

bx_lba
Boot record logical block address. Master boot record. Is always O for Linux.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

Regardless of the setting for memory clearing, all hotplug memory is offline after the reboot. For more
information, see “Memory state and reboot” on page 346.

This attribute is present only for Linux in LPAR mode on LinuxONE hardware as of LinuxONE III.
fid
PCIe function ID of the NVMe device. This value specifies the slot at /sys/bus/pci/slots.
loadpaxrm
Up to eight characters for the loadparm.
nsid
NVMe name space ID. Name space IDs are assigned by NVMe disk controllers to divide a physical
NVMe device into multiple logical devices.
scp_data

Kernel parameters to be used for the next NVMe re-IPL. See also “Specifying kernel parameters when
booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Attributes for nss

You can find the attributes for re-IPL type nss in the /sys/firmware/reipl/nss sysfs directory.

name
Name of the NSS. The NSS name can be one to eight characters long and must consist of alphabetic
or numeric characters. The following examples are all valid NSS names: 73248734, NSSCSITE, or
NSS1234.

parm
If the NSS contains a Linux instance, a 56-byte string of kernel parameters that is concatenated to the
kernel parameters in the boot configuration. (Note the difference in length compared to ccw.) See also
“Specifying kernel parameters when booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration
is ignored and the boot process uses the kernel parameters in the parm attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Kernel panic settings

Set the attribute /sys/firmware/shutdown_actions/on_panic to reipl to make the system re-IPL
with the current re-IPL settings if a kernel panic occurs.

For Linux in LPAR mode and Linux on z/VM, you might want to trigger a system dump in response to a
kernel panic. See also the description of the dumpconf tool in Using the Dump Tools, SC33-8412 on IBM
Documentation at:

ibm.com/docs/en/linux-on-systems?topic=tools-upstream-kernel

Examples for configuring re-IPL

Typical examples include configuring re-IPL from an FCP device and specifying parameters for re-IPL.

 To configure a DASD with bus ID 0.0.7e78 as the re-IPL device:

116 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdt.html

chreipl 0.0.7e78

Alternatively, you can write directly to sysfs:

echo 0.0.7e78 > /sys/firmware/reipl/ccw/device

To ensure that memory is cleared during the re-IPL from the CCW device:

Ensure that the clear attribute exists:

1ls /sys/firmware/reipl/ccw/clear
If the clear attribute does not exist, memory is always cleared for re-IPL in your environment, and no
further action is needed.

If the clear attribute exists, write 1 to the attribute to configure memory clearing:

echo 1 > /sys/firmware/reipl/ccw/clear

Hint: If supported in your environment, re-IPL without clearing memory is the default. For large
memory sizes, clearing memory can considerably slow down the re-IPL process.

To configure an FCP re-IPL device 0.0.5711 with a LUN 0x1711000000000000 and a WWPN
0x5005076303004715 with an additional kernel parameter novx:

chreipl 0.0.5711 0x5005076303004715 0x1711000000000000 -p "novx"

Alternatively, you can write directly to sysfs. For an FCP re-IPL device, additional boot parameters,
as specified with the -p option, are stored as scp data. Therefore, the novx kernel parameter of the
example is written to /sys/firmware/reipl/fcp/scp_data.

echo 0.0.5711 > /sys/firmware/reipl/fcp/device

echo 0x5005076303004715 > /sys/firmware/reipl/fcp/wwpn
echo 0x1711000000000000 > /sys/firmware/reipl/fcp/lun
echo 0 > /sys/firmware/reipl/fcp/bootprog

echo 0 > /sys/firmware/reipl/fcp/br_lba

echo "novx" > /sys/firmware/reipl/fcp/scp_data

echo fcp > /sys/firmware/reipl/reipl_type

To specify additional kernel parameters for re-IPL of an instance of Linux on z/VM:

Write the parameters to the parm attribute:

echo "novx" > /sys/firmware/reipl/ccw/pazrm

Chapter 7. Booting Linux 117

118 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 8. Shutdown actions

Several triggers can cause Linux to shut down. For each shutdown trigger, you can configure a specific

shutdown action to be taken as a response.

Table 12. Shutdown triggers and default action overview

Default shutdown
Trigger Command or condition action
halt Linux shutdown -Hcommand stop
poff Linux powexoff or shutdown -P command stop
reboot Linux xreboot or shutdown -x command reipl
restart Depending on the hyperisor environment: stop
LPAR
A PSW restart on the HMC
z/VM
A CP system restart command
KVM
A virsh command on the KVM host
panic Linux kernel panic stop

The available shutdown actions are summarized in Table 13 on page 119.

Table 13. Shutdown actions

For all other shutdown triggers, stops all CPUs.

For Linux on KVM, frees the resources that were
used by the Linux instance. Depending on your
virtual server configuration, the memory might
be preserved.

Action Explanation See also
stop For panic or restart, enters a disabled wait n/a
state.

ipl Performs an IPL according to the specifications
in /sys/firmware/ipl.

1

“Displaying current IPL parameters’

on page 111

reipl Performs an IPL according to the specifications
in /sys/firmware/reipl.

“Rebooting from an alternative

source” on page 114

dump For Linux in LPAR mode and Linux on z/VM,
creates a dump according to the specifications
in /sys/firmware/dump.

Using the Dump Tools, SC33-8412

dump_reipl For Linux in LPAR mode and Linux on z/VM,
performs the dump action followed by the reipl
action.

Using the Dump Tools, SC33-8412

vmecmd For Linux on z/VM, issues one or more z/VM
CP commands according to the specifications
in /sys/firmware/vmcmd.

“Configuring z/VM CP commands as a

shutdown action” on page 120

© Copyright IBM Corp. 2000, 2023

119

Use 1sshut to find out which shutdown action is configured for each shutdown trigger, see “lsshut - List
the current system shutdown actions” on page 669.

Use the applicable command to configure the shutdown action for a shutdown trigger:

« For halt, poff, and reboot use chshut, see “chshut - Control the system shutdown actions” on page
579.

« For restart and panic on Linux in LPAR mode or Linux on z/VM, use dumpconf, see Using the Dump
Tools, SC33-8412.

kdump for restart and panic

If kdump is set up for a Linux instance, kdump is started to create a dump, regardless of the shutdown
actions that are specified for restart and panic. With kdump, these settings act as a backup that is
used only if kdump fails.

Note: kdump is not a shutdown action that you can set as a sysfs attribute value for a shutdown trigger.
See Using the Dump Tools, SC33-8412 about how to set up kdump.

The shutdown configuration in sysfs

The configured shutdown action for each shutdown trigger is stored in a sysfs attribute /sys/firmware/
shutdown_actions/on_<trigger>.

on_halt

on_poff

leys/firmware }—| shutdown_actions ‘— on_reboot

on_restart

il

on_panic
Figure 40. sysfs branch with shutdown action settings

The preferred way to read or change these settings is using the 1sshut, chshut. For dump actions on
Linux in LPAR mode or Linux on z/VM, the preferred way is the dumpconf command. Alternatively, you
can read and write to the /sys/firmware/shutdown_actions/on_<trigger> attributes.
Examples

« This command reads the shutdown setting for the poff shutdown trigger.

cat /sys/firmware/shutdown_actions/on_poff
stop

« This command changes the setting for the restart shutdown trigger to ip1l:
echo ipl > /sys/firmware/shutdown_actions/on_restart
Details for the ipl, reipl, dump, and vmcmd shutdown actions are contained in the corresponding

subdirectories in /sys/firmware. For example, /sys/firmware/ipl contains specifications for an IPL
device and other IPL parameters.

Configuring z/VM CP commands as a shutdown action

Use chshut and dumpconf to configure a CP command as a shutdown action, or directly write to the
relevant sysfs attributes.

Before you start: This information applies to Linux on z/VM only.

120 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

In sysfs, two attributes are required to set a z/VM CP command as a shutdown action for a trigger
<trigger>:

« /sys/firmware/shutdown_actions/on_<trigger> must be setto vmcmd.
« /sys/firmware/vmcmd/on_<trigger> specifies the z/VM CP command.

The values of the attributes in the /sys/firmware/vmcmd directory must conform to these rules:

« The value must be a valid z/VM CP command.

« The commands, including any z/VM user IDs or device numbers, must be specified with uppercase
characters.

« Commands that include blanks must be delimited by double quotation marks (").
« The value must not exceed 127 characters.

You can specify multiple z/VM CP commands that are separated by the newline character "\n". Each
newline is counted as one character. When writing values with multiple commands, use this syntax to
ensure that the newline character is processed correctly:

echo -e <cmdi>\n<cmd2>... | cat > /sys/firmware/vmcmd/on_<trigger>

where <cmd1>\n<cmd2>. .. are two or more z/VM CP commands and on_<trigger> is one of the
attributes in the vmcmd directory.

The -e echo option and redirect through cat are required because of the newline character.

Example for a single z/VM CP command

Issue the following command to configure the z/VM CP LOGOFF command as the shutdown action for the
poff shutdown trigger.

chshut poff vmcmd "LOGOFF"
Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmemd > /sys/firmware/shutdown_actions/on_poff
echo LOGOFF > /sys/firmware/vmcmd/on_poff

Figure 41 on page 122 illustrates the relationship of the sysfs attributes for this example.

Chapter 8. Shutdown actions 121

on_halt

on_poff |vmecmd

|
—shutdown_actions on_reboot i
on_restart i
on_panic i
/sys/firmware i
on_halt i
on_poff |LOGOFF <“I

L vmcmd on_reboot

on_restart

on_panic

Figure 41. sysfs branch with shutdown action settings

Example for multiple z/VM CP commands

Issue the following command to configure two z/VM CP commands as the shutdown action for the poff
shutdown trigger. First a message is sent to user OPERATOR, and then the LOGOFF command is issued.

chshut poff vmcmd "MSG OPERATOR Going down" vmcmd "LOGOFF"

Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmemd > /sys/firmware/shutdown_actions/on_poff
echo -e "MSG OPERATOR Going down\nLOGOFF" | cat > /sys/firmware/vmcmd/on_poff

122 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 9. The diag288 watchdog device driver

The diag288 watchdog device driver provides Linux watchdog applications with access to the watchdog
timer on IBM Z.

You can use the diag288 watchdog in these environments:
 Linux on z/VM

« Linux in LPAR mode as of z13s® and z13° with the enhancements of February 2016.
« Linux as a KVM guest.

The diag288 watchdog device driver provides the following features:

« Access to the watchdog timer on IBM Z.
« An API for watchdog applications (see “External programming interfaces ” on page 125).

Watchdog applications can be used to set up automated restart mechanisms.

For Linux in LPAR mode and for Linux on z/VM, you can alternatively use a networked heartbeat with
STONITH.

Watchdog applications that communicate directly with the IBM Z firmware, the z/VM control program
(CP), or the KVM host do not require a third operating system to monitor a heartbeat.

What you should know about the diag288 watchdog device driver

The watchdog function comprises two components: a watchdog application on the Linux instance being
controlled and a watchdog timer outside the Linux instance. For Linux in LPAR mode, the timer runs in the
IBM Z firmware. For Linux on z/VM the timer is provided by z/VM CP. For Linux on KVM, the timer runs on
the KVM host.

While the Linux instance operates satisfactorily, the watchdog application reports a positive status to the
watchdog timer at regular intervals. The watchdog application uses a device node to pass these status
reports to the timer (Figure 42 on page 123).

Linux IBM mainframe
' User space . Kernel !

i Watchdog ’ i Watchdog
i application /deviwatchdog i timer

Figure 42. Watchdog application and timer for Linux in LPAR mode

The watchdog application typically derives its status by monitoring critical network connections, file
systems, and processes on the Linux instance. If a specified time elapses without a positive report being
received by the watchdog timer, the watchdog timer assumes that the Linux instance is in an error state.
The watchdog timer then triggers a predefined action against the Linux instance. For example, Linux might
be shut down or rebooted, or a system dump might be initiated see “Setting the timeout action” on page
125.

For information about setting the default timer and performing other actions, see “External programming
interfaces ” on page 125.

© Copyright IBM Corp. 2000, 2023 123

Linux on z/VM only: Loading or saving a DCSS can take a long time during which the virtual machine does
not respond, depending on the size of the DCSS. As a result, a watchdog might time out and restart the
guest. You are advised not to use the watchdog in combination with loading or saving DCSSs.

See also the generic watchdog documentation available from the 1inux-doc package under 1inux-
doc/watchdog.

Setting up the diag288 watchdog device driver

You configure the diag288 watchdog device driver through module parameters.

watchdog module parameter syntax
f_ cmd="SYSTEM RESTART"

»— modprobe — diag288_wdt >
L cmd= <command> J L conceal=1 J

1
<

»
»

L nowayout= <nowayout flag> J

Notes:

1 cmd=and conceal= apply only to Linux on z/VM and are ignored for Linux in LPAR mode and
Linux on KVM.

where:

<command>
configures the shutdown action to be taken if Linux on z/VM fails.

The default, "SYSTEM RESTART", configures the shutdown action that is specified for the restart
shutdown trigger (see Chapter 8, “Shutdown actions,” on page 119).

Any other specification dissociates the timeout action from the restart shutdown trigger. Instead,
the specification is issued by CP and must adhere to these rules:

« It must be a single valid CP command

« It must not exceed 230 characters

« It must be enclosed by quotation marks if it contains any blanks or newline characters

The specification is converted from ASCII to uppercase EBCDIC.

For details about CP commands, see z/VM: CP Commands and Utilities Reference, SC24-6268.

On an running instance of Linux on z/VM, you can write to /sys/module/diag288_wdt/
parameters/cmd to replace the command you specify when loading the module. Through this sysfs
interface, you can also specify multiple commands to be issued, see “Example for Linux on z/VM” on
page 125 for more details.

The preferred method for configuring a timeout action other than a system restart is to configure a
different shutdown action for the restart shutdown trigger.

conceal=1
enables the protected application environment where the guest is protected from unexpectedly
entering CP READ. Do not enable the protected environment for guests with multiprocessor
configurations. The protected application facility supports only virtual uniprocessor systems.

For details, see the "SET CONCEAL" section of z/VM: CP Commands and Utilities Reference,
SC24-6268.

<nowayout_flag>
determines what happens when the watchdog device node is closed by the watchdog application.

124 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If the flag is set to 1, the watchdog timer keeps running and triggers an action if no positive status
report is received within the specified time interval. If the character "V" is written to the device and
the flag is set to 0, the watchdog timer is stopped and the Linux instance continues without the
watchdog support.

Example for Linux on z/VM

The following kernel parameters determine that, on failure, the Linux instance is to be IPLed from a device
with devno Oxb1a0. The protected application environment is not enabled. The watchdog application can

close the watchdog device node after writing "V" to it. As a result the watchdog timer becomes ineffective
and does not IPL the guest.

modprobe diag288_wdt cmd="ipl bla@" nowayout=0

The following example shows how to specify multiple commands to be issued.

/bin/echo -en "MSG * WATCHDOG FIRED\nVMDUMP\nIPL" > /sys/module/diag288_wdt/parameters/cmd

Use the echo version at /bin/echo. The built-in echo command from bash might not process the
newline characters as intended.

To verify that your commands have been accepted, issue:

cat /sys/module/diag288_wdt/parameters/cmd
MSG * WATCHDOG FIRED

VMDUMP

IPL

Note: You cannot specify multiple commands as kernel parameters during boot time.

Setting the timeout action

How to configure the timeout action for the diag288 watchdog device driver depends on your hypervisor
environment.

LPAR
For Linux in LPAR mode, the shutdown action is defined through the restart shutdown trigger (see
Chapter 8, “Shutdown actions,” on page 119).

z/VM
For Linux on z/VM, the shutdown action is defined through the restart shutdown trigger.

You can also use the diag288_wdt.cmd= kernel parameter or the cmd= module parameter to bypass
the restart shutdown trigger and directly specify a z/VM CP command to be issued.

KVM
For Linux on KVM, the shutdown action is defined in the virtual server configuration on the KVM
hypervisor.

External programming interfaces

There is an API for applications that work with the watchdog device driver.

Application programmers: This information is intended for programmers who want to write watchdog
applications that work with the watchdog device driver.

For information about the API and the supported IOCTLs, see the 1inux-doc/watchdog/watchdog-
api.txt.gzfileinthe l1inux-doc package.

The default watchdog timeout is 30 seconds, the minimum timeout that can be set through the IOCTL
WDIOC_SETTIMEOUT is 15 seconds.

Chapter 9. The diag288 watchdog device driver 125

126 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 10. KASLR support

With kernel address space layout randomization (KASLR), the kernel is loaded to a random location in
memory.

Loading the kernel to a random location can protect against attacks that rely on knowledge of the kernel
addresses.

The KASLR feature is enabled by default. You can use the nokaslr kernel parameter to disable it, see
“nokaslr - Disable kernel randomization” on page 781.

With KASLR enabled, the kernel is loaded to a random address, but kernel messages can reveal

kernel internal addresses. Prevent access to the kernel messages for unprivileged users by setting the
dmesg_restrict sysctlto 1. On Ubuntu Server, this is the default. This setting restricts dmesg access to
users with CAP_SYSLOG privilege.

Kernel addresses can also be compromised through /proc and other interfaces. To prevent this, set the
kptr_restrict sysctlto 1.

For more information about the dmesg_restrict and kptr_restrict sysctls, see the
Documentation/sysctl/kernel.txt in the kernel source tree.

© Copyright IBM Corp. 2000, 2023 127

128 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 3. Storage

Ubuntu Server 22.04 LTS includes several storage device drivers that are specific to z/Architecture.

For information about storage networks and I/0O to storage devices, see
www.ibm.com/it-infrastructure/z/capabilities/networking

Newest version

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions

For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 129

https://www.ibm.com/it-infrastructure/z/capabilities/networking
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

430 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 11. DASD device driver

Linux in any IBM Z hypervisor environment, LPAR, z/VM, and KVM, can include direct access storage
devices (DASD). For Linux on KVM, this requires a KVM host with CCW pass-through support and a KVM
virtual server configuration with DASDs as pass-through devices.

The DASD device driver provides access to all real or emulated direct access storage devices (DASD) that
can be attached to the channel subsystem of an IBM mainframe.

DASD devices include various physical media on which data is organized in blocks or records or both. The
blocks or records in a DASD can be accessed for read or write in random order.

Traditional DASD devices are attached to a control unit that is connected to a mainframe I/O channel.
Today, these real DASDs have been largely replaced by emulated DASDs. For example, emulated DASDs
can be the internal disks of the IBM System Storage DS8000° Turbo, or the volumes of the IBM System
Storage DS6000. These emulated DASD are completely virtual and the identity of the physical device is
hidden.

SCSI disks that are attached through an FCP channel are not classified as DASD. They are handled by the
zfcp driver (see Chapter 12, “SCSI-over-Fibre Channel device driver,” on page 169).

Features

The DASD device driver supports a wide range of disk devices and disk functions.

« The DASD device driver has no dependencies on the adapter hardware that is used to physically connect
the DASDs to the IBM Z hardware. You can use any adapter that is supported by the IBM Z hardware
(see www.ibm.com/systems/support/storage/ssic/interoperability.wss for more information).

« The DASD device driver supports ESS virtual ECKD type disks

« The DASD device driver supports the control unit attached physical ECKD (Extended Count Key Data)
and FBA (Fixed Block Access) devices as summarized in Table 14 on page 131:

Table 14. Supported control unit attached DASD

Device format Control unit type Device type

ECKD 1750 3380 and 3390
ECKD 2107 3380 and 3390
ECKD 2105 3380 and 3390
ECKD 3990 3380 and 3390
ECKD 9343 9345
ECKD 3880 3390

FBA 6310 9336

FBA 3880 3370

All models of the specified control units and device types can be used with the DASD device driver. This
includes large devices with more than 65520 cylinders, for example, 3390 Model A. Check the storage
support statement to find out what works for Ubuntu Server 22.04 LTS.

« The DASD device driver provides a disk format with up to three partitions per disk. See “IBM Z
compatible disk layout” on page 133 for details.

- The DASD device driver provides an option for extended error reporting for ECKD devices. Extended
error reporting can support high availability setups.

© Copyright IBM Corp. 2000, 2023 131

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

« The DASD device driver supports parallel access volume (PAV) and HyperPAV on storage devices that
provide this feature. The DASD device driver handles dynamic PAV alias changes on storage devices. For
more information about PAV and HyperPAV, see How to Improve Performance with PAV, SC33-8414. Use
the dasdstat command to check whether a DASD uses PAV, see “Scenario: Verifying that PAV and HPF
are used” on page 156.

« The DASD device driver supports High Performance FICON, including multitrack requests, on storage
devices that provide this feature. Use the dasdstat command to check whether a DASD uses High
Performance FICON, see “Scenario: Verifying that PAV and HPF are used” on page 156.

What you should know about DASD

The DASD device driver supports various disk layouts with different partitioning capabilities. The DASD
device naming scheme helps you to keep track of your DASDs and DASD device nodes.

The IBM label partitioning scheme

Linux on IBM Z supports the same standard DASD format that is also used by traditional mainframe
operating systems, but it also supports any other Linux partition table.

The DASD device driver is embedded into the Linux generic support for partitioned disks. As a result, you
can use any partition table format that is supported by Linux for your DASDs.

Traditional mainframe operating systems (such as z/0S, z/VM, and z/VSE®) expect a standard DASD
format. In particular, the format of the first two tracks of a DASD is defined by this standard. These tracks
include the IBM Z IPL record, the volume label, and for some layouts VTOC records. Partitioning schemes
for platforms other than IBM Z generally do not preserve these mainframe specific records.

Ubuntu Server 22.04 LTS includes the IBM label partitioning scheme that preserves the IBM Z IPL, label,
and VTOC records. With this partitioning scheme, Linux can share a disk with other mainframe operating
systems. For example, a traditional mainframe operating system can handle backup and restore for a
partition that is used by Linux.

The following sections describe the layouts that are supported by the IBM label partitioning scheme:

« “IBM Z compatible disk layout” on page 133

e “Linux disk layout” on page 135
e “CMS disk layout” on page 135

DASD partitions

Partitioning DASDs has the same advantages as for other disk types, but there are some prerequisites and
a special tool, fdasd.

A DASD partition is a contiguous set of DASD blocks that is treated by Linux as an independent disk and by
the traditional mainframe operating systems as a data set.

With the Linux disk layout (LDL) and the CMS disk layout, you always have a single partition only. This
partition is defined by the LDL or CMS formatted area of the disk. With the compatible disk layout, you can
have up to three partitions.

There are several reasons why you might want to have multiple partitions on a DASD, for example:

Limit data growth
Runaway processes or undisciplined users can consume disk space to an extend that the operating
system runs short of space for essential operations. Partitions can help to isolate the space that is
available to particular processes.

Encapsulate your data
If a file system gets damaged, this damage is likely to be restricted to a single partition. Partitioning
can reduce the scope of data damage.

132 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Recommendations

« Use fdasd to create or alter partitions on ECKD type DASDs that are formatted with the compatible
disk layout. If you use another partition editor, it is your responsibility to ensure that partitions do not
overlap. If they do, data damage occurs.

« Leave no gaps between adjacent partitions to avoid wasting space. Gaps are not reported as errors,
and can be reclaimed only by deleting and re-creating one or more of the surrounding partitions and
rebuilding the file system on them.

A disk need not be partitioned completely. You can begin by creating only one or two partitions at the start
of your disk and convert the remaining space to a partition later.

There is no facility for moving, enlarging, or reducing partitions, because £dasd has no control over the
file system on the partition. You can only delete and re-create them. Changing the partition table results in
loss of data in all altered partitions. It is up to you to preserve the data by copying it to another medium.

IBM Z compatible disk layout

With the compatible disk layout, a DASD can have up to three partitions that can be accessed by
traditional mainframe operating systems.

You can format only ECKD type DASD with the compatible disk layout.
Figure 43 on page 133 illustrates a DASD with the compatible disk layout.

IPL

VOL1 VTOC /devidasd<x>1 /devidasd<x>2 /devldasd<x>3
records

ldevldasd<x>

Figure 43. Compatible disk layout

The IPL records, volume label (VOL1), and VTOC of disks with the compatible disk layout are on the first
two tracks of the disks. These tracks are not intended for use by Linux applications. Using the tracks can
result in data loss.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 136).

Disks with the compatible disk layout can have one to three partitions. Linux addresses the first partition
as /dev/dasd<x>1, the second as /dev/dasd<x>2, and the third as /dev/dasd<x>3.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 610) to format a disk with the
compatible disk layout. You use the £dasd command (see “fdasd - Partition a DASD” on page 628) to
create and modify partitions.

Volume label
The volume label includes information about the disk layout, the VOLSER, and a pointer to the VTOC.

The DASD volume label is in the third block of the first track of the device (cylinder 0, track 0, block 2).
This block has a 4-byte key, and an 80-byte data area with the following content:

key
for disks with the compatible disk layout, contains the four EBCDIC characters "VOL1" to identify the
block as a volume label.

label identifier
is identical to the key field.

VOLSER
is a name that you can use to identify the DASD device. A volume serial number (VOLSER) can be one
to six EBCDIC characters. If you want to use VOLSERs as identifiers for your DASD, be sure to assign
unique VOLSERs.

Chapter 11. DASD device driver 133

You can assign VOLSERs from Linux by using the dasdfmt or £fdasd command. These commands
enforce that VOLSERs:

 Are alphanumeric

« Are uppercase (by uppercase conversion)

- Contain no embedded blanks

« Contain no special characters other than $, #, @, and %

Tip: Avoid special characters altogether.

Note: The VOLSER values SCRTCH, PRIVAT, MIGRAT, or Lnnnnn (An "L" followed by 5 digits) are
reserved for special purposes by other mainframe operating systems and should not be used by Linux.

These rules are more restrictive than the VOLSERs that are allowed by the traditional mainframe
operating systems. For compatibility, Linux tolerates existing VOLSERs with lowercase letters and
special characters other than $, #, @, and %. Enclose VOLSERs with special characters in single
quotation marks if you must specify it, for example, as a command parameter.

VTOC address
contains the address of a standard IBM format 4 data set control block (DSCB). The format is: cylinder
(2 bytes) track (2 bytes) block (1 byte).

All other fields of the volume label contain EBCDIC space characters (code 0x40).

VTOC

Instead of a regular Linux partition table, Ubuntu Server 22.04 LTS, like other mainframe operating
systems, uses a Volume Table Of Contents (VTOC).

The VTOC contains pointers to the location of every data set on the volume. These data sets form the
Linux partitions.

The VTOC is on the second track (cylinder 0, track 1). It contains a number of records, each written in a
separate data set control block (DSCB). The number of records depends on the size of the volume:

« One DSCB that describes the VTOC itself (format 4)

« One DSCB that is required by other operating systems but is not used by Linux. £fdasd sets it to zeroes
(format 5).

« For volumes with more than 65534 cylinders, 1 DSCB (format 7)
 For each partition:
— On volumes with 65534 or less cylinders, one DSCB (format 1)
— On volumes with more than 65534 cylinders, 1 format 8 and one format 9 DSCB

The key of the format 1 or format 8 DSCB contains the data set name, which identifies the partition to
z/0S, z/VM, and z/VSE.

The VTOC can be displayed with standard IBM Z tools such as VM/DITTO. A Linux DASD with physical
device number 0x0193, volume label "LNX001", and three partitions might be displayed like this
example:

134 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

VM/DITTO DISPLAY VTOC LINE 1 OF 5
===> SCROLL ===> PAGE

CUU,193 ,VOLSER,LNXGOG1 3390, WITH 100 CYLS, 15 TRKS/CYL, 58786 BYTES/TRK

--- FILE NAME --- (SORTED BY =,NAME ,) ---- EXT BEGIN-END RELTRK,

Lo 6080 0 0dfBo 0 0IBo 0 0200 0 0 2D6 0 0o 0 0 Fo 0 0l SO CVL=RD CYL=[ID NUMTRKS
*%% VTOC EXTENT *** 0 0 1 0 1 1,1
LINUX.VLNXOO1.PARTO001.NATIVE 0 0 2 46 11 2,700
LINUX.VLNX001.PARTO002.NATIVE 0 46 12 66 11 702,300
LINUX.VLNX0O1.PARTOOO3.NATIVE 0 66 12 99 14 1002,498
*%% THIS VOLUME IS CURRENTLY 100 PER CENT FULL WITH O TRACKS AVAILABLE
PF 1=HELP 2=TOP 3=END 4=BROWSE 5=BOTTOM 6=LOCATE

PF 7=UP 8=DOWN 9=PRINT 10=RGT/LEFT 11=UPDATE 12=RETRIEVE

The 1s command on Linux might list this DASD and its partitions like this example:

1ls -1 /dev/dasdax

brw-rw---- 1 root disk 94, 0 Jan 27 09:04 /dev/dasda

brw-rw---- 1 root disk 94, 1 Jan 27 09:04 /dev/dasdal
brw-rw---- 1 root disk 94, 2 Jan 27 09:04 /dev/dasda2
brw-rw---- 1 root disk 94, 3 Jan 27 09:04 /dev/dasda3

where dasda represent the whole DASD and dasdal, dasda?2, and dasda3 represent the individual
partitions.

Linux disk layout

The Linux disk layout does not have a VTOC, and DASD partitions that are formatted with this layout
cannot be accessed by traditional mainframe operating systems.

You can format only ECKD type DASD with the Linux disk layout. Apart from accessing the disks as ECKD
devices, you can also access them using the DASD DIAG access method. See “Enabling the DASD device
driver to use the DIAG access method” on page 146 for how to enable DIAG.

Figure 44 on page 135 illustrates a disk with the Linux disk layout.

IPL LNXT or

records | | no label /devidasd<x>1

ldevidasd<x>

Figure 44. Linux disk layout

DASDs with the Linux disk layout either have an LNX1 label or are not labeled. The first records of

the device are reserved for IPL records and the volume label, and are not intended for use by Linux
applications. All remaining records are grouped into a single partition. You cannot have more than a single
partition on a DASD that is formatted in the Linux disk layout.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 136). Linux can access the partition
as /dev/dasd<x>1.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 610) to format a disk with the
Linux disk layout.

CMS disk layout

The CMS disk layout applies only to Linux on z/VM. The disks are formatted with z/VM tools.

Both ECKD or FBA type DASD can have the CMS disk layout. DASD partitions that are formatted with this
layout cannot be accessed by traditional mainframe operating systems. Apart from accessing the disks as
ECKD or FBA devices, you can also access them using the DASD DIAG access method.

Chapter 11. DASD device driver 135

Figure 45 on page 136 illustrates two variants of the CMS disk layout.

Jits CMST /devldasd<x>1 (CMS data area)
records
ldevldasd<x>
IPL Mo
CMS1 || Meta- ldevldasd<x>1 (CMS reserved file)
records
data
ldevidasd<x>

Figure 45. CMS disk layout

The first variant contains IPL records, a volume label (CMS1), and a CMS data area. Linux treats DASD
like this equivalent to a DASD with the Linux disk layout, where the CMS data area serves as the Linux
partition.

The second variant is a CMS reserved volume. In this variant, the DASD was reserved by a CMS RESERVE
fn £t £mcommand. In addition to the IPL records and the volume label, DASD with the CMS disk layout
also have CMS metadata. The CMS reserved file serves as the Linux partition.

For both variants of the CMS disk layout, you can have only a single Linux partition. The IPL record,
volume label and (where applicable) the CMS metadata, are not intended for use by Linux applications.

Addressing the device and partition is the same for both variants. Linux can address the device as a whole
as /dev/dasd<x>, where <x> can be one to four letters that identify the individual DASD (see “DASD
naming scheme” on page 136). Linux can access the partition as /dev/dasd<ax>1.

“Enabling the DASD device driver to use the DIAG access method” on page 146 describes how to enable
DIAG.

Disk layout summary

The available disk layouts differ in their support of device formats, the DASD DIAG access method, and
the maximum number of partitions.

Table 15. Disk layout summary
Disk layout ECKD device |FBA device |DIAG access Maximum Formatting

format format method support | number of tool

(z/VM only) partitions

Compatible disk Yes No No 3 dasdfmt
layout
Linux disk layout Yes No Yes 1 dasdfmt
CMS (z/VM only) Yes Yes Yes 1 z/VM tools

DASD naming scheme
The DASD naming scheme maps device names and minor numbers to whole DASDs and to partitions.

The DASD device driver uses the major number 94. For each configured device it uses four minor
numbers:

- The first minor number always represents the device as a whole; including IPL, VTOC, and label records.
« The remaining three minor numbers represent the up to three partitions.

136 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

With 1,048,576 (20-bit) available minor numbers, the DASD device driver can address 262,144 devices.

The DASD device driver uses a device hame of the form dasd<x> for each DASD. In the name, <x> is one
to four lowercase letters. Table 16 on page 137 shows how the device names map to the available minor

numbers.
Table 16. Mapping of DASD names to minor numbers
Name for device as a whole Minor number for device as a whole Number of devices
From To From To
dasda dasdz 0 100 26
dasdaa dasdzz 104 2804 676
dasdaaa dasdzzz 2808 73108 17,576
dasdaaaa dasdnwtl 73112 1048572 243,866
Total number of devices: 262,144

The DASD device driver also uses a device name for each partition. The name of the partition is the name
of the device as a whole with a 1, 2, or 3 appended to identify the first, second, or third partition. The
three minor numbers that follow the minor number of the device as a whole are the minor number for the
first, second, and third partition.

Examples

- "dasda" refers to the whole of the first disk in the system and "dasdal", "dasda2", and "dasda3" to the
three partitions. The minor number for the whole device is 0. The minor numbers of the partitions are 1,
2,and 3.

« "dasdz" refers to the whole of the 101st disk in the system and "dasdz1", "dasdz2", and "dasdz3" to the
three partitions. The minor number for the whole device is 100. The minor numbers of the partitions are
101,102, and 103.

« "dasdaa" refers to the whole of the 102nd disk in the system and "dasdaal", "dasdaa2", and "dasdaa3"
to the three partitions. The minor number for the whole device is 104. The minor numbers of the
partitions are 105, 106, and 107.

DASD device nodes

Ubuntu Server 22.04 LTS uses udev to create multiple device nodes for each DASD that is online.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The mapping between standard device nodes and the associated physical disk space can change, for
example, when you reboot Linux. To ensure that you access the intended physical disk space, you need
device nodes that are based on properties that identify a particular DASD.

udev creates additional devices nodes that are based on the following information:

» The bus ID of the disk

» The disk label (VOLSER)

« The universally unique identifier (UUID) of the file system on the disk
« If available: The label of the file system on the disk

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>

Chapter 11. DASD device driver 137

for whole DASD and
/dev/disk/by-path/ccw-<device_bus_id>-part<n>

for the <n>th partition.

Device nodes that are based on VOLSERs
udev creates device nodes of the form

/dev/disk/by-id/ccw-<volser>
for whole DASD and
/dev/disk/by-id/ccw-<volser>-part<n>

for the <n>th partition.

If you want to use device nodes that are based on VOLSER, be sure that the VOLSERSs in your
environment are unique (see “Volume label” on page 133).

If you assign the same VOLSER to multiple devices, Linux can still access each device through its
standard device node. However, only one of the devices can be accessed through the VOLSER-based
device node. Thus, the node is ambiguous and might lead to unintentional data access.

Furthermore, if the VOLSER on the device that is addressed by the node is changed, the previously
hidden device is not automatically addressed instead. To reassign the node, you must reboot Linux or
force the kernel to reread the partition tables from disks, for example, by issuing:

blockdev --rereadpt /dev/dasdzzz
You can assign VOLSERs to ECKD type devices with dasdfmt when formatting or later with £dasd
when creating partitions.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is the UUID for the file system in a partition.

If a file system label exists, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole DASD that are based on file system information.

If you want to use device nodes that are based on file system labels, be sure that the labels in your
environment are unique.

Additional device nodes
/dev/disk/by-1id contains additional device nodes for the DASD and partitions, that are all based
on a device identifier as contained in the uid attribute of the DASD.

Note: If you want to use device nodes that are based on file system information and VOLSER, be sure that
they are unique for the scope of your Linux instance. This information can be changed by a user or it can
be copied, for example when backup disks are created. If two disks with the same VOLSER or UUID are
online to the same Linux instance, the matching device node can point to either of these disks.

Example

For a DASD that is assigned the device name dasdzzz, has two partitions, a device bus-ID 0.0.b100
(device number 0xb100), VOLSER LNX001, and a UUID 6dd6c43d-a792-412f-a651-0031e631caed
for the first and f45e955d-741a-4cf3-86b1-380ee5177ac3 for the second partition, udev creates the
following device nodes:

438 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For the whole DASD:

« /dev/dasdzzz (standard device node according to the DASD naming scheme)
« /dev/disk/by-path/ccw-0.0.b100

« /dev/disk/by-id/ccw-LNX001

For the first partition:

« /dev/dasdzzz1 (standard device node according to the DASD naming scheme)
- /dev/disk/by-path/ccw-0.0.b100-partl

« /dev/disk/by-id/ccw-LNX001-partl

« /dev/disk/by-uuid/6dd6c43d-a792-412f-a651-0031eb631caed

For the second partition:

« /dev/dasdzzz2 (standard device node according to the DASD naming scheme)
- /dev/disk/by-path/ccw-0.0.b100-part2

« /dev/disk/by-id/ccw-LNX001-part2

« /dev/disk/by-uuid/f45e955d-741a-4cf3-86b1-380ee5177ac3

Accessing DASD by udev-created device nodes

Use udev-created device nodes to access a particular physical disk space, regardless of the device name
that is assigned to it.

Example
The following example is based on these assumptions:

« A DASD with bus ID 0.0.b100 has two partitions.
- The standard device node of the DASD is dasdzzz.
- udev creates the following device nodes for a DASD and its partitions:

/dev/disk/by-path/ccw-0.0.b100
/dev/disk/by-path/ccw-0.0.b100-partl
/dev/disk/by-path/ccw-0.0.b100-part2

Instead of issuing;:

fdasd /dev/dasdzzz

issue:

fdasd /dev/disk/by-path/ccw-0.0.b100

In the file system information in /etc/fstab replace the following specifications:

/dev/dasdzzz1l /templ ext3 defaults 0 0
/dev/dasdzzz2 /temp2 ext3 defaults 0 0O

with these specifications:

/dev/disk/by-path/ccw-0.0.b100-partl /templ ext3 defaults 0 0
/dev/disk/by-path/ccw-0.0.b100-part2 /temp2 ext3 defaults 0 0O

You can make similar substitutions with other device nodes that udev provides for you (see “DASD device
nodes” on page 137).

Chapter 11. DASD device driver 139

Setting up the DASD device driver

Unless the DASD device driver modules are loaded for you during the boot process, load and configure
them with the modpxobe command.

DASD module parameter syntax

»— modprobe —»

h eer_pages=5 ﬁ 5

»——~— dasd_mod L J »<
< eer_pages= <pages>

M autodetect —

M—— probeonly —

nopav

— nofcx —

dasd_eckd_mod

dasd_fba_mod

- dasd_diag_mod J

device-spec

» L <device_bus_id> J <
<from_device _bus_id> -<to_device_bus_id> { "]
(ro)
diag
erplog
failfast
dasd_mod

loads the device driver base module.
When you are loading the base module, you can specify the dasd= parameter.

You can use the eexr_pages parameter to determine the number of pages that are used for internal
buffering of error records.

autodetect
causes the DASD device driver to allocate device names and the corresponding minor numbers to all
DASD devices and set them online during the boot process. See “DASD naming scheme” on page 136
for the naming scheme.

The device names are assigned in order of ascending subchannel numbers. Auto-detection can yield
confusing results if you change your I/O configuration and reboot, or if your Linux instance runs

as a z/VM guest because the devices might appear with different names and minor numbers after
rebooting.

probeonly
causes the DASD device driver to reject any "open" syscall with EPERM.

autodetect,probeonly
causes the DASD device driver to assign device names and minor numbers as for auto-detect. All
devices regardless of whether they are accessible as DASD return EPERM to any "open" requests.

140 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

nopav
suppresses parallel access volume (PAV and HyperPAV) enablement for Linux instances that run in
LPAR mode. The nopav keyword has no effect for Linux on z/VM.

nofcx
suppresses accessing the storage server with the I/0O subsystem in transport mode (also known as
High Performance FICON).

<device_bus_id>
specifies a single DASD.

<from_device_bus_id>-<to_device_bus_id>
specifies the first and last DASD in a range. All DASD devices with bus IDs in the range are selected.
The device bus-IDs <from_device_bus_id> and <to_device_bus_id> need not correspond to actual
DASD.

ipldev
for IPL from a DASD, specifies the IPL device. If the IPL device is not a DASD, this parameter is
ignored.

(ro)
accesses the specified device or device range in read-only mode.

(diag)
forces the device driver to access the device (range) with the DIAG access method.

(erplog)
enables enhanced error recovery processing (ERP) related logging through syslogd. If explog is
specified for a range of devices, the logging is switched on during device initialization.

(failfast)
immediately returns "failed" for an I/O operation when the last path to a DASD is lost.

Attention: Enable immediate failure of I/O requests only in setups where a failed I/0 request
can be recovered outside the scope of a single DASD (see “Enabling and disabling immediate
failure of I/O requests” on page 150).

dasd_eckd_mod
loads the ECKD module.

dasd_fba_mod
loads the FBA module.

dasd_diag_mod
loads the DIAG module.

If you supply a DASD kernel parameter with device specifications dasd=<device-1list1>,<device-
list2> ..., the device names and minor numbers are assigned in the order in which the devices are
specified. The names and corresponding minor numbers are always assigned, even if the device is not
present, or not accessible.

If you use autodetect in addition to explicit device specifications, device names are assigned to the
specified devices first and device-specific parameters, like xo, are observed. The remaining devices are
handled as described for autodetect.

The DASD base component is required by the other modules. modpxobe takes care of this dependency for
you and ensures that the base module is loaded automatically, if necessary.

Hint: modpxrobe might return before udev has created all device nodes for the specified DASDs. If you
need to assure that all nodes are present, for example in scripts, follow the modpxrobe command with:

udevadm settle

For command details see the modpxrobe man page.

Chapter 11. DASD device driver 141

Examples

The following example specifies a range of DASD devices and two individual DASD devices:

modprobe dasd_mod dasd=0.0.7000-0.0.7002,0.0.7005(ro0),0.0.7006

Table 17 on page 142 shows the resulting allocation of device names and minor numbers:

Table 17. Example mapping of device names and minor numbers to devices

Minor Name To access

0 dasda device 0.0.7000 as a whole

1 dasdal the first partition on 0.0.7000

2 dasda2 the second partition on 0.0.7000

3 dasda3 the third partition on 0.0.7000

4 dasdb device 0.0.7001 as a whole

5 dasdbl the first partition on 0.0.7001

6 dasdb2 the second partition on 0.0.7001

7 dasdb3 the third partition on 0.0.7001

8 dasdc device 0.0.7002 as a whole

9 dasdcl the first partition on 0.0.7002

10 dasdc2 the second partition on 0.0.7002

11 dasdc3 the third partition on 0.0.7002

12 dasdd device 0.0.7005 as a whole

13 dasddl the first partition on 0.0.7005 (read-only)
14 dasdd2 the second partition on 0.0.7005 (read-only)
15 dasdd3 the third partition on 0.0.7005 (read-only)
16 dasde device 0.0.7006 as a whole

17 dasdel the first partition on 0.0.7006

18 dasde2 the second partition on 0.0.7006

19 dasde3 the third partition on 0.0.7006

The following example specifies that High Performance FICON are to be suppressed for all DASDs:

modprobe dasd_mod dasd=nofcx,0.0.7000-0.0.7002,0.0.7005(r0),0.0.7006

Working with DASDs

You might have to prepare DASDs for use, configure troubleshooting functions, or configure special device
features for your DASDs.

See “Working with newly available devices” on page 10 to avoid errors when you are working with devices
that have become available to a running Linux instance.

« “Preparing an ECKD type DASD for use” on page 143
« “Preparing an FBA-type DASD for use” on page 144
« “Accessing DASD by force” on page 145

142 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

« “Enabling the DASD device driver to use the DIAG access method” on page 146
« “Using extended error reporting for ECKD type DASD” on page 147

 “Setting a DASD online or offline” on page 148
« “Enabling and disabling logging” on page 150
« “Enabling and disabling immediate failure of I/O requests” on page 150

« “Setting the timeout for I/O requests” on page 151
« “Working with DASD statistics in debugfs” on page 152
« “Accessing full ECKD tracks” on page 156

« “Handling lost device reservations” on page 158

« “Reading and resetting the reservation state” on page 159

 “Setting defective channel paths offline automatically” on page 162

« “Querying the HPF setting of a channel path” on page 163

 “Checking for access by other operating system instances” on page 160

« “Querying the encryption setting of a channel path” on page 161

 “Displaying DASD information” on page 164

Preparing an ECKD type DASD for use

Before you can use an ECKD type DASD as a disk for Linux on IBM Z, you must format it with a suitable
disk layout. You must then create a file system or define a swap space.

Before you begin

« The base component and the ECKD component of the DASD device driver must have been compiled into
the kernel or have been loaded as modules.

« The DASD device driver must have recognized the device as an ECKD type device.

 You need to know the device bus-ID for your DASD.

About this task

If you format the DASD with the compatible disk layout, you must create one, two, or three partitions. You
can then use your partitions as swap areas or to create a Linux file system.

Procedure

Perform these steps to prepare the DASD:
1. Issue 1sdasd (see “lsdasd - List DASD devices” on page 658) to find out if the device is online.
If necessary, set the device online, see “Setting a DASD online or offline” on page 148.

2. Format the device with the dasdfmt command (see “dasdfmt - Format a DASD” on page 610 for
details). The formatting process can take hours for large DASDs.

If you want to use the CMS disk layout, and your DASD is already formatted with the CMS disk layout,
skip this step.

Tips:

 Use the largest possible block size, ideally 4096; the net capacity of an ECKD DASD decreases for
smaller block sizes. For example, a DASD formatted with a block size of 512 byte has only half of the
net capacity of the same DASD formatted with a block size of 4096 byte.

« For DASDs that have previously been formatted with dasdfmt, use the dasdfmt quick format mode.
« Use the =p option to display a progress bar.

Example: Assuming that /dev/dasdzzz is a valid device node for 0.0.b100:

Chapter 11. DASD device driver 143

dasdfmt -b 4096 -p /dev/dasdzzz

3. Proceed according to your chosen disk layout:

« If you have formatted your DASD with the Linux disk layout or the CMS disk layout, skip this step and
continue with step “4” on page 144. You already have one partition and cannot add further partitions
on your DASD.

- If you have formatted your DASD with the compatible disk layout use the £dasd command to create
up to three partitions (see “fdasd - Partition a DASD” on page 628 for details).

Example: To start the partitioning tool in interactive mode for partitioning a device /dev/dasdzzz
issue:

fdasd /dev/dasdzzz

If you create three partitions for a DASD /dev/dasdzzz, the device nodes for the partitions
are /dev/dasdzzz1, /dev/dasdzzz2, and /dev/dasdzzz3.
Result: fdasd creates the partitions and updates the partition table (see “VTOC” on page 134).

4. Depending on the intended use of each partition, create a file system on the partition or define it as a
swap space.

« Either create a file system of your choice, for example, with the Linux mke2fs command (see the
man page for details).

Note: Do not make the block size of the file system smaller than the block size that was used for
formatting the disk with the dasdfmt command.

Tip: Use the same block size for the file system that has been used for formatting.

Example:

mke2fs -j -b 4096 /dev/dasdzzzl
« Or define the partition as a swap space with the mkswap command (see the man page for details).

5. Mount each file system to the mount point of your choice in Linux and enable your swap partitions.

Example: To mount a file system in a partition /dev/dasdzzz1 to a mount point /mnt and to enable
a swap partition /dev/dasdzzz?2 issue:

mount /dev/dasdzzzl /mnt
swapon /dev/dasdzzz2

If a block device supports barrier requests, a journaling file systems like ext4 can use this feature to
achieve better performance and data integrity. Barrier requests are supported for the DASD device
driver and apply to ECKD, FBA, and the DIAG discipline.

Write barriers are used by file systems and are enabled as a file-system specific option. For example,
barrier support can be enabled for an ext3 file system by mounting it with the option ~o barriexr=1:

mount -o barrier=1 /dev/dasdzzzl /mnt

Preparing an FBA-type DASD for use

Before you can use an FBA-type DASD as a disk for Linux on IBM Z, you must create a file system or define
a swap space.

144 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin

« The base component and the FBA component of the DASD device driver must have been compiled into
the kernel or have been loaded as modules.

« The DASD device driver must have recognized the device as an FBA device.

« You must know the device bus-ID or the device node through which the DASD can be addressed. The
DASD device nodes have the form /dev/dasd<x>, where <x> can be one to four lowercase alphabetic
characters.

Procedure

Perform these steps to prepare the DASD:
1. Assure that device nodes exist to address the DASD as a whole and the partition.

Example: To check if the device nodes for a DASD dasdzzy exist, change to /dev and issue:
1ls dasdzzyx
If necessary, create the device nodes. For example, issue:

mknod -m 660 /dev/dasdzzy b 94 73104
mknod -m 660 /dev/dasdzzyl b 94 73105

See Table 16 on page 137 for the mapping of device names and minor numbers.
2. Depending on the intended use of the partition, create a file system on it or define it as a swap space.

= Either create a file system of your choice, for example, with the Linux mke2fs command (see the
man page for details).

Example:

mke2fs -b 4096 /dev/dasdzzyl
« Or define the partition as a swap space with the mkswap command (see the man page for details).
3. Mount the file system to the mount point of your choice in Linux or enable your swap partition.

Tip: Mount file systems on FBA devices that are backed by z/VM VDISKs with the discard mount
option. This option frees memory when data is deleted from the device.

Examples:

« To mount a file system in a partition /dev/dasdzzyl, issue:

mount /dev/dasdzzyl /mnt

« To mount a VDISK-backed file system in a partition /dev/dasdzzx1, and use the discard option to
free memory when data is deleted, issue:

mount -o discard /dev/dasdzzxl /mnt

What to do next
To access FBA devices, use the DIAG access method (see “Enabling the DASD device driver to use the
DIAG access method” on page 146 for more information).

Accessing DASD by force

A Linux instance can encounter DASDs that are locked by another system. Such a DASD is referred to as
"externally locked" or "boxed". The Linux instance cannot analyze a DASD while it is externally locked.

Chapter 11. DASD device driver 145

About this task

To check whether a DASD has been externally locked, read its availability attribute. This attribute should
be "good". If it is "boxed", the DASD has been externally locked. Because a boxed DASD might not be
recognized as DASD, it might not show up in the device driver view in sysfs. If necessary, use the device
category view instead (see “Device views in sysfs” on page 11).

CAUTION: Breaking an external lock can have unpredictable effects on the system that holds the
lock.

Procedure

1. Optional: To read the availability attribute of a DASD, issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_1id>/availability

Example: This example shows that a DASD with device bus-ID 0.0.b110 (device number 0xb110) has
been externally locked.

cat /sys/bus/ccw/devices/0.0.b110/availability
boxed

If the DASD is an ECKD type DASD and if you know the device bus-ID, you can break the external
lock and set the device online. This means that the lock of the external system is broken with the
"unconditional reserve" channel command.

2. To force a boxed DASD online, write force to the online device attribute. Issue a command of this
form:

echo force > /sys/bus/ccw/devices/<device_bus_id>/online

Example: To force a DASD with device number 0xb110 online issue:

echo force > /sys/bus/ccw/devices/0.0.b110/online

Results

If the external lock is successfully broken or if the lock has been surrendered by the time the command

is processed, the device is analyzed and set online. If it is not possible to break the external lock (for
example, because of a timeout, or because it is an FBA-type DASD), the device remains in the boxed state.
This command might take some time to complete.

For information about breaking the lock of a DASD that has already been analyzed see “tunedasd - Adjust
low-level DASD settings” on page 735.

Enabling the DASD device driver to use the DIAG access method

Linux on z/VM can use the DIAG access method to access DASDs with the help of z/VM functions.

Before you begin
This section applies only to Linux instances and DASDs for which all of the following conditions are true:

« The Linux instance runs as a z/VM guest.
« The device can be of type ECKD with either LDL or CMS disk layout, or it can be a device of type FBA.
« The module for the DIAG component (dasd_diag_mod) must be loaded.

The module for the component that corresponds to the DASD type (dasd_eckd_mod or dasd_fba_mod)
must be loaded.

The DASD is offline.

146 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

« The DASD does not represent a parallel access volume alias device.

About this task

You can use the DIAG access method to access both ECKD and FBA-type DASD. You use the device's
use_diag sysfs attribute to enable or switch off the DIAG access method in a system that is online.
Set the use_diag attribute to 1 to enable the DIAG access method. Set the use_diag attribute to 0 to
switch off the DIAG access method (this is the default).

Alternatively, you can specify diag on the command line, for example during IPL, to force the device
driver to access the device (range) with the DIAG access method.

Procedure

Issue a command of this form:

echo <flag> > /sys/bus/ccw/devices/<device_bus_id>/use_diag

where <device_bus_id> identifies the DASD.

If the DIAG access method is not available and you set the use_diag attribute to 1, you cannot set the
device online (see “Setting a DASD online or offline” on page 148).

Note: When switching between an enabled and a disabled DIAG access method on FBA-type DASD, first
reinitialize the DASD, for example, with CMS format or by overwriting any previous content. Switching
without initialization might cause data-integrity problems.

For more details about DIAG, see z/VM: CP Programming Services, SC24-6272.

Example
In this example, the DIAG access method is enabled for a DASD with device number 0xb100.

1. Ensure that the driver is loaded (only applicable when compiled as module):

modprobe dasd_diag_mod

2. Identify the sysfs CCW-device directory for the device in question and change to that directory:

cd /sys/bus/ccw/devices/0.0.b100/

3. Ensure that the device is offline:

echo O > online

4. Enable the DIAG access method for this device by writing '1' to the use_diag sysfs attribute:

echo 1 > use_diag

5. Use the online attribute to set the device online:

echo 1 > online

Using extended error reporting for ECKD type DASD

Control the extended error reporting feature for individual ECKD type DASD through the eer_enabled
sysfs attribute. Use the character device of the extended error reporting module to obtain error records.

Before you begin
To use the extended error reporting feature, you need ECKD type DASD.

Chapter 11. DASD device driver 147

About this task

The extended error reporting feature is disabled by default.

Procedure

To enable extended error reporting, issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When it is enabled on a device, a specific set of errors generates records and might have further side
effects.

To disable extended error reporting, issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

What to do next

You can obtain error records for all DASD for which extended error reporting is enabled from the
character device of the extended error reporting module, /dev/dasd_eer. The device supports these
file operations:

open
Multiple processes can open the node concurrently. Each process that opens the node has access to
the records that are created from the time the node is opened. A process cannot access records that
were created before the process opened the node.

close
You can close the node as usual.

read
Blocking read and non-blocking read are supported. When a record is partially read and then purged,
the next read returns an I/O error -EIO.

poll
The poll operation is typically used with non-blocking read.

Setting a DASD online or offline

Use the chzdev command, the chccwdev command or the online sysfs attribute of the device to set
DASDs online or offline.

About this task

When Linux boots, it senses your DASD. Depending on your specification for the "dasd=" parameter, it
automatically sets devices online.

When you set a DASD offline, the deregistration process is synchronous, unless the device is
disconnected. For disconnected devices, the deregistration process is asynchronous.

Procedure

Use the chzdev command (“chzdev - Configure IBM Z devices” on page 584) to set a DASD online or
offline.

Alternatively, use the chccwdev command, or write 1 to the device's sysfs online attribute to set it online
or 0 to set it offline. In contrast to the sysfs attribute, the chccwdev command triggers a cio_settle for you
and waits for the cio_settle to complete.

148 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Outstanding I/0 requests are canceled when you set a device offline. To wait indefinitely for outstanding
I/0 requests to complete before setting the device offline, use the chccwdev option - -safeoffline
or the sysfs attribute safe_offline. The chzdev command uses safe offline (if available), unless you
specify the - -foxrce option.

Examples
« To set a DASD with device bus-ID 0.0.b100 online, issue:

chzdev -e dasd 0.0.b100

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -e dasd 0.0.b100

echo 1 > /sys/bus/ccw/devices/0.0.b100/online

« To set a DASD with device bus-ID 0.0.b100 offline, issue:

i# chzdev -d dasd 0.0.b1060

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

i# chccwdev -d 0.0.b100

echo 0 > /sys/bus/ccw/devices/0.0.b100/online

« To complete outstanding I/O requests and then set a DASD with device bus-ID 0.0.4711 offline, issue:

i# chccwdev -s 0.0.4711

or

echo 1 > /sys/bus/ccw/devices/0.0.4711/safe_offline

If an outstanding I/0 request is blocked, the command might wait forever. Reasons for blocked
I/0 requests include reserved devices that can be released or disconnected devices that can be
reconnected.

1. Try to resolve the problem that blocks the I/O request and wait for the command to complete.

2. If you cannot resolve the problem, issue chccwdev -d to cancel the outstanding I/O requests. The
data will be lost.

Dynamic attach and detach
You can dynamically attach devices to a running instance of Linux on IBM Z, for example, from z/VM.

When a DASD is attached, Linux attempts to initialize it according to the DASD device driver configuration
(see “Setting up the DASD device driver” on page 140). You can then set the device online. You can

Chapter 11. DASD device driver 149

automate setting dynamically attached devices online by using CCW hotplug events (see “CCW hotplug
events” on page 18).

Attention: Do not detach a device that is still being used by Linux. Detaching devices might cause
the system to hang or crash. Ensure that you unmount a device and set it offline before you detach
it.
See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

Be careful to avoid errors when working with devices that have become available to a running Linux
instance.

Enabling and disabling logging

Use the dasd= kernel or module parameter or use the explog sysfs attribute to enable or disable error
recovery processing (ERP) logging.

Procedure

You can enable and disable error recovery processing (ERP) logging on a running system. There are two
methods:

« Use the dasd= parameter when you load the base module of the DASD device driver.
Example:

To define a device range (0.0.7000-0.0.7005) and enable logging, change the parameter line to
contain:

dasd=0.0.7000-0.0.7005(erplog)

« Use the sysfs attribute erplog to turn ERP-related logging on or off.
Logging can be enabled for a specific device by writing 1 to the erplog attribute.

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/exrplog

To disable logging, write 0 to the exrplog attribute.

Example:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/erplog

Enabling and disabling immediate failure of I/0 requests

Prevent devices in mirror setups from being blocked while paths are unavailable by making I/0 requests
fail immediately.

About this task

By default, if all path have been lost for a DASD, the corresponding device in Linux waits for one of the
paths to recover. I/O requests are blocked while the device is waiting.

If the DASD is part of a mirror setup, this blocking might cause the entire virtual device to be blocked. You
can use the failfast attribute to immediately return I/O requests as failed while no path to the device is
available.

Attention: Use this attribute with caution and only in setups where a failed I/O request can be
recovered outside the scope of a single DASD.

150 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Use one of these methods:

« You can enable immediate failure of I/O requests when you load the base module of the DASD device
driver.

Example:

To define a device range (0.0.7000-0.0.7005) and enable immediate failure of I/O requests specify:
dasd=0.0.7000-0.0.7005(failfast)

« You can use the sysfs attribute failfast of a DASD to enable or disable immediate failure of I/O
requests.

To enable immediate failure of I/O requests, write 1 to the failfast attribute.

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/failfast

To disable immediate failure of I/O requests, write 0 to the failfast attribute.

Example:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/failfast

Setting the timeout for I/0 requests

DASD I/O requests can time out at two levels in the software stack.

About this task

When the DASD device driver receives an I/0 request from an application, it issues one or more low-level
I/0 requests to the affected storage system. Both the initial I/O request from the application and the
resulting low-level requests to the storage system can time out. You set the timeout values through two
sysfs attributes of the DASD.

expires
specifies the maximum time, in seconds, that the DASD device driver waits for a response to a
low-level I/O request from a storage server.

The default for the maximum response time depends on the type of DASD:

ECKD
uses the default that is provided by the storage server.

FBA
300s

DIAG
50s

If the maximum response time is exceeded, the DASD device driver cancels the request. Depending
on your setup, the DASD device driver might then try the request again, possibly in combination with
other recovery actions.

timeout
specifies the time interval, in seconds, within which the DASD device driver must respond to an I/O
request from a software layer above it. If the specified time expires before the request is completed,
the DASD device driver cancels all related low-level I/O requests to storage systems and reports the
request as failed.

This setting is useful in setups where the software layer above the DASD device driver requires an
absolute upper limit for I/O requests.

Chapter 11. DASD device driver 151

A value of @ means that there is no time limit. This value is the default.

Procedure

You can use the expires and timeout attributes of a DASD to change the timeout values for that DASD.
1. To find out the current timeout values, issue commands of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/expires
cat /sys/bus/ccw/devices/<device_bus_1id>/timeout

Example:

cat /sys/bus/ccw/devices/0.0.7008/expires
30
cat /sys/bus/ccw/devices/0.0.7008/timeout
0

In the example, a maximum response time of 30 seconds applies to the storage server for a DASD with
busID 0.0.7008. No total time limit is set for I/O requests to this DASD.

2. To set different timeout values, issue commands of this form:

echo <max_wait> > /sys/bus/ccw/devices/<device_bus_id>/expires
echo <total_max> > /sys/bus/ccw/devices/<device_bus_1id>/timeout
where:

<max_wait>
is the new maximum response time, in seconds, for the storage server. The value must be a
positive integer.

<total_max>
is the new maximum total time in seconds. The value must be a positive integer or 0. 0 disables
this timeout setting.

<device_bus_id>
is the device bus-ID of the DASD.

Example:

echo 60 > /sys/bus/ccw/devices/0.0.7008/expires
echo 120 > /sys/bus/ccw/devices/0.0.7008/timeout

This example sets timeout values for a DASD with bus ID 0.0.7008. The maximum response time
for the storage server is set to 60 seconds and the overall time limit for I/O requests is set to 120
seconds.

Working with DASD statistics in debugfs

Gather DASD statistics and display the data with the dasdstat command.

Before you begin

« debugfs is required, but is mounted by default. If you unmounted the file system, remount it before
continuing. See “debugfs” on page xi.

« Instead of accessing raw DASD performance data in debugfs, you can use the dasdstat command to
obtain more structured data (see “dasdstat - Display DASD performance statistics” on page 615).

About this task

The DASD performance data is contained in the following subdirectories of <mountpoint>/dasd, where
<mountpoint> is the mount point of debugfs:

152 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

- Adirectory global that represents all available DASDs taken together.

« For each DASD, one directory with the name of the DASD block device with which the DASD is known to
the DASD device driver (for example, dasda, dasdb, and dasdc).

« For each CCW device that corresponds to a DASD, a directory with the bus ID as the name.

Block devices that are not set up for PAV or HyperPAV map to exactly one CCW device and the
corresponding directories contain the same statistics.

With PAV or HyperPAV, a bus ID can represent a base device or an alias device. Each base device is
associated with a particular block device. The alias devices are not permanently associated with the
same block device. At any one time, a DASD block device is associated with one or more CCW devices.
Statistics that are based on bus ID, therefore, show more detail for PAV and HyperPAV setups.

Each of these directories contains a file statistics that you can use to perform these tasks:

« Start and stop data gathering.

- Reset statistics counters.

» Read statistics.

To control data gathering at the scope of a directory in <mountpoint>/dasd, issue a command of this
form:

echo <keyword> > <mountpoint>/dasd/<directory>/statistics

Where:

<directory>
is one of the directories in <mountpoint>/dasd.

<keyword>
specifies the action to be taken:

on
to start data gathering.

off
to stop data gathering.

reset
to reset the statistics counters.

To read performance data, issue a command of this form:
cat <mountpoint>/dasd/<directory>/statistics

Examples for gathering and reading DASD statistics in debugfs

Use the echo command to start and stop data gathering for individual devices or across all DASDs. Use
the cat command to access the raw performance data.

The following examples assume that debugfs is mounted at /sys/kernel/debug.

« To start data gathering for summary data across all available DASDs:

echo on > /sys/kernel/debug/dasd/global/statistics

« To stop data gathering for block device dasdb:

echo off > /sys/kernel/debug/dasd/dasdb/statistics

« To reset the counters for CCW device 0.0.b301:

i# echo reset > /sys/kernel/debug/dasd/0.0.b301/statistics

Chapter 11. DASD device driver 153

 To read performance data for dasda, assuming that the degbugfs mount pointis /sys/kernel/
debug, issue:

cat /sys/kernel/debug/dasd/dasda/statistics

start_time 1283518578.085869197

total_requests 0

total_sectors 0

total_pav O

total_hpf O

histogram_sectors O 0 0 0 0 0 00O OO O0OOOOODOODOODODOOOOOOOOOOOO
histogram_io_times © O O O O O 0 0 0 0 0 0 0
histogram_io_times_weighted © © © © 6 06 0 0 0 00000
histogram_time_build_to_ssch © © 6 6 06 0 0 0 0000
histogram_time_ssch_to_irq © © © 0 0 0 0 0 0 0 00O
histogram_time_ssch_to_irq weighted © O 0 0 0 0 0 0 0000 0O0OOOOOOOOOOOOOOOOOO
00

histogram_time_irq_ to_end O 0 0 0 0 0 0000 O0O0O0O0O0O0ODODODODODODODOOOOO0O0OOO
histogram_ccw_queue_length O O 0 0 O 0O 0O OO O0OOOOOOOOOOOOOOOOOOOOOOO
total_read_requests 0
total_read_sectors 0O
total_read_pav 0O
total_read_hpf 0
histogram_read_sectors 0 0 0 O
histogram_read_times 0 0 0 0 O
histogram_read_time_build_to_s
0
histogram_read_time_ssch_to_irq © 0 0 0 0 0 0O 000 O0O0O0O0OOOOOOOOOOOOOOOOOOO
histogram_read_time_irq to end OO 0 0 0 0 0 0 00O O0OO0OOOODODODOODOOOOOOOOOOOOO
histogram_read_ccw_queue_length 0 0 0 0 0 0 0000 O0O0O0O0ODODODOODOODODOOODOOO0O0OOO

00O0OO0O0OOOOOOOOO0OOOO
0O0OO0OOOOOOOOOOOOOOO
0O0O0OO00O0OOOOODODOOOOOOO 0
00O0OO0OOOOOOOOO0OOOO

[o¥olNo]
ool o]

000O0O0O0OOOOODOOOOOOOOOODOOO0OOOO
0O0OOOOOOODOOODOOOODOOODOOOOOOO

0
0
choOOO0O0OO0OOOODOOOOOOODOOODOOODODOOOODOOO

S

Interpreting the data rows

The raw DASD performance data in the statistics directories in debugfs is organized into labeled data
rows.

