
Linux on Z and LinuxONE

Device Drivers, Features, and Commands
on Ubuntu Server 22.04 LTS

IBM

SC34-2765-03

Note

Before using this document, be sure to read the information in “Notices” on page 801.

This edition applies to Ubuntu Server 22.04 LTS and to all subsequent releases and modifications until otherwise
indicated in new editions.
© Copyright International Business Machines Corporation 2000, 2023.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Summary of changes..vii

About this document...ix

Part 1. General concepts..1

Chapter 1. How devices are accessed by Linux.. 3

Chapter 2. Devices in sysfs.. 7

Chapter 3. Device auto-configuration for Linux in LPAR mode.. 21

Chapter 4. Kernel and module parameters...25

Part 2. Booting and shutdown.. 33

Chapter 5. Console device drivers...35

Chapter 6. Initial program loader for IBM Z - zipl...57

Chapter 7. Booting Linux... 89

Chapter 8. Shutdown actions.. 119

Chapter 9. The diag288 watchdog device driver.. 123

Chapter 10. KASLR support...127

Part 3. Storage.. 129

Chapter 11. DASD device driver.. 131

Chapter 12. SCSI-over-Fibre Channel device driver...169

Chapter 13. Storage-class memory device driver.. 213

Chapter 14. Managing NVMe devices... 217

Chapter 15. Channel-attached tape device driver..219

Part 4. Networking...229

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets..231

Chapter 17. OSA-Express SNMP subagent support... 299

Chapter 18. LAN channel station device driver.. 309

Chapter 19. AF_IUCV address family support.. 315

 iii

Chapter 20. SMC protocol support..319

Chapter 21. RDMA over Converged Ethernet..331

Chapter 22. Internal shared memory device driver... 335

Part 5. System resources... 337

Chapter 23. Managing CPUs..339

Chapter 24. Memory hotplug.. 345

Chapter 25. Persistent device configuration...351

Chapter 26. Huge-page support..365

Chapter 27. S/390 hypervisor file system.. 369

Chapter 28. TOD clock synchronization..375

Chapter 29. Identifying the IBM Z hardware.. 377

Chapter 30. HMC media device driver.. 379

Chapter 31. Data compression with the Integrated Accelerator for zEDC.. 383

Chapter 32. Data compression with GenWQE and zEDC Express..389

Chapter 33. PCI Express support..397

Part 6. z/VM virtual server integration..403

Chapter 34. z/VM concepts... 405

Chapter 35. Writing kernel APPLDATA records...409

Chapter 36. Writing z/VM monitor records... 415

Chapter 37. Reading z/VM monitor records..419

Chapter 38. z/VM recording device driver.. 425

Chapter 39. z/VM unit record device driver.. 433

Chapter 40. z/VM DCSS device driver... 435

Chapter 41. z/VM CP interface device driver.. 445

Chapter 42. z/VM CP special messages uevent support..447

Chapter 43. Cooperative memory management.. 451

Part 7. KVM virtual server integration...453

Chapter 44. KVM virtualization on IBM Z..455

iv

Chapter 45. The virtual channel subsystem... 461

Chapter 46. The virtio CCW transport device driver... 465

Chapter 47. Setting up Ubuntu Server 22.04 LTS as a KVM host...473

Chapter 48. Setting up a KVM host for VFIO pass-through..475

Part 8. Security..485

Chapter 49. Generic cryptographic device driver... 487

Chapter 50. Pseudorandom number generator device driver..517

Chapter 51. True random-number generator device driver... 521

Chapter 52. Protected key device driver...523

Chapter 53. Hardware-accelerated in-kernel cryptography.. 529

Chapter 54. Instruction execution protection.. 533

Part 9. Performance measurement using hardware facilities...............................535

Chapter 55. Channel measurement facility.. 537

Chapter 56. Using the CPU-measurement facilities...541

Part 10. Diagnostics and troubleshooting... 547

Chapter 57. Logging I/O subchannel status information... 549

Chapter 58. Control program identification.. 551

Chapter 59. Displaying system information..555

Chapter 60. Avoiding common pitfalls..559

Chapter 61. Creating a kernel dump... 563

Part 11. Reference...565

Chapter 62. Commands for Linux on IBM Z..567

Chapter 63. Selected kernel parameters..773

Chapter 64. Linux diagnose code use... 795

Appendix A. Accessibility...797

Appendix B. Understanding syntax diagrams..799

Notices..801
Glossary.. 803

 v

Bibliography.. 813

Index.. 817

vi

Summary of changes

This revision includes maintenance and editorial changes. Technical changes or additions to the text and
illustrations are indicated by a vertical line to the left of the change.

What's new for Ubuntu Server 22.04 LTS
This revision reflects changes related to Ubuntu Server 22.04 LTS compared to Ubuntu Server 20.04 LTS.

Booting and shutdown

• You can now define variables for kernel parameters in a boot record. See “Parameter overview” on page
71, and “zipl environment - Variables for the kernel command line” on page 82.

• As of z15® and LinuxONE III, you can use NVMe boot devices, see “Booting in LPAR mode from an NVMe
device” on page 96.

• NVMe disks are now supported as a stand-alone dump devices, see “Preparing a dump device” on page
67.

• You can now re-IPL from a PCIe-attached NVMe IPL device without clearing memory, see “Attributes for
nvme” on page 115.

• For SCSI boot devices, new sections describe how use the HMC Web Services API to boot Linux in LPAR
mode and in a DPM partition, and how to boot Linux in a DPM partition using the HMC GUI, see “Using
the HMC Web Services API to boot in LPAR mode” on page 103 and “Booting Linux in a DPM partition”
on page 103.

• By default, hotplug memory is now offline after a reboot, see “Memory state and reboot” on page 346.
This change is related to a new re-IPL configuration option, clear, for CCW and FCP re-IPL devices, see
“chreipl - Modify the re-IPL configuration” on page 574.

SCSI over Fibre-Channel

• A new toolset can help you to use multipath information for re-IPL path failover on a running Linux
instance, see “Automatic path failover for re-IPL from an FC-attached SCSI disk” on page 114.

Network

• You can now query the Fibre Channel Endpoint Security (FCES) capability of I/O channel-paths, see
“Checking the FCES status of a CHPID” on page 18, and examine the FCES state of a connection to a
DASD device, see “Querying the encryption setting of a channel path” on page 161.

• You can now use an HSCI interface as a base device for a MacVTap or an OpenVSwitch connection to
multiple KVM guests, see “Using an HSCI interface as a base device for MacVTap or OpenVSwitch” on
page 284.

• You can now display statistical information about SMC-R and SMC-D connections, see “Obtaining
statistics for SMC connections” on page 327.

• SMC-R connections now support failover scenarios through multiple SMC-R links, see Chapter 21,
“RDMA over Converged Ethernet,” on page 331.

• New commands display information about SMC-R and SMC-D link groups and devices, see “smcd -
Display information about SMC-D link groups and devices” on page 713 and “smcr - Display information
about SMC-R” on page 717.

General I/O

• Automatic recovery and an enhanced zpcictl command help you to manage malfunctioning PCI
devices, see “Recovering a PCIe device” on page 399.

• The zdsfs command can now use z/OSMF REST services to provide read access to DASDs while they
are online to a z/OS® instance, see “zdsfs - Mount a z/OS DASD” on page 749.

© Copyright IBM Corp. 2000, 2023 vii

• PCIe devices and cryptographic devices are now set online automatically during the boot process of
Linux in an LPAR in DPM mode. You can enforce the previous behavior through the rd.zdev=no-auto
kernel parameter, see “rd.zdev=no-auto - Override initial device availability for DPM mode” on page
786.

System resources

• Server Time Protocol (STP) can now process leap seconds for Linux in LPAR mode, see “Leap second
handling” on page 376.

Security

• New sysfs attributes indicate whether a Linux instance detects its environment as consistent with that
of a secure guest or host, see “Indicators for IBM Secure Execution mode” on page 459.

• The zcrypt device driver now waits until the initial scan of the available crypto adapters is complete.
Thus, pkey services can provide a seamless root file system encryption at boot time. New uevents notify
user space about important AP bus changes. See “Displaying information about the AP bus” on page
497.

• You can now control the LPAR configuration state of cryptographic devices from Linux, see “Setting the
LPAR configuration status” on page 503.

• The pkey device driver can now generate protected keys from CCA and EP11 elliptic-curve cryptography
(ECC) secure keys, see “Investigating master key states and verification patterns” on page 501 and
“External programming interfaces ” on page 526.

Changed Information
• With version 2.20.0, the s390-tools package depends on version 3 of the FUSE library. As a

consequence, you can no longer use the nonempty option for the cmsfs-fuse, hmcdrvfs and zdsfs
commands.

This revision also includes maintenance and editorial changes.

Deleted Information
• The qeth device driver no longer supports OSN devices. The OSN information has been removed.

viii Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this document

This publication describes the device drivers, features, and commands available to Ubuntu Server 22.04
LTS for the control of IBM Z® devices and attachments. Unless stated otherwise, in this book the terms
device drivers and features are understood to refer to device drivers and features for Ubuntu Server 22.04
LTS. Some of the functionality described here requires kernel 5.4.0-45.49 or newer. This kernel update is
shipped with Ubuntu Server 22.04 LTS.

For details about IBM tested Linux environments, see www.ibm.com/systems/z/os/linux/resources/
testedplatforms.html.

Unless stated otherwise, all IBM z/VM® related information in this document assumes a current z/VM
version, see www.vm.ibm.com/techinfo/lpmigr/vmleos.html.

For more specific information about the device driver structure, see the documents in the kernel source
tree at linux-doc/s390. After installing the linux-doc package, the absolute path is typically: /usr/
share/doc/linux-doc/s390.

You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

How this document is organized
The first part of this document contains general and overview information for the z/Architecture® specific
device drivers.

Part two contains chapters about device drivers and features that are used in the context of booting and
shutting down Linux.

Part three contains chapters specific to individual storage device drivers.

Part four contains chapters specific to individual network device drivers.

Part five contains chapters about device drivers and features that help to manage the resources of the
real or virtual hardware.

Part six contains chapters that describe device drivers and features in support of z/VM virtual server
integration.

Part seven contains chapters that describe device drivers and features in support of KVM virtual server
integration. Topics cover both Linux as a KVM host and Linux as a KVM guest.

Part eight contains chapters about device drivers and features that support security aspects of Ubuntu
Server 22.04 LTS.

Part nine contains chapters about assessing the performance of Ubuntu Server 22.04 LTS.

Part ten contains chapters about device drivers and features that are used in the context of diagnostics
and problem solving.

Part eleven contains chapters with reference information about commands, kernel parameters, and Linux
use of DIAG calls.

Who should read this document
Most of the information in this document is intended for system administrators who want to configure
Ubuntu Server 22.04 LTS on IBM Z and LinuxONE, but also for developers that aim to exploit this platform.

The following general assumptions are made about your background knowledge:

• You have an understanding of basic computer architecture, operating systems, and programs.
• You have an understanding of Linux and IBM Z terminology.

© Copyright IBM Corp. 2000, 2023 ix

https://www.ibm.com/support/pages/linux-ibm-z-tested-platforms
https://www.ibm.com/support/pages/linux-ibm-z-tested-platforms
https://www.vm.ibm.com/techinfo/lpmigr/vmleos.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html

• You are familiar with Linux device driver software.
• You are familiar with the IBM Z devices attached to your system.

Programmers: Some sections are of interest primarily to specialists who want to program extensions to
the device drivers and features.

Hypervisor-specific information
This publication provides information for Linux in LPAR mode and for Linux as a guest of z/VM or KVM.

Information in this publication applies to all hypervisor environments, unless indicated otherwise. Parts
and chapters that do not apply to all environments state this exception at the beginning. Lesser
differences between environments are detailed within the description.

Linux in LPAR mode
Processor Resource/Systems Manager (PR/SM) technology always divides IBM Z hardware resources into
one or more logical partitions (LPARs). Linux in LPAR mode runs directly in an LPAR.

Linux on z/VM
The z/VM hypervisor is an IBM Z operating system that can run in an LPAR and provide IBM Z virtual
machines. Linux on z/VM runs as a guest in a z/VM guest virtual machine.

z/VM virtualizes z/Architecture and IBM Z devices to its guests, so most of what applies to Linux in LPAR
mode also applies to Linux as a z/VM guest.

Depending on your z/VM virtual machine definition and on your z/VM version and service level, a
particular z/VM guest might not provide all of the described features. See ibm.com/vm/newfunction/
index.html about upcoming and available new function for z/VM.

For information that exclusively applies to Linux on z/VM, see Part 6, “z/VM virtual server integration,” on
page 403.

Linux on KVM
Linux in LPAR mode can be set up as a KVM host that provides KVM virtual servers. Linux on KVM runs as a
guest in a KVM virtual server. For information about managing KVM virtual servers, see the documentation
of your KVM host distribution and KVM Virtual Server Management, SC34-2752.

KVM virtual servers on IBM Z present many mainframe devices as generalized virtio devices to their
guests. To Linux, these virtio devices resemble virtio devices on other hardware architectures more than
the underlying mainframe devices. Therefore, entire parts and chapters of this publication do not apply to
Linux on KVM.

Depending on your KVM host and on your virtual server configuration, a particular KVM guest might not
provide all of the described features.

For information that exclusively applies to Linux on KVM, see Part 7, “KVM virtual server integration,” on
page 453.

Conventions and assumptions used in this publication
This summarizes the styles, highlighting, and assumptions used throughout this publication.

Authority
Most of the tasks described in this document require a user with root authority. In particular, writing to
procfs, and writing to most of the described sysfs attributes requires root authority.

Throughout this document, it is assumed that you have root authority.

x About this document

https://www.ibm.com/vm/newfunction/index.html
https://www.ibm.com/vm/newfunction/index.html

Terminology
In this publication, the term booting is used for running boot loader code that loads the Linux operating
system. IPL is used for issuing an IPL command to load boot loader code or a stand-alone dump utility.
See also “IPL and booting” on page 89.

sysfs and procfs
In this publication, the mount point for the virtual Linux file system sysfs is assumed to be /sys.
Correspondingly, the mount point for procfs is assumed to be /proc.

debugfs
This document assumes that debugfs has been mounted at /sys/kernel/debug.

To mount debugfs, you can use this command:

mount none -t debugfs /sys/kernel/debug

To mount debugfs persistently, add the following to /etc/fstab:

debugfs /sys/kernel/debug debugfs auto 0 0

The Linux source tree
Useful documentation can be found in the Linux source tree. To install the kernel source, issue:

apt install linux-source

Number prefixes
In this publication, KB means 1024 bytes, MB means 1,048,576 bytes, and GB means 1,073,741,824
bytes.

Hexadecimal numbers
Mainframe publications and Linux publications tend to use different styles for writing hexadecimal
numbers. Thirty-one, for example, would typically read X'1F' in a mainframe publication and 0x1f in a
Linux publication.

Because the Linux style is required in many commands and is also used in some code samples, the Linux
style is used throughout this publication.

Highlighting
This publication uses the following highlighting styles:

• Paths and URLs are highlighted in monospace.
• Variables are highlighted in <italics within angled brackets>.
• Commands in text are highlighted in monospace bold.
• Input and output as normally seen on a computer screen is shown

within a screen frame.
Prompts are shown as hash signs:
#

About this document xi

xii Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 1. General concepts
This information at an overview level describes concepts that apply across different device drivers and
kernel features.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

© Copyright IBM Corp. 2000, 2023 1

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html

2 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 1. How devices are accessed by Linux
Applications on Linux access character and block devices through device nodes, and network devices
through network interfaces.

Device nodes and major/minor numbers
The Linux kernel represents character and block devices as pairs of numbers <major>:<minor>.

Some major numbers are reserved for particular device drivers. Other major numbers are dynamically
assigned to a device driver when Linux boots. For example, major number 94 is always the major number
for DASD devices while the device driver for channel-attached tape devices has no fixed major number. A
major number can also be shared by multiple device drivers. See /proc/devices to find out how major
numbers are assigned on a running Linux instance.

The device driver uses the minor number <minor> to distinguish individual physical or logical devices. For
example, the DASD device driver assigns four minor numbers to each DASD: one to the DASD as a whole
and the other three for up to three partitions.

Device drivers assign device names to their devices, according to a device driver-specific naming scheme
(see, for example, “DASD naming scheme” on page 136). Each device name is associated with a minor
number (see Figure 1 on page 3).

Figure 1. Minor numbers and device names

User space programs access character and block devices through device nodes also referred to as device
special files. When a device node is created, it is associated with a major and minor number (see Figure 2
on page 3).

Figure 2. Device nodes

Ubuntu Server 22.04 LTS uses udev to create device nodes for you. Standard device nodes match the
device name that is used by the kernel, but different or additional nodes might be created by special udev
rules. See the udev man page for more details.

Network interfaces
The Linux kernel representation of a network device is an interface.

© Copyright IBM Corp. 2000, 2023 3

Figure 3. Interfaces

When a network device is defined, it is associated with a real or virtual network adapter (see Figure 3
on page 4). You can configure the adapter properties for a particular network device through the device
representation in sysfs (see “Device directories” on page 9).

You activate or deactivate a connection by addressing the interface with ip or an equivalent command. All
interfaces that are provided by the IBM Z specific network device drivers are interfaces for the Internet
Protocol (IP).

Predictable network device names
Ubuntu Server 22.04 LTS uses predictable interface names for network devices. These names are stable
across reboots and network adapter replacements.

Predictable naming is enabled by default. In this naming scheme, a mainframe network device has an
interface name of the following form:

<pf><type><bus_id>

For example:

encf5f0

Where:

<pf>
A two-character prefix for the network type. The type can be one of the following:

en - Ethernet
ww - WAN
sl - serial line

<type>
The device type. The device type of channel command word (CCW) devices is c. For PCIe devices, the
type is s. For an introduction to mainframe devices in Linux, see “Device categories” on page 7.

<bus_id>
The bus ID identifies the device within the scope of a Linux instance. For a CCW device on Ubuntu, bus
IDs can take different forms, depending on the subchannel set through which the device is accessed.
For subchannel set 0, the bus ID is the device number with stripped leading zeroes. For all other
subchannel sets, the bus ID is the subchannel set ID followed by a dot, followed by the 4-digit device
number.

Examples:

• Device number 0009 on subchannel set 0 has the bus ID 9
• Device number 0b41 on subchannel set 2 has the bus ID 2.0b41

As of Ubuntu Server 22.04, network interface names for RoCE devices follow the naming scheme
described in “Network interface names” on page 332.

You can use lszdev or lscss -a to obtain a list of the network devices in your system.

4 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Matching devices with the corresponding interfaces
If you define multiple interfaces on a Linux instance, you must keep track of the interface names assigned
to your network devices.

Ubuntu Server 22.04 LTS uses predictable network interface names, which make it easy to match network
devices with their interface names. The interface names are preserved across reboots.

How to keep track of the mapping differs depending on the network device driver. For qeth, you can use
the lszdev qeth command (see “lszdev - Display IBM Z device configurations” on page 682) or the
lsqeth command (see “lsqeth - List qeth-based network devices” on page 665)command to obtain a
mapping.

For virtio_net, which handles all network devices on a KVM guest, see “Mapping interfaces to CCW
devices” on page 468.

After you set a device online (or create an IUCV device), issue dmesg to find the associated interface
name in the messages that are issued in response to the device being set online (or created for IUCV).

For each IUCV network device and all other network devices that are online, a symbolic link of the
form /sys/class/net/<interface>/device where <interface> is the interface name is created. This
link points to a sysfs directory that represents the corresponding network device. You can read this
symbolic link with readlink to confirm that an interface name corresponds to a particular network
device.

Main steps for setting up a network interface
The main steps apply to all network device drivers that are based on ccwgroup devices (qeth and lcs
devices). How to perform a particular step can be different for the different device drivers.

The steps that follow apply to Linux on z/VM and to Linux in LPAR mode. For Linux on KVM, these steps
are performed for you on the KVM host. The steps can be different for the different device drivers.

The main steps are:

1. Create a network device by combining suitable subchannels into a group device. The device driver then
creates directories that represent the device in sysfs.

2. Configure the device through its attributes in sysfs. See “Device views in sysfs” on page 11. Some
devices have attributes that can or must be set later when the device is online or when the connection
is active.

3. Set the device online. This step associates the device with an interface name and thus makes the
device known to the Linux network stack. For devices that are associated with a physical network
adapter it also initializes the adapter for the network interface.

4. Configure and activate the interface. This step adds interface properties like IP addresses, netmasks,
and MTU to the network interface and moves the network interface into state "up". The interface is
then ready for user space (socket) programs to run connections and transfer data across it.

The preferred tool to use for device configuration is the chzdev command that is provided with Ubuntu
Server 22.04 LTS, see Chapter 25, “Persistent device configuration,” on page 351.

Chapter 1. How devices are accessed by Linux 5

6 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 2. Devices in sysfs
Most Linux device drivers create structures in sysfs. These structures hold information about individual
devices and are also used to configure and control the devices.

Device categories
The /sys/devices directory includes several device categories that are specific to z/Architecture.

Figure 4 on page 7 illustrates a part of sysfs.

Figure 4. sysfs

/sys/bus and /sys/devices are common Linux directories. The directories following /sys/bus sort
the device drivers according to the categories of devices they control. The sysfs branch for a particular
category might be missing if there is no device for that category.
AP devices

are adjunct processors used for cryptographic operations.
virtio devices

are virtualized devices as used on KVM guests. This branch lists devices with names virtio<n> that
represent the virtio aspects of virtio-ccw devices.

© Copyright IBM Corp. 2000, 2023 7

The CCW aspects of virtio-ccw devices are represented by corresponding devices in
the /sys/bus/ccw branch, with device bus-IDs as device names. This publication uses the
representation in the /sys/bus/ccw branch to work with virtio-ccw devices.

CCW devices
are devices that can be addressed with channel-command words (CCWs). These devices use a single
subchannel on the mainframe's channel subsystem.

CCW group devices
are devices that use multiple subchannels on the mainframe's channel subsystem.

IUCV devices
are devices for virtual connections between z/VM guest virtual machines within an IBM mainframe.
IUCV devices do not use the channel subsystem.

PCI devices
represent PCIe devices, for example, a 10GbE RoCE Express device. In sysfs, PCIe devices are listed
in the /pci directory rather than the /pcie directory.

Table 1 on page 8 lists the z/Architecture specific device drivers that have representation in sysfs:

Table 1. Device drivers with representation in sysfs

Device driver Category sysfs directories

3215 console CCW /sys/bus/ccw/drivers/3215

3270 console CCW /sys/bus/ccw/drivers/3270

DASD CCW /sys/bus/ccw/drivers/dasd-eckd
/sys/bus/ccw/drivers/dasd-fba

SCSI-over-Fibre Channel CCW /sys/bus/ccw/drivers/zfcp

Storage class memory supporting
Flash Express

SCM /sys/bus/scm/drivers/scm_block

Channel-attached tape CCW /sys/bus/ccw/drivers/tape_34xx
/sys/bus/ccw/drivers/tape_3590

Cryptographic AP /sys/bus/ap/drivers/cex5a
/sys/bus/ap/drivers/cex5c
/sys/bus/ap/drivers/cex5p
/sys/bus/ap/drivers/cex4a
/sys/bus/ap/drivers/cex4c
/sys/bus/ap/drivers/cex4p
/sys/bus/ap/drivers/cex3a
/sys/bus/ap/drivers/cex3c
/sys/bus/ap/drivers/pcixcc

virtio CCW transport device driver CCW /sys/bus/ccw/drivers/virtio_ccw

DCSS n/a /sys/devices/dcssblk

z/VM recording IUCV /sys/bus/iucv/drivers/vmlogrdr

qeth (OSA-Express features and
HiperSockets)

CCW group /sys/bus/ccwgroup/drivers/qeth

LCS CCW group /sys/bus/ccwgroup/drivers/lcs

10GbE RoCE Express devices for
Mellanox ConnectX-3 EN (mlx4_en)

PCI sys/bus/pci/drivers/mlx4_core

8 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 1. Device drivers with representation in sysfs (continued)

Device driver Category sysfs directories

10 GbE RoCE Express2 devices
for Mellanox ConnectX-4 EN
(mlx5_core)

PCI sys/bus/pci/drivers/mlx5_core

Internal Shared Memory PCI /sys/bus/pci/drivers/ism

NVMe PCI /sys/bus/pci/drivers/nvme

Some device drivers do not relate to physical devices that are connected through the channel subsystem.
Their representation in sysfs differs from the CCW and CCW group devices, for example, the Cryptographic
device drivers have their own category, AP.

The following sections provide more details about devices and their representation in sysfs.

Device directories
Each device that is known to Linux is represented by a directory in sysfs.

For CCW and CCW group devices the name of the directory is a bus ID that identifies the device within
the scope of a Linux instance. For a CCW device, the bus ID is the device's device number with a leading
"0.<n>.", where <n> is the subchannel set ID. For example, 0.1.0ab1.

CCW group devices are associated with multiple device numbers. For CCW group devices, the bus ID is
the primary device number with a leading "0.<n>.", where <n> is the subchannel set ID.

“Device views in sysfs” on page 11 tells you where you can find the device directories with their
attributes in sysfs.

Device attributes
The device directories contain attributes. You control a device by setting its attributes.

Some attributes are common to all devices in a device category, other attributes are specific to a
particular device driver. The following attributes are common to all CCW devices:

online
You use this attribute to set the device online or offline. To set a device online, write the value 1 to its
online attribute. To set a device offline, write the value 0 to its online attribute.

cutype
specifies the control unit type and model, if applicable. This attribute is read-only.

cmb_enable
enables I/O data collection for the device. See “Enabling, resetting, and switching off data collection”
on page 538 for details.

devtype
specifies the device type and model, if applicable. This attribute is read-only.

availability
indicates whether the device can be used. The following values are possible:
good

This is the normal state. The device can be used.
boxed

DASD only: The device is locked by another operating system instance and cannot be used until
the lock is surrendered or the DASD is accessed by force (see “Accessing DASD by force” on page
145).

Chapter 2. Devices in sysfs 9

no device
Applies to disconnected devices only. The device disappears after a machine check and the device
driver requests to keep the device online anyway. Changes back to "good" when the device returns
after another machine check and the device driver accepts the device back.

no path
Applies to disconnected devices only. After a machine check or a logical vary off, no path remains
to the device. However, the device driver keeps the device online. Changes back to "good" when
the path returns after another machine check or logical vary on and the device driver accepts the
device back.

modalias
contains the module alias for the device. It is of the format:

ccw:t<cu_type>m<cu_model>

or

ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Setting attributes
Directly write to attributes or, for CCW devices, use a command to set attribute values.

About this task
Because the KVM hypervisor hides many aspects of physical devices that back virtio devices, the scope
for setting device attributes for these devices on KVM guests is limited.

Procedure
• You can set a writable attribute by writing the designated value to the corresponding attribute file.
• For CCW devices, you can also use the chzdev or the chccwdev command (see “chzdev - Configure

IBM Z devices” on page 584 and “chccwdev - Set CCW device attributes” on page 569) to set
attributes.

With a single chzdev or chccwdev command you can:

– Set an attribute for multiple devices
– Set multiple attributes for a device, including setting the device online
– Set multiple attributes for multiple devices

Working with newly available devices
Errors can occur if you try to work with a device before its sysfs representation is completely initialized.

About this task
When new devices become available to a running Linux instance, some time elapses until the
corresponding device directories and their attributes are created in sysfs. Errors can occur if you attempt
to work with a device for which the sysfs structures are not present or are not complete. These errors are
most likely to occur and most difficult to handle when you are configuring devices with scripts.

Procedure
Use the following steps before you work with a newly available device to avoid such errors:
1. Attach the device, for example, with a z/VM CP ATTACH command or by dynamically attaching a device

to a KVM virtual server.
2. Assure that the sysfs structures for the new device are complete:

10 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo 1 > /proc/cio_settle

This command returns control after all pending updates to sysfs are complete.

Tip: For CCW devices, you can omit this step if you then use chccwdev (see “chccwdev - Set CCW
device attributes” on page 569) to work with the devices. chccwdev triggers cio_settle for you and
waits for cio_settle to complete.

Results
You can now work with the new device. For example, you can set the device online or set attributes for the
device.

Device views in sysfs
sysfs provides multiple views of device specific data.

The most important views are:

• “Device driver view” on page 11
• “Device category view” on page 12
• “Device view” on page 12
• “Channel subsystem view” on page 12

Many paths in sysfs contain device bus-IDs to identify devices. Device bus-IDs of subchannel-attached
devices are of the form:

0.<n>.<devno>

where <n> is the subchannel set-ID and <devno> is the device number.

Device driver view
This view groups devices by the device drivers that control them.

The device driver view is of the form:

/sys/bus/<bus>/drivers/<driver>/<device_bus_id>

where:
<bus>

is the device category, for example, ccw or ccwgroup.
<driver>

is a name that specifies an individual device driver or the device driver component that controls the
device (see Table 1 on page 8).

<device_bus_id>
identifies an individual device (see “Device directories” on page 9).

Note: DCSSs are not represented in this view.

Examples
• This example shows the path for an ECKD type DASD device:
/sys/bus/ccw/drivers/dasd-eckd/0.0.b100

• This example shows the path for a qeth device:
/sys/bus/ccwgroup/drivers/qeth/0.0.a100

• This example shows the path for a cryptographic device (a CEX3A card):
/sys/bus/ap/drivers/cex3a/card3b

Chapter 2. Devices in sysfs 11

Device category view
This view groups devices by major categories that can span multiple device drivers.

The device category view does not sort the devices according to their device drivers. All devices of the
same category are contained in a single directory. The device category view is of the form:

/sys/bus/<bus>/devices/<device_bus_id>

where:
<bus>

is the device category, for example, ccw or ccwgroup.
<device_bus_id>

identifies an individual device (see “Device directories” on page 9).

Notes:

• DCSSs are not represented in this view.
• /sys/bus/ccw/devices includes virtio CCW devices.

Examples
• This example shows the path for a CCW device.
/sys/bus/ccw/devices/0.0.b100

• This example shows the path for a CCW group device.
/sys/bus/ccwgroup/devices/0.0.a100

• This example shows the path for a cryptographic device:
/sys/bus/ap/devices/card3b

Device view
This view sorts devices according to their device drivers, but independent from the device category. It also
includes logical devices that are not categorized.

The device view is of the form:
/sys/devices/<driver>/<device>

where:
<driver>

is a name that specifies an individual device driver or the device driver component that controls the
device.

<device>
identifies an individual device. The name of this directory can be a device bus-ID or the name of a
DCSS or IUCV device.

Examples
• This example shows the path for a qeth device.
/sys/devices/qeth/0.0.a100

• This example shows the path for a DCSS block device.
/sys/devices/dcssblk/mydcss

Channel subsystem view
The channel subsystem view shows the relationship between subchannels and devices.

The channel subsystem view is of the form:

/sys/devices/css0/<subchannel>

12 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

where:
<subchannel>

is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.

I/O subchannels show the devices in relation to their respective subchannel sets and subchannels. An I/O
subchannel is of the form:

/sys/devices/css0/<subchannel>/<device_bus_id>

where:
<subchannel>

is a subchannel number with a leading "0.<n>.", where <n> is the subchannel set ID.
<device_bus_id>

is a device number with a leading "0.<n>.", where <n> is the subchannel set ID (see “Device
directories” on page 9).

Examples
• This example shows a CCW device with device number 0xb100 that is associated with a subchannel

0x0001.
/sys/devices/css0/0.0.0001/0.0.b100

• This example shows a CCW device with device number 0xb200 that is associated with a subchannel
0x0001 in subchannel set 1.
/sys/devices/css0/0.1.0001/0.1.b200

• The entries for a group device show as separate subchannels. If a CCW group device uses three
subchannels 0x0002, 0x0003, and 0x0004 the subchannel information could be:

/sys/devices/css0/0.0.0002/0.0.a100
/sys/devices/css0/0.0.0003/0.0.a101
/sys/devices/css0/0.0.0004/0.0.a102

Each subchannel is associated with a device number. Only the primary device number is used for the
bus ID of the device in the device driver view and the device view.

• This example lists the information available for a non-I/O subchannel with which no device is
associated:

ls /sys/devices/css0/0.0.ff00/
bus driver modalias subsystem type uevent

Subchannel attributes
There are sysfs attributes that represent subchannel properties, including common attributes and
information specific to the subchannel type.

Subchannels have two common attributes:
type

The subchannel type, which is a numerical value, for example:

• 0 for an I/O subchannel
• 1 for a CHSC subchannel
• 3 for an EADM subchannel

modalias
The module alias for the device of the form css:t<n>, where <n> is the subchannel type (for example,
0 or 1).

These two attributes are the only ones that are always present. Some subchannels, like I/O subchannels,
might contain devices and further attributes.

Chapter 2. Devices in sysfs 13

Apart from the bus ID of the attached device, I/O subchannel directories typically contain these
attributes:
chpids

is a list of the channel-path identifiers (CHPIDs) through with the device is connected. See also
“Channel path ID information” on page 15.

pimpampom
provides the path installed, path available, and path operational masks. See z/Architecture Principles
of Operation, SA22-7832 for details about the masks.

Channel path measurement
For Linux in LPAR mode and Linux on z/VM, a sysfs attribute controls the channel path measurement
facility of the channel subsystem.

/sys/devices/css0/cm_enable

With the cm_enable attribute you can enable and disable the extended channel-path measurement
facility. It can take the following values:
0

Deactivates the measurement facility and remove the measurement-related attributes for the channel
paths. No action if measurements are not active.

1
Attempts to activate the measurement facility and create the measurement-related attributes for the
channel paths. No action if measurements are already active.

If a machine does not support extended channel-path measurements the cm_enable attribute is not
created.

Two sysfs attributes are added for each channel path object:
cmg

Specifies the channel measurement group or unknown if no characteristics are available.
shared

Specifies whether the channel path is shared between LPARs or unknown if no characteristics are
available.

If measurements are active, two more sysfs attributes are created for each channel path object:
measurement

A binary sysfs attribute that contains the extended channel-path measurement data for the channel
path. It consists of eight 32-bit values and must always be read in its entirety, or 0 will be returned.

measurement_chars
A binary sysfs attribute that is either empty, or contains the channel measurement group dependent
characteristics for the channel path, if the channel measurement group is 2 or 3. If not empty, it
consists of five 32-bit values.

Examples
• To turn measurements on issue:

echo 1 > /sys/devices/css0/cm_enable

• To turn measurements off issue:

echo 0 > /sys/devices/css0/cm_enable

14 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Channel path ID information
All CHPIDs that are known to Linux are shown alongside the subchannels in the /sys/devices/css0
directory.

The directories that represent the CHPIDs have the form:
/sys/devices/css0/chp0.<chpid>

where <chpid> is a two digit hexadecimal CHPID.

Example: /sys/devices/css0/chp0.4a

Setting a CHPID logically online or offline
Directories that represent CHPIDs contain a status attribute that you can use to set the CHPID logically
online or offline.

Before you begin
Do not set all CHPIDs that connect a vital device offline. For example, Linux will crash if you set all CHPIDs
for the root device offline.

About this task
When a CHPID has been set logically offline from a particular Linux instance, the CHPID is, in effect,
offline for this Linux instance. A CHPID that is shared by multiple operating system instances can be
logically online to some instances and offline to others. A CHPID can also be logically online to Linux while
it has been varied off at the SE.

Procedure
Issue a command of this form:

echo <value> > /sys/devices/css0/chp0.<CHPID>/status

where:
<CHPID>

is a two digit hexadecimal CHPID.
<value>

is either on or off.

Examples

• To set a CHPID 0x4a logically offline issue:

echo off > /sys/devices/css0/chp0.4a/status

• To read the status attribute to confirm that the CHPID is logically offline issue:

cat /sys/devices/css0/chp0.4a/status
offline

• To set the same CHPID logically online issue:

echo on > /sys/devices/css0/chp0.4a/status

• To read the status attribute to confirm that the CHPID is logically online issue:

cat /sys/devices/css0/chp0.4a/status
online

Chapter 2. Devices in sysfs 15

Configuring a CHPID on LPAR
For Linux in LPAR mode, directories that represent CHPIDs contain a configure attribute that you can
use to query and change the configuration state of I/O channel-paths.

About this task
The following configuration changes are supported:

• From standby to configured ("configure")
• From configured to standby ("deconfigure")

Procedure
Issue a command of this form:

echo <value> > /sys/devices/css0/chp0.<CHPID>/configure

where:
<CHPID>

is a two digit hexadecimal CHPID.
<value>

is either 1 or 0.
To query and set the configure value using commands, see “chchp - Change channel path status” on page
571 and “lschp - List channel paths” on page 650.

Examples

• To set a channel path with the ID 0x40 to standby issue:

echo 0 > /sys/devices/css0/chp0.40/configure

This operation is equivalent to performing a Configure Channel Path Off operation on the Hardware
Management Console.

• To read the configure attribute to confirm that the channel path has been set to standby issue:

cat /sys/devices/css0/chp0.40/configure
0

• To set the same CHPID to configured issue:

echo 1 > /sys/devices/css0/chp0.40/configure

This operation is equivalent to performing a Configure Channel Path On operation on the Hardware
Management Console.

• To read the status attribute to confirm that the CHPID has been set to configured issue:

cat /sys/devices/css0/chp0.40/configure
1

Finding the physical channel associated with a CHPID
Use the mapping of physical channel IDs (PCHID) to CHPIDs to find the hardware from the CHPID number
or the CHPID numbers from the PCHID.

16 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
A CHPID is associated with either a physical port or with an internal connection defined inside the
mainframe, such as HiperSockets. See Figure 5 on page 17. You can determine the PCHID or internal
channel ID number that is associated with a CHPID number.

Figure 5. Relationships between CHPIDs, PCHIDs, and internal channel ID numbers.

Knowing the PCHID number can be useful in the following situations:

• When Linux indicates that a CHPID is in an error state, you can use the PCHID number to identify the
associated hardware.

• When a hardware interface requires service action, the PCHID mapping can be used to determine which
CHPIDs and I/O devices will be affected.

The internal channel ID number can be useful to determine which CHPIDs are connected to the same
communication path, such as a HiperSockets link.

Procedure
To find the physical channel ID corresponding to a CHPID, either:
• Display the mapping of all CHPIDs to PCHIDs. Issue the lschp command:

lschp

• Find the channel-ID related files for the CHPID.
These sysfs files are located under /sys/devices/css0/chp0.<num>, where <num> is the two-
digit, lowercase, hexadecimal CHPID number. There are two attribute files:
chid

The channel ID number.
chid_external

A flag that indicates whether this CHPID is associated with an internal channel ID (value 0) or a
physical channel ID (value 1).

The sysfs attribute files are not created when no channel ID information is available to Linux. For Linux
in LPAR mode, this information is always available. For Linux on z/VM and Linux on KVM, the availability
depends on the configuration and on the hypervisor version.

Example
The lschp command shows channel ID information in a column labeled PCHID. Internal channel IDs are
enclosed in brackets. If no channel ID information is available, the column shows "-".

Chapter 2. Devices in sysfs 17

lschp
CHPID Vary Cfg. Type Cmg Shared PCHID
==
0.30 1 1 1b 2 1 0390
0.31 1 1 1b 2 1 0392
0.32 1 1 1b 2 1 0510
0.33 1 1 1b 2 1 0512
0.34 1 0 1b - - 0580
0.fc 1 1 24 3 1 (0702)
0.fd 1 1 24 3 1 (0703)
0.fe 1 1 24 3 1 (0704)

This example shows that CHPID 30 is associated with PCHID 0390, while CHPID fe is associated with
internal channel ID 0704.

Alternatively, check the channel ID sysfs files, for example for CHPID 30:

cat /sys/devices/css0/chp0.30/chid
0390
cat /sys/devices/css0/chp0.30/chid_external
1

Checking the FCES status of a CHPID
For Linux on IBM Z, directories that represent CHPIDs contain a read-only attribute, esc, that you can use
to query the Fibre Channel Endpoint Security capability of I/O channel-paths.

About this task
The esc sysfs attribute can have the following values:
0

FCES is not supported.
1

The channel path supports authentication.
2 or 3

The channel path supports authentication and encryption.

Procedure
• To read the FCES status of a CHPID, issue:

cat /sys/devices/css0/chp0.<CHPID>/esc

For example:

cat /sys/devices/css0/chp0.34/esc
2

CCW hotplug events
A hotplug event is generated when a CCW device appears or disappears with a machine check.

The hotplug events provide the following variables:
CU_TYPE

for the control unit type of the device that appeared or disappeared.
CU_MODEL

for the control unit model of the device that appeared or disappeared.
DEV_TYPE

for the type of the device that appeared or disappeared.

18 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

DEV_MODEL
for the model of the device that appeared or disappeared.

MODALIAS
for the module alias of the device that appeared or disappeared. The module
alias is the same value that is contained in /sys/devices/css0/<subchannel_id>/
<device_bus_id>/modalias and is of the format ccw:t<cu_type>m<cu_model> or
ccw:t<cu_type>m<cu_model>dt<dev_type>dm<dev_model>

Hotplug events can be used, for example, for:

• Automatically setting devices online as they appear
• Automatically loading driver modules for which devices have appeared

Chapter 2. Devices in sysfs 19

20 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 3. Device auto-configuration for Linux in
LPAR mode

As of z14 and LinuxONE II, you can store device configuration data for Linux in LPAR mode on the Support
Element (SE).

You provide this configuration data through a hardware management console (HMC) interface in Dynamic
Partition Manager (DPM) mode. This data can then be processed automatically by Linux during the boot
process.

The Ubuntu Server installer makes use of the auto-configuration data as specified on the HMC interface
and enables all devices listed.

Making devices available to Linux
Devices must be configured on the hardware and in Linux before they can be used.

Defining devices to an LPAR
Typical IBM Z and LinuxONE systems run numerous operating system instances in parallel and connect
to a considerable number of storage, network, and other peripheral devices. In this environment, device
access must be controlled.

• Workload isolation demands selective and controlled device access.
• Operating systems expend cycles, time, and memory to manage each device. For example, on Linux,

udev creates structures for each registered device.

Data centers with discrete host systems can use physical cabling between hosts and peripheral devices to
manage device access. On IBM Z and LinuxONE systems with their logical partitions (LPARs), much of this
cabling would need to be within the hardware system itself.

Instead of cables, a hardware configuration controls which LPAR has access to which I/O device. The
hardware configuration is specified in an input/output configuration data set (IOCDS). Traditionally,
IOCDSs are created with the hardware configuration definition (HCD) program.

DPM: The IBM Z or LinuxONE firmware automatically processes the device-configuration data you provide
on the HMC interface, and creates and activates a corresponding IOCDS for you.

Controlling device availability on Linux
The hardware configuration already limits the I/O devices that are available to a Linux instance. The
cio_ignore feature provides another control point on Linux. With cio_ignore, you can create and
maintain a list of devices to be ignored by Linux.

DPM: If cio_ignore is active, the list of devices to be ignored by Linux is automatically adjusted, at
boot-time, to accommodate all devices that are configured on the HMC interface. If available to the
hardware, these devices become available to Linux and are set online.

To enforce the current cio_ignore list, you can use the rd.zdev=no-auto kernel parameter to
disregard auto-configuration for devices on Linux. This parameter also affects the initial online state
of PCIe devices and cryptographic devices, see “rd.zdev=no-auto - Override initial device availability for
DPM mode” on page 786.

Configuring devices on Linux
On a running Linux instance, you can use the chzdev command to configure individual devices. With
the lszdev command you can display the device settings. These tools distinguish different types of
configurations.

© Copyright IBM Corp. 2000, 2023 21

Active configuration
The current configuration, which might include settings that do not persist across reboots.

Persistent configuration
The configuration to be applied when the Linux instance is booted.

DPM only: Auto-configuration
The configuration as specified on the HMC interface.

chzdev provides a richer set of configuration options than the HMC interface. The active and persistent
settings are often a fine-tuned version of the auto-configuration.

Overriding the auto-configuration
You can override the auto-configuration for a device with a persistent configuration.

For devices that come online early in the boot process, use the zdev:early device attribute to ensure
that this persistent configuration is available at this early stage (see “chzdev - Configure IBM Z devices”
on page 584).

Managing auto-configuration data
Use the lszdev and chzdev commands to manage auto-configuration data.

Displaying auto-configuration data
The lszdev command can display auto-configuration data.

Use the lszdev command with the --auto-conf option to display a list of devices for which auto-
configuration data is available.

Example:

lszdev --auto-conf
TYPE ID AUTO
dasd-eckd 0.0.ec30 yes
dasd-eckd 0.0.ec31 yes

Auto-configuration settings can be overridden with settings in the persistent configuration. Omit the
--auto-conf option to find out for which devices auto-configuration is effective:

Example:

lszdev
TYPE ID ON PERS NAMES
dasd-eckd 0.0.ec30 yes yes dasda
dasd-eckd 0.0.ec31 yes auto dasdb
dasd-eckd 0.0.ec32 yes no dasdc
qeth 0.0.f5f0:0.0.f5f1:0.0.f5f2 yes no enccf5f0
generic-ccw 0.0.0009 yes no

In the example, auto-configuration data is effective for only one device, 0.0.ec31. Effective auto-
configuration data is indicated through the value auto in the PERS column of the command output.

The lszdev output for detailed information about a device includes a separate column, AUTOCONF, for
auto-configuration data, if available.

Example:

22 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lszdev -i 0.0.ec31
DEVICE dasd-eckd 0.0.ec31
Names : -
Modules : dasd_eckd_mod dasd_mod
Online : no
Exists : yes
Persistent : no
Auto-configured : yes

ATTRIBUTE ACTIVE PERSISTENT AUTOCONF
cmb_enable "0" - -
eer_enabled "0" - -
erplog "0" - -
failfast "0" - -
last_known_reservation_state "none" - -
online "1" - "1"
raw_track_access "0" - -
readonly "0" - -
reservation_policy "ignore" - -
use_diag "0" - -

If the AUTOCONF column is omitted, no auto-configuration data is available for this device. You can force
the column with the --auto-conf option.

You can access the raw auto-configuration data through sysfs at /sys/firmware/sclp_sd/config/
data. For example, you can use this sysfs attribute as a source for importing auto-configuration data with
the chzdev command:

chzdev --import /sys/firmware/sclp_sd/config/data --auto-conf

Modifying the auto-configuration
Persistent changes to the auto-configuration can be made only through the hardware interface through
which the original device configuration is specified. Such changes are applied with the next reboot.

To refresh the raw auto-configuration in sysfs at /sys/firmware/sclp_sd/config/data, target an
echo command at /sys/firmware/sclp_sd/config/reload.

echo 1 > /sys/firmware/sclp_sd/config/reload

You can use chzdev with the -d and --auto-conf options to temporarily remove the auto-configuration
for a device.

Example:

chzdev -d --auto-conf 0.0.ec31
Deconfiguring devices in the auto-configuration only
ECKD DASD 0.0.ec31 deconfigured

Auto-configuration settings are then not applied when the device appears. These configuration changes
do not remove the corresponding configuration data on the SE. The auto-configuration data for the device
is restored with the next reboot.

Overriding the auto-configuration for devices that are used early in the boot
process

With chzdev, you can override settings from the auto-configuration in the active configuration or
persistently. Some persistent settings for devices that are set online early in the boot process must be
included in the initial RAM disk.

Use the chzdev command to set the zdev:early device attribute for such devices.

Example:

Chapter 3. Device auto-configuration for Linux in LPAR mode 23

chzdev -e dasd-fba e030 zdev:early=1
FBA DASD 0.0.e030 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
- FBA DASD 0.0.e030
Update initial RAM-disk now? (yes/no) yes

Do not indiscriminately include configuration settings in the initial RAM disk. To remove settings for a
device, remove the zdev:early attribute from the device settings.

Example:

chzdev -e dasd-fba e030 --remove-attribute zdev:early
FBA DASD 0.0.e030 configured
Note: The initial RAM-disk must be updated for these changes to take effect:
- FBA DASD 0.0.e030
Update initial RAM-disk now? (yes/no) yes

Use the lszdev command to list all devices that are configured with the zdev:early attribute.

Example:

lszdev --by-attr zdev:early=1
TYPE ID ON PERS NAMES
dasd-fba 0.0.e030 yes yes dasda
zfcp-lun 0.0.1911:0x50050763070845e3:0x4082409f00000000 no yes

24 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 4. Kernel and module parameters
Kernel and module parameters are used to configure the kernel and kernel modules.

Individual kernel parameters or module parameters are single keywords, or keyword-value pairs of the
form keyword=<value> with no blank. Blanks separate consecutive parameters.

Kernel parameters and module parameters are encoded as strings of ASCII characters. For tape or the
z/VM reader as a boot device, the parameters can also be encoded in EBCDIC.

Use kernel parameters to configure the base kernel and any optional kernel parts that have been compiled
into the kernel image. Use module parameters to configure separate kernel modules. Do not confuse
kernel and module parameters. Although a module parameter can have the same syntax as a related
kernel parameter, kernel and module parameters are specified and processed differently.

Kernel parameters
Different methods are available to configure the base kernel and all modules that have been compiled into
the kernel.

Where possible, this document describes kernel parameters with the device driver or feature to which
they apply. Kernel parameters that apply to the base kernel or cannot be attributed to a particular device
driver or feature are described in Chapter 63, “Selected kernel parameters,” on page 773. You can also
find descriptions for most of the kernel parameters in the kernel-parameters.txt file, which is part of
the admin-guide in the linux-doc package.

Specifying kernel parameters
There are different methods for passing kernel parameters to Linux.

• Including kernel parameters in a boot configuration
• Using a kernel parameter file
• Specifying kernel parameters when booting Linux

Kernel parameters that you specify when booting Linux are not persistent. To define a permanent set of
kernel parameters for a Linux instance, include these parameters in the boot configuration.

Note: Ubuntu Server, zipl, or the installer; especially autoinstall, might set required kernel parameters for
you. Parameters that you specify might interfere with these settings. Read /proc/cmdline to find out
which parameters were used to start a running Linux instance.

Including kernel parameters in a boot configuration
Use the zipl tool to create Linux boot configurations for IBM mainframe systems.

Which sources of kernel parameters you can use depends on the mode in which you run zipl. See “zipl
modes and syntax overview” on page 58 for details.

A boot configuration can include up to 895 characters of kernel parameters. See also “How kernel
parameters from different sources are combined” on page 28.

Running zipl in configuration-file mode
In configuration-file mode, you issue the zipl command with command arguments that identify a section
in a zipl configuration-file or a Boot Loader Specification (BLS) snippet, see “BLS configuration snippets”
on page 80.

The possible sources of kernel parameters depend on where the details of the boot configuration are
specified, in a zipl configuration-file section or in a BLS snippet.

© Copyright IBM Corp. 2000, 2023 25

zipl configuration-file section
Boot configurations in a zipl configuration-file section have three potential sources of kernel
parameters, as illustrated in Figure 6 on page 26.

Figure 6. Sources of kernel parameters: zipl configuration-file section

zipl concatenates the kernel parameters from these sources in the following order:

1. Parameters that are specified in the kernel parameter file
2. Parameters that are specified in the zipl configuration-file
3. Parameters that are specified on the command line

BLS snippet
Boot configurations in a BLS snippet have two potential sources of kernel parameters, as illustrated in
Figure 7 on page 26.

Figure 7. Sources of kernel parameters: BLS snippet

zipl concatenates the kernel parameters from these sources in the following order:

1. Parameters that are specified in the BLS snippet
2. Parameters that are specified on the command line

See “zipl modes and syntax overview” on page 58 for details about the zipl command modes.

Running zipl in command-line mode
In command-line mode, you specify the details about the boot configuration to be created as arguments
for the zipl command.

As shown in Figure 8 on page 27, there are two sources of kernel parameters for zipl in command-line
mode.

26 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 8. Sources of kernel parameters for zipl in command-line mode

In command-line mode, zipl concatenates the kernel parameters in the order:

1. Parameters that are specified in the kernel parameter file
2. Parameters that are specified on the command line

See “zipl modes and syntax overview” on page 58 for details about the zipl command modes.

Using a kernel parameter file in the z/VM reader
For booting Linux from the z/VM reader, you can use a kernel parameter file in the reader.

See “Booting from the z/VM reader” on page 110 for more details.

Specifying kernel parameters when booting Linux
Depending on the boot device and whether you boot Linux in a z/VM guest virtual machine or in LPAR
mode, you can provide kernel parameters when you start the boot process.
zipl interactive boot menu on DASD

When booting Linux on z/VM or in LPAR mode with a zipl interactive boot menu on a DASD boot
device, you can display the menu and specify kernel parameters as you select a boot configuration.
See “DASD menu configuration example for z/VM” on page 108 and “DASD menu configuration for
LPAR” on page 94 for details.

z/VM guest virtual machine with a CCW boot device
When booting Linux in a z/VM guest virtual machine from a CCW boot device, you can use the PARM
parameter of the IPL command to specify kernel parameters. CCW boot devices include DASD, tape,
and the z/VM reader.

For details, see the subsection of “Booting Linux in a z/VM guest virtual machine” on page 106 that
applies to your boot device.

z/VM guest virtual machine with a SCSI boot device
When booting Linux in a z/VM guest virtual machine from a SCSI boot device, you can use the SET
LOADDEV command with the SCPDATA option to specify kernel parameters. See “Booting from a SCSI
device” on page 108 for details.

LPAR mode with a SCSI boot device
When booting Linux in LPAR mode from a SCSI boot device, you can specify kernel parameters in the
Operating system specific load parameters field on the HMC Load panel. See Figure 31 on page 95.

Kernel parameters as entered from a CMS or CP session are interpreted as lowercase on Linux.

Adding kernel parameters to a boot configuration
When booting a Linux instance, you can specify kernel parameters that are used in addition to the
parameters in the boot configuration.

By default, the kernel parameters you specify when booting are concatenated to the end of the kernel
parameters in your boot configuration. In total, the combined kernel parameter string that is used for
booting can be up to 4096 characters.

Chapter 4. Kernel and module parameters 27

If kernel parameters are specified in a combination of methods, they are concatenated in the following
order:

1. Kernel parameters that have been included in the boot configuration with zipl
2. DASD only: zipl kernel parameters that are specified with the interactive boot menu
3. Depending on where you are booting Linux:

• z/VM: kernel parameters that are specified with the PARM parameter for CCW boot devices; kernel
parameters that are specified as SCPDATA for SCSI boot devices

• LPAR: kernel parameters that are specified on the HMC Load panel for SCSI boot devices

If the combined kernel parameter string contains conflicting settings, the last specification in the
string overrides preceding ones. Thus, you can specify a kernel parameter when booting to override an
unwanted setting in the boot configuration.

Examples
• If the kernel parameters in your boot configuration include possible_cpus=8 but you specify
possible_cpus=2 when booting, Linux uses possible_cpus=2.

• If the kernel parameters in your boot configuration include resume=/dev/dasda2 to specify a disk
from which to resume the Linux instance when it has been suspended, you can circumvent the resume
process by specifying noresume when booting.

Replacing all kernel parameters in a boot configuration
Kernel parameters that you specify when booting can completely replace the kernel parameters in your
boot configuration.

To replace all kernel parameters in your boot configuration, specify the new parameter string with a
leading equal sign (=).

Note: This feature is intended for expert users who want to test a set of parameters. By replacing all
parameters, you might inadvertently omit parameters that the boot configuration requires. Furthermore,
you might omit parameters other than kernel parameters that Ubuntu Server includes in the parameter
string for use by the init process.

Read /proc/cmdline to find out with which parameters a running Linux instance was started (see also
“Displaying the current kernel parameter line” on page 29).

How kernel parameters from different sources are combined
If kernel parameters are specified in a combination of methods, they are concatenated in a specific order.

1. Kernel parameters that have been included in the boot configuration (see “Including kernel
parameters in a boot configuration” on page 25).

The kernel parameters in the boot configuration cannot exceed 895 characters. If more then 895
characters are specified, the excessive characters are truncated.

2. LPAR or z/VM: Kernel parameters that you specify through the HMC or through z/VM interfaces (see
“Specifying kernel parameters when booting Linux” on page 27).

For DASD boot devices you can specify up to 64 characters (z/VM only); for SCSI boot devices you can
specify up to 3452 characters.

In total, the combined kernel parameter string that is passed to the Linux kernel for booting can be up to
4096 characters.

Multiple specifications for the same parameter
For some kernel parameters, multiple instances in the kernel parameter string are treated cumulatively.
For example, multiple specifications for cio_ignore= are all processed and combined.

28 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Conflicting kernel parameters
If the kernel parameter string contains kernel parameters with mutually exclusive settings, the last
specification in the string overrides preceding ones. Thus, you can specify a kernel parameter when
booting to override an unwanted setting in the boot configuration.

Example: If the kernel parameters in your boot configuration include possible_cpus=8 but you specify
possible_cpus=2 when booting, Linux uses possible_cpus=2.

Parameters other than kernel parameters
Parameters on the kernel parameter string that the kernel does not recognize as kernel parameters
are ignored by the kernel and made available to user space programs. How multiple specifications and
conflicts are resolved for such parameters depends on the program that evaluates them.

Examples for kernel parameters
Typical parameters that are used for booting Ubuntu Server 22.04 LTS configure the console and the root
file system.

boot_image=<integer>
to specify the zipl menu section for booting.

conmode=<mode>, condev=<cuu>, console=<name>
to set up the Linux console. See “Console kernel parameter syntax” on page 43 for details.

ramdisk_size=<size>
to specify the size of the initial RAM disk.

ro
to mount the root file system read-only.

root=<rootdevice>
to specify the device to be mounted as the root file system.

Displaying the current kernel parameter line
Read /proc/cmdline to find out with which kernel parameters a running Linux instance was booted.

About this task
Apart from kernel parameters, which are evaluated by the Linux kernel, the kernel parameter line can
contain parameters that are evaluated by user space programs, for example modprobe.

See also “Displaying current IPL parameters” on page 111 about displaying the parameters that were
used to IPL and boot the running Linux instance.

Example

cat /proc/cmdline
crashkernel=1G-:128M root=/dev/disk/by-path/ccw-0.0.5f50-part1 BOOT_IMAGE=0

Kernel parameters for rebooting
When rebooting, you can use the current kernel parameters or an alternative set of kernel parameters.
By default, Linux uses the current kernel parameters for rebooting. See “Rebooting from an alternative
source” on page 114 about setting up Linux to use different kernel parameters for re-IPL and the
associated reboot.

Module parameters
Use module parameters to configure kernel modules that are compiled as separate modules that can be
loaded by the kernel.

Chapter 4. Kernel and module parameters 29

Separate kernel modules must be loaded before they can be used. Many modules are loaded
automatically by Ubuntu Server 22.04 LTS when they are needed.

To keep the module parameters in the context of the device driver or feature module to which they apply,
this information describes module parameters as part of the syntax you would use to load the module
with modprobe.

To find the separate kernel modules for Ubuntu Server 22.04 LTS, list the contents of the subdirectories
of /lib/modules/<kernel-release>/kernel/drivers/s390 in the Linux file system. In the path,
<kernel-release> denotes the kernel level. You can query the value for <kernel-release> with uname -r.
You can combine the commands into one:

ls -la /lib/modules/$(uname -r)/kernel/drivers/s390

Specifying module parameters
You can specify module parameters with modprobe or on the kernel parameter line.

Specifying module parameters with modprobe
If you load a module explicitly with a modprobe command, you can specify the module parameters as
command arguments.

Module parameters that are specified as arguments to modprobe are effective only until the module is
unloaded.

Note: Parameters that you specify as command arguments might interfere with parameters that Ubuntu
Server 22.04 LTS sets for you.

Module parameters on the kernel parameter line
Parameters that the kernel does not recognize as kernel parameters are ignored by the kernel and made
available to user space programs.

One of these user space programs is modprobe. modprobe interprets module parameters that are
specified on the kernel parameter line if they are qualified with a leading module prefix and a dot.

For example, if the DASD device driver is compiled as a separate module, you can include a specification
with dasd_mod.dasd= on the kernel parameter line. modprobe evaluates this specification as the dasd=
module parameter when the dasd_mod module is loaded.

For some device drivers and features, the module parameters and their corresponding kernel parameters
follow a naming convention that makes them effective regardless of whether the device driver or feature
is compiled into the kernel or as a separate module. An example is the zfcp.datarouter= kernel
parameter with its corresponding datarouter= module parameter.

If the SCSI-over-Fibre Channel device driver (zfcp device driver) is compiled into the kernel,
zfcp.datarouter= is recognized as a kernel parameter. If the zfcp device driver is compiled as a
separate module, modprobe interprets zfcp.datarouter= as the datarouter= parameter to be used
when the zfcp module is loaded.

Note: Ubuntu Server 22.04 LTS might set required module parameters for you. Parameters that you
specify on the kernel parameter line might interfere with these settings.

Including module parameters in a boot configuration
Module parameters for modules that are required early during the boot process must be included in the
boot configuration.

About this task
Ubuntu Server uses an initial RAM disk when booting.

30 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Ubuntu Server runs update-initramfs and zipl for you when saving changes you have made.

Procedure
Perform these steps to provide module parameters for modules that are included in the initial RAM disk:
1. Make your configuration changes, for example with the chzdev command.
2. If Ubuntu Server does not perform this task for you:

a) Run update-initramfs to create an initial RAM disk that includes the module parameters.
For example:

update-initramfs -k all -u

Tip: Use -k all to ensure that all kernel and initrd combinations on the system are updated.
b) Run zipl to include the new RAM disk in your boot configuration.

Displaying information about the modules
Loaded modules can export module parameter settings to sysfs. Not all parameters are visible.

The parameters for modules are available as sysfs attributes of the form:

/sys/module/<module name>/parameters/<parameter name>

Before you begin
You can display information about modules that fulfill these prerequisites:

• The module must be loaded.
• The module must export the parameters to sysfs.

Procedure
To find and display the parameters for a module, follow these steps:
1. Optional: Confirm that the module of interest is loaded by issuing a command of this form:

lsmod | grep <module_name>

where <module_name> is the name of the module.
2. Optional: Get an overview of the parameters for the module by issuing a command of this form:

modinfo <module_name>

3. Check if the module of interest exports parameters to sysfs. Issue a command of the form:

ls /sys/module/<module_name>/parameters

4. If the previous command listed parameters, you can display the value for the parameter of interest.
Issue a command of the form:

cat /sys/module/<module_name>/parameters/<parameter name>

Example

• To list the module parameters for the ap module, issue:

Chapter 4. Kernel and module parameters 31

ls /sys/module/ap/parameters
 domain
 ...

• To display the value of the domain parameter, issue:

cat /sys/module/ap/parameters/domain
1

32 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 2. Booting and shutdown
These device drivers and features are useful in the context of booting and shutting down instances of
Ubuntu Server 22.04 LTS.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 33

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

34 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 5. Console device drivers
The console device drivers support terminal devices for basic Linux control, for example, for booting
Linux, for troubleshooting, and for displaying Linux kernel messages.

Linux in LPAR mode
The only interface to a Linux instance in an LPAR before the boot process is completed is the Hardware
Management Console (HMC), see Figure 9 on page 35. After the boot process has completed, you
typically use a network connection to access Linux through a user login, for example, in an SSH session.
The possible connections depend on the configuration of your particular Linux instance.

Figure 9. Hardware Management Console

Linux on z/VM
With Linux on z/VM, you typically use a 3270 terminal or terminal emulator to log in to z/VM first. From the
3270 terminal, you IPL the Linux boot device. Again, after boot you typically use a network connection to
access Linux through a user login rather than a 3270 terminal.

Linux on KVM
You initiate the boot process for Linux as a KVM guest on IBM Z when you start the KVM virtual server
through a virsh command on the KVM host. The --console of the virsh start command option
gives you access to a terminal that displays the kernel messages.

After the boot process has completed, a guest is usually accessed through a user login, for example, in an
SSH session. The possible connections depend on the configuration of your particular Linux instance.

Console features
The console device drivers support several types of terminal devices.

© Copyright IBM Corp. 2000, 2023 35

HMC applets
You can use two applets.
Operating System Messages

This applet provides a line-mode terminal. See Figure 10 on page 36 for an example.
Integrated ASCII Console

This applet provides a full-screen mode terminal. It is useful, for example, for interactive
commands.

These HMC applets are accessed through the service-call logical processor (SCLP) console interface.
3270 terminal

This terminal can be based on physical 3270 terminal hardware or a 3270 terminal emulation.

z/VM can use the 3270 terminal as a 3270 device or perform a protocol translation and use it as a
3215 device. As a 3215 device it is a line-mode terminal for the United States code page (037).

The iucvconn program
You can use the iucvconn program from Linux on z/VM to access terminal devices on other Linux
instances that run as guests of the same z/VM system.

For information about the iucvconn program, see How to Set up a Terminal Server Environment on
z/VM, SC34-2596.

virsh command on the KVM host
For Linux on KVM, you can access the console through a virsh command on the KVM host. See “Using
virsh on a KVM host” on page 40.

The console device drivers support these terminals as output devices for Linux kernel messages.

Figure 10. Linux kernel messages on the HMC Operating System Messages applet

36 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

What you should know about the console device drivers
The console concepts, naming conventions, and terminology overview help you to understand the tasks
you might have to perform with console and terminal devices.

Console terminology
Terminal and console have special meanings in Linux.

Linux terminal
An input/output device through which users interact with Linux and Linux applications. Login
programs and shells typically run on Linux terminals and provide access to the Linux system.

Linux console
An output-only device to which the Linux kernel can write kernel messages. Linux console devices can
be associated with Linux terminal devices. Thus, console output can be displayed on a Linux terminal.

Mainframe terminal
Any device that gives a user access to operating systems and applications that run on a mainframe. A
mainframe terminal can be a physical device such as a 3270 terminal hardware that is linked to the
mainframe through a controller. It can also be a terminal emulator on a workstation that is connected
through a network. For example, you access z/OS through a mainframe terminal.

Hardware Management Console (HMC)
A device that gives a system programmer control over IBM Z hardware resources, for example, LPARs.
The HMC is a web application on a web server that is connected to the support element (SE). The
HMC can be accessed from the SE but more commonly is accessed from a workstation within a secure
network.

On the mainframe, the Linux console and Linux terminals can both be connected to a mainframe terminal.

Before you have a Linux terminal - the zipl boot menu
Do not confuse the zipl boot menu with a Linux terminal.

Depending on your setup, a zipl boot menu might be displayed when you perform an IPL. The zipl boot
menu is part of the boot loader that loads the Linux kernel and is displayed before a Linux terminal is set
up. The zipl boot menu is very limited in its functions. For example, there is no way to specify uppercase
letters because all input is converted to lowercase characters. For more details about booting Linux, see
Chapter 7, “Booting Linux,” on page 89. For more information about the zipl boot menu, see Chapter 6,
“Initial program loader for IBM Z - zipl,” on page 57.

Device and console names
Each terminal device driver can provide a single console device.

Table 2 on page 37 lists the terminal device drivers and the corresponding device names and console
names.

Table 2. Device and console names

Device driver Device name Console name

SCLP line-mode terminal device driver sclp_line0 ttyS0

SCLP VT220 terminal device driver ttysclp0 ttyS1

3215 line-mode terminal device driver ttyS0 ttyS0

3270 terminal device driver 3270/tty1 to 3270/
tty<N>

tty3270

z/VM IUCV HVC device driver hvc0 to hvc7 hvc0

virtio-console device driver hvc0 to hvc<n> hvc0

Chapter 5. Console device drivers 37

As shown in Table 2 on page 37, the console with name ttyS0 can be provided either by the SCLP console
device driver or by the 3215 line-mode terminal device driver. The system environment and settings
determine which device driver provides ttyS0. For details, see the information about the conmode kernel
parameter in “Console kernel parameter syntax” on page 43.

Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvc0 is associated with
a console.

Of the 3270/tty<N> terminal devices only 3270/tty1 is associated with a console.

Device nodes
Applications, for example, login programs, access terminal devices by device nodes.

For example, with the default conmode settings, udev creates the following device nodes:

Table 3. Device nodes created by udev

Device driver LPAR z/VM KVM

SCLP line-mode terminal device driver /dev/
sclp_line0

n/a /dev/
sclp_line0

SCLP VT220 terminal device driver /dev/ttysclp0 /dev/ttysclp0 /dev/ttysclp0

3215 line-mode terminal device driver n/a /dev/ttyS0 n/a

3270 terminal device driver /dev/3270/
tty1 to
/dev/3270/
tty<N>

/dev/3270/tty1 to
/dev/3270/tty<N>

/dev/3270/
tty1 to /dev/
3270/tty<N>

z/VM IUCV HVC device driver n/a /dev/hvc0 to /dev/
hvc7

n/a

virtio-console device driver n/a n/a /dev/hvc0
to /dev/hvc<n>

For Linux running in LPAR mode, the 3270 terminal device node is only created if a real terminal is
available.

Terminal modes
The Linux terminals that are provided by the console device drivers include line-mode terminals, block-
mode terminals, and full-screen mode terminals.

On a full-screen mode terminal, pressing any key immediately results in data being sent to the terminal.
Also, terminal output can be positioned anywhere on the screen. This feature facilitates advanced
interactive capability for terminal-based applications like the vi editor.

On a line-mode terminal, the user first types a full line, and then presses Enter to indicate that the line is
complete. The device driver then issues a read to get the line, adds a new line, and hands over the input to
the generic TTY routines. Line-mode terminals provide fewer capabilities than full-screen or block mode
terminals and are intended as a backup for emergencies.

The terminal that is provided by the 3270 terminal device driver is a traditional IBM mainframe block-
mode terminal. Block-mode terminals provide full-screen output support and users can type input in
predefined fields on the screen. Other than on typical full-screen mode terminals, no input is passed on
until the user presses Enter. The terminal that is provided by the 3270 terminal device driver provides
limited support for full-screen applications. For example, the ned editor is supported, but not vi.

Table 4 on page 39 summarizes when to expect which terminal mode.

38 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 4. Terminal modes

Accessed through Environment Device driver Mode

Operating System Messages
applet on the HMC

LPAR SCLP line-mode
terminal device driver

Line mode

z/VM emulation of the HMC
Operating System Messages
applet

z/VM SCLP line-mode
terminal device driver

Line mode

Integrated ASCII Console
applet on the HMC

z/VM or LPAR SCLP VT220 terminal
device driver

Full-screen
mode

KVM host (for example,
using the virsh console
command)

KVM SCLP line-mode
terminal device driver

Line mode

KVM host (for example,
using the virsh console
command)

KVM SCLP VT220 terminal
device driver

Full-screen
mode

3270 terminal hardware or
emulation

z/VM with CONMODE=3215
or KVM

3215 line-mode
terminal device driver

Line mode

3270 terminal hardware or
emulation

z/VM with CONMODE=3270
or KVM

3270 terminal device
driver

Block mode

iucvconn program z/VM z/VM IUCV HVC device
driver

Full-screen
mode

KVM host (for example,
using the virsh console
command)

KVM virtio-console device
driver

Full-screen
mode

The 3270 terminal device driver provides three different views. See “Switching the views of the 3270
terminal device driver” on page 50 for details.

How console devices are accessed
How you can access console devices depends on your environment.

The diagrams in the following sections omit device drivers that are not relevant for the particular access
scenario.

Using the HMC for Linux in an LPAR
You can use two applets on the HMC to access terminal devices on Linux instances that run directly in an
LPAR.

Figure 11 on page 40 shows the possible terminal devices for Linux instances that run directly in an
LPAR.

Chapter 5. Console device drivers 39

Figure 11. Accessing terminal devices on Linux in an LPAR from the HMC

The Operating System Messages applet accesses the device that is provided by the SCLP line-mode
terminal device driver. The Integrated ASCII console applet accesses the device that is provided by the
SCLP VT220 terminal device driver.

Using the HMC for Linux on z/VM
You can use the HMC Integrated ASCII Console applet to access terminal devices on Linux instances
that run as z/VM guests.

While the ASCII system console is attached to the z/VM guest virtual machine where the Linux instance
runs, you can access the ttyS1 terminal device from the HMC Integrated ASCII Console applet (see
Figure 12 on page 40).

Figure 12. Accessing terminal devices from the HMC for Linux on z/VM

Use the CP ATTACH SYSASCII command to attach the ASCII system console to your z/VM guest virtual
machine.

Using virsh on a KVM host
You can use the virsh console command on a KVM host to access an sclp or virtio based terminal
on a KVM guest.

40 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 13. Using virsh to access a KVM guest console

Figure 13 on page 41, shows a KVM guest with three device drivers that can provide a console. The
terminal that is accessed by the virsh console command depends on the guest configuration. For
details, see KVM Virtual Server Management, SC34-2752.

In a common setup, the virsh console command opens a connection to the device that is provided
by the SCLP VT220 terminal device driver. This device also becomes associated with the generic /dev/
console device node.

Whether your Linux instance uses this device as the device to which Linux kernel messages are written
depends on the Linux configuration. Use the console= parameter to control which devices are activated
to receive Linux kernel messages (see in “Console kernel parameter syntax” on page 43).

Using a 3270 terminal emulation for Linux on z/VM
For Linux on z/VM, you can use a 3270 terminal emulation to access a console device.

Figure 14 on page 41 illustrates how z/VM can handle the 3270 communication.

Figure 14. Accessing terminal devices from a 3270 device

Note: Figure 14 on page 41 shows two console devices with the name ttyS0. Only one of these devices
can be present at any one time.

CONMODE=3215
translates between the 3270 protocol and the 3215 protocol and connects the 3270 terminal
emulation to the 3215 line-mode terminal device driver in the Linux kernel.

You can use the conmode= kernel parameter to make the kernel issue the corresponding z/VM CP
command.

Chapter 5. Console device drivers 41

CONMODE=3270
connects the 3270 terminal emulation to the 3270 terminal device driver in the Linux kernel.

You can use the conmode= kernel parameter to make the kernel issue the corresponding z/VM CP
command.

VINPUT
is a z/VM CP command that directs input to the ttyS0 device provided by the SCLP line-mode terminal
device driver. In a default z/VM environment, ttyS0 is provided by the 3215 line-mode terminal device
driver. You can use the conmode= kernel parameter to make the SCLP line-mode terminal device
driver provide ttyS0.

The terminal device drivers continue to support 3270 terminal hardware, which, if available at your
installation, can be used instead of a 3270 terminal emulation.

For information about the conmode= kernel parameter, see “Console kernel parameter syntax” on page
43.

Using a 3270 terminal emulation for Linux on KVM
For Linux on IBM Z as a KVM guest, you can use a 3270 terminal emulation to access a console device
through the 3270 or 3215 terminal device driver.

The following figure illustrates how Linux on KVM can handle the 3270 communication.

Figure 15. Accessing terminal devices from virt-manager

Using iucvconn on Linux on z/VM
On Linux on z/VM, you can access the terminal devices that are provided by the z/VM IUCV Hypervisor
Console (HVC) device driver.

Figure 16. Accessing terminal devices from a peer Linux instance

As illustrated in Figure 16 on page 42, you access the devices with the iucvconn program from
another Linux instance. Both Linux instances are guests of the same z/VM system. IUCV provides the

42 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

communication between the two Linux instances. With this setup, you can access terminal devices on
Linux instances with no external network connection.

Note: Of the terminal devices that are provided by the z/VM IUCV HVC device driver only hvc0 can be
activated to receive Linux kernel messages.

Setting up the console device drivers
You configure the console device drivers through kernel parameters. You also might have to enable user
logins on terminals, and ensure suitable terminal settings.

Console kernel parameter syntax
Use the console kernel parameters to configure the console device drivers, line-mode terminals, and HVC
terminal devices.

Console kernel parameter syntax

conmode= hwc

sclp

3215

3270

1
console=  <console_name>

2

condev=  <devno>

sclp_con_drop=1

sclp_con_drop=0

sclp_con_pages=6

sclp_con_pages=  <n>

3

hvc_iucv=1

hvc_iucv=  <number_of_devices>

hvc_iucv_allow=

,

<z/VM user ID>
4

Notes:
1 Specify the conmode= parameter for Linux on z/VM only.
2 If you specify both the conmode= and the console= parameter, specify them in the sequence
that is shown, conmode= first.
3 The sclp_con_pages= and sclp_con_drop= parameters apply only to the SCLP line-mode
terminal device driver and to the SCLP VT220 terminal device driver.
4 The hvc_iucv= and hvc_iucv_allow= kernel parameters apply only to terminal devices that
are provided by the z/VM IUCV HVC device driver.

where:
conmode

specifies which one of the line-mode or block-mode terminal devices is present and provided by
which device driver.

A Linux kernel might include multiple console device drivers that can provide a line-mode terminal:

Chapter 5. Console device drivers 43

• SCLP line-mode terminal device driver
• 3215 line-mode terminal device driver
• 3270 terminal device driver

On a running Linux instance, only one of these device drivers can provide a device. Table 5 on page
44 shows how the device driver that is used by default depends on the environment.

Table 5. Default device driver for the line-mode terminal device

Mode Default

LPAR SCLP line-mode terminal device driver

z/VM 3215 line-mode terminal device driver or 3270 terminal device driver,
depending on the z/VM guest's console settings (the CONMODE field in the
output of #CP QUERY TERMINAL).

If the device driver you specify with the conmode= kernel parameter
contradicts the CONMODE z/VM setting, z/VM is reconfigured to match the
specification for the kernel parameter.

KVM SCLP line-mode terminal device driver

You can use the conmode= parameter to override the default for Linux on z/VM. Do not change the
default for Linux on KVM or for Linux in LPAR mode.

sclp or hwc
specifies the SCLP line-mode terminal device driver.

You need this specification if you want to use the z/VM CP VINPUT command (“Using a z/VM
emulation of the HMC Operating System Messages applet” on page 53).

3270
specifies the 3270 device driver.

3215
specifies the 3215 device driver.

console=<console_name>
specifies the console devices to be activated to receive Linux kernel messages. If present, ttyS0 is
always activated to receive Linux kernel messages and, by default, it is also the preferred console.

The preferred console is used as an initial terminal device, beginning at the stage of the boot process
when the initialization procedures run. Messages from programs that run at this stage are displayed
on the preferred console only. Multiple terminal devices can be activated to receive Linux kernel
messages, but only one of the activated terminal devices can be the preferred console.

If you specify conmode=3270, there is no console with name ttyS0.

If you want console devices other than ttyS0 to be activated to receive Linux kernel messages,
specify a console statement for each of these other devices. The last console statement designates
the preferred console.

If you specify one or more console parameters and you want to keep ttyS0 as the preferred console,
add a console parameter for ttyS0 as the last console parameter. Otherwise, you do not need a
console parameter for ttyS0.

<console_name> is the console name that is associated with the terminal device to be activated to
receive Linux kernel messages. Of the terminal devices that are provided by the z/VM IUCV HVC
device driver, only hvc0 can be activated. Specify the console names as shown in Table 2 on page 37.

condev=<devno>
specifies the CCW device to be chosen from several defined 3270 consoles. By default the first device
that is found is chosen. Omit this parameter if there is only one device, or if any device is acceptable.

44 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

sclp_con_drop
governs the behavior of the SCLP line-mode and VT220 terminal device driver if either of them runs
out of output buffer pages. The trade-off is between slowing down Linux and losing console output.
Possible values are 0 and 1 (default).
0

assures complete console output by pausing until used output buffer pages are written to an
output device and can be reused without loss.

1
avoids system pauses by overwriting used output buffer pages, even if the content was never
written to an output device.

You can use the sclp_con_pages= parameter to set the number of output buffers.

sclp_con_pages=<n>
specifies the number of 4-KB memory pages to be used as the output buffer for the SCLP line-mode
and VT220 terminal. Depending on the line length, each output buffer can hold multiple lines. Use
many buffer pages for a kernel with frequent phases of producing console output faster than it can be
written to the output device.

Depending on the setting for the sclp_con_drop=, running out of pages can slow down Linux or
cause it to lose console output.

The value is a positive integer. The default is 6.

hvc_iucv=<number_of_devices>
specifies the number of terminal devices that are provided by the z/VM IUCV HVC device driver.
<number_of_devices> is an integer in the range 0 - 8. Specify 0 to switch off the z/VM IUCV HVC device
driver.

hvc_iucv_allow=<z/VM user ID>,<z/VM user ID>, ...
specifies an initial list of z/VM guest virtual machines that are allowed to connect to HVC terminal
devices. If this parameter is omitted, any z/VM guest virtual machine that is authorized to establish
the required IUCV connection is also allowed to connect. On the running system, you can change this
list with the chiucvallow command. See How to Set up a Terminal Server Environment on z/VM,
SC34-2596 for more information.

Examples
• To activate ttyS1 in addition to ttyS0, and to use ttyS1 as the preferred console, specify:

 console=ttyS1

• To activate ttyS1 in addition to ttyS0, and to keep ttyS0 as the preferred console, specify:

 console=ttyS1 console=ttyS0

• To use an emulated HMC Operating System Messages applet in a z/VM environment, specify:

 conmode=sclp

• To activate hvc0 in addition to ttyS0, use hvc0 as the preferred console, configure the z/VM IUCV HVC
device driver to provide four devices, and limit the z/VM guest virtual machines that can connect to HVC
terminal devices to lxtserv1 and lxtserv2, specify:

 console=hvc0 hvc_iucv=4 hvc_iucv_allow=lxtserv1,lxtserv2

• The following specification selects the SCLP line-mode terminal and configures 32 4-KB pages (128 KB)
for the output buffer. If buffer pages run out, the SCLP line-mode terminal device driver does not wait
for pages to be written to an output device. Instead of pausing, it reuses output buffer pages at the
expense of losing content.

 console=sclp sclp_con_pages=32 sclp_con_drop=1

Chapter 5. Console device drivers 45

Setting up a z/VM guest virtual machine for iucvconn
Because the iucvconn program uses z/VM IUCV to access Linux, you must set up your z/VM guest virtual
machine for IUCV.

See “Setting up your z/VM guest virtual machine for IUCV” on page 316 for details about setting up the
z/VM guest virtual machine.

For information about accessing Linux through the iucvtty program rather than through the z/VM IUCV
HVC device driver, see How to Set up a Terminal Server Environment on z/VM, SC34-2596 or the man
pages for the iucvtty and iucvconn commands.

Setting up a line-mode terminal
The line-mode terminals are primarily intended for booting Linux.

The preferred user access to a running instance of Ubuntu Server 22.04 LTS is through a user login
that runs, for example, in an SSH session. See “Terminal modes” on page 38 for information about the
available line-mode terminals.

Tip: If the terminal does not provide the expected output, ensure that dumb is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=dumb

Setting up a full-screen mode terminal
The full-screen terminal can be used for full-screen text editors, such as vi, and terminal-based full-
screen system administration tools.

See “Terminal modes” on page 38 for information about the available full-screen mode terminals.

Tip: If the terminal does not provide the expected output, ensure that linux is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=linux

Setting up a terminal provided by the 3270 terminal device driver
The terminal that is provided by the 3270 terminal device driver is not a line-mode terminal, but it is also
not a typical full-screen mode terminal.

The terminal provides limited support for full-screen applications. For example, the ned editor is
supported, but not vi.

Tip: If the terminal does not provide the expected output, ensure that linux is assigned to the TERM
environment variable. For example, enter the following command:

export TERM=linux

Enabling user logins
Use systemd service units to enable terminaIs for user access.

About this task
You must explicitly enable user logins for the HVC terminals hvc1 to hvc7 and for any dynamically
attached virtual or real 3270 terminals.

46 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

On all other terminals that are available in your environment systemd automatically enables user logins
for you. In particular you do not need to enable user logins for the following terminals:

• hvc0
• 3270/tty1
• Terminals that are available in KVM guests

Enabling user logins for 3270 terminals
Instantiate getty services for terminals to allow user logins.

Procedure
Perform these steps to use a getty service for enabling user logins on any dynamically added real or
virtual 3270 terminals:
1. Enable the new getty service by issuing a command of this form:

systemctl enable serial-getty@<terminal>.service

where <terminal> specifies one of the 3270-tty<N> terminals and <N> is an integer greater than 1.

Note: You specify terminal 3270/tty<N> as 3270-tty<N>.
2. Optional: Start the new getty service by issuing a command of this form:

systemctl start serial-getty@<terminal>.service

Results
At the next system start, systemd automatically starts the getty service for you.

Example
For 3270/tty2, issue:

systemctl enable serial-getty@3270-tty2.service
systemctl start serial-getty@3270-tty2.service

Preventing respawns for non-operational HVC terminals
If you enable user logins on a HVC terminal that is not available or not operational, systemd keeps
respawning the getty program.

About this task
If user logins are enabled on unavailable HVC terminals hvc1 to hvc7, systemd might keep respawning
the getty program. To be free to change the conditions that affect the availability of these terminals, use
the ttyrun service to enable user logins for them. HVC IUCV terminals are operational only in a z/VM
environment, and they depend on the hvc_iucv= kernel parameter (see “Console kernel parameter
syntax” on page 43).

Any other unavailable terminals with enabled user login, including hvc0, do not cause problems with
systemd.

Procedure
Perform these steps to use a ttyrun service for enabling user logins on a terminal:
1. Enable the ttyrun service by issuing a command of this form:

Chapter 5. Console device drivers 47

systemctl enable ttyrun-getty@hvc<n>.service

where hvc<n> specifies one of the terminals hvc1 to hvc7.
2. Optional: Start the new service by issuing a command of this form:

systemctl start ttyrun-getty@hvc<n>.service

Results
At the next system start, systemd starts the ttyrun service for hvc<n>. The ttyrun service starts a getty
only if this terminal is available.

Example
For hvc1, issue:

systemctl enable ttyrun-getty@hvc1.service
systemctl start ttyrun-getty@hvc1.service

Setting up the code page for an x3270 emulation on Linux
For accessing z/VM from Linux through the x3270 terminal emulation, you must add a number of settings
to the .Xdefaults file to get the correct code translation.

Add these settings:

 ! X3270 keymap and charset settings for Linux
 x3270.charset: us-intl
 x3270.keymap: circumfix
 x3270.keymap.circumfix: :<key>asciicircum: Key("^")\n

Working with Linux terminals
You might have to work with different types of Linux terminals, and use special functions on these
terminals.

• “Using the terminal applets on the HMC” on page 48
• “Accessing terminal devices over z/VM IUCV” on page 49
• “Switching the views of the 3270 terminal device driver” on page 50
• “Setting a CCW terminal device online or offline” on page 50
• “Entering control and special characters on line-mode terminals” on page 51
• “Using the magic sysrequest feature” on page 51
• “Using a z/VM emulation of the HMC Operating System Messages applet” on page 53
• “Using a 3270 terminal in 3215 mode” on page 55

Using the terminal applets on the HMC
You should be aware of some aspects of the line-mode and the full-screen mode terminal when using the
corresponding applets on the HMC.

The following statements apply to both the line-mode terminal and the full-screen mode terminal on the
HMC:

• On an HMC, you can open each applet only once.
• Within an LPAR, there can be only one active terminal session for each applet, even if multiple HMCs are

used.
• A particular Linux instance supports only one active terminal session for each applet.

48 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• Slow performance of the HMC is often due to a busy console or increased network traffic.

The following statements apply to the full-screen mode terminal only:

• Output that is written by Linux while the terminal window is closed is not displayed. Therefore, a
newly opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

• The terminal window shows only 24 lines and does not provide a scroll bar. To scroll up, press
Shift+PgUp; to scroll down, press Shift+PgDn.

Security hint: Always end a terminal session by explicitly logging off (for example, type "exit" and press
Enter). Simply closing the applet leaves the session active and the next user to open the applet resumes
the existing session without a logon.

Accessing terminal devices over z/VM IUCV
Use z/VM IUCV to access hypervisor console (HVC) terminal devices, which are provided by the z/VM
IUCV HVC device driver.

About this task
For information about accessing terminal devices that are provided by the iucvtty program see How to Set
up a Terminal Server Environment on z/VM, SC34-2596.

You access HVC terminal devices from a Linux instance where the iucvconn program is installed. The
Linux instance with the terminal device to be accessed and the Linux instance with the iucvconn program
must both run as guests of the same z/VM system. The two guest virtual machines must be configured
such that IUCV communication is permitted between them.

Procedure
Perform these steps to access an HVC terminal device over z/VM IUCV:
1. Open a terminal session on the Linux instance where the iucvconn program is installed.
2. Enter a command of this form:

iucvconn <guest_ID> <terminal_ID>

where:
<guest_ID>

specifies the z/VM guest virtual machine on which the Linux instance with the HVC terminal device
to be accessed runs.

<terminal_ID>
specifies an identifier for the terminal device to be accessed. HVC terminal device names are of the
form hvcn where n is an integer in the range 0-7. The corresponding terminal IDs are lnxhvcn.

Example: To access HVC terminal device hvc0 on a Linux instance that runs on a z/VM guest virtual
machine LXGUEST1, enter:

iucvconn LXGUEST1 lnxhvc0

For more details and further parameters of the iucvconn command, see the iucvconn man page or
How to Set up a Terminal Server Environment on z/VM, SC34-2596.

3. Press Enter to obtain a prompt.

Output that is written by Linux while the terminal window is closed, is not displayed. Therefore, a
newly opened terminal window is always blank. For most applications, like login or shell prompts, it is
sufficient to press Enter to obtain a new prompt.

Chapter 5. Console device drivers 49

Security hint
Always end terminal sessions by explicitly logging off (for example, type exit and press Enter). If logging
off results in a new login prompt, press Control and Underscore (Ctrl+_), then press to close the login
window. Simply closing the terminal window for a hvc0 terminal device that was activated for Linux kernel
messages leaves the device active. The terminal session can then be reopened without a login.

Switching the views of the 3270 terminal device driver
The 3270 terminal device driver provides three different views for Linux on z/VM.

Use function key 3 (PF3) to switch between the views (see Figure 17 on page 50).

Figure 17. Switching views of the 3270 terminal device driver

The availability of the individual views depends on the configuration options that were selected when the
kernel was compiled. In addition, the Linux kernel messages view is available only if the terminal device is
activated for Linux kernel messages.

The full-screen application view is available only if there is an application that uses this view, for example,
the ned editor. Be aware that the 3270 terminal provides only limited full-screen support. The full-screen
application view of the 3270 terminal is not intended for applications that require vt220 capabilities. The
application itself must create the 3270 data stream.

For the Linux kernel messages view and the terminal I/O view, you can use the PF7 key to scroll backward
and the PF8 key to scroll forward. The scroll buffers are fixed at four pages (16 KB) for the Linux kernel
messages view and five pages (20 KB) for the terminal I/O view. When the buffer is full and more terminal
data needs to be printed, the oldest lines are removed until there is enough room. The number of lines in
the history, therefore, vary. Scrolling in the full-screen application view depends on the application.

You cannot issue z/VM CP commands from any of the three views that are provided by the 3270 terminal
device driver. If you want to issue CP commands, use the PA1 key to switch to the CP READ mode.

Setting a CCW terminal device online or offline
The 3270 terminal device driver uses CCW devices and provides them as CCW terminal devices.

About this task
This section applies to Linux on z/VM. A CCW terminal device can be:

• The tty3270 terminal device that can be activated for receiving Linux kernel messages.

If this device exists, it comes online early during the Linux boot process. In a default z/VM environment,
the device number for this device is 0009. In sysfs, it is represented as /sys/bus/ccw/drivers/
3270/0.0.0009. You need not set this device online and you must not set it offline.

• CCW terminal devices through which users can log in to Linux with the CP DIAL command.

These devices are defined with the CP DEF GRAF command. They are represented in sysfs
as /sys/bus/ccw/drivers/3270/0.<n>.<devno> where <n> is the subchannel set ID and
<devno> is the virtual device number. By setting these devices online, you enable them for user logins.
If you set a device offline, it can no longer be used for user login.

50 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

See z/VM: CP Commands and Utilities Reference, SC24-6268 for more information about the DEF GRAF
and DIAL commands.

Procedure
You can use the chccwdev command (see “chccwdev - Set CCW device attributes” on page 569) to set a
CCW terminal device online or offline. Alternatively, you can write 1 to the device's online attribute to set it
online, or 0 to set it offline.

Examples

• To set a CCW terminal device 0.0.7b01 online, issue:

chccwdev -e 0.0.7b01

Alternatively issue:

echo 1 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

• To set a CCW terminal device 0.0.7b01 offline, issue:

chccwdev -d 0.0.7b01

Alternatively issue:

echo 0 > /sys/bus/ccw/drivers/3270/0.0.7b01/online

Entering control and special characters on line-mode terminals
Line-mode terminals do not have a control (Ctrl) key. Without a control key, you cannot enter control
characters directly.

Also, pressing the Enter key adds a newline character to your input string. Some applications do not
tolerate such trailing newline characters.

Table 6 on page 51 summarizes how you can use the caret character (^) to enter some control
characters and to enter strings without appended newline characters.

Table 6. Control and special characters on line-mode terminals

For the key
combination

Enter Usage

Ctrl+C ^c Cancel the process that is running in the foreground of the terminal.

Ctrl+D ^d Generate an end of file (EOF) indication.

Ctrl+Z ^z Stop a process.

n/a ^n Suppresses the automatic generation of a new line. Thus, you can
enter single characters; for example, the characters that are needed
for yes/no answers in some utilities.

Note: For a 3215 line-mode terminal in 3215 mode, you must use United States code page (037).

Using the magic sysrequest feature
Whether magic sysrequest functions are available and how to call them depends on your terminal.

• To call the magic sysrequest functions on the VT220 terminal or on hvc0, enter the single character
Ctrl+o followed by the character for the particular function.

Chapter 5. Console device drivers 51

You can call the magic sysrequest functions from the hvc0 terminal device if it is present and is
activated to receive Linux kernel messages.

• To call the magic sysrequest functions on a line-mode terminal, enter the 2 characters "^-" (caret and
hyphen) followed by a third character that specifies the particular function.

Table 7 on page 52 provides an overview of the commands for the magic sysrequest functions:

Table 7. Magic sysrequest functions

On line-mode
terminals, enter

On hvc0 and the VT220
terminal, enter

To

^-b b Re-IPL immediately (see “lsreipl - List IPL and re-
IPL settings” on page 666).

^-c c Crash through a forced kernel panic.

^-s s Emergency sync all file systems.

^-u u Emergency remount all mounted file systems
read-only.

^-t t Show task info.

^-m m Show memory.

^-
followed by a digit
(0 - 9) followed by a digit

(0 - 9)

Set the console log level.

^-e e Send the TERM signal to end all tasks except init.

^-i i Send the KILL signal to end all tasks except init.

^-p p See “Obtaining details about the CPU-
measurement facilities” on page 545.

Note: In Table 7 on page 52 means pressing while holding down the control key.

Table 7 on page 52 lists the main magic sysrequest functions that are known to work on Ubuntu Server
22.04 LTS. For a more comprehensive list of functions, see /linux-doc/html/_sources/admin-
guide/sysrq.rst.txt in the linux-doc package. Some of the listed functions might not work on your
system.

Activating and deactivating the magic sysrequest feature
Use the sysrq procfs attribute to activate or deactivate the magic sysrequest feature.

Procedure
Issue the following command to activate the magic sysrequest feature:

echo 1 > /proc/sys/kernel/sysrq

Issue the following command to deactivate the magic sysrequest feature:

echo 0 > /proc/sys/kernel/sysrq

52 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Triggering magic sysrequest functions from procfs
You can trigger the magic sysrequest functions through procfs.

Procedure
Write the character for the particular function to /proc/sysrq-trigger.

You can use this interface even if the magic sysrequest feature is not activated as described in “Activating
and deactivating the magic sysrequest feature” on page 52.

Example
To set the console log level to 9, enter:

echo 9 > /proc/sysrq-trigger

Using a z/VM emulation of the HMC Operating System Messages applet
You can use the Operating System Messages applet emulation; for example, if the 3215 terminal is not
operational.

About this task
The preferred terminal devices for Linux instances that run as z/VM guests are provided by the 3215 or
3270 terminal device drivers.

The emulation requires a terminal device that is provided by the SCLP line-mode terminal device driver.
To use the emulation, you must override the default device driver for z/VM environments (see “Console
kernel parameter syntax” on page 43).

For the emulation, you use the z/VM CP VINPUT command instead of the graphical user interface at the
Support Element or HMC. Type any input to the operating system with a leading CP VINPUT.

The examples in the sections that follow show the input line of a 3270 terminal or terminal emulator (for
example, x3270). Omit the leading #CP if you are in CP read mode. For more information about VINPUT,
see z/VM: CP Commands and Utilities Reference, SC24-6268.

Priority and non-priority commands
VINPUT commands require a VMSG (non-priority) or PVMSG (priority) specification.

Operating systems that accept this specification, process priority commands with a higher priority than
non-priority commands.

The hardware console driver can accept both if supported by the hardware console within the specific
machine or virtual machine.

Linux does not distinguish between priority and non-priority commands.

Example
The specifications:

#CP VINPUT VMSG LS -L

and

#CP VINPUT PVMSG LS -L

Chapter 5. Console device drivers 53

are equivalent.

Case conversion
All lowercase characters are converted by z/VM to uppercase. To compensate for this effect, the console
device driver converts all input to lowercase.

For example, if you type VInput VMSG echo $PATH, the device driver gets ECHO $PATH and converts it
into echo $path.

Linux and bash are case-sensitive and require some specifications with uppercase characters. To include
uppercase characters in a command, use the percent sign (%) as a delimiter. The console device driver
interprets characters that are enclosed by percent signs as uppercase.

This behavior and the delimiter are adjustable at build-time by editing the driver sources.

Examples
In the following examples, the first line shows the user input. The second line shows what the device
driver receives after the case conversion by CP. The third line shows the command that is processed by
bash.

• #cp vinput vmsg ls -l
CP VINPUT VMSG LS -L
ls -l
...

• The following input would result in a bash command that contains a variable $path, which is not defined
in lowercase:

#cp vinput vmsg echo $PATH
CP VINPUT VMSG ECHO $PATH
echo $path
...

To obtain the correct bash command enclose the uppercase string with the conversion escape
character:

#cp vinput vmsg echo $%PATH%
CP VINPUT VMSG ECHO $%PATH%
echo $PATH
...

Using the escape character
The quotation mark (") is the standard CP escape character. To include the escape character in a
command that is passed to Linux, you must type it twice.

Example
The following command passes a string in double quotation marks to be echoed.

#cp vinput pvmsg echo ""here is ""$0
CP VINPUT PVMSG ECHO "HERE IS "$0
echo "here is "$0
here is -bash

In the example, $0 resolves to the name of the current process.

Using the end-of-line character
To include the end-of-line character in the command that is passed to Linux, you must specify it with a
leading escape character.

54 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If you are using the standard settings according to “Using a 3270 terminal in 3215 mode” on page 55,
you must specify "# to pass # to Linux.

If you specify the end-of-line character without a leading escape character, z/VM CP interprets it as an
end-of-line character that ends the VINPUT command.

Example
In this example, a number sign is intended to mark the begin of a comment in the bash command. This
character is misinterpreted as the beginning of a second command.

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" #like this one
CP VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS"
LIKE THIS ONE
HCPCMD001E Unknown CP command: LIKE
...

The escape character prevents the number sign from being interpreted as an end-of-line character:

#cp vinput pvmsg echo ""%N%umber signs start bash comments"" "#like this one
VINPUT PVMSG ECHO "%N%UMBER SIGNS START BASH COMMENTS" #LIKE THIS ONE
echo "Number signs start bash comments" #like this one
Number signs start bash comments

Simulating the Enter and Spacebar keys
You can use the CP VINPUT command to simulate the Enter and Spacebar keys.

Simulate the Enter key by entering a blank followed by \n:

#CP VINPUT VMSG \n

Simulate the Spacebar key by entering two blanks followed by \n:

#CP VINPUT VMSG \n

Using a 3270 terminal in 3215 mode
The z/VM control program (CP) defines five characters as line-editing symbols. Use the CP QUERY
TERMINAL command to see the current settings.

The default line-editing symbols depend on your terminal emulator. You can reassign the symbols by
changing the settings of LINEND, TABCHAR, CHARDEL, LINEDEL, or ESCAPE with the CP TERMINAL
command. Table 8 on page 55 shows the most commonly used settings:

Table 8. Line edit characters

Character Symbol Usage

LINEND The end of line character. With this character, you can enter several logical
lines at once.

| TABCHAR The logical tab character.

@ CHARDEL The character delete symbol deletes the preceding character.

[or ¢ LINEDEL The line delete symbol deletes everything back to and including the previous
LINEND symbol or the start of the input. "[" is common for ASCII terminals and
"¢" for EBCDIC terminals.

" ESCAPE The escape character. With this character, you can enter a line-edit symbol as a
normal character.

Chapter 5. Console device drivers 55

To enter a line-edit symbol, you must precede it with the escape character. In particular, to enter the
escape character you must type it twice.

Examples
The following examples assume the settings of Table 8 on page 55 with the opening square bracket
character ([) as the "delete line" character.

• To specify a tab character specify:

"|

• To specify a double quotation mark character, specify:

""

• If you type the character string:

#CP HALT#CP ZIPL 190[#CP IPL 1@290 PARM vmpoff=""MSG OP REBOOT"#IPL 290""

the actual commands that are received by CP are:

CP HALT
CP IPL 290 PARM vmpoff="MSG OP REBOOT#IPL 290"

56 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 6. Initial program loader for IBM Z - zipl
Use zipl to prepare a boot device with a Linux program loader or to prepare a dump device.

Linux on IBM Z as a KVM guest does not support dump devices with stand-alone dump tools. Instead of
preparing a dump device with the zipl tool you can also use the kdump infrastructure. To use kdump, no
preparation with zipl is necessary. For more information about the kdump infrastructure and the dump
tools that zipl installs, see Using the Dump Tools, SC33-8412.

You can simulate a zipl command to test a configuration before you apply the command to an actual
device (see dry-run).

zipl supports the following devices:

• Enhanced Count Key Data (ECKD) DASDs with fixed block Linux disk layout (LDL)
• ECKD DASDs with z/OS-compliant compatible disk layout (CDL)
• Fixed Block Access (FBA) DASDs
• Magnetic tape subsystems compatible with IBM3480, IBM3490, or IBM3590 (boot and dump devices

only)
• SCSI disk with PC-BIOS disk layout or GPT layout
• PCIe-attached NVMe devices.

Usage
The zipl tool has base functions that can be called from the command line or in configuration-file mode.
There are generic parameters and parameters that are specific to particular base functions.

zipl base functions
For each base function, there is a short and a long command-line option and, with one exception, a
corresponding configuration-file option.

Table 9. zipl base functions

Base function Command line
short option

Command line
long option

Configuration
file option

Environment

Install a boot loader

See “Preparing a boot device” on
page 60 for details.

-i --image image= LPAR
z/VM
KVM

Prepare a DASD, SCSI, NVMe, or
tape dump device

See “Preparing a dump device”
on page 67 for details.

-d --dumpto dumpto= LPAR
z/VM

Prepare a list of ECKD volumes
for a multi-volume dump

See “Preparing a multi-volume
dump on ECKD DASD” on page
69 for details.

-M --mvdump mvdump= LPAR
z/VM

© Copyright IBM Corp. 2000, 2023 57

Table 9. zipl base functions (continued)

Base function Command line
short option

Command line
long option

Configuration
file option

Environment

Install a menu configuration

See “Installing a menu
configuration” on page 70 for
details.

-m --menu (None) LPAR
z/VM
KVM

zipl modes and syntax overview
zipl can operate in command-line mode or in configuration-file mode.

Command-line mode

To run zipl in command-line mode, specify one of the following base functions::

-i
see “Preparing a boot device” on page 60

-d
see “Preparing a dump device” on page 67

-M
see “Preparing a multi-volume dump on ECKD DASD” on page 69

Configuration-file mode
To run zipl in configuration-file mode, omit the base function or specify the -m base function (see
“Configuration file structure” on page 75).

In this mode, zipl processes a zipl configuration file and, optionally, one or more Boot Loader
Specification (BLS) snippets. BLS snippets are always processed as part of a menu configuration.

For more information about the zipl configuration file, see “Configuration file structure” on page 75.

For more information about BLS snippets, see “BLS configuration snippets” on page 80.

zipl syntax overview
zipl

-V --dry-run

parameters when omitting base function

-i i_parameters

-d d_parameters

-M M_parameters

-m m_parameters

parameters when omitting base function

58 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-c /etc/zipl.conf
1

-c  <config_file>

-b /boot/loader/entries
2

-b <bls_dir>

 [default]
3

  <configuration> -P  <parameters>
4

-a
5

-S auto

-S <mode>
5 -n

Notes:
1 You can change the default configuration file with the ZIPLCONF environment variable.
2 You can change the default directory with the BOOT environment variable.
3 If no configuration is specified, zipl uses the configuration in the [defaultboot] section of the
configuration file (see “Configuration file structure” on page 75).
4 In a boot configuration only.
5 In a boot configuration or a menu configuration only.

Where:
-c <config_file>

specifies the zipl configuration file to be used.
-b <bls_dir>

specifies a directory to be searched for files with BLS snippets.
<configuration>

identifies a particular IPL or menu configuration in a zipl configuration-file.
-P <parameters>

can optionally be used to provide kernel parameters in a boot configuration section. See “How kernel
parameters from different sources are combined” on page 63 for information about how kernel
parameters specified with the -P option are combined with any kernel parameters specified in the
configuration file.

If you provide multiple parameters, separate them with a blank and enclose them within single
quotation marks (') or double quotation marks (").

-a
in a boot configuration section, adds kernel image, kernel parameter file, and initial RAM disk to the
bootmap file. Use this option when these files are spread across multiple disks to ensure that they are
available at IPL time. Specifying this option significantly increases the size of the bootmap file that is
created in the target directory.

-S <mode> or --secure <mode>
SCSI IPL disk device for LPAR only: Controls the format of the boot data that zipl writes to the IPL
device. <mode> takes the following values:
auto

Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

Chapter 6. Initial program loader for IBM Z - zipl 59

1
Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

0
Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.

-n
suppresses confirmation prompts that require operator responses to allow unattended processing (for
example, for processing DASD or tape dump configuration sections).

-V
provides verbose command output.

--dry-run
simulates a zipl command. Use this option to test a configuration without overwriting data on your
device.

During simulation, zipl performs all command processing and issues error messages where
appropriate. Data is temporarily written to the target directory and is cleared up when the command
simulation is completed.

-v
displays version information.

-h
displays help information.

The basic functions and their parameters are described in detail in the following sections.

See “Parameter overview” on page 71 for a summary of the short and long command line options and
their configuration file equivalents.

Examples
• To process the default configuration in the default configuration file (/etc/zipl.conf, unless
specified otherwise with the environment variable ZIPLCONF) issue:

zipl

• To process the default configuration in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf

• To process a configuration [myconf] in the default configuration file issue:

zipl myconf

• To process a configuration [myconf] in a configuration file /etc/myxmp.conf issue:

zipl -c /etc/myxmp.conf myconf

• To simulate processing a configuration [myconf] in a configuration file /etc/myxmp.conf issue:

zipl --dry-run -c /etc/myxmp.conf myconf

Preparing a boot device
Use zipl with the -i (--image) command-line option or with the image= configuration-file option to
prepare a boot device.

60 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl command line syntax for preparing a boot device

zipl -i  <image>
, 0x10000

, <image_addr>

 -t  <directory>

Base device parameters
1

 -T  <tape_node>

 -r  <ramdisk>

, <initrd_addr>

 -p  <parmfile>
, 0x1000

, <parm_addr>

 -P  <parameters>

--environment /etc/ziplenv

--environment <env_file> -k auto -a

-S auto

-S <mode>

Notes:
1 Additional parameters that are used only if -t specifies a logical device as a target. See “Using
base device parameters” on page 65.

To prepare a device as a boot device, you must specify:

The location <image>
of the Linux kernel image on the file system.

A target <directory> or <tape_node>
zipl installs the boot loader code on the device that contains the specified directory <directory> or to
the specified tape device <tape_node>.

For KVM guests, the target device can be a virtual block device or a VFIO pass-trough DASD. For
details, see KVM Virtual Server Management, SC34-2752.

Optionally, you can also specify:
A kernel image address <image_addr>

to which the kernel image is loaded at IPL time. The default address is 0x10000.
The RAM disk location <ramdisk>

of an initial RAM disk image (initrd) on the file system.
A RAM disk image address <initrd_addr>

to which the RAM disk image is loaded at IPL time. If you do not specify this parameter, zipl
investigates the location of other components and calculates a suitable address for you.

Kernel parameters
to be used at IPL time. If you provide multiple parameters, separate them with a blank and enclose
them within single quotation marks (') or double quotation marks (").

You can specify parameters <parameters> directly on the command line. Instead or in addition,
you can specify a location <parmfile> of a kernel parameter file on the file system. See “How
kernel parameters from different sources are combined” on page 63 for a discussion of how zipl
combines multiple kernel parameter specifications.

Chapter 6. Initial program loader for IBM Z - zipl 61

A parameter address <parm_addr>
to which the kernel parameters are loaded at IPL time. The default address is 0x1000.

A zipl environment file <env_file>
to be used, see “zipl environment - Variables for the kernel command line” on page 82. The default
location is /etc/ziplenv.

An option -k auto
to install a kdump kernel that can be used as a stand-alone dump tool. You can IPL this kernel in
an LPAR or guest virtual machine. With the IPL, you create a dump of a previously running operating
system instance that was configured with a reserved memory area for kdump. For Linux, this memory
area is reserved with the crashkernel= kernel parameter.

Note: For SCSI disks, the accumulated size of the kernel and ramdisk must not exceed 16 MB.

An option -a
to add the kernel image, kernel parameter file, and initial RAM disk to the bootmap file. Use this option
when these files are spread across multiple disks to ensure that they are available at IPL time. This
option is available on the command line only. Specifying this option significantly increases the size of
the bootmap file that is created in the target directory.

An option -S
SCSI IPL device for LPAR only: Controls the zipl secure boot support. <mode> takes the following
values:
auto

Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

1
Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

0
Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.

See “Parameter overview” on page 71 for a summary of the parameters. This summary includes the long
options that you can use on the command line.

zipl configuration file syntax
Figure 18 on page 62 summarizes how to specify a boot configuration within a configuration file section.
Required specifications are shown in bold. See “Configuration file structure” on page 75 for more details
about the configuration file.

[<section_name>]
image=<image>,<image_addr>
ramdisk=<ramdisk>,<initrd_addr>
parmfile=<parmfile>,<parm_addr>
parameters=<parameters>
Next line for devices other than tape only
target=<directory>
Next line for tape devices only
tape=<tape_node>
Next line for stand-alone kdump only
kdump=auto
Next line for secure boot only
secure=<mode>

Figure 18. zipl syntax for preparing a boot device - configuration file mode

62 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example
The following command identifies the location of the kernel image as /boot/mnt/image-2, identifies
the location of an initial RAM disk as /boot/mnt/initrd, specifies a kernel parameter file /boot/mnt/
parmf-2, and writes the required boot loader code to /boot. At IPL time, the initial RAM disk is to be
loaded to address 0x900000 rather than an address that is calculated by zipl. Kernel image, initial RAM
disk, and the kernel parameter file are to be copied to the bootmap file on the target directory /boot
rather than being referenced.

zipl -i /boot/mnt/image-2 -r /boot/mnt/initrd,0x900000 -p /boot/mnt/parmf-2 -t /boot -a

An equivalent section in a configuration file might look like this example:

[boot2]
image=/boot/mnt/image-2
ramdisk=/boot/mnt/initrd,0x900000
paramfile=/boot/mnt/parmf-2
target=/boot

There is no configuration file equivalent for option -a. To use this option for a boot configuration in a
configuration file, it must be specified with the zipl command that processes the configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf boot2 -a

How kernel parameters from different sources are combined
zipl allows for multiple sources of kernel parameters when preparing boot devices.

In command-line mode, you can use two possible sources of kernel parameters. The parameters are
processed in the following order:

1. Parameters in the kernel parameter file (specified with the -p or --parmfile option)
2. Parameters that are specified on the command line (specified with the -P or --parameters option)

In configuration file mode, the possible sources of kernel parameters depend on where the configuration
is specified, in a zipl configuration-file section or in a BLS snippet. The parameters are processed in the
following order:
For a zipl configuration-file section

1. Parameters in the kernel parameter file (specified with the parmfile= option)
2. Parameters that are specified in the configuration section (specified with the parameters=

option)
3. Parameters that are specified on the command line (specified with the -P or --parameters

option)

For a BLS snippet

1. Parameters that are specified in the snippet (specified with the options option)
2. Parameters that are specified on the command line (specified with the -P or --parameters

option)

Parameters from different sources are concatenated and passed to the kernel in one string. At IPL
time, the combined kernel parameter string is loaded to address 0x1000, unless an alternate address is
provided.

For more information about the different sources of kernel parameters, see “Including kernel parameters
in a boot configuration” on page 25.

Chapter 6. Initial program loader for IBM Z - zipl 63

Preparing a logical device as a boot device
A logical device is a block device that represents one or more real devices.

If your boot directory is on a logical DASD or SCSI device, zipl cannot detect all required information about
the underlying real device or devices and needs extra input.

Logical devices can be two DASDs combined into a logical mirror volume. Another examples are a
linear mapping of a partition to a real device or a more complex mapping hierarchy. Logical devices are
controlled by a device mapper.

Blocks on the logical device must map to blocks on the underlying real device or devices linearly. If two
blocks on the logical device are adjacent, they must also be adjacent on the underlying real devices. This
requirement excludes mappings such as striping.

You always boot from a real device. zipl must be able to write to that device, starting at block 0. In a
logical device setup, starting at the top of the mapping hierarchy, the first block device that grants access
to block 0 (and subsequent blocks) is the base device, see Figure 19 on page 64.

Figure 19. Definition of base device

A base device can have the following mappings:

• A mapping to a part of a real device that contains block 0
• A mapping to one complete real device
• A mapping to multiple real devices.

For a mapping to multiple real devices all the real devices must share the device characteristics and
contain the same data (for example, a mirror setup). The mapping can also be to parts of the devices if
these parts contain block 0. The mapping must not combine multiple devices into one large device.

The zipl command needs the device node of the base device and information about the physical
characteristics of the underlying real devices. For most logical boot devices, a helper script automatically
provides all the required information to zipl for you (see “Using a helper script” on page 64).

If you decide not to use the supplied helper script, or want to write your own helper script, you can use
parameters to supply the base device information to zipl, see “Using base device parameters” on page
65 and “Writing your own helper script” on page 66.

Using a helper script
zipl provides a helper script, zipl_helper.device-mapper, that detects the required information
and provides it to zipl for you.

The helper script is used automatically when you run zipl to prepare a boot device. Specify the
parameters for the kernel image, parameter file, initial RAM disk, and target as usual. See “Preparing
a boot device” on page 60 for details about the parameters.

64 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Assuming an example device for which the location of the kernel image is /boot/image-5, the location
of an initial RAM disk as /boot/initrd-5, a kernel parameter file /boot/parmf-5, and which writes
the required boot loader code to /boot and is a device mapper device, the command then becomes:

zipl -i /boot/image-5 -r /boot/initrd-5 -p /boot/parmf-5 -t /boot

The corresponding configuration file section becomes:

[boot5]
image=/boot/image-5
ramdisk=/boot/initrd-5
paramfile=/boot/parmf-5
target=/boot

Using base device parameters
You can use parameters to supply the base device information to zipl directly.

The following command syntax for the base device parameters is used for logical boot devices. It extends
the zipl syntax as shown in “Preparing a boot device” on page 60.

Base device parameters
 --targetbase  <targetbase_node> --targettype

 LDL

 CDL

 --targetgeometry  <cylinders> , <heads> , <sectors>

 FBA

 SCSI

 --targetblocksize  <targetblocksize> --targetoffset  <targetoffset>

You must specify the following device information:

The device node <targetbase_node>
of the base device, either by using the standard device name or in form of the major and minor
number, separated by a colon (:).

Example: The device node specification for the device might be /dev/dm-0 and the equivalent
specification as major and minor numbers might be 253:0.

The device type
of the base device. The following specifications are valid:
LDL

for ECKD type DASD with the Linux disk layout.
CDL

for ECKD type DASD with the compatible disk layout.
FBA

for FBA type DASD.
SCSI

for FCP-attached SCSI disks.
LDL and CDL only: The disk geometry <cylinders>,<heads>,<sectors>

of the base device in cylinders, heads, and sectors.
The block size <targetblocksize>

in bytes per block of the base device.

Chapter 6. Initial program loader for IBM Z - zipl 65

The offset <targetoffset>
in blocks between the start of the physical device and the start of the topmost logical device in the
mapping hierarchy.

Figure 20 on page 66 shows how to specify this information in a configuration file.

[<section_name>]
image=<image>,<image_addr>
ramdisk=<ramdisk>,<initrd_addr>
parmfile=<parmfile>,<parm_addr>
parameters=<parameters>
target=<directory>
targetbase=<targetbase_node>
targettype=LDL|CDL|FBA|SCSI
Next line for target types LDL and CDL only
targetgeometry=<cylinders>,<heads>,<sectors>
targetblocksize=<targetblocksize>
targetoffset=<targetoffset>

Figure 20. zipl syntax for preparing a logical device as a boot device- configuration file mode

Example
The example command identifies the location of the kernel image as /boot/image-5, identifies the
location of an initial RAM disk as /boot/initrd-5, specifies a kernel parameter file /boot/parmf-5,
and writes the required boot loader code to /boot.

The command specifies the following information about the base device: the device node is /dev/dm-3,
the device has the compatible disk layout, there are 6678 cylinders, there are 15 heads, there are 12
sectors, and the topmost logical device in the mapping hierarchy begins with an offset of 24 blocks from
the start of the base device.

zipl -i /boot/image-5 -r /boot/initrd-5 -p /boot/parmf-5 -t /boot --targetbase /dev/dm-3 \
--targettype CDL --targetgeometry 6678,15,12 --targetblocksize=4096 --targetoffset 24

Note: Instead of using the continuation sign (\) at the end of the first line, you might want to specify the
entire command on a single line.

An equivalent section in a configuration file might look like this example:

[boot5]
image=/boot/image-5
ramdisk=/boot/initrd-5
paramfile=/boot/parmf-5
target=/boot
targetbase=/dev/dm-3
targettype=CDL
targetgeometry=6678,15,12
targetblocksize=4096
targetoffset=24

Writing your own helper script
You can write your own helper script for device drivers that provide logical devices. The helper script must
conform to a set of rules.

• The script must accept the name of the target directory as an argument. From this specification, it must
determine a suitable base device. See “Using base device parameters” on page 65.

• The script must write the following base device <parameter>=<value> pairs to stdout as ASCII text.
Each pair must be written on a separate line.

– targetbase=<targetbase_node>
– targettype=<type> where type can be LDL, CDL, FBA, or SCSI.

66 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

– targetgeometry=<cylinders>,<heads>,<sectors> (For LDL and CDL only)
– targetblocksize=<blocksize>
– targetoffset=<offset>

See “Using base device parameters” on page 65 for the meaning of the base device parameters.
• The script must be named zipl_helper.<device> where <device> is the device name as specified

in /proc/devices.
• The script must be in /lib/s390-tools.

Preparing a dump device
Use zipl with the -d (--dumpto) command-line option or with the dumpto= configuration-file option to
prepare a DASD, SCSI or NVMe disk, or tape dump device.

zipl command line syntax for preparing a dump device
zipl -d  <dump_device>

, <size> -n

1
-P dump_debug=  <level>

Notes:
1 For SCSI dump devices only

To prepare a DASD device, SCSI disk, NVMe disk, or channel-attached tape dump device, you must
specify:

The device node <dump_device>
of the DASD device, SCSI disk partition, NVMe disk partition, or channel-attached tape device to be
prepared as a dump device. zipl deletes all data on the partition or tape and installs the boot loader
code there.

Note:

• If the dump device is an ECKD disk with fixed-block layout (LDL), a dump overwrites the dump
utility. You must reinstall the dump utility before you can use the device for another dump.

• If the dump device is a tape, SCSI disk, NVMe disk, FBA disk, or ECKD disk with the compatible disk
layout (CDL), you do not need to reinstall the dump utility after every dump.

• If the dump device is an NVMe disk and depending on your HMC version, you might have to prepare
a partition in namespace 1 to be able to trigger an LPAR dump from the HMC GUI.

Optionally, you can also specify:
An option -n

to suppress confirmation prompts to allow unattended processing (for example, from a script). This
option is available on the command line only.

A limit <size>
for the amount of memory to be dumped. The value is a decimal number that can optionally be
suffixed with K for kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the next
megabyte boundary.

If you limit the dump size below the amount of memory that is used by the system to be dumped, the
resulting dump is incomplete.

Note: For SCSI and NVMe dump devices, the "size" option is not available.

SCSI dump tool parameter:
dump_debug=<level>

sets the level of debug messages during the dump process. <level> is an integer in the range 1 - 6. Use
higher numbers for more detailed messages. The default is 2.

Chapter 6. Initial program loader for IBM Z - zipl 67

DASD device, SCSI disk, NVMe disk, or tape dump devices are not formatted with a file system so no
target directory can be specified. See Using the Dump Tools, SC33-8412 for details about processing
these dumps.

See “Parameter overview” on page 71 for a summary of the parameters. The summary includes the long
options that you can use on the command line.

Figure 21 on page 68 summarizes how to specify a DASD, SCSI, or tape dump configuration in a
configuration file. See “Configuration file structure” on page 75 for a more comprehensive discussion of
the configuration file.

[<section_name>]
dumpto=<dump_device>,<size>

Figure 21. zipl syntax for preparing a dump device - configuration file mode

DASD example
The following command prepares a DASD partition /dev/dasdc1 as a dump device and suppresses
confirmation prompts that require an operator response:

zipl -d /dev/dasdc1 -n

An equivalent section in a configuration file might look like this example:

[dumpdasd]
dumpto=/dev/dasdc1

There is no configuration file equivalent for option -n. To use this option for a DASD or tape dump
configuration in a configuration file, it must be specified with the zipl command that processes the
configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf dumpdasd -n

SCSI example
The following command prepares a SCSI partition
/dev/mapper/36005076303ffd40100000000000020c0-part1 as a dump device:

zipl -d /dev/mapper/36005076303ffd40100000000000020c0-part1

An equivalent section in a configuration file might look like this example:

[dumpscsi]
dumpto=/dev/mapper/36005076303ffd40100000000000020c0-part1

If the configuration file is called /etc/myxmp.conf, the zipl command that processes the configuration
would be:

zipl -c /etc/myxmp.conf dumpscsi

NVMe disk example
The following command prepares an NVMe disk partition /dev/nvme0n1p1 as a dump device:

68 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl -d /dev/nvme0n1p1

An equivalent section in a configuration file might look like this example:

[dumpnvme]
dumpto=/dev/nvme0n1p1

If the configuration file is called /etc/myxmp.conf, the zipl command that processes the configuration
would be:

zipl -c /etc/myxmp.conf dumpnvme

Preparing a multi-volume dump on ECKD DASD
Use zipl with the -M (--mvdump) command-line option or with the mvdump= configuration-file option to
prepare a multi-volume dump on ECKD DASD.

zipl command line syntax for preparing devices for a multi-volume dump
zipl

 -f

 -M  <dump_device_list>

, <size> -n

To prepare a set of DASD devices for a multi-volume dump, you must specify:

-M <dump_device_list>
specifies a file that contains the device nodes of the dump partitions, separated by one or more
line feed characters (0x0a). zipl writes a dump signature to each involved partition and installs the
stand-alone multi-volume dump tool on each involved volume. Duplicate partitions are not allowed. A
maximum of 32 partitions can be listed. The volumes must be formatted with cdl and use block size
4096.

Optionally, you can also specify:
-f or --force

to force that no signature checking takes place when dumping. Any data on all involved partitions is
overwritten without warning.

-n
to suppress confirmation prompts to allow unattended processing (for example, from a script). This
option is available on the command line only.

<size>
for the amount of memory to be dumped. The value is a decimal number that can optionally be
suffixed with K for kilobytes, M for megabytes, or G for gigabytes. The value is rounded to the next
megabyte boundary.

If you limit the dump size below the amount of memory that is used by the system to be dumped, the
resulting dump is incomplete.

DASD or tape dump devices are not formatted with a file system so no target directory can be specified.
See Using the Dump Tools, SC33-8412 for details about processing these dumps.

See “Parameter overview” on page 71 for a summary of the parameters. This summary includes the long
options that you can use on the command line.

Figure 22 on page 70 summarizes how to specify a multi-volume DASD dump configuration in a
configuration file. See “Configuration file structure” on page 75 for a more comprehensive discussion
of the configuration file.

Chapter 6. Initial program loader for IBM Z - zipl 69

[<section_name>]
mvdump=<dump_device_list>,<size>

Figure 22. zipl syntax for preparing DASD devices for a multi-volume dump - configuration file mode

Example
The following command prepares two DASD partitions /dev/dasdc1, /dev/dasdd1 for a multi-volume
dump and suppresses confirmation prompts that require an operator response:

zipl -M mvdump.conf -n

where the mvdump.conf file contains the two partitions, separated by line breaks:

/dev/dasdc1
/dev/dasdd1

An equivalent section in a configuration file might look like this example:

[multi_volume_dump]
mvdump=mvdump.conf

There is no configuration file equivalent for option -n. To use this option for a multi-volume DASD dump
configuration in a configuration file, it must be specified with the zipl command that processes the
configuration.

If the configuration file is called /etc/myxmp.conf:

zipl -c /etc/myxmp.conf multi_volume_dump -n

Installing a menu configuration
Use zipl with the -m (--menu) command-line option to install a menu configuration.