This section explains the raw data in the individual data rows of the statistics. Use the dasdstat
command to obtain more structured data.

start_time
is the UNIX® epoch time stamp when data gathering was started or when the counters were last reset.

Tip: Use the date tool to convert the time stamp to a more readily human-readable format. See the
date man page for details.

Single counters
have a single integer as the statistics data. All rows with labels that begin with total_ are of this data

type.
The following rows show data for the sum of all requests, read and write:

total_requests
is the number of requests that have been processed.

total_sectors
is the sum of the sizes of all requests, in units of 512-byte sectors.

total_pav
is the number of requests that were processed through a PAV alias device.

total_hpf
is the number of requests that used High Performance FICON.
The following rows show data for read requests only:

total_read_requests
is the number of read requests that have been processed.

total_read_sectors
is the sum of the sizes of all read requests, in units of 512-byte sectors.

total_read_pav
is the number of read requests that were processed through a PAV alias device.

154 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

total_read_hpf
is the number of read requests that used High Performance FICON.

Linear histograms
have a series of 32 integers as the statistics data. The integers represent a histogram, with a linear
scale, of the number of requests in the request queue each time a request has been queued. The first
integer shows how often the request queue contained zero requests, the second integer shows how
often the queue contained one request, and the n-th value shows how often the queue contained n-1
requests.

histogram_ccw_queue_length
is the histogram data for all requests, read and write.

histogram_read_ccw_queue_length
is the histogram data for read requests only.

Logarithmic histograms
have a series of 32 integers as the statistics data. The integers represent a histogram with a
logarithmic scale:

- The first integer always represents all measures of fewer than 4 units

- The second integer represents measures of 4 or more but less than 8 units

 The third integer represents measures of 8 or more but less than 16 units

« The n-th integer (1 < n < 32) represents measures of 2" or more but less than 2"*1 units
« The 32nd integer represents measures of 232 (= 4G = 4,294,967,296) units or more.

The following rows show data for the sum of all requests, read and write:

histogram_sectors
is the histogram data for request sizes. A unit is a 512-byte sector.

histogram_io_times
is the histogram data for the total time that is needed from creating the cqr to its completion in the
DASD device driver and return to the block layer. A unit is a microsecond.

histogram_io_times_weighted
is the histogram data of the total time, as measured for histogram_io_times, devided by the
requests size in sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_build_to_ssch
is the histogram data of the time that is needed from creating the cqr to submitting the request to
the subchannel. A unit is a microsecond.

histogram_time_ssch_to_irq
is the histogram data of the time that is needed from submitting the request to the subchannel
until an interrupt indicates that the request has been completed. A unit is a microsecond.
histogram_time_ssch_to_irq_weighted
is the histogram data of the time that is needed from submitting the request to the subchannel

until an interrupt indicates that the request has been completed, divided by the request size in
512-byte sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_irq_to_end
is the histogram data of the time that is needed from return of the request from the channel
subsystem, until the request is returned to the block layer. A unit is a microsecond.

The following rows show data for read requests only:

histogram_read_sectors
is the histogram data for read request sizes. A unit is a 512 byte sector.

Chapter 11. DASD device driver 155

histogram_read_io_times
is the histogram data, for read requests, for the total time needed from creating the cqr to its
completion in the DASD device driver and return to the block layer. A unit is a microsecond.

histogram_read_time_build_to_ssch
is the histogram data, for read requests, of the time needed from creating the cqr to submitting
the request to the subchannel. A unit is a microsecond.

histogram_read_time_ssch_to_irq
is the histogram data, for read requests, of the time needed from submitting the request to
the subchannel until an interrupt indicates that the request has been completed. A unit is a
microsecond.

histogram_read_time_irq_to_end
is the histogram data, for read requests, of the time needed from return of the request from the
channel subsystem, until the request is returned to the blocklayer. A unit is a microsecond.

Scenario: Verifying that PAV and HPF are used

Use the dasdstat command to display DASD performance statistics, including statistics about Parallel
Access Volume (PAV) and High Performance FICON (HPF).

Procedure
1. Enable DASD statistics for the device of interest.

Example:

dasdstat -e dasdc
enable statistic "/sys/kernel/debug/dasd/dasdc/statistics"

2. Assure that I/0 requests are directed to the device.
Hints:

- Access a partition, rather than the whole device, to avoid directing the I/O request towards the
first 2 tracks of a CDL formatted DASD. Requests to the first 2 tracks of a CDL formatted DASD are
exceptional in that they never use High Performance FICON.

« Assure that a significant I/O load is applied to the device. PAV aliases are used only if multiple I/O
requests for the device are processed simultaneously.

Example:

dd if=/dev/dasdcl of=/dev/null bs=4k count=256

3. Look for PAV and HPF in the statistics.

Example:

dasdstat dasdc

statistics data for statistic: dasdc
start time of data collection: Fri Dec 11 14:22:18 CET 2015

7 dasd I/0 requests
with 4000 sectors(512B each)

3 requests used a PAV alias device
7 requests used HPF

In the example, dasdc uses both Parallel Access Volume and High Performance FICON.

Accessing full ECKD tracks

In raw-track access mode, the DASD device driver accesses full ECKD tracks, including record zero and
the count and key data fields.

156 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin

« This section applies to ECKD type DASD only.
« The DASD has to be offline when you change the access mode.
« The DIAG access method must not be enabled for the device.

About this task

With this mode, Linux can access an ECKD device regardless of the track layout. In particular, the device
does not need to be formatted for Linux.

For example, with raw-track access mode Linux can create a backup copy of any ECKD device. Full-track
access can also enable a special program that runs on Linux to access and process data on an ECKD
device that is not formatted for Linux.

By default, the DASD device driver accesses only the data fields of ECKD devices. In default access mode,
you can work with partitions, file systems, and files in the file systems on the DASD.

When using a DASD in raw-track access mode be aware that:

« In memory, each track is represented by 64 KB of data, even if the track occupies less physical disk
space. Therefore, a disk in raw-track access mode appears bigger than in default mode.

« Programs must write and should read data in multiples of complete 64 KB tracks. Read requests for
less than 64 KB are allowed, but are not optimal as the DASD device driver always reads full tracks.
The minimum is a single track. The maximum is eight tracks by default but can be extended to up to 16
tracks.

The maximum number of tracks depends on the maximum number of sectors as specified in the
max_sectors_kb sysfs attribute of the DASD. This attribute is located in the block device branch of
sysfs at /sys/block/dasd<x>/queue/max_sectors_kb. In the path, dasd<x> is the device name
that is assigned by the DASD device driver.

To extend the maximum beyond eight tracks, set the max_sectors_kb to the maximum amount of
data to be processed in a single read or write operation. For example, to extend the maximum to reading
or writing 16 tracks at a time, set max_sectors_kb to 1024 (16 x 64).

« Programs must write only valid ECKD tracks of 64 KB.

« Programs must use direct I/0 to prevent the Linux block layer from splitting tracks into fragments. The
DASD device driver must read a split track multiple times, which might slow down the reading process.
Open the block device with option O_DIRECT or work with programs that use direct I/0.

For example, the options iflag=direct and oflag=direct cause dd to use direct I/O. When using
dd, also specify the block size with the bs= option. The block size determines the number of tracks that
are processed in a single I/O operation. The block size must be a multiple of 64 KB and can be up to
1024 KB. Specifying a larger block size often results in better performance. If you receive disk image
data from a pipe, also use the option iflag=fullblock to ensure that full blocks are written to the
DASD device.

Tools cannot directly work with partitions, file systems, or files within a file system. For example, £dasd
and dasdfmt cannot be used.

Procedure

To change the access mode, issue a command of this form:

echo <switch> > /sys/bus/ccw/devices/<device_bus_1id>/raw_track_access

where:

<switch>
is 1 to activate raw data access and O to deactivate raw data access.

Chapter 11. DASD device driver 157

<device_bus_id>
identifies the DASD.

Example
The following example creates a backup of a DASD 0.0.7009 on a DASD 0.0.70a1l.

The initial commands ensure that both devices are offline and that the DIAG access method is not
enabled for either of them. The subsequent commands activate the raw-track access mode for the two
devices and set them both online. The 1sdasd command that follows shows the mapping between device
bus-IDs and device names.

The dd command for the copy operation specifies direct I/O for both the input and output device and the
block size of 1024 KB. After the copy operation is completed, both devices are set offline. The access
mode for the original device is then set back to the default and the device is set back online.

cat /sys/bus/ccw/devices/0.0.7009/online

1

chccwdev -d 0.0.7009

i# cat /sys/bus/ccw/devices/0.0.7009/use_diag

0]

cat /sys/bus/ccw/devices/0.0.70al/online

0

cat /sys/bus/ccw/devices/0.0.70al/use_diag

0

echo 1 > /sys/bus/ccw/devices/0.0.7009/raw_track_access
echo 1 > /sys/bus/ccw/devices/0.0.70al/raw_track_access
chccwdev -e 0.0.7009,0.0.70al

lsdasd 0.0.7009 0.0.70al

Bus-ID Status Name Device Type BlkSz Size Blocks
0.0.7009 active dasdf 94:20 ECKD 4096 7043MB 1803060
0.0.70a1 active dasdj 94:36 ECKD 4096 7043MB 1803060

echo 1024 > /sys/block/dasdf/queue/max_sectors_kb

echo 1024 > /sys/block/dasdj/queue/max_sectors_kb

dd if=/dev/dasdf of=/dev/dasdj bs=1024k iflag=direct oflag=direct
chccwdev -d 0.0.7009,0.0.70al

echo 0 > /sys/bus/ccw/devices/0.0.7009/raw_track_access

chccwdev -e 0.0.7009

Handling lost device reservations

A DASD reservation by your Linux instance can be lost if another system unconditionally reserves this
DASD.

About this task

This other system then has exclusive I/O access to the DASD for the duration of the unconditional
reservation. Such unconditional reservations can be useful for handling error situations where:

« Your Linux instance cannot gracefully release the DASD.
« Another system requires access to the DASD, for example, to perform recovery actions.

After the DASD is released by the other system, your Linux instance might process pending I/O requests
and write faulty data to the DASD. How to prevent pending I/O requests from being processed depends on
the reservation policy. There are two reservation policies:

ignore
All I/O operations for the DASD are blocked until the DASD is released by the second system. When
using this policy, reboot your Linux instance before the other system releases the DASD. This policy is
the default.

fail
AlLI/O operations are returned as failed until the DASD is set offline or until the reservation state is
reset. When using this policy, set the DASD offline and back online after the problem is resolved. See
“Reading and resetting the reservation state” on page 159 about resetting the reservation state to
resume operations.

458 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure

Set the reservation policy with a command of this form:

echo <policy> > /sys/bus/ccw/devices/<device_bus_id>/reservation_policy

where:

<device_bus_id>
specifies the DASD.
<policy>
is one of the available policies, ignore or fail.

Examples

« The command of this example sets the reservation policy for a DASD with bus ID 0.0.7009 to fail.

echo fail > /sys/bus/ccw/devices/0.0.7009/reservation_policy

« This example shows a small scenario. The first two commands confirm that the reservation policy of the
DASD is fail and that the reservation has been lost to another system. Assuming that the error that
had occurred has already been resolved and that the other system has released the DASD, operations
with the DASD are resumed by setting it offline and back online.

cat /sys/bus/ccw/devices/0.0.7009/reservation_policy

fail

cat /sys/bus/ccw/devices/0.0.7009/last_known_reservation_state
lost

chccwdev -d 0.0.7009

i# chccwdev -e 0.0.7009

Reading and resetting the reservation state

How the DASD device driver handles I/0 requests depends on the 1last_known_reservation_state
sysfs attribute of the DASD.

About this task

The last_known_reservation_state attribute reflects the reservation state as held by the DASD
device driver and can differ from the actual reservation state. Use the tunedasd -Q command to find
out the actual reservation state. The last_known_reservation_state sysfs attribute can have the
following values:

none
The DASD device driver has no information about the device reservation state. I/O requests are
processed as usual. If the DASD is reserved by another system, the I/0 requests remain in the queue
until they time out, or until the reservation is released.

reserved
The DASD device driver holds a valid reservation for the DASD and I/O requests are processed as

usual. The DASD device driver changes this state if notified that the DASD is no longer reserved to this
system. The new state depends on the reservation policy (see “Handling lost device reservations” on

page 158).
ignore

The state is changed to none.
fail

The state is changed to lost.

lost
The DASD device driver had reserved the DASD, but subsequently another system has unconditionally
reserved the DASD (see “Handling lost device reservations” on page 158). The device driver

Chapter 11. DASD device driver 159

processes only requests that query the actual device reservation state. All other I/O requests for
the device are returned as failed.

When the error that led another system to unconditionally reserve the DASD is resolved and the DASD
has been released by this other system, there are two methods for resuming operations.

- Setting the DASD offline and back online.
« Resetting the reservation state of the DASD.

c Attention: Do not resume operations by resetting the reservation state unless your system
setup maintains data integrity on the DASD despite:

« The I/0 errors that are caused by the unconditional reservation
« Any changes to the DASD through the other system

You reset the reservation state by writing reset to the last_known_reservation_state
sysfs attribute of the DASD. Resetting is possible only for the £ail reservation policy

(see “Handling lost device reservations” on page 158) and only while the value of the
last_known_reservation_state attribute is 1lost.

To find out the reservation state of a DASD issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/last_known_reservation_state

where <device_bus_id> specifies the DASD.

Example

The command in this example queries the reservation state of a DASD with bus ID 0.0.7009.

cat /sys/bus/ccw/devices/0.0.7009/1last_known_reservation_state
reserved

Checking for access by other operating system instances
Query if a DASD volume is online to another operating system instance by reading the
host_access_count attribute.

Before you begin

To query the number of operating system instances that use the DASD device, the DASD must be online.

About this task

Storage servers that support this feature knows about the online status of the device on all attached
operating system instances in an LPAR (so called hosts). If a DASD device is set online it might potentially
be used on another operating system instance. This information can help to reduce the chance for
outages or possible data corruption due to concurrent access to DASD volumes from different operating
system instances.

Procedure

To check whether a DASD device is being used by other operating system instances, issue a command of
this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host_access_count

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

For example, to query how many operating system instances have access to a device 0.0.bf45, issue:

160 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/devices/0.0.bf45/host_access_count
13

In the example, 13 operating system instances have access to the device, including the current Linux
instance.

What to do next

To see details for each host connected to the DASD device, use the 1sdasd command with the - -host-
access-1list option. For more information and an example, see “Isdasd - List DASD devices” on page
658.

Querying the encryption setting of a channel path

A read-only attribute shows the Fibre Channel Endpoint Security status of the connection to the DASD
device.

About this task

Fibre Channel Endpoint Security (FCES) is a hardware feature that encrypts traffic between the Z host
system and storage server transparently. You can read the current state of the FCES for a DASD from the
fc_security attribute. The attribute is available per DASD device and per path.

For a device, the attribute can take the following values:

Authentication
The connection is authenticated.

Encryption
The connection is encrypted.

Inconsistent
At least one of the operational paths is in a different state from all others.

Unsupported
The DASD device does not support FCES.

The sysfs attributes per path are organized in a directory called paths_info with sub-directories for
each path. For example:

/sys/bus/ccw/devices/0.0.4711/paths_info/
|-- 0.38
"-- fc_security

0.39
-- fc_security
-- 0.3a

"-- fc_security

’

For a path, the fc_security attribute can be Authentication, Encrypted, and Unsupported.

Procedure

To query the FCES status of a DASD device, issue a command of this form:

lsdasd -1 <device_bus_id>

or, using 1szdev:

lszdev <device_bus_id> -a -c TYPE,ID,ATTR:fc_security,ATTRPATH:fc_security

Alternatively, you can read the sysfs attribute directly:

cat /sys/bus/ccw/devices/<device_bus_1id>/fc_security

Chapter 11. DASD device driver 161

where /sys/bus/ccw/devices/<device_bus_1id> represents the device in sysfs.

Examples

« To query the FCES status for a device 0.0.4711, issue:

lsdasd -1 0.0.4711
0.0.4711/dasdc/94:8

status: active
type: ECKD
fé;security: éﬁéryption

This example indicates that the connection to the DASD is encrypted.
« To query the FCES status for a device 0.0.4711 using the 1szdev command, issue:

$ 1szdev 0.0.4711 -a -c TYPE,ID,ATTR:fc_security,ATTRPATH:fc_security
TYPE D ATTR:fc_security ATTRPATH:fc_security
dasd-eckd 0.0.4711 Encryption /sys/bus/ccw/drivers/dasd-eckd/0.0.4711/fc_security

« To query the FCES status for a device 0.0.4712 by reading from the £c_secuzrity sysfs attribute:

cat /sys/bus/ccw/devices/0.0.4712/fc_security
Unsupported

This example indicates that DASD 0.0.4712 does not support FCES.
« Toread the fc_security attribute of path 0.38 for DASD 0.0.4711, issue:

cat /sys/bus/ccw/devices/0.0.4711/paths_info/0.38/fc_security
Encrypted

Setting defective channel paths offline automatically

Control the removal of a defective channel path through the path_threshold and path_interval
sysfs attributes. If a channel path does not work correctly, it is removed from normal operation if other
channel paths are available.

About this task

A channel control check (CCC) is caused by any machine malfunction that affects channel-subsystem
controls. An interface control check (IFCC) indicates that an incorrect signal occurred on the channel path.
Usually, these errors can be recovered automatically. However, if IFCC or CCC errors occur frequently

on a particular channel path, these errors indicate a failure of this channel path. Such a failure leads to
performance degradation due to error recovery processing. If other channel paths are available, it might
help the overall device performance to exclude the malfunctioning channel path from I/0.

The channel-path error recovery feature applies to devices for which multiple channel paths are
operational. By default, the error threshold is 256 and the reset interval is 300 s (5 minutes). Accordingly,
a channel path is set offline when the error count has reached 256. If 300 seconds elapse without an
error the error count is reset to 0.

You can set different values through the path_threshold and path_intexrval sysfs attributes of the
device.

Procedure

To exclude a channel path from I/0 after a certain number of IFCC or CCC errors within a certain time
frame, specify both path_threshold and path_interval.

1. To specify the number of errors that must occur before the channel path is taken offline, issue a
command of this form:

162 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo <no_of_errors> > /sys/bus/ccw/devices/<device_bus_id>/path_threshold

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs and
<no_of errors> is an integer that specifies the error threshold.

To disable detecting defective paths, and to suppress messages about IFCC or CCC errors, set
<no_of errors> to 0.

2. To specify the time that must elapse without errors for the counter to be reset, issue a command of
this form:

echo <time> > /sys/bus/ccw/devices/<device_bus_id>/path_interval

Example
Setting 512 for threshold and 5 minutes (300s) for interval:

echo 512 > /sys/bus/ccw/devices/0.0.4711/path_threshold
echo 300 > /sys/bus/ccw/devices/0.0.4711/path_interval

This example leads to a deactivation of the channel path after 512 IFCCs or CCCs. When 5 minutes (300s)
have passed without IFCCs or CCCs after the last error and the path was not disabled, the counter is reset.

What to do next

After you repair the faulty channel path, set it online again by using the tunedasd command with the -p
option. See “tunedasd - Adjust low-level DASD settings” on page 735 for details.

Querying the HPF setting of a channel path

Query the High Performance FICON (HPF) state of a channel path through the hpf sysfs attribute. The
HPF function can be lost if the device cannot provide the function, or if the channel path is not able to do
HPF.

About this task

The HPF channel-path is deactivated if an HPF error occurs indicating that HPF is not available if there are
other channel paths available. If no other channel paths are available, the path remains operational with
HPF deactivated.

If the device loses HPF functionality, HPF is disabled for all channel paths defined for the device.

Procedure

To query the HPF function for a channel path, issue a command of this form:

lsdasd -1 <device_bus_id>

Alternatively, you can query the sysfs attribute directly:
cat /sys/bus/ccw/devices/<device_bus_id>/hpf

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

Example
To query the availability of HPF for a device 0.0.4711, issue:

Chapter 11. DASD device driver 163

lsdasd -1 0.0.4711
0.0.4711/dasdc/94:8

status: active
type: ECKD
hpf: 1

This example indicates that HPF is enabled for the device.

Alternatively, read from the hpf sysfs attribute:

cat /sys/bus/ccw/devices/0.0.4712/hptf
0]

This example indicates that HPF is disabled for device 0.0.4712.

What to do next

You can now reset the paths to the device. You can use the tunedasd command to reset all or one
channel path.

To re-validate all paths for one device and if possible reset HPF:

tunedasd --path_reset_all /dev/dasdc
Resetting all chpids for device </dev/dasdc>...
Done.

See “tunedasd - Adjust low-level DASD settings” on page 735 for details.

You can also use sysfs to reset a path. sysfs expects a path mask. For example to reset CHPID 44, you can
use tunedasd:

tunedasd -p 44 /dev/dasde

This would be the same as specifying the following in sysfs:

echo 08 > /sys/bus/ccw/devices/0.0.9330/path_reset

Both commands will reset CHPID 44 (path mask 08).

Displaying DASD information

Use tools to display information about your DASDs, or read the attributes of the devices in sysfs.

About this task
There are several methods to display DASD information:

e Use 1sdasd -1 (see “Isdasd - List DASD devices” on page 658) to display summary information about
the device settings and the device geometry of multiple DASDs.

» Use dasdview (see “dasdview - Display DASD structure” on page 617) to display details about the
contents of a particular DASD.

» Read information about a particular DASD from sysfs, as described in this section.

The sysfs representation of a DASD is a directory of the form /sys/bus/ccw/devices/
<device_bus_1id>, where <device_bus_id> is the bus ID of the DASD. This sysfs directory contains
a number of attributes with information about the DASD.

164 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 18. Attributes with DASD information

Attribute Explanation

alias 1 if the DASD is a parallel access volume (PAV) alias device. 0 if the DASD is a
PAV base device or has not been set up as a PAV device.

For an example about how to use PAV, see How to Improve Performance with
PAV, SC33-8414.

This attribute is read-only.

discipline Indicates the base discipline, ECKD or FBA, that is used to access the DASD. If
DIAG is enabled, this attribute might read DIAG instead of the base discipline.

This attribute is read-only.

eer_enabled 1 if the DASD is enabled for extended error reporting, 0 if it is not enabled (see
“Using extended error reporting for ECKD type DASD” on page 147).

erplog 1 if error recovery processing (ERP) logging is enabled, 0 if ERP logging is not
enabled (see “Enabling and disabling logging” on page 150).

expires Indicates the time, in seconds, that the DASD device driver waits for a
response to an I/O request from a storage server. If this time expires, the
device driver considers a request as failed and cancels it (see “Setting the
timeout for I/0 requests” on page 151).

failfast 1 if I/O operations are returned as failed immediately when the last path to
the DASD is lost. O if a wait period for a path to return expires before an I/0
operation is returned as failed. See “Enabling and disabling immediate failure
of I/0 requests” on page 150.

fc_security Read-only attribute that contains Encryption if the connection to the DASD is
encrypted. For details, see “Querying the encryption setting of a channel path”
on page 161.

host_access_count Shows how many operating system instances have access to the device. See

“Checking for access by other operating system instances” on page 160.

hpf 1 if High Performance FICON is available for the device. See “Querying the HPF
setting of a channel path” on page 163.

last_known_reservation_state The reservation state as held by the DASD device driver. Values can be:

none
The DASD device driver has no information about the device reservation
state.

reserved
The DASD device driver holds a valid reservation for the DASD.

lost
The DASD device driver had reserved the device, but this reservation has
been lost to another system.

See “Reading and resetting the reservation state” on page 159 for details.

online 1 if the DASD is online, 0 if it is offline (see “Setting a DASD online or offline” on
page 148).

path_interval Control the automatic removal of defective channel path (see “Setting

path_threshold defective channel paths offline automatically” on page 162)

raw_track_access 1 if the DASD is in raw-track access mode, O if it is in default access mode (see

“Accessing full ECKD tracks” on page 156).

Chapter 11. DASD device driver 165

Table 18. Attributes with DASD information (continued)

Attribute Explanation

readonly 1 if the DASD is read-only, O if it can be written to. This attribute is a device
driver setting and does not reflect any restrictions that are imposed by the
device itself. This attribute is ignored for PAV alias devices.

reservation_policy Shows the reservation policy of the DASD. Possible values are ignore and
fail. See “Handling lost device reservations” on page 158 for details.
status Reflects the internal state of a DASD device. Values can be:
unknown

Device detection has not started yet.

new
Detection of basic device attributes is in progress.

detected
Detection of basic device attributes has finished.

basic
The device is ready for detecting the disk layout. Low-level tools can set
a device to this state when changing the disk layout, for example, when
formatting the device.

unformatted
The disk layout detection found no valid disk layout. The device is ready for
use with low-level tools like dasdfmt.

ready
The device is in an intermediate state.

online
The device is ready for use.

timeout Indicates the time, in seconds, within which the DASD device driver must
respond to an I/0O request from a software layer above it. If the specified time
expires before the request is completed, the DASD device driver cancels all
related low-level I/0 requests to storage systems and reports the request as
failed (see “Setting the timeout for I/O requests” on page 151).

uid A device identifier of the form
<vendor>.<serial>.<subsystem_id>.<unit_address>.<minidisk_identifier>
where

<vendor>
is the specification from the vendor attribute.

<serial>
is the serial number of the storage system.

<subsystem_id>
is the ID of the logical subsystem to which the DASD belongs on the
storage system.

<unit_address>
is the address that is used within the storage system to identify the DASD.

<minidisk_identifier>
is an identifier that the z/VM system assigns to distinguish between

minidisks on the DASD. This part of the uid is only present for Linux on
z/VM and if the z/VM version and service level support this identifier.

This attribute is read-only.

166 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 18. Attributes with DASD information (continued)

Attribute Explanation

use_diag 1 if the DIAG access method is enabled, 0 if the DIAG access method is
not enabled (see “Enabling the DASD device driver to use the DIAG access
method” on page 146). Do not enable the DIAG access method for PAV alias
devices.

vendor Identifies the manufacturer of the storage system that contains the DASD.

This attribute is read-only.

There are some more attributes that are common to all CCW devices (see “Device attributes” on page 9).

Procedure

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 18 on page 165.

Example

The following sequence of commands reads the attributes for a DASD with a device bus-ID 0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/alias

0

cat /sys/bus/ccw/devices/0.0.b100/discipline

ECKD

cat /sys/bus/ccw/devices/0.0.b100/eer_enabled

0

cat /sys/bus/ccw/devices/0.0.b100/exrplog

0

cat /sys/bus/ccw/devices/0.0.b100/expires

30

cat /sys/bus/ccw/devices/0.0.b100/failfast

0

cat /sys/bus/ccw/devices/0.0.b100/host_access_count
1

cat /sys/bus/ccw/devices/0.0.b100/hpt

1

cat /sys/bus/ccw/devices/0.0.b100/last_known_reservation_state
reserved

cat /sys/bus/ccw/devices/0.0.b100/online

1

cat /sys/bus/ccw/devices/0.0.b100/path_interval
300

cat /sys/bus/ccw/devices/0.0.b100/path_threshold
256

cat /sys/bus/ccw/devices/0.0.b100/raw_track_access
0

cat /sys/bus/ccw/devices/0.0.b100/readonly

1

cat /sys/bus/ccw/devices/0.0.b100/reservation_policy
ignore

cat /sys/bus/ccw/devices/0.0.b100/status

online

cat /sys/bus/ccw/devices/0.0.b100/timeout

120

cat /sys/bus/ccw/devices/0.0.b100/uid
IBM.75000000092461.€900.8a

cat /sys/bus/ccw/devices/0.0.b100/use_diag

1

cat /sys/bus/ccw/devices/0.0.b100/vendoxr

IBM

Chapter 11. DASD device driver 167

168 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 12. SCSI-over-Fibre Channel device driver

LPAR and z/VM: The SCSI-over-Fibre Channel device driver applies to Linux in LPAR mode and to Linux
on z/VM.

The SCSI-over-Fibre Channel device driver for Linux on IBM Z (zfcp device driver) supports virtual QDIO-
based SCSI-over-Fibre Channel adapters (FCP devices) and attached SCSI devices (LUNSs).

IBM Z adapter hardware typically provides multiple channels, with one port each. You can configure a
channel to use the Fibre Channel Protocol (FCP). This FCP channel is then virtualized into multiple FCP
devices. Thus, an FCP device is a virtual QDIO-based SCSI-over-Fibre Channel adapter with a single port.

A single physical port supports multiple FCP devices. Using N_Port ID virtualization (NPIV) you can
define virtual ports and establish a one-to-one mapping between your FCP devices and virtual ports (see
“N_Port ID Virtualization for FCP channels” on page 173).

On Linux, an FCP device is represented by a CCW device that is listed under /sys/bus/ccw/drivers/
zfcp. Do not confuse FCP devices with SCSI devices. A SCSI device is identified by a LUN.

Features

The zfcp device driver supports a wide range of SCSI devices, various hardware adapters, specific
topologies, and specific features that depend on the IBM Z hardware.

 Linux on IBM Z can use various SAN-attached SCSI device types, including SCSI disks, tapes, CD-ROMs,
and DVDs.

« SAN access through the following hardware adapters:

FICON Express32S (as of IBM z16™)

FICON Express16SA (as of z15)

FCP Express32S (LinuxONE only, as of LinuxONE II)
FICON Express16S+ (as of z14)

FICON Express16S (as of z13)

You can order hardware adapters as features for mainframe systems.

See Fibre Channel Protocol for Linux and z/VM on IBM System z, SG24-7266 for more details about using
FCP with Linux on IBM Z.

« The zfcp device driver supports switched fabric and point-to-point topologies. You can use either of
these topologies, provided that it is supported by your storage server.

« The zfcp device driver supports end-to-end data consistency checking.

« The zfcp device driver supports the data router hardware feature to improve performance by reducing
the path length.

To find out whether a combination of device and IBM mainframe is supported for your distribution, see the
individual interoperability matrix for each storage device. The interoperability matrices are available at:
www.ibm.com/systems/support/storage/ssic/interoperability.wss

For information about the maximum number of configurable devices, NPIV-enabled subchannels, and
other configurations per FCP channel path, see Input/Output Configuration Program User's Guide for ICP
IOCP, SB10-7172. Search for "FCP Channel Path Limits".

For information about SCSI-3, the Fibre Channel Protocol, and Fibre Channel related information, see
www.t10.org and www.t11.org

© Copyright IBM Corp. 2000, 2023 169

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss
http://www.t10.org
http://www.t11.org

What you should know about zfcp

The zfcp device driver is a low-level driver or host-bus adapter driver that supplements the Linux SCSI
stack.

Figure 46 on page 170 illustrates how the device drivers work together.

[BM mainframe

Linux

SCSIl stack

SCal SCol SCel SCol
CD-ROM| | disks || generic || tapes

‘ SCSl core ‘

‘ zfep device driver ‘

‘ QDIO device driver ‘

FCP channel

-—>FC SAN

Figure 46. Device drivers that support the FCP environment

For an introduction to the concepts of Fibre Channel Protocol support, and how various SCSI devices can
be configured to build an IBM mainframe FCP environment, see Fibre Channel Protocol for Linux and z/VM
on IBM System z, SG24-7266.

sysfs structures for FCP devices and SCSI devices

FCP devices are CCW devices. In the sysfs device driver view, remote target ports with their LUNs are
nested below the FCP devices.

When Linux is booted, it senses the available FCP devices and creates directories of the form:
/sys/bus/ccw/drivers/zfcp/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to an FCP device. You use the attributes in
this directory to work with the FCP device.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c

The zfcp device driver automatically adds port information when the FCP device is set online and when
remote storage ports (target ports) are added. Each added target port extends this structure with a
directory of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>
where <wwpn> is the worldwide port name (WWPN) of the target port. You use the attributes of this
directory to work with the port.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562

With NPIV-enabled FCP devices, Linux uses automatic LUN scanning by default. The zfcp sysfs branch
ends with the target port entries. For FCP devices that are not NPIV-enabled, or if automatic LUN scanning
is disabled, see “Configuring SCSI devices” on page 193.

Information about zfcp objects and their associated objects in the SCSI stack is distributed over the sysfs
tree. To ease the burden of collecting information about zfcp devices, ports, units, and their associated

470 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

SCSI stack objects, a command that is called 1szfcp is provided with s390-tools. See “lszfcp - List zfcp
devices” on page 686 for more details about the command.

See also “Mapping the representations of a SCSI device in sysfs” on page 194.

SCSI device nodes

User space programs access SCSI devices through device nodes.

SCSI device names are assigned in the order in which the devices are detected. In a typical SAN
environment, this can mean a seemingly arbitrary mapping of names to actual devices that can change
between boots. Therefore, using standard device nodes of the form /dev/<device_name> where
<device_name> is the device name that the SCSI stack assigns to a device, can be a challenge.

Ubuntu Server 22.04 LTS provides udev and systemd-udevd to create device nodes for you. Use the
device nodes to identify the corresponding actual device.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The examples in this section use standard device nodes as assigned by the SCSI stack. These nodes

have the form /dev/sd<x> for entire disks and /dev/sd<ax><n> for partitions. In these node names <x>
represents one or more letters and <n> is an integer. For more information about the SCSI device naming
scheme, see the /1inux-doc/admin-guide/devices.txt.gz file in the 1inux-doc package.

To help you identify a particular device, udev creates additional device nodes that are based on the
device's bus ID, the device label, and information about the file system on the device. The file system
information can be a universally unique identifier (UUID) and, if available, the file system label.

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>
for whole SCSI device and
/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>-part<n>

for the <n>th partition, where <wwpn> is the worldwide port number of the target port and <lun> is
the logical unit number that represents the target SCSI device.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is a unique file-system identifier (UUID) for the file system in a partition.

If a file system label is assigned, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole SCSI device that are based on file system information.

Additional device nodes
/dev/disk/by-1id contains additional device nodes for the SCSI device and partitions that are all
based on a unique SCSI identifier that is generated by querying the device.

Example

For a SCSI device that is assigned the device name sda, has two partitions labeled boot

and SWAP-sda2 respectively, a device bus-ID 0.0.3c1b (device number 0x3clb), and a UUID
7eaf9c95-55ac-4e5e-8f18-065b313e63ca for the first and b4a818c8-747c-40a2-bfa2-acaa3ef70ead
for the second partition, udev creates the following device nodes:

Chapter 12. SCSI-over-Fibre Channel device driver 171

For the whole SCSI device:

« /dev/sda (standard device node according to the SCSI device naming scheme)

- /dev/disk/by-path/ccw-0.0.3clb-fc-0x500507630300c562-1un-0x401040ea000000
« /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea

« /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea

For the first partition:

« /dev/sdal (standard device node according to the SCSI device naming scheme)

- /dev/disk/by-path/ccw-0.0.3clb-fc-0x500507630300c562-1un-0x401040ea000000-
partl

« /dev/disk/by-uuid/7eaf9c95-55ac-4e5e-8f18-065b313e63ca

« /dev/disk/by-1label/boot

« /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-partl
« /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-partl
For the second partition:

- /dev/sda2 (standard device node according to the SCSI device naming scheme)

« /dev/disk/by-path/ccw-0.0.3clb-fc-0x500507630300c562-1un-0x401040ea000000-
part2

« /dev/disk/by-uuid/b4a818c8-747c-40a2-bfa2-acaa3ef70ead

« /dev/disk/by-1label/SWAP-sda2

« /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-part2
« /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-part2

Device nodes by-uuid use a unique file-system identifier that does not relate to the partition number.
Multipath

Users of SCSI-over-Fibre Channel attached devices should always consider setting up and using
redundant paths through their Fibre Channel Storage Area Network.

Path redundancy improves the availability of the LUNSs. In Linux, you can set up path redundancy using the
device-mapper multipath tool. For information about multipath devices and multipath partitions, see the
chapter about multipathing in How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413.

Partitioning a SCSI device

You can partition SCSI devices that are attached through an FCP channel in the same way that you can
partition SCSI attached devices on other platforms.

About this task
Use the £disk command to partition a SCSI disk, not £dasd.

udev creates device nodes for your partitions. For the SCSI disk /dev/sda, the partition device nodes are
called /dev/sdal, /dev/sda2, /dev/sda3, and so on.

Example

To partition a SCSI disk with a device node /dev/sda issue:

fdisk /dev/sda

472 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zfcp HBA API (FC-HBA) support

The zfcp host bus adapter API (HBA API) provides an interface for HBA management clients that run on
IBM Z.

The zfcp HBA API support is shown in Figure 47 on page 173.

SAN management client

ZFCP HBA AP library

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
:
: Resources:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

oyofe, og utle | User space.
I Kernel 1
zfcp i
| 1
QDIO i
IBM mainframe
FCP
channel > SAN

Figure 47. zfcp HBA API support modules

In aLinux on IBM Z environment HBAs are usually virtualized and are shown as FCP devices. FCP devices
are represented by CCW devices that are listed in /sys/bus/ccw/drivers/zfcp. Do not confuse FCP
devices with SCSI devices. A SCSI device is a disk device that is identified by a LUN.

For information about setting up the HBA API support, see “API provided by the zfcp HBA API support” on
page 210.

N_Port ID Virtualization for FCP channels

Through N_Port ID Virtualization (NPIV), the sole port of an FCP channel appears as multiple, distinct
ports with separate port identification.

NPIV support can be configured on the SE per CHPID and LPAR for an FCP channel. The zfcp device
driver supports NPIV error messages and adapter attributes. See “Displaying FCP channel and device
information” on page 177 for the Fibre Channel adapter attributes.

See also the chapter on NPIV in How to use FC-attached SCSI devices with Linux on z Systems,
SC33-8413.

Automatic re-IPL path failover

The chreipl-£fcp-mpath tool set helps you to use multipath information for re-IPL path failover on a
running Linux instance.

When the configured re-IPL path becomes unavailable it automatically changes the configured re-IPL
path to a different operational path to the same volume. For more information, see “Automatic path
failover for re-IPL from an FC-attached SCSI disk” on page 114.

Chapter 12. SCSI-over-Fibre Channel device driver 173

Setting up the zfcp device driver

Configure the zfcp device driver through the module parameters. You might also need to install the zfcp
HBA API library.

zfcp module parameter syntax

»

»— modprobe — zfcp L >
+J
device= <device bus_id> ,<wwpn>,<fcp_lun>

allow_lun_scan=1 ﬁ f_ datarouter=1 ﬂ X
0o J

allow_lun_scan= <value> J L datarouter=

ﬁ dbflevel=3 1 f dbfsize=4 ﬁ X
L dbflevel= </eve/> J L dbfsize= <pages> J

J dif=0 l j_dix=oj J— port_scan_ratelimit=60000 j X
L dif=1 J L dix=1 J L port_scan_ratelimit=</imit> J
l >
_J

"

\ 4

Y

port_scan_backoff=500 1 J no_auto_port_rescan=0

2

port_scan_backoff=</imit> J L no_auto_port_rescan=1

h queue_depth=32 ﬁ f_ ber_stop=1 T
L queue_depth= <depth> J L ber_stop=0 _J A

A 4

Notes:

1 For experimental use only. Do not use on production systems.

where:
device=<device_bus_id>,<wwpn>,<fcp_lun>

Q Attention: The device= parameter is reserved for internal use. Do not use.

<device_bus_id>
specifies the FCP device through which the SCSI device is attached.

<wwpn>
specifies the target port through which the SCSI device is attached.

<fep_lun>
specifies the LUN of the SCSI device.

allow_lun_scan=<value>
disables the automatic LUN scan for FCP devices that run in NPIV mode if set to 0, n, or N. To enable
the LUN scanning set the parameter to 1, y, or Y. When the LUN scan is disabled, all LUNs must be
configured through the unit_add zfcp attribute in sysfs. LUN scan is enabled by default.

datarouter=
enables (if setto 1, y, or Y) or disables (if set to 0, n, or N) support for the hardware data routing
feature. The default is 1.

174 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Note: The hardware data routing feature becomes active only for FCP devices that are based on
adapter hardware with hardware data routing support.

dbflevel=<level>
sets the initial log level of the debug feature. The value is an integer in the range 0 - 6, where greater
numbers generate more detailed information. The default is 3.

dbfsize=<pages>
specifies the number of pages to be used for the debug feature.

The debug feature is available for each FCP device and the following areas:

hba
FCP device.

san
Storage Area Network.

rec
Error Recovery Process.

scsi
SCSI

The value given is used for all areas. The default is 4, that is, four pages are used for each area and
FCP device. In the following example the dbsfsize is increased to 6 pages:

dbfsize=6

This results in six pages being used for each area and FCP device.

dif=
turns on end-to-end data consistency checking in DIF-only mode if set to 1, y, or Y (and off if set to O,
n, or N). The default is 0.

dix=
turns on end-to-end data consistency checking in extended mode if setto 1, y, or Y (and off if set to 0,
n, or N). The default is 0.

Specifying zfcp.dix=1 enables both DIF and DIX. Enabling zfcp.dix= overrides specifications for
zfcp.dif=.

Note: End-to-end data consistency checking in extended mode is experimental and can cause errors
if enabled.

port_scan_ratelimit=<limit>
sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0. Use this parameter to avoid
frequent scans, while you still ensure that a scan is conducted eventually.

port_scan_backoff=<delay>
sets additional random delay, in milliseconds, in which the port scans of your Linux instance are
spread. The default value is 500 milliseconds. To turn off the random delay, specify 0. In an
installation with multiple Linux instances, use this attribute for every Linux instance to spread scans to
avoid potential multiple simultaneous scans.

no_auto_port_rescan=<value>
turns the automatic port rescan feature off (if setto 1, y, or Y) or on (if set to 0, n, or N). The default
is 0. Automatic rescan is always performed when an FCP device is set online and when user-triggered
writes to the sysfs attribute port_rescan occur.

Tip: Use port_scan_backoff and port_scan_ratelimit rather than no_auto_port_rescan.

queue_depth=<depth>
specifies the number of commands that can be issued simultaneously to a SCSI device. The default
is 32. The value that you set here is used as the default queue depth for new SCSI devices. You can
change the queue depth for each SCSI device that uses the queue_depth sysfs attribute, see “Setting
the queue depth” on page 201.

Chapter 12. SCSI-over-Fibre Channel device driver 175

ber_stop=<value>
sets the mode of handling FCP devices for which the FCP channel reports a bit-error count in excess of
its threshold.

If setto 1, vy, orY, the zfcp device driver shuts down such FCP devices; this is the default. If set to O,
n, or N, such FCP devices keep running and might cause I/O command timeouts with an associated
performance degradation.

Kernel message "All paths over this FCP device are disused because of excessive bit errors" indicates
that the zfcp device driver shut down a device because of bit errors. To resolve the problem, ensure
that fibre optics on the local fibre link are clean and functional, and that all cables are properly
plugged. Then recover the FCP device by writing 0 to its failed sysfs attribute, see “Recovering a
failed FCP device” on page 182. If recovery through sysfs is not possible, set the CHPID of the device
offline and back online on the Support Element.

Example
Use the following kernel parameter to enable end-to-end data consistency checking:

modprobe zfcp dif=1

Working with FCP devices

Set an FCP device online before you attempt to perform any other tasks.

Working with FCP devices comprises the following tasks:

« “Setting an FCP device online or offline” on page 176

- “Displaying FCP channel and device information” on page 177

« “Recovering a failed FCP device” on page 182

« “Finding out whether NPIV is in use” on page 185

« “Logging I/0 subchannel status information” on page 186

You have the following options for configuring FCP LUNs to attach SCSI devices:

- During installation, use the Ubuntu installer.

- On an installed system, the preferred tool to use for FCP device configuration is the chzdev command
that is provided with Ubuntu Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on
page 351 for details.

You can always specify additional zfcp module parameters as explained in Chapter 4, “Kernel and module
parameters,” on page 25.

Setting an FCP device online or offline

By default, FCP devices are offline. Set an FCP device online before you perform any other tasks.

About this task
As of 214 and LinuxONE II in DPM mode:

For Linux in a DPM partition, FCP devices are set online automatically, see Chapter 3, “Device auto-
configuration for Linux in LPAR mode,” on page 21.

DPM device auto-configuration with zfcp automatic LUN scan manages the zfcp configuration, including
FCP devices, remote ports, and LUNs. This automation has the following requirements:

- The SAN switches must use single-initiator zoning.
« LUN masking (host mapping) must be in place on the storage systems.
« Both the SAN switches and the LUN masking must use host NPIV WWPNs for access control.

176 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

See “Working with newly available devices” on page 10 to avoid errors when you work with devices that
have become available to a running Linux instance.

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initramfs, followed by a re-write of the boot
record (see “Rebuilding the initial RAM disk image” on page 92).

Setting an FCP device online registers it with the Linux SCSI stack and updates the symbolic port name
for the device on the FC name server. For FCP setups that use NPIV mode, the device bus-ID and the host
name of the Linux instance are added to the symbolic port name.

Setting an FCP device online also automatically runs the scan for ports in the SAN and waits for this port
scan to complete.

To check if setting the FCP device online was successful, you can use a script that first sets the FCP device
online and after this operation completes checks if the WWPN of a target port has appeared in sysfs.

When you set an FCP device offline, the port and LUN subdirectories are preserved. Setting an FCP device
offline interrupts the communication between Linux and the FCP channel. After a timeout has expired, the
port and LUN attributes indicate that the ports and LUNs are no longer accessible. The transition of the
FCP device to the offline state is synchronous, unless the device is disconnected.

For disconnected devices, setting the device offline triggers an asynchronous deregistration process.
When this process is completed, the device with its ports and LUNs is no longer represented in sysfs.

When the FCP device is set back online, the SCSI device nhames and minor numbers are freshly assigned.
The mapping of devices to names and numbers might be different from what they were before the FCP
device was set offline.

Procedure
For a persistent configuration, use the chzdev command.

For a non-persistent configuration, you can use the chzdev command with the -a option.

Examples

» To set an FCP device with bus ID 0.0.3d0c online, issue:

chzdev -e zfcp-host 0.0.3d0c

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev command
with the -a option:

chzdev -e -a zfcp-host 0.0.3d0c

« To set an FCP device with bus ID 0.0.3d0c offline, issue:

chzdev -d zfcp-host 0.0.3d0c

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev command
with the -a option:

chzdev -d -a zfcp-host 0.0.3d0c
Displaying FCP channel and device information

For each online FCP device, a number of sysfs attributes provide information about the corresponding FCP
channel and FCP device.

Chapter 12. SCSI-over-Fibre Channel device driver 177

Before you begin
The FCP device must be online for the FCP channel information to be valid.

About this task

The following tables summarize the relevant attributes.

Table 19. Attributes with FCP channel information

Attribute Explanation

card_version Version number that identifies a particular hardware feature. Same
as model in Table 21 on page 178.

fc_security IBM Fibre Channel Endpoint Security capabilities of the FCP channel.
See “Investigating IBM Fibre Channel Endpoint Security” on page
207.

hardware_version Number that identifies a hardware version for a particular feature.

The initial hardware version of a feature is zero. This version indicator
is increased only for hardware modifications of the same feature.
Appending hardware_version to card_version results in a hierarchical
version indication for a physical adapter.

Same as hardware_versionin Table 21 on page 178.

lic_version Microcode level. Same as firmware_version in Table 21 on page
178.

peer_wwnn WWNN of peer for a point-to-point connection.

peer_wwpn WWPN of peer for a point-to-point connection.

peer_d_id Destination ID of the peer for a point-to-point connection.

Table 20. Attributes with FCP device information

Attribute Explanation

in_recovery Shows if the FCP channel is in recovery (0 or 1).

diag_max_age Expiration interval, in ms, for cached diagnostic data about the FCP
channel (see “Obtaining diagnostic data for FCP channels” on page
183).

For the attributes availability, cmb_enable, and cutype, see “Device directories” on page 9. The status
attribute is reserved.

Table 21. Relevant transport class attributes, fc_host attributes

Attribute Explanation

fabric_name Name of the attached fabric. The name is a 64-bit hexadecimal value.

For z13 and z14 hardware with FICON Express16S or FICON
Express16S+ features, this attribute contains valid fabric names only
if the following minimum firmware level requirements are met.

z13
FICON Express16S: MCL P08424.005, LIC version 0x00000721

z14
FICON Express16S: MCL P42611.008, LIC version 0x10200069

FICON Express16S+: MCL P42625.010, LIC version 0x10300147

478 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 21. Relevant transport class attributes, fc_host attributes (continued)

Attribute

Explanation

firmware_version

Microcode level. Same as 1ic_version in Table 19 on page 178

hardware_version

Number that identifies a hardware version for a particular feature.
The initial hardware version of a feature is zero. This version indicator
is increased only for hardware modifications of the same feature.
Appending hardware_version to card_version results in a hierarchical
version indication for a physical adapter.

Same as hardware_versionin Table 19 on page 178

manufacturer

Manufacturer of the FCP channel. The value is "IBM".

maxframe_size

Maximum frame size.

model

Version number that identifies a particular hardware feature. Same
as card_versionin Table 19 on page 178

permanent_port_name

WWPN associated with the physical port of the FCP channel.

port_id A unique ID (N_Port_ID) assigned by the fabric. In an NPIV setup,
each virtual port is assigned a different port_id.

port_name WWPN associated with the FCP device. If N_Port ID Virtualization
is not available, the WWPN of the physical port (see
permanent_port_name).

port_type The port type indicates the topology of the port.

serial_number

The 32-byte serial number of the adapter hardware that provides the
FCP channel.

speed

Speed of FC link.

supported_classes

Supported FC service class.

supported_speeds

Supported speeds.

symbolic_name

The symbolic port name that is registered with the FC name server.

tgid_bind_type

Target binding type.

Table 22. Relevant transport class attributes, fc_host statistics

Attribute

Explanation

reset_statistics

Writeable attribute to reset statistic counters.

seconds_since_last_reset

Seconds since last reset of statistic counters.

tx_frames Transmitted FC frames.
tx_words Transmitted FC words.
rx_frames Received FC frames.
rx_words Received FC words.
lip_count Number of LIP sequences.
nos_count Number of NOS sequences.

error_frames

Number of frames that are received in error.

dumped_frames

Number of frames that are lost because of lack of host resources.

Chapter 12. SCSI-over-Fibre Channel device driver 179

Table 22. Relevant transport class attributes, fc_host statistics (continued)

Attribute Explanation

link_failure_count Link failure count.

loss_of_sync_count Loss of synchronization count.
loss_of_signal_count Loss of signal count.
prim_seq_protocol_err_count Primitive sequence protocol error count.
invalid_tx_word_count Invalid transmission word count.
invalid_crc_count Invalid CRC count.

fcp_input_requests Number of FCP operations with data input.
fcp_output_requests Number of FCP operations with data output.
fcp_control_requests Number of FCP operations without data movement.
fcp_input_megabytes Megabytes of FCP data input.
fcp_output_megabytes Megabytes of FCP data output.
Procedure

Use the cat command to read an attribute.

« Issue a command of this form to read an attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<attribute>

where:

<device_bus_id>
specifies an FCP device that corresponds to the FCP channel.

<attribute>
is one of the attributes in Table 19 on page 178 or Table 20 on page 178.

« To read attributes of the associated Fibre Channel host use:

cat /sys/class/fc_host/<host_name>/<attribute>

where:

<host_name>
is the ID of the Fibre Channel host.

<attribute>
is one of the attributes in Table 21 on page 178.

« To read statistics attributes of the FCP channel associated with this Fibre Channel host, use:

cat /sys/class/fc_host/<host_name>/statistics/<attribute>

where:

<host_name>
is the ID of the Fibre Channel host.

<attribute>
is one of the attributes in Table 22 on page 179.

« Forreading diagnostic data for FCP channels, see “Obtaining diagnostic data for FCP channels” on
page 183

480 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

« In this example, information is displayed about an FCP channel that corresponds to an FCP device with
bus ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/hardware_version
0x00000000

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/lic_version
0x16500124

« Alternatively you can use 1szfcp (see “Iszfcp - List zfcp devices” on page 686) to display attributes of
an FCP channel:

Chapter 12. SCSI-over-Fibre Channel device driver 181

lszfcp -b 0.0.3d0c -a

0.0.3d0c host0

Bus = "ccw"
availability
card_version
cmb_enable
cutype
devtype
diag_max_age
failed
fc_security
hardware_version
in_recovery
lic_version
modalias
online
peer_d_id
peer_wwnn
peer_wwpn
status
uevent

Class = "fc_host"
active_=fc4s
dev_loss_tmo
fabric_name
firmware_version
hardware_version
manufacturer
maxframe_size
model
node_name

permanent_port_name

port_id
port_name
port_state
port_type
serial_number
speed
supported_classes
supported_fc4s
supported_speeds
symbolic_name
hostname.domain"
tgtid_bind_type
Class = "scsi_host"
active_mode
can_queue
cmd_per_lun
eh_deadline
host_busy
megabytes
proc_name
prot_capabilities
prot_guard_type
queue_full
requests
seconds_active
sg_prot_tablesize
sg_tablesize
state
supported_mode
unchecked_isa_dma
unique_id
use_blk_mq
utilization

Ilgood n

"Ox000b"

g

"1731/03"

"1732/03"

"5000"

IIOII

"Authentication, Encryption"
"Ox00000000"

IIOII

"0x24500099"
"ccw:t1731mO3dt1732dmO3"
II1II

"Ox000000"
"Ox0000000000000000"
"Ox0000000000000000"
"Ox5400040b"
“DRIVER=zfcp"

"Ox00 Ox00 Ox01 Ox00 ..."
60"

"Ox100000051e4a8f00"
"0x24500099"

"Ox00000000"

n IBMII

"2112 bytes"

"Ox000b"
"Ox5005076400c7ec87"
"Oxc05076ffd6801981"
"Ox671a29"
"Oxc05076ffd6801e10"
"Online"

"NPIV VPORT"
"IBMO200OOOOO7EC87"

"32 Ghit"

"Class 2, Class 3"

"Ox00 Ox00 0x01 Ox60 ..."
"8 Gbit, 16 Ghit, 32 Gbhit"

"IBM type serial PCHID: 0198 NPIV UlpId:

"wwpn (World Wide Port Name)"

"Initiator"
"4096"

ngn

Ilo:f:fll

ngu

5 gv

n Z:ch)II

ngu

ngn

"@ 2357653"
"815 0 66"
nqqn

IIOII

g4
"running"
"Initiator"
ngH

"6400"

II1II

g @ Q"

Recovering a failed FCP device

Failed FCP devices are automatically recovered by the zfcp device driver. You can read the in_recovery

attribute to check whether recovery is under way.

Before you begin

The FCP device must be online.

05600300 DEVNO: 0.0.3d0c NAME:

182 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure

Perform these steps to find out the recovery status of an FCP device and, if needed, start or restart
recovery:

1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_1id>/in_recovery

The value is 1 if recovery is under way and @ otherwise. If the value is O for a non-operational FCP
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
FCP device is malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

The value is 1 if recovery failed and @ otherwise.

3. You can start or restart the recovery process for the FCP device by writing 0 to the failed attribute.
Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

Example

In the following example, an FCP device with a device bus-ID 0.0.3d0c is malfunctioning. The first
command reveals that recovery is not already under way. The second command manually starts recovery
for the FCP device:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/in_recovery
0]

echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/failed

Obtaining diagnostic data for FCP channels
Diagnostic data about FCP channels is available as of z14 and FICON Express8S.

About this task

FCP channel diagnostic data is available through sysfs attributes in /sys/bus/ccw/drivexrs/zfcp/
<device_bus_1id>/diagnostics, where <device_bus_id> is the device-bus ID of the FCP device that
corresponds to the FCP channel.

After the diagnostic data is retrieved from the FCP channel, it is cached for a specific expiration interval,

5 seconds by default. Reading attributes within this interval results in the cached values. If you read
attributes after the cache has expired, current values are retrieved from the FCP channel. You can use the
diag_max_age sysfs attribute of the FCP device to change the expiration interval.

The following table summarizes the available attributes with diagnostic data.

Table 23. Attributes with diagnostic data about FCP channels

Attribute Explanation

sfp_invalid Flag that indicates whether the attributes with physical properties
of the FCP channel provide valid (0) or useless (1) data. These
attributes are: temperature, vcc, tx_bias, tx_power, and rx_power.

temperature Temperature of the transceiver. The value is a signed integer in units
of 1/256 °C. For example, interpret 1024 as 4 °C.

vce Supply voltage of the transceiver. The value is in units of 200 pV.

Chapter 12. SCSI-over-Fibre Channel device driver 183

Table 23. Attributes with diagnostic data about FCP channels (continued)

Attribute Explanation
tx_bias Bias current of the transmitter laser. The value is in units of 2 pA.
tx_power Coupled output power of the transmitter laser. The value is in units of
0.1 pw.
rx_power Optical power that is measured at the receiving element. The value is
in units of 0.1 pW.
optical_port Flag that indicates whether the transceiver uses an optical element
(1) or does not use an optical element (0).
fec_active Flag that indicates whether forward error correction (FEC) is active
(1) orinactive (0).
port_tx_type Type of the transmitting element. Possible values are:
0
Unknown
1
Short wave
2
Long wave, LC 1310 nm
3
Long wave, LL 1550 nm
connector_type Connector type. Possible values are:
0
Unknown
1
SFP+
b2b_credit Number of buffers available for receiving Class 2, or Class 3 frames

on the local FC port.

Procedure
1. Optional: Verify the validity of the data points with physical properties of the FCP channel.
cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diagnostics/sfp_invalid

For valid data, the attribute value must be 0.
2. Optional: Adjust the expiration interval of the cached diagnostic data.
a) Read the current expiration interval from the diag_max_age attribute.

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diag_max_age

The attribute value is the expiration interval in milliseconds.
b) Write the value, in milliseconds, of the new expiration interval to the diag_max_age attribute.

echo <expiration_interval> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diag_max_age

Setting the expiration interval to O disables caching. The combination of short expiration intervals or
disabling caching and frequent reading of diagnostic data can adversely affect performance.

3. Read the data of interest.

184 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diagnostics/<attribute>

Where <attribute> is one of the attributes of Table 23 on page 183.

Examples

« In this example, the expiration interval for an FCP device that corresponds to bus ID 0.0.3d5c is
changed from 5 seconds to 10 seconds.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diag_max_age
5000
echo 10000 > /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diag_max_age

« In this example, the first command confirms that the attributes with physical properties of the FCP
channel contain valid data. The next commands display data about the transceiver temperature, supply
voltage, and type of the transmitting element.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/sfp_invalid

g cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/temperature
;Bgit /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/vcc

%3823 /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/connector_type

The 0 returned from the first command confirms that the physical data is valid. The transceiver
temperature is 30.55 °C (7822 / 256) and the supply voltage is 3.3000 V (33000 x 1074). The
connector_type is SFP+ (value 1).

Finding out whether NP1V is in use

The FCP setup runs in NPIV mode if the port_type attribute of the FCP device attribute contains the
string "NPIV". Alternatively, if the applicable permanent_poxrt_name and port_name are not the same
and are not NULL.

Procedure
Read the poxrt_type attribute of the FCP device.

For example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1940/host0/fc_host/hostO/port_type
NPIV VPORT

Alternatively, compare the values of the permanent_port_name attribute and the poxrt_name.

Tip: You can use 1szfcp (see “Iszfcp - List zfcp devices” on page 686) to list the FCP device attributes.

Example

1lszfcp -b 0.0.3d0c -a
0.0.3d0c hostO
Bus = "ccw"

availability = "good"

Clasé.; "fc_host"

node_name = "Ox5005076400c829%e7"

permanent_port_name = "Oxc05076ffeb001201"

port_id = "Ox67e35d"

port_name = "Oxc05076ffeb001b48"

port_state = "Online"

port_type = "NPIV VPORT"

symbolic_name = "IBM type serial PCHID: 0120 NPIV UlpId: 02600F18 DEVNO: 0.0.3d0c NAME: hostname.domain"

Chapter 12. SCSI-over-Fibre Channel device driver 185

The port_type attribute directly indicates that NPIV is used. The example also shows that
permanent_port_name is different from port_name and neither is NULL. The example also shows
the symbolic_name attribute that shows the symbolic port name that was registered on the FC name
server.

Logging I/0 subchannel status information

When severe errors occur for an FCP device, the FCP device driver triggers a set of log entries with I/O
subchannel status information.

The log entries are available through the SE Console Actions Work Area with the View Console Logs
function. In the list of logs, these entries have the prefix 1F00. The content of the entries is intended for
support specialists.

Working with target ports

You can scan for ports, display port information, recover a port, or remove a port.
Working with target ports comprises the following tasks:

 “Scanning for ports” on page 186

 “Controlling automatic port scanning” on page 187

 “Displaying port information” on page 189

» “Recovering a failed port” on page 191

« “Removing ports” on page 191

Scanning for ports

Newly available target ports are discovered. However, you might want to trigger a port scan to re-create
accidentally removed port information or to assure that all ports are present.

Before you begin
The FCP device must be online.

About this task
The zfcp device driver automatically adds port information to sysfs when:

« The FCP device is set online

- Target ports are added to the Fibre Channel fabric, unless the module parameter
no_auto_port_rescanis setto 1. See “Setting up the zfcp device driver” on page 174.

Scanning for ports might take some time to complete. Commands that you issue against ports or LUNs
while scanning is in progress are delayed and processed when port scanning is completed.

Use the port_rescan attribute if a target port was accidentally deleted from the FCP device
configuration or if you are unsure whether all ports were added to sysfs.

Procedure

Issue a command of this form:

echo 1 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_rescan

where <device_bus_id> specifies the FCP device through which the target ports are attached.

Tip: List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_1id> to find out which ports
are currently configured for the FCP device.

186 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example

In this example, a port with WWPN 0x500507630303c562 is already configured for an FCP device with
bus ID 0.0.3d0c. An additional target port with WWPN 0x500507630300c562 is automatically configured
by triggering a port scan.

1ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0Ox*
0x500507630303c562

echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_rescan
1ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0Ox*
0x500507630303c562

0x500507630300c562

Controlling automatic port scanning

Automatic port scanning includes two zfcp parameters that improve the behaviour of Linux instances

in SANs. These zfcp parameters are set to default values that work well for most installations. If
needed, you can fine-tune the frequency and timing of automatic port scans with the zfcp parameters
port_scan_backoff and port_scan_ratelimit. You can enable automatic port scanning with the
zfcp parameter no_auto_port_rescan=0. This value is the default.

About this task

In a large installation, where many Linux instances receive the same notifications of SAN changes,

multiple instances might trigger scans simultaneously and too frequently. See Figure 48 on page 187
Without scan rate limit and backoff

l» Fort scans
Linux 2, | Il 1 | (m|m]]
FCFP dev X
Linux 1,
FPueve | H] oo
Linux 1,
RN | | [\ Time

r SAN change notifications

Figure 48. Numerous port scans in a Linux installation

These scans might put unnecessary load on the name server function of fabric switches and potentially
result in late or inconclusive results.

You can avoid excessive scanning, yet still ensure that a port scan is eventually conducted. You can
control port scanning with the zfcp parameters:

poxrt_scan_ratelimit
sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0.

poxt_scan_backoff
sets an additional random delay, in milliseconds, in which the port scans of your Linux instance
are spread. In an installation with multiple Linux instances, use this zfcp parameter for every Linux
instance to spread scans to avoid potential multiple simultaneous scans. The default value is 500
milliseconds. To turn off the random delay, specify 0.

Use module parameters (see “Setting up the zfcp device driver” on page 174). On a running Linux
system, you can also query or set these values by using the sysfs attributes with the same names.

Using port_scan_ratelimit reduces the number of scans, as shown in Figure 49 on page 188

Chapter 12. SCSI-over-Fibre Channel device driver 187

With scan rate limit, without backoff

. 0 A
}E”&QX&%;/ X L] Rate limit] || O
}E“&%gév B | | Rate limit Rate limit Rate limit | | Rate limit | |
%“C“#ﬁév A | | M Rate liT tl anll Rate limit | | Rate limit | | Ralte limit | |
I I T 1T [1] | Time

Figure 49. Port scan behavior with scan rate limit.

However, if the rate limit is set to the same value, the scans can still occur almost simultaneously, as for
FCP device Aand B in Linux 1.

Using port_scan_backoff and port_scan_ratelimit together delays port scans even further and
avoids simultaneous scans, as shown in Figure 50 on page 188. In the figure, FCP devices A and B in Linux
1 have the same rate limit and the same backoff values. The random element in the backoff value causes
the scans to occur at slightly different times.

With scan rate limit and backoff

%“C“F%Xfe;/ X Rate limit|Backof O

tnux o |1~ Ratelime —_|packett . O

LN = R 0 B 1 o W 1 S —
1] (T T 107 [111 | Time

Figure 50. Port scan behavior with backoff and scan rate limit.

Procedure
Use port_scan_backoff and port_scan_ratelimit together or separately to tune the behavior of
port scanning:

- To avoid too frequent scanning, set a minimum wait time between two consecutive scans for the same
Linux instance. Use the port_scan_ratelimit sysfs attribute.

By default, port_scan_ratelimit is turned on and has a value of 60000 milliseconds.
For example, to specify an attribute value of 12 seconds, issue:

echo 12000 > /sys/module/zfcp/parameters/port_scan_ratelimit

« To further spread scans over a certain time and thus avoid multiple simultaneous scans, set the
port_scan_backoff sysfs attribute.

By default, port_scan_backoff is turned on and has a value of 500 milliseconds.
For example, to query the setting, issue a command of this form:

cat /sys/module/zfcp/parameters/port_scan_backoff
500

To set the attribute to 1 second, issue:

echo 1000 > /sys/module/zfcp/parameters/port_scan_backoff

Results
The automatic port scans are delayed by the values specified. If a SAN notification is received during the
rate limit time, a port scan is conducted immediately after the delay time passed.

188 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Setting the attributes in sysfs is a useful method on a running system where you want to make dynamic
changes. If you want to make the changes persistent across IPLs, you can:

» Use the kernel or module parameter.
« Use the chzdev command.

Depending on the port event, one or more of the three zfcp parameters are evaluated to schedule a port
scan. For example, port scans that are triggered manually through sysfs are not delayed. Table 24 on page
189 shows which events evaluate which zfcp parameters.

Table 24. Port events and their use of the no_auto_port_rescan, port_scan_backoff, and
port_scan_ratelimit zfcp parameters

Event no_auto_port_rescan port_scan_backoff port_scan_ratelimit
FCP device resume Yes Yes No
User sets FCP device No Yes No
online

User initiates a port scan | No No No
User starts FCP device | Yes Yes Yes
recovery

Automatic FCP device Yes Yes Yes
recovery

SAN change notification |Yes Yes Yes

Displaying port information

For each target port, there is a number of read-only sysfs attributes with port information.

About this task
Table 25 on page 189 and Table 26 on page 189 summarize the relevant attributes.

Table 25. zfcp-specific attributes with port information within the FCP device sysfs tree

Attribute Explanation
access_denied This attribute is obsolete. The value is always 0.
fc_security IBM Fibre Channel Endpoint Security status of the connection

between an FCP device and the port. See “Investigating IBM Fibre
Channel Endpoint Security” on page 207.

in_recovery Shows if port is in recovery (0 or 1)

Table 26. Transport class attributes with port information

Attribute Explanation

node_name WWNN of the remote port (target port).
port_name WWPN of the remote port.

port_id Destination ID of the remote port
port_state State of the remote port.

roles Role of the remote port (usually FCP target).
scsi_target_id Linux SCSI ID of the remote port.

Chapter 12. SCSI-over-Fibre Channel device driver 189

Table 26. Transport class attributes with port information (continued)

Attribute Explanation
supported_classes Supported classes of service.
Procedure

Use the cat command to read an attribute.

Issue a command of this form to read a zfcp-specific attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<attribute>

where:

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the target port.

<attribute>
is one of the attributes in Table 25 on page 189.

To read transport class attributes of the associated target port, use a command of this form:

cat /sys/class/fc_remote_ports/<rport_name>/<attribute>

where:

<rport_name>
is the name of the remote port.

<attribute>
is one of the attributes in Table 26 on page 189.

Tip: With the HBA API package installed, you can also use the zfcp_ping and zfcp_show commands to
find out more about your ports. See “Tools for investigating your SAN configuration” on page 212. Use, for
example, apt install zfcp-hbaapi-utils toinstall the package.

Examples

In this example, information is displayed for a target port 0x500507630300c562 that is attached
through an FCP device with bus ID 0.0.3dOc:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0

To display transport class attributes of a target port you can use 1szfcp:

lszfcp -p 0x500507630300c562 -a
0.0.3d0c/0x500507630300c562 rport-0:0-0
Class = "fc_remote_ports"

dev_loss_tmo = "2147483647"
fast_io_fail_tmo = "5"

maxframe_size = "2048 bytes"
node_name = "0x5005076303ffc562"
port_id = "Ox652113"

port_name = "Ox500507630300c562"
port_state = "Online"

roles = "FCP Target"
scsi_target_id = "@"

supported_classes "Class 2, Class 3"

190 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Recovering a failed port

Failed target ports are automatically recovered by the zfcp device driver. You can read the in_recovery
attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

Procedure

Perform these steps to find out the recovery status of a port and, if needed, start or restart recovery:
1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/in_recovery

where:

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the target port.

The value is 1 if recovery is under way and 0 otherwise. If the value is O for a non-operational
port, recovery might have failed or the device driver might have failed to detect that the port is
malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

The value is 1 if recovery failed, and 0 otherwise.

3. You can start or restart the recovery process for the port by writing 0 to the failed attribute. Issue a
command of this form:

echo 0@ > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

Example

In the following example, a port with WWPN 0x500507630300c562 that is attached through an FCP
device with bus ID 0.0.3d0c is malfunctioning. The first command reveals that recovery is not already
under way. The second command manually starts recovery for the port:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0
echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/failed

Removing ports

Removing unused ports can save FCP channel resources. Additionally setting the
no_auto_port_rescan attribute avoids unnecessary attempts to recover unused remote ports.

Before you begin
The FCP device must be online.

About this task

List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports are
currently configured for the FCP device.

Chapter 12. SCSI-over-Fibre Channel device driver 191

You cannot remove a port while SCSI devices are configured for it (see “Configuring SCSI devices” on
page 193) or if the port is in use, for example, by error recovery.

Note: The next port scan will attach all available ports, including any previously removed ports. To prevent
removed ports from being reattached automatically, use zoning or the no_auto_port_rescan module
parameter, see “Setting up the zfcp device driver” on page 174.

Procedure

Issue a command of this form:

echo <wwpn> > /sys/bus/ccw/drivers/zfcp/<device_bus_1id>/port_remove

where:

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the port to be removed.

Example

In this example, two ports with WWPN 0x500507630303c562 and 0x500507630300c562 are
configured for an FCP device with bus ID 0.0.3d0c. The port with WWPN 0x500507630303c562 is then
removed.

1ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/Ox*

0Ox500507630303c562

0x500507630300c562

echo 0x500507630303c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_remove
1s /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0Ox*

0x500507630300c562

Working with SCSI devices

In an NPIV setup with auto lun scan, the SCSI devices are configured automatically. Otherwise, you
must configure FCP LUNs to obtain SCSI devices. In both cases, you can configure SCSI devices, display
information, and remove SCSI devices.

Working with SCSI devices comprises the following tasks:

« “Configuring SCSI devices” on page 193

- “Mapping the representations of a SCSI device in sysfs” on page 194

« “Displaying information about SCSI devices” on page 199
« “Setting the queue depth” on page 201

« “Recovering failed SCSI devices” on page 202

« “Updating the information about SCSI devices” on page 203

 “Setting the SCSI command timeout” on page 204
« “Controlling the SCSI device state” on page 204
« “Removing SCSI devices” on page 205

192 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Configuring SCSI devices

FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. If
needed, configure the LUN manually.

For each FCP device that uses NPIV mode and if you did not disable automatic LUN scanning (see “Setting
up the zfcp device driver” on page 174), the LUNs are configured for you. In this case, no FCP LUN entries
are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>.

To find out whether an FCP device is using NPIV mode, check the port_type attribute. For example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1901/host*/fc_host/host*/port_type
NPIV VPORT

To find out whether automatic LUN scanning is enabled, check the current setting of the module
parameter zfcp.allow_lun_scan. The example below shows automatic LUN scanning as turned on.

cat /sys/module/zfcp/parameters/allow_lun_scan
Y

Automatically attached SCSI devices

FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. In
this case, no FCP LUN entries are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/
<wwpn>.

What to do next

To check whether a SCSI device is registered, check for a directory with the name of the LUN

in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in the storage
system, or the FCP device is offline in Linux.

Manually configured FCP LUNs and their SCSI devices

For FCP devices that do not use NPIV mode, or if automatic LUN scanning is disabled, FCP LUNs must be
configured manually to obtain SCSI devices.

Before you begin
You have the following options for configuring FCP LUNs to attach SCSI devices:

- During installation, use the Ubuntu installer.

« On an installed system, the preferred tool to use for SCSI device configuration is the chzdev command
that is provided with Ubuntu Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on
page 351 for details.

You can always specify additional zfcp module parameters as explained in Chapter 4, “Kernel and module
parameters,” on page 25

Procedure

If your FCP device does not use NPIV mode, or if you have disabled automatic LUN scanning, proceed as
follows:

« Use the chzdev command.
To enable a zFCP LUN and create a persistent configuration, issue:

chzdev -e zfcp-lun <device_bus_id>:<wwpn>:<fcp_lun>

where:

Chapter 12. SCSI-over-Fibre Channel device driver 193

<device_bus_id>
specifies the FCP device.
<wwpn>
is the WWPN of the target port.
<fep_lun>
is the LUN of the SCSI device to be configured. The LUN is a 16 digit hexadecimal value padded
with zeros, for example 0x4010403300000000.

For a non-persistent configuration, use the chzdev command with the -a option.
This command starts a process with multiple steps:

1. It creates a directory in /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn> with the
LUN as the directory name. The directory is part of the list of all LUNs to configure. Without NPIV or
with auto LUN scanning disabled, zfcp registers only FCP LUNs contained in this list with the Linux
SCSI stack in the next step.

2. It initiates the registration of the SCSI device with the Linux SCSI stack. The FCP device must be
online for this step.

3. It waits until the Linux SCSI stack registration completes successfully or returns an error. It then
returns control to the shell. A successful registration creates a sysfs entry in the SCSI branch (see
“Mapping the representations of a SCSI device in sysfs” on page 194).

Example
Using chzdev: In this example, an FCP device with bus ID 0.0.198d is enabled. The WWPN of the target
port is 0x50050763070bc5e3. A SCSI device with LUN 0x4006404600000000 is added to the port.

chzdev -e zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

This creates a configuration that is persistent across boots. For a non-persistent configuration, use the
chzdev command with the -a option.

What to do next

To check whether a SCSI device is registered for the configured LUN, check for a directory with the name
of the LUN in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in
the storage system, or the FCP device is offline in Linux.

To see which LUNs are currently configured for the port, list the contents of /sys/bus/ccw/drivers/
zfcp/<device_bus_id>/<wwpn>.
Mapping the representations of a SCSI device in sysfs

Each SCSI device that is configured is represented by multiple directories in sysfs, in particular, within the
SCSI branch. Only manually configured LUNs are also represented within the zfcp branch.

You can find the FCP device bus-ID, the target WWPN, and the FCP LUN triplet that corresponds to a SCSI
device in two ways: By traversing the sysfs directory tree or by using commands.

Note: The zfcp-specific sysfs attributes hba_id, wwpn, and £cp_lun are deprecated. Use the methods
described here instead to find the addressing of a SCSI device.

About this task
The directory in the sysfs SCSI branch has the following form:

/sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>

where:

194 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<scsi_host_no>
is the SCSI host number that corresponds to the FCP device.

<scsi_id>
is the SCSI ID of the target port.

<scsi_lun>
is the LUN of the SCSI device.

The value for <scsi_lun> depends on the storage device. Often, it is a single-digit number, but for some
storage devices it has numerous digits.

For manually configured FCP LUNSs, see “Manually configured FCP LUNs and their SCSI devices” on page
193 for details about the directory in the zfcp branch.

Before you begin

You must identify the SCSI device in sysfs. For example, use xreadlink to find the path in sysfs with all
symbolic links resolved:

readlink -e /sys/bus/scsi/devices/2:0:1:1074741413
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Using sysfs
Note: Do not assume a stable sysfs structure. The following procedure accommodates changes in sysfs.

This example shows how you can traverse the directory tree to find the FCP device bus-ID, the target
WWPN, and the FCP LUN that correspond to a SCSI device name. The example assumes:

SCSI device
2:0:1:1074741413

FCP LUN
0x40a5400f00000000

target WWPN
0x50050763030bd327

FCP device bus-ID
0.0.1800
1. Obtain the hexadecimal FCP LUN.

a. Start at the SCSI device directory or anywhere in the subtree below the SCSI device. Ascend the
sysfs tree until you find the SCSI device. To do this, test every subdirectory for a symbolic link
named "subsystem" that points to a relative directory path whose last entry is scsi. Search for the
symbolic link named "subsystem":

1ls -dl subsystem
lrwxrwxrwx 1 root root © Oct 19 16:08 subsystem -> ../../../../../../../../bus/scsi

The subsystem symbolic link points to a directory tree where the last subdirectory is scsi.

b. Confirm that this is a SCSI device by reading the DEVTYPE line within the uevent attribute. The
value must be "scsi_device".

grep "~DEVTYPE=" uevent
DEVTYPE=scsi_device

The last part of the current directory name is then the decimal SCSI LUN, for example, assuming
you have found this directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Chapter 12. SCSI-over-Fibre Channel device driver 195

Here, the SCSI LUN is 1074741413.

c. Transform the SCSI LUN to the FCP LUN as follows:

Step Example

Take decimal LUN in decimal notation: 1074741413

Convert to hexadecimal notation: 0x400f40a5

Pad with O from the left to obtain a 64-bit value: 0x00000000400f40a5
Divide into 16-bit blocks (LUN levels): 0x0000|0000|400f|40a5
Reverse the order of the blocks: 0x40a5|400f|0000/0000
The resulting hexadecimal number is the FCP LUN: 0x40a5400f00000000

The Linux kernel function int_to_scsilun() indrivers/scsi/scsi_common.c converts a
decimal SCSI LUN to obtain the hexadecimal FCP LUN according to this algorithm. The conversion

works in both directions.

d. Confirm that the path includes a directory "rport-<no>". For example, assuming you have found this

directory:

i# pwd

/sys/devices/css0/0.0.000a/0.0.1800/host2/xpoxrt-2:0-1/target2:0:1/2:0:1:1074741413

If there is no rport directory, the transport is not fibre channel and thus not zfcp-related. Abandon

the search.

Table 27 on page 196 lists the libudev functions that you can use instead of manually traversing the

sysfs.

Table 27. Useful udev functions

Name

Task

udev_device_get_parent()

Ascend the sysfs tree.

udev_device_get_subsystem()

Retrieve subsystem name.

udev_device_get_devtype()

Retrieve device type.

udev_device_get_syspath()

Check if rport is a subdirectory.

2. Obtain the target WWPN.

a. Continue ascending the sysfs tree the same way until you find the SCSI target. To do this, test every
subdirectory for a symbolic link named "subsystem" that points to a relative directory path whose
last entry is scsi. Search for the symbolic link named "subsystem":

1ls -dl subsystem

lrwxrwxrwx 1 root root O Oct 19 16:08 subsystem -> ../../../../../../../bus/scsi

b. Confirm that this is a SCSI target by reading the DEVTYPE line within the uevent attribute. The value

must be "scsi_target".

grep "~DEVTYPE=" uevent
DEVTYPE=scsi_target

For example, assuming you have found this directory:

i# pwd

/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1

196 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

c. The SCSI target has a subdirectory fc_transpozrt. Descend this subtree until you find a
subdirectory that matches the SCSI target name. In this example, you would descend to
fc_transport/target2:0:1.

d. In the found target, read the port_name attribute:

cat port_name
0Ox50050763030bd327

The value of the port_name is the target WWPN.

Table 28. Useful udev functions

Name Task

udev_device_get_parent_with_subsystem_devtype(dev, "scsi", |Find the SCSI target.
"scsi_target")

udev_device_new_from_subsystem_sysname Find a matching target in the
(udev_device_get_udev(scsidev), "fc_transport", fc_transport branch.
udev_device_get_sysname(targetdev))

udev_device_get_sysattr_value() Read the port_name attribute.

3. Obtain the FCP device-bus ID. Keep ascending the sysfs tree. Search for the symbolic link "subsystem"
that points to a relative path where the last subdirectory is ccw.

For example:

1ls -dl subsystem
lrwxrwxrwx 1 root root O Oct 19 16:08 subsystem -> ../../../../bus/ccw

Then the name of the last directory in the current path is the FCP device-bus ID, for example:

pwd
/sys/devices/css0/0.0.000a/0.0.1800

Here, 0.0.1800 is the FCP device-bus ID.

Using commands

To map a SCSI device name to its corresponding FCP device bus-ID, target WWPN, and LUN, you can use
one of the following commands. The example assumes:

SCSI device
2:0:1:1074741413

FCP LUN
0x40a5400f00000000

target WWPN
0x50050763030bd327

FCP device bus-ID
0.0.1800

« Use the 1szfcp with the -D option to list the FCP device-bus ID, the target WWPN, and the FCP LUN for
all SCSI devices. For example:

1szfcp -D
0.0.1800/0x50050763030bd327/0x40a5400£00000000 2:0:1:1074741413

For details about the 1szfcp command, see “lszfcp - List zfcp devices” on page 686.

Chapter 12. SCSI-over-Fibre Channel device driver 197

« Use the 1szdev command on device type zfcp-lun devices, and display the ID and ATTR:scsi_dev
columns. For example:

lszdev zfcp-lun -a -c ID,ATTR:scsi_dev
ID ATTR:scsi_dev

0.0.1800:0x50050763030bd327 : 0x40a5400£00000000 2:0:1:1074741413

For details about the 1szdev command, see “lszdev - Display IBM Z device configurations” on page
682.

« Use the 1sscsi command with the - -transport and - -1unhex options in verbose mode to get
information about a SCSI device:

lsscsi -xxtv
[2:0:1:0x40a5400£00000000] disk fc:0x50050763030bd327,0x249900 /dev/sda
dir: /sys/bus/scsi/devices/2:0:1:1074741413 [/sys/devices/css0/0.0.000a/0.0.1800/host2
/rport-2:0-1/target2:0:1/2:0:1:1074741413]

For details about the 1sscsi command, see the man page.

Note: The details of the command output is subject to change. Do not rely on the output always being
exactly as shown.

Figure 51 on page 199 illustrates the sysfs structure of a SCSI device and how it corresponds to the
1szfcp command output.

Warning: Do not rely on the sysfs structure in the example. The sysfs structure changes without
notice.

198 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

5Y5

devices

<channel subsystem> ces(0

<subchannel bus D> 0.0.000a

<bus-1D of the FCF device> subsystem .../ccw

<host>

host?2

<remote port>

rport—2:0—1

<9SCSI target>

target2:0:1 |subsystem .../scsi

<5CS| device>

subsystem .../scoi
DEVTYPE=scsi_device

011074741413

DEVTYFPE=scsi_target

fc_transport

<target> target2:0:]

port n
= OxB00B07650250bd32

lszfcp -D

0.0.1600/0x50050765050bd527/0x4025400f00000000 2:0:1:1074741415

Figure 51. Example SCSI device in sysfs and command output

Displaying information about SCSI devices

For each SCSI device, there is a number of read-only attributes in sysfs that provide information for the

device.

About this task

Table 29 on page 200 lists the read-only attributes for manually configured FCP LUNSs, including those
attributes that indicate whether the device access is restricted by access control software on the FCP
channel. These attributes can be found in the zfcp branch of sysfs. The path has the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>/<attribute>

Chapter 12. SCSI-over-Fibre Channel device driver 199

Table 29. Attributes of manually configured FCP LUNs with device access information

Attribute

Explanation

access_denied

Flag that indicates whether access to the device is restricted by the FCP channel.
The value is 1 if access is denied and 0 if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI
device. For shared access to a SCSI device, preferably use NPIV (see “N_Port ID
Virtualization for FCP channels” on page 173). You might also use different FCP
channels or target ports.

access_shared

This attribute is obsolete. The value is always 0.

access_readonly

This attribute is obsolete. The value is always 0.

in_recovery

Shows if unit is in recovery (0 or 1)

Table 30 on page 200 lists further read-only attributes with information about the SCSI device. These

attributes can be found in the SCSI branch of sysfs. The path has the form:

/sys/class/scsi_device/<device_name>/device/<attribute>

Table 30. SCSI device class attributes

Attribute

Explanation

device_blocked

Flag that indicates whether the device is in blocked state (1) or not (0).

iocounterbits

The number of bits used for I/O counters.

iodone_cnt

The number of completed or rejected SCSI commands.

ioerr_cnt

The number of SCSI commands that completed with an error.

iorequest_cnt

The number of issued SCSI commands.

model The model of the SCSI device, received from inquiry data.
rev The revision of the SCSI device, received from inquiry data.
scsi_level The SCSI revision level, received from inquiry data.

type The type of the SCSI device, received from inquiry data.
vendor The vendor of the SCSI device, received from inquiry data.

zfcp_access_denied

Flag that indicates whether access to the device is restricted by the FCP channel.
The value is 1 if access is denied and O if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI

device. For shared access to a SCSI device, preferably use NPIV (see “N_Port

ID Virtualization for FCP channels” on page 173). You might also use different FCP
channels or target ports.

zfcp_in_recovery

Shows if unit is in recovery (0 or 1).

Procedure

Use the 1szfcp command (see “Iszfcp - List zfcp devices” on page 686) to display information about the
associated SCSI device.

200 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Alternatively, you can use sysfs to read the information. To read attributes of the associated SCSI device,
use a command of this form:

cat /sys/class/scsi_device/<device_name>/device/<attribute>

where:

<device_name>
is the name of the associated SCSI device.

<attribute>
is one of the attributes in Table 30 on page 200.

Tip: For SCSI-attached tape devices, you can display a summary of this information by using the 1stape
command (see “Istape - List tape devices” on page 670).

Examples

- In this example, information is displayed for a a manually configured FCP LUN with LUN
0x4010403200000000 that is accessed through a target port with WWPN 0x500507630300c562 and
is attached through an FCP device with bus ID 0.0.3d0c. For the device access is permitted.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_denied
0

For the device to be accessible, the access_denied attribute of the target port, 0x500507630300c562,
must also be 0 (see “Displaying port information” on page 189).

» You can use 1szfcp to display attributes of a SCSI device. The example shows the attributes listed in
Table 30 on page 200 as well as other relevant attributes:

lszfcp -1 0x4010403200000000 -a
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:1077035024

Class = "scsi_device"
device_blocked = "o"
iocounterbits = "32"
iodone_cnt = "Oxbe"
ioerr_cnt = "Ox2"
iorequest_cnt = "Oxbe"
model = "2107900"
queue_depth = "32"
queue_ramp_up_period = "120000"
queue_type = "simple"
rev = ".166"
scsi_level = "6"

state = "running"
timeout = "30"

type - g"
uevent = "DEVTYPE=scsi_device"
vendor = "IBM"
éfép_access_denied = "Q"
zfcp_failed = "o"
zfcp_in_recovery = "O"
zfcp_status = "Ox54000000"

Setting the queue depth

The Linux SCSI code automatically adjusts the queue depth as necessary. Changing the queue depth is
usually a storage server requirement.

Before you begin
Check the documentation of the storage server that is used or contact your storage server support group
to establish if there is a need to change this setting.

Chapter 12. SCSI-over-Fibre Channel device driver 201

The following information applies only to the SCSI layer. For block devices, such as SCSI disks, there is
also a limit in the Linux block layer. To display the block device limit, issue:

cat /sys/bus/scsi/devices/<scsi_device_name>/block/x/queue/nr_requests

Alternatively, issue:

cat /sys/block/sd<X>/queue/nr_requests

The smaller of SCSI device queue_depth and block device nr_requests is the effective setting.
For more details about block device requests, see www.kernel.org/doc/html/latest/block/queue-
sysfs.html#nr-requests-rw and www.kernel.org/doc/html/latest/block/stat.html#in-flight.

About this task

The value of the zfcp . queue_depth kernel parameter or the queue_depth sysfs attribute (see “Setting
up the zfcp device driver” on page 174) is used as the maximum queue depth of new SCSI devices. You
can query the queue depth by issuing a command of this form:

cat /sys/bus/scsi/devices/<SCSI device>/queue_depth

Example:

cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
16

You can change the maximum queue depth of each SCSI device by writing to the queue_depth attribute,
for example:

echo 8 > /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
8

This method is useful on a running system where you want to make dynamic changes. If you want to make
the changes persistent across IPLs, you can:

 Use the module parameter queue_depth described in “Setting up the zfcp device driver” on page 174.

- Write a udev rule to change the setting for each new SCSI device.
« Use the chzdev command. See “chzdev - Configure IBM Z devices” on page 584.

Linux forwards SCSI commands to the storage server until the number of pending commands exceeds the
queue depth. If the server lacks the resources to process a SCSI command, Linux queues the command
for a later retry and decreases the queue depth counter. Linux then waits for a defined ramp-up period.

If no indications of resource problems occur within this period, Linux increases the queue depth counter
until reaching the previously set maximum value. To query the current value for the queue ramp-up period
in milliseconds:

cat /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period
120000

To set a new value for the queue ramp-up period in milliseconds:
echo 1000 > /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period
Recovering failed SCSI devices

Failed SCSI devices are automatically recovered by the zfcp device driver. You can read the
zfcp_in_recovery attribute to check whether recovery is under way.

202 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.kernel.org/doc/html/latest/admin-guide/abi-stable.html#abi-sys-block-disk-queue-nr-requests
https://www.kernel.org/doc/html/latest/admin-guide/abi-stable.html#abi-sys-block-disk-queue-nr-requests
https://www.kernel.org/doc/html/latest/block/stat.html#in-flight

Before you begin
The FCP device must be online.

Procedure

Perform the following steps to check the recovery status of a failed SCSI device:
1. Check the value of the zfcp_in_recovery attribute. Issue the 1szfcp command:

1lszfcp -1 <LUN> -a

where <LUN> is the LUN of the associated SCSI device.

Alternatively, you can issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_in_recovery

The value is 1 if recovery is under way and 0 otherwise. If the value is O for a non-operational SCSI
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
SCSI device is malfunctioning.

2. To find out whether recovery failed, read the zfcp_failed attribute. Either use the 1szfcp
command again, or issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_failed

The value is 1 if recovery failed, and 0 otherwise.

3. You can start or restart the recovery process for the SCSI device by writing 0 to the zfcp_failed
attribute. Issue a command of this form:

echo 0 > /sys/class/scsi_device/<device_name>/device/zfcp_failed

Example

In the following example, SCSI device 0:0:0:0 is malfunctioning. The first command reveals that recovery
is not already under way. The second command manually starts recovery for the SCSI device:

cat /sys/class/scsi_device/0:0:0:0/device/zfcp_in_recovery
0

echo 0 > /sys/class/scsi_device/0:0:0:0/device/zfcp_failed

What to do next

If you manually configured an FCP LUN (see “Manually configured FCP LUNs and their SCSI devices” on
page 193), but did not get a corresponding SCSI device, you can also use the corresponding FCP LUN
sysfs attributes, in_recovery and failed, to check on recovery. See Table 29 on page 200.

Updating the information about SCSI devices

Use the rescan attribute of the SCSI device to detect changes to a storage device on the storage server
that are made after the device was discovered.

Before you begin
The FCP device must be online.

About this task

The initial information about the available SCSI devices is discovered automatically when LUNs first
become available.

Chapter 12. SCSI-over-Fibre Channel device driver 203

Procedure

To update the information about a SCSI device issue a command of this form:

echo <string> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/rescan

where <string> is any alphanumeric string and the other variables have the same meaning as in “Mapping
the representations of a SCSI device in sysfs” on page 194.

Example
In the following example, the information about a SCSI device 1:0:18:1086537744 is updated:

echo 1 > /sys/bus/scsi/devices/1:0:18:1086537744/rescan

Setting the SCSI command timeout

You can change the timeout if the default is not suitable for your storage system.

Before you begin
The FCP device must be online.

About this task

There is a timeout for SCSI commands. If the timeout expires before a SCSI command completes, error
recovery starts. The default timeout is 30 seconds.

To find out the current timeout, read the timeout attribute of the SCSI device:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_1id>:<scsi_lun>/timeout

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 194.

The attribute value specifies the timeout in seconds.
Procedure

To set a different timeout, enter a command of this form:
echo <timeout> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/timeout
where <timeout> is the new timeout in seconds.

Example

In the following example, the timeout of a SCSI device 1:0:18:1086537744 is first read and then set to 45
seconds:

cat /sys/bus/scsi/devices/1:0:18:1086537744/timeout
30
echo 45 > /sys/bus/scsi/devices/1:0:18:1086537744/timeout

Controlling the SCSI device state

You can use the state attribute of the SCSI device to set a SCSI device back online if it was set offline by
error recovery.

204 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
The FCP device must be online.

About this task

If the connection to a storage system is working but the storage system has a problem, the error recovery
might set the SCSI device offline. This condition is indicated by a message like "Device offlined - not ready
after error recovery".

To find out the current state of the device, read the state attribute:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 194. The state can be:

running
The SCSI device can be used for running regular I/O requests.

cancel
The data structure for the device is being removed.

deleted
Follows the cancel state when the data structure for the device is being removed.

quiesce
No I/O requests are sent to the device, only special requests for managing the device. This state is
used when the system is suspended.

offline
Error recovery for the SCSI device failed.

blocked
Error recovery is in progress and the device cannot be used until the recovery process is completed.

Procedure

Issue a command of this form:

echo running > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

Example

In the following example, SCSI device 1:0:18:1086537744 is offline and is then set online again:

cat /sys/bus/scsi/devices/1:0:18:1086537744/state
offline
echo running > /sys/bus/scsi/devices/1:0:18:1086537744/state

Removing SCSI devices

How to remove a SCSI device depends on whether your environment is set up to use NPIV.

Removing automatically attached SCSI devices

Automatically attached SCSI devices cannot be permanently removed individually.

Removing manually configured FCP LUNs and their SCSI device

Manually remove a SCSI device if your environment is not set up to use NPIV or if you disabled automatic
LUN scan. For details about disabling automatic LUN scan, see “Setting up the zfcp device driver” on page
174.

Chapter 12. SCSI-over-Fibre Channel device driver 205

Before you begin

The preferred tool to use for SCSI device removal is the chzdev command that is provided with Ubuntu
Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on page 351 for details.

Procedure

For a persistent configuration, use the chzdev command. Issue a command of this form:

chzdev -d zfcp-lun <device_bus_id>:<wwpn>:<fcp_lun>

Example

The following example removes a SCSI device with LUN 0x4010403200000000, accessed through a
target port with WWPN 0x500507630300c562 and is attached through an FCP device with bus ID
0.0.3dOc.

1. Remove the LUN:

For a persistent configuration, use:
chzdev -d zfcp-lun 0.0.3d0c:0x500507630300c562 :0x4010403200000000

For a non-persistent configuration, use the chzdev command with the -a option.

Confirming end-to-end configurations

You can confirm that specific integrity and security configurations are in place for your connections.

« “Confirming end-to-end data consistency checking” on page 206

« “Investigating IBM Fibre Channel Endpoint Security” on page 207

Confirming end-to-end data consistency checking

There are different types of end-to-end data consistency checking, with dependencies on hardware and
software.

About this task

End-to-end data consistency checking is based on a data integrity field (DIF) that is added to transferred
data blocks. DIF data is used to confirm that a data block originates from the expected source and

was not modified during the transfer between the storage system and the FCP device. The SCSI Block
Commands (T10 SBC) standard defines several types of DIF. Linux data integrity extension (DIX) builds on
DIF to extend consistency checking, for example, to the operating system, middleware, or an application.

The zfcp device driver supports the following modes of end-to-end data consistency checking;:
« The FCP device calculates and checks a DIF checksum (DIF type 1)

Enable this mode with the zfcp.dif= kernel or dif= module parameter.

« The Linux block integrity layer calculates and checks a TCP/IP checksum, which the FCP device then
translates to a DIF checksum (DIX type 1 with DIF type 1)

Enable this mode with the zfcp.dix= kernel or dix= module parameter.

Note: End-to-end data consistency checking in extended mode is experimental. SCSI disks for which
this mode is enabled must be accessed with direct I/0. Direct I/O requires direct access through

the block device or through a file system that fully supports end-to-end data consistency checking

in extended mode. For example, XFS provides this support. Expect error messages about invalid
checksums when you use other access methods.

206 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For more information about the kernel or module parameters that control the end-to-end data
consistency checking, see “Setting up the zfcp device driver” on page 174.

With end-to-end data consistency checking for SCSI disks enabled, Linux automatically discovers which
FCP devices and which SCSI disks support end-to-end data consistency checking. No further setup is
required.

For SCSI disks for which end-to-end data consistency checking is used, there is a sysfs directory
/sys/block/sd<x>/integrity

In the path, sd<x> is the standard name of the block device that corresponds to the SCSI disk.
End-to-end data consistency checking is used only if all of the following components support end-to-end
data consistency checking:

SCSI disk
Check your storage server documentation about T10 DIF support and any restrictions.

IBM Z hardware
IBM Z FCP adapter hardware supports end-to-end data consistency checking as of FICON Express8.

Hypervisor
For Linux on z/VM, you require a z/VM version with guest support for end-to-end data consistency
checking.

FCP device
Check your FCP adapter hardware documentation about the support and any restrictions. For
example, end-to-end data consistency checking might be supported only for disks with 512-byte
block size.

Read the prot_capabilities sysfs attribute of the SCSI host that is associated with an FCP device to
find out about its end-to-end data consistency checking support. The following values are possible:

0
The FCP device does not support end-to-end data consistency checking.

1
The FCP device supports DIF type 1.

17
The FCP device supports DIX type 1 with DIF type 1.

Procedure

Issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host<n>/scsi_host/host<n>/prot_capabilities

where <device_bus_id> identifies the FCP device and <n> is an integer that identifies the corresponding
SCSI host.

Example

cat /sys/bus/ccw/devices/0.0.1940/host0/scsi_host/host0/prot_capabilities
1

Investigating IBM Fibre Channel Endpoint Security

You can check whether the connections between your FCP devices and remote ports use authentication
and encryption.

About this task
You can investigate two aspects of IBM Fibre Channel Endpoint Security for your connections:

Chapter 12. SCSI-over-Fibre Channel device driver 207

« The capabilities of your FCP device, which depend on your adapter hardware with its FCP channels.
« The status of your connections between your FCP devices and remote ports.

For information about configuring IBM Fibre Channel Endpoint Security, see the Redbooks® publication
IBM Fibre Channel Endpoint Security for IBM DS8900F and IBM Z, SG24-8455.

Procedure

Display the IBM Fibre Channel Endpoint Security information for your environment by issuing an 1szdev
command. Use command options to read the £c_security attributes for your Fibre Channel hosts and
LUNs as shown in the following example:

lszdev zfcp -a -c TYPE,ID,ATTR:fc_security

TYPE ID ATTR:fc_security

zfcp-host 0.0.5150 Authentication, Encryption
zfcp-lun 0.0.5150:0x500507630400120c : 0x4081402000000000 Authentication

zfcp-lun 0.0.5150:0x500507630401120c:0x4081402000000000 Encryption

In the output, zfcp-host lines show information for your FCP devices:

Authentication
The FCP device supports authentication.

Encryption
The FCP device supports encryption.

unsupported
The FCP device does not support IBM Fibre Channel Endpoint Security.

none
The FCP device does not report any IBM Fibre Channel Endpoint Security capabilities.

unknown
The IBM Fibre Channel Endpoint Security capabilities of the FCP device are not known.

In the output, zfcp-1un lines show the current state of IBM Fibre Channel Endpoint Security of the
connection between the FCP device and the FC remote port used to access the LUN:

Authentication
The connection was authenticated.

Encryption
The connection uses encryption.

unsupported
The connection does not support IBM Fibre Channel Endpoint Security because the FCP device does
not support it.

none
The connection has no IBM Fibre Channel Endpoint Security.

unknown
The IBM Fibre Channel Endpoint Security state of the connection is not known.

Tip: If the output is lengthy, use the 1szdev device selection filter to narrow the scope to the devices of
interest (see “lszdev - Display IBM Z device configurations” on page 682).

Alternatively, you can use the 1szfcp command with the -a option to display the IBM Fibre Channel
Endpoint Security information for FCP devices. Use the 1szfcp command with the -m option to display
the information for your connections (see “lszfcp - List zfcp devices” on page 686). For example, issue the
following command:

lszfcp -HPam

Instead of using commands, you can read the information directly from sysfs. For example, for an FCP
channel that provides an FCP device with device-bus ID 0.0.5150:

208 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/drivers/zfcp/0.0.5150/fc_security
Authentication, Encryption

For a remote port 0x500507630401120c that is connected through this FCP device:

cat /sys/bus/ccw/drivers/zfcp/0.0.5150/0x500507630401120c/fc_security
Encryption

Both sysfs attributes are read-only.

Scenario for finding available LUNs

There are several steps from setting an FCP device online to listing the available LUNSs.

Procedure
1. Check for available FCP devices of type 1732/03:

¢ 1scss -t 1732/03
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

0.0.3c02 0.0.0015 1732/03 1731/03 80 80 ff 36000000 0OOOOOOO

Another possible type would be, for example, 1732/04.
2. Set the FCP device online:

chccwdev 0.0.3c02 --online

A port scan is performed automatically when the FCP device is set online.
3. Optional: Confirm that the FCP device is available and online:

lszfcp -b 0.0.3c02 -a
0.0.3c02 host0

Bus = "ccw"
availability = "good"
" failed = g
in_recovery = "o"
online = Tt

4. Optional: List the available ports:

lszfcp -P

0.0.3c02/0x50050763030bc562 rport-0:0-0
0.0.3c02/0x500507630310c562 rport-0:0-1
0.0.3c02/0x500507630040727b rport-0:0-10
0.0.3c02/0x500507630e060521 rport-0:0-11

5. Scan for available LUNs on FCP device 0.0.3¢c02, port 0x50050763030bc562:

1lsluns -c 0.0.3c02 -p 0x50050763030bc562
Scanning for LUNs on adapter 0.0.3c02
at port 0x50050763030bc562:
0x4010400000000000
0x4010400100000000
0x4010400200000000
0x4010400300000000
0x4010400400000000
0x4010400500000000
0x4010400600000000

Chapter 12. SCSI-over-Fibre Channel device driver 209

API provided by the zfcp HBA API support

You require the zFCP HBA API library for developing and running HBA management client applications.
To develop applications, you need the sub-package zfcp-hbaapi-dev. To run applications, you need the
libzfcphbaapiO sub-package.

Programmers: This information is intended for programmers who want to write HBA management clients
that run on Linux on IBM Z.

Developing applications

To develop applications, you must install the development version of the zFCP HBA API provided by the
zfcp-hbaapi-dev package, and link your application against the library.

Procedure

1. Install the development package for the zZFCP HBA APL.
Use, for example, apt-get:

apt-get install zfcp-hbaapi-dev

The development package zfcp-hbaapi-dev provides the necessary header files and .so symbolic
links needed to program against the zFCP HBA API.

2. Add the command-line option -1zfcphbaapi during the linker step of the build process to link your
application against the zFCP HBA API library.

3. In the application, issue the HBA_LoadLibrary () call as the first call to initialize the library.

Functions provided

The zfcp HBA API implements Fibre Channel - HBA API (FC-HBA) functions as defined in the FC-HBA
specification.

You can find the FC-HBA specification at www.t11.org. The following functions are available:

« HBA_CloseAdapter()

« HBA_FreeLibrary()

« HBA_GetAdapterAttributes()

« HBA_GetAdapterName()

« HBA_GetAdapterPortAttributes()

« HBA_GetDiscoveredPortAttributes()
« HBA_GetEventBuffer()

« HBA_GetFcpTargetMapping()

« HBA_GetFcpTargetMappingV2()

« HBA_GetNumberOfAdapters()

« HBA_GetRNIDMgmtInfo()

« HBA_GetVersion()

« HBA_LoadLibrary()

- HBA_OpenAdapter()

« HBA_RefreshAdapterConfiguration()
« HBA_RefreshInformation()

« HBA_RegisterForAdapterAddEvents()
« HBA_RegisterForAdapterEvents()

« HBA_RegisterForAdapterPortEvents()

210 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://www.t11.org

« HBA_RegisterForAdapterPortStatEvents()
- HBA_RegisterForLinkEvents()

« HBA_RegisterForTargetEvents()
« HBA_RegisterLibrary()

« HBA_RegisterLibraryV2()

« HBA_RemoveCallback()

« HBA_SendCTPassThru()

« HBA_SendCTPassThruv2()

« HBA_SendLIRR()

« HBA_SendReadCapacity()

« HBA_SendReportLUNs()

« HBA_SendReportLUNsV2()

« HBA_SendRNID()

« HBA_SendRNIDV()

« HBA_SendRPL()

« HBA_SendRPS()

« HBA_SendScsilnquiry()

« HBA_SendSRL()

« HBA_SetRNIDMgmtInfo()

All other FC-HBA functions return status code HBA_STATUS_ERROR_NOT_SUPPORTED where possible.

Note: ZFCP HBA API for Linux 5.16 can access only FCP devices, ports, and units that are configured in
the operating system.

Getting ready to run applications

To run an application, you must install the zFCP HBA API library that is provided by the 1ibzfcphbaapi®
package. You can set environment variables to log any errors in the library, and use tools to investigate the
SAN configuration.

Before you begin
To use the HBA API support, you need the zFCP HBA API library, 1ibzfcphbaapi®. Installing
libzfcphbaapi® automatically installs all dependent packages.

The application must be developed to use the zFCP HBA API library, see “Developing applications” on
page 210.

Procedure

Follow these steps to access the library from a client application:

1. Install the 1ibzfcphbaapi® package with apt-get.
For example:

apt-get install libzfcphbaapi®

2. Optional: Set the environment variables for logging errors.
The zfcp HBA API support uses the following environment variables to log errors in the zfcp HBA API
library:

LIB_ZFCP_HBAAPI_LOG_LEVEL
specifies the log level. If not set or set to zero, there is no logging (default). If set to an integer
value greater than 1, logging is enabled.

Chapter 12. SCSI-over-Fibre Channel device driver 211

LIB_ZFCP_HBAAPI_LOG_FILE
specifies a file for the logging output. If not specified, stderris used.

What to do next

You can use the zfcp_ping and zfcp_show commands to investigate your SAN configuration. These
commands are available with the zfcp-hbaapi-utils package.

Tools for investigating your SAN configuration

The HBA API package zfcp-hbaapi-utils includes the following tools that can help you to investigate your
SAN configuration and to solve configuration problems.

zfcp_ping
to probe a port in the SAN.

zfcp_show
to retrieve information about the SAN topology and details about the SAN components.

See How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413 for details.

212 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 13. Storage-class memory device driver

LPAR only: The storage-class memory device driver applies to Linux in LPAR mode only.

Storage-class memory (SCM) is a class of data storage devices that combines properties of both storage
and memory.

SCM can be implemented as Flash Express or as Virtual Flash Memory.

What you should know about storage-class memory

Storage-class memory (SCM) is accessed, in chunks called increments, through extended asynchronous
data mover (EADM) subchannels.

The LPAR on which your Linux instance runs must be configured to provide SCM.

« At least one EADM subchannel must be available to the LPAR. Because SCM supports multiple
concurrent I/0 requests, it is advantageous to configure multiple EADM subchannels. A typical number
of EADM subchannels is 64.

« One or more SCM increments must be added to the I/O configuration of the LPAR.
In Linux, each increment is represented as a block device. You can use the block device with standard

Linux tools as you would use any other block device. Commonly used tools that work with block devices
include: £disk, mkfs, and mount.

Storage-class memory device nodes

Applications access storage-class memory devices by device nodes. Normally, Ubuntu Server 22.04 LTS
creates a device node for each storage increment. Alternatively, use the mknod command to create one.

The device driver uses a device name of the form /dev/scm<x> for an entire block device. In the name,
<x> is one or two lowercase letters.

You can partition a block device into up to seven partitions. If you use partitions, the device driver
numbers them from 1 - 7. The partitions then have device nodes of the form /dev/scm<x><n>, where
<n>is anumberinthe range 1 - 7, for example /dev/scmal.

The following example shows two block devices, scma and scmb, where scma has one partition, scmal.

1sblk

NAME MAJ:MIN RM SIZE RO MOUNTPOINT
scma 252:0 0 16G 0O

‘-scmal 252:1 0 16G 0

scmb 252:8 0 16G 0

You must load the module before you check for the device node.

To check whether there already is a node, use for example, 1shlk to list all block devices and look for
"scm" entries.

To create storage-class memory device nodes issue commands of the form:
mknod /dev/scmal b <major> 1

mknod /dev/scma2 b <major> 2
mknod /dev/scma3 b <major> 3

Setting up the storage-class memory device driver

Configure the storage-class memory device driver by using the module parameters.

© Copyright IBM Corp. 2000, 2023 213

Storage-class memory module parameter syntax

f_ nr_requests=64 j f_ nr_request_per_io=8 ﬁ
»— modprobe — scm_block >4

L _J)
nr_requests= <num> L nr_request_per_io= <num> J

where

nr_requests

specifies the number of parallel I/O requests. Set this number to the number of EADM subchannels.
The default is 64.

nr_request_per_io
submits more concurrent I/0O requests than the current limit, which is based on the number of
available EADM subchannels (64). Valid values are 1 - 64. Increasing the requests increases the
number of I/0 requests per second, especially for requests with a small block size. The default
number of requests is 8. Depending on the workload, this setting might improve the throughput of the
scm_block driver.

Working with storage-class memory increments

You can list storage-class memory increments and EADM subchannels.

« “Displaying EADM subchannels” on page 214

« “Listing storage-class memory increments” on page 214
« “Combining SCM devices with LVM” on page 215

Displaying EADM subchannels

Use the 1secss command to list EADM subchannels.

About this task

The extended asynchronous data mover (EADM) subchannels are used to transfer data to and from the
storage-class memory. At least one EADM subchannel must be available to the LPAR.

Procedure

To list EADM subchannels, issue:

lscss --eadm
Device Subchan.

n/a 0.0.ffe0
n/a 0.0.ffo1
n/a 0.0.ffe2
n/a 0.0.ff03
n/a 0.0.ffo4
n/a 0.0.ff05
n/a 0.0.ffe6
n/a 0.0.ff07

For more information about the 1scss command, see “Iscss - List subchannels” on page 655.

Listing storage-class memory increments

Use the 1sscm command to see the status and attributes of storage-class memory increments.

214 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task

Each storage-class memory increment can be accessed as a block device through a device node /dev/
scm<x>. Optionally, you can partition a storage-class memory increment in up to seven partitions.

You can also use the 1sblk command to list all block devices.

Procedure

To list all storage-class memory increments, their status, and attributes, issue:

lsscm

SCM Increment Size Name Rank D_state O_state Pers ResID
000000000000EEO0 16384MB scma 1 2 1 2 1
0000000400000000 16384MB scmb 1 2 1 2 1

See “lsscm - List storage-class memory increments” on page 667 for details about the 1sscm command.

Combining SCM devices with LVM

You can use LVM to combine multiple SCM block devices into an arbitrary sized LVM device.

Example

Configure SCM as any other block devices in LVM. If your version of LVM does not accept SCM devices
as valid LVM device types and issues an error message, add the SCM devices to the LVM configuration
file /etc/1vm/1vm.conf. Add the following line to the section labeled "devices":

types = ["scm", 8]

Chapter 13. Storage-class memory device driver 215

216 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 14. Managing NVMe devices

LPAR and z/VM: The NVMe information applies to Linux in LPAR mode and to Linux on z/VM.
As of LinuxONE II, PCIe-attached NVMe devices are supported on IBM LinuxONE.

As of LinuxONE III, you can use NVMe devices as stand-alone dump devices for Linux in LPAR mode orin

a DPM partition, see Using the Dump Tools, SC33-8412.

The general information about PCIe and PCle-attached devices applies to NVMe, see Chapter 33, “PCI
Express support,” on page 397.

To Linux, NVMe devices are block devices that can be partitioned and hold file systems. NVMe disk
controllers use name spaces to divide a physical NVMe device into multiple logical devices. Booting from
an HMC might require name space ID 1 for NVMe boot devices.

Device names and nodes

NVMe device names follow this pattern: nvme<number>n<namespace>, where:

<number>

is an integer that is assigned by Linux during the boot process. The first NVMe device that is detected
is assigned 0. Devices that follow are assigned consecutive numbers.

<namespace>

is an NVMe name space ID that is assigned by the NVMe disk controller.

For partitions, p<n> is appended to the device name of the whole device, where <n> denotes the <n>-th

partition.

Table 31. Standard device names and nodes

Standard device names

Standard device nodes

Comment

Whole device:
nvmeOnl
Partitions:
nvmeOnlpl
nvmeOnlp2

Whole device:
/dev/nvme®nl
Partitions:
/dev/nvmeOnlpl
/dev/nvmeOnlp2

First device with name space 1

Whole device:
nvmeOn2
Partitions:
nvmeOn2pl
nvme@n2p2

Whole device:
/dev/nvmeOn2
Partitions:
/dev/nvmeOn2pl
/dev/nvme®n2p2

First device with name space 2

Whole device:
nvmelnl
Partitions:
nvmelnlpl
nvmelnlp2

Whole device:
/dev/nvmelnl
Partitions:
/dev/nvmelnlpl
/dev/nvmelnlp2

Second device with name space 1

The mapping between physical storage space and standard device names does not persist across
reboots. Depending on the udev rules of your distribution, udev creates other device nodes for you.

Example: node based on a WWN
/dev/disk/by-id/nvme-eui.01000000010000005cd2e4f0bcl174151

© Copyright IBM Corp. 2000, 2023

217

The WWN is a unique, fixed hardware property. This type of device node maps to the same NVMe
device, across reboots.

Example: node based on manufacturer specifications
/dev/disk/by-id/nvme-INTEL_SSDPE2KX040T7_PHLF806200284POIGN

The manufacturer specification is a unique, fixed hardware property that includes the hardware model
and serial number. This type of device node maps to the same NVMe device, across reboots.

The device nodes that udev creates for partitions depend on the udev rules. Commonly, the nodes names
match the names of the whole device, with -partl appended for the first partition, -part2 for the
second partition, and -part<x> for the <x>th partition.

Function addresses

If your LinuxONE hardware is configured to support UIDs, NVMe function addresses follow the pattern
<UID>:00:00.0 and map to the same physical PCI slot of the NVMe device across reboots.

Without UID support, the pattern is <hhhh>:00:00.0, where the variable part, <hhhh>, is a 4-digit
hexadecimal number. Linux sets this number to 0000 for the first PCIe device that it discovers and
increments it by 1 for subsequent devices. So, according to this pattern, the function addresses for the
first 3 PCIe devices are: 0000:00:00.0, 0001:00:00.0, and 0002:00:00.0. This naming scheme
does not persist across reboots. Because function addresses include all PCIe devices, this means that
addresses that mapped to a specific NVMe device might not only map to a different NVMe device, but to a
different type of PCIe device altogether.

To find the function address for a standard device node use the 1s command to display details for the
device's representation as a block device in sysfs.

1s -1 /sys/block/nvmeOnl
lrwxrwxrwx. 1 root root O Oct 23 16:46 /sys/block/nvme®nl -> ../devices/pcif850:00/0850:00:00.0/
nvme/nvme®/nvmeOnl

In the example, nvmeOnl maps to an NVMe device with a PCIe function address 0850:00:00. 0.

Tip: Issue 1s -1 /sys/block/nvmex for a complete mapping of function addresses and standard
device nodes.

NVMe devices in sysfs

PCIe-attached NVMe devices have all generic PCIe sysfs attributes at /sys/bus/pci/devices/
<function_address>, see Chapter 33, “PCI Express support,” on page 397.

You can find NVMe-specific attributes in the device representations at /sys/bus/pci/drivers/nvme/
<function_address>.

NVMe devices with name space ID 1 can be prepared as boot devices. Consequently, they might be
represented in /sys/firmware:

« As the IPL device of the current Linux instance at /sys/firmware/ipl, see “Further attributes for IPL
type nvme” on page 113.

« As the currently configured re-IPL device at /sys/firmware/xreipl/nvme, see “Attributes for nvme”
on page 115.

218 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 15. Channel-attached tape device driver

LPAR and z/VM: The channel-attached tape device driver applies to Linux in LPAR mode and to Linux on
z/VM.

The Linux on IBM Z tape device driver supports channel-attached tape devices.

SCSI tape devices that are attached through an FCP channel are handled by the zfcp device driver (see
Chapter 12, “SCSI-over-Fibre Channel device driver,” on page 169).

Features

The tape device driver supports a range of channel-attached tape devices and functions of these devices.

 The tape device driver supports channel-attached tape drives that are compatible with IBM 3480,
3490, 3590, and 3592 magnetic tape subsystems. Various models of these device types are handled
(for example, the 3490/10).

3592 devices that emulate 3590 devices are recognized and treated as 3590 devices.

« Logical character devices for non-rewinding and rewinding modes of operation (see “Tape device modes
and logical devices” on page 219)

« Control operations through mt (see “Using the mt command” on page 221)

« Message display support (see “tape390_display - Display messages on tape devices and load tapes” on
page 733)

« Encryption support (see “tape390_crypt - Manage tape encryption” on page 729)

« Up to 128 physical tape devices

What you should know about channel-attached tape devices

A naming scheme helps you to keep track of your tape devices, their modes of operation, and the
corresponding device nodes.

Tape device modes and logical devices

The tape device driver supports up to 128 physical tape devices. Each physical tape device can be used as
a character device in non-rewinding or in rewinding mode.

In non-rewinding mode, the tape remains at the current position when the device is closed. In rewinding
mode, the tape is rewound when the device is closed. The tape device driver treats each mode as a
separate logical device.

Both modes provide sequential (traditional) tape access without any caching done in the kernel.

You can use a channel-attached tape device in the same way as any other Linux tape device. You can write
to it and read from it using standard Linux facilities such as GNU tax. You can perform control operations
(such as rewinding the tape or skipping a file) with the standard tool mt.

Tape naming scheme

The tape device driver assigns minor numbers along with an index number when a physical tape device
comes online.

The naming scheme for tape devices is summarized in Table 32 on page 220.

© Copyright IBM Corp. 2000, 2023 219

Table 32. Tape device names and minor numbers

Device Names Minor numbers
Non-rewinding character devices ntibm<n> 2x<n>
Rewinding character devices rtibm<n> 2x<n>+1

where <n> is the index number that is assigned by the device driver. The index starts from 0 for the first
physical tape device, 1 for the second, and so on. The name space is restricted to 128 physical tape
devices, so the maximum index number is 127 for the 128th physical tape device.

The index number and corresponding minor numbers and device names are not permanently associated
with a specific physical tape device. When a tape device goes offline, it surrenders its index number. The
device driver assigns the lowest free index number when a physical tape device comes online. An index
number with its corresponding device names and minor numbers can be reassigned to different physical
tape devices as devices go offline and come online.

Tip: Use the 1stape command (see “Istape - List tape devices” on page 670) to determine the current
mapping of index numbers to physical tape devices.

When the tape device driver is loaded, it dynamically allocates a major number to channel-attached
character tape devices. A different major number might be used when the device driver is reloaded, for
example when Linux is rebooted.

For online tape devices directories provide information about the major/minor assignments. The
directories have the form:

- /sys/class/tape390/ntibm<n>
- /sys/class/tape390/rtibm<n>

Each of these directories has a dev attribute. The value of the dev attribute has the form
<major>:<minor>, where <major> is the major number for the device and <minor> is the minor number
specific to the logical device.

Example

In this example, four physical tape devices are present, with three of them online. The TapeNo column
shows the index number and the BusID column indicates the associated physical tape device. In the
example, no index number is allocated to the tape device in the last row. The device is offline and,
currently, no names and minor numbers are assigned to it.

lstape --ccw-only

TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
0 0.0.01a1 3490/10 3490/40 auto UNUSED --- UNLOADED
1 0.0.01a0 3480/01 3480/04 auto UNUSED --- UNLOADED
2 0.0.0172 3590/50 3590/11 auto IN_USE --- LOADED
N/A 0.0.01ac 3490/10 3490/40 N/A OFFLINE --- N/A

Table 33 on page 220 summarizes the resulting names and minor numbers.

Table 33. Example names and minor numbers

Bus ID Index (TapeNo) Device Device name Minor number

0.0.01a1 0 non-rewind ntibmO 0
rewind rtibmO 1

0.0.01a0 1 non-rewind ntibm1 2
rewind rtibm1 3

220 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 33. Example names and minor numbers (continued)

Bus ID Index (TapeNo) Device Device name Minor number

0.0.0172 2 non-rewind ntibm2 4
rewind rtibm2 5

0.0.01ac not assigned n/a n/a not assigned

For the online devices, the major/minor assignments can be read from their respective representations
in /sys/class:

cat /sys/class/tape390/ntibm@/dev
isﬂég /sys/class/tape390/rtibm0/dev
ﬁ5§é% /sys/class/tape390/ntibml/dev
isgé% /sys/class/tape390/rtibml/dev
isﬂéi /sys/class/tape390/ntibm2/dev
zzgég /sys/class/tape390/rtibm2/dev

In the example, the major number is 254. The minor numbers are as expected for the respective device
names.

Tape device nodes

Applications access tape devices by device nodes. Ubuntu Server 22.04 LTS uses udev to create two
device nodes for each tape device.

The device nodes have the form /dev/<name>, where <name> is the device name according to “Tape
naming scheme” on page 219.

For example, if you have two tape devices, udev creates the device nodes that are shown in Table 34 on

page 221:
Table 34. Tape device nodes

Node for non-rewind device rewind device
First tape device /dev/ntibm0 /dev/rtibm0O
Second tape device /dev/ntibml /dev/rtibml

Using the mt command

There are differences between the MTIO interface for channel-attached tapes and other tape drives.
Correspondingly, some operations of the mt command are different for channel-attached tapes.

The mt command handles basic tape control in Linux. See the man page for general information about mt.

setdensity
has no effect because the recording density is automatically detected on channel-attached tape
hardware.

drvbuffer
has no effect because channel-attached tape hardware automatically switches to unbuffered mode if
buffering is unavailable.

lock and unlock
have no effect because channel-attached tape hardware does not support media locking.

Chapter 15. Channel-attached tape device driver 221

setpartition and mkpartition
have no effect because channel-attached tape hardware does not support partitioning.
status
returns a structure that, aside from the block number, contains mostly SCSI-related data that does not
apply to the tape device driver.
load
does not automatically load a tape but waits for a tape to be loaded manually.
offline and rewoffl and eject

all include expelling the currently loaded tape. Depending on the stacker mode, it might attempt to
load the next tape (see “Loading and unloading tapes” on page 226 for details).

Loading the tape device driver

There are no module parameters for the tape device driver. You must load the required device driver
module before you can use it.

Use the modprobe command to load the modules.

Tape module syntax

»— modprobe T tape_34xx j—N
tape_3590

See the modprobe man page for details about modprobe.

Working with tape devices

Typical tasks for working with tape devices include displaying tape information, controlling compression,
and loading and unloading tapes.

For information about working with the channel measurement facility, see Chapter 55, “Channel
measurement facility,” on page 537.

For information about displaying messages on a tape device's display unit, see “tape390_display - Display
messages on tape devices and load tapes” on page 733.

See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

 “Setting a tape device online or offline” on page 222
- “Displaying tape information” on page 224
« “Enabling compression” on page 226

« “Loading and unloading tapes” on page 226

Setting a tape device online or offline

Set a tape device online or offline with the chcewdev command or through the online sysfs attribute of
the device.

About this task

Setting a physical tape device online makes both corresponding logical devices accessible:
« The non-rewind character device
« The rewind character device

222 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

At any time, the device can be online to a single Linux instance only. You must set the tape device offline
to make it accessible to other Linux instances in a shared environment.

Procedure

Use the chzdev command (see “chzdev - Configure IBM Z devices” on page 584) to set a tape online or
offline.

Alternatively, use the chcewdev command, or you can write 1 to the online attribute of the device to set it
online; or write O to set it offline.

Results

When a physical tape device is set online, the device driver assigns an index number to it. This index
number is used in the standard device nodes (see “Tape device nodes” on page 221) to identify the
corresponding logical devices. The index number is in the range 0 - 127. A maximum of 128 physical tape
devices can be online concurrently.

If you are using the standard device nodes, you must find out which index number the tape device driver
has assigned to your tape device. This index number, and consequently the associated standard device
node, can change after a tape device was set offline and back online.

Ubuntu Server 22.04 LTS uses udev to create alternative device nodes that distinguish devices by the
physical device's bus ID instead of the index number. If you are using such device nodes, you do not need
to know the index number.

If you need to know the index number, issue a command of this form:

lstape --ccw-only <device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. The index
number is the value in the TapeNo column of the command output. For more information about the
1stape command, see “Istape - List tape devices” on page 670.

Examples

« To set a physical tape device with device bus-ID 0.0.015f online, first load the module if you have not
already done so:

modprobe tape_3590

Then issue:

chzdev -e tape 015f

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -e 0.0.015f

or

echo 1 > /sys/bus/ccw/devices/0.0.015f/online

To find the index number that the tape device driver assigned to the device, issue:

Chapter 15. Channel-attached tape device driver 223

lstape 0.0.015f --ccw-only
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

In the example, the assigned index number is 2. The standard device nodes for working with the device
until it is set offline are then:

— /dev/ntibm2 for the non-rewinding device
— /dev/rtibm2 for the rewinding device
« To set a physical tape device with device bus-ID 0.0.015f offline, issue:

chzdev -d tape 015f

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

i# chccwdev -d 0.0.015f

or

echo 0 > /sys/bus/ccw/devices/0.0.015f/online

Displaying tape information

Use the 1stape command to display summary information about your tape devices, or read tape
information from sysfs.

Each physical tape device is represented in a sysfs directory of the form
/sys/bus/ccw/devices/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. This directory
contains a number of attributes with information about the physical device. The attributes: blocksize,
state, operation, and medium_state, might not show the current values if the device is offline.

Table 35. Tape device attributes

Attribute Explanation

online 1 if the device is online or 0 if it is offline (see “Setting a tape device online
or offline” on page 222)

cmb_enable 1 if channel measurement block is enabled for the physical device or 0 if it
is not enabled (see Chapter 55, “Channel measurement facility,” on page
537)

cutype Type and model of the control unit

devtype Type and model of the physical tape device

blocksize Currently used record size in bytes or 0 for auto

224 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 35. Tape device attributes (continued)

Attribute

Explanation

state

State of the physical tape device, either of:

UNUSED
The device is not in use and is available to any operating system image
in a shared environment.

IN_USE
The device is being used by a process on this Linux instance.

OFFLINE
The device is offline.

NOT_OP
Device is not operational.

operation

The current tape operation, for example:
No operation
WRI
Write operation
RFO
Read operation
MSN
Medium sense

Several other operation codes exist, for example, for rewind and seek.

medium_state

The current state of the tape cartridge:

1

Cartridge is loaded into the tape device
2

No cartridge is loaded
0

The tape device driver does not have information about the current
cartridge state

Procedure

Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 35 on page 224.

Example

The following 1stape command displays information about a tape device with bus ID 0.0.015f:

lstape 0.0.015f --ccw-only
CuType/Model DevType/Model BlkSize State Op MedState

TapeNo BusID

2 0.0.015f

3480/04 auto UNUSED --- LOADED

This sequence of commands reads the same information from sysfs:

Chapter 15. Channel-attached tape device driver 225

cat /sys/bus/ccw/devices/0.0.015f/online

1

cat /sys/bus/ccw/devices/0.0.015f/cmb_enable

0

cat /sys/bus/ccw/devices/0.0.015f/cutype

3480/01

cat /sys/bus/ccw/devices/0.0.015f/devtype

3480/04

cat /sys/bus/ccw/devices/0.0.015f/blocksize

0

cat /sys/bus/ccw/devices/0.0.015f/state

UNUSED

cat /sys/bus/ccw/devices/0.0.015f/operation
0.015f/medium_state

cat /sys/bus/ccw/devices/0.
1

Enabling compression

Control Improved Data Recording Capability (IDRC) compression with the mt command provided by the
package mt-st.

About this task

Compression is off after the tape device driver is loaded.

Procedure

To enable compression, issue:
mt -f <node> compression
or

mt -f <node> compression 1

where <node> is the device node for a character device, for example, /dev/ntibm0.

To disable compression, issue:
mt -f <tape> compression 0

Any other numeric value has no effect, and any other argument disables compression.

Example

To enable compression for a tape device with a device node /dev/ntibm0 issue:
mt -f /dev/ntibm@ compression 1

Loading and unloading tapes

Unload tapes with the mt command. How to load tapes depends on the stacker mode of your tape
hardware.

Procedure

Unload tapes with a command of this form:

mt -f <node> unload

where <node> can be a device node for the non-rewinding device or for the rewinding device.

226 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Whether you can load tapes from your Linux instance depends on the stacker mode of your tape
hardware. There are three possible modes:

manual
Tapes must always be loaded manually by an operator. You can use the tape390_display command
(see “tape390_display - Display messages on tape devices and load tapes” on page 733) to display a
short message on the tape device's display unit when a new tape is required.

automatic
If there is another tape present in the stacker, the tape device automatically loads a new tape when
the current tape is expelled. You can load a new tape from Linux by expelling the current tape with the
mt command.

system
The tape device loads a tape when instructed from the operating system. From Linux, you can load
a tape with the tape390_display command (see “tape390_display - Display messages on tape
devices and load tapes” on page 733). You cannot use the mt command to load a tape.