To prepare a menu configuration, you need a configuration file that includes at least one menu section
(see “Menu configurations” on page 77) or with a default section that supports an automatic menu (see
“Default section” on page 75).

zipl syntax for installing a menu configuration

zipl -m  <menu_name>

 -c /etc/zipl.conf
1

 -c  <config_file>

-b /boot/loader/entries
2

-b <bls_dir>

 -a

Notes:
1 You can change the default configuration file with the ZIPLCONF environment variable.
2 You can change the default directory with the BOOT environment variable.

Where:
-m or --menu <menu_name>

specifies the menu that defines the menu configuration in the configuration file.

70 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-c or --config <config_file>
specifies the configuration file where the menu configuration is defined. The default, /etc/
zipl.conf, can be changed with the ZIPLCONF environment variable.

-b <bls_dir>
specifies a directory to be searched for files with BLS snippets.

-a or --add-files
adds the kernel image file, parmfile, and initial RAM disk image to the bootmap files in the respective
target directories instead of referencing them. Use this option if the files are spread across disks to
ensure that the files are available at IPL time. Specifying this option significantly increases the size of
the bootmap file that is created in the target directory.

Example
Using the sample configuration file of Figure 23 on page 79, you could install a menu configuration with:

zipl -m menu1

Parameter overview
You might need to know all zipl options and how to specify them on the command line, in the zipl
configuration file, or in a BLS snippet..

Option Explanation

Command line:
-a
--add-files

Causes kernel image, kernel parameter file, and initial RAM
disk to be added to the bootmap file in the target directory
rather than being referenced from this file.

Use this option when these files are spread across multiple
disks to ensure that they are available at IPL time. Specifying
this option significantly increases the size of the bootmap file
that is created in the target directory.

Command line:
-b <bls_dir>
--blsdir=<bls_dir>

Specifies the directory where zipl finds files with BLS
snippets. You can change the default directory, /boot/
loader/entries, with the BOOT environment variable.

See “BLS configuration snippets” on page 80.

Command line:
-c <config_file>
--config=<config_file>

Specifies the configuration file. You can change the default
configuration file /etc/zipl.conf with the environment
variable ZIPLCONF.

Command line:
<configuration>

Specifies a configuration section in a zipl configuration-file or a
BLS snippet to be processed.

A configuration section in a zipl configuration-file is specified
through its section name. A BLS snippet is specified through
the value of its title option within the snippet.

Chapter 6. Initial program loader for IBM Z - zipl 71

Option Explanation

Command line:
-d <dump_device>[,<size>]
--dumpto=<dump_device>[,<size>]

zipl configuration-file:
dumpto=<dump_device>[,<size>]

Specifies the DASD partition, SCSI disk partition, NVMe disk
partition, or tape device to which a dump is to be written after
IPL.

The optional size specification limits the amount of memory
to be dumped. The value is a decimal number that can
optionally be suffixed with K for kilobytes, M for megabytes,
or G for gigabytes. The value is rounded to the next megabyte
boundary. If you limit the dump size below the amount of
memory that is used by the system to be dumped, the resulting
dump is incomplete. If no limit is provided, all of the available
physical memory is dumped.

See “Preparing a dump device” on page 67 and Using the Dump
Tools, SC33-8412 for details.

Command line:
--environment

Specifies the location of a zipl environment file, see “zipl
environment - Variables for the kernel command line” on page
82. The default location is /etc/ziplenv.

Command line:
-h
--help

Displays help information.

Command line:
-i <image>[,<image_addr>]
--image=<image>[,<image_addr>]

zipl configuration-file:
image=<image>[,<image_addr>]

BLS snippet:
linux <image>

Specifies the location of the Linux kernel image on the file
system.

In command-line mode or in a zipl configuration-file section
you can optionally specify a memory location after IPL. The
default memory address is 0x10000.

See “Preparing a boot device” on page 60 for details.

Command line:
-k auto
--kdump=auto

zipl configuration-file:
kdump=auto

Installs a kdump kernel that can be used as a stand-alone
dump tool. You can IPL this kernel in an LPAR or guest virtual
machine to create a dump of a previously running operating
system instance that has been configured with a reserved
memory area for kdump. For Linux, this memory area is
reserved with the crashkernel= kernel parameter.

See “Preparing a boot device” on page 60 for details.

Command line:
-m <menu_name>
--menu=<menu_name>

Specifies the name of the menu that defines a
menu configuration in the configuration file (see “Menu
configurations” on page 77).

72 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Option Explanation

Command line:
-M <dump_device_list>[,<size>]
--mvdump=<dump_device_list>[,<size>]

zipl configuration-file:
mvdump=<dump_device_list>[,<size>]

Specifies a file with a list of DASD partitions to which a dump is
to be written after IPL.

The optional size specification limits the amount of memory
to be dumped. The value is a decimal number that can
optionally be suffixed with K for kilobytes, M for megabytes,
or G for gigabytes. The value is rounded to the next megabyte
boundary. If you limit the dump size below the amount of
memory that is used by the system to be dumped, the resulting
dump is incomplete. If no limit is provided, all of the available
physical memory is dumped.

See “Preparing a multi-volume dump on ECKD DASD” on page
69 and Using the Dump Tools, SC33-8412 for details.

Command line:
-n
--noninteractive

n/a

Suppresses all confirmation prompts (for example, when
preparing a DASD or tape dump device).

Command line:
-p <parmfile>[,<parm_addr>]
--parmfile=<parmfile>[,<parm_addr>]

zipl configuration-file:
parmfile=<parmfile>[,<parm_addr>]

In a boot configuration, specifies the location of a kernel
parameter file.

You can specify multiple sources of kernel parameters. For
more information, see “How kernel parameters from different
sources are combined” on page 63.

The optional <parm_addr> specifies the memory address
where the combined kernel parameter list is to be loaded at
IPL time.

Command line:
-P <parameters>
--parameters=<parameters>

zipl configuration-file:
parameters=<parameters>

BLS snippet:
options <parameters>

In a boot configuration, specifies kernel parameters.

Individual parameters are single keywords or have the
form key=value, without spaces. If you provide multiple
parameters, separate them with a blank and enclose them
within single quotation marks (') or double quotation marks (").

You can specify multiple sources of kernel parameters. For
more information, see “How kernel parameters from different
sources are combined” on page 63.

Command line:

-r <ramdisk>[,<initrd_addr>]
--ramdisk=<ramdisk>[,<initrd_addr>

zipl configuration-file:
ramdisk=<ramdisk>[,<initrd_addr>

BLS snippet:
initrd <ramdisk>

Specifies the location of the initial RAM disk (initrd) on the file
system.

In command-line mode or in a zipl configuration-file section
you can optionally specify a memory location after IPL.

If you do not specify a memory address, zipl investigates
the location of other components and calculates a suitable
address for you.

Chapter 6. Initial program loader for IBM Z - zipl 73

Option Explanation

-S <mode>
--secure=<mode>

secure=auto|0|1

In an LPAR boot configuration, controls the format of the boot
data that zipl writes to a SCSI IPL disk or NVMe IPL device. You
can specify the following values for <mode>:
auto

Uses the secure-boot enabled format if the zipl command
is issued on a mainframe with secure-boot support. This is
the default.

1
Enforces the secure-boot enabled format regardless of
mainframe support. Use this option to prepare boot
devices for systems other than the one you are working
on. Disks with this format cannot be booted on machines
z14 or earlier.

0
Enforces the traditional format, that does not support
secure boot, regardless of mainframe support. Disks with
this format can be booted on all machines but cannot be
used for secure boot.

Command line:
-t <directory>
--target=<directory>

zipl configuration-file:
target=<directory>

Specifies the target directory where zipl creates boot-
relevant files. The boot loader is installed on the disk that
contains the target directory.

Command line:

--targetbase=<targetbase_node>

zipl configuration-file:
targetbase=<targetbase_node>

For logical boot devices, specifies the device node of the base
device, either by using the standard device name or in form of
the major and minor number, separated by a colon (:).

See “Using base device parameters” on page 65 for details.

Command line:
--targetblocksize=<targetblocksize>

zipl configuration-file:
targetblocksize=<targetblocksize>

For logical boot devices, specifies the bytes per block of the
base device.

See “Using base device parameters” on page 65 for details.

Command line:
--
targetgeometry=<cylinders>,<heads>,<sec
tors>

zipl configuration-file:
targetgeometry=<cylinders>,<heads>,<sec
tors>

For logical boot devices that map to ECKD type base devices,
specifies the disk geometry of the base device in cylinders,
heads, and sectors.

See “Using base device parameters” on page 65 for details.

74 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Option Explanation

Command line:
--targetoffset=<targetoffset>

zipl configuration-file:
targetoffset=<targetoffset>

For logical boot devices, specifies the offset in blocks between
the start of the physical device and the start of the logical
device.

See “Using base device parameters” on page 65 for details.

Command line:
--targettype=<type>

zipl configuration-file:
targettype=<type>

For logical boot devices, specifies the device type of the base
device.

See “Using base device parameters” on page 65 for details.

Command line:
-T <tape_node>
--tape=<tape_node>

zipl configuration-file:
tape=<tape_node>

Specifies the tape device where zipl installs the boot loader
code.

Command line:
-v
--version

Prints version information.

Command line:
-V
--verbose

Provides more detailed command output.

If you call zipl in configuration file mode without specifying a configuration file, the default /etc/
zipl.conf is used. You can change the default configuration file with the environment variable
ZIPLCONF.

Configuration file structure
A zipl configuration file comprises a default section and one or more sections with IPL configurations. In
addition, there can be sections that define menu configurations.

[defaultboot]
a default section that defines what is to be done if the configuration file is called without a section
specification.

[<configuration>]
one or more sections that describe IPL configurations.

:<menu_name>
optionally, one or more menu sections that describe menu configurations.

A configuration file section consists of a section identifier and one or more option lines. Option lines are
valid only as part of a section. Blank lines are permitted, and lines that begin with the number sign (#) are
treated as comments and ignored. Option specifications consist of keyword=value pairs. There can but
need not be blanks before and after the equal sign (=) of an option specification.

Default section
The default section consists of the section identifier, [defaultboot], followed by a single option line.

Chapter 6. Initial program loader for IBM Z - zipl 75

The option line specifies one of these mutually exclusive options:
default=<section_name>

where <section_name> is one of the IPL configurations described in the configuration file. If the
configuration file is called without a section specification, an IPL device is prepared according to this
IPL configuration.

If you specify a target parameter with this option, <section_name> is ignored and a menu with all
DASD and SCSI IPL sections is built as for the defaultauto option.

defaultmenu=<menu_name>
where <menu_name> is the name of a menu configuration that is described in the configuration file.
If the configuration file is called without a section specification, IPL devices are prepared according to
this menu configuration. The defaultmenu option tolerates but does not require target parameters
for the individual IPL sections.

defaultauto
If the configuration file is called without a section specification, a menu configuration is built. This
configuration contains all DASD and SCSI IPL configurations in the configuration file. In the menu,
these configurations appear in the order in which they appear in the configuration file.

The defaultauto option requires an additional option line with the target parameter. You can add
further option lines with the default, prompt, and timeout parameters. These parameters have
the same meaning as in “Menu configurations” on page 77.

The defaultauto option tolerates but does not require target parameters for the individual
IPL sections. The resulting menu configuration is always written to the directory specified with the
target parameter line within the default section.

As for configuration sections, extra parameters might be required for logical boot devices (see
“Preparing a logical device as a boot device” on page 64).

Examples
• This default specification points to a boot configuration boot1 as the default.

[defaultboot]
default=boot1

• This default specification points to a menu configuration with a menu menu1 as the default.

[defaultboot]
defaultmenu=menu1

• This default specification creates a menu with all IPL sections in the configuration file. The first IPL
configuration in the automatically created menu is the default.

[defaultboot]
defaultauto
target=/boot
default=1

IPL configurations
An IPL configuration has a section identifier that consists of a section name within square brackets and is
followed by one or more option lines.

Each configuration includes one of the following mutually exclusive options that determine the type of IPL
configuration:

image=<image>
Defines a boot configuration. See “Preparing a boot device” on page 60 for details.

dumpto=<dump_device>
Defines a DASD, SCSI, NVMe, or tape dump configuration. For details, see “Preparing a dump device”
on page 67.

76 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

mvdump=<dump_device_list>
Defines a multi-volume DASD dump configuration. See “Preparing a multi-volume dump on ECKD
DASD” on page 69 for details.

KVM: For KVM guests, image= is the only supported option.

Additional parameters might be required for logical boot devices (see “Preparing a logical device as a boot
device” on page 64).

Menu configurations
For DASD and SCSI devices, you can define a menu configuration. A menu configuration has a section
identifier that consists of a menu name with a leading colon.

The identifier is followed by one or more lines with references to IPL configurations in the same zipl
configuration-file or to BLS snippets. The menu configuration can also include one or more option lines.

target=<directory>
specifies a device where a boot loader is installed that handles multiple IPL configurations. For menu
configurations, the target options of the referenced IPL configurations are ignored.

<i>=<configuration>
specifies a menu item. A menu includes one and more lines that specify the menu items.

<configuration> is the name of an IPL configuration that is described in the same configuration file.
You can specify multiple boot configurations. For SCSI target devices, you can also specify one or
more SCSI dump configurations. You cannot include DASD dump configurations as menu items.

<i> is the configuration number. The configuration number sequentially numbers the menu items,
beginning with 1 for the first item. When initiating an IPL from a menu configuration, you can specify
the configuration number of the menu item you want to use.

default=<n>
specifies the configuration number of one of the configurations in the menu to define it as the default
configuration. If this option is omitted, the first configuration in the menu is the default configuration.

prompt=<flag>
for a DASD target device, determines whether the menu is displayed when an IPL is performed. Menus
cannot be displayed for SCSI target devices.

For prompt=1 the menu is displayed, for prompt=0 it is suppressed. If this option is omitted, the menu
is not displayed. Independent of this parameter, the operator can force a menu to be displayed by
specifying "prompt" in place of a configuration number for an IPL configuration to be used.

If the menu of a menu configuration is not displayed, the operator can either specify the configuration
number of an IPL configuration or the default configuration is used.

timeout=<seconds>
for a DASD target device and a displayed menu, specifies the time in seconds, after which the default
configuration is IPLed, if no configuration has been specified by the operator. If this option is omitted
or if 0 is specified as the timeout, the menu stays displayed indefinitely on the operator console and
no IPL is performed until the operator specifies an IPL configuration.

secure=<mode>
In an LPAR boot configuration, controls the format of the boot data that zipl writes to a SCSI IPL
device. You can specify the following values for <mode>:
auto

Uses the secure-boot enabled format if the zipl command is issued on a mainframe with secure-
boot support. This is the default.

1
Enforces the secure-boot enabled format regardless of mainframe support. Use this option to
prepare boot devices for systems other than the one you are working on. Disks with this format
cannot be booted on machines z14 or earlier.

Chapter 6. Initial program loader for IBM Z - zipl 77

0
Enforces the traditional format, that does not support secure boot, regardless of mainframe
support. Disks with this format can be booted on all machines but cannot be used for secure boot.

As for any configuration section, additional parameters might be required for logical boot devices (see
“Preparing a logical device as a boot device” on page 64).

Example
Figure 23 on page 79 shows a sample configuration file that defines multiple configuration sections and
two menu configurations.

78 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

[defaultboot]
defaultmenu=menu1

First boot configuration (DASD)
[boot1]
ramdisk=/boot/initrd
parameters='root=/dev/ram0 ro'
image=/boot/image-1
target=/boot

Second boot configuration (SCSI)
[boot2]
image=/boot/mnt/image-2
ramdisk=/boot/mnt/initrd,0x900000
parmfile=/boot/mnt/parmf-2
target=/boot

Third boot configuration (DASD)
[boot3]
image=/boot/mnt/image-3
ramdisk=/boot/mnt/initrd
parmfile=/boot/mnt/parmf-3
target=/boot

Configuration for dumping to tape
[dumptape]
dumpto=/dev/rtibm0

Configuration for dumping to DASD
[dumpdasd]
dumpto=/dev/dasdc1

Configuration for multi-volume dumping to DASD
[multi_volume_dump]
mvdump=sample_dump_conf

Configuration for dumping to SCSI disk
[dumpscsi]
dumpto=/dev/mapper/36005076303ffd40100000000000020c0-part1

Configuration for dumping to NVMe
[dumpnvme]
dumpto=/dev/nvme0n1p1

Menu containing the SCSI boot and SCSI dump configurations
:menu1
1=dumpscsi
2=boot2
target=/boot
default=2

Menu containing two DASD boot configurations
:menu2
1=boot1
2=boot3
target=/boot
default=1
prompt=1
timeout=30

Figure 23. Sample /etc/zipl.conf file

The following commands assume that the configuration file of the sample is the default configuration file.

• Call zipl to use the default configuration file settings:

zipl

Result: zipl reads the default option from the [defaultboot] section and selects the :menu1
section. It then installs a menu configuration with a boot configuration and a SCSI dump configuration.

• Call zipl to install a menu configuration (see also “Installing a menu configuration” on page 70):

Chapter 6. Initial program loader for IBM Z - zipl 79

zipl -m menu2

Result: zipl selects the :menu2 section. It then installs a menu configuration with two DASD
boot configurations. “DASD menu configuration example for z/VM” on page 108 and “DASD menu
configuration for LPAR” on page 94 illustrate what this menu looks like when it is displayed.

• Call zipl to install a boot loader for boot configuration [boot2]:

zipl boot2

Result: zipl selects the [boot2] section. It then installs a boot loader that loads copies of /
boot/mnt/image-2, /boot/mnt/initrd, and /boot/mnt/parmf-2.

• Call zipl to prepare a tape that can be IPLed for a tape dump:

zipl dumptape

Result: zipl selects the [dumptape] section and prepares a dump tape on /dev/rtibm0.
• Call zipl to prepare a DASD dump device:

zipl dumpdasd -n

Result: zipl selects the [dumpdasd] section and prepares the dump device /dev/dasdc1.
Confirmation prompts that require an operator response are suppressed.

• Call zipl to prepare a SCSI dump device:

zipl dumpscsi

Result: zipl selects the [dumpscsi] section and prepares the dump device. The associated dump is
created in the dump partition
/dev/mapper/36005076303ffd40100000000000020c0-part1.

BLS configuration snippets
Using Boot Loader Specification (BLS) snippets, you can add boot configurations to zipl without editing
existing configuration files.

BLS snippets are provided as configuration files in a directory that is shared across all installed operating
system instances. You add a boot configuration to zipl by adding a file with a BLS snippet to this
directory, /boot/loader/entries by default.

Files that contain BLS snippets can have any name, but must have the file extension .conf.
To avoid naming conflicts and to provide a hint about the content, a common naming
convention includes the value of /etc/machine-id, the kernel version, and an operating
system identifier in the name. For example, one such file might be /boot/loader/entries/
22be12d5d204461a9da34f3c3fd30ff9-5.5.0-10.s390.conf.

Depending on your distribution, the Linux installation process might create a file with a BLS snippet for
you.

BLS options
Table 10 on page 81 shows the subset of BLS options that are relevant to Linux on IBM Z.

80 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 10. BLS parameters and zipl equivalents

Option Description zipl configuration file
equivalent

title A meaningful identifier for the IPL configuration.

BLS configuration file title specifications together
with their zipl configuration file equivalents must be
unique within the scope of a zipl command call.

The title must be the first specification within a BLS
configuration file.

Section name as
specified within square
brackets ([])

version Specifies a version in human readable format. For
example, use the output of the uname -r command.

The processing order of BLS snippets is based
on an alphanumeric assessment of the values of
this parameter. The intention is to make the latest
operating system version the default.

This item is optional.

none

linux Path to a Linux kernel. image=

initrd Path to an initial RAM disk. This item is optional. ramdisk=

options Kernel parameters. This item is optional. parameters=

Snippet syntax
Lines start with an option keyword, followed by a blank, followed by a value. The first line must specify
the title option. The configuration file can include empty lines and comment lines. Comment lines start
with a number sign (#).

BLS snippet example

title Linux <version> test kernel
#This is a comment line and is ignored
version <version>-test
linux /boot/22be12d5d204461a9da34f3c3fd30ff9/kernels/linux-<version>
initrd /boot/22be12d5d204461a9da34f3c3fd30ff9/initrds/ramfs-<version>.im
options dasd=0.0.a01b root=/dev/dasda cio_ignore=all,!condev

Complementing BLS snippets through a zipl configuration file
You must use a zipl configuration file to complement the specifications in a BLS snippet with the target=
parameter. Use the default section of the zipl configuration file to set target=.

Depending on your distribution, zipl might be installed with a default configuration file at /etc/
zipl.conf, with a content similar to the following example:

[defaultboot]
defaultauto
prompt=1
timeout=5
target=/boot
secure=auto

Optionally, you can specify the secure= option.

Chapter 6. Initial program loader for IBM Z - zipl 81

zipl environment - Variables for the kernel command line
zipl prepares an IPL device by installing boot data and a boot record that points to this data. The boot data
includes kernel parameter lines.

The straightforward way to activate any changed parameter line is to rerun zipl. However, you can avoid
rerunning zipl. For this, define variable parts of your parameter line (such as numerical values of timeouts)
with zipl environment variables and define those variables in a special boot data component, called a zipl
environment block.

Once the zipl environment block is installed along with other zipl components, you don't need to rerun
zipl to change the variable parts: All you have to do is redefine the variables and update only the installed
environment block.

Hence, a zipl environment block contains specifications for resolving variables in the kernel command
line. These specifications apply to all menu entries that you create and install with zipl.

The installed zipl environment block is interpreted at boot time. zipl creates the zipl environment block
from a zipl environment file on the administrative Linux instance, from which you run zipl. See “Creating
variables for the kernel command line” on page 82.

Using the zipl environment feature, you can:

• Modify a zipl environment block without rerunning zipl. For example, see “Modifying a zipl environment
block with zipl-editenv” on page 85.

• Define common options for the kernel-command line across multiple boot menu entries, see
“Specifying common variables across multiple boot menu entries” on page 86.

• Add placeholder variables for future use, see “Specifying variables for future use” on page 87.

Figure 24 on page 82 shows the relationship between the zipl environment file and zipl environment
block.

Figure 24. zipl environment block and file

Use the zipl-editenv command to modify the zipl environment block directly.

For information about the zipl-editenv command, see “zipl-editenv - Edit the zipl environment block”
on page 757.

Creating variables for the kernel command line
You can modify the kernel command line, substituting its parts with variables.

82 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
Variables have the form ${<keyword>} in the kernel command line and are replaced during boot
with the value associated with <keyword>. If no value is defined for <keyword>, it is replaced with a
whitespace. The <keyword>=<value> pairs that zipl writes to the environment block are stored in the
zipl environment file (see “zipl environment file syntax” on page 84).

You can specify variables through:

• The zipl configuration file (/etc/zipl.conf)
• Kernel parameter file
• BLS snippets (boot/loader/entries/…)
• The DASD boot menu

Do not specify variables through:

• The SCSI OS-specific parameters field (SCP DATA)
• The VMPARM IPL parameter

Example

This example shows how to replace variable parts in the kernel command line with variables. The original
installation is unaffected. The example shows a snippet of the kernel parameters, other parameters can
be included, for example parameters that are automatically appended by an earlier stage of the boot
process.

1. Assume that a parameter specification is as follows:

root=/dev/dasda1 panic=9

2. Assume you might want to boot with another root partition and different values of panic time-out.
Then, you would replace "/dev/dasda1" and "panic=9" with variables. Assume that you choose the
keywords ROOT and PANIC_TIMEOUT for them, respectively.

Replace the parameters in the original command line with variables as follows:

root=${ROOT} ${PANIC_TIMEOUT}

You can replace a whole parameter as with ${PANIC_TIMEOUT} or just the parameter value as with
${ROOT}. Now you must give the variables values. Use a zipl environment file to do this.

3. Use your favorite text editor to set up a zipl environment file. For details about the file syntax, see “zipl
environment file syntax” on page 84.

Assume you create a zipl environment file /etc/ziplenv. Now use the keywords you chose before,
ROOT and PANIC_TIMEOUT, to set values. For example:

cat /etc/ziplenv
ROOT=/dev/dasda1
PANIC_TIMEOUT=panic=9

4. Prepare a block device for IPL with zipl. Run zipl.
5. Reboot the system with the prepared boot configuration, log in, and display the current command line:

cat /proc/cmdline
root=/dev/dasda1 panic=9 ...

Figure 25 on page 84 illustrates the process of replacing specifications in the command line with
variables.

Chapter 6. Initial program loader for IBM Z - zipl 83

Figure 25. Variables on the command line

Results

During the IPL process, the variables ${ROOT} and ${PANIC_TIMEOUT} resolved to /dev/dasda1 and
panic=9 respectively, according to the keyword definitions in the zipl environment block. This ensures
that the original installation works as before, but you can now boot with another root partition and
different values of panic timeout by changing the zipl environment block. For an example of how to
change the zipl environment block, see “Modifying a zipl environment block with zipl-editenv” on page
85.

zipl environment file syntax
zipl reads the zipl environment file to add the zipl environment block to the boot data.

The default location of the file is /etc/ziplenv. To use a file at a different location, use the zipl
command option --environment.

The file contains lines of keyword-value pairs, <keyword>=<value>, with each pair on a separate line.
On each line, the keyword is the sequence of characters that precedes the first equal sign (=). The
maximum number of keyword-value pairs for one boot partition is 512.

You can modify a zipl environment file with any text editor. An example file might look as follows:

...
ROOT=/dev/dasda1
CRASH=256M
PANIC_TIMEOUT=panic=8
PANIC_TIMEOUT=panic=9
RESERVED=
...

The keywords must satisfy the following requirements:

• Consist of uppercase letters A - Z, digits 0 - 9, and the "_" (underscore).
• Must not begin with a digit.

Lines beginning with "#" are ignored, as are lines without a keyword.

If lines contain identical keywords, the last line overrides preceding ones. For example, in the example file
from before, of the two entries for PANIC_TIMEOUT, the entry PANIC_TIMEOUT=panic=9 would be used.

84 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Creating a boot record with a missing, or empty, zipl environment file results in an empty zipl environment
block in the boot data. At boot time, all variables that cannot be resolved are removed from the command
line.

If the zipl environment file defines more than 512 keyword-value pairs, or if the environment defined by
that file exceeds one file-system block, zipl fails to import the file.

Modifying a zipl environment block with zipl-editenv
Use the zipl-editenv command to modify the installed zipl environment block.

About this task
Assume you have the same zipl environment file as before, with the ROOT and PANIC_TIMEOUT keywords
defined:

cat /etc/ziplenv
ROOT=/dev/dasda1
PANIC_TIMEOUT=panic=9

For details about the file syntax, see “zipl environment file syntax” on page 84.

Further, assume that you ran zipl, and the zipl environment block is created. Now you would like to use
another root partition and another value for the panic time-out.

Procedure
1. Optional: Display the current zipl environment block by using the zipl-editenv command:

zipl-editenv --list
ROOT=/dev/dasda1
PANIC_TIMEOUT=panic=9

If no option -t is specified, zipl-editenv assumes that the environment was installed in the /boot
directory. To specify a different directory, use the -t option.

2. Use the zipl-editenv command to change the values for ROOT and PANIC_TIMEOUT.
For example, to set the root partition to /dev/dasdc2 and the panic time-out to 8, issue the following
commands:

zipl-editenv -s ROOT=/dev/dasdc2
zipl-editenv -s PANIC_TIMEOUT=panic=8

To check that everything is correct, display the modified zipl environment block:

zipl-editenv --list
ROOT=/dev/dasdc2
PANIC_TIMEOUT=panic=8

3. Reboot the system, log in, and display the current command line:

cat /proc/cmdline
root=/dev/dasdc2 panic=8 ...

The root partition and panic time-out were set to the new values.

The process for modifying the environment block with zipl-editenv is illustrated in Figure 26 on
page 86

Chapter 6. Initial program loader for IBM Z - zipl 85

Figure 26. Changing values for keywords that replace specifications in the kernel command line.

Results
You can repeatedly modify the zipl environment block to IPL the Linux instance with different kernel
command lines without rerunning zipl.

What to do next
You can define keyword-value pairs for common parameters for the kernel-command line across multiple
boot menu entries, see “Specifying common variables across multiple boot menu entries” on page 86.

You can also equip the zipl environment file with keyword-value pairs for future use, see “Specifying
variables for future use” on page 87.

Specifying common variables across multiple boot menu entries
The zipl environment feature is useful in the case of multiple boot menu entries.

Procedure
1. Create a zipl environment file that holds only the keyword-value pairs for common variables.

For example:

cat /etc/ziplenv
COMMON=nosmt

2. Introduce the ${COMMON} variable to the kernel parameters in the boot menu configurations.

[defaultboot]
defaultauto
target=/boot

First boot configuration (DASD)
[boot1]
ramdisk=/boot/initrd
parameters='root=/dev/ram0 ro ${COMMON}'
image=/boot/image-1
target=/boot

Second boot configuration (DASD)
[boot2]
image=/boot/mnt/image-3
ramdisk=/boot/mnt/initrd
parmfile=/boot/mnt/parmf-3
target=/boot

...

For the boot2 configuration section, the parmfile option specifies a kernel parameter file that
contains kernel parameters, including the ${COMMON} variable, for example:

86 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /boot/mnt/parmf-3
....
CRASH=256M
PANIC_TIMEOUT=panic=8
${COMMON}

3. Call zipl to install multiple boot configurations that include the ${COMMON} variable.
For example, to make zipl install both boot configuration boot1 and boot2:

zipl

At boot time, the ${COMMON} variable is replaced by nosmt, as specified in the installed zipl
environment block by the keyword COMMON.

Results
The zipl environment block now defines the COMMON keyword:

zipl-editenv --list
...
COMMON=nosmt

IPL any boot configuration that uses a command line with the ${COMMON} variable, and display the actual
command line:

cat /proc/cmdline
... nosmt ...

To not have nosmt set, first ensure that the environment file does not define the COMMON variable, or
defines it as an empty string:

cat /etc/ziplenv
COMMON=

Then install the boot record.

However, if you do not want to re-install the boot record, you can either set the COMMON variable to the
empty string in the already installed zipl environment block:

zipl-editenv -s COMMON=
zipl-editenv -l
COMMON=

Or remove it from the zipl environment block:

zipl-editenv -u COMMON
zipl-editenv -l

Specifying variables for future use
You can extend a zipl environment file to include keywords that are not used yet, but can be in the future.

About this task
You can add keywords for future use by setting them to empty strings. Using such reserved keywords
helps you avoid boot record re-installation in the future, when you want to add more parameters to the
kernel command line.

Procedure
1. Assume the same command line as before:

Chapter 6. Initial program loader for IBM Z - zipl 87

root=/dev/dasda1 panic=9

To add a variable that can be used in the future, add one or more variables to the command line, for
example ${MYVARIABLE_1} ${MYVARIABLE_2}:

root=/dev/dasda1 panic=9 ${MYVARIABLE_1} ${MYVARIABLE_2}

Ensure that all variables are separated by blanks from other variables.
2. Use a zipl environment file to set values for the keywords.

You now need to define keyword-value pairs for these variables in a zipl environment file. Keyword-
value pairs set to the empty string resolve to the empty string until you define values for them:

cat /etc/ziplenv
root=/dev/dasda1
panic=9
MYVARIABLE_1=
MYVARIABLE_2=

3. Reboot with the prepared boot configuration, and log in.
Display the command line that was used for the currently running Linux instance. You notice that the
original command line is unchanged:

cat /proc/cmdline
root=/dev/dasda1 panic=9 ...

Results
The original installation works as before, but you can now use zipl-editenv to assign a value in the zipl
environment block for a specific IPL device. For example:

zipl-editenv --set MYVARIABLE_1=console=ttyS1
zipl-editenv --list
root=/dev/dasda1
panic=9
MYVARIABLE_1=console=ttyS1
MYVARIABLE_2=

The value for a reserved keyword must be the complete kernel parameter specification. For many kernel
parameters this is a <parameter>=<parameter_value> pair, for example panic=9.

After rebooting, you can see that the new value was applied to the installation as it shows up in the
command line:

cat /proc/cmdline
root=/dev/dasda1 panic=9 console=ttyS1 ...

88 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 7. Booting Linux
The options and requirements you have for booting Linux depend on your platform, LPAR, z/VM, or KVM,
and on your boot medium.

For details about setting up a z/VM guest virtual machine for Linux, see z/VM: Getting Started with Linux
on System z®, SC24-6287, the chapter about creating your first z/VM guest virtual machine for Linux and
installing Linux.

For details about setting up a KVM virtual server, see KVM Virtual Server Management, SC34-2752.

IPL and booting
On IBM Z, you usually start booting Linux by performing an Initial Program Load (IPL) from an IPL device.

A traditional IPL device contains all data that is required to start an IBM Z operating system or a stand-
alone program. For Linux this includes a kernel image, possibly an initial RAM disk and kernel parameters,
and a boot loader.

For SCSI IPL disks, NVMe devices, and generally for IPL of a KVM guest, the boot loader code is supplied
by the hypervisor and not required on the IPL device.

Figure 27 on page 89 summarizes the main steps of the boot process for a traditional IPL device.

Figure 27. IPL and boot process

The IPL process accesses the IPL device and loads the Linux boot loader code to the mainframe memory.
The boot loader code then gets control and loads the Linux kernel. At the end of the boot process Linux
gets control.

Use the zipl tool to prepare DASD, SCSI, NVMe, and tape devices as IPL devices for booting Linux or for
dumping. For more information about zipl, see Chapter 6, “Initial program loader for IBM Z - zipl,” on
page 57.

© Copyright IBM Corp. 2000, 2023 89

LPAR
If your Linux instance is to run in an LPAR, you can circumvent the IPL and use the Support Element (SE)
to copy the Linux kernel to the mainframe memory (see “Loading Linux from removable media or from an
FTP server” on page 99).

You can use secure boot if you IPL from a SCSI device. For more information, see “Secure boot” on page
99.

KVM
For Linux on IBM Z as a KVM guest, an IPL is initiated by starting a virtual server on the KVM hypervisor.

The hypervisor first assigns resources to the virtual hardware, then it loads s390-ccw.img into the
memory of the new virtual hardware. For KVM guests, s390-ccw.img takes the role of the boot loader. If
needed, s390-ccw.img loads s390-netboot.img to retrieve boot data over the network.

LPAR and z/VM
An IPL can also start a dump process. See Using the Dump Tools, SC33-8412 for more information about
dumps. You can find the latest version of this document on IBM Documentation at:
ibm.com/docs/en/linux-on-systems?topic=tools-upstream-kernel.

Control point and boot medium
The control point from where you can start the IPL depends on your hypervisor environment.

LPAR
For Linux in LPAR mode, the control point is the mainframe's Support Element (SE) or an attached
Hardware Management Console (HMC).

z/VM
For Linux on z/VM, the control point is the control program (CP) of the hosting z/VM system.

KVM
For Linux on KVM, the control point is the KVM host.

The media that can be used as boot devices also depends on the hypervisor. Table 11 on page 90
provides an overview of the possibilities:

Table 11. Boot media

Medium LPAR z/VM guest KVM guest

DASD ✓ ✓ ✓

tape ✓ ✓

SCSI ✓ ✓

NVMe ✓

CD-ROM/DVD/FTP ✓

z/VM reader ✓

virtio block device ✓

virtio SCSI device ✓

In the table:

• As of z14, a SCSI boot device is an FC-attached disk. Support for an FC-attached CD-ROM or DVD drive
as a boot device is available on IBM Z hardware prior to z14.

• CD-ROM/DVD/FTP can be the CD-ROM or DVD drive of the SE or HMC, or it can be a remote FTP server.

90 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdt.html

• A virtio block device can be backed by an ISO image in the KVM host file system or by any IPL device
that was prepared with zipl.

Typically, booting from removable media applies to initial installation of Linux. Booting from DASD or SCSI
disk devices usually applies to previously installed Linux instances.

Menu configurations
If you use zipl to prepare a DASD or SCSI boot device, you can define a menu configuration.

A boot device with a menu configuration can hold the code for multiple boot configurations. For SCSI and
NVMe disks, the menu can also include one or more system dumpers.

Each boot and dump configuration in a menu is associated with a configuration number. At IPL time, you
can specify a configuration number to select the configuration to be used.

For menu configurations on DASD, you can display a menu with the configuration numbers (see “DASD
menu configuration example for z/VM” on page 108 and “DASD menu configuration for LPAR” on page
94). For menu configurations on SCSI devices, you need to know the configuration numbers without
being able to display the menus.

See “Menu configurations” on page 77 for information about defining menu configurations.

Boot data
To boot Linux, you generally need a kernel image, boot loader code, kernel parameters, and an initial RAM
disk image.

For sequential I/O boot devices, z/VM reader and tape, the order in which this data is provided is
significant. For random access devices, there is no required order.

On Ubuntu Server 22.04 LTS, kernel images are installed into the /boot directory and are named
vmlinuz-<version>, where <version> is the same as the output of the uname -r command. There
is often more than one kernel image installed; the currently active kernel image is indicated by a symbolic
link named 'vmlinuz' (without version suffix). For information about where to find the images and how to
start an installation, see the Ubuntu Installation Guide, see:

• For LPAR: https://ubuntu.com/server/docs/install/s390x-lpar
• For z/VM: https://ubuntu.com/server/docs/install/s390x-zvm

https://help.ubuntu.com/18.04/installation-guide/s390x

Boot loader code
A kernel image is usually compiled to contain boot loader code for a particular boot device.

For example, there are Linux configuration menu options to compile boot loader code for tape or for the
z/VM reader into the kernel image.

If your kernel image does not include any boot loader code or if you want to boot a kernel image from a
device that does not correspond to the included boot loader code, you can provide alternate boot loader
code separate from the kernel image.

You can use zipl to prepare boot devices with separate DASD, SCSI, or tape boot loader code. You can
then boot from DASD, SCSI, or tape regardless of the boot loader code in the kernel image.

Kernel parameters
The kernel parameters are in form of an ASCII text string. If the boot device is tape or the z/VM reader, the
string can also be encoded in EBCDIC.

Individual kernel parameters are single keywords or keyword/value pairs of the form keyword=<value>
with no blank. Blanks are used to separate consecutive parameters.

Chapter 7. Booting Linux 91

https://ubuntu.com/server/docs/install/s390x-lpar
https://ubuntu.com/server/docs/install/s390x-zvm
https://help.ubuntu.com/18.04/installation-guide/s390x

If you use the zipl command to prepare your boot device, you can provide kernel parameters on the
command line, in a parameter file, and in a zipl configuration file.

See Chapter 4, “Kernel and module parameters,” on page 25, Chapter 6, “Initial program loader for IBM Z
- zipl,” on page 57, or the zipl and zipl.conf man pages for more details.

Initial RAM disk image
An initial RAM disk holds files, programs, or modules that are not included in the kernel image but are
required for booting.

For example, booting from DASD requires the DASD device driver. If you want to boot from DASD but the
DASD device driver has not been compiled into your kernel, you must provide the DASD device driver
module on an initial RAM disk. If your image contains all files, programs, and modules that are needed for
booting, you do not need an initial RAM disk.

Ubuntu Server provides a RAM disk in /boot, named initrd.img-<version>, where <version> is the
same as the output of the uname -r command. There is often more than one RAM disk installed, the
currently active RAM disk is indicated by a symbolic link named initrd.img, without version suffix.

Rebuilding the initial RAM disk image
Configuration changes might apply to components that are required in the boot process before the root
file system is mounted. For Ubuntu Server 22.04 LTS, such components and their configuration are
provided through an initial RAM disk.

Procedure
Issue update-initramfs -u to update the initial RAM disk of your target kernel.
The command also updates the bootloader record.

Tip: Use the -k all option to ensure that all kernel and initrd combinations on the system are updated.

Booting Linux in LPAR mode
You can boot Linux in LPAR mode from a Hardware Management Console (HMC) or Support Element (SE).

About this task
The following description refers to an HMC, but the same steps also apply to an SE.

Booting from DASD
Use the SE or HMC to boot Linux in LPAR mode from a DASD boot device.

Before you begin
You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

Procedure
Perform these steps to boot from a DASD boot device:
1. In the navigation pane of the HMC, expand Systems Management and select the hardware system

that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.
2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load (see Figure 28 on page 93).

92 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 28. Load task on the HMC
4. Select load type Standard load as shown in Figure 29 on page 93.

Select the Clear the main memory on this partition before loading it check box only if you must clear
memory. Memory clearing can considerably prolong the IPL procedure.

Figure 29. Load panel for booting from DASD
5. Enter the device number of the DASD boot device in the Load address field.

To IPL from a subchannel set other than 0, specify five digits: The subchannel set ID followed by the
device number, for example 1E711.

6. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your DASD boot configuration within the menu in the Load parameter field.

Configuration number 0 specifies the default configuration. Depending on the menu configuration,
omitting this option might display the menu or select the default configuration. Specifying "prompt"
instead of a configuration number forces the menu to be displayed.

When the menu is displayed, you can specify additional kernel parameters (see “DASD menu
configuration for LPAR” on page 94). These additional kernel parameters are appended to the

Chapter 7. Booting Linux 93

parameters you might have provided in a parameter file. The combined parameter string must not
exceed 895 bytes.

See “Menu configurations” on page 77 for more details about menu configurations.
7. If the boot configuration is part of a zipl created menu configuration, type the configuration number

that identifies your DASD boot configuration within the menu in the Load parameter field.
8. Click OK to start the boot process.

DASD menu configuration for LPAR

This example illustrates how menu2 in the sample configuration file in Figure 23 on page 79 is displayed
on the HMC or SE:

zIPL interactive boot menu

0. default (boot1)

1. boot1
2. boot3

Please choose (default will boot in 30 seconds): 2

You choose a configuration by specifying the configuration number. For example, to boot configuration
boot3 specify 2.

You can also specify additional kernel parameters by appending them to the configuration number. For
example, you can specify:

2 maxcpus=1

These parameters are concatenated to the end of the existing kernel parameters that are used by your
boot configuration when booting Linux.

What to do next
Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Booting from SCSI
Use the SE or HMC to boot Linux in LPAR from a SCSI boot device.

Before you begin
• You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

For information about boot devices, see Table 11 on page 90.
• You must have the SCSI IPL feature (FC9904) installed.

Procedure
Perform these steps to boot from a SCSI boot device:

1. In the navigation pane of the HMC, expand Systems Management and Servers and select the
mainframe system that you want to work with. A table of LPARs is displayed on the Images tab in the
content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown inFigure 30 on page 95 .

94 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 30. Load task on the HMC
4. Select load type SCSI as shown in Figure 31 on page 95.

A SCSI device can be a disk or an FC-attached CD-ROM or DVD drive.

Figure 31. Load panel with SCSI feature enabled — for booting from a SCSI disk
5. Enter the device number of the FCP channel through which the SCSI disk is accessed in the Load

address field.
6. Enter the WWPN of the SCSI disk in the World wide port name field.
7. Enter the LUN of the SCSI disk in the Logical unit number field.
8. If the boot configuration is part of a zipl created menu configuration, type the configuration number

that identifies your SCSI boot configuration within the menu in the Boot program selector field.
Configuration number 0 specifies the default configuration.

See “Menu configurations” on page 77 for more details about menu configurations.

Chapter 7. Booting Linux 95

9. Type kernel parameters in the Operating system specific load parameters field.
These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux. The combined parameter string must not exceed 4096
bytes.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in the Operating system specific load parameters field.

10. Accept the defaults for the remaining fields.
11. Click OK to start the boot process.

What to do next
Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Booting in LPAR mode from an NVMe device
Use the SE or HMC to boot Linux in LPAR mode from a Non-Volatile Memory Express (NVMe) device.

Before you begin
• NVMe IPL devices are supported as of LinuxONE III with the firmware upgrade of November 2020.
• You need an NVMe device that is prepared with zipl (see “Preparing a boot device” on page 60).
• If you are using the HMC in Dynamic Partitioning Mode (DPM), ensure that the NVMe device to boot from

is of type "boot".

Procedure
Perform these steps to boot from an NVMe boot device:

1. In the navigation pane of the HMC, expand Systems Management and select the hardware system
that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.

2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown in the following graphic:

96 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 32. Load task on the HMC
4. On the Load panel, select load type NVMe load.

Select the Clear the main memory on this partition before loading it check box only if you must
clear memory. Memory clearing can considerably prolong the IPL procedure.

Figure 33. Load panel for NVMe load
5. Enter the PCIe function ID of the NVMe device in the Load address field. You can omit leading zeroes.

Chapter 7. Booting Linux 97

6. If the boot configuration is part of a zipl created menu configuration, type the configuration number
that identifies your boot configuration within the menu in the Boot program selector field.
Configuration number 0 specifies the default configuration.

See “Menu configurations” on page 77 for more details about menu configurations.
7. For boot images in the secure-boot format, select the Enable Secure Boot for Linux option.
8. Type kernel parameters in the Operating system specific load parameters field.

These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in the Operating system specific load parameters field.

9. Accept the defaults for the remaining fields.
10. Click OK to start the boot process.

What to do next
Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Booting from tape
You can boot Linux in LPAR mode from tape.

Before you begin
You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60).

Procedure
Perform these steps to boot from a tape boot device:
1. In the navigation pane of the HMC, expand Systems Management and select the hardware system

that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.
2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load as shown in Figure 34 on page 99.

98 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 34. Load task on the HMC
4. Select the load type Standard load (see Figure 29 on page 93).

Select the Clear the main memory on this partition before loading it check box only if you must clear
memory. Memory clearing can considerably prolong the IPL procedure.

5. Enter the device number of the tape boot device in the Load address field.
6. Click OK to start the boot process.

What to do next
Check the output on the preferred console (see “Console kernel parameter syntax” on page 43) to
monitor the boot progress.

Secure boot
As of z15 and LinuxONE III, the operating system loader verifies that components that are loaded from
SCSI disks or NVMe devices come from a trusted source. You can cancel loading for components that
cannot be verified.

With secure boot enabled, an IPL fails if a component containing code is not signed or cannot be verified.

For details about how to prepare a device for secure boot, see “zipl modes and syntax overview” on page
58.

To check if a Linux instance was IPLed with secure boot, see “Displaying current IPL parameters” on page
111.

Kernel interfaces are restricted in a kernel that is prepared for secure boot. In particular, in a kernel
prepared for secure boot, all kernel modules must be signed by Canonical. You cannot load modules that
are not signed by Canonical, like lin_tape.

KVM: You can IPL a KVM guest from a device with the secure boot format, but signatures are not verified.

Loading Linux from removable media or from an FTP server
Instead of a boot loader, you can use SE functions to copy the Linux kernel image to your LPAR memory.
After the Linux kernel is loaded, Linux is started using restart PSW.

Chapter 7. Booting Linux 99

Before you begin
You need installation data that includes a special file with installation information (with extension "ins").
This file can be in different locations:

• On a disk that is inserted in the CD-ROM or DVD drive of the system where the HMC runs
• In the file system of an FTP server that you can access through FTP from your HMC system

The .ins file contains a mapping of the location of installation data on the disk or FTP server and the
memory locations where the data is to be copied.

Procedure
Perform these steps:
1. In the navigation pane of the HMC, expand Systems Management and select the hardware system

that you want to work with. A table of LPARs is displayed on the Partitions tab in the content area.
2. Select the LPAR where you want to boot Linux.
3. In the Tasks area, expand Recovery and click Load from Removable Media or Server (see Figure 35

on page 100).

Figure 35. Load from Removable Media or Server task on the HMC
4. Specify the source of the code to be loaded.

• For loading from a CD-ROM or DVD drive

a. Select Hardware Management Console removable media (see Figure 36 on page 101).

100 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 36. Load from Removable Media or Server panel
b. Enter the path for the directory where the "ins-file" is in the File location field. You can leave

this field blank if the "ins-file" is in the root directory of the file system on the CD-ROM or DVD.
• For an initial installation from removable media at the HMC

a. Select Hardware Management Console removable media and assign for operating system
use (see Figure 36 on page 101).

b. Enter the path for the directory where the "ins-file" is in the File location field. You can leave
this field blank if the "ins-file" is in the root directory of the file system on the removable media.

The installation CD or DVD must hold a distribution that supports an installation from the HMC.
• For loading from an FTP server

a. Select FTP Server.
b. Enter the IP address or host name of the FTP server with the installation code in the Host name

entry field.
c. Enter your user ID for the FTP server in the User name entry field.
d. Enter your password for the FTP server in the Password entry field.
e. If required by your FTP server, type your account information in the Account entry field.
f. Enter the path for the directory where the "ins-file" resides in the file location entry field. You

can leave this field blank if the file is in the FTP server's root directory.
5. Click Continue to display the Select Software to Install panel (Figure 37 on page 101).

Figure 37. Select Software to Install panel
6. Select the "ins-file" to be used.
7. Click OK to start loading Linux.

Chapter 7. Booting Linux 101

Results
Ubuntu Server configuration scripts take over, if present.

102 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Using the HMC Web Services API to boot in LPAR mode
You can boot Linux in LPAR mode remotely by using the HMC Web Services API. For information about the
API, see Hardware Management Console Web Services API for your IBM Z or LinuxONE hardware.

You can find a client application that uses this API at https://github.com/zhmcclient/zhmccli - installable
using pip or apt. The examples that follow are based on this application, which provides the zhmc
command as its user interface.

Hint: The zhmc command is case sensitive. For hardware and partition specifications, use the
capitalization as shown in the HMC interface and the corresponding HMC API queries.

Booting from a SCSI boot device

The following example makes these assumptions about the hardware system, LPAR, and boot device:

• The name of the IBM Z or LinuxONE system is M35.
• The name of the LPAR is m35lp55.
• An FC-attached SCSI disk is prepared, with zipl, as a boot device.
• The LUN of the disk is 0x5241000000000000
• The disk is accessed through WWPN 0x5005076300c20b8e.
• The FCP device to access the disk has a bus ID 0.0.FC00.

To start the IPL and boot process, issue:

zhmc lpar scsi-load M35 m35lp55 FC00 5005076300c20b8e 5241000000000000

To view the operating system messages, issue:

zhmc lpar console M35 m35lp55

For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Booting Linux in a DPM partition
You can boot Linux in a DPM partition from a Hardware Management Console (HMC).

Booting in a DPM partition from a SCSI boot device
You can boot Linux in a Dynamic Partition Manager (DPM) partition from an FC-attached SCSI disk using
the Hardware Management Console (HMC).

Before you begin
• You need a boot device that is prepared with zipl (see “Preparing a boot device” on page 60). For more

information about SCSI boot devices, see Table 11 on page 90.
• You must have the SCSI IPL feature (FC9904) installed.
• SCSI boot devices are FC-attached disk volumes. In DPM mode, the HMC interface presents such disk

volumes as part of SAN storage groups. To set up a SCSI disk as a boot device, you must know its
storage group and the UUID that identifies it.

Chapter 7. Booting Linux 103

https://github.com/zhmcclient/zhmccli

About this task
In Dynamic Partition Manager (DPM) mode, the boot process is initiated by the Start task for the partition.
Before you can run the Start task, you must configure a boot volume for the partition. Subsequent boot
processes for the partition use the configured boot volume configuration.

The steps that follow assume DPM version R3.1 or later. For more information about DPM, see Dynamic
Partition Manager (DPM) Guide for your IBM Z or LinuxONE hardware.

Procedure
Perform these steps to set up and boot from a SCSI boot device for a DPM partition:
1. On the HMC, navigate to your partition.

a) Expand Systems Management and select the hardware system that you want to work with.
a) Select your partition on the Partitions tab in the content area.

2. Unless it is already configured, set up the boot device.
a) In the Tasks area, click Partition Details (see Figure 38 on page 104).

Figure 38. Task area on the HMC
b) In the left navigation pane of the Partition Details panel, select Boot to open the Boot tab.

104 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 39. Boot tab of the Partition Details panel
c) From the Boot from drop-down list, select "Storage Group(SAN)".
d) Optional: For boot images in the secure-boot format, select the Secure Boot option. For more

information about secure boot, see “Secure boot” on page 99.
e) In the Storage Group section, select a storage group and a boot volume.
f) Boot configurations only: The Boot program selector field applies only to boot configurations that

are part of a menu configuration that is created by zipl.
Enter the configuration number that identifies the boot configuration within the menu into this field.
Configuration number 0 specifies the default configuration.

See “Menu configurations” on page 77 for more details about menu configurations.
g) Type kernel parameters in the OS Load parameter field.

These parameters are concatenated to the end of the existing kernel parameters that are used by
your boot configuration when booting Linux.

Use ASCII characters only. If you enter characters other than ASCII characters, the boot process
ignores the data in this field.

h) Accept the defaults for the remaining fields.
With a configured boot device, you can boot according to step “3” on page 105. Alternatively, you can
boot with the zhmc command, see “Using the HMC Web Services API to boot in DPM mode” on page
106.

3. Boot from the configured boot device.
a) Go to the HMC Task area for your partition.
b) Expand the Daily section, and click Start.

Chapter 7. Booting Linux 105

c) Optional: Check the output on the preferred console (see “Console kernel parameter syntax” on
page 43) to monitor the boot progress.

For information about IPL progress messages that are issued before the Linux kernel gets control,
see Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

What to do next
You can repeatedly boot with the configured boot device settings. Proceed according to step “3” on page
105.

To change the boot device settings, proceed according to step “2” on page 104.

Using the HMC Web Services API to boot in DPM mode
You can boot Linux in a DPM partition remotely by using the HMC Web Services API. For information about
the API, see Hardware Management Console Web Services API for your IBM Z or LinuxONE hardware.

You can find a client application that uses this API at https://github.com/zhmcclient/zhmccli - installable
using pip or apt.. The examples that follow are based on this application, which provides the zhmc
command as its user interface.

Hint: The zhmc command is case sensitive. For hardware and partition specifications, use the
capitalization as shown in the HMC interface and the corresponding HMC API queries.

Booting from the configured boot device

The following example makes these assumptions about the hardware system, LPAR, and boot device:

• The name of the IBM Z or LinuxONE system is T46.
• The name of the DPM partition is t46dp79.
• A boot device has been configured for this DPM partition. For information about configuring boot devices

for DPM partitions, see step “2” on page 104 in “Booting in a DPM partition from a SCSI boot device” on
page 103.

To start the IPL and boot process, issue:

zhmc partition start T46 t46dp79

To view the operating system messages, issue:

zhmc partition console T46 t46dp79

For SCSI boot devices: For information about IPL progress messages that are issued before the
Linux kernel gets control, see Small Computer Systems Interface (SCSI) IPL Machine Loader Messages,
SC28-7006.

Booting Linux in a z/VM guest virtual machine
Boot Linux in a z/VM guest virtual machine by issuing CP commands from a CMS or CP session.

For more general information about z/VM guest environments for Linux, see z/VM: Getting Started with
Linux on System z, SC24-6287.

Booting from a tape device
Boot Linux by issuing the IPL command with a tape boot device. The boot data on the tape must be
arranged in a specific order.

106 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://github.com/zhmcclient/zhmccli

Before you begin
You need a tape that is prepared as a boot device. A tape boot device must contain the following items in
the specified order: in the specified order:

1. Tape boot loader code

The tape boot loader code is included in the s390-tools package on developerWorks®.
2. Tape mark
3. Kernel image
4. Tape mark
5. Kernel parameters (optional)
6. Tape mark
7. Initial RAM disk (optional)
8. Tape mark
9. Tape mark

All tape marks are required even if an optional item is omitted. For example, if you do not provide an initial
RAM disk image, the end of the boot information is marked with three consecutive tape marks. zipl
prepared tapes conform to this layout.

Procedure
Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the boot device is accessible to your z/VM guest virtual machine.
3. Ensure that the correct tape is inserted and rewound.
4. Issue a command of this form:

#cp i <devno> clear parm <kernel_parameters>

where
<devno>

is the device number of the boot device as seen by the guest virtual machine.
parm <kernel_parameters>

is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters that are used by your boot configuration (see “Preparing a boot device” on page
60 for information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

Booting from a DASD
Boot Linux by issuing the IPL command with a DASD boot device. You can specify additional parameters
with the IPL command.

Before you begin
You need a DASD boot device prepared with zipl (see “Preparing a boot device” on page 60).

Procedure
Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the boot device is accessible to your z/VM guest virtual machine.
3. Issue a command of this form:

Chapter 7. Booting Linux 107

#cp i <devno> clear loadparm <n> parm <kernel_parameters>

where:
<devno>

specifies the device number of the boot device as seen by the guest.
loadparm <n>

is applicable to menu configurations only. Omit this parameter if you are not working with a menu
configuration.

Configuration number 0 specifies the default configuration. Depending on the menu configuration,
omitting this option might display the menu or select the default configuration. Specifying prompt
instead of a configuration number forces the menu to be displayed.

When the menu is displayed, you can specify additional kernel parameters (see “DASD menu
configuration example for z/VM” on page 108). These additional kernel parameters are appended
to the parameters you might have provided in a parameter file. The combined parameter string
must not exceed 895 bytes.

See “Menu configurations” on page 77 for more details about menu configurations.

parm <kernel_parameters>
is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters used by your boot configuration (see “Preparing a boot device” on page 60 for
information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

DASD menu configuration example for z/VM

Use the VI VMSG z/VM CP command to choose a boot configuration from a menu configuration.

This example illustrates how menu2 in the sample configuration file in Figure 23 on page 79 is displayed
on the z/VM guest virtual machine console:

00: zIPL interactive boot menu
00:
00: 0. default (boot1)
00:
00: 1. boot1
00: 2. boot3
00:
00: Note: VM users please use '#cp vi vmsg <input>'
00:
00: Please choose (default will boot in 30 seconds): #cp vi vmsg 2

You choose a configuration by specifying the configuration number. For example, to boot configuration
boot3 specify

#cp vi vmsg 2

You can also specify additional kernel parameters by appending them to the configuration number. For
example, you can specify:

#cp vi vmsg 2 maxcpus=1

These parameters are concatenated to the end of the existing kernel parameters that are used by your
boot configuration when booting Linux.

Booting from a SCSI device
Boot Linux by issuing the IPL command with an FCP channel as the IPL device. You must specify the
target port and LUN for the boot device in advance by setting the z/VM CP LOADDEV parameter.

108 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
You need a SCSI boot device that is prepared with zipl (see “Preparing a boot device” on page 60). For
more information about SCSI boot devices, see Table 11 on page 90.

Procedure
Perform these steps to start the boot process:
1. Establish a CMS or CP session with the z/VM guest virtual machine where you want to boot Linux.
2. Ensure that the FCP channel that provides access to the SCSI boot disk is accessible to your z/VM

guest virtual machine.
3. Specify the target port and LUN of the SCSI boot disk.

Enter a command of this form:

#cp set loaddev portname <wwpn> lun <lun>

where:
<wwpn>

specifies the world wide port name (WWPN) of the target port in hexadecimal format. A blank
separates the first eight digits from the final eight digits.

<lun>
specifies the LUN of the SCSI boot disk in hexadecimal format. A blank separating the first eight
digits from the final eight digits.

Example: To specify a WWPN 0x5005076300c20b8e and a LUN 0x5241000000000000:

#cp set loaddev portname 50050763 00c20b8e lun 52410000 00000000

4. Optional for menu configurations: Specify the boot configuration (boot program in z/VM terminology)
to be used. Enter a command of this form:

#cp set loaddev bootprog <n>

where <n> specifies the configuration number of the boot configuration. Omitting the bootprog
parameter or specifying the value 0 selects the default configuration. For more information about
menu configurations, see “Menu configurations” on page 77.

Example: To select a configuration with configuration number 2 from a menu configuration:

#cp set loaddev bootprog 2

5. Optional: Specify kernel parameters.

#cp set loaddev scpdata <APPEND|NEW> '<kernel_parameters>'

where:
<kernel_parameters>

specifies a set of kernel parameters to be stored as system control program data (SCPDATA).
When booting Linux, these kernel parameters are concatenated to the end of the existing kernel
parameters that are used by your boot configuration.

<kernel_parameters> must contain ASCII characters only. If characters other than ASCII
characters are present, the boot process ignores the SCPDATA.

<kernel_parameters> as entered from a CMS or CP session is interpreted as lowercase on Linux.
If you require uppercase characters in the kernel parameters, run the SET LOADDEV command
from a REXX script instead. In the REXX script, use the "address command" statement. See z/VM:
REXX/VM Reference, SC24-6314 and z/VM: REXX/VM User's Guide, SC24-6315 for details.

Chapter 7. Booting Linux 109

Optional: APPEND
appends kernel parameters to existing SCPDATA. This is the default.

Optional: NEW
replaces existing SCPDATA.

Examples:

• To append kernel parameter novx to the current SCPDATA:

#cp set loaddev scpdata 'novx'

• To replace the current SCPDATA with the kernel parameter novx:

#cp set loaddev scpdata NEW 'novx'

For a subsequent IPL command, this kernel parameter is concatenated to the end of the existing
kernel parameters in your boot configuration.

6. Start the IPL and boot process by entering a command of this form:

#cp i <devno>

where <devno> is the device number of the FCP channel that provides access to the SCSI boot disk.
For information about IPL progress messages that are issued before the Linux kernel gets control, see
Small Computer Systems Interface (SCSI) IPL Machine Loader Messages, SC28-7006.

Tip
You can specify the target port and LUN of the SCSI boot disk, a boot configuration, and SCPDATA all with
a single SET LOADDEV command. See z/VM: CP Commands and Utilities Reference, SC24-6268 for more
information about the SET LOADDEV command.

Booting from the z/VM reader
Boot Linux by issuing the IPL command with the z/VM reader as the IPL device. You first must transfer the
boot data to the reader.

Before you begin
You need the following files, all in record format fixed 80:

• Linux kernel image
• Kernel parameters (optional)
• Initial RAM disk image (optional)

About this task
This information is a summary of how to boot Linux from a z/VM reader. For more details, see the
Redpaper Building Linux Systems under IBM VM, REDP-0120.

Procedure
Proceed like this to boot Linux from a z/VM reader:
1. Establish a CMS session with the guest where you want to boot Linux.
2. Transfer the kernel image, kernel parameters, and the initial RAM disk image to your guest.

You can obtain the files from a shared minidisk or use:

• The z/VM sendfile facility.
• An FTP file transfer in binary mode.

110 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Files that are sent to your reader contain a file header that you must remove before you can use them
for booting. Receive files that you obtain through your z/VM reader to a minidisk.

3. Set up the reader as a boot device.
a) Ensure that your reader is empty.
b) Direct the output of the punch device to the reader. Issue:

spool pun * rdr

c) Use the CMS PUNCH command to transfer each of the required files to the reader.
Be sure to use the "no header" option to omit the file headers.

First transfer the kernel image.
Second transfer the kernel parameters.
Third transfer the initial RAM disk image, if present.

For each file, issue a command of this form:

pun <file_name> <file_type> <file_mode> (noh

d) Optional: Ensure that the contents of the reader remain fixed.

change rdr all keep nohold

If you omit this step, all files are deleted from the reader during the IPL that follows.
4. Issue the IPL command:

ipl 000c clear parm <kernel_parameters>

where:
0x000c

is the device number of the reader.
parm <kernel_parameters>

is an optional 64-byte string of kernel parameters to be concatenated to the end of the existing
kernel parameters that are used by your boot configuration (see “Preparing a boot device” on page
60 for information about the boot configuration).

See also “Specifying kernel parameters when booting Linux” on page 27.

Booting Linux on KVM
You boot Linux as a KVM guest on IBM Z from the KVM host, by starting a KVM virtual server.

About this task
For information about managing virtual servers, see KVM Virtual Server Management, SC34-2752.

Displaying current IPL parameters
To display the IPL parameters, use the lsreipl command with the -i option. Alternatively, a sysfs
interface is available.

For more information about the lsreipl command, see “lsreipl - List IPL and re-IPL settings” on page
666. In sysfs, information about IPL parameters is available in subdirectories of /sys/firmware/ipl.

/sys/firmware/ipl/ipl_type

The /sys/firmware/ipl/ipl_type file contains the device type from which the kernel was booted.
The following values are possible:

Chapter 7. Booting Linux 111

ccw
The IPL device is a CCW device, for example, a DASD, the z/VM reader, or a virtio block device.

fcp
The IPL device is an FCP device.

nvme
The IPL device is an NVMe device.

unknown
The IPL device is not known.

Depending on the IPL type, there might be more files in /sys/firmware/ipl/.

Further attributes for IPL type ccw
For IPL from a CCW device, the following attributes are present:

device
Contains the bus ID of the CCW device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.1234

loadparm
Contains up to 8 characters for the loadparm that is used for selecting from a zipl boot menu during
IPL of a CCW device, for example:

cat /sys/firmware/ipl/loadparm
1

parm

Contains additional kernel parameters that are specified with the PARM parameter when booting with
the z/VM CP IPL command.

Further attributes for IPL type fcp
For IPL from an FCP-attached SCSI device, the following attributes are present: (also see Chapter 12,
“SCSI-over-Fibre Channel device driver,” on page 169 for details):
binary_parameter

Contains the information of the preceding files in binary format.
bootprog

Contains the boot program number. Used for selecting from a zipl boot menu during IPL of a SCSI disk
device.

br_lba
Contains the logical block address of the boot record on the boot device (usually 0).

device
Contains the bus ID of the FCP device that is used for IPL, for example:

cat /sys/firmware/ipl/device
0.0.50dc

has_secure
Indicates whether the host environment supports secure boot. If the value is 1, secure boot is
supported and the secure-boot enabled format can be used. See “Secure boot” on page 99.

lun
Contains the LUN used for IPL, for example:

112 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/firmware/ipl/lun
0x5010000000000000

scp_data
Contains additional kernel parameters, if any, that are used when booting from a SCSI device. For
information about how SCPDATA can be set see the following sections:

• “Booting from a SCSI device” on page 108 for z/VM
• “Booting from SCSI” on page 94 for LPAR
• “chreipl - Modify the re-IPL configuration” on page 574

secure
Read the sysfs attribute
/sys/firmware/ipl/secure to check whether the Linux instance was IPLed with secure boot.
Issue the following command:

cat /sys/firmware/ipl/secure
1

If the value is 1, Linux was IPLed with secure boot.

wwpn
Contains the WWPN used for IPL, for example:

cat /sys/firmware/ipl/wwpn
0x5005076300c20b8e

Further attributes for IPL type nvme
For IPL from an NVMe device, the following attributes are present:

binary_parameter
Contains the information of the other attributes a in binary format.

bootprog
Contains the boot program number that was used for selecting from a zipl boot menu during IPL of the
NVMe device.

br_lba
Contains the logical block address of the boot record on the boot device (usually 0).

fid
PCIe function ID of the NVMe device.

has_secure
Indication of whether the host environment supports secure boot. If the value is 1, secure boot is
supported and the secure-boot enabled format can be used, see “Secure boot” on page 99.

loadparm
Contains up to 8 characters for the loadparm.

nsid
NVMe name space ID of the NVMe device. Name space IDs are assigned by NVMe disk controllers to
divide a physical NVMe device into multiple logical devices.

scp_data
Contains any additional kernel parameters that were used when booting from the NVMe device, for
example:

cat /sys/firmware/ipl/scp_data
novx

See “Booting in LPAR mode from an NVMe device” on page 96.

Chapter 7. Booting Linux 113

A leading equal sign (=) indicates that the existing kernel parameters used by the boot configuration
were ignored and the kernel parameters of the scp_data attribute were the only kernel parameters
used for booting Linux.

secure
Indicates secure-boot mode. If the value is 1, the Linux instance was IPLed with secure boot.

Rebooting from an alternative source
When you reboot Linux, the system conventionally boots from the last used location. However, you can
configure an alternative device to be used for re-IPL instead of the last used IPL device.

Before you start:

• Linux must be compiled to support rebooting from an alternative source. This feature is built into the
kernel by default.

• The IBM Z hardware must have zfcp IPL support for re-IPL from SCSI devices.

Use the chreipl tool to configure the re-IPL device. For more information about the chreipl tool, see
“chreipl - Modify the re-IPL configuration” on page 574.

Alternatively, you can use a sysfs interface. In sysfs, the virtual configuration files are located
under /sys/firmware/reipl. To configure, write strings into the configuration files. The following
re-IPL types can be set with the /sys/firmware/reipl/reipl_type attribute:

ccw
For ccw devices such as DASDs that are attached through ESCON or FICON®, and for virtio block
devices on KVM guests.

fcp
For FCP SCSI devices. For information about boot devices, see Table 11 on page 90.

nvme
For PCIe-attached NVMe devices.

nss
For Named Saved Systems (z/VM only)

For each supported re-IPL type a sysfs directory is created under /sys/firmware/reipl that contains
the configuration attributes for the device. The directory name is the same as the name of the re-IPL type.

When Linux is booted, the re-IPL attributes are set by default to the values of the boot device, which can
be found under /sys/firmware/ipl.

Automatic path failover for re-IPL from an FC-attached SCSI disk
The chreipl-fcp-mpath tool set helps you to use multipath information for re-IPL path failover on a
running Linux instance. When the configured re-IPL path becomes unavailable it automatically changes
the configured re-IPL path to a different operational path to the same volume.

To use the tool set, install the s390-tools-chreipl-fcp-mpath sub-package from s390-tools.
Disable the feature by un-installing the sub-package. For more information, see man chreipl-fcp-
mpath.

Attributes for ccw
You can find the attributes for re-IPL type ccw in the /sys/firmware/reipl/ccw sysfs directory.

device
Device number of the re-IPL device. For example, 0.0.7412 or 0.1.5119.

loadparm
Up to eight characters for the loadparm used to select the boot configuration in the zipl menu (if
available).

114 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

parm
A 64-byte string of kernel parameters that is concatenated to the boot command-line. The PARM
parameter can be set only for Linux on z/VM. See also “Specifying kernel parameters when booting
Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration
is ignored and the boot process uses the kernel parameters in the parm attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

With memory clearing enabled, all hotplug memory is offline after the reboot. Without memory
clearing, the online status of hotplug memory is preserved. For more information, see “Memory state
and reboot” on page 346.

Attributes for fcp
You can find the attributes for re-IPL type fcp in the /sys/firmware/reipl/fcp sysfs directory.

device
Device number of the FCP device that is used for re-IPL. For example, 0.0.7412.

Note: IPL is possible only from subchannel set 0.

wwpn
World wide port number of the FCP re-IPL device.

lun
Logical unit number of the FCP re-IPL device.

bootprog
Boot program selector. Used to select the boot configuration in the zipl menu (if available).

br_lba
Boot record logical block address. Master boot record. Is always 0 for Linux.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

Regardless of the setting for memory clearing, all hotplug memory is offline after the reboot. For more
information, see “Memory state and reboot” on page 346.

This attribute is present only for Linux in LPAR mode on z14 or later hardware.

loadparm
Up to eight characters for the loadparm.

scp_data
Kernel parameters to be used for the next FCP re-IPL. See also “Specifying kernel parameters when
booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Attributes for nvme
You can find the attributes for re-IPL type nvme in the /sys/firmware/reipl/nvme sysfs directory.

bootprog
Boot program selector. Used to select the boot configuration in the zipl menu (if available).

Chapter 7. Booting Linux 115

br_lba
Boot record logical block address. Master boot record. Is always 0 for Linux.

clear
A flag that controls memory clearing for a reboot from the device. Valid values are 1 to clear memory
during the boot process, or 0 to omit clearing memory during the boot process. Booting without
clearing memory is faster and it is the default.

Regardless of the setting for memory clearing, all hotplug memory is offline after the reboot. For more
information, see “Memory state and reboot” on page 346.

This attribute is present only for Linux in LPAR mode on LinuxONE hardware as of LinuxONE III.

fid
PCIe function ID of the NVMe device. This value specifies the slot at /sys/bus/pci/slots.

loadparm
Up to eight characters for the loadparm.

nsid
NVMe name space ID. Name space IDs are assigned by NVMe disk controllers to divide a physical
NVMe device into multiple logical devices.

scp_data
Kernel parameters to be used for the next NVMe re-IPL. See also “Specifying kernel parameters when
booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration is
ignored and the boot process uses the kernel parameters in the scp_data attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Attributes for nss
You can find the attributes for re-IPL type nss in the /sys/firmware/reipl/nss sysfs directory.

name
Name of the NSS. The NSS name can be one to eight characters long and must consist of alphabetic
or numeric characters. The following examples are all valid NSS names: 73248734, NSSCSITE, or
NSS1234.

parm
If the NSS contains a Linux instance, a 56-byte string of kernel parameters that is concatenated to the
kernel parameters in the boot configuration. (Note the difference in length compared to ccw.) See also
“Specifying kernel parameters when booting Linux” on page 27.

A leading equal sign (=) means that the existing kernel parameter line in the boot configuration
is ignored and the boot process uses the kernel parameters in the parm attribute only. See also
“Replacing all kernel parameters in a boot configuration” on page 28.

Kernel panic settings
Set the attribute /sys/firmware/shutdown_actions/on_panic to reipl to make the system re-IPL
with the current re-IPL settings if a kernel panic occurs.

For Linux in LPAR mode and Linux on z/VM, you might want to trigger a system dump in response to a
kernel panic. See also the description of the dumpconf tool in Using the Dump Tools, SC33-8412 on IBM
Documentation at:
ibm.com/docs/en/linux-on-systems?topic=tools-upstream-kernel

Examples for configuring re-IPL
Typical examples include configuring re-IPL from an FCP device and specifying parameters for re-IPL.

• To configure a DASD with bus ID 0.0.7e78 as the re-IPL device:

116 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_devdt.html

chreipl 0.0.7e78

Alternatively, you can write directly to sysfs:

echo 0.0.7e78 > /sys/firmware/reipl/ccw/device

• To ensure that memory is cleared during the re-IPL from the CCW device:

Ensure that the clear attribute exists:

ls /sys/firmware/reipl/ccw/clear

If the clear attribute does not exist, memory is always cleared for re-IPL in your environment, and no
further action is needed.

If the clear attribute exists, write 1 to the attribute to configure memory clearing:

echo 1 > /sys/firmware/reipl/ccw/clear

Hint: If supported in your environment, re-IPL without clearing memory is the default. For large
memory sizes, clearing memory can considerably slow down the re-IPL process.

• To configure an FCP re-IPL device 0.0.5711 with a LUN 0x1711000000000000 and a WWPN
0x5005076303004715 with an additional kernel parameter novx:

chreipl 0.0.5711 0x5005076303004715 0x1711000000000000 -p "novx"

Alternatively, you can write directly to sysfs. For an FCP re-IPL device, additional boot parameters,
as specified with the -p option, are stored as scp data. Therefore, the novx kernel parameter of the
example is written to /sys/firmware/reipl/fcp/scp_data.

echo 0.0.5711 > /sys/firmware/reipl/fcp/device
echo 0x5005076303004715 > /sys/firmware/reipl/fcp/wwpn
echo 0x1711000000000000 > /sys/firmware/reipl/fcp/lun
echo 0 > /sys/firmware/reipl/fcp/bootprog
echo 0 > /sys/firmware/reipl/fcp/br_lba
echo "novx" > /sys/firmware/reipl/fcp/scp_data
echo fcp > /sys/firmware/reipl/reipl_type

• To specify additional kernel parameters for re-IPL of an instance of Linux on z/VM:

Write the parameters to the parm attribute:

echo "novx" > /sys/firmware/reipl/ccw/parm

Chapter 7. Booting Linux 117

118 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 8. Shutdown actions
Several triggers can cause Linux to shut down. For each shutdown trigger, you can configure a specific
shutdown action to be taken as a response.

Table 12. Shutdown triggers and default action overview

Trigger Command or condition
Default shutdown
action

halt Linux shutdown -H command stop

poff Linux poweroff or shutdown -P command stop

reboot Linux reboot or shutdown -r command reipl

restart Depending on the hyperisor environment:
LPAR

A PSW restart on the HMC
z/VM

A CP system restart command
KVM

A virsh command on the KVM host

stop

panic Linux kernel panic stop

The available shutdown actions are summarized in Table 13 on page 119.

Table 13. Shutdown actions

Action Explanation See also

stop For panic or restart, enters a disabled wait
state.

For all other shutdown triggers, stops all CPUs.

For Linux on KVM, frees the resources that were
used by the Linux instance. Depending on your
virtual server configuration, the memory might
be preserved.

n/a

ipl Performs an IPL according to the specifications
in /sys/firmware/ipl.

“Displaying current IPL parameters”
on page 111

reipl Performs an IPL according to the specifications
in /sys/firmware/reipl.

“Rebooting from an alternative
source” on page 114

dump For Linux in LPAR mode and Linux on z/VM,
creates a dump according to the specifications
in /sys/firmware/dump.

Using the Dump Tools, SC33-8412

dump_reipl For Linux in LPAR mode and Linux on z/VM,
performs the dump action followed by the reipl
action.

Using the Dump Tools, SC33-8412

vmcmd For Linux on z/VM, issues one or more z/VM
CP commands according to the specifications
in /sys/firmware/vmcmd.

“Configuring z/VM CP commands as a
shutdown action” on page 120

© Copyright IBM Corp. 2000, 2023 119

Use lsshut to find out which shutdown action is configured for each shutdown trigger, see “lsshut - List
the current system shutdown actions” on page 669.

Use the applicable command to configure the shutdown action for a shutdown trigger:

• For halt, poff, and reboot use chshut, see “chshut - Control the system shutdown actions” on page
579.

• For restart and panic on Linux in LPAR mode or Linux on z/VM, use dumpconf, see Using the Dump
Tools, SC33-8412.

kdump for restart and panic
If kdump is set up for a Linux instance, kdump is started to create a dump, regardless of the shutdown
actions that are specified for restart and panic. With kdump, these settings act as a backup that is
used only if kdump fails.

Note: kdump is not a shutdown action that you can set as a sysfs attribute value for a shutdown trigger.
See Using the Dump Tools, SC33-8412 about how to set up kdump.

The shutdown configuration in sysfs
The configured shutdown action for each shutdown trigger is stored in a sysfs attribute /sys/firmware/
shutdown_actions/on_<trigger>.

Figure 40. sysfs branch with shutdown action settings

The preferred way to read or change these settings is using the lsshut, chshut. For dump actions on
Linux in LPAR mode or Linux on z/VM, the preferred way is the dumpconf command. Alternatively, you
can read and write to the /sys/firmware/shutdown_actions/on_<trigger> attributes.

Examples
• This command reads the shutdown setting for the poff shutdown trigger.

cat /sys/firmware/shutdown_actions/on_poff
stop

• This command changes the setting for the restart shutdown trigger to ipl:

echo ipl > /sys/firmware/shutdown_actions/on_restart

Details for the ipl, reipl, dump, and vmcmd shutdown actions are contained in the corresponding
subdirectories in /sys/firmware. For example, /sys/firmware/ipl contains specifications for an IPL
device and other IPL parameters.

Configuring z/VM CP commands as a shutdown action
Use chshut and dumpconf to configure a CP command as a shutdown action, or directly write to the
relevant sysfs attributes.

Before you start: This information applies to Linux on z/VM only.

120 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

In sysfs, two attributes are required to set a z/VM CP command as a shutdown action for a trigger
<trigger>:

• /sys/firmware/shutdown_actions/on_<trigger> must be set to vmcmd.
• /sys/firmware/vmcmd/on_<trigger> specifies the z/VM CP command.

The values of the attributes in the /sys/firmware/vmcmd directory must conform to these rules:

• The value must be a valid z/VM CP command.
• The commands, including any z/VM user IDs or device numbers, must be specified with uppercase

characters.
• Commands that include blanks must be delimited by double quotation marks (").
• The value must not exceed 127 characters.

You can specify multiple z/VM CP commands that are separated by the newline character "\n". Each
newline is counted as one character. When writing values with multiple commands, use this syntax to
ensure that the newline character is processed correctly:

echo -e <cmd1>\n<cmd2>... | cat > /sys/firmware/vmcmd/on_<trigger>

where <cmd1>\n<cmd2>... are two or more z/VM CP commands and on_<trigger> is one of the
attributes in the vmcmd directory.

The -e echo option and redirect through cat are required because of the newline character.

Example for a single z/VM CP command
Issue the following command to configure the z/VM CP LOGOFF command as the shutdown action for the
poff shutdown trigger.

chshut poff vmcmd "LOGOFF"

Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmcmd > /sys/firmware/shutdown_actions/on_poff
echo LOGOFF > /sys/firmware/vmcmd/on_poff

Figure 41 on page 122 illustrates the relationship of the sysfs attributes for this example.

Chapter 8. Shutdown actions 121

Figure 41. sysfs branch with shutdown action settings

Example for multiple z/VM CP commands
Issue the following command to configure two z/VM CP commands as the shutdown action for the poff
shutdown trigger. First a message is sent to user OPERATOR, and then the LOGOFF command is issued.

chshut poff vmcmd "MSG OPERATOR Going down" vmcmd "LOGOFF"

Alternatively, you can issue the following commands to directly write the shutdown configuration to sysfs:

echo vmcmd > /sys/firmware/shutdown_actions/on_poff
echo -e "MSG OPERATOR Going down\nLOGOFF" | cat > /sys/firmware/vmcmd/on_poff

122 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 9. The diag288 watchdog device driver
The diag288 watchdog device driver provides Linux watchdog applications with access to the watchdog
timer on IBM Z.

You can use the diag288 watchdog in these environments:

• Linux on z/VM
• Linux in LPAR mode as of z13s® and z13® with the enhancements of February 2016.
• Linux as a KVM guest.

The diag288 watchdog device driver provides the following features:

• Access to the watchdog timer on IBM Z.
• An API for watchdog applications (see “External programming interfaces ” on page 125).

Watchdog applications can be used to set up automated restart mechanisms.

For Linux in LPAR mode and for Linux on z/VM, you can alternatively use a networked heartbeat with
STONITH.

Watchdog applications that communicate directly with the IBM Z firmware, the z/VM control program
(CP), or the KVM host do not require a third operating system to monitor a heartbeat.

What you should know about the diag288 watchdog device driver
The watchdog function comprises two components: a watchdog application on the Linux instance being
controlled and a watchdog timer outside the Linux instance. For Linux in LPAR mode, the timer runs in the
IBM Z firmware. For Linux on z/VM the timer is provided by z/VM CP. For Linux on KVM, the timer runs on
the KVM host.

While the Linux instance operates satisfactorily, the watchdog application reports a positive status to the
watchdog timer at regular intervals. The watchdog application uses a device node to pass these status
reports to the timer (Figure 42 on page 123).

Figure 42. Watchdog application and timer for Linux in LPAR mode

The watchdog application typically derives its status by monitoring critical network connections, file
systems, and processes on the Linux instance. If a specified time elapses without a positive report being
received by the watchdog timer, the watchdog timer assumes that the Linux instance is in an error state.
The watchdog timer then triggers a predefined action against the Linux instance. For example, Linux might
be shut down or rebooted, or a system dump might be initiated see “Setting the timeout action” on page
125.

For information about setting the default timer and performing other actions, see “External programming
interfaces ” on page 125.

© Copyright IBM Corp. 2000, 2023 123

Linux on z/VM only: Loading or saving a DCSS can take a long time during which the virtual machine does
not respond, depending on the size of the DCSS. As a result, a watchdog might time out and restart the
guest. You are advised not to use the watchdog in combination with loading or saving DCSSs.

See also the generic watchdog documentation available from the linux-doc package under linux-
doc/watchdog.

Setting up the diag288 watchdog device driver
You configure the diag288 watchdog device driver through module parameters.

watchdog module parameter syntax

modprobe diag288_wdt
 cmd="SYSTEM RESTART"

 cmd=  <command> conceal=1

 nowayout=  <nowayout_flag>

1

Notes:
1 cmd= and conceal= apply only to Linux on z/VM and are ignored for Linux in LPAR mode and
Linux on KVM.

where:
<command>

configures the shutdown action to be taken if Linux on z/VM fails.

The default, "SYSTEM RESTART", configures the shutdown action that is specified for the restart
shutdown trigger (see Chapter 8, “Shutdown actions,” on page 119).

Any other specification dissociates the timeout action from the restart shutdown trigger. Instead,
the specification is issued by CP and must adhere to these rules:

• It must be a single valid CP command
• It must not exceed 230 characters
• It must be enclosed by quotation marks if it contains any blanks or newline characters

The specification is converted from ASCII to uppercase EBCDIC.

For details about CP commands, see z/VM: CP Commands and Utilities Reference, SC24-6268.

On an running instance of Linux on z/VM, you can write to /sys/module/diag288_wdt/
parameters/cmd to replace the command you specify when loading the module. Through this sysfs
interface, you can also specify multiple commands to be issued, see “Example for Linux on z/VM” on
page 125 for more details.

The preferred method for configuring a timeout action other than a system restart is to configure a
different shutdown action for the restart shutdown trigger.

conceal=1
enables the protected application environment where the guest is protected from unexpectedly
entering CP READ. Do not enable the protected environment for guests with multiprocessor
configurations. The protected application facility supports only virtual uniprocessor systems.

For details, see the "SET CONCEAL" section of z/VM: CP Commands and Utilities Reference,
SC24-6268.

<nowayout_flag>
determines what happens when the watchdog device node is closed by the watchdog application.

124 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If the flag is set to 1, the watchdog timer keeps running and triggers an action if no positive status
report is received within the specified time interval. If the character "V" is written to the device and
the flag is set to 0, the watchdog timer is stopped and the Linux instance continues without the
watchdog support.

Example for Linux on z/VM
The following kernel parameters determine that, on failure, the Linux instance is to be IPLed from a device
with devno 0xb1a0. The protected application environment is not enabled. The watchdog application can
close the watchdog device node after writing "V" to it. As a result the watchdog timer becomes ineffective
and does not IPL the guest.

modprobe diag288_wdt cmd="ipl b1a0" nowayout=0

The following example shows how to specify multiple commands to be issued.

/bin/echo -en "MSG * WATCHDOG FIRED\nVMDUMP\nIPL" > /sys/module/diag288_wdt/parameters/cmd

Use the echo version at /bin/echo. The built-in echo command from bash might not process the
newline characters as intended.

To verify that your commands have been accepted, issue:

cat /sys/module/diag288_wdt/parameters/cmd
MSG * WATCHDOG FIRED
VMDUMP
IPL

Note: You cannot specify multiple commands as kernel parameters during boot time.

Setting the timeout action
How to configure the timeout action for the diag288 watchdog device driver depends on your hypervisor
environment.

LPAR
For Linux in LPAR mode, the shutdown action is defined through the restart shutdown trigger (see
Chapter 8, “Shutdown actions,” on page 119).

z/VM
For Linux on z/VM, the shutdown action is defined through the restart shutdown trigger.

You can also use the diag288_wdt.cmd= kernel parameter or the cmd= module parameter to bypass
the restart shutdown trigger and directly specify a z/VM CP command to be issued.

KVM
For Linux on KVM, the shutdown action is defined in the virtual server configuration on the KVM
hypervisor.

External programming interfaces
There is an API for applications that work with the watchdog device driver.

Application programmers: This information is intended for programmers who want to write watchdog
applications that work with the watchdog device driver.

For information about the API and the supported IOCTLs, see the linux-doc/watchdog/watchdog-
api.txt.gz file in the linux-doc package.

The default watchdog timeout is 30 seconds, the minimum timeout that can be set through the IOCTL
WDIOC_SETTIMEOUT is 15 seconds.

Chapter 9. The diag288 watchdog device driver 125

126 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 10. KASLR support
With kernel address space layout randomization (KASLR), the kernel is loaded to a random location in
memory.

Loading the kernel to a random location can protect against attacks that rely on knowledge of the kernel
addresses.

The KASLR feature is enabled by default. You can use the nokaslr kernel parameter to disable it, see
“nokaslr - Disable kernel randomization” on page 781.

With KASLR enabled, the kernel is loaded to a random address, but kernel messages can reveal
kernel internal addresses. Prevent access to the kernel messages for unprivileged users by setting the
dmesg_restrict sysctl to 1. On Ubuntu Server, this is the default. This setting restricts dmesg access to
users with CAP_SYSLOG privilege.

Kernel addresses can also be compromised through /proc and other interfaces. To prevent this, set the
kptr_restrict sysctl to 1.

For more information about the dmesg_restrict and kptr_restrict sysctls, see the
Documentation/sysctl/kernel.txt in the kernel source tree.

© Copyright IBM Corp. 2000, 2023 127

128 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 3. Storage
Ubuntu Server 22.04 LTS includes several storage device drivers that are specific to z/Architecture.

For information about storage networks and I/O to storage devices, see
www.ibm.com/it-infrastructure/z/capabilities/networking

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 129

https://www.ibm.com/it-infrastructure/z/capabilities/networking
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

130 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 11. DASD device driver

Linux in any IBM Z hypervisor environment, LPAR, z/VM, and KVM, can include direct access storage
devices (DASD). For Linux on KVM, this requires a KVM host with CCW pass-through support and a KVM
virtual server configuration with DASDs as pass-through devices.

The DASD device driver provides access to all real or emulated direct access storage devices (DASD) that
can be attached to the channel subsystem of an IBM mainframe.

DASD devices include various physical media on which data is organized in blocks or records or both. The
blocks or records in a DASD can be accessed for read or write in random order.

Traditional DASD devices are attached to a control unit that is connected to a mainframe I/O channel.
Today, these real DASDs have been largely replaced by emulated DASDs. For example, emulated DASDs
can be the internal disks of the IBM System Storage DS8000® Turbo, or the volumes of the IBM System
Storage DS6000. These emulated DASD are completely virtual and the identity of the physical device is
hidden.

SCSI disks that are attached through an FCP channel are not classified as DASD. They are handled by the
zfcp driver (see Chapter 12, “SCSI-over-Fibre Channel device driver,” on page 169).

Features
The DASD device driver supports a wide range of disk devices and disk functions.

• The DASD device driver has no dependencies on the adapter hardware that is used to physically connect
the DASDs to the IBM Z hardware. You can use any adapter that is supported by the IBM Z hardware
(see www.ibm.com/systems/support/storage/ssic/interoperability.wss for more information).

• The DASD device driver supports ESS virtual ECKD type disks
• The DASD device driver supports the control unit attached physical ECKD (Extended Count Key Data)

and FBA (Fixed Block Access) devices as summarized in Table 14 on page 131:

Table 14. Supported control unit attached DASD

Device format Control unit type Device type

ECKD 1750 3380 and 3390

ECKD 2107 3380 and 3390

ECKD 2105 3380 and 3390

ECKD 3990 3380 and 3390

ECKD 9343 9345

ECKD 3880 3390

FBA 6310 9336

FBA 3880 3370

All models of the specified control units and device types can be used with the DASD device driver. This
includes large devices with more than 65520 cylinders, for example, 3390 Model A. Check the storage
support statement to find out what works for Ubuntu Server 22.04 LTS.

• The DASD device driver provides a disk format with up to three partitions per disk. See “IBM Z
compatible disk layout” on page 133 for details.

• The DASD device driver provides an option for extended error reporting for ECKD devices. Extended
error reporting can support high availability setups.

© Copyright IBM Corp. 2000, 2023 131

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss

• The DASD device driver supports parallel access volume (PAV) and HyperPAV on storage devices that
provide this feature. The DASD device driver handles dynamic PAV alias changes on storage devices. For
more information about PAV and HyperPAV, see How to Improve Performance with PAV, SC33-8414. Use
the dasdstat command to check whether a DASD uses PAV, see “Scenario: Verifying that PAV and HPF
are used” on page 156.

• The DASD device driver supports High Performance FICON, including multitrack requests, on storage
devices that provide this feature. Use the dasdstat command to check whether a DASD uses High
Performance FICON, see “Scenario: Verifying that PAV and HPF are used” on page 156.

What you should know about DASD
The DASD device driver supports various disk layouts with different partitioning capabilities. The DASD
device naming scheme helps you to keep track of your DASDs and DASD device nodes.

The IBM label partitioning scheme
Linux on IBM Z supports the same standard DASD format that is also used by traditional mainframe
operating systems, but it also supports any other Linux partition table.

The DASD device driver is embedded into the Linux generic support for partitioned disks. As a result, you
can use any partition table format that is supported by Linux for your DASDs.

Traditional mainframe operating systems (such as z/OS, z/VM, and z/VSE®) expect a standard DASD
format. In particular, the format of the first two tracks of a DASD is defined by this standard. These tracks
include the IBM Z IPL record, the volume label, and for some layouts VTOC records. Partitioning schemes
for platforms other than IBM Z generally do not preserve these mainframe specific records.

Ubuntu Server 22.04 LTS includes the IBM label partitioning scheme that preserves the IBM Z IPL, label,
and VTOC records. With this partitioning scheme, Linux can share a disk with other mainframe operating
systems. For example, a traditional mainframe operating system can handle backup and restore for a
partition that is used by Linux.

The following sections describe the layouts that are supported by the IBM label partitioning scheme:

• “IBM Z compatible disk layout” on page 133
• “Linux disk layout” on page 135
• “CMS disk layout” on page 135

DASD partitions
Partitioning DASDs has the same advantages as for other disk types, but there are some prerequisites and
a special tool, fdasd.

A DASD partition is a contiguous set of DASD blocks that is treated by Linux as an independent disk and by
the traditional mainframe operating systems as a data set.

With the Linux disk layout (LDL) and the CMS disk layout, you always have a single partition only. This
partition is defined by the LDL or CMS formatted area of the disk. With the compatible disk layout, you can
have up to three partitions.

There are several reasons why you might want to have multiple partitions on a DASD, for example:

Limit data growth
Runaway processes or undisciplined users can consume disk space to an extend that the operating
system runs short of space for essential operations. Partitions can help to isolate the space that is
available to particular processes.

Encapsulate your data
If a file system gets damaged, this damage is likely to be restricted to a single partition. Partitioning
can reduce the scope of data damage.

132 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Recommendations
• Use fdasd to create or alter partitions on ECKD type DASDs that are formatted with the compatible

disk layout. If you use another partition editor, it is your responsibility to ensure that partitions do not
overlap. If they do, data damage occurs.

• Leave no gaps between adjacent partitions to avoid wasting space. Gaps are not reported as errors,
and can be reclaimed only by deleting and re-creating one or more of the surrounding partitions and
rebuilding the file system on them.

A disk need not be partitioned completely. You can begin by creating only one or two partitions at the start
of your disk and convert the remaining space to a partition later.

There is no facility for moving, enlarging, or reducing partitions, because fdasd has no control over the
file system on the partition. You can only delete and re-create them. Changing the partition table results in
loss of data in all altered partitions. It is up to you to preserve the data by copying it to another medium.

IBM Z compatible disk layout
With the compatible disk layout, a DASD can have up to three partitions that can be accessed by
traditional mainframe operating systems.

You can format only ECKD type DASD with the compatible disk layout.

Figure 43 on page 133 illustrates a DASD with the compatible disk layout.

Figure 43. Compatible disk layout

The IPL records, volume label (VOL1), and VTOC of disks with the compatible disk layout are on the first
two tracks of the disks. These tracks are not intended for use by Linux applications. Using the tracks can
result in data loss.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 136).

Disks with the compatible disk layout can have one to three partitions. Linux addresses the first partition
as /dev/dasd<x>1, the second as /dev/dasd<x>2, and the third as /dev/dasd<x>3.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 610) to format a disk with the
compatible disk layout. You use the fdasd command (see “fdasd - Partition a DASD” on page 628) to
create and modify partitions.

Volume label
The volume label includes information about the disk layout, the VOLSER, and a pointer to the VTOC.

The DASD volume label is in the third block of the first track of the device (cylinder 0, track 0, block 2).
This block has a 4-byte key, and an 80-byte data area with the following content:

key
for disks with the compatible disk layout, contains the four EBCDIC characters "VOL1" to identify the
block as a volume label.

label identifier
is identical to the key field.

VOLSER
is a name that you can use to identify the DASD device. A volume serial number (VOLSER) can be one
to six EBCDIC characters. If you want to use VOLSERs as identifiers for your DASD, be sure to assign
unique VOLSERs.

Chapter 11. DASD device driver 133

You can assign VOLSERs from Linux by using the dasdfmt or fdasd command. These commands
enforce that VOLSERs:

• Are alphanumeric
• Are uppercase (by uppercase conversion)
• Contain no embedded blanks
• Contain no special characters other than $, #, @, and %

Tip: Avoid special characters altogether.

Note: The VOLSER values SCRTCH, PRIVAT, MIGRAT, or Lnnnnn (An "L" followed by 5 digits) are
reserved for special purposes by other mainframe operating systems and should not be used by Linux.

These rules are more restrictive than the VOLSERs that are allowed by the traditional mainframe
operating systems. For compatibility, Linux tolerates existing VOLSERs with lowercase letters and
special characters other than $, #, @, and %. Enclose VOLSERs with special characters in single
quotation marks if you must specify it, for example, as a command parameter.

VTOC address
contains the address of a standard IBM format 4 data set control block (DSCB). The format is: cylinder
(2 bytes) track (2 bytes) block (1 byte).

All other fields of the volume label contain EBCDIC space characters (code 0x40).

VTOC
Instead of a regular Linux partition table, Ubuntu Server 22.04 LTS, like other mainframe operating
systems, uses a Volume Table Of Contents (VTOC).

The VTOC contains pointers to the location of every data set on the volume. These data sets form the
Linux partitions.

The VTOC is on the second track (cylinder 0, track 1). It contains a number of records, each written in a
separate data set control block (DSCB). The number of records depends on the size of the volume:

• One DSCB that describes the VTOC itself (format 4)
• One DSCB that is required by other operating systems but is not used by Linux. fdasd sets it to zeroes

(format 5).
• For volumes with more than 65534 cylinders, 1 DSCB (format 7)
• For each partition:

– On volumes with 65534 or less cylinders, one DSCB (format 1)
– On volumes with more than 65534 cylinders, 1 format 8 and one format 9 DSCB

The key of the format 1 or format 8 DSCB contains the data set name, which identifies the partition to
z/OS, z/VM, and z/VSE.

The VTOC can be displayed with standard IBM Z tools such as VM/DITTO. A Linux DASD with physical
device number 0x0193, volume label "LNX001", and three partitions might be displayed like this
example:

134 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

 VM/DITTO DISPLAY VTOC LINE 1 OF 5
===> SCROLL ===> PAGE

CUU,193 ,VOLSER,LNX001 3390, WITH 100 CYLS, 15 TRKS/CYL, 58786 BYTES/TRK

--- FILE NAME --- (SORTED BY =,NAME ,) ---- EXT BEGIN-END RELTRK,
1...5...10...15...20...25...30...35...40.... SQ CYL-HD CYL-HD NUMTRKS
 *** VTOC EXTENT *** 0 0 1 0 1 1,1
LINUX.VLNX001.PART0001.NATIVE 0 0 2 46 11 2,700
LINUX.VLNX001.PART0002.NATIVE 0 46 12 66 11 702,300
LINUX.VLNX001.PART0003.NATIVE 0 66 12 99 14 1002,498
 *** THIS VOLUME IS CURRENTLY 100 PER CENT FULL WITH 0 TRACKS AVAILABLE

PF 1=HELP 2=TOP 3=END 4=BROWSE 5=BOTTOM 6=LOCATE
PF 7=UP 8=DOWN 9=PRINT 10=RGT/LEFT 11=UPDATE 12=RETRIEVE

The ls command on Linux might list this DASD and its partitions like this example:

ls -l /dev/dasda*
brw-rw---- 1 root disk 94, 0 Jan 27 09:04 /dev/dasda
brw-rw---- 1 root disk 94, 1 Jan 27 09:04 /dev/dasda1
brw-rw---- 1 root disk 94, 2 Jan 27 09:04 /dev/dasda2
brw-rw---- 1 root disk 94, 3 Jan 27 09:04 /dev/dasda3

where dasda represent the whole DASD and dasda1, dasda2, and dasda3 represent the individual
partitions.

Linux disk layout
The Linux disk layout does not have a VTOC, and DASD partitions that are formatted with this layout
cannot be accessed by traditional mainframe operating systems.

You can format only ECKD type DASD with the Linux disk layout. Apart from accessing the disks as ECKD
devices, you can also access them using the DASD DIAG access method. See “Enabling the DASD device
driver to use the DIAG access method” on page 146 for how to enable DIAG.

Figure 44 on page 135 illustrates a disk with the Linux disk layout.

Figure 44. Linux disk layout

DASDs with the Linux disk layout either have an LNX1 label or are not labeled. The first records of
the device are reserved for IPL records and the volume label, and are not intended for use by Linux
applications. All remaining records are grouped into a single partition. You cannot have more than a single
partition on a DASD that is formatted in the Linux disk layout.

Linux can address the device as a whole as /dev/dasd<x>, where <x> can be one to four letters that
identify the individual DASD (see “DASD naming scheme” on page 136). Linux can access the partition
as /dev/dasd<x>1.

You use the dasdfmt command (see “dasdfmt - Format a DASD” on page 610) to format a disk with the
Linux disk layout.

CMS disk layout
The CMS disk layout applies only to Linux on z/VM. The disks are formatted with z/VM tools.

Both ECKD or FBA type DASD can have the CMS disk layout. DASD partitions that are formatted with this
layout cannot be accessed by traditional mainframe operating systems. Apart from accessing the disks as
ECKD or FBA devices, you can also access them using the DASD DIAG access method.

Chapter 11. DASD device driver 135

Figure 45 on page 136 illustrates two variants of the CMS disk layout.

Figure 45. CMS disk layout

The first variant contains IPL records, a volume label (CMS1), and a CMS data area. Linux treats DASD
like this equivalent to a DASD with the Linux disk layout, where the CMS data area serves as the Linux
partition.

The second variant is a CMS reserved volume. In this variant, the DASD was reserved by a CMS RESERVE
fn ft fm command. In addition to the IPL records and the volume label, DASD with the CMS disk layout
also have CMS metadata. The CMS reserved file serves as the Linux partition.

For both variants of the CMS disk layout, you can have only a single Linux partition. The IPL record,
volume label and (where applicable) the CMS metadata, are not intended for use by Linux applications.

Addressing the device and partition is the same for both variants. Linux can address the device as a whole
as /dev/dasd<x>, where <x> can be one to four letters that identify the individual DASD (see “DASD
naming scheme” on page 136). Linux can access the partition as /dev/dasd<x>1.

“Enabling the DASD device driver to use the DIAG access method” on page 146 describes how to enable
DIAG.

Disk layout summary
The available disk layouts differ in their support of device formats, the DASD DIAG access method, and
the maximum number of partitions.

Table 15. Disk layout summary

Disk layout ECKD device
format

FBA device
format

DIAG access
method support
(z/VM only)

Maximum
number of
partitions

Formatting
tool

Compatible disk
layout

Yes No No 3 dasdfmt

Linux disk layout Yes No Yes 1 dasdfmt

CMS (z/VM only) Yes Yes Yes 1 z/VM tools

DASD naming scheme
The DASD naming scheme maps device names and minor numbers to whole DASDs and to partitions.

The DASD device driver uses the major number 94. For each configured device it uses four minor
numbers:

• The first minor number always represents the device as a whole; including IPL, VTOC, and label records.
• The remaining three minor numbers represent the up to three partitions.

136 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

With 1,048,576 (20-bit) available minor numbers, the DASD device driver can address 262,144 devices.

The DASD device driver uses a device name of the form dasd<x> for each DASD. In the name, <x> is one
to four lowercase letters. Table 16 on page 137 shows how the device names map to the available minor
numbers.

Table 16. Mapping of DASD names to minor numbers

Name for device as a whole Minor number for device as a whole Number of devices

From To From To

dasda dasdz 0 100 26

dasdaa dasdzz 104 2804 676

dasdaaa dasdzzz 2808 73108 17,576

dasdaaaa dasdnwtl 73112 1048572 243,866

Total number of devices: 262,144

The DASD device driver also uses a device name for each partition. The name of the partition is the name
of the device as a whole with a 1, 2, or 3 appended to identify the first, second, or third partition. The
three minor numbers that follow the minor number of the device as a whole are the minor number for the
first, second, and third partition.

Examples
• "dasda" refers to the whole of the first disk in the system and "dasda1", "dasda2", and "dasda3" to the

three partitions. The minor number for the whole device is 0. The minor numbers of the partitions are 1,
2, and 3.

• "dasdz" refers to the whole of the 101st disk in the system and "dasdz1", "dasdz2", and "dasdz3" to the
three partitions. The minor number for the whole device is 100. The minor numbers of the partitions are
101, 102, and 103.

• "dasdaa" refers to the whole of the 102nd disk in the system and "dasdaa1", "dasdaa2", and "dasdaa3"
to the three partitions. The minor number for the whole device is 104. The minor numbers of the
partitions are 105, 106, and 107.

DASD device nodes
Ubuntu Server 22.04 LTS uses udev to create multiple device nodes for each DASD that is online.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The mapping between standard device nodes and the associated physical disk space can change, for
example, when you reboot Linux. To ensure that you access the intended physical disk space, you need
device nodes that are based on properties that identify a particular DASD.

udev creates additional devices nodes that are based on the following information:

• The bus ID of the disk
• The disk label (VOLSER)
• The universally unique identifier (UUID) of the file system on the disk
• If available: The label of the file system on the disk

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>

Chapter 11. DASD device driver 137

for whole DASD and

/dev/disk/by-path/ccw-<device_bus_id>-part<n>

for the <n>th partition.
Device nodes that are based on VOLSERs

udev creates device nodes of the form

/dev/disk/by-id/ccw-<volser>

for whole DASD and

/dev/disk/by-id/ccw-<volser>-part<n>

for the <n>th partition.

If you want to use device nodes that are based on VOLSER, be sure that the VOLSERs in your
environment are unique (see “Volume label” on page 133).

If you assign the same VOLSER to multiple devices, Linux can still access each device through its
standard device node. However, only one of the devices can be accessed through the VOLSER-based
device node. Thus, the node is ambiguous and might lead to unintentional data access.

Furthermore, if the VOLSER on the device that is addressed by the node is changed, the previously
hidden device is not automatically addressed instead. To reassign the node, you must reboot Linux or
force the kernel to reread the partition tables from disks, for example, by issuing:

blockdev --rereadpt /dev/dasdzzz

You can assign VOLSERs to ECKD type devices with dasdfmt when formatting or later with fdasd
when creating partitions.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is the UUID for the file system in a partition.

If a file system label exists, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole DASD that are based on file system information.

If you want to use device nodes that are based on file system labels, be sure that the labels in your
environment are unique.

Additional device nodes
/dev/disk/by-id contains additional device nodes for the DASD and partitions, that are all based
on a device identifier as contained in the uid attribute of the DASD.

Note: If you want to use device nodes that are based on file system information and VOLSER, be sure that
they are unique for the scope of your Linux instance. This information can be changed by a user or it can
be copied, for example when backup disks are created. If two disks with the same VOLSER or UUID are
online to the same Linux instance, the matching device node can point to either of these disks.

Example

For a DASD that is assigned the device name dasdzzz, has two partitions, a device bus-ID 0.0.b100
(device number 0xb100), VOLSER LNX001, and a UUID 6dd6c43d-a792-412f-a651-0031e631caed
for the first and f45e955d-741a-4cf3-86b1-380ee5177ac3 for the second partition, udev creates the
following device nodes:

138 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For the whole DASD:

• /dev/dasdzzz (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100
• /dev/disk/by-id/ccw-LNX001

For the first partition:

• /dev/dasdzzz1 (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100-part1
• /dev/disk/by-id/ccw-LNX001-part1
• /dev/disk/by-uuid/6dd6c43d-a792-412f-a651-0031e631caed

For the second partition:

• /dev/dasdzzz2 (standard device node according to the DASD naming scheme)
• /dev/disk/by-path/ccw-0.0.b100-part2
• /dev/disk/by-id/ccw-LNX001-part2
• /dev/disk/by-uuid/f45e955d-741a-4cf3-86b1-380ee5177ac3

Accessing DASD by udev-created device nodes
Use udev-created device nodes to access a particular physical disk space, regardless of the device name
that is assigned to it.

Example
The following example is based on these assumptions:

• A DASD with bus ID 0.0.b100 has two partitions.
• The standard device node of the DASD is dasdzzz.
• udev creates the following device nodes for a DASD and its partitions:

/dev/disk/by-path/ccw-0.0.b100
/dev/disk/by-path/ccw-0.0.b100-part1
/dev/disk/by-path/ccw-0.0.b100-part2

Instead of issuing:

fdasd /dev/dasdzzz

issue:

fdasd /dev/disk/by-path/ccw-0.0.b100

In the file system information in /etc/fstab replace the following specifications:

/dev/dasdzzz1 /temp1 ext3 defaults 0 0
/dev/dasdzzz2 /temp2 ext3 defaults 0 0

with these specifications:

/dev/disk/by-path/ccw-0.0.b100-part1 /temp1 ext3 defaults 0 0
/dev/disk/by-path/ccw-0.0.b100-part2 /temp2 ext3 defaults 0 0

You can make similar substitutions with other device nodes that udev provides for you (see “DASD device
nodes” on page 137).

Chapter 11. DASD device driver 139

Setting up the DASD device driver
Unless the DASD device driver modules are loaded for you during the boot process, load and configure
them with the modprobe command.

DASD module parameter syntax
modprobe

 dasd_mod

 dasd=

,

device-spec

autodetect

probeonly

nopav

nofcx

 eer_pages=5

 eer_pages=  <pages>

 dasd_eckd_mod

 dasd_fba_mod

 dasd_diag_mod

device-spec
<device_bus_id>

<from_device_bus_id> - <to_device_bus_id>

(

:

ro

diag

erplog

failfast

)

dasd_mod
loads the device driver base module.

When you are loading the base module, you can specify the dasd= parameter.

You can use the eer_pages parameter to determine the number of pages that are used for internal
buffering of error records.

autodetect
causes the DASD device driver to allocate device names and the corresponding minor numbers to all
DASD devices and set them online during the boot process. See “DASD naming scheme” on page 136
for the naming scheme.

The device names are assigned in order of ascending subchannel numbers. Auto-detection can yield
confusing results if you change your I/O configuration and reboot, or if your Linux instance runs
as a z/VM guest because the devices might appear with different names and minor numbers after
rebooting.

probeonly
causes the DASD device driver to reject any "open" syscall with EPERM.

autodetect,probeonly
causes the DASD device driver to assign device names and minor numbers as for auto-detect. All
devices regardless of whether they are accessible as DASD return EPERM to any "open" requests.

140 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

nopav
suppresses parallel access volume (PAV and HyperPAV) enablement for Linux instances that run in
LPAR mode. The nopav keyword has no effect for Linux on z/VM.

nofcx
suppresses accessing the storage server with the I/O subsystem in transport mode (also known as
High Performance FICON).

<device_bus_id>
specifies a single DASD.

<from_device_bus_id>-<to_device_bus_id>
specifies the first and last DASD in a range. All DASD devices with bus IDs in the range are selected.
The device bus-IDs <from_device_bus_id> and <to_device_bus_id> need not correspond to actual
DASD.

ipldev
for IPL from a DASD, specifies the IPL device. If the IPL device is not a DASD, this parameter is
ignored.

(ro)
accesses the specified device or device range in read-only mode.

(diag)
forces the device driver to access the device (range) with the DIAG access method.

(erplog)
enables enhanced error recovery processing (ERP) related logging through syslogd. If erplog is
specified for a range of devices, the logging is switched on during device initialization.

(failfast)
immediately returns "failed" for an I/O operation when the last path to a DASD is lost.

Attention: Enable immediate failure of I/O requests only in setups where a failed I/O request
can be recovered outside the scope of a single DASD (see “Enabling and disabling immediate
failure of I/O requests” on page 150).

dasd_eckd_mod
loads the ECKD module.

dasd_fba_mod
loads the FBA module.

dasd_diag_mod
loads the DIAG module.

If you supply a DASD kernel parameter with device specifications dasd=<device-list1>,<device-
list2> ..., the device names and minor numbers are assigned in the order in which the devices are
specified. The names and corresponding minor numbers are always assigned, even if the device is not
present, or not accessible.

If you use autodetect in addition to explicit device specifications, device names are assigned to the
specified devices first and device-specific parameters, like ro, are observed. The remaining devices are
handled as described for autodetect.

The DASD base component is required by the other modules. modprobe takes care of this dependency for
you and ensures that the base module is loaded automatically, if necessary.

Hint: modprobe might return before udev has created all device nodes for the specified DASDs. If you
need to assure that all nodes are present, for example in scripts, follow the modprobe command with:

udevadm settle

For command details see the modprobe man page.

Chapter 11. DASD device driver 141

Examples
The following example specifies a range of DASD devices and two individual DASD devices:

modprobe dasd_mod dasd=0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

Table 17 on page 142 shows the resulting allocation of device names and minor numbers:

Table 17. Example mapping of device names and minor numbers to devices

Minor Name To access

0 dasda device 0.0.7000 as a whole

1 dasda1 the first partition on 0.0.7000

2 dasda2 the second partition on 0.0.7000

3 dasda3 the third partition on 0.0.7000

4 dasdb device 0.0.7001 as a whole

5 dasdb1 the first partition on 0.0.7001

6 dasdb2 the second partition on 0.0.7001

7 dasdb3 the third partition on 0.0.7001

8 dasdc device 0.0.7002 as a whole

9 dasdc1 the first partition on 0.0.7002

10 dasdc2 the second partition on 0.0.7002

11 dasdc3 the third partition on 0.0.7002

12 dasdd device 0.0.7005 as a whole

13 dasdd1 the first partition on 0.0.7005 (read-only)

14 dasdd2 the second partition on 0.0.7005 (read-only)

15 dasdd3 the third partition on 0.0.7005 (read-only)

16 dasde device 0.0.7006 as a whole

17 dasde1 the first partition on 0.0.7006

18 dasde2 the second partition on 0.0.7006

19 dasde3 the third partition on 0.0.7006

The following example specifies that High Performance FICON are to be suppressed for all DASDs:

modprobe dasd_mod dasd=nofcx,0.0.7000-0.0.7002,0.0.7005(ro),0.0.7006

Working with DASDs
You might have to prepare DASDs for use, configure troubleshooting functions, or configure special device
features for your DASDs.

See “Working with newly available devices” on page 10 to avoid errors when you are working with devices
that have become available to a running Linux instance.

• “Preparing an ECKD type DASD for use” on page 143
• “Preparing an FBA-type DASD for use” on page 144
• “Accessing DASD by force” on page 145

142 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• “Enabling the DASD device driver to use the DIAG access method” on page 146
• “Using extended error reporting for ECKD type DASD” on page 147
• “Setting a DASD online or offline” on page 148
• “Enabling and disabling logging” on page 150
• “Enabling and disabling immediate failure of I/O requests” on page 150
• “Setting the timeout for I/O requests” on page 151
• “Working with DASD statistics in debugfs” on page 152
• “Accessing full ECKD tracks” on page 156
• “Handling lost device reservations” on page 158
• “Reading and resetting the reservation state” on page 159
• “Setting defective channel paths offline automatically” on page 162
• “Querying the HPF setting of a channel path” on page 163
• “Checking for access by other operating system instances” on page 160
• “Querying the encryption setting of a channel path” on page 161
• “Displaying DASD information” on page 164

Preparing an ECKD type DASD for use
Before you can use an ECKD type DASD as a disk for Linux on IBM Z, you must format it with a suitable
disk layout. You must then create a file system or define a swap space.

Before you begin
• The base component and the ECKD component of the DASD device driver must have been compiled into

the kernel or have been loaded as modules.
• The DASD device driver must have recognized the device as an ECKD type device.
• You need to know the device bus-ID for your DASD.

About this task
If you format the DASD with the compatible disk layout, you must create one, two, or three partitions. You
can then use your partitions as swap areas or to create a Linux file system.

Procedure
Perform these steps to prepare the DASD:
1. Issue lsdasd (see “lsdasd - List DASD devices” on page 658) to find out if the device is online.

If necessary, set the device online, see “Setting a DASD online or offline” on page 148.
2. Format the device with the dasdfmt command (see “dasdfmt - Format a DASD” on page 610 for

details). The formatting process can take hours for large DASDs.
If you want to use the CMS disk layout, and your DASD is already formatted with the CMS disk layout,
skip this step.

Tips:

• Use the largest possible block size, ideally 4096; the net capacity of an ECKD DASD decreases for
smaller block sizes. For example, a DASD formatted with a block size of 512 byte has only half of the
net capacity of the same DASD formatted with a block size of 4096 byte.

• For DASDs that have previously been formatted with dasdfmt, use the dasdfmt quick format mode.
• Use the -p option to display a progress bar.

Example: Assuming that /dev/dasdzzz is a valid device node for 0.0.b100:

Chapter 11. DASD device driver 143

dasdfmt -b 4096 -p /dev/dasdzzz

3. Proceed according to your chosen disk layout:

• If you have formatted your DASD with the Linux disk layout or the CMS disk layout, skip this step and
continue with step “4” on page 144. You already have one partition and cannot add further partitions
on your DASD.

• If you have formatted your DASD with the compatible disk layout use the fdasd command to create
up to three partitions (see “fdasd - Partition a DASD” on page 628 for details).

Example: To start the partitioning tool in interactive mode for partitioning a device /dev/dasdzzz
issue:

fdasd /dev/dasdzzz

If you create three partitions for a DASD /dev/dasdzzz, the device nodes for the partitions
are /dev/dasdzzz1, /dev/dasdzzz2, and /dev/dasdzzz3.

Result: fdasd creates the partitions and updates the partition table (see “VTOC” on page 134).
4. Depending on the intended use of each partition, create a file system on the partition or define it as a

swap space.

• Either create a file system of your choice, for example, with the Linux mke2fs command (see the
man page for details).

Note: Do not make the block size of the file system smaller than the block size that was used for
formatting the disk with the dasdfmt command.

Tip: Use the same block size for the file system that has been used for formatting.

Example:

mke2fs -j -b 4096 /dev/dasdzzz1

• Or define the partition as a swap space with the mkswap command (see the man page for details).

5. Mount each file system to the mount point of your choice in Linux and enable your swap partitions.

Example: To mount a file system in a partition /dev/dasdzzz1 to a mount point /mnt and to enable
a swap partition /dev/dasdzzz2 issue:

mount /dev/dasdzzz1 /mnt
swapon /dev/dasdzzz2

If a block device supports barrier requests, a journaling file systems like ext4 can use this feature to
achieve better performance and data integrity. Barrier requests are supported for the DASD device
driver and apply to ECKD, FBA, and the DIAG discipline.

Write barriers are used by file systems and are enabled as a file-system specific option. For example,
barrier support can be enabled for an ext3 file system by mounting it with the option -o barrier=1:

mount -o barrier=1 /dev/dasdzzz1 /mnt

Preparing an FBA-type DASD for use
Before you can use an FBA-type DASD as a disk for Linux on IBM Z, you must create a file system or define
a swap space.

144 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
• The base component and the FBA component of the DASD device driver must have been compiled into

the kernel or have been loaded as modules.
• The DASD device driver must have recognized the device as an FBA device.
• You must know the device bus-ID or the device node through which the DASD can be addressed. The

DASD device nodes have the form /dev/dasd<x>, where <x> can be one to four lowercase alphabetic
characters.

Procedure
Perform these steps to prepare the DASD:
1. Assure that device nodes exist to address the DASD as a whole and the partition.

Example: To check if the device nodes for a DASD dasdzzy exist, change to /dev and issue:

ls dasdzzy*

If necessary, create the device nodes. For example, issue:

mknod -m 660 /dev/dasdzzy b 94 73104
mknod -m 660 /dev/dasdzzy1 b 94 73105

See Table 16 on page 137 for the mapping of device names and minor numbers.
2. Depending on the intended use of the partition, create a file system on it or define it as a swap space.

• Either create a file system of your choice, for example, with the Linux mke2fs command (see the
man page for details).

Example:

mke2fs -b 4096 /dev/dasdzzy1

• Or define the partition as a swap space with the mkswap command (see the man page for details).
3. Mount the file system to the mount point of your choice in Linux or enable your swap partition.

Tip: Mount file systems on FBA devices that are backed by z/VM VDISKs with the discard mount
option. This option frees memory when data is deleted from the device.

Examples:

• To mount a file system in a partition /dev/dasdzzy1, issue:

mount /dev/dasdzzy1 /mnt

• To mount a VDISK-backed file system in a partition /dev/dasdzzx1, and use the discard option to
free memory when data is deleted, issue:

mount -o discard /dev/dasdzzx1 /mnt

What to do next
To access FBA devices, use the DIAG access method (see “Enabling the DASD device driver to use the
DIAG access method” on page 146 for more information).

Accessing DASD by force
A Linux instance can encounter DASDs that are locked by another system. Such a DASD is referred to as
"externally locked" or "boxed". The Linux instance cannot analyze a DASD while it is externally locked.

Chapter 11. DASD device driver 145

About this task
To check whether a DASD has been externally locked, read its availability attribute. This attribute should
be "good". If it is "boxed", the DASD has been externally locked. Because a boxed DASD might not be
recognized as DASD, it might not show up in the device driver view in sysfs. If necessary, use the device
category view instead (see “Device views in sysfs” on page 11).

CAUTION: Breaking an external lock can have unpredictable effects on the system that holds the
lock.

Procedure
1. Optional: To read the availability attribute of a DASD, issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/availability

Example: This example shows that a DASD with device bus-ID 0.0.b110 (device number 0xb110) has
been externally locked.

cat /sys/bus/ccw/devices/0.0.b110/availability
boxed

If the DASD is an ECKD type DASD and if you know the device bus-ID, you can break the external
lock and set the device online. This means that the lock of the external system is broken with the
"unconditional reserve" channel command.

2. To force a boxed DASD online, write force to the online device attribute. Issue a command of this
form:

echo force > /sys/bus/ccw/devices/<device_bus_id>/online

Example: To force a DASD with device number 0xb110 online issue:

echo force > /sys/bus/ccw/devices/0.0.b110/online

Results
If the external lock is successfully broken or if the lock has been surrendered by the time the command
is processed, the device is analyzed and set online. If it is not possible to break the external lock (for
example, because of a timeout, or because it is an FBA-type DASD), the device remains in the boxed state.
This command might take some time to complete.

For information about breaking the lock of a DASD that has already been analyzed see “tunedasd - Adjust
low-level DASD settings” on page 735.

Enabling the DASD device driver to use the DIAG access method
Linux on z/VM can use the DIAG access method to access DASDs with the help of z/VM functions.

Before you begin
This section applies only to Linux instances and DASDs for which all of the following conditions are true:

• The Linux instance runs as a z/VM guest.
• The device can be of type ECKD with either LDL or CMS disk layout, or it can be a device of type FBA.
• The module for the DIAG component (dasd_diag_mod) must be loaded.
• The module for the component that corresponds to the DASD type (dasd_eckd_mod or dasd_fba_mod)

must be loaded.
• The DASD is offline.

146 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• The DASD does not represent a parallel access volume alias device.

About this task
You can use the DIAG access method to access both ECKD and FBA-type DASD. You use the device's
use_diag sysfs attribute to enable or switch off the DIAG access method in a system that is online.
Set the use_diag attribute to 1 to enable the DIAG access method. Set the use_diag attribute to 0 to
switch off the DIAG access method (this is the default).

Alternatively, you can specify diag on the command line, for example during IPL, to force the device
driver to access the device (range) with the DIAG access method.

Procedure
Issue a command of this form:

echo <flag> > /sys/bus/ccw/devices/<device_bus_id>/use_diag

where <device_bus_id> identifies the DASD.

If the DIAG access method is not available and you set the use_diag attribute to 1, you cannot set the
device online (see “Setting a DASD online or offline” on page 148).

Note: When switching between an enabled and a disabled DIAG access method on FBA-type DASD, first
reinitialize the DASD, for example, with CMS format or by overwriting any previous content. Switching
without initialization might cause data-integrity problems.

For more details about DIAG, see z/VM: CP Programming Services, SC24-6272.

Example

In this example, the DIAG access method is enabled for a DASD with device number 0xb100.

1. Ensure that the driver is loaded (only applicable when compiled as module):

modprobe dasd_diag_mod

2. Identify the sysfs CCW-device directory for the device in question and change to that directory:

cd /sys/bus/ccw/devices/0.0.b100/

3. Ensure that the device is offline:

echo 0 > online

4. Enable the DIAG access method for this device by writing '1' to the use_diag sysfs attribute:

echo 1 > use_diag

5. Use the online attribute to set the device online:

echo 1 > online

Using extended error reporting for ECKD type DASD
Control the extended error reporting feature for individual ECKD type DASD through the eer_enabled
sysfs attribute. Use the character device of the extended error reporting module to obtain error records.

Before you begin
To use the extended error reporting feature, you need ECKD type DASD.

Chapter 11. DASD device driver 147

About this task
The extended error reporting feature is disabled by default.

Procedure
To enable extended error reporting, issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When it is enabled on a device, a specific set of errors generates records and might have further side
effects.

To disable extended error reporting, issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/eer_enabled

What to do next
You can obtain error records for all DASD for which extended error reporting is enabled from the
character device of the extended error reporting module, /dev/dasd_eer. The device supports these
file operations:

open
Multiple processes can open the node concurrently. Each process that opens the node has access to
the records that are created from the time the node is opened. A process cannot access records that
were created before the process opened the node.

close
You can close the node as usual.

read
Blocking read and non-blocking read are supported. When a record is partially read and then purged,
the next read returns an I/O error -EIO.

poll
The poll operation is typically used with non-blocking read.

Setting a DASD online or offline
Use the chzdev command, the chccwdev command or the online sysfs attribute of the device to set
DASDs online or offline.

About this task
When Linux boots, it senses your DASD. Depending on your specification for the "dasd=" parameter, it
automatically sets devices online.

When you set a DASD offline, the deregistration process is synchronous, unless the device is
disconnected. For disconnected devices, the deregistration process is asynchronous.

Procedure
Use the chzdev command (“chzdev - Configure IBM Z devices” on page 584) to set a DASD online or
offline.

Alternatively, use the chccwdev command, or write 1 to the device's sysfs online attribute to set it online
or 0 to set it offline. In contrast to the sysfs attribute, the chccwdev command triggers a cio_settle for you
and waits for the cio_settle to complete.

148 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Outstanding I/O requests are canceled when you set a device offline. To wait indefinitely for outstanding
I/O requests to complete before setting the device offline, use the chccwdev option --safeoffline
or the sysfs attribute safe_offline. The chzdev command uses safe offline (if available), unless you
specify the --force option.

Examples

• To set a DASD with device bus-ID 0.0.b100 online, issue:

chzdev -e dasd 0.0.b100

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.
To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -e dasd 0.0.b100

echo 1 > /sys/bus/ccw/devices/0.0.b100/online

• To set a DASD with device bus-ID 0.0.b100 offline, issue:

chzdev -d dasd 0.0.b100

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.
To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -d 0.0.b100

echo 0 > /sys/bus/ccw/devices/0.0.b100/online

• To complete outstanding I/O requests and then set a DASD with device bus-ID 0.0.4711 offline, issue:

chccwdev -s 0.0.4711

or

echo 1 > /sys/bus/ccw/devices/0.0.4711/safe_offline

If an outstanding I/O request is blocked, the command might wait forever. Reasons for blocked
I/O requests include reserved devices that can be released or disconnected devices that can be
reconnected.

1. Try to resolve the problem that blocks the I/O request and wait for the command to complete.
2. If you cannot resolve the problem, issue chccwdev -d to cancel the outstanding I/O requests. The

data will be lost.

Dynamic attach and detach
You can dynamically attach devices to a running instance of Linux on IBM Z, for example, from z/VM.

When a DASD is attached, Linux attempts to initialize it according to the DASD device driver configuration
(see “Setting up the DASD device driver” on page 140). You can then set the device online. You can

Chapter 11. DASD device driver 149

automate setting dynamically attached devices online by using CCW hotplug events (see “CCW hotplug
events” on page 18).

Attention: Do not detach a device that is still being used by Linux. Detaching devices might cause
the system to hang or crash. Ensure that you unmount a device and set it offline before you detach
it.

See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

Be careful to avoid errors when working with devices that have become available to a running Linux
instance.

Enabling and disabling logging
Use the dasd= kernel or module parameter or use the erplog sysfs attribute to enable or disable error
recovery processing (ERP) logging.

Procedure
You can enable and disable error recovery processing (ERP) logging on a running system. There are two
methods:

• Use the dasd= parameter when you load the base module of the DASD device driver.

Example:

To define a device range (0.0.7000-0.0.7005) and enable logging, change the parameter line to
contain:

dasd=0.0.7000-0.0.7005(erplog)

• Use the sysfs attribute erplog to turn ERP-related logging on or off.

Logging can be enabled for a specific device by writing 1 to the erplog attribute.

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/erplog

To disable logging, write 0 to the erplog attribute.

Example:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/erplog

Enabling and disabling immediate failure of I/O requests
Prevent devices in mirror setups from being blocked while paths are unavailable by making I/O requests
fail immediately.

About this task
By default, if all path have been lost for a DASD, the corresponding device in Linux waits for one of the
paths to recover. I/O requests are blocked while the device is waiting.

If the DASD is part of a mirror setup, this blocking might cause the entire virtual device to be blocked. You
can use the failfast attribute to immediately return I/O requests as failed while no path to the device is
available.

Attention: Use this attribute with caution and only in setups where a failed I/O request can be
recovered outside the scope of a single DASD.

150 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Use one of these methods:

• You can enable immediate failure of I/O requests when you load the base module of the DASD device
driver.

Example:

To define a device range (0.0.7000-0.0.7005) and enable immediate failure of I/O requests specify:

dasd=0.0.7000-0.0.7005(failfast)

• You can use the sysfs attribute failfast of a DASD to enable or disable immediate failure of I/O
requests.

To enable immediate failure of I/O requests, write 1 to the failfast attribute.

Example:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/failfast

To disable immediate failure of I/O requests, write 0 to the failfast attribute.

Example:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/failfast

Setting the timeout for I/O requests
DASD I/O requests can time out at two levels in the software stack.

About this task
When the DASD device driver receives an I/O request from an application, it issues one or more low-level
I/O requests to the affected storage system. Both the initial I/O request from the application and the
resulting low-level requests to the storage system can time out. You set the timeout values through two
sysfs attributes of the DASD.
expires

specifies the maximum time, in seconds, that the DASD device driver waits for a response to a
low-level I/O request from a storage server.

The default for the maximum response time depends on the type of DASD:
ECKD

uses the default that is provided by the storage server.
FBA

300 s
DIAG

50 s

If the maximum response time is exceeded, the DASD device driver cancels the request. Depending
on your setup, the DASD device driver might then try the request again, possibly in combination with
other recovery actions.

timeout
specifies the time interval, in seconds, within which the DASD device driver must respond to an I/O
request from a software layer above it. If the specified time expires before the request is completed,
the DASD device driver cancels all related low-level I/O requests to storage systems and reports the
request as failed.

This setting is useful in setups where the software layer above the DASD device driver requires an
absolute upper limit for I/O requests.

Chapter 11. DASD device driver 151

A value of 0 means that there is no time limit. This value is the default.

Procedure
You can use the expires and timeout attributes of a DASD to change the timeout values for that DASD.
1. To find out the current timeout values, issue commands of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/expires
cat /sys/bus/ccw/devices/<device_bus_id>/timeout

Example:

cat /sys/bus/ccw/devices/0.0.7008/expires
30
cat /sys/bus/ccw/devices/0.0.7008/timeout
0

In the example, a maximum response time of 30 seconds applies to the storage server for a DASD with
bus ID 0.0.7008. No total time limit is set for I/O requests to this DASD.

2. To set different timeout values, issue commands of this form:

echo <max_wait> > /sys/bus/ccw/devices/<device_bus_id>/expires
echo <total_max> > /sys/bus/ccw/devices/<device_bus_id>/timeout

where:
<max_wait>

is the new maximum response time, in seconds, for the storage server. The value must be a
positive integer.

<total_max>
is the new maximum total time in seconds. The value must be a positive integer or 0. 0 disables
this timeout setting.

<device_bus_id>
is the device bus-ID of the DASD.

Example:

echo 60 > /sys/bus/ccw/devices/0.0.7008/expires
echo 120 > /sys/bus/ccw/devices/0.0.7008/timeout

This example sets timeout values for a DASD with bus ID 0.0.7008. The maximum response time
for the storage server is set to 60 seconds and the overall time limit for I/O requests is set to 120
seconds.

Working with DASD statistics in debugfs
Gather DASD statistics and display the data with the dasdstat command.

Before you begin
• debugfs is required, but is mounted by default. If you unmounted the file system, remount it before

continuing. See “debugfs” on page xi.
• Instead of accessing raw DASD performance data in debugfs, you can use the dasdstat command to

obtain more structured data (see “dasdstat - Display DASD performance statistics” on page 615).

About this task
The DASD performance data is contained in the following subdirectories of <mountpoint>/dasd, where
<mountpoint> is the mount point of debugfs:

152 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• A directory global that represents all available DASDs taken together.
• For each DASD, one directory with the name of the DASD block device with which the DASD is known to

the DASD device driver (for example, dasda, dasdb, and dasdc).
• For each CCW device that corresponds to a DASD, a directory with the bus ID as the name.

Block devices that are not set up for PAV or HyperPAV map to exactly one CCW device and the
corresponding directories contain the same statistics.

With PAV or HyperPAV, a bus ID can represent a base device or an alias device. Each base device is
associated with a particular block device. The alias devices are not permanently associated with the
same block device. At any one time, a DASD block device is associated with one or more CCW devices.
Statistics that are based on bus ID, therefore, show more detail for PAV and HyperPAV setups.

Each of these directories contains a file statistics that you can use to perform these tasks:

• Start and stop data gathering.
• Reset statistics counters.
• Read statistics.

To control data gathering at the scope of a directory in <mountpoint>/dasd, issue a command of this
form:

echo <keyword> > <mountpoint>/dasd/<directory>/statistics

Where:
<directory>

is one of the directories in <mountpoint>/dasd.
<keyword>

specifies the action to be taken:
on

to start data gathering.
off

to stop data gathering.
reset

to reset the statistics counters.

To read performance data, issue a command of this form:

cat <mountpoint>/dasd/<directory>/statistics

Examples for gathering and reading DASD statistics in debugfs
Use the echo command to start and stop data gathering for individual devices or across all DASDs. Use
the cat command to access the raw performance data.

The following examples assume that debugfs is mounted at /sys/kernel/debug.

• To start data gathering for summary data across all available DASDs:

echo on > /sys/kernel/debug/dasd/global/statistics

• To stop data gathering for block device dasdb:

echo off > /sys/kernel/debug/dasd/dasdb/statistics

• To reset the counters for CCW device 0.0.b301:

echo reset > /sys/kernel/debug/dasd/0.0.b301/statistics

Chapter 11. DASD device driver 153

• To read performance data for dasda, assuming that the degbugfs mount point is /sys/kernel/
debug, issue:

cat /sys/kernel/debug/dasd/dasda/statistics
start_time 1283518578.085869197
total_requests 0
total_sectors 0
total_pav 0
total_hpf 0
histogram_sectors 0
histogram_io_times 0
histogram_io_times_weighted 0
histogram_time_build_to_ssch 0
histogram_time_ssch_to_irq 0
histogram_time_ssch_to_irq_weighted 0
0 0
histogram_time_irq_to_end 0
histogram_ccw_queue_length 0
total_read_requests 0
total_read_sectors 0
total_read_pav 0
total_read_hpf 0
histogram_read_sectors 0
histogram_read_times 0
histogram_read_time_build_to_ssch 0
0
histogram_read_time_ssch_to_irq 0
histogram_read_time_irq_to_end 0
histogram_read_ccw_queue_length 0

Interpreting the data rows
The raw DASD performance data in the statistics directories in debugfs is organized into labeled data
rows.

This section explains the raw data in the individual data rows of the statistics. Use the dasdstat
command to obtain more structured data.

start_time
is the UNIX® epoch time stamp when data gathering was started or when the counters were last reset.

Tip: Use the date tool to convert the time stamp to a more readily human-readable format. See the
date man page for details.

Single counters
have a single integer as the statistics data. All rows with labels that begin with total_ are of this data
type.

The following rows show data for the sum of all requests, read and write:
total_requests

is the number of requests that have been processed.
total_sectors

is the sum of the sizes of all requests, in units of 512-byte sectors.
total_pav

is the number of requests that were processed through a PAV alias device.
total_hpf

is the number of requests that used High Performance FICON.

The following rows show data for read requests only:
total_read_requests

is the number of read requests that have been processed.
total_read_sectors

is the sum of the sizes of all read requests, in units of 512-byte sectors.
total_read_pav

is the number of read requests that were processed through a PAV alias device.

154 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

total_read_hpf
is the number of read requests that used High Performance FICON.

Linear histograms
have a series of 32 integers as the statistics data. The integers represent a histogram, with a linear
scale, of the number of requests in the request queue each time a request has been queued. The first
integer shows how often the request queue contained zero requests, the second integer shows how
often the queue contained one request, and the n-th value shows how often the queue contained n-1
requests.
histogram_ccw_queue_length

is the histogram data for all requests, read and write.
histogram_read_ccw_queue_length

is the histogram data for read requests only.
Logarithmic histograms

have a series of 32 integers as the statistics data. The integers represent a histogram with a
logarithmic scale:

• The first integer always represents all measures of fewer than 4 units
• The second integer represents measures of 4 or more but less than 8 units
• The third integer represents measures of 8 or more but less than 16 units
• The n-th integer (1 < n < 32) represents measures of 2n or more but less than 2n+1 units
• The 32nd integer represents measures of 232 (= 4G = 4,294,967,296) units or more.

The following rows show data for the sum of all requests, read and write:
histogram_sectors

is the histogram data for request sizes. A unit is a 512-byte sector.
histogram_io_times

is the histogram data for the total time that is needed from creating the cqr to its completion in the
DASD device driver and return to the block layer. A unit is a microsecond.

histogram_io_times_weighted
is the histogram data of the total time, as measured for histogram_io_times, devided by the
requests size in sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_build_to_ssch
is the histogram data of the time that is needed from creating the cqr to submitting the request to
the subchannel. A unit is a microsecond.

histogram_time_ssch_to_irq
is the histogram data of the time that is needed from submitting the request to the subchannel
until an interrupt indicates that the request has been completed. A unit is a microsecond.

histogram_time_ssch_to_irq_weighted
is the histogram data of the time that is needed from submitting the request to the subchannel
until an interrupt indicates that the request has been completed, divided by the request size in
512-byte sectors. A unit is a microsecond per sector.

This metric is deprecated and there is no corresponding histogram data for read requests.

histogram_time_irq_to_end
is the histogram data of the time that is needed from return of the request from the channel
subsystem, until the request is returned to the block layer. A unit is a microsecond.

The following rows show data for read requests only:
histogram_read_sectors

is the histogram data for read request sizes. A unit is a 512 byte sector.

Chapter 11. DASD device driver 155

histogram_read_io_times
is the histogram data, for read requests, for the total time needed from creating the cqr to its
completion in the DASD device driver and return to the block layer. A unit is a microsecond.

histogram_read_time_build_to_ssch
is the histogram data, for read requests, of the time needed from creating the cqr to submitting
the request to the subchannel. A unit is a microsecond.

histogram_read_time_ssch_to_irq
is the histogram data, for read requests, of the time needed from submitting the request to
the subchannel until an interrupt indicates that the request has been completed. A unit is a
microsecond.

histogram_read_time_irq_to_end
is the histogram data, for read requests, of the time needed from return of the request from the
channel subsystem, until the request is returned to the blocklayer. A unit is a microsecond.

Scenario: Verifying that PAV and HPF are used
Use the dasdstat command to display DASD performance statistics, including statistics about Parallel
Access Volume (PAV) and High Performance FICON (HPF).

Procedure
1. Enable DASD statistics for the device of interest.

Example:

dasdstat -e dasdc
enable statistic "/sys/kernel/debug/dasd/dasdc/statistics"

2. Assure that I/O requests are directed to the device.

Hints:

• Access a partition, rather than the whole device, to avoid directing the I/O request towards the
first 2 tracks of a CDL formatted DASD. Requests to the first 2 tracks of a CDL formatted DASD are
exceptional in that they never use High Performance FICON.

• Assure that a significant I/O load is applied to the device. PAV aliases are used only if multiple I/O
requests for the device are processed simultaneously.

Example:

dd if=/dev/dasdc1 of=/dev/null bs=4k count=256

3. Look for PAV and HPF in the statistics.

Example:

dasdstat dasdc
--
statistics data for statistic: dasdc
start time of data collection: Fri Dec 11 14:22:18 CET 2015

7 dasd I/O requests
with 4000 sectors(512B each)
3 requests used a PAV alias device
7 requests used HPF

In the example, dasdc uses both Parallel Access Volume and High Performance FICON.

Accessing full ECKD tracks
In raw-track access mode, the DASD device driver accesses full ECKD tracks, including record zero and
the count and key data fields.

156 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
• This section applies to ECKD type DASD only.
• The DASD has to be offline when you change the access mode.
• The DIAG access method must not be enabled for the device.

About this task
With this mode, Linux can access an ECKD device regardless of the track layout. In particular, the device
does not need to be formatted for Linux.

For example, with raw-track access mode Linux can create a backup copy of any ECKD device. Full-track
access can also enable a special program that runs on Linux to access and process data on an ECKD
device that is not formatted for Linux.

By default, the DASD device driver accesses only the data fields of ECKD devices. In default access mode,
you can work with partitions, file systems, and files in the file systems on the DASD.

When using a DASD in raw-track access mode be aware that:

• In memory, each track is represented by 64 KB of data, even if the track occupies less physical disk
space. Therefore, a disk in raw-track access mode appears bigger than in default mode.

• Programs must write and should read data in multiples of complete 64 KB tracks. Read requests for
less than 64 KB are allowed, but are not optimal as the DASD device driver always reads full tracks.
The minimum is a single track. The maximum is eight tracks by default but can be extended to up to 16
tracks.

The maximum number of tracks depends on the maximum number of sectors as specified in the
max_sectors_kb sysfs attribute of the DASD. This attribute is located in the block device branch of
sysfs at /sys/block/dasd<x>/queue/max_sectors_kb. In the path, dasd<x> is the device name
that is assigned by the DASD device driver.

To extend the maximum beyond eight tracks, set the max_sectors_kb to the maximum amount of
data to be processed in a single read or write operation. For example, to extend the maximum to reading
or writing 16 tracks at a time, set max_sectors_kb to 1024 (16 x 64).

• Programs must write only valid ECKD tracks of 64 KB.
• Programs must use direct I/O to prevent the Linux block layer from splitting tracks into fragments. The

DASD device driver must read a split track multiple times, which might slow down the reading process.
Open the block device with option O_DIRECT or work with programs that use direct I/O.

For example, the options iflag=direct and oflag=direct cause dd to use direct I/O. When using
dd, also specify the block size with the bs= option. The block size determines the number of tracks that
are processed in a single I/O operation. The block size must be a multiple of 64 KB and can be up to
1024 KB. Specifying a larger block size often results in better performance. If you receive disk image
data from a pipe, also use the option iflag=fullblock to ensure that full blocks are written to the
DASD device.

Tools cannot directly work with partitions, file systems, or files within a file system. For example, fdasd
and dasdfmt cannot be used.

Procedure
To change the access mode, issue a command of this form:

echo <switch> > /sys/bus/ccw/devices/<device_bus_id>/raw_track_access

where:
<switch>

is 1 to activate raw data access and 0 to deactivate raw data access.

Chapter 11. DASD device driver 157

<device_bus_id>
identifies the DASD.

Example

The following example creates a backup of a DASD 0.0.7009 on a DASD 0.0.70a1.

The initial commands ensure that both devices are offline and that the DIAG access method is not
enabled for either of them. The subsequent commands activate the raw-track access mode for the two
devices and set them both online. The lsdasd command that follows shows the mapping between device
bus-IDs and device names.

The dd command for the copy operation specifies direct I/O for both the input and output device and the
block size of 1024 KB. After the copy operation is completed, both devices are set offline. The access
mode for the original device is then set back to the default and the device is set back online.

cat /sys/bus/ccw/devices/0.0.7009/online
1
chccwdev -d 0.0.7009
cat /sys/bus/ccw/devices/0.0.7009/use_diag
0
cat /sys/bus/ccw/devices/0.0.70a1/online
0
cat /sys/bus/ccw/devices/0.0.70a1/use_diag
0
echo 1 > /sys/bus/ccw/devices/0.0.7009/raw_track_access
echo 1 > /sys/bus/ccw/devices/0.0.70a1/raw_track_access
chccwdev -e 0.0.7009,0.0.70a1
lsdasd 0.0.7009 0.0.70a1
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.7009 active dasdf 94:20 ECKD 4096 7043MB 1803060
0.0.70a1 active dasdj 94:36 ECKD 4096 7043MB 1803060
echo 1024 > /sys/block/dasdf/queue/max_sectors_kb
echo 1024 > /sys/block/dasdj/queue/max_sectors_kb
dd if=/dev/dasdf of=/dev/dasdj bs=1024k iflag=direct oflag=direct
chccwdev -d 0.0.7009,0.0.70a1
echo 0 > /sys/bus/ccw/devices/0.0.7009/raw_track_access
chccwdev -e 0.0.7009

Handling lost device reservations
A DASD reservation by your Linux instance can be lost if another system unconditionally reserves this
DASD.

About this task
This other system then has exclusive I/O access to the DASD for the duration of the unconditional
reservation. Such unconditional reservations can be useful for handling error situations where:

• Your Linux instance cannot gracefully release the DASD.
• Another system requires access to the DASD, for example, to perform recovery actions.

After the DASD is released by the other system, your Linux instance might process pending I/O requests
and write faulty data to the DASD. How to prevent pending I/O requests from being processed depends on
the reservation policy. There are two reservation policies:
ignore

All I/O operations for the DASD are blocked until the DASD is released by the second system. When
using this policy, reboot your Linux instance before the other system releases the DASD. This policy is
the default.

fail
All I/O operations are returned as failed until the DASD is set offline or until the reservation state is
reset. When using this policy, set the DASD offline and back online after the problem is resolved. See
“Reading and resetting the reservation state” on page 159 about resetting the reservation state to
resume operations.

158 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Set the reservation policy with a command of this form:

echo <policy> > /sys/bus/ccw/devices/<device_bus_id>/reservation_policy

where:
<device_bus_id>

specifies the DASD.
<policy>

is one of the available policies, ignore or fail.

Examples

• The command of this example sets the reservation policy for a DASD with bus ID 0.0.7009 to fail.

echo fail > /sys/bus/ccw/devices/0.0.7009/reservation_policy

• This example shows a small scenario. The first two commands confirm that the reservation policy of the
DASD is fail and that the reservation has been lost to another system. Assuming that the error that
had occurred has already been resolved and that the other system has released the DASD, operations
with the DASD are resumed by setting it offline and back online.

cat /sys/bus/ccw/devices/0.0.7009/reservation_policy
fail
cat /sys/bus/ccw/devices/0.0.7009/last_known_reservation_state
lost
chccwdev -d 0.0.7009
chccwdev -e 0.0.7009

Reading and resetting the reservation state
How the DASD device driver handles I/O requests depends on the last_known_reservation_state
sysfs attribute of the DASD.

About this task
The last_known_reservation_state attribute reflects the reservation state as held by the DASD
device driver and can differ from the actual reservation state. Use the tunedasd -Q command to find
out the actual reservation state. The last_known_reservation_state sysfs attribute can have the
following values:

none
The DASD device driver has no information about the device reservation state. I/O requests are
processed as usual. If the DASD is reserved by another system, the I/O requests remain in the queue
until they time out, or until the reservation is released.

reserved
The DASD device driver holds a valid reservation for the DASD and I/O requests are processed as
usual. The DASD device driver changes this state if notified that the DASD is no longer reserved to this
system. The new state depends on the reservation policy (see “Handling lost device reservations” on
page 158).
ignore

The state is changed to none.
fail

The state is changed to lost.
lost

The DASD device driver had reserved the DASD, but subsequently another system has unconditionally
reserved the DASD (see “Handling lost device reservations” on page 158). The device driver

Chapter 11. DASD device driver 159

processes only requests that query the actual device reservation state. All other I/O requests for
the device are returned as failed.

When the error that led another system to unconditionally reserve the DASD is resolved and the DASD
has been released by this other system, there are two methods for resuming operations.

• Setting the DASD offline and back online.
• Resetting the reservation state of the DASD.

Attention: Do not resume operations by resetting the reservation state unless your system
setup maintains data integrity on the DASD despite:

• The I/O errors that are caused by the unconditional reservation
• Any changes to the DASD through the other system

You reset the reservation state by writing reset to the last_known_reservation_state
sysfs attribute of the DASD. Resetting is possible only for the fail reservation policy
(see “Handling lost device reservations” on page 158) and only while the value of the
last_known_reservation_state attribute is lost.

To find out the reservation state of a DASD issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/last_known_reservation_state

where <device_bus_id> specifies the DASD.

Example

The command in this example queries the reservation state of a DASD with bus ID 0.0.7009.

cat /sys/bus/ccw/devices/0.0.7009/last_known_reservation_state
reserved

Checking for access by other operating system instances
Query if a DASD volume is online to another operating system instance by reading the
host_access_count attribute.

Before you begin
To query the number of operating system instances that use the DASD device, the DASD must be online.

About this task
Storage servers that support this feature knows about the online status of the device on all attached
operating system instances in an LPAR (so called hosts). If a DASD device is set online it might potentially
be used on another operating system instance. This information can help to reduce the chance for
outages or possible data corruption due to concurrent access to DASD volumes from different operating
system instances.

Procedure
To check whether a DASD device is being used by other operating system instances, issue a command of
this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host_access_count

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

For example, to query how many operating system instances have access to a device 0.0.bf45, issue:

160 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/devices/0.0.bf45/host_access_count
13

In the example, 13 operating system instances have access to the device, including the current Linux
instance.

What to do next
To see details for each host connected to the DASD device, use the lsdasd command with the --host-
access-list option. For more information and an example, see “lsdasd - List DASD devices” on page
658.

Querying the encryption setting of a channel path
A read-only attribute shows the Fibre Channel Endpoint Security status of the connection to the DASD
device.

About this task
Fibre Channel Endpoint Security (FCES) is a hardware feature that encrypts traffic between the Z host
system and storage server transparently. You can read the current state of the FCES for a DASD from the
fc_security attribute. The attribute is available per DASD device and per path.

For a device, the attribute can take the following values:
Authentication

The connection is authenticated.
Encryption

The connection is encrypted.
Inconsistent

At least one of the operational paths is in a different state from all others.
Unsupported

The DASD device does not support FCES.

The sysfs attributes per path are organized in a directory called paths_info with sub-directories for
each path. For example:

/sys/bus/ccw/devices/0.0.4711/paths_info/
|-- 0.38
| ’-- fc_security
|-- 0.39
| ’-- fc_security
|-- 0.3a
| ’-- fc_security

For a path, the fc_security attribute can be Authentication, Encrypted, and Unsupported.

Procedure
To query the FCES status of a DASD device, issue a command of this form:

lsdasd -l <device_bus_id>

or, using lszdev:

lszdev <device_bus_id> -a -c TYPE,ID,ATTR:fc_security,ATTRPATH:fc_security

Alternatively, you can read the sysfs attribute directly:

cat /sys/bus/ccw/devices/<device_bus_id>/fc_security

Chapter 11. DASD device driver 161

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

Examples

• To query the FCES status for a device 0.0.4711, issue:

lsdasd -l 0.0.4711

0.0.4711/dasdc/94:8
 status: active
 type: ECKD

 fc_security: Encryption

This example indicates that the connection to the DASD is encrypted.
• To query the FCES status for a device 0.0.4711 using the lszdev command, issue:

$ lszdev 0.0.4711 -a -c TYPE,ID,ATTR:fc_security,ATTRPATH:fc_security
TYPE ID ATTR:fc_security ATTRPATH:fc_security
dasd-eckd 0.0.4711 Encryption /sys/bus/ccw/drivers/dasd-eckd/0.0.4711/fc_security

• To query the FCES status for a device 0.0.4712 by reading from the fc_security sysfs attribute:

cat /sys/bus/ccw/devices/0.0.4712/fc_security
Unsupported

This example indicates that DASD 0.0.4712 does not support FCES.
• To read the fc_security attribute of path 0.38 for DASD 0.0.4711, issue:

cat /sys/bus/ccw/devices/0.0.4711/paths_info/0.38/fc_security
Encrypted

Setting defective channel paths offline automatically
Control the removal of a defective channel path through the path_threshold and path_interval
sysfs attributes. If a channel path does not work correctly, it is removed from normal operation if other
channel paths are available.

About this task
A channel control check (CCC) is caused by any machine malfunction that affects channel-subsystem
controls. An interface control check (IFCC) indicates that an incorrect signal occurred on the channel path.
Usually, these errors can be recovered automatically. However, if IFCC or CCC errors occur frequently
on a particular channel path, these errors indicate a failure of this channel path. Such a failure leads to
performance degradation due to error recovery processing. If other channel paths are available, it might
help the overall device performance to exclude the malfunctioning channel path from I/O.

The channel-path error recovery feature applies to devices for which multiple channel paths are
operational. By default, the error threshold is 256 and the reset interval is 300 s (5 minutes). Accordingly,
a channel path is set offline when the error count has reached 256. If 300 seconds elapse without an
error the error count is reset to 0.

You can set different values through the path_threshold and path_interval sysfs attributes of the
device.

Procedure
To exclude a channel path from I/O after a certain number of IFCC or CCC errors within a certain time
frame, specify both path_threshold and path_interval.
1. To specify the number of errors that must occur before the channel path is taken offline, issue a

command of this form:

162 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo <no_of_errors> > /sys/bus/ccw/devices/<device_bus_id>/path_threshold

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs and
<no_of_errors> is an integer that specifies the error threshold.

To disable detecting defective paths, and to suppress messages about IFCC or CCC errors, set
<no_of_errors> to 0.

2. To specify the time that must elapse without errors for the counter to be reset, issue a command of
this form:

echo <time> > /sys/bus/ccw/devices/<device_bus_id>/path_interval

Example
Setting 512 for threshold and 5 minutes (300s) for interval:

echo 512 > /sys/bus/ccw/devices/0.0.4711/path_threshold
echo 300 > /sys/bus/ccw/devices/0.0.4711/path_interval

This example leads to a deactivation of the channel path after 512 IFCCs or CCCs. When 5 minutes (300s)
have passed without IFCCs or CCCs after the last error and the path was not disabled, the counter is reset.

What to do next
After you repair the faulty channel path, set it online again by using the tunedasd command with the -p
option. See “tunedasd - Adjust low-level DASD settings” on page 735 for details.

Querying the HPF setting of a channel path
Query the High Performance FICON (HPF) state of a channel path through the hpf sysfs attribute. The
HPF function can be lost if the device cannot provide the function, or if the channel path is not able to do
HPF.

About this task
The HPF channel-path is deactivated if an HPF error occurs indicating that HPF is not available if there are
other channel paths available. If no other channel paths are available, the path remains operational with
HPF deactivated.

If the device loses HPF functionality, HPF is disabled for all channel paths defined for the device.

Procedure
To query the HPF function for a channel path, issue a command of this form:

lsdasd -l <device_bus_id>

Alternatively, you can query the sysfs attribute directly:

cat /sys/bus/ccw/devices/<device_bus_id>/hpf

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

Example
To query the availability of HPF for a device 0.0.4711, issue:

Chapter 11. DASD device driver 163

lsdasd -l 0.0.4711

0.0.4711/dasdc/94:8
 status: active
 type: ECKD

 hpf: 1

This example indicates that HPF is enabled for the device.

Alternatively, read from the hpf sysfs attribute:

cat /sys/bus/ccw/devices/0.0.4712/hpf
0

This example indicates that HPF is disabled for device 0.0.4712.

What to do next
You can now reset the paths to the device. You can use the tunedasd command to reset all or one
channel path.

To re-validate all paths for one device and if possible reset HPF:

tunedasd --path_reset_all /dev/dasdc
Resetting all chpids for device </dev/dasdc>...
Done.

See “tunedasd - Adjust low-level DASD settings” on page 735 for details.

You can also use sysfs to reset a path. sysfs expects a path mask. For example to reset CHPID 44, you can
use tunedasd:

tunedasd -p 44 /dev/dasde

This would be the same as specifying the following in sysfs:

echo 08 > /sys/bus/ccw/devices/0.0.9330/path_reset

Both commands will reset CHPID 44 (path mask 08).

Displaying DASD information
Use tools to display information about your DASDs, or read the attributes of the devices in sysfs.

About this task
There are several methods to display DASD information:

• Use lsdasd -l (see “lsdasd - List DASD devices” on page 658) to display summary information about
the device settings and the device geometry of multiple DASDs.

• Use dasdview (see “dasdview - Display DASD structure” on page 617) to display details about the
contents of a particular DASD.

• Read information about a particular DASD from sysfs, as described in this section.

The sysfs representation of a DASD is a directory of the form /sys/bus/ccw/devices/
<device_bus_id>, where <device_bus_id> is the bus ID of the DASD. This sysfs directory contains
a number of attributes with information about the DASD.

164 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 18. Attributes with DASD information

Attribute Explanation

alias 1 if the DASD is a parallel access volume (PAV) alias device. 0 if the DASD is a
PAV base device or has not been set up as a PAV device.

For an example about how to use PAV, see How to Improve Performance with
PAV, SC33-8414.

This attribute is read-only.

discipline Indicates the base discipline, ECKD or FBA, that is used to access the DASD. If
DIAG is enabled, this attribute might read DIAG instead of the base discipline.

This attribute is read-only.

eer_enabled 1 if the DASD is enabled for extended error reporting, 0 if it is not enabled (see
“Using extended error reporting for ECKD type DASD” on page 147).

erplog 1 if error recovery processing (ERP) logging is enabled, 0 if ERP logging is not
enabled (see “Enabling and disabling logging” on page 150).

expires Indicates the time, in seconds, that the DASD device driver waits for a
response to an I/O request from a storage server. If this time expires, the
device driver considers a request as failed and cancels it (see “Setting the
timeout for I/O requests” on page 151).

failfast 1 if I/O operations are returned as failed immediately when the last path to
the DASD is lost. 0 if a wait period for a path to return expires before an I/O
operation is returned as failed. See “Enabling and disabling immediate failure
of I/O requests” on page 150.

fc_security Read-only attribute that contains Encryption if the connection to the DASD is
encrypted. For details, see “Querying the encryption setting of a channel path”
on page 161.

host_access_count Shows how many operating system instances have access to the device. See
“Checking for access by other operating system instances” on page 160.

hpf 1 if High Performance FICON is available for the device. See “Querying the HPF
setting of a channel path” on page 163.

last_known_reservation_state The reservation state as held by the DASD device driver. Values can be:
none

The DASD device driver has no information about the device reservation
state.

reserved
The DASD device driver holds a valid reservation for the DASD.

lost
The DASD device driver had reserved the device, but this reservation has
been lost to another system.

See “Reading and resetting the reservation state” on page 159 for details.

online 1 if the DASD is online, 0 if it is offline (see “Setting a DASD online or offline” on
page 148).

path_interval
path_threshold

Control the automatic removal of defective channel path (see “Setting
defective channel paths offline automatically” on page 162)

raw_track_access 1 if the DASD is in raw-track access mode, 0 if it is in default access mode (see
“Accessing full ECKD tracks” on page 156).

Chapter 11. DASD device driver 165

Table 18. Attributes with DASD information (continued)

Attribute Explanation

readonly 1 if the DASD is read-only, 0 if it can be written to. This attribute is a device
driver setting and does not reflect any restrictions that are imposed by the
device itself. This attribute is ignored for PAV alias devices.

reservation_policy Shows the reservation policy of the DASD. Possible values are ignore and
fail. See “Handling lost device reservations” on page 158 for details.

status Reflects the internal state of a DASD device. Values can be:
unknown

Device detection has not started yet.
new

Detection of basic device attributes is in progress.
detected

Detection of basic device attributes has finished.
basic

The device is ready for detecting the disk layout. Low-level tools can set
a device to this state when changing the disk layout, for example, when
formatting the device.

unformatted
The disk layout detection found no valid disk layout. The device is ready for
use with low-level tools like dasdfmt.

ready
The device is in an intermediate state.

online
The device is ready for use.

timeout Indicates the time, in seconds, within which the DASD device driver must
respond to an I/O request from a software layer above it. If the specified time
expires before the request is completed, the DASD device driver cancels all
related low-level I/O requests to storage systems and reports the request as
failed (see “Setting the timeout for I/O requests” on page 151).

uid A device identifier of the form
<vendor>.<serial>.<subsystem_id>.<unit_address>.<minidisk_identifier>
where
<vendor>

is the specification from the vendor attribute.
<serial>

is the serial number of the storage system.
<subsystem_id>

is the ID of the logical subsystem to which the DASD belongs on the
storage system.

<unit_address>
is the address that is used within the storage system to identify the DASD.

<minidisk_identifier>
is an identifier that the z/VM system assigns to distinguish between
minidisks on the DASD. This part of the uid is only present for Linux on
z/VM and if the z/VM version and service level support this identifier.

This attribute is read-only.

166 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 18. Attributes with DASD information (continued)

Attribute Explanation

use_diag 1 if the DIAG access method is enabled, 0 if the DIAG access method is
not enabled (see “Enabling the DASD device driver to use the DIAG access
method” on page 146). Do not enable the DIAG access method for PAV alias
devices.

vendor Identifies the manufacturer of the storage system that contains the DASD.

This attribute is read-only.

There are some more attributes that are common to all CCW devices (see “Device attributes” on page 9).

Procedure
Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 18 on page 165.

Example

The following sequence of commands reads the attributes for a DASD with a device bus-ID 0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/alias
0
cat /sys/bus/ccw/devices/0.0.b100/discipline
ECKD
cat /sys/bus/ccw/devices/0.0.b100/eer_enabled
0
cat /sys/bus/ccw/devices/0.0.b100/erplog
0
cat /sys/bus/ccw/devices/0.0.b100/expires
30
cat /sys/bus/ccw/devices/0.0.b100/failfast
0
cat /sys/bus/ccw/devices/0.0.b100/host_access_count
1
cat /sys/bus/ccw/devices/0.0.b100/hpf
1
cat /sys/bus/ccw/devices/0.0.b100/last_known_reservation_state
reserved
cat /sys/bus/ccw/devices/0.0.b100/online
1

cat /sys/bus/ccw/devices/0.0.b100/path_interval
300
cat /sys/bus/ccw/devices/0.0.b100/path_threshold
256
cat /sys/bus/ccw/devices/0.0.b100/raw_track_access
0
cat /sys/bus/ccw/devices/0.0.b100/readonly
1
cat /sys/bus/ccw/devices/0.0.b100/reservation_policy
ignore
cat /sys/bus/ccw/devices/0.0.b100/status
online
cat /sys/bus/ccw/devices/0.0.b100/timeout
120
cat /sys/bus/ccw/devices/0.0.b100/uid
IBM.75000000092461.e900.8a
cat /sys/bus/ccw/devices/0.0.b100/use_diag
1
cat /sys/bus/ccw/devices/0.0.b100/vendor
IBM

Chapter 11. DASD device driver 167

168 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 12. SCSI-over-Fibre Channel device driver

LPAR and z/VM: The SCSI-over-Fibre Channel device driver applies to Linux in LPAR mode and to Linux
on z/VM.

The SCSI-over-Fibre Channel device driver for Linux on IBM Z (zfcp device driver) supports virtual QDIO-
based SCSI-over-Fibre Channel adapters (FCP devices) and attached SCSI devices (LUNs).

IBM Z adapter hardware typically provides multiple channels, with one port each. You can configure a
channel to use the Fibre Channel Protocol (FCP). This FCP channel is then virtualized into multiple FCP
devices. Thus, an FCP device is a virtual QDIO-based SCSI-over-Fibre Channel adapter with a single port.

A single physical port supports multiple FCP devices. Using N_Port ID virtualization (NPIV) you can
define virtual ports and establish a one-to-one mapping between your FCP devices and virtual ports (see
“N_Port ID Virtualization for FCP channels” on page 173).

On Linux, an FCP device is represented by a CCW device that is listed under /sys/bus/ccw/drivers/
zfcp. Do not confuse FCP devices with SCSI devices. A SCSI device is identified by a LUN.

Features
The zfcp device driver supports a wide range of SCSI devices, various hardware adapters, specific
topologies, and specific features that depend on the IBM Z hardware.

• Linux on IBM Z can use various SAN-attached SCSI device types, including SCSI disks, tapes, CD-ROMs,
and DVDs.

• SAN access through the following hardware adapters:

– FICON Express32S (as of IBM z16™)
– FICON Express16SA (as of z15)
– FCP Express32S (LinuxONE only, as of LinuxONE II)
– FICON Express16S+ (as of z14)
– FICON Express16S (as of z13)

You can order hardware adapters as features for mainframe systems.

See Fibre Channel Protocol for Linux and z/VM on IBM System z, SG24-7266 for more details about using
FCP with Linux on IBM Z.

• The zfcp device driver supports switched fabric and point-to-point topologies. You can use either of
these topologies, provided that it is supported by your storage server.

• The zfcp device driver supports end-to-end data consistency checking.
• The zfcp device driver supports the data router hardware feature to improve performance by reducing

the path length.

To find out whether a combination of device and IBM mainframe is supported for your distribution, see the
individual interoperability matrix for each storage device. The interoperability matrices are available at:
www.ibm.com/systems/support/storage/ssic/interoperability.wss

For information about the maximum number of configurable devices, NPIV-enabled subchannels, and
other configurations per FCP channel path, see Input/Output Configuration Program User's Guide for ICP
IOCP, SB10-7172. Search for "FCP Channel Path Limits".

For information about SCSI-3, the Fibre Channel Protocol, and Fibre Channel related information, see
www.t10.org and www.t11.org

© Copyright IBM Corp. 2000, 2023 169

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss
http://www.t10.org
http://www.t11.org

What you should know about zfcp
The zfcp device driver is a low-level driver or host-bus adapter driver that supplements the Linux SCSI
stack.

Figure 46 on page 170 illustrates how the device drivers work together.

Figure 46. Device drivers that support the FCP environment

For an introduction to the concepts of Fibre Channel Protocol support, and how various SCSI devices can
be configured to build an IBM mainframe FCP environment, see Fibre Channel Protocol for Linux and z/VM
on IBM System z, SG24-7266.

sysfs structures for FCP devices and SCSI devices
FCP devices are CCW devices. In the sysfs device driver view, remote target ports with their LUNs are
nested below the FCP devices.

When Linux is booted, it senses the available FCP devices and creates directories of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to an FCP device. You use the attributes in
this directory to work with the FCP device.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c

The zfcp device driver automatically adds port information when the FCP device is set online and when
remote storage ports (target ports) are added. Each added target port extends this structure with a
directory of the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>
where <wwpn> is the worldwide port name (WWPN) of the target port. You use the attributes of this
directory to work with the port.

Example: /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562

With NPIV-enabled FCP devices, Linux uses automatic LUN scanning by default. The zfcp sysfs branch
ends with the target port entries. For FCP devices that are not NPIV-enabled, or if automatic LUN scanning
is disabled, see “Configuring SCSI devices” on page 193.

Information about zfcp objects and their associated objects in the SCSI stack is distributed over the sysfs
tree. To ease the burden of collecting information about zfcp devices, ports, units, and their associated

170 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

SCSI stack objects, a command that is called lszfcp is provided with s390-tools. See “lszfcp - List zfcp
devices” on page 686 for more details about the command.

See also “Mapping the representations of a SCSI device in sysfs” on page 194.

SCSI device nodes
User space programs access SCSI devices through device nodes.

SCSI device names are assigned in the order in which the devices are detected. In a typical SAN
environment, this can mean a seemingly arbitrary mapping of names to actual devices that can change
between boots. Therefore, using standard device nodes of the form /dev/<device_name> where
<device_name> is the device name that the SCSI stack assigns to a device, can be a challenge.

Ubuntu Server 22.04 LTS provides udev and systemd-udevd to create device nodes for you. Use the
device nodes to identify the corresponding actual device.

Device nodes that are based on device names
udev creates device nodes that match the device names that are used by the kernel. These standard
device nodes have the form /dev/<name>.

The examples in this section use standard device nodes as assigned by the SCSI stack. These nodes
have the form /dev/sd<x> for entire disks and /dev/sd<x><n> for partitions. In these node names <x>
represents one or more letters and <n> is an integer. For more information about the SCSI device naming
scheme, see the /linux-doc/admin-guide/devices.txt.gz file in the linux-doc package.

To help you identify a particular device, udev creates additional device nodes that are based on the
device's bus ID, the device label, and information about the file system on the device. The file system
information can be a universally unique identifier (UUID) and, if available, the file system label.

Device nodes that are based on bus IDs
udev creates device nodes of the form

/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>

for whole SCSI device and

/dev/disk/by-path/ccw-<device_bus_id>-fc-<wwpn>-lun-<lun>-part<n>

for the <n>th partition, where <wwpn> is the worldwide port number of the target port and <lun> is
the logical unit number that represents the target SCSI device.

Device nodes that are based on file system information
udev creates device nodes of the form

/dev/disk/by-uuid/<uuid>

where <uuid> is a unique file-system identifier (UUID) for the file system in a partition.

If a file system label is assigned, udev also creates a node of the form:

/dev/disk/by-label/<label>

There are no device nodes for the whole SCSI device that are based on file system information.

Additional device nodes
/dev/disk/by-id contains additional device nodes for the SCSI device and partitions that are all
based on a unique SCSI identifier that is generated by querying the device.

Example

For a SCSI device that is assigned the device name sda, has two partitions labeled boot
and SWAP-sda2 respectively, a device bus-ID 0.0.3c1b (device number 0x3c1b), and a UUID
7eaf9c95-55ac-4e5e-8f18-065b313e63ca for the first and b4a818c8-747c-40a2-bfa2-acaa3ef70ead
for the second partition, udev creates the following device nodes:

Chapter 12. SCSI-over-Fibre Channel device driver 171

For the whole SCSI device:

• /dev/sda (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea000000
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea

For the first partition:

• /dev/sda1 (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea000000-
part1

• /dev/disk/by-uuid/7eaf9c95-55ac-4e5e-8f18-065b313e63ca
• /dev/disk/by-label/boot
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-part1
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-part1

For the second partition:

• /dev/sda2 (standard device node according to the SCSI device naming scheme)
• /dev/disk/by-path/ccw-0.0.3c1b-fc-0x500507630300c562-lun-0x401040ea000000-
part2

• /dev/disk/by-uuid/b4a818c8-747c-40a2-bfa2-acaa3ef70ead
• /dev/disk/by-label/SWAP-sda2
• /dev/disk/by-id/scsi-36005076303ffc56200000000000010ea-part2
• /dev/disk/by-id/wwn-0x6005076303ffc56200000000000010ea-part2

Device nodes by-uuid use a unique file-system identifier that does not relate to the partition number.

Multipath

Users of SCSI-over-Fibre Channel attached devices should always consider setting up and using
redundant paths through their Fibre Channel Storage Area Network.

Path redundancy improves the availability of the LUNs. In Linux, you can set up path redundancy using the
device-mapper multipath tool. For information about multipath devices and multipath partitions, see the
chapter about multipathing in How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413.

Partitioning a SCSI device
You can partition SCSI devices that are attached through an FCP channel in the same way that you can
partition SCSI attached devices on other platforms.

About this task
Use the fdisk command to partition a SCSI disk, not fdasd.

udev creates device nodes for your partitions. For the SCSI disk /dev/sda, the partition device nodes are
called /dev/sda1, /dev/sda2, /dev/sda3, and so on.

Example

To partition a SCSI disk with a device node /dev/sda issue:

fdisk /dev/sda

172 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zfcp HBA API (FC-HBA) support
The zfcp host bus adapter API (HBA API) provides an interface for HBA management clients that run on
IBM Z.

The zfcp HBA API support is shown in Figure 47 on page 173.

Figure 47. zfcp HBA API support modules

In a Linux on IBM Z environment HBAs are usually virtualized and are shown as FCP devices. FCP devices
are represented by CCW devices that are listed in /sys/bus/ccw/drivers/zfcp. Do not confuse FCP
devices with SCSI devices. A SCSI device is a disk device that is identified by a LUN.

For information about setting up the HBA API support, see “API provided by the zfcp HBA API support” on
page 210.

N_Port ID Virtualization for FCP channels
Through N_Port ID Virtualization (NPIV), the sole port of an FCP channel appears as multiple, distinct
ports with separate port identification.

NPIV support can be configured on the SE per CHPID and LPAR for an FCP channel. The zfcp device
driver supports NPIV error messages and adapter attributes. See “Displaying FCP channel and device
information” on page 177 for the Fibre Channel adapter attributes.

See also the chapter on NPIV in How to use FC-attached SCSI devices with Linux on z Systems,
SC33-8413.

Automatic re-IPL path failover
The chreipl-fcp-mpath tool set helps you to use multipath information for re-IPL path failover on a
running Linux instance.

When the configured re-IPL path becomes unavailable it automatically changes the configured re-IPL
path to a different operational path to the same volume. For more information, see “Automatic path
failover for re-IPL from an FC-attached SCSI disk” on page 114.

Chapter 12. SCSI-over-Fibre Channel device driver 173

Setting up the zfcp device driver
Configure the zfcp device driver through the module parameters. You might also need to install the zfcp
HBA API library.

zfcp module parameter syntax
modprobe zfcp

device=  <device_bus_id> , <wwpn> , <fcp_lun>
1

 allow_lun_scan=1

 allow_lun_scan=  <value>

 datarouter=1

 datarouter=0

 dbflevel=3

 dbflevel=  <level>

 dbfsize=4

 dbfsize=  <pages>

 dif=0

 dif=1

dix=0

dix=1

 port_scan_ratelimit=60000

 port_scan_ratelimit=  <limit>

 port_scan_backoff=500

 port_scan_backoff=  <limit>

no_auto_port_rescan=0

no_auto_port_rescan=1

queue_depth=32

queue_depth=  <depth>

ber_stop=1

ber_stop=0

Notes:
1 For experimental use only. Do not use on production systems.

where:
device=<device_bus_id>,<wwpn>,<fcp_lun>

Attention: The device= parameter is reserved for internal use. Do not use.

<device_bus_id>
specifies the FCP device through which the SCSI device is attached.

<wwpn>
specifies the target port through which the SCSI device is attached.

<fcp_lun>
specifies the LUN of the SCSI device.

allow_lun_scan=<value>
disables the automatic LUN scan for FCP devices that run in NPIV mode if set to 0, n, or N. To enable
the LUN scanning set the parameter to 1, y, or Y. When the LUN scan is disabled, all LUNs must be
configured through the unit_add zfcp attribute in sysfs. LUN scan is enabled by default.

datarouter=
enables (if set to 1, y, or Y) or disables (if set to 0, n, or N) support for the hardware data routing
feature. The default is 1.

174 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Note: The hardware data routing feature becomes active only for FCP devices that are based on
adapter hardware with hardware data routing support.

dbflevel=<level>
sets the initial log level of the debug feature. The value is an integer in the range 0 - 6, where greater
numbers generate more detailed information. The default is 3.

dbfsize=<pages>
specifies the number of pages to be used for the debug feature.

The debug feature is available for each FCP device and the following areas:

hba
FCP device.

san
Storage Area Network.

rec
Error Recovery Process.

scsi
SCSI

The value given is used for all areas. The default is 4, that is, four pages are used for each area and
FCP device. In the following example the dbsfsize is increased to 6 pages:

dbfsize=6

This results in six pages being used for each area and FCP device.

dif=
turns on end-to-end data consistency checking in DIF-only mode if set to 1, y, or Y (and off if set to 0,
n, or N). The default is 0.

dix=
turns on end-to-end data consistency checking in extended mode if set to 1, y, or Y (and off if set to 0,
n, or N). The default is 0.

Specifying zfcp.dix=1 enables both DIF and DIX. Enabling zfcp.dix= overrides specifications for
zfcp.dif=.

Note: End-to-end data consistency checking in extended mode is experimental and can cause errors
if enabled.

port_scan_ratelimit=<limit>
sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0. Use this parameter to avoid
frequent scans, while you still ensure that a scan is conducted eventually.

port_scan_backoff=<delay>
sets additional random delay, in milliseconds, in which the port scans of your Linux instance are
spread. The default value is 500 milliseconds. To turn off the random delay, specify 0. In an
installation with multiple Linux instances, use this attribute for every Linux instance to spread scans to
avoid potential multiple simultaneous scans.

no_auto_port_rescan=<value>
turns the automatic port rescan feature off (if set to 1, y, or Y) or on (if set to 0, n, or N). The default
is 0. Automatic rescan is always performed when an FCP device is set online and when user-triggered
writes to the sysfs attribute port_rescan occur.

Tip: Use port_scan_backoff and port_scan_ratelimit rather than no_auto_port_rescan.

queue_depth=<depth>
specifies the number of commands that can be issued simultaneously to a SCSI device. The default
is 32. The value that you set here is used as the default queue depth for new SCSI devices. You can
change the queue depth for each SCSI device that uses the queue_depth sysfs attribute, see “Setting
the queue depth” on page 201.

Chapter 12. SCSI-over-Fibre Channel device driver 175

ber_stop=<value>
sets the mode of handling FCP devices for which the FCP channel reports a bit-error count in excess of
its threshold.

If set to 1, y, or Y, the zfcp device driver shuts down such FCP devices; this is the default. If set to 0,
n, or N, such FCP devices keep running and might cause I/O command timeouts with an associated
performance degradation.

Kernel message "All paths over this FCP device are disused because of excessive bit errors" indicates
that the zfcp device driver shut down a device because of bit errors. To resolve the problem, ensure
that fibre optics on the local fibre link are clean and functional, and that all cables are properly
plugged. Then recover the FCP device by writing 0 to its failed sysfs attribute, see “Recovering a
failed FCP device” on page 182. If recovery through sysfs is not possible, set the CHPID of the device
offline and back online on the Support Element.

Example
Use the following kernel parameter to enable end-to-end data consistency checking:

modprobe zfcp dif=1

Working with FCP devices
Set an FCP device online before you attempt to perform any other tasks.

Working with FCP devices comprises the following tasks:

• “Setting an FCP device online or offline” on page 176
• “Displaying FCP channel and device information” on page 177
• “Recovering a failed FCP device” on page 182
• “Finding out whether NPIV is in use” on page 185
• “Logging I/O subchannel status information” on page 186

You have the following options for configuring FCP LUNs to attach SCSI devices:

• During installation, use the Ubuntu installer.
• On an installed system, the preferred tool to use for FCP device configuration is the chzdev command

that is provided with Ubuntu Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on
page 351 for details.

You can always specify additional zfcp module parameters as explained in Chapter 4, “Kernel and module
parameters,” on page 25.

Setting an FCP device online or offline
By default, FCP devices are offline. Set an FCP device online before you perform any other tasks.

About this task
As of z14 and LinuxONE II in DPM mode:

For Linux in a DPM partition, FCP devices are set online automatically, see Chapter 3, “Device auto-
configuration for Linux in LPAR mode,” on page 21.

DPM device auto-configuration with zfcp automatic LUN scan manages the zfcp configuration, including
FCP devices, remote ports, and LUNs. This automation has the following requirements:

• The SAN switches must use single-initiator zoning.
• LUN masking (host mapping) must be in place on the storage systems.
• Both the SAN switches and the LUN masking must use host NPIV WWPNs for access control.

176 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

See “Working with newly available devices” on page 10 to avoid errors when you work with devices that
have become available to a running Linux instance.

Important: Configuration changes can directly or indirectly affect information that is required to mount
the root file system. Such changes require an update of the initramfs, followed by a re-write of the boot
record (see “Rebuilding the initial RAM disk image” on page 92).

Setting an FCP device online registers it with the Linux SCSI stack and updates the symbolic port name
for the device on the FC name server. For FCP setups that use NPIV mode, the device bus-ID and the host
name of the Linux instance are added to the symbolic port name.

Setting an FCP device online also automatically runs the scan for ports in the SAN and waits for this port
scan to complete.

To check if setting the FCP device online was successful, you can use a script that first sets the FCP device
online and after this operation completes checks if the WWPN of a target port has appeared in sysfs.

When you set an FCP device offline, the port and LUN subdirectories are preserved. Setting an FCP device
offline interrupts the communication between Linux and the FCP channel. After a timeout has expired, the
port and LUN attributes indicate that the ports and LUNs are no longer accessible. The transition of the
FCP device to the offline state is synchronous, unless the device is disconnected.

For disconnected devices, setting the device offline triggers an asynchronous deregistration process.
When this process is completed, the device with its ports and LUNs is no longer represented in sysfs.

When the FCP device is set back online, the SCSI device names and minor numbers are freshly assigned.
The mapping of devices to names and numbers might be different from what they were before the FCP
device was set offline.

Procedure
For a persistent configuration, use the chzdev command.

For a non-persistent configuration, you can use the chzdev command with the -a option.

Examples

• To set an FCP device with bus ID 0.0.3d0c online, issue:

chzdev -e zfcp-host 0.0.3d0c

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev command
with the -a option:

chzdev -e -a zfcp-host 0.0.3d0c

• To set an FCP device with bus ID 0.0.3d0c offline, issue:

chzdev -d zfcp-host 0.0.3d0c

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev command
with the -a option:

chzdev -d -a zfcp-host 0.0.3d0c

Displaying FCP channel and device information
For each online FCP device, a number of sysfs attributes provide information about the corresponding FCP
channel and FCP device.

Chapter 12. SCSI-over-Fibre Channel device driver 177

Before you begin
The FCP device must be online for the FCP channel information to be valid.

About this task
The following tables summarize the relevant attributes.

Table 19. Attributes with FCP channel information

Attribute Explanation

card_version Version number that identifies a particular hardware feature. Same
as model in Table 21 on page 178.

fc_security IBM Fibre Channel Endpoint Security capabilities of the FCP channel.
See “Investigating IBM Fibre Channel Endpoint Security” on page
207.

hardware_version Number that identifies a hardware version for a particular feature.
The initial hardware version of a feature is zero. This version indicator
is increased only for hardware modifications of the same feature.
Appending hardware_version to card_version results in a hierarchical
version indication for a physical adapter.

Same as hardware_version in Table 21 on page 178.

lic_version Microcode level. Same as firmware_version in Table 21 on page
178.

peer_wwnn WWNN of peer for a point-to-point connection.

peer_wwpn WWPN of peer for a point-to-point connection.

peer_d_id Destination ID of the peer for a point-to-point connection.

Table 20. Attributes with FCP device information

Attribute Explanation

in_recovery Shows if the FCP channel is in recovery (0 or 1).

diag_max_age Expiration interval, in ms, for cached diagnostic data about the FCP
channel (see “Obtaining diagnostic data for FCP channels” on page
183).

For the attributes availability, cmb_enable, and cutype, see “Device directories” on page 9. The status
attribute is reserved.

Table 21. Relevant transport class attributes, fc_host attributes

Attribute Explanation

fabric_name Name of the attached fabric. The name is a 64-bit hexadecimal value.

For z13 and z14 hardware with FICON Express16S or FICON
Express16S+ features, this attribute contains valid fabric names only
if the following minimum firmware level requirements are met.
z13

FICON Express16S: MCL P08424.005, LIC version 0x00000721
z14

FICON Express16S: MCL P42611.008, LIC version 0x10200069
FICON Express16S+: MCL P42625.010, LIC version 0x10300147

178 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 21. Relevant transport class attributes, fc_host attributes (continued)

Attribute Explanation

firmware_version Microcode level. Same as lic_version in Table 19 on page 178

hardware_version Number that identifies a hardware version for a particular feature.
The initial hardware version of a feature is zero. This version indicator
is increased only for hardware modifications of the same feature.
Appending hardware_version to card_version results in a hierarchical
version indication for a physical adapter.

Same as hardware_version in Table 19 on page 178

manufacturer Manufacturer of the FCP channel. The value is "IBM".

maxframe_size Maximum frame size.

model Version number that identifies a particular hardware feature. Same
as card_version in Table 19 on page 178

permanent_port_name WWPN associated with the physical port of the FCP channel.

port_id A unique ID (N_Port_ID) assigned by the fabric. In an NPIV setup,
each virtual port is assigned a different port_id.

port_name WWPN associated with the FCP device. If N_Port ID Virtualization
is not available, the WWPN of the physical port (see
permanent_port_name).

port_type The port type indicates the topology of the port.

serial_number The 32-byte serial number of the adapter hardware that provides the
FCP channel.

speed Speed of FC link.

supported_classes Supported FC service class.

supported_speeds Supported speeds.

symbolic_name The symbolic port name that is registered with the FC name server.

tgid_bind_type Target binding type.

Table 22. Relevant transport class attributes, fc_host statistics

Attribute Explanation

reset_statistics Writeable attribute to reset statistic counters.

seconds_since_last_reset Seconds since last reset of statistic counters.

tx_frames Transmitted FC frames.

tx_words Transmitted FC words.

rx_frames Received FC frames.

rx_words Received FC words.

lip_count Number of LIP sequences.

nos_count Number of NOS sequences.

error_frames Number of frames that are received in error.

dumped_frames Number of frames that are lost because of lack of host resources.

Chapter 12. SCSI-over-Fibre Channel device driver 179

Table 22. Relevant transport class attributes, fc_host statistics (continued)

Attribute Explanation

link_failure_count Link failure count.

loss_of_sync_count Loss of synchronization count.

loss_of_signal_count Loss of signal count.

prim_seq_protocol_err_count Primitive sequence protocol error count.

invalid_tx_word_count Invalid transmission word count.

invalid_crc_count Invalid CRC count.

fcp_input_requests Number of FCP operations with data input.

fcp_output_requests Number of FCP operations with data output.

fcp_control_requests Number of FCP operations without data movement.

fcp_input_megabytes Megabytes of FCP data input.

fcp_output_megabytes Megabytes of FCP data output.

Procedure
Use the cat command to read an attribute.

• Issue a command of this form to read an attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<attribute>

where:
<device_bus_id>

specifies an FCP device that corresponds to the FCP channel.
<attribute>

is one of the attributes in Table 19 on page 178 or Table 20 on page 178.
• To read attributes of the associated Fibre Channel host use:

cat /sys/class/fc_host/<host_name>/<attribute>

where:
<host_name>

is the ID of the Fibre Channel host.
<attribute>

is one of the attributes in Table 21 on page 178.
• To read statistics attributes of the FCP channel associated with this Fibre Channel host, use:

cat /sys/class/fc_host/<host_name>/statistics/<attribute>

where:
<host_name>

is the ID of the Fibre Channel host.
<attribute>

is one of the attributes in Table 22 on page 179.

• For reading diagnostic data for FCP channels, see “Obtaining diagnostic data for FCP channels” on
page 183

180 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

• In this example, information is displayed about an FCP channel that corresponds to an FCP device with
bus ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/hardware_version
0x00000000
cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/lic_version
0x16500124

• Alternatively you can use lszfcp (see “lszfcp - List zfcp devices” on page 686) to display attributes of
an FCP channel:

Chapter 12. SCSI-over-Fibre Channel device driver 181

lszfcp -b 0.0.3d0c -a
0.0.3d0c host0
Bus = "ccw"
 availability = "good"
 card_version = "0x000b"
 cmb_enable = "0"
 cutype = "1731/03"
 devtype = "1732/03"
 diag_max_age = "5000"
 failed = "0"
 fc_security = "Authentication, Encryption"
 hardware_version = "0x00000000"
 in_recovery = "0"
 lic_version = "0x24500099"
 modalias = "ccw:t1731m03dt1732dm03"
 online = "1"
 peer_d_id = "0x000000"
 peer_wwnn = "0x0000000000000000"
 peer_wwpn = "0x0000000000000000"
 status = "0x5400040b"
 uevent = "DRIVER=zfcp"
Class = "fc_host"
 active_fc4s = "0x00 0x00 0x01 0x00 ..."
 dev_loss_tmo = "60"
 fabric_name = "0x100000051e4a8f00"
 firmware_version = "0x24500099"
 hardware_version = "0x00000000"
 manufacturer = "IBM"
 maxframe_size = "2112 bytes"
 model = "0x000b"
 node_name = "0x5005076400c7ec87"
 permanent_port_name = "0xc05076ffd6801981"
 port_id = "0x671a29"
 port_name = "0xc05076ffd6801e10"
 port_state = "Online"
 port_type = "NPIV VPORT"
 serial_number = "IBM0200000007EC87"
 speed = "32 Gbit"
 supported_classes = "Class 2, Class 3"
 supported_fc4s = "0x00 0x00 0x01 0x00 ..."
 supported_speeds = "8 Gbit, 16 Gbit, 32 Gbit"
 symbolic_name = "IBM type serial PCHID: 0198 NPIV UlpId: 05600300 DEVNO: 0.0.3d0c NAME:
hostname.domain"
 tgtid_bind_type = "wwpn (World Wide Port Name)"
Class = "scsi_host"
 active_mode = "Initiator"
 can_queue = "4096"
 cmd_per_lun = "0"
 eh_deadline = "off"
 host_busy = "0"
 megabytes = "15 0"
 proc_name = "zfcp"
 prot_capabilities = "0"
 prot_guard_type = "0"
 queue_full = "0 2357653"
 requests = "815 0 66"
 seconds_active = "11"
 sg_prot_tablesize = "0"
 sg_tablesize = "574"
 state = "running"
 supported_mode = "Initiator"
 unchecked_isa_dma = "0"
 unique_id = "6400"
 use_blk_mq = "1"
 utilization = "0 0 0"

Recovering a failed FCP device
Failed FCP devices are automatically recovered by the zfcp device driver. You can read the in_recovery
attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

182 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Perform these steps to find out the recovery status of an FCP device and, if needed, start or restart
recovery:
1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/in_recovery

The value is 1 if recovery is under way and 0 otherwise. If the value is 0 for a non-operational FCP
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
FCP device is malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

The value is 1 if recovery failed and 0 otherwise.
3. You can start or restart the recovery process for the FCP device by writing 0 to the failed attribute.

Issue a command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/failed

Example

In the following example, an FCP device with a device bus-ID 0.0.3d0c is malfunctioning. The first
command reveals that recovery is not already under way. The second command manually starts recovery
for the FCP device:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/in_recovery
0
echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/failed

Obtaining diagnostic data for FCP channels
Diagnostic data about FCP channels is available as of z14 and FICON Express8S.

About this task
FCP channel diagnostic data is available through sysfs attributes in /sys/bus/ccw/drivers/zfcp/
<device_bus_id>/diagnostics, where <device_bus_id> is the device-bus ID of the FCP device that
corresponds to the FCP channel.

After the diagnostic data is retrieved from the FCP channel, it is cached for a specific expiration interval,
5 seconds by default. Reading attributes within this interval results in the cached values. If you read
attributes after the cache has expired, current values are retrieved from the FCP channel. You can use the
diag_max_age sysfs attribute of the FCP device to change the expiration interval.

The following table summarizes the available attributes with diagnostic data.

Table 23. Attributes with diagnostic data about FCP channels

Attribute Explanation

sfp_invalid Flag that indicates whether the attributes with physical properties
of the FCP channel provide valid (0) or useless (1) data. These
attributes are: temperature, vcc, tx_bias, tx_power, and rx_power.

temperature Temperature of the transceiver. The value is a signed integer in units
of 1/256 ℃. For example, interpret 1024 as 4 ℃.

vcc Supply voltage of the transceiver. The value is in units of 100 µV.

Chapter 12. SCSI-over-Fibre Channel device driver 183

Table 23. Attributes with diagnostic data about FCP channels (continued)

Attribute Explanation

tx_bias Bias current of the transmitter laser. The value is in units of 2 µA.

tx_power Coupled output power of the transmitter laser. The value is in units of
0.1 µW.

rx_power Optical power that is measured at the receiving element. The value is
in units of 0.1 µW.

optical_port Flag that indicates whether the transceiver uses an optical element
(1) or does not use an optical element (0).

fec_active Flag that indicates whether forward error correction (FEC) is active
(1) or inactive (0).

port_tx_type Type of the transmitting element. Possible values are:
0

Unknown
1

Short wave
2

Long wave, LC 1310 nm
3

Long wave, LL 1550 nm

connector_type Connector type. Possible values are:
0

Unknown
1

SFP+

b2b_credit Number of buffers available for receiving Class 2, or Class 3 frames
on the local FC port.

Procedure
1. Optional: Verify the validity of the data points with physical properties of the FCP channel.

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diagnostics/sfp_invalid

For valid data, the attribute value must be 0.
2. Optional: Adjust the expiration interval of the cached diagnostic data.

a) Read the current expiration interval from the diag_max_age attribute.

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diag_max_age

The attribute value is the expiration interval in milliseconds.
b) Write the value, in milliseconds, of the new expiration interval to the diag_max_age attribute.

echo <expiration_interval> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diag_max_age

Setting the expiration interval to 0 disables caching. The combination of short expiration intervals or
disabling caching and frequent reading of diagnostic data can adversely affect performance.

3. Read the data of interest.

184 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/diagnostics/<attribute>

Where <attribute> is one of the attributes of Table 23 on page 183.

Examples

• In this example, the expiration interval for an FCP device that corresponds to bus ID 0.0.3d5c is
changed from 5 seconds to 10 seconds.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diag_max_age
5000
echo 10000 > /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diag_max_age

• In this example, the first command confirms that the attributes with physical properties of the FCP
channel contain valid data. The next commands display data about the transceiver temperature, supply
voltage, and type of the transmitting element.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/sfp_invalid
0
cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/temperature
7822
cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/vcc
33000
cat /sys/bus/ccw/drivers/zfcp/0.0.3d5c/diagnostics/connector_type
1

The 0 returned from the first command confirms that the physical data is valid. The transceiver
temperature is 30.55 ℃ (7822 / 256) and the supply voltage is 3.3000 V (33000 × 10-4). The
connector_type is SFP+ (value 1).

Finding out whether NPIV is in use
The FCP setup runs in NPIV mode if the port_type attribute of the FCP device attribute contains the
string "NPIV". Alternatively, if the applicable permanent_port_name and port_name are not the same
and are not NULL.

Procedure
Read the port_type attribute of the FCP device.

For example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1940/host0/fc_host/host0/port_type
NPIV VPORT

Alternatively, compare the values of the permanent_port_name attribute and the port_name.

Tip: You can use lszfcp (see “lszfcp - List zfcp devices” on page 686) to list the FCP device attributes.

Example

lszfcp -b 0.0.3d0c -a
0.0.3d0c host0
Bus = "ccw"
 availability = "good"
 ...
Class = "fc_host"
 ...
 node_name = "0x5005076400c829e7"
 permanent_port_name = "0xc05076ffeb001201"
 port_id = "0x67e35d"
 port_name = "0xc05076ffeb001b48"
 port_state = "Online"
 port_type = "NPIV VPORT"
 ...
 symbolic_name = "IBM type serial PCHID: 0120 NPIV UlpId: 02600F18 DEVNO: 0.0.3d0c NAME: hostname.domain"
 ...

Chapter 12. SCSI-over-Fibre Channel device driver 185

The port_type attribute directly indicates that NPIV is used. The example also shows that
permanent_port_name is different from port_name and neither is NULL. The example also shows
the symbolic_name attribute that shows the symbolic port name that was registered on the FC name
server.

Logging I/O subchannel status information
When severe errors occur for an FCP device, the FCP device driver triggers a set of log entries with I/O
subchannel status information.

The log entries are available through the SE Console Actions Work Area with the View Console Logs
function. In the list of logs, these entries have the prefix 1F00. The content of the entries is intended for
support specialists.

Working with target ports
You can scan for ports, display port information, recover a port, or remove a port.

Working with target ports comprises the following tasks:

• “Scanning for ports” on page 186
• “Controlling automatic port scanning” on page 187
• “Displaying port information” on page 189
• “Recovering a failed port” on page 191
• “Removing ports” on page 191

Scanning for ports
Newly available target ports are discovered. However, you might want to trigger a port scan to re-create
accidentally removed port information or to assure that all ports are present.

Before you begin
The FCP device must be online.

About this task
The zfcp device driver automatically adds port information to sysfs when:

• The FCP device is set online
• Target ports are added to the Fibre Channel fabric, unless the module parameter
no_auto_port_rescan is set to 1. See “Setting up the zfcp device driver” on page 174.

Scanning for ports might take some time to complete. Commands that you issue against ports or LUNs
while scanning is in progress are delayed and processed when port scanning is completed.

Use the port_rescan attribute if a target port was accidentally deleted from the FCP device
configuration or if you are unsure whether all ports were added to sysfs.

Procedure
Issue a command of this form:

echo 1 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_rescan

where <device_bus_id> specifies the FCP device through which the target ports are attached.

Tip: List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports
are currently configured for the FCP device.

186 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example

In this example, a port with WWPN 0x500507630303c562 is already configured for an FCP device with
bus ID 0.0.3d0c. An additional target port with WWPN 0x500507630300c562 is automatically configured
by triggering a port scan.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
echo 1 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_rescan
ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
0x500507630300c562

Controlling automatic port scanning
Automatic port scanning includes two zfcp parameters that improve the behaviour of Linux instances
in SANs. These zfcp parameters are set to default values that work well for most installations. If
needed, you can fine-tune the frequency and timing of automatic port scans with the zfcp parameters
port_scan_backoff and port_scan_ratelimit. You can enable automatic port scanning with the
zfcp parameter no_auto_port_rescan=0. This value is the default.

About this task
In a large installation, where many Linux instances receive the same notifications of SAN changes,
multiple instances might trigger scans simultaneously and too frequently. See Figure 48 on page 187

Figure 48. Numerous port scans in a Linux installation

These scans might put unnecessary load on the name server function of fabric switches and potentially
result in late or inconclusive results.

You can avoid excessive scanning, yet still ensure that a port scan is eventually conducted. You can
control port scanning with the zfcp parameters:
port_scan_ratelimit

sets the minimum delay, in milliseconds, between automatic port scans of your Linux instance. The
default value is 60000 milliseconds. To turn off the rate limit, specify 0.

port_scan_backoff
sets an additional random delay, in milliseconds, in which the port scans of your Linux instance
are spread. In an installation with multiple Linux instances, use this zfcp parameter for every Linux
instance to spread scans to avoid potential multiple simultaneous scans. The default value is 500
milliseconds. To turn off the random delay, specify 0.

Use module parameters (see “Setting up the zfcp device driver” on page 174). On a running Linux
system, you can also query or set these values by using the sysfs attributes with the same names.

Using port_scan_ratelimit reduces the number of scans, as shown in Figure 49 on page 188

Chapter 12. SCSI-over-Fibre Channel device driver 187

Figure 49. Port scan behavior with scan rate limit.

However, if the rate limit is set to the same value, the scans can still occur almost simultaneously, as for
FCP device A and B in Linux 1.

Using port_scan_backoff and port_scan_ratelimit together delays port scans even further and
avoids simultaneous scans, as shown in Figure 50 on page 188. In the figure, FCP devices A and B in Linux
1 have the same rate limit and the same backoff values. The random element in the backoff value causes
the scans to occur at slightly different times.

Figure 50. Port scan behavior with backoff and scan rate limit.

Procedure
Use port_scan_backoff and port_scan_ratelimit together or separately to tune the behavior of
port scanning:
• To avoid too frequent scanning, set a minimum wait time between two consecutive scans for the same

Linux instance. Use the port_scan_ratelimit sysfs attribute.
By default, port_scan_ratelimit is turned on and has a value of 60000 milliseconds.
For example, to specify an attribute value of 12 seconds, issue:

echo 12000 > /sys/module/zfcp/parameters/port_scan_ratelimit

• To further spread scans over a certain time and thus avoid multiple simultaneous scans, set the
port_scan_backoff sysfs attribute.
By default, port_scan_backoff is turned on and has a value of 500 milliseconds.
For example, to query the setting, issue a command of this form:

cat /sys/module/zfcp/parameters/port_scan_backoff
500

To set the attribute to 1 second, issue:

echo 1000 > /sys/module/zfcp/parameters/port_scan_backoff

Results
The automatic port scans are delayed by the values specified. If a SAN notification is received during the
rate limit time, a port scan is conducted immediately after the delay time passed.

188 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Setting the attributes in sysfs is a useful method on a running system where you want to make dynamic
changes. If you want to make the changes persistent across IPLs, you can:

• Use the kernel or module parameter.
• Use the chzdev command.

Depending on the port event, one or more of the three zfcp parameters are evaluated to schedule a port
scan. For example, port scans that are triggered manually through sysfs are not delayed. Table 24 on page
189 shows which events evaluate which zfcp parameters.

Table 24. Port events and their use of the no_auto_port_rescan, port_scan_backoff, and
port_scan_ratelimit zfcp parameters

Event no_auto_port_rescan port_scan_backoff port_scan_ratelimit

FCP device resume Yes Yes No

User sets FCP device
online

No Yes No

User initiates a port scan No No No

User starts FCP device
recovery

Yes Yes Yes

Automatic FCP device
recovery

Yes Yes Yes

SAN change notification Yes Yes Yes

Displaying port information
For each target port, there is a number of read-only sysfs attributes with port information.

About this task
Table 25 on page 189 and Table 26 on page 189 summarize the relevant attributes.

Table 25. zfcp-specific attributes with port information within the FCP device sysfs tree

Attribute Explanation

access_denied This attribute is obsolete. The value is always 0.

fc_security IBM Fibre Channel Endpoint Security status of the connection
between an FCP device and the port. See “Investigating IBM Fibre
Channel Endpoint Security” on page 207.

in_recovery Shows if port is in recovery (0 or 1)

Table 26. Transport class attributes with port information

Attribute Explanation

node_name WWNN of the remote port (target port).

port_name WWPN of the remote port.

port_id Destination ID of the remote port

port_state State of the remote port.

roles Role of the remote port (usually FCP target).

scsi_target_id Linux SCSI ID of the remote port.

Chapter 12. SCSI-over-Fibre Channel device driver 189

Table 26. Transport class attributes with port information (continued)

Attribute Explanation

supported_classes Supported classes of service.

Procedure
Use the cat command to read an attribute.

• Issue a command of this form to read a zfcp-specific attribute:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<attribute>

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the target port.
<attribute>

is one of the attributes in Table 25 on page 189.
• To read transport class attributes of the associated target port, use a command of this form:

cat /sys/class/fc_remote_ports/<rport_name>/<attribute>

where:
<rport_name>

is the name of the remote port.
<attribute>

is one of the attributes in Table 26 on page 189.

Tip: With the HBA API package installed, you can also use the zfcp_ping and zfcp_show commands to
find out more about your ports. See “Tools for investigating your SAN configuration” on page 212. Use, for
example, apt install zfcp-hbaapi-utils to install the package.

Examples

• In this example, information is displayed for a target port 0x500507630300c562 that is attached
through an FCP device with bus ID 0.0.3d0c:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0

• To display transport class attributes of a target port you can use lszfcp:

lszfcp -p 0x500507630300c562 -a
0.0.3d0c/0x500507630300c562 rport-0:0-0
Class = "fc_remote_ports"
 dev_loss_tmo = "2147483647"
 fast_io_fail_tmo = "5"
 maxframe_size = "2048 bytes"
 node_name = "0x5005076303ffc562"
 port_id = "0x652113"
 port_name = "0x500507630300c562"
 port_state = "Online"
 roles = "FCP Target"
 scsi_target_id = "0"
 supported_classes = "Class 2, Class 3"

190 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Recovering a failed port
Failed target ports are automatically recovered by the zfcp device driver. You can read the in_recovery
attribute to check whether recovery is under way.

Before you begin
The FCP device must be online.

Procedure
Perform these steps to find out the recovery status of a port and, if needed, start or restart recovery:
1. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/in_recovery

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the target port.

The value is 1 if recovery is under way and 0 otherwise. If the value is 0 for a non-operational
port, recovery might have failed or the device driver might have failed to detect that the port is
malfunctioning.

2. To find out whether recovery failed, read the failed attribute. Issue a command of this form:

cat /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

The value is 1 if recovery failed, and 0 otherwise.
3. You can start or restart the recovery process for the port by writing 0 to the failed attribute. Issue a

command of this form:

echo 0 > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/failed

Example

In the following example, a port with WWPN 0x500507630300c562 that is attached through an FCP
device with bus ID 0.0.3d0c is malfunctioning. The first command reveals that recovery is not already
under way. The second command manually starts recovery for the port:

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/in_recovery
0
echo 0 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/failed

Removing ports
Removing unused ports can save FCP channel resources. Additionally setting the
no_auto_port_rescan attribute avoids unnecessary attempts to recover unused remote ports.

Before you begin
The FCP device must be online.

About this task
List the contents of /sys/bus/ccw/drivers/zfcp/<device_bus_id> to find out which ports are
currently configured for the FCP device.

Chapter 12. SCSI-over-Fibre Channel device driver 191

You cannot remove a port while SCSI devices are configured for it (see “Configuring SCSI devices” on
page 193) or if the port is in use, for example, by error recovery.

Note: The next port scan will attach all available ports, including any previously removed ports. To prevent
removed ports from being reattached automatically, use zoning or the no_auto_port_rescan module
parameter, see “Setting up the zfcp device driver” on page 174.

Procedure
Issue a command of this form:

echo <wwpn> > /sys/bus/ccw/drivers/zfcp/<device_bus_id>/port_remove

where:
<device_bus_id>

specifies the FCP device.
<wwpn>

is the WWPN of the port to be removed.

Example

In this example, two ports with WWPN 0x500507630303c562 and 0x500507630300c562 are
configured for an FCP device with bus ID 0.0.3d0c. The port with WWPN 0x500507630303c562 is then
removed.

ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630303c562
0x500507630300c562
echo 0x500507630303c562 > /sys/bus/ccw/drivers/zfcp/0.0.3d0c/port_remove
ls /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x*
0x500507630300c562

Working with SCSI devices
In an NPIV setup with auto lun scan, the SCSI devices are configured automatically. Otherwise, you
must configure FCP LUNs to obtain SCSI devices. In both cases, you can configure SCSI devices, display
information, and remove SCSI devices.

Working with SCSI devices comprises the following tasks:

• “Configuring SCSI devices” on page 193
• “Mapping the representations of a SCSI device in sysfs” on page 194
• “Displaying information about SCSI devices” on page 199
• “Setting the queue depth” on page 201
• “Recovering failed SCSI devices” on page 202
• “Updating the information about SCSI devices” on page 203
• “Setting the SCSI command timeout” on page 204
• “Controlling the SCSI device state” on page 204
• “Removing SCSI devices” on page 205

192 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Configuring SCSI devices
FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. If
needed, configure the LUN manually.

For each FCP device that uses NPIV mode and if you did not disable automatic LUN scanning (see “Setting
up the zfcp device driver” on page 174), the LUNs are configured for you. In this case, no FCP LUN entries
are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>.

To find out whether an FCP device is using NPIV mode, check the port_type attribute. For example:

cat /sys/bus/ccw/drivers/zfcp/0.0.1901/host*/fc_host/host*/port_type
NPIV VPORT

To find out whether automatic LUN scanning is enabled, check the current setting of the module
parameter zfcp.allow_lun_scan. The example below shows automatic LUN scanning as turned on.

cat /sys/module/zfcp/parameters/allow_lun_scan
Y

Automatically attached SCSI devices
FCP devices that use NPIV mode detect the LUNs automatically and no configuring is necessary. In
this case, no FCP LUN entries are created under /sys/bus/ccw/drivers/zfcp/<device_bus_id>/
<wwpn>.

What to do next
To check whether a SCSI device is registered, check for a directory with the name of the LUN
in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in the storage
system, or the FCP device is offline in Linux.

Manually configured FCP LUNs and their SCSI devices
For FCP devices that do not use NPIV mode, or if automatic LUN scanning is disabled, FCP LUNs must be
configured manually to obtain SCSI devices.

Before you begin
You have the following options for configuring FCP LUNs to attach SCSI devices:

• During installation, use the Ubuntu installer.
• On an installed system, the preferred tool to use for SCSI device configuration is the chzdev command

that is provided with Ubuntu Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on
page 351 for details.

You can always specify additional zfcp module parameters as explained in Chapter 4, “Kernel and module
parameters,” on page 25

Procedure
If your FCP device does not use NPIV mode, or if you have disabled automatic LUN scanning, proceed as
follows:
• Use the chzdev command.

To enable a zFCP LUN and create a persistent configuration, issue:

chzdev -e zfcp-lun <device_bus_id>:<wwpn>:<fcp_lun>

where:

Chapter 12. SCSI-over-Fibre Channel device driver 193

<device_bus_id>
specifies the FCP device.

<wwpn>
is the WWPN of the target port.

<fcp_lun>
is the LUN of the SCSI device to be configured. The LUN is a 16 digit hexadecimal value padded
with zeros, for example 0x4010403300000000.

For a non-persistent configuration, use the chzdev command with the -a option.

This command starts a process with multiple steps:

1. It creates a directory in /sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn> with the
LUN as the directory name. The directory is part of the list of all LUNs to configure. Without NPIV or
with auto LUN scanning disabled, zfcp registers only FCP LUNs contained in this list with the Linux
SCSI stack in the next step.

2. It initiates the registration of the SCSI device with the Linux SCSI stack. The FCP device must be
online for this step.

3. It waits until the Linux SCSI stack registration completes successfully or returns an error. It then
returns control to the shell. A successful registration creates a sysfs entry in the SCSI branch (see
“Mapping the representations of a SCSI device in sysfs” on page 194).

Example

Using chzdev: In this example, an FCP device with bus ID 0.0.198d is enabled. The WWPN of the target
port is 0x50050763070bc5e3. A SCSI device with LUN 0x4006404600000000 is added to the port.

chzdev -e zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

This creates a configuration that is persistent across boots. For a non-persistent configuration, use the
chzdev command with the -a option.

What to do next
To check whether a SCSI device is registered for the configured LUN, check for a directory with the name
of the LUN in /sys/bus/scsi/devices. If there is no SCSI device for this LUN, the LUN is not valid in
the storage system, or the FCP device is offline in Linux.

To see which LUNs are currently configured for the port, list the contents of /sys/bus/ccw/drivers/
zfcp/<device_bus_id>/<wwpn>.

Mapping the representations of a SCSI device in sysfs
Each SCSI device that is configured is represented by multiple directories in sysfs, in particular, within the
SCSI branch. Only manually configured LUNs are also represented within the zfcp branch.
You can find the FCP device bus-ID, the target WWPN, and the FCP LUN triplet that corresponds to a SCSI
device in two ways: By traversing the sysfs directory tree or by using commands.

Note: The zfcp-specific sysfs attributes hba_id, wwpn, and fcp_lun are deprecated. Use the methods
described here instead to find the addressing of a SCSI device.

About this task
The directory in the sysfs SCSI branch has the following form:

/sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>

where:

194 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<scsi_host_no>
is the SCSI host number that corresponds to the FCP device.

<scsi_id>
is the SCSI ID of the target port.

<scsi_lun>
is the LUN of the SCSI device.

The value for <scsi_lun> depends on the storage device. Often, it is a single-digit number, but for some
storage devices it has numerous digits.

For manually configured FCP LUNs, see “Manually configured FCP LUNs and their SCSI devices” on page
193 for details about the directory in the zfcp branch.

Before you begin
You must identify the SCSI device in sysfs. For example, use readlink to find the path in sysfs with all
symbolic links resolved:

readlink -e /sys/bus/scsi/devices/2:0:1:1074741413
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Using sysfs
Note: Do not assume a stable sysfs structure. The following procedure accommodates changes in sysfs.

This example shows how you can traverse the directory tree to find the FCP device bus-ID, the target
WWPN, and the FCP LUN that correspond to a SCSI device name. The example assumes:
SCSI device

2:0:1:1074741413
FCP LUN

0x40a5400f00000000
target WWPN

0x50050763030bd327
FCP device bus-ID

0.0.1800

1. Obtain the hexadecimal FCP LUN.

a. Start at the SCSI device directory or anywhere in the subtree below the SCSI device. Ascend the
sysfs tree until you find the SCSI device. To do this, test every subdirectory for a symbolic link
named "subsystem" that points to a relative directory path whose last entry is scsi. Search for the
symbolic link named "subsystem":

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../../../../../bus/scsi

The subsystem symbolic link points to a directory tree where the last subdirectory is scsi.
b. Confirm that this is a SCSI device by reading the DEVTYPE line within the uevent attribute. The

value must be "scsi_device".

grep "^DEVTYPE=" uevent
DEVTYPE=scsi_device

The last part of the current directory name is then the decimal SCSI LUN, for example, assuming
you have found this directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

Chapter 12. SCSI-over-Fibre Channel device driver 195

Here, the SCSI LUN is 1074741413.
c. Transform the SCSI LUN to the FCP LUN as follows:

Step Example

Take decimal LUN in decimal notation: 1074741413

Convert to hexadecimal notation: 0x400f40a5

Pad with 0 from the left to obtain a 64-bit value: 0x00000000400f40a5

Divide into 16-bit blocks (LUN levels): 0x0000|0000|400f|40a5

Reverse the order of the blocks: 0x40a5|400f|0000|0000

The resulting hexadecimal number is the FCP LUN: 0x40a5400f00000000

The Linux kernel function int_to_scsilun() in drivers/scsi/scsi_common.c converts a
decimal SCSI LUN to obtain the hexadecimal FCP LUN according to this algorithm. The conversion
works in both directions.

d. Confirm that the path includes a directory "rport-<no>". For example, assuming you have found this
directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1/2:0:1:1074741413

If there is no rport directory, the transport is not fibre channel and thus not zfcp-related. Abandon
the search.

Table 27 on page 196 lists the libudev functions that you can use instead of manually traversing the
sysfs.

Table 27. Useful udev functions

Name Task

udev_device_get_parent() Ascend the sysfs tree.

udev_device_get_subsystem() Retrieve subsystem name.

udev_device_get_devtype() Retrieve device type.

udev_device_get_syspath() Check if rport is a subdirectory.

2. Obtain the target WWPN.

a. Continue ascending the sysfs tree the same way until you find the SCSI target. To do this, test every
subdirectory for a symbolic link named "subsystem" that points to a relative directory path whose
last entry is scsi. Search for the symbolic link named "subsystem":

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../../../../bus/scsi

b. Confirm that this is a SCSI target by reading the DEVTYPE line within the uevent attribute. The value
must be "scsi_target".

grep "^DEVTYPE=" uevent
DEVTYPE=scsi_target

For example, assuming you have found this directory:

pwd
/sys/devices/css0/0.0.000a/0.0.1800/host2/rport-2:0-1/target2:0:1

196 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

c. The SCSI target has a subdirectory fc_transport. Descend this subtree until you find a
subdirectory that matches the SCSI target name. In this example, you would descend to
fc_transport/target2:0:1.

d. In the found target, read the port_name attribute:

cat port_name
0x50050763030bd327

The value of the port_name is the target WWPN.

Table 28. Useful udev functions

Name Task

udev_device_get_parent_with_subsystem_devtype(dev, "scsi",
"scsi_target")

Find the SCSI target.

udev_device_new_from_subsystem_sysname
(udev_device_get_udev(scsidev), "fc_transport",
udev_device_get_sysname(targetdev))

Find a matching target in the
fc_transport branch.

udev_device_get_sysattr_value() Read the port_name attribute.

3. Obtain the FCP device-bus ID. Keep ascending the sysfs tree. Search for the symbolic link "subsystem"
that points to a relative path where the last subdirectory is ccw.

For example:

ls -dl subsystem
lrwxrwxrwx 1 root root 0 Oct 19 16:08 subsystem -> ../../../../bus/ccw

Then the name of the last directory in the current path is the FCP device-bus ID, for example:

pwd
/sys/devices/css0/0.0.000a/0.0.1800

Here, 0.0.1800 is the FCP device-bus ID.

Using commands
To map a SCSI device name to its corresponding FCP device bus-ID, target WWPN, and LUN, you can use
one of the following commands. The example assumes:
SCSI device

2:0:1:1074741413
FCP LUN

0x40a5400f00000000
target WWPN

0x50050763030bd327
FCP device bus-ID

0.0.1800

• Use the lszfcp with the -D option to list the FCP device-bus ID, the target WWPN, and the FCP LUN for
all SCSI devices. For example:

lszfcp -D
....
0.0.1800/0x50050763030bd327/0x40a5400f00000000 2:0:1:1074741413
....

For details about the lszfcp command, see “lszfcp - List zfcp devices” on page 686.

Chapter 12. SCSI-over-Fibre Channel device driver 197

• Use the lszdev command on device type zfcp-lun devices, and display the ID and ATTR:scsi_dev
columns. For example:

lszdev zfcp-lun -a -c ID,ATTR:scsi_dev
ID ATTR:scsi_dev
...
0.0.1800:0x50050763030bd327:0x40a5400f00000000 2:0:1:1074741413
...

For details about the lszdev command, see “lszdev - Display IBM Z device configurations” on page
682.

• Use the lsscsi command with the --transport and --lunhex options in verbose mode to get
information about a SCSI device:

lsscsi -xxtv
[2:0:1:0x40a5400f00000000] disk fc:0x50050763030bd327,0x249900 /dev/sda
 dir: /sys/bus/scsi/devices/2:0:1:1074741413 [/sys/devices/css0/0.0.000a/0.0.1800/host2
 /rport-2:0-1/target2:0:1/2:0:1:1074741413]
...

For details about the lsscsi command, see the man page.

Note: The details of the command output is subject to change. Do not rely on the output always being
exactly as shown.

Figure 51 on page 199 illustrates the sysfs structure of a SCSI device and how it corresponds to the
lszfcp command output.

Warning: Do not rely on the sysfs structure in the example. The sysfs structure changes without
notice.

198 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 51. Example SCSI device in sysfs and command output

Displaying information about SCSI devices
For each SCSI device, there is a number of read-only attributes in sysfs that provide information for the
device.

About this task
Table 29 on page 200 lists the read-only attributes for manually configured FCP LUNs, including those
attributes that indicate whether the device access is restricted by access control software on the FCP
channel. These attributes can be found in the zfcp branch of sysfs. The path has the form:

/sys/bus/ccw/drivers/zfcp/<device_bus_id>/<wwpn>/<fcp_lun>/<attribute>

Chapter 12. SCSI-over-Fibre Channel device driver 199

Table 29. Attributes of manually configured FCP LUNs with device access information

Attribute Explanation

access_denied Flag that indicates whether access to the device is restricted by the FCP channel.

The value is 1 if access is denied and 0 if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI
device. For shared access to a SCSI device, preferably use NPIV (see “N_Port ID
Virtualization for FCP channels” on page 173). You might also use different FCP
channels or target ports.

access_shared This attribute is obsolete. The value is always 0.

access_readonly This attribute is obsolete. The value is always 0.

in_recovery Shows if unit is in recovery (0 or 1)

Table 30 on page 200 lists further read-only attributes with information about the SCSI device. These
attributes can be found in the SCSI branch of sysfs. The path has the form:

/sys/class/scsi_device/<device_name>/device/<attribute>

Table 30. SCSI device class attributes

Attribute Explanation

device_blocked Flag that indicates whether the device is in blocked state (1) or not (0).

iocounterbits The number of bits used for I/O counters.

iodone_cnt The number of completed or rejected SCSI commands.

ioerr_cnt The number of SCSI commands that completed with an error.

iorequest_cnt The number of issued SCSI commands.

model The model of the SCSI device, received from inquiry data.

rev The revision of the SCSI device, received from inquiry data.

scsi_level The SCSI revision level, received from inquiry data.

type The type of the SCSI device, received from inquiry data.

vendor The vendor of the SCSI device, received from inquiry data.

zfcp_access_denied Flag that indicates whether access to the device is restricted by the FCP channel.

The value is 1 if access is denied and 0 if access is permitted.

If access is denied to your Linux instance, confirm that your SCSI devices are
configured as intended. Also, be sure that you really want to share a SCSI
device. For shared access to a SCSI device, preferably use NPIV (see “N_Port
ID Virtualization for FCP channels” on page 173). You might also use different FCP
channels or target ports.

zfcp_in_recovery Shows if unit is in recovery (0 or 1).

Procedure
Use the lszfcp command (see “lszfcp - List zfcp devices” on page 686) to display information about the
associated SCSI device.

200 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Alternatively, you can use sysfs to read the information. To read attributes of the associated SCSI device,
use a command of this form:

cat /sys/class/scsi_device/<device_name>/device/<attribute>

where:
<device_name>

is the name of the associated SCSI device.
<attribute>

is one of the attributes in Table 30 on page 200.

Tip: For SCSI-attached tape devices, you can display a summary of this information by using the lstape
command (see “lstape - List tape devices” on page 670).

Examples

• In this example, information is displayed for a a manually configured FCP LUN with LUN
0x4010403200000000 that is accessed through a target port with WWPN 0x500507630300c562 and
is attached through an FCP device with bus ID 0.0.3d0c. For the device access is permitted.

cat /sys/bus/ccw/drivers/zfcp/0.0.3d0c/0x500507630300c562/0x4010403200000000/access_denied
0

For the device to be accessible, the access_denied attribute of the target port, 0x500507630300c562,
must also be 0 (see “Displaying port information” on page 189).

• You can use lszfcp to display attributes of a SCSI device. The example shows the attributes listed in
Table 30 on page 200 as well as other relevant attributes:

lszfcp -l 0x4010403200000000 -a
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:1077035024
 Class = "scsi_device"
 ...
 device_blocked = "0"
 ...
 iocounterbits = "32"
 iodone_cnt = "0xbe"
 ioerr_cnt = "0x2"
 iorequest_cnt = "0xbe"
 ...
 model = "2107900"
 queue_depth = "32"
 queue_ramp_up_period = "120000"
 queue_type = "simple"
 ...
 rev = ".166"
 scsi_level = "6"
 state = "running"
 timeout = "30"
 type = "0"
 uevent = "DEVTYPE=scsi_device"
 vendor = "IBM"
 ...
 zfcp_access_denied = "0"
 zfcp_failed = "0"
 zfcp_in_recovery = "0"
 zfcp_status = "0x54000000"

Setting the queue depth
The Linux SCSI code automatically adjusts the queue depth as necessary. Changing the queue depth is
usually a storage server requirement.

Before you begin
Check the documentation of the storage server that is used or contact your storage server support group
to establish if there is a need to change this setting.

Chapter 12. SCSI-over-Fibre Channel device driver 201

The following information applies only to the SCSI layer. For block devices, such as SCSI disks, there is
also a limit in the Linux block layer. To display the block device limit, issue:

cat /sys/bus/scsi/devices/<scsi_device_name>/block/*/queue/nr_requests

Alternatively, issue:

cat /sys/block/sd<X>/queue/nr_requests

The smaller of SCSI device queue_depth and block device nr_requests is the effective setting.
For more details about block device requests, see www.kernel.org/doc/html/latest/block/queue-
sysfs.html#nr-requests-rw and www.kernel.org/doc/html/latest/block/stat.html#in-flight.

About this task
The value of the zfcp.queue_depth kernel parameter or the queue_depth sysfs attribute (see “Setting
up the zfcp device driver” on page 174) is used as the maximum queue depth of new SCSI devices. You
can query the queue depth by issuing a command of this form:

cat /sys/bus/scsi/devices/<SCSI device>/queue_depth

Example:

cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
16

You can change the maximum queue depth of each SCSI device by writing to the queue_depth attribute,
for example:

echo 8 > /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
cat /sys/bus/scsi/devices/0:0:19:1086537744/queue_depth
8

This method is useful on a running system where you want to make dynamic changes. If you want to make
the changes persistent across IPLs, you can:

• Use the module parameter queue_depth described in “Setting up the zfcp device driver” on page 174.
• Write a udev rule to change the setting for each new SCSI device.
• Use the chzdev command. See “chzdev - Configure IBM Z devices” on page 584.

Linux forwards SCSI commands to the storage server until the number of pending commands exceeds the
queue depth. If the server lacks the resources to process a SCSI command, Linux queues the command
for a later retry and decreases the queue depth counter. Linux then waits for a defined ramp-up period.
If no indications of resource problems occur within this period, Linux increases the queue depth counter
until reaching the previously set maximum value. To query the current value for the queue ramp-up period
in milliseconds:

cat /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period
120000

To set a new value for the queue ramp-up period in milliseconds:

echo 1000 > /sys/bus/scsi/devices/0:0:13:1086537744/queue_ramp_up_period

Recovering failed SCSI devices
Failed SCSI devices are automatically recovered by the zfcp device driver. You can read the
zfcp_in_recovery attribute to check whether recovery is under way.

202 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.kernel.org/doc/html/latest/admin-guide/abi-stable.html#abi-sys-block-disk-queue-nr-requests
https://www.kernel.org/doc/html/latest/admin-guide/abi-stable.html#abi-sys-block-disk-queue-nr-requests
https://www.kernel.org/doc/html/latest/block/stat.html#in-flight

Before you begin
The FCP device must be online.

Procedure
Perform the following steps to check the recovery status of a failed SCSI device:
1. Check the value of the zfcp_in_recovery attribute. Issue the lszfcp command:

lszfcp -l <LUN> -a

where <LUN> is the LUN of the associated SCSI device.

Alternatively, you can issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_in_recovery

The value is 1 if recovery is under way and 0 otherwise. If the value is 0 for a non-operational SCSI
device, recovery might have failed. Alternatively, the device driver might have failed to detect that the
SCSI device is malfunctioning.

2. To find out whether recovery failed, read the zfcp_failed attribute. Either use the lszfcp
command again, or issue a command of this form:

cat /sys/class/scsi_device/<device_name>/device/zfcp_failed

The value is 1 if recovery failed, and 0 otherwise.
3. You can start or restart the recovery process for the SCSI device by writing 0 to the zfcp_failed

attribute. Issue a command of this form:

echo 0 > /sys/class/scsi_device/<device_name>/device/zfcp_failed

Example

In the following example, SCSI device 0:0:0:0 is malfunctioning. The first command reveals that recovery
is not already under way. The second command manually starts recovery for the SCSI device:

cat /sys/class/scsi_device/0:0:0:0/device/zfcp_in_recovery
0
echo 0 > /sys/class/scsi_device/0:0:0:0/device/zfcp_failed

What to do next
If you manually configured an FCP LUN (see “Manually configured FCP LUNs and their SCSI devices” on
page 193), but did not get a corresponding SCSI device, you can also use the corresponding FCP LUN
sysfs attributes, in_recovery and failed, to check on recovery. See Table 29 on page 200.

Updating the information about SCSI devices
Use the rescan attribute of the SCSI device to detect changes to a storage device on the storage server
that are made after the device was discovered.

Before you begin
The FCP device must be online.

About this task
The initial information about the available SCSI devices is discovered automatically when LUNs first
become available.

Chapter 12. SCSI-over-Fibre Channel device driver 203

Procedure
To update the information about a SCSI device issue a command of this form:

echo <string> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/rescan

where <string> is any alphanumeric string and the other variables have the same meaning as in “Mapping
the representations of a SCSI device in sysfs” on page 194.

Example

In the following example, the information about a SCSI device 1:0:18:1086537744 is updated:

echo 1 > /sys/bus/scsi/devices/1:0:18:1086537744/rescan

Setting the SCSI command timeout
You can change the timeout if the default is not suitable for your storage system.

Before you begin
The FCP device must be online.

About this task
There is a timeout for SCSI commands. If the timeout expires before a SCSI command completes, error
recovery starts. The default timeout is 30 seconds.

To find out the current timeout, read the timeout attribute of the SCSI device:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/timeout

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 194.

The attribute value specifies the timeout in seconds.

Procedure
To set a different timeout, enter a command of this form:

echo <timeout> > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/timeout

where <timeout> is the new timeout in seconds.

Example

In the following example, the timeout of a SCSI device 1:0:18:1086537744 is first read and then set to 45
seconds:

cat /sys/bus/scsi/devices/1:0:18:1086537744/timeout
30
echo 45 > /sys/bus/scsi/devices/1:0:18:1086537744/timeout

Controlling the SCSI device state
You can use the state attribute of the SCSI device to set a SCSI device back online if it was set offline by
error recovery.

204 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
The FCP device must be online.

About this task
If the connection to a storage system is working but the storage system has a problem, the error recovery
might set the SCSI device offline. This condition is indicated by a message like "Device offlined - not ready
after error recovery".

To find out the current state of the device, read the state attribute:

cat /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

where the variables have the same meaning as in “Mapping the representations of a SCSI device in sysfs”
on page 194. The state can be:

running
The SCSI device can be used for running regular I/O requests.

cancel
The data structure for the device is being removed.

deleted
Follows the cancel state when the data structure for the device is being removed.

quiesce
No I/O requests are sent to the device, only special requests for managing the device. This state is
used when the system is suspended.

offline
Error recovery for the SCSI device failed.

blocked
Error recovery is in progress and the device cannot be used until the recovery process is completed.

Procedure
Issue a command of this form:

echo running > /sys/bus/scsi/devices/<scsi_host_no>:0:<scsi_id>:<scsi_lun>/state

Example

In the following example, SCSI device 1:0:18:1086537744 is offline and is then set online again:

cat /sys/bus/scsi/devices/1:0:18:1086537744/state
offline
echo running > /sys/bus/scsi/devices/1:0:18:1086537744/state

Removing SCSI devices
How to remove a SCSI device depends on whether your environment is set up to use NPIV.

Removing automatically attached SCSI devices
Automatically attached SCSI devices cannot be permanently removed individually.

Removing manually configured FCP LUNs and their SCSI device
Manually remove a SCSI device if your environment is not set up to use NPIV or if you disabled automatic
LUN scan. For details about disabling automatic LUN scan, see “Setting up the zfcp device driver” on page
174.

Chapter 12. SCSI-over-Fibre Channel device driver 205

Before you begin
The preferred tool to use for SCSI device removal is the chzdev command that is provided with Ubuntu
Server 22.04 LTS. See Chapter 25, “Persistent device configuration,” on page 351 for details.

Procedure
For a persistent configuration, use the chzdev command. Issue a command of this form:

chzdev -d zfcp-lun <device_bus_id>:<wwpn>:<fcp_lun>

Example

The following example removes a SCSI device with LUN 0x4010403200000000, accessed through a
target port with WWPN 0x500507630300c562 and is attached through an FCP device with bus ID
0.0.3d0c.

1. Remove the LUN:

For a persistent configuration, use:

chzdev -d zfcp-lun 0.0.3d0c:0x500507630300c562:0x4010403200000000

For a non-persistent configuration, use the chzdev command with the -a option.

Confirming end-to-end configurations
You can confirm that specific integrity and security configurations are in place for your connections.

• “Confirming end-to-end data consistency checking” on page 206
• “Investigating IBM Fibre Channel Endpoint Security” on page 207

Confirming end-to-end data consistency checking
There are different types of end-to-end data consistency checking, with dependencies on hardware and
software.

About this task
End-to-end data consistency checking is based on a data integrity field (DIF) that is added to transferred
data blocks. DIF data is used to confirm that a data block originates from the expected source and
was not modified during the transfer between the storage system and the FCP device. The SCSI Block
Commands (T10 SBC) standard defines several types of DIF. Linux data integrity extension (DIX) builds on
DIF to extend consistency checking, for example, to the operating system, middleware, or an application.

The zfcp device driver supports the following modes of end-to-end data consistency checking:

• The FCP device calculates and checks a DIF checksum (DIF type 1)

Enable this mode with the zfcp.dif= kernel or dif= module parameter.
• The Linux block integrity layer calculates and checks a TCP/IP checksum, which the FCP device then

translates to a DIF checksum (DIX type 1 with DIF type 1)

Enable this mode with the zfcp.dix= kernel or dix= module parameter.

Note: End-to-end data consistency checking in extended mode is experimental. SCSI disks for which
this mode is enabled must be accessed with direct I/O. Direct I/O requires direct access through
the block device or through a file system that fully supports end-to-end data consistency checking
in extended mode. For example, XFS provides this support. Expect error messages about invalid
checksums when you use other access methods.

206 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For more information about the kernel or module parameters that control the end-to-end data
consistency checking, see “Setting up the zfcp device driver” on page 174.

With end-to-end data consistency checking for SCSI disks enabled, Linux automatically discovers which
FCP devices and which SCSI disks support end-to-end data consistency checking. No further setup is
required.

For SCSI disks for which end-to-end data consistency checking is used, there is a sysfs directory

/sys/block/sd<x>/integrity

In the path, sd<x> is the standard name of the block device that corresponds to the SCSI disk.

End-to-end data consistency checking is used only if all of the following components support end-to-end
data consistency checking:
SCSI disk

Check your storage server documentation about T10 DIF support and any restrictions.
IBM Z hardware

IBM Z FCP adapter hardware supports end-to-end data consistency checking as of FICON Express8.
Hypervisor

For Linux on z/VM, you require a z/VM version with guest support for end-to-end data consistency
checking.

FCP device
Check your FCP adapter hardware documentation about the support and any restrictions. For
example, end-to-end data consistency checking might be supported only for disks with 512-byte
block size.

Read the prot_capabilities sysfs attribute of the SCSI host that is associated with an FCP device to
find out about its end-to-end data consistency checking support. The following values are possible:
0

The FCP device does not support end-to-end data consistency checking.
1

The FCP device supports DIF type 1.
17

The FCP device supports DIX type 1 with DIF type 1.

Procedure
Issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/host<n>/scsi_host/host<n>/prot_capabilities

where <device_bus_id> identifies the FCP device and <n> is an integer that identifies the corresponding
SCSI host.

Example

cat /sys/bus/ccw/devices/0.0.1940/host0/scsi_host/host0/prot_capabilities
1

Investigating IBM Fibre Channel Endpoint Security
You can check whether the connections between your FCP devices and remote ports use authentication
and encryption.

About this task
You can investigate two aspects of IBM Fibre Channel Endpoint Security for your connections:

Chapter 12. SCSI-over-Fibre Channel device driver 207

• The capabilities of your FCP device, which depend on your adapter hardware with its FCP channels.
• The status of your connections between your FCP devices and remote ports.

For information about configuring IBM Fibre Channel Endpoint Security, see the Redbooks® publication
IBM Fibre Channel Endpoint Security for IBM DS8900F and IBM Z, SG24-8455.

Procedure
Display the IBM Fibre Channel Endpoint Security information for your environment by issuing an lszdev
command. Use command options to read the fc_security attributes for your Fibre Channel hosts and
LUNs as shown in the following example:

lszdev zfcp -a -c TYPE,ID,ATTR:fc_security
TYPE ID ATTR:fc_security
zfcp-host 0.0.5150 Authentication, Encryption
zfcp-lun 0.0.5150:0x500507630400120c:0x4081402000000000 Authentication
zfcp-lun 0.0.5150:0x500507630401120c:0x4081402000000000 Encryption

In the output, zfcp-host lines show information for your FCP devices:
Authentication

The FCP device supports authentication.
Encryption

The FCP device supports encryption.
unsupported

The FCP device does not support IBM Fibre Channel Endpoint Security.
none

The FCP device does not report any IBM Fibre Channel Endpoint Security capabilities.
unknown

The IBM Fibre Channel Endpoint Security capabilities of the FCP device are not known.
In the output, zfcp-lun lines show the current state of IBM Fibre Channel Endpoint Security of the
connection between the FCP device and the FC remote port used to access the LUN:
Authentication

The connection was authenticated.
Encryption

The connection uses encryption.
unsupported

The connection does not support IBM Fibre Channel Endpoint Security because the FCP device does
not support it.

none
The connection has no IBM Fibre Channel Endpoint Security.

unknown
The IBM Fibre Channel Endpoint Security state of the connection is not known.

Tip: If the output is lengthy, use the lszdev device selection filter to narrow the scope to the devices of
interest (see “lszdev - Display IBM Z device configurations” on page 682).

Alternatively, you can use the lszfcp command with the -a option to display the IBM Fibre Channel
Endpoint Security information for FCP devices. Use the lszfcp command with the -m option to display
the information for your connections (see “lszfcp - List zfcp devices” on page 686). For example, issue the
following command:

lszfcp -HPam

Instead of using commands, you can read the information directly from sysfs. For example, for an FCP
channel that provides an FCP device with device-bus ID 0.0.5150:

208 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/ccw/drivers/zfcp/0.0.5150/fc_security
Authentication, Encryption

For a remote port 0x500507630401120c that is connected through this FCP device:

cat /sys/bus/ccw/drivers/zfcp/0.0.5150/0x500507630401120c/fc_security
Encryption

Both sysfs attributes are read-only.

Scenario for finding available LUNs
There are several steps from setting an FCP device online to listing the available LUNs.

Procedure
1. Check for available FCP devices of type 1732/03:

lscss -t 1732/03
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.3c02 0.0.0015 1732/03 1731/03 80 80 ff 36000000 00000000

Another possible type would be, for example, 1732/04.
2. Set the FCP device online:

chccwdev 0.0.3c02 --online

A port scan is performed automatically when the FCP device is set online.
3. Optional: Confirm that the FCP device is available and online:

lszfcp -b 0.0.3c02 -a
0.0.3c02 host0
Bus = "ccw"
 availability = "good"
...
 failed = "0"
...
 in_recovery = "0"
...
 online = "1"
...

4. Optional: List the available ports:

lszfcp -P
0.0.3c02/0x50050763030bc562 rport-0:0-0
0.0.3c02/0x500507630310c562 rport-0:0-1
0.0.3c02/0x500507630040727b rport-0:0-10
0.0.3c02/0x500507630e060521 rport-0:0-11
...

5. Scan for available LUNs on FCP device 0.0.3c02, port 0x50050763030bc562:

lsluns -c 0.0.3c02 -p 0x50050763030bc562
Scanning for LUNs on adapter 0.0.3c02
 at port 0x50050763030bc562:
 0x4010400000000000
 0x4010400100000000
 0x4010400200000000
 0x4010400300000000
 0x4010400400000000
 0x4010400500000000
 0x4010400600000000
 ...

Chapter 12. SCSI-over-Fibre Channel device driver 209

API provided by the zfcp HBA API support
You require the zFCP HBA API library for developing and running HBA management client applications.
To develop applications, you need the sub-package zfcp-hbaapi-dev. To run applications, you need the
libzfcphbaapi0 sub-package.

Programmers: This information is intended for programmers who want to write HBA management clients
that run on Linux on IBM Z.

Developing applications
To develop applications, you must install the development version of the zFCP HBA API provided by the
zfcp-hbaapi-dev package, and link your application against the library.

Procedure
1. Install the development package for the zFCP HBA API.

Use, for example, apt-get:

apt-get install zfcp-hbaapi-dev

The development package zfcp-hbaapi-dev provides the necessary header files and .so symbolic
links needed to program against the zFCP HBA API.

2. Add the command-line option -lzfcphbaapi during the linker step of the build process to link your
application against the zFCP HBA API library.

3. In the application, issue the HBA_LoadLibrary() call as the first call to initialize the library.

Functions provided
The zfcp HBA API implements Fibre Channel - HBA API (FC-HBA) functions as defined in the FC-HBA
specification.

You can find the FC-HBA specification at www.t11.org. The following functions are available:

• HBA_CloseAdapter()
• HBA_FreeLibrary()
• HBA_GetAdapterAttributes()
• HBA_GetAdapterName()
• HBA_GetAdapterPortAttributes()
• HBA_GetDiscoveredPortAttributes()
• HBA_GetEventBuffer()
• HBA_GetFcpTargetMapping()
• HBA_GetFcpTargetMappingV2()
• HBA_GetNumberOfAdapters()
• HBA_GetRNIDMgmtInfo()
• HBA_GetVersion()
• HBA_LoadLibrary()
• HBA_OpenAdapter()
• HBA_RefreshAdapterConfiguration()
• HBA_RefreshInformation()
• HBA_RegisterForAdapterAddEvents()
• HBA_RegisterForAdapterEvents()
• HBA_RegisterForAdapterPortEvents()

210 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://www.t11.org

• HBA_RegisterForAdapterPortStatEvents()
• HBA_RegisterForLinkEvents()
• HBA_RegisterForTargetEvents()
• HBA_RegisterLibrary()
• HBA_RegisterLibraryV2()
• HBA_RemoveCallback()
• HBA_SendCTPassThru()
• HBA_SendCTPassThruV2()
• HBA_SendLIRR()
• HBA_SendReadCapacity()
• HBA_SendReportLUNs()
• HBA_SendReportLUNsV2()
• HBA_SendRNID()
• HBA_SendRNIDV()
• HBA_SendRPL()
• HBA_SendRPS()
• HBA_SendScsiInquiry()
• HBA_SendSRL()
• HBA_SetRNIDMgmtInfo()

All other FC-HBA functions return status code HBA_STATUS_ERROR_NOT_SUPPORTED where possible.

Note: ZFCP HBA API for Linux 5.16 can access only FCP devices, ports, and units that are configured in
the operating system.

Getting ready to run applications
To run an application, you must install the zFCP HBA API library that is provided by the libzfcphbaapi0
package. You can set environment variables to log any errors in the library, and use tools to investigate the
SAN configuration.

Before you begin
To use the HBA API support, you need the zFCP HBA API library, libzfcphbaapi0. Installing
libzfcphbaapi0 automatically installs all dependent packages.

The application must be developed to use the zFCP HBA API library, see “Developing applications” on
page 210.

Procedure
Follow these steps to access the library from a client application:
1. Install the libzfcphbaapi0 package with apt-get.

For example:

apt-get install libzfcphbaapi0

2. Optional: Set the environment variables for logging errors.
The zfcp HBA API support uses the following environment variables to log errors in the zfcp HBA API
library:
LIB_ZFCP_HBAAPI_LOG_LEVEL

specifies the log level. If not set or set to zero, there is no logging (default). If set to an integer
value greater than 1, logging is enabled.

Chapter 12. SCSI-over-Fibre Channel device driver 211

LIB_ZFCP_HBAAPI_LOG_FILE
specifies a file for the logging output. If not specified, stderr is used.

What to do next
You can use the zfcp_ping and zfcp_show commands to investigate your SAN configuration. These
commands are available with the zfcp-hbaapi-utils package.

Tools for investigating your SAN configuration
The HBA API package zfcp-hbaapi-utils includes the following tools that can help you to investigate your
SAN configuration and to solve configuration problems.

zfcp_ping
to probe a port in the SAN.

zfcp_show
to retrieve information about the SAN topology and details about the SAN components.

See How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413 for details.

212 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 13. Storage-class memory device driver

LPAR only: The storage-class memory device driver applies to Linux in LPAR mode only.

Storage-class memory (SCM) is a class of data storage devices that combines properties of both storage
and memory.

SCM can be implemented as Flash Express or as Virtual Flash Memory.

What you should know about storage-class memory
Storage-class memory (SCM) is accessed, in chunks called increments, through extended asynchronous
data mover (EADM) subchannels.

The LPAR on which your Linux instance runs must be configured to provide SCM.

• At least one EADM subchannel must be available to the LPAR. Because SCM supports multiple
concurrent I/O requests, it is advantageous to configure multiple EADM subchannels. A typical number
of EADM subchannels is 64.

• One or more SCM increments must be added to the I/O configuration of the LPAR.

In Linux, each increment is represented as a block device. You can use the block device with standard
Linux tools as you would use any other block device. Commonly used tools that work with block devices
include: fdisk, mkfs, and mount.

Storage-class memory device nodes
Applications access storage-class memory devices by device nodes. Normally, Ubuntu Server 22.04 LTS
creates a device node for each storage increment. Alternatively, use the mknod command to create one.

The device driver uses a device name of the form /dev/scm<x> for an entire block device. In the name,
<x> is one or two lowercase letters.

You can partition a block device into up to seven partitions. If you use partitions, the device driver
numbers them from 1 - 7. The partitions then have device nodes of the form /dev/scm<x><n>, where
<n> is a number in the range 1 - 7, for example /dev/scma1.

The following example shows two block devices, scma and scmb, where scma has one partition, scma1.

lsblk
NAME MAJ:MIN RM SIZE RO MOUNTPOINT
scma 252:0 0 16G 0
`-scma1 252:1 0 16G 0
scmb 252:8 0 16G 0

You must load the module before you check for the device node.

To check whether there already is a node, use for example, lsblk to list all block devices and look for
"scm" entries.

To create storage-class memory device nodes issue commands of the form:

mknod /dev/scma1 b <major> 1
mknod /dev/scma2 b <major> 2
mknod /dev/scma3 b <major> 3
...

Setting up the storage-class memory device driver
Configure the storage-class memory device driver by using the module parameters.

© Copyright IBM Corp. 2000, 2023 213

Storage-class memory module parameter syntax

modprobe scm_block

 nr_requests=64

 nr_requests=  <num>

 nr_request_per_io=8

 nr_request_per_io=  <num>

where
nr_requests

specifies the number of parallel I/O requests. Set this number to the number of EADM subchannels.
The default is 64.

nr_request_per_io
submits more concurrent I/O requests than the current limit, which is based on the number of
available EADM subchannels (64). Valid values are 1 - 64. Increasing the requests increases the
number of I/O requests per second, especially for requests with a small block size. The default
number of requests is 8. Depending on the workload, this setting might improve the throughput of the
scm_block driver.

Working with storage-class memory increments
You can list storage-class memory increments and EADM subchannels.

• “Displaying EADM subchannels” on page 214
• “Listing storage-class memory increments” on page 214
• “Combining SCM devices with LVM” on page 215

Displaying EADM subchannels
Use the lscss command to list EADM subchannels.

About this task
The extended asynchronous data mover (EADM) subchannels are used to transfer data to and from the
storage-class memory. At least one EADM subchannel must be available to the LPAR.

Procedure
To list EADM subchannels, issue:

lscss --eadm
Device Subchan.

n/a 0.0.ff00
n/a 0.0.ff01
n/a 0.0.ff02
n/a 0.0.ff03
n/a 0.0.ff04
n/a 0.0.ff05
n/a 0.0.ff06
n/a 0.0.ff07

For more information about the lscss command, see “lscss - List subchannels” on page 655.

Listing storage-class memory increments
Use the lsscm command to see the status and attributes of storage-class memory increments.

214 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
Each storage-class memory increment can be accessed as a block device through a device node /dev/
scm<x>. Optionally, you can partition a storage-class memory increment in up to seven partitions.

You can also use the lsblk command to list all block devices.

Procedure
To list all storage-class memory increments, their status, and attributes, issue:

lsscm
SCM Increment Size Name Rank D_state O_state Pers ResID
--
0000000000000000 16384MB scma 1 2 1 2 1
0000000400000000 16384MB scmb 1 2 1 2 1

See “lsscm - List storage-class memory increments” on page 667 for details about the lsscm command.

Combining SCM devices with LVM
You can use LVM to combine multiple SCM block devices into an arbitrary sized LVM device.

Example
Configure SCM as any other block devices in LVM. If your version of LVM does not accept SCM devices
as valid LVM device types and issues an error message, add the SCM devices to the LVM configuration
file /etc/lvm/lvm.conf. Add the following line to the section labeled "devices":

types = ["scm", 8]

Chapter 13. Storage-class memory device driver 215

216 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 14. Managing NVMe devices

LPAR and z/VM: The NVMe information applies to Linux in LPAR mode and to Linux on z/VM.

As of LinuxONE II, PCIe-attached NVMe devices are supported on IBM LinuxONE.

As of LinuxONE III, you can use NVMe devices as stand-alone dump devices for Linux in LPAR mode or in
a DPM partition, see Using the Dump Tools, SC33-8412.

The general information about PCIe and PCIe-attached devices applies to NVMe, see Chapter 33, “PCI
Express support,” on page 397.

To Linux, NVMe devices are block devices that can be partitioned and hold file systems. NVMe disk
controllers use name spaces to divide a physical NVMe device into multiple logical devices. Booting from
an HMC might require name space ID 1 for NVMe boot devices.

Device names and nodes
NVMe device names follow this pattern: nvme<number>n<namespace>, where:
<number>

is an integer that is assigned by Linux during the boot process. The first NVMe device that is detected
is assigned 0. Devices that follow are assigned consecutive numbers.

<namespace>
is an NVMe name space ID that is assigned by the NVMe disk controller.

For partitions, p<n> is appended to the device name of the whole device, where <n> denotes the <n>-th
partition.

Table 31. Standard device names and nodes

Standard device names Standard device nodes Comment

Whole device:
nvme0n1
Partitions:
nvme0n1p1
nvme0n1p2
...

Whole device:
/dev/nvme0n1
Partitions:
/dev/nvme0n1p1
/dev/nvme0n1p2
...

First device with name space 1

Whole device:
nvme0n2
Partitions:
nvme0n2p1
nvme0n2p2
...

Whole device:
/dev/nvme0n2
Partitions:
/dev/nvme0n2p1
/dev/nvme0n2p2
...

First device with name space 2

Whole device:
nvme1n1
Partitions:
nvme1n1p1
nvme1n1p2
...

Whole device:
/dev/nvme1n1
Partitions:
/dev/nvme1n1p1
/dev/nvme1n1p2
...

Second device with name space 1

The mapping between physical storage space and standard device names does not persist across
reboots. Depending on the udev rules of your distribution, udev creates other device nodes for you.
Example: node based on a WWN

/dev/disk/by-id/nvme-eui.01000000010000005cd2e4f0bc174f51

© Copyright IBM Corp. 2000, 2023 217

The WWN is a unique, fixed hardware property. This type of device node maps to the same NVMe
device, across reboots.

Example: node based on manufacturer specifications
/dev/disk/by-id/nvme-INTEL_SSDPE2KX040T7_PHLF806200284P0IGN

The manufacturer specification is a unique, fixed hardware property that includes the hardware model
and serial number. This type of device node maps to the same NVMe device, across reboots.

The device nodes that udev creates for partitions depend on the udev rules. Commonly, the nodes names
match the names of the whole device, with -part1 appended for the first partition, -part2 for the
second partition, and -part<x> for the <x>th partition.

Function addresses
If your LinuxONE hardware is configured to support UIDs, NVMe function addresses follow the pattern
<UID>:00:00.0 and map to the same physical PCI slot of the NVMe device across reboots.

Without UID support, the pattern is <hhhh>:00:00.0, where the variable part, <hhhh>, is a 4-digit
hexadecimal number. Linux sets this number to 0000 for the first PCIe device that it discovers and
increments it by 1 for subsequent devices. So, according to this pattern, the function addresses for the
first 3 PCIe devices are: 0000:00:00.0, 0001:00:00.0, and 0002:00:00.0. This naming scheme
does not persist across reboots. Because function addresses include all PCIe devices, this means that
addresses that mapped to a specific NVMe device might not only map to a different NVMe device, but to a
different type of PCIe device altogether.

To find the function address for a standard device node use the ls command to display details for the
device's representation as a block device in sysfs.

ls -l /sys/block/nvme0n1
lrwxrwxrwx. 1 root root 0 Oct 23 16:46 /sys/block/nvme0n1 -> ../devices/pci0850:00/0850:00:00.0/
nvme/nvme0/nvme0n1

In the example, nvme0n1 maps to an NVMe device with a PCIe function address 0850:00:00.0.

Tip: Issue ls -l /sys/block/nvme* for a complete mapping of function addresses and standard
device nodes.