Example

To expel a tape from a tape device that can be accessed through a device node /dev/ntibm0, issue:

mt -f /dev/ntibm® unload

Assuming that the stacker mode of the tape device is system and that a tape is present in the stacker,
you can load a new tape by issuing:

tape390_display -1 "NEW TAPE" /dev/ntibm0

"NEW TAPE" is a message that is displayed on the display unit of the tape device until the tape device
receives the next tape movement command.

Chapter 15. Channel-attached tape device driver 227

228 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 4. Networking

Ubuntu Server 22.04 LTS includes several network device drivers that are specific to z/Architecture.

For information about high-performing, secure networking and connectivity, see

www.ibm.com/it-infrastructure/z/capabilities/networking

Newest version

You can find the newest version of this publication at

ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions

For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at

https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

Example

IBM mainframe

z/VM in LFAR LPAR
Linux 1 Linux 2 Linux 3
OSA NIC NIC QP10 iQDIO [FeS
Guest LAN (Type QDIO)
10.2.0.011&
HiperSockets
%2z 10.3.0.0/16 Lo
Express card
LAN LAN
10.1.0.01&6 10.4.0.0"6

Figure 52. Networking example

In the example there are three Linux instances; two of them run as z/VM guests in one LPAR and a third

Linux instance runs in another LPAR. Within z/VM, Linux instances can be connected through a guest
LAN or VSWITCH. Within and between LPARs, you can connect Linux instances through HiperSockets.

OSA-Express cards running in either non-QDIO mode (called LCS here) or in QDIO mode can connect the

mainframe to an external network.

© Copyright IBM Corp. 2000, 2023

229

https://www.ibm.com/it-infrastructure/z/capabilities/networking
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

Table 36 on page 230 lists which control units and device type combinations are supported by the
network device drivers.

Table 36. Supported device types, control units, and corresponding device drivers

Device

type Control unit Device driver Comment

1732/01 1731/01 geth OSA configured as OSD

1732/02 1731/02 geth OSA configured as OSX

1732/05 1731/05 geth HiperSockets

0000/00 3088/1f lcs 2216 Nways Multiaccess Connector
0000/00 [3088/60 lcs OSA configured as OSE (non-QDIO)

230 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 16. geth device driver for OSA-Express
(QDIO) and HiperSockets

LPAR and z/VM: The geth device driver applies to Linux in LPAR mode and to Linux on z/VM.

The geth device driver supports a multitude of network connections, for example, connections through
Open Systems Adapters (OSA), HiperSockets, guest LANs, and virtual switches.

Real connections that use OSA-Express
An IBM mainframe uses OSA-Express adapters, which are real LAN-adapter hardware, see Figure 53
on page 231. These adapters provide connections to the outside world, but can also connect virtual
systems (between LPARs or between z/VM guest virtual machines) within the mainframe. The geth
driver supports these adapters if they are defined to run in queued direct I/O (QDIO) mode (defined
as OSD or OSX in the hardware configuration). OSD-devices are the standard IBM Z LAN-adapters. For
details about OSA-Express in QDIO mode, see Open Systems Adapter-Express Customer's Guide and
Reference, SA22-7935.

[BM mainframe
z/VYM in LFAR
Linux 1 Linux 2
101116 1021116 10.2.1.2/16
05A NIC NIC
N\
OSA 09A
Express Express
LAN LAN
10.1.0.0/16 10.2.0.0/16

Figure 53. OSA-Express adapters are real LAN-adapter hardware

The OSA-Express LAN adapter can serve as a Network Control Program (NCP) adapter for an internal
ESCON/CDLC interface to another mainframe operating system. This feature is used by the IBM
Communication Controller for Linux (CCL). The OSA CHPID type does not support any additional
network functions and its only purpose is to provide a bridge between the CDLC and QDIO interfaces
to connect to the Linux NCP. For more details, see the IBM Communication Controller Migration Guide,
SG24-6298.

The geth device driver supports CHPIDs of type OSD and OSX:

osD
provides connectivity as the standard IBM Z LAN adapter type, running in either layer 3 or layer 2
mode. When running in layer 3 mode, only TCP/IP traffic is supported, using IP addresses. When
running in layer 2 mode, the traffic is protocol-independent, using MAC addresses.

© Copyright IBM Corp. 2000, 2023 231

0SX
provides connectivity to and access control for the intraensemble data network (IEDN), which is
managed by Unified Resource Manager functions. A zEnterprise® CPC and zBX within an ensemble
are connected through the IEDN. See zEnterprise System Introduction to Ensembles, GC27-2609
and zEnterprise System Ensemble Planning and Configuring Guide, GC27-2608 for more details.

HiperSockets
An IBM mainframe uses internal connections that are called HiperSockets. These simulate QDIO
network adapters and provide high-speed TCP/IP communication for operating system instances
within and across LPARs. For details about HiperSockets, see HiperSockets Implementation Guide,
SG24-6816.

Virtual connections for Linux on z/VM
z/VM offers virtualized LAN-adapters that enable connections between z/VM guest virtual machines
and the outside world. It allows definitions of simulated network interface cards (NICs) attached to
certain z/VM guests. The NICs can be connected to a simulated LAN segment called guest LAN for
z/VM internal communication between z/VM guest virtual machines, or they can be connected to a
virtual switch called VSWITCH for external LAN connectivity.

Guest LAN
Guest LANs represent a simulated LAN segment that can be connected to simulated network
interface cards. There are three types of guest LANs:

« Simulated OSA in layer 3 mode
« Simulated HiperSockets (layer 3) mode
« Simulated OSA in layer 2 mode

Each guest LAN is isolated from other guest LANs on the same system (unless some member of
one LAN group acts as a router to other groups). See Figure 54 on page 232.

IBM mainframe
z/VM in LFAR
Linux 1 Linux 2
1011116 10.21.116 10.2.1.216
OSA NIC NIC
guest LAN
10.2.0.01e
05A
Expr@%
LAN
10.1.0.0M16

Figure 54. Guest LAN

Virtual switch
A virtual switch (VSWITCH) is a special-purpose guest LAN that provides external LAN
connectivity through an additional OSA-Express device served by z/VM without the need for a
routing virtual machine, see Figure 55 on page 233.

232 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

[BM mainframe
z/\YM in LFAR
Linux 1 Linux 2 YMTCFIF
10.1.0116 10.4.01N16 10.4.0.216 1041116
05A NIC NIC NIC
VSWITCH
10.4.0.0/16
\
05A 0SA
EXPY‘GS@ Expr@gg
LAN LAN
10.1.0.0/16 10.4.0.0116

Figure 55. Virtual switch

A dedicated OSA adapter can be an option, but is not required for a VSWITCH.

The geth device driver distinguishes between virtual NICs in QDIO mode or HiperSockets mode. It
cannot detect whether the virtual network is a guest LAN or a VSWITCH.

HiperSockets bridge port
A HiperSockets bridge port connects a network defined by a virtual switch to a HiperSockets LAN.
The two networks are combined into one logical network. If the VSWITCH is connected to an
external Ethernet LAN, the HiperSockets LAN can then communicate outside the CEC as shown

in Figure 56 on page 233. You can thus connect a HiperSockets LAN to an external LAN without
using a router.

IBM mainframe

z/VYM in LFAR

Linux 1 Linux 2 Linux 3

10.4.01116 10.4.0.2/16 10.4.0.3/16 | 1040416
0SA NIC NIC NIC

J/' HiperSockets VSWITCH O0SA Express N\
‘ bridge port 10.4.0.016 uplink port J

-—-—————_—__—————____

HiperSockets 10.4.0.0/16

LAN
10.4.0.0/16

Figure 56. HiperSockets bridge port in z/VM

Linux can use a bridge port, for example, to connect an OSA or HiperSockets port to a Linux bridge.
For more information, see “Layer 2 promiscuous mode” on page 242, and Figure 60 on page 243.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 233

For information about guest LANSs, virtual switches, HiperSockets bridge ports and virtual
HiperSockets, see z/VM: Connectivity, SC24-6267.

Device driver functions

The geth device driver supports many networking transport protocol functions, as well as offload
functions and problem determination functions.

The geth device driver supports functions that are listed in Table 37 on page 234 and Table 38 on page

235.

Table 37. Real connections

HiperSockets

HiperSockets

VIPA

Function OSA Layer 2 OSA Layer 3 Layer 2 Layer 3
Basic device or protocol functions
IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes
IPv6/multicast Yes/Yes Yes/Yes Yes/Yes Yes/Yes
Non-IP traffic Yes Yes Yes No
VLAN IPv4/IPv6/non IP sw/sw/sw hw/sw/sw SW/sw/sw hw/hw/No
Linux ARP Yes No (hw ARP) Yes No
Linux neighbor solicitation Yes Yes Yes No
Unique MAC address Yes (random for | No Yes Yes
LPAR)
Change MAC address Yes No Yes No
Promiscuous mode Yes. Bridgeport [No Yes. Bridgeport |. ves (for
(once per card) (once per card) sniffer=1)
or VNIC or VNIC
characteristics characteristics | " NO. (for
flooding and flooding and sniffer=0)
learning. learning.
MAC headers send/receive Yes/Yes faked/faked Yes/Yes faked/faked
ethtool support Yes Yes Yes Yes
Bonding Yes No Yes No
Priority queueing Yes Yes No No
Bridge port Yes No Yes No
Offload features
TCP segmentation offload Yes Yes No No
(TSO)
Inbound (rx) checksum Yes Yes No No
Outbound (tx) checksum Yes Yes No No
OSA/QETH specific features
Special device driver setup for | No required No Yes

234 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 37. Real connections (continued)

HiperSockets HiperSockets

Function OSA Layer 2 OSA Layer 3 Layer 2 Layer 3
Basic device or protocol functions
Special device driver setup for | No required No Yes
proxy ARP
Special device driver setup for | No required No Yes
IP takeover
Special device driver setup for | No/No required/ No/No Yes/Yes
routing IPv4/IPv6 required
Receive buffer count Yes Yes Yes Yes
Direct connectivity to z/OS Yes by HW Yes no Yes
SNMP support Yes Yes No No
Multiport support Yes Yes No No
Data connection isolation Yes Yes No No
Problem determination
Hardware trace No Yes No No
Legend:

No - Function not supported or not required.

Yes - Function supported.

hw - Function performed by hardware.

sw - Function performed by software.

faked - Function will be simulated.

required - Function requires special setup.
Table 38. Virtual NICs coupled to a z/VM VSWITCH or guest LAN

Emulated
Emulated OSA Emulated OSA HiperSockets Layer

Function Layer 2 Layer 3 3
Basic device or protocol features
IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes
IPv6/multicast Yes/Yes Yes/Yes No/No
Non-IP traffic Yes No No
VLAN IPv4/IPv6/non IP SW/sw/sw hw/sw/No hw/No/No
Linux ARP Yes No (hw ARP) No
Linux neighbor solicitation Yes Yes No
Unique MAC address Yes Yes Yes
Change MAC address Yes No No
Promiscuous mode Yes Yes No
MAC headers send/receive Yes/Yes faked/faked faked/faked

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 235

Table 38. Virtual NICs coupled to a z/VM VSWITCH or guest LAN (continued)
Emulated
Emulated OSA Emulated OSA HiperSockets Layer

Function Layer 2 Layer 3 3
Basic device or protocol features
ethtool support Yes Yes Yes
Bonding Yes No No
Priority queueing Yes Yes No
Offload features No No No
OSA/QETH specific features
Special device driver setup for VIPA | No required required
Special device driver setup for proxy | No required required
ARP
Special device driver setup for IP No required required
takeover
Special device driver setup for No/No required/required required/required
routing IPv4/IPvé
Receive buffer count Yes Yes Yes
Direct connectivity to z/0S No Yes Yes
SNMP support No No No
Multiport support No No No
Data connection isolation No No No
Problem determination
Hardware trace No No No
Legend:

No - Function not supported or not required.

Yes - Function supported.

hw - Function performed by hardware.

sw - Function performed by software.

faked - Function will be simulated.

required - Function requires special setup.

What you should know about the geth device driver

Interface names are assigned to geth group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs. An OSA-Express adapter can handle both IPv4 and IPv6 packets.

Layer 2 and layer 3
The geth device driver consists of a common core and two device disciplines: layer 2 and layer 3.

In layer 2 mode, OSA routing to the destination is based on MAC addresses. A local MAC address is
assigned to each interface of a Linux instance and registered in the OSA Address Table. These MAC
addresses are unique and different from the MAC address of the OSA adapter. See “MAC headers in layer
2 mode” on page 239 for details.

236 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

In layer 3 mode, all interfaces of all Linux instances share the MAC address of the OSA adapter. OSA
routing to the destination Linux instance is based on IP addresses. See “MAC headers in layer 3 mode” on

page 240 for details.

The layer 2 discipline (qeth_l2)
The layer 2 discipline supports:

« OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs running in layer 2
mode

« HiperSockets devices
« OSX (OSA-Express for zBX) devices for IEDN

The layer 2 discipline is the default setup for OSA. On HiperSockets the default continues to be layer
3. See “Setting the layer2 attribute” on page 250 for details.

The network device in Linux must use the same layer as the VSWITCH or QDIO guest LAN in z/VM. By
default, the geth device driver uses layer 2. If the coupled VSWITCH or QDIO guest LAN uses layer 3,
you must adapt the layer setting in Linux.

For z/VM NICs that are coupled to a guest LAN or VSWITCH, the geth device driver detects the
required layer and configures it automatically. If a geth device is created before the NIC is coupled,
the geth device driver defaults to layer 2.

The layer 3 discipline (geth_L3)
The layer 3 discipline supports:

« OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs running in layer 3
mode (with faked link layer headers)

« HiperSockets and HiperSockets guest LAN devices that are running in layer 3 mode (with faked link
layer headers)

« OSX (OSA-Express for zBX) devices for IEDN

This discipline supports those devices that are not capable of running in layer 2 mode. Not all Linux
networking features are supported and others need special setup or configuration. See Table 44 on
page 247. Some performance-critical applications might benefit from being layer 3.

Layer 2 and layer 3 interfaces cannot communicate within a HiperSockets LAN or within a VSWITCH or
guest LAN. However, a shared OSA adapter can convert traffic between layer 2 and layer 3 networks.

geth group devices

The geth device driver requires three I/O subchannels for each HiperSockets CHPID or OSA-Express
CHPID in QDIO mode. One subchannel is for control reads, one for control writes, and the third is for data.

The geth device driver uses the QDIO protocol to communicate with the HiperSockets and OSA-Express
adapter (see Figure 57 on page 237).

QDIO protocol
Linux —, | OSA-Express
qeth control read —— or
T L control write —— .
nrertace group device data HiperSockets
qgeth
device driver Mainframe

Figure 57. I/O subchannel interface

The three device bus-IDs that correspond to the subchannel triplet are grouped as one geth group device.
The following rules apply for the device bus-IDs:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 237

read
no specific rules.

write
must be the device bus-ID of the read subchannel plus one.

data
can be any free device bus-ID on the same CHPID.

You can configure different triplets of device bus-IDs on the same CHPID differently. For example, if you
have two triplets on the same CHPID they can have different attribute values for priority queueing.

Overview of the steps for setting up a qeth group device

You must perform several steps before user-space applications on your Linux instance can use a geth
group device.

Before you begin

Find out how the hardware is configured and which geth device bus-IDs are on which CHPID, for example
by looking at the IOCDS. Identify the device bus-IDs that you want to group into a geth group device. The
three device bus-IDs must be on the same CHPID.

Procedure

Perform these steps to allow user-space applications on your Linux instance to use a qeth group device:
1. Create the geth group device.

After booting Linux, each geth device bus-ID is represented by a subdirectory in /sys/bus/ccw/
devices/. These subdirectories are then named with the bus IDs of the devices.

For example, a geth device with bus IDs 0.0.fc00, 0.0.fc01, and 0.0.fc02 is represented
as /sys/bus/ccw/drivers/qeth/0.0.fc00

2. Configure the device.

3. Set the device online.

4. Activate the device and assign an IP address to it.

What to do next

These tasks and the configuration options are described in detail in “Working with geth devices” on page
245,

geth interface names and device directories

Ubuntu Server 22.04 LTS automatically assigns interface names to the geth group devices. The geth
device driver creates the corresponding sysfs structures.

While an interface is online, it is represented in sysfs as:
/sys/class/net/<interface>

The mapping between interface names and the device bus-ID that represents the geth group device in
sysfs is preserved when a device is set offline and back online.

“Finding out the interface name of a geth group device” on page 257 and “Finding out the bus ID of a geth
interface” on page 258 provide information about mapping device bus-IDs and interface names.

Support for IP Version 6 (IPv6)

The qgeth device driver supports IPv6 in many network setups.
IPvé6 is supported on:

« Ethernet interfaces of the OSA-Express adapter that runs in QDIO mode.

238 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

« HiperSockets layer 2 and layer 3 interfaces.

« z/VM guest LANs running in QDIO mode or HiperSockets layer 3 mode.

« z/VM virtual NIC interfaces (VSWITCHES and guest LANSs) running in layer 2 mode.
IPv6 is not supported on the ATM feature.

There are noticeable differences between the IP stacks for versions 4 and 6. Some concepts in IPv6 are
different from IPv4, such as neighbor discovery, broadcast, and Internet Protocol security (IPsec). IPv6
uses a 16-byte address field, while the addresses under IPv4 are 4 bytes in length.

Stateless autoconfiguration generates unique IP addresses for all Linux instances, even if they share an
OSA-Express adapter with other operating systems.

Be aware of the IP version when you specify IP addresses and when you use commands that return IP
version-specific output (such as qethazxp).

MAC headers in layer 2 mode

In LAN environments, data packets find their destination through Media Access Control (MAC) addresses
in their MAC header.

MAC addr.|} MAC header MAC addr.| |MAC addr.

IP addr. |} IF header IP addr. IP addr.
Datagram Datagram Datagram

Linux L
[Network 7] App-
LAN device L stack
LAN adapter| | || driver
|
Hardware

Figure 58. Standard IPv4 processing

MAC address handling as shown in Figure 58 on page 239 applies to non-mainframe environments and a
mainframe environment with an OSA-Express adapter where the 1layer2 option is enabled.

The layex2 option keeps the MAC addresses on incoming packets. Incoming and outgoing packets are
complete with a MAC header at all stages between the Linux network stack and the LAN as shown in
Figure 58 on page 239. This layer2-based forwarding requires unique MAC addresses for all concerned
Linux instances.

In layer 2 mode, the Linux TCP/IP stack has full control over the MAC headers and the neighbor lookup.
The Linux TCP/IP stack does not configure IPv4 or IPv6 addresses into the hardware, but requires a
unique MAC address for the card.

For Linux as a z/VM guest, the geth device driver obtains a MAC address for each L2 device from the z/VM
host. No configuration is necessary.

For Linux in LPAR mode with a directly attached OSA adapter in QDIO mode, assign a unique MAC
address. You can set a MAC address by issuing the command:

ip link set addr <MAC address> dev <interface>

Note: Be sure not to assign the MAC address of the OSA-Express adapter to your Linux instance.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 239

For OSX CHPIDs, you cannot set your own MAC addresses. Linux uses the MAC addresses defined by the
Unified Resource Manager.

For HiperSockets connections, a MAC address is generated.

MAC headers in layer 3 mode

A geth layer 3 mode device driver is an Ethernet offload engine for IPv4, and a partial Ethernet offload
engine for IPv6. Hence, there are some special things to understand about the layer 3 mode.

To support IPv6 and protocols other than IPv4, the device driver registers a layer 3 card as an Ethernet
device to the Linux TCP/IP stack.

In layer 3 mode, the OSA-Express adapter in QDIO mode removes the MAC header with the MAC address
from incoming IPv4 packets. It uses the registered IP addresses to forward a packet to the recipient
TCP/IP stack. See Figure 59 on page 240. Thus the OSA-Express adapter is able to deliver IPv4 packets
to the correct Linux instances. Apart from broadcast packets, a Linux instance can get packets only for IP
addresses it configured in the stack and registered with the OSA-Express adapter.

(faked)
MAC addr.| } MAC header MAC addr.
IP addr. |} IF header IP addr. IP addr.
Datagram Datagram Datagram
Linux L
[Network 7] App
\ LAN device L stack —|
LAN \I adapter driver >
|
Hardware

Figure 59. MAC address handling in layer3 mode

The OSA-Express QDIO microcode builds MAC headers for outgoing IPv4 packets and removes them from
incoming IPv4 packets. Thus, the operating systems' network stacks send and receive only IPv4 packets
without MAC headers.

This lack of MAC headers can be a problem for applications that expect MAC headers. For examples of
how such problems can be resolved, see “Setting up for DHCP with IPv4” on page 294.

Outgoing frames

The geth device driver registers the layer 3 card as an Ethernet device. Therefore, the Linux TCP/IP stack
will provide complete Ethernet frames to the device driver.

If the hardware does not require the Ethernet frame (for example, for IPv4) the driver removes the
Ethernet header prior to sending the frame to the hardware. If necessary information like the Ethernet
target address is not available (because of the offload functionality) the value is filled with the hardcoded
address FAKELL.

Table 39. Ethernet addresses of outgoing frames

Frame Destination address Source address
IPv4 FAKELL Real device address
IPv6 Real destination address Real device address

240 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 39. Ethernet addresses of outgoing frames (continued)

Frame Destination address Source address
Other packets Real destination address Real device address
Incoming frames

The device driver provides Ethernet headers for all incoming frames.

If necessary information like the Ethernet source address is not available (because of the offload
functionality) the value is filled with the hardcoded address FAKELL.

Table 40. Ethernet addresses of incoming frames

Frame Destination address Source address
IPv4 Real device address FAKELL
IPv6 Real device address FAKELL

Other packets Real device address Real source address

Note that if a source or destination address is a multicast or broadcast address the device driver can
provide the corresponding (real) Ethernet multicast or broadcast address even when the packet was
delivered or sent through the offload engine. Always providing the link layer headers enables packet
socket applications like tcpdump to work properly on a geth layer 3 device without any changes in the
application itself (the patch for libpcap is no longer required).

While the faked headers are syntactically correct, the addresses are not authentic, and hence applications
requiring authentic addresses will not work. Some examples are given in Table 41 on page 241.

Table 41. Applications that react differently to faked headers

Application Support Reason

tcpdump Yes Displays only frames, fake Ethernet information is displayed.

iptables Partially As long as the rule does not deal with Ethernet information of an
IPv4 frame.

dhcp Yes Is non-IPv4 traffic. (Note that DHCP does not work for Layer 3
HiperSockets.)

IP addresses

The network stack of each operating system that shares an OSA-Express adapter in QDIO mode registers
all its IP addresses with the adapter.

Whenever IP addresses are deleted from or added to a network stack, the device drivers download the
resulting IP address list changes to the OSA-Express adapter.

For the registered IP addresses, the OSA-Express adapter off-loads various functions, in particular also:

« Handling MAC addresses and MAC headers
« ARP processing

ARP
The OSA-Express adapter in QDIO mode responds to Address Resolution Protocol (ARP) requests for all
registered IPv4 addresses.

ARP is a TCP/IP protocol that translates 32-bit IPv4 addresses into the corresponding hardware
addresses. For example, for an Ethernet device, the hardware addresses are 48-hit Ethernet Media
Access Control (MAC) addresses. The mapping of IPv4 addresses to the corresponding hardware

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 241

addresses is defined in the ARP cache. When it needs to send a packet, a host consults the ARP cache of
its network adapter to find the MAC address of the target host.

If there is an entry for the destination IPv4 address, the corresponding MAC address is copied into the
MAC header and the packet is added to the appropriate interface's output queue. If the entry is not found,
the ARP functions retain the IPv4 packet, and broadcast an ARP request asking the destination host for its
MAC address. When a reply is received, the packet is sent to its destination.

Note:

1. On an OSA-Express adapter in QDIO mode, do not set the NO_ARP flag on the Linux Ethernet device.
The device driver disables the ARP resolution for IPv4. Because the hardware requires no neighbor
lookup for IPv4, but neighbor solicitation for IPv6, the NO_ARP flag is not allowed on the Linux
Ethernet device.

2. On HiperSockets, which is a full Ethernet offload engine for IPv4 and IPvé6 and supports no other
traffic, the device driver sets the NO_ARP flag on the Linux Ethernet interface. Do not remove this flag
from the interface.

Layer 2 promiscuous mode

OSA and HiperSockets ports that operate in layer 2 mode can be set up to receive all frames that are
addressed to unknown MAC addresses.

On most architectures, traffic between operating systems and networks is handled by Ethernet Network
Interface Controllers (NICs). NICs usually filter incoming traffic to admit only frames with destination MAC
addresses that are registered with the NIC.

However, a NIC can also be configured to receive and pass to the operating system all Ethernet

frames that reach it, regardless of the destination MAC address. This mode of operation is known as
"promiscuous mode". Promiscuous mode is a prerequisite for configuring a NIC as a member of a Linux
software bridge.

For more information about how to set up a software bridge, see the documentation that is provided by
Ubuntu Server, or the bridging how-to available at http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO.

On IBM Z, you can realize a promiscuous mode for Ethernet traffic through a bridge port configuration

or through Virtual Network Interface Controller (VNIC) characteristics. Depending on the hardware level,
OSA and HiperSockets devices can be configured as bridge ports or they can be configured with VNIC
characteristics. The same OSA or HiperSockets device cannot simultaneously be configured as a bridge
port and with VNIC characteristics.

VNIC characteristics

With (VNIC) characteristics, you can set and fine-tune a promiscuous mode for HiperSockets and OSA
devices, (see “Advanced packet-handling configuration” on page 278).

Bridge ports

Linux can assign a bridge port role to a logical port, and the HiperSockets or OSA adapter assigns an
active state to one of the logical ports to which a role was assigned. A local port in active bridge port state
receives all Ethernet frames with unknown destination MAC addresses.

Figure 60 on page 243 shows a setup with a HiperSockets bridge port and an OSA bridge port.

242 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO

[BM mainframe
LFAR 1 LPAR 2
z/YM CFP z/VYM CP
z/VM guest | | z/VM guest Linux
10.0.0116 || 10.0.0.2/16 | brO
encal00 | || [enc8000) enca016 | lenca007
/_———\\“
Bridge Bridge
port port External network
I 10.0.0.0M6

HiperSockets 10.0.0.0/16 OSA Express

Figure 60. HiperSockets and OSA bridge port in Linux

Differences between promiscuous mode and bridge-port roles

Making a logical port of an OSA or HiperSockets adapter an active bridge port is similar to enabling
promiscuous mode on a non-mainframe NIC that is connected to a real Ethernet switch. However, there
are important differences:

Number of ports in promiscuous mode

« Real switches: Any number of interfaces that are connected to a real switch can be turned to
promiscuous mode, and all of them then receive frames with unknown destination addresses.

- Bridge ports on IBM Z: Although you can assign the bridge-port role to multiple ports of a single OSA
or HiperSockets adapter, only one port is active and receives traffic to unknown destinations.

Monitoring traffic to other systems

 Real switches: A port of a real switch can be configured to receive frames with both known and
unknown destinations. If a NIC in promiscuous mode is connected to the port, the corresponding
host receives a copy of all traffic that passes through the switch. This includes traffic that is destined
to other hosts connected to this switch.

« Bridge ports on IBM Z: Only frames with unknown destinations are passed to the operating system.
It is not possible to monitor traffic addressed to systems connected to other ports of the same OSA
or HiperSockets adapter.

- On IBM Z: The HiperSockets network traffic analyzer (see “Setting up a HiperSockets network traffic
analyzer” on page 295) or z/VM guest LAN sniffer can be used to monitor traffic that is destined to
other ports.

Limitation by the source of traffic (OSA bridge port only)

« Real switches and HiperSockets bridge-port LAN: Frames with unknown destination MAC addresses
are delivered to the promiscuous interfaces regardless of the port through which the frames enter
the switch or HiperSockets adapter.

« OSA bridge port only: An active bridge port learns which MAC addresses need to be routed to the
owning system by analyzing ARP and other traffic. Incoming frames are routed to the active bridge
port if their destination MAC address:

— Matches an address that is learned or registered with the bridge port

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 243

— Is not learned or registered with any of the local ports of the OSA adapter, and it arrived from the
physical Ethernet port

Bridge port roles

Linux can assign a primary or secondary role to a logical port of an OSA or a HiperSockets adapter. Only
one logical port of such an adapter can be assigned the primary role, but multiple other logical ports
can be assigned secondary role. When one or more logical ports of an adapter are assigned primary or
secondary role, the hardware ensures that exactly one of these ports is active. The active port receives
frames with unknown destination. When a port with primary role is present, it always becomes active.
When only ports with secondary role are present, the hardware decides which one becomes active.
Changes in the ports' state are reported to Linux user space through udev events.

You can set a bridge port role either directly by using the bridge_xrole attribute or indirectly by using the
bridge_reflect_promisc attribute. See “Configuring a network device as a member of a Linux bridge”
on page 275.

Setting up the geth device driver

No kernel or module parameters exist for the geth device driver. geth devices are set up using sysfs.

Loading the geth device driver modules
Load the geth device driver before you work with geth devices.

Use the modpxrobe command to load the geth device driver, and to automatically load all required
additional modules in the correct order:

geth module syntax

»— modprobe geth
E geth_l2
geth_13

where:

geth
is the core module that contains common functions that are used for both layer 2 and layer 3
disciplines.
geth_l2
is the module that contains layer 2 discipline-specific code.
geth_L3
is the module that contains layer 3 discipline-specific code.

When a geth device is configured for a particular discipline, the driver tries to automatically load the
corresponding discipline module. Automatic loading requires that automatic kernel module loading is
enabled in the distribution.

Switching the discipline of a qeth device

To switch the discipline of a device, the network interface must be shut down and the device must be
offline.

Some devices can only run in one discipline, see “Layer 2 and layer 3” on page 236. The device driver
rejects any request to switch the discipline of these devices.

If the new discipline is accepted by the device driver, the old network interface is deleted. When the new
discipline is set online the first time, the new network interface is created.

244 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Removing the modules

Removing a module is not possible if there are cross dependencies between the discipline modules and
the core module.

To release the dependencies from the core module to the discipline module, all devices of this discipline
must be ungrouped. Now the discipline module can be removed. If all discipline modules are removed,
the core module can be removed.

Working with qeth devices

Typical tasks for working with geth devices include creating group devices, finding out the type of a
network adapter, and setting a device online or offline.

About this task

To make the changes persistent across IPLs, use the chzdev command. If you want to make dynamic
changes to the running system only, use sysfs.

Table 42 on page 245, Table 43 on page 246, and Table 44 on page 247 serve as both a task overview
and a summary of the attributes and the possible values you can write to them. Underlined values are
defaults.

Tip: Use the chzdev command to configure devices instead of using the attributes directly (see“chzdev -
Configure IBM Z devices” on page 584). You can also use the znetconf command for network devices.

Not all attributes are applicable to each device. Some attributes apply only to HiperSockets or only to
OSA-Express CHPIDs in QDIO mode, other attributes are applicable to IPv4 interfaces only. See the task
descriptions for the applicability of each attribute.

Table 42. geth tasks and attributes common to layer2 and layer3

Task Corresponding Possible attribute
attributes values
“Setting the layer2 attribute” on page 250 layer2 0,1, or -1 see “Layer
2 and layer 3” on page
236"
“Using priority queueing” on page 251 priority_queueing prio_queueing_vlan

prio_queueing_skb
prio_queueing_prec
no_prio_queueing
no_prio_queueing:0
no_prio_queueing:1
no_prio_queueing:2
no_prio_queueing:3

“Specifying the number of inbound buffers” on page 253 buffer_count integer in the range 8
- 128. The default is
64 for OSA devices and
128 for HiperSockets
devices

“Finding out the maximum frame size” on page 254 inbuf_size n/a, read-only

“Specifying the relative port number” on page 254 portno integer, either 0 or 1, the
defaultis 0

“Finding out the type of your network adapter” on page card_type n/a, read-only

255

“Setting a device online or offline” on page 256 online Oorl

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 245

Table 42. geth tasks and attributes common to layer2 and layer3 (continued)

Task Corresponding Possible attribute
attributes values
“Finding out the interface name of a geth group device” on if_name n/a, read-only
page 257
“Finding out the bus ID of a geth interface” on page 258 none n/a
“Activating an interface” on page 258 none n/a
“Deactivating an interface” on page 259 none n/a
“Recovering a device” on page 260 recover 1
“Configuring the receive checksum offload feature” on none n/a
page 261
“Configuring the transmit checksum offload feature” on none n/a
page 261
“Isolating data connections” on page 262 isolation none, drop, forward
“Displaying and resetting QETH performance statistics” on performance_stats Oor1l
page 265
“Capturing a hardware trace” on page 265 hw_trap arm
disarm
“Enabling and disabling TCP segmentation offload” on none n/a
page 262

1A value of -1 means that the layer is not set and that the default layer setting is used when the device is set
online.

Table 43. geth functions and attributes in layer 2 mode

Corresponding

Function attributes Possible attribute values
“Configuring a network device as a member of a Linux bridge_role primary, secondary, none
bridge” on page 275 bridge_state active, standby, inactive
bridge_hostnotify Qorl
“Advanced packet-handling configuration” on page 278 vnicc/bridge_invisible Qorl
vhicc/flooding Qor1l
vhicc/learning Qor1l
vhicc/mcast_flooding Qor1l
vnicc/rx_bcast Oorl

vhicc/takeover_learning Qorl
vnicc/takeover_setvmac Oorl
vnicc/learning_timeout integer in the range
60 - 86400
the default is 600

246 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 44. geth tasks and attributes in layer 3 mode

Task Corresponding Possible attribute
attributes values

“Setting up a Linux router” on page 266 routed primary_router
route6 secondary_router

primary_connector
secondary_connector
multicast_router

no_router
“Enabling and disabling TCP segmentation offload” on none n/a
page 262
“Faking broadcast capability” on page 269 fake_broadcast * Oor1l
“Taking over IP addresses” on page 270 ipa_takeover/enable 0 or1ortoggle
ipa_takeover/add4 IPv4 or IPv6 IP address
ipa_takeover/addé6 and mask bits
ipa_takeover/deld
ipa_takeover/del6
ipa_takeover/invert4 0or1ortoggle
ipa_takeover/invert6
“Configuring a device for proxy ARP” on page 273 rxip/add4 IPv4 IP address
rxip/deld
Configuring a device for Neighbor Discovery Protocol (NDP) rxip/addé IPv6 IP address
proxy rxip/del6
“Configuring a device for virtual IP address (VIPA)” on vipa/add4 IPv4 or IPv6 IP address
page 274 vipa/addé
vipa/deld
vipa/del6
“Configuring a HiperSockets device for AF_IUCV hsuid 1 to 8 characters
addressing” on page 274
“Setting up a HiperSockets network traffic analyzer” on sniffer Qorl

page 295

1 not valid for HiperSockets

Tip: Use the qethconf command instead of using the attributes for IPA, proxy ARP, and VIPA directly
(see “gethconf - Configure geth devices” on page 703).

sysfs provides multiple paths through which you can access the geth group device attributes. For
example, if a device with bus ID 0.0.a100 corresponds to interface encal00:

/sys/bus/ccwgroup/drivers/qeth/0.0.a100
/sys/bus/ccwgroup/devices/0.0.a100
/sys/devices/qeth/0.0.a100
/sys/class/net/encal00/device

all lead to the attributes for the same device. For example, the following commands are all equivalent and
return the same value:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 247

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
encalon

cat /sys/bus/ccwgroup/devices/0.0.a100/if_name
encaloo

cat /sys/devices/qeth/0.0.a100/if_name

encaloo

cat /sys/class/net/encal00/device/if_name

encaloo

The path through /sys/class/net becomes available when the device is first set online and the
interface is created. The path persists until the device is ungrouped.

Tips:

- Work through one of the paths that are based on the device bus-ID.

« Using Ubuntu Server 22.04 LTS, you set geth attributes using chzdev. Ubuntu Server creates
udev configuration files with names of the form /etc/udev/rules.d/41-qgeth-<device_bus-
ID>.rules.

The following sections describe the tasks in detail.

Enabling a geth device

Use the chzdev command to create a group device, configure it, and set it online. Alternatively, for a
non-persistent configuration, you can use the znetconf command or sysfs.

Before you begin
You must know the device bus-ID that corresponds to the read subchannel of your OSA-Express CHPID in
QDIO mode or HiperSockets CHPID as defined in the IOCDS of your mainframe.

If you are using simulated NICs to couple to a z/VM virtual switch (VSWITCH) or a guest LAN, you need to
know the virtual device addresses that were used in z/VM to define the simulated NIC.

Procedure

To enable a QETH device and create a persistent configuration, issue a command of the form:

chzdev --enable qeth <read>

For example, if the read subchannel has a device bus-ID of 0.0.a000:

chzdev --enable geth 0.0.a000

This configures the read subchannel 0.0.a000, the write subchannel 0.0.a001, and the data subchannel
0.0.a002

Results

The chzdev command creates a group device in sysfs and sets a number of attributes for it, including
the layer2 attribute. The command also sets the group device online. For more information about the
attributes, see the corresponding sections.

For example, to see the attributes set for device 0.0.a000, that has been assigned device name enca000,
use the 1sqeth command:

248 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsqeth encabooO

Device name : encafoo
card_type : 0SD_1000
cdev0 : 0.0.a000
cdevl : 0.0.a001
cdev2 : 0.0.2002
chpid . 76
online 1
portname : no portname required
poxrtno :
routed : no
routeb : no
state : UP (LAN ONLINE)
priority_queueing : always queue 0
fake_broadcast 0 0
buffer_ count . 64
layer2 : 0
isolation : none
sniffer : 0
switch_attrs : unknown
Example

In this example (see Figure 61 on page 249), a single OSA-Express CHPID in QDIO mode is used to
connect a Linux instance to a network.

Mainframe configuration:
IBM mainframe

Linux
Q — Q]
O @) Q
<C < <
<C <C <C

OSA-Express

Figure 61. Mainframe configuration
Linux configuration:

Assuming that 0.0.aa00 is the device bus-ID that corresponds to the read subchannel:

chzdev --enable geth 0.0.a000

This command results in the creation of the following directories in sysfs:

« /sys/bus/ccwgroup/drivers/qeth/0.0.aa00
« /sys/bus/ccwgroup/devices/0.0.aa00
- /sys/devices/geth/0.0.aa00

Both the command and the resulting directories would be the same for a HiperSockets CHPID.

What to do next
To change an attribute, or to set another attribute, issue a command of the form:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 249

chzdev <device_type> <device_bus_ID> <attribute>=<value>

For example, to set the device 0.0.a000 offline, issue:

chzdev geth 0.0.a000 online=0

To remove a geth group device, use the ungroup attribute. For example, to ungroup the device you just
created, issue:

chzdev geth 0.0.a000 ungroup=1

Setting the layer2 attribute

If the detected hardware always runs in a specific discipline, the corresponding discipline module is
automatically requested.

Before you begin
« To change a configured layex?2 attribute, the network interface must be shut down and the device must
be set offline.

« If you are using the layer2 option within a QDIO-based VSWITCH or guest LAN environment, avoid
defining a VLAN with ID 1. Some switch vendors use ID 1 as the default value.

- IQD channels that in the IOCDS are defined as "external-bridged" must be configured to use layer 2.

About this task

The geth device driver attempts to load the layer 3 discipline for HiperSockets devices and layer 2 for
non-HiperSockets devices.

You can use the layer 2 mode for almost all device types, however, note the following about layer 2 to
layer 3 conversion:

real OSA-Express
Hardware is able to convert layer 2 to layer 3 traffic and vice versa and thus there are no restrictions.

HiperSockets
There is no support for layer 2 to layer 3 conversion and, thus, no communication is possible between
HiperSockets layer 2 interfaces and HiperSockets layer 3 interfaces. Do not include HiperSockets
layer 2 interfaces and HiperSockets layer 3 interfaces in the same LAN.

z/VM VSWITCH or guest LAN
The geth device driver detects the mode of the VSWITCH or LAN to which the NIC is coupled, and
sets this mode on the device. The z/VM definition "Ethernet mode" is available for VSWITCHes and for
guest LANSs of type QDIO.

Procedure

The geth device driver separates the configuration options in sysfs according to the device discipline.
Hence the first configuration action after you group the device must be the configuration of the discipline.

To set the discipline, issue a command of the form:
chzdev <device_bus_id> layer2=<integer>

where <integer> is

- 0to turn off the 1ayer?2 attribute; this results in the layer 3 discipline (default for HiperSockets).

« 1toturnonthe layexr2 attribute; this results in the layer 2 discipline (default for network devices other
than HiperSockets).

250 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If the 1ayer?2 attribute has a value of -1 (default), the layer was not set and the device drivers attempts
to detect the correct layer setting. This setting persists across re-boots. For more details, see Chapter 25,
“Persistent device configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute layer2:

echo <integer> > /sys/devices/qgeth/<device_bus_id>/layer2

Results

If you configured the discipline successfully, more configuration attributes are shown (for example, route4
for the layer 3 discipline) and can be configured. If an OSA device is not configured for a discipline but is
set online, the device driver assumes that it is a layer 2 device. It then tries to load the layer 2 discipline.

For information about layer2, see:

Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935
« OSA-Express Implementation Guide, SG24-5948

Networking Overview for Linux on zSeries, REDP-3901

« z/VM: Connectivity, SC24-6267

Using priority queueing

An OSA-Express CHPID in QDIO mode has up to four output queues (queues O - 3). The priority queueing
feature gives these queues different priorities (queue 0 having the highest priority). The four output
gueues are available only if multiple priority is enabled for queues on the OSA-Express CHPID in QDIO
mode.

Before you begin

- Priority queueing applies to OSA-Express CHPIDs in QDIO mode only.

« If more than 160 TCP/IP stacks per OSA-Express CHPID are defined in the IOCDS, priority queueing is
disabled.

« The device must be offline while you set the queueing options.

About this task

Queueing is relevant mainly in high traffic situations. When there is little traffic, queueing has no impact
on processing. The geth device driver can put data on one or more of the queues. By default, the driver
uses queue 2 for all data.

Procedure

You can determine how outgoing IP packages are assigned to queues by setting a value for the
priority_queueing attribute of your geth device.

Issue a command of the form:

chzdev <device_bus_id> priority_queueing=<method>

where <method> can be any of these values:

prio_queueing_vlan
to base the queue assignment on the two most significant bits in the priority code point in the IEEE
802.1Q header as used in VLANSs. This value affects only traffic with VLAN headers, and hence works
only with geth devices in layer 2 mode.

You can set the priority code point in the IEEE 802.1Q headers of the traffic based on skb-
>priority by using a command of the form:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 251

ip link add link <link> name <name> type vlan id <vlan-id> egress-qos-map <mapping>

Note: Enabling this option makes all traffic default to queue 3.

prio_queueing_skb
to base the queue assignment on the priority flag of the skbs. An skb, or socket buffer, is a Linux
kernel-internal structure that represents network data. The mapping to the priority queues is as
follows:

Table 45. Mapping of flag value to priority queues

Priority flag of the skb Priority queue
0-1 3
2-3 2
4-5 1
>6 0

You can use prio_queueing_skb for any network setups, including conventional LANSs.

Use either sockopt SO_PRIORITY or an appropriate iptables command to adjust the priority flag
of the skb (skb->priority).

Note: The priority flag of the skbs defaults to 0, hence enabling this option makes all traffic default to
queue 3.

prio_queueing_prec
to base the queue assignment on the two most significant bits of each packet's IP header precedence
field. To set the precedence field, use sockopt IP_TOS (for IPv4) or IPV6_TCLASS (for IPv6).

Note: Enabling this option makes all traffic default to queue 3.
no_prio_queueing

causes the geth device driver to use queue 2 for all packets. This value is the default.
no_prio_queueing:0

causes the geth device driver to use queue 0 for all packets.
no_prio_queueing:1

causes the geth device driver to use queue 1 for all packets.
no_prio_queueing:2

causes the geth device driver to use queue 2 for all packets. This value is equivalent to the default.
no_prio_queueing:3

causes the geth device driver to use queue 3 for all packets.

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute priority_queueing:

echo <method> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

Example

To read what is set for priority queueing for device 0.0.a110, issue:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a110/priority_queuing

Possible results are:

252 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

by VLAN headers
if prio_queueing_vlanis set.

by skb-priority
if prio_queueing_skb is set.

by precedence
if prio_queueing_prec is set.

by type of service
if prio_queuing_tos is set.

always queue <x>
otherwise.

To configure queueing by skb->priority setting for device 0.0.a110 persistently, issue:

chzdev 0.0.al110 priority_queueing=prio_queueing_skb

For the current configuration only, use chzdev -a or sysfs:

echo prio_queueing_skb > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

Specifying the number of inbound buffers

Depending on the amount of available storage and the amount of traffic, you can assign 8 - 128 inbound
buffers for each geth group device.

Before you begin
The device must be offline while you specify the number of buffers for inbound traffic.

About this task

By default, the geth device driver assigns 64 inbound buffers to OSA devices and 128 to HiperSockets
devices.

The Linux memory usage for inbound data buffers for the devices is: (number of buffers) x (buffer size).

The buffer size is equivalent to the frame size. See “Finding out the maximum frame size” on page 254 for
details.

Procedure

Set the buffer_count attribute to the number of inbound buffers you want to assign.
Issue a command of the form:

chzdev <device_type> <device_bus_id> buffer_count=<number>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute buffer_count:

echo <number> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer_count

Example

In this example,an operational device 0.0.a000 is first set offline, 64 inbound buffers are assigned to the
device, and then the device is set back online:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 253

chzdev -d -a 0.0.a000
chzdev 0.0.a000 buffer_count=64
chzdev -e -a 0.0.a000

or, using sysfs:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/online
echo 64 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/buffer_count
echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/online

Finding out the maximum frame size

The inbuf_size attribute returns the maximum frame size (MFS) in KB. To find out the MFS, read the
inbuf_size attribute of the devices.

About this task
An OSA-Express CHPID in QDIO mode allows packing of data, and always runs with an MFS of 64 KB.

HiperSockets CHPIDs do not pack data and run with a frame size that matches their definition in the
hardware configuration (IOCP CHPARM specification). On HiperSockets, the MFS maps to corresponding
maximum transmission unit (MTU) sizes, see Table 46 on page 254.

Table 46. HiperSockets MFS and corresponding MTU sizes

inbuf_size value MFS MTU
16k 16 KB 8 KB
24Kk 24 KB 16 KB
40k 40 KB 32 KB
64k 64 KB 56 KB
Procedure

Issue a command of this form to get a list of all attributes and find the inbuf_size attribute:

lszdev geth <device_bus_id> --info --info |grep inbuf_size
Alternatively, use sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/inbuf_size
Example

To find the inbuf_size of a device 0.0.a100 issue:

lszdev geth 0.0.a100 --info --info | grep inbuf_size
inbuf_size "64k"

or:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/inbuf_size
64k

Specifying the relative port number

Use the portno attribute to specify the relative port number.

254 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin

« This description applies to network adapters that, per CHPID, show more than one port to Linux.
« The device must be offline while you specify the relative port number.

Procedure

By default, the geth group device uses port 0.
To use a different port, issue a command of the form:

chzdev <device_bus_id> portno=<integer>

Where <integer> is either 0 or 1. This setting persists across re-boots. For more details, see Chapter 25,
“Persistent device configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute portno:

echo <integer> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/portno

Example
In this example, port 1 is assigned to the geth group device.

chzdev 0.0.a000 portno=1
or, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/portno

Finding out the type of your network adapter

Use the card_type attribute to find out the type of the network adapter through which your device is
connected.

Procedure

You can find out the type of the network adapter through which your device is connected. To find out the
type, read the device's card_type attribute.

To list all attributes, issue a command of the form:

lszdev <device_type> <device_bus_id> --info --info

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/card_type

The card_type attribute gives information about both the type of network adapter and the type of
network link (if applicable) available at the card's ports. See Table 47 on page 256 for details.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 255

Table 47. Possible values of card_type and what they mean

Value of card_type Adapter type Link type

0OSD_25GIG OSA card in OSD mode 25 Gigabit Ethernet
OSD_10GIG 10 Gigabit Ethernet
0OSD_1000 Gigabit Ethernet, L000BASE-T
0OSD_100 Fast Ethernet

OSD_GbE_LANE Gigabit Ethernet, LAN Emulation
OSD_FE_LANE Fast Ethernet, LAN Emulation
OSD_Express Unknown

0SX OSA-Express for zBX 10 Gigabit Ethernet
HiperSockets HiperSockets, CHPID type IQD N/A

Virtual NIC QDIO VSWITCH or guest LAN based on OSA [N/A

Virtual NIC Hiper Guest LAN based on HiperSockets N/A

Unknown Other

Example

To find the card_type of a device 0.0.a100 issue:

lszdev geth 0.0.a100 --info --info

'READONLY ACTIVE
card_type "0SD_1000"

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/card_type
0SD_1000

Setting a device online or offline

Use the online device group attribute to set a device online or offline.

Procedure

To set a geth group device online, set the online device group attribute to 1. To set a geth group device
offline, set the online device group attribute to 0.

Issue a command of the form:

chzdev <device_bus_id> online=<flag>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute online:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/online

256 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Results

Setting a device online associates it with an interface name (see “Finding out the interface name of a
geth group device” on page 257). When you set a device successfully online or offline, a change uevent is
created.

Setting a device offline closes this network device. If IPvé is active, you lose any IPv6 addresses set for
this device. After you set the device online, you can restore lost IPv6 addresses only by issuing the ip or
an equivalent command again.

Example

To set a geth device with bus ID 0.0.a100 online persistently, issue:

chzdev 0.0.a100 online=1

or, for the running configuration only using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online
To set the same device offline issue:

chzdev 0.0.a100 online=0

or, for the running configuration only using sysfs:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

Finding out the interface name of a qeth group device

When a geth group device is set online, an interface name is assigned to it.

Procedure

To find the interface name of a geth group device, either:
« Obtain a list of all attributes for a device by issuing the 1szdev command for the device.
Issue a command of the form:

lszdev geth <device_bus_id> --info --info

« Obtain a mapping for all geth interfaces and devices by issuing the 1sqeth =-p command.

- Find out the interface name of a geth group device for which you know the device bus-ID by reading
the group device's if_name attribute.

Issue a command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/if_name

Example

lszdev geth 0.0.a100 --info --info
if;ﬁame "encal00"

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
encalon

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 257

Finding out the bus ID of a geth interface

Use the 1sqeth -p command to obtain a mapping for all geth interfaces and devices. Alternatively, you
can use sysfs.

Procedure

To find the device bus-ID that corresponds to an interface, either:
« Usethelsqeth -pcommand.
« Use the readlink command.

For each network interface, there is a directory in sysfs under /sys/class/net/, for example, /sys/
class/net/encal00 for interface encal00. This directory contains a symbolic link "device" to the
corresponding device in /sys/devices. Read this link to find the device bus-ID of the device that
corresponds to the interface.

Example

To find out which device bus-ID corresponds to an interface encal00 issue, for example:

readlink /sys/class/net/encal@@/device
../../../0.0.a100

In this example, encal00 corresponds to the device bus-ID 0.0.a100.

Activating an interface

Use the ip command or equivalent to activate an interface.

Before you begin

« You must know the interface name of the geth group device (see “Finding out the interface name of a
geth group device” on page 257).

« You must know the IP address that you want to assign to the device.

About this task

The MTU size defaults to the correct settings for HiperSockets devices. For OSA-Express CHPIDs in QDIO
mode, the default MTU size depends on the device mode, layer 2 or layer 3.

« For layer 2, the default MTU is 1500 bytes.
 For layer 3, the default MTU is 1492 bytes.

In most cases, these defaults are well suited for OSA-Express CHPIDs in QDIO mode. If your network is
laid out for jumbo frames, increase the MTU size to a maximum of 9000 bytes for layer 2, or to 8992 bytes
for layer 3. See Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935 for more
details about MTU size.

For HiperSockets, the maximum MTU size is restricted by the maximum frame size as announced by
the Licensed Internal Code (LIC). The maximum MTU is equal to the frame size minus 8 KB. Hence, the
possible frame sizes of 16 KB, 24 KB, 40 KB, or 64 KB result in maximum corresponding MTU sizes of
8 KB, 16 KB, 32 KB, or 56 KB.

Procedure

You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

258 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples
« This example activates a HiperSockets CHPID with broadcast address 192.168.100.255:

ip addr add 192.168.100.10/24 dev encalcO
ip link set dev encalcO® up

 This example activates an OSA-Express CHPID in QDIO mode with broadcast address
192.168.100.255:

ip addr add 192.168.100.11/24 dev encf500
ip link set dev encf500 up

« This example reactivates an interface that was already activated and subsequently deactivated:

ip link set dev encf500 up

Confirming that an IP address has been set under layer 3

There may be circumstances that prevent an IP address from being set, most commonly if another system
in the network has set that IP address already.

About this task

The Linux network stack design does not allow feedback about IP address changes. If ip or an equivalent
command fails to set an IP address on an OSA-Express network CHPID, a query with ip shows the
address as being set on the interface although the address is not actually set on the CHPID.

There are usually failure messages about not being able to set the IP address or duplicate IP addresses in
the kernel messages. You can find these messages in the output of the dmesg command.

If you are not sure whether an IP address was set properly or experience a networking problem, check
the messages or logs to see if an error was encountered when setting the address. This also applies in the
context of HiperSockets and to both IPv4 and IPv6 addresses. It also applies to whether an IP address
has been set for IP takeover, for VIPA, or for proxy ARP.

Duplicate IP addresses

The OSA-Express adapter in QDIO mode recognizes duplicate IP addresses on the same OSA-Express
adapter or in the network using ARP and prevents duplicates.

About this task
Several setups require duplicate addresses:

« To perform IP takeover you need to be able to set the IP address to be taken over. This address exists
prior to the takeover. See “Taking over IP addresses” on page 270 for details.

« For proxy ARP you need to register an IP address for ARP that belongs to another Linux instance. See
“Configuring a device for proxy ARP” on page 273 for details.

« For VIPA you need to assign the same virtual IP address to multiple devices. See “Configuring a device
for virtual IP address (VIPA)” on page 274 for details.

You can use the qethconf command (see “gethconf - Configure geth devices” on page 703) to maintain
a list of IP addresses that your device can take over, a list of IP addresses for which your device can
handle ARP, and a list of IP addresses that can be used as virtual IP addresses, regardless of any
duplicates on the same OSA-Express adapter or in the LAN.

Deactivating an interface

You can deactivate an interface with ip or an equivalent command or by setting the network device
offline.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 259

About this task
Setting a device offline involves actions on the attached device, but deactivating a device only stops the
interface logically within Linux.

Procedure

To deactivate an interface with ip, issue a command of the form:

ip link set dev <interface_name> down

Example

To deactivate encf500 issue:

ip link set dev encf500 down

Recovering a device

You can use the recover attribute of a geth group device to recover it in case of failure.

About this task
For example, error messages from the geth, qdio, or cio kernel modules might inform you of a
malfunctioning device.

Setting the recover attribute schedules recovery synchronously, however the recovery itself might take
some time.

Procedure

Issue a command of the form:

chzdev <device_bus_id> -a recover=1
Alternatively, use the sysfs attribute recovexr:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/recover

Example

chzdev 0.0.a100 -a recover=1

Alternatively, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/recover

Configuring hardware checksum offload operations

Some CPU-intensive operations can be offloaded to the OSA adapter, thus reducing the load on the host
CPU.

The geth device driver supports offloading for the following operations on both layer 2 and layer 3:

« Inbound (receive) and outbound (transmit) checksum calculations for TCP and UDP network packets
« TCP segmentation, see “Enabling and disabling TCP segmentation offload” on page 262.

VLAN interfaces inherit offload settings from their base interface.

260 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

You can set the offload operations with the Linux ethtool command. See the ethtool man page for
details. The following abbreviated example shows some of the offload settings:

ethtool -k encf500
Features for encf500:
rx-checksumming: on
tx-checksumming: on
tx-checksum-ipv4: on
tx-checksum-ip-generic: off [fixed]
tx-checksum-ipvé6: on
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]
scatter-gather: on
tx-scatter-gather: on
tx-scatter-gather-fraglist: off [fixed]
tcp-segmentation-offload: on
tx-tcp-segmentation: on
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp6-segmentation: on
udp-fragmentation-offload: off [fixed]
generic-segmentation-offload: off [requested on]
generic-receive-offload: on
large-receive-offload: off [fixed]

Configuring the receive checksum offload feature

A checksum calculation is a form of redundancy check to protect the integrity of data.

Procedure

To enable or disable checksum calculations by the OSA feature, issue a command of this form:
ethtool -K <interface_name> rx <value>

where <value> is on or off.

Examples

« To let the OSA feature calculate the inbound checksum for network device encf500, issue

i# ethtool -K encf500 rx on

« To let the host CPU calculate the inbound checksum for network device encf500, issue

i# ethtool -K encf500 rx off

Configuring the transmit checksum offload feature

The geth device driver supports offloading outbound (transmit) checksum calculations to the OSA feature.

About this task
You can enable or disable the OSA feature calculating the transmit checksums by using the ethtool
command.

Procedure

Issue a command of the form:

ethtool -K <interface_name> tx <value>

where <value> is on or off.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 261

Example
« To let the OSA feature calculate the outbound checksum for network device encf500, issue
ethtool -K encf500 tx on

« To let the host CPU calculate the outbound checksum for network device encf500, issue

i# ethtool -K encf500 tx off

Enabling and disabling TCP segmentation offload

Offloading the TCP segmentation operation from the Linux network stack to the adapter can lead to
enhanced performance for interfaces with predominately large outgoing packets.

About this task

TCP segmentation offload is supported for OSA connections on layer 3. On layer 2 it is available as of

z14 for OSA Express6S and newer adapters. Use the ethtool -k (see example in “Configuring hardware
checksum offload operations” on page 260) to check whether your system supports it.

Procedure

Outbound (TX) checksumming and scatter gather are prerequisites for TCP segmentation offload (TSO).
You must turn on scatter gather and outbound checksumming before configuring TSO.

All three options can be turned on or off with a single ethtool command of the form:

ethtool -K <interface_name> tx <value> sg <value> tso <value>

where <value> is either on or off. For more information about TX checksumming, see “Configuring the
transmit checksum offload feature” on page 261.

Attention: When TCP segmentation is offloaded, the OSA feature performs the calculations. Offloaded
calculations are supported only for packets that go out to the LAN.

Examples

« To enable TSO for a network device ethO issue:

ethtool -K eth® tx on sg on tso on

« To disable TSO for a network device ethO issue:

ethtool -K ethO® tx off sg off tso off

Isolating data connections

You can restrict communications between operating system instances that share an OSA port on an OSA
adapter.

About this task

A Linux instance can configure the OSA adapter to prevent any direct package exchange between itself
and other operating system instances that share an OSA adapter. This configuration ensures a higher
degree of isolation than VLANSs.

QDIO data connection isolation is configured as a policy. The policy is implemented as a sysfs attribute
called isolation. The attribute appears in sysfs regardless of whether the hardware supports the
feature. The policy can take the following values:

262 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

none
No isolation. This value is the default.

drop
Specifies the ISOLATION_DROP policy. All packets from guests that share an OSA adapter to guests
that have this policy configured are dropped automatically. The same holds for all packets that are
sent by the guest with this policy configured to guests on the same OSA card. All packets to or from
the isolated guest must have a target that is not hosted on the OSA card. You can accomplish this by a
router hosted on a separate machine or a separate OSA adapter.

For example, assume that three Linux instances share an OSA adapter, but only one instance (Linux A)
must be isolated. Then Linux A declares its OSA adapter (QDIO Data Connection to the OSA adapter)
to be isolated. Any packet sent to or from Linux A must pass at least the physical switch to which the
shared OSA adapter is connected. Linux A cannot communicate with other instances that share the
OSA adapter, here B or C. The two other instances can still communicate directly through the OSA
adapter without the external switch in the network path (see Figure 62 on page 263).

IBM mainframe IBM mainframe
Linux Linux Linux Linux Linux Linux
A B C A B C

O -

O5SA [Express O5A [Express
Sy
Network Network

Figure 62. Linux instance A is isolated from instances B and C

forward
Specifies the ISOLATION_FORWARD policy. All packets are passed through a switch. The
ISOLATION_FORWARD policy requires a network adapter in VEPA mode with an adjacent switch port
configured for reflective relay mode.

To check whether the switch of the adapter is in reflective relay mode, read the sysfs attribute
switch_attrs. The attribute lists all supported forwarding modes, with the currently active mode
enclosed in square brackets. For example:

1lszdev geth 0.0.£f5f0 --info --info
READONLY ACTIVE

éWitch_attrs: "802.1 [rxr]"

Or, using sysfs to query the attribute directly:

cat /sys/devices/qeth/0.0.£f5f0/switch_attrs
802.1 [rr]

The example indicates that the adapter supports both 802.1 forwarding mode and reflective relay
mode, and reflective relay mode is active.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 263

Using a network adapter in VEPA mode achieves further isolation. VEPA mode forces traffic from
the Linux guests to be handled by the external switch. For example, Figure 63 on page 264 shows
instances A and B with ISOLATION_FORWARD specified for the policy. All traffic between A and B
goes through the external switch. The rule set of the switch now determines which connections are
possible. The graphic assumes that A can communicate with B, but not with C.

IBM mainframe

Linux Linux Linux

OSA Express

Switc;:

Figure 63. Traffic from Linux instance A and B is forced through an external switch

If the ISOLATION_FORWARD policy was enforced successfully, but the switch port later loses the
reflective-relay capability, the device is set offline to prevent damage.

You can configure the policy regardless of whether the device is online. If the device is online, the policy is
configured immediately. If the device is offline, the policy is configured when the device comes online.

Examples

« To check the current isolation policy:

cat /sys/devices/qeth/0.0.f5f0/isolation

» To set the isolation policy to ISOLATION_DROP:
chzdev qeth 0.0.f5f0 isolation=drop
Or, using sysfs:

echo drop > /sys/devices/qeth/0.0.f5f0/isolation

» To set the isolation policy to ISOLATION_FORWARD:
chzdev qeth 0.0.f5f0 isolation=forward
Or, using sysfs:
echo forward > /sys/devices/qeth/0.0.f5f0/isolation

If the switch is not capable of VEPA support, or VEPA support is not configured on the switch, then you
cannot set the isolation attribute value to 'forward' while the device is online. If the switch does not

264 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

support VEPA and you set the isolation value 'forward' while the device is offline, then the device cannot
be set online until the isolation value is set back to 'drop' or 'none’.

« To set the isolation policy to none:

i# chzdev geth 0.0.f5f0 isolation=none
Or, using sysfs:

echo none > /sys/devices/qeth/0.0.f5f0/isolation

When you use vNICs, VEPA mode must be enabled on the respective VSWITCH. See z/VM: Connectivity,
SC24-6267 for information about setting up data connection isolation on a VSWITCH.

Displaying and resetting QETH performance statistics

Use the ethtool to display the QETH performance statistics and the performance_stats sysfs
attribute to reset the statistic values.

About this task

Ubuntu Server continuously gathers QETH performance data.

Procedure

1. Use the ethtool command to display the statistics. For details, see the ethtool man page.

2. Optional: Reset the statistic values to 0 by writing 1 to the performance_stats sysfs attribute of the
QETH device.
For example:

chzdev -a <device_bus_id> performance_stats=1
or, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qgeth/<device_bus_id>/performance_stats

Capturing a hardware trace

Hardware traces are intended for use by the IBM service organization. Hardware tracing is turned off by
default. Turn on the hardware-tracing feature only when instructed to do so by IBM service.

Before you begin

« The OSA-Express adapter must support the hardware-tracing feature.
« The geth device must be online to return valid values of the hw_trap attribute.

About this task

When errors occur on an OSA-Express adapter, both software and hardware traces must be collected.
Instructions for software traces depend on a case-by-case basis and are communicated as part of the
service process. The hardware-tracing feature requests a hardware trace if an error is detected. This
feature makes it possible to correlate the hardware trace with the device driver trace. If the hardware-
tracing feature is activated, traces are captured automatically, but you can also start the capturing
yourself.

Procedure

To activate or deactivate the hardware-tracing feature, issue a command of the form:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 265

chzdev <device_bus_id> -a hw_trap=<value>

Where <value> can be:

arm
If the hardware-tracing feature is supported, write arm to the hw_txrap sysfs attribute to activate it. If
the hardware-tracing feature is present and activated, the hw_tzrap sysfs attribute has the value axm.

disarm
Write disarm to the hw_trap sysfs attribute to turn off the hardware-tracing feature. If the
hardware-tracing feature is not present or is turned off, the hw_tzrap sysfs attribute has the value
disazrm. This setting is the default.

trap
(Write only) Capture a hardware trace. Hardware traces are captured automatically, but if asked to do
so by IBM service, you can start the capturing yourself by writing trap to the hw_trap sysfs attribute.
The hardware trap function must be set to arm.

Examples

In this example the hardware-tracing feature is activated and started for geth device 0.0.a000:

chzdev 0.0.a000 -a hw_trap=azrm
chzdev 0.0.a000 -a hw_trap=trap

Alternatively, using sysfs directly:

1. Check that the hw_trap sysfs attribute is set to arm:

cat /sys/devices/qeth/0.0.a000/hw_trap
arm

2. Start the capture:

echo trap > /sys/devices/qeth/0.0.a000/hw_trap

Working with qeth devices in layer 3 mode

Tasks you can perform on geth devices in layer 3 mode include setting up a router, configuring TCP
segmentation offload, and taking over IP addresses.

Use the layer 2 attribute to set the mode. See “Setting the layer2 attribute” on page 250 about setting
the mode. See “Layer 2 and layer 3” on page 236 for general information about the layer 2 and layer 3
disciplines.

Setting up a Linux router

By default, your Linux instance is not a router. Depending on your IP version, IPv4 or IPv6 you can use the
route4 or route6 attribute of your geth device to define it as a router.

Before you begin

« A suitable hardware setup must be in place that enables your Linux instance to act as a router.

- The Linux instance is set up as a router. To configure Linux running as a z/VM guest orin an LPAR as a
router, IP forwarding must be enabled in addition to setting the route4 or routeb6 attribute.

For IPv4, enable IP forwarding by issuing:

sysctl -w net.ipv4.conf.all.forwarding=1

For IPv6, enable IP forwarding by issuing:

266 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

sysctl -w net.ipvé6.conf.all.forwarding=1

About this task
You can set the routed or routeb6 attribute dynamically, while the geth device is online.

The same values are possible for route4 and route6 but depend on the type of CHPID, as shown in Table
48 on page 267.

Table 48. Summary of router setup values

Router specification OSA-Express CHPID in QDIO HiperSockets CHPID
mode

primary_router Yes No

secondary_router Yes No

primary_connector No Yes

secondary_connector No Yes

multicast_router Yes Yes

no_router Yes Yes

Both types of CHPIDs accept:

multicast_router
causes the geth driver to receive all multicast packets of the CHPID. For a unicast function for
HiperSockets see “HiperSockets Network Concentrator” on page 290.

no_router
is the default. You can use this value to reset a router setting to the default.

An OSA-Express CHPID in QDIO mode accepts the following values:

primary_router
to make your Linux instance the principal connection between two networks.

secondary_router
to make your Linux instance a backup connection between two networks.

A HiperSockets CHPID accepts the following values, if the microcode level supports the feature:

primary_connector
to make your Linux instance the principal connection between a HiperSockets network and an
external network (see “HiperSockets Network Concentrator” on page 290).

secondary_connector
to make your Linux instance a backup connection between a HiperSockets network and an external
network (see “HiperSockets Network Concentrator” on page 290).

Example

In this example (see Figure 64 on page 268), two Linux instances, "Linux P" and "Linux S", running on
an IBM mainframe use OSA-Express to act as primary and secondary routers between two networks. IP
forwarding must be enabled for Linux in an LPAR or as a z/VM guest to act as a router. IP forwarding is
configured in procfs or in a configuration file; see the Ubuntu Server 22.04 LTS manuals for details.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 267

Mainframe configuration:
IBM mainframe

Linux P Linux S

Primary Secondary FPrimary Secondary
0400 0404 0200 0204
0401 0405 0201 0205
0402 0406 0202 0206

Figure 64. Mainframe configuration

It is assumed that both Linux instances are configured as routers in their LPARs or in z/VM.
Linux P configuration:

To create the geth group devices:

chzdev --enable geth 0.0.0400,0.0.0401,0.0.0402
chzdev --enable geth 0.0.0200,0.0.0201,0.0.0202

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute group:

echo 0.0.0400,0.0.0401,0.0.0402 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0200,0.0.0201,0.0.0202 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux P a primary router for IPv4:

chzdev geth 0.0.0400 routed=primary_router
chzdev geth 0.0.0200 routed=primary_router

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute route4:

echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0400/routed
echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0200/routed

Linux S configuration:

To create the geth group devices:

chzdev --enable geth 0.0.0404,0.0.0405,0.0.0406
chzdev --enable geth 0.0.0204,0.0.0205,0.0.0206

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute group:

268 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo 0.0.0404,0.0.0405,0.0.0406 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0204,0.0.0205,0.0.0206 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux S a secondary router for IPv4:

chzdev geth 0.0.0400 routed=secondary_router
chzdev geth 0.0.0200 routed=secondary_router

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute route4:

echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0404/route4d
echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0204/routed

In this example, geth device 0.0.1510 is defined as a primary router for IPv6:

chzdev --enable geth 0.0.1510,0.0.1511,0.0.1512
chzdev geth 0.0.1510 routeéb=primary_router

lszdev 1510 -i | grep routeéb

primary router

Alternatively, using sysfs attributes:

cd /sys/bus/ccwgroup/drivers/qeth/0.0.1510
echo 1 > online

echo primary_router > routeb

cat routeb

primary router

See “HiperSockets Network Concentrator” on page 290 for further examples.

Faking broadcast capability

It is possible to fake the broadcast capability for devices that do not support broadcasting.

Before you begin

« You can fake the broadcast capability only on devices that do not support broadcast.
« The device must be offline while you enable faking broadcasts.

About this task
For devices that support broadcast, the broadcast capability is enabled automatically.

To find out whether a device supports broadcasting, use the ip command. If the resulting list shows the
BROADCAST flag, the device supports broadcast. This example shows that the device encf500 supports
broadcast:

ip -s link show dev encf500

3: encf500: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1492 qdisc pfifo_fast glen 1000
link/ether 00:11:25:bd:da:66 brd ff:ff:ff:ff:ff:ff
RX: bytes packets errors dropped overrun mcast

236350 2974 0
TX: bytes packets errors dropped carrier collsns
374443 1791 0 0 0 0

Some processes, for example, the gated routing daemon, require the devices' broadcast capable flag to
be set in the Linux network stack.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 269

Procedure

To set the broadcast capable flag for devices that do not support broadcast, set the fake_broadcast
attribute of the geth group device to 1. To reset the flag, set it to 0.

Issue a command of the form:

chzdev <device_bus_id> fake_broadcast=<flag>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute fake_broadcast:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/fake_broadcast
Example
In this example, a device 0.0.a100 is instructed to pretend that it can broadcast.

chzdev 0.0.a100 fake_broadcast=1

Or, for the running configuration using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/fake_broadcast

Taking over IP addresses

You can configure IP takeover if the layer2 option is not enabled. If you enabled the layer2 option, you can
configure for IP takeover as you would in a distributed server environment.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

Taking over an IP address overrides any previous allocation of this address to another LPAR. If another
LPAR on the same CHPID already registered for that IP address, this association is removed.

An OSA-Express CHPID in QDIO mode can take over IP addresses from any IBM Z operating system. IP
takeover for HiperSockets CHPIDs is restricted to taking over addresses from other Linux instances in the
same Central Electronics Complex (CEC).

IP address takeover between multiple CHPIDs requires ARP for IPv4 and Neighbor Discovery for IPv6.
OSA-Express handles ARP transparently, but not Neighbor Discovery.

There are three stages to taking over an IP address:

Stage 1: Ensure that your geth group device is enabled for IP takeover
Stage 2: Activate the address to be taken over for IP takeover
Stage 3: Issue a command to take over the address

Stage 1: Enabling a geth group device for IP takeover

For OSA-Express and HiperSockets CHPIDs, both the geth group device that is to take over an IP address
and the device that surrenders the address must be enabled for IP takeover.

270 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure

By default, geth devices are not enabled for IP takeover. To enable a geth group device for IP address
takeover set the enable device group attribute to 1. To switch off the takeover capability set the enable
device group attribute to 0.

In sysfs, the enable attribute is located in a subdirectory ipa_takeover. Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/ipa_takeover/enable

Example

In this example, a device 0.0.a500 is enabled for IP takeover:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a500/ipa_takeover/enable

Stage 2: Activating and deactivating IP addresses for takeover
The geth device driver maintains a list of IP addresses that geth group devices can take over or surrender.
To enable Linux to take over an IP-address or to surrender an address, the address must be added to this
list.
Procedure
Use the qethconf command to add IP addresses to the list.
- Todisplay the list of IP addresses that are activated for IP takeover issue:
gethconf ipa list
« To activate an IP address for IP takeover, add it to the list.
Issue a command of the form:
gethconf ipa add <ip_address>/<mask_bits> <interface_name>
« To deactivate an IP address delete it from the list.

Issue a command of the form:

gethconf ipa del <ip_address>/<mask_bits> <interface_name>

In these commands, <ip_address>/<mask_bits> is the range of IP addresses to be activated or
deactivated. See “gethconf - Configure geth devices” on page 703 for more details about the
gethconf command.

IPv4 example
In this example, there is only one range of IP addresses (192.168.10.0 to 192.168.10.255) that can be
taken over by HiperSockets device encalcl0.

List the range of IP addresses (192.168.10.0 t0 192.168.10.255) that can be taken over by HiperSockets
device encalcl0.

qgethconf ipa list
ipa add 192.168.10.0/24 encalcl®

The following command adds a range of IP addresses that can be taken over by device encf500.

gethconf ipa add 192.168.11.0/24 encf500
gethconf: Added 192.168.11.0/24 to /sys/class/net/encf500/device/ipa_takeover/add4.
gethconf: Use "gethconf ipa list" to check for the result

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 271

Listing the activated IP addresses now shows both ranges of addresses.

gethconf ipa list
ipa add 192.168.10.0/24 encalc®
ipa add 192.168.11.0/24 encf500

The following command deletes the range of IP addresses that can be taken over by device encf500.

gethconf ipa del 192.168.11.0/24 encf500
gethconf: Deleted 192.168.11.0/24 from /sys/class/net/encf500/device/ipa_takeover/del4.
gethconf: Use "gethconf ipa list" to check for the result

IPv6 example

The following command adds one range of IPv6 addresses,
fec0:0000:0000:0000:0000:0000:0000:0000 to fec0:0000:0000:0000:FFFF:FFFF:FFFF:FFFF, that can
be taken over by OSA device encd300.

Add a range of IP addresses:

gethconf ipa add fec@::/64 encd300
gethconf: Added fec0:0000:0000:0000:0000:0000:0000:0000/64 to

sysfs entry /sys/class/net/encd300/device/ipa_takeover/addé.
gethconf: For verification please use "gethconf ipa list"

Listing the activated IP addresses now shows the range of addresses:

gethconf ipa list
ipa add fec:0000:0000:0000:0000:0000:0000:0000/64 encd300

The following command deletes the IPv6 address range that can be taken over by encd300:

gethconf ipa del fec0:0000:0000:0000:0000:0000:0000:0000/64 encd300:
gethconf: Deleted fec0:0000:0000:0000:0000:0000:0000:0000/64 from

sysfs entry /sys/class/net/encd300/device/ipa_takeover/delé6.
gethconf: For verification please use "gethconf ipa list"

Stage 3: Issuing a command to take over the address

To complete taking over a specific IP address and remove it from the CHPID or LPAR that previously held
it, issue the ip addx command.

Before you begin

« Both the device that is to take over the IP address and the device that is to surrender the IP address
must be enabled for IP takeover. This rule applies to the devices on both OSA-Express and HiperSockets
CHPIDs. (See “Stage 1: Enabling a geth group device for IP takeover” on page 270).

« The IP address to be taken over must have been activated for IP takeover (see “Stage 2: Activating and
deactivating IP addresses for takeover” on page 271).

About this task

Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 259
when using IP takeover.

Examples
IPv4 example:

To make a HiperSockets device encalcO take over IP address 192.168.10.22 issue:

272 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

ip addr add 192.168.10.22/24 dev encalcO

For IPv4, the IP address you are taking over must be different from the one that is already set for your
device. If your device already has the IP address it is to take over, you must issue two commands: First
remove the address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a HiperSockets device encalcO take over IP address 192.168.10.22 if encalcO is
already configured to have IP address 192.168.10.22 issue:

ip addr del 192.168.10.22/24 dev encalcO
ip addr add 192.168.10.22/24 dev encalcO

IPv6 example:
To make a OSA device encd300 take over fec0::111:25ff:.febd:d9da/64 issue:

ip addr add fec0::111:25ff:febd:d9da/64 nodad dev encd300

For IPv6, setting the nodad (no duplicate address detection) option ensures that the encd300 interface
uses the IP address fec0::111:25ff:febd:d9da/64. Without the nodad option, the previous owner of the IP
address might prevent the takeover by responding to a duplicate address detection test.

The IP address you are taking over must be different from the one that is already set for your device. If
your device already has the IP address it is to take over you must issue two commands: First remove the
address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a device encd300 take over IP address fec0::111:25ff:febd:d9da/64 when encd300
is already configured to have that particular IP address issue:

ip addr del fec0::111:25ff:febd:d9da/64 nodad dev encd300
ip addr add fecO::111:25ff:febd:d9da/64 nodad dev encd300

Configuring a device for proxy ARP

You can configure a device for proxy ARP if the layer2 option is not enabled. If you enabled the layer2
option, you can configure for proxy ARP as you would in a distributed server environment.

Before you begin
Configure only geth group devices that are set up as routers for proxy ARP.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

The geth device driver maintains a list of IP addresses for which a geth group device handles ARP and
issues gratuitous ARP packets. For more information about proxy ARP, see

https://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

Use the qethconf command to display this list or to change the list by adding and removing IP addresses
(see “gethconf - Configure geth devices” on page 703).

Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 259
when you work with proxy ARP.

Example

Figure 65 on page 274 shows an environment where proxy ARP is used.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 273

http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

Linux &1 Linux G2 Linux G3 i eutEar Internet
1.2.2.4/24 || 1.2.35.5/24 || 1.2.2.6/24 P

1.2.2.0/24

z/YM internal communications,
e. g. IUCY or guest LAN

z/\VYM

|| Gateway
IBM mainframe OSA GW

Figure 65. Example of proxy ARP usage

G1, G2, and G3 are instances of Linux on z/VM (connected, for example, through a guest LAN to a Linux
router R), reached from GW (or the outside world) through R. R is the ARP proxy for G1, G2, and G3. That
is, R agrees to take care of packets that are destined for G1, G2, and G3. The advantage of using proxy
ARP is that GW does not need to know that G1, G2, and G3 are behind a router.

To receive packets for 1.2.3.4, so that it can forward them to G1 1.2.3.4, R would add 1.2.3.4 to its list of
IP addresses for proxy ARP for the interface that connects it to the OSA adapter.

gethconf parp add 1.2.3.4 encf500
gethconf: Added 1.2.3.4 to /sys/class/net/encf500/device/rxip/add4.
gethconf: Use "qethconf parp list" to check for the result

After issuing similar commands for the IP addresses 1.2.3.5 and 1.2.3.6 the proxy ARP configuration of R
would be:

gethconf parp list

parp add 1.2.3.4 encf500
parp add 1.2.3.5 encf500
parp add 1.2.3.6 encf500

Configuring a device for virtual IP address (VIPA)

You can configure a device for VIPA if the layer2 option is not enabled. If you enabled the layer2 option,
you can configure for VIPA as you would in a distributed server environment.

About this task

For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

IBM Z use VIPAs to protect against certain types of hardware connection failure. You can assign VIPAs
that are independent from particular adapter. VIPAs can be built under Linux using dummy devices (for
example, "dummyQ" or "dummy1").

The geth device driver maintains a list of VIPAs that the OSA-Express adapter accepts for each geth group
device. Use the gethconf utility to add or remove VIPAs (see “gethconf - Configure geth devices” on
page 703).

For an example of how to use VIPA, see “Scenario: VIPA — minimize outage due to adapter failure” on
page 285.

Be aware of “Confirming that an IP address has been set under layer 3” on page 259 when you work with
VIPAs.

Configuring a HiperSockets device for AF_IUCV addressing

Use the hsuid attribute of a HiperSockets device in layer 3 mode to identify it to the AF_IUCV addressing
family support.

274 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin

 Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.

« The device must be set up for AF_IUCV addressing (see “Setting up HiperSockets devices for AF_IUCV
addressing” on page 316).

Procedure

To set an identifier, issue a command of this form:

chzdev geth 0.0.a007 hsuid=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute hsuid:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

The identifier is case-sensitive and must adhere to these rules:

« It must be 1 - 8 characters.
« It must be unique across your environment.

« It must not match any z/VM user ID in your environment. The AF_IUCV addressing family support also
supports z/VM IUCV connections.

Example
In this example, MYHOSTO1 is set as the identifier for a HiperSockets device with bus ID 0.0.a007.

chzdev geth 0.0.a007 hsuid=MYHOSTO1

Or, for the running configuration only using sysfs:

echo MYHOSTO1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

Working with qeth devices in layer 2 mode

Tasks that you can perform on geth devices in layer 2 mode include setting up an OSA or HiperSockets
bridge port and tuning packet handling for an OSA or HiperSockets device with VNIC characteristics.

VNIC characteristics and the bridge port role are mutually exclusive.

Use the layer2 attribute to set the mode. See “Setting the layer2 attribute” on page 250 about setting
the mode. See “Layer 2 and layer 3” on page 236 for general information about the layer 2 and layer 3
disciplines.

Configuring a network device as a member of a Linux bridge

You can define an OSA or HiperSockets device to be a bridge port, which allows it to act as a member of a
Linux software bridge. Use the bridge_role attribute of a network device in layer 2 to make it receive all
traffic with unknown destination MAC addresses.

Alternatively, use VNIC characteristics to configure a layer 2 network device to receive all unknown traffic
(see “Advanced packet-handling configuration” on page 278).

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 275

Before you begin

To use the bridging support, you need OSA or HiperSockets hardware that supports layer 2
SETBRIDGEPORT functionality.

You can have one active bridge port per Internal Queued Direct Communication (IQD) or OSA channel.
You can have either only secondary bridge ports, or one primary and several secondary bridge ports per
OSA or HiperSockets channel.

Devices for which VNIC characteristics are configured cannot also be configured as bridge ports.

On z13 and older mainframes: HiperSockets bridge ports only bridge traffic to and from HiperSockets
ports in z/VM guests. On z14 and later HiperSockets bridge ports bridge traffic to and from all layer

2 HiperSockets ports that are not configured as "bridge_invisible", see “Advanced packet-handling
configuration” on page 278.

HiperSockets only: On IQDX channels permission to configure ports as bridge ports must be granted in
IBM zEnterprise Unified Resource Manager (zManager). On machines in PR/SM mode, bridge ports can
only be configured on IQD channels that are defined as "external-bridged" in the IOCDS. On machines in
DPM mode, bridge ports can be configured on any IQD channel.

For more information about the bridge port concept, see “Layer 2 promiscuous mode” on page 242.

About this task

The following sysfs attributes control the bridge port functions. The attributes can be found in
the /sys/bus/ccwgroup/drivers/qeth/<device_bus_1id> directory.

bridge_role
Read-write attribute that controls the role of the port. Valid values are:

primary
Assigns the port the primary bridge port role.

secondary
Assigns the port a secondary bridge port role.

none
Revokes existing bridge port roles and indicates that no role is assigned.

Assigning a role directly to a port prevents use of the bridge_reflect_promisc attribute.

bridge_state
Read-only attribute that shows the state of the port. Valid values are:

active
The port is assigned a bridge port role and is switched into active state by the adapter. The device
receives frames that are addressed to unknown MAC addresses.

standby
The port is assigned a bridge port role, but is not currently switched into active state by the
adapter. The device does not receive frames that are destined to unknown MAC addresses.

inactive
The port is not assigned a bridge port role.

bridge_hostnotify
HiperSockets only: Read-write attribute that controls the sending of notifications for the port. When
you enable notifications (even if notifications were already enabled), udev events are emitted for all
currently connected communication peers in quick succession. After that, a udev event is emitted
every time a communication peer is connected, or a previously connected peer is disconnected. Any
user space program that monitors these events must repopulate its list of registered peers every time
the status of the bridge port device changes to enable notifications.

Valid values are:

276 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

1
The port is set to send notifications.

(1]
Notifications are turned off.

Notifications about the change of the state of bridge ports, and (if enabled) about registration and
deregistration of communication peers on the LAN are delivered as udev events. The events are
described in the file 1inux-doc/s390/qgeth. txt.

bridge_reflect_promisc
Read-write attribute that, when set, makes the bridge-port role of the port follow (“reflect") the
promiscuity flag (IFF_PROMISC) of the corresponding Linux network interface. You can specify the
following values:

none
Setting and resetting the promiscuous mode on the network interface has no effect on the bridge-
port role of the underlying port.

primary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the primary role to the port. If a port with the
primary role exists, assignment fails.

secondary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the secondary role to the port.

Setting bridge_reflect_promisc to anything but none causes the bridge_role attribute to
become read-only. The role of a port changes as a result of setting or unsetting the promiscuity flag
(IFF_PROMISC) of the corresponding network interface. You can check the currently assigned role by
reading the bridge_xrole attribute.

Procedure

1. To configure a network device as a bridge, issue a command of this form:

chzdev <device_bus_id> bridge_role=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute bridge_role:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_1id>/bridge_xrole
Setting the bridge_role attribute requires the bridge_reflect_promisc attribute to be none.

Alternatively, to make the bridge-port role of the port follow the promiscuity flag (IFF_PROMISC) of the
corresponding Linux network interface, issue a command of the following form:

chzdev <device_bus_id> bridge_reflect_promisc=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute bridge_reflect_promisc:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_reflect_promisc

where valid values are:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 277

« primary
« secondary
« none

2. Check the state of the bridge port by reading the bridge_state attribute. Issue a command of this
form:

lszdev qeth <device_bus_id> --info --info

Alternatively, use the sysfs attribute bridge_state directly:
cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_state

where displayed values could be:
- active

« standby

« inactive

Example
In this example, a network device with bus ID 0.0.a007 is defined as a primary bridge port.

chzdev 0.0.a007 bridge_role=primary

Or, for the running configuration only using sysfs:

echo primary > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/bridge_role
cat /sys/bus/ccwgroup/drivers/qeth/a007/bridge_state
active

What to do next

You can specify up to four secondary bridge ports together with one primary bridge port. If the primary
bridge port fails, one of these bridge ports takes over. For each secondary bridge port, set bridge_xrole
to secondary.

Advanced packet-handling configuration

Use VNIC characteristics to control how OSA or HiperSockets devices in layer 2 mode handle special
scenarios, for example, packets with unknown MAC addresses, address takeover, or traffic with bridge
ports.

Before you begin

« See your IBM Z hardware documentation about support for VNIC characteristics. Support might differ
for OSA and HiperSockets devices.
« VNIC characteristics are supported for layer 2 mode only.

« VNIC characteristics cannot be configured on devices that are configured as bridge ports.

About this task

You can configure and fine-tune a promiscuous mode for incoming packets. You can configure the device
to receive all packets regardless of the MAC address, or you can reject incoming multicast packets, or
broadcast packets, or both.

278 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For Linux instances that host multiple guest operating systems with different MAC addresses, you can
configure the device to learn and handle these MAC addresses. The device then provides functions similar
to a switch or to a software bridge.

The VNIC characteristics also include settings that can protect the MAC address of the device from being
taken over by another device. You can deny takeover, or you can explicitly permit takeover to facilitate
migration, for example in a recovery situation.

The VNIC characteristics of a geth device are represented by sysfs attributes in /sys/devices/qeth/
<device_bus_id>/vnicc:

flooding
With flooding enabled, the device receives packets to any unknown destination MAC address. Valid
values are 0 for disabled and 1 for enabled. By default, flooding is disabled.

For a shared OSA adapter, flooding applies to traffic between the physical port and the OSA interfaces,
but not to communication between the interfaces that share the adapter. Enable learning to
configure bridge-like behavior of shared OSA adapters.

An OSA Express adapter can support a maximum of 64 devices with flooding enabled.

mcast_flooding
With multicast flooding enabled, the device receives packets to any multicast MAC address. Valid
values are 0 for disabled and 1 for enabled. By default, multicast flooding is disabled and the device
receives only packets to multicast MAC addresses to which it has previously registered.

rx_bcast
With broadcast receiving enabled, the device receives packets with the broadcast destination MAC
address. Valid values are 0 for disabled and 1 for enabled. By default, the device is enabled to receive
broadcast packets.

learning
With learning enabled, the device assembles a list of source MAC addresses of outgoing packets. The
device then receives incoming packets to any MAC address in the list. Valid values are 0 for disabled
and 1 for enabled. By default, learning is disabled.

A MAC address is added to the list unless it has been explicitly assigned to another device on the
same channel. An exception are addresses of devices on which the takeover_learning characteristic
is set. Such devices surrender their address to a learning device. If an address is already listed by

a different learning device on the same channel, the address is removed from that learning device's
list. Explicitly configuring a MAC address on a different device removes the address from the learning
device list.

A learned MAC address is dropped from the list of learned MAC addresses unless packets with this
MAC address are sent within a specific timeout period. The default timeout period is 600 s. You can
specify a different timeout period with the 1earning_timeout attribute.

takeover_setvmac
With this option enabled, the device's MAC address can be configured on a different device, without
notification. Valid values are 0 for disabled and 1 for enabled. By default, this option is disabled and
the MAC address cannot be configured on a different device on the same channel.

takeover_learning
With takeover by learning enabled, the MAC address of this device can be learned on a different device
on the same channel and, thus, taken over by this other device, without notification. Valid values are ©
for disabled and 1 for enabled. By default, takeover by learning is disabled.

bridge_invisible
With bridge-port invisible enabled, packets are not transferred between the device and any other
device that is configured as a bridge port. Valid values are 0 for disabled and 1 for enabled. By default,
this option is disabled and, thus, traffic to and from bridge ports is permitted.

This characteristic applies to HiperSockets devices only.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 279

learning_timeout
With learning enabled, this attribute specifies a timeout period, in seconds. A MAC address is dropped
from the list of learned MAC addresses if this timeout period expires without any packets with this
MAC address being received.

You can set this timeout period by writing a value in the range 60 - 86400 to the attribute. The default
is 600. The timeout must be set before learning is enabled on the device.

Procedure

1. Optional: To read a VNIC characteristic setting from sysfs, issue a command of this form:

cat /sys/devices/qeth/<device_bus_id>/vnicc/<attribute>

where <device_bus_id> is the device-bus ID of the geth device and <attribute> is one of the attributes
that represent the VNIC characteristics.

Example:

cat /sys/devices/qeth/0.0.a016/vnicc/learning
0

Tip: For an overview of all VNIC characteristics of the device, find the interface name of the device,
then use the 1sqeth command.

Example:

cat /sys/devices/qeth/0.0.a016/if_name

etho

lsqgeth eth® | grep vnicc
vnicc/bridge_invisible
vnicc/flooding
vnicc/learning
vnicc/learning_timeout
vnicc/mcast_flooding
vnicc/rx_bcast
vnicc/takeover_learning
vnicc/takeover_setvmac

OCOFRPFRPOOOO
(o]
(o]

2. To set a VNIC characteristic issue a command of this form:

chzdev <device_bus_id> vnicc/<attribute>=<value>

where <device_bus_id> is the device-bus ID of the geth device, <attribute> is one of the attributes that
represent the VNIC characteristics, and <value> is the value to be set.

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev
command with the -a option or use the corresponding sysfs attribute.

Example: In this example, learning is enabled for a device with bus-ID 0.0.a016.

chzdev 0.0.a016 vnicc/learning=1
or, using sysfs:

echo 1 > /sys/devices/qeth/0.0.a016/vnicc/learning

Example
This example shows a typical configuration for a bridge-like behavior of the device.

280 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsqeth eth® | grep vnicc
vnicc/bridge_invisible
vnicc/flooding
vnicc/learning
vnicc/learning_timeout
vnicc/mcast_flooding
vnicc/rx_bcast
vnicc/takeover_learning
vnicc/takeover_setvmac

PRPRoPPo
IS

Working with HiperSockets Converged Interfaces

Using HiperSockets Converged Interface (HSCI) connections, a HiperSockets network interface can be
combined with an external OSA- or RoCE port, thus creating a single network interface.

About this task
The HSCI function is available as of IBM z15 or IBM LinuxONE III.

With this function, you can connect an instance of Linux that runs in LPAR mode to z/OS through layer 2
HiperSockets. The z/OS version must support HSCI.

A converged network can span multiple IBM Z servers.
Example: Consolidating subnets

Between LPARs, you can connect Linux instances through HiperSockets. To connect to an external
network, you need an OSA-Express adapter in QDIO mode, or a RoCE Express adapter.

To connect Linux and z/OS LPARs with each other and an external network, you can use OSA Express
adapters, for example, as shown in Figure 66 on page 281. All traffic between the operating system
instances go through the OSA adapters, which puts load on the OSA adapters, and might not perform as
well as HiperSockets.

IBM mainframe

LPAR 1 LPAR 2 LPAR 3
Linux 1 Linux 2 z/0S
encalO0 encalOG LNKOO2
10.1.1.1/16 10.1.1.2/16 10.1.1.5/16

05A 05SA OSA
OSA 0SA
Express 1 Express 2
LAN 10.1.0.0/16

Figure 66. A network using OSA Express adapters that connects Linux and z/0S LPARS

You might add a no-charge HiperSockets for the internal communication, which allows for faster
communication inside the hardware system, and reduces load on the OSA adapters.

The performance gain comes at the cost of managing twice the number of interfaces and a second IP
subnet.

Communication networks at enterprise level can easily grow in complexity and become a burden for the
network administrator, as shown in Figure 67 on page 282

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 281

IBM mainframe @OD
10.0.0.0/16 "*.K—\
LPAR 1 LPAR 2 LPAR 3 | [Bubnet 1
Linux1 7 | iQDIO | Linux 2 | iQDIO | z/05 iQDIO ;
l" WO.O.[7OM.72/16 10'0}701125/16 0.0.0.2/1¢| |.
........ énc IUUUTUN. 11230 | 155 B SR gy
{-encal00™ T T encalos LNKOO2+E4AIAC0E
10.1.1.1/16 10.1.1.2/16 10.11.3/16 .
OSA 0SA OSA
— |
| osA 05A
Express 1 Express 2| .-
LAN10.1.0016 _..---" Subnet 2

Figure 67. A complex network with two subnets and two IP addresses for each operating system instance

With HSCI interfaces, you can create a converged network that includes both direct HiperSockets

connections for traffic within the server hardware and external connectivity through OSA Express or RoCE

Express adapters. The HSCI interface is managed as a single interface.

In the sample network, there is now only one subnet, one IP address per operating system instance, and
HiperSockets is still used for fast internal communication. This setup is shown in Figure 68 on page 282.

IBM mainframe

LPAR 1 LPAR 2 LPAR 3
Linux 1 Linux 2 z/0S
~hacib12 hecibTe EZAIQCOF™~,
7 104116 101.1.2/16 101.1.3/16 N
/ (Hsch HaCl HSCl

K\\\““~—————__________

0SA

0SA

Express 2|

. |Express 1
=

Subnet

Figure 68. A converged HSCI network with one subnet and one IP address for each operating system

instance

All HiperSockets interfaces of the HiperSockets channel must participate in the HSCI network. A
HiperSockets interface on its own cannot communicate correctly with its network neighbors.

Working with HSCI connections comprises the following tasks:

« “Creating an HSCI interface” on page 282

« “Using an HSCI interface as a base device for MacVTap or OpenVSwitch” on page 284

Creating an HSCI interface

Combine a HiperSockets network interface with an external OSA- or RoCE port to create a single network

interface.

Before you begin

- Itis useful to assign the participating adapters and HiperSockets channels to the same PNET ID in the

IOCDS.

282 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure

1. Ensure that the HiperSockets interface and the OSA or RoCE interface that you want to work with are
up.
2. Merge the HiperSockets interface and the OSA or RoCE interface by issuing a command of the form:

hsci add <HipSock_if> <Ext_if>

The resulting HSCI interface name is based on the device-bus ID of the HiperSockets interface.

As a simple example, Figure 69 on page 283 illustrates how a Linux instance running in an LPAR is
changed to use one HSCI interface instead of one OSA interface and one HiperSockets interface.