NVMe devices in sysfs
PCIe-attached NVMe devices have all generic PCIe sysfs attributes at /sys/bus/pci/devices/
<function_address>, see Chapter 33, “PCI Express support,” on page 397.

You can find NVMe-specific attributes in the device representations at /sys/bus/pci/drivers/nvme/
<function_address>.

NVMe devices with name space ID 1 can be prepared as boot devices. Consequently, they might be
represented in /sys/firmware:

• As the IPL device of the current Linux instance at /sys/firmware/ipl, see “Further attributes for IPL
type nvme” on page 113.

• As the currently configured re-IPL device at /sys/firmware/reipl/nvme, see “Attributes for nvme”
on page 115.

218 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 15. Channel-attached tape device driver

LPAR and z/VM: The channel-attached tape device driver applies to Linux in LPAR mode and to Linux on
z/VM.

The Linux on IBM Z tape device driver supports channel-attached tape devices.

SCSI tape devices that are attached through an FCP channel are handled by the zfcp device driver (see
Chapter 12, “SCSI-over-Fibre Channel device driver,” on page 169).

Features
The tape device driver supports a range of channel-attached tape devices and functions of these devices.

• The tape device driver supports channel-attached tape drives that are compatible with IBM 3480,
3490, 3590, and 3592 magnetic tape subsystems. Various models of these device types are handled
(for example, the 3490/10).

3592 devices that emulate 3590 devices are recognized and treated as 3590 devices.
• Logical character devices for non-rewinding and rewinding modes of operation (see “Tape device modes

and logical devices” on page 219)
• Control operations through mt (see “Using the mt command” on page 221)
• Message display support (see “tape390_display - Display messages on tape devices and load tapes” on

page 733)
• Encryption support (see “tape390_crypt - Manage tape encryption” on page 729)
• Up to 128 physical tape devices

What you should know about channel-attached tape devices
A naming scheme helps you to keep track of your tape devices, their modes of operation, and the
corresponding device nodes.

Tape device modes and logical devices
The tape device driver supports up to 128 physical tape devices. Each physical tape device can be used as
a character device in non-rewinding or in rewinding mode.

In non-rewinding mode, the tape remains at the current position when the device is closed. In rewinding
mode, the tape is rewound when the device is closed. The tape device driver treats each mode as a
separate logical device.

Both modes provide sequential (traditional) tape access without any caching done in the kernel.

You can use a channel-attached tape device in the same way as any other Linux tape device. You can write
to it and read from it using standard Linux facilities such as GNU tar. You can perform control operations
(such as rewinding the tape or skipping a file) with the standard tool mt.

Tape naming scheme
The tape device driver assigns minor numbers along with an index number when a physical tape device
comes online.

The naming scheme for tape devices is summarized in Table 32 on page 220.

© Copyright IBM Corp. 2000, 2023 219

Table 32. Tape device names and minor numbers

Device Names Minor numbers

Non-rewinding character devices ntibm<n> 2×<n>

Rewinding character devices rtibm<n> 2×<n>+1

where <n> is the index number that is assigned by the device driver. The index starts from 0 for the first
physical tape device, 1 for the second, and so on. The name space is restricted to 128 physical tape
devices, so the maximum index number is 127 for the 128th physical tape device.

The index number and corresponding minor numbers and device names are not permanently associated
with a specific physical tape device. When a tape device goes offline, it surrenders its index number. The
device driver assigns the lowest free index number when a physical tape device comes online. An index
number with its corresponding device names and minor numbers can be reassigned to different physical
tape devices as devices go offline and come online.

Tip: Use the lstape command (see “lstape - List tape devices” on page 670) to determine the current
mapping of index numbers to physical tape devices.

When the tape device driver is loaded, it dynamically allocates a major number to channel-attached
character tape devices. A different major number might be used when the device driver is reloaded, for
example when Linux is rebooted.

For online tape devices directories provide information about the major/minor assignments. The
directories have the form:

• /sys/class/tape390/ntibm<n>
• /sys/class/tape390/rtibm<n>

Each of these directories has a dev attribute. The value of the dev attribute has the form
<major>:<minor>, where <major> is the major number for the device and <minor> is the minor number
specific to the logical device.

Example
In this example, four physical tape devices are present, with three of them online. The TapeNo column
shows the index number and the BusID column indicates the associated physical tape device. In the
example, no index number is allocated to the tape device in the last row. The device is offline and,
currently, no names and minor numbers are assigned to it.

lstape --ccw-only
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
0 0.0.01a1 3490/10 3490/40 auto UNUSED --- UNLOADED
1 0.0.01a0 3480/01 3480/04 auto UNUSED --- UNLOADED
2 0.0.0172 3590/50 3590/11 auto IN_USE --- LOADED
N/A 0.0.01ac 3490/10 3490/40 N/A OFFLINE --- N/A

Table 33 on page 220 summarizes the resulting names and minor numbers.

Table 33. Example names and minor numbers

Bus ID Index (TapeNo) Device Device name Minor number

0.0.01a1 0 non-rewind ntibm0 0

rewind rtibm0 1

0.0.01a0 1 non-rewind ntibm1 2

rewind rtibm1 3

220 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 33. Example names and minor numbers (continued)

Bus ID Index (TapeNo) Device Device name Minor number

0.0.0172 2 non-rewind ntibm2 4

rewind rtibm2 5

0.0.01ac not assigned n/a n/a not assigned

For the online devices, the major/minor assignments can be read from their respective representations
in /sys/class:

cat /sys/class/tape390/ntibm0/dev
254:0
cat /sys/class/tape390/rtibm0/dev
254:1
cat /sys/class/tape390/ntibm1/dev
254:2
cat /sys/class/tape390/rtibm1/dev
254:3
cat /sys/class/tape390/ntibm2/dev
254:4
cat /sys/class/tape390/rtibm2/dev
254:5

In the example, the major number is 254. The minor numbers are as expected for the respective device
names.

Tape device nodes
Applications access tape devices by device nodes. Ubuntu Server 22.04 LTS uses udev to create two
device nodes for each tape device.

The device nodes have the form /dev/<name>, where <name> is the device name according to “Tape
naming scheme” on page 219.

For example, if you have two tape devices, udev creates the device nodes that are shown in Table 34 on
page 221:

Table 34. Tape device nodes

Node for non-rewind device rewind device

First tape device /dev/ntibm0 /dev/rtibm0

Second tape device /dev/ntibm1 /dev/rtibm1

Using the mt command
There are differences between the MTIO interface for channel-attached tapes and other tape drives.
Correspondingly, some operations of the mt command are different for channel-attached tapes.

The mt command handles basic tape control in Linux. See the man page for general information about mt.

setdensity
has no effect because the recording density is automatically detected on channel-attached tape
hardware.

drvbuffer
has no effect because channel-attached tape hardware automatically switches to unbuffered mode if
buffering is unavailable.

lock and unlock
have no effect because channel-attached tape hardware does not support media locking.

Chapter 15. Channel-attached tape device driver 221

setpartition and mkpartition
have no effect because channel-attached tape hardware does not support partitioning.

status
returns a structure that, aside from the block number, contains mostly SCSI-related data that does not
apply to the tape device driver.

load
does not automatically load a tape but waits for a tape to be loaded manually.

offline and rewoffl and eject
all include expelling the currently loaded tape. Depending on the stacker mode, it might attempt to
load the next tape (see “Loading and unloading tapes” on page 226 for details).

Loading the tape device driver
There are no module parameters for the tape device driver. You must load the required device driver
module before you can use it.

Use the modprobe command to load the modules.

Tape module syntax

modprobe tape_34xx

 tape_3590

See the modprobe man page for details about modprobe.

Working with tape devices
Typical tasks for working with tape devices include displaying tape information, controlling compression,
and loading and unloading tapes.

For information about working with the channel measurement facility, see Chapter 55, “Channel
measurement facility,” on page 537.

For information about displaying messages on a tape device's display unit, see “tape390_display - Display
messages on tape devices and load tapes” on page 733.

See “Working with newly available devices” on page 10 to avoid errors when working with devices that
have become available to a running Linux instance.

• “Setting a tape device online or offline” on page 222
• “Displaying tape information” on page 224
• “Enabling compression” on page 226
• “Loading and unloading tapes” on page 226

Setting a tape device online or offline
Set a tape device online or offline with the chccwdev command or through the online sysfs attribute of
the device.

About this task
Setting a physical tape device online makes both corresponding logical devices accessible:

• The non-rewind character device
• The rewind character device

222 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

At any time, the device can be online to a single Linux instance only. You must set the tape device offline
to make it accessible to other Linux instances in a shared environment.

Procedure
Use the chzdev command (see “chzdev - Configure IBM Z devices” on page 584) to set a tape online or
offline.

Alternatively, use the chccwdev command, or you can write 1 to the online attribute of the device to set it
online; or write 0 to set it offline.

Results
When a physical tape device is set online, the device driver assigns an index number to it. This index
number is used in the standard device nodes (see “Tape device nodes” on page 221) to identify the
corresponding logical devices. The index number is in the range 0 - 127. A maximum of 128 physical tape
devices can be online concurrently.

If you are using the standard device nodes, you must find out which index number the tape device driver
has assigned to your tape device. This index number, and consequently the associated standard device
node, can change after a tape device was set offline and back online.

Ubuntu Server 22.04 LTS uses udev to create alternative device nodes that distinguish devices by the
physical device's bus ID instead of the index number. If you are using such device nodes, you do not need
to know the index number.

If you need to know the index number, issue a command of this form:

lstape --ccw-only <device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. The index
number is the value in the TapeNo column of the command output. For more information about the
lstape command, see “lstape - List tape devices” on page 670.

Examples

• To set a physical tape device with device bus-ID 0.0.015f online, first load the module if you have not
already done so:

modprobe tape_3590

Then issue:

chzdev -e tape 015f

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.
To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -e 0.0.015f

or

echo 1 > /sys/bus/ccw/devices/0.0.015f/online

To find the index number that the tape device driver assigned to the device, issue:

Chapter 15. Channel-attached tape device driver 223

lstape 0.0.015f --ccw-only
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

In the example, the assigned index number is 2. The standard device nodes for working with the device
until it is set offline are then:

– /dev/ntibm2 for the non-rewinding device
– /dev/rtibm2 for the rewinding device

• To set a physical tape device with device bus-ID 0.0.015f offline, issue:

chzdev -d tape 015f

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.
To apply this setting to the running system only, use the chzdev command with the -a option or one of
the following commands:

chccwdev -d 0.0.015f

or

echo 0 > /sys/bus/ccw/devices/0.0.015f/online

Displaying tape information
Use the lstape command to display summary information about your tape devices, or read tape
information from sysfs.

Each physical tape device is represented in a sysfs directory of the form

/sys/bus/ccw/devices/<device_bus_id>

where <device_bus_id> is the device bus-ID that corresponds to the physical tape device. This directory
contains a number of attributes with information about the physical device. The attributes: blocksize,
state, operation, and medium_state, might not show the current values if the device is offline.

Table 35. Tape device attributes

Attribute Explanation

online 1 if the device is online or 0 if it is offline (see “Setting a tape device online
or offline” on page 222)

cmb_enable 1 if channel measurement block is enabled for the physical device or 0 if it
is not enabled (see Chapter 55, “Channel measurement facility,” on page
537)

cutype Type and model of the control unit

devtype Type and model of the physical tape device

blocksize Currently used record size in bytes or 0 for auto

224 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 35. Tape device attributes (continued)

Attribute Explanation

state State of the physical tape device, either of:
UNUSED

The device is not in use and is available to any operating system image
in a shared environment.

IN_USE
The device is being used by a process on this Linux instance.

OFFLINE
The device is offline.

NOT_OP
Device is not operational.

operation The current tape operation, for example:

No operation
WRI

Write operation
RFO

Read operation
MSN

Medium sense
Several other operation codes exist, for example, for rewind and seek.

medium_state The current state of the tape cartridge:
1

Cartridge is loaded into the tape device
2

No cartridge is loaded
0

The tape device driver does not have information about the current
cartridge state

Procedure
Issue a command of this form to read an attribute:

cat /sys/bus/ccw/devices/<device_bus_id>/<attribute>

where <attribute> is one of the attributes of Table 35 on page 224.

Example

The following lstape command displays information about a tape device with bus ID 0.0.015f:

lstape 0.0.015f --ccw-only
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
2 0.0.015f 3480/01 3480/04 auto UNUSED --- LOADED

This sequence of commands reads the same information from sysfs:

Chapter 15. Channel-attached tape device driver 225

cat /sys/bus/ccw/devices/0.0.015f/online
1
cat /sys/bus/ccw/devices/0.0.015f/cmb_enable
0
cat /sys/bus/ccw/devices/0.0.015f/cutype
3480/01
cat /sys/bus/ccw/devices/0.0.015f/devtype
3480/04
cat /sys/bus/ccw/devices/0.0.015f/blocksize
0
cat /sys/bus/ccw/devices/0.0.015f/state
UNUSED
cat /sys/bus/ccw/devices/0.0.015f/operation

cat /sys/bus/ccw/devices/0.0.015f/medium_state
1

Enabling compression
Control Improved Data Recording Capability (IDRC) compression with the mt command provided by the
package mt-st.

About this task
Compression is off after the tape device driver is loaded.

Procedure
To enable compression, issue:

mt -f <node> compression

or

mt -f <node> compression 1

where <node> is the device node for a character device, for example, /dev/ntibm0.

To disable compression, issue:

mt -f <tape> compression 0

Any other numeric value has no effect, and any other argument disables compression.

Example

To enable compression for a tape device with a device node /dev/ntibm0 issue:

mt -f /dev/ntibm0 compression 1

Loading and unloading tapes
Unload tapes with the mt command. How to load tapes depends on the stacker mode of your tape
hardware.

Procedure
Unload tapes with a command of this form:

mt -f <node> unload

where <node> can be a device node for the non-rewinding device or for the rewinding device.

226 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Whether you can load tapes from your Linux instance depends on the stacker mode of your tape
hardware. There are three possible modes:
manual

Tapes must always be loaded manually by an operator. You can use the tape390_display command
(see “tape390_display - Display messages on tape devices and load tapes” on page 733) to display a
short message on the tape device's display unit when a new tape is required.

automatic
If there is another tape present in the stacker, the tape device automatically loads a new tape when
the current tape is expelled. You can load a new tape from Linux by expelling the current tape with the
mt command.

system
The tape device loads a tape when instructed from the operating system. From Linux, you can load
a tape with the tape390_display command (see “tape390_display - Display messages on tape
devices and load tapes” on page 733). You cannot use the mt command to load a tape.

Example

To expel a tape from a tape device that can be accessed through a device node /dev/ntibm0, issue:

mt -f /dev/ntibm0 unload

Assuming that the stacker mode of the tape device is system and that a tape is present in the stacker,
you can load a new tape by issuing:

tape390_display -l "NEW TAPE" /dev/ntibm0

"NEW TAPE" is a message that is displayed on the display unit of the tape device until the tape device
receives the next tape movement command.

Chapter 15. Channel-attached tape device driver 227

228 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 4. Networking
Ubuntu Server 22.04 LTS includes several network device drivers that are specific to z/Architecture.

For information about high-performing, secure networking and connectivity, see
www.ibm.com/it-infrastructure/z/capabilities/networking

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

Example

Figure 52. Networking example

In the example there are three Linux instances; two of them run as z/VM guests in one LPAR and a third
Linux instance runs in another LPAR. Within z/VM, Linux instances can be connected through a guest
LAN or VSWITCH. Within and between LPARs, you can connect Linux instances through HiperSockets.
OSA-Express cards running in either non-QDIO mode (called LCS here) or in QDIO mode can connect the
mainframe to an external network.

© Copyright IBM Corp. 2000, 2023 229

https://www.ibm.com/it-infrastructure/z/capabilities/networking
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

Table 36 on page 230 lists which control units and device type combinations are supported by the
network device drivers.

Table 36. Supported device types, control units, and corresponding device drivers

Device
type Control unit Device driver Comment

1732/01 1731/01 qeth OSA configured as OSD

1732/02 1731/02 qeth OSA configured as OSX

1732/05 1731/05 qeth HiperSockets

0000/00 3088/1f lcs 2216 Nways Multiaccess Connector

0000/00 3088/60 lcs OSA configured as OSE (non-QDIO)

230 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 16. qeth device driver for OSA-Express
(QDIO) and HiperSockets

LPAR and z/VM: The qeth device driver applies to Linux in LPAR mode and to Linux on z/VM.

The qeth device driver supports a multitude of network connections, for example, connections through
Open Systems Adapters (OSA), HiperSockets, guest LANs, and virtual switches.

Real connections that use OSA-Express
An IBM mainframe uses OSA-Express adapters, which are real LAN-adapter hardware, see Figure 53
on page 231. These adapters provide connections to the outside world, but can also connect virtual
systems (between LPARs or between z/VM guest virtual machines) within the mainframe. The qeth
driver supports these adapters if they are defined to run in queued direct I/O (QDIO) mode (defined
as OSD or OSX in the hardware configuration). OSD-devices are the standard IBM Z LAN-adapters. For
details about OSA-Express in QDIO mode, see Open Systems Adapter-Express Customer's Guide and
Reference, SA22-7935.

Figure 53. OSA-Express adapters are real LAN-adapter hardware

The OSA-Express LAN adapter can serve as a Network Control Program (NCP) adapter for an internal
ESCON/CDLC interface to another mainframe operating system. This feature is used by the IBM
Communication Controller for Linux (CCL). The OSA CHPID type does not support any additional
network functions and its only purpose is to provide a bridge between the CDLC and QDIO interfaces
to connect to the Linux NCP. For more details, see the IBM Communication Controller Migration Guide,
SG24-6298.

The qeth device driver supports CHPIDs of type OSD and OSX:
OSD

provides connectivity as the standard IBM Z LAN adapter type, running in either layer 3 or layer 2
mode. When running in layer 3 mode, only TCP/IP traffic is supported, using IP addresses. When
running in layer 2 mode, the traffic is protocol-independent, using MAC addresses.

© Copyright IBM Corp. 2000, 2023 231

OSX
provides connectivity to and access control for the intraensemble data network (IEDN), which is
managed by Unified Resource Manager functions. A zEnterprise® CPC and zBX within an ensemble
are connected through the IEDN. See zEnterprise System Introduction to Ensembles, GC27-2609
and zEnterprise System Ensemble Planning and Configuring Guide, GC27-2608 for more details.

HiperSockets
An IBM mainframe uses internal connections that are called HiperSockets. These simulate QDIO
network adapters and provide high-speed TCP/IP communication for operating system instances
within and across LPARs. For details about HiperSockets, see HiperSockets Implementation Guide,
SG24-6816.

Virtual connections for Linux on z/VM
z/VM offers virtualized LAN-adapters that enable connections between z/VM guest virtual machines
and the outside world. It allows definitions of simulated network interface cards (NICs) attached to
certain z/VM guests. The NICs can be connected to a simulated LAN segment called guest LAN for
z/VM internal communication between z/VM guest virtual machines, or they can be connected to a
virtual switch called VSWITCH for external LAN connectivity.
Guest LAN

Guest LANs represent a simulated LAN segment that can be connected to simulated network
interface cards. There are three types of guest LANs:

• Simulated OSA in layer 3 mode
• Simulated HiperSockets (layer 3) mode
• Simulated OSA in layer 2 mode

Each guest LAN is isolated from other guest LANs on the same system (unless some member of
one LAN group acts as a router to other groups). See Figure 54 on page 232.

Figure 54. Guest LAN

Virtual switch
A virtual switch (VSWITCH) is a special-purpose guest LAN that provides external LAN
connectivity through an additional OSA-Express device served by z/VM without the need for a
routing virtual machine, see Figure 55 on page 233.

232 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 55. Virtual switch

A dedicated OSA adapter can be an option, but is not required for a VSWITCH.

The qeth device driver distinguishes between virtual NICs in QDIO mode or HiperSockets mode. It
cannot detect whether the virtual network is a guest LAN or a VSWITCH.

HiperSockets bridge port
A HiperSockets bridge port connects a network defined by a virtual switch to a HiperSockets LAN.
The two networks are combined into one logical network. If the VSWITCH is connected to an
external Ethernet LAN, the HiperSockets LAN can then communicate outside the CEC as shown
in Figure 56 on page 233. You can thus connect a HiperSockets LAN to an external LAN without
using a router.

Figure 56. HiperSockets bridge port in z/VM

Linux can use a bridge port, for example, to connect an OSA or HiperSockets port to a Linux bridge.
For more information, see “Layer 2 promiscuous mode” on page 242, and Figure 60 on page 243.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 233

For information about guest LANs, virtual switches, HiperSockets bridge ports and virtual
HiperSockets, see z/VM: Connectivity, SC24-6267.

Device driver functions
The qeth device driver supports many networking transport protocol functions, as well as offload
functions and problem determination functions.

The qeth device driver supports functions that are listed in Table 37 on page 234 and Table 38 on page
235.

Table 37. Real connections

Function OSA Layer 2 OSA Layer 3
HiperSockets
Layer 2

HiperSockets
Layer 3

Basic device or protocol functions

IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes

IPv6/multicast Yes/Yes Yes/Yes Yes/Yes Yes/Yes

Non-IP traffic Yes Yes Yes No

VLAN IPv4/IPv6/non IP sw/sw/sw hw/sw/sw sw/sw/sw hw/hw/No

Linux ARP Yes No (hw ARP) Yes No

Linux neighbor solicitation Yes Yes Yes No

Unique MAC address Yes (random for
LPAR)

No Yes Yes

Change MAC address Yes No Yes No

Promiscuous mode Yes. Bridgeport
(once per card)
or VNIC
characteristics
flooding and
learning.

No Yes. Bridgeport
(once per card)
or VNIC
characteristics
flooding and
learning.

• Yes (for
sniffer=1)

• No (for
sniffer=0)

MAC headers send/receive Yes/Yes faked/faked Yes/Yes faked/faked

ethtool support Yes Yes Yes Yes

Bonding Yes No Yes No

Priority queueing Yes Yes No No

Bridge port Yes No Yes No

Offload features

TCP segmentation offload
(TSO)

Yes Yes No No

Inbound (rx) checksum Yes Yes No No

Outbound (tx) checksum Yes Yes No No

OSA/QETH specific features

Special device driver setup for
VIPA

No required No Yes

234 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 37. Real connections (continued)

Function OSA Layer 2 OSA Layer 3
HiperSockets
Layer 2

HiperSockets
Layer 3

Basic device or protocol functions

Special device driver setup for
proxy ARP

No required No Yes

Special device driver setup for
IP takeover

No required No Yes

Special device driver setup for
routing IPv4/IPv6

No/No required/
required

No/No Yes/Yes

Receive buffer count Yes Yes Yes Yes

Direct connectivity to z/OS Yes by HW Yes no Yes

SNMP support Yes Yes No No

Multiport support Yes Yes No No

Data connection isolation Yes Yes No No

Problem determination

Hardware trace No Yes No No

Legend:

No - Function not supported or not required.
Yes - Function supported.
hw - Function performed by hardware.
sw - Function performed by software.
faked - Function will be simulated.
required - Function requires special setup.

Table 38. Virtual NICs coupled to a z/VM VSWITCH or guest LAN

Function
Emulated OSA
Layer 2

Emulated OSA
Layer 3

Emulated
HiperSockets Layer
3

Basic device or protocol features

IPv4/multicast/broadcast Yes/Yes/Yes Yes/Yes/Yes Yes/Yes/Yes

IPv6/multicast Yes/Yes Yes/Yes No/No

Non-IP traffic Yes No No

VLAN IPv4/IPv6/non IP sw/sw/sw hw/sw/No hw/No/No

Linux ARP Yes No (hw ARP) No

Linux neighbor solicitation Yes Yes No

Unique MAC address Yes Yes Yes

Change MAC address Yes No No

Promiscuous mode Yes Yes No

MAC headers send/receive Yes/Yes faked/faked faked/faked

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 235

Table 38. Virtual NICs coupled to a z/VM VSWITCH or guest LAN (continued)

Function
Emulated OSA
Layer 2

Emulated OSA
Layer 3

Emulated
HiperSockets Layer
3

Basic device or protocol features

ethtool support Yes Yes Yes

Bonding Yes No No

Priority queueing Yes Yes No

Offload features No No No

OSA/QETH specific features

Special device driver setup for VIPA No required required

Special device driver setup for proxy
ARP

No required required

Special device driver setup for IP
takeover

No required required

Special device driver setup for
routing IPv4/IPv6

No/No required/required required/required

Receive buffer count Yes Yes Yes

Direct connectivity to z/OS No Yes Yes

SNMP support No No No

Multiport support No No No

Data connection isolation No No No

Problem determination

Hardware trace No No No

Legend:

No - Function not supported or not required.
Yes - Function supported.
hw - Function performed by hardware.
sw - Function performed by software.
faked - Function will be simulated.
required - Function requires special setup.

What you should know about the qeth device driver
Interface names are assigned to qeth group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs. An OSA-Express adapter can handle both IPv4 and IPv6 packets.

Layer 2 and layer 3
The qeth device driver consists of a common core and two device disciplines: layer 2 and layer 3.

In layer 2 mode, OSA routing to the destination is based on MAC addresses. A local MAC address is
assigned to each interface of a Linux instance and registered in the OSA Address Table. These MAC
addresses are unique and different from the MAC address of the OSA adapter. See “MAC headers in layer
2 mode” on page 239 for details.

236 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

In layer 3 mode, all interfaces of all Linux instances share the MAC address of the OSA adapter. OSA
routing to the destination Linux instance is based on IP addresses. See “MAC headers in layer 3 mode” on
page 240 for details.

The layer 2 discipline (qeth_l2)
The layer 2 discipline supports:

• OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs running in layer 2
mode

• HiperSockets devices
• OSX (OSA-Express for zBX) devices for IEDN

The layer 2 discipline is the default setup for OSA. On HiperSockets the default continues to be layer
3. See “Setting the layer2 attribute” on page 250 for details.

The network device in Linux must use the same layer as the VSWITCH or QDIO guest LAN in z/VM. By
default, the qeth device driver uses layer 2. If the coupled VSWITCH or QDIO guest LAN uses layer 3,
you must adapt the layer setting in Linux.

For z/VM NICs that are coupled to a guest LAN or VSWITCH, the qeth device driver detects the
required layer and configures it automatically. If a qeth device is created before the NIC is coupled,
the qeth device driver defaults to layer 2.

The layer 3 discipline (qeth_l3)
The layer 3 discipline supports:

• OSA devices and z/VM virtual NICs that couple to VSWITCHes or QDIO guest LANs running in layer 3
mode (with faked link layer headers)

• HiperSockets and HiperSockets guest LAN devices that are running in layer 3 mode (with faked link
layer headers)

• OSX (OSA-Express for zBX) devices for IEDN

This discipline supports those devices that are not capable of running in layer 2 mode. Not all Linux
networking features are supported and others need special setup or configuration. See Table 44 on
page 247. Some performance-critical applications might benefit from being layer 3.

Layer 2 and layer 3 interfaces cannot communicate within a HiperSockets LAN or within a VSWITCH or
guest LAN. However, a shared OSA adapter can convert traffic between layer 2 and layer 3 networks.

qeth group devices
The qeth device driver requires three I/O subchannels for each HiperSockets CHPID or OSA-Express
CHPID in QDIO mode. One subchannel is for control reads, one for control writes, and the third is for data.

The qeth device driver uses the QDIO protocol to communicate with the HiperSockets and OSA-Express
adapter (see Figure 57 on page 237).

Figure 57. I/O subchannel interface

The three device bus-IDs that correspond to the subchannel triplet are grouped as one qeth group device.
The following rules apply for the device bus-IDs:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 237

read
no specific rules.

write
must be the device bus-ID of the read subchannel plus one.

data
can be any free device bus-ID on the same CHPID.

You can configure different triplets of device bus-IDs on the same CHPID differently. For example, if you
have two triplets on the same CHPID they can have different attribute values for priority queueing.

Overview of the steps for setting up a qeth group device
You must perform several steps before user-space applications on your Linux instance can use a qeth
group device.

Before you begin
Find out how the hardware is configured and which qeth device bus-IDs are on which CHPID, for example
by looking at the IOCDS. Identify the device bus-IDs that you want to group into a qeth group device. The
three device bus-IDs must be on the same CHPID.

Procedure
Perform these steps to allow user-space applications on your Linux instance to use a qeth group device:
1. Create the qeth group device.

After booting Linux, each qeth device bus-ID is represented by a subdirectory in /sys/bus/ccw/
devices/. These subdirectories are then named with the bus IDs of the devices.

For example, a qeth device with bus IDs 0.0.fc00, 0.0.fc01, and 0.0.fc02 is represented
as /sys/bus/ccw/drivers/qeth/0.0.fc00

2. Configure the device.
3. Set the device online.
4. Activate the device and assign an IP address to it.

What to do next
These tasks and the configuration options are described in detail in “Working with qeth devices” on page
245.

qeth interface names and device directories
Ubuntu Server 22.04 LTS automatically assigns interface names to the qeth group devices. The qeth
device driver creates the corresponding sysfs structures.

While an interface is online, it is represented in sysfs as:
/sys/class/net/<interface>

The mapping between interface names and the device bus-ID that represents the qeth group device in
sysfs is preserved when a device is set offline and back online.

“Finding out the interface name of a qeth group device” on page 257 and “Finding out the bus ID of a qeth
interface” on page 258 provide information about mapping device bus-IDs and interface names.

Support for IP Version 6 (IPv6)
The qeth device driver supports IPv6 in many network setups.

IPv6 is supported on:

• Ethernet interfaces of the OSA-Express adapter that runs in QDIO mode.

238 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• HiperSockets layer 2 and layer 3 interfaces.
• z/VM guest LANs running in QDIO mode or HiperSockets layer 3 mode.
• z/VM virtual NIC interfaces (VSWITCHES and guest LANs) running in layer 2 mode.

IPv6 is not supported on the ATM feature.

There are noticeable differences between the IP stacks for versions 4 and 6. Some concepts in IPv6 are
different from IPv4, such as neighbor discovery, broadcast, and Internet Protocol security (IPsec). IPv6
uses a 16-byte address field, while the addresses under IPv4 are 4 bytes in length.

Stateless autoconfiguration generates unique IP addresses for all Linux instances, even if they share an
OSA-Express adapter with other operating systems.

Be aware of the IP version when you specify IP addresses and when you use commands that return IP
version-specific output (such as qetharp).

MAC headers in layer 2 mode
In LAN environments, data packets find their destination through Media Access Control (MAC) addresses
in their MAC header.

Figure 58. Standard IPv4 processing

MAC address handling as shown in Figure 58 on page 239 applies to non-mainframe environments and a
mainframe environment with an OSA-Express adapter where the layer2 option is enabled.

The layer2 option keeps the MAC addresses on incoming packets. Incoming and outgoing packets are
complete with a MAC header at all stages between the Linux network stack and the LAN as shown in
Figure 58 on page 239. This layer2-based forwarding requires unique MAC addresses for all concerned
Linux instances.

In layer 2 mode, the Linux TCP/IP stack has full control over the MAC headers and the neighbor lookup.
The Linux TCP/IP stack does not configure IPv4 or IPv6 addresses into the hardware, but requires a
unique MAC address for the card.

For Linux as a z/VM guest, the qeth device driver obtains a MAC address for each L2 device from the z/VM
host. No configuration is necessary.

For Linux in LPAR mode with a directly attached OSA adapter in QDIO mode, assign a unique MAC
address. You can set a MAC address by issuing the command:

ip link set addr <MAC address> dev <interface>

Note: Be sure not to assign the MAC address of the OSA-Express adapter to your Linux instance.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 239

For OSX CHPIDs, you cannot set your own MAC addresses. Linux uses the MAC addresses defined by the
Unified Resource Manager.

For HiperSockets connections, a MAC address is generated.

MAC headers in layer 3 mode
A qeth layer 3 mode device driver is an Ethernet offload engine for IPv4, and a partial Ethernet offload
engine for IPv6. Hence, there are some special things to understand about the layer 3 mode.

To support IPv6 and protocols other than IPv4, the device driver registers a layer 3 card as an Ethernet
device to the Linux TCP/IP stack.

In layer 3 mode, the OSA-Express adapter in QDIO mode removes the MAC header with the MAC address
from incoming IPv4 packets. It uses the registered IP addresses to forward a packet to the recipient
TCP/IP stack. See Figure 59 on page 240. Thus the OSA-Express adapter is able to deliver IPv4 packets
to the correct Linux instances. Apart from broadcast packets, a Linux instance can get packets only for IP
addresses it configured in the stack and registered with the OSA-Express adapter.

Figure 59. MAC address handling in layer3 mode

The OSA-Express QDIO microcode builds MAC headers for outgoing IPv4 packets and removes them from
incoming IPv4 packets. Thus, the operating systems' network stacks send and receive only IPv4 packets
without MAC headers.

This lack of MAC headers can be a problem for applications that expect MAC headers. For examples of
how such problems can be resolved, see “Setting up for DHCP with IPv4” on page 294.

Outgoing frames
The qeth device driver registers the layer 3 card as an Ethernet device. Therefore, the Linux TCP/IP stack
will provide complete Ethernet frames to the device driver.

If the hardware does not require the Ethernet frame (for example, for IPv4) the driver removes the
Ethernet header prior to sending the frame to the hardware. If necessary information like the Ethernet
target address is not available (because of the offload functionality) the value is filled with the hardcoded
address FAKELL.

Table 39. Ethernet addresses of outgoing frames

Frame Destination address Source address

IPv4 FAKELL Real device address

IPv6 Real destination address Real device address

240 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 39. Ethernet addresses of outgoing frames (continued)

Frame Destination address Source address

Other packets Real destination address Real device address

Incoming frames
The device driver provides Ethernet headers for all incoming frames.

If necessary information like the Ethernet source address is not available (because of the offload
functionality) the value is filled with the hardcoded address FAKELL.

Table 40. Ethernet addresses of incoming frames

Frame Destination address Source address

IPv4 Real device address FAKELL

IPv6 Real device address FAKELL

Other packets Real device address Real source address

Note that if a source or destination address is a multicast or broadcast address the device driver can
provide the corresponding (real) Ethernet multicast or broadcast address even when the packet was
delivered or sent through the offload engine. Always providing the link layer headers enables packet
socket applications like tcpdump to work properly on a qeth layer 3 device without any changes in the
application itself (the patch for libpcap is no longer required).

While the faked headers are syntactically correct, the addresses are not authentic, and hence applications
requiring authentic addresses will not work. Some examples are given in Table 41 on page 241.

Table 41. Applications that react differently to faked headers

Application Support Reason

tcpdump Yes Displays only frames, fake Ethernet information is displayed.

iptables Partially As long as the rule does not deal with Ethernet information of an
IPv4 frame.

dhcp Yes Is non-IPv4 traffic. (Note that DHCP does not work for Layer 3
HiperSockets.)

IP addresses
The network stack of each operating system that shares an OSA-Express adapter in QDIO mode registers
all its IP addresses with the adapter.

Whenever IP addresses are deleted from or added to a network stack, the device drivers download the
resulting IP address list changes to the OSA-Express adapter.

For the registered IP addresses, the OSA-Express adapter off-loads various functions, in particular also:

• Handling MAC addresses and MAC headers
• ARP processing

ARP
The OSA-Express adapter in QDIO mode responds to Address Resolution Protocol (ARP) requests for all
registered IPv4 addresses.

ARP is a TCP/IP protocol that translates 32-bit IPv4 addresses into the corresponding hardware
addresses. For example, for an Ethernet device, the hardware addresses are 48-bit Ethernet Media
Access Control (MAC) addresses. The mapping of IPv4 addresses to the corresponding hardware

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 241

addresses is defined in the ARP cache. When it needs to send a packet, a host consults the ARP cache of
its network adapter to find the MAC address of the target host.

If there is an entry for the destination IPv4 address, the corresponding MAC address is copied into the
MAC header and the packet is added to the appropriate interface's output queue. If the entry is not found,
the ARP functions retain the IPv4 packet, and broadcast an ARP request asking the destination host for its
MAC address. When a reply is received, the packet is sent to its destination.

Note:

1. On an OSA-Express adapter in QDIO mode, do not set the NO_ARP flag on the Linux Ethernet device.
The device driver disables the ARP resolution for IPv4. Because the hardware requires no neighbor
lookup for IPv4, but neighbor solicitation for IPv6, the NO_ARP flag is not allowed on the Linux
Ethernet device.

2. On HiperSockets, which is a full Ethernet offload engine for IPv4 and IPv6 and supports no other
traffic, the device driver sets the NO_ARP flag on the Linux Ethernet interface. Do not remove this flag
from the interface.

Layer 2 promiscuous mode
OSA and HiperSockets ports that operate in layer 2 mode can be set up to receive all frames that are
addressed to unknown MAC addresses.

On most architectures, traffic between operating systems and networks is handled by Ethernet Network
Interface Controllers (NICs). NICs usually filter incoming traffic to admit only frames with destination MAC
addresses that are registered with the NIC.

However, a NIC can also be configured to receive and pass to the operating system all Ethernet
frames that reach it, regardless of the destination MAC address. This mode of operation is known as
"promiscuous mode". Promiscuous mode is a prerequisite for configuring a NIC as a member of a Linux
software bridge.

For more information about how to set up a software bridge, see the documentation that is provided by
Ubuntu Server, or the bridging how-to available at http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO.

On IBM Z, you can realize a promiscuous mode for Ethernet traffic through a bridge port configuration
or through Virtual Network Interface Controller (VNIC) characteristics. Depending on the hardware level,
OSA and HiperSockets devices can be configured as bridge ports or they can be configured with VNIC
characteristics. The same OSA or HiperSockets device cannot simultaneously be configured as a bridge
port and with VNIC characteristics.

VNIC characteristics
With (VNIC) characteristics, you can set and fine-tune a promiscuous mode for HiperSockets and OSA
devices, (see “Advanced packet-handling configuration” on page 278).

Bridge ports
Linux can assign a bridge port role to a logical port, and the HiperSockets or OSA adapter assigns an
active state to one of the logical ports to which a role was assigned. A local port in active bridge port state
receives all Ethernet frames with unknown destination MAC addresses.

Figure 60 on page 243 shows a setup with a HiperSockets bridge port and an OSA bridge port.

242 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO

Figure 60. HiperSockets and OSA bridge port in Linux

Differences between promiscuous mode and bridge-port roles
Making a logical port of an OSA or HiperSockets adapter an active bridge port is similar to enabling
promiscuous mode on a non-mainframe NIC that is connected to a real Ethernet switch. However, there
are important differences:

Number of ports in promiscuous mode

• Real switches: Any number of interfaces that are connected to a real switch can be turned to
promiscuous mode, and all of them then receive frames with unknown destination addresses.

• Bridge ports on IBM Z: Although you can assign the bridge-port role to multiple ports of a single OSA
or HiperSockets adapter, only one port is active and receives traffic to unknown destinations.

Monitoring traffic to other systems

• Real switches: A port of a real switch can be configured to receive frames with both known and
unknown destinations. If a NIC in promiscuous mode is connected to the port, the corresponding
host receives a copy of all traffic that passes through the switch. This includes traffic that is destined
to other hosts connected to this switch.

• Bridge ports on IBM Z: Only frames with unknown destinations are passed to the operating system.
It is not possible to monitor traffic addressed to systems connected to other ports of the same OSA
or HiperSockets adapter.

• On IBM Z: The HiperSockets network traffic analyzer (see “Setting up a HiperSockets network traffic
analyzer” on page 295) or z/VM guest LAN sniffer can be used to monitor traffic that is destined to
other ports.

Limitation by the source of traffic (OSA bridge port only)

• Real switches and HiperSockets bridge-port LAN: Frames with unknown destination MAC addresses
are delivered to the promiscuous interfaces regardless of the port through which the frames enter
the switch or HiperSockets adapter.

• OSA bridge port only: An active bridge port learns which MAC addresses need to be routed to the
owning system by analyzing ARP and other traffic. Incoming frames are routed to the active bridge
port if their destination MAC address:

– Matches an address that is learned or registered with the bridge port

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 243

– Is not learned or registered with any of the local ports of the OSA adapter, and it arrived from the
physical Ethernet port

Bridge port roles
Linux can assign a primary or secondary role to a logical port of an OSA or a HiperSockets adapter. Only
one logical port of such an adapter can be assigned the primary role, but multiple other logical ports
can be assigned secondary role. When one or more logical ports of an adapter are assigned primary or
secondary role, the hardware ensures that exactly one of these ports is active. The active port receives
frames with unknown destination. When a port with primary role is present, it always becomes active.
When only ports with secondary role are present, the hardware decides which one becomes active.
Changes in the ports' state are reported to Linux user space through udev events.

You can set a bridge port role either directly by using the bridge_role attribute or indirectly by using the
bridge_reflect_promisc attribute. See “Configuring a network device as a member of a Linux bridge”
on page 275.

Setting up the qeth device driver
No kernel or module parameters exist for the qeth device driver. qeth devices are set up using sysfs.

Loading the qeth device driver modules
Load the qeth device driver before you work with qeth devices.

Use the modprobe command to load the qeth device driver, and to automatically load all required
additional modules in the correct order:

qeth module syntax
modprobe qeth

 qeth_l2

 qeth_l3

where:
qeth

is the core module that contains common functions that are used for both layer 2 and layer 3
disciplines.

qeth_l2
is the module that contains layer 2 discipline-specific code.

qeth_l3
is the module that contains layer 3 discipline-specific code.

When a qeth device is configured for a particular discipline, the driver tries to automatically load the
corresponding discipline module. Automatic loading requires that automatic kernel module loading is
enabled in the distribution.

Switching the discipline of a qeth device
To switch the discipline of a device, the network interface must be shut down and the device must be
offline.

Some devices can only run in one discipline, see “Layer 2 and layer 3” on page 236. The device driver
rejects any request to switch the discipline of these devices.

If the new discipline is accepted by the device driver, the old network interface is deleted. When the new
discipline is set online the first time, the new network interface is created.

244 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Removing the modules
Removing a module is not possible if there are cross dependencies between the discipline modules and
the core module.

To release the dependencies from the core module to the discipline module, all devices of this discipline
must be ungrouped. Now the discipline module can be removed. If all discipline modules are removed,
the core module can be removed.

Working with qeth devices
Typical tasks for working with qeth devices include creating group devices, finding out the type of a
network adapter, and setting a device online or offline.

About this task
To make the changes persistent across IPLs, use the chzdev command. If you want to make dynamic
changes to the running system only, use sysfs.

Table 42 on page 245, Table 43 on page 246, and Table 44 on page 247 serve as both a task overview
and a summary of the attributes and the possible values you can write to them. Underlined values are
defaults.

Tip: Use the chzdev command to configure devices instead of using the attributes directly (see“chzdev -
Configure IBM Z devices” on page 584). You can also use the znetconf command for network devices.

Not all attributes are applicable to each device. Some attributes apply only to HiperSockets or only to
OSA-Express CHPIDs in QDIO mode, other attributes are applicable to IPv4 interfaces only. See the task
descriptions for the applicability of each attribute.

Table 42. qeth tasks and attributes common to layer2 and layer3

Task Corresponding
attributes

Possible attribute
values

“Setting the layer2 attribute” on page 250 layer2 0, 1, or -1 see “Layer
2 and layer 3” on page
236¹

“Using priority queueing” on page 251 priority_queueing prio_queueing_vlan
prio_queueing_skb
prio_queueing_prec
no_prio_queueing
no_prio_queueing:0
no_prio_queueing:1
no_prio_queueing:2
no_prio_queueing:3

“Specifying the number of inbound buffers” on page 253 buffer_count integer in the range 8
- 128. The default is
64 for OSA devices and
128 for HiperSockets
devices

“Finding out the maximum frame size” on page 254 inbuf_size n/a, read-only

“Specifying the relative port number” on page 254 portno integer, either 0 or 1, the
default is 0

“Finding out the type of your network adapter” on page
255

card_type n/a, read-only

“Setting a device online or offline” on page 256 online 0 or 1

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 245

Table 42. qeth tasks and attributes common to layer2 and layer3 (continued)

Task Corresponding
attributes

Possible attribute
values

“Finding out the interface name of a qeth group device” on
page 257

if_name n/a, read-only

“Finding out the bus ID of a qeth interface” on page 258 none n/a

“Activating an interface” on page 258 none n/a

“Deactivating an interface” on page 259 none n/a

“Recovering a device” on page 260 recover 1

“Configuring the receive checksum offload feature” on
page 261

none n/a

“Configuring the transmit checksum offload feature” on
page 261

none n/a

“Isolating data connections” on page 262 isolation none, drop, forward

“Displaying and resetting QETH performance statistics” on
page 265

performance_stats 0 or 1

“Capturing a hardware trace” on page 265 hw_trap arm
disarm

“Enabling and disabling TCP segmentation offload” on
page 262

none n/a

¹A value of -1 means that the layer is not set and that the default layer setting is used when the device is set
online.

Table 43. qeth functions and attributes in layer 2 mode

Function
Corresponding
attributes Possible attribute values

“Configuring a network device as a member of a Linux
bridge” on page 275

bridge_role
bridge_state
bridge_hostnotify

primary, secondary, none
active, standby, inactive
0 or 1

“Advanced packet-handling configuration” on page 278 vnicc/bridge_invisible
vnicc/flooding
vnicc/learning
vnicc/mcast_flooding
vnicc/rx_bcast
vnicc/takeover_learning
vnicc/takeover_setvmac
vnicc/learning_timeout

0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
0 or 1
integer in the range
60 - 86400
the default is 600

246 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 44. qeth tasks and attributes in layer 3 mode

Task Corresponding
attributes

Possible attribute
values

“Setting up a Linux router” on page 266 route4
route6

primary_router
secondary_router
primary_connector
secondary_connector
multicast_router
no_router

“Enabling and disabling TCP segmentation offload” on
page 262

none n/a

“Faking broadcast capability” on page 269 fake_broadcast ¹ 0 or 1

“Taking over IP addresses” on page 270 ipa_takeover/enable 0 or 1 or toggle

ipa_takeover/add4
ipa_takeover/add6
ipa_takeover/del4
ipa_takeover/del6

IPv4 or IPv6 IP address
and mask bits

ipa_takeover/invert4
ipa_takeover/invert6

0 or 1 or toggle

“Configuring a device for proxy ARP” on page 273 rxip/add4
rxip/del4

IPv4 IP address

Configuring a device for Neighbor Discovery Protocol (NDP)
proxy

rxip/add6
rxip/del6

IPv6 IP address

“Configuring a device for virtual IP address (VIPA)” on
page 274

vipa/add4
vipa/add6
vipa/del4
vipa/del6

IPv4 or IPv6 IP address

“Configuring a HiperSockets device for AF_IUCV
addressing” on page 274

hsuid 1 to 8 characters

“Setting up a HiperSockets network traffic analyzer” on
page 295

sniffer 0 or 1

¹ not valid for HiperSockets

Tip: Use the qethconf command instead of using the attributes for IPA, proxy ARP, and VIPA directly
(see “qethconf - Configure qeth devices” on page 703).

sysfs provides multiple paths through which you can access the qeth group device attributes. For
example, if a device with bus ID 0.0.a100 corresponds to interface enca100:

/sys/bus/ccwgroup/drivers/qeth/0.0.a100
/sys/bus/ccwgroup/devices/0.0.a100
/sys/devices/qeth/0.0.a100
/sys/class/net/enca100/device

all lead to the attributes for the same device. For example, the following commands are all equivalent and
return the same value:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 247

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
enca100
cat /sys/bus/ccwgroup/devices/0.0.a100/if_name
enca100
cat /sys/devices/qeth/0.0.a100/if_name
enca100
cat /sys/class/net/enca100/device/if_name
enca100

The path through /sys/class/net becomes available when the device is first set online and the
interface is created. The path persists until the device is ungrouped.

Tips:

• Work through one of the paths that are based on the device bus-ID.
• Using Ubuntu Server 22.04 LTS, you set qeth attributes using chzdev. Ubuntu Server creates

udev configuration files with names of the form /etc/udev/rules.d/41-qeth-<device_bus-
ID>.rules.

The following sections describe the tasks in detail.

Enabling a qeth device
Use the chzdev command to create a group device, configure it, and set it online. Alternatively, for a
non-persistent configuration, you can use the znetconf command or sysfs.

Before you begin
You must know the device bus-ID that corresponds to the read subchannel of your OSA-Express CHPID in
QDIO mode or HiperSockets CHPID as defined in the IOCDS of your mainframe.

If you are using simulated NICs to couple to a z/VM virtual switch (VSWITCH) or a guest LAN, you need to
know the virtual device addresses that were used in z/VM to define the simulated NIC.

Procedure
To enable a QETH device and create a persistent configuration, issue a command of the form:

chzdev --enable qeth <read>

For example, if the read subchannel has a device bus-ID of 0.0.a000:

chzdev --enable qeth 0.0.a000

This configures the read subchannel 0.0.a000, the write subchannel 0.0.a001, and the data subchannel
0.0.a002

Results
The chzdev command creates a group device in sysfs and sets a number of attributes for it, including
the layer2 attribute. The command also sets the group device online. For more information about the
attributes, see the corresponding sections.

For example, to see the attributes set for device 0.0.a000, that has been assigned device name enca000,
use the lsqeth command:

248 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsqeth enca000
Device name : enca000

 card_type : OSD_1000
 cdev0 : 0.0.a000
 cdev1 : 0.0.a001
 cdev2 : 0.0.a002
 chpid : 76
 online : 1
 portname : no portname required
 portno : 0
 route4 : no
 route6 : no
 state : UP (LAN ONLINE)
 priority_queueing : always queue 0
 fake_broadcast : 0
 buffer_count : 64
 layer2 : 0
 isolation : none
 sniffer : 0
 switch_attrs : unknown

Example

In this example (see Figure 61 on page 249), a single OSA-Express CHPID in QDIO mode is used to
connect a Linux instance to a network.

Mainframe configuration:

Figure 61. Mainframe configuration

Linux configuration:

Assuming that 0.0.aa00 is the device bus-ID that corresponds to the read subchannel:

chzdev --enable qeth 0.0.a000

This command results in the creation of the following directories in sysfs:

• /sys/bus/ccwgroup/drivers/qeth/0.0.aa00
• /sys/bus/ccwgroup/devices/0.0.aa00
• /sys/devices/qeth/0.0.aa00

Both the command and the resulting directories would be the same for a HiperSockets CHPID.

What to do next
To change an attribute, or to set another attribute, issue a command of the form:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 249

chzdev <device_type> <device_bus_ID> <attribute>=<value>

For example, to set the device 0.0.a000 offline, issue:

chzdev qeth 0.0.a000 online=0

To remove a qeth group device, use the ungroup attribute. For example, to ungroup the device you just
created, issue:

chzdev qeth 0.0.a000 ungroup=1

Setting the layer2 attribute
If the detected hardware always runs in a specific discipline, the corresponding discipline module is
automatically requested.

Before you begin
• To change a configured layer2 attribute, the network interface must be shut down and the device must

be set offline.
• If you are using the layer2 option within a QDIO-based VSWITCH or guest LAN environment, avoid
defining a VLAN with ID 1. Some switch vendors use ID 1 as the default value.

• IQD channels that in the IOCDS are defined as "external-bridged" must be configured to use layer 2.

About this task
The qeth device driver attempts to load the layer 3 discipline for HiperSockets devices and layer 2 for
non-HiperSockets devices.

You can use the layer 2 mode for almost all device types, however, note the following about layer 2 to
layer 3 conversion:
real OSA-Express

Hardware is able to convert layer 2 to layer 3 traffic and vice versa and thus there are no restrictions.
HiperSockets

There is no support for layer 2 to layer 3 conversion and, thus, no communication is possible between
HiperSockets layer 2 interfaces and HiperSockets layer 3 interfaces. Do not include HiperSockets
layer 2 interfaces and HiperSockets layer 3 interfaces in the same LAN.

z/VM VSWITCH or guest LAN
The qeth device driver detects the mode of the VSWITCH or LAN to which the NIC is coupled, and
sets this mode on the device. The z/VM definition "Ethernet mode" is available for VSWITCHes and for
guest LANs of type QDIO.

Procedure
The qeth device driver separates the configuration options in sysfs according to the device discipline.
Hence the first configuration action after you group the device must be the configuration of the discipline.
To set the discipline, issue a command of the form:

chzdev <device_bus_id> layer2=<integer>

where <integer> is

• 0 to turn off the layer2 attribute; this results in the layer 3 discipline (default for HiperSockets).
• 1 to turn on the layer2 attribute; this results in the layer 2 discipline (default for network devices other

than HiperSockets).

250 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

If the layer2 attribute has a value of -1 (default), the layer was not set and the device drivers attempts
to detect the correct layer setting. This setting persists across re-boots. For more details, see Chapter 25,
“Persistent device configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute layer2:

echo <integer> > /sys/devices/qeth/<device_bus_id>/layer2

Results
If you configured the discipline successfully, more configuration attributes are shown (for example, route4
for the layer 3 discipline) and can be configured. If an OSA device is not configured for a discipline but is
set online, the device driver assumes that it is a layer 2 device. It then tries to load the layer 2 discipline.

For information about layer2, see:

• Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935
• OSA-Express Implementation Guide, SG24-5948
• Networking Overview for Linux on zSeries, REDP-3901
• z/VM: Connectivity, SC24-6267

Using priority queueing
An OSA-Express CHPID in QDIO mode has up to four output queues (queues 0 - 3). The priority queueing
feature gives these queues different priorities (queue 0 having the highest priority). The four output
queues are available only if multiple priority is enabled for queues on the OSA-Express CHPID in QDIO
mode.

Before you begin
• Priority queueing applies to OSA-Express CHPIDs in QDIO mode only.
• If more than 160 TCP/IP stacks per OSA-Express CHPID are defined in the IOCDS, priority queueing is

disabled.
• The device must be offline while you set the queueing options.

About this task
Queueing is relevant mainly in high traffic situations. When there is little traffic, queueing has no impact
on processing. The qeth device driver can put data on one or more of the queues. By default, the driver
uses queue 2 for all data.

Procedure
You can determine how outgoing IP packages are assigned to queues by setting a value for the
priority_queueing attribute of your qeth device.
Issue a command of the form:

chzdev <device_bus_id> priority_queueing=<method>

where <method> can be any of these values:

prio_queueing_vlan
to base the queue assignment on the two most significant bits in the priority code point in the IEEE
802.1Q header as used in VLANs. This value affects only traffic with VLAN headers, and hence works
only with qeth devices in layer 2 mode.

You can set the priority code point in the IEEE 802.1Q headers of the traffic based on skb-
>priority by using a command of the form:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 251

ip link add link <link> name <name> type vlan id <vlan-id> egress-qos-map <mapping>

Note: Enabling this option makes all traffic default to queue 3.

prio_queueing_skb
to base the queue assignment on the priority flag of the skbs. An skb, or socket buffer, is a Linux
kernel-internal structure that represents network data. The mapping to the priority queues is as
follows:

Table 45. Mapping of flag value to priority queues

Priority flag of the skb Priority queue

0-1 3

2-3 2

4-5 1

≥6 0

You can use prio_queueing_skb for any network setups, including conventional LANs.

Use either sockopt SO_PRIORITY or an appropriate iptables command to adjust the priority flag
of the skb (skb->priority).

Note: The priority flag of the skbs defaults to 0, hence enabling this option makes all traffic default to
queue 3.

prio_queueing_prec
to base the queue assignment on the two most significant bits of each packet's IP header precedence
field. To set the precedence field, use sockopt IP_TOS (for IPv4) or IPV6_TCLASS (for IPv6).

Note: Enabling this option makes all traffic default to queue 3.

no_prio_queueing
causes the qeth device driver to use queue 2 for all packets. This value is the default.

no_prio_queueing:0
causes the qeth device driver to use queue 0 for all packets.

no_prio_queueing:1
causes the qeth device driver to use queue 1 for all packets.

no_prio_queueing:2
causes the qeth device driver to use queue 2 for all packets. This value is equivalent to the default.

no_prio_queueing:3
causes the qeth device driver to use queue 3 for all packets.

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute priority_queueing:

echo <method> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

Example

To read what is set for priority queueing for device 0.0.a110, issue:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a110/priority_queuing

Possible results are:

252 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

by VLAN headers
if prio_queueing_vlan is set.

by skb-priority
if prio_queueing_skb is set.

by precedence
if prio_queueing_prec is set.

by type of service
if prio_queuing_tos is set.

always queue <x>
otherwise.

To configure queueing by skb->priority setting for device 0.0.a110 persistently, issue:

chzdev 0.0.a110 priority_queueing=prio_queueing_skb

For the current configuration only, use chzdev -a or sysfs:

echo prio_queueing_skb > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/priority_queueing

Specifying the number of inbound buffers
Depending on the amount of available storage and the amount of traffic, you can assign 8 - 128 inbound
buffers for each qeth group device.

Before you begin
The device must be offline while you specify the number of buffers for inbound traffic.

About this task
By default, the qeth device driver assigns 64 inbound buffers to OSA devices and 128 to HiperSockets
devices.

The Linux memory usage for inbound data buffers for the devices is: (number of buffers) × (buffer size).

The buffer size is equivalent to the frame size. See “Finding out the maximum frame size” on page 254 for
details.

Procedure
Set the buffer_count attribute to the number of inbound buffers you want to assign.
Issue a command of the form:

chzdev <device_type> <device_bus_id> buffer_count=<number>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute buffer_count:

echo <number> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/buffer_count

Example

In this example,an operational device 0.0.a000 is first set offline, 64 inbound buffers are assigned to the
device, and then the device is set back online:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 253

chzdev -d -a 0.0.a000
chzdev 0.0.a000 buffer_count=64
chzdev -e -a 0.0.a000

or, using sysfs:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/online
echo 64 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/buffer_count
echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/online

Finding out the maximum frame size
The inbuf_size attribute returns the maximum frame size (MFS) in KB. To find out the MFS, read the
inbuf_size attribute of the devices.

About this task
An OSA-Express CHPID in QDIO mode allows packing of data, and always runs with an MFS of 64 KB.

HiperSockets CHPIDs do not pack data and run with a frame size that matches their definition in the
hardware configuration (IOCP CHPARM specification). On HiperSockets, the MFS maps to corresponding
maximum transmission unit (MTU) sizes, see Table 46 on page 254.

Table 46. HiperSockets MFS and corresponding MTU sizes

inbuf_size value MFS MTU

16k 16 KB 8 KB

24k 24 KB 16 KB

40k 40 KB 32 KB

64k 64 KB 56 KB

Procedure
Issue a command of this form to get a list of all attributes and find the inbuf_size attribute:

lszdev qeth <device_bus_id> --info --info |grep inbuf_size

Alternatively, use sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/inbuf_size

Example

To find the inbuf_size of a device 0.0.a100 issue:

lszdev qeth 0.0.a100 --info --info | grep inbuf_size
inbuf_size "64k"

or:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/inbuf_size
64k

Specifying the relative port number
Use the portno attribute to specify the relative port number.

254 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
• This description applies to network adapters that, per CHPID, show more than one port to Linux.
• The device must be offline while you specify the relative port number.

Procedure
By default, the qeth group device uses port 0.
To use a different port, issue a command of the form:

chzdev <device_bus_id> portno=<integer>

Where <integer> is either 0 or 1. This setting persists across re-boots. For more details, see Chapter 25,
“Persistent device configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute portno:

echo <integer> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/portno

Example
In this example, port 1 is assigned to the qeth group device.

chzdev 0.0.a000 portno=1

or, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a000/portno

Finding out the type of your network adapter
Use the card_type attribute to find out the type of the network adapter through which your device is
connected.

Procedure
You can find out the type of the network adapter through which your device is connected. To find out the
type, read the device's card_type attribute.
To list all attributes, issue a command of the form:

lszdev <device_type> <device_bus_id> --info --info

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/card_type

The card_type attribute gives information about both the type of network adapter and the type of
network link (if applicable) available at the card's ports. See Table 47 on page 256 for details.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 255

Table 47. Possible values of card_type and what they mean

Value of card_type Adapter type Link type

OSD_25GIG OSA card in OSD mode 25 Gigabit Ethernet

OSD_10GIG 10 Gigabit Ethernet

OSD_1000 Gigabit Ethernet, 1000BASE-T

OSD_100 Fast Ethernet

OSD_GbE_LANE Gigabit Ethernet, LAN Emulation

OSD_FE_LANE Fast Ethernet, LAN Emulation

OSD_Express Unknown

OSX OSA-Express for zBX 10 Gigabit Ethernet

HiperSockets HiperSockets, CHPID type IQD N/A

Virtual NIC QDIO VSWITCH or guest LAN based on OSA N/A

Virtual NIC Hiper Guest LAN based on HiperSockets N/A

Unknown Other

Example
To find the card_type of a device 0.0.a100 issue:

lszdev qeth 0.0.a100 --info --info
...
 READONLY ACTIVE
 card_type "OSD_1000"
....

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/card_type
OSD_1000

Setting a device online or offline
Use the online device group attribute to set a device online or offline.

Procedure
To set a qeth group device online, set the online device group attribute to 1. To set a qeth group device
offline, set the online device group attribute to 0.
Issue a command of the form:

chzdev <device_bus_id> online=<flag>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute online:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/online

256 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Results
Setting a device online associates it with an interface name (see “Finding out the interface name of a
qeth group device” on page 257). When you set a device successfully online or offline, a change uevent is
created.

Setting a device offline closes this network device. If IPv6 is active, you lose any IPv6 addresses set for
this device. After you set the device online, you can restore lost IPv6 addresses only by issuing the ip or
an equivalent command again.

Example

To set a qeth device with bus ID 0.0.a100 online persistently, issue:

chzdev 0.0.a100 online=1

or, for the running configuration only using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

To set the same device offline issue:

chzdev 0.0.a100 online=0

or, for the running configuration only using sysfs:

echo 0 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/online

Finding out the interface name of a qeth group device
When a qeth group device is set online, an interface name is assigned to it.

Procedure
To find the interface name of a qeth group device, either:
• Obtain a list of all attributes for a device by issuing the lszdev command for the device.

Issue a command of the form:

lszdev qeth <device_bus_id> --info --info

• Obtain a mapping for all qeth interfaces and devices by issuing the lsqeth -p command.
• Find out the interface name of a qeth group device for which you know the device bus-ID by reading

the group device's if_name attribute.
Issue a command of the form:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/if_name

Example

lszdev qeth 0.0.a100 --info --info
 ...
if_name "enca100"
....

or, using sysfs:

cat /sys/bus/ccwgroup/drivers/qeth/0.0.a100/if_name
enca100

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 257

Finding out the bus ID of a qeth interface
Use the lsqeth -p command to obtain a mapping for all qeth interfaces and devices. Alternatively, you
can use sysfs.

Procedure
To find the device bus-ID that corresponds to an interface, either:
• Use the lsqeth -p command.
• Use the readlink command.

For each network interface, there is a directory in sysfs under /sys/class/net/, for example, /sys/
class/net/enca100 for interface enca100. This directory contains a symbolic link "device" to the
corresponding device in /sys/devices. Read this link to find the device bus-ID of the device that
corresponds to the interface.

Example

To find out which device bus-ID corresponds to an interface enca100 issue, for example:

readlink /sys/class/net/enca100/device
../../../0.0.a100

In this example, enca100 corresponds to the device bus-ID 0.0.a100.

Activating an interface
Use the ip command or equivalent to activate an interface.

Before you begin
• You must know the interface name of the qeth group device (see “Finding out the interface name of a

qeth group device” on page 257).
• You must know the IP address that you want to assign to the device.

About this task
The MTU size defaults to the correct settings for HiperSockets devices. For OSA-Express CHPIDs in QDIO
mode, the default MTU size depends on the device mode, layer 2 or layer 3.

• For layer 2, the default MTU is 1500 bytes.
• For layer 3, the default MTU is 1492 bytes.

In most cases, these defaults are well suited for OSA-Express CHPIDs in QDIO mode. If your network is
laid out for jumbo frames, increase the MTU size to a maximum of 9000 bytes for layer 2, or to 8992 bytes
for layer 3. See Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935 for more
details about MTU size.

For HiperSockets, the maximum MTU size is restricted by the maximum frame size as announced by
the Licensed Internal Code (LIC). The maximum MTU is equal to the frame size minus 8 KB. Hence, the
possible frame sizes of 16 KB, 24 KB, 40 KB, or 64 KB result in maximum corresponding MTU sizes of
8 KB, 16 KB, 32 KB, or 56 KB.

Procedure
You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

258 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

• This example activates a HiperSockets CHPID with broadcast address 192.168.100.255:

ip addr add 192.168.100.10/24 dev enca1c0
ip link set dev enca1c0 up

• This example activates an OSA-Express CHPID in QDIO mode with broadcast address
192.168.100.255:

ip addr add 192.168.100.11/24 dev encf500
ip link set dev encf500 up

• This example reactivates an interface that was already activated and subsequently deactivated:

ip link set dev encf500 up

Confirming that an IP address has been set under layer 3
There may be circumstances that prevent an IP address from being set, most commonly if another system
in the network has set that IP address already.

About this task
The Linux network stack design does not allow feedback about IP address changes. If ip or an equivalent
command fails to set an IP address on an OSA-Express network CHPID, a query with ip shows the
address as being set on the interface although the address is not actually set on the CHPID.

There are usually failure messages about not being able to set the IP address or duplicate IP addresses in
the kernel messages. You can find these messages in the output of the dmesg command.

If you are not sure whether an IP address was set properly or experience a networking problem, check
the messages or logs to see if an error was encountered when setting the address. This also applies in the
context of HiperSockets and to both IPv4 and IPv6 addresses. It also applies to whether an IP address
has been set for IP takeover, for VIPA, or for proxy ARP.

Duplicate IP addresses
The OSA-Express adapter in QDIO mode recognizes duplicate IP addresses on the same OSA-Express
adapter or in the network using ARP and prevents duplicates.

About this task
Several setups require duplicate addresses:

• To perform IP takeover you need to be able to set the IP address to be taken over. This address exists
prior to the takeover. See “Taking over IP addresses” on page 270 for details.

• For proxy ARP you need to register an IP address for ARP that belongs to another Linux instance. See
“Configuring a device for proxy ARP” on page 273 for details.

• For VIPA you need to assign the same virtual IP address to multiple devices. See “Configuring a device
for virtual IP address (VIPA)” on page 274 for details.

You can use the qethconf command (see “qethconf - Configure qeth devices” on page 703) to maintain
a list of IP addresses that your device can take over, a list of IP addresses for which your device can
handle ARP, and a list of IP addresses that can be used as virtual IP addresses, regardless of any
duplicates on the same OSA-Express adapter or in the LAN.

Deactivating an interface
You can deactivate an interface with ip or an equivalent command or by setting the network device
offline.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 259

About this task
Setting a device offline involves actions on the attached device, but deactivating a device only stops the
interface logically within Linux.

Procedure
To deactivate an interface with ip, issue a command of the form:

ip link set dev <interface_name> down

Example
To deactivate encf500 issue:

ip link set dev encf500 down

Recovering a device
You can use the recover attribute of a qeth group device to recover it in case of failure.

About this task
For example, error messages from the qeth, qdio, or cio kernel modules might inform you of a
malfunctioning device.

Setting the recover attribute schedules recovery synchronously, however the recovery itself might take
some time.

Procedure
Issue a command of the form:

chzdev <device_bus_id> -a recover=1

Alternatively, use the sysfs attribute recover:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/recover

Example

chzdev 0.0.a100 -a recover=1

Alternatively, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/recover

Configuring hardware checksum offload operations
Some CPU-intensive operations can be offloaded to the OSA adapter, thus reducing the load on the host
CPU.

The qeth device driver supports offloading for the following operations on both layer 2 and layer 3:

• Inbound (receive) and outbound (transmit) checksum calculations for TCP and UDP network packets
• TCP segmentation, see “Enabling and disabling TCP segmentation offload” on page 262.

VLAN interfaces inherit offload settings from their base interface.

260 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

You can set the offload operations with the Linux ethtool command. See the ethtool man page for
details. The following abbreviated example shows some of the offload settings:

ethtool -k encf500
Features for encf500:
rx-checksumming: on
tx-checksumming: on
 tx-checksum-ipv4: on
 tx-checksum-ip-generic: off [fixed]
 tx-checksum-ipv6: on
 tx-checksum-fcoe-crc: off [fixed]
 tx-checksum-sctp: off [fixed]
scatter-gather: on
 tx-scatter-gather: on
 tx-scatter-gather-fraglist: off [fixed]
tcp-segmentation-offload: on
 tx-tcp-segmentation: on
 tx-tcp-ecn-segmentation: off [fixed]
 tx-tcp6-segmentation: on
udp-fragmentation-offload: off [fixed]
generic-segmentation-offload: off [requested on]
generic-receive-offload: on
large-receive-offload: off [fixed]
...

Configuring the receive checksum offload feature
A checksum calculation is a form of redundancy check to protect the integrity of data.

Procedure
To enable or disable checksum calculations by the OSA feature, issue a command of this form:

ethtool -K <interface_name> rx <value>

where <value> is on or off.

Examples

• To let the OSA feature calculate the inbound checksum for network device encf500, issue

ethtool -K encf500 rx on

• To let the host CPU calculate the inbound checksum for network device encf500, issue

ethtool -K encf500 rx off

Configuring the transmit checksum offload feature
The qeth device driver supports offloading outbound (transmit) checksum calculations to the OSA feature.

About this task
You can enable or disable the OSA feature calculating the transmit checksums by using the ethtool
command.

Procedure
Issue a command of the form:

ethtool -K <interface_name> tx <value>

where <value> is on or off.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 261

Example

• To let the OSA feature calculate the outbound checksum for network device encf500, issue

ethtool -K encf500 tx on

• To let the host CPU calculate the outbound checksum for network device encf500, issue

ethtool -K encf500 tx off

Enabling and disabling TCP segmentation offload
Offloading the TCP segmentation operation from the Linux network stack to the adapter can lead to
enhanced performance for interfaces with predominately large outgoing packets.

About this task
TCP segmentation offload is supported for OSA connections on layer 3. On layer 2 it is available as of
z14 for OSA Express6S and newer adapters. Use the ethtool -k (see example in “Configuring hardware
checksum offload operations” on page 260) to check whether your system supports it.

Procedure
Outbound (TX) checksumming and scatter gather are prerequisites for TCP segmentation offload (TSO).
You must turn on scatter gather and outbound checksumming before configuring TSO.
All three options can be turned on or off with a single ethtool command of the form:

ethtool -K <interface_name> tx <value> sg <value> tso <value>

where <value> is either on or off. For more information about TX checksumming, see “Configuring the
transmit checksum offload feature” on page 261.

Attention: When TCP segmentation is offloaded, the OSA feature performs the calculations. Offloaded
calculations are supported only for packets that go out to the LAN.

Examples

• To enable TSO for a network device eth0 issue:

ethtool -K eth0 tx on sg on tso on

• To disable TSO for a network device eth0 issue:

ethtool -K eth0 tx off sg off tso off

Isolating data connections
You can restrict communications between operating system instances that share an OSA port on an OSA
adapter.

About this task
A Linux instance can configure the OSA adapter to prevent any direct package exchange between itself
and other operating system instances that share an OSA adapter. This configuration ensures a higher
degree of isolation than VLANs.

QDIO data connection isolation is configured as a policy. The policy is implemented as a sysfs attribute
called isolation. The attribute appears in sysfs regardless of whether the hardware supports the
feature. The policy can take the following values:

262 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

none
No isolation. This value is the default.

drop
Specifies the ISOLATION_DROP policy. All packets from guests that share an OSA adapter to guests
that have this policy configured are dropped automatically. The same holds for all packets that are
sent by the guest with this policy configured to guests on the same OSA card. All packets to or from
the isolated guest must have a target that is not hosted on the OSA card. You can accomplish this by a
router hosted on a separate machine or a separate OSA adapter.

For example, assume that three Linux instances share an OSA adapter, but only one instance (Linux A)
must be isolated. Then Linux A declares its OSA adapter (QDIO Data Connection to the OSA adapter)
to be isolated. Any packet sent to or from Linux A must pass at least the physical switch to which the
shared OSA adapter is connected. Linux A cannot communicate with other instances that share the
OSA adapter, here B or C. The two other instances can still communicate directly through the OSA
adapter without the external switch in the network path (see Figure 62 on page 263).

Figure 62. Linux instance A is isolated from instances B and C

forward
Specifies the ISOLATION_FORWARD policy. All packets are passed through a switch. The
ISOLATION_FORWARD policy requires a network adapter in VEPA mode with an adjacent switch port
configured for reflective relay mode.

To check whether the switch of the adapter is in reflective relay mode, read the sysfs attribute
switch_attrs. The attribute lists all supported forwarding modes, with the currently active mode
enclosed in square brackets. For example:

lszdev qeth 0.0.f5f0 --info --info
...
READONLY ACTIVE
...
switch_attrs: "802.1 [rr]"

Or, using sysfs to query the attribute directly:

cat /sys/devices/qeth/0.0.f5f0/switch_attrs
802.1 [rr]

The example indicates that the adapter supports both 802.1 forwarding mode and reflective relay
mode, and reflective relay mode is active.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 263

Using a network adapter in VEPA mode achieves further isolation. VEPA mode forces traffic from
the Linux guests to be handled by the external switch. For example, Figure 63 on page 264 shows
instances A and B with ISOLATION_FORWARD specified for the policy. All traffic between A and B
goes through the external switch. The rule set of the switch now determines which connections are
possible. The graphic assumes that A can communicate with B, but not with C.

Figure 63. Traffic from Linux instance A and B is forced through an external switch

If the ISOLATION_FORWARD policy was enforced successfully, but the switch port later loses the
reflective-relay capability, the device is set offline to prevent damage.

You can configure the policy regardless of whether the device is online. If the device is online, the policy is
configured immediately. If the device is offline, the policy is configured when the device comes online.

Examples

• To check the current isolation policy:

cat /sys/devices/qeth/0.0.f5f0/isolation

• To set the isolation policy to ISOLATION_DROP:

chzdev qeth 0.0.f5f0 isolation=drop

Or, using sysfs:

echo drop > /sys/devices/qeth/0.0.f5f0/isolation

• To set the isolation policy to ISOLATION_FORWARD:

chzdev qeth 0.0.f5f0 isolation=forward

Or, using sysfs:

echo forward > /sys/devices/qeth/0.0.f5f0/isolation

If the switch is not capable of VEPA support, or VEPA support is not configured on the switch, then you
cannot set the isolation attribute value to 'forward' while the device is online. If the switch does not

264 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

support VEPA and you set the isolation value 'forward' while the device is offline, then the device cannot
be set online until the isolation value is set back to 'drop' or 'none'.

• To set the isolation policy to none:

chzdev qeth 0.0.f5f0 isolation=none

Or, using sysfs:

echo none > /sys/devices/qeth/0.0.f5f0/isolation

When you use vNICs, VEPA mode must be enabled on the respective VSWITCH. See z/VM: Connectivity,
SC24-6267 for information about setting up data connection isolation on a VSWITCH.

Displaying and resetting QETH performance statistics
Use the ethtool to display the QETH performance statistics and the performance_stats sysfs
attribute to reset the statistic values.

About this task
Ubuntu Server continuously gathers QETH performance data.

Procedure
1. Use the ethtool command to display the statistics. For details, see the ethtool man page.
2. Optional: Reset the statistic values to 0 by writing 1 to the performance_stats sysfs attribute of the

QETH device.
For example:

chzdev -a <device_bus_id> performance_stats=1

or, using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/performance_stats

Capturing a hardware trace
Hardware traces are intended for use by the IBM service organization. Hardware tracing is turned off by
default. Turn on the hardware-tracing feature only when instructed to do so by IBM service.

Before you begin
• The OSA-Express adapter must support the hardware-tracing feature.
• The qeth device must be online to return valid values of the hw_trap attribute.

About this task
When errors occur on an OSA-Express adapter, both software and hardware traces must be collected.
Instructions for software traces depend on a case-by-case basis and are communicated as part of the
service process. The hardware-tracing feature requests a hardware trace if an error is detected. This
feature makes it possible to correlate the hardware trace with the device driver trace. If the hardware-
tracing feature is activated, traces are captured automatically, but you can also start the capturing
yourself.

Procedure
To activate or deactivate the hardware-tracing feature, issue a command of the form:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 265

chzdev <device_bus_id> -a hw_trap=<value>

Where <value> can be:
arm

If the hardware-tracing feature is supported, write arm to the hw_trap sysfs attribute to activate it. If
the hardware-tracing feature is present and activated, the hw_trap sysfs attribute has the value arm.

disarm
Write disarm to the hw_trap sysfs attribute to turn off the hardware-tracing feature. If the
hardware-tracing feature is not present or is turned off, the hw_trap sysfs attribute has the value
disarm. This setting is the default.

trap
(Write only) Capture a hardware trace. Hardware traces are captured automatically, but if asked to do
so by IBM service, you can start the capturing yourself by writing trap to the hw_trap sysfs attribute.
The hardware trap function must be set to arm.

Examples

In this example the hardware-tracing feature is activated and started for qeth device 0.0.a000:

chzdev 0.0.a000 -a hw_trap=arm
chzdev 0.0.a000 -a hw_trap=trap

Alternatively, using sysfs directly:

1. Check that the hw_trap sysfs attribute is set to arm:

cat /sys/devices/qeth/0.0.a000/hw_trap
arm

2. Start the capture:

echo trap > /sys/devices/qeth/0.0.a000/hw_trap

Working with qeth devices in layer 3 mode
Tasks you can perform on qeth devices in layer 3 mode include setting up a router, configuring TCP
segmentation offload, and taking over IP addresses.

Use the layer 2 attribute to set the mode. See “Setting the layer2 attribute” on page 250 about setting
the mode. See “Layer 2 and layer 3” on page 236 for general information about the layer 2 and layer 3
disciplines.

Setting up a Linux router
By default, your Linux instance is not a router. Depending on your IP version, IPv4 or IPv6 you can use the
route4 or route6 attribute of your qeth device to define it as a router.

Before you begin
• A suitable hardware setup must be in place that enables your Linux instance to act as a router.
• The Linux instance is set up as a router. To configure Linux running as a z/VM guest or in an LPAR as a

router, IP forwarding must be enabled in addition to setting the route4 or route6 attribute.

For IPv4, enable IP forwarding by issuing:

sysctl -w net.ipv4.conf.all.forwarding=1

For IPv6, enable IP forwarding by issuing:

266 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

sysctl -w net.ipv6.conf.all.forwarding=1

About this task
You can set the route4 or route6 attribute dynamically, while the qeth device is online.

The same values are possible for route4 and route6 but depend on the type of CHPID, as shown in Table
48 on page 267.

Table 48. Summary of router setup values

Router specification OSA-Express CHPID in QDIO
mode

HiperSockets CHPID

primary_router Yes No

secondary_router Yes No

primary_connector No Yes

secondary_connector No Yes

multicast_router Yes Yes

no_router Yes Yes

Both types of CHPIDs accept:
multicast_router

causes the qeth driver to receive all multicast packets of the CHPID. For a unicast function for
HiperSockets see “HiperSockets Network Concentrator” on page 290.

no_router
is the default. You can use this value to reset a router setting to the default.

An OSA-Express CHPID in QDIO mode accepts the following values:
primary_router

to make your Linux instance the principal connection between two networks.
secondary_router

to make your Linux instance a backup connection between two networks.

A HiperSockets CHPID accepts the following values, if the microcode level supports the feature:
primary_connector

to make your Linux instance the principal connection between a HiperSockets network and an
external network (see “HiperSockets Network Concentrator” on page 290).

secondary_connector
to make your Linux instance a backup connection between a HiperSockets network and an external
network (see “HiperSockets Network Concentrator” on page 290).

Example

In this example (see Figure 64 on page 268), two Linux instances, "Linux P" and "Linux S", running on
an IBM mainframe use OSA-Express to act as primary and secondary routers between two networks. IP
forwarding must be enabled for Linux in an LPAR or as a z/VM guest to act as a router. IP forwarding is
configured in procfs or in a configuration file; see the Ubuntu Server 22.04 LTS manuals for details.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 267

Mainframe configuration:

Figure 64. Mainframe configuration

It is assumed that both Linux instances are configured as routers in their LPARs or in z/VM.

Linux P configuration:

To create the qeth group devices:

chzdev --enable qeth 0.0.0400,0.0.0401,0.0.0402
chzdev --enable qeth 0.0.0200,0.0.0201,0.0.0202

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute group:

echo 0.0.0400,0.0.0401,0.0.0402 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0200,0.0.0201,0.0.0202 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux P a primary router for IPv4:

chzdev qeth 0.0.0400 route4=primary_router
chzdev qeth 0.0.0200 route4=primary_router

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute route4:

echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0400/route4
echo primary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0200/route4

Linux S configuration:

To create the qeth group devices:

chzdev --enable qeth 0.0.0404,0.0.0405,0.0.0406
chzdev --enable qeth 0.0.0204,0.0.0205,0.0.0206

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute group:

268 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo 0.0.0404,0.0.0405,0.0.0406 > /sys/bus/ccwgroup/drivers/qeth/group
echo 0.0.0204,0.0.0205,0.0.0206 > /sys/bus/ccwgroup/drivers/qeth/group

To make Linux S a secondary router for IPv4:

chzdev qeth 0.0.0400 route4=secondary_router
chzdev qeth 0.0.0200 route4=secondary_router

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute route4:

echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0404/route4
echo secondary_router > /sys/bus/ccwgroup/drivers/qeth/0.0.0204/route4

In this example, qeth device 0.0.1510 is defined as a primary router for IPv6:

chzdev --enable qeth 0.0.1510,0.0.1511,0.0.1512
chzdev qeth 0.0.1510 route6=primary_router
lszdev 1510 -i | grep route6
primary router

Alternatively, using sysfs attributes:

cd /sys/bus/ccwgroup/drivers/qeth/0.0.1510
echo 1 > online
echo primary_router > route6
cat route6
primary router

See “HiperSockets Network Concentrator” on page 290 for further examples.

Faking broadcast capability
It is possible to fake the broadcast capability for devices that do not support broadcasting.

Before you begin
• You can fake the broadcast capability only on devices that do not support broadcast.
• The device must be offline while you enable faking broadcasts.

About this task
For devices that support broadcast, the broadcast capability is enabled automatically.

To find out whether a device supports broadcasting, use the ip command. If the resulting list shows the
BROADCAST flag, the device supports broadcast. This example shows that the device encf500 supports
broadcast:

ip -s link show dev encf500
3: encf500: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1492 qdisc pfifo_fast qlen 1000
 link/ether 00:11:25:bd:da:66 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 236350 2974 0 0 0 9
 TX: bytes packets errors dropped carrier collsns
 374443 1791 0 0 0 0

Some processes, for example, the gated routing daemon, require the devices' broadcast capable flag to
be set in the Linux network stack.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 269

Procedure
To set the broadcast capable flag for devices that do not support broadcast, set the fake_broadcast
attribute of the qeth group device to 1. To reset the flag, set it to 0.

Issue a command of the form:

chzdev <device_bus_id> fake_broadcast=<flag>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute fake_broadcast:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/fake_broadcast

Example

In this example, a device 0.0.a100 is instructed to pretend that it can broadcast.

chzdev 0.0.a100 fake_broadcast=1

Or, for the running configuration using sysfs:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a100/fake_broadcast

Taking over IP addresses
You can configure IP takeover if the layer2 option is not enabled. If you enabled the layer2 option, you can
configure for IP takeover as you would in a distributed server environment.

About this task
For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

Taking over an IP address overrides any previous allocation of this address to another LPAR. If another
LPAR on the same CHPID already registered for that IP address, this association is removed.

An OSA-Express CHPID in QDIO mode can take over IP addresses from any IBM Z operating system. IP
takeover for HiperSockets CHPIDs is restricted to taking over addresses from other Linux instances in the
same Central Electronics Complex (CEC).

IP address takeover between multiple CHPIDs requires ARP for IPv4 and Neighbor Discovery for IPv6.
OSA-Express handles ARP transparently, but not Neighbor Discovery.

There are three stages to taking over an IP address:

Stage 1: Ensure that your qeth group device is enabled for IP takeover
Stage 2: Activate the address to be taken over for IP takeover
Stage 3: Issue a command to take over the address

Stage 1: Enabling a qeth group device for IP takeover
For OSA-Express and HiperSockets CHPIDs, both the qeth group device that is to take over an IP address
and the device that surrenders the address must be enabled for IP takeover.

270 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
By default, qeth devices are not enabled for IP takeover. To enable a qeth group device for IP address
takeover set the enable device group attribute to 1. To switch off the takeover capability set the enable
device group attribute to 0.
In sysfs, the enable attribute is located in a subdirectory ipa_takeover. Issue a command of the form:

echo <flag> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/ipa_takeover/enable

Example

In this example, a device 0.0.a500 is enabled for IP takeover:

echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.a500/ipa_takeover/enable

Stage 2: Activating and deactivating IP addresses for takeover
The qeth device driver maintains a list of IP addresses that qeth group devices can take over or surrender.
To enable Linux to take over an IP-address or to surrender an address, the address must be added to this
list.

Procedure
Use the qethconf command to add IP addresses to the list.
• To display the list of IP addresses that are activated for IP takeover issue:

qethconf ipa list

• To activate an IP address for IP takeover, add it to the list.
Issue a command of the form:

qethconf ipa add <ip_address>/<mask_bits> <interface_name>

• To deactivate an IP address delete it from the list.
Issue a command of the form:

qethconf ipa del <ip_address>/<mask_bits> <interface_name>

In these commands, <ip_address>/<mask_bits> is the range of IP addresses to be activated or
deactivated. See “qethconf - Configure qeth devices” on page 703 for more details about the
qethconf command.

IPv4 example
In this example, there is only one range of IP addresses (192.168.10.0 to 192.168.10.255) that can be
taken over by HiperSockets device enca1c10.

List the range of IP addresses (192.168.10.0 to 192.168.10.255) that can be taken over by HiperSockets
device enca1c10.

qethconf ipa list
ipa add 192.168.10.0/24 enca1c10

The following command adds a range of IP addresses that can be taken over by device encf500.

qethconf ipa add 192.168.11.0/24 encf500
qethconf: Added 192.168.11.0/24 to /sys/class/net/encf500/device/ipa_takeover/add4.
qethconf: Use "qethconf ipa list" to check for the result

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 271

Listing the activated IP addresses now shows both ranges of addresses.

qethconf ipa list
ipa add 192.168.10.0/24 enca1c0
ipa add 192.168.11.0/24 encf500

The following command deletes the range of IP addresses that can be taken over by device encf500.

qethconf ipa del 192.168.11.0/24 encf500
qethconf: Deleted 192.168.11.0/24 from /sys/class/net/encf500/device/ipa_takeover/del4.
qethconf: Use "qethconf ipa list" to check for the result

IPv6 example
The following command adds one range of IPv6 addresses,
fec0:0000:0000:0000:0000:0000:0000:0000 to fec0:0000:0000:0000:FFFF:FFFF:FFFF:FFFF, that can
be taken over by OSA device encd300.
Add a range of IP addresses:

qethconf ipa add fec0::/64 encd300
qethconf: Added fec0:0000:0000:0000:0000:0000:0000:0000/64 to
 sysfs entry /sys/class/net/encd300/device/ipa_takeover/add6.
qethconf: For verification please use "qethconf ipa list"

Listing the activated IP addresses now shows the range of addresses:

qethconf ipa list
...
ipa add fec0:0000:0000:0000:0000:0000:0000:0000/64 encd300

The following command deletes the IPv6 address range that can be taken over by encd300:

qethconf ipa del fec0:0000:0000:0000:0000:0000:0000:0000/64 encd300:
qethconf: Deleted fec0:0000:0000:0000:0000:0000:0000:0000/64 from
 sysfs entry /sys/class/net/encd300/device/ipa_takeover/del6.
qethconf: For verification please use "qethconf ipa list"

Stage 3: Issuing a command to take over the address
To complete taking over a specific IP address and remove it from the CHPID or LPAR that previously held
it, issue the ip addr command.

Before you begin
• Both the device that is to take over the IP address and the device that is to surrender the IP address

must be enabled for IP takeover. This rule applies to the devices on both OSA-Express and HiperSockets
CHPIDs. (See “Stage 1: Enabling a qeth group device for IP takeover” on page 270).

• The IP address to be taken over must have been activated for IP takeover (see “Stage 2: Activating and
deactivating IP addresses for takeover” on page 271).

About this task
Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 259
when using IP takeover.

Examples

IPv4 example:

To make a HiperSockets device enca1c0 take over IP address 192.168.10.22 issue:

272 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

ip addr add 192.168.10.22/24 dev enca1c0

For IPv4, the IP address you are taking over must be different from the one that is already set for your
device. If your device already has the IP address it is to take over, you must issue two commands: First
remove the address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a HiperSockets device enca1c0 take over IP address 192.168.10.22 if enca1c0 is
already configured to have IP address 192.168.10.22 issue:

ip addr del 192.168.10.22/24 dev enca1c0
ip addr add 192.168.10.22/24 dev enca1c0

IPv6 example:

To make a OSA device encd300 take over fec0::111:25ff:febd:d9da/64 issue:

ip addr add fec0::111:25ff:febd:d9da/64 nodad dev encd300

For IPv6, setting the nodad (no duplicate address detection) option ensures that the encd300 interface
uses the IP address fec0::111:25ff:febd:d9da/64. Without the nodad option, the previous owner of the IP
address might prevent the takeover by responding to a duplicate address detection test.

The IP address you are taking over must be different from the one that is already set for your device. If
your device already has the IP address it is to take over you must issue two commands: First remove the
address to be taken over if it is already there. Then add the IP address to be taken over.

For example, to make a device encd300 take over IP address fec0::111:25ff:febd:d9da/64 when encd300
is already configured to have that particular IP address issue:

ip addr del fec0::111:25ff:febd:d9da/64 nodad dev encd300
ip addr add fec0::111:25ff:febd:d9da/64 nodad dev encd300

Configuring a device for proxy ARP
You can configure a device for proxy ARP if the layer2 option is not enabled. If you enabled the layer2
option, you can configure for proxy ARP as you would in a distributed server environment.

Before you begin
Configure only qeth group devices that are set up as routers for proxy ARP.

About this task
For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

The qeth device driver maintains a list of IP addresses for which a qeth group device handles ARP and
issues gratuitous ARP packets. For more information about proxy ARP, see

https://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

Use the qethconf command to display this list or to change the list by adding and removing IP addresses
(see “qethconf - Configure qeth devices” on page 703).

Be aware of the information in “Confirming that an IP address has been set under layer 3” on page 259
when you work with proxy ARP.

Example

Figure 65 on page 274 shows an environment where proxy ARP is used.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 273

http://www.cisco.com/c/en/us/support/docs/ip/dynamic-address-allocation-resolution/13718-5.html

Figure 65. Example of proxy ARP usage

G1, G2, and G3 are instances of Linux on z/VM (connected, for example, through a guest LAN to a Linux
router R), reached from GW (or the outside world) through R. R is the ARP proxy for G1, G2, and G3. That
is, R agrees to take care of packets that are destined for G1, G2, and G3. The advantage of using proxy
ARP is that GW does not need to know that G1, G2, and G3 are behind a router.

To receive packets for 1.2.3.4, so that it can forward them to G1 1.2.3.4, R would add 1.2.3.4 to its list of
IP addresses for proxy ARP for the interface that connects it to the OSA adapter.

qethconf parp add 1.2.3.4 encf500
qethconf: Added 1.2.3.4 to /sys/class/net/encf500/device/rxip/add4.
qethconf: Use "qethconf parp list" to check for the result

After issuing similar commands for the IP addresses 1.2.3.5 and 1.2.3.6 the proxy ARP configuration of R
would be:

qethconf parp list
parp add 1.2.3.4 encf500
parp add 1.2.3.5 encf500
parp add 1.2.3.6 encf500

Configuring a device for virtual IP address (VIPA)
You can configure a device for VIPA if the layer2 option is not enabled. If you enabled the layer2 option,
you can configure for VIPA as you would in a distributed server environment.

About this task
For information about the layer2 option, see “MAC headers in layer 2 mode” on page 239.

IBM Z use VIPAs to protect against certain types of hardware connection failure. You can assign VIPAs
that are independent from particular adapter. VIPAs can be built under Linux using dummy devices (for
example, "dummy0" or "dummy1").

The qeth device driver maintains a list of VIPAs that the OSA-Express adapter accepts for each qeth group
device. Use the qethconf utility to add or remove VIPAs (see “qethconf - Configure qeth devices” on
page 703).

For an example of how to use VIPA, see “Scenario: VIPA – minimize outage due to adapter failure” on
page 285.

Be aware of “Confirming that an IP address has been set under layer 3” on page 259 when you work with
VIPAs.

Configuring a HiperSockets device for AF_IUCV addressing
Use the hsuid attribute of a HiperSockets device in layer 3 mode to identify it to the AF_IUCV addressing
family support.

274 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Before you begin
• Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.
• The device must be set up for AF_IUCV addressing (see “Setting up HiperSockets devices for AF_IUCV

addressing” on page 316).

Procedure
To set an identifier, issue a command of this form:

chzdev qeth 0.0.a007 hsuid=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device configuration,”
on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the sysfs
attribute hsuid:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

The identifier is case-sensitive and must adhere to these rules:

• It must be 1 - 8 characters.
• It must be unique across your environment.
• It must not match any z/VM user ID in your environment. The AF_IUCV addressing family support also

supports z/VM IUCV connections.

Example
In this example, MYHOST01 is set as the identifier for a HiperSockets device with bus ID 0.0.a007.

chzdev qeth 0.0.a007 hsuid=MYHOST01

Or, for the running configuration only using sysfs:

echo MYHOST01 > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/hsuid

Working with qeth devices in layer 2 mode
Tasks that you can perform on qeth devices in layer 2 mode include setting up an OSA or HiperSockets
bridge port and tuning packet handling for an OSA or HiperSockets device with VNIC characteristics.

VNIC characteristics and the bridge port role are mutually exclusive.

Use the layer2 attribute to set the mode. See “Setting the layer2 attribute” on page 250 about setting
the mode. See “Layer 2 and layer 3” on page 236 for general information about the layer 2 and layer 3
disciplines.

Configuring a network device as a member of a Linux bridge
You can define an OSA or HiperSockets device to be a bridge port, which allows it to act as a member of a
Linux software bridge. Use the bridge_role attribute of a network device in layer 2 to make it receive all
traffic with unknown destination MAC addresses.

Alternatively, use VNIC characteristics to configure a layer 2 network device to receive all unknown traffic
(see “Advanced packet-handling configuration” on page 278).

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 275

Before you begin
To use the bridging support, you need OSA or HiperSockets hardware that supports layer 2
SETBRIDGEPORT functionality.

You can have one active bridge port per Internal Queued Direct Communication (IQD) or OSA channel.
You can have either only secondary bridge ports, or one primary and several secondary bridge ports per
OSA or HiperSockets channel.

Devices for which VNIC characteristics are configured cannot also be configured as bridge ports.

On z13 and older mainframes: HiperSockets bridge ports only bridge traffic to and from HiperSockets
ports in z/VM guests. On z14 and later HiperSockets bridge ports bridge traffic to and from all layer
2 HiperSockets ports that are not configured as "bridge_invisible", see “Advanced packet-handling
configuration” on page 278.

HiperSockets only: On IQDX channels permission to configure ports as bridge ports must be granted in
IBM zEnterprise Unified Resource Manager (zManager). On machines in PR/SM mode, bridge ports can
only be configured on IQD channels that are defined as "external-bridged" in the IOCDS. On machines in
DPM mode, bridge ports can be configured on any IQD channel.

For more information about the bridge port concept, see “Layer 2 promiscuous mode” on page 242.

About this task
The following sysfs attributes control the bridge port functions. The attributes can be found in
the /sys/bus/ccwgroup/drivers/qeth/<device_bus_id> directory.

bridge_role
Read-write attribute that controls the role of the port. Valid values are:
primary

Assigns the port the primary bridge port role.
secondary

Assigns the port a secondary bridge port role.
none

Revokes existing bridge port roles and indicates that no role is assigned.

Assigning a role directly to a port prevents use of the bridge_reflect_promisc attribute.

bridge_state
Read-only attribute that shows the state of the port. Valid values are:
active

The port is assigned a bridge port role and is switched into active state by the adapter. The device
receives frames that are addressed to unknown MAC addresses.

standby
The port is assigned a bridge port role, but is not currently switched into active state by the
adapter. The device does not receive frames that are destined to unknown MAC addresses.

inactive
The port is not assigned a bridge port role.

bridge_hostnotify
HiperSockets only: Read-write attribute that controls the sending of notifications for the port. When
you enable notifications (even if notifications were already enabled), udev events are emitted for all
currently connected communication peers in quick succession. After that, a udev event is emitted
every time a communication peer is connected, or a previously connected peer is disconnected. Any
user space program that monitors these events must repopulate its list of registered peers every time
the status of the bridge port device changes to enable notifications.

Valid values are:

276 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

1
The port is set to send notifications.

0
Notifications are turned off.

Notifications about the change of the state of bridge ports, and (if enabled) about registration and
deregistration of communication peers on the LAN are delivered as udev events. The events are
described in the file linux-doc/s390/qeth.txt.

bridge_reflect_promisc
Read-write attribute that, when set, makes the bridge-port role of the port follow ("reflect") the
promiscuity flag (IFF_PROMISC) of the corresponding Linux network interface. You can specify the
following values:
none

Setting and resetting the promiscuous mode on the network interface has no effect on the bridge-
port role of the underlying port.

primary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the primary role to the port. If a port with the
primary role exists, assignment fails.

secondary
Setting or resetting the promiscuous mode on the network interface that is served by this device
causes the driver to attempt assigning (or resetting) the secondary role to the port.

Setting bridge_reflect_promisc to anything but none causes the bridge_role attribute to
become read-only. The role of a port changes as a result of setting or unsetting the promiscuity flag
(IFF_PROMISC) of the corresponding network interface. You can check the currently assigned role by
reading the bridge_role attribute.

Procedure
1. To configure a network device as a bridge, issue a command of this form:

chzdev <device_bus_id> bridge_role=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute bridge_role:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_role

Setting the bridge_role attribute requires the bridge_reflect_promisc attribute to be none.
Alternatively, to make the bridge-port role of the port follow the promiscuity flag (IFF_PROMISC) of the
corresponding Linux network interface, issue a command of the following form:

chzdev <device_bus_id> bridge_reflect_promisc=<value>

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351.

To apply this setting to the running system only, use the chzdev command with the -a option or the
sysfs attribute bridge_reflect_promisc:

echo <value> > /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_reflect_promisc

where valid values are:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 277

• primary
• secondary
• none

2. Check the state of the bridge port by reading the bridge_state attribute. Issue a command of this
form:

lszdev qeth <device_bus_id> --info --info

Alternatively, use the sysfs attribute bridge_state directly:

cat /sys/bus/ccwgroup/drivers/qeth/<device_bus_id>/bridge_state

where displayed values could be:

• active
• standby
• inactive

Example
In this example, a network device with bus ID 0.0.a007 is defined as a primary bridge port.

chzdev 0.0.a007 bridge_role=primary

Or, for the running configuration only using sysfs:

echo primary > /sys/bus/ccwgroup/drivers/qeth/0.0.a007/bridge_role
cat /sys/bus/ccwgroup/drivers/qeth/a007/bridge_state
active

What to do next
You can specify up to four secondary bridge ports together with one primary bridge port. If the primary
bridge port fails, one of these bridge ports takes over. For each secondary bridge port, set bridge_role
to secondary.

Advanced packet-handling configuration
Use VNIC characteristics to control how OSA or HiperSockets devices in layer 2 mode handle special
scenarios, for example, packets with unknown MAC addresses, address takeover, or traffic with bridge
ports.

Before you begin
• See your IBM Z hardware documentation about support for VNIC characteristics. Support might differ

for OSA and HiperSockets devices.
• VNIC characteristics are supported for layer 2 mode only.
• VNIC characteristics cannot be configured on devices that are configured as bridge ports.

About this task
You can configure and fine-tune a promiscuous mode for incoming packets. You can configure the device
to receive all packets regardless of the MAC address, or you can reject incoming multicast packets, or
broadcast packets, or both.

278 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For Linux instances that host multiple guest operating systems with different MAC addresses, you can
configure the device to learn and handle these MAC addresses. The device then provides functions similar
to a switch or to a software bridge.

The VNIC characteristics also include settings that can protect the MAC address of the device from being
taken over by another device. You can deny takeover, or you can explicitly permit takeover to facilitate
migration, for example in a recovery situation.

The VNIC characteristics of a qeth device are represented by sysfs attributes in /sys/devices/qeth/
<device_bus_id>/vnicc:
flooding

With flooding enabled, the device receives packets to any unknown destination MAC address. Valid
values are 0 for disabled and 1 for enabled. By default, flooding is disabled.

For a shared OSA adapter, flooding applies to traffic between the physical port and the OSA interfaces,
but not to communication between the interfaces that share the adapter. Enable learning to
configure bridge-like behavior of shared OSA adapters.

An OSA Express adapter can support a maximum of 64 devices with flooding enabled.

mcast_flooding
With multicast flooding enabled, the device receives packets to any multicast MAC address. Valid
values are 0 for disabled and 1 for enabled. By default, multicast flooding is disabled and the device
receives only packets to multicast MAC addresses to which it has previously registered.

rx_bcast
With broadcast receiving enabled, the device receives packets with the broadcast destination MAC
address. Valid values are 0 for disabled and 1 for enabled. By default, the device is enabled to receive
broadcast packets.

learning
With learning enabled, the device assembles a list of source MAC addresses of outgoing packets. The
device then receives incoming packets to any MAC address in the list. Valid values are 0 for disabled
and 1 for enabled. By default, learning is disabled.

A MAC address is added to the list unless it has been explicitly assigned to another device on the
same channel. An exception are addresses of devices on which the takeover_learning characteristic
is set. Such devices surrender their address to a learning device. If an address is already listed by
a different learning device on the same channel, the address is removed from that learning device's
list. Explicitly configuring a MAC address on a different device removes the address from the learning
device list.

A learned MAC address is dropped from the list of learned MAC addresses unless packets with this
MAC address are sent within a specific timeout period. The default timeout period is 600 s. You can
specify a different timeout period with the learning_timeout attribute.

takeover_setvmac
With this option enabled, the device's MAC address can be configured on a different device, without
notification. Valid values are 0 for disabled and 1 for enabled. By default, this option is disabled and
the MAC address cannot be configured on a different device on the same channel.

takeover_learning
With takeover by learning enabled, the MAC address of this device can be learned on a different device
on the same channel and, thus, taken over by this other device, without notification. Valid values are 0
for disabled and 1 for enabled. By default, takeover by learning is disabled.

bridge_invisible
With bridge-port invisible enabled, packets are not transferred between the device and any other
device that is configured as a bridge port. Valid values are 0 for disabled and 1 for enabled. By default,
this option is disabled and, thus, traffic to and from bridge ports is permitted.

This characteristic applies to HiperSockets devices only.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 279

learning_timeout
With learning enabled, this attribute specifies a timeout period, in seconds. A MAC address is dropped
from the list of learned MAC addresses if this timeout period expires without any packets with this
MAC address being received.

You can set this timeout period by writing a value in the range 60 - 86400 to the attribute. The default
is 600. The timeout must be set before learning is enabled on the device.

Procedure
1. Optional: To read a VNIC characteristic setting from sysfs, issue a command of this form:

cat /sys/devices/qeth/<device_bus_id>/vnicc/<attribute>

where <device_bus_id> is the device-bus ID of the qeth device and <attribute> is one of the attributes
that represent the VNIC characteristics.

Example:

cat /sys/devices/qeth/0.0.a016/vnicc/learning
0

Tip: For an overview of all VNIC characteristics of the device, find the interface name of the device,
then use the lsqeth command.

Example:

cat /sys/devices/qeth/0.0.a016/if_name
eth0
lsqeth eth0 | grep vnicc
 vnicc/bridge_invisible : 0
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 1
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

2. To set a VNIC characteristic issue a command of this form:

chzdev <device_bus_id> vnicc/<attribute>=<value>

where <device_bus_id> is the device-bus ID of the qeth device, <attribute> is one of the attributes that
represent the VNIC characteristics, and <value> is the value to be set.

This setting persists across re-boots. For more details, see Chapter 25, “Persistent device
configuration,” on page 351. To apply this setting to the running system only, use the chzdev
command with the -a option or use the corresponding sysfs attribute.

Example: In this example, learning is enabled for a device with bus-ID 0.0.a016.

chzdev 0.0.a016 vnicc/learning=1

or, using sysfs:

echo 1 > /sys/devices/qeth/0.0.a016/vnicc/learning

Example
This example shows a typical configuration for a bridge-like behavior of the device.

280 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsqeth eth0 | grep vnicc
 vnicc/bridge_invisible : 0
 vnicc/flooding : 1
 vnicc/learning : 1
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 1
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 1
 vnicc/takeover_setvmac : 1

Working with HiperSockets Converged Interfaces
Using HiperSockets Converged Interface (HSCI) connections, a HiperSockets network interface can be
combined with an external OSA- or RoCE port, thus creating a single network interface.

About this task
The HSCI function is available as of IBM z15 or IBM LinuxONE III.

With this function, you can connect an instance of Linux that runs in LPAR mode to z/OS through layer 2
HiperSockets. The z/OS version must support HSCI.

A converged network can span multiple IBM Z servers.

Example: Consolidating subnets

Between LPARs, you can connect Linux instances through HiperSockets. To connect to an external
network, you need an OSA-Express adapter in QDIO mode, or a RoCE Express adapter.

To connect Linux and z/OS LPARs with each other and an external network, you can use OSA Express
adapters, for example, as shown in Figure 66 on page 281. All traffic between the operating system
instances go through the OSA adapters, which puts load on the OSA adapters, and might not perform as
well as HiperSockets.

Figure 66. A network using OSA Express adapters that connects Linux and z/OS LPARS

You might add a no-charge HiperSockets for the internal communication, which allows for faster
communication inside the hardware system, and reduces load on the OSA adapters.

The performance gain comes at the cost of managing twice the number of interfaces and a second IP
subnet.

Communication networks at enterprise level can easily grow in complexity and become a burden for the
network administrator, as shown in Figure 67 on page 282

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 281

Figure 67. A complex network with two subnets and two IP addresses for each operating system instance

With HSCI interfaces, you can create a converged network that includes both direct HiperSockets
connections for traffic within the server hardware and external connectivity through OSA Express or RoCE
Express adapters. The HSCI interface is managed as a single interface.

In the sample network, there is now only one subnet, one IP address per operating system instance, and
HiperSockets is still used for fast internal communication. This setup is shown in Figure 68 on page 282.

Figure 68. A converged HSCI network with one subnet and one IP address for each operating system
instance

All HiperSockets interfaces of the HiperSockets channel must participate in the HSCI network. A
HiperSockets interface on its own cannot communicate correctly with its network neighbors.

Working with HSCI connections comprises the following tasks:

• “Creating an HSCI interface” on page 282
• “Using an HSCI interface as a base device for MacVTap or OpenVSwitch” on page 284

Creating an HSCI interface
Combine a HiperSockets network interface with an external OSA- or RoCE port to create a single network
interface.

Before you begin
• It is useful to assign the participating adapters and HiperSockets channels to the same PNET ID in the

IOCDS.

282 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
1. Ensure that the HiperSockets interface and the OSA or RoCE interface that you want to work with are

up.
2. Merge the HiperSockets interface and the OSA or RoCE interface by issuing a command of the form:

hsci add <HipSock_if> <Ext_if>

The resulting HSCI interface name is based on the device-bus ID of the HiperSockets interface.
As a simple example, Figure 69 on page 283 illustrates how a Linux instance running in an LPAR is
changed to use one HSCI interface instead of one OSA interface and one HiperSockets interface.

Figure 69. A Linux instance where interfaces are merged to a single HSCI interface

Assume you want to set up an HSCI interface by converging a HiperSockets interface named encb112,
and an OSA-Express interface named enca100. Connect the two by issuing:

hsci add encb112 enca100
...
Successfully added HSCI interface hscib112

In the example, the device-bus ID of 0.0.b112 results in HiperSockets interface encb112, and then in
the HSCI interface name hscib112. The HSCI interface name is predictable.
For more information about the hsci command, see “hsci - Manage HSCI interfaces” on page 639.

3. Assign an IP address to the new HSCI interface, for example, with the ip command.
Issue a command of the form:

ip addr add <IP_address> dev <interface>

For example, assuming that the new HSCI interface is called hscib112:

ip addr add 10.1.0.1/16 dev hscib112

4. Optional: You can list the new HSCI interface with the hsci show command:

hsci show
HSCI PNET_ID HiperSockets External
--
hsci8410 NET1 enca100 hscib112

What to do next
You can delete an HSCI interface with the hsci del command, for example:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 283

hsci del hscib112
Deleting HSCI interface hsci8410 with the HiperSockets enc8410 and the
external enca100
Deleting MAC fe:c2:f4:35:00:12 on enca100
Successfully deleted device hscib112

Using an HSCI interface as a base device for MacVTap or OpenVSwitch
You can use an HSCI network device as the base device for a MacVTap or OpenVSwitch connection. You
can, for example, attach KVM virtual servers to the converged network.

Before you begin
It is useful to define the PNET ID for the HiperSockets channel and the OSA or RoCE adapters to mark
them as part of the same network segment.

About this task
To attach KVM virtual servers to a converged network, you define the HSCI device as a source device in
the domain XML of the virtual server.

The following example assumes that there is an HiperSockets interface enc8410, an OSA interface
encb040, and you want to create an HSCI interface hsci8410. Then you can use the HSCI interface to set
up a MacVTap connection with two KVM virtual servers.

Procedure
1. On the KVM host, define the HiperSockets interface as layer 2. Issue a command of the form:

chzdev -e <device_ID> layer2=1

For example, if the device ID of the HiperSockets device is 8410:

chzdev -e 8410 layer2=1
QETH device 0.0.8410:0.0.8411:0.0.8412 configured

2. Define the OSA interface with flooding and mcast_flooding enabled. Issue a command of the form:

chzdev -e <device_ID> vnicc/flooding=1 vnicc/mcast_flooding=1

For example, if the OSA device ID is b040:

chzdev -e b040 vnicc/flooding=1 vnicc/mcast_flooding=1
QETH device 0.0.b040:0.0.b041:0.0.b042 configured
 Adding layer2=1 to active configuration (required by vnicc/mcast_flooding)
 Adding layer2=1 to persistent configuration (required by vnicc/mcast_flooding)

3. Create the converged HSCI interface. Issue a command of the form:

hsci add <HipSock_if> <OSA_if>

For example, if the HiperSockets interface is enc8410 and the OSA interface is encb040:

hsci add enc8410 encb040
Verifying net dev encb040 and HiperSockets dev enc8410
Adding hsci8410 with a HiperSockets dev enc8410 and an external dev encb040
Added HSCI interface hsci8410

4. Optional: Check that the HSCI interface was created. Use the hsci show command.
For example:

284 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

hsci show
HSCI PNET_ID HiperSockets External
--
hsci8410 NET1 enc8410 encb040

What to do next
You can use the HSCI interface as the base for a MacVTap or an OpenVSwitch connection on a KVM virtual
server, as illustrated in Figure 70 on page 285.

Figure 70. MacVTAp connection with two KVM virtual servers

See KVM Virtual Server Management, SC34-2752 for how to configure a network interface in the domain
configuration XML of the KVM virtual servers.

Scenario: VIPA – minimize outage due to adapter failure
Using VIPA you can assign IP addresses that are not associated with a particular adapter. VIPA thus
minimizes outage that is caused by adapter failure.

This scenario uses standard VIPA, which is sufficient for applications, such as web servers, that do not
open connections to other nodes.

Note:

1. See the information in “Confirming that an IP address has been set under layer 3” on page 259
concerning possible failure when you set IP addresses for OSA-Express features in QDIO mode (qeth
device driver).

Setting up standard VIPA
To set up VIPA you must create a dummy device, ensure that your service listens to the IP address, and
set up routing to it.

Procedure
Follow these main steps to set up VIPA in Linux:
1. Create a dummy device with a virtual IP address.
2. Ensure that your service (for example, the Apache web server) listens to the virtual IP address

assigned in step “1” on page 285.
3. Set up routes to the virtual IP address, on clients or gateways. To do so, you can use either:

• Static routing (shown in the example of Figure 71 on page 286).
• Dynamic routing. For details of how to configure routes, you must see the documentation that is

delivered with your routing daemon (for example, zebra or gated).

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 285

Adapter outage
If outage of an adapter occurs, you must switch adapters.

Procedure
• Under static routing:

a) Delete the route that was set previously.
b) Create an alternative route to the virtual IP address.

• Under dynamic routing, see the documentation that is delivered with your routing daemon for details.

Example of how to set up standard VIPA
This example shows you how to configure VIPA under static routing, and how to switch adapters when an
adapter outage occurs.

About this task
Figure 71 on page 286 shows the network adapter configuration that is used in the example.

Figure 71. Example of using Virtual IP Address (VIPA)

Procedure
1. Define the real interfaces.

[server]# ip addr add 10.1.0.2/16 dev encf500
[server]# ip link set dev encf500 up
[server]# ip addr add 10.2.0.2/16 dev ence400
[server]# ip link set dev ence400 up

2. If the dummy component was not compiled into the kernel, ensure that the dummy module was
loaded.
If necessary, load it by issuing:

[server]# modprobe dummy

3. Create a dummy interface with a virtual IP address 198.51.100.100 and a netmask 255.255.255.0:

 [server]# ip addr add 198.51.100.100/24 dev dummy0
 [server]# ip link set dev dummy0 up

4. Enable the network devices for this VIPA so that it accepts packets for this IP address.

• IPv4 example:

286 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

[server]# qethconf vipa add 198.51.100.100 encf500
qethconf: Added 198.51.100.100 to /sys/class/net/encf500/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result
 [server]# qethconf vipa add 198.51.100.100 ence400
qethconf: Added 198.51.100.100 to /sys/class/net/ence400/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result

• For IPv6, the address is specified in IPv6 format:

[server]# qethconf vipa add 2002::1235:5678 encf500
qethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/encf500/device/
vipa/add6.
qethconf: Use "qethconf vipa list" to check for the result
[server]# qethconf vipa add 2002::1235:5678 ence400
qethconf: Added 2002:0000:0000:0000:0000:0000:1235:5678 to /sys/class/net/ence400/device/
vipa/add6.
qethconf: Use "qethconf vipa list" to check for the result

5. Ensure that the addresses are set:

[server]# qethconf vipa list
vipa add 198.51.100.100 encf500
vipa add 198.51.100.100 ence400

6. Ensure that your service (such as the Apache web server) listens to the virtual IP address.
7. Set up a route to the virtual IP address (static routing) so that VIPA can be reached through the

gateway with address 10.1.0.2.

 [router]# ip route add 198.51.100.100 via 10.1.0.2

What to do next
Now assume that an adapter outage occurs. You must then:

1. Delete the previously created route.

 [router]# ip route del 198.51.100.100

2. Create the alternative route to the virtual IP address.

[router]# ip route add 198.51.100.100 via 10.2.0.2

Introduction to VLANs
Use VLANs to increase traffic flow and reduce latency. With VLANs, you can organize your network by
traffic patterns rather than by physical location.

In a conventional network topology, such as that shown in Figure 72 on page 288, devices communicate
across LAN segments in different broadcast domains by using routers. Although routers add latency by
delaying transmission of data while they are using more of the data packet to determine destinations,
they are preferable to building a single broadcast domain. A single domain can easily be flooded with
traffic.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 287

Figure 72. Conventional routed network

By organizing the network into VLANs by using Ethernet switches, distinct broadcast domains can be
maintained without the latency that is introduced by multiple routers. As Figure 73 on page 288 shows,
a single router can provide the interfaces for all VLANs that appeared as separate LAN segments in the
previous figure.

Figure 73. Switched VLAN network

Figure 74 on page 289 shows how VLANs can be organized logically, according to traffic flow, rather
than being restricted by physical location. If workstations 1-3 communicate mainly with the small server,
VLANs can be used to organize only these devices in a single broadcast domain that keeps broadcast
traffic within the group. This setup reduces traffic both inside the domain and outside, on the rest of the
network.

288 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 74. VLAN network organized for traffic flow

Configuring VLAN devices
Configure VLANs with the ip link add command. See the ip-link man page for details.

About this task
Information about the current VLAN configuration is available by listing the files in

/proc/net/vlan/*

with cat or more. For example:

bash-2.04# cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_RAW_PLUS_VID_NO_PAD bad_proto_recvd: 0
encd300.100 | 100 | encd300
encd300.200 | 200 | encd300
encd300.300 | 300 | encd300
bash-2.04# cat /proc/net/vlan/encd300.300
encd300.300 VID: 300 REORDER_HDR: 1 dev->priv_flags: 1
 total frames received: 10914061
 total bytes received: 1291041929
 Broadcast/Multicast Rcvd: 6

 total frames transmitted: 10471684
 total bytes transmitted: 4170258240
 total headroom inc: 0
 total encap on xmit: 10471684
Device: encd300
INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0
EGRESS priority Mappings:
bash-2.04#

Example: Creating two VLANs
VLANs are allocated in an existing interface that represents a physical Ethernet LAN.

The following example creates two VLANs, one with ID 3 and one with ID 5.

 ip addr add 198.51.160.23/19 dev ence400
 ip link set dev ence400 up
 ip link add dev ence400.3 link ence400 type vlan id 3
 ip link add dev ence400.5 link ence400 type vlan id 5

The ip link add commands added interfaces "ence400.3" and "ence400.5", which you can then
configure:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 289

 ip addr add 1.2.3.4/24 dev ence400.3
 ip link set dev ence400.3 up
 ip addr add 10.100.2.3/16 dev ence400.5
 ip link set dev ence400.5 up

The traffic that flows out of ence400.3 is in the VLAN with ID=3. This traffic is not received by other stacks
that listen to VLANs with ID=4.

The internal routing table ensures that every packet to 1.2.3.x goes out through ence400.3, and
everything to 10.100.x.x through ence400.5. Traffic to 198.51.1xx.x flows through ence400 (without a
VLAN tag).

To remove one of the VLAN interfaces:

 ip link set dev ence400.3 down
 ip link delete ence400.3 type vlan

HiperSockets Network Concentrator
You can configure a HiperSockets Network Concentrator on a QETH device in layer 3 mode.

Before you begin: The instructions that are given apply to IPv4 only. The HiperSockets Network
Concentrator connector settings are available in layer 3 mode only.

The HiperSockets Network Concentrator connects systems to an external LAN within one IP subnet that
uses HiperSockets. HiperSockets Network Concentrator connected systems look as if they were directly
connected to the LAN. This simplification helps to reduce the complexity of network topologies that result
from server consolidation.

Without changing the network setup, you can use HiperSockets Network Concentrator to port systems:

• From the LAN into an IBM Z server environment
• From systems that are connected by a different HiperSockets Network Concentrator into an IBM Z

server environment

Thus, HiperSockets Network Concentrator helps to simplify network configuration and administration.

Design
A connector Linux system forwards traffic between the external OSA interface and one or more internal
HiperSockets interfaces. The forwarding is done via IPv4 forwarding for unicast traffic and via a particular
bridging code (xcec_bridge) for multicast traffic.

A script named ip_watcher.pl observes all IP addresses registered in the HiperSockets network and sets
them as Proxy ARP entries (see “Configuring a device for proxy ARP” on page 273) on the OSA interfaces.
The script also establishes routes for all internal systems to enable IP forwarding between the interfaces.

All unicast packets that cannot be delivered in the HiperSockets network are handed over to the
connector by HiperSockets. The connector also receives all multicast packets to bridge them.

Setup
The setup principles for configuring the HiperSockets Network Concentrator on a mainframe Linux system
are as follows:

leaf nodes
The leaf nodes do not require a special setup. To attach them to the HiperSockets network, their setup
should be as if they were directly attached to the LAN. They do not have to be Linux systems.

connector systems
In the following, HiperSockets Network Concentrator IP refers to the subnet of the LAN that is
extended into the HiperSockets net.

290 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• If you want to support forwarding of all packet types, define the OSA interface for traffic into the
LAN as a multicast router (see “Setting up a Linux router” on page 266).

If only unicast packages are to be forwarded, there is also the possibility not to identify the OSA
interface as multicast router: add the interface name to the start_hsnc script and only unicast
packets are forwarded.

• All HiperSockets interfaces that are involved must be set up as connectors: set the route4 attributes
of the corresponding devices to "primary_connector" or to "secondary_connector". Alternatively,
you can add the OSA interface name to the start script as a parameter. This option results in
HiperSockets Network Concentrator ignoring multicast packets, which are then not forwarded to the
HiperSockets interfaces.

• IP forwarding must be enabled for the connector partition. Enable the forwarding either manually
with the command

sysctl -w net.ipv4.ip_forward=1

Alternatively, you can enable IP forwarding in the /etc/sysctl.conf configuration file to activate
IP forwarding for the connector partition automatically after booting.

• The network routes for the HiperSockets interface must be removed. A network route for the
HiperSockets Network Concentrator IP subnet must be established through the OSA interface.
To establish a route, assign the IP address 0.0.0.0 to the HiperSockets interface. At the same
time, assign an address that is used in the HiperSockets Network Concentrator IP subnet to the
OSA interface. These assignments set up the network routes correctly for HiperSockets Network
Concentrator.

• To start HiperSockets Network Concentrator, run the script start_hsnc.sh. You can specify
an interface name as optional parameter. The interface name makes HiperSockets Network
Concentrator use the specified interface to access the LAN. There is no multicast forwarding in
that case.

• To stop HiperSockets Network Concentrator, use the command killall ip_watcher.pl to
remove changes that are caused by running HiperSockets Network Concentrator.

Availability setups
If a connector system fails during operation, it can simply be restarted. If all the startup commands
are run automatically, it will instantaneously be operational again after booting. Two common availability
setups are mentioned here:

One connector partition and one monitoring system
As soon as the monitoring system cannot reach the connector for a specific timeout (for example, 5
seconds), it restarts the connector. The connector itself monitors the monitoring system. If it detects
(with a longer timeout than the monitoring system, for example, 15 seconds) a monitor system failure,
it restarts the monitoring system.

Two connector systems monitoring each other
In this setup, there is an active and a passive system. As soon as the passive system detects a
failure of the active connector, it takes over operation. To take over operation, it must reset the
other system to release all OSA resources for the multicast_router operation. The failed system can
then be restarted manually or automatically, depending on the configuration. The passive backup
HiperSockets interface can either switch into primary_connector mode during the failover, or it can be
set up as secondary_connector. A secondary_connector takes over the connecting function, as soon as
there is no active primary_connector. This setup has a faster failover time than the first one.

Hints
• The MTU of the OSA and HiperSockets link should be of the same size. Otherwise, multicast packets

that do not fit in the link's MTU are discarded as there is no IP fragmentation for multicast bridging.
Warnings are printed to syslog.

• The script ip_watcher.pl prints error messages to the standard error descriptor of the process.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 291

• xcec-bridge logs messages and errors to syslog.
• Registering all internal addresses with the OSA adapter can take several seconds for each address.
• To shut down the HiperSockets Network Concentrator function, issue killall ip_watcher.pl. This

script removes all routing table and Proxy ARP entries added during the use of HiperSockets Network
Concentrator.

Note:

1. Broadcast bridging is active only on OSA or HiperSockets hardware that can handle broadcast traffic
without causing a bridge loop. If you see the message "Setting up broadcast echo filtering
for ... failed" in the message log when you set the qeth device online, broadcast bridging is not
available.

2. Unicast packets are routed by the common Linux IPv4 forwarding mechanisms. As bridging and
forwarding are done at the IP Level, the IEEE 802.1q VLAN and the IPv6 protocol are not supported.

3. To use HiperSockets Network Concentrator, the s390-tools package from developerWorks is required.

Examples for setting up a network concentrator
An example of a network environment with a network concentrator.

Figure 75 on page 292 shows a network environment where a Linux instance C acts as a network
concentrator that connects other operating system instances on a HiperSockets LAN to an external LAN.

Figure 75. HiperSockets network concentrator setup

Setup for the network concentrator C:
The HiperSockets interface enca1c0 (device bus-ID 0.0.a1c0) has IP address 10.20.30.51/24. The
default gateway is 10.20.30.1.

Issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c0/route4

The OSA-Express CHPID in QDIO mode interface enca1c4 (with device bus-ID 0.0.a1c4) has IP
address 10.20.30.11/24. The default gateway is 10.20.30.1.

Issue:

echo multicast_router > /sys/bus/ccwgroup/drivers/qeth/0.0.a1c4/route4

To enable IP forwarding issue:

sysctl -w net.ipv4.ip_forward=1

292 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Tip: See Ubuntu Server 22.04 LTS information about using configuration files to automatically enable
IP forwarding when Linux boots.

To remove the network routes for the HiperSockets interface issue:

ip route del 10.20.30/24

To start the HiperSockets network concentrator, run the script start_hsnc.sh. Issue:

start_hsnc.sh &

Setup for G:
No special setup required. The HiperSockets interface has IP address 10.20.30.54/24. The default
gateway is 10.20.30.1.

Setup for workstation:
No special setup required. The network interface IP address is 10.20.30.120/24. The default gateway
is 10.20.30.1.

Figure 76 on page 293 shows the example of Figure 75 on page 292 with an additional mainframe. On the
second mainframe a Linux instance D acts as a HiperSockets network concentrator.

Figure 76. Expanded HiperSockets network concentrator setup

The configuration of C, G, and the workstation remain the same as for Figure 75 on page 292.

Setup for the network concentrator D:
The HiperSockets interface enca1d0 has the corresponding device-bus ID 0.0.enca1d0 and IP
address 0.0.0.0. Issue:

echo primary_connector > /sys/bus/ccwgroup/drivers/qeth/0.0.a1d0/route4

The OSA-Express CHPID in QDIO mode interface enca1d1 has IP address 10.20.30.50/24. The
default gateway is 10.20.30.1.

D is not configured as a multicast router, it therefore forwards only unicast packets.

To enable IP forwarding issue:

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 293

sysctl -w net.ipv4.ip_forward=1

Tip: See Ubuntu Server 22.04 LTS information about using configuration files to automatically enable
IP forwarding when Linux boots.

To start the HiperSockets network concentrator, run the script start_hsnc.sh. Issue:

start_hsnc.sh &

Setup for H:
No special setup required. The HiperSockets interface has IP address 10.20.30.55/24. The default
gateway is 10.20.30.1.

Setting up for DHCP with IPv4
For connections through an OSA-Express adapter in QDIO mode configured with the layer 3 discipline, the
OSA-Express adapter offloads ARP, MAC header, and MAC address handling.

For information about MAC headers, see “MAC headers in layer 3 mode” on page 240.

Because a HiperSockets connection configured with the layer 3 discipline does not go out on a physical
network, there are no ARP, MAC headers, and MAC addresses for packets in a HiperSockets LAN. The
resulting problems for DHCP are the same in both cases and the fixes for connections through the
OSA-Express adapter also apply to HiperSockets.

Dynamic Host Configuration Protocol (DHCP) is a TCP/IP protocol that allows clients to obtain IP network
configuration information (including an IP address) from a central DHCP server. The DHCP server controls
whether the address it provides to a client is allocated permanently or is leased temporarily. DHCP
specifications are described by RFC 2131"Dynamic Host Configuration Protocol" and RFC 2132 "DHCP
options and BOOTP Vendor Extensions", which are available on the Internet at

www.ietf.org

Two types of DHCP environments must be taken into account:

• DHCP through OSA-Express adapters in QDIO mode
• DHCP in a z/VM VSWITCH or guest LAN

For information about setting up DHCP for a Linux instance in a z/VM VSWITCH or guest LAN environment,
see Redpaper Linux on IBM eServer zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN, REDP-3596
at

www.ibm.com/redbooks

The programs dhclient and dhcp are examples of a DHCP client and a DHCP server you can use. Ubuntu
Server might provide different DHCP client and server programs.

Required options for using dhcpcd with layer3
You must configure the DHCP client program dhclient to use it on Linux on IBM Z with layer3.

• Run the DHCP client with an option that instructs the DHCP server to broadcast its response to the
client.

Because the OSA-Express adapter in QDIO mode forwards packets to Linux based on IP addresses, a
DHCP client that requests an IP address cannot receive the response from the DHCP server without this
option.

• Run the DHCP client with an option that specifies the client identifier string.

By default, the client uses the MAC address of the network interface. Hence, without this option, all
Linux instances that share the OSA-Express adapter in QDIO mode would also have the same client
identifier.

294 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://www.ietf.org
https://www.ibm.com/redbooks

See the documentation for dhcpcd about selecting these options.

You need no special options for the DHCP server program, dhcp.

Setting up Linux as a LAN sniffer
You can set up a Linux instance to act as a LAN sniffer, for example, to make data on LAN traffic available
to tools like tcpdump or Wireshark.

The LAN sniffer can be:

• A HiperSockets Network Traffic Analyzer for LAN traffic between LPARs
• A LAN sniffer for LAN traffic between z/VM guest virtual machines, for example, through a z/VM virtual

switch (VSWITCH)

Setting up a HiperSockets network traffic analyzer
A HiperSockets network traffic analyzer (NTA) runs in an LPAR and monitors LAN traffic between LPARs.

Before you begin
• Your Linux instance must run in LPAR mode.
• On the SE, the LPARs must be authorized for analyzing and being analyzed.

Tip: Do any authorization changes before you configure the NTA device. If you must activate the NTA
after SE authorization changes, set the qeth device offline, set the sniffer attribute to 1, and set the
device online again.

• You need a traffic-dumping tool such as tcpdump.
• You need a mainframe system that supports HiperSockets network traffic analyzer.

About this task
The HiperSockets NTA is available to trace both layer 3 and layer 2 network traffic, but the analyzing
device itself must be configured as a layer 3 device. The analyzing device is a dedicated NTA device and
cannot be used as a regular network interface.

Procedure
Perform the following steps:
• Linux setup:

a) Configure a HiperSockets interface dedicated to analyzing with the layer2 sysfs attribute set to 0
and the sniffer sysfs attribute set to 1.

For example, assuming the HiperSockets interface is enca1c0 with device bus-ID 0.0.a1c0:

chzdev qeth -e -a a1c0 layer2=0 sniffer=1

The chzdev command also sets the device online. To make the change persistent across reboots,
omit the -a option. For more information about chzdev, see “chzdev - Configure IBM Z devices” on
page 584.

Alternatively, for the running configuration only:

znetconf -a a1c0 layer2=0 sniffer=1

The znetconf command also sets the device online. For more information about znetconf, see
“znetconf - List and configure network devices” on page 760.

The qeth device driver automatically sets the buffer_count attribute to 128 for the analyzing device.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 295

b) Activate the device (no IP address is needed):

ip link set enca1c0 up

c) Switch the interface into promiscuous mode:

tcpdump -i enca1c0

Results
The device is now set up as a HiperSockets network traffic analyzer.

Hint: A HiperSockets network traffic analyzer with no free empty inbound buffers might have to drop
packets. Dropped packets are reflected in the "dropped counter" of the HiperSockets network traffic
analyzer interface and reported by tcpdump.

Example:

ip -s link show dev enca1c0
...
 RX: bytes packets errors dropped overrun mcast
 223242 6789 0 5 0 176
...
tcpdump -i enca1c0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on enca1c0, link-type EN10MB (Ethernet), capture size 96 bytes
...
5 packets dropped by kernel

Setting up a z/VM guest LAN sniffer
You can set up a guest LAN sniffer on a virtual NIC that is coupled to a z/VM VSWITCH or guest LAN.

Before you begin
• You need class B authorization on z/VM.
• The Linux instance to be set up as a guest LAN sniffer must run as a guest of the same z/VM system as

the guest LAN you want to investigate.

About this task
If a virtual switch connects to a VLAN that includes nodes outside the z/VM system, these external nodes
are beyond the scope of the sniffer.

For information about VLANs and z/VM VSWITCHes, see z/VM: Connectivity, SC24-6267.

Procedure
• Set up Linux.

Ensure that the qeth device driver has been compiled into the Linux kernel or that the qeth device
driver has been loaded as a module.

• Set up z/VM.

Ensure that the z/VM guest virtual machine on which you want to set up the guest LAN sniffer is
authorized for the switch or guest LAN and for promiscuous mode.

For example, if your virtual NIC is coupled to a z/VM VSWITCH, perform the following steps on your
z/VM system:

a) Check if the z/VM guest virtual machine already has the required authorizations. Enter a CP
command of this form:

296 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

q vswitch <switchname> promisc

where <switchname> is the name of the virtual switch. If the output lists the z/VM guest virtual
machine as authorized for promiscuous mode, no further setup is required.

b) If the output from step “1” on page 296 does not list the guest virtual machine, check if the guest is
authorized for the virtual switch. Enter a CP command of this form:

q vswitch <switchname> acc

where <switchname> is the name of the virtual switch.

If the output lists the z/VM guest virtual machine as authorized, you must temporarily revoke the
authorization for the switch before you can grant authorization for promiscuous mode. Enter a CP
command of this form:

set vswitch <switchname> revoke <userid>

where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

c) Authorize the Linux instance for the switch and for promiscuous mode. Enter a CP command of this
form:

set vswitch <switchname> grant <userid> promisc

where <switchname> is the name of the virtual switch and <userid> identifies the z/VM guest virtual
machine.

For details about the CP commands used in this section and for commands you can use to check and
assign authorizations for other types of guest LANs, see z/VM: CP Commands and Utilities Reference,
SC24-6268.

Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets 297

298 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 17. OSA-Express SNMP subagent support

LPAR and z/VM: The SNMP subagent support applies to Linux in LPAR mode and to Linux on z/VM.

The OSA-Express Simple Network Management Protocol (SNMP) subagent (osasnmpd) supports
management information bases (MIBs) for the OSA-Express features.

This subagent capability through the OSA-Express features is also called Direct SNMP to distinguish
it from another method of accessing OSA SNMP data through OSA/SF, a package for monitoring and
managing OSA features that does not run on Linux.

See “osasnmpd – Start OSA-Express SNMP subagent” on page 700 for information about the osasnmpd
command itself.

To use the osasnmpd subagent, you need:

• An OSA-Express feature that runs in QDIO mode with the latest textual MIB file for the appropriate LIC
level (recommended)

• The qeth device driver for OSA-Express (QDIO)
• The osasnmpd subagent from s390-tools
• net-snmp package 5.1.x or higher

What you should know about osasnmpd
The osasnmpd subagent requires a master agent to be installed on a Linux system.

You get the master agent from either the net-snmp package. The subagent uses the Agent eXtensibility
(AgentX) protocol to communicate with the master agent.

net-snmp is an open source project that is owned by the Open Source Development Network, Inc.
(OSDN). For more information on net-snmp visit:

net-snmp.sourceforge.io

When the master agent (snmpd) is started on a Linux system, it binds to a port (default 161) and awaits
requests from SNMP management software. Subagents can connect to the master agent to support MIBs
of special interest (for example, OSA-Express MIB). When the osasnmpd subagent is started, it retrieves
the MIB objects of the OSA-Express features currently present on the Linux system. It then registers with
the master agent the object IDs (OIDs) for which it can provide information.

An OID is a unique sequence of dot-separated numbers (for example, .1.3.6.1.4.1.2) that represents a
particular information. OIDs form a hierarchical structure. The longer the OID, that is the more numbers
it is made up of, the more specific is the information that is represented by the OID. For example,
.1.3.6.1.4.1.2 represents all IBM-related network information while ..1.3.6.1.4.1.2.6.188 represents all
OSA-Express-related information.

A MIB corresponds to a number of OIDs. MIBs provide information on their OIDs including
textual representations the OIDs. For example, the textual representation of .1.3.6.1.4.1.2
is .iso.org.dod.internet.private.enterprises.ibm.

The structure of the MIBs might change when updating the OSA-Express licensed internal code (LIC) to a
newer level. If MIB changes are introduced by a new LIC level, you must download the appropriate MIB
file for the LIC level (see “Downloading the IBM OSA-Express MIB” on page 301). You do not need to
update the subagent. Place the updated MIB file in a directory that is searched by the master agent.

© Copyright IBM Corp. 2000, 2023 299

https://net-snmp.sourceforge.io

Figure 77. OSA-Express SNMP agent flow

Figure 77 on page 300 illustrates the interaction between the snmpd master agent and the osasnmpd
subagent.

Example: This example shows the processes that run after the snmpd master agent and the osasnmpd
subagent are started. In the example, PID 687 is the SNMP master agent and PID 729 is the OSA-Express
SNMP subagent process:

ps -ef | grep snmp

USER PID
root 687 1 0 11:57 pts/1 00:00:00 snmpd
root 729 659 0 13:22 pts/1 00:00:00 osasnmpd

When the master agent receives an SNMP request for an OID that is registered by a subagent, the master
agent uses the subagent to collect any requested information and to perform any requested operations.
The subagent returns any requested information to the master agent. Finally, the master agent returns the
information to the originator of the request.

Setting up osasnmpd
You can set up osasnmpd by installing the snmpd, snmp, and osasnmpd packages.

About this task
Ubuntu Server 22.04 LTS provides the package s390-tools-osasnmpd that contains osasnmpd.

Procedure
To install the osasnmpd package and the prerequisite snmp and snmpd packages, issue:

apt-get install snmpd snmp s390-tools-osasnmpd

What to do next
Continue with the following setup tasks:

• “Installing MIBs” on page 301
• “Downloading the IBM OSA-Express MIB” on page 301
• “Configuring access control” on page 301

300 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Installing MIBs
Install support for management information bases (MIBs) before installing the IBM OSA-Express MIB.

Procedure
1. Install the snmp-mibs-downloader package using apt:

apt-get install snmp-mibs-downloader

2. Download the latest MIB modules:

download-mibs

3. Edit the /etc/snmp/snmp.conf configuration file to deactivate the line that starts with the word
"mibs".

Downloading the IBM OSA-Express MIB
Keep your MIB file up to date by downloading the latest version.

About this task
Perform the following steps to download the IBM OSA-Express MIB. The MIB file is valid only for
hardware that supports the OSA-Express adapter.

Procedure
1. Go to www.ibm.com/servers/resourcelink

A user ID and password are required. If you do not yet have one, you can apply for a user ID.
2. Sign in.
3. Select Library from the navigation area.
4. Under Library shortcuts, select Open Systems Adapter (OSA) Library.
5. Follow the link for OSA-Express Direct SNMP MIB module.
6. Select and download the MIB for your LIC level.
7. Rename the MIB file to the name specified in the MIBs definition line and use the extension .txt.

Example: If the definition line in the MIB looks like this:

==>IBM-OSA-MIB DEFINITIONS ::= BEGIN

Rename the MIB to IBM-OSA-MIB.txt.
8. Place the MIB into /usr/share/snmp/mibs.

If you want to use a different directory, be sure to specify the directory in the snmp.conf
configuration file.

Results
You can now make the OID information from the MIB file available to the master agent. You can then use
textual OIDs instead of numeric OIDs when using master agent commands.

See also the FAQ (How do I add a MIB to the tools?) for the master agent package at

net-snmp.sourceforge.net/FAQ.html

Configuring access control
To start successfully, the subagent requires at least read access to the standard MIB-II on the local node.

Chapter 17. OSA-Express SNMP subagent support 301

https://www.ibm.com/servers/resourcelink
https://net-snmp.sourceforge.net/FAQ.html

About this task
During subagent startup or when network interfaces are added or removed, the subagent must query
OIDs from the interfaces group of the standard MIB-II.

Given here is an example of how to use the snmpd.conf and snmp.conf configuration files to assign
access rights by using the View-Based Access Control Mechanism (VACM). The following access rights are
assigned on the local node:

• General read access for the scope of the standard MIB-II
• Write access for the scope of the OSA-Express MIB
• Public local read access for the scope of the interfaces MIB

The example is intended for illustration purposes only. Depending on the security requirements of your
installation, you might need to define your access differently. See the snmpd man page for a more
information about assigning access rights to snmpd.

Procedure
1. Ubuntu Server 22.04 LTS creates a sample snmpd.conf file in /etc/snmp when you install snmpd.
2. Open /etc/snmp/snmpd.conf with your preferred text editor.
3. Map a community name to a security name:

com2sec <security-name> <source> <community-name>

where:
<security-name>

is given access rights through further specifications within snmpd.conf.
<source>

is the IP address or DNS name of the accessing system, typically a Network Management Station.
<community-name>

is the community string used for basic SNMP password protection.

Example:

sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public

4. Use the security name to define a group with different versions of the master agent for which you
want to grant access rights.

Include a line of this form for each master agent version:

group <group-name> <security-model> <security-name>

where:
<group-name>

is a group name of your choice.
<security-model>

is the security model of the SNMP version.
<security-name>

is the same as in step “3” on page 302.

Example:

groupName securityModel securityName
group osagroup v1 osasec
group osagroup v2c osasec
group osagroup usm osasec
group osasnmpd v2c pubsec

302 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Group "osasnmpd" with community "public" is required by osasnmpd to determine the number of
network interfaces.

5. Define your views. A view is a subset of all OIDs. Include lines of this form:

view <view-name> <included|excluded> <scope>

where:
<view-name>

is a view name of your choice.
<included|excluded>

indicates whether the following scope is an inclusion or an exclusion statement.
<scope>

specifies a subtree in the OID tree.

Example:

name incl/excl subtree mask(optional)
view allview included .1
view osaview included .1.3.6.1.4.1.2
view ifmibview included .1.3.6.1.2.1.2
view ifmibview included .1.3.6.1.2.1.1

View "allview" encompasses all OIDs while "osaview" is limited to IBM OIDs.
The numeric OID provided for the subtree is equivalent to the textual OID
".iso.org.dod.internet.private.enterprises.ibm" View "ifmibview" is required by osasnmpd to
determine the number of network interfaces.

Tip: Specifying the subtree with a numeric OID leads to better performance than using the
corresponding textual OID.

6. Define access rights. Include lines of this form:

access <group-name> "" any noauth exact <read-view> <write-view> none

where:
<group-name>

is the group you defined in step “4” on page 302.
<read-view>

is a view for which you want to assign read-only rights.
<write-view>

is a view for which you want to assign read-write rights.

Example:

group context sec.model sec.level prefix read write notif
access osagroup "" any noauth exact allview osaview none
access osasnmpd "" v2c noauth exact ifmibview none none

The access line of the example gives read access to the "allview" view and write access to the
"osaview". The second access line gives read access to the "ifmibview".

7. Also include the following line to enable the AgentX support:

master agentx

AgentX support is compiled into the net-snmp master agent.
8. Save and close snmpd.conf.

Example of an snmpd.conf file:

sec.name source community
com2sec osasec default osacom
com2sec pubsec localhost public

Chapter 17. OSA-Express SNMP subagent support 303

groupName securityModel securityName
group osagroup v1 osasec
group osagroup v2c osasec
group osagroup usm osasec
group osasnmpd v2c pubsec
name incl/excl subtree mask(optional)
view allview included .1
view osaview included .1.3.6.1.4.1.2
view ifmibview included .1.3.6.1.2.1.2
view ifmibview included .1.3.6.1.2.1.1
group context sec.model sec.level prefix read write notif
access osagroup "" any noauth exact allview osaview none
access osasnmpd "" v2c noauth exact ifmibview none none
master agentx

9. Open snmp.conf with your preferred text editor.

Tip: See man snmp.conf for possible locations of snmp.conf.
10. Include a line of this form to specify the directory to be searched for MIBs:

mibdirs +<mib-path>

Example:

mibdirs +/usr/share/snmp/mibs

11. Include a line of this form to make the OSA-Express MIB available to the master agent:

mibs +<mib-name>

where <mib-name> is the stem of the MIB file name you assigned in “Downloading the IBM OSA-
Express MIB” on page 301.

Example: mibs +IBM-OSA-MIB
12. Define defaults for the version and community to be used by the snmp commands. Add lines of this

form:

defVersion <version>
defCommunity <community-name>

where <version> is the SNMP protocol version and <community-name> is the community that you
defined in step “3” on page 302.

Example:

defVersion 2c
defCommunity osacom

These default specifications simplify issuing master agent commands.
13. Save and close snmp.conf.

Working with the osasnmpd subagent
Working with the osasnmpd subagent includes starting it, checking the log file, issuing queries, and
stopping the subagent.

Working with osasnmpd comprises the following tasks:

• “Starting the osasnmpd subagent” on page 304
• “Checking the log file” on page 305
• “Issuing queries” on page 305
• “Stopping osasnmpd” on page 306

Starting the osasnmpd subagent
Use the osasnmpd command to start the osasnmpd subagent.

304 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
1. Start the snmpd deamon by using the command:

systemctl start snmpd.service

2. Start the osasnmpd subagent with the osasnmpd command:

osasnmpd

The osasnmpd subagent starts a daemon that is called osasnmpd.

For command options see “osasnmpd – Start OSA-Express SNMP subagent” on page 700.

If you restart the master agent, you must also restart the subagent. When the master agent is started,
it does not look for already running subagents. Any running subagents must also be restarted to be
register with the master agent.

Checking the log file
Warnings and messages are written to the log file of either the master agent or the OSA-Express
subagent. It is good practice to check these files at regular intervals.

Example
This example assumes that the default subagent log file is used. The lines in the log file show the
messages after a successful OSA-Express subagent initialization.

cat /var/log/osasnmpd.log
IBM OSA-E NET-SNMP 5.1.x subagent version 1.3.0
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.2.1.10.7.2.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.1.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.3.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.4.
Jul 14 09:28:41 registered Toplevel OID .1.3.6.1.4.1.2.6.188.1.8.
OSA-E microcode level is 611 for interface encf500
Initialization of OSA-E subagent successful...

Issuing queries
You can issue queries against your SNMP setup.

Before you begin
The snmpget and snmpwalk commands require the snmp package. To install it, issue:

apt-get install snmp

About this task
Examples of what SNMP queries might look like are given here. For more comprehensive information
about the master agent commands see the snmpcmd man page.

The commands can use either numeric or textual OIDs. While the numeric OIDs might provide better
performance, the textual OIDs are more meaningful and give a hint on which information is requested.

Examples
The query examples assume an interface, encf500, for which the CHPID is 6B. You can use the lsqeth
command to find the mapping of interface names to CHPIDs.

• To list the ifIndex and interface description relation (on one line):

Chapter 17. OSA-Express SNMP subagent support 305

snmpget -v 2c -c osacom localhost interfaces.ifTable.ifEntry.ifDescr.6
interfaces.ifTable.ifEntry.ifDescr.6 = encf500

Using this GET request you can see that encf500 has the ifIndex 6 assigned.
• To find the CHPID numbers for your OSA devices:

snmpwalk -OS -v 2c -c osacom localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

The first line of the command output, with index number 6, corresponds to CHPID 0x6B of the encf500
example. The example assumes that the community osacom is authorized as described in “Configuring
access control” on page 301.

If you provided defaults for the SNMP version and the community (see step “12” on page 304), you can
omit the -v and -c options:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.1.1.1
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

You can obtain the same output by substituting the numeric OID .1.3.6.1.4.1.2.6.188.1.1.1.1 with its
textual equivalent:
.iso.org.dod.internet.private.enterprises.ibm.ibmProd.ibmOSAMib.ibmOSAMibObjects.ibmOSAExpChannelTable.ibmOSAExpChannelEntry.ibmOSAExpChannelNumber

You can shorten this unwieldy OID to the last element, ibmOsaExpChannelNumber:

snmpwalk -OS localhost ibmOsaExpChannelNumber
IBM-OSA-MIB::ibmOSAExpChannelNumber.6 = Hex-STRING: 00 6B
IBM-OSA-MIB::ibmOSAExpChannelNumber.7 = Hex-STRING: 00 7A
IBM-OSA-MIB::ibmOSAExpChannelNumber.8 = Hex-STRING: 00 7D

• To find the port type for the interface with index number 6:

snmpwalk -OS localhost .1.3.6.1.4.1.2.6.188.1.4.1.2.6
IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

fastEthernet(81) corresponds to card type OSD_100.

Using the short form of the textual OID:

snmpwalk -OS localhost ibmOsaExpEthPortType.6
IBM-OSA-MIB::ibmOsaExpEthPortType.6 = INTEGER: fastEthernet(81)

Specifying the index, 6 in the example, limits the output to the interface of interest.

Stopping osasnmpd
The subagent can be stopped by sending either a SIGINT or SIGTERM signal to the thread.

About this task
Avoid stopping the subagent with kill -9 or with kill -SIGKILL. These commands do not allow
the subagent to unregister the OSA-Express MIB objects from the SNMP master agent. This can cause
problems when restarting the subagent.

If you saved the subagent PID to a file when you started it, you can consult this file for the PID (see
“osasnmpd – Start OSA-Express SNMP subagent” on page 700). Otherwise, you can issue a ps command
to find it out.

306 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example
The osasnmpd subagent starts a daemon that is called osasnmpd. To stop osasnmpd, issue the kill
command for either the daemon or its PID:

ps -ef | grep snmp

USER PID
root 687 1 0 11:57 pts/1 00:00:00 snmpd
root 729 659 0 13:22 pts/1 00:00:00 osasnmpd
killall osasnmpd

Chapter 17. OSA-Express SNMP subagent support 307

308 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 18. LAN channel station device driver

LPAR and z/VM: The LCS device driver applies to Linux in LPAR mode and to Linux on z/VM.

The LAN channel station device driver (LCS device driver) supports Open Systems Adapters (OSA)
features in non-QDIO mode up to OSA-Express4S.

The LCS device driver supports OSA-Express features for the IBM Z mainframes that are relevant to
Ubuntu Server 22.04 LTS as shown in Table 49 on page 309.

Table 49. The LCS device driver supported OSA features

Feature z15 z14 z13 and z13s

OSA-Express7S 1000Base-T Ethernet Not supported Not supported

OSA-Express6S 1000Base-T Ethernet 1000Base-T Ethernet Not supported

OSA-Express5S 1000Base-T Ethernet 1000Base-T Ethernet 1000Base-T Ethernet

OSA-Express4S 1000Base-T Ethernet 1000Base-T Ethernet 1000Base-T Ethernet

OSA-Express3 1000Base-T Ethernet Not supported Not supported

The LCS device driver supports automatic detection of Ethernet connections. The LCS device driver can be
used for Internet Protocol, version 4 (IPv4) only.

What you should know about LCS
Interface names are assigned to LCS group devices, which map to subchannels and their corresponding
device numbers and device bus-IDs.

LCS group devices
The LCS device driver requires two I/O subchannels for each LCS interface, a read subchannel and a write
subchannel. The corresponding bus IDs must be configured for control unit type 3088.

Figure 78. I/O subchannel interface

The device bus-IDs that correspond to the subchannel pair are grouped as one LCS group device. The
following rules apply for the device bus-IDs:

read
must be even.

write
must be the device bus-ID of the read subchannel plus one.

Setting up the LCS device driver
There are no module parameters for the LCS device driver.

© Copyright IBM Corp. 2000, 2023 309

Ubuntu Server 22.04 LTS loads the device driver module for you when a device becomes available.

You can also load the lcs module with the modprobe command:

modprobe lcs

Working with LCS devices
Working with LCS devices includes tasks such as creating an LCS group device, specifying a timeout, or
activating an interface.

• “Creating an LCS group device” on page 310
• “Removing an LCS group device” on page 311
• “Specifying a timeout for LCS LAN commands” on page 311
• “Setting an LCS group device online or offline” on page 311
• “Activating and deactivating an interface” on page 312
• “Recovering an LCS group device” on page 313

Creating an LCS group device
Use the group attribute to create an LCS group device.

Before you begin
You must know the device bus-IDs that corresponds to the read and write subchannel of your OSA card.
The subchannel is defined in the IOCDS of your mainframe.

Procedure
To define an LCS group device, write the device bus-IDs of the subchannel pair to /sys/bus/ccwgroup/
drivers/lcs/group.
Issue a command of this form:

echo <read_device_bus_id>,<write_device_bus_id> > /sys/bus/ccwgroup/drivers/lcs/group

Results
The lcs device driver uses the device bus-ID of the read subchannel to create a directory for a group
device:

/sys/bus/ccwgroup/drivers/lcs/<read_device_bus_id>

This directory contains a number of attributes that determine the settings of the LCS group device. The
following sections describe how to use these attributes to configure an LCS group device.

Example

Assuming that 0.0.d000 is the device bus-ID that corresponds to a read subchannel:

echo 0.0.d000,0.0.d001 > /sys/bus/ccwgroup/drivers/lcs/group

This command results in the creation of the following directories in sysfs:

• /sys/bus/ccwgroup/drivers/lcs/0.0.d000
• /sys/bus/ccwgroup/devices/0.0.d000
• /sys/devices/lcs/0.0.d000

310 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Removing an LCS group device
Use the ungroup attribute to remove an LCS group device.

Before you begin
The device must be set offline before you can remove it.

Procedure
To remove an LCS group device, write 1 to the ungroup attribute.
Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/ungroup

Example
This command removes device 0.0.d000:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/ungroup

Specifying a timeout for LCS LAN commands
Use the lancmd_timeout attribute to set a timeout for an LCS LAN command.

About this task
You can specify a timeout for the interval that the LCS device driver waits for a reply after issuing a LAN
command to the LAN adapter. For older hardware, the replies can take a longer time. The default is 5 s.

Procedure
To set a timeout, issue a command of this form:

echo <timeout> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/lancmd_timeout

where <timeout> is the timeout interval in seconds in the range 1 - 60.

Example
In this example, the timeout for a device 0.0.d000 is set to 10 s.

echo 10 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/lancmd_timeout

Setting an LCS group device online or offline
Use the online device group attribute to set an LCS device online or offline.

About this task
Setting a device online associates it with an interface name. Setting the device offline preserves the
interface name.

You must know the interface name to activate the network interface. To determine the assigned interface
name, use the lszdev --existing command. For each online interface, the interface name is shown in
the Name column. Alternatively, to determine the assigned interface name issue a command of the form:

ls /sys/devices/lcs/<device_bus_id>/net/

Chapter 18. LAN channel station device driver 311

Procedure
To set an LCS group device online, set the online device group attribute to 1. To set an LCS group device
offline, set the online device group attribute to 0.
Issue a command of this form:

echo <flag> > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/online

Example
To set an LCS device with bus ID 0.0.d000 online issue:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

The interface name that was assigned to the LCS group device in the example is encd000. To confirm that
this name is correct for the group device issue:

lszdev --existing
TYPE ID ON PERS NAMES
...
lcs 0.0.d000:0.0.d001 yes no encd000
...

or

ls /sys/devices/lcs/0.0.d000/net/
encd000
...

The interface name that was assigned to the LCS group device in the example is encd000.

For each online interface, there is a symbolic link of the form /sys/class/net/<interface_name>/
device in sysfs. You can confirm that you found the correct interface name by reading the link:

readlink /sys/class/net/encd000/device
../../../0.0.d000

To set the device offline issue:

echo 0 > /sys/bus/ccwgroup/drivers/lcs/0.0.d000/online

Activating and deactivating an interface
Use the ip command or equivalent to activate or deactivate an interface.

About this task
Before you can activate an interface, you must set the group device online and found out the interface
name that is assigned by the LCS device driver. See “Setting an LCS group device online or offline” on page
311.

You activate or deactivate network devices with ip or an equivalent command. For details of the ip
command, see the ip man page.

Examples

• This example activates an Ethernet interface:

ip addr add 192.168.100.10/24 dev encf500
ip link set dev encf500 up

312 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• This example deactivates the Ethernet interface:

ip link set dev encf500 down

• This example reactivates an interface that was already activated and subsequently deactivated:

ip link set dev encf500 up

Recovering an LCS group device
You can use the recover attribute of an LCS group device to recover it in case of failure.

Procedure
Issue a command of the form:

echo 1 > /sys/bus/ccwgroup/drivers/lcs/<device_bus_id>/recover

Example

echo 1 > /sys/bus/ccwgroup/drivers/lcs/0.0.d100/recover

Chapter 18. LAN channel station device driver 313

314 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 19. AF_IUCV address family support

LPAR and z/VM: The AF_IUCV address family support applies to Linux in LPAR mode and to Linux on
z/VM.

The AF_IUCV address family provides an addressing mode for communications between applications that
run on IBM Z.

This addressing mode can be used for connections through real HiperSockets and through the z/VM
Inter-User Communication Vehicle (IUCV).

Support for AF_IUCV based connections through real HiperSockets requires Completion Queue Support.

HiperSockets devices facilitate connections between applications across LPARs within an IBM Z. In
particular, an application that runs on an instance of Linux on IBM Z can communicate with:

• Itself
• Other applications that run on the same Linux instance
• An application on an instance of Linux on IBM Z in another LPAR

IUCV facilitates connections between applications across z/VM guest virtual machines within a z/VM
system. In particular, an application that runs on Linux on z/VM can communicate with:

• Itself
• Other applications that run on the same Linux instance
• Applications running on other instances of Linux on z/VM, within the same z/VM system
• Applications running on a z/VM guest other than Linux, within the same z/VM system
• The z/VM control program (CP)

The AF_IUCV address family supports stream-oriented sockets (SOCK_STREAM) and connection-oriented
datagram sockets (SOCK_SEQPACKET). Stream-oriented sockets can fragment data over several packets.
Sockets of type SOCK_SEQPACKET always map a particular socket write or read operation to a single
packet.

Features
The AF_IUCV address family provides socket connections for HiperSockets and IUCV.

For all instances of Linux on IBM Z, the AF_IUCV address family provides the following features:

• Multiple outgoing socket connections for real HiperSockets
• Multiple incoming socket connections for real HiperSockets

For instances of Linux on z/VM, the AF_IUCV address family also provides the following features:

• Multiple outgoing socket connections for IUCV
• Multiple incoming socket connections for IUCV
• Socket communication with applications that use the CMS AF_IUCV support

Setting up the AF_IUCV address family support
You must authorize your LPAR or z/VM guest virtual machine and load those components that were
compiled as separate modules.

There are no module parameters for the AF_IUCV address family support.

© Copyright IBM Corp. 2000, 2023 315

Setting up HiperSockets devices for AF_IUCV addressing
In AF_IUCV addressing mode, HiperSockets devices in layer 3 mode are identified through their hsuid
sysfs attribute.

You set up a HiperSockets device for AF_IUCV by assigning a value to this attribute (see “Configuring a
HiperSockets device for AF_IUCV addressing” on page 274).

Setting up your z/VM guest virtual machine for IUCV
You must specify suitable IUCV statements for your z/VM guest virtual machine.

For details and for general IUCV setup information for z/VM guest virtual machines, see z/VM: CP
Programming Services, SC24-6272 and z/VM: CP Planning and Administration, SC24-6271.

Granting IUCV authorizations

Use the IUCV statement to grant the necessary authorizations.
IUCV ALLOW

allows any other z/VM virtual machine to establish a communication path with this z/VM virtual
machine. With this statement, no further authorization is required in the z/VM virtual machine that
initiates the communication.

IUCV ANY
allows this z/VM guest virtual machine to establish a communication path with any other z/VM guest
virtual machine.

IUCV <user ID>
allows this z/VM guest virtual machine to establish a communication path to the z/VM guest virtual
machine with the z/VM user ID <user ID>.

You can specify multiple IUCV statements. To any of these IUCV statements you can append the
MSGLIMIT <limit> parameter. <limit> specifies the maximum number of outstanding messages that are
allowed for each connection that is authorized by the statement. If no value is specified for MSGLIMIT,
AF_IUCV requests 65 535, which is the maximum that is supported by IUCV.

Setting a connection limit

Use the OPTION statement to limit the number of concurrent connections.
OPTION MAXCONN <maxno>

<maxno> specifies the maximum number of IUCV connections that are allowed for this virtual
machine. The default is 64. The maximum is 65 535.

Example
These sample statements allow any z/VM guest virtual machine to connect to your z/VM guest virtual
machine with a maximum of 10 000 outstanding messages for each incoming connection. Your z/VM
guest virtual machine is permitted to connect to all other z/VM guest virtual machines. The total number
of connections for your z/VM guest virtual machine cannot exceed 100.

IUCV ALLOW MSGLIMIT 10000
IUCV ANY
OPTION MAXCONN 100

Loading the IUCV modules
Ubuntu Server 22.04 LTS loads the af_iucv module when an application requests a socket with the
AF_IUCV addressing mode.

316 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

You can also use the modprobe command to load the AF_IUCV address family support module af_iucv:

modprobe af_iucv

Addressing AF_IUCV sockets in applications
To use AF_IUCV sockets in applications, you must code a special AF_IUCV sockaddr structure.

Application programmers: This information is intended for programmers who want to use connections
that are based on AF_IUCV addressing in their applications.

The primary difference between AF_IUCV sockets and TCP/IP sockets is how communication partners
are identified (for example, how they are named). To use the AF_IUCV support in an application, code a
sockaddr structure with AF_IUCV as the socket address family and with AF_IUCV address information. For
more information, see the af_iucv man page.

Chapter 19. AF_IUCV address family support 317

318 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 20. SMC protocol support
The shared memory communication (SMC) protocol is an addition to TCP/IP and can be used
transparently for shared memory communications.

The SMC protocol can be used for connections through:

• Shared Memory Communications over RDMA (SMC-R) with RoCE devices.
• Shared Memory Communications Direct (SMC-D) with ISM devices

If both variants are available for a connection, SMC-D is used.

Prerequisites
SMC connections are initiated through TCP/IP. Hence, the communication partners must be able to reach
each other through TCP/IP.

An SMC connection requires both communication partners to support SMC. Unless both partners support
SMC, the connection falls back to TCP/IP.

Similarly, a version 2 SMC connection requires both communication partners to support version 2. If one
partner does not support version 2, the connection falls back to version 1.

The SMC-R protocol requires:

• A system with a RoCE Express adapter, see Chapter 21, “RDMA over Converged Ethernet,” on page 331.
• For SMC-Rv1, the communication partners must be in the same subnet. For SMC-Rv2 and using RoCE

Express2 or later, communication partners can be in different IP subnets.

The SMC-D protocol requires:

• A system with an Internal Shared Memory (ISM) device. For more information about ISM devices, see
Chapter 22, “Internal shared memory device driver,” on page 335. ISM devices are supported for Linux
in LPAR mode and for Linux on z/VM.

• The communication partners must be running on the same CPC.
• ISM devices must have the same virtual channel ID (VCHID) on both communication partners to be

usable for SMC-D communication.
• For SMC-D version 1, the communication partners must be in the same subnet. As of IBM z15 using

SMC-D version 2, communication partners can be in different IP subnets.

To use SMC on Linux, a socket application must use the AF_SMC address family. For AF_SMC support in
existing applications without code changes, the SMC-Tools package provides a preload library and the
smc_run command. For more information about these tools and how to convert socket applications from
AF_INET or AF_INET6 to AF_SMC, see “Setting up the SMC support” on page 320.

Features
The AF_SMC address family provides RDMA communication. Benefits include:

• Transparency to existing TCP/IP applications with the preload library and smc_run
• Low latency
• Lower CPU usage compared to native TCP/IP

Information and troubleshooting tools
Tools are available to help you retrieve information about SMC and troubleshoot.

© Copyright IBM Corp. 2000, 2023 319

smc-tools
The smc-tools package provides commands that help you to manage connections that use the SMC
protocol. To install the package, use for example apt-get install smc-tools.

• Use the smcd info and smcr info verify the setup and provides information on the capabilities of the
hardware and Linux.

• Use the smcd and smcr commands to investigate your SMC links, link groups, and devices.

Wireshark
To help with troubleshooting, you can use the open source tool Wireshark to analyze SMC handshake
traffic. The traffic is visually presented in the tool. The network packets sent during the SMC handshake
are presented in human readable format with explanatory titles.

You can also use tcpdump to capture handshake traffic.

Setting up the SMC support
SMC traffic requires two associated network interfaces: an interface for a traditional TCP/IP connection
and an interface for an SMC-capable device.

Any network interface that can reach the communication peer can provide the TCP/IP connection,
including HiperSockets interfaces and interfaces of OSA-Express or RoCE Express adapters. The SMC-
capable devices are ISM devices for SMC-D or PCI functions of RoCE Express adapters for SMC-R.

How to associate network interfaces for SMC connections depends on your version of SMC-D or SMC-R.
Issue an smcd info or smcr info command to display the supported versions.

In the following example, both the hardware and software support SMC-Dv2 and SMC-Rv2 as well as
SMC-Dv1 and SMC-Rv1.

smcr info
Kernel Capabilities
SMC Version: 2.0
SMC Hostname: t8345009.lnxne.boe
SMC-D Features: v1 v2
SMC-R Features: v1 v2

Hardware Capabilities
SEID: IBM-SYSZ-ISMSEID000000002E488561
ISM: v1 v2
RoCE: v1 v2

For SMC-Dv2, you need an IBM z15, LinuxONE III, or later hardware system. The smcd info command
must list v2 for the SMC-D Features and for ISM.

For SMC-Rv2, your SMC-capable network adapter must be RoCE Express2 or later. The smcr info
command must list v2 for the SMC-R Features and for RoCE.

Setting up connections with SMC-Dv1 or SMC-Rv1
With SMC-Dv1 or SMC-Rv1, use physical network (PNET) IDs to associate network interfaces for TCP/IP
and for ISM devices or RoCE Express PCI functions. If these interfaces have the same PNET ID, they are
connected to the same physical network and can be used together for SMC.

LPAR and z/VM
For Linux in LPAR mode and for Linux on z/VM, you can assign PNET IDs to OSA, HiperSockets, RoCE,
and ISM devices through the IOCDS.

Figure 79 on page 321 illustrates how the IOCDS assigns the PNET ID NET1 to an SMC-capable device
and a network interface for an Ethernet device. In Linux, the matching PNET ID associates the ISM
device with the Ethernet device.

320 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 79. PNET ID and SMC device association

As a fallback, you can also use a software PNET table that maps network interfaces to PCI functions
of RoCE Express adapters. For more information about PNET tables, see the KVM information that
follows.

KVM
For SMC-R on Linux on KVM, you need a software PNET table that maps network interfaces of TCP/IP
connections to those of PCI functions of RoCE Express adapters. Use the smc_pnet command to
create a physical network (PNET) table with this mapping (see “smc_pnet - Create network mapping
table” on page 721).

Note: z/OS does not support the RoCE Express adapter as an IP device, and therefore uses OSA adapters
for the initial handshake for SMC-R connections. Linux has no such constraint.

Setting up connections with SMC-Dv2 or SMC-Rv2
Other than SMC-Dv1 and SMC-Rv1, SMC-Dv2 and SMC-Rv2 support connections across IP subnets.

How to associate the TCP/IP network interfaces and SMC-capable devices that can reach a
communication peer is different for SMC-Dv2 and SMC-Rv2.
SMC-Dv2

Other than for SMC-Dv1, SMC-Dv2 does not require PNET IDs to explicitly associate the interfaces,
but PNET IDs must also not contradict the association. If set for both interfaces, the PNET ID must be
the same, thus enabling the fallback to SMC-Dv1. This fallback would otherwise not be available, and
is required when connecting to peers that support SMC-Dv1 only.

SMC-Rv2
Like SMC-Rv1, SMC-Rv2 requires PNET IDs to explicitly associate the interfaces.

SMC traffic is constrained by enterprise IDs (EIDs), which are assigned at the operating system level.
Operating system instances that share an EID constitute a group that, with associated interfaces of
TCP/IP and SMC-capable devices in place, can exchange SMC traffic. You can use EIDs to establish groups
that are isolated from one another with respect to SMC. This isolation can separate operating system
instances for data privacy. It can also prevent SMC-R connections between peers that are geographically
or topologically too distant for efficient RDMA traffic.

EIDs apply to both SMC-Dv2 and SMC-Rv2. With SMC-D already limited to traffic within a hardware
system, EIDs are useful mainly for SMC-Rv2.

An EID can be pre-defined in the hardware system or it can be user-defined.
System-defined EID

The unique system-defined EIDs of IBM Z and LinuxONE hardware systems are relevant to SMC-Dv2.
Operating system instances with the same system-defined EID run on the same hardware system and
are eligible to exchange SMC-Dv2 traffic.

Chapter 20. SMC protocol support 321

By default, Linux instances use the system-defined EID. With the smcd seid command, you can
disable or enable the system-defined EID (see “smcd - Display information about SMC-D link groups
and devices” on page 713).

In contrast, z/OS disables the system-defined EID by default. The system-defined EID is enabled or
disabled through a configuration parameter, see z/OS Communications Server: IP Configuration Guide.

With user-defined EIDs you can restrict SMC traffic to groups of operating system instances.

User-defined EIDs
User-defined EIDs are relevant to both SMC-Dv2 and SMC-Rv2, and the same user-defined EIDs apply
to both SMC variants.

Assign user-defined EIDs to set up groups of operating system instances that are eligible for SMC
traffic within the groups. For SMC-Rv2, user-defined EIDs can span multiple hardware systems.

If EIDs are used to group operating system instances that are geographically close, guests of the same
z/VM system can all share an EID. Similarly, for SMC-Rv2 traffic, KVM guests on the same KVM host
often have the same EID.

A Linux instance can have up to four EIDs, and so be a member of up to four groups. It is then eligible
for SMC traffic with operating system instances in each group.

You can use the smcd ueid command or the smcr ueid command to manage user-defined EIDs
(see “smcr - Display information about SMC-R” on page 717 and “smcd - Display information about
SMC-D link groups and devices” on page 713).

Instances of Linux on IBM Z or LinuxONE have at least one active EID.

• You cannot disable the system-defined EID unless at least one user-defined EID is assigned.
• Deleting the last user-defined EID automatically enables the system-defined EID.

Figure 80 on page 322 shows an example with three Linux instances on an IBM Z system. For all
instances, the system-defined EID is enabled. With IP connectivity and eligible ISM devices in place, all
instances can exchange SMC-Dv2 traffic, across IP subnets.

Figure 80. SMC-Dv2 with system-defined EID

In Figure 81 on page 323, two of the Linux instances disabled their system-defined EID and use a
matching user-defined EID instead. With this setup, only the instances with matching user-defined EIDs
can exchange SMC-Dv2 traffic, Linux 1 and Linux 3 in the example.

322 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Figure 81. SMC-Dv2 with user-defined EIDs

If Linux instances with matching user-defined EIDs are connected through RoCE Express adapters, the
connection can be SMC-Rv2 instead of SMC-Dv2. Because SMC-D is more performant than SMC-R, SMC-D
is used if the prerequisites for both options are in place.

SMC-R connections can span both IP subnets and hardware systems, as illustrated in Figure 82 on page
323.

Figure 82. SMC-R across IP subnets and hardware systems

In the example, Linux 1 and Linux 4 can exchange SMC-R traffic, assuming that PNET IDs associate the
TCP/IP interface and the SMC-R capable interface on both Linux 1 and Linux 4.

Network device settings for SMC-R
On the network device associated with the RoCE Express PCI function that you want to use for SMC traffic,
check the settings with the ethtool command and ensure that pause settings are turned on.

For example, if enP2s13 is the network device associated with the desired IB device port:

ethtool -a enP2s13
Pause parameters for enP2s13:
Autonegotiate: off
RX: on
TX: on

RoCE Express PCI functions provide both, interfaces for SMC-R RDMA traffic and Ethernet interfaces for
TCP traffic. To use a PCI function as a failover device for RDMA, the Ethernet interface must be active but

Chapter 20. SMC protocol support 323

not permit any traffic. The following example shows how this condition can be attained. The example uses
the ip command. For a persistent configuration, use the network manager of your distribution.

1. Set up a link mylnk_eth0 for an interface eth0

ip link add dev mylnk_eth0 link eth0

To set up the link in the context of a VLAN, append the VLAN specifications to this command. For
example, for a VLAN with ID 661, the command becomes:

ip link add dev mylnk_eth0 link eth0 type vlan id 661

2. Assign an IP address to the link.

ip addr add 10.2.1.1/16 dev mylnk_eth0

3. Activate the link.

ip link set mylnk_eth0 up

4. Remove all auto-generated routes for the new link.

ip route flush scope link dev mylnk_eth0

5. The network manager of your distribution might interpret this stale link setup as a configuration error.
Prevent the network manager from reversing your settings to make the link functional. The example
shows a NetworkManager command.

nmcli device set eth0 managed no

Your distribution might use a different network manager, for example, netplan. Use a command
according to your network manager.

Sysctl settings
The TCP port must not be shared by IPv4 and IPv6 connections. Use the following sysctl call to ensure
that an IPv6 socket binds only to IPv6 addresses:

sysctl -w net.ipv6.bindv6only=1

SMC requires contiguous memory. The minimum is 16 KB, and the maximum is 512 MB. The SMC
implementation selects a value as follows:

• Some socket applications define the socket send- and receive buffer sizes with a setsockopt call,
whose upper limits are defined in net.core.wmem_max and net.core.rmem_max.

• If setsockopt SO_SNDBUF is not used, the socket send buffer size is taken from the value of
net.ipv4.tcp_wmem.

• If setsockopt SO_RCVBUF is not used, the socket receive buffer is taken from the value of
net.ipv4.tcp_rmem, rounded to the next higher power of 2.

Make an existing application use SMC
Use the preload library to make the unmodified socket application use SMC. Existing TCP/IP applications
can benefit from the SMC protocol without recompiling, if they are invoked with the SMC preload
library libsmc_preload.so. See “smc_run - Run a TCP socket program with the SMC protocol using
a preloaded library” on page 724, which makes an existing TCP/IP socket program use SMC.

As an alternative to smc_run, you can use the LC_PRELOAD environment variable to specify the preload
library with the application's start command:

324 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

LD_PRELOAD=libsmc-preload.so <application_start_cmd>

Converting an application to use SMC
Alternatively, if you need to, you can convert an application.To convert an application from TCP/IP to
SMC sockets, change the socket() function call from AF_INET to AF_SMC with protocol "0" and from
AF_INET6 to AF_SMC with protocol "1". For example, change:

sd = socket(AF_INET, SOCK_STREAM, 0);

to:

sd = socket(AF_SMC, SOCK_STREAM, 0);

and

sd = socket(AF_INET6,SOCK_STREAM, 0);

to:

sd = socket(AF_SMC, SOCK_STREAM, 1);

Use the sockets.h header file from the glibc-header package. For more programming information, see
the af_smc (7) man page.

Investigating PNET IDs
You can find the PNET IDs for PCIe devices and for CCW group devices in sysfs.

PCIe devices
Use the smc_chk command from the smc-tools package to display PNET IDs. Issue a command of the
following form:

smc_chk -i <interface>

For example:

smc_chk -i enP10p0s0
PNET5

For more information about the smc_chk command, see “smc_chk - Verify SMC setups” on page 712.

The smc_rnics command, that is part of the smc-tools package, also shows the PNET IDs for PCIe
devices.

Alternatively, you can use sysfs.The PNET IDs of PCI devices can be read, in EBCDIC format, as the value
of the util_string attribute of the device in sysfs. If the PCIe device is connected through a RoCE
adapter, the contents of the util_string attribute depends on the adapter:

• On RoCE Express adapters, the attribute contains two PNET IDs as fixed 16-character blocks in
sequence.

• On RoCE Express2 adapters, the attribute contains a single PNET ID, because adapters have one PCI
device per port.

You can use a command of the following form to read PNET IDs and convert them to ASCII:

cat /sys/devices/pci<function_name>/<function_address>/util_string | iconv -f IBM-1047 -t ASCII

In the command, /sys/devices/pci<function_name>/<function_address> represents the PCI
device in sysfs.

Chapter 20. SMC protocol support 325

Alternatively, use the smc_rnics command that is part of the smc-tools package.

Example:

cat /sys/devices/pci0000:00/0000:00:00.0/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

Alternatively, using smc_rnics:

smc_rnics
 FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev

 8ca 1 0002:00:00.0 01c8 RoCE_Express2 0 NET1 enP2p0s0np0
 8ea 1 0003:00:00.0 01c8 RoCE_Express2 1 NET2 enP3p0s0np0
 ...

CCW group devices
Use the smc_chk command to display PNET IDs of CCW group devices. Issue a command of the following
form:

smc_chk -i <interface>

For example:

smc_chk -i encb1f0
NET1

For more information about the smc_chk command, see “smc_chk - Verify SMC setups” on page 712.

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

Alternatively, the PNET IDs of CCW group devices can be read, in EBCDIC format, as the value of the
util_string of the corresponding channel path ID in sysfs. For adapters with multiple ports, the PNET
IDs are given in sequential 16-character blocks corresponding to the ports. To find the channel path ID of
a CCW group device, read its chpid attribute in sysfs.

Example:

cat cat /sys/bus/ccwgroup/devices/0.0.b1f0/chpid
4a

To find the PNET IDs issue a command of this form:

cat /sys/devices/css0/chp0.<chpid>/util_string | iconv -f IBM-1047 -t ASCII

where <chpid> is the channel path ID.

Example:

cat /sys/devices/css0/chp0.4a/util_string | iconv -f IBM-1047 -t ASCII
NET1

The PNET ID of the example is NET1. If there is no command output or if the output is blank, no PNET ID
is assigned to the device.

326 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Tips
• The output of the iconv command does not have a trailing line break, so displayed PNET IDs are

followed by a command prompt. Pipe the output to a suitable sed command, for example sed
's/$/\n/', to display the PNET IDs on a separate linedonknow.

• Use the following command to display a list of all CCW devices and their PNET IDs:

for device in `ls -1 /sys/bus/ccwgroup/devices`; do
chpid=`cat /sys/bus/ccwgroup/devices/$device/chpid | tr [A-F] [a-f]`;
pnetid="`cat /sys/devices/css0/chp0.$chpid/util_string | iconv -f IBM-1047 -t ASCII | sed 's/^/ /'`";
echo " device: $device chpid: $chpid pnetID: $pnetid";
done

Obtaining statistics for SMC connections
Separate statistical information is available about SMC-R and SMC-D connections. Use the smcr stats
command to show the SMC-R statistics, and the smcd stats command to show the SMC-D statistics.

Command syntax

smcr

smcd -d -a
stats

show

reset

json

Where:
-d or --details

displays detailed statistics, see “Expanded output for details mode” on page 328.
-a or --absolute

ignores any counter resets and displays statistics beginning with smc module load.
reset

displays the current statistics and resets the counters for SMC-R or SMC-D to zero.
json

displays the current statistics in JSON format.

For command help information, enter smcr stats help, smcd stats help, or see the smcr-stats
or smcd-stats man page.

Examples
• To show SMC-D statistics:

smcd stats

• To show detailed SMC-R statistics and reset the SMC-R statistics counters:

smcr -d stats reset

• To ignore any counter resets and show detailed SMC-R statistics since module load in JSON format:

smcr -da stats json

Command output
The command output shows several counters with the following meanings:

Chapter 20. SMC protocol support 327

Total connections handled
The total number of connections handled by the smc module. This number includes TCP fallback
connections and handshake errors.

SMC connections
The number of connections that successfully entered the SMC mode.

Handshake errors
The number of connections that failed because of errors during the handshake phase, for example,
because the peer stopped responding.

Avg requests per SMC conn
The average number of requests sent and received per SMC connection. This number includes special
socket calls.

TCP fallback
The number of connections that fell back to TCP/IP.

Data transmitted
The amount of data sent (TX) or received (RX) in Bytes.

Total requests
The total number of individual send (TX) or receive (RX) requests handled. This number includes
requests that ended with errors or did not transfer any data.

Buffer full
The number of occurrences where the respective send buffer (TX) could not contain all data to be
sent, or did not contain as much data as requested in a receive() call (RX).

Bufs
A histogram of buffer sizes for all connections, including buffer downgrades and buffer reuses. The
histogram scale presents exact buffer sizes.

Reqs
A histogram of request sizes. The histogram scale includes upper boundaries of request sizes. Counts
reflect requested send sizes for TX, and actual receive sizes for RX. Other than Total requests,
this count omits erroneous requests and requests that do not transfer any data.

Special socket calls
Summarizes the total number of sockets calls that require special handling in SMC. The -d option
categorizes these calls, see “Expanded output for details mode” on page 328.

Expanded output for details mode
With the -d option, the command output includes all counters of the regular mode, some of them with
more detailed information:
SMC connections

Shows the SMC connections by SMC version, and shows separate counts for client and server.
Handshake errors | TCP fallback

Show separate counts for client and server.
Special socket calls

Shows the total number of sockets calls that require special handling in SMC and categorizes them
into the following individual counters:
cork

The number of sockopt TCP_CORK enablements. This counter does not reflect the number of send
requests with TCP_CORK enabled.

nodelay
The number of sockopt TCP_NODELAY enablements. This counter does not reflect the number of
send requests with TCP_NODELAY enabled.

sendpage
The number of AF_SMC implementations of the sendpage() call.

328 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

splice
The number calls of the splice() system call.

urgent data
The number of send() and receive() calls with MSG_OOB set.

The counters with the following labels are shown only with the -d option:
Buffer full (remote)

The number of occurrences where the peer’s receive buffer was exceeded by writing data. Requests
that fill the buffer to the last bit are not included in this count.

Buffer too small
The number of occurrences where a send request was larger than the local send buffer’s total
capacity.

Buffer too small (remote)
The number of occurrences where a send request exceeded the total capacity of the peer’s receive
buffer.

Buffer downgrades
The number of occurrences where a buffer of the requested size could not be allocated for a new
connection, and a smaller buffer was used.

Buffer reuses
The number of occurrences where a buffer was provided as requested for a new connection by
reusing a buffer from a previous connection.

Chapter 20. SMC protocol support 329

330 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 21. RDMA over Converged Ethernet
Linux on IBM Z supports RDMA over Converged Ethernet (RoCE) in the form of RoCE Express features.

Ubuntu Server supports RoCE features as shown in Table 50 on page 331. Note that the mapping of ports
to function keys depend on the adapter hardware.

Table 50. Support for RDMA over Converged Ethernet features

Feature IBM z16 IBM z15 z14 and z14 ZR1 z13 and z13s

RoCE Express3

Two adapter ports,
different function
IDs

10 Gigabit Ethernet
25 Gigabit Ethernet

Not supported Not supported Not supported

RoCE Express2

Two adapter ports,
different function
IDs

10 Gigabit Ethernet
25 Gigabit Ethernet

10 Gigabit Ethernet
25 Gigabit Ethernet

10 Gigabit Ethernet
25 Gigabit Ethernet

Not supported

RoCE Express

Two adapter ports,
same function ID

Not supported 10 Gigabit Ethernet 10 Gigabit Ethernet 10 Gigabit Ethernet

The RoCE support requires PCI Express support, see Chapter 33, “PCI Express support,” on page 397.

You can use a PCI function as a base for MacVTab or OpenVSwitch similarly to an OSA adapter, see “Using
an HSCI interface as a base device for MacVTap or OpenVSwitch” on page 284.

More information
For more information about RoCE Express, see Networking with RoCE Express, SC34-7745. You can find
this publication and further information about using RoCE Express with Linux on IBM Z and IBM LinuxONE
on IBM Documentation at ibm.com/docs/en/linux-on-systems?topic=configuration-roce-express.

Using a RoCE device for SMC-R
SMC-R requires RoCE devices that are associated with network devices of TCP networks through a PNET
ID, for example through statements in the IOCDS.

The following figure illustrates how a RoCE device and a Ethernet device are associated by a matching
PNET ID. A communication peer has a similarly associated pair of an RoCE device and Ethernet device.
With this setup, the TCP connection can switch over to an SMC-R connection over the SMC protocol. The
communication peer can but need not be on the same CPC.

© Copyright IBM Corp. 2000, 2023 331

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_roce.html

Figure 83. A matching PNET ID associates RoCE devices and Ethernet device

For more information about PNET IDs, see “Setting up the SMC support” on page 320.

Using SMC-R link groups
Once established, failed SMC-R links do not fall back to the TCP connection. To protect against link failure,
SMC-R creates link groups for you. Link groups use multiple RoCE devices with the same PNET ID. A
similar association of an Ethernet device with multiple RoCE devices on the communication peer then
results in multiple, independent SMC-R links within a link group.

Figure 84. Multiple SMC-R links protect against link failure

The SMC-R connection survives failures of individual RoCE devices if at least one device remains
operational on each side.

Use the smcr command to explore SMC-R links, link groups, and devices (see “smcr - Display information
about SMC-R” on page 717).

Note: SMC-R does not work with multiple SMC-R links if the links are used in a bonding setup.

Network interface names
Network interface names for RoCE devices as of Ubuntu Server 22.04 use the naming scheme described
here.

332 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Network interface names for RoCE devices can be based on the devices' user-defined identifiers (UIDs)
or on their function IDs (FIDs). Which of the two naming schemes is used depends on whether UID
uniqueness checking is enabled for your environment.

Read the uid_is_unique attribute for any PCIe device that is available to your Linux instance to find out
which naming scheme applies.

Example:

cat /sys/bus/pci/devices/0000:00:00.0/uid_is_unique
1

If the value is 1, UID uniqueness checking is enabled, and the network interface names are based on
UIDs. For any other value, UID uniqueness checking is not enabled, and the network interface names are
based on FIDs.

Network interface names based on UIDs
For Linux in LPAR mode, UIDs are specified in the PCIe device definition for RoCE adapters in the
hardware configuration (IOCDS). UIDs are available only if supported by the hardware and if the LPAR is
enabled for UID uniqueness checking.

UIDs are always checked for uniqueness in the following environments:

• For Linux on LinuxONE in DPM mode.
• For Linux on IBM Z as a KVM guest.
• For Linux as a z/VM guest.
• For Linux in LPAR mode, if the LPAR is in DPM mode.

For Linux in classical LPAR mode, UID uniqueness checking must be enabled through an LPAR setting in
the IOCDS. With UID uniqueness checking enabled, UIDs are generated for any RoCE adapters for which
none are assigned explicitly.

UIDs need not be unique across LPARs. For example, you can deliberately assign the same UID for the
same physical RoCE device to simplify migrations between the LPARs. You can also assign the same UID
to RoCE devices that connect to a specific physical or virtual LAN from different LPARs.

UID-based network interface names are of the form eno<decimal_uid>, where <decimal_uid> is the
decimal representation of the hexadecimal UID. For example, for a RoCE device with UID 0010, the
interface name is eno16.

Interface names based on function IDs
FIDs are associated with the slots at which RoCE adapters are plugged. Depending on your environment,
you can specify FIDs in the IOCDs or they are generated for you. In contrast to UIDs, FIDs are unique
across LPARs on the same IBM Z or LinuxONE hardware.

FID-based network interface names are of the form ens<decimal_fid>, where <decimal_fid> is the
decimal representation of the hexadecimal FID. For example, for a RoCE device with FID 001A, the
interface name is ens26.

Working with the RoCE support
Because the 10 GBE RoCE Express feature hardware physically consists of a Mellanox adapter, you must
ensure that the following prerequisites are fulfilled before you can work with it.

Procedure
1. Ensure that PCIe support is enabled and the required PCI cards are active on your system. See

“Setting up the PCIe support” on page 397 and “Using PCIe hotplug on LPAR” on page 398.
2. Use the appropriate Mellanox device driver:

Chapter 21. RDMA over Converged Ethernet 333

• If you want to use TCP/IP, you need the mlx4_core module and mlx4_en or mlx5_core module. If
it is not compiled into the kernel or already loaded, load it using for example, modprobe.

• If you also want to use RDMA with InfiniBand (that is, using reliable datagram sockets, RDS), you
need the mlx4_ib or mlx5_ib module. If it is not compiled into kernel or already loaded, load
it using for example, modprobe. To use RDS, you also need the rds module and the rds_rdma
module, see Documentation/networking/rds.txt in the Linux source tree and the rds and
rds-rdma man pages.

3. Activate the network interface.
You need to know the network interface name, which you can find under:

• /sys/bus/pci/drivers/mlx4_core/<pci_slot>/net/<interface> for RoCE Express.
• /sys/bus/pci/drivers/mlx5_core/<pci_slot>/net/<interface> for RoCE Express 2.

Use the ip command or equivalent to activate an interface. See the dev_port sysfs attribute of
the interface name to ensure that you are working with the correct port. Note that the numbering
of network device ports start with 0, but the numbering of InfiniBand device ports start with 1. For
example:

cat /sys/class/infiniband/mlx4_0/ports/
1/ 2/

Enabling debugging
The mlx4 and mlx5 device drivers can be configured for debugging with a sysfs parameter.

Procedure
• For mlx4: Load the mlx4 module with the sysfs parameter debug_level=1 to write debug messages

to the syslog.
Check the value of the debug_level parameter . If the parameter is set to 0, you can set it to 1 with
the following command:

echo 1 > /sys/module/mlx4_core/parameters/debug_level

• For mlx5: Load the mlx5 module with the sysfs parameter debug_mask=1 to write debug messages to
the syslog.
Check the value of the debug_mask parameter . If the parameter is set to 0, you can set it to 1 with
the following command:

echo 1 > /sys/module/mlx5_core/parameters/debug_mask

334 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 22. Internal shared memory device driver

LPAR and z/VM: The ISM device driver applies to Linux in LPAR mode and to Linux on z/VM.

The internal shared memory (ISM) device driver provides virtual PCI devices for shared memory
communications direct (SMC-D).

ISM devices are defined in the IOCDS. Each ISM definition includes a physical network ID (PNET ID) to
associate the ISM device with Ethernet devices.

The following figure illustrates how an ISM device and a HiperSockets device are associated by a
matching PNET ID. A communication peer on the same CPC has a similarly associated pair of an ISM
device and HiperSockets device. With this setup, the TCP connection can switch over to an SMC-D
connection over the SMC protocol.

Figure 85. A matching PNET ID associates ISM devices and Ethernet devices

For information about how to find the PNET ID of PCI devices from your Linux instance, see “Investigating
PNET IDs” on page 325.

For more information on SMC and SMC-D, see Chapter 20, “SMC protocol support,” on page 319.

Use the smcd command to explore SMC-D link groups and devices, see “smcd - Display information about
SMC-D link groups and devices” on page 713.

Loading the ISM device driver
If the ISM device driver is compiled as a separate module, you must load it before you can use ISM
devices.

Load the ism module with the modprobe command. The ism module has no module parameters.

modprobe ism

Listing ISM devices
Because ISM devices are PCI devices, you can list them with the lspci command.

© Copyright IBM Corp. 2000, 2023 335

Example

lspci -v
0001:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device
 Physical Slot: 000002e1
 Flags: bus master, fast devsel, latency 0, IRQ 8
 Memory at 8001000000000000 (64-bit, prefetchable) [size=256T]
 Memory at 8002000000000000 (64-bit, prefetchable) [size=256]
 Capabilities: [40] MSI: Enable+ Count=1/32 Maskable- 64bit+
 Kernel driver in use: ism
 Kernel modules: ism

336 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 5. System resources
These device drivers and features help you to manage the resources of your real or virtual hardware.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 337

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

338 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 23. Managing CPUs
You can control the online status, check the capability, and, for LPAR mode, examine the topology of
CPUs.

Use the lscpu and chcpu commands to manage CPUs. These commands are part of the util-linux
package. For details, see the man pages. Alternatively, you can manage CPUs through the attributes of
their entries in sysfs.

Some attributes that govern CPUs are available in sysfs under:

/sys/devices/system/cpu/cpu<N>

where <N> is the number of the logical CPU. Both the sysfs interface and the lscpu and chcpu
commands manage CPUs through their logical representation in Linux.

You can obtain a mapping of logical CPU numbers to physical CPU addresses by issuing the lscpu
command with the -e option.

Example:

lscpu -e
CPU NODE DRAWER BOOK SOCKET CORE L1d:L1i:L2d:L2i ONLINE CONFIGURED POLARIZATION ADDRESS
0 1 0 0 0 0 0:0:0:0 yes yes horizontal 0
1 1 0 0 0 0 1:1:1:1 yes yes horizontal 1
2 1 0 0 0 1 2:2:2:2 yes yes horizontal 2
3 1 0 0 0 1 3:3:3:3 yes yes horizontal 3
4 1 0 0 0 2 4:4:4:4 yes yes horizontal 4
5 1 0 0 0 2 5:5:5:5 yes yes horizontal 5
6 1 0 0 0 3 6:6:6:6 yes yes horizontal 6
7 1 0 0 0 3 7:7:7:7 yes yes horizontal 7
8 0 1 1 1 4 8:8:8:8 yes yes horizontal 8
...

The logical CPU numbers are shown in the CPU column and the physical address in the ADDRESS column
of the output table.

Alternatively, you can find the physical address of a CPU in the sysfs address attribute of a logical CPU.

Example:

cat /sys/devices/system/cpu/cpu0/address
0

Simultaneous multithreading
Linux in LPAR mode can use the simultaneous multithreading technology on mainframes.

IBM z13 introduced the simultaneous multithreading technology to the mainframe. In Linux terminology,
simultaneous multithreading is also known as SMT or Hyper-Threading.

With multithreading enabled, a single core on the hardware is mapped to multiple logical CPUs on Linux.
Thus, multiple threads can issue instructions to a core simultaneously during each cycle.

To find out whether multithreading is enabled for a particular Linux instance, compare the number of
cores with the number of threads that are available in the LPAR. You can use the hyptop command to
obtain this information.

Simultaneous multithreading is designed to enhance performance. Whether this goal is achieved strongly
depends on the available resources, the workload, and the applications that run on a particular Linux
instance. Depending on these conditions, it might be advantageous to not make full use of mutithreading
or to disable it completely. Use the hyptop command to obtain utilization data for threads while Linux
runs with multithreading enabled.

© Copyright IBM Corp. 2000, 2023 339

You can use the smt= and nosmt kernel parameters to control multithreading. By default, Linux in LPAR
mode uses multithreading if it is provided by the hardware.

CPU capability change
When the CPUs of a mainframe heat or cool, the Linux kernel generates a uevent for all affected online
CPUs.

You can read the CPU capability from the Capability and, if present, Secondary Capability fields in /proc/
sysinfo.

The capability values are unsigned integers as defined in the system information block (SYSIB) 1.2.2 (see
z/Architecture Principles of Operation, SA22-7832). A smaller value indicates a proportionally greater CPU
capacity. Beyond that, there is no formal description of the algorithm that is used to generate this value.
The value is used as an indication of the capability of the CPU relative to the capability of other CPU
models.

Changing the configuration state of CPUs
A CPU on an LPAR can be in a configured, standby, or reserved state. You can change the state of
standby CPUs to configured state and vice versa.

Before you begin
• You can change the configuration state of CPUs for Linux in LPAR mode only. For Linux on z/VM, CPUs

are always in a configured state.
• Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can

interfere with manual changes.

About this task
When Linux is booted, only CPUs that are in a configured state are brought online and used. The kernel
does not detect CPUs in reserved state.

Procedure
Issue a command of this form to change the configuration state of a CPU:

chcpu -c|-g <N>

where
<N>

is the number of the logical CPU.
-c

changes the configuration state of a CPU from standby to configured.
-g

changes the configuration state of a CPU from configured to standby. Only offline CPUs can be
changed to the standby state.

Alternatively, you can write 1 to the configure sysfs attribute of a CPU to set its configuration state to
configured, or 0 to change its configuration state to standby.

Examples:

• The following chcpu command changes the state of the logical CPU with number 2 from standby to
configured:

chcpu -c 2

340 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

The following command achieves the same results by writing 1 to the configure sysfs attribute of the
CPU.

echo 1 > /sys/devices/system/cpu/cpu2/configure

• The following chcpu command changes the state of the logical CPU with number 2 from configured
to standby:

chcpu -g 2

The following command achieves the same results by writing 0 to the configure sysfs attribute of the
CPU.

echo 0 > /sys/devices/system/cpu/cpu2/configure

Setting CPUs online or offline
Use the chcpu command or the online sysfs attribute of a logical CPU to set a CPU online or offline.

Before you begin
• Daemon processes like cpuplugd can change the state of any CPU at any time. Such changes can

interfere with manual changes.

Procedure
1. Optional: Rescan the CPUs to ensure that Linux has a current list of configured CPUs.

To initiate a rescan, issue the chcpu command with the -r option.

chcpu -r

Alternatively, you can write 1 to /sys/devices/system/cpu/rescan.

You might need a rescan for Linux on z/VM after one or more CPUs have been added to the z/VM guest
virtual machine by the z/VM hypervisor. Linux in LPAR mode automatically detects newly available
CPUs.

2. Change the online state of a CPU by issuing a command of this form:

chcpu -e|-d <N>

where
<N>

is the number of the logical CPU.
-e

sets an offline CPU online. Only CPUs that are in the configuration state configured can be set
online. For Linux on z/VM, all CPUs are in the configured state.

-d
sets an online CPU offline.

Alternatively, you can write 1 to the online sysfs attribute of a CPU to set it online, or 0 to set it
offline.

Examples:

• The following chcpu commands force a CPU rescan, and then set the logical CPU with number 2
online.

Chapter 23. Managing CPUs 341

chcpu -r
chcpu -e 2

The following commands achieve the same results by writing 1 to the online sysfs attribute of the
CPU.

echo 1 > /sys/devices/system/cpu/rescan
echo 1 > /sys/devices/system/cpu/cpu2/online

• The following chcpu command sets the logical CPU with number 2 offline.

chcpu -d 2

The following command achieves the same results by writing 0 to the online sysfs attribute of the
CPU.

echo 0 > /sys/devices/system/cpu/cpu2/online

Examining the CPU topology
Depending on your hardware support, sysfs provides information about the CPU topology of an LPAR.

Before you begin
Meaningful CPU topology information is available only to Linux in LPAR mode.

About this task
The Linux scheduler uses this topology information to optimize decisions about which process to
schedule to which CPU. Depending on the workload, this optimization might increase cache hits and,
therefore, overall performance.

By default, CPU topology support is enabled and default assumptions are used if no topology information
is available. You can override these defaults if they are not suitable for your workload, see“Overriding
topology default assumptions” on page 343.

The following sysfs attributes provide information about the CPU topology:

/sys/devices/system/cpu/cpu<N>/topology/thread_siblings
/sys/devices/system/cpu/cpu<N>/topology/core_siblings
/sys/devices/system/cpu/cpu<N>/topology/book_siblings
/sys/devices/system/cpu/cpu<N>/topology/drawer_siblings

where <N> specifies a particular logical CPU number. These attributes contain masks that specify sets of
CPUs.

Because the mainframe hardware is evolving over time, the terms drawer, book, core, and thread do not
necessarily correspond to fixed hardware entities. What matters for the Linux scheduler is the levels of
relatedness that these terms signify, not the physical embodiment of the levels. In this context, more
closely related means sharing more resources, like caches.

The thread_siblings, core_siblings, book_siblings, and drawer_siblings attribute each
contain a mask that specifies the CPU and its peers at a particular level of relatedness.

1. The thread_siblings attribute covers the CPU and its closely related peers.
2. The core_siblings attribute covers all CPUs of the thread_siblings attribute and peers related

at the core level.
3. The book_siblings attribute covers all CPUs of the core_siblings attribute and peers related at

the book level.

342 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

4. The drawer_siblings attribute covers all CPUs of the book_siblings attribute and peers related
at the drawer level.

If a machine reconfiguration causes the CPU topology to change, change uevents are created for each
online CPU.

If the kernel also supports standby CPU activation and deactivation (see “Changing the configuration
state of CPUs” on page 340), the masks also contains the CPUs that are in a configured, but offline state.
Updating the masks after a reconfiguration might take some time.

Overriding topology default assumptions
Use the topology= kernel parameter to override default assumptions about the CPU topology.

By default, CPU topology support is enabled in the Linux kernel. If no topology information is available,
a topology is assumed where the CPUs share least resources, that is, each CPU is assumed to be on a
different drawer.

Use the topology=off kernel parameter to override these defaults if they are not suitable for your
workload.

Format

topology= syntax

topology=on

topology=off

off
Disables CPU topology support.

on
If no topology information is available, assumes that all CPUs are core siblings. If topology information
is available, this setting is ignored.

Example

 topology=off

Dynamic changes
On a running Linux instance, you can read the current topology setting from /proc/sys/s390/
topology. You can also write to /proc/sys/s390/topology to change the setting.

The value 1 corresponds to topology=on, and 0 corresponds to topology=off.

Example

echo 0 > /proc/sys/s390/topology

CPU polarization
You can modify the operation of a vertical SMP environment by adjusting the SMP factor based on the
workload demands.

Before you begin
CPU polarization is relevant only to Linux in LPAR mode.

Chapter 23. Managing CPUs 343

Warning: Turning on vertical CPU polarization without careful configuration can result in significant
performance degradation. See Configuration note for details.

About this task
Horizontal CPU polarization means that the PR/SM hypervisor dispatches each virtual CPU of an LPAR for
the same amount of time.

With vertical CPU polarization, the PR/SM hypervisor dispatches certain CPUs for a longer time than
others. For example, if an LPAR has three virtual CPUs, each of them with a share of 33%, then in case of
vertical CPU polarization, all of the processing time would be combined to a single CPU. This CPU would
run most of the time while the other two CPUs would get nearly no time.

There are three types of vertical CPUs: high, medium, and low. Low CPUs hardly get any real CPU time,
while high CPUs get a full real CPU. Medium CPUs get something in between.

Configuration note: Switching to vertical CPU polarization usually results in a system with different
types of vertical CPUs. Running a system with different types of vertical CPUs can result in significant
performance degradation. If possible, use only one type of vertical CPUs. Set all other CPUs offline and
deconfigure them.

Procedure
To change the polarization, issue a command of this form:

chcpu -p horizontal|vertical

Alternatively, you can write a 0 for horizontal polarization (the default) or a 1 for vertical polarization
to /sys/devices/system/cpu/dispatching.

Example: The following chcpu command sets the polarization to vertical.

chcpu -p vertical

You can achieve the same results by issuing the following command:

echo 1 > /sys/devices/system/cpu/dispatching

What to do next
You can issue the lscpu command with the -e option to find out the polarization of your CPUs. For more
detailed information for a particular CPU, read the polarization attribute of the CPU in sysfs.

cat /sys/devices/system/cpu/cpu<N>/polarization

The polarization can have one of the following values:

• horizontal - each of the guests' virtual CPUs is dispatched for the same amount of time.
• vertical:high - full CPU time is allocated.
• vertical:medium - medium CPU time is allocated.
• vertical:low - very little CPU time is allocated.
• unknown - temporary value following a polarization change until the change is completed and the

kernel has established the new polarization of each CPU.

344 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 24. Memory hotplug

LPAR and z/VM: Hotplug memory can be used by Linux in LPAR mode and by Linux on z/VM.

You can dynamically increase or decrease the memory for your running Linux instance.

To make memory available as hotplug memory, you must define it to your LPAR or z/VM. Hotplug memory
is supported by z/VM 5.4 with the PTF for APAR VM64524 and by later z/VM versions.

For more information about memory hotplug, see linux-doc/memory-hotplug.txt.gz in the
linux-doc package.

What you should know about memory hotplug
Hotplug memory is represented in sysfs. After rebooting Linux, all hotplug memory might be offline.

Hotplug memory management overhead
Linux requires 64 bytes of memory to manage a 4-KB page of hotplug memory.

Use the following formula to calculate the total amount of initial memory that is consumed to manage
your hotplug memory:

<hotplug memory> / 64

Example: 4.5 TB of hotplug memory consume 4.5 TB / 64 = 72 GB.

For large amounts of hotplug memory, you might have to increase the initial memory that is available to
your Linux instance. Otherwise, booting Linux might fail with a kernel panic and a message that there is
not enough free memory.

How memory is represented in sysfs
Both the core memory of a Linux instance and the available hotplug memory are represented by
directories in sysfs.

The memory with which Linux is started is the core memory. On the running Linux system, additional
memory can be added as hotplug memory. The Linux kernel requires core memory to allocate its own data
structures.

In sysfs, both the core memory of a Linux instance and the available hotplug memory are represented
in form of memory blocks of equal size. Each block is represented as a directory of the form /sys/
devices/system/memory/memory<n>, where <n> is an integer. You can find out the block size by
reading the /sys/devices/system/memory/block_size_bytes attribute.

In the naming scheme, the memory blocks with the lowest address ranges are assigned the lowest
integer numbers. The core memory always begins with memory0. The hotplug memory blocks follow the
core memory blocks.

You can calculate where the hotplug memory begins. To find the number of core memory blocks, divide
the base memory by the block size.

Example:

• With a core memory of 512 MB and a block size of 128 MB, the core memory is represented by four
blocks, memory0 through memory3. Therefore, first hotplug memory block on this Linux instance is
memory4.

• Another Linux instance with a core memory of 1024 MB and access to the same hotplug memory,
represents this first hotplug memory block as memory8.

© Copyright IBM Corp. 2000, 2023 345

The hotplug memory is available to all operating system instances within the z/VM system or LPAR to
which it was defined. The state sysfs attribute of a memory block indicates whether the block is in use
by your own Linux system. The state attribute does not indicate whether a block is in use by another
operating system instance. Attempts to add memory blocks that are already in use fail.

Memory state and reboot
On a running Linux instance, memory hotplug can change the online state of memory blocks for both
hotplug memory and core memory. For core memory, the state is always preserved across boot cycles.
Depending on multiple conditions, the state of hotplug memory might be reset to offline.

Booting with memory clearing
With memory clearing, an IPL or re-IPL resets all hotplug memory to offline.

Exception: The online status of hotplug memory is preserved for Linux on z/VM after a regular shutdown
with a subsequent IPL from a CCW device.

Booting without memory clearing
Without memory clearing, the status of hotplug memory after an IPL or re-IPL depends on the type of IPL
device:

• For CCW IPL devices the state is preserved.
• For FCP-attached IPL devices and for PCIe-attached NVMe IPL devices the state is reset to offline.

Interface change
As of kernel 5.6, reboot without memory clearing is the default if it is supported in your environment.
To force memory clearing, configure your re-IPL device with the clear option, see “Rebooting from an
alternative source” on page 114.

Memory zones
The Linux kernel divides memory into memory zones. On a mainframe, three zones are used: DMA,
Normal, and Movable.

• Memory in the DMA zone is below 2 GB, and some I/O operations require that memory buffers are
located in this zone.

• Memory in the Normal zone is above 2 GB, and it can be used for all memory allocations that do not
require zone DMA.

• Memory in the Movable zone cannot be used for arbitrary kernel allocations, but only for memory
buffers that can easily be moved by the kernel, such as user memory allocations and page cache
memory. Memory in the Movable zone can more easily be taken offline than memory in other zones.

The zones that are available to a memory block are listed in the valid_zones sysfs attribute. For more
information, see “Adding memory” on page 348.

Setting up hotplug memory
Before you can use hotplug memory on your Linux instance, you must define this memory as hotplug
memory on your physical or virtual hardware.

Defining hotplug memory to an LPAR
You use the Hardware Management Console (HMC) to define hotplug memory as reserved storage on an
LPAR.

For information about defining reserved storage for your LPAR, see the Processor Resource/Systems
Manager Planning Guide, SB10-7041 for your mainframe.

346 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Defining hotplug memory to z/VM
In z/VM, you define hotplug memory as standby storage.

There is also reserved storage in z/VM, but other than reserved memory defined for an LPAR, reserved
storage that is defined in z/VM is not available as hotplug memory.

Always align the z/VM guest storage with the Linux memory block size. Otherwise, memory blocks might
be missing or impossible to set offline in Linux.

For information about defining standby memory for z/VM guests see the "DEFINE STORAGE" section in
z/VM: CP Commands and Utilities Reference, SC24-6268.

Performing memory management tasks
Typical memory management tasks include finding out the memory block size, adding memory, and
removing memory.

• “Finding out the memory block size” on page 347
• “Listing the available memory blocks” on page 347
• “Adding memory” on page 348
• “Removing memory” on page 349

Finding out the memory block size
On an IBM Z mainframe, memory is provided to Linux as memory blocks of equal size.

Procedure
• Use the lsmem command to find out the size of your memory blocks.

Example:

lsmem
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000002fffffff 512 online yes 1-2
0x0000000030000000-0x000000003fffffff 256 online no 3
0x0000000040000000-0x000000006fffffff 768 online yes 4-6
0x0000000070000000-0x00000000ffffffff 2304 offline - 7-15

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1792 MB
Total offline memory: 2304 MB

In the example, the block size is 256 MB.
• Alternatively, you can read /sys/devices/system/memory/block_size_bytes. This sysfs

attribute contains the block size in byte in hexadecimal notation.

Example:

cat /sys/devices/system/memory/block_size_bytes
10000000

This hexadecimal value corresponds to 256 MB.

Listing the available memory blocks
List the available memory to find out how much memory is available and which memory blocks are online.

Chapter 24. Memory hotplug 347

Procedure
• Use the lsmem command to list your memory blocks.

Example:

lsmem -a
Address range Size (MB) State Removable Device
===
0x0000000000000000-0x000000000fffffff 256 online no 0
0x0000000010000000-0x000000001fffffff 256 online no 1
0x0000000020000000-0x000000002fffffff 256 online no 2
0x0000000030000000-0x000000003fffffff 256 online yes 3
0x0000000040000000-0x000000004fffffff 256 online yes 4
0x0000000050000000-0x000000005fffffff 256 offline - 5
0x0000000060000000-0x000000006fffffff 256 offline - 6
0x0000000070000000-0x000000007fffffff 256 offline - 7

Memory device size : 256 MB
Memory block size : 256 MB
Total online memory : 1280 MB
Total offline memory: 786 MB

• Alternatively, you can list the available memory blocks by listing the contents of /sys/devices/
system/memory. Read the state attributes of each memory block to find out whether it is online or
offline.

Example: The following command results in an overview for all available memory blocks.

grep -r --include="state" "line" /sys/devices/system/memory/
/sys/devices/system/memory/memory0/state:online
/sys/devices/system/memory/memory1/state:online
/sys/devices/system/memory/memory2/state:online
/sys/devices/system/memory/memory3/state:online
/sys/devices/system/memory/memory4/state:online
/sys/devices/system/memory/memory5/state:offline
/sys/devices/system/memory/memory6/state:offline
/sys/devices/system/memory/memory7/state:offline

Note

Online blocks are in use by your Linux instance. An offline block can be free to be added to your Linux
instance but it might also be in use by another Linux instance.

Adding memory
You can add memory to your Linux instance by setting unused memory blocks online.

Procedure
• Use the chmem command with the -e parameter to set memory online.

You can specify the amount of memory you want to add with the command without specifying
particular memory blocks. If there are enough eligible memory blocks to satisfy your request, the
tool finds them for you and sets the most suitable blocks online.

For information about the chmem command, see the man page. The chmem command is part of the
util-linux package.

• Alternatively, you can write to the state sysfs attribute of an unused memory block.
Issue a command of the form:

echo online_value > /sys/devices/system/memory/memory<n>/state

where online_value is one of:

348 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

online
sets the memory block online to the default zone. The default zone is the first zone listed in the
valid_zones sysfs attribute.

online_movable
sets the memory block online to the Movable zone. Setting the block online fails if the Movable
zone is not listed in the valid_zones sysfs attribute.

online_kernel
sets the memory block online to the first non-Movable zone listed in the valid_zones directory.
Setting the block online fails if the Movable zone is the only zone listed in the valid_zones sysfs
attribute.

<n> is an integer that identifies the memory unit.

Results
Adding the memory block fails if the memory block is already in use. The state attribute changes to
online when the memory block has been added successfully.

Removing memory
You can remove memory from your Linux instance by setting memory blocks offline.

About this task
Avoid removing core memory. The Linux kernel requires core memory to allocate its own data structures.

Procedure
• Use the chmem command with the -d parameter to set memory offline.

You can specify the amount of memory you want to remove with the command without specifying
particular memory blocks. The tool finds eligible memory blocks for you and sets the most suitable
blocks offline.
For information about the chmem command, see the man page. The chmem command is part of the
util-linux package.

• Alternatively, you can write offline to the sysfs state attribute of an unused memory block.
Issue a command of the form:

echo offline > /sys/devices/system/memory/memory<n>/state

where <n> is an integer that identifies the memory unit.

Results
The hotplug memory functions first relocate memory pages to free the memory block and then remove it.
The state attribute changes to offline when the memory block has been removed successfully.

The memory block is not removed if it cannot be freed completely.

Chapter 24. Memory hotplug 349

350 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 25. Persistent device configuration
Use the chzdev command to persistently configure your devices and device drivers and the lszdev
command to view your configuration.

You can manage the device configuration with lszdev and chzdev within all hypervisor environments,
LPAR, z/VM, and KVM. For KVM guests, this applies mainly to pass-through devices. For virtio devices, the
virtual server definition on the KVM host and the KVM virtualization limit the scope for configuration on the
KVM guest.

Mainframe-specific devices, such as DASDs, FCP devices, and network devices require special
configuration steps before they can be used. Tools are available that configure devices, for example
chccwdev and znetconf, but this type of configuration is not preserved across reboots.

The chzdev command facilitates persistent configuration. The command performs all configuration steps
that are required to make devices operational, for example, as a block device, a character device, or a
network interface.

The following device types are supported:

• FICON-attached direct access storage devices (DASDs)
• SCSI-over-Fibre Channel (FCP) devices and SCSI devices
• OSA-Express and HiperSockets network devices
• LAN-Channel-Station (LCS) network devices
• Channel command word (CCW) devices that are not covered by any other device type, for example the

3215 console, 3270 terminal devices, z/VM reader and puncher devices, and CCW tape devices.

The chzdev and lszdev commands are included in the s390-tools package. chzdev configures the
devices and device drivers in two ways:

• In the currently running configuration, called the active configuration
• In configuration files such as udev rules, called the persistent configuration

The lszdev command displays configuration information about devices and device drivers. For details,
see “lszdev - Display IBM Z device configurations” on page 682.

For details about the chzdev command, see “chzdev - Configure IBM Z devices” on page 584.

Note: Using tools that are not aligned with lszdev and chzdev can result in conflicting configuration
settings.

Device ID
The chzdev and lszdev commands use device IDs to identify devices. For CCW devices and CCW group
devices, this device ID is the device bus-ID.

The device bus-ID is of the format 0.<subchannel_set_ID>.<devno>, for example, 0.0.8000.

Tip: For device bus-IDs with a leading "0.0", you can shorten the specification to just the device number
(devno). For example, you can shorten 0.0.0b10 to 0b10.

Other device categories can have different IDs. For example, SCSI devices have a triplet device ID that
consists of a device number, a WWPN, and a LUN.

Configuring device drivers
You can use the chzdev command to modify device driver attributes, for example module parameters
such as DASD's eer_pages. You select a device driver, rather than a device, by using the --type option.
Device drivers can be selected by type or subtype, for example DASDs are of type dasd, but have the
subtypes dasd-fba and dasd-eckd.

© Copyright IBM Corp. 2000, 2023 351

chzdev syntax overview

chzdev Device or device type selection Actions Options

Where the different command sections have these meanings:

Device or device type selection
Select devices by device ID, device state, or function. Select device types by specifying a device type
and the --type option. For details about selecting devices or device types, see “Selecting devices
and device drivers” on page 352.

Actions
Act on the selected devices. For details about these actions, see:

• “Enabling and disabling a device” on page 355
• “Changing device or device driver settings” on page 360
• “Importing and exporting configuration data” on page 362

Options
Choose how to apply the command, for example as a test run, as applying to the persistent
configuration only, or as running in quiet mode. Options include --dry-run, --verbose, --quiet,
and --yes. For the complete list of options, see “chzdev - Configure IBM Z devices” on page 584

lszdev syntax overview

lszdev Device or device type selection Options

Where the different command sections have these meanings:

Device or device type selection
Select devices to display by device ID, device state, or function. For details about selecting devices,
see “Selecting devices and device drivers” on page 352. If no selection is made, all existing and
configured devices are displayed.

Options
Choose the configuration information, and how to display it.

• To display a list with information about all devices, specify only lszdev without options. You
can restrict output to a single device, a device type, or a range of devices. You can control what
information is included by specifying output columns.

• To display details about a single device, specify the device and the --info option.

For details on and examples of displaying information, see “Viewing the configuration” on page 357.
For the complete list of options, see “lszdev - Display IBM Z device configurations” on page 682.

Selecting devices and device drivers
You can select devices by type and ID, by state, by path, or by network interface name.

About this task
You can select either devices or device drivers.

To select a device driver, specify the --type option and a <type> without a device ID. For details, see the
description of <type> and the --type option.

352 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Selecting a device driver
chzdev <type> --type Action

Select devices by device ID, by attribute, interface, node, or path. Then restrict your choice to the
devices with a particular configuration state. For details see the descriptions for the --configured,
--existing, --online, and --offline options. To select all devices, specify --all.

Selecting a device

chzdev

 <type>

,

<device>

<from_device>-<to_device>

 --by-attrib  <attribute=value> |  <attribute!=value>

 --by-interface  <interface>

 --by-node  <device_node>

 --by-path  <path>

 --all

 --configured

 --existing --online

 --offline

Action

Device driver selection:
<type>

restricts the scope of an action to the specified device type. Specify a device type together with the
--type option to manage the configuration of the device driver itself.

-t <device_type> or --type <device_type>
selects a device type as target for a configuration or query action. For example: dasd-eckd, zfcp, or
qeth.

Device selection:
<type>

restricts the scope of an action to the specified device type. Specify a device type and optionally a
device ID to only work on devices with matching type and ID

Note:

As a precaution, use the most specific device type when configuring a device by ID. Otherwise
the same device ID might accidentally match other devices of a different sub-type. To get a list of
supported device types, use the --list-types option.

<device>
selects a single device or a range of devices by device ID. Separate multiple IDs or ranges with a
comma (,). To select a range of devices, specify the ID of the first and the last device in the range
separated by a hyphen (-).

Chapter 25. Persistent device configuration 353

--all
selects all existing and configured devices.

--by-attrib <attrib=value> | <attrib!=value>
selects devices with a specific attribute, <attrib> that has a value of <value>. When specified as
<attrib>!=<value>, selects all devices that do not provide an attribute named <attrib> with a value of
<value>.

Tip: You can use the --list-attributes option to display a list of available attributes and the
--help-attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, encf500. <interface> must be the name of an
existing networking interface.

--by-node <device_node>
selects devices by device node, for example, /dev/sda. <device_node> must be the path to the
device node for a block device or character device.

Note: If <device_node> is the device node for a logical device (such as a device mapper device),
lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be available
for this resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

Restrict selection to configuration state:
--configured

narrows the selection to those devices for which a persistent configuration exists.
--existing

narrows the selection to all devices that are present in the active configuration.
--configured --existing

specifying both --configured and --existing narrows the selection to devices that are present in
both configurations, persistent and active.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

Action
performs an action on the selected device, for details see:

• “Enabling and disabling a device” on page 355
• “Changing device or device driver settings” on page 360
• “Importing and exporting configuration data” on page 362

Examples
In the following examples the enable and disable actions are used when illustrating the different methods
of selecting devices.

• To enable device 0.0.8000 by type and ID, issue:

chzdev dasd-fba 0.0.8000 --enable
FBA DASD 0.0.8000 configured

354 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• To select a device by ID only, issue the following command to disable device 0.0.8000. In this case
chzdev automatically determines the associated type:

chzdev 0.0.8000 --disable
FBA DASD 0.0.8000 deconfigured

Note: This addressing mode might result in multiple devices being selected. For example, if an FBA
DASD is part of the persistent configuration, but you have disabled it and defined a new ECKD DASD
0.0.8000 that is active, and you enable 0.0.8000, both the FBA and the ECKD device will be enabled.
The same is true if you specify only "dasd" and not "dasd-fba".

Tip: To ensure that you enable the correct device, include the most specific type, for example dasd-eckd
instead of just dasd.

• To select multiple devices by range, specify the beginning of the range, a hyphen, and the end of the
range:

chzdev dasd-eckd 0.0.3000-0.0.4000 --enable
ECKD DASD 0.0.3718 configured
ECKD DASD 0.0.3719 configured
ECKD DASD 0.0.371a configured
ECKD DASD 0.0.37b8 configured
ECKD DASD 0.0.37b9 configured
ECKD DASD 0.0.37be configured
ECKD DASD 0.0.37bf configured

• To narrow the selection by configuration state, for example "online", use the --online option. This
example configures all devices that are enabled in the active configuration persistently:

chzdev --persistent --online --enable
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured
ECKD DASD 0.0.3719 configured
ECKD DASD 0.0.371a configured
ECKD DASD 0.0.37b8 configured
ECKD DASD 0.0.37b9 configured
ECKD DASD 0.0.37be configured
ECKD DASD 0.0.37bf configured
FBA DASD 0.0.8000 configured
FCP device 0.0.1940 configured
Note: NPIV mode disabled - LUNs must be configured manually
zFCP LUN 0.0.1940:0x500507630508c1ae:0x402140ac00000000 configured
QETH device 0.0.f5f0:0.0.f5f1:0.0.f5f2 configured
Generic CCW device 0.0.0009 configured

• To select devices by specifying a file system path that is located on the target device, use the --by-
path option:

chzdev --persistent --by-path /mnt --enable
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

Note: If the file system that provides the PATH is stored on multiple physical devices or on a sub-
volume (such as supported by btrfs), lszdev tries to resolve the corresponding physical device nodes.
For the resolution to work, the lsblk and findmnt tools must be available, and if there are multiple
physical devices the file system must provide a valid UUID.

• To select a device by specifying a device node that refers to a block or character device:

chzdev --persistent --by-node /dev/dasda1 --enable
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

Enabling and disabling a device
You can use the chzdev command to enable or disable a device, both in the active and in the persistent
configuration.

Chapter 25. Persistent device configuration 355

About this task
Any steps necessary for the device to function are automatically taken. If a cio_ignore device exclusion list
is active, chzdev removes the specified device ID from the list.

Note: If a SCSI device is enabled and its FCP device taken off the cio_ignore exclusion list, all devices
defined to the FCP device might come online automatically, see “Configuring SCSI devices” on page 193.

chzdev Device selection --disable

 --enable

 --persistent --active

 --active

 --persistent

where:

-d or --disable
disables the selected devices.
Active configuration

Disables the selected devices by reverting the configuration steps necessary to enable them.
Persistent configuration

Removes configuration files and settings associated with the selected devices.
-e or --enable

enables the selected devices. Any steps necessary for the devices to function are taken, for example:
create a CCW group device, remove a device from the CIO exclusion list, or set a CCW device online.
Active configuration

Performs all setup steps required for a device to become operational, for example, as a block
device or as a network interface.

Persistent configuration
Creates configuration files and settings associated with the selected devices.

-a or --active
applies changes to the active configuration only. The persistent configuration is not changed unless
you also specify --persistent.

Note: Changes to the active configuration are effective immediately. They are lost on reboot, when a
device driver is unloaded, or when a device becomes unavailable.

-p or --persistent
applies changes to the persistent configuration only. The persistent configuration takes effect when
the system boots, when a device driver is loaded, or when a device becomes available.

Examples

• To enable an ECKD DASD with bus ID 0.0.3718 in both the active and the persistent configuration,
specify the device ID and its type to the chzdev command, together with the --enable option:

chzdev dasd-eckd 0.0.3718 --enable
ECKD DASD 0.0.3718 configured

This command sets ECKD DASD 0.0.3718 online and creates udev rules to automatically bring it online
at the next boot.

• To restrict the scope of the configuration actions to either the active or persistent configuration, specify
--active or --persistent. The following command creates udev rules to automatically bring device
0.0.3718 online at the next boot:

356 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chzdev dasd-eckd 0.0.3718 --enable --persistent
Configuring devices in the persistent configuration only
ECKD DASD 0.0.3718 configured

• To disable a device, specify its device type and ID together with the --disable option:

chzdev dasd-eckd 0.0.3718 --disable
ECKD DASD 0.0.3718 deconfigured

• To enable an FCP device and create a persistent configuration, issue:

chzdev --enable zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To enable an FCP device without creating a persistent configuration, issue:

chzdev --enable --active zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To enable a QETH device and create a persistent configuration, issue:

chzdev --enable qeth 0.0.a000:0.0.a001:0.0.a002

• To enable a QETH device without creating a persistent configuration, issue:

chzdev --enable --active qeth 0.0.a000:0.0.a001:0.0.a002

Viewing the configuration
Use the lszdev command to list information about device drivers, devices, device types, and attributes.

About this task
The lszdev command provides options for extracting information from the active and persistent system
configuration. You can list and get help on available device attributes and list available device types.

lszdev

Device or device type selection --info

 --columns

 ,

 columns

 --no-headings

 --pairs

 --base  <path> | <key=value>

where:

-i or --info
displays detailed information about the configuration of the selected device or device type.

-c <columns> or --columns <columns>
specifies a comma-separated list of columns to display.

Example:

lszdev --columns TYPE,ID

Chapter 25. Persistent device configuration 357

Tip: To get a list of supported column names, use the --list-columns option.

-n or --no-headings
suppresses column headings for list output.

--pairs
produces output in <key="value"> format. Use this option to generate output in a format more suitable
for processing by other programs. In this format, column values are prefixed with the name of
the corresponding column. Values are enclosed in double quotation marks. The lszdev command
automatically escapes quotation marks and slashes that are part of the value string.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example:

lszdev --persistent --base /etc=/mnt/etc

Examples

• To list devices with their status, use the lszdev command, issue:

lszdev
TYPE ID ON PERS NAMES
dasd-eckd 0.0.0190 no no
dasd-eckd 0.0.3718 yes yes dasda dasda1
dasd-eckd 0.0.3719 no no
dasd-eckd 0.0.371a yes yes dasdb dasdb1 dasdb2 dasdb3
dasd-fba 0.0.8000 no no
zfcp-host 0.0.1940 no no
zfcp-host 0.0.1941 no no
qeth 0.0.a000:0.0.a001:0.0.a002 no no
qeth 0.0.a003:0.0.a004:0.0.a005 no no
qeth 0.0.f500:0.0.f501:0.0.f502 no no
qeth 0.0.f503:0.0.f504:0.0.f505 no no
qeth 0.0.f5f0:0.0.f5f1:0.0.f5f2 yes yes encf5f0
generic-ccw 0.0.0009 yes no
generic-ccw 0.0.000c no no
generic-ccw 0.0.000d no no
generic-ccw 0.0.000e no no

• To restrict output to a single device type, issue:

lszdev qeth
TYPE ID ON PERS NAMES
qeth 0.0.a000:0.0.a001:0.0.a002 no no
qeth 0.0.a003:0.0.a004:0.0.a005 no no
qeth 0.0.f500:0.0.f501:0.0.f502 no no
qeth 0.0.f503:0.0.f504:0.0.f505 no no
qeth 0.0.f5f0:0.0.f5f1:0.0.f5f2 yes yes encf5f0

• To list output in machine-readable format, use the --pairs option, issue:

lszdev qeth --pairs
TYPE="qeth" ID="0.0.a000:0.0.a001:0.0.a002" ON="no" PERS="no" NAMES=""
TYPE="qeth" ID="0.0.a003:0.0.a004:0.0.a005" ON="no" PERS="no" NAMES=""
TYPE="qeth" ID="0.0.f500:0.0.f501:0.0.f502" ON="no" PERS="no" NAMES=""
TYPE="qeth" ID="0.0.f503:0.0.f504:0.0.f505" ON="no" PERS="no" NAMES=""
TYPE="qeth" ID="0.0.f5f0:0.0.f5f1:0.0.f5f2" ON="yes" PERS="yes" NAMES="encf5f0

• To list all columns that you can display, use the --list-columns option:

358 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lszdev --list-columns
COLUMN DESCRIPTION
TYPE Device type
ID Device identifier
ON Device is online in the active configuration
EXISTS Device exists in the active configuration
PERS Device is configured persistently
NAMES Associated Linux device names
BLOCKDEVS Associated block devices
CHARDEVS Associated character devices
NETDEVS Associated network interfaces
MODULES Required kernel modules
ATTR: Value of specific attribute, e.g. ATTR:online

• To display specific columns only, use the --columns option with the names of the columns as a
comma-separated list:

lszdev qeth --columns ID,NAMES,ATTR:layer2
ID NAMES ATTR:layer2
0.0.a000:0.0.a001:0.0.a002 0
0.0.a003:0.0.a004:0.0.a005 0
0.0.f500:0.0.f501:0.0.f502 1
0.0.f503:0.0.f504:0.0.f505 0
0.0.f5f0:0.0.f5f1:0.0.f5f2 encf5f0 1

• To get a list of supported device types, use the --list-types option:

lszdev --list-types
TYPE DESCRIPTION
dasd FICON-attached Direct Access Storage Devices (DASDs)
dasd-eckd Enhanced Count Key Data (ECKD) DASDs
dasd-fba Fixed Block Architecture (FBA) DASDs
zfcp SCSI-over-Fibre Channel (FCP) devices and SCSI devices
zfcp-host FCP devices
zfcp-lun zfcp-attached SCSI devices
qeth OSA-Express and HiperSockets network devices
ctc Channel-To-Channel (CTC) and CTC-MPC network devices
lcs LAN-Channel-Station (LCS) network devices
generic-ccw Generic Channel-Command-Word (CCW) devices

Some device types are related. For example, specifying the "dasd" device type will select both "dasd-
eckd" and "dasd-fba" devices.

• To list configuration details for a device, use the --info option:

lszdev --info --by-interface encf5f0
DEVICE qeth 0.0.f5f0:0.0.f5f1:0.0.f5f2
Names : encf5f0
Modules : qeth
Online : yes
Exists : yes
Persistent : yes

ATTRIBUTE ACTIVE PERSISTENT
buffer_count "64" -
hw_trap "disarm" -
isolation "none" -
layer2 "1" "1"
online "1" "1"
performance_stats "0" -
portname "" -
portno "0" -
priority_queueing "always queue 0" -

• To list configuration details for a device driver, use the --type and a device-type name:

Chapter 25. Persistent device configuration 359

lszdev --type dasd
DEVICE TYPE dasd
Description : FICON-attached Direct Access Storage Devices (DASDs)
Modules : dasd_mod dasd_eckd_mod dasd_fba_mod
Active : yes
Persistent : no
ATTRIBUTE ACTIVE PERSISTENT
autodetect "0" -
dasd - -
eer_pages "5" -
nofcx "0" -
nopav "0" -
probeonly "0" -

Changing device or device driver settings
Use the chzdev command to change both device and device driver settings.

About this task
Some devices provide named attributes. You can change the value of the attributes by using the chzdev
command with a <attribute=value> assignment.

You can also use the chzdev command to modify device driver attributes, for example module
parameters such as the DASD module parameter eer_pages. You select a device driver, rather than a
device, by specifying the --type option. Device drivers can be selected by type or sub-type, for example
DASDs are of type dasd, but have the sub-types dasd-fba and dasd-eckd.

chzdev Device or device type selection

 <attribute=value>

 --remove  <attrib>

 --remove-all

 --force

where:

<attribute=value>
specifies a device attribute and its value. To specify multiple attributes, separate attribute-value pairs
with a blank.

You can use the --list-attributes option to display a list of available attributes and the --help-
attribute to get more detailed information about a specific attribute.

Tip: To specify an attribute that is not known to chzdev, use the --force option.

-r <attrib> or --remove <attrib>
removes the setting for attribute <attrib>.
Active configuration

For attributes that maintain a list of values, clears all values for that list.
Persistent configuration

Removes any setting for the specified attribute. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
-R or --remove-all

removes the settings for all attributes of the selected device or device driver.

360 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Active configuration
For attributes that maintain a list of values, clears all values for that list.

Persistent configuration
Removes all attribute settings that can be removed. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
-f or --force

overrides safety checks and confirmation questions, including:

• More than 256 devices selected
• Configuring unknown attributes
• Combining apparently inconsistent settings

Examples for changing device settings

• To set the use_diag attribute for device 0.0.8000, issue:

chzdev dasd-fba 0.0.8000 use_diag=1 --persistent --verbose
Configuring devices in the persistent configuration only
FBA DASD 0.0.8000 configured
 Changes: use_diag=1
 Block devices: /dev/dasda /dev/dasda1

• To list available attributes, specify the device type together with the --list-attributes option:

chzdev dasd-fba --list-attributes
NAME DESCRIPTION
online Activate a device
cmb_enable Enable the Channel measurement facility
failfast Modify error recovery in no-path scenario
readonly Inhibit write access to DASD
erplog Enable logging of Error Recovery Processing
use_diag Activate z/VM hypervisor assisted I/O processing
eer_enabled Enable Extended Error Reporting
expires Modify I/O operation timeout
retries Modify I/O operation retry counter
timeout Modify I/O request timeout
reservation_policy Modify lost device reservation behavior
last_known_reservation_state Display and reset driver device reservation view
safe_offline Deactivate DASD after processing outstanding I/Os

• To display more details about an attribute, use the --help-attribute option:

chzdev dasd-fba --help-attribute use_diag
ATTRIBUTE use_diag

 DESCRIPTION
 Control I/O access mode for a DASD:
 0: I/O is performed using standard channel programs
 1: I/O is performed using the z/VM DIAGNOSE X’250’ interface

Note that the DIAGNOSE X’250’ access mode only works when running
Linux as z/VM guest, and only for devices formatted with consistent
block sizes such as ECKD DASDs with LDL or CMS format, or FBA
devices.

DEFAULT VALUE
 The default value is ’0’.
ACCEPTED VALUES
 - Numbers 0 to 1 in decimal notation

• To remove a setting from a persistent configuration, use the --remove and --persistent options:

chzdev dasd 8000 --persistent --remove use_diag --verbose
Configuring devices in the persistent configuration only
FBA DASD 0.0.8000 configured
 Changes: -use_diag
 Block devices: /dev/dasda /dev/dasda1

Chapter 25. Persistent device configuration 361

Example for changing device driver settings

To change device driver settings, use a <attribute=value> assignment together with the device type:

chzdev dasd --type nopav=1
dasd device type configured

Importing and exporting configuration data
Import configuration data from, or export data to, a text file by using the --import and --export
options of the chzdev command. You can also use an existing configuration as a template for a new
configuration, for example, for a new Linux instance.

About this task
The export function can be used, for example, to transfer a device configuration to another system, or to
store it for later use as a backup or for a rollback.

chzdev Device or device type selection --export  <filename> | -

 --import  <filename> | -

 --base  <path> | <key=value>

where:

--export <filename>|-
writes configuration data to a text file called <filename>. If a single hyphen (-) is specified instead
of a file name, data is written to the standard output stream. The output format of this option can
be used with the --import option. To reduce the scope of exported configuration data, you can
select specific devices, a device type, or define whether to export only data for the active or persistent
configuration.

--import <filename>|-
reads configuration data from <filename> and applies it. If a single hyphen (-) is specified instead of
a file name, data is read from the standard input stream. The input format must be the same as the
format produced by the --export option.

By default, all configuration data that is read is also applied. To reduce the scope of imported
configuration data, you can select specific devices, a device type, or define whether to import only
data for the active or persistent configuration.

You can use this option to import auto-configuration data, see “Displaying auto-configuration data” on
page 22.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example: lszdev --persistent --base /etc=/mnt/etc

Examples

• Textual configuration data is either written to a file or, when you specify the special file name "-", to
standard output:

362 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chzdev --by-interface enca000 --persistent --export -
Exporting configuration data to standard output
Generated by chzdev on linux.example.com
[persistent qeth 0.0.a000:0.0.a001:0.0.a002]
layer2=0
online=1

• To export this configuration data to a file called config.txt, issue:

chzdev --by-interface enca000 --persistent --export config.txt

• To apply data in this format to a system’s configuration, use the --import option:

chzdev --import config.txt
Importing configuration data from config.txt
QETH device 0.0.a000:0.0.a001:0.0.a002 configured

• To create a persistent configuration for an ECKD DASD 0.0.1000 and write it to a new Linux system that
is mounted under /mnt/etc, issue:

chzdev dasd-eckd 1000 -e -p --base /etc=/mnt/etc

• To display a configuration that was written to /mnt/etc, issue:

lszdev --persistent --base /etc=/mnt/etc

• To copy the persistent configuration to /mnt/etc, issue:

chzdev --all --persistent --export - | chzdev --import - --base /etc=/mnt/etc
Exporting configuration data to standard output
Importing configuration data from Standard input
ECKD DASD 0.0.1234 configured
FCP device 0.0.190d configured
FCP device 0.0.194d configured

Configuring the root device
Changing the configuration of the device that provides the root file system might require additional
configuration steps.

About this task
For what steps are required to persistently apply root device configurations, see the Ubuntu
documentation available from

https://help.ubuntu.com/

Example
The following example shows a change made to an Ubuntu Linux instance. The example shows that
changes have been made that might require rebuilding the RAM disk:

chzdev --by-path / erplog=1
ECKD DASD 0.0.ca00 configured
Note: Some of the changes affect devices providing the root file system:
 - ECKD DASD 0.0.ca00
 Additional steps such as rebuilding the RAM-disk might be required.

For more information about rebuilding the RAM disk, see “Rebuilding the initial RAM disk image” on page
92.

Chapter 25. Persistent device configuration 363

364 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 26. Huge-page support

Note: Across the IT industry, huge pages and large pages are used synonymously for memory pages that
exceed 4 KB. In keeping with the more commonly used term in the context of Linux, this publication uses
huge pages.

Huge-page support entails support for the Linux hugetlbfs file system.

This virtual file system is backed by larger memory pages than the usual 4 K pages; for IBM Z the
hardware page size is 1 MB.

To check whether 1 MB huge pages are supported in your environment, issue the command:

grep -o edat /proc/cpuinfo
edat

An output line that lists edat as a feature indicates 1 MB huge-page support.

Applications that use huge-page memory save a considerable amount of page table memory. Another
benefit from the support might be an acceleration in the address translation and overall memory access
speed.

You can also configure 2 GB huge pages if Linux is running on an LPAR or as a KVM guest.See “Pre-
allocating 2 GB huge pages” on page 366.

Ubuntu Server 22.04 LTS also supports transparent hugepages. For more information, see the
transhuge.txt file, available in the linux-doc package. You can find it, for example, by issuing the
following command:

find / -type f -iname "*transhuge*" 2> /dev/null
 /usr/share/doc/linux-doc/vm/transhuge.txt.gz

Setting up hugetlbfs huge-page support
You configure hugetlbfs huge-page support by adding the hugepages= parameter to the kernel
parameter line.

With huge-page support built into the kernel, you can use 1 MB huge pages without further configuration.
Preallocate huge pages through kernel parameters to reserve continuous large blocks of memory and so
assure that a sufficient number of huge pages is available when required.

Huge-page support kernel parameter syntax
hugepages=  <number>

kvm.hpage=1
1

Notes:
1 Relevant only to KVM hosts.

where:
number

is the number of huge pages to be allocated at boot time.
kvm.hpage=

enables KVM hosts to back the memory of their guests with huge pages. For more information about
kvm module parameters, including the corresponding parameter for kvm as a separate module, see
Chapter 47, “Setting up Ubuntu Server 22.04 LTS as a KVM host,” on page 473

© Copyright IBM Corp. 2000, 2023 365

Note: If you specify more pages than available, Linux reserves as many as possible. As a likely result, too
few general pages remain for the boot process, and your system stops with an out-of-memory error.

Pre-allocating 2 GB huge pages
If Linux is running in an LPAR or as a KVM guest, you can use 2 GB huge pages.

Before you can use 2 GB huge pages, you must pre-allocate them to the kernel page pool. To pre-
allocate 2 GB pages, precede the hugepages= parameter with the page size selection parameter,
hugepagesz=2G.

Tip: Memory quickly becomes fragmented after booting, and new 2 GB huge pages cannot be allocated.
Use kernel boot parameters to allocate 2 GB huge pages to avoid the memory fragmentation problem.

To pre-allocate a number of pages of 2 GB size and also set the default size to 2 GB:

default_hugepagesz=2G hugepagesz=2G hugepages=<number>

Setting up multiple huge-page pools
You can allocate multiple huge-page pools and use them simultaneously. To allocate multiple huge-
page pools, specify the hugepagesz= parameter several times, each time followed by a corresponding
hugepages= parameter.

For example, to specify two pools, one with 1 MB pages and one with 2 GB pages, specify:

hugepagesz=1M hugepages=8 hugepagesz=2G hugepages=2

This creates a sysfs attribute for each pool, /sys/kernel/mm/hugepages/hugepages-<size>kB/
nr_hugepages, where <size> is the page size in KB. For the example given, the following attributes are
created:

/sys/kernel/mm/hugepages/hugepages-1024kB/nr_hugepages
/sys/kernel/mm/hugepages/hugepages-2097152kB/nr_hugepages

Huge pages and hotplug memory

Hotplug memory that is added to a running Linux instance is movable and can be allocated to movable
resources only.

By default, huge pages are not movable and cannot be allocated from movable memory. You can enable
allocation from movable memory with the sysctl setting hugepages_treat_as_movable.

To enable allocation of huge pages from movable hotplug memory, issue:

echo 1 > /proc/sys/vm/hugepages_treat_as_movable

Although this setting makes huge pages eligible for allocation through movable memory, it does not make
huge pages movable. As a result, the allocated hotplug memory cannot be set offline until all huge pages
are released from that memory.

To disable allocation of huge pages from movable hotplug memory, issue:

echo 0 > /proc/sys/vm/hugepages_treat_as_movable

Working with hugetlbfs huge-page support
Typical tasks for working with hugetlbfs huge-page support include reading the current number of huge
pages, changing the number of huge pages, and display information about available huge pages.

366 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
The huge-page memory can be used through mmap() or SysV shared memory system calls. More
detailed information, including implementation examples, can be found in the hugetlbpage.txt file,
available in the linux-doc package.

Your database product might support huge-page memory. See your database documentation to find out if
and how it can be configured to use huge-page memory.

Depending on your version of Java™, you might require specific options to make a Java program use the
huge-page feature. For IBM SDK, Java Technology Edition 7 and 8, specify the -Xlp option. If you use
the SysV shared memory interface, which includes java -Xlp, you must adjust the shared memory
allocation limits to match the workload requirements. Use the following sysctl attributes:
/proc/sys/kernel/shmall

Defines the global maximum amount of shared memory for all processes, specified in number of 4 KB
pages.

/proc/sys/kernel/shmmax
Defines the maximum amount of shared memory per process, specified in number of Bytes.

For example, the following commands would set both limits to 20 GB:

echo 5242880 > /proc/sys/kernel/shmall
echo 21474836480 > /proc/sys/kernel/shmmax

Procedure
• Specify the hugepages= kernel parameter with the number of huge pages to be allocated at boot

time. To read the current number of huge pages, issue:

cat /proc/sys/vm/nr_hugepages

• To change the number of huge pages dynamically during runtime, write to procfs:

echo 12 > /proc/sys/vm/nr_hugepages

If there is not enough contiguous memory available to fulfill the request, the maximum possible
number of huge pages are reserved.

• To obtain information about the number of huge pages currently available and the huge-page size,
issue:

cat /proc/meminfo

...
HugePages_Total: 20
HugePages_Free: 14
HugePages_Rsvd: 0
HugePages_Surp: 0
...
Hugepagesize: 1024 KB
...

• To adjust characteristics of a huge-page pool, when more than one pool exists, use the sysfs attributes
of the pool.
These can be found under

/sys/kernel/mm/hugepages/hugepages-<size>/nr_hugepages

Where <size> is the page size in KB.

Chapter 26. Huge-page support 367

Example
To allocate 2 GB huge pages:

1. Specify 2 GB huge pages and pre-allocate them to the page pool at boot time. Use the following kernel
boot parameters:

default_hugepagesz=2G hugepagesz=2G hugepages=4

2. After booting, read /proc/meminfo to see information about the amount of huge pages currently
available and the huge-page size:

cat /proc/meminfo
...
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2097152 kB
...

368 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 27. S/390 hypervisor file system
The S/390® hypervisor file system (hypfs) provides a mechanism to access LPAR and z/VM hypervisor
data.

Directory structure
When the hypfs file system is mounted, the accounting information is retrieved and a file system tree is
created. The tree contains a full set of attribute files with the hypervisor information.

By convention, the mount point for the hypervisor file system is /sys/hypervisor/s390.

LPAR directories and attributes
There are hypfs directories and attributes with hypervisor information for Linux in LPAR mode.

Figure 86 on page 369 illustrates the file system tree that is created for LPAR.

Figure 86. The hypervisor file system for LPAR

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical cores.

cpus/<core_ID>
Directory for one physical core. <core_ID> is the logical (decimal) core number.

© Copyright IBM Corp. 2000, 2023 369

type
Type of the physical core, such as CP or IFL.

mgmtime
Physical-LPAR-management time in microseconds (LPAR overhead).

hyp/
Directory for hypervisor information.

hyp/type
Type of hypervisor (LPAR hypervisor).

systems/
Directory for all LPARs.

systems/<lpar name>/
Directory for one LPAR.

systems/<lpar name>/cpus/<core_ID>/
Directory for the virtual cores for one LPAR. The <core_ID> is the logical (decimal) core number.
type

Type of the logical core, such as CP or IFL.
mgmtime

LPAR-management time. Accumulated number of microseconds during which a physical core was
assigned to the logical core and the core time was consumed by the hypervisor and was not
provided to the LPAR (LPAR overhead).

cputime
Accumulated number of microseconds during which a physical core was assigned to the logical
core and the core time was consumed by the LPAR.

onlinetime
Accumulated number of microseconds during which the logical core has been online.

Note: For LPARs with multithreading enabled, the entities in the cpus directories represent hardware
cores, not threads.

Note: For older machines, the onlinetime attribute might be missing. Generally, it is advantageous for
applications to tolerate missing attributes or new attributes that are added to the file system. To check
the content of the files, you can use tools such as cat or less.

z/VM directories and attributes
There are hypfs directories and attributes with hypervisor information for Linux on z/VM.

update
Write-only file to trigger an update of all attributes.

cpus/
Directory for all physical CPUs.

cpus/count
Total current CPUs.

hyp/
Directory for hypervisor information.

hyp/type
Type of hypervisor (z/VM hypervisor).

systems/
Directory for all z/VM guest virtual machines.

systems/<guest name>/
Directory for one guest virtual machine.

systems/<guest name>/onlinetime_us
Time in microseconds that the guest virtual machine has been logged on.

370 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

systems/<guest name>/cpus/
Directory for the virtual CPUs for one guest virtual machine.
capped

Flag that shows whether CPU capping is on for the guest virtual machine (0 = off, 1 = soft, 2 =
hard).

count
Total current virtual CPUs in the guest virtual machine.

cputime_us
Number of microseconds where the guest virtual CPU was running on a physical CPU.

dedicated
Flag that shows if the guest virtual machine has at least one dedicated CPU (0 = no, 1 = yes).

weight_cur
Current share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_max
Maximum share of guest virtual machine (1-10000); 0 for ABSOLUTE SHARE guests.

weight_min
Number of operating CPUs. Do not be confused by the attribute name, which suggests a different
meaning.

systems/<guest name>/samples/
Directory for sample information for one guest virtual machine.
cpu_delay

Number of CPU delay samples that are attributed to the guest virtual machine.
cpu_using

Number of CPU using samples attributed to the guest virtual machine.
idle

Number of idle samples attributed to the guest virtual machine.
mem_delay

Number of memory delay samples that are attributed to the guest virtual machine.
other

Number of other samples attributed to the guest virtual machine.
total

Number of total samples attributed to the guest virtual machine.
systems/<guest name>/mem/

Directory for memory information for one guest virtual machine.
max_KiB

Maximum memory in KiB (1024 bytes).
min_KiB

Minimum memory in KiB (1024 bytes).
share_KiB

Guest estimated core working set size in KiB (1024 bytes).
used_KiB

Resident memory in KiB (1024 bytes).

To check the content of the files, you can use tools such as cat or less.

Setting up the S/390 hypervisor file system
To use the file system, it must be mounted. You can mount the file system with the mount command or
with an entry in /etc/fstab.

To mount the file system manually, issue the following command:

Chapter 27. S/390 hypervisor file system 371

mount none -t s390_hypfs <mount point>

where <mount point> is where you want the file system mounted. Preferably, use /sys/hypervisor/
s390.

To mount hypfs by using /etc/fstab, add the following line:

none <mount point> s390_hypfs defaults 0 0

If your z/VM system does not support DIAG 2fc, the s390_hypfs is not activated and it is not possible to
mount the file system. Instead, an error message like this is issued:

mount: unknown filesystem type ’s390_hypfs’

To get data for all z/VM guests, privilege class B is required for the guest where hypfs is mounted. For
non-class B guests, data is provided only for the local guest.

To get data for all LPARs, select the Global performance data control check box in the HMC or SE
security menu of the LPAR activation profile. Otherwise, data is provided only for the local LPAR.

Working with the S/390 hypervisor file system
Typical tasks that you must perform when working with the S/390 hypervisor file system include defining
access permissions and updating hypfs information.

• “Defining access permissions” on page 372
• “Updating hypfs information” on page 373

Defining access permissions
The root user usually has access to the hypfs file system. It is possible to explicitly define access
permissions.

About this task
If no mount options are specified, the files and directories of the file system get the uid and gid of the user
who mounted the file system (usually root). You can explicitly define uid and gid using the mount options
uid=<number> and gid=<number>.

Example
You can define uid=1000 and gid=2000 with the following mount command:

mount none -t s390_hypfs -o "uid=1000,gid=2000" <mount point>

Alternatively, you can add the following line to the /etc/fstab file:

none <mount point> s390_hypfs uid=1000,gid=2000 0 0

The first mount defines uid and gid. Subsequent mounts automatically have the same uid and gid setting
as the first one.

The permissions for directories and files are as follows:

• Update file: 0220 (--w--w----)
• Regular files: 0440 (-r--r-----)
• Directories: 0550 (dr-xr-x---)

372 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Updating hypfs information
You trigger the update process by writing something into the update attribute at the top-level hypfs
directory.

Procedure
With hypfs mounted at /sys/hypervisor/s390, you can trigger the update process by issuing the
following command:

echo 1 > /sys/hypervisor/s390/update

During the update, the entire directory structure is deleted and rebuilt. If a file was open before the
update, subsequent reads return the old data until the file is opened again. Within 1 second only one
update can be done. If multiple updates are triggered within a second, only the first update is performed
and subsequent write system calls return -1 and errno is set to EBUSY.

Applications can use the following procedure to ensure consistent data:
1. Read the modification time through stat(2) from the update attribute.
2. If the data is too old, write to the update attribute and start again with step 1.
3. Read data from the file system.
4. Read the modification time of the update attribute again and compare it with first timestamp. If the

timestamps do not match, return to step 2.

Chapter 27. S/390 hypervisor file system 373

374 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 28. TOD clock synchronization
Your Linux instance might be part of an extended remote copy (XRC) setup that requires synchronization
of the Linux time-of-day (TOD) clock with a Coordinated Timing Network (CTN).

Linux in LPAR mode supports server time protocol (STP) based TOD synchronization. For information
about STP, see www.ibm.com/systems/z/advantages/pso/stp.html. Use the lsstp command to display
the STP configuration for your Linux instance (see “lsstp - Show STP configuration information” on page
674).

Attention: To avoid hanging I/O operations on XRC-enabled DASD, be sure that a reliable timing
signal is available before enabling clock synchronization.