IBM mainframe IBM mainframe
10CDS 10CDS
PNETID=NET1 PNETID=NET1
[L
LPAR LPAR
Linux H5Cl Linux
connection
~~~~~~ >
K o8 hscib112
encalOo | ¢ ' [ enchl12 10.1.0.1/16
[ osa | [ 1avio ] Hacl
Express
LAN LAN 10.1.0.0/16

Figure 69. A Linux instance where interfaces are merged to a single HSCI interface

Assume you want to set up an HSCI interface by converging a HiperSockets interface named encb112,
and an OSA-Express interface named encal00. Connect the two by issuing:

# hsci add encb112 encal@0
éﬁécessfully added HSCI interface hscib112

In the example, the device-bus ID of 0.0.b112 results in HiperSockets interface encb112, and then in
the HSCI interface name hscib112. The HSCI interface name is predictable.

For more information about the hsci command, see “hsci - Manage HSCI interfaces” on page 639.
3. Assign an IP address to the new HSCI interface, for example, with the ip command.
Issue a command of the form:

# ip addr add <IP_address> dev <interface>

For example, assuming that the new HSCI interface is called hscib112:

# ip addr add 10.1.0.1/16 dev hscib112

4. Optional: You can list the new HSCI interface with the hsci show command:

# hsci show
HSCI PNET_ID HiperSockets External

hsci8410 NET1 encalo hscib112

What to do next
You can delete an HSCI interface with the hsci del command, for example:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 283



hsci del hscib112

Deleting HSCI interface hsci8410 with the HiperSockets enc8410 and the
external encalG0

Deleting MAC fe:c2:f4:35:00:12 on encalf0

Successfully deleted device hscib112

Using an HSCI interface as a base device for MacVTap or OpenVSwitch

You can use an HSCI network device as the base device for a MacVTap or OpenVSwitch connection. You
can, for example, attach KVM virtual servers to the converged network.

Before you begin
It is useful to define the PNET ID for the HiperSockets channel and the OSA or RoCE adapters to mark
them as part of the same network segment.

About this task

To attach KVM virtual servers to a converged network, you define the HSCI device as a source device in
the domain XML of the virtual server.

The following example assumes that there is an HiperSockets interface enc8410, an OSA interface
encb040, and you want to create an HSCI interface hsci8410. Then you can use the HSCI interface to set
up a MacVTap connection with two KVM virtual servers.

Procedure

1. On the KVM host, define the HiperSockets interface as layer 2. Issue a command of the form:

# chzdev -e <device_ID> layer2=1

For example, if the device ID of the HiperSockets device is 8410:

# chzdev -e 8410 layer2=1
QETH device 0.0.8410:0.0.8411:0.0.8412 configured

2. Define the OSA interface with flooding and mcast_flooding enabled. Issue a command of the form:

# chzdev -e <device_ID> vnicc/flooding=1 vnicc/mcast_flooding=1

For example, if the OSA device ID is b040:

# chzdev -e b040 vnicc/flooding=1 vnicc/mcast_flooding=1

QETH device 0.0.b040:0.0.b041:0.0.b042 configured
Adding layer2=1 to active configuration (required by vnicc/mcast_flooding)
Adding layer2=1 to persistent configuration (required by vnicc/mcast_flooding)

3. Create the converged HSCI interface. Issue a command of the form:

# hsci add <HipSock_if> <O0SA_if>

For example, if the HiperSockets interface is enc8410 and the OSA interface is encb040:

# hsci add enc8410 ench040

Verifying net dev encb@40 and HiperSockets dev enc8410

Adding hsci8410 with a HiperSockets dev enc8410 and an external dev encbh040
Added HSCI interface hsci8410

4. Optional: Check that the HSCI interface was created. Use the hsci show command.
For example:

284 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



hsci show
HSCI PNET_ID HiperSockets External

hsci8410 NET1 enc8410 ench040

What to do next

You can use the HSCI interface as the base for a MacVTap or an OpenVSwitch connection on a KVM virtual
server, as illustrated in Figure 70 on page 285.

IBM mainframe
KVM host

vs_0O1 ve_02

MacVTap

hsci&410

0SA | HiperSockets
Express

Figure 70. MacVTAp connection with two KVM virtual servers

LAN

See KVM Virtual Server Management, SC34-2752 for how to configure a network interface in the domain
configuration XML of the KVM virtual servers.

Scenario: VIPA — minimize outage due to adapter failure

Using VIPA you can assign IP addresses that are not associated with a particular adapter. VIPA thus
minimizes outage that is caused by adapter failure.

This scenario uses standard VIPA, which is sufficient for applications, such as web servers, that do not
open connections to other nodes.

Note:

1. See the information in “Confirming that an IP address has been set under layer 3” on page 259

concerning possible failure when you set IP addresses for OSA-Express features in QDIO mode (geth
device driver).

Setting up standard VIPA

To set up VIPA you must create a dummy device, ensure that your service listens to the IP address, and
set up routing to it.

Procedure
Follow these main steps to set up VIPA in Linux:
1. Create a dummy device with a virtual IP address.

2. Ensure that your service (for example, the Apache web server) listens to the virtual IP address
assigned in step “1” on page 285.

3. Set up routes to the virtual IP address, on clients or gateways. To do so, you can use either:

 Static routing (shown in the example of Figure 71 on page 286).

Dynamic routing. For details of how to configure routes, you must see the documentation that is
delivered with your routing daemon (for example, zebra or gated).

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 285



Adapter outage

If outage of an adapter occurs, you must switch adapters.

Procedure

« Under static routing:
a) Delete the route that was set previously.
b) Create an alternative route to the virtual IP address.
« Under dynamic routing, see the documentation that is delivered with your routing daemon for details.

Example of how to set up standard VIPA

This example shows you how to configure VIPA under static routing, and how to switch adapters when an
adapter outage occurs.

About this task

Figure 71 on page 286 shows the network adapter configuration that is used in the example.
IBM mainframe

Linux LFAR or VM guest server

dummyO
VIFA 198.51.100.100/24

encf500 ence400
10.1.0.2/16 10.2.0.2116
] I
I |
0SA1 0SA 2
Router

Figure 71. Example of using Virtual IP Address (VIPA)

Procedure

1. Define the real interfaces.

[server]# ip addr add 10.1.0.2/16 dev encf500
[sexrver]# ip link set dev encf500 up
[server]# ip addr add 10.2.0.2/16 dev ence400
[sexver]# ip link set dev ence400 up

2. If the dummy component was not compiled into the kernel, ensure that the dummy module was
loaded.

If necessary, load it by issuing:
[sexver]# modprobe dummy

3. Create a dummy interface with a virtual IP address 198.51.100.100 and a netmask 255.255.255.0:

[server]# ip addr add 198.51.100.100/24 dev dummy®
[server]# ip link set dev dummy® up

4. Enable the network devices for this VIPA so that it accepts packets for this IP address.

e IPv4 example:

286 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



[server]# gethconf vipa add 198.51.100.100 encf500
gethconf: Added 198.51.100.100 to /sys/class/net/encf500/device/vipa/add4.
gethconf: Use "qethconf vipa list" to check for the result

[server]# gethconf vipa add 198.51.100.100 enced00
gethconf: Added 198.51.100.100 to /sys/class/net/enced400/device/vipa/add4.
gethconf: Use "qethconf vipa list" to check for the result

« For IPv6, the address is specified in IPv6 format:

[sexrver]# gethconf vipa add 2002::1235:5678 encf500
gethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/encf500/device/

vipa/addé6.

gethconf: Use "gethconf vipa list" to check for the result

[server]# gethconf vipa add 2002::1235:5678 enced00

gethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/ence400/device/
vipa/addé.

gethconf: Use "gethconf vipa list" to check for the result

5. Ensure that the addresses are set:

[server]# gethconf vipa list
vipa add 198.51.100.100 encf500
vipa add 198.51.100.100 ence400

6. Ensure that your service (such as the Apache web server) listens to the virtual IP address.

7. Set up a route to the virtual IP address (static routing) so that VIPA can be reached through the
gateway with address 10.1.0. 2.

[router]# ip route add 198.51.100.100 via 10.1.0.2

What to do next
Now assume that an adapter outage occurs. You must then:

1. Delete the previously created route.

[routexr]# ip route del 198.51.100.100

2. Create the alternative route to the virtual IP address.

[routexr]# ip route add 198.51.100.100 via 10.2.0.2

Introduction to VLANs

Use VLANSs to increase traffic flow and reduce latency. With VLANSs, you can organize your network by
traffic patterns rather than by physical location.

In a conventional network topology, such as that shown in Figure 72 on page 288, devices communicate
across LAN segments in different broadcast domains by using routers. Although routers add latency by
delaying transmission of data while they are using more of the data packet to determine destinations,
they are preferable to building a single broadcast domain. A single domain can easily be flooded with
traffic.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 287



g 1= 18 segment 8 gy
[[ ~__\. \‘ : Server
| :
LSS switeh :

SegmentA  \ § —

Router >~ ~_ YL
7 Backbone J\‘tSwitch

Segmenf D f - Segment C
. k;ﬁ / Router \ switeh
. Switch @

K;‘;'i‘l\

ﬂ!r - 3', . &

'\,*41 K,‘gt = R

Figure 72. Conventional routed network

By organizing the network into VLANSs by using Ethernet switches, distinct broadcast domains can be
maintained without the latency that is introduced by multiple routers. As Figure 73 on page 288 shows,
a single router can provide the interfaces for all VLANs that appeared as separate LAN segments in the
previous figure.

CNCNCR R

K:—ﬂ—\ = ﬂﬂ VLAN 2 i Server
k;;i g ! :

Figure 73. Switched VLAN network

Figure 74 on page 289 shows how VLANSs can be organized logically, according to traffic flow, rather

than being restricted by physical location. If workstations 1-3 communicate mainly with the small server,
VLANSs can be used to organize only these devices in a single broadcast domain that keeps broadcast
traffic within the group. This setup reduces traffic both inside the domain and outside, on the rest of the
network.

288 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



mServer
Server
. o

2.

Figure 74. VLAN network organized for traffic flow

Configuring VLAN devices

Configure VLANs with the ip 1link add command. See the ip-1ink man page for details.

About this task

Information about the current VLAN configuration is available by listing the files in
/proc/net/vlan/*
with cat or more. For example:

bash-2.044# cat /proc/net/vlan/config

VLAN Dev name | VLAN ID

Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD bad_proto_recvd: 0

encd300.100 | 1600 | encd300

encd300.200 | 200 | encd300

encd300.300 | 360 | encd300

bash-2.044# cat /proc/net/vlan/encd300.300

encd300.300 VID: 300 REORDER_HDR: 1 dev->priv_flags: 1
total frames received: 10914061
total bytes received: 1291041929

Broadcast/Multicast Rcvd: 6

total frames transmitted: 10471684
total bytes transmitted: 4170258240
total headroom inc: 0
total encap on xmit: 10471684
Device: encd300
INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0
EGRESS priority Mappings:
bash-2.044

Example: Creating two VLANs

VLANSs are allocated in an existing interface that represents a physical Ethernet LAN.

The following example creates two VLANs, one with ID 3 and one with ID 5.

ip addr add 198.51.160.23/19 dev enced00

ip link set dev ence400 up

ip link add dev ence400.3 link ence400 type vlan id 3
ip link add dev ence400.5 link ence400 type vlan id 5

The ip link add commands added interfaces "ence400.3" and "ence400.5", which you can then
configure:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 289



ip addr add 1.2.3.4/24 dev enced00.3
ip link set dev ence400.3 up
ip addr add 10.100.2.3/16 dev ence400.5
ip link set dev ence400.5 up

The traffic that flows out of ence400.3 is in the VLAN with ID=3. This traffic is not received by other stacks
that listen to VLANs with ID=4.

The internal routing table ensures that every packet to 1.2.3.x goes out through ence400.3, and
everything to 10.100.x.x through ence400.5. Traffic to 198.51.1xx.x flows through ence400 (without a
VLAN tag).

To remove one of the VLAN interfaces:

ip link set dev ence400.3 down
ip link delete ence400.3 type vlan

HiperSockets Network Concentrator

You can configure a HiperSockets Network Concentrator on a QETH device in layer 3 mode.

Before you begin: The instructions that are given apply to IPv4 only. The HiperSockets Network
Concentrator connector settings are available in layer 3 mode only.

The HiperSockets Network Concentrator connects systems to an external LAN within one IP subnet that
uses HiperSockets. HiperSockets Network Concentrator connected systems look as if they were directly
connected to the LAN. This simplification helps to reduce the complexity of network topologies that result
from server consolidation.

Without changing the network setup, you can use HiperSockets Network Concentrator to port systems:

« From the LAN into an IBM Z server environment

« From systems that are connected by a different HiperSockets Network Concentrator into an IBM Z
server environment

Thus, HiperSockets Network Concentrator helps to simplify network configuration and administration.

Design

A connector Linux system forwards traffic between the external OSA interface and one or more internal
HiperSockets interfaces. The forwarding is done via IPv4 forwarding for unicast traffic and via a particular
bridging code (xcec_bridge) for multicast traffic.

A script named ip_watcher.pl observes all IP addresses registered in the HiperSockets network and sets
them as Proxy ARP entries (see “Configuring a device for proxy ARP” on page 273) on the OSA interfaces.
The script also establishes routes for all internal systems to enable IP forwarding between the interfaces.

All unicast packets that cannot be delivered in the HiperSockets network are handed over to the
connector by HiperSockets. The connector also receives all multicast packets to bridge them.

Setup

The setup principles for configuring the HiperSockets Network Concentrator on a mainframe Linux system
are as follows:

leaf nodes
The leaf nodes do not require a special setup. To attach them to the HiperSockets network, their setup
should be as if they were directly attached to the LAN. They do not have to be Linux systems.

connector systems
In the following, HiperSockets Network Concentrator IP refers to the subnet of the LAN that is
extended into the HiperSockets net.

290 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



- If you want to support forwarding of all packet types, define the OSA interface for traffic into the
LAN as a multicast router (see “Setting up a Linux router” on page 266).

If only unicast packages are to be forwarded, there is also the possibility not to identify the OSA
interface as multicast router: add the interface name to the start_hsnc script and only unicast
packets are forwarded.

- All HiperSockets interfaces that are involved must be set up as connectors: set the route4 attributes
of the corresponding devices to "primary_connector" or to "secondary_connector". Alternatively,
you can add the OSA interface name to the start script as a parameter. This option results in
HiperSockets Network Concentrator ignoring multicast packets, which are then not forwarded to the
HiperSockets interfaces.

« IP forwarding must be enabled for the connector partition. Enable the forwarding either manually
with the command

sysctl -w net.ipv4.ip_forward=1

Alternatively, you can enable IP forwarding in the /etc/sysctl. conf configuration file to activate
IP forwarding for the connector partition automatically after booting.

« The network routes for the HiperSockets interface must be removed. A network route for the
HiperSockets Network Concentrator IP subnet must be established through the OSA interface.
To establish a route, assign the IP address 0.0.0.0 to the HiperSockets interface. At the same
time, assign an address that is used in the HiperSockets Network Concentrator IP subnet to the
OSA interface. These assignments set up the network routes correctly for HiperSockets Network
Concentrator.

To start HiperSockets Network Concentrator, run the script start_hsnc. sh. You can specify
an interface name as optional parameter. The interface name makes HiperSockets Network
Concentrator use the specified interface to access the LAN. There is no multicast forwarding in
that case.

« To stop HiperSockets Network Concentrator, use the command killall ip_watcher.plto
remove changes that are caused by running HiperSockets Network Concentrator.

Availability setups

If a connector system fails during operation, it can simply be restarted. If all the startup commands
are run automatically, it will instantaneously be operational again after booting. Two common availability
setups are mentioned here:

One connector partition and one monitoring system
As soon as the monitoring system cannot reach the connector for a specific timeout (for example, 5
seconds), it restarts the connector. The connector itself monitors the monitoring system. If it detects
(with a longer timeout than the monitoring system, for example, 15 seconds) a monitor system failure,
it restarts the monitoring system.

Two connector systems monitoring each other
In this setup, there is an active and a passive system. As soon as the passive system detects a
failure of the active connector, it takes over operation. To take over operation, it must reset the
other system to release all OSA resources for the multicast_router operation. The failed system can
then be restarted manually or automatically, depending on the configuration. The passive backup
HiperSockets interface can either switch into primary_connector mode during the failover, or it can be
set up as secondary_connector. A secondary_connector takes over the connecting function, as soon as
there is no active primary_connector. This setup has a faster failover time than the first one.

Hints

« The MTU of the OSA and HiperSockets link should be of the same size. Otherwise, multicast packets
that do not fit in the link's MTU are discarded as there is no IP fragmentation for multicast bridging.
Warnings are printed to syslog.

« The script ip_watchexr.pl prints error messages to the standard error descriptor of the process.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 291



« xcec-bridge logs messages and errors to syslog.
 Registering all internal addresses with the OSA adapter can take several seconds for each address.

« To shut down the HiperSockets Network Concentrator function, issue killall ip_watcher.pl. This
script removes all routing table and Proxy ARP entries added during the use of HiperSockets Network
Concentrator.

Note:

1. Broadcast bridging is active only on OSA or HiperSockets hardware that can handle broadcast traffic
without causing a bridge loop. If you see the message "Setting up broadcast echo filtering
for ... failed"inthe message log when you set the geth device online, broadcast bridging is not
available.

2. Unicast packets are routed by the common Linux IPv4 forwarding mechanisms. As bridging and
forwarding are done at the IP Level, the IEEE 802.1q VLAN and the IPvé6 protocol are not supported.

3. To use HiperSockets Network Concentrator, the s390-tools package from developerWorks is required.

Examples for setting up a network concentrator
An example of a network environment with a network concentrator.

Figure 75 on page 292 shows a network environment where a Linux instance C acts as a network
concentrator that connects other operating system instances on a HiperSockets LAN to an external LAN.

@

G encalcO encalc4
0.0.a1cO 0.0.alc4 Other networks

10203054724 **° ||10.20205124| | 10203011724
[
HiperSockets /
10.20.30.0/24
|

IBM mainframe

Router
10.20.20.1/24

10.20.20.0/24

Figure 75. HiperSockets network concentrator setup

Workstation
10.20.30.120/24

Setup for the network concentrator C:
The HiperSockets interface encalcO (device bus-ID 0.0.a1c0) has IP address 10.20.30.51/24. The
default gateway is 10.20.30.1.

Issue:

# echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.alcO/routed

The OSA-Express CHPID in QDIO mode interface encalc4 (with device bus-ID 0.0.a1c4) has IP
address 10.20.30.11/24. The default gateway is 10.20.30.1.

Issue:

# echo multicast_router > /sys/bus/ccwgroup/drivers/qeth/0.0.alc4/routed

To enable IP forwarding issue:

# sysctl -w net.ipv4.ip_forward=1

292 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Tip: See Ubuntu Server 22.04 LTS information about using configuration files to automatically enable
IP forwarding when Linux boots.

To remove the network routes for the HiperSockets interface issue:

# ip route del 10.20.30/24

To start the HiperSockets network concentrator, run the script start_hsnc. sh. Issue:

# start_hsnc.sh &

Setup for G:
No special setup required. The HiperSockets interface has IP address 10.20.30.54/24. The default
gateway is 10.20.30.1.

Setup for workstation:
No special setup required. The network interface IP address is 10.20.30.120/24. The default gateway
is 10.20.30.1.

Figure 76 on page 293 shows the example of Figure 75 on page 292 with an additional mainframe. On the
second mainframe a Linux instance D acts as a HiperSockets network concentrator.

C
encalcO encalc4
0.0.a1c0 0.0.alc4

eee Other networks
10.20.30.54/24 10.20.30.51/24 | | 10.20.20.11/24
7

HiperSockets L /
10.20.50.0/24

IBM mainframe

G

Router
10.20.20.1/24

10.20.30.0/24

H encaldO encaldi
0.0.a1d0 0.0.a1d1

1020.3055/24|| *°*° 0000 |]10203050/24

7

HiperSockets
10.20.320.0/24

IBM mainframe

Workstation
10.20.30.120/24

Figure 76. Expanded HiperSockets network concentrator setup

The configuration of C, G, and the workstation remain the same as for Figure 75 on page 292.

Setup for the network concentrator D:
The HiperSockets interface encaldO has the corresponding device-bus ID 0.0.encaldO and IP
address 0.0.0.0. Issue:

# echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.ald0/routed

The OSA-Express CHPID in QDIO mode interface encaldl has IP address 10.20.30.50/24. The
default gateway is 10.20.30.1.

D is not configured as a multicast router, it therefore forwards only unicast packets.

To enable IP forwarding issue:

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 293



# sysctl -w net.ipv4.ip_forward=1

Tip: See Ubuntu Server 22.04 LTS information about using configuration files to automatically enable
IP forwarding when Linux boots.

To start the HiperSockets network concentrator, run the script start_hsnc. sh. Issue:

# start_hsnc.sh &

Setup for H:
No special setup required. The HiperSockets interface has IP address 10.20.30.55/24. The default
gateway is 10.20.30.1.

Setting up for DHCP with IPv4

For connections through an OSA-Express adapter in QDIO mode configured with the layer 3 discipline, the
OSA-Express adapter offloads ARP, MAC header, and MAC address handling.

For information about MAC headers, see “MAC headers in layer 3 mode” on page 240.

Because a HiperSockets connection configured with the layer 3 discipline does not go out on a physical
network, there are no ARP, MAC headers, and MAC addresses for packets in a HiperSockets LAN. The
resulting problems for DHCP are the same in both cases and the fixes for connections through the
OSA-Express adapter also apply to HiperSockets.

Dynamic Host Configuration Protocol (DHCP) is a TCP/IP protocol that allows clients to obtain IP network
configuration information (including an IP address) from a central DHCP server. The DHCP server controls
whether the address it provides to a client is allocated permanently or is leased temporarily. DHCP
specifications are described by RFC 2131"Dynamic Host Configuration Protocol" and RFC 2132 "DHCP
options and BOOTP Vendor Extensions", which are available on the Internet at

www.ietf.org

Two types of DHCP environments must be taken into account:
« DHCP through OSA-Express adapters in QDIO mode
e DHCP in a z/VM VSWITCH or guest LAN

For information about setting up DHCP for a Linux instance in a z/VM VSWITCH or guest LAN environment,
see Redpaper Linux on IBM eServer zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN, REDP-3596
at

www . ibm.com/redbooks

The programs dhclient and dhcp are examples of a DHCP client and a DHCP server you can use. Ubuntu
Server might provide different DHCP client and server programs.

Required options for using dhcpcd with layer3
You must configure the DHCP client program dhclient to use it on Linux on IBM Z with layer3.

« Run the DHCP client with an option that instructs the DHCP server to broadcast its response to the
client.

Because the OSA-Express adapter in QDIO mode forwards packets to Linux based on IP addresses, a
DHCP client that requests an IP address cannot receive the response from the DHCP server without this
option.

« Run the DHCP client with an option that specifies the client identifier string.

By default, the client uses the MAC address of the network interface. Hence, without this option, all
Linux instances that share the OSA-Express adapter in QDIO mode would also have the same client
identifier.

294 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


http://www.ietf.org
https://www.ibm.com/redbooks

See the documentation for dhcpcd about selecting these options.

You need no special options for the DHCP server program, dhcp.

Setting up Linux as a LAN sniffer

You can set up a Linux instance to act as a LAN sniffer, for example, to make data on LAN traffic available
to tools like tcpdump or Wireshark.

The LAN sniffer can be:

« A HiperSockets Network Traffic Analyzer for LAN traffic between LPARs

« A LAN sniffer for LAN traffic between z/VM guest virtual machines, for example, through a z/VM virtual
switch (VSWITCH)

Setting up a HiperSockets network traffic analyzer
A HiperSockets network traffic analyzer (NTA) runs in an LPAR and monitors LAN traffic between LPARs.

Before you begin

* Your Linux instance must run in LPAR mode.
« On the SE, the LPARs must be authorized for analyzing and being analyzed.

Tip: Do any authorization changes before you configure the NTA device. If you must activate the NTA
after SE authorization changes, set the geth device offline, set the sniffer attribute to 1, and set the
device online again.

 You need a traffic-dumping tool such as tcpdump.
» You need a mainframe system that supports HiperSockets network traffic analyzer.

About this task

The HiperSockets NTA is available to trace both layer 3 and layer 2 network traffic, but the analyzing
device itself must be configured as a layer 3 device. The analyzing device is a dedicated NTA device and
cannot be used as a regular network interface.

Procedure
Perform the following steps:
e Linux setup:

a) Configure a HiperSockets interface dedicated to analyzing with the 1layexr2 sysfs attribute set to 0
and the sniffer sysfs attribute set to 1.

For example, assuming the HiperSockets interface is encalcO with device bus-ID 0.0.a1cO:

# chzdev geth -e -a alcO layer2=0 sniffer=1

The chzdev command also sets the device online. To make the change persistent across reboots,
omit the -a option. For more information about chzdev, see “chzdev - Configure IBM Z devices” on
page 584.

Alternatively, for the running configuration only:

# znetconf -a alcO layer2=0 sniffer=1

The znetconf command also sets the device online. For more information about znetconf, see
“znetconf - List and configure network devices” on page 760.

The geth device driver automatically sets the buffer_count attribute to 128 for the analyzing device.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 295



b) Activate the device (no IP address is needed):

# ip link set encalcO up

c) Switch the interface into promiscuous mode:

# tcpdump -i encalcO

Results

The device is now set up as a HiperSockets network traffic analyzer.

Hint: A HiperSockets network traffic analyzer with no free empty inbound buffers might have to drop
packets. Dropped packets are reflected in the "dropped counter" of the HiperSockets network traffic
analyzer interface and reported by tcpdump.

Example:

# ip -s link show dev encalcO

’ RX: bytes packets errors dropped overrun mcast
223242 6789 0 5 0 176

#.{cpdump -i encalcO
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on encalcO, link-type EN1OMB (Ethernet), capture size 96 bytes

é.backets dropped by kernel

Setting up a z/VM guest LAN sniffer
You can set up a guest LAN sniffer on a virtual NIC that is coupled to a z/VM VSWITCH or guest LAN.

Before you begin

« You need class B authorization on z/VM.

« The Linux instance to be set up as a guest LAN sniffer must run as a guest of the same z/VM system as
the guest LAN you want to investigate.

About this task

If a virtual switch connects to a VLAN that includes nodes outside the z/VM system, these external nodes
are beyond the scope of the sniffer.

For information about VLANs and z/VM VSWITCHes, see z/VM: Connectivity, SC24-6267.

Procedure
« Set up Linux.

Ensure that the geth device driver has been compiled into the Linux kernel or that the geth device
driver has been loaded as a module.

« Setupz/VM.

Ensure that the z/VM guest virtual machine on which you want to set up the guest LAN sniffer is
authorized for the switch or guest LAN and for promiscuous mode.

For example, if your virtual NIC is coupled to a z/VM VSWITCH, perform the following steps on your
z/VM system:

a) Check if the z/VM guest virtual machine already has the required authorizations. Enter a CP
command of this form:

296 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



g vswitch <switchname> promisc

where <switchname> is the name of the virtual switch. If the output lists the z/VM guest virtual
machine as authorized for promiscuous mode, no further setup is required.

b) If the output from step “1” on page 296 does not list the guest virtual machine, check if the guest is
authorized for the virtual switch. Enter a CP command of this form:

q vswitch <switchname> acc

where <switchname> is the name of the virtual switch.

If the output lists the z/VM guest virtual machine as authorized, you must temporarily revoke the
authorization for the switch before you can grant authorization for promiscuous mode. Enter a CP
command of this form:

set vswitch <switchname> revoke <userid>
where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

c) Authorize the Linux instance for the switch and for promiscuous mode. Enter a CP command of this
form:

set vswitch <switchname> grant <userid> promisc

where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

For details about the CP commands used in this section and for commands you can use to check and
assign authorizations for other types of guest LANs, see z/VM: CP Commands and Utilities Reference,
SC24-6268.

Chapter 16. geth device driver for OSA-Express (QDIO) and HiperSockets 297



298 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 17. OSA-Express SNMP subagent support

LPAR and z/VM: The SNMP subagent support applies to Linux in LPAR mode and to Linux on z/VM.

The OSA-Express Simple Network Management Protocol (SNMP) subagent (osasnmpd) supports
management information bases (MIBs) for the OSA-Express features.

This subagent capability through the OSA-Express features is also called Direct SNMP to distinguish
it from another method of accessing OSA SNMP data through OSA/SF, a package for monitoring and
managing OSA features that does not run on Linux.

See “osasnmpd — Start OSA-Express SNMP subagent” on page 700 for information about the osasnmpd
command itself.

To use the osasnmpd subagent, you need:

« An OSA-Express feature that runs in QDIO mode with the latest textual MIB file for the appropriate LIC
level (recommended)

« The geth device driver for OSA-Express (QDIO)
« The osasnmpd subagent from s390-tools
 net-snmp package 5.1.x or higher

What you should know about osasnmpd

The osasnmpd subagent requires a master agent to be installed on a Linux system.

You get the master agent from either the net-snmp package. The subagent uses the Agent eXtensibility
(AgentX) protocol to communicate with the master agent.

net-snmp is an open source project that is owned by the Open Source Development Network, Inc.
(OSDN). For more information on net-snmp visit:

net-snmp.sourceforge.io

When the master agent (snmpd) is started on a Linux system, it binds to a port (default 161) and awaits
requests from SNMP management software. Subagents can connect to the master agent to support MIBs
of special interest (for example, OSA-Express MIB). When the osasnmpd subagent is started, it retrieves
the MIB objects of the OSA-Express features currently present on the Linux system. It then registers with
the master agent the object IDs (OIDs) for which it can provide information.

An OID is a unique sequence of dot-separated numbers (for example, .1.3.6.1.4.1.2) that represents a
particular information. OIDs form a hierarchical structure. The longer the OID, that is the more numbers
it is made up of, the more specific is the information that is represented by the OID. For example,
.1.3.6.1.4.1.2 represents all IBM-related network information while ..1.3.6.1.4.1.2.6.188 represents all
OSA-Express-related information.

A MIB corresponds to a number of OIDs. MIBs provide information on their OIDs including
textual representations the OIDs. For example, the textual representation of .1.3.6.1.4.1.2
is .iso.org.dod.internet.private.enterprises.ibm.

The structure of the MIBs might change when updating the OSA-Express licensed internal code (LIC) to a
newer level. If MIB changes are introduced by a new LIC level, you must download the appropriate MIB
file for the LIC level (see “Downloading the IBM OSA-Express MIB” on page 301). You do not need to
update the subagent. Place the updated MIB file in a directory that is searched by the master agent.

© Copyright IBM Corp. 2000, 2023 299


https://net-snmp.sourceforge.io

NMS SNMF AgentX
a8 T

register OlDs
snmpd
Network requests/ macaterz - SNMP request Oﬁi‘f"‘”‘Pd
responses g response data | oubagent

SNMP managed Linux node

NMS
Network
cLwor OSA-Express{ | OSA-Express
Management
' feature feature
Station

Figure 77. OSA-Express SNMP agent flow

Figure 77 on page 300 illustrates the interaction between the snmpd master agent and the osasnmpd
subagent.

Example: This example shows the processes that run after the snmpd master agent and the osasnmpd
subagent are started. In the example, PID 687 is the SNMP master agent and PID 729 is the OSA-Express
SNMP subagent process:

ps -ef | grep snmp

USER PID
root 687 1 0 11:57 pts/1 00:00:00 snmpd
root 729 659 0 13:22 pts/1 00:00:00 osasnmpd

When the master agent receives an SNMP request for an OID that is registered by a subagent, the master
agent uses the subagent to collect any requested information and to perform any requested operations.
The subagent returns any requested information to the master agent. Finally, the master agent returns the
information to the originator of the request.

Setting up osasnmpd

You can set up osasnmpd by installing the snmpd, snmp, and osasnmpd packages.

About this task

Ubuntu Server 22.04 LTS provides the package s390-tools-osasnmpd that contains osasnmpd.

Procedure

To install the osasnmpd package and the prerequisite snmp and snmpd packages, issue:

# apt-get install snmpd snmp s390-tools-osasnmpd

What to do next

Continue with the following setup tasks:

« “Installing MIBs” on page 301

« “Downloading the IBM OSA-Express MIB” on page 301
« “Configuring access control” on page 301

300 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Installing MIBs

Install support for management information bases (MIBs) before installing the IBM OSA-Express MIB.

Procedure

1. Install the snmp-mibs-downloader package using apt:

# apt-get install snmp-mibs-downloader

2. Download the latest MIB modules:

# download-mibs

3. Edit the /etc/snmp/snmp. conf configuration file to deactivate the line that starts with the word
"mibs".

Downloading the IBM OSA-Express MIB

Keep your MIB file up to date by downloading the latest version.

About this task

Perform the following steps to download the IBM OSA-Express MIB. The MIB file is valid only for
hardware that supports the OSA-Express adapter.

Procedure

1. Go to www.ibm.com/servers/resourcelink

A user ID and password are required. If you do not yet have one, you can apply for a user ID.
. Signiin.
. Select Library from the navigation area.
. Under Library shortcuts, select Open Systems Adapter (OSA) Library.
. Follow the link for OSA-Express Direct SNMP MIB module.
. Select and download the MIB for your LIC level.
. Rename the MIB file to the name specified in the MIBs definition line and use the extension . txt.

N oo A WWDN

Example: If the definition line in the MIB looks like this:
==>IBM-0SA-MIB DEFINITIONS ::= BEGIN
Rename the MIB to IBM-0SA-MIB.txt.
8. Place the MIB into /usr/share/snmp/mibs.

If you want to use a different directory, be sure to specify the directory in the snmp.conf
configuration file.

Results
You can now make the OID information from the MIB file available to the master agent. You can then use
textual OIDs instead of numeric OIDs when using master agent commands.

See also the FAQ (How do I add a MIB to the tools?) for the master agent package at

net-snmp.sourceforge.net/FAQ.html

Configuring access control

To start successfully, the subagent requires at least read access to the standard MIB-II on the local node.

Chapter 17. OSA-Express SNMP subagent support 301


https://www.ibm.com/servers/resourcelink
https://net-snmp.sourceforge.net/FAQ.html

About this task

During subagent startup or when network interfaces are added or removed, the subagent must query
OIDs from the interfaces group of the standard MIB-II.

Given here is an example of how to use the snmpd.conf and snmp. conf configuration files to assign
access rights by using the View-Based Access Control Mechanism (VACM). The following access rights are
assigned on the local node:

« General read access for the scope of the standard MIB-I1

« Write access for the scope of the OSA-Express MIB

« Public local read access for the scope of the interfaces MIB

The example is intended for illustration purposes only. Depending on the security requirements of your

installation, you might need to define your access differently. See the snmpd man page for a more
information about assigning access rights to snmpd.

Procedure

1. Ubuntu Server 22.04 LTS creates a sample snmpd. conf file in /etc/snmp when you install snmpd.
2. Open /etc/snmp/snmpd. conf with your preferred text editor.
3. Map a community name to a security name:

com2sec <security-name> <source> <community-name>

where:

<security-name>
is given access rights through further specifications within snmpd. conf.

<source>
is the IP address or DNS name of the accessing system, typically a Network Management Station.

<community-name>
is the community string used for basic SNMP password protection.

Example:
i sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public

4. Use the security name to define a group with different versions of the master agent for which you
want to grant access rights.

Include a line of this form for each master agent version:
group <group-name> <security-model> <security-name>

where:

<group-name>
is a group name of your choice.

<security-model>
is the security model of the SNMP version.

<security-name>
is the same as in step “3” on page 302.

Example:
i groupName securityModel securityName
group osagroup vl osasec
group osagroup v2c osasec
group osagroup usm osasec
group osasnmpd v2c pubsec

302 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Group "osasnmpd" with community "public” is required by osasnmpd to determine the number of
network interfaces.

. Define your views. A view is a subset of all OIDs. Include lines of this form:
view <view-name> <included|excluded> <scope>

where:

<view-name>
is a view name of your choice.

<included|excluded>
indicates whether the following scope is an inclusion or an exclusion statement.

<scope>
specifies a subtree in the OID tree.
Example:
1t name incl/excl subtree mask (optional)
view allview included .1
view osaview included .1.3.6.1.4.1.2
view ifmibview included .1.3.6.1.2.1.2
view ifmibview included .1.3.6.1.2.1.1

View "allview" encompasses all OIDs while "osaview" is limited to IBM OIDs.

The numeric OID provided for the subtree is equivalent to the textual OID
"iso.org.dod.internet.private.enterprises.ibm" View "ifmibview" is required by osasnmpd to
determine the number of network interfaces.

Tip: Specifying the subtree with a numeric OID leads to better performance than using the
corresponding textual OID.

. Define access rights. Include lines of this form:

access <group-name> any noauth exact <read-view> <write-view> none

where:

<group-name>
is the group you defined in step “4” on page 302.

<read-view>
is a view for which you want to assign read-only rights.

<write-view>
is a view for which you want to assign read-write rights.

Example:
it group context sec.model sec.level prefix read write notif
access osagroup "" any noauth exact allview osaview none
access osasnmpd "" v2c noauth exact difmibview none none

The access line of the example gives read access to the "allview" view and write access to the
"osaview". The second access line gives read access to the "ifmibview".

. Also include the following line to enable the AgentX support:

master agentx

AgentX support is compiled into the net-snmp master agent.

. Save and close snmpd. cont.
Example of an snmpd. conf file:

i sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public

Chapter 17. OSA-Express SNMP subagent support 303



El3 groupName securityModel securityName

group  osagroup vl osasec

group  osagroup v2c osasec

group  osagroup usm osasec

group  osasnmpd v2c pubsec

ik name incl/excl subtree mask (optional)

view allview included .1

view osaview included .1.3.6.1.4.1.2

view ifmibview included .1.3.6.1.2.1.2

view ifmibview included .1.3.6.1.2.1.1

3 group context sec.model sec.level prefix read write notif
access osagroup o any noauth exact allview osaview none
access osasnmpd " v2c noauth exact difmibview none none

master agentx

9. Open snmp . conf with your preferred text editor.

Tip: Seeman snmp.conf for possible locations of snmp.conf.
10. Include a line of this form to specify the directory to be searched for MIBs:

mibdirs +<mib-path>
Example:
mibdirs +/usr/share/snmp/mibs
11. Include a line of this form to make the OSA-Express MIB available to the master agent:

mibs +<mib-name>

where <mib-name> is the stem of the MIB file name you assigned in “Downloading the IBM OSA-

Express MIB” on page 301.
Example: mibs +IBM-0SA-MIB

12. Define defaults for the version and community to be used by the snmp commands. Add lines of this

form:

defVersion <version>
defCommunity <community-name>

where <version> is the SNMP protocol version and <community-name> is the community that you

defined in step “3” on page 302.

Example:

defVersion 2c
defCommunity osacom

These default specifications simplify issuing master agent commands.
13. Save and close snmp . conf.

Working with the osasnmpd subagent

Working with the osasnmpd subagent includes starting it, checking the log file, issuing queries, and

stopping the subagent.
Working with osasnmpd comprises the following tasks:

 “Starting the osasnmpd subagent” on page 304
« “Checking the log file” on page 305
« “Issuing queries” on page 305

« “Stopping osasnmpd” on page 306

Starting the osasnmpd subagent

Use the eosasnmpd command to start the osasnmpd subagent.

304 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Procedure

1. Start the snmpd deamon by using the command:

# systemctl start snmpd.service
2. Start the osasnmpd subagent with the osasnmpd command:
# osasnmpd

The osasnmpd subagent starts a daemon that is called osasnmpd.

For command options see “osasnmpd — Start OSA-Express SNMP subagent” on page 700.

If you restart the master agent, you must also restart the subagent. When the master agent is started,
it does not look for already running subagents. Any running subagents must also be restarted to be
register with the master agent.

Checking the log file

Warnings and messages are written to the log file of either the master agent or the OSA-Express
subagent. It is good practice to check these files at regular intervals.

Example

This example assumes that the default subagent log file is used. The lines in the log file show the
messages after a successful OSA-Express subagent initialization.

# cat /var/log/osasnmpd.log

IBM OSA-E NET-SNMP 5.1.x subagent version 1.3.0

Jul 14 09:28:41 registered Toplevel O0ID .1.3.6.1.2.1.10.7.2.

Jul 14 09:28:41 registered Toplevel 0ID .1.3.6.1.4.1.2.6.188.1.1.
Jul 14 09:28:41 registered Toplevel 0ID .1.3.6.1.4.1.2.6.188.1.3.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.4.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.8.
O0SA-E microcode level is 611 for interface encf500

Initialization of OSA-E subagent successful...

Issuing queries

You can issue queries against your SNMP setup.

Before you begin
The snmpget and snmpwalk commands require the snmp package. To install it, issue:

# apt-get install snmp

About this task
Examples of what SNMP queries might look like are given here. For more comprehensive information
about the master agent commands see the snmpcmd man page.

The commands can use either numeric or textual OIDs. While the numeric OIDs might provide better
performance, the textual OIDs are more meaningful and give a hint on which information is requested.

Examples

The query examples assume an interface, encf500, for which the CHPID is 6B. You can use the 1sqeth
command to find the mapping of interface names to CHPIDs.

« To list the ifIndex and interface description relation (on one line):

Chapter 17. OSA-Express SNMP subagent support 305



# snmpget -v 2c -c osacom localhost interfaces.ifTable.ifEntry.ifDescr.6
interfaces.ifTable.ifEntry.ifDescr.6 = encf500

Using this GET request you can see that encf500 has the ifIndex 6 assigned.
 To find the CHPID numbers for your OSA devices:

# snmpwalk -0S -v 2c -c osacom localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-0SA-MIB: :ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-0SA-MIB: : ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-0SA-MIB: :ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

The first line of the command output, with index number 6, corresponds to CHPID 0x6B of the encf500
example. The example assumes that the community osacom is authorized as described in “Configuring
access control” on page 301.

If you provided defaults for the SNMP version and the community (see step “12” on page 304), you can
omit the -v and -c options:

IBM-0SA-MIB: :ibmOSAExpChannelNumber. 6 Hex-STRING: 00 6B
IBM-0SA-MIB: : ibmOSAExpChannelNumber.7 Hex-STRING: 00 7A

# snmpwalk -0S localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-0SA-MIB: :ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

You can obtain the same output by substituting the numeric OID .1.3.6.1.4.1.2.6.188.1.1.1.1 with its
textual equivalent:

.iso.org.dod.internet.private.enterprises.ibm.ibmProd.ibm0SAMib.ibm0OSAMibObjects.ibmOSAExpChannelTable.ibmOSAExpChannelEntry.ibmOSAExpChannelNumber

You can shorten this unwieldy OID to the last element, ibmOsaExpChannelNumber:

# snmpwalk -0S localhost ibmOsaExpChannelNumbexr

IBM-0SA-MIB: :ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-0SA-MIB: :ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-0SA-MIB: : ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

- To find the port type for the interface with index number 6:

# snmpwalk -0S localhost .1.3.6.1.4.1.2.6.188.1.4.1.2.6
IBM-0SA-MIB: :ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

fastEthernet(81) corresponds to card type OSD_100.
Using the short form of the textual OID:

# snmpwalk -0S localhost ibmOsaExpEthPortType.6
IBM-0SA-MIB: :ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

Specifying the index, 6 in the example, limits the output to the interface of interest.

Stopping osasnmpd
The subagent can be stopped by sending either a SIGINT or SIGTERM signal to the thread.

About this task

Avoid stopping the subagent with kill -9 or with kill -SIGKILL. These commands do not allow
the subagent to unregister the OSA-Express MIB objects from the SNMP master agent. This can cause
problems when restarting the subagent.

If you saved the subagent PID to a file when you started it, you can consult this file for the PID (see
“osasnmpd — Start OSA-Express SNMP subagent” on page 700). Otherwise, you can issue a ps command
to find it out.

306 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Example

The osasnmpd subagent starts a daemon that is called osasnmpd. To stop osasnmpd, issue the kill
command for either the daemon or its PID:

# ps -ef | grep snmp

USER PID
root 687 1 0 11:57 pts/1
root 729 659 0 13:22 pts/1

# killall osasnmpd

00:00:00 snmpd
00:00:00 osasnmpd

Chapter 17. OSA-Express SNMP subagent support 307



308 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 18. LAN channel station device driver

LPAR and z/VM: The LCS device driver applies to Linux in LPAR mode and to Linux on z/VM.

The LAN channel station device driver (LCS device driver) supports Open Systems Adapters (OSA)
features in non-QDIO mode up to OSA-Express4S.

The LCS device driver supports OSA-Express features for the IBM Z mainframes that are relevant to
Ubuntu Server 22.04 LTS as shown in Table 49 on page 309.

Table 49. The LCS device driver supported OSA features

Feature z15 z14 z13 and z13s
OSA-Express7S 1000Base-T Ethernet Not supported Not supported
OSA-Express6S | 1000Base-T Ethernet 1000Base-T Ethernet Not supported

OSA-Express5S

1000Base-T Ethernet

1000Base-T Ethernet

1000Base-T Ethernet

OSA-Express4S

1000Base-T Ethernet

1000Base-T Ethernet

1000Base-T Ethernet

OSA-Express3

1000Base-T Ethernet

Not supported

Not supported

The LCS device driver supports automatic detection of Ethernet connections. The LCS device driver can be
used for Internet Protocol, version 4 (IPv4) only.

What you should know about LCS

Interface names are assigned to LCS group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs.

LCS group devices

The LCS device driver requires two I/0 subchannels for each LCS interface, a read subchannel and a write
subchannel. The corresponding bus IDs must be configured for control unit type 3088.
I

Linux
LCS device driver

OSA-Express

read

Vi X
Device write

Interface

[BM mainframe

Figure 78. I/O subchannel interface

The device bus-IDs that correspond to the subchannel pair are grouped as one LCS group device. The
following rules apply for the device bus-IDs:

read
must be even.

write
must be the device bus-ID of the read subchannel plus one.

Setting up the LCS device driver

There are no module parameters for the LCS device driver.

© Copyright IBM Corp. 2000, 2023 309



Ubuntu Server 22.04 LTS loads the device driver module for you when a device becomes available.

You can also load the lcs module with the modpxrobe command:

# modprobe lcs

Working with LCS devices

Working with LCS devices includes tasks such as creating an LCS group device, specifying a timeout, or
activating an interface.

« “Creating an LCS group device” on page 310

« “Removing an LCS group device” on page 311

 “Specifying a timeout for LCS LAN commands” on page 311

« “Setting an LCS group device online or offline” on page 311

« “Activating and deactivating an interface” on page 312

« “Recovering an LCS group device” on page 313

Creating an LCS group device

Use the group attribute to create an LCS group device.

Before you begin
You must know the device bus-IDs that corresponds to the read and write subchannel of your OSA card.
The subchannel is defined in the IOCDS of your mainframe.

Procedure

To define an LCS group device, write the device bus-IDs of the subchannel pair to /sys/bus/ccwgroup/
drivers/lcs/group.

Issue a command of this form:

# echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/lcs/group

Results
The lcs device driver uses the device bus-ID of the read subchannel to create a directory for a group
device:

/sys/bus/ccwgroup/drivers/lcs/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the LCS group device. The
following sections describe how to use these attributes to configure an LCS group device.

Example

Assuming that 0.0.d00O is the device bus-ID that corresponds to a read subchannel:

# echo 0.0.d000,0.0.dOE1 > /sys/bus/ccwgroup/drivers/lcs/group

This command results in the creation of the following directories in sysfs:

« /sys/bus/ccwgroup/drivers/lcs/0.0.d000O
« /sys/bus/ccwgroup/devices/0.0.d000
« /sys/devices/1cs/0.0.d000

310 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Removing an LCS group device

Use the ungroup attribute to remove an LCS group device.

Before you begin
The device must be set offline before you can remove it.

Procedure

To remove an LCS group device, write 1 to the ungroup attribute.
Issue a command of the form:

# echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_1id>/ungroup
Example

This command removes device 0.0.d000:

# echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d0OO/ungroup

Specifying a timeout for LCS LAN commands

Use the lancmd_timeout attribute to set a timeout for an LCS LAN command.

About this task
You can specify a timeout for the interval that the LCS device driver waits for a reply after issuing a LAN
command to the LAN adapter. For older hardware, the replies can take a longer time. The default is 5 s.

Procedure

To set a timeout, issue a command of this form:

# echo <timeout> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/lancmd_timeout
where <timeout> is the timeout interval in seconds in the range 1 - 60.

Example
In this example, the timeout for a device 0.0.d000 is set to 10 s.

# echo 10 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/1lancmd_timeout

Setting an LCS group device online or offline

Use the online device group attribute to set an LCS device online or offline.

About this task
Setting a device online associates it with an interface name. Setting the device offline preserves the
interface name.

You must know the interface name to activate the network interface. To determine the assigned interface
name, use the 1szdev --existing command. For each online interface, the interface name is shown in
the Name column. Alternatively, to determine the assigned interface name issue a command of the form:

# 1ls /sys/devices/lcs/<device_bus_id>/net/

Chapter 18. LAN channel station device driver 311



Procedure

To set an LCS group device online, set the online device group attribute to 1. To set an LCS group device
offline, set the online device group attribute to 0.

Issue a command of this form:

# echo <flag> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/online

Example
To set an LCS device with bus ID 0.0.d000 online issue:

# echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

The interface name that was assigned to the LCS group device in the example is encd000. To confirm that
this name is correct for the group device issue:

# lszdev --existing

TYPE D ON  PERS NAMES
lcs 0.0.d000:0.0.d001 yes no  encdeeo
or

# 1ls /sys/devices/lcs/0.0.d000/net/

encd0oo

The interface name that was assigned to the LCS group device in the example is encd000.

For each online interface, there is a symbolic link of the form /sys/class/net/<interface_name>/

device in sysfs. You can confirm that you found the correct interface name by reading the link:

# readlink /sys/class/net/encd000/device
../../../0.0.dO00O

To set the device offline issue:

# echo 0 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

Activating and deactivating an interface

Use the ip command or equivalent to activate or deactivate an interface.

About this task

Before you can activate an interface, you must set the group device online and found out the interface
name that is assigned by the LCS device driver. See “Setting an LCS group device online or offline” on page
311.

You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

Examples

« This example activates an Ethernet interface:

# ip addr add 192.168.100.10/24 dev encf500
# ip link set dev encf500 up

312 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



« This example deactivates the Ethernet interface:

# ip link set dev encf500 down

« This example reactivates an interface that was already activated and subsequently deactivated:

# ip link set dev encf500 up

Recovering an LCS group device

You can use the recover attribute of an LCS group device to recover it in case of failure.

Procedure

Issue a command of the form:

# echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/recover

Example

# echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d100/recover

Chapter 18. LAN channel station device driver 313



314 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 19. AF_IUCV address family support

LPAR and z/VM: The AF_IUCV address family support applies to Linux in LPAR mode and to Linux on
z/VM.

The AF_IUCV address family provides an addressing mode for communications between applications that
run on IBM Z.

This addressing mode can be used for connections through real HiperSockets and through the z/VM
Inter-User Communication Vehicle (IUCV).

Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.

HiperSockets devices facilitate connections between applications across LPARs within an IBM Z. In
particular, an application that runs on an instance of Linux on IBM Z can communicate with:

- Itself
« Other applications that run on the same Linux instance
« An application on an instance of Linux on IBM Z in another LPAR

IUCV facilitates connections between applications across z/VM guest virtual machines within a z/VM
system. In particular, an application that runs on Linux on z/VM can communicate with:

- Itself
Other applications that run on the same Linux instance

Applications running on other instances of Linux on z/VM, within the same z/VM system

Applications running on a z/VM guest other than Linux, within the same z/VM system
The z/VM control program (CP)

The AF_IUCV address family supports stream-oriented sockets (SOCK_STREAM) and connection-oriented
datagram sockets (SOCK_SEQPACKET). Stream-oriented sockets can fragment data over several packets.
Sockets of type SOCK_SEQPACKET always map a particular socket write or read operation to a single
packet.

Features

The AF_IUCV address family provides socket connections for HiperSockets and IUCV.

For all instances of Linux on IBM Z, the AF_IUCV address family provides the following features:
 Multiple outgoing socket connections for real HiperSockets

 Multiple incoming socket connections for real HiperSockets

For instances of Linux on z/VM, the AF_IUCV address family also provides the following features:
 Multiple outgoing socket connections for IUCV

 Multiple incoming socket connections for IUCV

- Socket communication with applications that use the CMS AF_IUCV support

Setting up the AF_IUCV address family support

You must authorize your LPAR or z/VM guest virtual machine and load those components that were
compiled as separate modules.

There are no module parameters for the AF_IUCV address family support.

© Copyright IBM Corp. 2000, 2023 315



Setting up HiperSockets devices for AF_IUCV addressing

In AF_IUCV addressing mode, HiperSockets devices in layer 3 mode are identified through their hsuid
sysfs attribute.

You set up a HiperSockets device for AF_IUCV by assigning a value to this attribute (see “Configuring a
HiperSockets device for AF_IUCV addressing” on page 274).

Setting up your z/VM guest virtual machine for IUCV
You must specify suitable IUCV statements for your z/VM guest virtual machine.

For details and for general IUCV setup information for z/VM guest virtual machines, see z/VM: CP
Programming Services, SC24-6272 and z/VM: CP Planning and Administration, SC24-6271.

Granting IUCV authorizations

Use the IUCV statement to grant the necessary authorizations.

IUCV ALLOW
allows any other z/VM virtual machine to establish a communication path with this z/VM virtual
machine. With this statement, no further authorization is required in the z/VM virtual machine that
initiates the communication.

IUCV ANY
allows this z/VM guest virtual machine to establish a communication path with any other z/VM guest
virtual machine.

IUCV <user ID>

allows this z/VM guest virtual machine to establish a communication path to the z/VM guest virtual
machine with the z/VM user ID <user ID>.

You can specify multiple IUCV statements. To any of these IUCV statements you can append the
MSGLIMIT <limit> parameter. <limit> specifies the maximum number of outstanding messages that are
allowed for each connection that is authorized by the statement. If no value is specified for MSGLIMIT,
AF_IUCV requests 65 535, which is the maximum that is supported by IUCV.

Setting a connection limit

Use the OPTION statement to limit the number of concurrent connections.

OPTION MAXCONN <maxno>
<maxno> specifies the maximum number of IUCV connections that are allowed for this virtual
machine. The default is 64. The maximum is 65 535.

Example

These sample statements allow any z/VM guest virtual machine to connect to your z/VM guest virtual
machine with a maximum of 10 000 outstanding messages for each incoming connection. Your z/VM
guest virtual machine is permitted to connect to all other z/VM guest virtual machines. The total number
of connections for your z/VM guest virtual machine cannot exceed 100.

TUCV ALLOW MSGLIMIT 10000
IUCV ANY
OPTION MAXCONN 100

Loading the IUCV modules

Ubuntu Server 22.04 LTS loads the af_iucv module when an application requests a socket with the
AF_IUCV addressing mode.

316 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



You can also use the modpxrobe command to load the AF_IUCV address family support module af_iucv:

# modprobe af_iucv

Addressing AF_IUCV sockets in applications

To use AF_IUCV sockets in applications, you must code a special AF_IUCV sockaddr structure.

Application programmers: This information is intended for programmers who want to use connections
that are based on AF_IUCV addressing in their applications.

The primary difference between AF_IUCV sockets and TCP/IP sockets is how communication partners

are identified (for example, how they are named). To use the AF_IUCV support in an application, code a
sockaddr structure with AF_IUCV as the socket address family and with AF_IUCV address information. For
more information, see the af_iucv man page.

Chapter 19. AF_IUCV address family support 317



3418 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 20. SMC protocol support

The shared memory communication (SMC) protocol is an addition to TCP/IP and can be used
transparently for shared memory communications.

The SMC protocol can be used for connections through:

 Shared Memory Communications over RDMA (SMC-R) with RoCE devices.
« Shared Memory Communications Direct (SMC-D) with ISM devices

If both variants are available for a connection, SMC-D is used.

Prerequisites

SMC connections are initiated through TCP/IP. Hence, the communication partners must be able to reach
each other through TCP/IP.

An SMC connection requires both communication partners to support SMC. Unless both partners support
SMC, the connection falls back to TCP/IP.

Similarly, a version 2 SMC connection requires both communication partners to support version 2. If one
partner does not support version 2, the connection falls back to version 1.

The SMC-R protocol requires:
« A system with a RoCE Express adapter, see Chapter 21, “RDMA over Converged Ethernet,” on page 331.

« For SMC-Rv1, the communication partners must be in the same subnet. For SMC-Rv2 and using RoCE
Express2 or later, communication partners can be in different IP subnets.

The SMC-D protocol requires:

« A system with an Internal Shared Memory (ISM) device. For more information about ISM devices, see
Chapter 22, “Internal shared memory device driver,” on page 335. ISM devices are supported for Linux
in LPAR mode and for Linux on z/VM.

e The communication partners must be running on the same CPC.

« ISM devices must have the same virtual channel ID (VCHID) on both communication partners to be
usable for SMC-D communication.

- For SMC-D version 1, the communication partners must be in the same subnet. As of IBM z15 using
SMC-D version 2, communication partners can be in different IP subnets.

To use SMC on Linux, a socket application must use the AF_SMC address family. For AF_SMC support in
existing applications without code changes, the SMC-Tools package provides a preload library and the
smc_xun command. For more information about these tools and how to convert socket applications from
AF_INET or AF_INET6 to AF_SMC, see “Setting up the SMC support” on page 320.

Features
The AF_SMC address family provides RDMA communication. Benefits include:

- Transparency to existing TCP/IP applications with the preload library and smc_xun
« Low latency
« Lower CPU usage compared to native TCP/IP

Information and troubleshooting tools

Tools are available to help you retrieve information about SMC and troubleshoot.

© Copyright IBM Corp. 2000, 2023 319



smc-tools

The smc-tools package provides commands that help you to manage connections that use the SMC
protocol. To install the package, use for example apt-get install smc-tools.

« Use the smcd info and smcx info verify the setup and provides information on the capabilities of the
hardware and Linux.

« Use the smed and smcx commands to investigate your SMC links, link groups, and devices.

Wireshark

To help with troubleshooting, you can use the open source tool Wireshark to analyze SMC handshake
traffic. The traffic is visually presented in the tool. The network packets sent during the SMC handshake
are presented in human readable format with explanatory titles.

You can also use tcpdump to capture handshake traffic.

Setting up the SMC support

SMC traffic requires two associated network interfaces: an interface for a traditional TCP/IP connection
and an interface for an SMC-capable device.

Any network interface that can reach the communication peer can provide the TCP/IP connection,
including HiperSockets interfaces and interfaces of OSA-Express or RoCE Express adapters. The SMC-
capable devices are ISM devices for SMC-D or PCI functions of RoCE Express adapters for SMC-R.

How to associate network interfaces for SMC connections depends on your version of SMC-D or SMC-R.
Issue an smcd info or smcxr info command to display the supported versions.

In the following example, both the hardware and software support SMC-Dv2 and SMC-Rv2 as well as
SMC-Dv1 and SMC-Rv1.

# smcr info

Kernel Capabilities

SMC Version: 2.0

SMC Hostname: t8345009.l1nxne.boe
SMC-D Features: vl v2

SMC-R Features: vl v2

Hardware Capabilities

SEID: IBM-SYSZ-ISMSEIDOOOOOOOO2E488561
ISM: vi1 v2

RoCE: v1 v2

For SMC-Dv2, you need an IBM z15, LinuxONE III, or later hardware system. The smecd info command
must list v2 for the SMC-D Features and for ISM.

For SMC-Rv2, your SMC-capable network adapter must be RoCE Express2 or later. The smcx info
command must list v2 for the SMC-R Features and for RoCE.

Setting up connections with SMC-Dv1 or SMC-Rv1

With SMC-Dv1 or SMC-Rv1, use physical network (PNET) IDs to associate network interfaces for TCP/IP
and for ISM devices or RoCE Express PCI functions. If these interfaces have the same PNET ID, they are
connected to the same physical network and can be used together for SMC.

LPAR and z/VM
For Linux in LPAR mode and for Linux on z/VM, you can assign PNET IDs to OSA, HiperSockets, RoCE,
and ISM devices through the IOCDS.

Figure 79 on page 321 illustrates how the IOCDS assigns the PNET ID NET1 to an SMC-capable device
and a network interface for an Ethernet device. In Linux, the matching PNET ID associates the ISM
device with the Ethernet device.

320 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



IBM mainframe

10CDS

PNETID=NET1
PNET
NET1

_— \( Communication peer
SMC-capable SMC-capable
device Al ) device
‘Network = NGk
interface interface

Figure 79. PNET ID and SMC device association

As a fallback, you can also use a software PNET table that maps network interfaces to PCI functions
of RoCE Express adapters. For more information about PNET tables, see the KVM information that
follows.

KVM
For SMC-R on Linux on KVM, you need a software PNET table that maps network interfaces of TCP/IP
connections to those of PCI functions of RoCE Express adapters. Use the smc_pnet command to
create a physical network (PNET) table with this mapping (see “smc_pnet - Create network mapping
table” on page 721).

Note: z/OS does not support the RoCE Express adapter as an IP device, and therefore uses OSA adapters
for the initial handshake for SMC-R connections. Linux has no such constraint.

Setting up connections with SMC-Dv2 or SMC-Rv2
Other than SMC-Dv1 and SMC-Rv1, SMC-Dv2 and SMC-Rv2 support connections across IP subnets.

How to associate the TCP/IP network interfaces and SMC-capable devices that can reach a
communication peer is different for SMC-Dv2 and SMC-Rv2.

SMC-Dv2
Other than for SMC-Dv1, SMC-Dv2 does not require PNET IDs to explicitly associate the interfaces,
but PNET IDs must also not contradict the association. If set for both interfaces, the PNET ID must be
the same, thus enabling the fallback to SMC-Dv1. This fallback would otherwise not be available, and
is required when connecting to peers that support SMC-Dv1 only.

SMC-Rv2
Like SMC-Rv1, SMC-Rv2 requires PNET IDs to explicitly associate the interfaces.

SMC traffic is constrained by enterprise IDs (EIDs), which are assigned at the operating system level.
Operating system instances that share an EID constitute a group that, with associated interfaces of
TCP/IP and SMC-capable devices in place, can exchange SMC traffic. You can use EIDs to establish groups
that are isolated from one another with respect to SMC. This isolation can separate operating system
instances for data privacy. It can also prevent SMC-R connections between peers that are geographically
or topologically too distant for efficient RDMA traffic.

EIDs apply to both SMC-Dv2 and SMC-Rv2. With SMC-D already limited to traffic within a hardware
system, EIDs are useful mainly for SMC-Rv2.

An EID can be pre-defined in the hardware system or it can be user-defined.

System-defined EID
The unique system-defined EIDs of IBM Z and LinuxONE hardware systems are relevant to SMC-Dv2.
Operating system instances with the same system-defined EID run on the same hardware system and
are eligible to exchange SMC-Dv2 traffic.

Chapter 20. SMC protocol support 321



By default, Linux instances use the system-defined EID. With the smecd seid command, you can
disable or enable the system-defined EID (see “smcd - Display information about SMC-D link groups
and devices” on page 713).

In contrast, z/OS disables the system-defined EID by default. The system-defined EID is enabled or
disabled through a configuration parameter, see z/0S Communications Server: IP Configuration Guide.

With user-defined EIDs you can restrict SMC traffic to groups of operating system instances.

User-defined EIDs
User-defined EIDs are relevant to both SMC-Dv2 and SMC-Rv2, and the same user-defined EIDs apply
to both SMC variants.

Assign user-defined EIDs to set up groups of operating system instances that are eligible for SMC
traffic within the groups. For SMC-Rv2, user-defined EIDs can span multiple hardware systems.

If EIDs are used to group operating system instances that are geographically close, guests of the same
z/VM system can all share an EID. Similarly, for SMC-Rv2 traffic, KVM guests on the same KVM host
often have the same EID.

A Linux instance can have up to four EIDs, and so be a member of up to four groups. It is then eligible
for SMC traffic with operating system instances in each group.

You can use the smed ueid command or the smcx ueid command to manage user-defined EIDs
(see “smcr - Display information about SMC-R” on page 717 and “smcd - Display information about
SMC-D link groups and devices” on page 713).

Instances of Linux on IBM Z or LinuxONE have at least one active EID.
 You cannot disable the system-defined EID unless at least one user-defined EID is assigned.
« Deleting the last user-defined EID automatically enables the system-defined EID.

Figure 80 on page 322 shows an example with three Linux instances on an IBM Z system. For all
instances, the system-defined EID is enabled. With IP connectivity and eligible ISM devices in place, all
instances can exchange SMC-Dv2 traffic, across IP subnets.

IBM Z
SEID=MYZ15
Linux 1 Linux 2 Linux 3
SEID=MYZ15 SEID=MYZ15 SEID=MYZ15

|10‘1‘H/16| |10.H‘2/16|

\ 10.1.0.0/16 IP router

| 1020016

Figure 80. SMC-Dv2 with system-defined EID

In Figure 81 on page 323, two of the Linux instances disabled their system-defined EID and use a
matching user-defined EID instead. With this setup, only the instances with matching user-defined EIDs
can exchange SMC-Dv2 traffic, Linux 1 and Linux 3 in the example.

322 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



IBM Z

SEID=MYZ15
Linux 1 Linux 2 Linux 3
SEID=MYZ15
UEID= GRF_A UEID= GRP_A
|10.1‘H/16| |10,1‘12/16| |10‘2.15/16|

\ 10.1.0.0/16 IP router

| 10200016

Figure 81. SMC-Dv2 with user-defined EIDs

If Linux instances with matching user-defined EIDs are connected through RoCE Express adapters, the
connection can be SMC-Rv2 instead of SMC-Dv2. Because SMC-D is more performant than SMC-R, SMC-D
is used if the prerequisites for both options are in place.

SMC-R connections can span both IP subnets and hardware systems, as illustrated in Figure 82 on page
323.

IBM Z IBM Z
SEID=MYZ15 SEID=YOURZ15
Linux 1 Linux 2 Linux 4
SEID=MYZ15 SEID=YOURZ1S
UEID= GRF_A UEID= GRP_A
] eno1| 1011116 |10,1‘12/16| 10.3.1.4/16 | enol

\ 10.1.0.0/16 / 10.3.0.016

RoCE | N i 2=
H roce ] g [ RoC®

“JP router

External network

Figure 82. SMC-R across IP subnets and hardware systems

In the example, Linux 1 and Linux 4 can exchange SMC-R traffic, assuming that PNET IDs associate the
TCP/IP interface and the SMC-R capable interface on both Linux 1 and Linux 4.

Network device settings for SMC-R

On the network device associated with the RoCE Express PCI function that you want to use for SMC traffic,
check the settings with the ethtool command and ensure that pause settings are turned on.

For example, if enP2s13 is the network device associated with the desired IB device port:

# ethtool -a enP2s13

Pause parameters for enP2s13:
Autonegotiate: off

RX: on

TX: on

RoCE Express PCI functions provide both, interfaces for SMC-R RDMA traffic and Ethernet interfaces for
TCP traffic. To use a PCI function as a failover device for RDMA, the Ethernet interface must be active but

Chapter 20. SMC protocol support 323



not permit any traffic. The following example shows how this condition can be attained. The example uses
the ip command. For a persistent configuration, use the network manager of your distribution.

1. Set up a link mylnk_ethO for an interface eth®

# ip link add dev mylnk_eth® link ethO

To set up the link in the context of a VLAN, append the VLAN specifications to this command. For
example, for a VLAN with ID 661, the command becomes:

# ip link add dev mylnk_eth® link eth® type vlan id 661

2. Assign an IP address to the link.

# ip addr add 10.2.1.1/16 dev mylnk_ethO

3. Activate the link.

# ip link set mylnk_ethO® up

4. Remove all auto-generated routes for the new link.

# ip route flush scope link dev mylnk_ethO

5. The network manager of your distribution might interpret this stale link setup as a configuration error.
Prevent the network manager from reversing your settings to make the link functional. The example
shows a NetworkManager command.

# nmcli device set ethO® managed no

Your distribution might use a different network manager, for example, netplan. Use a command
according to your network manager.

Sysctl settings

The TCP port must not be shared by IPv4 and IPv6 connections. Use the following sysctl call to ensure
that an IPvé6 socket binds only to IPv6 addresses:

# sysctl -w net.ipvé6.bindvéonly=1

SMC requires contiguous memory. The minimum is 16 KB, and the maximum is 512 MB. The SMC
implementation selects a value as follows:

« Some socket applications define the socket send- and receive buffer sizes with a setsockopt call,
whose upper limits are defined in net.core.wmem_max and net.core.xrmem_max.

» If setsockopt SO_SNDBUF is not used, the socket send buffer size is taken from the value of
net.ipv4.tcp_wmem.

- If setsockopt SO_RCVBUF is not used, the socket receive buffer is taken from the value of
net.ipv4.tcp_rmem, rounded to the next higher power of 2.

Make an existing application use SMC

Use the preload library to make the unmodified socket application use SMC. Existing TCP/IP applications
can benefit from the SMC protocol without recompiling, if they are invoked with the SMC preload

library 1ibsmc_preload. so. See “smc_run - Run a TCP socket program with the SMC protocol using

a preloaded library” on page 724, which makes an existing TCP/IP socket program use SMC.

As an alternative to smc_xun, you can use the LC_PRELOAD environment variable to specify the preload
library with the application's start command:

324 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



# LD_PRELOAD=libsmc-preload.so <application_start_cmd>

Converting an application to use SMC

Alternatively, if you need to, you can convert an application.To convert an application from TCP/IP to
SMC sockets, change the socket () function call from AF_INET to AF_SMC with protocol "0" and from
AF_INET6 to AF_SMC with protocol "1". For example, change:

sd

socket (AF_INET, SOCK_STREAM, 0);
to:
sd = socket(AF_SMC, SOCK_STREAM, 0);

and

sd socket (AF_INET6,SOCK_STREAM, 0);
to:
sd = socket(AF_SMC, SOCK_STREAM, 1);

Use the sockets. h header file from the glibc-header package. For more programming information, see
the af_smc (7) man page.

Investigating PNET IDs

You can find the PNET IDs for PCIe devices and for CCW group devices in sysfs.

PCIe devices

Use the smc_chk command from the smc-tools package to display PNET IDs. Issue a command of the
following form:

# smc_chk -i <interface>
For example:

# smc_chk -i enP10p0s0
PNET5

For more information about the smc_chk command, see “smc_chk - Verify SMC setups” on page 712.

The smc_xnics command, that is part of the smc-tools package, also shows the PNET IDs for PCle
devices.

Alternatively, you can use sysfs.The PNET IDs of PCI devices can be read, in EBCDIC format, as the value
of the util_string attribute of the device in sysfs. If the PCle device is connected through a RoCE
adapter, the contents of the util_string attribute depends on the adapter:

« On RoCE Express adapters, the attribute contains two PNET IDs as fixed 16-character blocks in
sequence.

« On RoCE Express2 adapters, the attribute contains a single PNET ID, because adapters have one PCI
device per port.

You can use a command of the following form to read PNET IDs and convert them to ASCII:

# cat /sys/devices/pci<function_name>/<function_address>/util_string | iconv -f IBM-1047 -t ASCII

Inthe command, /sys/devices/pci<function_name>/<function_address> represents the PCI
device in sysfs.

Chapter 20. SMC protocol support 325



Alternatively, use the smc_xnics command that is part of the smc-tools package.

Example:

# cat /sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

Alternatively, using smc_xnics:

# smc_xnics

FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev

8ca 1 0002:00:00.0 01c8 RoCE_Express2 0 NET1 enP2p0OsOnpO

8ea 1 0003:00:00.0 01c8 RoCE_Express2 1 NET2 enP3p0sOnpO
CCW group devices

Use the smc_chk command to display PNET IDs of CCW group devices. Issue a command of the following
form:

# smc_chk -i <interface>
For example:

# smc_chk -i encblf0
NET1

For more information about the smc_chk command, see “smc_chk - Verify SMC setups” on page 712.

The PNET ID of the example is NETL. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

Alternatively, the PNET IDs of CCW group devices can be read, in EBCDIC format, as the value of the
util_string of the corresponding channel path ID in sysfs. For adapters with multiple ports, the PNET
IDs are given in sequential 16-character blocks corresponding to the ports. To find the channel path ID of
a CCW group device, read its chpid attribute in sysfs.

Example:

# cat cat /sys/bus/ccwgroup/devices/0.0.b1f0/chpid
4a

To find the PNET IDs issue a command of this form:
# cat /sys/devices/cssO/chp0.<chpid>/util_string | iconv -f IBM-1047 -t ASCII

where <chpid> is the channel path ID.

Example:

i# cat /sys/devices/cssO@/chp0.4a/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NETL. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

326 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Tips

« The output of the iconv command does not have a trailing line break, so displayed PNET IDs are
followed by a command prompt. Pipe the output to a suitable sed command, for example sed
's/$/\n/ ', todisplay the PNET IDs on a separate linedonknow.

« Use the following command to display a list of all CCW devices and their PNET IDs:

# for device in 'ls -1 /sys/bus/ccwgroup/devices’; do

chpid="'cat /sys/bus/ccwgroup/devices/$device/chpid | tr [A-F] [a-f]';

pnetid=""cat /sys/devices/css0/chp0.$chpid/util_string | iconv -f IBM-1047 -t ASCII | sed 's/~/ /''";
echo " device: $device chpid: $chpid pnetID: $pnetid";

done

Obtaining statistics for SMC connections

Separate statistical information is available about SMC-R and SMC-D connections. Use the smcx stats
command to show the SMC-R statistics, and the smed stats command to show the SMC-D statistics.

Command syntax

show
»t smer stats
smcd J L -d J L -a J reset
json
Where:

-d or --details
displays detailed statistics, see “Expanded output for details mode” on page 328.

-a or --absolute
ignores any counter resets and displays statistics beginning with smc module load.

reset
displays the current statistics and resets the counters for SMC-R or SMC-D to zero.

json
displays the current statistics in JSON format.

For command help information, enter smcx stats help, smcd stats help, or see the smcr-stats
or smcd-stats man page.

Examples
« To show SMC-D statistics:

# smcd stats

« To show detailed SMC-R statistics and reset the SMC-R statistics counters:

# smcr -d stats reset

« Toignore any counter resets and show detailed SMC-R statistics since module load in JISON format:

# smcr -da stats json

Command output

The command output shows several counters with the following meanings:

Chapter 20. SMC protocol support 327



Total connections handled
The total number of connections handled by the smc module. This number includes TCP fallback
connections and handshake errors.

SMC connections
The number of connections that successfully entered the SMC mode.

Handshake errors
The number of connections that failed because of errors during the handshake phase, for example,
because the peer stopped responding.

Avg requests per SMC conn
The average number of requests sent and received per SMC connection. This number includes special
socket calls.

TCP fallback
The number of connections that fell back to TCP/IP.

Data transmitted
The amount of data sent (TX) or received (RX) in Bytes.

Total requests
The total number of individual send (TX) or receive (RX) requests handled. This number includes
requests that ended with errors or did not transfer any data.

Buffer full
The number of occurrences where the respective send buffer (TX) could not contain all data to be
sent, or did not contain as much data as requested in a receive() call (RX).

Bufs
A histogram of buffer sizes for all connections, including buffer downgrades and buffer reuses. The
histogram scale presents exact buffer sizes.

Reqs
A histogram of request sizes. The histogram scale includes upper boundaries of request sizes. Counts
reflect requested send sizes for TX, and actual receive sizes for RX. Other than Total requests,
this count omits erroneous requests and requests that do not transfer any data.

Special socket calls
Summarizes the total number of sockets calls that require special handling in SMC. The -d option
categorizes these calls, see “Expanded output for details mode” on page 328.

Expanded output for details mode

With the -d option, the command output includes all counters of the regular mode, some of them with
more detailed information:

SMC connections
Shows the SMC connections by SMC version, and shows separate counts for client and server.

Handshake errors | TCP fallback
Show separate counts for client and server.

Special socket calls
Shows the total number of sockets calls that require special handling in SMC and categorizes them
into the following individual counters:

cork
The number of sockopt TCP_CORK enablements. This counter does not reflect the number of send
requests with TCP_CORK enabled.

nodelay
The number of sockopt TCP_NODELAY enablements. This counter does not reflect the number of
send requests with TCP_NODELAY enabled.

sendpage
The number of AF_SMC implementations of the sendpage() call.

328 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



splice
The number calls of the splice() system call.
urgent data
The number of send() and receive() calls with MSG_OOB set.

The counters with the following labels are shown only with the -d option:

Buffer full (remote)
The number of occurrences where the peer’s receive buffer was exceeded by writing data. Requests
that fill the buffer to the last bit are not included in this count.

Buffer too small
The number of occurrences where a send request was larger than the local send buffer’s total
capacity.

Buffer too small (remote)
The number of occurrences where a send request exceeded the total capacity of the peer’s receive
buffer.

Buffer downgrades
The number of occurrences where a buffer of the requested size could not be allocated for a new
connection, and a smaller buffer was used.

Buffer reuses

The number of occurrences where a buffer was provided as requested for a new connection by
reusing a buffer from a previous connection.

Chapter 20. SMC protocol support 329



330 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 21. RDMA over Converged Ethernet

Linux on IBM Z supports RDMA over Converged Ethernet (RoCE) in the form of RoCE Express features.

Ubuntu Server supports RoCE features as shown in Table 50 on page 331. Note that the mapping of ports
to function keys depend on the adapter hardware.

Table 50. Support for RDMA over Converged Ethernet features

Feature IBM z16 IBM z15 z14 and 214 ZR1 |z13 and z13s

ROCE Express3 10 Gigabit Ethernet | Not supported Not supported Not supported
Two adapter ports, |25 Gigabit Ethernet
different function
IDs

ROCE Express2 10 Gigabit Ethernet [ 10 Gigabit Ethernet | 10 Gigabit Ethernet | Not supported
Two adapter ports, |25 Gigabit Ethernet | 25 Gigabit Ethernet | 25 Gigabit Ethernet
different function
IDs

ROCE Express Not supported 10 Gigabit Ethernet [ 10 Gigabit Ethernet | 10 Gigabit Ethernet

Two adapter ports,
same function ID

The RoCE support requires PCI Express support, see Chapter 33, “PCI Express support,” on page 397.

You can use a PCI function as a base for MacVTab or OpenVSwitch similarly to an OSA adapter, see “Using
an HSCI interface as a base device for MacVTap or OpenVSwitch” on page 284.

More information

For more information about RoCE Express, see Networking with RoCE Express, SC34-7745. You can find
this publication and further information about using RoCE Express with Linux on IBM Z and IBM LinuxONE
on IBM Documentation at ibm.com/docs/en/linux-on-systems?topic=configuration-roce-express.

Using a RoCE device for SMC-R

SMC-R requires RoCE devices that are associated with network devices of TCP networks through a PNET