Note: STP synchronizes leap seconds with a better resolution than Network Time Protocol (NTP). With
STP enabled, do not use NTP daemons like chrony or ntpd.

How STP synchronization works
With STP enabled at boot time, STP synchronizes the TOD clock of a Linux instance with the STP timing
network during the boot process. STP then steers the TOD clock to keep it in sync with the network. This
synchronization is driven by STP, without active participation of the Linux kernel. You cannot enable STP
for KVM guests, but KVM hosts pass their synchronized TODs on to their guests.

In contrast, the Linux kernel takes an active role if the TOD clock gets out-of-sync with the timing
network. An out-of-sync situation usually occurs when STP is enabled on a running Linux instance (see
“Enabling and disabling clock synchronization” on page 375). To bring the TOD clock back into sync, STP
notifies the Linux kernel through a sync check. The TOD clock then leaps to the corrected time. Linux
now shields applications from inconsistent time stamps by gradually steering the values returned by
gettimeofday() towards the corrected TOD. Such corrections do not feed through to KVM guests, which
remain out-of-sync with their host and with the timing network.

Enabling clock synchronization when booting
Use the stp= kernel parameter to enable clock synchronization when booting.

You can use kernel parameters to set up synchronization for your Linux TOD clock. These kernel
parameters specify the initial synchronization settings. On a running Linux instance, you can change these
settings through attributes in sysfs (see “Enabling and disabling clock synchronization” on page 375).

Enabling and disabling clock synchronization
Use the STP sysfs attribute online to enable or disable clock synchronization.

Procedure
To enable clock synchronization, set /sys/devices/system/stp/online to 1. To disable clock
synchronization, set this attribute to 0.

Example
To disable clock synchronization, enter:

echo 0 > /sys/devices/system/stp/online

© Copyright IBM Corp. 2000, 2023 375

http://www.ibm.com/systems/z/advantages/pso/stp.html

Leap second handling
Through STP, Linux on IBM Z can process leap seconds from a coordinated time network (CTN) and adjust
the TOD clock accordingly.

STP can schedule leap second insertions or deletions for your Linux instance. With one or more leap
seconds scheduled, the Linux kernel checks, at regular intervals, whether the day for a leap second
adjustment is reached.

STP schedules leap second adjustments for the end of day according to UTC.
Leap second deletion

A second is deleted at 23:59:59, that is, 23:59:58 is followed by 00:00:00.
Leap second insertion

A second is inserted at 23:59:59, that is, 23:59:59 is followed by 23:59:60.

Use the lsstp command to display information about scheduled leap seconds for your Linux
instance (see “lsstp - Show STP configuration information” on page 674).

Note: Do not run an NTP daemon like chrony or ntpd with STP enabled. NTP daemons can interfere with
leap second handling through STP.

376 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 29. Identifying the IBM Z hardware
In installations with several IBM Z mainframes, you might need to identify the particular hardware system
on which a Linux instance is running.

On Linux in LPAR mode, two attributes in /sys/firmware/ocf can help you to identify the hardware.
cpc_name

contains the name that is assigned to the central processor complex (CPC). This name identifies the
mainframe system on a Hardware Management Console (HMC).

hmc_network
contains the name of the HMC network to which the mainframe system is connected.

The two attributes contain the empty string if the Linux instance runs as a guest of a hypervisor that does
not support the operations command facility (OCF) communication parameters interface.

Use the cat command to read these attributes.

Example:

cat /sys/firmware/ocf/cpc_name
Z05
cat /sys/firmware/ocf/hmc_network
SNA00

© Copyright IBM Corp. 2000, 2023 377

378 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 30. HMC media device driver

LPAR and z/VM: The HMC media device driver applies to Linux in LPAR mode and to Linux on z/VM.

You use the HMC media device driver to access files on removable media at a system that runs the
Hardware Management Console (HMC).

Before you begin: You must log in to the HMC on the system with the removable media and assign the
media to the LPAR.

The HMC media device driver supports the following removable media:

• A DVD in the DVD drive of the HMC system
• A CD in the DVD drive of the HMC system
• USB-attached storage that is plugged into the HMC system

The most commonly used removable media at the HMC is a DVD.

The HMC media device driver uses the /dev/hmcdrv device node to support these capabilities:

• List the media contents with the lshmc command (see “lshmc - List media contents in the HMC media
drive” on page 661).

• Mount the media contents as a file system with the hmcdrvfs command (see “hmcdrvfs - Mount a
FUSE file system for remote access to media in the HMC media drive” on page 636).

Installers on suitably prepared installation DVDs can use these capabilities to install Linux in an LPAR.

Module parameters
You can set the cache size for the HMC media device driver.

Before you can work with the HMC media device driver and with the dependent lshmc and hmcdrvfs
commands, you must load the hmcdrv kernel module.

hmcdrv module parameter syntax

modprobe hmcdrv
 cachesize=534288

 cachesize=  <size>

where <size> is the cache size in bytes. The specification must be a multiple of 2048. Specify 0 to not
cache any media content. By default, the cache size is 534288 bytes (0.5 MB).

Loading the hmcdrv module creates a device node at /dev/hmcdrv.

Example
To specify a cache size of 150 K, issue:

modprobe hmcdrv cachesize=153600

Working with the HMC media
You can list files on media that are inserted into the HMC system and you can mount the media content on
the Linux file system.

• “Assigning the removable media of the HMC to an LPAR” on page 380
• “Listing files on the removable media at the HMC” on page 380

© Copyright IBM Corp. 2000, 2023 379

• “Mounting the content of the removable media at the HMC” on page 381

Assigning the removable media of the HMC to an LPAR
Use the HMC to assign the removable media to the LPAR where your Linux instance runs.

Before you begin
• You need access to the HMC, and you must be authorized to use the Access Removable Media task for

the LPAR to which you want to assign the media.
• For Linux on z/VM, the z/VM guest virtual machine must have at least privilege class B.
• For Linux in LPAR mode, the LPAR activation profile must allow issuing SCLP requests.

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure
1. Insert the removable media into the HMC system.
2. Use the Access Removable Media task on your HMC to assign the removable media to the LPAR where

your Linux instance runs.

For Linux on z/VM, this is the LPAR where the z/VM hypervisor runs that provides the guest virtual
machine to your Linux instance.

For details, see the HMC documentation for the HMC at your installation.

Results
You can now access the removable media from your Linux instance.

Listing files on the removable media at the HMC
Use the lshmc command to list files on the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media at the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 380).

About this task
You can list files on the removable media at the HMC without having to first mount the contents on the
Linux file system.

Procedure
Issue a command of this form:

lshmc <filepath>

where <filepath> is an optional specification for a particular path and file. Path specifications are
interpreted as relative to the root directory of the removable media. You can use the asterisk (*) and
question mark (?) as wildcards. If you omit <filepath>, all files in the root directory of the media are listed.

Example: The following command lists all .html files in the www subdirectory of the media.

lshmc www/*.html

380 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For more information about the lshmc command, see “lshmc - List media contents in the HMC media
drive” on page 661.

Mounting the content of the removable media at the HMC
Use the hmcdrvfs command to mount the content of the removable media at the HMC.

Before you begin
Your Linux instance must have access to the removable media of the HMC (see “Assigning the removable
media of the HMC to an LPAR” on page 380).

About this task
You can mount the content of the removable media at the HMC in read-only mode on the Linux file
system.

Procedure
1. Optional: Confirm that your are accessing the intended content by issuing the lshmc command.
2. Mount the media content by issuing a command of this form:

hmcdrvfs <mountpoint>

where <mountpoint> is the mount point on the Linux file system.

Example: The following command mounts the media content at /mnt/hmc:

hmcdrvfs /mnt/hmc

Results
You can now access the files on the media in read-only mode through the Linux file system.

What to do next
When you no longer need access to the media content, unmount the media with the umount command.

Chapter 30. HMC media device driver 381

382 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 31. Data compression with the Integrated
Accelerator for zEDC

Hardware dependency: The Integrated Accelerator for zEnterprise Data Compression (zEDC) is available
on IBM Z and LinuxONE hardware as of z15 and LinuxONE III.

The Integrated Accelerator for zEDC replaces hardware-acceleration through zEDC Express as available
for earlier hardware, see Chapter 32, “Data compression with GenWQE and zEDC Express,” on page 389.

The Integrated Accelerator for zEDC provides on-chip hardware-acceleration for data compression and
decompression.

The prerequisites for using the Integrated Accelerator for zEDC depend on your virtualization
environment.
Linux in LPAR mode

The on-chip accelerator is always available if the hardware provides it.
Linux as a guest of KVM or z/VM

The hypervisor must run on hardware that provides the on-chip accelerator, it must support the z15
CPU model and provide it to the guest.

Linux container
The on-chip accelerator must be available to the Linux instance that runs the container. The
requirements for the image are the same as for the user space of any Linux instance.

Tip: Read /proc/cpuinfo. If the features line includes dflt, your real or virtual hardware provides the
on-chip accelerator.

For technical resources related to the Integrated Accelerator for zEDC, see www.ibm.com/support/z-
content-solutions/compression.

Features
Acceleration with the on-chip Integrated Accelerator for zEDC is available to applications that use zlib or
gzip in user space and to the kernel zlib.

Acceleration for applications in user space
Applications can use the on-chip accelerator through zlib and gzip. Ubuntu Server 22.04 LTS includes the
required versions.

For Linux containers, the image must contain the required versions of zlib and gzip. You can search the
zlib and gzip binaries for "DFLTCC" to verify that you have the required versions, as in the following
example:

strings /usr/bin/gzip | grep DFLTCC$
DFLTCC
strings /usr/lib/s390x-linux-gnu/libz.so | grep DFLTCC$
DFLTCC

Acceleration for Java workloads
Support for Java workloads depends on your Java platform implementation.

Java implementations that use the system zlib, for example OpenJDK, support the on-chip accelerator if
the system zlib supports it.

The IBM SDK for Java includes a zlib library, so its support of the on-chip accelerator is independent of
the system zlib. As of IBM SDK for Java 8 SR6, the included zlib supports the on-chip accelerator.

© Copyright IBM Corp. 2000, 2023 383

https://www.ibm.com/support/z-content-solutions/compression
https://www.ibm.com/support/z-content-solutions/compression

Acceleration for the kernel
The kernel zlib can use the on-chip accelerator.

Compression levels and defaults
The compression level is a measure of the compression quality. It is expressed as an integer in the range
1 - 9.

Compression quality and performance are conflicting goals. Compression level 1 provides best
performance at the expense of quality. Compression level 9 provides the best quality at the expense
of performance. The compression level that is provided by the Integrated Accelerator for zEDC is
approximately equivalent to level 1.

Acceleration defaults
The following defaults apply to both on-chip acceleration for gzip and zlib in user space and for the kernel
zlib:

• By default, decompression is accelerated.
• By default, compression is accelerated only if compression level 1 is requested.

Expanding the scope of compression acceleration
Configure software with a configurable compression level to request level 1 to enable on-chip
compression.

For other types of software you must configure the on-chip accelerator.

• Software that hardcodes a compression level other than 1.
• Software that neither requests a particular level nor provides an option to configure a level. Such

software requests level 6 by default.

If level 1 compression is acceptable for your purposes, use overrides to apply on-chip compression to any
requested compression level:

• For applications in user space, including Java workloads, see “Overrides for applications” on page 385.
• For the kernel, see “Overrides for the kernel zlib” on page 387.

Confirming that the on-chip accelerator is used
Expect a significant performance gain when using the Integrated Accelerator for zEDC for data
compression and decompression workloads, especially when processing large files.

Before you begin
Ensure that your workload is configured to request compression level 1. For software that is hardcoded to
request a level other than 1, use the techniques that are described in “Overriding the defaults” on page
385 to force compression with the on-chip accelerator.

Procedure
• Confirm by comparison.

Run the same workload twice: once with the on-chip accelerator enabled and once with the on-chip
accelerator off. Compare the results to assess the effect of the on-chip accelerator.

By default, the on-chip accelerator is enabled for workloads in both user space and the kernel. Use the
applicable control to turn off the on-chip accelerator for the reference run:
User space

Set the environment variable DFLTCC to 0.

384 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Kernel
Restart Linux with the kernel parameter setting dfltcc=off.

• Confirm through hardware counters.

Evaluate hardware counters to directly confirm that the on-chip accelerator is active. For example, you
can evaluate the counters with the following symbolic names:
DFLT_ACCESS

Cycles CPU spent obtaining access to Deflate unit.
DFLT_CYCLES

Cycles CPU is using Deflate unit.
DFLT_CC

Increments by one for every DEFLATE CONVERSION CALL instruction executed that ended in
Condition Codes 0, 1, or 2.

Issue the lscpumf command with the -C option to find out how these names map to the counter
numbers on your IBM Z hardware. In the edition of IBM The CPU-Measurement Facility Extended
Counters Definition for z10, z196/z114, zEC12/zBC12, z13/z13s, z14, z15 and z16, SA23-2261 for your
hardware model, the counters are listed by counter number.

For information about working with hardware counters, see Chapter 56, “Using the CPU-measurement
facilities,” on page 541.

Overriding the defaults
You can override the defaults for compression and decompression with the Integrated Accelerator for
zEDC.

Overrides for applications
Use the DFLTCC and DFLTCC_LEVEL_MASK environment variables to override the defaults for Java
applications and, generally, for applications that use zlib or gzip in user space.

For Linux containers, specify these environment variables with the command that instantiates the
container. For example, if you manage your containers with podman, use the -e option of the podman
run command.

Turning off acceleration
Set the DFLTCC environment variable to 0 to turn off on-chip compression and decompression with the
Integrated Accelerator for zEDC.

The DFLTCC environment variable can take the following values:
1

turns on-chip acceleration on. This is the default.
0

turns on-chip acceleration off.

Configuring accelerated compression for any compression level
By default, software that requests compression level 1 uses the on-chip accelerator if it is enabled. Use
the DFLTCC_LEVEL_MASK environment variable to configure on-chip acceleration for any combination of
compression levels.

The values of the DFLTCC_LEVEL_MASK environment variable are 4-digit hexadecimal numbers in
the range 0x0000 - 0x03ff. Of the ten corresponding binary digits that can be 1, each represents a
compression level. The least significant bit represents an assumed level 0, the most significant bit
represents level 9.

The following examples demonstrate how the mask works:

Chapter 31. Data compression with the Integrated Accelerator for zEDC 385

0x0000
The bits for all compression levels are off. No on-chip compression is performed. This setting has the
same effect on compression as setting the DFLTCC environment variable to 0.

0x0001
The bit for the assumed compression level 0 is on and overrides the default behavior for level 0.
Instead of transferring data into a compressed format without a size reduction, data is actually
compressed, which can have unintended consequences.

Note: Do not set this bit unless you are a compression expert who understands the implications and
wants to experiment with this setting.

0x0002
The bit for compression level 1 is on; all other bits are off. On-chip compression is performed only for
software that requests compression level 1.

This is the default.

0x0006
The bits for compression level 1 and 2 are on; the other bits are off. On-chip compression is
performed for software that requests compression level 1 or 2.

0x000e
The bits for compression level 1, 2, and 3 are on; the other bits are off. On-chip compression is
performed for software that requests compression level 1, 2, or 3.

0x007e
The bits for compression level 1 - 6 are on; the bits for level 0, 7, 8, and 9 are off. On-chip
compression is performed for software that requests a compression level in the range 1 - 6. Level
6 is the default for software that does not request a particular compression level.

0x01fe
The bits for compression level 1 - 8 are on; the bits for level 0 and 9 are off. On-chip compression is
performed for software that requests a compression level in the range 1 - 8.

Note: On-chip compression with the Integrated Accelerator for zEDC is approximately equivalent to
compression level 1. Forcing On-chip compression for software that requests a higher compression level
can result in a larger compressed data volume than intended by the author of the software.

You can set the environment variable for all users, programs and system services of a Linux instance by
writing the setting to /etc/environment.

echo DFLTCC_LEVEL_MASK=0x1fe >> /etc/environment

The following examples take a more cautious approach by limiting the scope of the setting:

• Use env to limit the setting to an individual command call:

env DFLTCC_LEVEL_MASK=0x2fe <command>

• Use an entry in your ~/.bashrc for the scope of your bash sessions:

echo DFLTCC_LEVEL_MASK=0x1fe >> ~/.bashrc

• Use a systemd unit override for a service <your_service> for the scope of that systemd service:

printf "[Service]\nEnvironment=DFLTCC_LEVEL_MASK=0x2fe\n" > \
/etc/systemd/system/<your_service>.service.d/dfltcc.conf

• Use an override in the global systemd configuration file for the scope of all systemd services:

printf "[Manager]\nDefaultEnvironment=DFLTCC_LEVEL_MASK=0x2fe\n" > \
/etc/systemd/system.conf.d/dfltcc.conf

386 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Overrides for the kernel zlib
Use the dfltcc= kernel parameter to override the defaults for the kernel zlib.

Format

dfltcc= syntax
dfltcc=on

dfltcc=off

dfltcc=def_only

dfltcc=inf_only

dfltcc=always

on
enables on-chip acceleration for compression level 1 and for decompression. This is the default.

off
turns off on-chip acceleration for both compression and decompression.

def_only
enables on-chip acceleration for compression on level 1 but not for decompression.

inf_only
enables on-chip acceleration for decompression only.

always
enables on-chip acceleration for decompression and for compression regardless of the requested
compression level.

Note: On-chip compression with the Integrated Accelerator for zEDC is approximately equivalent to
compression level 1. Forcing On-chip compression for software that requests a higher compression
level can result in a larger compressed data volume than intended by the author of the software.

Examples

dfltcc=inf_only

Accelerating btrfs
If the kernel zlib is compiled with support for the Integrated Accelerator for zEDC, you can enable it for
btrfs through a mount option.

By default, btrfs requests compression level 3, but the Integrated Accelerator for zEDC provides
compression level 1. If compression level 1 is acceptable for your purposes, mount your instance of
btrfs with the compress=zlib:1 option.

Chapter 31. Data compression with the Integrated Accelerator for zEDC 387

388 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 32. Data compression with GenWQE and
zEDC Express

LPAR and z/VM: Data compression with GenWQE and zEDC Express applies to Linux in LPAR mode and to
Linux on z/VM.

Generic Work Queue Engine (GenWQE) supports hardware-accelerated data compression and
decompression through zEDC Express, a PCIe-attached Field Programmable Gate Array (FPGA)
acceleration adapter.

zEDC Express was introduced with zEC12 and is available for later IBM Z and LinuxONE hardware up
to z14 and LinuxONE II. As of z15 and LinuxONE III, zEDC hardware acceleration is available through
on-chip compression and decompression, see Chapter 31, “Data compression with the Integrated
Accelerator for zEDC,” on page 383.

zEDC hardware-acceleration is available for both Linux and z/OS. For more information about zEDC
on z/OS and about setting up zEDC Express, see Reduce Storage Occupancy and Increase Operations
Efficiency with IBM zEnterprise Data Compression, SG24-8259. You can obtain this publication from the
IBM Redbooks website at www.redbooks.ibm.com/abstracts/sg248259.html.

Features
GenWQE supports hardware-accelerated data compression and decompression with common standards.

• GenWQE implements the zlib API.
• GenWQE adheres to the following RFCs:

– RFC 1950 (zlib)
– RFC 1951 (deflate)
– RFC 1952 (gzip)

These standards ensure compatibility among different zlib implementations.

– Data that is compressed with GenWQE can be decompressed through a zlib software library.
– Data that is compressed through a software zlib software library can be decompressed with

GenWQE.
• GenWQE supports the following PCIe FPGA acceleration hardware:

– zEDC Express

What you should know about GenWQE
Learn about the GenWQE components, how to enable GenWQE accelerated zlib for user applications, and
device representation in Linux.

The GenWQE accelerated zlib
The GenWQE accelerated zlib can replace a zlib software library.

For data compression and decompression tasks, Ubuntu Server 22.04 LTS includes software libraries.
The zlib library, which provides the zlib API, is one of the most commonly used libraries for data
compression and decompression. For information about zlib, see www.zlib.net.

Because the GenWQE accelerated zlib offers the zlib API, applications can use it instead of the default
zlib software library. The GenWQE hardware-accelerated zlib is designed to enhance performance by
offloading tasks to a hardware accelerator.

© Copyright IBM Corp. 2000, 2023 389

https://www.redbooks.ibm.com/abstracts/sg248259.html
http://www.zlib.net

Figure 87. GenWQE accelerated zlib

Applications
You can make the user space components of the GenWQE hardware-accelerated zlib available to
applications that request data compression functions through the zlib API. Ubuntu Server 22.04 LTS
provides these user space components with the libzadc1 package.

A second package, genwqe, provides tools that use the GenWQE hardware-accelerated zlib.

IBM Java version 7.1 or later includes components of the GenWQE hardware-accelerated zlib. Through
these components, it can directly address the GenWQE device nodes. With the required environment
variables in place, it uses hardware-acceleration if it is available (see“GenWQE hardware-acceleration for
IBM Java” on page 394).

Hardware-accelerated zlib
The hardware-accelerated zlib is a zlib implementation that acts as a wrapper for two included libraries:
libzHW

a hardware library that prepares requests for processing by the hardware accelerator. The hardware
library is intended to handle the bulk of the requests.

This library also manages data buffers for optimized hardware compression.

libz
a software implementation of the zlib interface. Because it provides the same interface as its
wrapper library, it can handle any requests unmodified.

The hardware-accelerated zlib arbitrates between the two included libraries. It uses the software library
as a backup if no hardware accelerator is available. It also evaluates the expected performance gain
against the extra processing for channeling requests to the accelerator. For small or fragmented data,
software processing might be advantageous, especially for decompression. The evaluation takes available
resources, such as buffer space, into account.

390 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Card library
The card library, libcard, mediates between the hardware-accelerated zlib library and the GenWQE
device driver. It provides recovery features and can move jobs between available accelerators.

Device driver
The GenWQE device driver is the kernel part of GenWQE. It serializes requests to an accelerator in form of
device driver control blocks (DDCBs), and it enables multi-process and multi-thread usage.

GenWQE device nodes
GenWQE user space components use device nodes to exchange data with the GenWQE device driver.

Ubuntu Server 22.04 LTS automatically loads the GenWQE device driver module when it is required. It
also creates a device node of the form /dev/genwqe<n>_card for each available virtual acceleration
card. <n> is an index number that identifies an individual virtual card. Node /dev/genwqe0_card is
assigned to the first card that is detected, /dev/genwqe1_card to the second card, and so on.

Do not directly use these device nodes. The nodes are intended to be used by the user space components
of the GenWQE hardware-accelerated zlib and by IBM Java.

Virtual accelerators
Each physical accelerator card can provide up to 15 virtual cards. In PCIe terminology, these virtual cards
are called virtual functions.

GenWQE accelerator cards, as detected by Linux on IBM Z, are virtual cards. Which and how many cards
are available to a particular Linux instance depends on the mainframe configuration and, if applicable, the
hypervisor configuration.

As for most mainframe devices, availability can be enhanced by assigning virtual accelerator cards from
different physical cards.

A degree of load distribution can be achieved by unevenly distributing accelerator cards among different
Linux instances.

Tradeoff between best compression and speed
A minimum size of compressed data and fast compression are conflicting goals.

For hardware-accelerated compression with GenWQE, the compression ratio is roughly equivalent to
gzip --fast.

Data that was compressed with GenWQE hardware-acceleration might have a different size from data
that was compressed in software. The data compression standards are not violated by this difference.
Despite possible differences in size of the compressed data, data that is compressed with GenWQE
hardware-acceleration can be decompressed in software and vice versa.

Setting up GenWQE hardware acceleration
Install the GenWQE components and understand how environment variables can override default
settings.

Installing the GenWQE hardware-accelerated zlib
Install the libzadc4 and genwqe-tools packages that are included in Ubuntu Server 22.04 LTS with
the apt command.

To install the genwqe-tools package, issue:

apt install genwqe-tools

Chapter 32. Data compression with GenWQE and zEDC Express 391

This command automatically installs the required libzadc4 library.

The libzadc4 package includes the user space components of the GenWQE hardware-accelerated zlib.

The genwqe-tools package provides the following tools:

• genwqe_gzip and genwqe_gunzip, which are GenWQE versions of gzip and gunzip (see “Examples
for using GenWQE” on page 393).

These tools can be used for most purposes, but they do not implement all of the more unusual options
of their common code counterparts. See the man pages to find out which options are supported.

• genwqe_echo, a tool to confirm the availability of accelerator hardware through the GenWQE
accelerated zlib. See “Confirming that the accelerator hardware can be reached” on page 395 for
details.

Environment variables
You can set environment variables to control the GenWQE hardware-accelerated zlib.

The GenWQE hardware-accelerated zlib uses defaults that correspond to the following environment
variable settings:

ZLIB_ACCELERATOR=GENWQE
ZLIB_CARD=-1
ZLIB_TRACE=0x0
ZLIB_DEFLATE_IMPL=0x41
ZLIB_INFLATE_IMPL=0x41

You can override these defaults by setting the following environment variables:
ZLIB_ACCELERATOR

Sets the accelerator type. For zEDC Express, the type is GENWQE.
ZLIB_CARD

-1, uses all accelerators that are available to the Linux instance. Failed requests are retried on
alternative accelerators.

You can specify the ID of a particular virtual accelerator card to be used. The ID is the index number
that makes the nodes unique. All other cards are ignored, and no retry on alternative cards is
performed if the specified card fails. Specify an ID only if you want to test a particular card.

0 uses the first card that is found by the device driver. As for specifying an individual card, all other
cards are ignored.

ZLIB_TRACE
Sets tracing bits:
0x1

General trace.
0x2

Hardware trace.
0x4

Software trace.
0x8

Trace summary at the end of a process.
Tracing requires extra processing and incurs a performance penalty. The least performance impact is
to be expected from the trace summary. By default, tracing is off.

ZLIB_DEFLATE_IMPL
0x01 and 0x41 enable hardware compression, where 0x41 adds an optimization setting. 0x00 forces
software compression and is intended for experimentation, for example, for gathering performance
data with and without hardware acceleration.

392 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

ZLIB_INFLATE_IMPL
0x01 and 0x41 enable hardware decompression, where 0x41 adds an optimization setting. 0x00
forces software decompression and is intended for experimentation, for example, for gathering
performance data with and without hardware acceleration.

You can find more details about the environment variables in the GenWQE wiki on GitHub at github.com/
ibm-genwqe/genwqe-user/wiki/Environment Variables.

Examples for using GenWQE
You can use the GenWQE hardware-accelerated zlib through GenWQE tools.

Activating the GenWQE hardware-accelerated zlib for an application
Whether and how you can make an application use the GenWQE hardware-accelerated zlib depends on
how the application links to libz.so.

Examine the application for links to libz.so, for example with the ldd tool.

• If the application does not link to libz.so or if it statically links to libz.so, it would require
recompilation, and possibly code changes, to make acceleration through GenWQE possible.

• If an application dynamically links to libz.so, you might be able to redirect the library calls from the
default implementation to the GenWQE hardware-accelerated zlib.

Some applications require zlib features that are not available from the GenWQE hardware-accelerated
zlib. Such applications fail if a global redirect is put in place. The following technique redirects calls for the
scope of a particular application.

Specify the LD_PRELOAD environment variable to load the GenWQE hardware-accelerated zlib. Set the
variable with the start command for your application.

Example:

LD_PRELOAD=/lib/s390x-linux-gnu/genwqe/libz.so.1 <application_start_cmd>

Compressing data with genwqe_gzip
GenWQE provides two tools, genwqe_gzip and genwqe_gunzip that can be used in place of the
common code gzip and gunzip tools. The GenWQE versions of the tools use hardware acceleration if it
is available.

Procedure
Run the genwqe_gzip command with the -AGENWQE parameter to compress a file.

genwqe_gzip -AGENWQE <file>

The -AGENWQE parameter ensures that the correct, PCIe-attached, accelerator card is used. Also use
this option when decompressing data with the genwqe_gunzip command. See the man pages for other
options.

Running tar with GenWQE hardware-acceleration
You can make tar use genwqe_gzip in place of the common code gzip.

About this task
If called with the z option, the tar utility uses the first gzip tool in the search path, which is usually the
common code version. By inserting the path to the GenWQE version of the gzip tool at the beginning of
the PATH variable, you can make the tar utility use hardware acceleration.

Chapter 32. Data compression with GenWQE and zEDC Express 393

http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables
http://github.com/ibm-genwqe/genwqe-user/wiki/Environment%20Variables

The acceleration is most marked for a single large text file. The example that follows compresses a
directory with the Linux source code.

Procedure
1. Run the tar command as usual to use software compression. To obtain performance data, specify the
tar command as an argument to the time command.

time tar cfz linux-src.sw.tar.gz linux-src
real 0m22.329s
user 0m22.147s
sys 0m0.849s

2. Run the tar command with an adjusted PATH variable to use GenWQE hardware acceleration. Again,
use the time command to obtain performance data.

time PATH=/usr/lib/genwqe:$PATH \
tar cfz linux-src.hw.tar.gz linux-src
real 0m1.323s
user 0m0.242s
sys 0m1.023s

Results
In the example, the accelerated operation is significantly faster. The hardware-compressed data is slightly
larger than the software-compressed version of the same data

GenWQE hardware-acceleration for IBM Java
IBM Java version 7.1 or later can use the GenWQE hardware-accelerated zlib.

To activate the GenWQE hardware-accelerated zlib for IBM Java, you must set environment parameters.
See the documentation for your Java version to find out which settings are required.

Note: Any values that you set for the environment variables override the default settings for the GenWQE
user space components (see “Environment variables” on page 392).

Exploring the GenWQE setup
You might want to ensure that your GenWQE setup works as intended.

• “Listing your GenWQE accelerator cards” on page 394
• “Checking the GenWQE device driver setup” on page 395
• “Confirming that the accelerator hardware can be reached” on page 395

Listing your GenWQE accelerator cards
Use the lspci command to list the available GenWQE accelerator cards.

Procedure
1. Issue the lspci command and look for GenWQE.

Example:

lspci |grep GenWQE
0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter

2. Issue the lspci command with the verbose option to display details about a particular card.

Example:

394 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lspci -vs 0002:00:00.0
0002:00:00.0 Processing accelerators: IBM GenWQE Accelerator Adapter
 Subsystem: IBM GenWQE Accelerator Adapter
 Physical Slot: 000000ff
 Flags: bus master, fast devsel, latency 0, IRQ 3
 Memory at 8002000000000000 (64-bit, prefetchable) [disabled] [size=128M]
 Capabilities: [50] MSI: Enable+ Count=1/1 Maskable- 64bit+
 Capabilities: [80] Express Endpoint, MSI 00
 Capabilities: [100] Alternative Routing-ID Interpretation (ARI)
 Kernel driver in use: genwqe
 Kernel modules: genwqe_card

Checking the GenWQE device driver setup
Perform these tasks if GenWQE does not work as expected.

Procedure
1. Confirm that the device driver is loaded.

lsmod | grep genwqe
genwqe_card 88997 0
crc_itu_t 1910 1 genwqe_card

If the genwqe_card module is not listed in the command output, load it with modprobe.

modprobe genwqe_card

The genwqe_card module does not have module parameters.
2. Confirm that GenWQE device nodes exist and that the nodes have the required permissions.

The nodes must grant read and write permissions to all users, for example:

ls -l /dev/genwqe*
crwrwrw 1 root root 249, 0 Jun 30 10:01 /dev/genwqe0_card
crwrwrw 1 root root 248, 0 Jun 30 10:01 /dev/genwqe1_card

If the permissions are not crwrwrw, create a file /etc/udev/rules.d/52-genwqedevices.rules
with this rule as its content:

KERNEL=="genwqe*", MODE="0666"

The new rule takes effect next time the GenWQE device driver is loaded.

Tip: Use the chmod command to temporarily set the permissions.

What to do next
You can find debug information in the Linux source tree at /sys/kernel/debug/genwqe and at /sys/
class/genwqe.

Confirming that the accelerator hardware can be reached
The genwqe_echo command is similar to a ping command.

Before you begin
The genwqe_echo command is included in the genwqe package (see “Installing the GenWQE hardware-
accelerated zlib” on page 391).

Procedure
Issue a command of this form to confirm that you can reach the accelerator hardware.

Chapter 32. Data compression with GenWQE and zEDC Express 395

genwqe_echo -AGENWQE -C <n> -c <m>

In the command, <n> is the index number of the card and <m> is a positive integer that specifies how
many requests are sent to the card. The -AGENWQE parameter ensures that the correct, PCIe-attached,
accelerator card is used.

Example: The following command sends four requests to the card with device node /dev/
genwqe1_card:

genwqe_echo -AGENWQE -C 1 -c 4
1 x 33 bytes from UNIT #1: echo_req time=37.0 usec
1 x 33 bytes from UNIT #1: echo_req time=19.0 usec
1 x 33 bytes from UNIT #1: echo_req time=23.0 usec
1 x 33 bytes from UNIT #1: echo_req time=18.0 usec
--- UNIT #1 echo statistics ---
4 packets transmitted, 4 received, 0 lost, 0% packet loss

See the genwqe_echo man page for other command options.

External programming interfaces
The GenWQE hardware-accelerated zlib implements a large subset of the original software zlib.

For information about programming against the GenWQE hardware-accelerated zlib, see the section
about implemented zlib functions in Accelerated Data Compressing using the GenWQE Linux Driver and
Corsa FPGA PCIe card.

396 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 33. PCI Express support
The Peripheral Component Interconnect Express (PCIe) device driver supports various PCI devices,
including but not limited to devices that implement the SMC network protocol. For more information
about RoCE, see Chapter 21, “RDMA over Converged Ethernet,” on page 331. For more information about
ISM, see Chapter 22, “Internal shared memory device driver,” on page 335.

PCIe functions are seen by Linux as devices, hence devices is used here synonymously. You can assign
PCIe devices to LPARs in the IOCDS.

PCIe function addresses
The function addresses uniquely identifies a PCIe function within a Linux instance. Function addresses
adhere to this format: <domain>:<bus>:<device>.<function>. For Linux on IBM Z, the address
components have the following values:
<domain>

UID as specified for the PCI function in the hardware configuration (IOCDS). UIDs are unique
hexadecimal values in the range 1 - FFFF. For example, with a UID of 0x318, <domain> would be:
0318.

UIDs are available only if supported by the hardware and if the LPAR is enabled for UID checking.
If your environment does not support UIDs for PCIe functions, consecutive numbers, starting from
0000, are assigned to the functions. The mapping of assigned numbers and physical functions does
not persist across reboots.

<bus>
Two zeros: 00.

<device>.<function>

Interface change: As of Ubuntu 20.04.1, <device>.<function> represents the PCIe Routing-ID (RID)
if your environment supports the Alternative Routing-ID Interpretation (ARI) compatible address
format.

The previous constant value, 00.0, is used as a fallback for environments that do not support the ARI
compatible address format. You can force this previous value with the pci=norid kernel parameter
(see “Setting up the PCIe support” on page 397).

To list PCIe devices, use the lspci command. For more information about lspci, see the man page.

Setting up the PCIe support
Configure the PCIe support through the pci= kernel parameter.

PCIe devices are automatically configured during the system boot process. In contrast to most IBM Z
devices, all PCIe devices that are in a configured state are automatically set online. PCIe devices that are
in stand-by state are not automatically enabled.

Scanning of PCIe devices is enabled by default. To disable use of PCI devices, set the kernel command
line parameter pci=off.

PCI kernel parameter syntax
pci=on

pci=off pci=nomio pci=norid

where:

© Copyright IBM Corp. 2000, 2023 397

pci=
off

disables automatic scanning of PCIe devices.
on

enables automatic scanning of PCIe devices (default).
pci=nomio

if available, PCIe uses enhanced instructions as introduced with z15. Specify this kernel parameter to
use the previous instructions.

pci=norid
as of Ubuntu 20.04.1, PCI function addresses follow an Alternative Routing-ID Interpretation (ARI)
conform format if it is supported by the system environment. Specify this kernel parameter to use the
previous format.

Attention: Other PCI kernel parameters do not apply to IBM Z and might have adverse effects on
your system.

Using PCIe hotplug on LPAR
Use PCIe hotplug to change the availability of a shared PCIe device.

About this task
Only one LPAR can access a PCIe device. Other LPARs can be candidates for access. Use the HMC or SE to
define which LPAR is connected and which LPARs are on the candidate list. A PCIe device that is defined,
but not yet used, is shown as a PCIe slot in Linux.

On Linux, you use the power sysfs attribute of a PCIe slot to connect the device to the LPAR where Linux
runs. While a PCIe device is connected to one LPAR, it is in the reserved state for all other LPARs that
are in the candidates list. A reserved PCIe device is invisible to the operating system. The slot is removed
from sysfs.

Procedure
The power attribute of a slot contains 0 if a PCIe device is in stand-by state, or 1 if the device is
configured and usable.
1. Locate the slot for the card you want to work with.

To locate the slot, read the function_id attribute of the PCIe device from sysfs.
For example, to read the /sys/bus/pci/devices/0000:00:00.0/function_id issue:

cat /sys/bus/pci/devices/0000:00:00.0/function_id
0x00000011

where 00000011 is the slot. Alternatively, you can use the lspci -v command to find the slot.
2. Write the value that you want to the power attribute:

• Write 1 to power to connect the PCIe device to the LPAR in which your Linux instance is running.
Linux automatically scans the device, registers it, and brings it online. For example:

echo 1 > /sys/bus/pci/slots/00000011/power

• Write 0 to power to stop using the PCIe device. The device state changes to stand-by. The PCIe
device is set offline automatically. For example:

echo 0 > /sys/bus/pci/slots/00000011/power

A PCIe device in standby is also in the standby state to all other LPARs in the candidates list. A
standby PCIe device appears as a slot, but without a PCIe device.

398 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Recovering a PCIe device
Use the zpcictl command or the recover sysfs attribute to handle a malfunctioning PCI device if
automatic recovery fails.

Before you begin
A kernel message is displayed when a PCI device enters the error state. Automatic recovery is in place for
PCI devices. Do not take action unless the automatic recovery fails.

The following sample sequence of kernel messages indicates a successful recovery for an NVMe device:

zpci: 000e:00:00.0: Event 0x3a reports an error for PCI function 0x1004
nvme nvme0: frozen state error detected, reset controller
zpci: 000e:00:00.0: Initiating reset
nvme nvme0: restart after slot reset
zpci: 000e:00:00.0: The device is ready to resume operations
nvme nvme0: Shutdown timeout set to 10 seconds
nvme nvme0: 63/0/0 default/read/poll queues

Failed automatic recoveries end with error messages that call for operator intervention as shown in the
following example.

zpci: 000d:00:00.0: Automatic recovery failed after slot reset
zpci: 000d:00:00.0: Automatic recovery failed; operator intervention is required

Procedure
1. Find out which PCIe device is in an error state by issuing the lspci command.

In the following example, the device in error state can be identified by the trailing "(rev ff)" in the
output line.

lspci
0000:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx Virtual Function] (rev ff)
0001:00:00.0 Ethernet controller: Mellanox Technologies MT27710 Family [ConnectX-4 Lx Virtual Function]
0002:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM) virtual PCI device

2. Recover the device with the appropriate method for your virtualization environment.
The preferred method is using the zpcictl command. On KVM guests you cannot use this command
to recover PCIe devices, so use the sysfs interface instead.

• Use the zpcictl command to handle defective PCI devices. The recovery commands are of this
form:

zpcictl <option> <function_address>

where <option> specifies an action that depends on the status of automatic recovery.
<function_address> specifies the malfunctioning PCI device. The examples that follow assume
function address 0000:00:00.0.

For more information about the zpcictl command, see “zpcictl - Manage defective PCIe devices”
on page 763.

Automatic recovery runs but fails
If automatic recovery runs but fails, force a disruptive reset by using the --reset option. For
example:

zpcictl --reset 0000:00:00.0

This reset method includes a controlled shutdown and a subsequent re-enabling of the device.
As a result, higher level interfaces such as network interfaces and block devices are destroyed
and re-created. Manual configuration steps might be required to re-integrate the device, for
example, in bonded interfaces or software RAIDs.

Chapter 33. PCI Express support 399

Recovery does not start automatically
If the initial device error message is not followed by automatic device recovery, trigger the
recovery by using the --reset-fw option. For example:

zpcictl --reset-fw 0000:00:00.0

Recovery unsuccessful
If all attempts at recovery fail, use the --deconfigure option to prepare for manual repair
actions or replacement of the physical device. For example:

zpcictl --deconfigure 0000:00:00.0

This command performs a crude, unplug-style removal of the PCI function. Do not use it for
operational PCI functions.

• Alternatively, you can use the sysfs interface to trigger the recovery. Use this method on KVM
guests.

a. Find the PCIe device directory in sysfs.

PCIe device directories are of the form /sys/bus/pci/devices/<function_address>,
where <function_address> identifies the PCIe device, for example: /sys/bus/pci/
devices/0000:00:00.0.

b. Write 1 to the recover attribute of the PCIe device, for example:

echo 1 > /sys/bus/pci/devices/0000:00:00.0/recover

After a successful recovery, the PCI device is de-registered and reprobed.

Reporting defective PCIe devices
For Linux in LPAR mode or Linux on z/VM, use the zpcictl command to report defective PCIe devices to
the Support Element (SE). Such devices might require physical repair actions.

Before you begin
• You need to know the function address of the defective PCIe device or a device node that represents the

device.
• To send diagnostic data with the error report you need to install the smartmontools package. Whether

data is collected and which data is available depends on the PCI device type. For example, S.M.A.R.T.
data is gathered for NVMe devices.

Procedure
Issue a command of this form to report a device with function address 0000:00:00.0 to the SE:

zpcictl --report-error <device>

where <device> is the device's function address or a device node that represents the device.

Example:

zpcictl --report-error 0000:00:00.0

Displaying PCIe information
For each online PCIe device, there is a number of read-only attributes in sysfs that provide information
about the device.

400 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
The sysfs representation of a PCIe device or slot is a directory of the form /sys/bus/pci/devices/
<function_address>, where <function_address> identifies the PCIe device. This sysfs directory
contains a number of attributes with information about the PCIe device.

Table 51. Read-only attributes with PCIe device information

Attribute Explanation

function_handle Eight-character, hexadecimal PCI-function (device) handle.

function_id Eight-character, hexadecimal PCI-function (device) ID. The ID identifies
the PCIe device within the processor configuration. This value specifies
the slot at /sys/bus/pci/slots.

pchid Four-character, hexadecimal, physical channel ID. Specifies the slot of the
PCIe adapter in the I/O drawer. Thus identifies the adapter that provides
the device.

pfgid Two-character, hexadecimal, physical function group ID.

pfip/segment0
 /segment1
 /segment2
 /segment3

Two-character, hexadecimal, PCI-function internal path. Provides an
abstract indication of the path that is used to access the PCI function.
This can be used to compare the paths used by two or more PCI functions,
to give an indication of the degree of isolation between them.

uid Up to eight-character, hexadecimal, user-defined identifier.

vfn Four-character, hexadecimal, number that identifies the virtual function
within the adapter.

util_string Type-specific information about the device. For RoCE devices and ISM
devices, it contains the PNET ID if a PNET ID has been assigned in the I/O
configuration.

Procedure
Issue a command of this form to read an attribute:

cat /sys/bus/pci/devices/<function_address>/<attribute>

where <attribute> is one of the attributes of Table 51 on page 401.

Reading statistics for a PCIe device
Use the statistics attribute file to see measurement data for a PCIe device.

About this task
All PCIe devices collect measurement data by default. You can read the data in a sysfs attribute file in the
debug file system, by default mounted at /sys/kernel/debug.

You can turn data collection on and off. To switch off measurement data collecting for the current session,
write "0" to the statistics attribute. To enable data collection again, write "1" to the statistics
attribute.

Example
To read measurement data for a (RoCE) function named 0000:00:00.0 use:

Chapter 33. PCI Express support 401

cat /sys/kernel/debug/pci/0000:00:00.0/statistics

The statistics attribute file might look similar to this example:

FMB @ 0000000078cd8000
Update interval: 4000 ms
Samples: 14373
Last update TOD: cefa44fa50006378
 Load operations: 1002780
 Store operations: 1950622
 Store block operations: 0
 Refresh operations: 0
 Received bytes: 0
 Received packets: 0
 Transmitted bytes: 0
 Transmitted packets: 0
 Allocated pages: 9104
 Mapped pages: 16633
 Unmapped pages: 2337

402 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 6. z/VM virtual server integration

z/VM only: This part applies to Linux on z/VM only.

These device drivers and features help you to effectively run and manage a z/VM-based virtual Linux
server farm.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 403

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

404 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 34. z/VM concepts

z/VM only: This chapter applies to Linux on z/VM only.

The z/VM performance monitoring and cooperative memory management concepts help you to
understand how the different components interact with Linux.

Performance monitoring for z/VM guest virtual machines
You can monitor the performance of z/VM guest virtual machines and their guest operating systems with
performance monitoring tools on z/VM or on Linux.

These tools can be your own, IBM tools such as the Performance Toolkit for VM, or third-party tools. The
guests being monitored require agents that write monitor data.

Monitoring on z/VM
z/VM monitoring tools must read performance data. For monitoring Linux instances, this data is
APPLDATA monitor records.

Linux instances must write these records for the tool to read, as shown in Figure 88 on page 405.

Figure 88. Linux instances write APPLDATA records for performance monitoring tools

Both user space applications and the Linux kernel can write performance data to APPLDATA records.
Applications use the monwriter device driver to write APPLDATA records. The Linux kernel can be
configured to collect system level data such as memory, CPU usage, and network-related data, and write
it to data records.

For file system size data, there is a command, mon_fsstatd. This user space tool uses the monwriter
device driver to write file system size information as defined records.

For process data, there is a command, mon_procd. This user space tool uses the monwriter device driver
to write system information as defined records.

In summary, Ubuntu Server 22.04 LTS supports writing and collecting performance data as follows:

• The Linux kernel can write z/VM monitor data for Linux instances, see Chapter 35, “Writing kernel
APPLDATA records,” on page 409.

• Linux applications that are running on z/VM guests can write z/VM monitor data, see Chapter 36,
“Writing z/VM monitor records,” on page 415.

© Copyright IBM Corp. 2000, 2023 405

• You can collect monitor file system size information, see “mon_fsstatd – Monitor z/VM guest file system
size” on page 688.

• You can collect system information about up to 100 concurrently running processes, see “mon_procd –
Monitor Linux on z/VM” on page 693.

Monitoring on Linux
A Linux instance can read the monitor data by using the monreader device driver.

Figure 89 on page 406 illustrates a Linux instance that is set up to read the monitor data. You can use an
existing monitoring tool or write your own software.

Figure 89. Performance monitoring using monitor DCSS data

In summary, Ubuntu Server 22.04 LTS supports reading performance data in the form of read access to
z/VM monitor data for Linux instances. See Chapter 37, “Reading z/VM monitor records,” on page 419 for
more details.

Further information
Several z/VM publications include information about monitoring.

• See z/VM: Getting Started with Linux on System z, SC24-6287, the chapter on monitoring performance
for information about using the CP Monitor and the Performance Toolkit for VM.

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs (z/VM keeps monitor records in a DCSS).

• See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands

that are used in the context of DCSSs and for controlling the z/VM monitor system service.
• For the layout of the monitor records, visit www.ibm.com/vm/pubs/ctlblk.html and see Chapter 35,

“Writing kernel APPLDATA records,” on page 409.
• For more information about performance monitoring on z/VM, visit

www.vm.ibm.com/perf

Cooperative memory management background
Cooperative memory management (CMM, or "cmm1") dynamically adjusts the memory available to Linux.

For information about setting up CMM, see Chapter 43, “Cooperative memory management,” on page
451.

406 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/vm/pubs/ctlblk.html
https://www.vm.ibm.com/perf/

In a virtualized environment it is common practice to give the virtual machines more memory than
is actually available to the hypervisor. Linux tends to use all of its available memory. As a result, the
hypervisor (z/VM) might start swapping.

To avoid excessive z/VM swapping, the memory available to Linux can be reduced. CMM allocates pages
to page pools that make the pages unusable to Linux. There are two such page pools as shown in Figure
90 on page 407.

Figure 90. Page pools

There are two page pools:
A static page pool

The page pool is controlled by a resource manager that changes the pool size at intervals according to
guest activity as well as overall memory usage on z/VM (see Figure 91 on page 407).

Figure 91. Static page pool

A timed page pool
Pages are released from this pool at a speed that is set in the release rate (see Figure 92 on page
408). According to guest activity and overall memory usage on z/VM, a resource manager adds pages
at intervals. If no pages are added and the release rate is not zero, the pool empties.

Chapter 34. z/VM concepts 407

Figure 92. Timed page pool

The external resource manager that controls the pools can be the z/VM resource monitor (VMRM) or a
third-party systems management tool.

VMRM controls the pools over a message interface. Setting up the external resource manager is beyond
the scope of this information. For more details, see the chapter about VMRM in z/VM: Performance,
SC24-6301.

Third-party tools can provide a Linux deamon that receives commands for the memory allocation through
TCP/IP. The deamon, in turn, uses the procfs-based interface. You can use the procfs interface to read the
pool sizes. These values are useful diagnostic data.

Linux guest relocation
Information about guest relocations is stored in the s390 debug feature (s390dbf).

You can access this information in a kernel dump or from a running Linux instance. For more information,
see Using the Dump Tools, SC33-8412.

408 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 35. Writing kernel APPLDATA records

z/VM only: APPLDATA records apply to Linux on z/VM only.

z/VM is a convenient point for collecting z/VM guest performance data and statistics for an entire server
farm. Linux instances can export such data to z/VM by using APPLDATA monitor records.

z/VM regularly collects these records. The records are then available to z/VM performance monitoring
tools.

A virtual CPU timer on the Linux instance to be monitored controls when data is collected. The timer
accounts for only busy time to avoid unnecessarily waking up an idle guest. The APPLDATA record support
comprises several modules. A base module provides an intra-kernel interface and the timer function. The
intra-kernel interface is used by data gathering modules that collect actual data and determine the layout
of a corresponding APPLDATA monitor record (see “APPLDATA monitor record layout” on page 411).

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

Setting up the APPLDATA record support
You must enable your z/VM guest virtual machine for data gathering and load the APPLDATA record
support modules.

Procedure
1. On z/VM, ensure that the user directory of the guest virtual machine includes the option APPLMON.
2. On Linux, use the modprobe command to load any required modules.

APPLDATA record support module parameter syntax
modprobe appldata_mem

 appldata_os

 appldata_net_sum

where appldata_mem, appldata_os, and appldata_net_sum are the modules for gathering memory-
related data, operating system-related data, and network-related data.

See the modprobe man page for command details.

Generating APPLDATA monitor records
You can set the timer interval and enable or disable data collection.

You control the monitor stream support through the procfs. APPLDATA monitor records are produced if
both a particular data-gathering module and the monitoring support in general are enabled.

Enabling or disabling the support
Use the procfs timer attribute to enable or disable the monitoring support.

Procedure
To read the current setting, issue:

cat /proc/sys/appldata/timer

© Copyright IBM Corp. 2000, 2023 409

To enable the monitoring support, issue:

echo 1 > /proc/sys/appldata/timer

To disable the monitoring support, issue:

echo 0 > /proc/sys/appldata/timer

Activating or deactivating individual data-gathering modules
Each data-gathering module has a procfs entry that contains a value 1 if the module is active and 0 if the
module is inactive.

About this task
The following procfs entries control the data-gathering modules:

/proc/sys/appldata/mem for the memory data-gathering module
/proc/sys/appldata/os for the CPU data-gathering module
/proc/sys/appldata/net_sum for the net data-gathering module

To check whether a module is active, look at the content of the corresponding procfs entry.

Procedure
Issue a command of this form:

echo <flag> > /proc/sys/appldata/<data_type>

where <data_type> is one of mem, os, or net_sum.

Note: An active data-gathering module produces APPLDATA monitor records only if the monitoring
support is enabled (see “Enabling or disabling the support” on page 409).

Example

To find out whether memory data-gathering is active, issue:

cat /proc/sys/appldata/mem
0

In the example, memory data-gathering is off. To activate memory data-gathering, issue:

echo 1 > /proc/sys/appldata/mem

To deactivate the memory data-gathering module, issue:

echo 0 > /proc/sys/appldata/mem

Setting the sampling interval
You can set the time that lapses between consecutive data samples.

About this task
The time that you set is measured by the virtual CPU timer. Because the virtual timer slows down as the
guest idles, the sampling interval in real time can be considerably longer than the value you set.

410 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

The value in /proc/sys/appldata/interval is the sample interval in milliseconds. The default
sample interval is 10 000 ms.

Procedure
To read the current value, issue:

cat /proc/sys/appldata/interval

To set the sample interval to a different value, write the new value (in milliseconds) to /proc/sys/
appldata/interval. Issue a command of this form:

echo <interval> > /proc/sys/appldata/interval

where <interval> is the new sample interval in milliseconds. The specification must be in the range 1 -
2147483647, where 2,147,483,647 = 2³¹ - 1.

Example

To set the sampling interval to 20 s (20000 ms), issue:

echo 20000 > /proc/sys/appldata/interval

APPLDATA monitor record layout
Each of the data-gathering modules writes a different type of record.

• Memory data (see Table 52 on page 411)
• Processor data (see Table 53 on page 412)
• Networking (see Table 54 on page 413)

z/VM can identify the records by their unique product ID. The product ID is an EBCDIC string of this form:
"LINUXKRNL<record ID>260100". The <record ID> is treated as a byte value, not a string.

The records contain data of the following types:
u32

unsigned 4-byte integer.
u64

unsigned 8-byte integer.

Table 52. APPLDATA_MEM_DATA record (Record ID 0x01)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux
side after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on the
Linux side while z/VM was collecting the data. As a
result, the data might be inconsistent.

12 0xC u32 sync_count_2 See sync_count_1.

16 0x10 u64 pgpgin Data that was read from disk (in KB)

24 0x18 u64 pgpgout Data that was written to disk (in KB)

Chapter 35. Writing kernel APPLDATA records 411

Table 52. APPLDATA_MEM_DATA record (Record ID 0x01) (continued)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

32 0x20 u64 pswpin Pages that were swapped in

40 0x28 u64 pswpout Pages that were swapped out

48 0x30 u64 sharedram Shared RAM in KB

56 0x38 u64 totalram Total usable main memory size in KB

64 0x40 u64 freeram Available memory size in KB

72 0x48 u64 totalhigh Total high memory size in KB

80 0x50 u64 freehigh Available high memory size in KB

88 0x58 u64 bufferram Memory that was reserved for raw disk blocks,
corresponding to "Buffers" from /proc/meminfo,
in KB

96 0x60 u64 cached Size of used cache, including "Cached" and
"SwapCached" from /proc/meminfo, in KB

104 0x68 u64 totalswap Total swap space size in KB

112 0x70 u64 freeswap Free swap space in KB

120 0x78 u64 pgalloc Page allocations

128 0x80 u64 pgfault Page faults (major+minor)

136 0x88 u64 pgmajfault Page faults (major only)

Table 53. APPLDATA_OS_DATA record (Record ID 0x02)

Offset
(Decimal)

Offset
(Hex)

Type
(size)

Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux
side after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data,
sync_count_1 and sync_count_2 must be the
same. Otherwise, the record was updated on the
Linux side while z/VM was collecting the data. As a
result, the data might be inconsistent.

12 0xC u32 sync_count_2 See sync_count_1.

16 0x10 u32 nr_cpus Number of virtual CPUs.

20 0x14 u32 per_cpu_size Size of the per_cpu_data for each CPU (= 36).

24 0x18 u32 cpu_offset Offset of the first per_cpu_data (= 52).

28 0x1C u32 nr_running Number of runnable threads.

32 0x20 u32 nr_threads Number of threads.

412 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 53. APPLDATA_OS_DATA record (Record ID 0x02) (continued)

Offset
(Decimal)

Offset
(Hex)

Type
(size)

Name Description

36 0x24 3 ×
u32

avenrun[3] Average number of running processes during the
last 1 (first value), 5 (second value) and 15 (third
value) minutes. These values are "fake fix-point".
Each value is composed of a 10-bit integer and an
11-bit fractional part. See note “1” on page 413 at
the end of this table.

48 0x30 u32 nr_iowait Number of blocked threads (waiting for I/O).

52 0x34 See
note

“2” on
page
413.

per_cpu_data Time spent in user, kernel, idle, nice, etc for every
CPU. See note “3” on page 413 at the end of this
table.

52 0x34 u32 per_cpu_user Timer ticks that were spent in user mode.

56 0x38 u32 per_cpu_nice Timer ticks that were spent with modified priority.

60 0x3C u32 per_cpu_system Timer ticks that were spent in kernel mode.

64 0x40 u32 per_cpu_idle Timer ticks that were spent in idle mode.

68 0x44 u32 per_cpu_irq Timer ticks that were spent in interrupts.

72 0x48 u32 per_cpu_softirq Timer ticks that were spent in softirqs.

76 0x4C u32 per_cpu_iowait Timer ticks that were spent while waiting for I/O.

80 0x50 u32 per_cpu_steal Timer ticks "stolen" by the hypervisor.

84 0x54 u32 cpu_id The number of this CPU.

Note:

1. The following C-Macros are used inside Linux to transform these into values with two decimal places:

#define LOAD_INT(x) ((x) >> 11)
#define LOAD_FRAC(x) LOAD_INT(((x) & ((1 << 11) - 1)) * 100)

2. nr_cpus * per_cpu_size
3. per_cpu_user through cpu_id are repeated for each CPU

Table 54. APPLDATA_NET_SUM_DATA record (Record ID 0x03)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

0 0x0 u64 timestamp TOD time stamp that is generated on the Linux side
after record update

8 0x8 u32 sync_count_1 After z/VM collected the record data, sync_count_1
and sync_count_2 must be the same. Otherwise,
the record was updated on the Linux side while
z/VM was collecting the data. As a result, the data
might be inconsistent.

12 0xC u32 sync_count_2 See sync_count_1.

16 0x10 u32 nr_interfaces Number of interfaces being monitored

Chapter 35. Writing kernel APPLDATA records 413

Table 54. APPLDATA_NET_SUM_DATA record (Record ID 0x03) (continued)

Offset
(Decimal)

Offset
(Hex)

Type Name Description

20 0x14 u32 padding Unused. The next value is 64-bit aligned, so these 4
bytes would be padded out by compiler

24 0x18 u64 rx_packets Total packets that were received

32 0x20 u64 tx_packets Total packets that were transmitted

40 0x28 u64 rx_bytes Total bytes that were received

48 0x30 u64 tx_bytes Total bytes that were transmitted

56 0x38 u64 rx_errors Number of bad packets that were received

64 0x40 u64 tx_errors Number of packet transmit problems

72 0x48 u64 rx_dropped Number of incoming packets that were dropped
because of insufficient space in Linux buffers

80 0x50 u64 tx_dropped Number of outgoing packets that were dropped
because of insufficient space in Linux buffers

88 0x58 u64 collisions Number of collisions while transmitting

Programming interfaces
The monitor stream support base module exports two functions.

• appldata_register_ops() to register data-gathering modules
• appldata_unregister_ops() to undo the registration of data-gathering modules

Both functions receive a pointer to a struct appldata_ops as parameter. Additional data-gathering
modules that want to plug into the base module must provide this data structure. You can find the
definition of the structure and the functions in arch/s390/appldata/appldata.h in the Linux source
tree.

See “APPLDATA monitor record layout” on page 411 for an example of APPLDATA data records that are to
be sent to z/VM.

Tip: Include the timestamp, sync_count_1, and sync_count_2 fields at the beginning of the record as
shown for the existing APPLDATA record formats.

414 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 36. Writing z/VM monitor records

z/VM only: z/VM monitor records apply to Linux on z/VM only.

Applications can use the monitor stream application device driver to write z/VM monitor APPLDATA
records to the z/VM *MONITOR stream.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

The monitor stream application device driver interacts with the z/VM monitor APPLDATA facilities for
performance monitoring. A better understanding of these z/VM facilities might help when you are using
this device driver. See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

The monitor stream application device driver provides the following functions:

• An interface to the z/VM monitor stream.
• A means of writing z/VM monitor APPLDATA records.

Setting up the z/VM *MONITOR record writer device driver
On Linux, configure the z/VM *MONITOR record writer device driver through kernel or module parameters.
You also must set up your guest virtual machine for monitor records on z/VM.

Loading the module
You can configure the monitor stream application device driver when you load the device driver module,
monwriter.

Monitor stream application device driver module parameter syntax

modprobe monwriter

 max_bufs=255

 max_bufs=  <numbufs>

where <numbufs> is the maximum number of monitor sample and configuration data buffers that can
exist in the Linux guest at one time. The default is 255.

Example
If you have compiled the monitor stream application device driver as a separate module, you must load
it before you can work with it. To load the monwriter module and set the maximum number of buffers to
400, use the following command:

modprobe monwriter max_bufs=400

Setting up the user z/VM guest virtual machine
You must enable your z/VM guest virtual machine to write monitor records and configure the z/VM system
to collect these records.

Procedure
Perform these steps:

© Copyright IBM Corp. 2000, 2023 415

1. Set this option in the z/VM user directory entry of the virtual machine in which the application that
uses this device driver is to run:

• OPTION APPLMON
2. Issue the following CP commands to have CP collect the respective types of monitor data:

• MONITOR SAMPLE ENABLE APPLDATA ALL
• MONITOR EVENT ENABLE APPLDATA ALL

You can log in to the z/VM console to issue the CP commands. These commands must be preceded
with #CP. Alternatively, you can use the vmcp command for issuing CP commands from your Linux
instance.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP MONITOR
command.

Working with the z/VM *MONITOR record writer
The monitor stream application device driver uses the z/VM CP instruction DIAG X'DC' to write to the z/VM
monitor stream. Monitor data must be preceded by a data structure, monwrite_hdr.

See z/VM: CP Programming Services, SC24-6272 for more information about the DIAG X'DC' instruction
and the different monitor record types (sample, config, event).

The application writes monitor data by passing a monwrite_hdr structure that is followed by monitor data.
The only exception is the STOP function, which requires no monitor data. The monwrite_hdr structure, as
described in monwriter.h, is filled in by the application. The structure includes the DIAG X'DC' function to
be performed, the product identifier, the header length, and the data length.

All records that are written to the z/VM monitor stream begin with a product identifier. This device driver
uses the product ID. The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where:
ppppppp

is a fixed ASCII string, for example, LNXAPPL.
ff

is the application number (hexadecimal number). This number can be chosen by the application. You
can reduce the chance of conflicts with other applications, by requesting an application number from
the IBM z/VM Performance team at

www.vm.ibm.com/perf

n
is the record number as specified by the application.

vv, rr, and mm
can also be specified by the application. A possible use is to specify version, release, and modification
level information, allowing changes to a certain record number when the layout is changed, without
changing the record number itself.

The first 7 bytes of the structure (LNXAPPL) are filled in by the device driver when it writes the monitor
data record to the CP buffer. The last 9 bytes contain information that is supplied by the application on the
write() call when writing the data.

The monwrite_hdr structure that must be written before any monitor record data is defined as follows:

/* the header the app uses in its write() data */
struct monwrite_hdr {
 unsigned char mon_function;
 unsigned short applid;
 unsigned char record_num;
 unsigned short version;
 unsigned short release;
 unsigned short mod_level;
 unsigned short datalen;

416 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.vm.ibm.com/perf/

 unsigned char hdrlen;
}__attribute__((packed));

The following function code values are defined:

/* mon_function values */
#define MONWRITE_START_INTERVAL 0x00 /* start interval recording */
#define MONWRITE_STOP_INTERVAL 0x01 /* stop interval or config recording */
#define MONWRITE_GEN_EVENT 0x02 /* generate event record */
#define MONWRITE_START_CONFIG 0x03 /* start configuration recording */

Writing data and stopping data-writing
Applications use the open(), write(), and close() calls to work with the z/VM monitor stream.

Before an application can write monitor records, it must issue open() to open the device driver. Then,
the application must issue write() calls to start or stop the collection of monitor data and to write any
monitor records to buffers that CP can access.

When the application has finished writing monitor data, it must issue close() to close the device driver.

Using the monwrite_hdr structure
The structure monwrite_hdr is used to pass DIAG x'DC' functions and the application-defined product
information to the device driver on write() calls.

When the application calls write(), the data it is writing consists of one or more monwrite_hdr
structures. Each structure is followed by monitor data. The only exception is the STOP function, which
is not followed by data.

The application can write to one or more monitor buffers. A new buffer is created by the device driver
for each record with a unique product identifier. To write new data to an existing buffer, an identical
monwrite_hdr structure must precede the new data on the write() call.

The monwrite_hdr structure also includes a field for the header length, which is useful for calculating the
data offset from the beginning of the header. There is also a field for the data length, which is the length
of any monitor data that follows. See /usr/include/asm-s390/monwriter.h for the definition of the
monwrite_hdr structure.

Chapter 36. Writing z/VM monitor records 417

418 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 37. Reading z/VM monitor records

z/VM only: z/VM monitor records apply to Linux on z/VM only.

Monitoring software on Linux can access z/VM guest data through the z/VM *MONITOR record reader
device driver.

z/VM uses the z/VM monitor system service (*MONITOR) to collect monitor records from agents on its
guests. z/VM writes the records to a discontiguous saved segment (DCSS). The z/VM *MONITOR record
reader device driver uses IUCV to connect to *MONITOR and accesses the DCSS as a character device.

For an overview of performance monitoring support, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

The z/VM *MONITOR record reader device driver supports the following devices and functions:

• Read access to the z/VM *MONITOR DCSS.
• Reading *MONITOR records.
• Access to *MONITOR records as described on

www.ibm.com/vm/pubs/ctlblk.html

• Access to the kernel APPLDATA records from the Linux monitor stream (see Chapter 35, “Writing kernel
APPLDATA records,” on page 409).

What you should know about the z/VM *MONITOR record reader
device driver

The data that is collected by *MONITOR depends on the setup of the monitor stream service.

The z/VM *MONITOR record reader device driver only reads data from the monitor DCSS; it does not
control the system service.

z/VM supports only one monitor DCSS. All monitoring software that requires monitor records from z/VM
uses the same DCSS to read *MONITOR data. Usually, a DCSS called MONDCSS is already defined and
used by existing monitoring software.

If a monitor DCSS is already defined, you must use it. To find out whether a monitor DCSS exists, issue the
following CP command from a z/VM guest virtual machine with privilege class E:

q monitor

The command output also shows the name of the DCSS.

Using kdump: If you use kdump, ensure that the monitor DCSS does not overlap with the storage area 0
- <crashkernel size>. If the DCSS is already defined and overlaps with the crashkernel storage area,
it must be removed and defined again at a suitable location.

Device node

Ubuntu Server 22.04 LTS creates a device node, /dev/monreader, that you can use to access the
monitor DCSS.

Further information
• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about

DCSSs.

© Copyright IBM Corp. 2000, 2023 419

https://www.ibm.com/vm/pubs/ctlblk.html

• See z/VM: Performance, SC24-6301 for information about creating a monitor DCSS.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands

that are used in the context of DCSSs and for controlling the z/VM monitor system service.
• For the layout of the monitor records, go to www.ibm.com/vm/pubs/ctlblk.html and click the link to the

monitor record format for your z/VM version. Also, see Chapter 35, “Writing kernel APPLDATA records,”
on page 409.

Setting up the z/VM *MONITOR record reader device driver
You must set up a Linux instance and the z/VM guest virtual machine for accessing an existing monitor
DCSS with the z/VM *MONITOR record reader device driver.

Before you begin
Some of the CP commands you use for setting up the z/VM *MONITOR record reader device driver require
class E authorization.

Setting up the monitor system service and the monitor DCSS on z/VM is beyond the scope of this
information. See “What you should know about the z/VM *MONITOR record reader device driver” on page
419 for documentation about the monitor system service, DCSS, and related CP commands.

Providing the required z/VM user directory statements
The z/VM guest virtual machine where your Linux instance is to run must be permitted to establish an
IUCV connection to the z/VM *MONITOR system service.

Procedure
Ensure that the guest entry in the user directory includes the following statement:

IUCV *MONITOR

If the DCSS is restricted, you also need this statement:

NAMESAVE <dcss>

where <dcss> is the name of the DCSS that is used for the monitor records. You can find out the name of
an existing monitor DCSS by issuing the following CP command from a z/VM guest virtual machine with
privilege class E:

q monitor

Assuring that the DCSS is addressable for your Linux instance
The DCSS address range must not overlap with the storage of you z/VM guest virtual machine.

Procedure
To find out the start and end address of the DCSS, issue the following CP command from a z/VM guest
virtual machine with privilege class E:

q nss map

The output gives you the start and end addresses of all defined DCSSs in units of 4-kilobyte pages. For
example:

420 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/vm/pubs/ctlblk.html

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
...
00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A
...

What to do next
If the DCSS overlaps with the guest storage, follow the procedure in “Avoiding overlaps with your guest
storage” on page 437.

Specifying the monitor DCSS name
Specify the DCSS name as a module parameter when you load the device driver module.

About this task
By default, the z/VM *MONITOR record reader device driver assumes that the monitor DCSS on z/VM is
called MONDCSS. If you want to use a different DCSS name, you must specify it.

Load the monitor read support module with modprobe to assure that any other required modules are also
loaded. You need IUCV support if you want to use the monitor read support.

monitor stream support module parameter syntax

modprobe monreader
 mondcss=MONDCSS

 mondcss=  <dcss>

where <dcss> is the name of the DCSS that z/VM uses for the monitor records. The value is automatically
converted to uppercase.

Example

To load the monitor read support module and specify MYDCSS as the DCSS, issue:

modprobe monreader mondcss=mydcss

Working with the z/VM *MONITOR record reader support
You can open the z/VM *MONITOR record character device to read records from it.

This section describes how to work with the monitor read support.

• “Opening and closing the character device” on page 421
• “Reading monitor records” on page 422

Opening and closing the character device
Only one user can open the character device at any one time. Once you have opened the device, you must
close it to make it accessible to other users.

About this task
The open function can fail (return a negative value) with one of the following values for errno:
EBUSY

The device has already been opened by another user.

Chapter 37. Reading z/VM monitor records 421

EIO
No IUCV connection to the z/VM MONITOR system service could be established. An error message
with an IPUSER SEVER code is printed into syslog. See z/VM: Performance, SC24-6301 for details
about the codes.

Once the device is opened, incoming messages are accepted and account for the message limit. If
you keep the device open indefinitely, expect to eventually reach the message limit (with error code
EOVERFLOW).

Reading monitor records
You can either read in non-blocking mode with polling, or you can read in blocking mode without polling.

About this task
Reading from the device provides a 12-byte monitor control element (MCE), followed by a set of one or
more contiguous monitor records (similar to the output of the CMS utility MONWRITE without the 4 K
control blocks). The MCE contains information about:

• The type of the following record set (sample/event data)
• The monitor domains contained within it
• The start and end address of the record set in the monitor DCSS

The start and end address can be used to determine the size of the record set. The end address is the
address of the last byte of data. The start address is needed to handle "end-of-frame" records correctly
(domain 1, record 13), that is, it can be used to determine the record start offset relative to a 4 K page
(frame) boundary.

See "Appendix A: *MONITOR" in z/VM: Performance, SC24-6301 for a description of the monitor control
element layout. The layout of the monitor records can be found on

www.ibm.com/vm/pubs/ctlblk.html

The layout of the data stream that is provided by the monreader device is as follows:

...
<0 byte read>
<first MCE> \
<first set of records> |...
... |- data set
<last MCE> |
<last set of records> /
<0 byte read>
...

There might be more than one combination of MCE and a corresponding record set within one data set.
The end of each data set is indicated by a successful read with a return value of 0 (0 byte read). Received
data is not to be considered valid unless a complete record set is read successfully, including the closing
0-Byte read. You are advised to always read the complete set into a user space buffer before processing
the data.

When designing a buffer, allow for record sizes up to the size of the entire monitor DCSS, or use dynamic
memory allocation. The size of the monitor DCSS will be printed into syslog after loading the module.
You can also use the (Class E privileged) CP command Q NSS MAP to list all available segments and
information about them (see “Assuring that the DCSS is addressable for your Linux instance” on page
420).

Error conditions are indicated by returning a negative value for the number of bytes read. For an error
condition, the errno variable can be:

EIO
Reply failed. All data that was read since the last successful read with 0 size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

422 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/vm/pubs/ctlblk.html

EFAULT
Copy to user failed. All data that was read since the last successful read with 0 size is not valid. Data is
missing. The application must decide whether to continue reading subsequent data or to exit.

EAGAIN
Occurs on a non-blocking read if there is no data available at the moment. No data is missing or
damaged, retry or use polling for non-blocking reads.

EOVERFLOW
The message limit is reached. The data that was read since the last successful read with 0 size is
valid, but subsequent records might be missing. The application must decide whether to continue
reading subsequent data or to exit.

Chapter 37. Reading z/VM monitor records 423

424 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 38. z/VM recording device driver

z/VM only: The z/VM recording device driver applies to Linux on z/VM only.

The z/VM recording device driver enables Linux on z/VM to read from the CP recording services and, thus,
act as a z/VM wide control point.

The z/VM recording device driver uses the z/VM CP RECORDING command to collect records and IUCV to
transmit them to the Linux instance.

For general information about CP recording system services, see z/VM: CP Programming Services,
SC24-6272.

Features
With the z/VM recording device driver, you can read from several CP services and collect records.

In particular, the z/VM recording device driver supports:

• Reading records from the CP error logging service, *LOGREC.
• Reading records from the CP accounting service, *ACCOUNT.
• Reading records from the CP diagnostic service, *SYMPTOM.
• Automatic and explicit record collection (see “Starting and stopping record collection” on page 427).

What you should know about the z/VM recording device driver
You can read records from different recording services, one record at a time.

The z/VM recording device driver is a character device driver that is grouped under the IUCV category of
device drivers (see “Device categories” on page 7). There is one device for each recording service. The
device nodes are created for you. If the z/VM recording device driver is compiled as a separate module,
the device nodes are created when the module is loaded.

z/VM recording device nodes
Each recording service has a fixed minor number and a name that corresponds to the name of the service.

Table 55 on page 425 shows the mapping of names and minor numbers.

Table 55. Device names and minor numbers

z/VM recording service Standard device name Minor number

*LOGREC logrec 0

*ACCOUNT account 1

*SYMPTOM symptom 2

About records
Records for different services are different in details, but follow the same overall structure.

The read function returns one record at a time. If there is no record, the read function waits until a record
becomes available.

Each record begins with a 4-byte field that contains the length of the remaining record. The remaining
record contains the binary z/VM data followed by the four bytes X'454f5200' to mark the end of the
record. These bytes build the zero-terminated ASCII string "EOR", which is useful as an eye catcher.

© Copyright IBM Corp. 2000, 2023 425

Figure 93. Record structure

Figure 93 on page 426 illustrates the structure of a complete record as returned by the device. If the
buffer assigned to the read function is smaller than the overall record size, multiple reads are required to
obtain the complete record.

The format of the z/VM data (*LOGREC) depends on the record type that is described in the common
header for error records HDRREC.

For more information about the z/VM record layout, see the CMS and CP Data Areas and Control Blocks
documentation at www.ibm.com/vm/pubs/ctlblk.html.

Setting up the z/VM recording device driver
Before you can collect records, you must authorize your z/VM guest virtual machine and load the device
driver module.

About this task
This section provides information about the guest authorization that is required for collecting records and
about how to load the device driver if it was compiled as a module.

Procedure
1. Authorize the z/VM guest virtual machine on which your Linux instance runs to:

• Use the z/VM CP RECORDING command.
• Connect to the IUCV services to be used: one or more of *LOGREC, *ACCOUNT, and *SYMPTOM.

2. Load the vmlogrdr module.
Use the modprobe command to ensure that any other required modules are loaded in the correct
order:

modprobe vmlogrdr

There are no module parameters for the z/VM recording device driver.

Working with z/VM recording devices
Typical tasks that you perform with z/VM recording devices include starting and stopping record
collection, purging records, and opening and closing devices.

• “Starting and stopping record collection” on page 427
• “Purging existing records” on page 427
• “Querying the z/VM recording status” on page 428
• “Opening and closing devices” on page 429

426 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/vm/pubs/ctlblk.html

Starting and stopping record collection
By default, record collection for a particular z/VM recording service begins when the corresponding device
is opened and stops when the device is closed.

About this task
You can use a device's autorecording attribute to be able to open and close a device without also
starting or stopping record collection. You can use a device's recording attribute to start and stop
record collection regardless of whether the device is opened or not.

You cannot start record collection if a device is open and records already exist. Before you can start
record collection for an open device, you must read or purge any existing records for this device (see
“Purging existing records” on page 427).

Procedure
To be able to open a device without starting record collection and to close a device without stopping
record collection write 0 to the device’s autorecording attribute. To restore the automatic starting and
stopping of record collection, write 1 to the device’s autorecording attribute. Issue a command of this
form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autorecording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To explicitly turn on record collection, write 1 to the device’s recording attribute. To explicitly turn off
record collection, write 0 to the device’s recording attribute. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/recording

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

You can read both the autorecording and the recording attribute to find the current settings.

Examples

• In this example, first the current setting of the autorecording attribute of the logrec device is
checked, then automatic recording is turned off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording
1
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autorecording

• In this example, record collection is started explicitly and later stopped for the account device:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording
...
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

To confirm whether recording is on or off, read the recording_status attribute as described in
“Querying the z/VM recording status” on page 428.

Purging existing records
By default, existing records for a particular z/VM recording service are purged automatically when the
corresponding device is opened or closed.

Chapter 38. z/VM recording device driver 427

About this task
You can use a device's autopurge attribute to prevent records from being purged when a device is
opened or closed. You can use a device's purge attribute to purge records for a particular device at any
time without having to open or close the device.

Procedure
To be able to open or close a device without purging existing records write 0 to the device’s autopurge
attribute. To restore automatic purging of existing records, write 1 to the device’s autopurge attribute.
You can read the autopurge attribute to find the current setting. Issue a command of this form:

echo <flag> > /sys/bus/iucv/drivers/vmlogrdr/<device>/autopurge

where <flag> is either 0 or 1, and <device> is one of: logrec, symptom, or account.

To purge existing records for a particular device without opening or closing the device write 1 to the
device’s purge attribute. Issue a command of this form:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/<device>/purge

where <device> is one of: logrec, symptom, or account.

Examples

• In this example, the setting of the autopurge attribute for the logrec device is checked first, then
automatic purging is switched off:

cat /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge
1
echo 0 > /sys/bus/iucv/drivers/vmlogrdr/logrec/autopurge

• In this example, the existing records for the symptom device are purged:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/symptom/purge

Querying the z/VM recording status
Use the recording_status attribute of the z/VM recording device driver representation in sysfs to
query the z/VM recording status.

Example

This example runs the z/VM CP command QUERY RECORDING and returns the complete output of that
command. This list does not necessarily have an entry for all three services and there might also be
entries for other guests.

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

This command results in output similar to the following example:

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001774 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

where the lines represent:

• The service

428 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• The recording status
• The number of queued records
• The number of records that result in a message to the operator
• The guest that is or was connected to that service and the status of that connection

A detailed description of the QUERY RECORDING command can be found in the z/VM: CP Commands and
Utilities Reference, SC24-6268.

Opening and closing devices
You can open, read, and release the device. You cannot open the device multiple times. Each time the
device is opened it must be released before it can be opened again.

About this task
You can use a device's autorecord attribute (see “Starting and stopping record collection” on page 427)
to enable automatic record collection while a device is open.

You can use a device's autopurge attribute (see “Purging existing records” on page 427) to enable
automatic purging of existing records when a device is opened and closed.

Scenario: Connecting to the *ACCOUNT service
A typical sequence of tasks is autorecording, turning autorecording off, purging records, and starting
recording.

Procedure
1. Query the status of z/VM recording. As root, issue the following command:

 # cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

The results depend on the system, and look similar to the following example:

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

2. Open /dev/account with an appropriate application.
This action connects the guest to the *ACCOUNT service and starts recording. The entry for *ACCOUNT
on guest LINUX31 changes to ACTIVE and ON:

 # cat /sys/bus/iucv/drivers/vmlogrdr/recording_status

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 ACTIVE

3. Switch autopurge and autorecord off:

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autopurge

 # echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/autorecording

4. Close the device by ending the application that reads from it and check the recording status.
While the connection is INACTIVE, RECORDING is still ON:

Chapter 38. z/VM recording device driver 429

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001812 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 INACTIVE

5. The next status check shows that some event created records on the *ACCOUNT queue:

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000009 020 LINUX31 INACTIVE

6. Switch recording off:

echo 0 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 000000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

7. Try to switch it on again, and check whether it worked by checking the recording status:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 000000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000009 020 LINUX31 INACTIVE

Recording did not start, in the message logs you might find a message:

 vmlogrdr: recording response: HCPCRC8087I Records are queued for user LINUX31 on the
*ACCOUNT recording queue and must be purged or retrieved before recording can be turned on.

This kernel message has priority 'debug' so it might not be written to any of your log files.
8. Now remove all the records on your *ACCOUNT queue either by starting an application that reads them

from /dev/account or by explicitly purging them:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/purge

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT OFF 00000000 020 LINUX31 INACTIVE

9. Now start recording and check status again:

echo 1 > /sys/bus/iucv/drivers/vmlogrdr/account/recording

430 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /sys/bus/iucv/drivers/vmlogrdr/recording_status
RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001821 020 DISKACNT INACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE
ACCOUNT ON 00000000 020 LINUX31 INACTIVE

Chapter 38. z/VM recording device driver 431

432 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 39. z/VM unit record device driver

z/VM only: The z/VM unit record device driver applies to Linux on z/VM only.

The z/VM unit record device driver provides Linux on z/VM with access to virtual unit record devices. Unit
record devices comprise punch card readers, card punches, and line printers.

Linux access is limited to virtual unit record devices with default device types (2540 for reader and punch,
1403 for printer).

To write Linux files to the virtual punch or printer (that is, to the corresponding spool file queues) or to
receive z/VM reader files (for example CONSOLE files) to Linux files, use the vmur command that is part of
the s390-tools package (see “vmur - Work with z/VM spool file queues” on page 741).

What you should know about the z/VM unit record device driver
The z/VM unit record device driver is compiled as a separate module, vmur. When the vmur module is
loaded, it registers a character device.

When a unit record device is set online, udev creates a device node for it. The default udev rules create
the following device nodes:

• Reader: /dev/vmrdr-0.0.<device_number>
• Punch: /dev/vmpun-0.0.<device_number>
• Printer: /dev/vmprt-0.0.<device_number>

Working with z/VM unit record devices
After loading the z/VM unit record device driver, set the required virtual unit record devices online.

Procedure
1. Load the virtual record device module with the modprobe command.

modprobe vmur

There are no module parameters for the vmur device driver.
2. Set the devices that you want to work with online.

For example, to set the devices with device bus-IDs 0.0.000c, 0.0.000d, and 0.0.000e online, issue
the following command:

chzdev -e 0.0.000c-0.0.000e

What to do next
You can now use the vmur command to work with the devices (“vmur - Work with z/VM spool file queues”
on page 741).

If you want to unload the vmur module, close all unit record device nodes. Attempting to unload the
module while a device node is open results in error message Module vmur is in use. You can unload
the vmur module, for example, by issuing modprobe -r.

Serialization is implemented per device; only one process can open a particular device node at any one
time.

© Copyright IBM Corp. 2000, 2023 433

434 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 40. z/VM DCSS device driver

z/VM only: The z/VM DCSS device driver applies to Linux on z/VM only.

The z/VM discontiguous saved segments (DCSS) device driver provides disk-like fixed block access to
z/VM discontiguous saved segments.

Through DCSSs, you can implement shared read-write RAM disks for Linux instances that run as guests of
the same z/VM system. Such RAM disks can provide shared file systems.

For information about DCSS, see z/VM: Saved Segments Planning and Administration, SC24-6322.

Removed information: References to execute-in-place technology have been removed because changed
dependencies make this technology experimental.

What you should know about DCSSs
The DCSS device names and nodes adhere to a naming scheme. There are different modes and options for
mounting a DCSS.

Important: DCSSs occupy spool space. Be sure that you have enough spool space available (multiple
times the DCSS size).

DCSS naming scheme
The standard device names are of the form dcssblk<n>, where <n> is the corresponding minor number.

The first DCSS device that is added is assigned the name dcssblk0, the second dcssblk1, and so on.
When a DCSS device is removed, its device name and corresponding minor number are free and can be
reassigned. A DCSS device that is added always receives the lowest free minor number.

DCSS device nodes
User space programs access DCSS devices by device nodes. Ubuntu Server 22.04 LTS creates standard
DCSS device nodes for you.

Standard DCSS device nodes have the form /dev/<device_name>, for example:

 /dev/dcssblk0
 /dev/dcssblk1
...

Accessing a DCSS in exclusive-writable mode
You must access a DCSS in exclusive-writable mode, for example, to create or update the DCSS.

To access a DCSS in exclusive-writable mode at least one of the following conditions must apply:

• The DCSS fits below the maximum definable address space size of the z/VM guest virtual machine.

For large read-only DCSS, you can use suitable guest sizes to restrict exclusive-writable access to a
specific z/VM guest virtual machine with a sufficient maximum definable address space size.

• The z/VM user directory entry for the z/VM guest virtual machine includes a NAMESAVE statement
for the DCSS. See z/VM: CP Planning and Administration, SC24-6271 for more information about the
NAMESAVE statement.

• The DCSS was defined with the LOADNSHR operand.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the LOADNSHR
operand.

© Copyright IBM Corp. 2000, 2023 435

See “DCSS options” on page 436 about saving DCSSs with the LOADNSHR operand or with other
optional properties.

DCSS options
The z/VM DCSS device driver always saves DCSSs with default properties. Any previously defined options
are removed.

For example, a DCSS that was defined with the LOADNSHR operand loses this property when it is saved
with the z/VM DCSS device driver.

To save a DCSS with optional properties, you must unmount the DCSS device, then use the CP DEFSEG
and SAVESEG commands to save the DCSS. See “Workaround for saving DCSSs with optional properties”
on page 441 for an example.

See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about DCSS options.

Setting up the DCSS device driver
Before you can load and use DCSSs, you must load the DCSS block device driver. Use the segments
module parameter to load one or more DCSSs when the DCSS device driver is loaded.

DCSS module parameter syntax

modprobe dcssblk segments=

,

:

<dcss>

(local)

<dcss>
specifies the name of a DCSS as defined on the z/VM hypervisor. The specification for <dcss> is
converted from ASCII to uppercase EBCDIC.

:
the colon (:) separates DCSSs within a set of DCSSs to be mapped to a single DCSS device. You can
map a set of DCSSs to a single DCSS device if the DCSSs in the set form a contiguous memory space.

You can specify the DCSSs in any order. The name of the first DCSS you specify is used to represent
the device under /sys/devices/dcssblk.

(local)
sets the access mode to exclusive-writable after the DCSS or set of DCSSs are loaded.

,
the comma (,) separates DCSS devices.

Examples
The following command loads the DCSS device driver and three DCSSs: DCSS1, DCSS2, and DCSS3.
DCSS2 is accessed in exclusive-writable mode.

modprobe dcssblk segments="dcss1,dcss2(local),dcss3"

The following command loads the DCSS device driver and four DCSSs: DCSS4, DCSS5, DCSS6, and DCSS7.
The device driver creates two DCSS devices. One device maps to DCSS4. The other device maps to the
combined storage space of DCSS5, DCSS6, and DCSS7 as a single device.

modprobe dcssblk segments="dcss4,dcss5:dcss6:dcss7"

436 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Avoiding overlaps with your guest storage
Ensure that your DCSSs do not overlap with the memory of your z/VM guest virtual machine (guest
storage).

Using kdump: If you use kdump, a DCSS and its corresponding storage gap must not overlap with the
storage area 0 - <crashkernel size>.

About this task
To find the start and end addresses of the DCSSs, enter the following CP command; this command
requires privilege class E:

#cp q nss map

the output gives you the start and end addresses of all defined DCSSs in units of 4-kilobyte pages:

00: FILE FILENAME FILETYPE MINSIZE BEGPAG ENDPAG TYPE CL #USERS PARMREGS VMGROUP
...
00: 0011 MONDCSS CPDCSS N/A 09000 097FF SC R 00003 N/A N/A
...

If all DCSSs that you intend to access are located above the guest storage, you do not need to take any
action.

Procedure
If any DCSS that you intend to access with your guest machine overlaps with the guest storage, redefine
the guest storage. Define two or more discontiguous storage extents such that the storage gap with the
lowest address range covers the address ranges of all your DCSSs.

Note:

• You cannot place a DCSS into a storage gap other than the storage gap with the lowest address range.
• A z/VM guest that was defined with one or more storage gaps cannot access a DCSS above the guest

storage.

From a CMS session, use the DEF STORE command to define your guest storage as discontiguous storage
extents. Ensure that the storage gap between the extents covers all your DCSSs' address ranges. Issue a
command of this form:

DEF STOR CONFIG 0.<storage_gap_begin> <storage_gap_end>.<storage above gap>

where:
<storage_gap_begin>

is the lower limit of the storage gap. This limit must be at or below the lowest address of the DCSS
with the lowest address range.

Because the lower address ranges are needed for memory management functions, make the lower
limit at least 128 MB. The lower limit for the DCSS increases with the total memory size. Although 128
MB is not an exact value, it is an approximation that is sufficient for most cases.

<storage_gap_end>
is the upper limit of the storage gap. The upper limit must be above the upper limit of the DCSS with
the highest address range.

<storage above gap>
is the amount of storage above the storage gap. The total guest storage is <storage_gap_begin> +
<storage above gap>.

All values can be suffixed with M to provide the values in megabyte. See z/VM: CP Commands and Utilities
Reference, SC24-6268 for more information about the DEF STORE command.

Chapter 40. z/VM DCSS device driver 437

Example

To make a DCSS that starts at 144 MB and ends at 152 MB accessible to a z/VM guest with 512 MB guest
storage:

DEF STORE CONFIG 0.140M 160M.372M

This specification is one example of how a suitable storage gap can be defined. In this example, the
storage gap covers 140 - 160 MB and, thus, the entire DCSS range. The total guest storage is 140 MB +
372 MB = 512 MB.

Working with DCSS devices
Typical tasks for working with DCSS devices include mapping DCSS representations in z/VM and Linux,
adding and removing DCSSs, and accessing and updating DCSS contents.

• “Adding a DCSS device” on page 438
• “Listing the DCSSs that map to a particular device” on page 439
• “Finding the minor number for a DCSS device” on page 439
• “Setting the access mode” on page 440
• “Saving updates to a DCSS or set of DCSSs” on page 441
• “Workaround for saving DCSSs with optional properties” on page 441
• “Removing a DCSS device” on page 442

Adding a DCSS device
Storage gaps or overlapping storage ranges can prevent you from adding a DCSS.

Before you begin
• You must have set up one or more DCSSs on z/VM and know their names on z/VM.
• If you use the watchdog device driver, turn off the watchdog before adding a DCSS device. Adding a

DCSS device can result in a watchdog timeout if the watchdog is active.
• You cannot concurrently access overlapping DCSSs.
• You cannot access a DCSS that overlaps with your guest virtual storage (see “Avoiding overlaps with

your guest storage” on page 437).
• On z/VM guest virtual machines with one or more storage gaps, you cannot add a DCSS that is above the

guest storage.
• On z/VM guest virtual machines with multiple storage gaps, you cannot add a DCSS unless it fits in the

storage gap with the lowest address range.

Procedure
To add a DCSS device enter a command of this form:

echo <dcss-list> > /sys/devices/dcssblk/add

<dcss-list>
the name, as defined on z/VM, of a single DCSS or a colon (:) separated list of names of DCSSs to be
mapped to a single DCSS device. You can map a set of DCSSs to a single DCSS device if the DCSSs in
the set form a contiguous memory space. You can specify the DCSSs in any order. The name of the
first DCSS you specify is used to represent the device under /sys/devices/dcssblk.

438 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

To add a DCSS called "MYDCSS" enter:

echo MYDCSS > /sys/devices/dcssblk/add

To add three contiguous DCSSs "MYDCSS1", "MYDCSS2", and "MYDCSS3" as a single device, enter:

echo MYDCSS2:MYDCSS1:MYDCSS3 > /sys/devices/dcssblk/add

In sysfs, the resulting device is represented as /sys/devices/dcssblk/MYDCSS2.

Listing the DCSSs that map to a particular device
Read the seglist sysfs attribute to find out how DCSS devices in Linux map to DCSSs as defined in z/VM.

Procedure
To list the DCSSs that map to a DCSS device, issue a command of this form:

cat /sys/devices/dcssblk/<dcss-name>/seglist

where <dcss-name> is the DCSS name that represents the DCSS device.

Examples

In this example, DCSS device MYDCSS maps to a single DCSS, "MYDCSS".

cat /sys/devices/dcssblk/MYDCSS/seglist
MYDCSS

In this example, DCSS device MYDCSS2 maps to three contiguous DCSSs, "MYDCSS1", "MYDCSS2", and
"MYDCSS3".

cat /sys/devices/dcssblk/MYDCSS2/seglist
MYDCSS2
MYDCSS1
MYDCSS3

Finding the minor number for a DCSS device
When you add a DCSS device, a minor number is assigned to it.

About this task
Unless you use dynamically created device nodes as provided by udev, you might need to know the minor
device number that has been assigned to the DCSS (see “DCSS naming scheme” on page 435).

When you add a DCSS device, a directory of this form is created in sysfs:

/sys/devices/dcssblk/<dcss-name>

where <dcss-name> is the DCSS name that represents the DCSS device.

This directory contains a symbolic link, block, that helps you to find out the device name and minor
number. The link is of the form ../../../block/dcssblk<n>, where dcssblk<n> is the device name
and <n> is the minor number.

Chapter 40. z/VM DCSS device driver 439

Example

To find out the minor number assigned to a DCSS device that is represented by the directory /sys/
devices/dcssblk/MYDCSS issue:

readlink /sys/devices/dcssblk/MYDCSS/block
../../../block/dcssblk0

In the example, the assigned minor number is 0.

Setting the access mode
You might want to access the DCSS device with write access to change the content of the DCSS or set of
DCSSs that map to the device.

About this task
There are two possible write access modes to the DCSS device:
shared

In the shared mode, changes to DCSSs are immediately visible to all z/VM guests that access them.
Shared is the default.

Note: Writing to a shared DCSS device bears the same risks as writing to a shared disk.

exclusive-writable
In the exclusive-writable mode you write to private copies of DCSSs. A private copy is writable, even
if the original DCSS is read-only. Changes that you make to a private copy are invisible to other guests
until you save the changes (see “Saving updates to a DCSS or set of DCSSs” on page 441).

After saving the changes to a DCSS, all guests that open the DCSS access the changed copy. z/VM
retains a copy of the original DCSS for those guests that continue accessing it, until the last guest
stops using it.

To access a DCSS in the exclusive-writable mode, the maximum definable storage size of your z/VM
virtual machine must be above the upper limit of the DCSS. Alternatively, suitable authorizations must
be in place (see “Accessing a DCSS in exclusive-writable mode” on page 435).

For either access mode the changes are volatile until they are saved (see “Saving updates to a DCSS or set
of DCSSs” on page 441).

Procedure
Issue a command of this form:

echo <flag> > /sys/devices/dcssblk/<dcss-name>/shared

where <dcss-name> is the DCSS name that represents the DCSS device.

You can read the shared attribute to find out the current access mode.

Example

To find out the current access mode of a DCSS device represented by the DCSS name "MYDCSS":

cat /sys/devices/dcssblk/MYDCSS/shared
1

1 means that the current access mode is shared. To set the access mode to exclusive-writable, issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

440 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Saving updates to a DCSS or set of DCSSs
Use the save sysfs attribute to save DCSSs that were defined without optional properties.

Before you begin
• Saving a DCSS as described in this section results in a default DCSS, without optional properties. For

DCSSs that were defined with options (see “DCSS options” on page 436), see “Workaround for saving
DCSSs with optional properties” on page 441.

• If you use the watchdog device driver, turn off the watchdog before saving updates to DCSSs. Saving
updates to DCSSs can result in a watchdog timeout if the watchdog is active.

• Do not place save requests before you have accessed the DCSS device.

Procedure
Issue a command of this form:

echo 1 > /sys/devices/dcssblk/<dcss-name>/save

where <dcss-name> is the DCSS name that represents the DCSS device.

Saving is delayed until you close the device.

You can check if a save request is waiting to be performed by reading the contents of the save attribute.

You can cancel a save request by writing 0 to the save attribute.

Examples

To check whether a save request exists for a DCSS device that is represented by the DCSS name
"MYDCSS":

cat /sys/devices/dcssblk/MYDCSS/save
0

The 0 means that no save request exists. To place a save request issue:

echo 1 > /sys/devices/dcssblk/MYDCSS/save

To purge an existing save request issue:

echo 0 > /sys/devices/dcssblk/MYDCSS/save

Workaround for saving DCSSs with optional properties
If you need a DCSS that is defined with special options, you must use a workaround to save the DCSSs.

Before you begin
Important: This section applies to DCSSs with special options only. The workaround in this section is
error-prone and requires utmost care. Erroneous parameter values for the described CP commands can
render a DCSS unusable. Use this workaround only if you really need a DCSS with special options.

Procedure
Perform the following steps to save a DCSS with optional properties:
1. Unmount the DCSS.

Example: Enter this command to unmount a DCSS with the device node /dev/dcssblk0:

Chapter 40. z/VM DCSS device driver 441

umount /dev/dcssblk0

2. Use the CP DEFSEG command to newly define the DCSS with the required properties.

Example: Enter this command to newly define a DCSS, mydcss, with the range 80000-9ffff,
segment type sr, and the loadnshr operand:

vmcp defseg mydcss 80000-9ffff sr loadnshr

Note: If your DCSS device maps to multiple DCSSs as defined to z/VM, you must perform this step for
each DCSS. Be sure to specify the command correctly with the correct address ranges and segment
types. Incorrect specifications can render the DCSS unusable.

3. Use the CP SAVESEG command to save the DCSS.

Example: Enter this command to save a DCSS mydcss:

vmcp saveseg mydcss

Note: If your DCSS device maps to multiple DCSSs as defined to z/VM, you must perform this step for
each DCSS. Omitting this step for individual DCSSs can render the DCSS device unusable.

Reference

See z/VM: CP Commands and Utilities Reference, SC24-6268 for details about the DEFSEG and SAVESEG
CP commands.

Removing a DCSS device
Use the remove sysfs attribute to remove a DCSS from Linux.

Before you begin
A DCSS device can be removed only when it is not in use.

Procedure
You can remove the DCSS or set of DCSSs that are represented by a DCSS device from your Linux system
by issuing a command of this form:

echo <dcss-name> > /sys/devices/dcssblk/remove

where <dcss-name> is the DCSS name that represents the DCSS device.

Example

To remove a DCSS device that is represented by the DCSS name "MYDCSS" issue:

echo MYDCSS > /sys/devices/dcssblk/remove

What to do next
If you have created your own device nodes, you can keep the nodes for reuse. Be aware that the major
number of the device might change when you unload and reload the DCSS device driver. When the major
number of your device has changed, existing nodes become unusable.

Scenario: Changing the contents of a DCSS
Before you change the contents of a DCSS, you must add the DCSS to Linux, access it in a writable mode,
and mount the file system on it.

442 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

About this task
The scenario that follows is based on these assumptions:

• The Linux instance runs as a z/VM guest with class E user privileges.
• A DCSS was set up and can be accessed in exclusive-writable mode by the Linux instance.
• The DCSS does not overlap with the guest's main storage.
• There is only a single DCSS named "MYDCSS".
• The DCSS block device driver is set up and ready to be used.

The description in this scenario can readily be extended to changing the content of a set of DCSSs that
form a contiguous memory space. The only change to the procedure would be mapping the DCSSs in the
set to a single DCSS device in step “1” on page 443. The assumptions about the set of DCSSs would be:

• The contiguous memory space that is formed by the set does not overlap with the guest storage.
• Only the DCSSs in the set are added to the Linux instance.

Procedure
Perform the following steps to change the contents of a DCSS:
1. Add the DCSS to the block device driver.

echo MYDCSS > /sys/devices/dcssblk/add

2. Ensure that there is a device node for the DCSS block device.
If it is not created for you, for example by udev, create it yourself.
a) Find out the major number that is used for DCSS block devices. Read /proc/devices:

cat /proc/devices
...
Block devices
...
254 dcssblk
...

The major number in the example is 254.
b) Find out the minor number that is used for MYDCSS.

If MYDCSS is the first DCSS to be added, the minor number is 0. To be sure, you can read a symbolic
link that is created when the DCSS is added.

readlink /sys/devices/dcssblk/MYDCSS/block
../../../block/dcssblk0

The trailing 0 in the standard device name dcssblk0 indicates that the minor number is, indeed, 0.
c) Create the node with the mknod command:

mknod /dev/dcssblk0 b 254 0

3. Set the access mode to exclusive-write.

echo 0 > /sys/devices/dcssblk/MYDCSS/shared

4. Mount the file system in the DCSS on a spare mount point.

mount /dev/dcssblk0 /mnt

5. Update the data in the DCSS.
6. Create a save request to save the changes.

Chapter 40. z/VM DCSS device driver 443

echo 1 > /sys/devices/dcssblk/MYDCSS/save

7. Unmount the file system.

umount /mnt

The changes to the DCSS are now saved. When the last z/VM guest stops accessing the old version of
the DCSS, the old version is discarded. Each guest that opens the DCSS accesses the updated copy.

8. Remove the device.

echo MYDCSS > /sys/devices/dcssblk/remove

9. Optional: If you have created your own device node, you can clean it up.

rm -f /dev/dcssblk0

444 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 41. z/VM CP interface device driver

z/VM only: The z/VM CP interface device driver applies to Linux on z/VM only.

Using the z/VM CP interface device driver (vmcp), you can send control program (CP) commands to the
z/VM hypervisor and display the response.

The vmcp device driver works only for Linux on z/VM.

What you should know about the z/VM CP interface
The z/VM CP interface driver (vmcp) uses the CP diagnose X'08' to send commands to CP and to receive
responses. The behavior is similar but not identical to #CP on a 3270 or 3215 console.

Using the z/VM CP interface
There are two ways of using the z/VM CP interface device driver:

• As a device node (usually /dev/vmcp)
• As a user space tool (see “vmcp - Send CP commands to the z/VM hypervisor” on page 739)

Differences between vmcp and a 3270 or 3215 console
Most CP commands behave identically with vmcp and on a 3270 or 3215 console. However, some
commands show a different behavior:

• Diagnose X'08' (see z/VM: CP Programming Services, SC24-6272) requires you to specify a response
buffer with the command. Because the response size is not known in advance, the default response
buffer of vmcp might be too small and the response truncated.

• On a 3270 or 3215 console, the CP command is executed on virtual CPU 0. The vmcp device driver uses
the CPU that is scheduled by the Linux kernel. For CP commands that depend on the CPU number (like
trace), specify the CPU, for example: cpu 3 trace count.

• Some CP commands do not return specific error or status messages through diagnose X'08'. These
messages are returned only on a 3270 or 3215 console. For example, the command vmcp link
user1 1234 123 mw might return the message DASD 123 LINKED R/W in a 3270 or 3215 console.
This message is not displayed if the CP command is issued with vmcp. For details, see the z/VM help
system or z/VM: CP Commands and Utilities Reference, SC24-6268.

Using the device node
You can send a command to z/VM CP by writing to the vmcp device node.

Observe the following rules for writing to the device node:

• Omit the newline character at the end of the command string. For example, use echo -n if you are
writing directly from a terminal session.

• Write the command in the same case as required on z/VM.
• Escape characters that need escaping in the environment where you issue the command.

Example
The following command attaches a device to your z/VM guest virtual machine. The asterisk (*) is escaped
to prevent the command shell from interpreting it.

echo -n ATTACH 1234 * > /dev/vmcp

© Copyright IBM Corp. 2000, 2023 445

Application programmers
You can also use the vmcp device node directly from an application using open, write (to issue the
command), read (to get the response), ioctl (to get and set status), and close. The following ioctls are
supported:

Table 56. The vmcp ioctls

Name Code definition Description

VMCP_GETCODE _IOR (0x10, 1, int) Queries the return code of z/VM.

VMCP_SETBUF _IOW(0x10, 2, int) Sets the buffer size (the device driver has a default of
4 KB; vmcp calls this ioctl to set it to 8 KB instead).

VMCP_GETSIZE _IOR(0x10, 3, int) Queries the size of the response.

446 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 42. z/VM CP special messages uevent
support

z/VM only: The z/VM CP special messages uevent support applies to Linux on z/VM only.

The smsgiucv_app kernel device driver receives z/VM CP special messages (SMSG) and delivers these
messages to user space as udev events (uevents).

The device driver receives only messages that start with APP. The generated uevents contain the message
sender and content as environment variables (see Figure 94 on page 447).

Figure 94. CP special messages as uevents in user space

You can restrict the received special messages to a particular z/VM user ID. CP special messages are
discarded if the specified sender does not match the sender of the CP special message.

Setting up the CP special message device driver
Configure the CP special message device driver when you load the device driver module.

The z/VM user ID does not require special authorizations to receive CP special messages. CP special
messages can be issued from the local z/VM guest virtual machine or from other guest virtual machines.
You can issue special messages from Linux or from a CMS or CP session.

Load the device driver module with the modprobe command.

smsgiucv_app syntax
modprobe smsgiucv_app

sender=  <user_ID>

Where:

© Copyright IBM Corp. 2000, 2023 447

sender = <user_ID>
permits CP special messages from the specified z/VM user ID only. CP special messages are discarded
if the specified sender does not match the sender of the CP special message. If the sender option is
empty or not set, CP special messages are accepted from any z/VM user ID.

Lowercase characters are converted to uppercase.

To receive messages from several user IDs leave the sender= parameter empty, or do not specify it, and
then filter with udev rules (see “Example udev rule” on page 449).

Working with CP special messages
You might have to send, access, or respond to CP special messages.

• “Sending CP special messages” on page 448
• “Accessing CP special messages through uevent environment variables” on page 448
• “Writing udev rules for handling CP special messages” on page 448

Sending CP special messages
Issue a CP SMSG command from a CP or CMS session or from Linux to send a CP special message.

Procedure
To send a CP special message to LXGUEST1 from Linux, enter a command of the following form:

vmcp SMSG LXGUEST1 APP "<message text>"

To send a CP special message to LXGUEST1, enter the following command from a CP or CMS session:

#CP SMSG LXGUEST1 APP <message text>

The special messages cause uevents to be generated. See “Writing udev rules for handling CP special
messages” on page 448 for information about handling the uevents.

Accessing CP special messages through uevent environment variables
A uevent for a CP special message contains environment variables that you can use to access the
message.

SMSG_ID
Specifies the message prefix. The SMSG_ID environment variable is always set to APP, which is the
prefix that is assigned to the smsgiucv_app device driver.

SMSG_SENDER
Specifies the z/VM user ID that sent the CP special message.

Use SMSG_SENDER in udev rules for filtering the z/VM user ID if you want to accept CP special
messages from different senders. All alphabetic characters in the z/VM user ID are uppercase
characters.

SMSG_TEXT
Contains the message text of the CP special message. The APP prefix and leading white spaces are
removed.

Writing udev rules for handling CP special messages
When using the CP special messages device driver, CP special messages trigger uevents.

448 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

change events
The smsgiucv_app device driver generates change uevents for each CP special message that is
received.

For example, the special message:

#CP SMSG LXGUEST1 APP THIS IS A TEST MESSAGE

might trigger the following uevent:

UEVENT[1263487666.708881] change /devices/iucv/smsgiucv_app (iucv)
ACTION=change
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
SMSG_SENDER=MAINT
SMSG_ID=APP
SMSG_TEXT=THIS IS A TEST MESSAGE
DRIVER=SMSGIUCV
SEQNUM=1493

add and remove events
In addition to the change event for received CP special messages, generic add and remove events
are generated when the module is loaded or unloaded, for example:

UEVENT[1263487583.511146] add /module/smsgiucv_app (module)
ACTION=add
DEVPATH=/module/smsgiucv_app
SUBSYSTEM=module
SEQNUM=1487

UEVENT[1263487583.514622] add /devices/iucv/smsgiucv_app (iucv)
ACTION=add
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
DRIVER=SMSGIUCV
SEQNUM=1488

UEVENT[1263487628.955149] remove /devices/iucv/smsgiucv_app (iucv)
ACTION=remove
DEVPATH=/devices/iucv/smsgiucv_app
SUBSYSTEM=iucv
SEQNUM=1489

UEVENT[1263487628.957082] remove /module/smsgiucv_app (module)
ACTION=remove
DEVPATH=/module/smsgiucv_app
SUBSYSTEM=module
SEQNUM=1490

With the information from the uevents, you can create custom udev rules to trigger actions that depend on
the settings of the SMSG_* environment variables (see “Accessing CP special messages through uevent
environment variables” on page 448).

In your udev rules, use the add and remove uevents to initialize and clean up resources. To handle CP
special messages, write udev rules that match change uevents. For more information about writing udev
rules, see the udev man page.

Example udev rule
The udev rules that process CP special messages identify particular messages and define one or more
specific actions as a response.

The following example shows how to process CP special messages by using udev rules. The example
contains rules for actions, one for all senders and one for the MAINT, OPERATOR, and LNXADM senders
only.

The rules are contained in a block that matches uevents from the smsgiucv_app device driver. If there is
no match, processing ends:

Chapter 42. z/VM CP special messages uevent support 449

#
Sample udev rules for processing CP special messages.
#
#
DEVPATH!="*/smsgiucv_app", GOTO="smsgiucv_app_end"

---------- Rules for CP messages go here --------

LABEL="smsgiucv_app_end"

The example uses the vmur command. If the vmur kernel module has been compiled as a separate
module, this module must be loaded first. Then, the z/VM virtual punch device is activated.

--- Initialization ---

load vmur and set the virtual punch device online
SUBSYSTEM=="module", ACTION=="add", RUN+="/sbin/modprobe --quiet vmur"
SUBSYSTEM=="module", ACTION=="add", RUN+="/sbin/chccwdev -e d"

The following rule accepts messages from all senders. The message text must match the string UNAME.
If it does, the output of the uname command (the node name and kernel version of the Linux instance) is
sent back to the sender.

--- Rules for all senders ----

UNAME: tell the sender which kernel is running
ACTION=="change", ENV{SMSG_TEXT}=="UNAME", \
 PROGRAM=="/bin/uname -n -r", \
 RUN+="/sbin/vmcp msg $env{SMSG_SENDER} '$result'"

In the following example block rules are defined to accept messages from certain senders only. If
no sender matches, processing ends. The message text must match the string DMESG. If it does, the
environment variable PATH is set and the output of the dmesg command is sent into the z/VM reader of
the sender. The name of the spool file is LINUX DMESG.

--- Special rules available for particular z/VM user IDs ---

ENV{SMSG_SENDER}!="MAINT|OPERATOR|LNXADM", GOTO="smsgiucv_app_end"

DMESG: punch dmesg output to sender
ACTION=="change", ENV{SMSG_TEXT}=="DMESG", \
 ENV{PATH}="/bin:/sbin:/usr/bin:/usr/sbin", \
 RUN+="/bin/sh -c 'dmesg |fold -s -w 74 |vmur punch -r -t -N LINUX.DMESG -u $env{SMSG_SENDER}'"

450 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 43. Cooperative memory management

z/VM only: Cooperative memory management applies to Linux on z/VM only.

Cooperative memory management (CMM, or "cmm1") can reduce the memory that is available to an
instance of Linux on z/VM.

CMM allocates pages to page pools that are not available to Linux. A diagnose code indicates to z/VM that
the pages in the page pools are out of use. z/VM can then immediately reuse these pages for other z/VM
guests.

To set up CMM, you must set up a resource management tool that controls the page pools. This tool can
be the z/VM resource monitor (VMRM) or a third-party systems management tool.

This chapter describes how to set up CMM. For background information about CMM, see “Cooperative
memory management background” on page 406.

You can also use the cpuplugd command to define rules for cmm behavior, see “cpuplugd - Control CPUs
and memory” on page 601.

For information about setting up the external resource manager, see the chapter on VMRM in z/VM:
Performance, SC24-6301.

Setting up cooperative memory management
Setup Linux on z/VM to participate in cooperative memory management by adding the cmm.sender=
parameter to the kernel parameter line.

Cooperative memory management kernel parameter syntax
cmm.sender=VMRMSVM

cmm.sender=  <user_ID>

where <user_ID> specifies the z/VM guest virtual machine that is permitted to send messages to the
module through the special messages interface. The default z/VM user ID is VMRMSVM, which is the
default for the VMRM service machine.

Lowercase characters are converted to uppercase.

Working with cooperative memory management
After it has been set up, CMM works through the resource manager. No further actions are necessary. You
might want to read the sizes of the page pools for diagnostic purposes.

To reduce the Linux memory size, CMM allocates pages to page pools that make the pages unusable to
Linux. There are two such page pools, a static pool and a timed pool. You can use the procfs interface to
read the sizes of the page pools.

Reading the size of the static page pool
You can read the current size of the static page pool from procfs.

Procedure
Issue this command:

© Copyright IBM Corp. 2000, 2023 451

cat /proc/sys/vm/cmm_pages

Reading the size of the timed page pool
You can read the current size of the timed page pool from procfs.

Procedure
Issue this command:

cat /proc/sys/vm/cmm_timed_pages

452 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 7. KVM virtual server integration

KVM and LPAR: This part describes both Linux as a KVM guest and Linux as a KVM host.

These device drivers and features help you to effectively run and manage a KVM-based virtual Linux
server farm.

Depending on your KVM host and on your virtual server configuration, a particular KVM guest might not
provide all of the described features.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 453

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

454 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 44. KVM virtualization on IBM Z

KVM only: This chapter applies to Linux on KVM only.

Ubuntu Server 22.04 LTS can run on the mainframe environment as virtualized by the KVM hypervisor.

virtio
provides paravirtualized devices, which hide the characteristics of the host devices and are similar
across hardware platforms.

VFIO
provides pass-through devices, which preserve the characteristics of the host devices and include
devices that are specific to IBM Z.

Omitting all technical detail and without claim to completeness, Figure 95 on page 455 shows an
overview of how the KVM hypervisor virtualizes IBM Z resources for Linux on KVM.

Figure 95. KVM virtualization on IBM Z

The KVM hypervisor defines the CPUs, memory, and virtual devices that are available to an instance of
Linux on KVM when it is booted. It also specifies the host resources that back these guest resources.

As indicated in Figure 95 on page 455, virtualization options depend on the host device. OSA devices are
always virtualized as virtio Ethernet devices. A DASD can be virtualized as a virtio block device or as a
VFIO pass-through DASD. Depending on the device type, PCIe devices can be virtualized as virtio block
devices, virtio Ethernet devices, or VFIO pass-through PCIe devices.

© Copyright IBM Corp. 2000, 2023 455

Pass-through devices block live guest migration. If applicable, dynamically remove all pass-through
devices from a virtual server before a live guest migration and dynamically add them after the migration.
Dynamically removing or adding devices through the hypervisor results in hotplug events on the guest.

Virtio devices
Device paravirtualization with virtio hides most of the physical device aspects from the guest. A virtio-net
network device might be backed on the host, for example, by a physical OSA device, a HiperSockets
device, a PCIe-attached Mellanox adapter, or an Open vSwitch configuration. A virtio-blk device might be
backed, for example, by a DASD, a SCSI LUN, an NVMe device, or an image file in the host file system.

Both virtio-blk and virtio-net devices use the virtio framework. The virtio CCW transport device driver
provides the interface to this framework and uses channel command words (CCW) and a virtual channel
subsystem to realize the virtio infrastructure.

Figure 96 on page 456 illustrates the virtio stack for Linux as a KVM guest on IBM Z.

Figure 96. virtio stack

Not all virtio devices are based on host devices. For example, virtual GPUs, virtual keyboard and mouse
devices, and virtual SCSI Host Bus Adapters (HBAs) are all provided by the hypervisor.

Virtual SCSI HBAs enable a guest to work with virtual SCSI LUNs within a virtual server. These virtual SCSI
LUNs can map to SCSI LUNs or other resources on the host, or they can be provided by the hypervisor. The
following examples show common mappings for a virtual SCSI LUN:

• A LUN for a SCSI-attached tape drive on the host.
• A DVD ISO file on the host file system that is mounted on a virtual DVD drive.
• An image file in the host file system.

A Linux instance that is to run as a guest of KVM on IBM Z must support virtio virtualization of the IBM Z
environment. In particular, the device drivers for the devices in the virtual channel subsystem must be in
place (see Chapter 46, “The virtio CCW transport device driver,” on page 465).

For more information about the virtio framework, see developer.ibm.com/articles/l-virtio.

VFIO pass-through devices
VFIO virtualization is designed to pass devices with their physical attributes through to KVM guests. On
the guest, these pass-through devices then can be handled by the same device drivers that would also
handle them on the host.

456 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://developer.ibm.com/articles/l-virtio

Devices require a special setup on the host to be eligible for VFIO virtualization. In particular, devices
must be freed from control of their default device drivers and assigned to an applicable VFIO device
driver. For details see, Chapter 48, “Setting up a KVM host for VFIO pass-through,” on page 475.

Linux on KVM versus Linux on z/VM or Linux in LPAR mode
If you are familiar with Linux on z/VM or with Linux in LPAR mode, you will observe some differences when
working with Linux on IBM Z as a KVM guest.

Starting and stopping Linux
The KVM hypervisor is the control point for IPL of Linux on KVM. You can initiate a reIPL from a running
instance of Linux on KVM.

System dump
As for Linux in LPAR mode and for Linux on z/VM, you can use kdump as a dump tool.

Alternatively, you can initiate a dump on the host. These hypervisor-driven dumps are analogous to using
VMDUMP for Linux on z/VM.

You cannot use the stand-alone dump tools to create a dump for Linux on KVM.

For more details, see “Creating a kernel dump of a KVM guest” on page 563.

Responsibilities
Some of the administrative powers and responsibilities for the hardware that backs devices or provides
access to devices are offloaded from the guest to the host.

Virtual channel subsystem
The KVM hypervisor provides a virtualized channel subsystem with virtual channel paths to its guests.
CHPID 00 on this virtual channel subsystem is shared by all virtio-ccw devices, including virtio-net and
virtio-blk devices. See Chapter 45, “The virtual channel subsystem,” on page 461.

Storage devices
Expect to find generic block devices, which can be backed on the KVM host by SCSI disks, DASDs,
PCIe-attached NVMe devices, or even files in the host file system.

For these generic block devices, you cannot and need not configure any adapter hardware or physical disk
devices. This preparation is done for you by the host.

There are no storage-class memory increments.

Network devices
Expect to find generic virtio network devices, which can be backed on the KVM host by an OSA device, a
HiperSockets device, a PCIe-attached Mellanox adapter, or an Open vSwitch configuration.

For these generic network devices, you cannot and need not group subchannels into CCW group devices,
configure any adapter hardware, or configure the device itself. This setup is done for you by the host.

Linux as a KVM guest on IBM Z versus distributed systems
If you are familiar with Linux as KVM guests on workstations, you will observe some differences when
working with Linux as a KVM guest on IBM Z.

Virtual channel subsystem
Linux as a KVM guest on IBM Z uses a virtual IBM Z channel subsystem to access CCW devices.

Chapter 44. KVM virtualization on IBM Z 457

The virtio CCW transport device driver handles all I/O to virtio storage and network devices through the
same virtual channel path, CHPID 00, on this channel subsystem. Regular Linux on IBM Z device drivers
use different channel paths to access VFIO CCW devices.

Cryptographic support
Linux as a KVM guest on IBM Z can use the IBM Z CP Assist for Cryptographic Function (CPACF). If
configured for your KVM virtual server, you can also use IBM Z cryptographic adapters (see Part 8,
“Security,” on page 485).

Pass-through CCW devices
Linux as a KVM guest on IBM Z might include CCW devices that the KVM hypervisor passes to the KVM
guest with device characteristics exposed. For example, you might have one or more DASD, see Chapter
11, “DASD device driver,” on page 131.

Absence of common workstation devices
Do not expect to find all device types that are common on workstations. For example, you will not find
USB devices.

Live guest migration
In a live guest migration, the system programmer relocates a KVM virtual server with a running Linux
instance from one KVM host to another without significantly disrupting operations.

Live guest migrations can help, for example, to avoid downtime during maintenance activities. A live guest
migration can succeed only if both KVM hosts have access to equivalent resources. The hosts can but
need not run on the same mainframe. The system programmer, who also initiates the migration, ensures
that all preconditions are met.

If live migration is used at your installation, be sure not to block the migration. In particular:

• The virtual server configuration must not include any vfio_ap devices, which provide access to AP
queues on cryptographic adapters.

• CCW and PCI pass-through devices must be detached before live migration.
• All tape device nodes must be closed and online tape drives must be unloaded.
• No program must be in a prolonged uninterruptible sleep state. Programs can assume this state while

waiting for an outstanding I/O request to complete. Most I/O requests complete fast and do not
compromise live guest migration. An example of an I/O request that can take too long to complete is
rewinding a tape.

Linux as an IBM Secure Execution host or guest
With IBM Secure Execution for Linux, you can run encrypted Linux images on a public, private, or hybrid
cloud with their in-use memory protected.

IBM Secure Execution for Linux was introduced with IBM z15 and LinuxONE III.

Both KVM hosts and KVM guests must be set up to support IBM Secure Execution mode. This setup
includes two kernel parameters, one for hosts and one for guests.

prot_virt=
By default, KVM hosts do not support guests in IBM Secure Execution mode. To support such guests,
KVM hosts must boot in LPAR mode with the kernel parameter specification prot_virt=1.

KVM hosts that successfully start with support for IBM Secure Execution for Linux issue a kernel
message like this: prot_virt: Reserving <amount>MB as ultravisor base storage.

458 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

swiotlb=
KVM guests in IBM Secure Execution mode require bounce buffers for their virtio devices. Use the
swiotlb= kernel parameter to assign 2 KB memory blocks for these bounce buffers. A suitable
setting for most cases is swiotlb=262144, which corresponds to 512 MB.

For details about setting up a KVM host and guests for secure execution, see Introducing IBM Secure
Execution for Linux.

Indicators for IBM Secure Execution mode
Two read-only sysfs attributes indicate whether a running Linux instance detects an environment of a KVM
guest in IBM Secure Execution mode or of a KVM host that can run such guests.

/sys/firmware/uv/prot_virt_guest
The value of this attribute is 1 for Linux instances that detect their environment as consistent with that
of a secure guest. For other instances, the value is 0 or the attribute does not exist.

/sys/firmware/uv/prot_virt_host
The value of this attribute is 1 for Linux instances that detect their environment as consistent with that
of a secure host. For other instances, the value is 0. If the attribute does not exist, the Linux instance
is not a KVM host in an environment that supports IBM Secure Execution for Linux.

Note: These values are indications, but do not prove that the Linux instance is a secure guest or host in
the context of IBM Secure Execution for Linux. Use these indications for technical evaluations in trusted
environments, but do not base security-related decisions on them.

The following example shows a Linux instance that runs as a KVM guest in IBM Secure Execution mode,
but is not a KVM host that can run such guests.

cat /sys/firmware/uv/prot_virt_guest
1
cat /sys/firmware/uv/prot_virt_host
0

Chapter 44. KVM virtualization on IBM Z 459

460 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 45. The virtual channel subsystem

KVM only: The virtual channel subsystem is specific to Linux on KVM.

The KVM hypervisor provides a virtual channel subsystem to its guests.

This virtual channel subsystem connects paravirtualized CCW devices and pass-through CCW devices to
the virtual server. In the virtual channel subsystem:

• All paravirtualized CCW devices have control unit type 3832/<nn>, where <nn> is a two-digit
hexadecimal number that indicates the device type.

• All paravirtualized CCW devices use the same virtual channel path with CHPID 00. The availability of all
paravirtualized CCW devices depends on this channel path being operational.

For general information about the channel subsystem, see z/Architecture Principles of Operation,
SA22-7832.

Listing devices with lscss
The particulars of the channel subsystem view of a guest become visible when you list devices with
lscss.

Example

lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0042 0.0.0000 0000/00 3832/01 yes 80 80 ff 00000000 00000000
0.0.0815 0.0.0001 0000/00 3832/02 yes 80 80 ff 00000000 00000000
0.0.9999 0.0.0002 0000/00 3832/03 yes 80 80 ff 00000000 00000000
0.1.abcd 0.1.0000 0000/00 3832/05 yes 80 80 ff 00000000 00000000
...
0.1.6196 0.1.36e2 3390/0c 3990/e9 yes fc fc ff 32333435 40410000
...

As illustrated in the example, the output, typically, shows numerous paravirtualized CCW devices. The
output columns DevType, PIM, PAM, POM, and CHPIDs show identical values for these devices. These
values result from the virtualization and carry no information that is characteristic for a particular device.

The output of the example also includes a pass-through DASD, with device type 3390/0c, for which all
fields provide device-characteristic information.

The following columns contain meaningful device information for paravirtualized CCW devices:
Device

is the device bus-ID that uniquely identifies a device to the guest and to the KVM hypervisor.

Use device bus-IDs to identify devices to the KVM hypervisor administrator. The KVM hypervisor
defines these bus-IDs with prefix fe instead of 0. For example, 0.0.0042 on the guest is specified as
fe.0.0042 in the virtual server configuration on the KVM hypervisor.

Device bus-IDs are persistent across reboots and change only if the device definitions are changed in
the KVM hypervisor.

Subchan.
shows the current assignment of a subchannel to the device.

In contrast to the persistent device bus-IDs, subchannel assignments to devices might change across
reboots or as a result of hotplug events.

CU Type
has a two-digit suffix that identifies the device type.

© Copyright IBM Corp. 2000, 2023 461

For example, 01 in 3832/01 identifies a network device and 02 in 3832/02 identifies a block device.
For more information, see “Types of paravirtualized CCW devices” on page 462.

Use
indicates whether the device is online.

Types of paravirtualized CCW devices
For Linux as a KVM guest on IBM Z, paravirtualized CCW devices can represent various real and virtual
devices, including block devices, network devices, and devices that are attached through a virtual SCSI
HBA.

Table 57 on page 462 explains the values that are shown in the CU Type column of the lscss command.
Which of these devices are present on a particular KVM guest depends on the virtual server configuration
on the KVM hypervisor.

Table 57. Types of CCW devices

CU Type/Model Explanation

3832/01 Network device

The corresponding device bus-ID represents a network interface on the guest.
The details of the interface are hidden by the KVM hypervisor. On the KVM
hypervisor, this interface might be based on a MacVTap interface or a virtual
switch.

Network devices are handled by the virtio_net device driver module. See
“Virtual network devices” on page 468 for details.

3832/02 Block device

The corresponding device bus-ID represents a persistent storage space to the
guest. The details of the block device are hidden by the KVM hypervisor. To the
KVM hypervisor, this storage space might be a SCSI LUN or a DASD, but it might
also be a file in the file system of the host or any other block device.

Block devices are handled by the virtio_blk device driver module. See “Virtual
block devices” on page 466 for details.

3832/03 Character device for console output. See “Using virsh on a KVM host” on page 40.

3832/04 Random number generator device

Depending on the configuration of your virtual server by the KVM hypervisor, this
device might be backed by IBM Z cryptographic hardware.

This device provides sufficient random numbers of good quality only if the
random device of KVM host does so. In particular, this devices provides true
random numbers only if it is backed by a true random number generator on the
KVM host.

This device is provided by the virtio_rng device driver module.

3832/05 Balloon device for memory management.

The preferred memory management technology is Collaborative Memory
Management Assist (CMMA). See “cmma - Reduce hypervisor paging I/O
overhead” on page 778.

462 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 57. Types of CCW devices (continued)

CU Type/Model Explanation

3832/08 Virtual SCSI HBA

SCSI devices can be attached through a virtual SCSI host bus adapter (HBA) and
are then handled by the virtio_scsi device driver module. For example, the
following devices are attached through a virtual SCSI HBA:

• SCSI tapes (see “Virtual SCSI-attached tape devices” on page 469)
• Virtual CD/DVD drives (see “Virtual SCSI-attached CD/DVD drives” on page 471)

Host devices need not necessarily be attached through a virtual SCSI HBA.
For example, SCSI-attached disks are usually virtualized as block devices and
handled by the virtio_blk device driver module.

3832/10 Virtual graphics processing unit (GPU). Supports remote access to graphical user
interfaces. GPU devices are handled by the virtio_gpu device driver module.

3832/12 Virtual human interface devices, like a virtual keyboard and a virtual mouse, as
remote input devices for graphical user interfaces. These devices are handled by
the virtio_input device driver module.

Listing channel paths with lschp
Linux as a KVM guest on IBM Z includes a channel path, with CHPID 00, for paravirtualized CCW devices.

The virtual channel subsystem always provides the same single channel path for all paravirtualized CCW
devices to the guest. The following sample output for lschp shows this channel path:

lschp
CHPID Vary Cfg. Type Cmg Shared PCHID
==
0.00 1 - 32 - 0 -

Attention: Setting this channel path logically offline would make all paravirtualized CCW devices
inaccessible to the guest. As a consequence, the system is likely to crash.

Depending on the presence of pass-through CCW devices, there can also be output lines for other devices.

Chapter 45. The virtual channel subsystem 463

464 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 46. The virtio CCW transport device driver

KVM only: The virtio CCW transport device driver applies to Linux on KVM only.

The virtio CCW transport device driver handles the virtual channel command word (CCW) devices that are
provided by the KVM hypervisor.

Virtio CCW devices are accessed through a virtual channel subsystem, see Chapter 45, “The virtual
channel subsystem,” on page 461.

The virtio CCW transport device driver is part of a module stack that also includes device drivers for
handling particular device types. If a module is not loaded automatically, you must load it before you
can work with the corresponding devices. Loading a supporting module with the modprobe command
automatically loads the base module if needed.

Virtio devices
The KVM hypervisor hides some of the specifics of the devices it virtualizes. For example, the hypervisor
can virtualize both disk devices and plain files in the host file system as block devices. The KVM guest
cannot differentiate block devices according to their nature on the host.

As a user of Linux on KVM, you must work with the virtual devices at the abstraction level with which they
are presented. You cannot perform all actions against virtual devices that you can perform against real
devices.

Setting CCW devices offline or online
By default, all virtio CCW devices are online after an instance of Linux as a KVM guest on IBM Z is booted.

About this task
If the KVM hypervisor defines unnecessary devices to your Linux instance, you can set them offline.

Tip: You can also use the cio_ignore= kernel parameter to prevent unnecessary devices from being
sensed in the first place (see “cio_ignore - List devices to be ignored” on page 774).

Procedure
Use the chzdev or chccwdev command to set CCW devices offline or online.

Alternatively, write 0 to the device's sysfs online attribute to set it offline or 1 to set it online. In contrast to
the commands, writing to the sysfs attribute does not trigger a cio_settle for you.

Use the cio_ignore= kernel parameter to persistently set a CCW device offline. Setting a device offline
with chzdev and the --persistent option does not prevent the device from being set online with the
next start of the virtual server.

For example, to set a device with bus ID 0.0.0815 offline, issue:

chzdev -d 0.0.0815

To set this device back online, issue:

chzdev -e 0.0.0815

To set the device offline by writing to sysfs, issue:

echo 0 > /sys/bus/ccw/drivers/virtio_ccw/0.0.0815/online

© Copyright IBM Corp. 2000, 2023 465

Example
To set the device offline, issue:

echo 0 > /sys/bus/ccw/drivers/virtio_ccw/0.0.0815/online

Virtual block devices
On Linux as a KVM guest on IBM Z, you can use generic virtual block devices, for example, paravirtualized
DASDs or SCSI LUNs.

These virtual block devices are handled by the virtio_blk device driver module. This module is loaded
automatically by Ubuntu Server 22.04 LTS during the boot process.

A virtual block device might be backed by a disk device, but it might also be backed by a file on the
hypervisor. Do not perform operations that require knowledge of the specific hardware that backs a virtual
block device. For example, do not attempt to run a low-level formatting operation on a virtual block
device.

Block device naming-scheme
Applications access block devices through device nodes. The virtio-blk device driver uses 16 device nodes
for each block device: one for the block device itself and 15 for partitions.

The standard device nodes are of the form:

• /dev/vd<x> for the block device
• /dev/vd<x><n> for partitions

where
<x>

represents one or more alphabetic characters; vd<x> matches the device name that is used by the
virtio-blk device driver.

<n>
is an integer in the range 1-15.

All of these nodes use the same major number. You can find the major number by issuing the following
command:

cat /proc/devices | grep virtblk

Table 58. Naming scheme for virtio block devices

Name that is used by
the device driver Standard device node Minor number Description

vda
vda1
vda2
...
vda15

/dev/vda
/dev/vda1
/dev/vda2
...
/dev/vda15

0
1
2
...
15

First block device and up
to 15 partitions

vdb
vdb1
vdb2
...
vdb15

/dev/vdb
/dev/vdb1
/dev/vdb2
...
/dev/vdb15

16
17
18
...
31

Second block device and
up to 15 partitions

466 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 58. Naming scheme for virtio block devices (continued)

Name that is used by
the device driver Standard device node Minor number Description

vd<x>
vd<x>1
vd<x>2
...
vd<x>15

/dev/vd<x>
/dev/vd<x>1
/dev/vd<x>2
...
/dev/vd<x>15

(<m>-1)×16
(<m>-1)×16+1
(<m>-1)×16+2
...
(<m>-1)×16+15

<m>-th block device with
up to 15 partitions

With 1,048,576 (20-bit) available minor numbers, the virtio-blk device driver can address 65,536 block
devices and their partitions. For the first 26 devices, <x> is one alphabetic character (vda-vdz). The next
devices use first two (vdaa-vdzz) and then more alphabetic characters.

The mapping of standard device nodes to bus-IDs can change when Linux is rebooted or when hotplug
events occur. Your distribution might provide udev rules that create other nodes to attain a persistent
mapping between device nodes and bus-IDs.

Mapping block devices to CCW devices
Each virtual block device corresponds to an online CCW device.

Other than the standard device nodes, udev-created device nodes can be based on the bus ID of the CCW
device and so provide a persistent mapping of node to CCW device. Preferably, use such persistent device
nodes when working with virtual block devices.

Use the information that follows if you need to find out the current mapping between standard device
nodes and CCW devices. For example, you might need this mapping for diagnostic explorations.

To list the device nodes for your block devices, issue:

ls /sys/block

The command output is a list of symbolic links that match the device names of the block devices.

Example:

ls /sys/block
vda vdb vdc

These links contain several attributes, including another symbolic link, device. To find the bus ID for a
particular block device, issue a command according to the following example:

Example:

ls -1 /sys/block/vdb/device/../.. | head -1
0.0.1111

Tip: For an overview of the mapping, issue this command:

ls -d /sys/devices/css0/*/*/virtio*/block/*

Example:

ls -d /sys/devices/css0/*/*/virtio*/block/*
/sys/devices/css0/0.0.0000/0.0.10b1/virtio3/block/vda
/sys/devices/css0/0.0.0001/0.0.1111/virtio4/block/vdb
/sys/devices/css0/0.0.0002/0.0.11ab/virtio5/block/vdc

You can pipe the output to awk to obtain a more compact view:

Chapter 46. The virtio CCW transport device driver 467

ls -d /sys/devices/css0/*/*/virtio*/block/* | awk -F "/" '{print $9 "\t" $6}'
vda 0.0.10b1
vdb 0.0.1111
vdc 0.0.11ab

Partitioning virtual block devices
How to partition a block device depends on how the device is backed on the host, DASD or other.

Before you begin: Block devices that are backed by a DASD must first be formatted with dasdfmt on
the host. Use the fdasd -i or parted print command to find out if your block device is backed by a
DASD.

DASD backed block devices
Use the fdasd command to create up to 3 partitions. For details, see “fdasd - Partition a DASD” on
page 628 or the fdasd man page

All other block devices
Use the common code fdisk command to create up to 15 partitions. For details, see the fdisk man
page.

Alternatively, you can use the parted command to create partitions. The parted command can handle
both DASD-backed and other block devices. For details, see the parted man page.

The partitions of a block device are represented as subdirectories of the device representation in /sys/
block. For example, you can list the existing partitions of a block device /sys/block/vda by issuing:

ls /sys/block/vda

Virtual network devices
On Linux as a KVM guest on IBM Z, you use generic network devices for Ethernet interfaces.

Interface names
Ubuntu Server 22.04 LTS uses interface names of the form enc<n>, where <n> is an index number that
identifies an individual interface.

Tip: Use ip link to display a summary of your interfaces.

Mapping interfaces to CCW devices
If you define multiple interfaces on a Linux instance, you need to keep track of the interface names
assigned to your CCW network devices.

After setting a device online, read /var/log/messages or issue dmesg to find the associated interface
name in the messages that are issued in response to the device being set online.

To list the network interfaces, issue:

ls /sys/class/net

The command output is a list of symbolic links that match the interface names. There is an interface for
each network device that is online.

Example:

ls /sys/class/net
eth0 eth1

468 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For each network device that is online, there is a symbolic link of the form /sys/class/net/
<interface>/device where <interface> is the interface name. To find the device bus-ID for a particular
interface, issue a command according to the following example:

Example:

ls -1 /sys/class/net/eth0/device/../.. | head -1
0.0.f500

Tip: Issue the following command to obtain a mapping of network devices to interface names.

ls -d /sys/devices/css0/*/*/virtio*/net/*

Example:

ls -d /sys/devices/css0/*/*/virtio*/net/*
/sys/devices/css0/0.0.0001/0.0.f500/virtio0/net/eth0
/sys/devices/css0/0.0.0002/0.0.1ed0/virtio1/net/eth1

You can pipe the command output to awk to obtain a more compact view:

ls -d /sys/devices/css0/*/*/virtio*/net/* | awk -F "/" '{print $9 "\t" $6}'
eth0 0.0.f500
eth1 0.0.1ed0

Activating an interface
Use ip or an equivalent command to activate an interface.

Example:

ip addr 192.0.2.5 dev eth0 peer 192.0.2.6

Virtual SCSI-attached tape devices
The representation of virtual SCSI-attached tape and medium changer devices on Linux as a KVM guest
on IBM Z depends on your device driver.

st
The st device driver for SCSI tape drives is included in the Linux kernel source from kernel.org.

For each device, st provides device nodes of the form /dev/st<i><x> and /dev/nst<i><x> where
the latter is for non-rewinding devices, where
<x>

is an alphabetic character that specifies a tape property, for example, compression or encryption.
<i>

identifies an individual device.
The identifier, <i>, is assigned when Linux is booted or when a device is set online. As a result, there
is no fixed mapping between a physical tape device and the tape device nodes. For details, see the st
man page.

ch
The ch device driver for SCSI medium changers is included in the Linux kernel source from kernel.org.

For each device, ch provides device nodes of the form /dev/sch<i> where <i> identifies an
individual device.

The identifier, <i>, is assigned when Linux is booted or when a device is set online. As a result, there is
no fixed mapping between physical media changer devices and the media changer device nodes. For
details, see Documentation/scsi/scsi-changer.txt in the Linux source code.

Chapter 46. The virtio CCW transport device driver 469

lin_tape
The lin_tape device driver is available from the IBM Fix Central site at www.ibm.com/support/
fixcentral. For details about downloading the device driver, see Technote 1428656.

The device nodes that it provides include characteristics of the physical tape drive or medium changer
and are persistent across reboots and after setting a tape device offline and back online. For details,
see IBM Tape Device Drivers Installation and User's Guide, GC27-2130.

Listing your tape devices
Use the lsscsi command with the -v option to list all your SCSI-attached devices, including SCSI-
attached tape and medium changer devices. You can also use the lstape command to list tape and
medium changer devices.

Example:

lsscsi -v
[0:0:0:0] tape IBM ULT3580-TD6 H990 /dev/st0
 dir: /sys/bus/scsi/devices/0:0:0:0 \
 [/sys/devices/css0/0.0.0000/0.0.0003/virtio2/host0/target0:0:0/0:0:0:0]
[0:0:0:1] mediumx IBM 3573-TL E.80 /dev/sch0
 dir: /sys/bus/scsi/devices/0:0:0:1 \
 [/sys/devices/css0/0.0.0000/0.0.0003/virtio2/host0/target0:0:0/0:0:0:1]
[0:0:1:0] tape IBM ULT3580-TD6 H990 /dev/st1
 dir: /sys/bus/scsi/devices/0:0:1:0 \
 [/sys/devices/css0/0.0.0000/0.0.0003/virtio2/host0/target0:0:1/0:0:1:0]
[0:0:1:1] mediumx IBM 3573-TL E.80 /dev/sch1
 dir: /sys/bus/scsi/devices/0:0:1:1 \
 [/sys/devices/css0/0.0.0000/0.0.0003/virtio2/host0/target0:0:1/0:0:1:1]
[1:0:0:0] tape IBM ULT3580-TD6 H990 /dev/st3
 dir: /sys/bus/scsi/devices/1:0:0:0 \
 [/sys/devices/css0/0.0.0001/0.0.0004/virtio5/host1/target1:0:0/1:0:0:0]
[1:0:0:1] mediumx IBM 3573-TL E.80 /dev/sch3
 dir: /sys/bus/scsi/devices/1:0:0:1 \
 [/sys/devices/css0/0.0.0001/0.0.0004/virtio5/host1/target1:0:0/1:0:0:1]
[1:0:1:0] tape IBM ULT3580-TD6 H990 /dev/st2
 dir: /sys/bus/scsi/devices/1:0:1:0 \
 [/sys/devices/css0/0.0.0001/0.0.0004/virtio5/host1/target1:0:1/1:0:1:0]
[1:0:1:1] mediumx IBM 3573-TL E.80 /dev/sch2
 dir: /sys/bus/scsi/devices/1:0:1:1 \
 [/sys/devices/css0/0.0.0001/0.0.0004/virtio5/host1/target1:0:1/1:0:1:1]

The output includes the device node as used by the st or ch device driver and the SCSI device name of
the form <scsi_host_no>:0:<scsi_id>:<scsi_lun>, 0:0:0:0 for /dev/st0 in the example.

If the devices are handled by lin_tape instead of st or ch, lsscsi cannot determine the device node
name and displays "-" instead.

The sysfs path in the output includes two bus IDs:

• The first bus ID, from left to right, applies to the subchannel
• The second bus ID applies to the virtual SCSI host bus adapter (HBA)

The two bus IDs can but do not need to be the same. In the example, the HBA device bus-ID
for /dev/st0 is 0.0.0003.

The following lstape output for the same device setup assumes that the devices are managed by the
lin_tape device driver instead of st and ch. The lstape output also shows the generic device name,
sg<x>, that is assigned by the SCSI generic device driver, sg.

470 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/fixcentral
https://www.ibm.com/support/fixcentral

lstape --verbose
FICON/ESCON tapes (found 0):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
SCSI tape devices (found 8):
Generic Device Target Vendor Model Type State
 HBA WWPN Serial
sg0 IBMtape0 0:0:0:0 IBM ULT3580-TD6 tapedrv running
 0.0.0003 N/A 10WT037733
sg1 IBMchanger0 0:0:0:1 IBM 3573-TL changer running
 0.0.0003 N/A 00L4U78W6497_LL0
sg3 IBMtape1 0:0:1:0 IBM ULT3580-TD6 tapedrv running
 0.0.0003 N/A 10WT037701
sg2 IBMchanger1 0:0:1:1 IBM 3573-TL changer running
 0.0.0003 N/A 00L4U78W6497_LL0
sg6 IBMtape3 1:0:0:0 IBM ULT3580-TD6 tapedrv running
 0.0.0004 N/A 10WT037733
sg7 IBMchanger3 1:0:0:1 IBM 3573-TL changer running
 0.0.0004 N/A 00L4U78W6497_LL0
sg4 IBMtape2 1:0:1:0 IBM ULT3580-TD6 tapedrv running
 0.0.0004 N/A 10WT037701
sg5 IBMchanger2 1:0:1:1 IBM 3573-TL changer running
 0.0.0004 N/A 00L4U78W6497_LL0

Use the SCSI device name and the device bus-ID to communicate about the devices with the hypervisor
administrator.

Virtual SCSI-attached CD/DVD drives
The KVM hypervisor might provide virtual SCSI-attached CD/DVD drives to your KVM guest.

Virtual SCSI-attached CD/DVD drives have device nodes of the form /dev/sr<n>, where <n> is an
integer that identifies an individual device. The node for the first drive is /dev/sr0.

Issue the following command to list all device nodes for CD/DVD drives:

ls /dev/sr*

You can also use the lsscsi command to list all your SCSI-attached devices, including SCSI-attached
CD/DVD drives.

lsscsi
[0:0:0:0] cd/dvd QEMU QEMU CD-ROM 2.3. /dev/sr0

You can use the isoinfo command with the -i option to find out if a drive contains media.

Example:

isoinfo -i /dev/sr0

This command returns an error if no media is present.

You can use the mount command to mount the content of media in the drive on the file system.

Example:

mount /dev/sr0 /mnt/media

Unmount the content of the media to release it.

Example:

unmount /dev/sr0

You depend on the KVM hypervisor to eject and insert media.

Chapter 46. The virtio CCW transport device driver 471

472 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 47. Setting up Ubuntu Server 22.04 LTS as a
KVM host

LPAR or KVM: KVM hosts can run in LPAR mode or they can be nested hosts that run as KVM guests.

A KVM host has hardware and user space requirements.

Hardware
The real or virtual hardware must provide the Start Interpretive Execution (SIE) feature (see “Check
whether the Linux instance can be a hypervisor” on page 557).

User space
You must install the packages for QEMU and libvirt. For example, use apt:

$ apt install qemu-kvm libvirt-daemon-system libvirt-clients

Module parameters
Configure the KVM host support with module parameters.

kvm module parameter syntax

modprobe kvm

nested=0 hpage=0

nested=1

hpage=1

nested=
If set to "1", passes the SIE capability on to its guests. Thus, the guests can be hosts for higher-level
guests.

Nested KVM hosts are intended for test environments and not for production systems.

hpage=
If set to "1", supports guest-configurations with huge-page memory backing.

Enough 1 MB huge pages must be set up to satisfy the needs of the guests. For details about setting
up huge pages, see Chapter 26, “Huge-page support,” on page 365.

Consider making this setting persistent, for example, through a modprobe configuration file or by
specifying kvm.hpage=1 on the kernel parameter line.

Nested hosts cannot back their guests with huge pages. You cannot set both nested= and hpage= to 1.

Making parameter settings persistent across re-boots

To make a module parameter persistent, create a file called /etc/modprobe.d/kvm.conf with, for
example, the following content:

options kvm hpage=1

Unload and reload the kvm module to make the changes take effect.

© Copyright IBM Corp. 2000, 2023 473

474 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 48. Setting up a KVM host for VFIO pass-
through

LPAR or KVM: KVM hosts can run in LPAR mode or they can be nested hosts that run as KVM guests.

KVM hosts can use the Virtual Function I/O (VFIO) framework and the VFIO mediated device framework
to pass host devices with their attributes through to their KVM guests.

For general information about VFIO and VFIO mediated devices, see Documentation/vfio.txt and
Documentation/vfio-mediated-device.txt in the Linux kernel source. You can also find this
information by searching for "vfio" at www.kernel.org/doc/html/latest/search.html.

What you should know about VFIO
Depending on the device type, Linux handles devices with specific device drivers.

Figure 97. Device drivers on Linux

For Linux on KVM, QEMU provides virtual VFIO pass-through devices that preserve the host-device
attributes. Therefore, Linux on KVM accesses a pass-through device with the same device driver that
the host would use to access the corresponding host resource. For example, Linux in LPAR mode uses
the DASD device driver to access DASDs. Correspondingly, Linux on KVM uses the DASD device driver to
access VFIO pass-through DASDs.

Figure 98. Device drivers for VFIO pass-through devices

To avoid contention, a KVM host must relinquish direct control of the host resource that backs a VFIO
pass-through device. For these host resources, the VFIO framework substitutes the default device drivers
on the KVM host with device-specific VFIO device drivers. These substitute device drivers reserve host
resources for guest use and provide access to these resources on behalf of the guest.

On IBM Z, the KVM hypervisor supports the following types of pass-through devices:

• PCIe

© Copyright IBM Corp. 2000, 2023 475

https://www.kernel.org/doc/html/latest/search.html

• CCW (DASD)
• Cryptographic adapter resources (AP queues)

Figure 99. VFIO virtualization

On the host, you must define the resources that back a VFIO pass-through device and associate these
resources with the applicable VFIO device driver. The necessary configuration steps depend on the
device type. For pass-through DASD and pass-through cryptographic adapter resources, you must create
specific VFIO mediated devices. The KVM hypervisor then uses VFIO mediated devices as a source for
pass-through devices.

For configuration details, see “Host setup for VFIO pass-through devices” on page 476.

Host setup for VFIO pass-through devices
You must ensure that a VFIO device driver controls the resource on the host.

About this task
The VFIO device driver reserves the pass-through device for KVM guests and accesses the corresponding
host resource on behalf of the guest/>.

Procedure
Although the details differ considerably by device type, the following main steps apply to all VFIO pass-
through devices:
1. Free the resource from control of the default device driver.
2. Associate the resource with the corresponding VFIO device driver.

476 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

What to do next
After completing the host setup for a VFIO pass-through device, you can configure the device for a KVM
guest (see KVM Virtual Server Management, SC34-2752).

Setting up PCI devices for VFIO pass-through
To set up a PCI device as a VFIO pass-through device you must enable the vfio_pci device driver to handle
the PCI device type, and you must assign the specific device to vfio_pci.

Before you begin: The preferred method for setting up PCI devices is to configure them for automatic
management with libvirt, see the information about configuring VFIO pass-through devices in KVM Virtual
Server Management, SC34-2752. This management includes a dynamic host preparation. The tasks that
follow describe a fallback method that applies only to PCI devices that are not managed by libvirt.

Enabling the vfio_pci device driver
For devices that are not managed by libvirt, enable the vfio_pci device driver for specific PCI card types.
Proceed according to how your vfio_pci device driver is compiled: as part of the kernel image or as a
separate module.

Tip: You must know the device's vendor code and device code. Issue lspci -n to display this
information for your PCIe devices in the format <vendor_code>:<device_code>.

Module parameter

You can use the ids= module parameter to specify the PCIe card types.

vfio_pci module parameter syntax

modprobe vfio_pci ids=

,

<vendor_code>:<device_code>

Example: In this example, a PCIe device with function address 0001:000:000:0, vendor code 15b3,
and device code 1003 is available on the host. The specification for the ids= module parameter
makes this card type eligible for the vfio_pci device driver.

lspci -n
0001:000:000:0 15b3:1003
modprobe vfio_pci ids=15b3:1003

On a running host, you can use the /sys/bus/pci/drivers/vfio-pci/new_id sysfs attribute to
enable the vfio_pci device driver to control a particular PCIe card type. Write the vendor code and device
code, separated by a blank, to the attribute.

Example: This example, makes cards with vendor code 15b3 and device code 1003 eligible for the
vfio_pci device driver.

echo 15b3 1003 > /sys/bus/pci/drivers/vfio-pci/new_id

After setting up the vfio_pci device driver for one or more PCIe card types, all cards of these types that are
freed from their default device driver are assigned to the vfio_pci device driver.

Assigning a PCI device to the vfio_pci device driver
For devices that are not managed by libvirt, write the function address of the PCIe device to the unbind
attribute of its device driver.

echo <function_address> > /sys/bus/pci/drivers/<pci_device_driver>/unbind

Chapter 48. Setting up a KVM host for VFIO pass-through 477

Tip: Issue lspci -v to find out which device driver controls the device of interest.

Example:

~]# lspci -v
0001:00:00.0 Ethernet controller: Mellanox Technologies MT27500 Family [ConnectX-3]
Subsystem: Mellanox Technologies Device 048d
Physical Slot: 00000015
...
Kernel driver in use: mlx4_core
Kernel modules: mlx4_core
echo 0001:00:00.0 > /sys/bus/pci/drivers/mlx4_core/unbind

Setting up VFIO pass-through DASDs
Free DASDs from host control and assign them to VFIO mediated devices.

Before you begin
You must know the subchannel bus ID that maps to the DASD. You can find this information with the
lscss command.

Example: In this example, a DASD with bus ID 0.0.3000 has a subchannel with bus ID 0.0.0004.

lscss -d 0.0.3000
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs

0.0.3000 0.0.0004 3390/0A 3990/E9 YES C0 C0 FF 34400000 00000000

Procedure
1. Ensure that the vfio_ccw device driver and the vfio_mdev modules are loaded. If either module is

compiled as a separate module, you might have to load it yourself.

modprobe vfio_ccw
modprobe vfio_mdev

2. Free the DASD and its subchannel from the default device drivers on the host and assign the
subchannel to the vfio_ccw device driver.
Using the driverctl command

The preferred method for this reassignment is issuing a driverctl command of this form:

driverctl --bus css set-override <subchannel_bus_id> vfio_ccw

By default, these configuration changes persist across reboots of the KVM host. To apply changes
only to the active configuration, specify the --nosave option with the command.

Example: The command in this example frees a DASD that corresponds to subchannel ID
0.0.0004 from the dasd-eckd device driver and persistently reassigns the subchannel to the
vfio_ccw device driver.

driverctl --bus css set-override 0.0.0004 vfio_ccw

Using general Linux commands
As a non-persistent fallback method, you can use general Linux commands.

Write the bus ID of the DASD to the unbind attribute of its device driver module. Then, write the
bus ID of the subchannel to the unbind attribute of the subchannel device driver. Finally, assign
subchannel to the vfio_ccw device driver by writing the subchannel bus-ID to /sys/bus/css/
drivers/vfio_ccw/bind.

478 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo <device_bus_id> > /sys/bus/ccw/drivers/dasd-eckd/unbind
echo <subchannel_bus_id> > /sys/bus/css/devices/<subchannel_bus_id>/driver/unbind
echo <subchannel_bus_id> > /sys/bus/css/drivers/vfio_ccw/bind

Example: The first commands in this example frees a DASD with bus ID 0.0.3000 from the
dasd-eckd device driver. The commands that follow reassign the subchannel to the vfio_ccw
device driver.

echo 0.0.3000 > /sys/bus/ccw/drivers/dasd-eckd/unbind
echo 0.0.0004 > /sys/bus/css/devices/0.0.0004/driver/unbind
echo 0.0.0004 > /sys/bus/css/drivers/vfio_ccw/bind

3. Create a new VFIO CCW mediated device. You can use libvirt or general Linux commands to create the
device.
Using libvirt

The preferred method is using libvirt. With libvirt, you can create persistent or transient mediated
devices. See KVM Virtual Server Management, SC34-2752.

Using general Linux commands
Mediated devices that you create with the commands that follow do not persist across reboots.

Writing a universally unique identifier (UUID) to /sys/bus/css/
devices/<subchannel_bus_id>/mdev_supported_types/vfio_ccw-io/create, where
<subchannel_bus_id> is the subchannel of the DASD.

Tip: Use the uuidgen command to generate a UUID.

Example: This example creates a CCW mediated device for subchannel 0.0.0004.

uuidgen
18e124fb-b2fc-47f6-a407-f256b6c49767
echo 18e124fb-b2fc-47f6-a407-f256b6c49767 > \
/sys/bus/css/devices/0.0.0004/mdev_supported_types/vfio_ccw-io/create

4. Optional: Display subchannel information for the mediated device, by issuing lscss with the --vfio
option.

Example:

$ lscss --vfio
MDEV Subchan. PIM PAM POM CHPIDs
--
18e124fb-b2fc-47f6-a407-f256b6c49767 0.0.0004 c0 c0 ff 0 5020000 00000000

Setting up cryptographic adapter resources for VFIO pass-through
Free cryptographic adapter resources from host control and assign them to a VFIO AP mediated device.

AP queues
Cryptographic adapter resources are managed as AP queues (see “Cryptographic domains” on page 490).
An AP queue corresponds to a specific cryptographic domain on a specific cryptographic adapter.

Before you begin: Mediated devices that you create with the commands that follow do not persist across
reboots. For information about creating a persistent or transient mediated device with libvirt, see KVM
Virtual Server Management, SC34-2752.

Procedure
1. Ensure that the vfio_ap device driver is loaded. If it is compiled as a separate module, you might have

to load it yourself. The following command loads vfio_ap and any additional modules it requires.

modprobe vfio_ap

Chapter 48. Setting up a KVM host for VFIO pass-through 479

2. Assign AP queues to the vfio_ap device driver.

Two 256-bit masks, one for adapters and the other for domains, rule which AP queues are
controlled by the zcrypt device driver. Unless you change the initial setting with the ap.apmask=
and ap.aqmask= kernel parameters, both masks have all bits on by default. With all bits set in the
masks, all AP queues that are available to the host can be accessed only by the host itself.

Setting the bit for a particular adapter to 0 frees all queues of that adapter from the host and makes
them available for use by vfio_ap. Similarly, setting the bit for a particular domain to 0 frees all queues
of that domain, across all adapters, from the host and makes them available for use by vfio_ap.

Set bits for adapters or domains or both to 0 to assign queues to the vfio_ap device driver.

Writing to the masks in sysfs
Write to the masks in sysfs to free AP queues, see “Freeing AP queues for KVM guests” on page
508.

3. Create and configure a mediated device.
Using libvirt

The preferred method for creating and configuring a mediated device is using the virsh
nodedev-define command and a node-device XML description, see KVM Virtual Server
Management, SC34-2752.

Using general Linux commands and sysfs
You can create VFIO mediated device for the vfio_ap device driver by writing a universally unique
identifier (UUID) to /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-
passthrough/create.

You then configure the mediated device by writing to the attributes within the sysfs
representations of VFIO AP mediated device. VFIO AP mediated devices are represented as
subdirectories of /sys/devices/vfio_ap/matrix. The directory names match the UUIDs that
identify the mediated devices.

Use the attributes in a device directory to configure the device and to obtain information about the
device.

Table 59. sysfs attributes of VFIO mediated devices for cryptographic adapter resources

Attribute Explanation

assign_adapter Write an adapter ID to this attribute to assign the adapter to the
mediated device. Specify the adapter ID in decimal or hexadecimal
notation. For hexadecimal notation, use the prefix "0x".

Example:

echo 0x0a > assign_adapter

assign_control_domain Write a domain ID to this attribute to assign the domain as a
control domain to the mediated device. Assign a control domain
for each usage domain that you assign to the mediated device, so
that you can manage your domains from the guest that uses the
mediated device. Specify the domain ID in decimal or hexadecimal
notation. For hexadecimal notation, use the prefix "0x".

Example:

echo 0x001b > assign_control_domain

480 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 59. sysfs attributes of VFIO mediated devices for cryptographic adapter resources
(continued)

Attribute Explanation

assign_domain Write a domain ID to this attribute to assign a usage domain to the
mediated device. Specify the domain ID in decimal or hexadecimal
notation. For hexadecimal notation, use the prefix "0x".

Example:

echo 0x001b > assign_domain

control_domains Read this attribute to list the assigned control domains.

Example:

cat control_domains
001b

matrix Read this attribute to list the assigned AP queues that result from
the adapter and domain assignments.

Example:

cat matrix
0a.001b

mdev_type Symbolic link that points to the vfio_ap-passthrough directory.

remove Write 1 to this attribute to remove the mediated device.

Example:

echo 1 > remove

subsystem Symbolic link that points to the matrix bus.

unassign_adapter Write an adapter ID to this attribute to remove the adapter
from the mediated device. Specify the adapter ID in decimal or
hexadecimal notation. For hexadecimal notation, use the prefix
"0x".

Example:

echo 0x0a > unassign_adapter

unassign_control_domain Write a domain ID to this attribute to remove the domain from the
control domains of the mediated device. Specify the domain ID in
decimal or hexadecimal notation. For hexadecimal notation, use
the prefix "0x".

Example:

echo 0x001b > unassign_control_domain

Chapter 48. Setting up a KVM host for VFIO pass-through 481

Table 59. sysfs attributes of VFIO mediated devices for cryptographic adapter resources
(continued)

Attribute Explanation

unassign_domain Write a domain ID to this attribute to remove a the domain from
the usage domains of the mediated device. Specify the domain ID
in decimal or hexadecimal notation. For hexadecimal notation, use
the prefix "0x".

Example:

echo 0x001b > unassign_domain

Scenario: Fallback method for creating and configuring a mediated device
This scenario assumes a KVM host on which 8 AP queues have been freed from control of the zcrypt
device driver. A matrix of two of these queues are to be assigned to a mediated device.

Note: The steps that follow describe a fallback method that uses common Linux commands to directly
write to sysfs. This method does not create a persistent mediated device. The preferred method for
creating and configuring mediated devices is an XML description of the mediated device and the virsh
nodedev-define command, see KVM Virtual Server Management, SC34-2752.

1. Load the required modules.

modprobe vfio_ap

2. List the eligible AP queues. AP queues are eligible only if they are controlled by the vfio_ap device
driver.

lszcrypt -V | grep vfio
00.0001 CEX7A Accelerator online 0 0 13 08 -MC-A-NF- vfio_ap
00.0002 CEX7A Accelerator online 0 0 13 08 -MC-A-NF- vfio_ap
00.0004 CEX7A Accelerator online 0 0 13 08 -MC-A-NF- vfio_ap
00.001b CEX7A Accelerator online 0 0 13 08 -MC-A-NF- vfio_ap
0a.0001 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- vfio_ap
0a.0002 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- vfio_ap
0a.0004 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- vfio_ap
0a.001b CEX7P EP11-Coproc online 0 0 13 08 -----XNF- vfio_ap

The output shows that 8 AP queues are eligible. The eight queues correspond to a matrix of two
adapters, 0x00 and 0x0a and four domains, 0x0001, 0x0002, 0x0004, and 0x001b. These adapters
and domains are the only ones that you can assign to the mediated device.

3. Create a mediated device.

uuidgen
4b0518fd-9237-493f-93c8-c5597f8006a3
echo 4b0518fd-9237-493f-93c8-c5597f8006a3 \
> /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-passthrough/create

4. Add adapters 0x00 and 0x0a to the device.

echo 0x00 > /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/assign_adapter
echo 0x0a > /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/assign_adapter
cat /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/matrix
00.
0a.

Reading the matrix attribute does not yield any AP queues. To assign AP queues both adapters and
domains must be added.

5. Add domain 0x001b.

482 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

echo 0x001b > /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/assign_domain
cat /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/matrix
00.001b
0a.001b
cat /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/control_domains

The content of the matrix attribute shows that two AP queues are assigned to the mediated device.
The two queues correspond to a matrix of two adapters, 0x00 and 0x0a and one domain, 0x001b.
Reading the control_domains attribute shows that no control domain is configured.

6. Add domain 0x001b to the control domains.

echo 0x001b > /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/
assign_control_domain
cat /sys/devices/vfio_ap/matrix/4b0518fd-9237-493f-93c8-c5597f8006a3/control_domains
001b

Chapter 48. Setting up a KVM host for VFIO pass-through 483

484 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 8. Security
These device drivers and features support security aspects of Ubuntu Server 22.04 LTS.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 485

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

486 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 49. Generic cryptographic device driver
The generic cryptographic device driver (zcrypt) supports cryptographic coprocessor and accelerator
hardware. Cryptographic coprocessors provide secure key cryptographic operations for the IBM
Common Cryptographic Architecture (CCA) and the Enterprise PKCS#11 feature (EP11). CCA and EP11
coprocessors operate as Hardware Security Modules (HSMs).

Some cryptographic processing in Linux can be offloaded from the processor and performed by CCA or
EP11 coprocessors or accelerators. Several of these CCA or EP11 coprocessors and accelerators are
available offering a range of features. The generic cryptographic device driver (zcrypt) is required to use
any available cryptographic hardware.

Features
The cryptographic device driver supports a range of hardware and software functions.

Supported cryptographic adapters
The cryptographic hardware feature might contain one or two cryptographic adapters. Each adapter can
be configured either as a CCA coprocessor or as an accelerator. The CEX7S, CEX6S, CEX5S, and CEX4S
cryptographic adapters can also be configured as EP11 coprocessors.

The following types of cryptographic adapters are supported:

• Crypto Express8S (EP11) Coprocessor (CEX8P)
• Crypto Express8S (CCA) Coprocessor (CEX8C)
• Crypto Express8S Accelerator (CEX8A)
• Crypto Express7S (EP11) Coprocessor (CEX7P)
• Crypto Express7S (CCA) Coprocessor (CEX7C)
• Crypto Express7S Accelerator (CEX7A)
• Crypto Express6S (EP11) Coprocessor (CEX6P)
• Crypto Express6S (CCA) Coprocessor (CEX6C)
• Crypto Express6S Accelerator (CEX6A)
• Crypto Express5S Accelerator (CEX5A)
• Crypto Express5S (CCA) Coprocessor (CEX5C)
• Crypto Express5S (EP11) Coprocessor (CEX5P)
• Crypto Express4S Accelerator (CEX4A)
• Crypto Express4S (CCA) Coprocessor (CEX4C)
• Crypto Express4S (EP11) Coprocessor (CEX4P)
• Crypto Express3 Accelerator (CEX3A)
• Crypto Express3 Coprocessor (CEX3C)

For information about setting up your cryptographic environment on Linux under z/VM, see z/VM: Secure
Configuration Guide, SG24-6323 and Security for Linux on System z, SG24-7728.

Supported facilities
The cryptographic device driver supports several cryptographic accelerators as well as CCA and EP11
coprocessors.

Cryptographic accelerators support clear key cryptographic algorithms. In particular, they provide fast
RSA encryption and decryption for any key size in the range 1024 - 4096 bit.

© Copyright IBM Corp. 2000, 2023 487

Cryptographic coprocessors act as a hardware security module (HSM) and provide secure key
cryptographic operations for the IBM Common Cryptographic Architecture (CCA) and the Enterprise
PKCS#11 feature (EP11).

Cryptographic CCA coprocessors also provide clear key RSA operations for 1024-bit, 2048-bit, and 4096-
bit keys, and a true random number generator for /dev/hwrng. The EP11 coprocessor supports only
secure key operations.

For more information about CCA, see Secure Key Solution with the Common Cryptographic Architecture
Application Programmer's Guide, SC33-8294. You can obtain this publication at ibm.com/docs/en/linux-
on-systems?topic=overview-secure-key-solution-cca-application-programmers-guide.

For more information about EP11, see Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713.
You can obtain this publication at ibm.com/docs/en/linux-on-systems?topic=security-cryptographic-
hardware-support.

Hardware and software prerequisites
Support for the Crypto Express6S, Crypto Express5S, Crypto Express4S, and Crypto Express3 features
depends on the IBM Z hardware model.

Table 60 on page 488 lists the support for the cryptographic adapters.

Table 60. Support for cryptographic adapters by mainframe model

Cryptographic adapters Mainframe support

CEX8A, CEX8C, and CEX8P IBM z16

CEX7A, CEX7C, and CEX7P IBM z16, z15 and LinuxONE III

CEX6A, CEX6C, and CEX6P IBM z16, z14 and LinuxONE II

CEX5A, CEX5C, and CEX5P z15,z14, z13, z13s, LinuxONE II, and LinuxONE

CEX4A, CEX4C, and CEX4P zEC12 and zBC12

CEX3A and CEX3C zEC12 and zBC12

Crypto Express8S adapters can handle larger request and reply sizes than earlier cryptographic adapters.
The software that manages Crypto Express8S adapters must support these larger request and reply sizes.

Table 61 on page 488 lists the required software by function.

Table 61. Required software

Software required Function that is supported by the software

The CCA library For the secure key cryptographic functions on CEX6C, CEX5C, CEX4C, or
CEX3C features.

For information about CEX6C, CEX5C, CEX4C, and CEX3C adapter
coexistence and how to use CCA functions, see Secure Key Solution
with the Common Cryptographic Architecture Application Programmer's
Guide, SC33-8294. You can obtain it at www.ibm.com/developerworks/linux/
linux390/documentation_ubuntu.html.

The EP11 library For the secure key cryptographic functions on EP11 coprocessors. See
Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713. You can
obtain this publication at www.ibm.com/developerworks/linux/linux390/
documentation_ubuntu.html.

The libica library For the clear key cryptographic functions. See libica Programmer's
Reference, SC34-2602. You can obtain this publication at www.ibm.com/
developerworks/linux/linux390/documentation_dev.html.

488 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html
http://www.ibm.com/developerworks/linux/linux390/documentation_ubuntu.html
http://www.ibm.com/developerworks/linux/linux390/documentation_ubuntu.html
http://www.ibm.com/developerworks/linux/linux390/documentation_ubuntu.html
http://www.ibm.com/developerworks/linux/linux390/documentation_ubuntu.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html
http://www.ibm.com/developerworks/linux/linux390/documentation_dev.html

Table 61. Required software (continued)

Software required Function that is supported by the software

APARs VM66428 and
VM66206

To support z15 hardware and the CEX7S adapter for Linux on z/VM.

APAR VM65942 To support z14 hardware and the CEX6S adapter for Linux on z/VM.

APAR VM65577 To support CEX5A, CEX5C, and CEX5P adapters on z/VM 6.3 and 6.2. Note:
EP11 support requires a dedicated adapter.

APAR VM65007 To support CEX4A and CEX4C adapters on z/VM 5.4, 6.1, and 6.2.

APAR VM65308 To share CEX4C CCA coprocessor adapters (APVIRT) on z/VM 5.4, 6.1, and
6.2.

APAR VM64656 To support CEX3C and CEX3A adapters for Linux on z/VM 6.1 or 5.4.

What you should know about the cryptographic device driver
Your use of the cryptographic device driver and the cryptographic hardware might require additional
software. There are special considerations for Linux on z/VM, for performance, and for specific
cryptographic operations.

Functions provided by the cryptographic device driver
The cryptographic device driver handles cryptographic accelerator, CCA coprocessor, and EP11
coprocessor adapters. The functions that the device driver provides depend on the adapter.

For both accelerators and CCA coprocessors, it provides Rivest-Shamir-Adleman (RSA) encryption and
RSA decryption functions using clear keys. RSA operations are supported in both the modulus-exponent
and the Chinese-Remainder Theorem (CRT) variants for any modulus in the range 57 - 4096 bit.

For CCA coprocessors, the device driver also provides a function to pass CCA requests to the
cryptographic coprocessor and an access to the true random number generator of the CCA coprocessor.

For EP11 coprocessors, the device driver provides functionality to pass EP11 requests to the
cryptographic coprocessor.

Adapter discovery
Cryptographic adapters are detected automatically when the module is loaded. They are reprobed
periodically, and following any hardware problem.

Depending on what adapters were detected, the cryptographic device driver might provide two misc
device nodes, one for cryptographic requests, and one for a device from which random numbers can be
read.

Upon detection of a cryptographic adapter, the device driver presents a Linux misc device, z90crypt, to
user space. A user space process can open the misc device to submit cryptographic requests to the
adapter through IOCTLs.

If at least one of the detected cryptographic adapters is a CCA coprocessor, an additional misc device,
hwrng, is created from which random numbers can be read.

You can set cryptographic adapters online or offline in the device driver. The cryptographic device driver
ignores adapters that are configured offline even if the hardware is detected. The online or offline
configuration is independent of the hardware configuration.

Request processing
Cryptographic adapters process requests asynchronously.

Chapter 49. Generic cryptographic device driver 489

The device driver detects request completion either by standard polling, a special high-frequency polling
thread, or by hardware interrupts. If hardware interrupt support is available, the device driver does not
use polling to detect request completion.

All requests to either of the two misc devices are routed to a cryptographic adapter using a crypto request
scheduling function that, for each adapter, takes into account:

• The supported functions
• The number of pending requests
• A speed rating

Cryptographic domains
Crypto Express hardware adapters are divided into multiple domains, also called cryptographic domains
or AP domains.

Each domain acts as an independent cryptographic device with its own state, including its own master
key. Two domains in the same Crypto Express adapter are completely isolated and cannot access each
other's states. The maximum number of domains depends on the mainframe model and is the same
for all Crypto Express adapters in that mainframe. For example, a z13 supports up to 85 domains (with
hexadecimal domain IDs 0000 to 0054).

The device driver uses at least one domain for all adapters. If none is given, the kernel selects a
default domain. Alternatively, you can select the default domain using a module parameter (see “Kernel
parameters” on page 493).

Cryptographic devices on LPARs
When you assign adapters and domains to an LPAR on the HMC or SE, you indirectly assign virtual
cryptographic devices.

For example, assigning adapter ID 00 and 02 as well as domains 0002, 0003, and 0005 to an
LPAR implicitly assigns six virtual cryptographic devices to the LPAR: (00.0002), (00.0003), (00.0005),
(02.0002), (02.0003), and (02.0005).

You can choose between two types of access to a cryptographic domain:

490 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

To use cryptographic functions.
A domain that is assigned to an LPAR for usage access is called a usage domain of that LPAR on the
HMC or SE.

To manage or control the domain, including the management of the master keys.
A domain that is assigned to an LPAR for management (control) access is called a control domain of
that LPAR on the HMC or SE.

Every usage domain of an LPAR must also be a control domain of that LPAR.

The list of usage domains and the list of adapter IDs define the list of virtual cryptographic devices that
are assigned to an LPAR. For example, if 00 is an adapter ID and 0002 is a usage domain ID, then the
virtual cryptographic device (00.0002) is assigned to the LPAR.

Cryptographic devices on z/VM
In z/VM, the virtual cryptographic devices available to a guest are defined by using the CRYPTO directory
statement:

• The CRYPTO APDEDICATE statement assigns domain IDs and adapter IDs to the guest. This
assignment implicitly defines a list of dedicated virtual cryptographic devices. All virtual cryptographic
devices that are determined by an ID from the adapter list of that guest and an ID from the domain list
of that guest are assigned to the guest.

• The CRYPTO APVIRT statement assigns one virtual cryptographic device that can be shared among
multiple guests with a guest-specific virtualized adapter ID and a virtualized domain ID.

Virtual cryptographic devices in z/VM can be either shared or dedicated, but not both.

Linux on z/VM with access to a shared cryptographic accelerator can either observe an accelerator or a
CCA coprocessor.

For shared cryptographic CCA coprocessors, the following functions are available to the Linux instance:

• Random number functions
• Clear-key RSA functions
• If APAR VM65942 has been installed: Clear-key ECC functions

Other requests are rejected by z/VM. For more information about supported functions, see the z/VM
publications.

Cryptographic devices on Linux
In Linux, virtual cryptographic devices are called AP queues. The name of an AP queue consists of two
parts, the adapter ID and the domain ID, both in hexadecimal notation. For example, if cryptographic
adapters with the IDs 00 and 02 are selected, and the domain IDs 0002, 0003 and 0005 have been
configured on the cryptographic adapter, then the following AP queues are defined to Linux:

/sys/devices/ap/card00/00.0002
/sys/devices/ap/card00/00.0003
/sys/devices/ap/card00/00.0005
/sys/devices/ap/card02/02.0002
/sys/devices/ap/card02/02.0003
/sys/devices/ap/card02/02.0005

Cryptographic devices and KVM
A KVM host can pass AP queues on to its guests. Before an AP queue can be configured for a KVM guest,
two steps are required on the host.

1. The AP queue must be freed from control of the zcrypt device driver.
2. The AP queue must be configured for a VFIO mediated device that is controlled by the vfio_ap device

driver.

Chapter 49. Generic cryptographic device driver 491

For more information, see “Setting up cryptographic adapter resources for VFIO pass-through” on page
479.

AP queue status overview
Multiple configuration steps are required to make AP queues available to user space programs on Linux.

Linux reflects the configuration progress in two configuration states of an AP queue:
LPAR configuration status

a hardware status that can either be "configured" or "not configured".
Online status

a state, "online" or "offline", that is controlled by the zcrypt device driver and that is maintained
by the Linux kernel.

Changing the online status of an AP queue does not affect its LPAR configuration status. In contrast,
changing the LPAR configuration status can affect a queue's online status. For example, changing the
LPAR configuration status from "not configured" to "configured" also changes its online status from
offline to online. AP queues that are not configured are always offline. Configured AP queues can be online
or offline, but an AP queue that is not configured cannot be online.

An AP queue is available to cryptographic applications on Linux if its LPAR configuration status is
"configured" and its on line status is "online".

Figure 100. AP queue configuration steps and status

Figure 100 on page 492 illustrates the steps for making AP queues available and how the steps affect the
configuration states.
Assigning adapters and domains to the LPAR

You use the HMC to assign cryptographic adapters and domains to an LPAR. Implicitly, this
assignment provides a matrix of AP queues to the LPAR. These queues can now be detected by
operating systems in the LPAR.

Setting the LPAR configuration status of adapters
Before AP queues can be used by an operating system, the LPAR configuration status of the
corresponding adapter must be set to "configured". AP queues inherit the LPAR configuration
status of the associated adapter.

Depending on the version, your HMC interface might show AP queues in the state "not configured"
as "Candidate" and AP queues in the state "configured" as "Candidate and Online". Do not
confuse this online designation with the online status in Linux.

Although the LPAR configuration status is controlled by the HMC, you can trigger this setting from
Linux, see “Setting the LPAR configuration status” on page 503.

492 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Controlling the online status of AP queues in Linux
An AP queue can be used by a cryptographic application if it is online within Linux. Initially, all AP
queues of an AP adapter are online when the LPAR configuration status of the adapter becomes
"configured".

For information about setting AP queues offline and back online, see “Setting devices online or
offline” on page 504.

Setting up the cryptographic device driver
Configure the cryptographic device driver through the ap.domain= and the ap.poll_thread= kernel
parameters. You might also have to set up libraries and create a device node.

The cryptographic device driver consists of multiple, separate modules:
zcrypt

Cryptographic Coprocessor interface, Cryptographic Coprocessor message type 6, Cryptographic
Coprocessor message type 50. Support for message type 6 includes secure key and RNG requests.
Support for message type 50 includes RSA requests for both modulus-exponent and Chinese-
Remainder Theorem variants.

zcrypt_cex4
device driver for CEX7S, CEX6S, CEX5S, and CEX4S adapters.

zcrypt_cex2a
device driver for CEX3A adapters.

For information about setting up cryptographic hardware on your mainframe system, see zSeries Crypto
Guide Update, SG24-6870.

Kernel parameters
You configure the cryptographic device driver by adding parameters to the kernel parameter line.

zcrypt kernel parameter syntax
ap.domain=autoselect

 ap.domain=  <domain>

ap.poll_thread=0

ap.poll_thread=1

apmask=+0-255

ap.apmask= mask_specification

aqmask=+0-255

ap.aqmask= mask_specification

mask_specification
<hex_mask>

+
-

,

<bit>

<from_bit>- <to_bit>

where
<domain>

is an integer that identifies the default cryptographic domain for the Linux instance. You define
cryptographic domains in the LPAR activation profile on the HMC or SE.

The default value (ap.domain=autoselect) causes the device driver to choose one of the available
domains automatically.

Chapter 49. Generic cryptographic device driver 493

Important: Be sure to enter an existing domain. The Trusted Key Entry (TKE) workstation does not
find the cryptographic adapters if a non-existing domain is entered here. All CCA applications use the
default domain, and do not work correctly if the specified domain does not exist.

<poll_thread>
is an integer argument and enables a polling thread to tune cryptographic performance. Valid values
are 1 (enabled) or 0 (disabled, this value is the default). For details, see “Setting the polling thread” on
page 505.

Note: All mainframes supported by Ubuntu Server 22.04 LTS use AP interrupts instead of the polling
thread. The polling thread is disabled when AP interrupts are available. See “Using AP adapter
interrupts” on page 506.

ap.apmask= and ap.aqmask=

are two 256-bit masks that specify which AP queues are controlled by the zcrypt device driver and
which are available to alternative device drivers, like vfio_ap.

If your Linux instance is a KVM host, the vfio_ap device driver controls AP queues on behalf of KVM
guests (see Chapter 48, “Setting up a KVM host for VFIO pass-through,” on page 475). While vfio_ap
is the only eligible alternative device driver, freeing an AP queue from zcrypt makes it available to
vfio_ap.

Each bit of the ap.apmask= mask addresses a cryptographic adapter. The leftmost bit corresponds to
the adapter with ID 0x00. Generally, the bit number in the mask corresponds to the decimal value of
the adapter ID. If an adapter bit is set to 0, all AP queues for this adapter are available to alternative
device drivers, across all domains.

Each bit of the ap.aqmask= mask addresses a cryptographic domain. The leftmost bit corresponds
to domain 0x0000. Generally, the bit number in the mask corresponds to the decimal value of the
domain ID. If a domain bit is set to 0, all AP queues with this domain are available to alternative
device drivers, across all adapters.

AP queues are controlled by the zcrypt device driver if both the bit for its adapter and for its domain
are set to 1. An AP queue is available to alternative device drivers if the bit for its adapter, or its
domain, or both are set to 0.

By default, all bits in both masks are 1. Therefore, zcrypt is the default device driver for all AP queues.

<hex_mask>
specifies a replacement for the default mask. Valid values are 0x followed by 1 - 64 hexadecimal
digits. If fewer than 64 digits are specified, the specification is padded with 0s on the right. The
value is big-endian. The hexadecimal representation is mapped to the 256-digit binary mask.

<bit>
specifies an individual bit number. 0 specifies the leftmost bit. With the plus sign (+) prefix, the bit
is set to 1. With the minus sign (-) prefix, the bit is set to 0.

<from_bit>-<to_bit>
specifies the range of bits from bit number <from_bit> to bit number <to_bit>. With the plus sign
(+) prefix, all bits in the range are set to 1. With the minus sign (-) prefix, all bits in the range are
set to 0.

Bit numbers can be in decimal or hexadecimal notation. Hexadecimal numbers must be prefixed with
0x. You can specify a comma-separated list of bits and ranges. Such lists are processed left to right.

The hexadecimal representations of the masks are available in sysfs. Using sysfs, you can change the
masks on a running Linux instance, see “Freeing AP queues for KVM guests” on page 508.

Examples
• The following kernel parameter line specification makes the zcrypt device driver operate within the

default cryptographic domain "7" with ap.poll_thread= enabled:

ap.domain=7 ap.poll_thread=1

494 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• The following specification makes all AP queues on adapter 0x00 and any adapters with IDs greater
than 0x07 and all AP queues with domain ID, 0x0007, 0x0008, 0x0009, 0x000a, and 0x000b
available to the vfio_ap device driver.

ap.apmask=0x7F ap.aqmask=-7-11

The following specification with hexadecimal notation for the queue range is equivalent:

ap.apmask=0x7F ap.aqmask=-0x7-0xb

Accessing cryptographic devices
The cryptographic device driver registers as a misc device and provides a default device node to user
space.

In Ubuntu Server 22.04 LTS udev creates the device node /dev/z90crypt for you. The device node
z90crypt is assigned to the miscellaneous devices.

The /dev/z90crypt device node provides unrestricted user space access to a device that represents all
AP queues that are available to the Linux instance.

You can create customized device nodes that represent subsets of AP queues and functions, see
“Creating customized device nodes” on page 495.

Creating customized device nodes
The cryptographic device driver can provide and maintain multiple zcrypt device nodes. These nodes can
be restricted in terms of cryptographic adapters, domains, and available IOCTLs.

About this task
You can create device nodes with access to a subset of the AP queues that are available to the Linux
instance and that can perform a subset of the functions. Such a device node can be used for access
control to cryptographic resources:

• Selective assignment of device nodes to Linux containers.
• Linux file permissions for the device nodes can be used to restrict the access for users and groups.

Procedure
1. Create a new device node by issuing a zcryptctl command of this form:

zcryptctl create <name>

where <name> is a unique device name. A device node /dev/<name> and a device directory /sys/
devices/virtual/zcrypt/<name> are created in sysfs.
For more information about zcryptctl, see “zcryptctl - Control access to AP queues and functions”
on page 764.

Example:

zcryptctl create node_1

The example creates a device node /dev/node_1 and a device directory /sys/devices/virtual/
zcrypt/node_1 in sysfs.

2. Set the adapters for the new device node. Issue a zcryptctl command of this form:

zcryptctl addap <name> <adapter_id_1>,<adapter_id_2>,<adapter_id_3>,...

Chapter 49. Generic cryptographic device driver 495

where <adapter_id_n> specifies an adapter to which you want this node to have access. You can use
the hexadecimal adapter IDs or their equivalent decimal values. Hexadecimal specifications must be
prefixed with 0x.

Example:

zcryptctl addap node_1 0x05,0x06,0x07,0x0a

Using decimal notation this command would be:

zcryptctl addap node_1 5,6,7,10

3. Set the domains for the new device node. Issue a zcryptctl command of this form:

zcryptctl adddom <name> <dom_1>,<dom_2>,<dom_3>,...

where <dom_n> is a domain to which you want this node to have access. You can use the hexadecimal
domain IDs or their equivalent decimal values. Hexadecimal specifications must be prefixed with 0x.

Example:

zcryptctl adddom node_1 0x0006

4. Set the IOCTLs for the new device node. Issue a zcryptctl command of this form:

zcryptctl addioctl <name> <ioctl_1>,<ioctl_2>,<ioctl_3>,...

Set IOCTLs according to the functions you want to support. The following table lists the IOCTLs that
are required by the CCA, EP11, and libica library.

Table 62. IOCTLs required by cryptographic libraries

Library Functions Required IOCTLs

CCA Secure key cryptographic
functions on CCA coprocessors.

ZSECSENDCPRB

EP11 Secure key cryptographic
functions on EP11 coprocessors.

ZSENDEP11CPRB

libica Clear key cryptographic
functions.

ICARSAMODEXPO, ICARSACRT, ZSECSENDCPRB

The available IOCTLs are listed in arch/s390/include/uapi/asm/zcrypt.h in the Linux source
tree.

Example:

zcryptctl addioctl node_1 ZSECSENDCPRB

5. Optional: Secure the device node through suitable settings for the file owner and group, and through
access permissions for user, group, and others.

Results
Changes to the masks are instantly applied and affect all applications with an open file descriptor for this
zcrypt node immediately.

Example
To create and define a zcrypt device node for CCA requests on adapters 0x05, 0x06, 0x07, 0x0a and
domain 0x0006 using the zcryptctl command:

496 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zcryptctl create node_1
zcryptctl addap node_1 0x05,0x06,0x07,0x0a
zcryptctl adddom node_1 0x0006
zcryptctl adioctl node_1 ZSECSENDCPRB

It is equivalent to using the zcryptctl config command with the following configuration file entry:

node 1 for CCA requests on domain 6 - hexadecimal notation
node = node_1
aps = 0x05,0x06,0x07,0x0a
doms = 0x0006
ioctls = ZSECSENDCPRB

The following equivalent configuration file uses decimal notation for adapters and domains:

node 1 for CCA requests on domain 6 - decimal notation
node = node_1
aps = 5,6,7,10
doms = 6
ioctls = ZSECSENDCPRB

Alternatively, you can use sysfs attributes to obtain the same results:

echo node_1 > /sys/class/zcrypt/create
echo +0x05,+0x06,+0x07,+0x0a > /sys/devices/virtual/zcrypt/node_1/apmask
echo +0x0006 > /sys/devices/virtual/zcrypt/node_1/aqmask
echo +0x81 > /sys/devices/virtual/zcrypt/node_1/ioctlmask

The apmask and aqmask attributes in the node directory follow the same syntax as the apmask and
aqmask attributes at /sys/bus/ap (see “Freeing AP queues for KVM guests” on page 508). Relative
values require a plus (+) or minus (-) prefix, can use decimal or hexadecimal notation, and can address
individual bits or ranges. You can also specify the complete hexadecimal mask as an absolute value. The
sysfs interface requires numeric values for the IOCTLs as listed in arch/s390/include/uapi/asm/
zcrypt.h.

What to do next
You can delete the device node with zcryptctl destroy <name>.

Displaying information about the AP bus
Use the lszcrypt -b command to display status information about the AP bus; alternatively, you can
use sysfs.

About this task
For information about lszcrypt -b, see “lszcrypt - Display zcrypt devices” on page 676.

The AP bus is represented in sysfs as a directory of the form

/sys/bus/ap

The sysfs directory contains a number of attributes with information about the AP bus.

Table 63. AP bus attributes

Attribute Explanation

ap_domain Read-write attribute that represents the default domain selected by
the kernel. Alternatively, you can select the domain using a kernel
parameter, or a module parameter during module load. See “Kernel
parameters” on page 493.

Chapter 49. Generic cryptographic device driver 497

Table 63. AP bus attributes (continued)

Attribute Explanation

ap_max_domain_id Read-only attribute that represents the largest possible domain ID.
Domain IDs can range from 0 to this number, which depends on the
mainframe model.

ap_control_domain_mask Read-only attribute that represents the installed control domain
facilities as a 32-byte field in hexadecimal notation. A maximun number
of 256 domains can be addressed. Each bit position represents a
dedicated control domain.

ap_usage_domain_mask Read-only attribute that represents the installed usage domain facilities
as a 32-byte field in hexadecimal notation. A maximum number of
256 domains can be addressed. Each bit position represents a usage
domain.

ap_interrupts Read-only attribute that indicates whether interrupt handling for the AP
bus is enabled.

apmask Read-write attribute that represents up to 256 cryptographic adapters.
The attribute is a 64-digit hexadecimal representation of the 256-digit
binary mask. In combination with the aqmask attribute, it marks a set
of AP queues that are reserved for device drivers other than zcrypt. See
“Freeing AP queues for KVM guests” on page 508.

aqmask Read-write attribute that represents 256 cryptographic domains. The
attribute is a 64-digit hexadecimal representation of the 256-digit
binary mask. In combination with the apmask attribute, it marks a set
of AP queues that are reserved for device drivers other than zcrypt. See
“Freeing AP queues for KVM guests” on page 508.

bindings Read-only attribute that shows which ratio of the available AP queues
are bound to a device driver. The information has this format:
<nr_of_bound_ap_queues>/<total_nr_of_ap_queues>. If all available AP
queues are bound to a device driver, this ratio is appended with the
string (complete). For example, with 8 AP queues, all of which are
bound to a device driver, the attribute reads: 8/8 (complete).

This attribute indicates the progress of the adapter initialization
process.

config_time Read-write attribute that represents a time interval in seconds used to
detect new crypto devices.

poll_thread Read-write attribute that indicates whether polling for the AP bus is
enabled.

poll_timeout Read-write attribute that represents the time interval of the poll thread
in nanoseconds.

scans Reading this attribute shows the number of AP bus scans since the AP
bus initialization. Writing to the attribute triggers a scan.

498 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example

lszcrypt -b
ap_domain=0x6
ap_max_domain_id=0x54
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

Working with cryptographic devices
Typically, cryptographic devices are not directly accessed by users but through user programs. Some
tasks can be performed through the sysfs interface.

• “Displaying information about cryptographic devices” on page 499
• “Investigating master key states and verification patterns” on page 501
• “Setting the LPAR configuration status” on page 503
• “Setting devices online or offline” on page 504
• “Setting the polling thread” on page 505
• “Using AP adapter interrupts” on page 506
• “Setting the polling interval” on page 506
• “Dynamically adding and removing cryptographic adapters” on page 507
• “Freeing AP queues for KVM guests” on page 508
• “Displaying information about the AP bus” on page 497

Displaying information about cryptographic devices
Use the lszcrypt command to display status information about your cryptographic devices;
alternatively, you can use sysfs.

About this task
For information about lszcrypt, see “lszcrypt - Display zcrypt devices” on page 676.

Each cryptographic adapter is represented in sysfs as a directory of the form

/sys/bus/ap/devices/card<XX>

where <XX> is the device index for each device. For example, device 0x1a can be found
under /sys/bus/ap/devices/card1a. The sysfs directory contains a number of attributes with
information about the cryptographic adapter.

Table 64. Cryptographic adapter attributes

Attribute Explanation

ap_functions Read-only attribute that represents the function facilities that are installed
on this device.

chkstop Read-only attribute that is 1 if the adapter is in checkstop state and 0
otherwise. In checkstop state, the adapter is not available for processing
cryptographic requests.

config Read-write attribute that represents the LPAR configuration status for this
adapter, see “Setting the LPAR configuration status” on page 503.

depth Read-only attribute that represents the input queue length for this device.

Chapter 49. Generic cryptographic device driver 499

Table 64. Cryptographic adapter attributes (continued)

Attribute Explanation

hwtype Read-only attribute that represents the numeric hardware type for this
device. The following values are defined:
8

CEX3A adapters.
9

CEX3C adapters.
10

CEX4A, CEX4C, or CEX4P adapters.
11

CEX5A, CEX5C, or CEX5P adapters.
12

CEX6A, CEX6C, or CEX6P adapters.
13

CEX7A, CEX7C, or CEX7P adapters.
14

CEX8A, CEX8C, or CEX8P adapters.

The hwtype attribute shows the hardware type as interpreted by the device
driver. See also the raw_hwtype attribute.

raw_hwtype Read-only attribute that represents the original hardware type of the
cryptographic adapter.

max_msg_size Read-only attribute that shows the upper limit in bytes that can be used by
the AP bus, the zcrypt device driver, and user space applications for requests
and replies sent to and received from this adapter.

modalias Read-only attribute that represents an internally used device bus-ID.

online Read-write attribute that shows whether the device is online (1) or offline (0).

pendingq_count Read-only attribute that represents the number of requests in the hardware
queue.

request_count Read-only attribute that represents the number of requests that are already
processed by this device.

requestq_count Read-only attribute that represents the number of outstanding requests (not
including the requests in the hardware queue).

serialnr For CCA and EP11 coprocessors only: Read-only attribute that shows the
adapter serial number. The serial number is a unique ASCII string of 8
characters for CCA coprocessors and 16-characters for EP11 coprocessors.

type Read-only attribute with a name for the device type. The following types are
defined:

• CEX3A, CEX3C, CEX4A
• CEX4C, CEX4P
• CEX5A, CEX5C, CEX5P
• CEX6A, CEX6C, CEX6P
• CEX7A, CEX7C, CEX7P
• CEX8A, CEX8C, CEX8P

500 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Each AP queue is independently configurable and represented in a subdirectory of the cryptographic
device it belongs to:

/sys/bus/ap/devices/card<XX>/<XX>.<YYYY>

where <XX> is the adapter ID of the cryptographic device and <YYYY> is the domain. For example,
a cryptographic device with adapter ID 1a might have domains 5 (0005), 31 (001f), and 77 (004d)
configured. The cryptographic device together with its AP queues would be represented in sysfs as:

/sys/devices/ap/card1a
/sys/devices/ap/card1a/1a.0005
/sys/devices/ap/card1a/1a.001f
/sys/devices/ap/card1a/1a.004d

Actions that you take on the cryptographic device also apply to its associated AP queues. Attributes like
type and hwtype are inherited by the AP queues. The sysfs directory contains a number of attributes with
information about the AP queues.

Table 65. Attributes of the AP queues

Attribute Explanation

chkstop Read-only attribute that is 1 if the queue is in checkstop state and 0
otherwise. In checkstop state, no requests are sent to the AP queue. The
queue is reset when it exits the checkstop state.

config Read-only attribute that shows the LPAR configuration status of the AP
queue, as "configured" (1) or "not configured" (0). The configuration
status of an AP queue matches the configuration status of its cryptographic
adapter.

online Read-write attribute that shows whether the AP queue is online (1) or offline
(0).

interrupt Read-only attribute that represents the interrupt state (enabled or disabled)
of the AP queue, and hence the request queue.

mkvps Read-only attribute with multiple lines of information about the master
key states and verification patterns for CCA or EP11 coprocessors. See
“Investigating master key states and verification patterns” on page 501.

reset Read-only attribute that indicate the state of pending resets of the AP
queues, and hence the request queue.

pendingq_count Read-only attribute that represents the number of requests in the hardware
queue.

request_count Read-only attribute that represents the number of requests that are already
processed by this AP queue.

requestq_count Read-only attribute that represents the number of outstanding requests (not
including the requests in the hardware queue).

To display status information about your cryptographic devices, you can also use the lszcrypt
command (see “lszcrypt - Display zcrypt devices” on page 676).

Investigating master key states and verification patterns
For information about the master keys on an AP queue and the keys' verification patterns read the
queues' mkvps sysfs attribute.

Chapter 49. Generic cryptographic device driver 501

In sysfs, AP queues are represented as subdirectories of the cryptographic adapter to which they belong.
The paths to the mkvps sysfs attribute with the master key states and verification patterns have the
following format:

/sys/bus/ap/devices/card<XX>/<XX>.<YYYY>/mkvps

where <XX> is the adapter ID of the cryptographic device and <YYYY> is the domain ID. For example, the
mkvps attribute for an AP queue 01.002a is at /sys/bus/ap/devices/card01/01.002a/mkvps.

The read-only mkvps attribute holds multiple lines of information about the master key states and
verification patterns. If no valid state information is available, dashes (-) are shown instead of both the
state and the verification pattern.

CCA coprocessors
For CCA coprocessors, the mkvps attribute shows the state of the AES and APKA key registers (see Secure
Key Solution with the Common Cryptographic Architecture Application Programmer's Guide, SC33-8294).
The information has this format:

AES NEW: <new_aes_mk_state> <new_aes_mkvp>
AES CUR: <cur_aes_mk_state> <cur_aes_mkvp>
AES OLD: <old_aes_mk_state> <old_aes_mkvp>
APKA NEW: <new_apka_mk_state> <new_apka_mkvp>
APKA CUR: <cur_apka_mk_state> <cur_apka_mkvp>
APKA OLD: <old_apka_mk_state> <old_apka_mkvp>

Where:
<new_aes_mk_state>

is the key state of the new AES master key, which can be one of the following values: empty,
partial, or full.

<cur_aes_mk_state> and <old_aes_mk_state>
are the key states of the current and old AES master key, which can be one of the following values:
valid or invalid.

<new_apka_mk_state>
is the key state of the new APKA master key, which can be one of the following values: empty,
partial, or full.

<cur_apka_mk_state> and <old_apka_mk_state>
are the key states of the current and old APKA master key, which can be one of the following values:
valid or invalid.

<*_*_mkvp>
<new_aes_mkvp>, <cur_aes_mkvp>, <old_aes_mkvp>, <new_apka_mkvp>, <cur_apka_mkvp>, and
<old_apka_mkvp> are all 8-byte hexadecimal master key verification patterns, with a leading 0x.

Useful verification patterns are present only for key states full and valid. For other states,
0x0000000000000000 is shown instead.

The following example shows the information for an AP queue in CCA coprocessor mode:

cat /sys/devices/ap/card01/01.002a/mkvps
AES NEW: empty 0x0000000000000000
AES CUR: valid 0x7d10d17bc8a409c4
AES OLD: invalid 0x0000000000000000
APKA NEW: empty 0x0000000000000000
APKA CUR: valid 0x82a5e2cd5030d5ec
APKA OLD: invalid 0x0000000000000000

EP11 coprocessors
For EP11 coprocessors, the information has this format:

502 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

MK CUR: <cur_mk_state> <cur_mkvp>
MK NEW: <new_mk_state> <new_mkvp>

Where:
<new_mk_state>

is the key state of the new master key, which can be one of the following values: empty,
uncommitted, or committed.

<cur_mk_state>
is the key state of the current master key, which can be one of the following values: valid or
invalid.

<new_mkvp> and <cur_mkvp>
are 32-byte hexadecimal master key verification patterns with a 0x prefix.

Useful verification patterns are present only for key states committed and valid.

Setting the LPAR configuration status
You can use the HMC or SE to control which of the cryptographic devices that the hardware definition
assigns to an LPAR are also available to operating systems within that LPAR. From a Linux instance in
LPAR mode, you can control device availability by setting the device configuration status for the LPAR in
which it runs.

The LPAR configuration status of a cryptographic device persists across reboots and also applies if
a different operating system is IPLed in the LPAR. Use the chzcrypt command to set the LPAR
configuration status of cryptographic devices.

Cryptographic devices with an LPAR configuration status "configured" are available to the operating
system that runs in the LPAR, devices with an LPAR configuration status "not configured" are not
available. The configuration status of a cryptographic device extends to all associated AP queues.

For more information about the status of AP queues, see “AP queue status overview” on page 492.

Procedure
• Preferably, use the chzcrypt command with the --config-on option to configure cryptographic

devices and the associated AP queues for an LPAR, or use the --config-off option to change the
status to "not configured" for the LPAR.

Examples:

– To configure cryptographic devices (in decimal notation) 0, 1, 4, 5, and 12, issue:

chzcrypt --config-on 0 1 4 5 12

– To configure all available cryptographic devices and their associated AP queues, issue:

chzcrypt --config-on -a

For more information about chzcrypt, see “chzcrypt - Modify the zcrypt configuration” on page 581.
• Alternatively, write 1 to the config sysfs attribute of a cryptographic device to configure the device, or

write 0 to set the device status to "not configured".

Examples:

– To configure a cryptographic device with adapter ID 0x04 for the LPAR, issue:

echo 1 > /sys/bus/ap/devices/card04/config

– To set the LPAR configuration status of a cryptographic device with adapter ID 0x04 to "not
configured", issue:

Chapter 49. Generic cryptographic device driver 503

echo 0 > /sys/bus/ap/devices/card04/config

– To check the LPAR configuration status of the cryptographic device with adapter ID 0x04, issue:

cat /sys/bus/ap/devices/card04/config
0

The value is 1 if the device is configured or 0 otherwise.

Alternatively, use the lszcrypt command to display the status.

lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
...
04 CEX7A Accelerator deconfig 0
04.0011 CEX7A Accelerator deconfig 0
04.0036 CEX7A Accelerator deconfig 0
...

Status deconfig indicates that the device is not configured for the LPAR.

What to do next
For configured cryptographic devices, you can now set the device and any associated AP queues online in
Linux, see “Setting devices online or offline” on page 504.

Setting devices online or offline
Use the chzcrypt command to set cryptographic devices online or offline.

Before you begin
A cryptographic device must be configured for the LPAR before you can set the device or any associated
AP queues online in Linux, see “Setting the LPAR configuration status” on page 503. For information about
the dependencies between the LPAR configuration status and the online status of an AP queue, see “AP
queue status overview” on page 492.

Procedure
• Preferably, use the chzcrypt command with the -e option to set cryptographic devices and AP

queues online, or use the -d option to set devices offline.

Examples:

– To set cryptographic devices (in decimal notation) 0, 1, 4, 5, and 12 online issue:

chzcrypt -e 0 1 4 5 12

– To set all available cryptographic devices and their associated AP queues offline issue:

chzcrypt -d -a

For more information about chzcrypt, see “chzcrypt - Modify the zcrypt configuration” on page 581.
• Alternatively, write 1 to the online sysfs attribute of a cryptographic device to set the device online,

or write 0 to set the device offline.

Examples:

– To set a cryptographic device with device ID 0x3e online issue:

echo 1 > /sys/bus/ap/devices/card3e/online

504 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

– To set a cryptographic device with device ID 0x3e offline issue:

echo 0 > /sys/bus/ap/devices/card3e/online

– To check the online status of the cryptographic device with device ID 0x3e issue:

cat /sys/bus/ap/devices/card3e/online

The value is 1 if the device is online or 0 otherwise.

Setting the polling thread
For Linux on z/VM, enabling the polling thread can improve cryptographic performance.

About this task
Linux in LPAR mode supports AP interrupts that indicate the completion of cryptographic requests. See
“Using AP adapter interrupts” on page 506. If AP interrupts are available, it is not possible to activate
the polling thread.

The cryptographic device driver can run with or without the polling thread. When it runs with the polling
thread, one processor constantly polls the cryptographic cards for finished cryptographic requests while
requests are being processed. The polling thread sleeps when no cryptographic requests are being
processed. This mode uses the cryptographic cards as much as possible, at the cost of blocking one
processor during cryptographic operations.

Without the polling thread, the cryptographic cards are polled at a much lower rate. The lower rate results
in higher latency and reduced throughput for cryptographic requests, but without a noticeable processor
load.

Procedure
• Use the chzcrypt command to set the polling thread.

Examples:

– To activate the polling thread issue:

chzcrypt -p

– To deactivate the polling thread issue:

chzcrypt -n

For more information about chzcrypt, see “chzcrypt - Modify the zcrypt configuration” on page 581.
• Alternatively, you can set the polling thread through the poll_thread sysfs attribute.

This read-write attribute can be found at the AP bus level.

Examples:

– To activate the polling thread issue:

echo 1 > /sys/bus/ap/poll_thread

– To deactivate the polling thread issue:

echo 0 > /sys/bus/ap/poll_thread

Chapter 49. Generic cryptographic device driver 505

Using AP adapter interrupts
To improve cryptographic performance for Linux instances that run in LPAR mode, use AP interrupts.

About this task
Using AP interrupts instead of the polling thread frees one processor while cryptographic requests are
processed.

During module initialization, the cryptographic device driver checks whether AP adapter interrupts are
supported by the hardware. If so, polling is disabled and the interrupt mechanism is automatically used.

To query whether AP adapter interrupts are used, read the sysfs attribute interrupt of the device.
Another interrupt attribute at the AP bus level, /sys/bus/ap/ap_interrupts, indicates that the AP
bus is able to handle interrupts.

Example

To read the interrupt attribute for a device 0x3e, issue:

cat /sys/bus/ap/devices/card3e/interrupt

If interrupts are used, the attribute shows "Interrupts enabled", otherwise "Interrupts disabled".

Setting the polling interval
Request polling is supported at nanosecond intervals.

Procedure
• Use the lszcrypt and chzcrypt commands to read and set the polling time.

Examples:

– To find out the current polling time, issue:

lszcrypt -b
...
poll_timeout=250000 (nanoseconds)

– To set the polling time to 1 microsecond, issue:

chzcrypt -t 1000

For more information about lszcrypt and chzcrypt, see “lszcrypt - Display zcrypt devices” on page
676 and “chzcrypt - Modify the zcrypt configuration” on page 581.

• Alternatively, you can set the polling time through the poll_timeout sysfs attribute. This read-write
attribute can be found at the AP bus level.

Examples:

– To read the poll_timeout attribute for the ap bus issue:

cat /sys/bus/ap/poll_timeout

– To set the poll_timeout attribute for the ap bus to poll, for example, every microsecond, issue:

echo 1000 > /sys/bus/ap/poll_timeout

506 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Dynamically adding and removing cryptographic adapters
You can add or remove cryptographic adapters from a running Linux instance.

Before you begin
For z/VM or KVM guests, your hypervisor version must support dynamic adding and removing of
cryptographic adapters.

About this task
Linux attempts to detect new cryptographic adapters and set them online every time a configuration timer
expires. Read or modify the expiration time with the lszcrypt and chzcrypt commands.

For more information about lszcrypt and chzcrypt, see “lszcrypt - Display zcrypt devices” on page
676 and “chzcrypt - Modify the zcrypt configuration” on page 581.

Adding or removing of cryptographic adapters to or from an LPAR is transparent to applications that
use clear key functions. If a cryptographic adapter is removed while cryptographic requests are being
processed, zcrypt automatically resubmits lost requests to the remaining adapters. Special handling is
required for secure key.

Secure key requests are submitted to a dedicated cryptographic coprocessor. If this coprocessor is
removed or lost, new requests cannot be submitted to a different coprocessor. Therefore, dynamically
adding and removing adapters with a secure key application requires support within the application. For
more information about secure key cryptography, see Secure Key Solution with the Common Cryptographic
Architecture Application Programmer's Guide, SC33-8294. You can obtain this publication at ibm.com/
docs/en/linux-on-systems?topic=overview-secure-key-solution-cca-application-programmers-guide.

Alternatively, you can read or set the configuration timer through the config_time sysfs attribute. This
read-write attribute can be found at the AP bus level. Valid values for the config_time sysfs attribute
are in the range 5 - 120 seconds.

For the secure key cryptographic functions on EP11 coprocessors, see Exploiting Enterprise PKCS #11
using openCryptoki, SC34-2713. You can obtain this publication at ibm.com/docs/en/linux-on-systems?
topic=security-cryptographic-hardware-support

Procedure
You can work with cryptographic adapters in the following ways:
• Add or remove cryptographic adapters by using the SE or HMC.

After the configuration timer expires, the cryptographic adapter is added to or removed from Linux,
and the corresponding sysfs entries are created or deleted.

• Enable or disable a cryptographic adapter by using the chzcrypt command.
The cryptographic adapter is only set online or offline in sysfs. The sysfs entries for the cryptographic
adapter are retained. Use the lszcrypt command to check the results of the chzcrypt command.

Examples

• To use the lszcrypt and chzcrypt commands to find out the current configuration timer setting,
issue:

lszcrypt -b
...
config_time=30 (seconds)
...

In the example, the timer is set to 30 seconds.
• To set the configuration timer to 60 seconds, issue:

Chapter 49. Generic cryptographic device driver 507

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_cca.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html

chzcrypt -c 60

To use sysfs to find out the current configuration timer setting, issue:

• To read the configuration timer setting, issue:

cat /sys/bus/ap/config_time

• To set the configuration timer to 60 seconds, issue:

echo 60 > /sys/bus/ap/config_time

Freeing AP queues for KVM guests
By default, the zcrypt device driver controls all AP queues on a Linux instance. Free AP queues from zcrypt
to make them available to alternative device drivers, such as vfio_ap. The vfio_ap device driver controls AP
queues on behalf of KVM guests. While vfio_ap is the only eligible alternative device driver, freeing an AP
queue from zcrypt makes it available to vfio_ap.

Before you begin
Free AP queues only if your Linux instance is a KVM host that needs to provide these AP queues to its KVM
guests (see Chapter 48, “Setting up a KVM host for VFIO pass-through,” on page 475).

Attention:

Do not change the settings for adapters or domains that are in use or reserved for another
exploiter. In particular, do not bring already freed adapters or queues back under control of the
zcrypt device driver while they are assigned to a KVM guest.

About this task
Two masks rule which AP queues are controlled by the zcrypt device driver and which are available to
alternative device drivers, such as vfio_ap.

Adapter mask
The adapter mask is a 256-bit value, each bit representing a cryptographic adapter. The leftmost
bit represents the adapter with ID 0x00. In sysfs, the mask is available as the value of
attribute /sys/bus/ap/apmask. If an adapter bit is set to 0, all AP queues on this adapter are
available to alternative device drivers, across all domains.

Domain mask
The domain mask is a 256-bit value, each bit representing a cryptographic domain. The leftmost
bit represents the domain with ID 0x0000. In sysfs, the mask is available as the value of
attribute /sys/bus/ap/aqmask. If a domain bit is set to 0, all AP queues with this domain are
available to alternative device drivers, across all adapters.

The sysfs representation of both masks is a big-endian, 64-bit, hexadecimal value. For example

• For an adapter mask 0x8000..., the bit for adapter 0x00 is 1 and all others are 0.
• For a adapter mask 0xFF00..., bits for adapters 0x00 to 0x07 are 1 and all others are 0.

zcrypt controls all AP queues for which both the adapter bit and the domain bit are set to 1. The default
for both masks is 1 for all bits. Hence, the default value for both masks in sysfs is
0xff and zcrypt is
the default device driver for all AP queues. To free an AP queue for alternative device drivers, the
corresponding adapter bit, or the corresponding domain bit, or both must be set to 0.

You can use kernel parameters (see “Kernel parameters” on page 493) to set the mask. On a running
Linux instance, you can write to the respective sysfs attribute to change the masks.

508 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Use the following methods to change a mask on a running Linux instance.
• Write a new mask value to the sysfs attribute.

You can write a 1 - 64-digit hexadecimal number to the respective sysfs attribute to replace the mask.
If fewer than 64 digits are specified, the number is padded with 0s on the right.

Examples:

– To set the bit for the adapters with ID 0x00 and 0x01 to 0 and all other bits to 1, issue the following
command:

echo 0x3fff > /sys/bus/ap/apmask

– To set the bit for the domains with ID 0x0000 and 0x0001 to 1 and all other bits to 0, issue the
following command:

echo 0xc > /sys/bus/ap/aqmask

• Set an individual bit value.

You can set an individual bit by specifying the bit-number, counting from the left, with one of the
following prefixes:
-

The minus sign (-) sets the bit to 0.
+

The plus sign (+) sets the bit to 1.
Bit numbers can be in decimal or hexadecimal notation. Hexadecimal numbers must be prefixed with
0x.

Examples:

– To set the bit for the adapter with ID 0x01 to 0, issue the following command:

echo -1 > /sys/bus/ap/apmask

– To set the bit for the domain with ID 0x000a to 1, issue the following command:

echo +10 > /sys/bus/ap/aqmask

The following equivalent command uses hexadecimal notation:

echo +0xa > /sys/bus/ap/aqmask

Note: Do not omit the leading plus (+) or minus (-) sign. Plain numbers that can be interpreted as
hexadecimal values replace the entire mask, even if they are specified without the 0x prefix.

• Set a range of bit values.

Using the same prefixes as for individual bits, you can specify a range of bit-numbers to set all bits in
the range to the same value. Specify a range by specifying the bit numbers of the first and last bit in the
range, separated by a hyphen (-).

Examples:

– To set the bit for the adapters with IDs 0x00, 0x01, 0x02, and 0x03 to 0, issue the following
command:

echo -0-3 > /sys/bus/ap/apmask

– To set the bit for the domains with ID 0x0008, 0x0009, 0x000a, 0x000b, and 0x000c to 1, issue
the following command:

Chapter 49. Generic cryptographic device driver 509

echo +8-12 > /sys/bus/ap/aqmask

The following equivalent command uses hexadecimal notation:

echo +0x8-0xc > /sys/bus/ap/aqmask

– To set all domains to 0 issue:

echo -0-255 > /sys/bus/ap/aqmask

This command is equivalent to the following hexadecimal notation:

echo -0x0-0xff > /sys/bus/ap/aqmask

The same results can be achieved by replacing the entire mask with 0s with the following command:

echo 0x0 > /sys/bus/ap/aqmask

• Set multiple bits and bit ranges with a single command.

You can set multiple bits and bit ranges with the same command, by using a comma-separated list
of specifications for individual bits and ranges. The expressions are processed individually from left to
right.

Examples:

– To set the bit for the adapters with IDs 0x00 to 0, the range from 0x01 to 0x03 to 1, and 0x0a to 1
issue:

echo -0,+1-3,+10 > /sys/bus/ap/apmask

The following equivalent command uses hexadecimal notation:

echo -0x0,+0x1-0x3,+0xa > /sys/bus/ap/apmask

This command is equivalent to the following sequence of commands:

echo -0 > /sys/bus/ap/apmask
echo +1-3 > /sys/bus/ap/apmask
echo +10 > /sys/bus/ap/apmask

– To first set the bits for all domains to zero, then set the range 0x0010 to 0x001f to 1, and then set
0x0014 to 0, issue the following command:

echo -0-255,+16-31,-20 > /sys/bus/ap/aqmask

The following equivalent command uses hexadecimal notation:

echo -0x0-0xff,+0x10-1f,-0x14 > /sys/bus/ap/aqmask

This command is equivalent to the following sequence of commands:

echo -0-255 > /sys/bus/ap/aqmask
echo +16-31 > /sys/bus/ap/aqmask
echo -20 > /sys/bus/ap/aqmask

The resulting bit mask can be read from the sysfs attribute:

cat /sys/bus/ap/aqmask
0x0000f7ff00

510 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Results
You can check your results by reading the masks from the sysfs attributes. In the following example,
adapter 0x01, across all domains, and domains 0x0001 and 0x0002, across all adapters, are ignored by
the zcrypt device driver and thus, free for alternative device drivers.

cat /sys/bus/ap/apmask
0xbfff
cat /sys/bus/ap/aqmask
0x9fff

External programming interfaces
Applications can directly access the zcrypt device driver through an API.

Programmers: This information is intended for those who want to program against the cryptographic
device driver or against the available cryptographic libraries.

For information about the library APIs, see the following files in the corresponding development
packages:

• The libica library /usr/include/ica_api.h. This file is available after the installation of the libica-
dev package:

 # apt install libica-dev

• The openCryptoki library /usr/include/opencryptoki/pkcs11.h This file is available after
installing the libopencryptoki-dev package:

dpkg -L libopencryptoki-dev

• The EP11 library /usr/include/ep11-host-devel/ep11.h and /usr/include/ep11-host-
devel/ep11adm.h. These files are available after installing the libep11-dev package:

dpkg -L libep11-dev

• The CCA library /opt/IBM/<prod>/include/csulincl.h, where <prod> is specific to the particular
hardware product.

Clear key cryptographic functions
The libica library provides a C API to clear-key cryptographic functions that are supported by IBM Z
hardware. You can configure both openCryptoki (by using the icatoken) and openssl (by using the ibmca
engine) to use IBM Z clear-key cryptographic hardware support through libica. See libica Programmer's
Reference, SC34-2602 for details about the libica functions.

If you must circumvent libica and access the zcrypt device driver directly, your user space program
must open the z90crypt device node, and submit the cryptographic request with an IOCTL. The IOCTL
subfunction ICARSAMODEXPO performs RSA modular exponent encryption and decryption. The IOCTL
ICARSACRT performs RSA CRT decryption. See the cryptographic device driver header file in the Linux
source tree:
/usr/include/s390x-linux-gnu/asm/zcrypt.h

Secure key cryptographic functions
To use secure key cryptographic functions in your user space program by accessing an EP11 coprocessor
adapter, see Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713. You can obtain it at
ibm.com/docs/en/linux-on-systems?topic=security-cryptographic-hardware-support

Chapter 49. Generic cryptographic device driver 511

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/sec_hw_supp.html

Reading true random numbers
To read true random numbers, a user space program must open the hwrng device and read as many
bytes as needed from the device.

Tip: Using the output of the hwrng device to periodically reseed a pseudo-random number generator
might be an efficient use of the random numbers.

AP bus and zcrypt uevents
The AP bus and the zcrypt device driver generate uevents.

Application programmers: This information is intended for programmers or system administrators
who want to act on changes related to the cryptographic adapters. For example, this information is
helpful when writing a udev rule to unlock an encrypted device with a key that depends on a specific
cryptographic resource.

Table 66 on page 512 summarizes the uevents that are generated by the AP bus, and Table 67 on
page 515 those that are generated by the zcrypt device driver. The uevents include one or more
zcrypt-specific properties, see “Properties” on page 515.

Table 66. AP bus uevents

Uevent Example

An ADD uevent is generated
for each cryptographic
adapter when the AP card
device struct is registered at
the Linux device model.

KERNEL[133.856730] add /devices/ap/card00 (ap)
ACTION=add
DEVPATH=/devices/ap/card00
SUBSYSTEM=ap
DEVTYPE=ap_card
DEV_TYPE=000C
MODALIAS=ap:t0C
MODE=accel
SEQNUM=14752

An ADD uevent is generated
for each AP queue when
the AP queue device struct
is registered at the Linux
device model.

KERNEL[133.856916] add /devices/ap/card00/00.0011 (ap)
ACTION=add
DEVPATH=/devices/ap/card00/00.0011
SUBSYSTEM=ap
DEVTYPE=ap_queue
MODE=accel
SEQNUM=14753

A BIND uevent is generated
for each cryptographic
adapter when the AP card
device is bound to a device
driver.

KERNEL[133.889983] bind /devices/ap/card00 (ap)
ACTION=bind
DEVPATH=/devices/ap/card00
SUBSYSTEM=ap
DEVTYPE=ap_card
DRIVER=cex4card
DEV_TYPE=000C
MODALIAS=ap:t0C
MODE=accel
SEQNUM=14801

A BIND uevent is generated
for each AP queue when the
AP queue device is bound to
a device driver.

KERNEL[133.894060] bind /devices/ap/card00/00.0011 (ap)
ACTION=bind
DEVPATH=/devices/ap/card00/00.0011
SUBSYSTEM=ap
DEVTYPE=ap_queue
DRIVER=cex4queue
MODE=accel
SEQNUM=14818

512 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 66. AP bus uevents (continued)

Uevent Example

A CHANGE uevent is
generated when the first AP
bus scan is complete. This
uevent indicates that all AP
devices have been detected
and are represented in
sysfs.

The AP devices might still
require bindings to the
appropriate zcrypt device
drivers to become usable to
user space.

KERNEL[133.888562] change /devices/ap (ap)
ACTION=change
DEVPATH=/devices/ap
SUBSYSTEM=ap
INITSCAN=done
SEQNUM=14800

A CHANGE uevent is
generated when all AP
devices are bound to device
drivers.

This event can recur, for
example, in response to
user space actions that
change driver bindings
through unbind or rebind.
The uevent is then
generated when all device
driver bindings are, again,
complete.

The COMPLETECOUNT
property shows how often
this uevent has occurred.

KERNEL[133.899708] change /devices/ap (ap)
ACTION=change
DEVPATH=/devices/ap
SUBSYSTEM=ap
BINDINGS=complete
COMPLETECOUNT=1
SEQNUM=14849

An UNBIND uevent
is generated for each
cryptographic adapter when
the AP card device is
unbound from its device
driver.

KERNEL[1915.351494] unbind /devices/ap/card00 (ap)
ACTION=unbind
DEVPATH=/devices/ap/card00
SUBSYSTEM=ap
DEVTYPE=ap_card
DEV_TYPE=000C
MODE=accel
SEQNUM=14930

An UNBIND uevent is
generated for each AP
queue when the AP queue
device is unbound from its
device driver.

KERNEL[11648.474687] unbind /devices/ap/card0a/0a.0036 (ap)
ACTION=unbind
DEVPATH=/devices/ap/card0a/0a.0036
SUBSYSTEM=ap
DEVTYPE=ap_queue
MODE=ep11
SEQNUM=14865

A REMOVE uevent is
generated for each
cryptographic adapter when
the AP card device struct
is unregistered at the Linux
device model.

KERNEL[3193.308746] remove /devices/ap/card02 (ap)
ACTION=remove
DEVPATH=/devices/ap/card02
SUBSYSTEM=ap
DEVTYPE=ap_card
DEV_TYPE=000C
MODALIAS=ap:t0C
MODE=cca
SEQNUM=14936

Chapter 49. Generic cryptographic device driver 513

Table 66. AP bus uevents (continued)

Uevent Example

A REMOVE uevent is
generated for each AP
queue when the AP queue
device struct is unregistered
at the Linux device model.

KERNEL[3193.308372] remove /devices/ap/card02/02.0036 (ap)
ACTION=remove
DEVPATH=/devices/ap/card02/02.0036
SUBSYSTEM=ap
DEVTYPE=ap_queue
DEV_TYPE=000C
MODALIAS=ap:t0C
MODE=ep11
SEQNUM=14934

A CHANGE uevent is
generated for each
cryptographic adapter when
the configuration state of
the adapter changes.

The configuration state can
change when the adapter
is switched between
"Candidate" and "Candidate
and Online" on the SE
panel that shows the
cryptographic resources of
an LPAR.

The configuration state can
also be changed from
Linux, see “AP queue status
overview” on page 492.

The property field CONFIG
shows the new configuration
state of the adapter (0 or 1).

KERNEL[89.321715] change /devices/ap/card0f (ap)
ACTION=change
DEVPATH=/devices/ap/card0f
SUBSYSTEM=ap
CONFIG=1
DEVTYPE=ap_card
DRIVER=cex4card
DEV_TYPE=000D
MODALIAS=ap:t0D
MODE=cca
SEQNUM=14949

A CHANGE uevent is
generated for each
AP queue when the
configuration state of the
adapter changes. The
property field CONFIG
shows the new configuration
state of the queue (0 or 1).

KERNEL[89.358270] change /devices/ap/card0f/0f.0011 (ap)
ACTION=change
DEVPATH=/devices/ap/card0f/0f.0011
SUBSYSTEM=ap
CONFIG=0
DEVTYPE=ap_queue
DRIVER=cex4queue
MODE=cca
SEQNUM=14950

514 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 67. zcrypt device driver uevents

Uevent Example

A CHANGE uevent is
generated when the online
state, within Linux, of
a cryptographic adapter
changes.

The online state can
be changed through the
online sysfs attribute of
the card device.

An adapter can also be
set offline in response
to failures being detected
within the zcrypt device
driver.

The property field ONLINE
shows the new online state
of the adapter (0 or 1).

KERNEL[1463.711604] change /devices/ap/card0f (ap)
ACTION=change
DEVPATH=/devices/ap/card0f
SUBSYSTEM=ap
ONLINE=0
DEVTYPE=ap_card
DRIVER=cex4card
DEV_TYPE=000D
MODALIAS=ap:t0D
MODE=cca
SEQNUM=14955

A CHANGE uevent is
generated when the online
state, within Linux, of an AP
queue changes.

The online state can
be changed through the
online sysfs attribute of
the AP queue device.

An AP queue can also
be set offline in response
to failures being detected
within the zcrypt device
driver.

The property field ONLINE
shows the new online state
of the AP queue (0 or 1).

KERNEL[1463.712387] change /devices/ap/card0f/0f.0036 (ap)
ACTION=change
DEVPATH=/devices/ap/card0f/0f.0036
SUBSYSTEM=ap
ONLINE=1
DEVTYPE=ap_queue
DRIVER=cex4queue
MODE=cca
SEQNUM=14957

Properties
The following properties are specific to zcrypt:
COMPLETECOUNT

The bindings complete counter. For the first bindings complete uevent its value is 1. The value is then
incremented with each subsequent bindings complete uevent.

CONFIG
The new configuration state, 0 or 1, for an adapter or AP queue.

DEVPATH
The path to the device representation in sysfs. This path does not include the sysfs mount point,
which is usually /sys.

DEVTYPE
Indicates whether the uevent is for an adapter (ap_card) or for an AP queue (ap_queue).

Chapter 49. Generic cryptographic device driver 515

DEV_TYPE
The device type as a 4-digit hexadecimal value.

DRIVER
The device driver module that is bound to or unbound from the AP device, for example, cex4card,
cex4queue, or vfio_ap.

INITSCAN
Indication that the initial AP bus scan is complete. The value is always "done".

MODALIAS: ap:t<xx>
The module alias of the AP device, where <xx> is a two-digit hexadecimal value for the mapped device
type.

MODE
The mode of operation of the adapter or AP queue:
accel

for cryptographic accelerator mode.
ep11

for EP11 coprocessor mode.
cca

for CCA coprocessor mode.
ONLINE

The online state, within Linux, of the adapter or AP queue.
SUBSYSTEM

Identifier for the AP subsystem. The value is always "ap".

516 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 50. Pseudorandom number generator device
driver

The pseudorandom number generator (PRNG) device driver provides user-space applications with
pseudorandom numbers that are generated by the IBM Z CP Assist for Cryptographic Function (CPACF).

The PRNG device driver supports the Deterministic Random Bit Generator (DRBG) requirements that
are defined in NIST Special Publication 800-90/90A. The device driver uses the SHA-512 based DRBG
mechanism.

If prerequisites for the SHA-512 based DRBG are not fulfilled, the device driver uses the Triple Data
Encryption Standard (TDES) algorithm instead. In TDES mode, the PRNG device driver uses a DRBG in
compliance with ANSI X9.17 based on the TDES cipher algorithm. You can force the fallback to TDES
mode by using the mode=1 module parameter.

Terminology hint: Various abbreviations are commonly used for Triple Data Encryption Standard, for
example: TDES, triple DES, 3DES, and TDEA.

User-space programs access the PRNG device through a device node, /dev/prandom. Ubuntu Server
22.04 LTS provides udev to create it for you.

By default, the random data for seeding and reseeding the PRNG is supplied by the TRNG (see Chapter
51, “True random-number generator device driver,” on page 521). If the TRNG is unavailable, the PRNG
uses an approved algorithm to derive random data from the jitter of the high-precision, built-in real-time
clock of the Z hardware.

Loading and configuring the PRNG device driver
In Ubuntu Server 22.04 LTS the device driver is compiled as a module and is normally loaded
automatically. If needed, you can load it manually with modprobe prng.

Module parameter syntax

modprobe prng
mode=0

mode= 1

2

chunksize=256

chunksize=  <sizeparam>

reseed_limit=100000

reseed_limit=  <reseedparam>

where:
mode=

specifies the mode in which the device driver runs:
0

Default. In this mode, the device driver automatically detects the MSA extension level and feature
enablement. The device driver runs in SHA512 mode if the requirements are fulfilled, otherwise it
falls back to TDES mode.

1
forces the device driver to run in TDES mode. The device driver starts only if the requirements for
TDES mode are fulfilled.

© Copyright IBM Corp. 2000, 2023 517

2
forces the device driver to run in SHA512 mode. The device driver starts only if the requirements
for SHA512 mode are fulfilled. The device driver does not fall back to TDES mode.

<sizeparam>
adjusts the random-buffer block size that the device driver uses to generate new random bytes. In
TDES mode, this value can be in the range 8 - 65536, for SHA512 mode, the rangespieg is 64 - 65536.
The default is 256 bytes.

<reseedparam>
adjusts the reseed limit in SHA512 mode. Multiply this value with the chunksize to obtain the reseed
boundary in bytes. The value can be in the range 10000 - 100000. The default is 100000. In TDES
mode, the reseed limit is a constant value of 4096 bytes.

The defaults were chosen for good results with most workloads. Changing these settings might degrade
cryptographic performance.

Working with the PRNG device driver
Read random numbers and control the settings of the PRNG device driver.

Tasks include:

• “Reading pseudorandom numbers” on page 518
• “Displaying PRNG information” on page 518
• “Reseeding the PRNG” on page 520
• “Setting the reseed limit” on page 519

Reading pseudorandom numbers
The pseudo-random number device is read-only. Use the read function, cat program, or dd program to
obtain random numbers.

Example
In this example bs specifies the block size in bytes for transfer, and count specifies the number of
records with block size. The bytes are written to the output file.

dd if=/dev/prandom of=<output file name> bs=<xxxx> count=<nnnn>

Displaying PRNG information
Read the attributes of the prandom device in sysfs.

About this task
The sysfs representation of a PRNG device is a directory: /sys/devices/virtual/misc/prandom.
This sysfs directory contains a number of attributes with information about the device.

Table 68. Attributes with PRNG information

Attribute Explanation

chunksize The size, in bytes, of the random-data bytes buffer that is used to generate new random
numbers. The value can be in the range 64 bytes - 64 KB. The default is 256 bytes. It is
rounded up to the next 64-byte boundary and can be adjusted as a module parameter
when you start the module.

byte_counter The number of random bytes generated since the PRNG device driver was started. You
can reset this value only by removing and reloading the kernel module, or rebooting
Linux (if PRNG was compiled into the kernel). This attribute is read-only.

518 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 68. Attributes with PRNG information (continued)

Attribute Explanation

errorflag SHA512 mode only: 0 if the PRNG device driver is instantiated and running well. Any
other value indicates a problem. If there is an error indication other than 0:

• The DRBG does not provide random data bytes to user space
• The read() function fails
• The error code errno is set to EPIPE (broken pipe)

This attribute is read-only.

mode SHA512 if the PRNG device driver runs in SHA512 mode, TDES if the PRNG device driver
runs in TDES mode. This attribute is read-only.

reseed SHA512 mode only: An integer, writable only by root. Write any integer to this attribute
to trigger an immediate reseed of the PRNG. See “Reseeding the PRNG” on page 520.

reseed_limit SHA512 mode only: An integer, writable only by root to query or set the reseed counter
limit. Valid values are in the range 10000 - 100000. The default is 100000. See “Setting
the reseed limit” on page 519.

strength SHA512 mode only: A read-only integer that shows the security strength according to
NIST SP800-57. Returns the integer value of 256 in SHA512 mode.

Procedure
Issue a command of this form to read an attribute:

cat /sys/devices/virtual/misc/prandom/<attribute>

where <attribute> is one of the attributes of Table 68 on page 518.

Example

This example shows a prandom device that is running in SHA512 mode, set to reseed after 2.56 MB:

cat /sys/devices/virtual/misc/prandom/chunksize
256
cat /sys/devices/virtual/misc/prandom/mode
2
cat /sys/devices/virtual/misc/prandom/reseed_limit
10000

Setting the reseed limit
The PRNG reseeds after chunksize × reseed_limit bytes are read. By default, 100000 × 256 ≈ 25.6
MB can be read before an automatic reseed occurs.

Procedure
To set the number of times a chunksize amount of random data can be read from the PRNG before
reseeding, write the number to the reseed_limit attribute.
For example:

echo 10000 > /sys/devices/virtual/misc/prandom/reseed_limit

The reseed_limit value must be in the range 10000 - 100000.

Chapter 50. Pseudorandom number generator device driver 519

Reseeding the PRNG
You can force a reseed by writing to the reseed attribute.

Procedure
To reseed the PRNG, write an integer to its reseed attribute:

echo 1 > /sys/devices/virtual/misc/prandom/reseed

Writing any integer value to this attribute triggers an immediate reseed of the PRNG instance.

520 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 51. True random-number generator device
driver

The true random number generator (TRNG) device driver provides user-space applications with random
data generated from the IBM Z hardware CPACF true random source.

The TRNG device is designed to provide high-quality random data for sensitive operations. This random
data can be the base for cryptographic key generation or for seeding a pseudorandom number generator.
The device is not intended to provide mass random data, for example, for overwriting disks.

Setting up the TRNG device driver
The true random-number generator is compiled as a separate module. To use it, load the module.

The true random-number generator requires Message-Security-Assist Extension 7 (MSA 7), which is
available as of the IBM z14. During initialization of the TRNG kernel module the device driver checks for
the prerequisite. If the prerequisite is not fulfilled, the device driver silently exits.

The TRNG device driver module registers itself to the CPU feature MSA. The device driver is then loaded
automatically. However, you can activate the TRNG device driver manually with the command:

modprobe s390_trng

There are no module parameters for the TRNG device driver.

Device nodes for random data
The true random-number generator device driver provides two interfaces to user space applications: the
device node /dev/trng for direct access, and the generic device node /dev/hwrng.

The /dev/hwrng node appears when the TRNG or another source of random data registers with the
hwrng device driver. If both the TRNG and a CCA coprocessor are registered, the TRNG takes precedence.

As of the z14, the kernel random device driver also uses the CPACF TRNG true random source through the
arch_get_random_seed_* functions. The kernel random device driver provides two device nodes, /dev/
random and /dev/urandom. The arch_get_random_seed_* functions require the CPACF TRNG.

Working with the TRNG device driver
Read random numbers and retrieve the counters of the TRNG device driver.

Tasks include:

• “Reading random numbers” on page 521
• “Displaying TRNG information” on page 522

Reading random numbers
The TRNG device is read-only. Use the read function, cat program, or dd program to obtain random
numbers.

Example
In this example bs specifies the block size in bytes for transfer, and count specifies the number of
records with block size. The bytes are written to the output file.

dd if=/dev/trng of=<output file name> bs=<xxxx> count=<nnnn>

© Copyright IBM Corp. 2000, 2023 521

Displaying TRNG information
Read the byte_counter attribute of the TRNG device in sysfs.

About this task
The sysfs representation of a TRNG device is a directory: /sys/devices/virtual/misc/trng. This
sysfs directory contains an attribute, byte_counter, with statistical data.

Procedure
Issue this command to read the byte_counter attribute:

cat /sys/devices/virtual/misc/trng/byte_counter

Example
To see statistics of a TRNG device, issue:

cat /sys/devices/virtual/misc/trng/byte_counter
trng: 6187
hwrng: 528
arch: 1319696
total: 1326411

Where:

trng
shows the number of bytes delivered through the /dev/trng device node.

hwrng
shows the bytes retrieved from the generic hw_rng device driver and contributed to /dev/hwrng.

arch
shows the amount of data that is supplied by the arch random implementation and delivered to the
random device driver device nodes /dev/random and /dev/urandom.

total
shows the sum of all bytes.

522 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 52. Protected key device driver
The protected key device driver provides functions for generating and verifying protected keys.

Protected keys are encrypted with wrapping keys that, for Linux in LPAR mode, are specific to the LPAR.
For guests of z/VM or KVM, the wrapping key is specific to the guest. Both the wrapping keys and the
clear key values of protected keys are invisible to the operating system. Protected keys are designed
for accelerated encryption and decryption with CPACF. For more information, see the chapter about
protected keys in z/Architecture Principles of Operation, SA22-7832.

Pervasive encryption uses protected keys for data-at-rest, see Pervasive Encryption for Data Volumes,
SC34-2782.

Functions
The device driver provides the following functions to cryptographic applications. The following secure key
functions require a Crypto Express adapter:

• Generate a random secure key, then generate a protected key from the secure key.

The secure key must be available to create a new version of the protected key whenever the current
protected key is invalidated.

• Generate a secure key from a clear key, then generate a protected key from the secure key.

The clear key must be in memory when the protected key is generated. Thereafter, the clear key can be
deleted.

The secure key must be available to create a new version of the protected key whenever the current
protected key is invalidated.

The following functions do not require a Crypto Express adapter:

• Generate a protected key from a clear key. The clear key must be in memory when the protected key is
generated.

The clear key must also be available to create a new protected key if the existing protected key is
invalidated.

• Generate a protected AES key from random data.

The effective clear key is never exposed in memory.

Important: The key is volatile and cannot be recreated if lost, for example during a reboot. Use a
protected key generated from random data only to protect transient data.

The device driver also provides an in-kernel interface to generate protected keys. This interface is used,
for example, by the paes_s390 module.

Prerequisites
The protected key device driver requires the message-security-assist-extension 3 facility (MSA level 3),
which was introduced with z196.

The protected key device driver requires permission for the AES key import functions. To grant this
permission, go to the security settings within the profile of the applicable LPAR on the HMC. In the CPACF
Key Management Operations section, select the Permit AES Key import functions option. For z/VM and
KVM guests, the LPAR in which the hypervisor runs requires this option.

Secure keys are encoded with a master key that is held in Crypto Express adapters. Functions that involve
secure keys require an IBM Crypto Express adapter in CCA coprocessor mode with a valid master key. For
Linux on z/VM, the adapter must be dedicated to the z/VM guest virtual machine.

Crypto Express adapters can provide the following types of secure keys:

© Copyright IBM Corp. 2000, 2023 523

CCA AES data secure key
Requires an IBM CEX4S or later adapter in CCA coprocessor mode.

CCA AES cipher secure key
Requires an IBM CEX6S or later adapter in CCA coprocessor mode.

CCA ECC secure key
Requires an IBM CEX7S or later adapter in CCA coprocessor mode.

EP11 AES secure key
Requires an IBM CEX7S adapter in EP11 coprocessor mode.

EP11 ECC secure key
Requires an IBM CEX7S adapter in EP11 coprocessor mode.

Device driver module
The protected key device driver is compiled as a separate module. Ubuntu Server loads the module
automatically during the boot process.

The pkey module has no module parameters.

Generating volatile protected keys by using the pkey device driver
You can generate protected keys from random data by reading the binary sysfs pkey attributes.

About this task
You do not need a Crypto Express adapter to generate a protected key from random data.

The /sys/devices/virtual/misc/pkey/protkey directory contains an attribute for each available
key type. Read an attribute to obtain a protected key token.

Procedure
Go to the protkey subdirectory. The following attributes are available:

• protkey_aes_128
• protkey_aes_192
• protkey_aes_256
• protkey_aes_128_xts
• protkey_aes_256_xts

When reading from an attribute, you receive exactly one protected-key token. That is, for non-XTS keys,
you get 80 bytes. For attributes related to the XTS cipher mode, you get two concatenated protected-key
tokens, that is, you get 160 bytes.

Important: Do not use protected keys that are generated from random data to encrypt persistent data.

Alternatively to sysfs, you can use the ioctl calls, see “External programming interfaces ” on page 526.

For secure key tokens, see “Generating secure keys using the pkey device driver” on page 524

Generating secure keys using the pkey device driver
The pkey device driver uses random data from an AP queue to generate secure keys.

Such keys can be used for example, for swap disks where you might want a new key to be generated at
every boot. Secure keys for this and other purposes can be read from secure key sysfs attributes.

Alternatively to sysfs, you can use the ioctl calls, see “External programming interfaces ” on page 526.

524 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Procedure
Read the sysfs attribute according to the required the type, length, and cipher mode of the key.
• For a CCA AES data secure key, read from one of the attributes in /sys/devices/virtual/misc/

pkey/ccadata. The following attributes are available:

– ccadata_aes_128
– ccadata_aes_192
– ccadata_aes_256
– ccadata_aes_128_xts
– ccadata_aes_256_xts

• For a CCA AES cipher secure key read from one of the attributes in /sys/devices/virtual/misc/
pkey/ccacipher. The following attributes are available:

– ccacipher_aes_128
– ccacipher_aes_192
– ccacipher_aes_256
– ccacipher_aes_128_xts
– ccacipher_aes_256_xts

• For an EP11 AES secure key read from one of the attributes /sys/devices/virtual/misc/pkey/
ep11. The following attributes are available:

– ep11_aes_128
– ep11_aes_192
– ep11_aes_256
– ep11_aes_128_xts
– ep11_aes_256_xts

Results
Attributes for non-XTS keys yield exactly one secure-key token. Attributes for XTS cipher mode yield two
concatenated secure-key tokens. The length of a token also varies by key type and length as summarized
in Table 69 on page 525.

Table 69. Length of the attribute values

Key type Attribute length non-XTS
(single key token)

Attribute length XTS (two key
tokens)

CCA AES data secure key 64 bytes 128 bytes

CCA AES cipher secure key 136 bytes 272 bytes

EP11 AES secure key 320 bytes 640 bytes

Setting up an encrypted swap disk
You can use a volatile protected key generated by the pkey device driver to encrypt a swap disk.

About this task
Because swap disks are discarded on reboot, volatile encryption keys are an option. You can generate
volatile protected keys or secure keys from random data.

Important: Use a protected key based on random data for cases where the key is not needed after a
reboot. In particular, do not use such a key in a guest that might be subject to:

Chapter 52. Protected key device driver 525

• KVM guest migration
• z/VM live guest relocation in a single system image (SSI)

Also, do not use such a key in any Linux instance that might be subject to:

• Suspend and resume

Procedure
1. Add an entry to /etc/crypttab. To encrypt the swap device using a protected key, the entry must

point to one of the sysfs attributes within the protkey directory. Use the attribute for the required key
type (see “Generating volatile protected keys by using the pkey device driver” on page 524).
For example:

<name> <device> <password> <options>
 swap /dev/dasdx /sys/devices/virtual/misc/pkey/protkey/protkey_aes_256_xts swap,\
 cipher=paes-xts-plain64,size=1280

The swap option causes an mkswap to be performed after the dm-crypt device is set up.

Tip: Consider adding the sector-size=4096 option to increase the performance of dm-crypt
encrypted disks with large block sizes.

2. Add an entry to /etc/fstab to use the device-mapper device swap as swap device:
For example:

<filesystem> <dir> <type> <options> <dump> <pass>
/dev/mapper/swap none swap defaults 0 0

Results
During system startup, /etc/crypttab is evaluated, the pkey kernel module is loaded, and a dm-
crypt device is set up in plain mode as a swap device, using protected key AES in XTS cipher
mode. The random protected AES key is read from /sys/devices/virtual/misc/pkey/protkey/
protkey_aes_256_xts. Its size is 2x80 bytes, which is 1280 bits.

Linux now runs with a swap device that is encrypted with a protected key.

External programming interfaces
Applications can use the protected key device driver through ioctls or corresponding kernel APIs.

Programmers: This information is intended for programmers of cryptographic applications who want to
use protected keys for accelerated cryptographic operations with CPACF.

Issue ioctls on the misc character device /dev/pkey to generate and handle protected keys. The
ioctl interface, including the required defines and structure definitions, is described in /usr/include/
s390x-linux-gnu/asm/pkey.h. Each ioctl has a matching kernel API that is also described in this file.

Table 70. ioctls of the protected key device driver

Name Structure passed Description

PKEY_GENSECK struct pkey_genseck Obtain a random CCA AES data secure key from
an AP queue. The secure key is encrypted with
the master key of the AP queue.

PKEY_GENSECK2 struct pkey_genseck2 Obtain a random secure key from an AP queue.
The secure key is encrypted with the master
key of the AP queue. Available key types are:
CCA AES data secure key, CCA AES cipher
secure key, and EP11 AES secure key.

526 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 70. ioctls of the protected key device driver (continued)

Name Structure passed Description

PKEY_CLR2SECK struct pkey_clr2seck Obtain a CCA AES data secure key from an
AP queue. The secure key is generated from
a specified clear key and encrypted with the
master key of the AP queue.

PKEY_CLR2SECK2 struct pkey_clr2seck2 Obtain a secure key from an AP queue. The
secure key is generated from a specified clear
key and encrypted with the master key of the
AP queue. Available key types are: CCA AES
data secure key, CCA AES cipher secure key,
and EP11 AES secure key.

PKEY_SEC2PROTK struct pkey_sec2protk Obtain a protected CCA AES data key from an
AP queue. The protected key is generated from
a specified secure key.

PKEY_CLR2PROTK struct pkey_clr2protk Obtain a protected key. The protected key is
generated from a specified clear key.

PKEY_FINDCARD struct pkey_findcard Find an AP queue that holds the applicable
master key for a specified CCA AES data secure
key.

PKEY_SKEY2PKEY struct pkey_skey2pkey Find an AP queue that holds the applicable
master key for a specified CCA AES data secure
key. Then use that AP queue to obtain a
protected key that is generated from the secure
key. This ioctl call combines PKEY_FINDCARD
and PKEY_SEC2PROTK.

PKEY_GENPROTKEY struct pkey_genprotk Generates a volatile protected key using pkey.

PKEY_VERIFYPROTKEY struct pkey_verifyprotk Verifies an AES protected key.

PKEY_VERIFYKEY2 struct pkey_verifykey2 Verifies a key blob and returns information
about the key. The key can be verified against
one specific AP queue. If no AP queue is
specified, all available queues are checked and
the ID of a queue is returned for which the key
is valid. The call ends with an error if the key is
not valid for the specified queue or if no queue
is available for which the key is valid.

PKEY_KBLOB2PKEY struct pkey_kblob2pkey Transforms a key blob of a protected key or of a
CCA AES data secure key into a protected key.

PKEY_KBLOB2PKEY2 struct pkey_kblob2pkey2 Transforms a key blob into a protected key. The
key blob can be for a protected key, a CCA AES
data secure key, a CCA AES cipher secure key,
or an EP11 AES secure key.

Chapter 52. Protected key device driver 527

Table 70. ioctls of the protected key device driver (continued)

Name Structure passed Description

PKEY_KBLOB2PROTK3 struct pkey_kblob2pkey3 Transforms a key blob into a protected key. The
key blob can be of a protected key or of one of
the following types:

• CCA AES data secure key
• CCA AES cipher secure key
• CCA ECC secure key
• EP11 AES secure key
• EP11 ECC secure key

PKEY_APQNS4K struct pkey_apqns4key Finds all available AP queues for which a
specified key blob is valid.

PKEY_APQNS4KT struct pkey_apqns4keytype Finds all available AP queues for which a
specified key type is valid for a particular
master key.

528 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 53. Hardware-accelerated in-kernel
cryptography

The Linux kernel implements cryptographic operations for kernel subsystems like dm-crypt and IPSec.
Applications can use these operations through the kernel cryptographic API.

In-kernel cryptographic and checksum operations can be performed by platform-specific
implementations instead of the generic implementations within the Linux kernel.
On IBM Z, hardware-accelerated processing is available for some of these operations.

Hardware dependencies and restrictions
The cryptographic operations that can be accelerated by hardware implementations depend on your
IBM Z hardware and mode of operating Ubuntu Server.

The following functions require a z14 or later:

• AES for GCM for 128-bit, 192-bit, and 256-bit keys
• SHA3-256 and SHA3-512

IBM z15 provides CPACF MSA9, including Edwards-curve DSA (Ed25519, Ed448), and Elliptic Curve DSA
(P-256, P-384, P-521).

CPACF dependencies
Hardware-acceleration for DES, TDES, AES, GHASH, PAES, and SHA requires the Central Processor Assist
for Cryptographic Function (CPACF). For information about enabling CPACF, see the documentation for
your IBM Z hardware.

Vector Extension Facility dependencies
Hardware-acceleration for CRC32 algorithms requires the Vector Extension Facility. Read the features
line from /proc/cpuinfo to find out whether this facility is available on your hardware.

Example:

grep features /proc/cpuinfo
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te vx sie

In the output line, vx indicates that the Vector Extension Facility is available.

FIPS restrictions of the hardware capabilities

If the kernel runs in Federal Information Processing Standard (FIPS) mode, only FIPS 140-2 approved
algorithms are available. DES, for example, is not approved by FIPS 140-2.

Read /proc/sys/crypto/fips_enabled to find out whether your kernel runs in FIPS mode.

Example:

cat /proc/sys/crypto/fips_enabled
0

The kernel of the example does not run in FIPS mode. Also, if the /proc/sys/crypto/fips_enabled
file does not exist, the kernel does not run in FIPS mode. For kernels that run in FIPS mode, the file exists
and the output of the command is 1.

© Copyright IBM Corp. 2000, 2023 529

You control the FIPS mode with the fips kernel parameter, see “fips - Run Linux in FIPS mode” on page
779.

For more information about FIPS, see csrc.nist.gov/publications/detail/fips/140/2/final.

For more information about FIPS and Ubuntu, see the Ubuntu Security Certifications at:

https://docs.ubuntu.com/security-certs/en

Support modules
Ubuntu Server 22.04 LTS automatically loads the modules that support the available hardware-
acceleration.

sha1_s390
enables hardware-acceleration for SHA-1 operations. sha1_s390 requires the sha_common module.

sha256_s390
enables hardware-acceleration for SHA-224 and SHA-256 operations. sha256_s390 requires the
sha_common module.

sha512_s390
enables hardware-acceleration for SHA-384 and SHA-512 operations. sha512_s390 requires the
sha_common module.

sha3_256_s390
enables hardware-acceleration for SHA3-224 and SHA3-256 operations. sha3_256_s390 requires
the sha_common module.

sha3_512_s390
enables hardware-acceleration for SHA3-384 and SHA3-512 operations. sha3_512_s390 requires
the sha_common module.

ghash_s390
enables hardware-acceleration for Galois hashes.

aes_s390
enables hardware-acceleration for AES encryption and decryption for the following modes of
operation:

• ECB, CBC, and CTR for key lengths 128, 192, and 256 bits
• XTS for key lengths 128 and 256 bits
• GCM for key lengths 128, 192, and 256 bits

des_s390
enables hardware-acceleration for DES and TDES for the following modes of operation: ECB, CBC, and
CTR.

crc32-vx_s390
enables hardware-acceleration for CRC-32 (IEEE 802.3 Ethernet) and CRC-32C (Castagnoli).

paes_s390
enables protected key AES encryption and decryption for the following modes of operation:

• ECB, CBC, and CTR for key lengths 128, 192, and 256 bits
• XTS for key lengths 128 and 256 bits

The paes_s390 kernel module includes a self test for each cipher that it provides. These self tests
run by default. As a prerequisite for a successful self test, at least one of the following conditions must
be met:

• The PCKMO instruction is enabled in the profile of the LPAR on which the Linux instance or its
hosting hypervisor runs. To enable the PCKMO instruction, select the Permit AES Key import
functions option in the CPACF Key Management Operations section.