ID, for example through statements in the IOCDS.

The following figure illustrates how a RoCE device and a Ethernet device are associated by a matching
PNET ID. A communication peer has a similarly associated pair of an RoCE device and Ethernet device.
With this setup, the TCP connection can switch over to an SMC-R connection over the SMC protocol. The
communication peer can but need not be on the same CPC.

© Copyright IBM Corp. 2000, 2023 331


https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_roce.html

[BM mainframe

10CDS
PNETID=NET1

Communication peer

Linux

— RoCE SMC-R > RoCE

— 05A K TP > 0sA

Figure 83. A matching PNET ID associates RoCE devices and Ethernet device

For more information about PNET IDs, see “Setting up the SMC support” on page 320.

Using SMC-R link groups

Once established, failed SMC-R links do not fall back to the TCP connection. To protect against link failure,
SMC-R creates link groups for you. Link groups use multiple RoCE devices with the same PNET ID. A
similar association of an Ethernet device with multiple RoCE devices on the communication peer then
results in multiple, independent SMC-R links within a link group.

IBM mainframe

I0CDS
PNETID=NET1
Communication peer

Linux |

1 RoCE SMC-R RoCE

L1
— RoCE SMC-R RoCE
— 05A [ CP "l 05A

Figure 84. Multiple SMC-R links protect against link failure

The SMC-R connection survives failures of individual RoCE devices if at least one device remains
operational on each side.

Use the smcx command to explore SMC-R links, link groups, and devices (see “smcr - Display information
about SMC-R” on page 717).

Note: SMC-R does not work with multiple SMC-R links if the links are used in a bonding setup.

Network interface names

Network interface names for RoCE devices as of Ubuntu Server 22.04 use the naming scheme described
here.

332 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Network interface names for RoCE devices can be based on the devices' user-defined identifiers (UIDs)
or on their function IDs (FIDs). Which of the two naming schemes is used depends on whether UID
uniqueness checking is enabled for your environment.

Read the uid_is_unique attribute for any PCIe device that is available to your Linux instance to find out
which naming scheme applies.

Example:

# cat /sys/bus/pci/devices/0000:00:00.0/uid_is_unique
1

If the value is 1, UID uniqueness checking is enabled, and the network interface names are based on
UIDs. For any other value, UID uniqueness checking is not enabled, and the network interface names are
based on FIDs.

Network interface names based on UIDs

For Linux in LPAR mode, UIDs are specified in the PCIe device definition for RoCE adapters in the
hardware configuration (IOCDS). UIDs are available only if supported by the hardware and if the LPAR is
enabled for UID uniqueness checking.

UIDs are always checked for uniqueness in the following environments:

« For Linux on LinuxONE in DPM mode.

« For Linux on IBM Z as a KVM guest.

 For Linux as a z/VM guest.

« For Linux in LPAR mode, if the LPAR is in DPM mode.

For Linux in classical LPAR mode, UID uniqueness checking must be enabled through an LPAR setting in

the IOCDS. With UID uniqueness checking enabled, UIDs are generated for any RoCE adapters for which
none are assigned explicitly.

UIDs need not be unique across LPARs. For example, you can deliberately assign the same UID for the
same physical RoCE device to simplify migrations between the LPARs. You can also assign the same UID
to RoCE devices that connect to a specific physical or virtual LAN from different LPARs.

UID-based network interface names are of the form eno<decimal_uid>, where <decimal_uid> is the
decimal representation of the hexadecimal UID. For example, for a RoCE device with UID 0010, the
interface name is eno16.

Interface names based on function IDs

FIDs are associated with the slots at which RoCE adapters are plugged. Depending on your environment,
you can specify FIDs in the IOCDs or they are generated for you. In contrast to UIDs, FIDs are unique
across LPARs on the same IBM Z or LinuxONE hardware.

FID-based network interface names are of the form ens<decimal_fid>, where <decimal_fid> is the
decimal representation of the hexadecimal FID. For example, for a RoCE device with FID 001A, the
interface name is ens26.

Working with the RoCE support

Because the 10 GBE RoCE Express feature hardware physically consists of a Mellanox adapter, you must
ensure that the following prerequisites are fulfilled before you can work with it.

Procedure

1. Ensure that PCIe support is enabled and the required PCI cards are active on your system. See
“Setting up the PCIe support” on page 397 and “Using PCle hotplug on LPAR” on page 398.

2. Use the appropriate Mellanox device driver:

Chapter 21. RDMA over Converged Ethernet 333



« If you want to use TCP/IP, you need the m1x4_core module and m1x4_en or m1x5_core module. If
it is not compiled into the kernel or already loaded, load it using for example, modpzrobe.

- If you also want to use RDMA with InfiniBand (that is, using reliable datagram sockets, RDS), you
need the m1x4_ib or m1x5_ib module. If it is not compiled into kernel or already loaded, load
it using for example, modprobe. To use RDS, you also need the rds module and the rds_xrdma
module, see Documentation/networking/rds.txt in the Linux source tree and the rds and
rds-rdma man pages.
3. Activate the network interface.

You need to know the network interface name, which you can find under:
« /sys/bus/pci/drivers/mlx4_core/<pci_slot>/net/<interface> for RoCE Express.
« /sys/bus/pci/drivers/mlx5_core/<pci_slot>/net/<interface> for RoCE Express 2.

Use the ip command or equivalent to activate an interface. See the dev_port sysfs attribute of
the interface name to ensure that you are working with the correct port. Note that the numbering
of network device ports start with 0, but the numbering of InfiniBand device ports start with 1. For
example:

# cat /sys/class/infiniband/mlx4_0/ports/
1/ 2/

Enabling debugging

The mlx4 and mlx5 device drivers can be configured for debugging with a sysfs parameter.

Procedure

« For mlx4: Load the mlx4 module with the sysfs parameter debug_level=1 to write debug messages
to the syslog.

Check the value of the debug_level parameter. If the parameter is set to 0, you can set it to 1 with
the following command:

echo 1 > /sys/module/mlx4_core/parameters/debug_level

e For mlx5: Load the mix5 module with the sysfs parameter debug_mask=1 to write debug messages to
the syslog.

Check the value of the debug_mask parameter . If the parameter is set to 0, you can set it to 1 with
the following command:

echo 1 > /sys/module/mlx5_core/parameters/debug_mask

334 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 22. Internal shared memory device driver

LPAR and z/VM: The ISM device driver applies to Linux in LPAR mode and to Linux on z/VM.

The internal shared memory (ISM) device driver provides virtual PCI devices for shared memory
communications direct (SMC-D).

ISM devices are defined in the IOCDS. Each ISM definition includes a physical network ID (PNET ID) to
associate the ISM device with Ethernet devices.

The following figure illustrates how an ISM device and a HiperSockets device are associated by a
matching PNET ID. A communication peer on the same CPC has a similarly associated pair of an ISM
device and HiperSockets device. With this setup, the TCP connection can switch over to an SMC-D
connection over the SMC protocol.

IBM mainframe

10CDS
PNETID=NETL1

z/VYM in LFAR
Linux | Communication peer
ISM SMC-D ISM
hsiO hsiO

e I_\C|

HlFerﬁockete P HiperSockets

Figure 85. A matching PNET ID associates ISM devices and Ethernet devices

For information about how to find the PNET ID of PCI devices from your Linux instance, see “Investigating
PNET IDs” on page 325.

For more information on SMC and SMC-D, see Chapter 20, “SMC protocol support,” on page 319.

Use the smed command to explore SMC-D link groups and devices, see “smcd - Display information about
SMC-D link groups and devices” on page 713.

Loading the ISM device driver

If the ISM device driver is compiled as a separate module, you must load it before you can use ISM
devices.

Load the ism module with the modpxrobe command. The ism module has no module parameters.

# modprobe ism

Listing ISM devices

Because ISM devices are PCI devices, you can list them with the 1spci command.

© Copyright IBM Corp. 2000, 2023 335



Example

# lspci -v
0001:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device
Physical Slot: 000002el
Flags: bus master, fast devsel, latency 0, IRQ 8
Memory at 8001000000000000 (64-bit, prefetchable) [size=256T]
Memory at 8002000000000000 (64-bit, prefetchable) [size=256]
Capabilities: [40] MSI: Enable+ Count=1/32 Maskable- 64bit+
Kernel driver in use: ism
Kernel modules: ism

336 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Part 5. System resources

These device drivers and features help you to manage the resources of your real or virtual hardware.

Newest version

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions

For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 337


https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

338 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 23. Managing CPUs

You can control the online status, check the capability, and, for LPAR mode, examine the topology of
CPUs.

Use the 1scpu and chcpu commands to manage CPUs. These commands are part of the util-linux
package. For details, see the man pages. Alternatively, you can manage CPUs through the attributes of
their entries in sysfs.

Some attributes that govern CPUs are available in sysfs under:
/sys/devices/system/cpu/cpu<h>

where <N> is the number of the logical CPU. Both the sysfs interface and the 1scpu and chcpu
commands manage CPUs through their logical representation in Linux.

You can obtain a mapping of logical CPU numbers to physical CPU addresses by issuing the 1scpu
command with the -e option.

Example:

# lscpu -e

CPU NODE DRAWER BOOK SOCKET CORE L1d:L1i:L2d:L2i ONLINE CONFIGURED POLARIZATION ADDRESS
0 1 0 0 0 0 0:0:0:0 yes yes horizontal 0
1 1 0 0 0 0 1:1:1:1 yes yes horizontal 1
2 1 0 0 0 1 2:2:2:2 yes yes horizontal 2
3 1 0 0 0 1 3:3:3:3 yes yes horizontal 3
4 1 0 0 0 2 4:4:4:4 yes yes horizontal 4
5 1 0 0 0 2 5:5:5:5 yes yes horizontal 5
6 1 0 0 0 3 6:6:6:6 yes yes horizontal 6
7 1 0 0 0 3 7:7:7:7 yes yes horizontal 7
8 0 1 1 1 4 8:8:8:8 yes yes horizontal 8

The logical CPU numbers are shown in the CPU column and the physical address in the ADDRESS column
of the output table.

Alternatively, you can find the physical address of a CPU in the sysfs address attribute of a logical CPU.

Example:

# cat /sys/devices/system/cpu/cpu@/address
0]

Simultaneous multithreading

Linux in LPAR mode can use the simultaneous multithreading technology on mainframes.

IBM z13 introduced the simultaneous multithreading technology to the mainframe. In Linux terminology,
simultaneous multithreading is also known as SMT or Hyper-Threading.

With multithreading enabled, a single core on the hardware is mapped to multiple logical CPUs on Linux.
Thus, multiple threads can issue instructions to a core simultaneously during each cycle.

To find out whether multithreading is enabled for a particular Linux instance, compare the number of
cores with the number of threads that are available in the LPAR. You can use the hyptop command to
obtain this information.

Simultaneous multithreading is designed to enhance performance. Whether this goal is achieved strongly
depends on the available resources, the workload, and the applications that run on a particular Linux
instance. Depending on these conditions, it might be advantageous to not make full use of mutithreading
or to disable it completely. Use the hyptop command to obtain utilization data for threads while Linux
runs with multithreading enabled.

© Copyright IBM Corp. 2000, 2023 339



You can use the smt=and nosmt kernel parameters to control multithreading. By default, Linux in LPAR
mode uses multithreading if it is provided by the hardware.

CPU capability change

When the CPUs of a mainframe heat or cool, the Linux kernel generates a uevent for all affected online
CPUs.

You can read the CPU capability from the Capability and, if present, Secondary Capability fields in /proc/
sysinfo.

The capability values are unsigned integers as defined in the system information block (SYSIB) 1.2.2 (see
z/Architecture Principles of Operation, SA22-7832). A smaller value indicates a proportionally greater CPU
capacity. Beyond that, there is no formal description of the algorithm that is used to generate this value.
The value is used as an indication of the capability of the CPU relative to the capability of other CPU
models.

Changing the configuration state of CPUs

ACPUonanLPAR can beinaconfigured, standby, or reserved state. You can change the state of
standby CPUs to configured state and vice versa.

Before you begin

 You can change the configuration state of CPUs for Linux in LPAR mode only. For Linux on z/VM, CPUs
are always in a configured state.

« Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can
interfere with manual changes.

About this task

When Linux is booted, only CPUs that are in a configured state are brought online and used. The kernel
does not detect CPUs in reserved state.

Procedure

Issue a command of this form to change the configuration state of a CPU:
# chcpu -c|-g <N>

where

<N>
is the number of the logical CPU.

-c
changes the configuration state of a CPU from standby to configured.

-8
changes the configuration state of a CPU from configured to standby. Only offline CPUs can be
changed to the standby state.

Alternatively, you can write 1 to the configure sysfs attribute of a CPU to set its configuration state to
configured, or O to change its configuration state to standby.

Examples:

 The following chcpu command changes the state of the logical CPU with number 2 from standby to
configured:

# chcpu -c 2

340 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



The following command achieves the same results by writing 1 to the configure sysfs attribute of the
CPU.

# echo 1 > /sys/devices/system/cpu/cpu2/configure

« The following chcpu command changes the state of the logical CPU with number 2 from configured
to standby:

# chcpu -g 2

The following command achieves the same results by writing 0 to the configuzre sysfs attribute of the
CPU.

# echo 0 > /sys/devices/system/cpu/cpu2/configure

Setting CPUs online or offline

Use the chcpu command or the online sysfs attribute of a logical CPU to set a CPU online or offline.

Before you begin

« Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can
interfere with manual changes.

Procedure
1. Optional: Rescan the CPUs to ensure that Linux has a current list of configured CPUs.

To initiate a rescan, issue the chcpu command with the -x option.
# chcpu -

Alternatively, you can write 1to /sys/devices/system/cpu/rescan.

You might need a rescan for Linux on z/VM after one or more CPUs have been added to the z/VM guest
virtual machine by the z/VM hypervisor. Linux in LPAR mode automatically detects newly available
CPUs.

2. Change the online state of a CPU by issuing a command of this form:

# chcpu -e|-d <N>

where

<N>
is the number of the logical CPU.

-e
sets an offline CPU online. Only CPUs that are in the configuration state configured can be set
online. For Linux on z/VM, all CPUs are in the configured state.

-d
sets an online CPU offline.

Alternatively, you can write 1 to the online sysfs attribute of a CPU to set it online, or 0 to set it
offline.

Examples:

« The following chcpu commands force a CPU rescan, and then set the logical CPU with number 2
online.

Chapter 23. Managing CPUs 341



# chcpu -r
# chcpu -e 2

The following commands achieve the same results by writing 1 to the online sysfs attribute of the
CPU.

# echo 1 > /sys/devices/system/cpu/rescan
# echo 1 > /sys/devices/system/cpu/cpu2/online

The following chcpu command sets the logical CPU with number 2 offline.

# chcpu -d 2

The following command achieves the same results by writing 0 to the online sysfs attribute of the
CPU.

# echo O > /sys/devices/system/cpu/cpu2/online

Examining the CPU topology

Depending on your hardware support, sysfs provides information about the CPU topology of an LPAR.

Before you begin
Meaningful CPU topology information is available only to Linux in LPAR mode.

About this task

The Linux scheduler uses this topology information to optimize decisions about which process to
schedule to which CPU. Depending on the workload, this optimization might increase cache hits and,
therefore, overall performance.

By default, CPU topology support is enabled and default assumptions are used if no topology information
is available. You can override these defaults if they are not suitable for your workload, see“Overriding
topology default assumptions” on page 343.

The following sysfs attributes provide information about the CPU topology:

/sys/devices/system/cpu/cpu<N>/topology/thread_siblings
/sys/devices/system/cpu/cpu<N>/topology/core_siblings
/sys/devices/system/cpu/cpu<N>/topology/book_siblings
/sys/devices/system/cpu/cpu<N>/topology/drawer_siblings

where <N> specifies a particular logical CPU number. These attributes contain masks that specify sets of
CPUs.

Because the mainframe hardware is evolving over time, the terms drawer, book, core, and thread do not
necessarily correspond to fixed hardware entities. What matters for the Linux scheduler is the levels of
relatedness that these terms signify, not the physical embodiment of the levels. In this context, more
closely related means sharing more resources, like caches.

The thread_siblings, core_siblings, book_siblings, and drawer_siblings attribute each
contain a mask that specifies the CPU and its peers at a particular level of relatedness.

1. The thread_siblings attribute covers the CPU and its closely related peers.

2. The core_siblings attribute covers all CPUs of the thread_siblings attribute and peers related
at the core level.

3. The book_siblings attribute covers all CPUs of the core_siblings attribute and peers related at
the book level.

342 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



4. The drawer_siblings attribute covers all CPUs of the book_siblings attribute and peers related
at the drawer level.

If a machine reconfiguration causes the CPU topology to change, change uevents are created for each
online CPU.

If the kernel also supports standby CPU activation and deactivation (see “Changing the configuration
state of CPUs” on page 340), the masks also contains the CPUs that are in a configured, but offline state.
Updating the masks after a reconfiguration might take some time.

Overriding topology default assumptions

Use the topology= kernel parameter to override default assumptions about the CPU topology.

By default, CPU topology support is enabled in the Linux kernel. If no topology information is available,
a topology is assumed where the CPUs share least resources, that is, each CPU is assumed to be on a
different drawer.

Use the topology=0ff kernel parameter to override these defaults if they are not suitable for your
workload.

Format

topology= syntax
Etopology=on 3
topology=off

off
Disables CPU topology support.

on
If no topology information is available, assumes that all CPUs are core siblings. If topology information
is available, this setting is ignored.

Example

topology=off

Dynamic changes

On a running Linux instance, you can read the current topology setting from /proc/sys/s390/
topology. You can also write to /proc/sys/s390/topology to change the setting.

The value 1 corresponds to topology=on, and O corresponds to topology=off.

Example

# echo 0 > /proc/sys/s390/topology

CPU polarization

You can modify the operation of a vertical SMP environment by adjusting the SMP factor based on the
workload demands.

Before you begin
CPU polarization is relevant only to Linux in LPAR mode.

Chapter 23. Managing CPUs 343



Warning: Turning on vertical CPU polarization without careful configuration can result in significant
performance degradation. See Configuration note for details.

About this task

Horizontal CPU polarization means that the PR/SM hypervisor dispatches each virtual CPU of an LPAR for
the same amount of time.

With vertical CPU polarization, the PR/SM hypervisor dispatches certain CPUs for a longer time than
others. For example, if an LPAR has three virtual CPUs, each of them with a share of 33%, then in case of
vertical CPU polarization, all of the processing time would be combined to a single CPU. This CPU would
run most of the time while the other two CPUs would get nearly no time.

There are three types of vertical CPUs: high, medium, and low. Low CPUs hardly get any real CPU time,
while high CPUs get a full real CPU. Medium CPUs get something in between.

Configuration note: Switching to vertical CPU polarization usually results in a system with different
types of vertical CPUs. Running a system with different types of vertical CPUs can result in significant
performance degradation. If possible, use only one type of vertical CPUs. Set all other CPUs offline and
deconfigure them.

Procedure

To change the polarization, issue a command of this form:

# chcpu -p horizontal|vertical
Alternatively, you can write a 0 for horizontal polarization (the default) or a 1 for vertical polarization
to /sys/devices/system/cpu/dispatching.

Example: The following chcpu command sets the polarization to vertical.

# chcpu -p vertical

You can achieve the same results by issuing the following command:

# echo 1 > /sys/devices/system/cpu/dispatching

What to do next
You can issue the 1scpu command with the -e option to find out the polarization of your CPUs. For more
detailed information for a particular CPU, read the polarization attribute of the CPU in sysfs.

# cat /sys/devices/system/cpu/cpu<N>/polarization

The polarization can have one of the following values:

« horizontal - each of the guests' virtual CPUs is dispatched for the same amount of time.
- vertical:high - full CPU time is allocated.

- vertical:medium - medium CPU time is allocated.

- vertical:low - very little CPU time is allocated.

- unknown - temporary value following a polarization change until the change is completed and the
kernel has established the new polarization of each CPU.

344 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 24. Memory hotplug

LPAR and z/VM: Hotplug memory can be used by Linux in LPAR mode and by Linux on z/VM.
You can dynamically increase or decrease the memory for your running Linux instance.

To make memory available as hotplug memory, you must define it to your LPAR or z/VM. Hotplug memory
is supported by z/VM 5.4 with the PTF for APAR VM64524 and by later z/VM versions.

For more information about memory hotplug, see 1linux-doc/memoxry-hotplug.txt.gz inthe
linux-doc package.

What you should know about memory hotplug

Hotplug memory is represented in sysfs. After rebooting Linux, all hotplug memory might be offline.

Hotplug memory management overhead
Linux requires 64 bytes of memory to manage a 4-KB page of hotplug memory.

Use the following formula to calculate the total amount of initial memory that is consumed to manage
your hotplug memory:

<hotplug memory> / 64

Example: 4.5 TB of hotplug memory consume 4.5 TB / 64 = 72 GB.

For large amounts of hotplug memory, you might have to increase the initial memory that is available to
your Linux instance. Otherwise, booting Linux might fail with a kernel panic and a message that there is
not enough free memory.

How memory is represented in sysfs

Both the core memory of a Linux instance and the available hotplug memory are represented by
directories in sysfs.

The memory with which Linux is started is the core memory. On the running Linux system, additional
memory can be added as hotplug memory. The Linux kernel requires core memory to allocate its own data
structures.

In sysfs, both the core memory of a Linux instance and the available hotplug memory are represented
in form of memory blocks of equal size. Each block is represented as a directory of the form /sys/
devices/system/memory/memory<n>, where <n> is an integer. You can find out the block size by
reading the /sys/devices/system/memory/block_size_bytes attribute.

In the naming scheme, the memory blocks with the lowest address ranges are assigned the lowest
integer numbers. The core memory always begins with memory0. The hotplug memory blocks follow the
core memory blocks.

You can calculate where the hotplug memory begins. To find the number of core memory blocks, divide
the base memory by the block size.

Example:

« With a core memory of 512 MB and a block size of 128 MB, the core memory is represented by four
blocks, memoryQ through memory3. Therefore, first hotplug memory block on this Linux instance is
memory4.

« Another Linux instance with a core memory of 1024 MB and access to the same hotplug memory,
represents this first hotplug memory block as memory8.

© Copyright IBM Corp. 2000, 2023 345



The hotplug memory is available to all operating system instances within the z/VM system or LPAR to
which it was defined. The state sysfs attribute of a memory block indicates whether the block is in use
by your own Linux system. The state attribute does not indicate whether a block is in use by another
operating system instance. Attempts to add memory blocks that are already in use fail.

Memory state and reboot

On arunning Linux instance, memory hotplug can change the online state of memory blocks for both
hotplug memory and core memory. For core memory, the state is always preserved across boot cycles.
Depending on multiple conditions, the state of hotplug memory might be reset to offline.

Booting with memory clearing
With memory clearing, an IPL or re-IPL resets all hotplug memory to offline.

Exception: The online status of hotplug memory is preserved for Linux on z/VM after a regular shutdown
with a subsequent IPL from a CCW device.

Booting without memory clearing

Without memory clearing, the status of hotplug memory after an IPL or re-IPL depends on the type of IPL
device:

« For CCW IPL devices the state is preserved.
« For FCP-attached IPL devices and for PCIe-attached NVMe IPL devices the state is reset to offline.

Interface change

As of kernel 5.6, reboot without memory clearing is the default if it is supported in your environment.
To force memory clearing, configure your re-IPL device with the clear option, see “Rebooting from an
alternative source” on page 114.

Memory zones

The Linux kernel divides memory into memory zones. On a mainframe, three zones are used: DMA,
Normal, and Movable.

« Memory in the DMA zone is below 2 GB, and some I/0 operations require that memory buffers are
located in this zone.

« Memory in the Normal zone is above 2 GB, and it can be used for all memory allocations that do not
require zone DMA.

« Memory in the Movable zone cannot be used for arbitrary kernel allocations, but only for memory
buffers that can easily be moved by the kernel, such as user memory allocations and page cache
memory. Memory in the Movable zone can more easily be taken offline than memory in other zones.

The zones that are available to a memory block are listed in the valid_zones sysfs attribute. For more
information, see “Adding memory” on page 348.

Setting up hotplug memory

Before you can use hotplug memory on your Linux instance, you must define this memory as hotplug
memory on your physical or virtual hardware.
Defining hotplug memory to an LPAR

You use the Hardware Management Console (HMC) to define hotplug memory as reserved storage on an
LPAR.

For information about defining reserved storage for your LPAR, see the Processor Resource/Systems
Manager Planning Guide, SB10-7041 for your mainframe.

346 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Defining hotplug memory to z/VM
In z/VM, you define hotplug memory as standby storage.

There is also reserved storage in z/VM, but other than reserved memory defined for an LPAR, reserved
storage that is defined in z/VM is not available as hotplug memory.

Always align the z/VM guest storage with the Linux memory block size. Otherwise, memory blocks might
be missing or impossible to set offline in Linux.

For information about defining standby memory for z/VM guests see the "DEFINE STORAGE" section in
z/VM: CP Commands and Utilities Reference, SC24-6268.

Performing memory management tasks

Typical memory management tasks include finding out the memory block size, adding memory, and
removing memory.

« “Finding out the memory block size” on page 347

« “Listing the available memory blocks” on page 347

« “Adding memory” on page 348

« “Removing memory” on page 349

Finding out the memory block size

On an IBM Z mainframe, memory is provided to Linux as memory blocks of equal size.

Procedure

« Usethe 1smem command to find out the size of your memory blocks.

Example:

# lsmem

Address range Size (MB) State Removable Device
0x0000000000000000-0x000000000fffffff 256 online no 0
Ox0000000010000000-0xOEEEEEEE2ETIffff 512 online yes 1-2
0x0000000030000000-0xOEEEEEEE3LLfffff 256 online no 3
0x0000000040000000-0x000000006fffffff 768 online yes 4-6
Ox0000000070000AAO-OXxOOEEEEEELIIfIfff 2304 offline - 7-15
Memory device size : 256 MB

Memory block size : 256 MB

Total online memory : 1792 MB
Total offline memory: 2304 MB

In the example, the block size is 256 MB.

« Alternatively, you canread /sys/devices/system/memory/block_size_bytes. This sysfs
attribute contains the block size in byte in hexadecimal notation.

Example:

# cat /sys/devices/system/memory/block_size_bytes
10000000

This hexadecimal value corresponds to 256 MB.

Listing the available memory blocks

List the available memory to find out how much memory is available and which memory blocks are online.

Chapter 24. Memory hotplug 347



Procedure

Use the 1smem command to list your memory blocks.

Example:

# lsmem -a

Address range Size (MB) State Removable Device
0x0000000000000000-0x000000000ffEffff 256 online no 0
0x0000000010000000-0x000000001fffffff 256 online no 1
0x0000000020000000-0x000000002fffffff 256 online no 2
0x0000000030000000-0x000000003fffffff 256 online yes 3
0x0000000040000000-0x000000004ffEffEfff 256 online yes 4
0x0000000050000000-0x000000005fffffff 256 offline - 5
0x0000000060000000-0x000000006Ffffffff 256 offline - 6
0x0000000070000000-0x000000007fLEffff 256 offline - 7
Memory device size : 256 MB

Memory block size : 256 MB

Total online memory : 1280 MB
Total offline memory: 786 MB

Alternatively, you can list the available memory blocks by listing the contents of /sys/devices/
system/memory. Read the state attributes of each memory block to find out whether it is online or
offline.

Example: The following command results in an overview for all available memory blocks.

# grep -r --include="state" "line" /sys/devices/system/memozry/
/sys/devices/system/memory/memory0/state:online
/sys/devices/system/memory/memoryl/state:online
/sys/devices/system/memory/memory2/state:online
/sys/devices/system/memory/memory3/state:online
/sys/devices/system/memory/memory4d/state:online
/sys/devices/system/memory/memory5/state:offline
/sys/devices/system/memory/memory6/state:offline
/sys/devices/system/memory/memory7/state:offline

Note

Online blocks are in use by your Linux instance. An offline block can be free to be added to your Linux
instance but it might also be in use by another Linux instance.

Adding memory

You can add memory to your Linux instance by setting unused memory blocks online.

Procedure

Use the chmem command with the -e parameter to set memory online.

You can specify the amount of memory you want to add with the command without specifying
particular memory blocks. If there are enough eligible memory blocks to satisfy your request, the
tool finds them for you and sets the most suitable blocks online.

For information about the chmem command, see the man page. The chmem command is part of the
util-linux package.

Alternatively, you can write to the state sysfs attribute of an unused memory block.
Issue a command of the form:

# echo online_value > /sys/devices/system/memory/memory<n>/state

where online_value is one of:

348 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



online
sets the memory block online to the default zone. The default zone is the first zone listed in the
valid_zones sysfs attribute.

online_movable
sets the memory block online to the Movable zone. Setting the block online fails if the Movable
zone is not listed in the valid_zones sysfs attribute.

online_kernel
sets the memory block online to the first non-Movable zone listed in the valid_zones directory.
Setting the block online fails if the Movable zone is the only zone listed in the valid_zones sysfs
attribute.

<n> is an integer that identifies the memory unit.

Results

Adding the memory block fails if the memory block is already in use. The state attribute changes to
online when the memory block has been added successfully.

Removing memory

You can remove memory from your Linux instance by setting memory blocks offline.

About this task

Avoid removing core memory. The Linux kernel requires core memory to allocate its own data structures.

Procedure

« Use the chmem command with the -d parameter to set memory offline.

You can specify the amount of memory you want to remove with the command without specifying
particular memory blocks. The tool finds eligible memory blocks for you and sets the most suitable
blocks offline.

For information about the chmem command, see the man page. The chmem command is part of the
util-linux package.

« Alternatively, you can write offline to the sysfs state attribute of an unused memory block.
Issue a command of the form:

# echo offline > /sys/devices/system/memory/memory<n>/state
where <n> is an integer that identifies the memory unit.

Results

The hotplug memory functions first relocate memory pages to free the memory block and then remove it.
The state attribute changes to offline when the memory block has been removed successfully.

The memory block is not removed if it cannot be freed completely.

Chapter 24. Memory hotplug 349



350 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 25. Persistent device configuration

Use the chzdev command to persistently configure your devices and device drivers and the 1szdev
command to view your configuration.

You can manage the device configuration with 1szdev and chzdev within all hypervisor environments,
LPAR, z/VM, and KVM. For KVM guests, this applies mainly to pass-through devices. For virtio devices, the
virtual server definition on the KVM host and the KVM virtualization limit the scope for configuration on the
KVM guest.

Mainframe-specific devices, such as DASDs, FCP devices, and network devices require special
configuration steps before they can be used. Tools are available that configure devices, for example
chccwdev and znetconf, but this type of configuration is not preserved across reboots.

The chzdev command facilitates persistent configuration. The command performs all configuration steps
that are required to make devices operational, for example, as a block device, a character device, or a
network interface.

The following device types are supported:

« FICON-attached direct access storage devices (DASDs)

« SCSI-over-Fibre Channel (FCP) devices and SCSI devices
« OSA-Express and HiperSockets network devices

« LAN-Channel-Station (LCS) network devices

« Channel command word (CCW) devices that are not covered by any other device type, for example the
3215 console, 3270 terminal devices, z/VM reader and puncher devices, and CCW tape devices.

The chzdev and 1szdev commands are included in the s390-tools package. chzdev configures the
devices and device drivers in two ways:

- Inthe currently running configuration, called the active configuration
« In configuration files such as udev rules, called the persistent configuration

The 1szdev command displays configuration information about devices and device drivers. For detalils,
see “lszdev - Display IBM Z device configurations” on page 682.

For details about the chzdev command, see “chzdev - Configure IBM Z devices” on page 584.

Note: Using tools that are not aligned with 1szdev and chzdev can result in conflicting configuration
settings.

Device ID

The chzdev and 1szdev commands use device IDs to identify devices. For CCW devices and CCW group
devices, this device ID is the device bus-ID.

The device bus-ID is of the format 0.<subchannel_set_ID>.<devno>, for example, 0.0.8000.

Tip: For device bus-IDs with a leading "0.0", you can shorten the specification to just the device number
(devno). For example, you can shorten 0.0.0b10 to 0b10.

Other device categories can have different IDs. For example, SCSI devices have a triplet device ID that
consists of a device number, a WWPN, and a LUN.

Configuring device drivers

You can use the chzdev command to modify device driver attributes, for example module parameters
such as DASD's eer_pages. You select a device driver, rather than a device, by using the --type option.
Device drivers can be selected by type or subtype, for example DASDs are of type dasd, but have the
subtypes dasd-fba and dasd-eckd.

© Copyright IBM Corp. 2000, 2023 351



chzdev syntax overview

»— chzdev —| Device or device type selection I—M—MN

Where the different command sections have these meanings:

Device or device type selection
Select devices by device ID, device state, or function. Select device types by specifying a device type
and the - -type option. For details about selecting devices or device types, see “Selecting devices
and device drivers” on page 352.

Actions
Act on the selected devices. For details about these actions, see:

« “Enabling and disabling a device” on page 355

« “Changing device or device driver settings” on page 360

« “Importing and exporting configuration data” on page 362

Options
Choose how to apply the command, for example as a test run, as applying to the persistent
configuration only, or as running in quiet mode. Options include --dry-run, --verbose, --quiet,
and - -yes. For the complete list of options, see “chzdev - Configure IBM Z devices” on page 584

lszdev syntax overview

»— |szdev —| Device or device type selection |—| Options |—><

Where the different command sections have these meanings:

Device or device type selection
Select devices to display by device ID, device state, or function. For details about selecting devices,
see “Selecting devices and device drivers” on page 352. If no selection is made, all existing and
configured devices are displayed.

Options
Choose the configuration information, and how to display it.

« To display a list with information about all devices, specify only 1szdev without options. You
can restrict output to a single device, a device type, or a range of devices. You can control what
information is included by specifying output columns.

« To display details about a single device, specify the device and the - -info option.

For details on and examples of displaying information, see “Viewing the configuration” on page 357.
For the complete list of options, see “Iszdev - Display IBM Z device configurations” on page 682.

Selecting devices and device drivers

You can select devices by type and ID, by state, by path, or by network interface name.

About this task

You can select either devices or device drivers.

To select a device driver, specify the - -type option and a <type> without a device ID. For details, see the
description of <type> and the - -type option.

352 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Selecting a device driver

»— chzdev — <type> — --type

Select devices by device ID, by attribute, interface, node, or path. Then restrict your choice to the
devices with a particular configuration state. For details see the descriptions for the --configured,
--existing, --online, and --offline options. To select all devices, specify --all.

t ) J

»»— chzdev L J
<type> M <device> —————

Selecting a device

\4

“— <from_device>-<to_device> —

&
‘ j
»
>

M --by-attrib <attribute=value> |<attribute!=value> — L --configured J

A\ 4
S

M——— --by-interface <inferface> ——
M --by-node <device_node> ——

M --by-path <path> ————————

- --all /
> Action |—><
L --existing J h --online j
--offline

Device driver selection:

<type>
restricts the scope of an action to the specified device type. Specify a device type together with the
- -type option to manage the configuration of the device driver itself.

-t <device_type> or --type <device_type>
selects a device type as target for a configuration or query action. For example: dasd-eckd, zfcp, or
geth.

Device selection:

<type>
restricts the scope of an action to the specified device type. Specify a device type and optionally a
device ID to only work on devices with matching type and ID

Note:

As a precaution, use the most specific device type when configuring a device by ID. Otherwise
the same device ID might accidentally match other devices of a different sub-type. To get a list of
supported device types, use the --1ist-types option.

<device>
selects a single device or a range of devices by device ID. Separate multiple IDs or ranges with a
comma (,). To select a range of devices, specify the ID of the first and the last device in the range
separated by a hyphen (-).

Chapter 25. Persistent device configuration 353



--all
selects all existing and configured devices.

--by-attrib <attrib=value> | <attrib!=value>
selects devices with a specific attribute, <attrib> that has a value of <value>. When specified as
<attrib>!=<value>, selects all devices that do not provide an attribute named <attrib> with a value of
<value>.

Tip: You can use the --1ist-attributes option to display a list of available attributes and the
--help-attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, encf500. <interface> must be the name of an
existing networking interface.

--by-node <device_node>
selects devices by device node, for example, /dev/sda. <device_node> must be the path to the
device node for a block device or character device.

Note: If <device_node> is the device node for a logical device (such as a device mapper device),
1szdev tries to resolve the corresponding physical device nodes. The 1shlk tool must be available
for this resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), 1szdev tries to resolve the corresponding physical device nodes. The 1sblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

Restrict selection to configuration state:

--configured

narrows the selection to those devices for which a persistent configuration exists.
--existing

narrows the selection to all devices that are present in the active configuration.
--configured --existing

specifying both --configured and --existing narrows the selection to devices that are present in
both configurations, persistent and active.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

Action
performs an action on the selected device, for details see:

« “Enabling and disabling a device” on page 355

- “Changing device or device driver settings” on page 360

« “Importing and exporting configuration data” on page 362

Examples

In the following examples the enable and disable actions are used when illustrating the different methods
of selecting devices.

« To enable device 0.0.8000 by type and ID, issue:

# chzdev dasd-fba 0.0.8000 --enable
FBA DASD 0.0.8000 configured

354 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



- To select a device by ID only, issue the following command to disable device 0.0.8000. In this case
chzdev automatically determines the associated type:

i# chzdev 0.0.8000 --disable
FBA DASD 0.0.8000 deconfigured

Note: This addressing mode might result in multiple devices being selected. For example, if an FBA
DASD is part of the persistent configuration, but you have disabled it and defined a new ECKD DASD
0.0.8000 that is active, and you enable 0.0.8000, both the FBA and the ECKD device will be enabled.
The same is true if you specify only "dasd" and not "dasd-fba".

Tip: To ensure that you enable the correct device, include the most specific type, for example dasd-eckd
instead of just dasd.

- To select multiple devices by range, specify the beginning of the range, a hyphen, and the end of the
range:

# chzdev dasd-eckd 0.0.3000-0.0.4000 --enable

ECKD DASD 0.0.3718 configured
ECKD DASD 0.0.3719 configured
ECKD DASD 0.0.371a configured
ECKD DASD 0.0.37b8 configured
ECKD DASD 0.0.37b9 configured
ECKD DASD 0.0.37be configured
ECKD DASD 0.0.37bf configured

- To narrow the selection by configuration state, for example "online", use the --online option. This
example configures all devices that are enabled in the active configuration persistently:

# chzdev --persistent --online --enable
Configuring devices in the persistent configuration only

ECKD DASD 0.0.3718 configured
ECKD DASD 0.0.3719 configured
ECKD DASD 0.0.371a configured
ECKD DASD 0.0.37b8 configured
ECKD DASD 0.0.37b9 configured
ECKD DASD 0.0.37be configured
ECKD DASD 0.0.37bf configured

FBA DASD 0.0.8000 configured

FCP device 0.0.1940 configured

Note: NPIV mode disabled - LUNs must be configured manually

ZFCP LUN 0.0.1940:0x500507630508clae:0x402140ac00000000 configured
QETH device 0.0.f5f0:0.0.£5f1:0.0.£f5f2 configured

Generic CCW device 0.0.0009 configured

- To select devices by specifying a file system path that is located on the target device, use the - -by-
path option:

# chzdev --persistent --by-path /mnt --enable
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

Note: If the file system that provides the PATH is stored on multiple physical devices or on a sub-
volume (such as supported by btrfs), 1szdev tries to resolve the corresponding physical device nodes.
For the resolution to work, the 1sblk and £indmnt tools must be available, and if there are multiple
physical devices the file system must provide a valid UUID.

 To select a device by specifying a device node that refers to a block or character device:

# chzdev --persistent --by-node /dev/dasdal --enable
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

Enabling and disabling a device

You can use the chzdev command to enable or disable a device, both in the active and in the persistent
configuration.

Chapter 25. Persistent device configuration 355



About this task

Any steps necessary for the device to function are automatically taken. If a cio_ignore device exclusion list
is active, chzdev removes the specified device ID from the list.

Note: If a SCSI device is enabled and its FCP device taken off the cio_ignore exclusion list, all devices
defined to the FCP device might come online automatically, see “Configuring SCSI devices” on page 193.

r --persistent --active T
»— chzdev --disable [ ><
--enable M——— --active ———

—— --persistent —

where:

-d or --disable
disables the selected devices.

Active configuration
Disables the selected devices by reverting the configuration steps necessary to enable them.

Persistent configuration
Removes configuration files and settings associated with the selected devices.

-e or --enable
enables the selected devices. Any steps necessary for the devices to function are taken, for example:
create a CCW group device, remove a device from the CIO exclusion list, or set a CCW device online.

Active configuration
Performs all setup steps required for a device to become operational, for example, as a block
device or as a network interface.

Persistent configuration
Creates configuration files and settings associated with the selected devices.

-a or --active
applies changes to the active configuration only. The persistent configuration is not changed unless
you also specify - -persistent.

Note: Changes to the active configuration are effective immediately. They are lost on reboot, when a
device driver is unloaded, or when a device becomes unavailable.

-p or --persistent
applies changes to the persistent configuration only. The persistent configuration takes effect when
the system boots, when a device driver is loaded, or when a device becomes available.

Examples

« To enable an ECKD DASD with bus ID 0.0.3718 in both the active and the persistent configuration,
specify the device ID and its type to the chzdev command, together with the --enable option:

# chzdev dasd-eckd 0.0.3718 --enable
ECKD DASD 0.0.3718 configured

This command sets ECKD DASD 0.0.3718 online and creates udev rules to automatically bring it online
at the next boot.

- Torestrict the scope of the configuration actions to either the active or persistent configuration, specify
--active or --persistent. The following command creates udev rules to automatically bring device
0.0.3718 online at the next boot:

356 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



# chzdev dasd-eckd 0.0.3718 --enable --persistent
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

« To disable a device, specify its device type and ID together with the - -disable option:

i# chzdev dasd-eckd 0.0.3718 --disable
ECKD DASD 0.0.3718 deconfigured

- To enable an FCP device and create a persistent configuration, issue:

# chzdev --enable zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

- To enable an FCP device without creating a persistent configuration, issue:

# chzdev --enable --active zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

- To enable a QETH device and create a persistent configuration, issue:

# chzdev --enable geth 0.0.a2000:0.0.a001:0.0.a002

- To enable a QETH device without creating a persistent configuration, issue:

# chzdev --enable --active geth 0.0.a000:0.0.a001:0.0.a002

Viewing the configuration

Use the 1szdev command to list information about device drivers, devices, device types, and attributes.

About this task
The 1szdev command provides options for extracting information from the active and persistent system
configuration. You can list and get help on available device attributes and list available device types.

»— lszdev L _J >
l—{ Device or device type selection }—J --info

L E ’ L --no-headings J
--columns columns

|

»d
>4

A 4

\ 4

L --base <path>| <key=value> J

where:

-i or --info
displays detailed information about the configuration of the selected device or device type.

-c <columns> or --columns <columns>
specifies a comma-separated list of columns to display.

Example:

# 1lszdev --columns TYPE,ID

Chapter 25. Persistent device configuration 357



Tip: To get a list of supported column names, use the --1ist-columns option.

-n or --no-headings
suppresses column headings for list output.

--pairs

produces output in <key="value"> format. Use this option to generate output in a format more suitable
for processing by other programs. In this format, column values are prefixed with the name of

the corresponding column. Values are enclosed in double quotation marks. The 1szdev command
automatically escapes quotation marks and slashes that are part of the value string.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), itis used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example:

# lszdev --persistent --base /etc=/mnt/etc

Examples

« To list devices with their status, use the 1szdev command, issue:

# lszdev
TYPE
dasd-eckd
dasd-eckd
dasd-eckd
dasd-eckd
dasd-fba
zfcp-host
zfcp-host
geth

geth

geth

geth

geth
generic-ccw
generic-ccw
generic-ccw
generic-ccw

o

.0190
.3718
.3719
.371a
.8000
.1940
.1941
.a000:
.a003:
.£500:
.£503:
.f5f0:
.0009
.000c
.000d
.000e

[c¥oNoNoNo)

[ojoJoNoJoJoJoJoJoNoNoNoJoNoNoNoly|
[oJoJoNoNo]
h
a1
(]
s

[o¥oJoNoNoJoNojoJNoJoNoNoJoJoRoNo]

.a002
.ab05
.£502
.£505
.f5f2

ON
no
yes
no
yes
no
no
no
no
no
no
no
yes
yes
no
no
no

PERS
no
yes
no
yes
no
no
no
no
no
no
no
yes
no
no
no
no

« Torestrict output to a single device type, issue:

# lszdev geth

TYPE
geth
geth
geth
geth
geth

D

oo H
lo¥ofofoXo)
h
(4]

o)

5]
lo¥ofofo¥o)

.a002
.ab05
.£502
.£505
.f5f2

ON
no
no
no
no
yes

NAMES
dasda dasdal

dasdb dasdbl dasdb2 dasdb3

encf5f0

PERS NAMES

no
no
no
no
yes

encf5f0

« To list output in machine-readable format, use the - -pairs option, issue:

# lszdev geth --pairs

TYPE="qeth"
TYPE="qgeth"
TYPE="qeth"
TYPE="qeth"
TYPE="qeth"

ID="0.0.a00
ID="0.0.a00
ID="0.0.£50
ID="0.0.£f50
ID="0.0.f5f

0:0.0.
830.0.
0:0.0.
3:0.0.
0:0.0.

.a002"
.a005"
.£502"
.£505"
.f5£2"

ON="no" PERS="no" NAMES=""
ON="no" PERS="no" NAMES=""
ON="no" PERS="no" NAMES=""
ON="no" PERS="no" NAMES=""
ON="yes" PERS="yes" NAMES="encf5f0

« To list all columns that you can display, use the --1ist-columns option:

358 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



i# lszdev --list-columns
COLUMN DESCRIPTION

TYPE Device type

ID Device identifier

ON Device is online in the active configuration
EXISTS Device exists in the active configuration
PERS Device is configured persistently

NAMES Associated Linux device names

BLOCKDEVS Associated block devices

CHARDEVS Associated character devices

NETDEVS  Associated network interfaces

MODULES Required kernel modules

ATTR: Value of specific attribute, e.g. ATTR:online

« To display specific columns only, use the --columns option with the names of the columns as a
comma-separated list:

# lszdev geth --columns ID,NAMES,ATTR:layer2

ID NAMES ATTR:layer2
0.0.2000:0.0.2001:0.0.a002 0
0.0.2003:0.0.2004:0.0.a005 0
0.0.f500:0.0.£501:0.0.£502 1
0.0.f503:0.0.£504:0.0.£505 0
0.0.f5f0:0.0.£5f1:0.0.f5f2 encf5f0 1

« To get a list of supported device types, use the --1ist-types option:

# lszdev --list-types

TYPE DESCRIPTION

dasd FICON-attached Direct Access Storage Devices (DASDs)
dasd-eckd Enhanced Count Key Data (ECKD) DASDs

dasd-fba Fixed Block Architecture (FBA) DASDs

zfcp SCSI-over-Fibre Channel (FCP) devices and SCSI devices
zfcp-host FCP devices

zfcp-lun zfcp-attached SCSI devices

geth OSA-Express and HiperSockets network devices
ctc Channel-To-Channel (CTC) and CTC-MPC network devices
lcs LAN-Channel-Station (LCS) network devices

generic-ccw Generic Channel-Command-Word (CCW) devices

Some device types are related. For example, specifying the "dasd" device type will select both "dasd-
eckd" and "dasd-fba" devices.

- To list configuration details for a device, use the --info option:

# lszdev --info --by-interface encf5f0
DEVICE geth 0.0.f5f0:0.0.f5f1:0.0.f5f2

Names : encf5f0

Modules : geth

Online . yes

Exists 1 yes

Persistent : yes

ATTRIBUTE ACTIVE PERSISTENT
buffer_ count "64" =
hw_trap "disarm" -
isolation “none" -
layer2 nqn nqn
Online Illll Illll
performance_stats "o" =
portname o =
portno 0" =
priority_queueing "always queue 0" -

« To list configuration details for a device driver, use the - -type and a device-type name:

Chapter 25. Persistent device configuration 359



# lszdev --type dasd
DEVICE TYPE dasd

Description : FICON-attached Direct Access Storage Devices (DASDs)

Modules : dasd_mod dasd_eckd_mod dasd_fba_mod
Active . yes

Persistent : no

ATTRIBUTE ACTIVE PERSISTENT
autodetect o -

dasd = =
eer_pages "5" -

nofcx o -

nopav o -
probeonly 0" -

Changing device or device driver settings

Use the chzdev command to change both device and device driver settings.

About this task

Some devices provide named attributes. You can change the value of the attributes by using the chzdev
command with a <attribute=value> assignment.

You can also use the chzdev command to modify device driver attributes, for example module
parameters such as the DASD module parameter eer_pages. You select a device driver, rather than a
device, by specifying the - -type option. Device drivers can be selected by type or sub-type, for example
DASDs are of type dasd, but have the sub-types dasd-fba and dasd-eckd.

A

»— chzdev —| Device or device type selection }L <attribute=value> l»
g < : L --force —J
--remove <aftrib>

“~———— --remove-all ———~

where:

<attribute=value>

specifies a device attribute and its value. To specify multiple attributes, separate attribute-value pairs
with a blank.

You can use the --1list-attributes option to display a list of available attributes and the --help-
attribute to get more detailed information about a specific attribute.

Tip: To specify an attribute that is not known to chzdev, use the --foxrce option.

-r <attrib> or --remove <attrib>
removes the setting for attribute <attrib>.

Active configuration
For attributes that maintain a list of values, clears all values for that list.

Persistent configuration

Removes any setting for the specified attribute. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.

=R or --remove-all
removes the settings for all attributes of the selected device or device driver.

360 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands




Active configuration
For attributes that maintain a list of values, clears all values for that list.

Persistent configuration
Removes all attribute settings that can be removed. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.

-f or --force
overrides safety checks and confirmation questions, including:

« More than 256 devices selected
« Configuring unknown attributes
« Combining apparently inconsistent settings

Examples for changing device settings

- To set the use_diag attribute for device 0.0.8000, issue:

# chzdev dasd-fba 0.0.8000 use_diag=1 --persistent --verbose
Configuring devices in the persistent configuration only
FBA DASD 0.0.8000 configured

Changes: use_diag=1

Block devices: /dev/dasda /dev/dasdal

- To list available attributes, specify the device type together with the --1ist-attributes option:

{# chzdev dasd-fba --list-attributes

NAME DESCRIPTION

online Activate a device

cmb_enable Enable the Channel measurement facility

failfast Modify error recovery in no-path scenario
readonly Inhibit write access to DASD

erplog Enable logging of Error Recovery Processing
use_diag Activate z/VM hypervisor assisted I/0 processing
eer_enabled Enable Extended Error Reporting

expires Modify I/0 operation timeout

retries Modify I/0 operation retry counter

timeout Modify I/0 request timeout

reservation_policy Modify lost device reservation behavior
last_known_reservation_state Display and reset driver device reservation view
safe_offline Deactivate DASD after processing outstanding I/Os

« To display more details about an attribute, use the --help-attribute option:

# chzdev dasd-fba --help-attribute use_diag
ATTRIBUTE use_diag

DESCRIPTION
Control I/0 access mode for a DASD:
0: I/0 is performed using standard channel programs
1: I/0 is performed using the z/VM DIAGNOSE X'250’ interface

Note that the DIAGNOSE X'250’ access mode only works when running
Linux as z/VM guest, and only for devices formatted with consistent
block sizes such as ECKD DASDs with LDL or CMS format, or FBA
devices.

DEFAULT VALUE
The default value is 'Q'.
ACCEPTED VALUES
- Numbers O to 1 in decimal notation

- To remove a setting from a persistent configuration, use the --remove and - -persistent options:

# chzdev dasd 8000 --persistent --remove use_diag --verbose
Configuring devices in the persistent configuration only
FBA DASD 0.0.8000 configured

Changes: -use_diag

Block devices: /dev/dasda /dev/dasdal

Chapter 25. Persistent device configuration 361



Example for changing device driver settings

To change device driver settings, use a <attribute=value> assighment together with the device type:

# chzdev dasd --type nopav=1
dasd device type configured

Importing and exporting configuration data

Import configuration data from, or export data to, a text file by using the - -import and - -export
options of the chzdev command. You can also use an existing configuration as a template for a new
configuration, for example, for a new Linux instance.

About this task
The export function can be used, for example, to transfer a device configuration to another system, or to
store it for later use as a backup or for a rollback.

»— chzdev —| Device or device type selection }—L--export <filename> | - j—»
--import <filename> | -

»d
1|

»
»

L --base <path> |<key=value> J

where:

--export <filename> |-
writes configuration data to a text file called <filename>. If a single hyphen (-) is specified instead
of a file name, data is written to the standard output stream. The output format of this option can
be used with the - -import option. To reduce the scope of exported configuration data, you can
select specific devices, a device type, or define whether to export only data for the active or persistent
configuration.

--import <filename>|-
reads configuration data from <filename> and applies it. If a single hyphen (-) is specified instead of
a file name, data is read from the standard input stream. The input format must be the same as the
format produced by the - -export option.

By default, all configuration data that is read is also applied. To reduce the scope of imported
configuration data, you can select specific devices, a device type, or define whether to import only
data for the active or persistent configuration.

You can use this option to import auto-configuration data, see “Displaying auto-configuration data” on
page 22.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), itis used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example: 1szdev --persistent --base /etc=/mnt/etc

Examples

- Textual configuration data is either written to a file or, when you specify the special file name "-", to

standard output:

362 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



# chzdev --by-interface enca®00 --persistent --export -
Exporting configuration data to standard output

i# Generated by chzdev on linux.example.com

[persistent geth 0.0.a000:0.0.a001:0.0.a002]

layer2=0

online=1

« To export this configuration data to a file called config.txt, issue:

# chzdev --by-interface enca®00 --persistent --export config.txt

- To apply data in this format to a system’s configuration, use the - -impozrt option:

# chzdev --import config.txt
Importing configuration data from config.txt
QETH device 0.0.2000:0.0.2001:0.0.a002 configured

 To create a persistent configuration for an ECKD DASD 0.0.1000 and write it to a new Linux system that
is mounted under /mnt/etc, issue:

# chzdev dasd-eckd 1000 -e -p --base /etc=/mnt/etc

« To display a configuration that was written to /mnt/etc, issue:

# lszdev --persistent --base /etc=/mnt/etc

« To copy the persistent configuration to /mnt/etc, issue:

# chzdev --all --persistent --export - | chzdev --import - --base /etc=/mnt/etc
Exporting configuration data to standard output

Importing configuration data from Standard input

ECKD DASD 0.0.1234 configured

FCP device 0.0.190d configured

FCP device 0.0.194d configured

Configuring the root device

Changing the configuration of the device that provides the root file system might require additional
configuration steps.

About this task

For what steps are required to persistently apply root device configurations, see the Ubuntu
documentation available from

https://help.ubuntu.com/

Example

The following example shows a change made to an Ubuntu Linux instance. The example shows that
changes have been made that might require rebuilding the RAM disk:

# chzdev --by-path / erplog=1
ECKD DASD 0.0.ca00 configured
Note: Some of the changes affect devices providing the root file system:
- ECKD DASD 0.0.ca00
Additional steps such as rebuilding the RAM-disk might be required.

For more information about rebuilding the RAM disk, see “Rebuilding the initial RAM disk image” on page
92.

Chapter 25. Persistent device configuration 363



364 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 26. Huge-page support

Note: Across the IT industry, huge pages and large pages are used synonymously for memory pages that
exceed 4 KB. In keeping with the more commonly used term in the context of Linux, this publication uses
huge pages.

Huge-page support entails support for the Linux hugetlbfs file system.

This virtual file system is backed by larger memory pages than the usual 4 K pages; for IBM Z the
hardware page size is 1 MB.

To check whether 1 MB huge pages are supported in your environment, issue the command:

# grep -o edat /proc/cpuinfo
edat

An output line that lists edat as a feature indicates 1 MB huge-page support.

Applications that use huge-page memory save a considerable amount of page table memory. Another
benefit from the support might be an acceleration in the address translation and overall memory access
speed.

You can also configure 2 GB huge pages if Linux is running on an LPAR or as a KVM guest.See “Pre-
allocating 2 GB huge pages” on page 366.

Ubuntu Server 22.04 LTS also supports transparent hugepages. For more information, see the
transhuge.txt file, available in the 1inux-doc package. You can find it, for example, by issuing the
following command:

# find / -type f -iname "xtranshugex" 2> /dev/null
/usr/share/doc/linux-doc/vm/transhuge.txt.gz

Setting up hugetlbfs huge-page support

You configure hugetlbfs huge-page support by adding the hugepages= parameter to the kernel
parameter line.

With huge-page support built into the kernel, you can use 1 MB huge pages without further configuration.
Preallocate huge pages through kernel parameters to reserve continuous large blocks of memory and so
assure that a sufficient number of huge pages is available when required.

Huge-page support kernel parameter syntax

»— hugepages= <number> >«
L +
kvm.hpage=1

Notes:

1 Relevant only to KVM hosts.

where:

number
is the number of huge pages to be allocated at boot time.

kvm.hpage=
enables KVM hosts to back the memory of their guests with huge pages. For more information about
kvm module parameters, including the corresponding parameter for kvm as a separate module, see
Chapter 47, “Setting up Ubuntu Server 22.04 LTS as a KVM host,” on page 473

© Copyright IBM Corp. 2000, 2023 365



Note: If you specify more pages than available, Linux reserves as many as possible. As a likely result, too
few general pages remain for the boot process, and your system stops with an out-of-memory error.

Pre-allocating 2 GB huge pages
If Linux is running in an LPAR or as a KVM guest, you can use 2 GB huge pages.

Before you can use 2 GB huge pages, you must pre-allocate them to the kernel page pool. To pre-
allocate 2 GB pages, precede the hugepages= parameter with the page size selection parameter,
hugepagesz=26G.

Tip: Memory quickly becomes fragmented after booting, and new 2 GB huge pages cannot be allocated.
Use kernel boot parameters to allocate 2 GB huge pages to avoid the memory fragmentation problem.

To pre-allocate a number of pages of 2 GB size and also set the default size to 2 GB:

default_hugepagesz=2G hugepagesz=2G hugepages=<number>

Setting up multiple huge-page pools

You can allocate multiple huge-page pools and use them simultaneously. To allocate multiple huge-
page pools, specify the hugepagesz= parameter several times, each time followed by a corresponding
hugepages= parameter.

For example, to specify two pools, one with 1 MB pages and one with 2 GB pages, specify:
hugepagesz=1M hugepages=8 hugepagesz=2G hugepages=2

This creates a sysfs attribute for each pool, /sys/kernel/mm/hugepages/hugepages-<size>kB/
nr_hugepages, where <size> is the page size in KB. For the example given, the following attributes are
created:

/sys/kernel/mm/hugepages/hugepages-1024kB/nxr_hugepages
/sys/kexrnel/mm/hugepages/hugepages-2097152kB/nr_hugepages

Huge pages and hotplug memory

Hotplug memory that is added to a running Linux instance is movable and can be allocated to movable
resources only.

By default, huge pages are not movable and cannot be allocated from movable memory. You can enable
allocation from movable memory with the sysctl setting hugepages_treat_as_movable.

To enable allocation of huge pages from movable hotplug memory, issue:

# echo 1 > /proc/sys/vm/hugepages_treat_as_movable

Although this setting makes huge pages eligible for allocation through movable memory, it does not make
huge pages movable. As a result, the allocated hotplug memory cannot be set offline until all huge pages
are released from that memory.

To disable allocation of huge pages from movable hotplug memory, issue:

# echo 0 > /proc/sys/vm/hugepages_treat_as_movable

Working with hugetlbfs huge-page support

Typical tasks for working with hugetlbfs huge-page support include reading the current number of huge
pages, changing the number of huge pages, and display information about available huge pages.

366 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



About this task

The huge-page memory can be used through mmap () or SysV shared memory system calls. More
detailed information, including implementation examples, can be found in the hugetlbpage. txt file,
available in the 1inux-doc package.

Your database product might support huge-page memory. See your database documentation to find out if
and how it can be configured to use huge-page memory.

Depending on your version of Java™, you might require specific options to make a Java program use the
huge-page feature. For IBM SDK, Java Technology Edition 7 and 8, specify the =X1p option. If you use
the SysV shared memory interface, which includes java =-X1p, you must adjust the shared memory
allocation limits to match the workload requirements. Use the following sysctl attributes:

/proc/sys/kexrnel/shmall
Defines the global maximum amount of shared memory for all processes, specified in number of 4 KB
pages.

/proc/sys/kernel/shmmax
Defines the maximum amount of shared memory per process, specified in number of Bytes.

For example, the following commands would set both limits to 20 GB:

# echo 5242880 > /proc/sys/kernel/shmall
# echo 21474836480 > /proc/sys/kernel/shmmax

Procedure

« Specify the hugepages= kernel parameter with the number of huge pages to be allocated at boot
time. To read the current number of huge pages, issue:

# cat /proc/sys/vm/nr_hugepages

- To change the number of huge pages dynamically during runtime, write to procfs:
# echo 12 > /proc/sys/vm/nr_hugepages

If there is not enough contiguous memory available to fulfill the request, the maximum possible
number of huge pages are reserved.

« To obtain information about the number of huge pages currently available and the huge-page size,
issue:

# cat /proc/meminfo

HugePages_Total: 20
HugePages_Free: 14
HugePages_Rsvd: 0
HugePages_Surp: 0

ﬁﬂéepagesize: 1024 KB

« To adjust characteristics of a huge-page pool, when more than one pool exists, use the sysfs attributes
of the pool.

These can be found under
/sys/kernel/mm/hugepages/hugepages-<size>/nr_hugepages

Where <size> is the page size in KB.

Chapter 26. Huge-page support 367



Example
To allocate 2 GB huge pages:

1. Specify 2 GB huge pages and pre-allocate them to the page pool at boot time. Use the following kernel
boot parameters:

default_hugepagesz=2G hugepagesz=2G hugepages=4

2. After booting, read /proc/meminfo to see information about the amount of huge pages currently
available and the huge-page size:

cat /proc/meminfo

HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: O
HugePages_Surp: 0
Hugepagesize: 2097152 kB

368 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 27. S/390 hypervisor file system

The S/390° hypervisor file system (hypfs) provides a mechanism to access LPAR and z/VM hypervisor
data.

Directory structure

When the hypfs file system is mounted, the accounting information is retrieved and a file system tree is
created. The tree contains a full set of attribute files with the hypervisor information.

By convention, the mount point for the hypervisor file system is /sys/hypervisor/s390.

LPAR directories and attributes

There are hypfs directories and attributes with hypervisor information for Linux in LPAR mode.

Figure 86 on page 369 illustrates the file system tree that is created for LPAR.

-1; One subtree for
ALupalate ‘ *{ <cpu ID> I % each CPU found
\—‘ mgmtime

type
4| D> |
e }7“ | \—‘ mgmtime

-type
/eysihypervisor/e290 }7 @ L‘M

—Lhyp 1 twe |

cputime

onlinetime

One subtree for
each CPU found

—| systems }—ﬁ <LFAR name>‘—‘ cpus <cpu ID> I

<cpu ID>

ﬂ<LPARname>}—‘ cpus ‘ SUb:T;;gOF
eac

Figure 86. The hypervisor file system for LPAR

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical cores.

cpus/<core_ID>
Directory for one physical core. <core_ID> is the logical (decimal) core number.

© Copyright IBM Corp. 2000, 2023 369



type
Type of the physical core, such as CP or IFL.
mgmtime
Physical-LPAR-management time in microseconds (LPAR overhead).

hyp/
Directory for hypervisor information.

hyp/type

Type of hypervisor (LPAR hypervisor).
systems/

Directory for all LPARs.

systems/<lpar name>/
Directory for one LPAR.

systems/<lpar name>/cpus/<core_ID>/
Directory for the virtual cores for one LPAR. The <core_ID> is the logical (decimal) core number.

type
Type of the logical core, such as CP or IFL.

mgmtime
LPAR-management time. Accumulated number of microseconds during which a physical core was
assigned to the logical core and the core time was consumed by the hypervisor and was not
provided to the LPAR (LPAR overhead).

cputime
Accumulated number of microseconds during which a physical core was assigned to the logical
core and the core time was consumed by the LPAR.

onlinetime
Accumulated number of microseconds during which the logical core has been online.

Note: For LPARs with multithreading enabled, the entities in the cpus directories represent hardware
cores, not threads.

Note: For older machines, the onlinetime attribute might be missing. Generally, it is advantageous for
applications to tolerate missing attributes or new attributes that are added to the file system. To check
the content of the files, you can use tools such as cat or 1less.

z/VM directories and attributes
There are hypfs directories and attributes with hypervisor information for Linux on z/VM.

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical CPUs.

cpus/count
Total current CPUs.

hyp/
Directory for hypervisor information.

hyp/type
Type of hypervisor (z/VM hypervisor).

systems/
Directory for all z/VM guest virtual machines.

systems/<guest name>/
Directory for one guest virtual machine.

systems/<guest name>/onlinetime_us
Time in microseconds that the guest virtual machine has been logged on.

370 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



systems/<guest name>/cpus/
Directory for the virtual CPUs for one guest virtual machine.

capped
Flag that shows whether CPU capping is on for the guest virtual machine (0 = off, 1 = soft, 2 =
hard).

count
Total current virtual CPUs in the guest virtual machine.

cputime_us
Number of microseconds where the guest virtual CPU was running on a physical CPU.

dedicated
Flag that shows if the guest virtual machine has at least one dedicated CPU (0 = no, 1 = yes).

weight_cur
Current share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_max
Maximum share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_min
Number of operating CPUs. Do not be confused by the attribute name, which suggests a different
meaning.

systems/<guest name>/samples/
Directory for sample information for one guest virtual machine.
cpu_delay
Number of CPU delay samples that are attributed to the guest virtual machine.
cpu_using
Number of CPU using samples attributed to the guest virtual machine.
idle
Number of idle samples attributed to the guest virtual machine.

mem_delay
Number of memory delay samples that are attributed to the guest virtual machine.

other
Number of other samples attributed to the guest virtual machine.

total
Number of total samples attributed to the guest virtual machine.

systems/<guest name>/mem/
Directory for memory information for one guest virtual machine.

max_KiB

Maximum memory in KiB (1024 bytes).
min_KiB

Minimum memory in KiB (1024 bytes).

share_KiB
Guest estimated core working set size in KiB (1024 bytes).

used_KiB
Resident memory in KiB (1024 bytes).

To check the content of the files, you can use tools such as cat or 1less.

Setting up the S/390 hypervisor file system

To use the file system, it must be mounted. You can mount the file system with the mount command or
with an entry in /etc/fstab.

To mount the file system manually, issue the following command:

Chapter 27. S/390 hypervisor file system 371



# mount none -t s390_hypfs <mount point>

where <mount point> is where you want the file system mounted. Preferably, use /sys/hypervisor/
s390.

To mount hypfs by using /etc/fstab, add the following line:

none <mount point> s390_hypfs defaults 0 0

If your z/VM system does not support DIAG 2fc, the s390_hypfs is not activated and it is not possible to
mount the file system. Instead, an error message like this is issued:

mount: unknown filesystem type ’'s390_hypfs’

To get data for all z/VM guests, privilege class B is required for the guest where hypfs is mounted. For
non-class B guests, data is provided only for the local guest.

To get data for all LPARs, select the Global performance data control check box in the HMC or SE
security menu of the LPAR activation profile. Otherwise, data is provided only for the local LPAR.

Working with the S/390 hypervisor file system

Typical tasks that you must perform when working with the S/390 hypervisor file system include defining
access permissions and updating hypfs information.

 “Defining access permissions” on page 372

« “Updating hypfs information” on page 373

Defining access permissions

The root user usually has access to the hypfs file system. It is possible to explicitly define access
permissions.

About this task

If no mount options are specified, the files and directories of the file system get the uid and gid of the user
who mounted the file system (usually root). You can explicitly define uid and gid using the mount options
uid=<number> and gid=<number>.

Example

You can define uid=1000 and gid=2000 with the following mount command:

# mount none -t s390_hypfs -o "uid=1000,gid=2000" <mount point>

Alternatively, you can add the following line to the /etc/fstab file:

none <mount point> s390_hypfs uid=1000,gid=2000 0 O

The first mount defines uid and gid. Subsequent mounts automatically have the same uid and gid setting
as the first one.

The permissions for directories and files are as follows:

« Update file: 0220 (--w--w----)

» Regular files: 0440 (-x--r-----)

« Directories: 0550 (dr-xr-x---)

372 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Updating hypfs information

You trigger the update process by writing something into the update attribute at the top-level hypfs
directory.

Procedure

With hypfs mounted at /sys/hypervisor/s390, you can trigger the update process by issuing the
following command:

# echo 1 > /sys/hypervisor/s390/update

During the update, the entire directory structure is deleted and rebuilt. If a file was open before the
update, subsequent reads return the old data until the file is opened again. Within 1 second only one
update can be done. If multiple updates are triggered within a second, only the first update is performed
and subsequent write system calls return -1 and errno is set to EBUSY.

Applications can use the following procedure to ensure consistent data:

1. Read the modification time through stat (2) from the update attribute.

2. If the data is too old, write to the update attribute and start again with step 1.

3. Read data from the file system.

4. Read the modification time of the update attribute again and compare it with first timestamp. If the
timestamps do not match, return to step 2.

Chapter 27. S/390 hypervisor file system 373



374 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 28. TOD clock synchronization

Your Linux instance might be part of an extended remote copy (XRC) setup that requires synchronization
of the Linux time-of-day (TOD) clock with a Coordinated Timing Network (CTN).

Linux in LPAR mode supports server time protocol (STP) based TOD synchronization. For information
about STP, see www.ibm.com/systems/z/advantages/pso/stp.html. Use the 1sstp command to display
the STP configuration for your Linux instance (see “Isstp - Show STP configuration information” on page
674).

Attention: To avoid hanging I/O operations on XRC-enabled DASD, be sure that a reliable timing
signal is available before enabling clock synchronization.

Note: STP synchronizes leap seconds with a better resolution than Network Time Protocol (NTP). With
STP enabled, do not use NTP daemons like chrony or ntpd.

How STP synchronization works

With STP enabled at boot time, STP synchronizes the TOD clock of a Linux instance with the STP timing
network during the boot process. STP then steers the TOD clock to keep it in sync with the network. This
synchronization is driven by STP, without active participation of the Linux kernel. You cannot enable STP
for KVM guests, but KVM hosts pass their synchronized TODs on to their guests.

In contrast, the Linux kernel takes an active role if the TOD clock gets out-of-sync with the timing
network. An out-of-sync situation usually occurs when STP is enabled on a running Linux instance (see
“Enabling and disabling clock synchronization” on page 375). To bring the TOD clock back into sync, STP
notifies the Linux kernel through a sync check. The TOD clock then leaps to the corrected time. Linux
now shields applications from inconsistent time stamps by gradually steering the values returned by
gettimeofday() towards the corrected TOD. Such corrections do not feed through to KVM guests, which
remain out-of-sync with their host and with the timing network.

Enabling clock synchronization when booting

Use the stp= kernel parameter to enable clock synchronization when booting.

You can use kernel parameters to set up synchronization for your Linux TOD clock. These kernel
parameters specify the initial synchronization settings. On a running Linux instance, you can change these
settings through attributes in sysfs (see “Enabling and disabling clock synchronization” on page 375).

Enabling and disabling clock synchronization

Use the STP sysfs attribute online to enable or disable clock synchronization.

Procedure

To enable clock synchronization, set /sys/devices/system/stp/online to 1. To disable clock
synchronization, set this attribute to 0.

Example

To disable clock synchronization, enter:

# echo 0 > /sys/devices/system/stp/online

© Copyright IBM Corp. 2000, 2023 375


http://www.ibm.com/systems/z/advantages/pso/stp.html

Leap second handling

Through STP, Linux on IBM Z can process leap seconds from a coordinated time network (CTN) and adjust
the TOD clock accordingly.

STP can schedule leap second insertions or deletions for your Linux instance. With one or more leap
seconds scheduled, the Linux kernel checks, at regular intervals, whether the day for a leap second
adjustment is reached.

STP schedules leap second adjustments for the end of day according to UTC.

Leap second deletion
A second is deleted at 23:59:59, that is, 23:59:58 is followed by 00:00:00.

Leap second insertion
A second is inserted at 23:59:59, that is, 23:59:59 is followed by 23:59:60.

Use the 1sstp command to display information about scheduled leap seconds for your Linux
instance (see “lsstp - Show STP configuration information” on page 674).

Note: Do not run an NTP daemon like chrony or ntpd with STP enabled. NTP daemons can interfere with
leap second handling through STP.

376 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 29. Identifying the IBM Z hardware

In installations with several IBM Z mainframes, you might need to identify the particular hardware system
on which a Linux instance is running.

On Linux in LPAR mode, two attributes in /sys/firmware/oct can help you to identify the hardware.

cpc_name
contains the name that is assigned to the central processor complex (CPC). This name identifies the
mainframe system on a Hardware Management Console (HMC).

hmc_network
contains the name of the HMC network to which the mainframe system is connected.

The two attributes contain the empty string if the Linux instance runs as a guest of a hypervisor that does
not support the operations command facility (OCF) communication parameters interface.

Use the cat command to read these attributes.

Example:
# cat /sys/firmware/ocf/cpc_name
Z05

# cat /sys/firmware/ocf/hmc_network
SNAGO

© Copyright IBM Corp. 2000, 2023 377



378 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 30. HMC media device driver

LPAR and z/VM: The HMC media device driver applies to Linux in LPAR mode and to Linux on z/VM.

You use the HMC media device driver to access files on removable media at a system that runs the
Hardware Management Console (HMC).

Before you begin: You must log in to the HMC on the system with the removable media and assign the
media to the LPAR.

The HMC media device driver supports the following removable media:

« ADVD in the DVD drive of the HMC system

« ACD in the DVD drive of the HMC system

- USB-attached storage that is plugged into the HMC system

The most commonly used removable media at the HMC is a DVD.

The HMC media device driver uses the /dev/hmcdrv device node to support these capabilities:

« List the media contents with the 1shmc command (see “Ishmc - List media contents in the HMC media
drive” on page 661).

« Mount the media contents as a file system with the hmcdrvfs command (see “hmcdrvfs - Mount a
FUSE file system for remote access to media in the HMC media drive” on page 636).

Installers on suitably prepared installation DVDs can use these capabilities to install Linux in an LPAR.

Module parameters

You can set the cache size for the HMC media device driver.

Before you can work with the HMC media device driver and with the dependent 1shmc and hmecdxvfs
commands, you must load the hmcdxv kernel module.

hmcdrv module parameter syntax

r cachesize=534288 j .

»— modprobe — hmedrv
L cachesize= <siz¢=,'>—J

where <size> is the cache size in bytes. The specification must be a multiple of 2048. Specify 0 to not
cache any media content. By default, the cache size is 534288 bytes (0.5 MB).

Loading the hmcdxv module creates a device node at /dev/hmcdzv.

Example
To specify a cache size of 150 K, issue:

# modprobe hmcdrv cachesize=153600

Working with the HMC media

You can list files on media that are inserted into the HMC system and you can mount the media content on
the Linux file system.

- “Assigning the removable media of the HMC to an LPAR” on page 380

« “Listing files on the removable media at the HMC” on page 380

© Copyright IBM Corp. 2000, 2023 379



« “Mounting the content of the removable media at the HMC” on page 381

Assigning the removable media of the HMC to an LPAR

Use the HMC to assign the removable media to the LPAR where your Linux instance runs.

Before you begin

« You need access to the HMC, and you must be authorized to use the Access Removable Media task for
the LPAR to which you want to assign the media.

 For Linux on z/VM, the z/VM guest virtual machine must have at least privilege class B.
« For Linux in LPAR mode, the LPAR activation profile must allow issuing SCLP requests.

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure

1. Insert the removable media into the HMC system.

2. Use the Access Removable Media task on your HMC to assign the removable media to the LPAR where
your Linux instance runs.

For Linux on z/VM, this is the LPAR where the z/VM hypervisor runs that provides the guest virtual
machine to your Linux instance.

For details, see the HMC documentation for the HMC at your installation.

Results
You can now access the removable media from your Linux instance.

Listing files on the removable media at the HMC

Use the 1shmc command to list files on the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media at the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 380).

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure

Issue a command of this form:

# lshmc <filepath>
where <filepath> is an optional specification for a particular path and file. Path specifications are

interpreted as relative to the root directory of the removable media. You can use the asterisk (*) and
question mark (?) as wildcards. If you omit <filepath>, all files in the root directory of the media are listed.

Example: The following command lists all . html files in the www subdirectory of the media.

# 1shmc www/*.html

380 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



For more information about the 1shme command, see “lshmc - List media contents in the HMC media
drive” on page 661.

Mounting the content of the removable media at the HMC

Use the hmedxvEs command to mount the content of the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media of the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 380).

About this task
You can mount the content of the removable media at the HMC in read-only mode on the Linux file
system.

Procedure

1. Optional: Confirm that your are accessing the intended content by issuing the 1shmec command.
2. Mount the media content by issuing a command of this form:

# hmcdrvfs <mountpoint>

where <mountpoint> is the mount point on the Linux file system.

Example: The following command mounts the media content at /mnt/hmc:

# hmcdrvfs /mnt/hmc

Results
You can now access the files on the media in read-only mode through the Linux file system.

What to do next
When you no longer need access to the media content, unmount the media with the umount command.

Chapter 30. HMC media device driver 381



382 Linuxon Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 31. Data compression with the Integrated
Accelerator for zEDC

Hardware dependency: The Integrated Accelerator for zEnterprise Data Compression (zEDC) is available
on IBM Z and LinuxONE hardware as of z15 and LinuxONE III.

The Integrated Accelerator for zEDC replaces hardware-acceleration through zEDC Express as available
for earlier hardware, see Chapter 32, “Data compression with GenWQE and zEDC Express,” on page 389.

The Integrated Accelerator for zEDC provides on-chip hardware-acceleration for data compression and
decompression.

The prerequisites for using the Integrated Accelerator for zZEDC depend on your virtualization
environment.

Linux in LPAR mode
The on-chip accelerator is always available if the hardware provides it.

Linux as a guest of KVM or z/VM
The hypervisor must run on hardware that provides the on-chip accelerator, it must support the z15
CPU model and provide it to the guest.

Linux container
The on-chip accelerator must be available to the Linux instance that runs the container. The
requirements for the image are the same as for the user space of any Linux instance.

Tip: Read /proc/cpuinfo. If the features line includes df1t, your real or virtual hardware provides the
on-chip accelerator.

For technical resources related to the Integrated Accelerator for zEDC, see www.ibm.com/support/z-
content-solutions/compression.

Features

Acceleration with the on-chip Integrated Accelerator for zEDC is available to applications that use zlib or
gzip in user space and to the kernel zlib.

Acceleration for applications in user space

Applications can use the on-chip accelerator through zlib and gzip. Ubuntu Server 22.04 LTS includes the
required versions.

For Linux containers, the image must contain the required versions of zlib and gzip. You can search the
zlib and gzip binaries for "DFLTCC" to verify that you have the required versions, as in the following
example:

# strings /usr/bin/gzip | grep DFLTCC$

DFLTCC

# strings /usr/lib/s390x-linux-gnu/libz.so | grep DFLTCC$
DFLTCC

Acceleration for Java workloads
Support for Java workloads depends on your Java platform implementation.

Java implementations that use the system zlib, for example OpenJDK, support the on-chip accelerator if
the system zlib supports it.

The IBM SDK for Java includes a zlib library, so its support of the on-chip accelerator is independent of
the system zlib. As of IBM SDK for Java 8 SR6, the included zlib supports the on-chip accelerator.

© Copyright IBM Corp. 2000, 2023 383


https://www.ibm.com/support/z-content-solutions/compression
https://www.ibm.com/support/z-content-solutions/compression

Acceleration for the kernel

The kernel zlib can use the on-chip accelerator.

Compression levels and defaults

The compression level is a measure of the compression quality. It is expressed as an integer in the range
1-9.

Compression quality and performance are conflicting goals. Compression level 1 provides best
performance at the expense of quality. Compression level 9 provides the best quality at the expense
of performance. The compression level that is provided by the Integrated Accelerator for zEDC is
approximately equivalent to level 1.

Acceleration defaults

The following defaults apply to both on-chip acceleration for gzip and zlib in user space and for the kernel
zlib:

« By default, decompression is accelerated.
« By default, compression is accelerated only if compression level 1 is requested.

Expanding the scope of compression acceleration

Configure software with a configurable compression level to request level 1 to enable on-chip
compression.

For other types of software you must configure the on-chip accelerator.

« Software that hardcodes a compression level other than 1.

 Software that neither requests a particular level nor provides an option to configure a level. Such
software requests level 6 by default.

If level 1 compression is acceptable for your purposes, use overrides to apply on-chip compression to any
requested compression level:

« For applications in user space, including Java workloads, see “Overrides for applications” on page 385.

« For the kernel, see “Overrides for the kernel zlib” on page 387.

Confirming that the on-chip accelerator is used

Expect a significant performance gain when using the Integrated Accelerator for zEDC for data
compression and decompression workloads, especially when processing large files.

Before you begin

Ensure that your workload is configured to request compression level 1. For software that is hardcoded to
request a level other than 1, use the techniques that are described in “Overriding the defaults” on page
385 to force compression with the on-chip accelerator.

Procedure
« Confirm by comparison.

Run the same workload twice: once with the on-chip accelerator enabled and once with the on-chip
accelerator off. Compare the results to assess the effect of the on-chip accelerator.

By default, the on-chip accelerator is enabled for workloads in both user space and the kernel. Use the
applicable control to turn off the on-chip accelerator for the reference run:

User space
Set the environment variable DFLTCC to O.

384 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Kernel
Restart Linux with the kernel parameter setting df1tcc=o0ff.

« Confirm through hardware counters.

Evaluate hardware counters to directly confirm that the on-chip accelerator is active. For example, you
can evaluate the counters with the following symbolic names:

DFLT_ACCESS
Cycles CPU spent obtaining access to Deflate unit.

DFLT_CYCLES
Cycles CPU is using Deflate unit.

DFLT_CC
Increments by one for every DEFLATE CONVERSION CALL instruction executed that ended in
Condition Codes 0, 1, or 2.

Issue the 1scpumf command with the -C option to find out how these names map to the counter
numbers on your IBM Z hardware. In the edition of IBM The CPU-Measurement Facility Extended
Counters Definition for z10, z196/z114, zEC12/zBC12, z13/z13s, z14, z15 and z16, SA23-2261 for your
hardware model, the counters are listed by counter number.

For information about working with hardware counters, see Chapter 56, “Using the CPU-measurement
facilities,” on page 541.

Overriding the defaults

You can override the defaults for compression and decompression with the Integrated Accelerator for
ZEDC.

Overrides for applications

Use the DFLTCC and DFLTCC_LEVEL_MASK environment variables to override the defaults for Java
applications and, generally, for applications that use zlib or gzip in user space.

For Linux containers, specify these environment variables with the command that instantiates the
container. For example, if you manage your containers with podman, use the -e option of the podman
run command.

Turning off acceleration

Set the DFLTCC environment variable to 0 to turn off on-chip compression and decompression with the
Integrated Accelerator for zEDC.

The DFLTCC environment variable can take the following values:

1
turns on-chip acceleration on. This is the default.

0
turns on-chip acceleration off.

Configuring accelerated compression for any compression level

By default, software that requests compression level 1 uses the on-chip accelerator if it is enabled. Use
the DFLTCC_LEVEL_MASK environment variable to configure on-chip acceleration for any combination of
compression levels.

The values of the DFLTCC_LEVEL_MASK environment variable are 4-digit hexadecimal numbers in
the range 0x0000 - 0x03ff. Of the ten corresponding binary digits that can be 1, each represents a
compression level. The least significant bit represents an assumed level 0, the most significant bit
represents level 9.

The following examples demonstrate how the mask works:

Chapter 31. Data compression with the Integrated Accelerator for zEDC 385



0x0000
The bits for all compression levels are off. No on-chip compression is performed. This setting has the
same effect on compression as setting the DFLTCC environment variable to 0.

0x0001
The bit for the assumed compression level 0 is on and overrides the default behavior for level 0.
Instead of transferring data into a compressed format without a size reduction, data is actually
compressed, which can have unintended consequences.

Note: Do not set this bit unless you are a compression expert who understands the implications and
wants to experiment with this setting.

0x0002
The bit for compression level 1 is on; all other bits are off. On-chip compression is performed only for
software that requests compression level 1.

This is the default.

0x0006
The bits for compression level 1 and 2 are on; the other bits are off. On-chip compression is
performed for software that requests compression level 1 or 2.

0x000e
The bits for compression level 1, 2, and 3 are on; the other bits are off. On-chip compression is
performed for software that requests compression level 1, 2, or 3.

0x007e
The bits for compression level 1 - 6 are on; the bits for level 0, 7, 8, and 9 are off. On-chip
compression is performed for software that requests a compression level in the range 1 - 6. Level
6 is the default for software that does not request a particular compression level.

0x01fe
The bits for compression level 1 - 8 are on; the bits for level 0 and 9 are off. On-chip compression is
performed for software that requests a compression level in the range 1 - 8.

Note: On-chip compression with the Integrated Accelerator for zEDC is approximately equivalent to
compression level 1. Forcing On-chip compression for software that requests a higher compression level
can result in a larger compressed data volume than intended by the author of the software.

You can set the environment variable for all users, programs and system services of a Linux instance by
writing the setting to /etc/environment.

## echo DFLTCC_LEVEL_MASK=0x1fe >> /etc/environment

The following examples take a more cautious approach by limiting the scope of the setting:

« Use env to limit the setting to an individual command call:

# env DFLTCC_LEVEL_MASK=0x2fe <command>

« Use an entry in your ~/ .bashzxc for the scope of your bash sessions:

{# echo DFLTCC_LEVEL_MASK=0x1fe >> ~/.bashrc

« Use a systemd unit override for a service <your_service> for the scope of that systemd service:

# printf "[Service]\nEnvironment=DFLTCC_LEVEL_MASK=0x2fe\n" > \
/etc/systemd/system/<your_service>.service.d/dfltcc.contf

- Use an override in the global systemd configuration file for the scope of all systemd services:

# printf "[Manager]\nDefaultEnvironment=DFLTCC_LEVEL_MASK=0x2fe\n" > \
/etc/systemd/system.conf.d/dfltcc.cont

386 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Overrides for the kernel zlib

Use the dfltcc= kernel parameter to override the defaults for the kernel zlib.

Format

dfltcc= syntax

(— dfltcc=on ﬁ

M——— dfltcc=off

¥

»d
1|

M dfltcc=def_only —

M— dfltcc=inf_only —

— dfltcc=always —

on
enables on-chip acceleration for compression level 1 and for decompression. This is the default.

off
turns off on-chip acceleration for both compression and decompression.

def_only
enables on-chip acceleration for compression on level 1 but not for decompression.

inf_only
enables on-chip acceleration for decompression only.

always

enables on-chip acceleration for decompression and for compression regardless of the requested
compression level.

Note: On-chip compression with the Integrated Accelerator for zEDC is approximately equivalent to
compression level 1. Forcing On-chip compression for software that requests a higher compression
level can result in a larger compressed data volume than intended by the author of the software.

Examples

dfltcc=inf_only

Accelerating btrfs

If the kernel zlib is compiled with support for the Integrated Accelerator for zEDC, you can enable it for
btrfs through a mount option.

By default, btrfs requests compression level 3, but the Integrated Accelerator for zEDC provides
compression level 1. If compression level 1 is acceptable for your purposes, mount your instance of
btrfs with the compress=z1ib:1 option.

Chapter 31. Data compression with the Integrated Accelerator for zEDC 387



388 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 32. Data compression with GenWQE and
zEDC Express

LPAR and z/VM: Data compression with GenWQE and zEDC Express applies to Linux in LPAR mode and to
Linux on z/VM.

Generic Work Queue Engine (GenWQE) supports hardware-accelerated data compression and
decompression through zEDC Express, a PCIe-attached Field Programmable Gate Array (FPGA)
acceleration adapter.

zEDC Express was introduced with zEC12 and is available for later IBM Z and LinuxONE hardware up
to z14 and LinuxONE II. As of z15 and LinuxONE III, zEDC hardware acceleration is available through
on-chip compression and decompression, see Chapter 31, “Data compression with the Integrated
Accelerator for zEDC,” on page 383.

zEDC hardware-acceleration is available for both Linux and z/OS. For more information about zEDC

on z/0S and about setting up zEDC Express, see Reduce Storage Occupancy and Increase Operations
Efficiency with IBM zEnterprise Data Compression, SG24-8259. You can obtain this publication from the
IBM Redbooks website at www.redbooks.ibm.com/abstracts/sg248259.html.

Features

GenWQE supports hardware-accelerated data compression and decompression with common standards.
« GenWQE implements the z1ib APL.
- GenWQE adheres to the following RFCs:

— RFC 1950 (zlib)

— RFC 1951 (deflate)

— RFC 1952 (gzip)

These standards ensure compatibility among different z1ib implementations.

— Data that is compressed with GenWQE can be decompressed through a z11ib software library.

— Data that is compressed through a software z1ib software library can be decompressed with
GenWQE.

« GenWQE supports the following PCle FPGA acceleration hardware:
— zEDC Express

What you should know about GenWQE

Learn about the GenWQE components, how to enable GenWQE accelerated zlib for user applications, and
device representation in Linux.

The GenWQE accelerated zlib

The GenWQE accelerated zlib can replace a z1ib software library.

For data compression and decompression tasks, Ubuntu Server 22.04 LTS includes software libraries.
The zlib library, which provides the z1ib API, is one of the most commonly used libraries for data
compression and decompression. For information about z1ib, see www.zlib.net.

Because the GenWQE accelerated zlib offers the z1ib API, applications can use it instead of the default
z1ib software library. The GenWQE hardware-accelerated z1ib is designed to enhance performance by
offloading tasks to a hardware accelerator.

© Copyright IBM Corp. 2000, 2023 389


https://www.redbooks.ibm.com/abstracts/sg248259.html
http://www.zlib.net

Application Java Application
| [
zlib AP T Hardware-accelerated zlib zlib AP1 | 1BM Java
................................... V
Hardware library zlib API ‘
(l[l?ZHW) Software \zhb‘.‘f\\
ooooo library
Data buffers (libz)
I
Card library
v
| eitaciiine o Linux user space

[Adavlannuinas] Awd

/devigenwaeO_card —

GenWQE device driver

[
A

zEDC Express

Linux kernel space

[BM mainframe

Figure 87. GenWQE accelerated zlib

Applications

You can make the user space components of the GenWQE hardware-accelerated zlib available to
applications that request data compression functions through the z1ib API. Ubuntu Server 22.04 LTS
provides these user space components with the 1ibzadc1 package.

A second package, genwge, provides tools that use the GenWQE hardware-accelerated zlib.

IBM Java version 7.1 or later includes components of the GenWQE hardware-accelerated zlib. Through
these components, it can directly address the GenWQE device nodes. With the required environment
variables in place, it uses hardware-acceleration if it is available (see“GenWQE hardware-acceleration for
IBM Java” on page 394 ).

Hardware-accelerated zlib
The hardware-accelerated zlib is a z1ib implementation that acts as a wrapper for two included libraries:

libzHW
a hardware library that prepares requests for processing by the hardware accelerator. The hardware
library is intended to handle the bulk of the requests.

This library also manages data buffers for optimized hardware compression.

libz
a software implementation of the z11ib interface. Because it provides the same interface as its
wrapper library, it can handle any requests unmodified.

The hardware-accelerated zlib arbitrates between the two included libraries. It uses the software library
as a backup if no hardware accelerator is available. It also evaluates the expected performance gain
against the extra processing for channeling requests to the accelerator. For small or fragmented data,
software processing might be advantageous, especially for decompression. The evaluation takes available
resources, such as buffer space, into account.

390 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Card library
The card library, 1ibcard, mediates between the hardware-accelerated zlib library and the GenWQE
device driver. It provides recovery features and can move jobs between available accelerators.

Device driver
The GenWQE device driver is the kernel part of GenWQE. It serializes requests to an accelerator in form of
device driver control blocks (DDCBs), and it enables multi-process and multi-thread usage.

GenWQE device nodes
GenWQE user space components use device nodes to exchange data with the GenWQE device driver.

Ubuntu Server 22.04 LTS automatically loads the GenWQE device driver module when it is required. It
also creates a device node of the form /dev/genwge<n>_caxd for each available virtual acceleration
card. <n> is an index number that identifies an individual virtual card. Node /dev/genwqe@_caxrd is
assigned to the first card that is detected, /dev/genwgel_caxrd to the second card, and so on.

Do not directly use these device nodes. The nodes are intended to be used by the user space components
of the GenWQE hardware-accelerated zlib and by IBM Java.

Virtual accelerators

Each physical accelerator card can provide up to 15 virtual cards. In PCIe terminology, these virtual cards
are called virtual functions.

GenWQE accelerator cards, as detected by Linux on IBM Z, are virtual cards. Which and how many cards
are available to a particular Linux instance depends on the mainframe configuration and, if applicable, the
hypervisor configuration.

As for most mainframe devices, availability can be enhanced by assigning virtual accelerator cards from
different physical cards.

A degree of load distribution can be achieved by unevenly distributing accelerator cards among different
Linux instances.

Tradeoff between best compression and speed
A minimum size of compressed data and fast compression are conflicting goals.

For hardware-accelerated compression with GenWQE, the compression ratio is roughly equivalent to
gzip --fast.

Data that was compressed with GenWQE hardware-acceleration might have a different size from data
that was compressed in software. The data compression standards are not violated by this difference.
Despite possible differences in size of the compressed data, data that is compressed with GenWQE
hardware-acceleration can be decompressed in software and vice versa.

Setting up GenWQE hardware acceleration

Install the GenWQE components and understand how environment variables can override default
settings.

Installing the GenWQE hardware-accelerated zlib

Install the 1ibzadc4 and genwqge-tools packages that are included in Ubuntu Server 22.04 LTS with
the apt command.

To install the genwge-tools package, issue:

apt install genwge-tools

Chapter 32. Data compression with GenWQE and zEDC Express 391



This command automatically installs the required 1ibzadc4 library.
The 1ibzadc4 package includes the user space components of the GenWQE hardware-accelerated zlib.
The genwge-tools package provides the following tools:

« genwge_gzip and genwge_gunzip, which are GenWQE versions of gzip and gunzip (see “Examples
for using GenWQE” on page 393).

These tools can be used for most purposes, but they do not implement all of the more unusual options
of their common code counterparts. See the man pages to find out which options are supported.

- genwge_echo, a tool to confirm the availability of accelerator hardware through the GenWQE
accelerated zlib. See “Confirming that the accelerator hardware can be reached” on page 395 for
details.

Environment variables
You can set environment variables to control the GenWQE hardware-accelerated zlib.

The GenWQE hardware-accelerated zlib uses defaults that correspond to the following environment
variable settings:

ZLIB_ACCELERATOR=GENWQE
ZLIB_CARD=-1
ZLIB_TRACE=0x0
ZLIB_DEFLATE_IMPL=0x41
ZLIB_INFLATE_IMPL=0x41

You can override these defaults by setting the following environment variables:

ZLIB_ACCELERATOR
Sets the accelerator type. For zEDC Express, the type is GENWQE.

ZLIB_CARD
-1, uses all accelerators that are available to the Linux instance. Failed requests are retried on
alternative accelerators.

You can specify the ID of a particular virtual accelerator card to be used. The ID is the index number
that makes the nodes unique. All other cards are ignored, and no retry on alternative cards is
performed if the specified card fails. Specify an ID only if you want to test a particular card.

0 uses the first card that is found by the device driver. As for specifying an individual card, all other
cards are ignored.

ZLIB_TRACE
Sets tracing bits:

Ox1
General trace.

0x2
Hardware trace.

0ox4
Software trace.

0x8
Trace summary at the end of a process.

Tracing requires extra processing and incurs a performance penalty. The least performance impact is
to be expected from the trace summary. By default, tracing is off.

ZLIB_DEFLATE_IMPL
0x01 and 0x41 enable hardware compression, where Ox41 adds an optimization setting. Ox00 forces
software compression and is intended for experimentation, for example, for gathering performance
data with and without hardware acceleration.

392 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



ZLIB_INFLATE_IMPL
0x01 and 0x41 enable hardware decompression, where Ox41 adds an optimization setting. 0x00
forces software decompression and is intended for experimentation, for example, for gathering
performance data with and without hardware acceleration.

You can find more details about the environment variables in the GenWQE wiki on GitHub at github.com/
ibm-genwge/genwge-user/wiki/Environment Variables.

Examples for using GenWQE

You can use the GenWQE hardware-accelerated zlib through GenWQE tools.

Activating the GenWQE hardware-accelerated zlib for an application

Whether and how you can make an application use the GenWQE hardware-accelerated zlib depends on
how the application links to 1ibz. so.

Examine the application for links to 1ibz. so, for example with the 1dd tool.

« If the application does not link to 1ibz. so or if it statically links to 1ibz. so, it would require
recompilation, and possibly code changes, to make acceleration through GenWQE possible.

- If an application dynamically links to 1ibz. so, you might be able to redirect the library calls from the
default implementation to the GenWQE hardware-accelerated z1ib.

Some applications require z11ib features that are not available from the GenWQE hardware-accelerated
zlib. Such applications fail if a global redirect is put in place. The following technique redirects calls for the
scope of a particular application.

Specify the LD_PRELOAD environment variable to load the GenWQE hardware-accelerated zlib. Set the
variable with the start command for your application.

Example:

# LD_PRELOAD=/1ib/s390x-1linux-gnu/genwge/libz.so.1 <application_start_cmd>

Compressing data with genwgqge_gzip

GenWQE provides two tools, genwge_gzip and genwge_gunzip that can be used in place of the
common code gzip and gunzip tools. The GenWQE versions of the tools use hardware acceleration if it
is available.

Procedure

Run the genwqge_gzip command with the - AGENWQE parameter to compress a file.
# genwqge_gzip -AGENWQE <file>

The -AGENWQE parameter ensures that the correct, PCle-attached, accelerator card is used. Also use
this option when decompressing data with the genwge_gunzip command. See the man pages for other
options.

Running tar with GenWQE hardware-acceleration

You can make tar use genwqe_gzip in place of the common code gzip.

About this task

If called with the z option, the tar utility uses the first gzip tool in the search path, which is usually the
common code version. By inserting the path to the GenWQE version of the gzip tool at the beginning of
the PATH variable, you can make the tar utility use hardware acceleration.

Chapter 32. Data compression with GenWQE and zEDC Express 393


http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables
http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables

The acceleration is most marked for a single large text file. The example that follows compresses a
directory with the Linux source code.

Procedure

1. Run the taxr command as usual to use software compression. To obtain performance data, specify the
tar command as an argument to the time command.

# time tar cfz linux-src.sw.tar.gz linux-src
real Om22.329s

user 0m22.147s

sys Om0@.849s

2. Run the taxr command with an adjusted PATH variable to use GenWQE hardware acceleration. Again,
use the time command to obtain performance data.

J# time PATH=/usr/lib/genwge:$PATH \
tar cfz linux-src.hw.tar.gz linux-szc
real Oml.323s

user OmO.242s

sys Oml.023s

Results
In the example, the accelerated operation is significantly faster. The hardware-compressed data is slightly
larger than the software-compressed version of the same data

GenWQE hardware-acceleration for IBM Java

IBM Java version 7.1 or later can use the GenWQE hardware-accelerated zlib.

To activate the GenWQE hardware-accelerated zlib for IBM Java, you must set environment parameters.
See the documentation for your Java version to find out which settings are required.

Note: Any values that you set for the environment variables override the default settings for the GenWQE
user space components (see “Environment variables” on page 392).

Exploring the GenWQE setup

You might want to ensure that your GenWQE setup works as intended.

- “Listing your GenWQE accelerator cards” on page 394
« “Checking the GenWQE device driver setup” on page 395
 “Confirming that the accelerator hardware can be reached” on page 395

Listing your GenWQE accelerator cards

Use the 1spci command to list the available GenWQE accelerator cards.

Procedure
1. Issue the 1spci command and look for GenWQE.

Example:

# 1lspci |grep GenWQE
0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter

2. Issue the 1spci command with the verbose option to display details about a particular card.

Example:

394 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



# lspci -vs 0002:00:00.0

0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter
Subsystem: IBM GenWQE Accelerator Adapter
Physical Slot: 000000ff
Flags: bus master, fast devsel, latency 0, IRQ 3
Memory at 8002000000000000 (64-bit, prefetchable) [disabled] [size=128M]
Capabilities: [50] MSI: Enable+ Count=1/1 Maskable- 64bit+
Capabilities: [80] Express Endpoint, MSI 00
Capabilities: [100] Alternative Routing-ID Interpretation (ARI)
Kernel driver in use: genwge
Kernel modules: genwge_card

Checking the GenWQE device driver setup

Perform these tasks if GenWQE does not work as expected.

Procedure

1. Confirm that the device driver is loaded.

# lsmod | grep genwqe
genwge_card 88997 0O
crc_itu_t 1910 1 genwge_card

If the genwge_card module is not listed in the command output, load it with modpzxobe.

# modprobe genwqe_card

The genwge_card module does not have module parameters.
2. Confirm that GenWQE device nodes exist and that the nodes have the required permissions.

The nodes must grant read and write permissions to all users, for example:

# 1s -1 /dev/genwgex
crwrwrw 1 root root 249, O Jun 30 10:01 /dev/genwqe®_card
crwrwrw 1 root root 248, O Jun 30 10:01 /dev/genwqgel_card

If the permissions are not cxwrwzrw, create a file /etc/udev/rules.d/52-genwgedevices.rules
with this rule as its content:

KERNEL=="genwgex", MODE="0666"

The new rule takes effect next time the GenWQE device driver is loaded.

Tip: Use the chmod command to temporarily set the permissions.

What to do next
You can find debug information in the Linux source tree at /sys/kernel/debug/genwqge and at /sys/
class/genwge.

Confirming that the accelerator hardware can be reached

The genwge_echo command is similar to a ping command.

Before you begin
The genwge_echo command is included in the genwqe package (see “Installing the GenWQE hardware-
accelerated zlib” on page 391).

Procedure

Issue a command of this form to confirm that you can reach the accelerator hardware.

Chapter 32. Data compression with GenWQE and zEDC Express 395



# genwge_echo -AGENWQE -C <n> -c <m>

In the command, <n> is the index number of the card and <m> is a positive integer that specifies how
many requests are sent to the card. The -AGENWQE parameter ensures that the correct, PCle-attached,
accelerator card is used.

Example: The following command sends four requests to the card with device node /dev/
genwgel_card:

# genwge_echo -AGENWQE -C 1 -c 4

1 x 33 bytes from UNIT #1: echo_req time=37.0 usec

1 x 33 bytes from UNIT #1: echo_req time=19.0 usec

1 x 33 bytes from UNIT #1: echo_req time=23.0 usec

1 x 33 bytes from UNIT #1: echo_req time=18.0 usec

--- UNIT #1 echo statistics ---

4 packets transmitted, 4 received, 0 lost, 0% packet loss

See the genwqge_echo man page for other command options.

External programming interfaces

The GenWQE hardware-accelerated zlib implements a large subset of the original software zlib.

For information about programming against the GenWQE hardware-accelerated zlib, see the section
about implemented zlib functions in Accelerated Data Compressing using the GenWQE Linux Driver and
Corsa FPGA PCle card.

396 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 33. PCI Express support

The Peripheral Component Interconnect Express (PCle) device driver supports various PCI devices,
including but not limited to devices that implement the SMC network protocol. For more information
about RoCE, see Chapter 21, “RDMA over Converged Ethernet,” on page 331. For more information about
ISM, see Chapter 22, “Internal shared memory device driver,” on page 335.

PCIe functions are seen by Linux as devices, hence devices is used here synonymously. You can assign
PCIe devices to LPARs in the IOCDS.

PCIe function addresses

The function addresses uniquely identifies a PCIe function within a Linux instance. Function addresses
adhere to this format: <domain>:<bus>:<device>.<function>. For Linux on IBM Z, the address
components have the following values:

<domain>
UID as specified for the PCI function in the hardware configuration (IOCDS). UIDs are unique
hexadecimal values in the range 1 - FFFF. For example, with a UID of 0x318, <domain> would be:
0318.

UIDs are available only if supported by the hardware and if the LPAR is enabled for UID checking.

If your environment does not support UIDs for PCle functions, consecutive numbers, starting from
0000, are assigned to the functions. The mapping of assigned numbers and physical functions does
not persist across reboots.

<bus>
Two zeros: 00.

<device>.<function>

Interface change: As of Ubuntu 20.04.1, <device>.<function> represents the PCIe Routing-ID (RID)
if your environment supports the Alternative Routing-ID Interpretation (ARI) compatible address
format.

The previous constant value, 00.0, is used as a fallback for environments that do not support the ARI
compatible address format. You can force this previous value with the pci=norid kernel parameter
(see “Setting up the PCIe support” on page 397).

To list PCIe devices, use the 1spci command. For more information about 1spci, see the man page.

Setting up the PCIe support

Configure the PCle support through the pci= kernel parameter.

PCIe devices are automatically configured during the system boot process. In contrast to most IBM Z
devices, all PCIe devices that are in a configured state are automatically set online. PCIe devices that are
in stand-by state are not automatically enabled.

Scanning of PCIe devices is enabled by default. To disable use of PCI devices, set the kernel command
line parameter pci=off.

PCI kernel parameter syntax

J pci=on l
- L pci=off J L pci=nomio J L pci=norid J -

where:

© Copyright IBM Corp. 2000, 2023 397




pci=
off
disables automatic scanning of PCle devices.

on
enables automatic scanning of PCIe devices (default).

pci=nomio
if available, PCIe uses enhanced instructions as introduced with z15. Specify this kernel parameter to
use the previous instructions.

pci=norid
as of Ubuntu 20.04.1, PCI function addresses follow an Alternative Routing-ID Interpretation (ARI)
conform format if it is supported by the system environment. Specify this kernel parameter to use the
previous format.

Attention: Other PCI kernel parameters do not apply to IBM Z and might have adverse effects on
your system.

Using PCIe hotplug on LPAR

Use PCIe hotplug to change the availability of a shared PClIe device.

About this task

Only one LPAR can access a PClIe device. Other LPARs can be candidates for access. Use the HMC or SE to
define which LPAR is connected and which LPARs are on the candidate list. A PCIe device that is defined,
but not yet used, is shown as a PCle slot in Linux.

On Linux, you use the power sysfs attribute of a PCIe slot to connect the device to the LPAR where Linux
runs. While a PCIe device is connected to one LPAR, it is in the reserved state for all other LPARs that

are in the candidates list. A reserved PCIe device is invisible to the operating system. The slot is removed
from sysfs.

Procedure

The power attribute of a slot contains O if a PCIe device is in stand-by state, or 1 if the device is
configured and usable.

1. Locate the slot for the card you want to work with.
To locate the slot, read the function_id attribute of the PCIe device from sysfs.
For example, to read the /sys/bus/pci/devices/0000:00:00.0/function_id issue:

# cat /sys/bus/pci/devices/0000:00:00.0/function_id
0x00000011

where 00000011 is the slot. Alternatively, you can use the 1spci -v command to find the slot.
2. Write the value that you want to the power attribute:

- Write 1 to powex to connect the PCle device to the LPAR in which your Linux instance is running.
Linux automatically scans the device, registers it, and brings it online. For example:

echo 1 > /sys/bus/pci/slots/00000011/power

- Write 0 to powex to stop using the PCIe device. The device state changes to stand-by. The PCle
device is set offline automatically. For example:

echo 0 > /sys/bus/pci/slots/00000011/power

A PCIe device in standby is also in the standby state to all other LPARs in the candidates list. A
standby PClIe device appears as a slot, but without a PCIe device.

398 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Recovering a PCle device

Use the zpcictl command or the recover sysfs attribute to handle a malfunctioning PCI device if
automatic recovery fails.

Before you begin
A kernel message is displayed when a PCI device enters the error state. Automatic recovery is in place for
PCI devices. Do not take action unless the automatic recovery fails.

The following sample sequence of kernel messages indicates a successful recovery for an NVMe device:

zpci:

nvme

zpci:

nvme

zpci:

nvme
nvme

000e:00:00.0: Event Ox3a reports an error for PCI function 0x1004
nvme®: frozen state error detected, reset controller

000e:00:00.0: Initiating reset

nvme®: restart after slot reset

000e:00:00.0: The device is ready to resume operations

nvme®: Shutdown timeout set to 10 seconds

nvme®: 63/0/0 default/read/poll queues

Failed automatic recoveries end with error messages that call for operator intervention as shown in the
following example.

zpci:
zpci:

000d:00:00.0: Automatic recovery failed after slot reset
000d:00:00.0: Automatic recovery failed; operator intervention is required

Procedure

1. Find out which PCIe device is in an error state by issuing the 1spci command.
In the following example, the device in error state can be identified by the trailing "(rev ff)" in the
output line.

# lspci

0000:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx Virtual Function] (rev ff)
0001:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx Virtual Function]
0002:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device

2. Recover the device with the appropriate method for your virtualization environment.

The preferred method is using the zpcictl command. On KVM guests you cannot use this command
to recover PClIe devices, so use the sysfs interface instead.

Use the zpcictl command to handle defective PCI devices. The recovery commands are of this
form:

# zpcictl <option> <function_address>

where <option> specifies an action that depends on the status of automatic recovery.
<function_address> specifies the malfunctioning PCI device. The examples that follow assume
function address 0000:00:00.0.

For more information about the zpcictl command, see “zpcictl - Manage defective PCIe devices”
on page 763.

Automatic recovery runs but fails
If automatic recovery runs but fails, force a disruptive reset by using the - -reset option. For
example:

# zpcictl --reset 0000:00:00.0

This reset method includes a controlled shutdown and a subsequent re-enabling of the device.
As a result, higher level interfaces such as network interfaces and block devices are destroyed
and re-created. Manual configuration steps might be required to re-integrate the device, for
example, in bonded interfaces or software RAIDs.

Chapter 33. PCI Express support 399



Recovery does not start automatically
If the initial device error message is not followed by automatic device recovery, trigger the
recovery by using the - -reset-fw option. For example:

# zpcictl --reset-fw 0000:00:00.0

Recovery unsuccessful
If all attempts at recovery fail, use the - -deconfigure option to prepare for manual repair
actions or replacement of the physical device. For example:

# zpcictl --deconfigure 0000:00:00.0

This command performs a crude, unplug-style removal of the PCI function. Do not use it for
operational PCI functions.

« Alternatively, you can use the sysfs interface to trigger the recovery. Use this method on KVM
guests.

a. Find the PClIe device directory in sysfs.

PCIe device directories are of the form /sys/bus/pci/devices/<function_address>,
where <function_address> identifies the PCle device, for example: /sys/bus/pci/
devices/0000:00:00.0.

b. Write 1 to the recover attribute of the PCIe device, for example:
# echo 1 > /sys/bus/pci/devices/0000:00:00.0/recover

After a successful recovery, the PCI device is de-registered and reprobed.

Reporting defective PCle devices

For Linux in LPAR mode or Linux on z/VM, use the zpcictl command to report defective PCIe devices to
the Support Element (SE). Such devices might require physical repair actions.

Before you begin

» You need to know the function address of the defective PCle device or a device node that represents the
device.

« To send diagnostic data with the error report you need to install the smartmontools package. Whether
data is collected and which data is available depends on the PCI device type. For example, S.M.A.R.T.
data is gathered for NVMe devices.

Procedure

Issue a command of this form to report a device with function address 0000:00:00.0 to the SE:

# zpcictl --report-error <device>

where <device> is the device's function address or a device node that represents the device.

Example:

# zpcictl --report-error 0000:00:00.0

Displaying PCIe information

For each online PCIe device, there is a number of read-only attributes in sysfs that provide information
about the device.

400 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



About this task

The sysfs representation of a PCIe device or slot is a directory of the form /sys/bus/pci/devices/
<function_address>, where <function_address> identifies the PCIe device. This sysfs directory
contains a number of attributes with information about the PClIe device.

Table 51. Read-only attributes with PCIe device information

Attribute Explanation
function_handle Eight-character, hexadecimal PCI-function (device) handle.
function_id Eight-character, hexadecimal PCI-function (device) ID. The ID identifies

the PCle device within the processor configuration. This value specifies
the slot at /sys/bus/pci/slots.

pchid Four-character, hexadecimal, physical channel ID. Specifies the slot of the
PCle adapter in the I/O drawer. Thus identifies the adapter that provides
the device.
pfgid Two-character, hexadecimal, physical function group ID.
pfip/segment0 Two-character, hexadecimal, PCI-function internal path. Provides an
/segment1 abstract indication of the path that is used to access the PCI function.
/segment2 This can be used to compare the paths used by two or more PCI functions,
/segment3 to give an indication of the degree of isolation between them.
uid Up to eight-character, hexadecimal, user-defined identifier.
vin Four-character, hexadecimal, number that identifies the virtual function
within the adapter.
util_string Type-specific information about the device. For RoCE devices and ISM
devices, it contains the PNET ID if a PNET ID has been assigned in the I/O
configuration.
Procedure

Issue a command of this form to read an attribute:

# cat /sys/bus/pci/devices/<function_address>/<attribute>

where <attribute> is one of the attributes of Table 51 on page 401.

Reading statistics for a PCIe device

Use the statistics attribute file to see measurement data for a PCIe device.

About this task

All PCIe devices collect measurement data by default. You can read the data in a sysfs attribute file in the
debug file system, by default mounted at /sys/kernel/debug.

You can turn data collection on and off. To switch off measurement data collecting for the current session,
write "0" to the statistics attribute. To enable data collection again, write "1" to the statistics
attribute.

Example
To read measurement data for a (RoCE) function named 0000:00:00.0 use:

Chapter 33. PCI Express support 401



# cat /sys/kernel/debug/pci/0000:00:00.0/statistics
The statistics attribute file might look similar to this example:

FMB @ 0000000078cd8000

Update interval: 4000 ms

Samples: 14373

Last update TOD: cefa44fa50006378

Load operations: 1002780
Store operations: 1950622
Store block operations: 0
Refresh operations: 0
Received bytes: 0
Received packets: 0]
Transmitted bytes: 0
Transmitted packets: 0
Allocated pages: 9104
Mapped pages: 16633
Unmapped pages: 2337

402 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Part 6. z/VM virtual server integration

z/VM only: This part applies to Linux on z/VM only.

These device drivers and features help you to effectively run and manage a z/VM-based virtual Linux
server farm.

Newest version

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions

For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 403


https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

404 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 34. z/VM concepts

z/VM only: This chapter applies to Linux on z/VM only.

The z/VM performance monitoring and cooperative memory management concepts help you to
understand how the different components interact with Linux.

Performance monitoring for z/VM guest virtual machines

You can monitor the performance of z/VM guest virtual machines and their guest operating systems with
performance monitoring tools on z/VM or on Linux.

These tools can be your own, IBM tools such as the Performance Toolkit for VM, or third-party tools. The
guests being monitored require agents that write monitor data.
Monitoring on z/VM

z/VM monitoring tools must read performance data. For monitoring Linux instances, this data is
APPLDATA monitor records.

Linux instances must write these records for the tool to read, as shown in Figure 88 on page 405.

z/VYM

Linux Linux Linux
[Agent]| [|Agent]| |[Agent]

Ny S

AFPPLDATA
records

:

Ferformance monitoring tool
(Ferformance Toolkit)

Figure 88. Linux instances write APPLDATA records for performance monitoring tools

Both user space applications and the Linux kernel can write performance data to APPLDATA records.
Applications use the monwriter device driver to write APPLDATA records. The Linux kernel can be
configured to collect system level data such as memory, CPU usage, and network-related data, and write
it to data records.

For file system size data, there is a command, mon_£sstatd. This user space tool uses the monwriter
device driver to write file system size information as defined records.

For process data, there is a command, mon_pxocd. This user space tool uses the monwriter device driver
to write system information as defined records.

In summary, Ubuntu Server 22.04 LTS supports writing and collecting performance data as follows:

« The Linux kernel can write z/VM monitor data for Linux instances, see Chapter 35, “Writing kernel
APPLDATA records,” on page 409.

- Linux applications that are running on z/VM guests can write z/VM monitor data, see Chapter 36,
“Writing z/VM monitor records,” on page 415.

© Copyright IBM Corp. 2000, 2023 405



« You can collect monitor file system size information, see “mon_fsstatd — Monitor z/VM guest file system
size” on page 688.

« You can collect system information about up to 100 concurrently running processes, see “mon_procd —
Monitor Linux on z/VM” on page 693.

Monitoring on Linux
A Linux instance can read the monitor data by using the monreader device driver.

Figure 89 on page 406 illustrates a Linux instance that is set up to read the monitor data. You can use an
existing monitoring tool or write your own software.

z/VM

Linux

Ferformance
monitoring tool

Monitor
data

AN RN

Guest| |Guest| | Guest

Figure 89. Performance monitoring using monitor DCSS data

In summary, Ubuntu Server 22.04 LTS supports reading performance data in the form of read access to
z/VM monitor data for Linux instances. See Chapter 37, “Reading z/VM monitor records,” on page 419 for
more details.

Further information
Several z/VM publications include information about monitoring.

 See z/VM: Getting Started with Linux on System z, SC24-6287, the chapter on monitoring performance
for information about using the CP Monitor and the Performance Toolkit for VM.

» See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs (z/VM keeps monitor records in a DCSS).

 See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.

» See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands
that are used in the context of DCSSs and for controlling the z/VM monitor system service.

« For the layout of the monitor records, visit www.ibm.com/vm/pubs/ctlblk.html and see Chapter 35,
“Writing kernel APPLDATA records,” on page 409.

« For more information about performance monitoring on z/VM, visit

www.vm.ibm.com/perf

Cooperative memory management background

Cooperative memory management (CMM, or "cmm1") dynamically adjusts the memory available to Linux.

For information about setting up CMM, see Chapter 43, “Cooperative memory management,” on page
451,

406 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


https://www.ibm.com/vm/pubs/ctlblk.html
https://www.vm.ibm.com/perf/

In avirtualized environment it is common practice to give the virtual machines more memory than
is actually available to the hypervisor. Linux tends to use all of its available memory. As a result, the

hypervisor (z/VM) might start swapping.

To avoid excessive z/VM swapping, the memory available to Linux can be reduced. CMM allocates pages
to page pools that make the pages unusable to Linux. There are two such page pools as shown in Figure

90 on page 407.
z/\M memory

Linux memory

Figure 90. Page pools

There are two page pools:

A static page pool

The page pool is controlled by a resource manager that changes the pool size at intervals according to
guest activity as well as overall memory usage on z/VM (see Figure 91 on page 407).

KB

Figure 91. Static page pool

A timed page pool

Memory allocated to Linux

CMM page pool

Memory available to

N

] 7
Time

Pages are released from this pool at a speed that is set in the release rate (see Figure 92 on page
408). According to guest activity and overall memory usage on z/VM, a resource manager adds pages
at intervals. If no pages are added and the release rate is not zero, the pool empties.

Chapter 34. z/VM concepts 407



KB Memory allocated to Linux

CMM page pool

Memory available to Linux

N
Cd

Time
Figure 92. Timed page pool
The external resource manager that controls the pools can be the z/VM resource monitor (VMRM) or a
third-party systems management tool.

VMRM controls the pools over a message interface. Setting up the external resource manager is beyond
the scope of this information. For more details, see the chapter about VMRM in z/VM: Performance,
SC24-6301.

Third-party tools can provide a Linux deamon that receives commands for the memory allocation through
TCP/IP. The deamon, in turn, uses the procfs-based interface. You can use the procfs interface to read the
pool sizes. These values are useful diagnostic data.

Linux guest relocation

Information about guest relocations is stored in the s390 debug feature (s390dbf).

You can access this information in a kernel dump or from a running Linux instance. For more information,
see Using the Dump Tools, SC33-8412.

408 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 35. Writing kernel APPLDATA records

z/VM only: APPLDATA records apply to Linux on z/VM only.

z/VM is a convenient point for collecting z/VM guest performance data and statistics for an entire server
farm. Linux instances can export such data to z/VM by using APPLDATA monitor records.

z/VM regularly collects these records. The records are then available to z/VM performance monitoring
tools.

A virtual CPU timer on the Linux instance to be monitored controls when data is collected. The timer
accounts for only busy time to avoid unnecessarily waking up an idle guest. The APPLDATA record support
comprises several modules. A base module provides an intra-kernel interface and the timer function. The
intra-kernel interface is used by data gathering modules that collect actual data and determine the layout
of a corresponding APPLDATA monitor record (see “APPLDATA monitor record layout” on page 411).

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

Setting up the APPLDATA record support

You must enable your z/VM guest virtual machine for data gathering and load the APPLDATA record
support modules.

Procedure

1. On z/VM, ensure that the user directory of the guest virtual machine includes the option APPLMON.
2. On Linux, use the modpxrobe command to load any required modules.

APPLDATA record support module parameter syntax
»— modprobe —<—— appldata_mem —»«

M——— appldata_os —

— appldata_net_sum —

where appldata_mem, appldata_os, and appldata_net_sum are the modules for gathering memory-
related data, operating system-related data, and network-related data.

See the modpxrobe man page for command details.

Generating APPLDATA monitor records

You can set the timer interval and enable or disable data collection.

You control the monitor stream support through the procfs. APPLDATA monitor records are produced if
both a particular data-gathering module and the monitoring support in general are enabled.

Enabling or disabling the support

Use the procfs timex attribute to enable or disable the monitoring support.

Procedure

To read the current setting, issue:

# cat /proc/sys/appldata/timer

© Copyright IBM Corp. 2000, 2023 409



To enable the monitoring support, issue:

# echo 1 > /proc/sys/appldata/timer

To disable the monitoring support, issue:

# echo 0 > /proc/sys/appldata/timer

Activating or deactivating individual data-gathering modules

Each data-gathering module has a procfs entry that contains a value 1 if the module is active and 0 if the
module is inactive.

About this task
The following procfs entries control the data-gathering modules:

/proc/sys/appldata/mem for the memory data-gathering module
/proc/sys/appldata/os for the CPU data-gathering module
/proc/sys/appldata/net_sum for the net data-gathering module

To check whether a module is active, look at the content of the corresponding procfs entry.

Procedure

Issue a command of this form:

# echo <flag> > /proc/sys/appldata/<data_type>

where <data_type> is one of mem, os, or net_sum.

Note: An active data-gathering module produces APPLDATA monitor records only if the monitoring
support is enabled (see “Enabling or disabling the support” on page 409).

Example

To find out whether memory data-gathering is active, issue:

# cat /proc/sys/appldata/mem
0

In the example, memory data-gathering is off. To activate memory data-gathering, issue:

# echo 1 > /proc/sys/appldata/mem

To deactivate the memory data-gathering module, issue:

# echo 0 > /proc/sys/appldata/mem

Setting the sampling interval

You can set the time that lapses between consecutive data samples.

About this task

The time that you set is measured by the virtual CPU timer. Because the virtual timer slows down as the
guest idles, the sampling interval in real time can be considerably longer than the value you set.

410 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



The value in /proc/sys/appldata/interval is the sample interval in milliseconds. The default
sample interval is 10 000 ms.

Procedure

To read the current value, issue:

# cat /proc/sys/appldata/interval

To set the sample interval to a different value, write the new value (in milliseconds) to /proc/sys/
appldata/interval. Issue a command of this form:

# echo <interval> > /proc/sys/appldata/interval

where <interval> is the new sample interval in milliseconds. The specification must be in the range 1 -
2147483647, where 2,147,483,647 = 231 - 1,

Example

To set the sampling interval to 20 s (20000 ms), issue:

# echo 20000 > /proc/sys/appldata/interval

APPLDATA monitor record layout

Each of the data-gathering modules writes a different type of record.

« Memory data (see Table 52 on page 411)

 Processor data (see Table 53 on page 412)
« Networking (see Table 54 on page 413)

z/VM can identify the records by their unique product ID. The product ID is an EBCDIC string of this form:
"LINUXKRNL<record ID>260100". The <record ID> is treated as a byte value, not a string.

The records contain data of the following types:

u32
unsigned 4-byte integer.

uéd
unsigned 8-byte integer.

Table 52. APPLDATA_MEM_DATA record (Record ID 0x01)

Offset Offset |Type [Name Description
(Decimal) |(Hex)

0 0x0 ub4d |timestamp TOD time stamp that is generated on the Linux
side after record update

8 0x8 u32 |[sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on the
Linux side while z/VM was collecting the data. As a
result, the data might be inconsistent.

12 0xC u32 |sync_count_2 See sync_count_1.
16 0x10 ubd | pgpgin Data that was read from disk (in KB)
24 0x18 ub4d | pgpgout Data that was written to disk (in KB)

Chapter 35. Writing kernel APPLDATA records 411



Table 52. APPLDATA_MEM_DATA record (Record ID 0x01) (continued)

Offset Offset Type |Name Description
(Decimal) |(Hex)
32 0x20 ub4d | pswpin Pages that were swapped in
40 0x28 ub4d | pswpout Pages that were swapped out
48 0x30 u64 |sharedram Shared RAM in KB
56 0x38 u64 |totalram Total usable main memory size in KB
64 0x40 ub4 | freeram Available memory size in KB
72 0x48 u64 |totalhigh Total high memory size in KB
80 0x50 u64d |freehigh Available high memory size in KB
88 0x58 u64 | bufferram Memory that was reserved for raw disk blocks,
corresponding to "Buffers" from /proc/meminfo,
in KB
96 0x60 u64d |cached Size of used cache, including "Cached" and
"SwapCached" from /proc/meminfo, in KB
104 0x68 u64d |totalswap Total swap space size in KB
112 0x70 ub4d |freeswap Free swap space in KB
120 0x78 u64d | pgalloc Page allocations
128 0x80 ub4 | pgfault Page faults (major+minor)
136 0x88 ub4 | pgmajfault Page faults (major only)
Table 53. APPLDATA_OS_DATA record (Record ID 0x02)
Offset Offset |Type |Name Description
(Decimal) |[(Hex) (size)
0 0x0 ub4d |timestamp TOD time stamp that is generated on the Linux
side after record update
8 0x8 u32 |sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on the
Linux side while z/VM was collecting the data. As a
result, the data might be inconsistent.
12 0xC u32 |sync_count_2 See sync_count_1.
16 0x10 u32 |nr_cpus Number of virtual CPUs.
20 0x14 u32 |per_cpu_size Size of the per_cpu_data for each CPU (= 36).
24 0x18 u32 |cpu_offset Offset of the first per_cpu_data (= 52).
28 0x1C u32 |[nr_running Number of runnable threads.
32 0x20 u32 |nr_threads Number of threads.

412 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands




Table 53. APPLDATA_OS_DATA record (Record ID 0x02) (continued)

Offset Offset |Type |Name Description
(Decimal) |(Hex) (size)
36 0x24 3 x [|avenrun[3] Average number of running processes during the
u32 last 1 (first value), 5 (second value) and 15 (third
value) minutes. These values are "fake fix-point".
Each value is composed of a 10-bit integer and an
11-bit fractional part. See note “1” on page 413 at
the end of this table.
48 0x30 u32 |nr_iowait Number of blocked threads (waiting for I/0).
52 0x34 See |per_cpu_data Time spent in user, kernel, idle, nice, etc for every
note CPU. See note “3” on page 413 at the end of this
“2” on table.
page
413.
52 0x34 u32 |per_cpu_user Timer ticks that were spent in user mode.
56 0x38 u32 | per_cpu_nice Timer ticks that were spent with modified priority.
60 0x3C u32 | per_cpu_system Timer ticks that were spent in kernel mode.
64 0x40 u32 |per_cpu_idle Timer ticks that were spent in idle mode.
68 0x44 u32 |per_cpu_irq Timer ticks that were spent in interrupts.
72 0x48 u32 | per_cpu_softirq Timer ticks that were spent in softirgs.
76 0x4C u32 |per_cpu_iowait Timer ticks that were spent while waiting for I/0.
80 0x50 u32 |per_cpu_steal Timer ticks "stolen" by the hypervisor.
84 0x54 u32 |cpu_id The number of this CPU.
Note:

1. The following C-Macros are used inside Linux to transform these into values with two decimal places:

##define LOAD_INT(x) ((x) >> 11)
#define LOAD_FRAC(x) LOAD_INT(((x) & ((1 << 11) - 1)) * 100)

2. nr_cpus * per_cpu_size

3. per_cpu_user through cpu_id are repeated for each CPU

Table 54. APPLDATA_NET _SUM_DATA record (Record ID 0x03)

Offset Offset Type |Name Description
(Decimal) | (Hex)
0 0x0 ub4d |timestamp TOD time stamp that is generated on the Linux side
after record update
8 0x8 u32 |[sync_count_1 After z/VM collected the record data, sync_count_1
and sync_count_2 must be the same. Otherwise,
the record was updated on the Linux side while
z/VM was collecting the data. As a result, the data
might be inconsistent.
12 0xC u32 |sync_count_2 See sync_count_1.
16 0x10 u32 |nr_interfaces Number of interfaces being monitored

Chapter 35. Writing kernel APPLDATA records 413



Table 54. APPLDATA_NET_SUM_DATA record (Record ID 0x03) (continued)
Offset Offset Type |Name Description
(Decimal) | (Hex)
20 0x14 u32 |padding Unused. The next value is 64-bit aligned, so these 4
bytes would be padded out by compiler
24 0x18 ub4d |rx_packets Total packets that were received
32 0x20 u6b4d |tx_packets Total packets that were transmitted
40 0x28 u6d |rx_bytes Total bytes that were received
48 0x30 ubd | tx_bytes Total bytes that were transmitted
56 0x38 ubd |rx_errors Number of bad packets that were received
64 0x40 ub4d |tx_errors Number of packet transmit problems
72 0x48 u64 |rx_dropped Number of incoming packets that were dropped
because of insufficient space in Linux buffers
80 0x50 u64 |tx_dropped Number of outgoing packets that were dropped
because of insufficient space in Linux buffers
88 0x58 u64 | collisions Number of collisions while transmitting

Programming interfaces

The monitor stream support base module exports two functions.

« appldata_register_ops() to register data-gathering modules

- appldata_unregister_ops() to undo the registration of data-gathering modules

Both functions receive a pointer to a struct appldata_ops as parameter. Additional data-gathering
modules that want to plug into the base module must provide this data structure. You can find the
definition of the structure and the functions in arch/s390/appldata/appldata.hinthe Linux source

tree.

See “APPLDATA monitor record layout” on page 411 for an example of APPLDATA data records that are to

be sent to z/VM.

Tip: Include the timestamp, sync_count_1, and sync_count_2 fields at the beginning of the record as

shown for the existing APPLDATA record formats.

414 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands




Chapter 36. Writing z/VM monitor records

z/VM only: z/VM monitor records apply to Linux on z/VM only.

Applications can use the monitor stream application device driver to write z/VM monitor APPLDATA
records to the z/VM *MONITOR stream.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

The monitor stream application device driver interacts with the z/VM monitor APPLDATA facilities for
performance monitoring. A better understanding of these z/VM facilities might help when you are using
this device driver. See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

The monitor stream application device driver provides the following functions:

« Aninterface to the z/VM monitor stream.
- A means of writing z/VM monitor APPLDATA records.

Setting up the z/VM *MONITOR record writer device driver

On Linux, configure the z/VM *MONITOR record writer device driver through kernel or module parameters.
You also must set up your guest virtual machine for monitor records on z/VM.

Loading the module

You can configure the monitor stream application device driver when you load the device driver module,
monwriter.

Monitor stream application device driver module parameter syntax

(— max_bufs=255 j
»— modprobe — monwriter L _J >
max_bufs= <numbufs>

where <numbufs> is the maximum number of monitor sample and configuration data buffers that can
exist in the Linux guest at one time. The default is 255.

Example

If you have compiled the monitor stream application device driver as a separate module, you must load
it before you can work with it. To load the monwriter module and set the maximum number of buffers to
400, use the following command:

# modprobe monwriter max_bufs=400

Setting up the user z/VM guest virtual machine

You must enable your z/VM guest virtual machine to write monitor records and configure the z/VM system
to collect these records.

Procedure

Perform these steps:

© Copyright IBM Corp. 2000, 2023 415




1. Set this option in the z/VM user directory entry of the virtual machine in which the application that
uses this device driver is to run:

« OPTION APPLMON

2. Issue the following CP commands to have CP collect the respective types of monitor data:
- MONITOR SAMPLE ENABLE APPLDATA ALL
« MONITOR EVENT ENABLE APPLDATA ALL

You can log in to the z/VM console to issue the CP commands. These commands must be preceded
with #CP. Alternatively, you can use the vmcp command for issuing CP commands from your Linux
instance.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP MONITOR
command.

Working with the z/VM *MONITOR record writer

The monitor stream application device driver uses the z/VM CP instruction DIAG X'DC' to write to the z/VM
monitor stream. Monitor data must be preceded by a data structure, monwrite_hdr.

See z/VM: CP Programming Services, SC24-6272 for more information about the DIAG X'DC' instruction
and the different monitor record types (sample, config, event).

The application writes monitor data by passing a monwrite_hdr structure that is followed by monitor data.
The only exception is the STOP function, which requires no monitor data. The monwrite_hdr structure, as
described in monwriter.h, is filled in by the application. The structure includes the DIAG X'DC' function to
be performed, the product identifier, the header length, and the data length.

All records that are written to the z/VM monitor stream begin with a product identifier. This device driver
uses the product ID. The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where:

PPPPPPP
is a fixed ASCII string, for example, LNXAPPL.

ff
is the application number (hexadecimal number). This number can be chosen by the application. You
can reduce the chance of conflicts with other applications, by requesting an application number from
the IBM z/VM Performance team at
www.vm.ibm.com/perf
n

is the record number as specified by the application.

vV, rr, and mm
can also be specified by the application. A possible use is to specify version, release, and modification
level information, allowing changes to a certain record number when the layout is changed, without
changing the record number itself.

The first 7 bytes of the structure (LNXAPPL) are filled in by the device driver when it writes the monitor
data record to the CP buffer. The last 9 bytes contain information that is supplied by the application on the
write() call when writing the data.

The monwrite_hdr structure that must be written before any monitor record data is defined as follows:

/* the header the app uses in its write() data =%/
struct monwrite_hdr $

unsigned char mon_function;

unsigned short applid;

unsigned char record_num;

unsigned short version;

unsigned short release;

unsigned short mod_level;

unsigned short datalen;

416 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


https://www.vm.ibm.com/perf/

unsigned char hdrlen;
}__attribute__((packed));

The following function code values are defined:

/* mon_function values =*/

#define MONWRITE_START_INTERVAL 0x00 /% start interval recording =/

#define MONWRITE_STOP_INTERVAL 0x01 /% stop interval or config recording x/
Jtfdefine MONWRITE_GEN_EVENT 0x02 /* generate event record x/

##define MONWRITE_START_CONFIG 0x03 /* start configuration recording =*/

Writing data and stopping data-writing
Applications use the open (), write(), and close () calls to work with the z/VM monitor stream.

Before an application can write monitor records, it must issue open () to open the device driver. Then,
the application must issue write () calls to start or stop the collection of monitor data and to write any
monitor records to buffers that CP can access.

When the application has finished writing monitor data, it must issue close () to close the device driver.

Using the monwrite_hdr structure

The structure monwrite_hdr is used to pass DIAG x'DC' functions and the application-defined product
information to the device driver on write () calls.

When the application calls write (), the data it is writing consists of one or more monwrite_hdr
structures. Each structure is followed by monitor data. The only exception is the STOP function, which
is not followed by data.

The application can write to one or more monitor buffers. A new buffer is created by the device driver
for each record with a unique product identifier. To write new data to an existing buffer, an identical
monwrite_hdr structure must precede the new data on the write () call.

The monwrite_hdr structure also includes a field for the header length, which is useful for calculating the
data offset from the beginning of the header. There is also a field for the data length, which is the length
of any monitor data that follows. See /usr/include/asm-s390/monwriter.h for the definition of the
monwrite_hdr structure.

Chapter 36. Writing z/VM monitor records 417



418 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 37. Reading z/VM monitor records

z/VM only: z/VM monitor records apply to Linux on z/VM only.

Monitoring software on Linux can access z/VM guest data through the z/VM *MONITOR record reader
device driver.

z/VM uses the z/VM monitor system service (*MONITOR) to collect monitor records from agents on its
guests. z/VM writes the records to a discontiguous saved segment (DCSS). The z/VM *MONITOR record
reader device driver uses IUCV to connect to *MONITOR and accesses the DCSS as a character device.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

The z/VM *MONITOR record reader device driver supports the following devices and functions:
« Read access to the z/VM *MONITOR DCSS.

« Reading *MONITOR records.

 Access to *MONITOR records as described on

www . ibm.com/vm/pubs/ctlblk.html

« Access to the kernel APPLDATA records from the Linux monitor stream (see Chapter 35, “Writing kernel
APPLDATA records,” on page 409).

What you should know about the z/VM *MONITOR record reader
device driver

The data that is collected by *MONITOR depends on the setup of the monitor stream service.

The z/VM *MONITOR record reader device driver only reads data from the monitor DCSS; it does not
control the system service.

z/VM supports only one monitor DCSS. All monitoring software that requires monitor records from z/VM
uses the same DCSS to read *MONITOR data. Usually, a DCSS called MONDCSS is already defined and
used by existing monitoring software.

If a monitor DCSS is already defined, you must use it. To find out whether a monitor DCSS exists, issue the
following CP command from a z/VM guest virtual machine with privilege class E:

g monitor

The command output also shows the name of the DCSS.

Using kdump: If you use kdump, ensure that the monitor DCSS does not overlap with the storage area 0
- <crashkernel size>.Ifthe DCSSis already defined and overlaps with the crashkernel storage area,
it must be removed and defined again at a suitable location.

Device node

Ubuntu Server 22.04 LTS creates a device node, /dev/monreader, that you can use to access the
monitor DCSS.

Further information

 See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

© Copyright IBM Corp. 2000, 2023 419


https://www.ibm.com/vm/pubs/ctlblk.html

 See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.

« See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands
that are used in the context of DCSSs and for controlling the z/VM monitor system service.

« For the layout of the monitor records, go to www.ibm.com/vm/pubs/ctlblk.html and click the link to the
monitor record format for your z/VM version. Also, see Chapter 35, “Writing kernel APPLDATA records,”
on page 409.

Setting up the z/VM *MONITOR record reader device driver

You must set up a Linux instance and the z/VM guest virtual machine for accessing an existing monitor
DCSS with the z/VM *MONITOR record reader device driver.

Before you begin
Some of the CP commands you use for setting up the z/VM *MONITOR record reader device driver require
class E authorization.

Setting up the monitor system service and the monitor DCSS on z/VM is beyond the scope of this
information. See “What you should know about the z/VM *MONITOR record reader device driver” on page
419 for documentation about the monitor system service, DCSS, and related CP commands.

Providing the required z/VM user directory statements

The z/VM guest virtual machine where your Linux instance is to run must be permitted to establish an
IUCV connection to the z/VM *MONITOR system service.

Procedure

Ensure that the guest entry in the user directory includes the following statement:
IUCV *MONITOR

If the DCSS is restricted, you also need this statement:
NAMESAVE <dcss>

where <dcss> is the name of the DCSS that is used for the monitor records. You can find out the name of
an existing monitor DCSS by issuing the following CP command from a z/VM guest virtual machine with
privilege class E:

g monitor

Assuring that the DCSS is addressable for your Linux instance

The DCSS address range must not overlap with the storage of you z/VM guest virtual machine.

Procedure

To find out the start and end address of the DCSS, issue the following CP command from a z/VM guest
virtual machine with privilege class E:

g nss map

The output gives you the start and end addresses of all defined DCSSs in units of 4-kilobyte pages. For
example:

420 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


https://www.ibm.com/vm/pubs/ctlblk.html

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A

What to do next
If the DCSS overlaps with the guest storage, follow the procedure in “Avoiding overlaps with your guest
storage” on page 437.

Specifying the monitor DCSS name

Specify the DCSS name as a module parameter when you load the device driver module.

About this task

By default, the z/VM *MONITOR record reader device driver assumes that the monitor DCSS on z/VM is
called MONDCSS. If you want to use a different DCSS name, you must specify it.

Load the monitor read support module with modpxobe to assure that any other required modules are also
loaded. You need IUCV support if you want to use the monitor read support.

monitor stream support module parameter syntax

I_ mondcss=MONDCSS j
»— modprobe — monreader >«

L mondcss= <dcss> —J

where <dcss> is the name of the DCSS that z/VM uses for the monitor records. The value is automatically
converted to uppercase.

Example

To load the monitor read support module and specify MYDCSS as the DCSS, issue:

modprobe monreader mondcss=mydcss

Working with the z/VM *MONITOR record reader support

You can open the z/VM *MONITOR record character device to read records from it.

This section describes how to work with the monitor read support.

« “Opening and closing the character device” on page 421

« “Reading monitor records” on page 422

Opening and closing the character device
Only one user can open the character device at any one time. Once you have opened the device, you must
close it to make it accessible to other users.
About this task

The open function can fail (return a negative value) with one of the following values for errno:

EBUSY
The device has already been opened by another user.

Chapter 37. Reading z/VM monitor records 421




EIO
No IUCV connection to the z/VM MONITOR system service could be established. An error message
with an IPUSER SEVER code is printed into syslog. See z/VM: Performance, SC24-6301 for details
about the codes.

Once the device is opened, incoming messages are accepted and account for the message limit. If
you keep the device open indefinitely, expect to eventually reach the message limit (with error code
EOVERFLOW).

Reading monitor records

You can either read in non-blocking mode with polling, or you can read in blocking mode without polling.

About this task

Reading from the device provides a 12-byte monitor control element (MCE), followed by a set of one or
more contiguous monitor records (similar to the output of the CMS utility MONWRITE without the 4 K
control blocks). The MCE contains information about:

« The type of the following record set (sample/event data)
« The monitor domains contained within it

« The start and end address of the record set in the monitor DCSS
The start and end address can be used to determine the size of the record set. The end address is the
address of the last byte of data. The start address is needed to handle "end-of-frame" records correctly

(domain 1, record 13), that is, it can be used to determine the record start offset relative to a 4 K page
(frame) boundary.

See "Appendix A: *MONITOR" in z/VM: Performance, SC24-6301 for a description of the monitor control
element layout. The layout of the monitor records can be found on

www . ibm.com/vm/pubs/ctlblk.html

The layout of the data stream that is provided by the monreader device is as follows:

<0 byte read>

<first MCE> \

<first set of records> | ...

e |- data set
<last MCE> |
<last set of records> /
<0 byte read>

There might be more than one combination of MCE and a corresponding record set within one data set.
The end of each data set is indicated by a successful read with a return value of 0 (0 byte read). Received
data is not to be considered valid unless a complete record set is read successfully, including the closing
0-Byte read. You are advised to always read the complete set into a user space buffer before processing
the data.

When designing a buffer, allow for record sizes up to the size of the entire monitor DCSS, or use dynamic
memory allocation. The size of the monitor DCSS will be printed into syslog after loading the module.
You can also use the (Class E privileged) CP command Q NSS MAP to list all available segments and
information about them (see “Assuring that the DCSS is addressable for your Linux instance” on page
420).

Error conditions are indicated by returning a negative value for the number of bytes read. For an error
condition, the errno variable can be:

EIO
Reply failed. All data that was read since the last successful read with O size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

422 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


https://www.ibm.com/vm/pubs/ctlblk.html

EFAULT
Copy to user failed. All data that was read since the last successful read with 0 size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

EAGAIN
Occurs on a non-blocking read if there is no data available at the moment. No data is missing or
damaged, retry or use polling for non-blocking reads.

EOVERFLOW
The message limit is reached. The data that was read since the last successful read with O size is
valid, but subsequent records might be missing. The application must decide whether to continue
reading subsequent data or to exit.

Chapter 37. Reading z/VM monitor records 423



424 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



Chapter 38. z/VM recording device driver

z/VM only: The z/VM recording device driver applies to Linux on z/VM only.

The z/VM recording device driver enables Linux on z/VM to read from the CP recording services and, thus,
act as a z/VM wide control point.

The z/VM recording device driver uses the z/VM CP RECORDING command to collect records and IUCV to
transmit them to the Linux instance.

For general information about CP recording system services, see z/VM: CP Programming Services,
SC24-6272.

Features

With the z/VM recording device driver, you can read from several CP services and collect records.

In particular, the z/VM recording device driver supports:

 Reading records from the CP error logging service, *LOGREC.

« Reading records from the CP accounting service, *ACCOUNT.

« Reading records from the CP diagnostic service, *SYMPTOM.

« Automatic and explicit record collection (see “Starting and stopping record collection” on page 427).

What you should know about the z/VM recording device driver

You can read records from different recording services, one record at a time.

The z/VM recording device driver is a character device driver that is grouped under the IUCV category of
device drivers (see “Device categories” on page 7). There is one device for each recording service. The
device nodes are created for you. If the z/VM recording device driver is compiled as a separate module,
the device nodes are created when the module is loaded.

z/VM recording device nodes
Each recording service has a fixed minor number and a name that corresponds to the name of the service.

Table 55 on page 425 shows the mapping of names and minor numbers.

Table 55. Device names and minor numbers

z/VM recording service Standard device name Minor number
*LOGREC logrec 0
*ACCOUNT account 1
*SYMPTOM symptom 2

About records
Records for different services are different in details, but follow the same overall structure.

The read function returns one record at a time. If there is no record, the read function waits until a record
becomes available.

Each record begins with a 4-byte field that contains the length of the remaining record. The remaining
record contains the binary z/VM data followed by the four bytes X'454f5200' to mark the end of the
record. These bytes build the zero-terminated ASCII string "EOR", which is useful as an eye catcher.

© Copyright IBM Corp. 2000, 2023 425



length (n) z/VM data end marker

-4 bytes O bytes n-4 bytes n bytes
Figure 93. Record structure
Figure 93 on page 426 illustrates the structure of a complete record as returned by the device. If the

buffer assigned to the read function is smaller than the overall record size, multiple reads are required to
obtain the complete record.

The format of the z/VM data (*LOGREC) depends on the record type that is described in the common
header for error records HDRREC.

For more information about the z/VM record layout, see the CMS and CP Data Areas and Control Blocks
documentation at www.ibm.com/vm/pubs/ctlblk.html.

Setting up the z/VM recording device driver

Before you can collect records, you must authorize your z/VM guest virtual machine and load the device
driver module.

About this task

This section provides information about the guest authorization that is required for collecting records and
about how to load the device driver if it was compiled as a module.

Procedure

1. Authorize the z/VM guest virtual machine on which your Linux instance runs to:
« Use the z/VM CP RECORDING command.

« Connect to the IUCV services to be used: one or more of *LOGREC, *ACCOUNT, and *SYMPTOM.
2. Load the vmlogrdr module.

Use the modprobe command to ensure that any other required modules are loaded in the correct
order:

# modprobe vmlogrdr

There are no module parameters for the z/VM recording device driver.

Working with z/VM recording devices

Typical tasks that you perform with z/VM recording devices include starting and stopping record
collection, purging records, and opening and closing devices.

 “Starting and stopping record collection” on page 427
« “Purging existing records” on page 427

« “Querying the z/VM recording status” on page 428

« “Opening and closing devices” on page 429

426 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands


https://www.ibm.com/vm/pubs/ctlblk.html

Starting and stopping record collection

By default, record collection for a particular z/VM recording service begins when the corresponding device
is opened and stops when the device is closed.

About this task

You can use a device's autorecording attribute to be able to open and close a device without also
starting or stopping record collection. You can use a device's recording attribute to start and stop
record collection regardless of whether the device is opened or not.

You cannot start record collection if a device is open and records already exist. Before you can start
record collection for an open device, you must read or purge any existing records for this device (see
“Purging existing records” on page 427).

Procedure

To be able to open a device without starting record collection and to close a device without stopping
record collection write 0 to the device’s autorecording attribute. To restore the automatic starting and
stopping of record collection, write 1 to the device’s autorecording attribute. Issue a command of this
form:

# echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autorecording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.
To explicitly turn on record collection, write 1 to the device’s recording attribute. To explicitly turn off
record collection, write 0 to the device’s recording attribute. Issue a command of this form:

# echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/recording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

You can read both the autorecording and the recording attribute to find the current settings.

Examples
« In this example, first the current setting of the autorecording attribute of the logrec device is
checked, then automatic recording is turned off:

# cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording
1

# echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording

« In this example, record collection is started explicitly and later stopped for the account device:

# echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

# echo @ > /sys/bus/iucv/drivers/vmlogrdr/account/recording

To confirm whether recording is on or off, read the recording_status attribute as described in
“Querying the z/VM recording status” on page 428.

Purging existing records

By default, existing records for a particular z/VM recording service are purged automatically when the
corresponding device is opened or closed.

Chapter 38. z/VM recording device driver 427



About this task

You can use a device's autopurge attribute to prevent records from being purged when a device is
opened or closed. You can use a device's purge attribute to purge records for a particular device at any
time without having to open or close the device.

Procedure

To be able to open or close a device without purging existing records write 0 to the device’s autopurge
attribute. To restore automatic purging of existing records, write 1 to the device’s autopurge attribute.
You can read the autopurge attribute to find the current setting. Issue a command of this form:

# echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autopurge

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To purge existing records for a particular device without opening or closing the device write 1 to the
device’s purge attribute. Issue a command of this form:

# echo 1 > /sys/bus/iucv/drivers/vmlogrdr/<device>/purge

where <device> is one of: logrec, symptom, or account.

Examples

- In this example, the setting of the autopurge attribute for the logrec device is checked first, then
automatic purging is switched off:

# cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge
1
# echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge

« In this example, the existing records for the symptom device are purged:

# echo 1 > /sys/bus/iucv/drivers/vmlogrdr/symptom/purge

Querying the z/VM recording status
Use the recording_status attribute of the z/VM recording device driver representation in sysfs to
query the z/VM recording status.

Example

This example runs the z/VM CP command QUERY RECORDING and returns the complete output of that
command. This list does not necessarily have an entry for all three services and there might also be
entries for other guests.

# cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

This command results in output similar to the following example:

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001774 020 DISKACNT  INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP  ACTIVE
ACCOUNT OFF (00000000 020 LINUX31 INACTIVE

where the lines represent:

« The service

428 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands



« The recording status

« The number of queued records

« The number of records that result in a message to the operator

« The guest that is or was connected to that service and the status of that connection

A detailed description of the QUERY RECORDING command can be found in the z/VM: CP Commands and
Utilities Reference, SC24-6268.

Opening and closing devices

You can open, read, and release the device. You cannot open the device multiple times. Each time the
device is opened it must be released before it can be opened again.

Ab