• The Linux instance can access a cryptographic adapter in CCA coprocessor mode.

530 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://csrc.nist.gov/publications/detail/fips/140/2/final
https://docs.ubuntu.com/security-certs/en

• The Linux instance can access a cryptographic adapter in EP11 coprocessor mode.

The paes_s390 module requires the pkey device driver, see Chapter 52, “Protected key device
driver,” on page 523.

The module also requires a cryptographic adapter for creating and handling secure and protected
keys:

• To use CCA AES data or CCA AES cipher secure keys, the module requires a cryptographic adapter in
CCA coprocessor mode.

• To use EP11 secure keys, the module requires a cryptographic adapter in EP11 coprocessor mode.

The paes_390 module accepts key tokens of different types as key material, as produced by the pkey
driver:

• Secure key tokens. For secure key tokens, the module needs a CCA cryptographic adapter. For more
information about secure key tokens, see “Generating secure keys using the pkey device driver” on
page 524

• Protected key tokens from random data. No cryptographic adapter is needed. For more information
about protected key tokens from random data, see “Generating volatile protected keys by using the
pkey device driver” on page 524.

The ciphers in the paes_s390 module can work with CCA secure data keys and CCA secure cipher
keys, for example, keys that are generated by the pkey device driver. XTS requires two secure keys.

Before the paes_s390 module uses secure keys in a cipher, it transforms them into protected keys.
If a protected key becomes invalid, the paes_s390 module re-generates the protected key from the
secure key.

Mainframe hardware prior to z14: To use CPACF for AES-GCM operations, you must load both the
aes_s390 and ghash_s390 module.

Confirming hardware support for cryptographic operations
Read /proc/crypto to confirm that cryptographic operations are performed with hardware support.

Procedure
Read the driver lines from the content of /proc/crypto.

Example:

cat /proc/crypto | grep driver
driver : sha512-s390
driver : sha224-s390
driver : sha256-s390
driver : sha3-512-s390
driver : sha3-256-s390
driver : sha1-s390
driver : ghash-s390
...
driver : crc32c-vx
driver : crc32be-vx
driver : crc32-vx

Each line that ends in -s390 indicates hardware-acceleration for a corresponding algorithm or mode.
Lines that end in -vx indicate hardware-acceleration for CRC32 checksums.

Chapter 53. Hardware-accelerated in-kernel cryptography 531

532 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 54. Instruction execution protection
The instruction execution protection feature on IBM mainframes protects against data execution, similar
to the NX feature on other architectures.

Instruction execution protection prevents stack-overflow exploits and generally makes a system
insensitive to buffer-overflow attacks.

Data instruction protection is available on IBM mainframe hardware with the IEP feature. For Linux as a
guest of a hypervisor, the hypervisor must support and use the instruction execution protection feature.

Instruction execution protection is available to your Linux instance if the features line in /proc/cpuinfo
includes iep.

Setting up instruction execution protection
By default, Linux on IBM Z uses the instruction execution protection feature if it is available. You can use
the noexec kernel parameter to disable the feature in Linux.

Kernel parameter for instruction execution protection
noexec=on

noexec=off

If set to on, noexec enables instruction execution protection, this is the default. If set to off, noexec
disables instruction execution protection.

Controlling stack execution protection
To prevent stack-overflow exploits, the stack of a binary or shared library must be marked as not
executable.

About this task
Use the execstack command to set, clear, or query the executable stack flag of ELF binaries and shared
libraries (GNU_STACK). For details about execstack, see the man page.

Example

• Set and query the executable stack flag.

execstack -s /usr/bin/find
execstack -q /usr/bin/find
X /usr/bin/find

The leading X at the beginning of the query output line indicates that the stack is executable.

Hint: You can also use the readelf command to confirm that the stack can be executed.

readelf -a /usr/bin/find | grep GNU_STACK -A 1
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RWE 8

The RWE towards the end of the output line means read/write/execute. You can obtain the readelf
command as part of the binutils package. For command details, see the man page.

• Clear and query the executable stack flag.

© Copyright IBM Corp. 2000, 2023 533

execstack -c /usr/bin/find
execstack -q /usr/bin/find
- /usr/bin/find

The leading - at the beginning of the query output line indicates that the stack is not executable.

Hint: You can also use the readelf command to confirm that the stack cannot be executed.

readelf -a /usr/bin/find | grep GNU_STACK -A 1
GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000
0x0000000000000000 0x0000000000000000 RW 8

The RW towards the end of the output line means read/write, but not execute.

534 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 9. Performance measurement using hardware
facilities

The IBM Z hardware provides performance data that can be accessed by Linux on IBM Z.

Gathering performance data constitutes an additional load on the Linux instance on which the application
to be analyzed runs. Hardware support for data gathering can reduce the extra load and can yield more
accurate data.

For the performance measurement facilities of z/VM, see “Performance monitoring for z/VM guest virtual
machines” on page 405.

Other performance relevant information is provided in the context of the respective device driver or
feature. For example, see “Working with DASD statistics in debugfs” on page 152 for DASD performance
and “Displaying and resetting QETH performance statistics” on page 265 for qeth group devices.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 535

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

536 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 55. Channel measurement facility

LPAR and z/VM: The channel measurement facility is supported for Linux in LPAR mode and for Linux on
z/VM.

The IBM Z architecture provides a channel measurement facility to collect statistical data about I/O on
the channel subsystem.

Data collection can be enabled for all CCW devices. User space applications can access this data through
the sysfs.

The channel measurement facility provides the following features:

• Basic channel measurement format for concurrently collecting data on up to 4096 devices. (Specifying
4096 or more channels causes high memory consumption, and enabling data collection might not
succeed.)

• Extended channel measurement format for concurrently collecting data on an unlimited number of
devices.

• Data collection for all channel-attached devices, except those using QDIO (that is, except qeth and
SCSI-over-Fibre channel attached devices)

Setting up the channel measurement facility
Configure the channel measurement facility by adding parameters to the kernel parameter file.

You can configure the channel measurement facility by adding parameters to the kernel parameter file.

Channel measurement facility kernel parameters
cmf.format=-1

cmf.format= 0

1

cmf.maxchannels=1024

cmf.maxchannels=  <no_channels>

1

Notes:
1 If you specify both parameter=value pairs, separate them with a blank.

where:
cmf.format

defines the format, 0 for basic and 1 for extended, of the channel measurement blocks. The default,
-1, uses the extended format for z990 and later mainframes and the basic format for earlier
mainframes.

cmf.maxchannels=<no_channels>
limits the number of devices for which data measurement can be enabled concurrently with the
basic format. The maximum for <no_channels> is 4096. A warning will be printed if more than 4096
channels are specified. The channel measurement facility might still work; however, specifying more
than 4096 channels causes a high memory consumption.

For the extended format there is no limit and any value you specify is ignored.

Working with the channel measurement facility
Typical tasks that you need to perform when you work with the channel measurement facility is
controlling data collection and reading data.

© Copyright IBM Corp. 2000, 2023 537

Enabling, resetting, and switching off data collection
Control data collection through the cmb_enable sysfs attribute of the device.

Procedure
• To enable data collection, write 1 to the cmb_enable attribute. If data collection was already enabled,

writing 1 to the attribute resets all collected data to zero.

Issue a command of this form:

echo 1 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

where /sys/bus/ccw/devices/<device_bus_id> represents the device in sysfs.

When data collection is enabled for a device, a subdirectory /sys/bus/ccw/devices/
<device_bus_id>/cmf is created that contains several attributes. These attributes contain the
collected data (see “Reading data” on page 538).

• To switch off data collection issue a command of this form:

echo 0 > /sys/bus/ccw/devices/<device_bus_id>/cmb_enable

When data collection for a device is switched off, the subdirectory /sys/bus/ccw/devices/
<device_bus_id>/cmf and its content are deleted.

Example

In this example, data collection for a device /sys/bus/ccw/devices/0.0.b100 is already active and
reset:

cat /sys/bus/ccw/devices/0.0.b100/cmb_enable
1
echo 1 > /sys/bus/ccw/devices/0.0.b100/cmb_enable

Reading data
Read the sysfs attributes with collected I/O data, for example with the cat command.

Procedure
To read one of the attributes issue a command of this form:

cat /sys/bus/ccw/devices/<device_bus_id>/cmf/<attribute>

where /sys/bus/ccw/devices/<device_bus_id> is the directory that represents the device, and
<attribute> the attribute to be read. Table 71 on page 538 summarizes the available attributes.

Table 71. Attributes with collected I/O data

Attribute Value

ssch_rsch_count An integer that represents the ssch rsch count
value.

sample_count An integer that represents the sample count value.

avg_device_connect_time An integer that represents the average device
connect time, in nanoseconds, per sample.

avg_function_pending_time An integer that represents the average function
pending time, in nanoseconds, per sample.

538 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 71. Attributes with collected I/O data (continued)

Attribute Value

avg_device_disconnect_time An integer that represents the average device
disconnect time, in nanoseconds, per sample.

avg_control_unit_queuing_time An integer that represents the average control unit
queuing time, in nanoseconds, per sample.

avg_initial_command_response_time An integer that represents the average initial
command response time, in nanoseconds, per
sample.

avg_device_active_only_time An integer that represents the average device
active only time, in nanoseconds, per sample.

avg_device_busy_time An integer that represents the average value device
busy time, in nanoseconds, per sample.

avg_utilization A percent value that represents the fraction of time
that has been spent in device connect time plus
function pending time plus device disconnect time
during the measurement period.

avg_sample_interval An integer that represents the average time,
in nanoseconds, between two samples during
the measurement period. Can be "-1" if no
measurement data has been collected.

avg_initial_command_response_time An integer that represents the average time in
nanoseconds between the first command of a
channel program being sent to the device and the
command being accepted. Available in extended
format only.

avg_device_busy_time An integer that represents the average time in
nanoseconds of the subchannel being in the
"device busy" state when initiating a start or
resume function. Available in extended format only.

Example

To read the avg_device_busy_time attribute for a device /sys/bus/ccw/devices/0.0.b100:

cat /sys/bus/ccw/devices/0.0.b100/cmf/avg_device_busy_time
21

Chapter 55. Channel measurement facility 539

540 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 56. Using the CPU-measurement facilities

LPAR only: The CPU-measurement facilities apply to Linux in LPAR mode only.

Use the CPU-measurement counter facility and sampling facility to obtain performance data for Linux in
LPAR mode.

Counter facility
The hardware counters are grouped into the following counter sets:

• Basic counter set
• Problem-state counter set
• Crypto-activity counter set
• Extended counter set
• MT-diagnostic counter set

A further common counter set, the Coprocessor group counter set, cannot be accessed from
Linux on IBM Z.

Sampling facility
The sampling facility includes the following sampling modes:

• Basic-sampling mode
• Diagnostic-sampling mode

The diagnostic-sampling mode is intended for use by IBM Support only.

The number and type of individual counters and the details of the sampling facility depend on your IBM
Z hardware model. Use the lscpumf command to find out what is available for your hardware (see
“lscpumf - Display information about the CPU-measurement facilities” on page 652). For details, see
IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196/z114, zEC12/zBC12, z13/
z13s, z14, z15 and z16, SA23-2261.

You can use the perf tool on Linux to access the hardware counters and sample data of the CPU-
measurement facilities.

To use the perf tool, you need to install the linux-tools-common package provided by Debian.

If you want to write your own application for analyzing counter or sample data, you can use the libpfm4
library. This library is available from Debian at perfmon2.sourceforge.net.

Working with the CPU-measurement facilities
You can use the perf tool to work with the CPU-measurement facilities for authorized LPARs.

• “Authorizing an LPAR” on page 541
• “Reading CPU-measurement counters” on page 542
• “Collecting CPU-measurement sample data” on page 544
• “Setting limits for the sampling facility buffer” on page 544
• “Obtaining details about the CPU-measurement facilities” on page 545

Authorizing an LPAR
The LPAR within which the Linux instance runs must be authorized to use the CPU-measurement counter
sets or sampling modes. Use the HMC or SE to authorize the LPAR.

© Copyright IBM Corp. 2000, 2023 541

https://packages.debian.org

About this task
The details of the steps in this task can differ, depending on your hardware. For more information, see the
Support Element Operations Guide for your mainframe system.

Procedure
Perform these steps on the HMC or SE to grant authorizations:
1. Navigate to the LPAR for which you want to grant authorizations.
2. Within the LPAR profile, select the Security page.
3. Within the counter facility options, select each counter set you want to use. The coprocessor group

counter set is not supported by Linux on IBM Z.
4. If you want to use the sampling facility, select the basic sampling mode within the sampling facility

options.

Note: You cannot enable the diagnostic mode unless it has been enabled for you by IBM Support.
5. Click Save.

What to do next
Deactivate, activate, and IPL the LPAR to make the authorization take effect. For more information, see
the Support Element Operations Guide for your mainframe system.

When your Linux instance is available again, you can use the lscpumf command to confirm that the
authorizations are in place (see “lscpumf - Display information about the CPU-measurement facilities” on
page 652).

Reading CPU-measurement counters
Use the perf tool to read CPU-measurement counters.

Before you begin
You must know the symbolic name for the counter or the decimal value of the counter number. Issue
lscpumf -c to obtain a list of counters, their symbolic names, and their numbers (see “lscpumf - Display
information about the CPU-measurement facilities” on page 652).

You can also find the decimal values in z/Architecture The Load-Program-Parameter and the CPU-
Measurement Facilities, SA23-2260 and in IBM The CPU-Measurement Facility Extended Counters
Definition for z10, z196/z114, zEC12/zBC12, z13/z13s, z14, z15 and z16, SA23-2261.

Procedure
Issue a perf command to read a counter.

• Using symbolic names:

perf stat -e cpum_cf/<symbolic_name>/ -- <path_to_app>

• Using raw events:

perf stat -e <type>:<counter_number> -- <path_to_app>

• Using raw events without specifying the type:

perf stat -e cpum_cf/event=<counter_number>/ -- <path_to_app>

Where:

542 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-e cpum_cf/<symbolic_name>/
specifies a counter through a symbolic name. Symbolic names are lengthy but meaningful and the
same for all mainframes models that support the counter.

-e <type>:<counter_number>
specifies a counter as a raw event. In the specification, <counter_number> is a decimal number.

<type> is a decimal number that the kernel assigns to the CPU-measurement facilities device driver.
To find that value on a running Linux instance, read the value of /sys/devices/cpum_cf/type.

Interface change: As of kernel 5.5 the notation <type>:<counter_number> replaces the former
r<hex_counter_number>, where <hex_counter_number> was the counter number in hexadecimal
notation.

This specification is short but abstract, the numbers can differ between hardware models, and the
value for <type> can change across boot cycles.

-e cpum_cf/event=<counter_number>/
specifies a counter as a raw event. In the specification, <counter_number> is a the same decimal
number as in the previous format. This format avoids the type specification.

<path_to_app>
specifies the path to the application to be evaluated. The counters are incremented for all threads
that belong to the specified application. If you specify -a instead of the double hyphen and path,
system-wide counter data is read.

Tip: You can read multiple counters by specifying a comma-separated list of counters. For example, with
5 as the value for <type>: -e 5:32,5:33.

For more information about the perf command, see the perf or perf-stat man page.

Examples
Issue one of the following commands to read the problem-state cycle count counter (symbolic name
PROBLEM_STATE_CPU_CYCLES; decimal value 32) and the problem-state instruction count counter
(symbolic name PROBLEM_STATE_INSTRUCTIONS; decimal value 33) for an application /bin/df.

• Using symbolic names:

perf stat -e cpum_cf/PROBLEM_STATE_CPU_CYCLES/,\
cpum_cf/PROBLEM_STATE_INSTRUCTIONS/ -- /bin/df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasda1 6967656 3360888 3229780 51% /
none 942956 88 942868 1% /dev/shm
/dev/dasdb1 6967656 4135792 2471260 63% /root

 Performance counter stats for '/bin/df':

 1,258,624 PROBLEM_STATE_CPU_CYCLES
 341,792 PROBLEM_STATE_INSTRUCTIONS

 0.002676094 seconds time elapsed

• Using raw events:

cat /sys/devices/cpum_cf/type
5
perf stat -e 5:32,5:33 -- /bin/df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasda1 6967656 3360884 3229784 51% /
none 942956 88 942868 1% /dev/shm
/dev/dasdb1 6967656 4135792 2471260 63% /root

 Performance counter stats for '/bin/df':

 1,233,295 5:32
 341,792 5:33

 0.002526281 seconds time elapsed

Chapter 56. Using the CPU-measurement facilities 543

Collecting CPU-measurement sample data
Use the perf tool to read CPU-measurement sample data.

Procedure
Issue a command of this form to read sample data:

perf record -e cpum_sf/SF_CYCLES_BASIC/ -- <path_to_app>

Where <path_to_app> is the path to the application for which you want to collect sample data. If you
specify -a instead of the double hyphen and path, system-wide sample data is collected.
Instead of the symbolic name, you can also specify the raw event name rB0000.

Example

perf record -e cpum_sf/SF_CYCLES_BASIC/ -- /bin/df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/dasda1 6967656 3360508 3230160 51% /
none 942956 88 942868 1% /dev/shm
/dev/dasdb1 6967656 4132924 2474128 63% /root
[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.001 MB perf.data (~29 samples)]

What to do next
You can now display the sample data by issuing the following command:

perf report

For more information about collecting and displaying sample data with the perf command, see the
perf-record and the perf-report man pages.

Hint: You can use the perf record -F option to collect sample data at a high frequency or the perf
record -c option to collect sample data for corresponding short sampling intervals. Specified values
must be supported by both the CPU-measurement sampling facility and perf. Issue lscpumf -i to find
out the maximum and minimum values for the CPU-measurement sampling facility. If perf fails at a high
sampling frequency, you might have to adjust the kernel.perf_event_max_sample_rate system
control to override default perf limitations.

Setting limits for the sampling facility buffer
Use the chcpumf command to set the minimum and maximum buffer size for the CPU-measurement
sampling facility. See “chcpumf - Set limits for the CPU measurement sampling facility buffer” on page
573.

Before you begin
For each CPU, the CPU-measurement sampling facility has a buffer for writing sample data. The required
buffer size depends on the sampling function and the sampling interval that is used by the perf tool.
The sampling facility starts with an initial buffer size that depends on the expected requirements, your
IBM Z hardware, and the available hardware resources. During the sampling process, the sampling facility
increases the buffer size if required.

The sampling facility is designed for autonomous buffer management, and you do not usually need to
intervene. You might want to change the minimum or maximum buffer size, for example, for one of the
following reasons:

• There are considerable resource constraints on your system that cause perf sampling to malfunction
and sample data to be lost.

544 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• As an expert user of perf and the sampling facility, you want to explore results with particular buffer
settings.

Procedure
Use the chcpumf command to set the minimum and maximum buffer sizes.
1. Optional: Specify the lscpumf command with the -i parameter to display the current limits for the

buffer size (see “lscpumf - Display information about the CPU-measurement facilities” on page 652).
2. Optional: Specify the chcpumf command with the -m parameter to set the minimum buffer size.

Example:

chcpumf -m 500

The value that you specify with -m is the minimum buffer size in multiples of sample-data-blocks. A
sample-data-block occupies approximately 4 KB. The specified minimum value is compared with the
initial buffer size that is calculated by the sampling facility. The greater value is then used as the initial
size when the sampling facility is started.

3. Optional: Specify the chcpumf command with the -x parameter to set the maximum buffer size.

Example:

chcpumf -x 1000

The value that you specify with -x is the maximum buffer size in multiples of sample-data-blocks. A
sample-data-block occupies approximately 4 KB. The specified maximum is the upper limit to which
the sampling facility can adjust the buffer.

Example

Tips:

• You can specify both, the minimum and the maximum buffer size with a single command.
• Use the -V parameter to to display the minimum and maximum buffer settings that apply as a result of

the command.

Example: To change the minimum buffer size to 500 times the size of a sample-data-block and the
maximum buffer size to 1000 times the size of a sample-data-block, issue:

chcpumf -V -m 500 -x 1000
Sampling buffer sizes:
 Minimum: 500 sample-data-blocks
 Maximum: 1000 sample-data-blocks

Obtaining details about the CPU-measurement facilities
You can obtain version information for the CPU-measurement counter and sampling facility and check
which counter sets are authorized on your LPAR.

Procedure
1. Issue the lscpumf command with the -i parameter to display detailed information and debug data

about the CPU-measurement facilities.

Example:

Chapter 56. Using the CPU-measurement facilities 545

lscpumf -i
CPU-measurement Counter Facility
--
Version: 3.7

Authorized counter sets:
 Basic counter Set
 Crypto-Activity counter Set
 Extended counter Set
 MT-diagnostic counter Set
 Problem-State counter Set

Linux perf event support: Yes (PMU: cpum_cf)

CPU-measurement Sampling Facility
--
Sampling Interval:
 Minimum: 20800 cycles (approx. 250000 Hz)
 Maximum: 170372800 cycles (approx. 30 Hz)

Authorized sampling modes:
 basic: (sample size: 32 bytes)
 diagnostic: (sample size: 173 bytes)

Linux perf event support: Yes (PMU: cpum_sf)

Current sampling buffer settings for cpum_sf:
 Basic-sampling mode
 Minimum: 15 sample-data-blocks (64KB)
 Maximum: 8176 sample-data-blocks (32MB)

 Diagnostic-sampling mode (including basic-sampling)
 Minimum: 90 sample-data-blocks (364KB)
 Maximum: 49056 sample-data-blocks (192MB)
 Size factor: 6

2. Optional: For more detailed information, including debug information, use the magic sysrequest
function with character p. This function triggers kernel messages.

For example, trigger the messages from procfs:

echo p > /proc/sysrq-trigger

Note: If you call magic sysrequest functions with a method other than through the procfs, you might
need to activate them first. For more information about the magic sysrequest functions, see “Using the
magic sysrequest feature” on page 51.

Find the messages by issuing the dmesg command and looking for output lines that include CPUM_CF
or CPUM_SF.

More information: For details about the information in the messages, see z/Architecture The Load-
Program-Parameter and the CPU-Measurement Facilities, SA23-2260, and the perf section in Kernel
Messages, SC34-2599.

546 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 10. Diagnostics and troubleshooting
These resources are useful when diagnosing and solving problems for Ubuntu Server 22.04 LTS.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

When reporting a problem to IBM Support, you might be asked to supply a kernel dump. See Using the
Dump Tools, SC33-8412 for information about how to create dumps.

© Copyright IBM Corp. 2000, 2023 547

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

548 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 57. Logging I/O subchannel status
information

When investigating I/O subchannels, support specialists might request operation status information for
the subchannel.

About this task
The channel subsystem offers a logging facility that creates a set of log entries with such information. You
can trigger this logging facility through sysfs.

The log entries are available through the SE Console Actions Work Area with the View Console Logs
function. The entries differ dependent on the device and model that is connected to the subchannel. On
the SE, the entries are listed with a prefix that identifies the model. The content of the entries is intended
for support specialists.

Procedure
To create a log entry, issue a command of this form:

echo 1 > /sys/devices/css0/<subhannel-bus-id>/logging

where <subchannel-bus-id> is the bus ID of the I/O subchannel that corresponds to the I/O device for
which you want to create a log entry.

To find out how your I/O devices map to subchannels you can use, for example, the lscss command.

Example

In this example, first the subchannel for an I/O device with bus ID 0.0.3d07 is identified, then logging is
initiated.

lscss -d 0.0.3d07
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.3d07 0.0.000c 1732/01 1731/01 80 80 ff 05000000 00000000
echo 1 > /sys/devices/css0/0.0.000c/logging

© Copyright IBM Corp. 2000, 2023 549

550 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 58. Control program identification
For Linux in LPAR mode, you can provide data about the Linux instance to the control program
identification (CPI) feature.

The data is used, for example, to represent the Linux instance on the HMC or SE.

You can provide data to the CPI feature in two ways:

• For settings that are persistent across reboots, set values for one or more settings in the /etc/
sysconfig/cpi configuration file. The file is read by the cpi.service at boot. See “Providing CPI
values through a configuration file” on page 551.

• For settings that apply to the running Linux instance only, use the sysfs attributes in /sys/
firmware/cpi to change the CPI settings for the running system only. Then transfer the data to the SE,
see “Setting CPI values through the sysfs interface” on page 552.

Providing CPI values through a configuration file
Use the settings in the /etc/sysconfig/cpi configuration file to specify CPI values for your Linux
instance. Values in the configuration file persist across reboots and take effect the next time the Linux
instance is booted.

About this task
The following settings are available:

• The system name
• The sysplex name (if applicable)
• The operating system type

Ubuntu Server 22.04 LTS sets "Linux" as the operating system type by default.

The system level is set automatically, see “System level CPI value” on page 553.

The values for the system name, system type, and sysplex name are strings that consist of up to eight
characters of the following set: A-Z, 0-9, $, @, #, and blank.

Procedure
1. Open the configuration file in a text editor, for example:

sudo vi /etc/sysconfig/cpi

2. Find the setting you want to specify and enter a value.
The /etc/sysconfig/cpi configuration file looks similar to this:

Apply control program identification (CPI) settings
#
The system and sysplex names consist of up to eight characters of
the following set: A-Z, 0-9, $, @, #, and blank.
#
CPI system type
#
CPI_SYSTEM_TYPE="LINUX"
#
CPI system name
#
CPI_SYSTEM_NAME=""
#
CPI sysplex name

© Copyright IBM Corp. 2000, 2023 551

#
CPI_SYSPLEX_NAME=""

3. Save your changes and exit the text editor.
Changes made to the /etc/sysconfig/cpi configuration file take effect at the next boot.

Example
To specify a system name:

1. Open the /etc/sysconfig/cpi configuration file in a text editor.
2. Find the location of the system name and enter a name:

...
CPI system name
#
CPI_SYSTEM_NAME="MYSYSTEM"
...

3. Save your changes and exit the text editor.

Setting CPI values through the sysfs interface
Use the set attribute in the /sys/firmware/cpi directory in sysfs to send data to the Support Element
(SE). Values that are set through the sysfs interface do not persist across reboots and apply to the running
Linux instance only.

About this task
The following settings are available:

• The system name.
• The sysplex name (if applicable).
• The operating system type.
• The system level.

The values for the system name, sysplex name, and system type are strings that consists of up to eight
characters of the following set: A-Z, 0-9, $, @, #, and blank. For the system level, see “System level CPI
value” on page 553.

Procedure
1. Use a command of the form:

echo <value> > /sys/firmware/cpi/<setting>

where <setting> is one of system_name, sysplex_name, system_type, or system_level.
For example, to set the system name:

echo MYSYSTEM > /sys/firmware/cpi/system_name

2. To send the data in system_name, sysplex_name, system_type, and system_level to the SE,
write an arbitrary string to the set attribute.
For example:

echo 1 > /sys/firmware/cpi/set

552 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

System level CPI value
Linux uses the system level setting for the distribution and kernel version of a Linux instance.

About this task
Ubuntu Server 22.04 LTS sets the system level value for the distribution for you, and you can read the
decoded values on the HMC. On machines prior to IBM z16, some values are not available to display.

The 8-byte hexadecimal system-level value has this format:

0x<a><cc><dd><eeee><ff><gg><hh>

where:

<a>
is one hexadecimal byte. Its most significant bit (Bit 0) indicates hypervisor use.

is one digit that indicates the distribution as follows:
0

Generic Linux
1

Red Hat Enterprise Linux
2

SUSE Linux Enterprise Server
3

Canonical Ubuntu
4

Fedora
5

openSUSE Leap
6

Debian GNU/Linux
7

Red Hat Enterprise Linux CoreOS
<cc>

are two digits for a distribution-specific encoding of the major version of the distribution.
<dd>

are two digits for a distribution-specific encoding of the minor version of the distribution.
<eeee>

are four digits for the patch level of the distribution.
<ff>

are two digits for the major version of the kernel.
<gg>

are two digits for the minor version of the kernel.
<hh>

are two digits for the stable version of the kernel.

Example

• Ubuntu 22.04 with Linux kernel version 5.15 displays as

cat /sys/firmware/cpi/system_level
0x0316410038050f00

Chapter 58. Control program identification 553

• To make a change to the currently running system, use:

echo 0x0316410038050f00 > /sys/firmware/cpi/system_level

To make the change to the currently running system take effect, transfer the data to the SE (see “Setting
CPI values through the sysfs interface” on page 552).

554 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 59. Displaying system information
You can display information about the resources, and capabilities of your Linux instance and about the
hardware and hypervisor on which your Linux instance runs.

Displaying hardware and hypervisor information
You can display information about the physical and virtual hardware on which your Linux instance runs.

About this task
This procedure describes how to use /proc/sysinfo. Alternatively, you can use the “zname - Obtain
information about the IBM Z hardware” on page 759 and “zhypinfo - obtain information about
virtualization layers on IBM Z” on page 755 commands, provided by the qclib package. Use apt
install qclib to install the package.

Procedure
Issue the following command:

cat /proc/sysinfo

The output of the command is divided into several blocks.

• The first two blocks provide information about the mainframe hardware.
• The third block provides information about the LPAR on which the Linux instance runs, either in LPAR

mode or as a guest of a hypervisor.
• Further blocks are present only if the Linux instance runs as a guest of a hypervisor. The field names in

these sections have a prefix, VM<nn>, where <nn> is the hypervisor level.

If the hypervisor runs in LPAR mode, there is only one such block, with prefix VM00. If the hypervisor
runs as a guest of another hypervisor, there are multiple such blocks with prefixes VM00, VM01, and so
on. The highest prefix number describes the hypervisor that is closest to the Linux instance.

You can use the information from /proc/sysinfo, for example, to verify that a guest relocation has
taken place.
The following example shows the command output for an instance of Linux as a KVM guest.

Example:

cat /proc/sysinfo
Manufacturer: IBM
...
LPAR Number: 9
...
LPAR Name: LP4KVM09
...
LPAR Extended Name: Partition 9 KVM Host
LPAR UUID: 93724168-fda3-429b-8b28-a5d245dcb3ff
...
VM00 Name: Linux in
VM00 Control Program: KVM/Linux
VM00 Adjustment: 1000
VM00 CPUs Total: 4
VM00 CPUs Configured: 4
VM00 CPUs Standby: 0
VM00 CPUs Reserved: 0
VM00 Extended Name: Linux instance 42
VM00 UUID: 82038f2a-1344-aaf7-1a85-2a7250be2076

The fields with prefix LPAR include information that identifies and labels the partition:

© Copyright IBM Corp. 2000, 2023 555

Number
shows a number that identifies the partition within the mainframe.

Name
shows a partition name of up to 8 characters, as assigned on the HMC.

Extended Name
depending on your hardware, this field can contain an extended partition name, it can be empty, or it
might be omitted.

UUID
shows the universally unique identifier (UUID) of the partition.

This field is present only if a UUID is assigned to the partition. On hardware that does not support
UUIDs for partitions, this field is always omitted.

The fields with prefix VM<nn> show the following information:
Name

Depends on your hypervisor, z/VM or KVM:
z/VM

shows the name of the z/VM guest virtual machine according to the z/VM directory.
KVM

shows the name of the virtual server according to the domain XML on the KVM host. Long names
are truncated to 8 characters. The full name is always shown in the Extended Name field (see
“Extended Name (KVM only)” on page 556.

Control Program
shows hypervisor information.

Adjustment
does not show useful information for Linux on IBM Z.

CPUs Total
shows the number of virtual CPUs that the hypervisor provides to Linux.

CPUs Configured
shows the number of virtual CPUs that are online to Linux.

CPUs Standby
for Linux on z/VM, shows the number of virtual CPUs that are available to Linux but offline.

CPUs Reserved
for Linux on z/VM, shows the number of extra virtual CPUs that z/VM could make available to Linux.
This is the difference between the maximum number of CPUs in the z/VM directory entry for the guest
virtual machine and the number of CPUs that are currently available to Linux.
For Linux on KVM, this number is always 0.

Extended Name (KVM only)
shows the name of the virtual server as specified in the domain XML on the KVM host. See also
“Name” on page 556.

UUID (KVM only)
shows the universally unique identifier (UUID) according to the domain XML on the KVM host. If you
do not specify an identifier, libvirt generates a UUID when creating a virtual server definition.

Retrieving STHYI data
Store Hypervisor Information (STHYI) includes information about the IBM Z hardware, LPAR and, if
applicable, the hypervisor host system on which your Linux instance runs.

STHYI includes, but is not limited to, the following information:

• The CPU count, by type (CP or IFL)
• Limitations for shared CPUs

556 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• CEC and LPAR identifiers

The methods that you can use to retrieve this information differ between Linux in LPAR mode and Linux as
a guest operating system of z/VM or of KVM.

Table 72. Available methods by environment

Method Linux in LPAR mode Linux as a z/VM or KVM guest

STHYI instruction with the GCC
inline assembly

For an example, see arch/
s390/kernel/sthyi.c in the
Linux source tree.

No Yes

qclib or the zhypinfo
command with the -j option.

See the readme file of the qclib
package and the man page of
zhypinfo for details.

Yes Yes

s390_sthyi() system call

See the man page for details.

Yes No

The return data for both the STHYI instruction and the s390_sthyi() system call matches the content of
the STHYI response buffer as described in z/VM: CP Programming Services, SC24-6272. The qclib library
provides an API for querying the information. See the readme file of the qclib package about obtaining
the API description.

For more information about STHYI on a KVM guest, see KVM Virtual Server Management, SC34-2752.

You can find the qclib package and more information about qclib at github.com/ibm-s390-linux/qclib.

Check whether the Linux instance can be a hypervisor
An instance of Linux on IBM Z must have the SIE (Start Interpretive Execution) capability to be able to act
as a hypervisor, such as a KVM host.

Procedure
1. Issue the following command to find out whether you can operate your Linux instance as a hypervisor.

cat /proc/cpuinfo
vendor_id : IBM/S390
processors : 1
bogomips per cpu: 14367.00
features : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh
highgprs sie
cache0 : level=1 type=Data scope=Private size=128K
...

2. Examine the features line in the command output. If the list of features includes sie, the Linux
instance can be a hypervisor.
The Linux instance of the example can be a hypervisor.

Chapter 59. Displaying system information 557

https://github.com/ibm-s390-linux/qclib

558 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 60. Avoiding common pitfalls
Common problems and how to avoid them.

Ensuring correct channel path status
Ensure that you varied the path offline before you perform a planned task on it.

Before you begin
Do not vary channel paths offline that provide access to vital resources, such as the root file system.

KVM: A KVM guest might have only one channel path through which all CCW devices are accessed.

Tasks that require the channel path to be offline include:

• Pulling out or plugging in a cable on a path.
• Configuring a path off or on at the SE.

To vary the path offline, issue a command of the form:

chchp -v 0 <chpid>

where <chpid> is the channel path ID.

After the operation completed and the path is available again, vary the path online by using a command of
the form:

chchp -v 1 <chpid>

Alternatively, you can write on or off to the channel path status attribute in sysfs to vary the path online
or offline.

echo on|off > /sys/devices/css0/chp0.<chpid>/status

An unplanned change in path availability can occur due to, for example, unplanned cable pulls or a
temporary path malfunction. Then, the PIM/PAM/POM values (as obtained through lscss) might not be
as expected. To update the PIM/PAM/POM values, vary one of the paths that lead to the affected devices.

Example:

chchp -v 0 0.12
chchp -v 1 0.12

Rationale: Linux does not always receive a notification (machine check) when the status of a path
changes (especially for a path that comes online again). To make sure Linux has up-to-date information
about the usable paths, path verification is triggered through the Linux vary operation.

Determining channel path usage on LPAR
To determine the usage of a specific channel path on LPAR, for example, to check whether traffic is
distributed evenly over all channel paths, use the channel path measurement facility.

See “Channel path measurement” on page 14 for details.

Ignore unnecessary I/O devices
An instance of Linux on IBM Z should ignore all I/O devices that it does not currently use.

© Copyright IBM Corp. 2000, 2023 559

A mainframe environment often includes numerous I/O devices. Especially for Linux in LPAR mode, more
of these I/O devices might be available to a particular instance of Linux on IBM Z than needed. Limit the
I/O devices by:

• Adding only the needed devices to the applicable LPAR in the IOCDS.

LPAR: For Linux in LPAR mode, also see Chapter 3, “Device auto-configuration for Linux in LPAR mode,”
on page 21.

z/VM and KVM: Making only needed devices available to guests.
• Using the cio_ignore= kernel parameter to ignore all devices that are not currently in use by this

instance of Linux on IBM Z.

If more devices are needed later, they can be dynamically removed from the list of devices to be
ignored. Use the cio_ignore kernel parameter or the /proc/cio_ignore dynamic control to remove
devices, see “cio_ignore - List devices to be ignored” on page 774 and “Changing the exclusion list” on
page 775.

Rationale: Numerous unused devices can cause:

• Unnecessary high memory usage due to allocation of device structures.
• Unnecessary high load on status changes because hot-plug handling must be done for every device

found.
• Prolonged boot and shutdown time.

Using cio_ignore
With cio_ignore, essential devices might be hidden.

For example, Linux might not boot because the device with the root file system is ignored.

If Linux does not boot under z/VM and does not show any message except:

HCPGIR450W CP entered; disabled wait PSW 00020001 80000000 00000000 00144D7A

Check if cio_ignore is used and verify that the console device, which is typically device number 0.0.0009,
is not ignored.

Excessive guest swapping
Avoid excessive guest swapping by using the timed page pool size and the static page pool size attributes.

An instance of Linux on z/VM might be swapping and stalling. Setting the timed page pool size and the
static page pool size to zero might solve the problem:

echo 0 > /proc/sys/vm/cmm_timed_pages
echo 0 > /proc/sys/vm/cmm_pages

If you see a temporary relief, the guest does not have enough memory. Try increasing the guest memory.

If the problem persists, z/VM might be out of memory.

If you are using cooperative memory management (CMM), unload the cooperative memory management
module:

modprobe -r cmm

See Chapter 43, “Cooperative memory management,” on page 451 for more details about CMM.

560 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Including service levels of the hardware and the hypervisor
The service levels of the different hardware cards, the LPAR level, and the z/VM service level are valuable
information for problem analysis.

If possible, include this information with any problem you report to IBM Support for Linux in LPAR mode
or Linux on z/VM.

A /proc interface that provides a list of service levels is available. To see the service levels issue:

cat /proc/service_levels

Example for a z/VM system with a qeth device and a zfcp device:

cat /proc/service_levels
VM: z/VM Version 7 Release 1.0, service level 2001 (64-bit)
qeth: 0.0.f900 firmware level 0180
zfcp: 0.0.2461 microcode level 20600106

Example for an LPAR with two zfcp devices, a qeth device, and a CPU counter:

cat /proc/service_levels
CPU-MF: Counter facility: version=1.4 authorization=0020
zfcp: 0.0.e100 microcode level 716
zfcp: 0.0.e000 microcode level 716
qeth: 0.0.c000 firmware level 0771

The service level information is automatically included in the DBGINFO file that IBM Support might ask
you to generate when analyzing a problem for you.

Booting stops with disabled wait state
An automatic processor type check might stop the boot process with a disabled wait PSW.

On some distributions, a processor type check is automatically run at every kernel startup. If the check
determines that the distribution used is not compatible with the hardware, it stops the boot process with
a disabled wait PSW.

If this problem occurs, ensure that you are using a distribution that is supported on your hardware.

If you are using an SCLP console, you might get a message that indicates the problem.

Preparing for dump-on-panic
You might want to consider setting up your system to automatically create a memory dump after a kernel
panic.

Before you begin: If you set up kdump, a kernel panic or PSW restart automatically triggers a dump. For a
KVM guest, kdump is the only option for an automatic dump-on-panic.

Configuring and using dump-on-panic is a good idea for several reasons:

• You have a memory dump disk that is prepared ahead of time.
• You do not have to reproduce the problem since a memory dump will be triggered automatically

immediately after the failure.

See Chapter 8, “Shutdown actions,” on page 119 for details.

Function unavailable or degraded in Linux on z/VM
For some functions, Linux on z/VM issues diagnose instructions to the z/VM hypervisor.

Chapter 60. Avoiding common pitfalls 561

Which diagnose codes are available to your Linux instance depends on the z/VM version and
configuration. The z/VM administrator can enable, disable, or customize diagnose instructions. For details,
see z/VM: CP Commands and Utilities Reference, SC24-6268.

Linux on z/VM can fail, or one or more functions might be unavailable or degraded if required diagnose
instructions are modified or unavailable.

Read and compare /sys/kernel/debug/diag_stat to obtain a list of calls and a counter for each call
(see also Chapter 64, “Linux diagnose code use,” on page 795). The counts include failed calls. Thus,
comparing the counts with and without running the affected workload provides an indication of the calls
that the workload uses or tries to use. Assure that these calls are not restricted by the z/VM configuration.

562 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 61. Creating a kernel dump
When reporting a problem to IBM Support, you might be asked to supply a kernel dump. The dump tools
you can use depend on your hypervisor environment.

Creating a kernel dump of Linux in LPAR mode or of a z/VM guest
The dump tools for Linux in LPAR mode and Linux as a z/VM guest include stand-alone dump tools,
kdump, and zgetdump.

With kdump in place, a dump is triggered automatically by a kernel panic. Use the zgetdump command
for a live-system dump.

For Linux as a z/VM guest you can also use VMDUMP.

For details about the dump tools, see Using the Dump Tools, SC33-8412.

Creating a kernel dump of a KVM guest
A dump of a KVM guest can be driven by the host or by the guest.

Guest-driven dumps
You can set up kdump to create a kernel dump for an instance of Linux as a KVM guest on IBM Z. With
kdump in place, a dump is triggered automatically by a kernel panic.

Alternatively, you can use the zgetdump command to create a live-system dump.

See the kdump information in Using the Dump Tools, SC33-8412.

Host-driven dumps
The KVM virtual server administrator can initiate dumps of KVM guests. See the section about dumping
KVM guests in KVM Virtual Server Management, SC34-2752.

© Copyright IBM Corp. 2000, 2023 563

564 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Part 11. Reference
Use these commands, kernel parameters, and kernel options to configure Linux on IBM Z. Be aware of the
z/VM DIAG calls required by Ubuntu Server 22.04 LTS.

Newest version
You can find the newest version of this publication at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server

Restrictions
For prerequisites and restrictions see the IBM LinuxONE and IBM Z architecture-specific information in
the Ubuntu Server 22.04 LTS release notes at
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

© Copyright IBM Corp. 2000, 2023 565

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://discourse.ubuntu.com/t/jammy-jellyfish-release-notes

566 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 62. Commands for Linux on IBM Z
You can use z/Architecture specific commands to configure and work with the Ubuntu Server 22.04 LTS
device drivers and features.

s390-tools
Most of the commands described in this section are included in the s390-tools package.

Some commands come with an initialization script or a configuration file or both. For init as the
initialization process, it is assumed that such scripts are installed in /etc/init.d/. You can extract
any missing files from the etc subdirectory in the s390-tools package.

smc-tools
SMC-related commands are in a separate package, smc-tools. Use apt install smc-tools to install
the package. The smc-tools package is delivered with Ubuntu Server and also available at github.com/
ibm-s390-linux/smc-tools.

qclib
Two commands serve as an interface to qclib. Use apt install qclib to install the package. See
“zname - Obtain information about the IBM Z hardware” on page 759 and “zhypinfo - obtain information
about virtualization layers on IBM Z” on page 755.

Commands described elsewhere
• For the zipl command, see Chapter 6, “Initial program loader for IBM Z - zipl,” on page 57.
• For commands and tools related to creating and analyzing system dumps, see Using the Dump Tools,

SC33-8412.
• For commands related to terminal access over IUCV connections, see How to Set up a Terminal Server

Environment on z/VM, SC34-2596.
• The icainfo and icastats commands are provided with the libica package and described in libica

Programmer's Reference, SC34-2602.
• The zkey and zkey-cryptsetup commands are described in Pervasive Encryption for Data Volumes,

SC34-2782.
• The genprotimg command is described in Introducing IBM Secure Execution for Linux, SC34-7721.

Generic command options
There are common command options that, for simplicity, have been omitted from some of the syntax
diagrams.

-h or --help
to display help information for the command.

--version
to display version information for the command.

The syntax for these options is:

© Copyright IBM Corp. 2000, 2023 567

https://github.com/ibm-s390-linux/smc-tools
https://github.com/ibm-s390-linux/smc-tools

Common command options
<command> Other command options

-h

--help

--version

where command can be any of the commands described in this section.

See Appendix B, “Understanding syntax diagrams,” on page 799 for general information about reading
syntax diagrams.

568 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chccwdev - Set CCW device attributes
Use the chccwdev command to set attributes for CCW devices and to set CCW devices online or offline.

Use “znetconf - List and configure network devices” on page 760 to work with CCW_GROUP devices. For
more information about CCW devices and CCW group devices, see “Device categories” on page 7.

The chccwdev command uses cio_settle before it changes anything to ensure that sysfs reflects the
latest device status information and includes newly available devices.

chccwdev syntax

chccwdev
 -e

 -d

 -s

 -f

 -a  <name>= <value>

,

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where:

-e or --online
sets the device online.

-d or --offline
sets the device offline.

-s or --safeoffline
waits until all outstanding I/O requests complete, and then tries to set the device offline. Valid for
DASDs only.

-f or --forceonline
forces a boxed device online, if this action is supported by the device driver.

-a or --attribute <name>=<value>
sets the <name> attribute to <value>.

The available attributes depend on the device type. See the chapter for your device for details about
the applicable attributes and values.

Setting the online attribute has the same effect as using the -e or -d options.

<device_bus_id>
identifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID
and <devno> is a device number. Input is converted to lowercase.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. If not all devices in the given range exist, the command is limited to the
existing ones. If you specify a range with no existing devices, you get an error message.

-h or --help
displays help information for the command. To view the man page, enter man chccwdev.

-v or --version
displays version information for the command.

chccwdev

Chapter 62. Commands for Linux on IBM Z 569

Examples

• To set a CCW device 0.0.b100 online issue:

chccwdev -e 0.0.b100

• Alternatively, use -a to set a CCW device 0.0.b100 online. Issue:

chccwdev -a online=1 0.0.b100

• To set all CCW devices in the range 0.0.b200 through 0.0.b2ff online, issue:

chccwdev -e 0.0.b200-0.0.b2ff

• To set a CCW device 0.0.b100 and all CCW devices in the range 0.0.b200 through 0.0.b2ff offline, issue:

chccwdev -d 0.0.b100,0.0.b200-0.0.b2ff

• To set several CCW devices in different ranges and different subchannel sets offline, issue:

chccwdev -d 0.0.1000-0.0.1100,0.1.7000-0.1.7010,0.0.1234,0.1.4321

• To set devices with bus ID 0.0.0192, and 0.0.0195 through 0.0.0198 offline after completing all
outstanding I/O requests:

chccwdev -s 0.0.0192,0.0.0195-0.0.0198

If an outstanding I/O request is blocked, the command might wait forever. Reasons for blocked
I/O requests include reserved devices that can be released or disconnected devices that can be
reconnected.

1. Try to resolve the problem that blocks the I/O request and wait for the command to complete.
2. If you cannot resolve the problem, issue chccwdev -d to cancel the outstanding I/O requests. The

data is lost.
• To set an ECKD DASD 0.0.b100 online and to enable extended error reporting and logging issue:

chccwdev -e -a eer_enabled=1 -a erplog=1 0.0.b100

chccwdev

570 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chchp - Change channel path status
Use the chchp command to set channel paths online or offline.

The actions are equivalent to performing a Configure Channel Path Off or Configure Channel Path On
operation on the Hardware Management Console.

The channel path status that results from a configure operation is persistent across IPLs.

Note: Changing the configuration state of an I/O channel path might affect the availability of I/O devices.
It can also trigger associated functions (such as channel-path verification or device scanning), which in
turn can result in a temporary increase in processor, memory, and I/O load.

chchp syntax

chchp -c 0

1

 -v 0

1

-a <key>= <value>

,

0. <id>

0. <id> - 0. <id>

Where:

-c or --configure <value>
sets the device to configured (1) or standby (0).

Note: Setting the configured state to standby can stop running I/O operations.

-v or --vary <value>
changes the logical channel-path state to online (1) or offline (0).

Note: Setting the logical state to offline can stop running I/O operations.

-a or --attribute <key>=<value>
changes the channel-path sysfs attribute <key> to <value>. The <key> can be the name of any
available channel-path sysfs attribute (that is, configure or status). <value> can take any valid
value that can be written to the attribute (for example, 0 or offline). Using -a is a generic way of
writing to the corresponding sysfs attribute. It is intended for cases where sysfs attributes or attribute
values are available in the kernel but not in chchp.

0.<id> and 0.<id> - 0.<id>
where <id> is a hexadecimal, two-digit, lowercase identifier for the channel path. An operation can be
performed on more than one channel path by specifying multiple identifiers as a comma-separated
list, or a range, or a combination of both.

--version
displays the version number of chchp and exits.

-h or --help
displays a short help text. To view the man page, enter man chchp.

Examples

• To set channel path 0.19 into standby state issue:

chchp -a configure=0 0.19

chchp

Chapter 62. Commands for Linux on IBM Z 571

• To set the channel path with the channel path ID 0.40 to the standby state, write 0 to the configure file
with the chchp command:

chchp --configure 0 0.40
Configure standby 0.40... done.

• To set a channel-path to the configured state, write 1 to the configure file with the chchp command:

chchp --configure 1 0.40
Configure online 0.40... done.

• To set channel-paths 0.65 to 0.6f to the configured state issue:

chchp -c 1 0.65-0.6f

• To set channel-paths 0.12, 0.7f and 0.17 to 0.20 to the logical offline state issue:

chchp -v 0 0.12,0.7f,0.17-0.20

chchp

572 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chcpumf - Set limits for the CPU measurement sampling facility
buffer

Use the chcpumf command to set limits for the CPU measurement sampling facility buffer.

The sampling facility is designed for autonomous buffer management, and you do not usually need to
intervene. However, you might want to change the minimum or maximum size, for example, for one of the
following reasons:

• There are considerable resource constraints on your system, and the sampling facility stops because it
tries to allocate more buffer space than is available.

• As an expert user of perf and the sampling facility, you want to explore results with particular buffer
settings.

chcpumf syntax

chcpumf

 -V

 -m <min_sdb>

 -x <max_sdb>

where:
-m <min_sdb> or --min <min_sdb>

specifies the minimum sampling facility buffer size in sample-data-blocks. A sample-data-block
occupies approximately 4 KB. The sampling facility starts with this buffer size if it exceeds the initial
buffer size that is calculated by the sampling facility.

-x <max_sdb> or --max <max_sdb>
specifies the maximum sampling facility buffer size in sample-data-blocks. A sample-data-block
occupies approximately 4 KB. While it is running, the sampling facility dynamically adjusts the buffer
size to a suitable value, but cannot exceed this limit.

-V or --verbose
displays the buffer size settings after the changes.

-v or --version
displays the version number of chcpumf and exits.

-h or --help
displays out a short help text, then exits. To view the man page, enter man chcpumf.

Example
To change the minimum buffer size to 500 times the size of a sample-data-block and the maximum buffer
size to 1000 times the size of a sample-data-block, issue:

chcpumf -V -m 500 -x 1000
Sampling buffer sizes:
 Minimum: 500 sample-data-blocks
 Maximum: 1000 sample-data-blocks

chcpumf

Chapter 62. Commands for Linux on IBM Z 573

chreipl - Modify the re-IPL configuration
Use the chreipl tool to modify the re-IPL configuration for Linux on IBM Z.

You can configure a particular device as the reboot device. For zipl boot menu configurations, you can
set the boot menu entry to be used for the next reboot. You can also specify additional kernel parameters
for the next reboot.

chreipl syntax

chreipl

ccw
<device_bus_id>

-L <parm>

 fcp
1

  <device_bus_id>  <wwpn>  <lun>

nvme -i <function-id>
-s 1

-s <namespace-id>

 -b  <n>

node
<node>

<dir> -L <parm>

-b <n>
2

-c 0

-c 1

nss <name>

-p  <parms> -f

Notes:
1 You can specify the <device_bus_id>, <wwpn>, and <lun> in any order if you use the
corresponding command options.
2 -L can be used if the device node or directory maps to a DASD or a virtio block device. The -b
option can be used if the device node or directory maps to a SCSI disk or NVMe device.

Where:
<device_bus_id> or -d <device_bus_id> or --device <device_bus_id>

specifies the device bus-ID of a CCW re-IPL device or of the FCP device through with a SCSI re-IPL
device is attached.

<wwpn> or -w <wwpn> or --wwpn <wwpn>
specifies the worldwide port name (WWPN) of a SCSI re-IPL device.

<lun> or -l <lun> or --lun <lun>
specifies the logical unit number (LUN) of a SCSI re-IPL device.

nvme
declares that the following parameters refer to an NVMe device.

-i <function_id> or --fid <function_id>
specifies the PCIe function ID of the NVMe device. The function ID is an 8-digit hexadecimal value.
Specify the ID with a leading 0x. In the value itself you can omit leading zeroes.

chreipl

574 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-s <namespace_id> or --nsid <namespace_id>
specifies the name space ID of the NVMe device. Name space IDs are assigned by NVMe disk
controllers to divide a physical NVMe device into multiple logical devices. The name space ID is an
8-digit hexadecimal value. Specify the ID with a leading 0x. In the value itself you can omit leading
zeroes. The default is 0x00000001, which is equivalent to 0x1.

<node>
specifies a device node of a DASD, SCSI, NVMe or logical device mapper re-IPL device. For more
information about logical boot devices, see “Preparing a logical device as a boot device” on page 64.

<dir>
specifies a directory in the Linux file system on the re-IPL device.

-c or --clear
controls memory clearing during the re-IPL. Possible values are 1 and 0:
0

does not clear memory during the re-IPL. This is the default.
1

clears all memory during the re-IPL. For large memory sizes, memory clearing can considerably
slow down the re-IPL process. Use this setting if you must clear memory, even at the expense of a
prolonged re-IPL procedure.

You cannot control memory clearing for all environments and re-IPL devices. For unsupported devices
and environments, this option causes the command to fail with an error message.

This setting can affect the online state of hotplug memory after the re-IPL, see “Memory state and
reboot” on page 346

nss
declares that the following parameters refer to a z/VM named saved system (NSS).

Note: You cannot load Ubuntu Server 22.04 LTS or later from an NSS. The NSS could contain a Linux
distribution with NSS support or another mainframe operating system, for example, CMS.

<name> or -n <name> or --name <name>
specifies the name of an NSS as defined on the z/VM system.

Note: You cannot load Ubuntu Server 22.04 LTS or later from an NSS. The NSS could contain a Linux
distribution with NSS support or another mainframe operating system, for example, CMS.

-L or --loadparm <parameter>
specifies the entry in the boot menu to be used for the next reboot. This parameter applies to DASD or
virtio block re-IPL devices with a zipl boot menu configuration.

Omitting this parameter eliminates an existing selection in the boot configuration. Depending on your
boot menu configuration, a zipl interactive boot menu might be displayed during the re-IPL process
or the default configuration is used. See “DASD menu configuration example for z/VM” on page 108,
“DASD menu configuration for LPAR” on page 94, and “Menu configurations” on page 77 for details.

A SCSI re-IPL device might hold a distribution that supports this parameter for SCSI devices. See the
distribution-specific documentation for this distribution about valid specifications.

-b or --bootprog <n>
specifies the entry in the boot menu to be used for the next reboot. This parameter applies only if the
re-IPL device is a SCSI disk with a zipl boot menu configuration.

Omitting this parameter eliminates an existing selection in the boot configuration and the default boot
configuration is used.

-p or --bootparms
specifies boot parameters for the next reboot. The boot parameters, which typically are kernel
parameters, are appended to the kernel parameter line in the boot configuration. The number of
characters you can specify depends on your environment and re-IPL device as shown in Table 73 on
page 576.

chreipl

Chapter 62. Commands for Linux on IBM Z 575

Table 73. Maximum characters for additional kernel parameters by re-IPL device

Virtual hardware where Linux
runs DASD SCSI or NVMe NSS

LPAR none 3452 n/a

z/VM guest virtual machine 64 3452 56

KVM none n/a n/a

If you omit this parameter, the existing boot parameters in the next boot configuration are used
without any changes.

-f or --force
With this option, you can force the re-IPL from a target device even if the target cannot be verified by
the system. This is the case, for example, if the device is on the cio_ignore exclusion list (blacklist).

Note: Use this option with great care. Specifying a non-existing device causes the re-IPL to fail.

-h or --help
displays help information for the command. To view the man page, enter man chreipl.

-v or --version
displays version information.

For disk-type re-IPL devices, the command accepts but does not require an initial statement:
ccw

declares that the following parameters refer to a DASD or a virtio block re-IPL device.
fcp

declares that the following parameters refer to a SCSI re-IPL device.
node

declares that the following parameters refer to a disk re-IPL device that is identified by a device node
or by a directory in the Linux file system on that device. The disk device can be a DASD or a SCSI disk.

Examples

These examples illustrate common uses for chreipl.

• The following commands all configure the same DASD as the re-IPL device, assuming that the device
bus-ID of the DASD is 0.0.7e78, that the standard device node is /dev/dasdc, that udev creates
an alternative device node /dev/disk/by-path/ccw-0.0.7e78, that /mnt/boot is located on the
Linux file system in a partition of the DASD.

– Using the bus ID:

chreipl 0.0.7e78

– Using the bus ID and the optional ccw statement:

chreipl ccw 0.0.7e78

– Using the bus ID, the optional statement and the optional --device keyword:

chreipl ccw --device 0.0.7e78

– Using the standard device node:

chreipl /dev/dasdc

– Using the udev-created device node:

chreipl

576 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chreipl /dev/disk/by-path/ccw-0.0.7e78

– Using a directory within the file system on the DASD:

chreipl /mnt/boot

• The following commands all configure the same SCSI disk as the re-IPL device, assuming that the
device bus-ID of the FCP device through which the device is attached is 0.0.1700, the WWPN of the
storage server is 0x500507630300c562, and the LUN is 0x401040b300000000. Further it is assumed
that the standard device node is /dev/sdb, that udev creates an alternative device node /dev/disk/
by-id/scsi-36005076303ffc56200000000000010b4, and that /mnt/fcpboot is located on the
Linux file system in a partition of the SCSI disk.

– Using bus ID, WWPN, and LUN:

chreipl 0.0.1700 0x500507630300c562 0x401040b300000000

– Using bus ID, WWPN, and LUN with the optional fcp statement:

chreipl fcp 0.0.1700 0x500507630300c562 0x401040b300000000

– Using bus ID, WWPN, LUN, the optional statement, and keywords for the parameters. When you use
the keywords, the parameters can be specified in any order:

chreipl fcp --wwpn 0x500507630300c562 -d 0.0.1700 --lun 0x401040b300000000

– Using the standard device node:

chreipl /dev/sdb

– Using the udev-created device node:

chreipl /dev/disk/by-id/scsi-36005076303ffc56200000000000010b4

– Using a directory within the file system on the SCSI disk:

chreipl /mnt/fcpboot

• To configure a DASD with bus ID 0.0.7e78 as the re-IPL device, using the first entry of the zipl boot
menu:

chreipl 0.0.7e78 -L 1
Re-IPL type: ccw
Device: 0.0.7e78
Loadparm: "1"
Bootparms: ""
clear: 0

• The following examples configures a DASD with bus ID 0.0.7e78 as the re-IPL device. To also display
all kernel messages on the console, add ignore_loglevel to the existing kernel parameters in the
boot configuration. To clear memory at the expense of a prolonged re-IPL procedure, set the clear mode
to 1.

chreipl 0.0.7e78 -p "ignore_loglevel" -c 1
Re-IPL type: ccw
Device: 0.0.7e78
Loadparm: ""
Bootparms: "ignore_loglevel"
clear: 1

• The following examples configures an NVMe device with Function ID 0x00000013 and name space ID
0x00000001 as the re-IPL device.

chreipl

Chapter 62. Commands for Linux on IBM Z 577

chreipl nvme -i 0x13 -s 1
Re-IPL type: nvme
FID: 0x00000013
NSID: 0x00000001
bootprog: 0
br_lba: 0
Loadparm: ""
Bootparms: ""
clear: 0

chreipl

578 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chshut - Control the system shutdown actions
Use the chshut command to change the shutdown actions for specific shutdown triggers.

The shutdown triggers are:

• halt
• poff
• reboot

The shutdown triggers restart and panic are handled by the dumpconf service script, see Using the
Dump Tools, SC33-8412 for details.

Linux on IBM Z performs shutdown actions according to sysfs attribute settings within the /sys/
firmware directory structure. The chshut command sets a shutdown action for a shutdown trigger
by changing the corresponding sysfs attribute setting. For more information about the sysfs attributes and
the shutdown actions, see Chapter 8, “Shutdown actions,” on page 119.

chshut syntax

chshut halt

 poff

 reboot

 ipl

 reipl

 stop

 vmcmd "  <cp_command> "

Where:
halt

sets an action for the halt shutdown trigger.
poff

sets an action for the poff shutdown trigger.
reboot

sets an action for the reboot shutdown trigger.
ipl

sets IPL as the action to be taken.
reipl

sets re-IPL as the action to be taken.
stop

sets "stop" as the action to be taken.
vmcmd "<cp_command>"

sets the action to be taken to issuing a z/VM CP command. The command must be specified in
uppercase characters and enclosed in quotation marks. To issue multiple commands, repeat the
vmcmd attribute with each command.

-h or --help
displays help information for the command. To view the man page, enter man chshut.

-v or --version
displays version information.

Examples

These examples illustrate common uses for chshut.

chshut

Chapter 62. Commands for Linux on IBM Z 579

• To make the system start again after a power off:

chshut poff ipl

• To log off the z/VM guest virtual machine if the Linux poweroff command was run successfully:

chshut poff vmcmd LOGOFF

• To send a message to z/VM user ID OPERATOR and automatically log off the z/VM guest virtual machine
if the Linux poweroff command is run:

chshut poff vmcmd "MSG OPERATOR Going down" vmcmd "LOGOFF"

chshut

580 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chzcrypt - Modify the zcrypt configuration
Use the chzcrypt command to configure cryptographic adapters that are managed by zcrypt and modify
zcrypt's AP bus attributes.

In sysfs, AP queues are listed as children of a cryptographic device with a name of the form:
card<adapter_id>. For example, if cryptographic devices with the adapter IDs 00 and 02 are selected,
and the domain IDs 0002, 0003 and 000e have been configured, then the following cryptographic devices
and AP queues are defined to Linux:

/sys/devices/ap/card00
/sys/devices/ap/card00/00.0002
/sys/devices/ap/card00/00.0003
/sys/devices/ap/card00/00.000e
/sys/devices/ap/card02
/sys/devices/ap/card02/02.0002
/sys/devices/ap/card02/02.0003
/sys/devices/ap/card02/02.000e

To display the attributes, use “lszcrypt - Display zcrypt devices” on page 676.

chzcrypt syntax

chzcrypt --config-on

--config-off

-a

 <device_ID>

-e

-d

-a

<device_ID>

<ap_queue>

-p

-n

-c <timeout>

-t <time>

-q <domain>

Where:
--config-on

For Linux in LPAR mode, configures cryptographic devices and all associated AP queues for the LPAR.
--config-off

For Linux in LPAR mode, sets the LPAR configuration status of cryptographic devices and all
associated AP queues to "not configured". As a result, the devices and all associated AP queues
are set offline in Linux.

-e or --enable
sets the given cryptographic devices and AP queues online in Linux. Cryptographic devices can be set
online only if they are configured at the LPAR level (see --config-on).

-d or --disable
sets the specified cryptographic devices and AP queues offline in Linux.

chzcrypt

Chapter 62. Commands for Linux on IBM Z 581

-a or --all
can be combined with the -e, -d, --enable, --disable, --config-on, or --config-off option
to act on all available cryptographic devices.

<device_ID>
specifies a cryptographic device. A cryptographic device can be specified either in decimal notation or
hexadecimal notation with a '0x' prefix.

<ap_queue>
specifies an AP queue in hexadecimal notation, omitting the '0x' prefix.

-p or --poll-thread-enable
enables zcrypt's poll thread. You cannot use the poll thread in environments that support AP adapter
interrupts, see “Using AP adapter interrupts” on page 506.

-n or --poll-thread-disable
disables zcrypt's poll thread.

-c <timeout> or --config-time <timeout>
sets configuration timer for rescanning the AP bus to <timeout> seconds.

-t <time>or --poll-timeout=<time>
sets the high-resolution polling timer to <time> nanoseconds. To display the value, use lszcrypt
-b.

-q or --default-domain <domain>
changes the default domain. Specify the domain as either a hexadecimal or decimal value.

Important: Be sure to enter an existing domain. The Trusted Key Entry (TKE) workstation does not
find the cryptographic adapters if a non-existing domain is entered here. All CCA applications use the
default domain, and do not work correctly if the specified domain does not exist.

-h or --help
displays help information for the command. To view the man page, enter man chzcrypt.

-v or --version
displays version information.

Examples

These examples illustrate common uses for chzcrypt.

• To configure cryptographic devices with the adapter IDs 0, 1, 4, 5, and 12 and their associated AP
queues for the LPAR (in decimal notation):

chzcrypt --config-on 0 1 4 5 12

• To set the cryptographic devices with the adapter IDs 0, 1, 4, 5, and 12 and their associated AP queues
online (in decimal notation):

chzcrypt -e 0 1 4 5 12

Or, in hexadecimal notation:

chzcrypt -e 0x00 0x01 0x04 0x05 0x0C

• To set all available cryptographic adapters, including all AP queues, offline:

chzcrypt -d -a

• To set the AP queue defined by adapter ID 00 and domain 77 (0x4d) offline:

chzcrypt -d 00.004d

• To set the configuration timer for rescanning the AP bus to 60 seconds and disable zcrypt's poll thread:

chzcrypt

582 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

chzcrypt -c 60
chzcrypt -n

• To change the default domain to 77 (0x4d):

chzcrypt -q 0x4d

or

chzcrypt -q 77

chzcrypt

Chapter 62. Commands for Linux on IBM Z 583

chzdev - Configure IBM Z devices
Use the chzdev command to configure devices and device drivers on IBM Z. Supported devices include
storage devices (DASD and zFCP) and networking devices (QETH and LCS). For more examples of how to
use the command, see Chapter 25, “Persistent device configuration,” on page 351.

You can apply configuration changes to the active configuration of the currently running system, or to the
persistent configuration stored in configuration files:

• Changes to the active configuration are effective immediately. They are lost on reboot, when a device
driver is unloaded, or when a device becomes unavailable.

• Changes to the persistent configuration are applied when the system boots, when a device driver is
loaded, or when a device becomes available.

By default, chzdev applies changes to both the active and the persistent configuration.

You can also temporarily remove existing auto-configuration data, see “Managing auto-configuration
data” on page 22.

chzdev supports enabling and disabling devices, exporting and importing configuration data to and from
a file, and displaying a list of available device types and attributes.

chzdev actions and options
chzdev Attribute settings

--export <filename>

-

--import <filename>

-

--apply

Device selection

Device type selection

--enable Attribute settings

--disable

Device selection

--persistent --active

--active

--persistent

--auto-conf
1

--dry-run --base <path>

<key=value>

--force --no-root-update --yes --quiet

--verbose

--no-settle
1

Notes:
1 This option is intended for utilities that run early in the boot process.

Device selection

chzdev

584 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<type>

,

<device>

<from_dev>-<to_dev>

--by-attrib <key=value>

<key!=value>

--by-interface  <interface>

--by-node  <device_node>

--by-path  <path>

--all

--configured

--existing --online

--offline

Device type selection
<type> --type

Attribute settings

1

--remove <attrib>

--remove-all

 <attribute=value>

Notes:
1 Specify at least one of the options

chzdev help functions
chzdev

--list-attributes <type>
,

<attribute>

--list-types

--help-attribute <type>
,

<attribute>

--help

--version

where:

<type>
restricts the scope of an action to the specified device type:

• Specify a device type and optionally a device ID to work on devices with matching type and ID only.

chzdev

Chapter 62. Commands for Linux on IBM Z 585

• Specify a device type together with the --type option to manage the configuration of the device
type itself.

Note:

As a precaution, use the most specific device type when you configure a device by ID. Otherwise,
the same device ID might accidentally match other devices of a different subtype. To get a list of
supported device types, use the --list-types option.

<device>
selects a single device or a range of devices by device ID. Separate multiple IDs or ranges with a
comma (,). To select a range of devices, specify the ID of the first and the last device in the range
separated by a hyphen (-).

-t <device_type> or --type <device_type>
selects a device type as target for a configuration or query action. For example: dasd-eckd, zfcp, or
qeth.

<attribute=value>
specifies a device attribute and its value. To specify multiple attributes, separate attribute-value pairs
with a blank.

You can use the --list-attributes option to display a list of available attributes and the --help-
attribute to get more detailed information about a specific attribute.

Tip: To specify an attribute that is not known to chzdev, use the --force option.

-r <attrib> or --remove <attrib>
removes the setting for attribute <attrib>.
Active configuration

For attributes that maintain a list of values, clears all values for that list.
Persistent configuration

Removes any setting for the specified attribute. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
-R or --remove-all

removes the settings for all attributes of the selected device or device driver.
Active configuration

For attributes that maintain a list of values, clears all values for that list.
Persistent configuration

Removes all attribute settings that can be removed. When the device or device driver is configured
again, the attribute is set to its default value.

Some attributes cannot be removed.
--by-attrib <attrib=value> | <attrib!=value>

selects devices with a specific attribute, <attrib> that has a value of <value>. When specified as
<attrib>!=<value>, selects all devices that do not provide an attribute named <attrib> with a value of
<value>.

Tip: You can use the --list-attributes option to display a list of available attributes and the
--help-attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, encf500. <interface> must be the name of an
existing networking interface.

--by-node <device_node>
selects devices by device node, for example, /dev/sda. <device_node> must be the path to the
device node for a block device or character device.

chzdev

586 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Note: If <device_node> is the device node for a logical device (such as a device mapper device),
lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be available
for this resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

--all
selects all existing and configured devices.

--configured
narrows the selection to those devices for which a persistent configuration exists.

--existing
narrows the selection to all devices that are present in the active configuration.

--configured --existing
specifying both --configured and --existing narrows the selection to devices that are present in
both configurations, persistent and active.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

-a or --active
applies changes to the active configuration only. The persistent configuration is not changed unless
you also specify --persistent.

Note: Changes to the active configuration are effective immediately. They are lost on reboot, when a
device driver is unloaded, or when a device becomes unavailable.

-p or --persistent
applies changes to the persistent configuration only. The persistent configuration takes effect when
the system boots, when a device driver is loaded, or when a device becomes available.

--auto-conf
applies changes to the auto-configuration. Changes to the auto-configuration take effect when a
device becomes available, but do not persist across reboots. This option is primarily intended for
use by the boot process. For details about auto-configuration data, see Chapter 3, “Device auto-
configuration for Linux in LPAR mode,” on page 21.

--export <filename>|-
writes configuration data to a text file called <filename>. If a single hyphen (-) is specified instead
of a file name, data is written to the standard output stream. The output format of this option can
be used with the --import option. To reduce the scope of exported configuration data, you can
select specific devices, a device type, or define whether to export only data for the active or persistent
configuration.

--import <filename>|-
reads configuration data from <filename> and applies it. If a single hyphen (-) is specified instead of
a file name, data is read from the standard input stream. The input format must be the same as the
format produced by the --export option.

By default, all configuration data that is read is also applied. To reduce the scope of imported
configuration data, you can select specific devices, a device type, or define whether to import only
data for the active or persistent configuration.

You can use this option to import auto-configuration data, see “Displaying auto-configuration data” on
page 22.

chzdev

Chapter 62. Commands for Linux on IBM Z 587

-a or --apply
applies the persistent configuration of all selected devices and device types to the active
configuration.

-e or --enable
enables the selected devices. Any steps necessary for the devices to function are taken, for example:
create a CCW group device, remove a device from the CIO exclusion list, or set a CCW device online.
Active configuration

Performs all setup steps required for a device to become operational, for example, as a block
device or as a network interface.

Persistent configuration
Creates configuration files and settings associated with the selected devices.

-d or --disable
disables the selected devices.
Active configuration

Disables the selected devices by reverting the configuration steps necessary to enable them.
Persistent configuration

Removes configuration files and settings associated with the selected devices.
--dry-run

processes the actions and displays command output without changing the configuration of any
devices or device types. Combine with --verbose to display details about skipped configuration
steps.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example: lszdev --persistent --base /etc=/mnt/etc

-f or --force
overrides safety checks and confirmation questions, including:

• More than 256 devices selected
• Configuring unknown attributes
• Combining apparently inconsistent settings

--no-root-update
skips any additional steps that are required to change the root device configuration persistently.
Typically such steps include rebuilding the initial RAM disk, or modifying the kernel command line.

-y or --yes
answers all confirmation questions with "yes".

-q or --quiet
prints only minimal run-time information.

-l or --list-attributes
lists all supported device or device type attributes, including a short description. Use the --help-
attribute option to get more detailed information about an attribute.

-L or --list-types
lists the name and a short description for all device types supported by chzdev.

--no-settle
continue without waiting for udev processing to complete. This option is intended for utilities that run
during the early initial RAM disc stage of the boot process, when udev is not fully functional.

-V or --verbose
prints additional run-time information.

chzdev

588 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-v or --version
displays the version number of chzdev, then exits.

-h or --help
displays help information for the command.

-H or --help-attribute
displays help information for the command.

Examples

• To enable an FCP device with device number 0.0.198d, WWPN 0x50050763070bc5e3, and LUN
0x4006404600000000, and create a persistent configuration, issue:

chzdev --enable zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To enable the same FCP device without creating a persistent configuration, issue:

chzdev --enable --active zfcp-lun 0.0.198d:0x50050763070bc5e3:0x4006404600000000

• To export configuration data for all FCP devices to a file called config.txt, issue:

chzdev zfcp-lun --all --export config.txt

• To enable a QETH device and create a persistent configuration, issue:

chzdev --enable qeth 0.0.a000:0.0.a001:0.0.a002

• To enable a QETH device without creating a persistent configuration, issue:

chzdev --enable --active qeth 0.0.a000:0.0.a001:0.0.a002

• To enable a device that provides networking interface encf500, issue:

chzdev --by-interface encf500 --active

• To get help for the QETH-device attribute layer2, issue:

chzdev qeth --help-attribute layer2

• To enable DASD 0.0.8000 and create a persistent configuration, issue:

chzdev -e dasd 8000

• To enable DASDs 0.0.1000 and 0.0.2000 through 0.0.2010, issue:

chzdev dasd 1000,200-2010 -e

• To change the dasd device type parameter eer_pages to 14, issue:

chzdev dasd --type eer_pages=14

• To remove the persistent use_diag setting of DASD 0.0.8000, issue:

chzdev dasd 8000 --remove use_diag --persistent

• To persistently configure the root device, issue:

chzdev --by-path / --persistent

See the man page for information about the command exit codes.

chzdev

Chapter 62. Commands for Linux on IBM Z 589

Activating a device early during the boot process
Use the zdev:early device attribute to activate a device early during the boot process and to override
any existing auto-configuration with a persistent device configuration.

zdev:early=1
The device is activated during the initial RAM disc phase according to the persistent configuration.

zdev:early=0
The device is activated as usual during the boot process. This is the default. If auto-configuration
data is present, the device is activated during the initial RAM disc phase according to the auto-
configuration.

Example: To assure that the qeth device with bus-ID 0.0.f5f0 is enabled early in the boot process in layer
2 mode, issue:

chzdev -e qeth 0.0.f5f0:0.0.f5f1:0.0.f5f2 layer2=1 zdev:early=1

See also Chapter 3, “Device auto-configuration for Linux in LPAR mode,” on page 21.

Files used
The chzdev command uses these files:
/etc/udev/rules.d/

chzdev creates udev rules to store the persistent configuration of devices. File names start with 41-.
/etc/modprobe.d/

chzdev creates modprobe configuration files to store the persistent configuration of certain device
types. File names start with s390x-.

/run
holds udev rules that represent auto-configuration data. chzdev can remove entries so the auto-
configuration settings do not apply as devices appear on the running Linux instance.

chzdev

590 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cio_ignore - Manage the I/O exclusion list
Use the cio_ignore command to specify I/O devices that are to be ignored by Linux.

When an instance of Linux on IBM Z boots, it senses and analyzes all available I/O devices. You can use
the cio_ignore kernel parameter (see “cio_ignore - List devices to be ignored” on page 774) to specify
devices that are to be ignored. This exclusion list can cover all possible devices, even devices that do not
actually exist.

The cio_ignore command manages this exclusion list on a running Linux instance. You can change the
exclusion list and display it in different formats. Changes made with the cio_ignore command do not
persist across reboots.

cio_ignore syntax

cio_ignore -a

 -r

,

<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

 -A

 -R

 -l

 -i  <device_bus_id>

 -L

 -k

 -u

 -p

 -h

 -v

Where:
-a or --add

adds one or more device specifications to the exclusion list.

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the
lscss command and can be set online. However, if the device subsequently becomes unavailable, it
is ignored when it reappears. For example, if the device is detached in z/VM, it is ignored when it is
attached again.

See the -p option about making devices that are already sensed and analyzed unavailable to Linux.

-r or --remove
removes one or more device specifications from the exclusion list.

When you remove device specifications from the exclusion list, the corresponding devices are sensed
and analyzed if they exist. Where possible, the corresponding device driver is informed, and the
devices become available to Linux.

<device_bus_id>
identifies a single device.

cio_ignore

Chapter 62. Commands for Linux on IBM Z 591

Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID and <devno> is
a device number. If the subchannel set ID is 0, you can abbreviate the specification to the device
number, with or without a leading 0x.

Example: The specifications 0.0.0190, 190, 0190, and 0x190 are all equivalent. There is no short
form of 0.1.0190.

<from_device_bus_id>-<to_device_bus_id>
identifies a range of devices. <from_device_bus_id> and <to_device_bus_id> have the same format as
<device_bus_id>.

-A or --add-all
adds the entire range of possible devices to the exclusion list.

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the
lscss command and can be set online. However, if the device subsequently becomes unavailable, it
is ignored when it reappears. For example, if the device is detached in z/VM, it is ignored when it is
attached again.

See the -p option about making devices that are already sensed and analyzed unavailable to Linux.

-R or --remove-all
removes all devices from the exclusion list.

When you remove device specifications from the exclusion list, the corresponding devices are sensed
and analyzed if they exist. Where possible, the corresponding device driver is informed, and the
devices become available to Linux.

-l or --list
displays the current exclusion list.

-i or --is-ignored
checks if the specified device is on the exclusion list. The command prints an information message
and completes with exit code 0 if the device is on the exclusion list. The command completes with exit
code 2 if the device is not on the exclusion list.

-L or --list-not-blacklisted
displays specifications for all devices that are not in the current exclusion list.

-k or --kernel-param
returns the current exclusion list in kernel parameter format.

You can make the current exclusion list persistent across rebooting Linux by using the output of the
cio_ignore command with the -k option as part of the Linux kernel parameter. See Chapter 4,
“Kernel and module parameters,” on page 25.

-u or --unused
discards the current exclusion list and replaces it with a specification for all devices that are not
online. This includes specification for possible devices that do not actually exist.

-p or --purge
makes all devices that are in the exclusion list and that are currently offline unavailable to Linux. This
option does not make devices unavailable if they are online.

-h or --help
displays help information for the command. To view the man page, enter man cio_ignore.

-v or --version
displays version information.

Examples

These examples illustrate common uses for cio_ignore.

• The following command shows the current exclusion list:

cio_ignore

592 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cio_ignore -l
Ignored devices:
=================
0.0.0000-0.0.7e8e
0.0.7e94-0.0.f4ff
0.0.f503-0.0.ffff
0.1.0000-0.1.ffff
0.2.0000-0.2.ffff
0.3.0000-0.3.ffff

• The following command shows specifications for the devices that are not on the exclusion list:

cio_ignore -L
Accessible devices:
===================
0.0.7e8f-0.0.7e93
0.0.f500-0.0.f502

The following command checks if 0.0.7e8f is on the exclusion list:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is not ignored.

• The following command adds, 0.0.7e8f, to the exclusion list:

cio_ignore -a 0.0.7e8f

The previous example then becomes:

cio_ignore -L
Accessible devices:
===================
0.0.7e90-0.0.7e93
0.0.f500-0.0.f502

And for 0.0.7e8f in particular:

cio_ignore -i 0.0.7e8f
Device 0.0.7e8f is ignored.

• The following command shows the current exclusion list in kernel parameter format:

cio_ignore -k
cio_ignore=all,!7e90-7e93,!f500-f502

cio_ignore

Chapter 62. Commands for Linux on IBM Z 593

cmsfs-fuse - Mount a z/VM CMS file system
Use the cmsfs-fuse command to mount the enhanced disk format (EDF) file system on a z/VM minidisk.

In Linux, the minidisk is represented as a DASD and the file system is mounted as a cmsfs-fuse file
system. The cmsfs-fuse file system converts the record-based file system on the minidisk into Linux
semantics.

Through the cmsfs-fuse file system, the files on the minidisk become available to applications on Linux.
Applications can read from and write to files on minidisks. Optionally, the cmsfs-fuse file system converts
text files between EBCDIC on the minidisk and ASCII within Linux.

Attention: You can inadvertently damage files and lose data when directly writing to files within
the cmsfs-fuse file system. To avoid problems when you write, multiple restrictions must be
observed, especially regarding linefeeds (see restrictions for write).

Tip: If you are unsure about how to safely write to a file on the cmsfs-fuse file system, copy the file to a
location outside the cmsfs-fuse file system, edit the file, and then copy it back to its original location.

Use fusermount to unmount file systems that you mounted with cmsfs-fuse. See the fusermount
man page for details.

Before you begin:

• cmsfs-fuse requires the FUSE library. You can obtain it from sourceforge at sourceforge.net/projects/
fuse.

• The DASD must be online.
• Depending whether you intend to read, write, or both, you must have the appropriate permissions for

the device node.

cmsfs-fuse syntax

cmsfs-fuse

-a

-t
--from

 CP1047

 <code-page>

--to
 ISO8859-1

<code-page>

<mount-options> <fuse-options>

<node> <mount-point>

where:
-a or --ascii

treats all files on the minidisk as text files and converts them from EBCDIC to ASCII.
-t or --filetype

treats files with extensions as listed in the cmsfs-fuse configuration file as text files and converts
them from EBCDIC to ASCII.

By default, the cmsfs-fuse command uses /etc/cmsfs-fuse/filetypes.conf as the
configuration file. You can replace the list in this default file by creating a file .cmsfs-fuse/
filetypes.conf in your home directory.

The filetypes.conf file lists one file type per line. Lines that start with a number sign (#) followed
by a space are treated as comments and are ignored.

cmsfs-fuse

594 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

http://sourceforge.net/projects/fuse
http://sourceforge.net/projects/fuse

--from <code-page>
specifies the encoding of the files on the z/VM minidisk. If this option is not specified, code page
CP1047 is used. Enter iconv --list to display a list of all available code pages.

--to <code-page>
specifies the encoding to which the files on the z/VM minidisk are converted in Linux. If this option is
not specified, code page ISO-8859-1 is used. Enter iconv --list to display a list of all available
code pages.

<mount-options>
options as available for the mount command. See the mount man page for details.

<fuse-options>
options for FUSE. The following options are supported by the cmsfs-fuse command. To use an
option, it must also be supported by the version of FUSE that you have.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-o allow_other

allows access to other users.
-o allow_root

allows access to root.
-o default_permissions

enables permission checking by the kernel.
-o max_read=<n>

sets maximum size of read requests.
-o kernel_cache

caches files in the kernel.
-o [no]auto_cache

enables or disables caching based on modification times.
-o umask=<mask>

sets file permissions (octal).
-o uid=<n>

sets the file owner.
-o gid=<n>

sets the file group.
-o max_write=<n>

sets the maximum size of write requests.
-o max_readahead=<n>

sets the maximum readahead value.
-o async_read

performs reads asynchronously (default).
-o sync_read

performs reads synchronously.
-o big_writes

enables write operations with more than 4 KB.
<node>

the device node for the DASD that represents the minidisk in Linux.
<mount-point>

the mount point in the Linux file system where you want to mount the CMS file system.
-h or --help

displays help information for the command. To view the man page, enter man cmsfs-fuse.

cmsfs-fuse

Chapter 62. Commands for Linux on IBM Z 595

-v or --version
displays version information for the command.

Extended attributes
You can use the following extended attributes to handle the CMS characteristics of a file:
user.record_format

specifies the format of the file. The format is F for fixed record length files and V for variable record
length files. This attribute can be set only for empty files. The default file format for new files is V.

user.record_lrecl
specifies the record length of the file. This attribute can be set only for an empty fixed record length
file. A valid record length is an integer in the range 1-65535.

user.file_mode
specifies the CMS file mode of the file. The file mode consists of a mode letter from A-Z and mode
number from 0 - 6. The default file mode for new files is A1.

You can use the following system calls to work with extended attributes:
listxattr

to list the current values of all extended attributes.
getxattr

to read the current value of a particular extended attribute.
setxattr

to set a particular extended attribute.

You can use these system calls through the getfattr and setfattr commands. For more information,
see the man pages of these commands and of the listxattr, getxattr, and setxattr system calls.

Restrictions
When you work with files in the cmsfs-fuse file system, restrictions apply for the following system calls:
write

Be aware of the following restrictions when you write to a file on the cmsfs-fuse file system:
Write location

Writing is supported only at the end of a file.
Padding

For fixed-length record files, the last record is padded to make up a full record length. The padding
character is zero in binary mode and the space character in ASCII mode.

Sparse files
Sparse files are not supported. To prevent the cp tool from writing in sparse mode, specify
-sparse=never.

Records and linefeeds with ASCII conversion (-a and -t)

In the ASCII representation of an EBCDIC file, a linefeed character determines the end of a record.
Follow these rules about linefeed characters requirements when you write to EBCDIC files in
ASCII mode:
For fixed record length files

Use linefeed characters to separate character strings of the fixed record length.
For variable record length files

Use linefeed characters to separate character strings. The character strings must not exceed
the maximum record length.

The CMS file system does not support empty records. cmsfs-fuse adds a space to records that
consist of a linefeed character only.

cmsfs-fuse

596 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

rename and creat
Uppercase file names are enforced.

truncate
Only shrinking of a file is supported. For fixed-length record files, the new file size must be a multiple
of the record length.

Examples

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt:

cmsfs-fuse /dev/dasde /mnt

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt
and enable EBCDIC to ASCII conversion for text files with extensions as specified in ~/.cmsfs-fuse/
filetypes.conf or /etc/cmsfs-fuse/filetypes.conf if the former does not exist:

cmsfs-fuse -t /dev/dasde /mnt

• To mount the CMS file system on the minidisk represented by the file node /dev/dasde at /mnt and
allow root to access the mounted file system:

cmsfs-fuse -o allow_root /dev/dasde /mnt

• To unmount the CMS file system that was mounted at /mnt:

fusermount -u /mnt

• To show the record format of a file, PROFILE.EXEC, on a z/VM minidisk that is mounted on /mnt:

getfattr -n user.record_format /mnt/PROFILE.EXEC
F

• To set record length 80 for an empty fixed record format file, PROFILE.EXEC, on a z/VM minidisk that is
mounted on /mnt:

setfattr -n user.record_lrecl -v 80 /mnt/PROFILE.EXEC

cmsfs-fuse

Chapter 62. Commands for Linux on IBM Z 597

cpacfstats - Monitor CPACF cryptographic activity
Use the cpacfstats command to display the number of cryptographic operations that are performed by
the Central Processor Assist for Cryptographic Function (CPACF). You can display and enable, disable, or
reset specific hardware counters for AES, DES, ECC, TDES, SHA, and pseudo random functions.

CPACF performance counters are available on LPARs only.

All counters are initially disabled and must be enabled in the LPAR activation profile on the SE or HMC to
measure CPACF activities. There is a slight performance penalty with CPACF counters enabled.

Prerequisites
• The performance monitoring event library libpfm version 4 or later is required. You can obtain the

libpfm4 package from Debian.
• On the HMC or SE, authorize the LPAR for each counter set you want to use. Customize the LPAR

activation profile and modify the Counter Facility Security Options. You need to activate the "Crypto
activity counter set authorization control" checkbox.

• The cpacfstatsd daemon must be running. Check the syslog for the message: cpacfstatsd:
Running. To start the daemon, issue:

cpacfstatsd

The daemon requires root privileges to open and work with the perf kernel API functions. Issue man
cpacfstatsd for more information about the daemon.

Note: The counter value is increased once per API call and also for every additional 4096 bytes of data.

Setting up the cpacfstats group
Only root and members of the group cpacfstats are allowed to communicate with the daemon process.
You must create the group and add users to it.

1. Create the group cpacfstats:

groupadd cpacfstats

2. Add all users who are allowed to run the cpacfstats client application to the group:

usermod -a -G cpacfstats <user>

All users in the cpacfstats group are also able to modify the CPACF counter states (enable, disable, reset).

cpacfstats syntax

cpacfstats

 -p all

 -e  <counter>

 -d  <counter>

 -r  <counter>

 -p  <counter>

Where:

cpacfstats

598 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-e <counter> or --enable <counter>
enables one or all CPACF performance counters. The optional counter argument can be one of:
aes

counts all AES-related cipher message CPACF instructions.
des

counts all DES- and 3DES-related cipher message CPACF instructions.
ecc

counts all ECC (elliptic curve cryptography) related CPACF instructions.
rng

counts all pseudo-random related CPACF instructions.
sha

counts all message digest (that is, SHA-1 through SHA-512) related CPACF instructions.
all

counts all CPACF instructions.
If you omit the counter, all performance counters are enabled. Enabling a counter does not reset it.
New events are added to the current counter value.

-d <counter> or --disable <counter>
disables one or all CPACF performance counters. If you omit the counter, all performance counters
are disabled. Disabling a counter does not reset it. The counter value is preserved when a counter is
disabled, and counting resumes with the preserved value when the counter is re-enabled.

-r <counter> or --reset <counter>
resets one or all CPACF performance counters. If you omit the counter, all performance counters are
reset to 0.

-p <counter> or --print <counter>
displays the value of one or all CPACF performance counters. If you omit the counter, all performance
counters are displayed.

-h or --help
displays help information for the command. To view the command man page, enter
man cpacfstats.

-v or --version
displays version information for cpacfstats.

The default command is --print all.

Examples

• To print status and values of all CPACF performance counters:

cpacfstats
des counter: disabled
aes counter: disabled
sha counter: disabled
rng counter: disabled

• To enable the AES CPACF performance counter:

cpacfstats --enable aes
aes counter: 0

• To enable all CPACF performance counters:

cpacfstats -e
des counter: 0
aes counter: 192
sha counter: 0
rng counter: 0

cpacfstats

Chapter 62. Commands for Linux on IBM Z 599

For the already enabled aes counter, the value is not reset.

cpacfstats

600 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cpuplugd - Control CPUs and memory
Use the cpuplugd command and a set of rules in a configuration file to dynamically enable or disable
CPUs. For Linux on z/VM, you can also dynamically add or remove memory.

Ubuntu Server 22.04 LTS provides the cpuplugd utility as a package, s390-tools-cpuplugd.

When Linux is running in an LPAR, setting a CPU offline can result in the LPAR status "Exceptions" in the
HMC or SE. With one or more CPUs offline, this status does not necessarily indicate a problem.

Rules that are tailored to a particular system environment and the associated workload can increase
performance. The rules can include various system load variables.

Ubuntu Server 22.04 LTS automatically starts cpuplugd for you after you install the package.

Note: Do not run multiple instances of cpuplugd simultaneously.

You can start cpuplugd from the command line in two ways:

• With the service utility
• Through a command-line interface

cpuplugd service utility syntax
If you run the cpuplugd daemon through the service utility, you configure the daemon through
specifications in the /etc/cpuplugd.conf configuration file.

service cpuplugd start

 stop

 status

 restart

Where:
start

starts the cpuplugd daemon with the configuration in /etc/cpuplugd.conf. Do not run multiple
instances of cpuplugd simultaneously. Check the cpuplugd status before starting a new instance.

stop
stops the cpuplugd daemon.

status
shows current status of cpuplugd.

restart
stops and restarts the cpuplugd daemon. Useful to re-read the configuration file when it was changed.

Examples
• To stop a running instance of cpuplugd:

service cpuplugd stop

• To display the status:

service cpuplugd status
...
 Active: active (running) ...

cpuplugd

Chapter 62. Commands for Linux on IBM Z 601

cpuplugd command-line syntax
You can start cpuplugd through a command interface.

Before you begin: Do not run multiple instances of cpuplugd simultaneously. Check the cpuplugd status
through the service utility before you issue the cpuplugd command (see “cpuplugd service utility syntax”
on page 601).

cpuplugd syntax

cpuplugd

 -f -V

 -c  <config file>

Where:
-c <config file> or --config <config file>

specifies the path to the configuration file with the rule (see “Configuration file structure” on page
602). You can find a sample configuration file at /etc/cpuplugd.conf.

-f or --foreground
runs cpuplugd in the foreground and not as a daemon. If this option is omitted, cpuplugd runs as a
daemon in the background.

-V or --verbose
displays verbose messages to stdout when cpuplugd is running in the foreground or to syslog when
cpuplugd is running as a daemon in the background. This option can be useful for debugging.

-h or --help
displays help information for the command. To view the command man page, enter man cpuplugd.
To view the man page for the configuration file, enter man cpuplugd.conf.

-v or --version
displays version information for cpuplugd.

Examples

• To start cpuplugd in daemon mode with a configuration file /etc/cpuplugd.conf:

cpuplugd -c /etc/cpuplugd.conf

• To run cpuplugd in the foreground with verbose messages and with a configuration file /etc/
cpuplugd.conf:

cpuplugd -V -f -c /etc/cpuplugd.conf

Configuration file structure
The cpuplugd configuration file can specify rules for controlling the number of active CPUs and for Linux
on z/VM, for controlling the amount of memory.

The configuration file contains:

• <variable>="<value>" pairs

These pairs must be specified within one line. The maximum valid line length is 2048 characters. The
values can be decimal numbers or algebraic or Boolean expressions.

• Comments

Any part of a line that follows a number sign (#) is treated as a comment. There can be full comment
lines with the number sign at the beginning of the line or comments can begin in mid-line.

• Empty lines

cpuplugd

602 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Attention: These configuration file samples illustrate the syntax of the configuration file. Do not
use the sample rules on production systems. Useful rules differ considerably, depending on the
workload, resources, and requirements of the system for which they are designed.

Basic configuration file for CPU control
A configuration file for dynamically enabling or disabling CPUs has several required specifications.

The configuration file sample of Figure 101 on page 603 has been reduced to the specifications that are
required for dynamically enabling or disabling CPUs.

UPDATE="10"
CPU_MIN="2"
CPU_MAX="10"

HOTPLUG = "idle < 10.0"
HOTUNPLUG = "idle > 100"

Figure 101. Simplified configuration file with CPU hotplug rules

In the configuration file:
UPDATE

specifies the time interval, in seconds, at which cpuplugd evaluates the rules and, if a rule is
met, enables or disables CPUs. This variable is also required for controlling memory (see “Basic
configuration file for memory control” on page 604).

In the example, the rules are evaluated every 10 seconds.

CPU_MIN
specifies the minimum number of CPUs. Even if the rule for disabling CPUs is met, cpuplugd does not
reduce the number of CPUs to less than this number.

In the example, the number of CPUs cannot become less than 2.

CPU_MAX
specifies the maximum number of CPUs. Even if the rule for enabling CPUs is met, cpuplugd does not
increase the number of CPUs to more than this number. If 0 is specified, the maximum number of
CPUs is the number of CPUs available on the system.

In the example, the number of CPUs cannot become more than 10.

HOTPLUG
specifies the rule for dynamically enabling CPUs. The rule resolves to a boolean true or false. Each
time this rule is true, cpuplugd enables one CPU, unless the number of CPUs has already reached the
maximum specified with CPU_MAX.

Setting HOTPLUG to 0 disables dynamically adding CPUs.

In the example, a CPU is enabled when the idle times of all active CPUs sum up to less than 10.0%.
See “Keywords for CPU hotplug rules” on page 605 for information about available keywords.

HOTUNPLUG
specifies the rule for dynamically disabling CPUs. The rule resolves to a boolean true or false. Each
time this rule is true, cpuplugd disables one CPU, unless the number of CPUs has already reached the
minimum specified with CPU_MIN.

Setting HOTUNPLUG to 0 disables dynamically removing CPUs.

In the example, a CPU is disabled when the idle times of all active CPUs sum up to more than 100%.
See “Keywords for CPU hotplug rules” on page 605 for information about available keywords.

If one of these variables is set more than once, only the last occurrence is used. These variables are not
case sensitive.

If both the HOTPLUG and HOTUNPLUG rule are met simultaneously, HOTUNPLUG is ignored.

cpuplugd

Chapter 62. Commands for Linux on IBM Z 603

Basic configuration file for memory control
For Linux on z/VM, you can also use cpuplugd to dynamically add or take away memory. There are several
required specifications for memory control.

The configuration file sample of Figure 102 on page 604 was reduced to the specifications that are
required for dynamic memory control.

UPDATE="10"
CMM_MIN="0"
CMM_MAX="131072" # 512 MB
CMM_INC="10240" # 40 MB

MEMPLUG = "swaprate > 250"
MEMUNPLUG = "swaprate < 10"

Figure 102. Simplified configuration file with memory hotplug rules

In the configuration file:
UPDATE

specifies the time interval, in seconds, at which cpuplugd evaluates the rules and, if a rule is met,
adds or removes memory. This variable is also required for controlling CPUs (see “Basic configuration
file for CPU control” on page 603).

In the example, the rules are evaluated every 10 seconds.

CMM_MIN
specifies the minimum amount of memory, in 4 KB pages, that Linux surrenders to the CMM static
page pool (see “Cooperative memory management background” on page 406). Even if the MEMPLUG
rule for taking memory from the CMM static page pool and adding it to Linux is met, cpuplugd does not
decrease this amount.

In the example, the amount of memory that is surrendered to the static page pool can be reduced to
0.

CMM_MAX
specifies the maximum amount of memory, in 4 KB pages, that Linux surrenders to the CMM
static page pool (see “Cooperative memory management background” on page 406). Even if the
MEMUNPLUG rule for removing memory from Linux and adding it to the CMM static page pool is met,
cpuplugd does not increase this amount.

In the example, the amount of memory that is surrendered to the static page pool cannot become
more than 131072 pages of 4 KB (512 MB).

CMM_INC
specifies the amount of memory, in 4 KB pages, that is removed from Linux when the MEMUNPLUG
rule is met. Removing memory from Linux increases the amount that is surrendered to the CMM static
page pool.

In the example, the amount of memory that is removed from Linux is 10240 pages of 4 KB (40 MB) at
a time.

CMM_DEC
Optional: specifies the amount of memory, in 4 KB pages, that is added to Linux when the MEMPLUG
rule is met. Adding memory to Linux decreases the amount that is surrendered to the CMM static page
pool.

If this variable is omitted, the amount of memory that is specified for CMM_INC is used.

In the example, CMM_DEC is omitted and the amount of memory added to Linux is 10240 pages of
4 KB (40 MB) at a time, as specified with CMM_INC.

cpuplugd

604 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

MEMPLUG
specifies the rule for dynamically adding memory to Linux. The rule resolves to a Boolean true or false.
Each time this rule is true, cpuplugd adds the number of pages that are specified by CMM_DEC, unless
the CMM static page pool already reached the minimum that is specified with CMM_MIN.

Setting MEMPLUG to 0 disables dynamically adding memory to Linux.

In the example, memory is added to Linux if there are more than 250 swap operations per second.
See “Keywords for memory hotplug rules” on page 606 for information about available keywords.

MEMUNPLUG
specifies the rule for dynamically removing memory from Linux. The rule resolves to a Boolean true
or false. Each time this rule is true, cpuplugd removes the number of pages specified by CMM_INC,
unless the CMM static page pool already reached the maximum that is specified with CMM_MAX.

Setting MEMUNPLUG to 0 disables dynamically removing memory from Linux.

In the example, memory is removed from Linux when there are less than 10 swap operations per
second. See “Keywords for memory hotplug rules” on page 606 for information about available
keywords.

If any of these variables are set more than once, only the last occurrence is used. These variables are not
case-sensitive.

If both the MEMPLUG and MEMUNPLUG rule are met simultaneously, MEMUNPLUG is ignored.

CMM_DEC and CMM_INC can be set to a decimal number or to a mathematical expression that uses the
same algebraic operators and variables as the MEMPLUG and MEMUNPLUG hotplug rules (see “Keywords
for memory hotplug rules” on page 606 and “Writing more complex rules” on page 607).

Predefined keywords
There is a set of predefined keywords that you can use for CPU hotplug rules and a set of keywords that
you can use for memory hotplug rules.

All predefined keywords are case sensitive.

Keywords for CPU hotplug rules
Use the predefined keywords in the CPU hotplug rules, HOTPLUG and HOTUNPLUG.

The following keywords are available:
loadavg

is the current load average.
onumcpus

is the current number of online CPUs.
runnable_proc

is the current number of runnable processes.
user

is the current CPU user percentage.
nice

is the current CPU nice percentage.
system

is the current CPU system percentage.
idle

is the current CPU idle percentage.
iowait

is the current CPU iowait percentage.
irq

is the current CPU irq percentage.

cpuplugd

Chapter 62. Commands for Linux on IBM Z 605

softirq
is the current CPU softirq percentage.

steal
is the current CPU steal percentage.

guest
is the current CPU guest percentage for a z/VM or KVM guest.

guest_nice
is the current CPU guest_nice percentage for a z/VM or KVM guest.

cpustat.<name>
is data from /proc/stat and /proc/loadavg. In the keyword, <name> can be any of the previously
listed keywords, for example, cpustat.idle. See the proc man page for more details about the data
that is represented by these keywords.

With this notation, the keywords resolve to raw timer ticks since system start, not to current
percentages. For example, idle resolves to the current idle percentage and cpustat.idle resolves
to the total timer ticks spent idle. See “Using historical data” on page 606 about how to obtain
average and percentage values.

loadavg, onumcpus, and runnable_proc are not percentages and resolve to the same values as
cpustat.loadavg, cpustat.onumcpus, and cpustat.runnable_proc.

cpustat.total_ticks
is the total number of timer ticks since system start.

time
is the UNIX epoch time in the format "seconds.microseconds".

Percentage values are accumulated for all online CPUs. Hence, the values for the percentages range
from 0 to 100 × (number of online CPUs). To get the average percentage per CPU device, divide the
accumulated value by the number of CPUs. For example, idle / onumcpus yields the average idle
percentage per CPU.

Keywords for memory hotplug rules
Use the predefined keywords in the memory hotplug rules, MEMPLUG and MEMUNPLUG.

The following keywords are available:
apcr

is the number of page cache operations, pgpin + pgpout, from /proc/vmstat in 512-byte blocks per
second.

freemem
is the amount of free memory in MB.

swaprate
is the number of swap operations, pswpin + pswpout, from /proc/vmstat in 4 KB pages per second.

meminfo.<name>
is the value for the symbol <name> as shown in the output of cat /proc/meminfo. The values are
plain numbers but refer to the same units as those used in /proc/meminfo.

vmstat.<name>
is the value for the symbol <name> as shown in the output of cat /proc/vmstat.

Using historical data
Historical data is available for the keyword time and the sets of keywords cpustat.<name>,
meminfo.<name>, and vmstat.<name>.

See “Keywords for CPU hotplug rules” on page 605 and “Keywords for memory hotplug rules” on page
606 for details about these keywords.

Use the suffixes [<n>] to retrieve the data of <n> intervals in the past, where <n> can be in the range 0 -
100.

cpuplugd

606 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples
cpustat.idle

yields the current value for the counted idle ticks.
cpustat.idle[1]

yields the idle ticks as counted one interval ago.
cpustat.idle[5]

yields the idle ticks as counted five intervals ago.
cpustat.idle - cpustat.idle[5]

yields the idle ticks during the past five intervals.
time - time[1]

yields the length of an update interval in seconds.
cpustat.total_ticks - cpustat.total_ticks[5]

yields the total number of ticks during the past five intervals.
(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks - cpustat.total_ticks[5])

yields the average ratio of idle ticks to total ticks during the past five intervals.

Multiplying this ratio with 100 yields the percentage of idle ticks during the last five intervals.

Multiplying this ratio with 100 * onumcpus yields the accumulated percentage of idle ticks for all
processors during the last five intervals.

Writing more complex rules
In addition to numbers and keywords, you can use mathematical and Boolean operators, and you can use
user-defined variables to specify rules.

• The keywords of “Predefined keywords” on page 605
• Decimal numbers
• The mathematical operators

+
addition

-
subtraction

*
multiplication

/
division

<
less than

>
greater than

• Parentheses (and) to group mathematical expressions
• The Boolean operators

&
and

|
or

!
not

• User-defined variables

cpuplugd

Chapter 62. Commands for Linux on IBM Z 607

You can specify complex calculations as user-defined variables, which can then be used in expressions.
User-defined variables are case-sensitive and must not match a pre-defined variable or keyword. In the
configuration file, definitions for user-defined variables must precede their use in expressions.

Variable names consist of alphanumeric characters and the underscore (_) character. An individual
variable name must not exceed 128 characters. All user-defined variable names and values, in total,
must not exceed 4096 characters.

Examples
• HOTPLUG = "loadavg > onumcpus + 0.75"
• HOTPLUG = "(loadavg > onumcpus + 0.75) & (idle < 10.0)"

• my_idle_rate = "(cpustat.idle - cpustat.idle[5]) / (cpustat.total_ticks -
cpustat.total_ticks[5])"
my_idle_percent_total = "my_idle_rate * 100 * onumcpus"
...
HOTPLUG = "(loadavg > onumcpus + 0.75) & (my_idle_percent_total < 10.0)"

Sample configuration file
A typical configuration file includes multiple user-defined variables and values from procfs, for example,
to calculate the page scan rate or the cache size.

cpuplugd

608 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Required static variables

CPU_MIN="1"
CPU_MAX="0"
UPDATE="1"
CMM_MIN="0"
CMM_MAX="131072" # 512 MB

User-defined variables

pgscan_d="vmstat.pgscan_direct_dma[0] + vmstat.pgscan_direct_normal[0] +
vmstat.pgscan_direct_movable[0]"
pgscan_d1="vmstat.pgscan_direct_dma[1] + vmstat.pgscan_direct_normal[1] +
vmstat.pgscan_direct_movable[1]"
page scan rate in pages / timer tick
pgscanrate="(pgscan_d - pgscan_d1) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
cache usage in kilobytes
avail_cache="meminfo.Cached - meminfo.Shmem"

user_0="(cpustat.user[0] - cpustat.user[1])"
nice_0="(cpustat.nice[0] - cpustat.nice[1])"
system_0="(cpustat.system[0] - cpustat.system[1])"
user_2="(cpustat.user[2] - cpustat.user[3])"
nice_2="(cpustat.nice[2] - cpustat.nice[3])"
system_2="(cpustat.system[2] - cpustat.system[3])"
CP_Active0="(user_0 + nice_0 + system_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_Active2="(user_2 + nice_2 + system_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_ActiveAVG="(CP_Active0+CP_Active2) / 2"

idle_0="(cpustat.idle[0] - cpustat.idle[1])"
iowait_0="(cpustat.iowait[0] - cpustat.iowait[1])"
idle_2="(cpustat.idle[2] - cpustat.idle[3])"
iowait_2="(cpustat.iowait[2] - cpustat.iowait[3])"
CP_idle0="(idle_0 + iowait_0) / (cpustat.total_ticks[0] - cpustat.total_ticks[1])"
CP_idle2="(idle_2 + iowait_2) / (cpustat.total_ticks[2] - cpustat.total_ticks[3])"
CP_idleAVG="(CP_idle0 + CP_idle2) / 2"

More required variables

cmm_inc: 10% of free memory, in 4K pages
CMM_INC="meminfo.MemFree / 40"
cmm_dec: 10% of total memory, in 4K pages
CMM_DEC="meminfo.MemTotal / 40"

Hotplug rules
HOTPLUG="((1 - CP_ActiveAVG) * onumcpus) < 0.08"
HOTUNPLUG="(CP_idleAVG * onumcpus) > 1.15"
MEMPLUG="pgscanrate > 20"
MEMUNPLUG="(meminfo.MemFree + avail_cache) > (meminfo.MemTotal / 10)"

Figure 103. Sample configuration file for Linux on z/VM with CPU and memory hotplug

Attention: These configuration file samples illustrate the syntax of the configuration file. Useful
rules might differ considerably, depending on the workload, resources, and requirements of the
system for which they are designed.

After you install cpuplugd, a commented sample configuration file is available at /etc/cpuplugd.conf.

cpuplugd

Chapter 62. Commands for Linux on IBM Z 609

dasdfmt - Format a DASD
Use the dasdfmt command to low-level format ECKD-type direct access storage devices (DASD).

dasdfmt uses an ioctl call to the DASD driver to format tracks. A block size (hard sector size) can be
specified. The formatting process can take quite a long time (hours for large DASD).

Tips:

• For DASDs that have previously been formatted with dasdfmt, use the dasdfmt quick format mode.
• Use the -p option to monitor the progress.

CAUTION: As on any platform, formatting irreversibly destroys data on the target disk. Be sure not
to format a disk with vital data unintentionally.

dasdfmt syntax

dasdfmt
-r 10

-r <cylinders>

-b <blocksize>
1

-d cdl

-d ldl

-L
-l <volser>

2

-k

-Mfull

-M quick

expand

-p

-m

 10

 <hashstep>

-P

--check -y -F -v -t -C

 --norecordzero

<node>

Notes:
1 You are prompted for the block size if you omit it for an option that requires this specification.
2 If neither the -l option nor the -k option are specified, a VOLSER is generated from the device
number through which the volume is accessed.

Where:
-r <cylinders> or --requestsize=<cylinders>

specifies the number of cylinders to be processed in one formatting step. The value must be an
integer in the range 1 - 255. The default is 10 cylinders. Use this parameter to use any available PAV
devices. Ideally, the number of cylinders matches the number of associated devices, counting the
base device and all alias devices.

-b <block_size> or --blocksize=<block_size>
specifies one of the following block sizes in bytes: 512, 1024, 2048, or 4096.

dasdfmt

610 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

For the quick and expand modes and for the --check option, you can omit the block size.
Otherwise, you are prompted if you do not specify a value for the block size. You can then press
Enter to accept 4096 or specify a different value.

Tip: Set <block_size> as large as possible (ideally 4096); the net capacity of an ECKD DASD decreases
for smaller block sizes. For example, a DASD formatted with a block size of 512 byte has only half of
the net capacity of the same DASD formatted with a block size of 4096 byte.

<node>
specifies the device node of the device to be formatted, for example, /dev/dasdzzz. See “DASD
naming scheme” on page 136 for more details about device nodes.

-d <disklayout> or --disk_layout=<disklayout>
formats the device with the compatible disk layout (cdl) or the Linux disk layout (ldl). If the
parameter is not specified, the default (cdl) is used.

-L or --no_label
valid for -d ldl only, where it suppresses the default LNX1 label.

-l <volser> or --label=<volser>
specifies the volume serial number (see VOLSER) to be written to the disk. If the VOLSER contains
special characters, it must be enclosed in single quotation marks. In addition, any '$' character in the
VOLSER must be preceded by a backslash ('\').

-k or --keep_volser
keeps the volume serial number when writing the volume label (see VOLSER). Keeping the volume
serial number is useful if the volume already has a serial number that should not be overwritten.

-M <mode> or --mode=<mode>
specifies the mode to be used for formatting the device. Valid modes are:
full

Format the entire disk with the specified block size. This is the default mode.
quick

formats the first two tracks and writes label and partition information. Only use this option if you
are sure that the target DASD already contains a regular format with the specified block size.

expand
format all unformatted tracks at the end of the target DASD. This mode assumes that tracks at the
beginning of the DASD volume have already been correctly formatted, while a consecutive set of
tracks at the end are unformatted. You can use this mode to make added space available for Linux
use after dynamically increasing the size of a DASD volume.

For the quick and expand modes, omit the block size specification (-b option) to use the existing
block size. If you specify a block size, dasdfmt checks that the specification matches the existing
block size before formatting.

-p or --progressbar
displays a progress bar. Do not use this option if you are using a line-mode terminal console driver. For
example, if you are using a 3215 terminal device driver or a line-mode hardware console device driver.

-P or --percentage
displays one line for each formatted cylinder. The line shows the number of the cylinder and
percentage of formatting process. Intended for use by higher level interfaces.

-m <hashstep> or --hashmarks=<hashstep>
displays a number sign (#) after every <hashstep> cylinders are formatted. <hashstep> must be in the
range 1 - 1000. The default is 10.

The -m option is useful where the console device driver is not suitable for the progress bar (-p option).

--check
performs a complete format check on a DASD volume.

Omit the block size specification (-b option) to check for a consistent format for any valid block size.
Specify a block size to confirm that the DASD has been formatted consistently with that particular
block size.

dasdfmt

Chapter 62. Commands for Linux on IBM Z 611

-y
starts formatting immediately without prompting for confirmation.

-F or --force
formats the device without checking whether it is mounted.

-v
displays extra information messages (verbose).

-t or --test
runs the command in test mode. Analyzes parameters and prints what would happen, but does not
modify the disk.

-C or --check_host_count
checks the host-access open count to ensure that the device is not online to another operating system
instance. Use this option to ensure that the operation is safe, and cancel it if other operating system
instances are accessing the volume.

-- norecordzero
prevents a format write of record zero. This option is intended for experts: Subsystems in DASD
drivers are by default granted permission to modify or add a standard record zero to each track when
needed. Before you revoke the permission with this option, you must ensure that the device contains
standard record zeros on all tracks.

-V or --version
displays the version number of dasdfmt and exits.

-h or --help
displays an overview of the syntax. Any other parameters are ignored. To view the man page, enter
man dasdfmt.

Examples

• To format a 100 cylinder z/VM minidisk with the standard Linux disk layout and a 4 KB blocksize with
device node /dev/dasdc:

dasdfmt -b 4096 -d ldl -p /dev/dasdc
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x192
 Labelling device : yes
 Disk label : LNX1
 Disk identifier : 0X0192
 Extent start (trk no) : 0
 Extent end (trk no) : 1499
 Compatible Disk Layout : no
 Blocksize : 4096
 Mode : Full

--->> ATTENTION! <<---
All data of that device will be lost.
Type yes to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |#################################|100% [1s]

Finished formatting the device.
Rereading the partition table... ok
#

• To format the same disk with the compatible disk layout (accepting the default value of the -d option).

dasdfmt

612 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

dasdfmt -b 4096 -p /dev/dasdc
Drive Geometry: 100 Cylinders * 15 Heads = 1500 Tracks

I am going to format the device /dev/dasdc in the following way:
 Device number of device : 0x192
 Labelling device : yes
 Disk label : VOL1
 Disk identifier : 0X0192
 Extent start (trk no) : 0
 Extent end (trk no) : 1499
 Compatible Disk Layout : yes
 Blocksize : 4096
 Mode : Full

--->> ATTENTION! <<---
All data of that device will be lost.
Type yes to continue, no will leave the disk untouched: yes
Formatting the device. This may take a while (get yourself a coffee).

cyl 100 of 100 |#################################|100% [1s]

Finished formatting the device.
Rereading the partition table... ok
#

• To format with the -P option:

dasdfmt -P /dev/dasde

cyl 1 of 500 | 0%
cyl 2 of 500 | 0%
cyl 3 of 500 | 0%
cyl 4 of 500 | 0%
cyl 5 of 500 | 1%

...
cyl 496 of 500 | 99%
cyl 497 of 500 | 99%
cyl 498 of 500 | 99%
cyl 499 of 500 | 99%
cyl 500 of 500 | 100%

• To make best use of PAV when formatting a DASD that has one base device and four alias devices,
specify five cylinders:

dasdfmt /dev/dasdd -y -b 4096 -d cdl -r 5
Finished formatting the device.
Rereading the partition table... ok

• To format a previously formatted DASD in quick format mode.

dasdfmt -b 4096 -p --mode=quick /dev/dasdf

• To format tracks that have been added at the end of an already formatted DASD.

dasdfmt -b 4096 -p --mode=expand /dev/dasdg

• To check whether a DASD has been correctly formatted with a block size of 4096 bytes.

dasdfmt -b 4096 -p --check /dev/dasdg
Checking format of the entire disk...
cyl 1113 of 1113 |#################################|100% [19s]
Done. Disk is fine.

• To ensure that the DASD is not online to an operating system instance in a different LPAR when you start
formatting the DASD:

dasdfmt -b 4096 -p -C /dev/dasdh

dasdfmt

Chapter 62. Commands for Linux on IBM Z 613

dasdfmt always checks the host-access open count. If the count indicates access by another operating
system instance, the response depends on the -C option. With this option, the command is canceled.
Otherwise, a warning is displayed before you are prompted to confirm that you want to proceed.

dasdfmt

614 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

dasdstat - Display DASD performance statistics
Use the dasdstat command to display DASD performance statistics, including statistics about Parallel
Access Volume (PAV) and High Performance Ficon.

This command includes and extends the performance statistics that is also available through the
tunedasd command.

dasdstat syntax

dasdstat

 -e
1

 -d

 -r

 -l -V -c  <colnum>

 -w  <width> -i  <directory>  <item>

Notes:
1 Omit the -e, -d, and -r options to read statistics.

Where:

-e or --enable
starts statistics data collection.

-d or --disable
stops statistics data collection.

-r or --reset
sets the statistics counters to zero.

-l or --long
displays more detailed statistics information, for example, differentiates between read and write
requests.

-V or --verbose
displays more verbose command information.

-c <colnum> or --columns <colnum>
formats the command output in a table with the specified number of columns. The default is 16. Each
row gets wrapped after the specified number of lines.

-w <width> or --column-width <width>
sets the minimum width, in characters, of a column in the output table.

-i <directory> or --directory <directory>
specifies the directory that contains the statistics. The default is <mountpoint>/dasd, where
<mountpoint> is the mount point of debugfs. You need to specify this parameter if the dasdstat
command cannot determine this mount point or if the statistics are copied to another location.

<item>
limits the command to the specified items. For <item> you can specify:

• global for summary statistics for all available DASDs.
• The block device name by which a DASD is known to the DASD device driver.
• The bus ID by which a DASD is known as a CCW device. DASDs that are set up for PAV or HyperPAV

have a CCW base device and, at any one time, can have one or more CCW alias devices for the same

dasdstat

Chapter 62. Commands for Linux on IBM Z 615

block device. Alias devices are not permanently associated with the same block device. Statistics
that are based on bus ID, therefore, show additional detail for PAV and HyperPAV setups.

If you do not specify any individual item, the command applies to all DASD block devices, CCW
devices, and to the summary.

-v or --version
displays the version number of dasdstat, then exits.

-h or --help
displays help information for the command.

Examples

• This command starts data collection for dasda, 0.0.b301, and for a summary of all available DASDs.

dasdstat -e dasda 0.0.b301 0.0.b302 global

• This command resets the statistics counters for dasda.

dasdstat -r dasda

• This command reads the summary statistics:

statistics data for statistic: global
start time of data collection: Wed Aug 17 09:52:47 CEST 2011

3508 dasd I/O requests
with 67616 sectors(512B each)
0 requests used a PAV alias device
3458 requests used HPF
 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 0 2456 603 304 107 18 9 3 8 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
 0 0 0 0 0 0 100 1738 813 725 30 39 47 15 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
 0 0 901 558 765 25 28 288 748 161 17 16 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 316 2798 283 13 19 22 41 15 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
 0 3023 460 8 4 9 4 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of req in chanq at enqueuing (0..31)
 ___0 ___1 ___2 ___3 ___4 ___5 ___6 ___7 ___8 ___9 __10 __11 __12 __13 __14 __15
 __16 __17 __18 __19 __20 __21 __22 __23 __24 __25 __26 __27 __28 __29 __30 __31
 0 2295 319 247 647 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For details about the data items, see “Interpreting the data rows” on page 154.

dasdstat

616 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

dasdview - Display DASD structure
Use the dasdview command to display DASD information.

dasdview displays:

• The volume label.
• VTOC details (general information, and the DSCBs of format 1, format 3, format 4, format 5, format 7,

format 8, and format 9).
• The content of the DASD, by specifying:

– Starting point
– Size

You can display these values in hexadecimal, EBCDIC, and ASCII format.
• Device characteristics, such as:

– Whether the data on the DASD is encrypted.
– Whether the disk is a solid-state device.

If you specify a start point and size, you can also display the contents of a disk dump. For more
information about partitioning, see “The IBM label partitioning scheme” on page 132.

dasdview syntax

dasdview
 -b 0

 -b  <begin>

 -s 128

 -s  <size>

-1

-2

-i

-x

-j

-l

-c

-t  <spec>

<node>

Where:
-b <begin> or --begin=<begin>

displays disk content on the console, starting from <begin>. The contents of the disk are displayed as
hexadecimal numbers, ASCII text, and EBCDIC text. If <size> is not specified, dasdview takes the
default size (128 bytes). You can specify the variable <begin> as:

<begin>[k|m|b|t|c]

If the disk is in raw-track access mode, you can specify only track (t) or cylinder (c) entities.

The default for <begin> is 0.

dasdview displays a disk dump on the console by using the DASD driver. The DASD driver might
suppress parts of the disk, or add information that is not relevant. Such discrepancies might occur,
for example, when dasdview displays the first two tracks of a disk that was formatted with the
compatible disk layout option (-d cdl. In this situation, the DASD driver pads shorter blocks with
zeros to maintain a constant blocksize. All Linux applications (including dasdview) process according
to this rule.

Here are some examples of how this option can be used:

dasdview

Chapter 62. Commands for Linux on IBM Z 617

 -b 32 (start printing at Byte 32)
 -b 32k (start printing at kByte 32)
 -b 32m (start printing at MByte 32)
 -b 32b (start printing at block 32)
 -b 32t (start printing at track 32)
 -b 32c (start printing at cylinder 32)

-s <size> or --size=<size>
displays a disk dump on the console, starting at <begin>, and continuing for size=<size>. The
contents of the dump are displayed as hexadecimal numbers, ASCII text, and EBCDIC text. If a start
value, <begin>, is not specified, dasdview takes the default. You can specify the variable <size> as:

size[k|m|b|t|c]

If the disk is in raw-track access mode, you can specify only track (t) or cylinder (c) entities.

The default for <size> is 128 bytes. Here are some examples of how this option can be used:

 -s 16 (use a 16 Byte size)
 -s 16k (use a 16 kByte size)
 -s 16m (use a 16 MByte size)
 -s 16b (use a 16 block size)
 -s 16t (use a 16 track size)
 -s 16c (use a 16 cylinder size)

-1
displays the disk dump with format 1 (as 16 Bytes per line in hexadecimal, ASCII and EBCDIC). A line
number is not displayed. You can use option -1 only together with -b or -s.

Option -1 is the default.

-2
displays the disk dump with format 2 (as 8 Bytes per line in hexadecimal, ASCII and EBCDIC). A
decimal and hexadecimal byte count are also displayed. You can use option -2 only together with -b
or -s.

-i or --info
displays basic information such as device node, device bus-ID, device type, or geometry data.

-x or --extended
displays the information that is obtained by using -i option, but also open count, subchannel
identifier, and so on.

-j or --volser
displays volume serial number (volume identifier).

-l or --label
displays the volume label.

The -l option displays all known label fields. The fields that are shown depend on the label, which is
identified by the 'volume label identifier'. The most important differences are:
volume label key

is only valid for 'VOL1' labels (used for ECKD compatible disk layout format)
VTOC pointer

is only valid for 'VOL1' labels
ldl_version

is only valid for 'LNX1' labels (used for ECKD Linux disk layout format)
formatted_blocks

is only valid for 'LNX1' labels and when the (EBCDIC) ldl_version field is 2 or higher

-c or --characteristics
displays model-dependent device characteristics, for example disk encryption status or whether the
disk is a solid-state device.

dasdview

618 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-t <spec> or --vtoc=<spec>
displays the VTOC's table-of-contents, or a single VTOC entry, on the console. The variable <spec>
can take these values:
info

displays overview information about the VTOC, such as a list of the data set names and their sizes.
f1

displays the contents of all format 1 data set control blocks (DSCBs).
f3

displays the contents of all (z/OS-specific) format 3 DSCBs.
f4

displays the contents of all format 4 DSCBs.
f5

displays the contents of all format 5 DSCBs.
f7

displays the contents of all format 7 DSCBs.
f8

displays the contents of all format 8 DSCBs.
f9

displays the contents of all format 9 DSCBs.
all

displays the contents of all DSCBs.
<node>

specifies the device node of the device for which you want to display information, for example, /dev/
dasdzzz. See “DASD naming scheme” on page 136 for more details about device nodes).

-h or --help
displays short usage text on console. To view the man page, enter man dasdview.

-v or --version
displays version number on console, and exit.

Examples

• To display basic information about a DASD:

dasdview -i /dev/dasdzzz

This example displays:

--- general DASD information --
device node : /dev/dasdzzz
busid : 0.0.0193
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096
#

• To display device characteristics:

dasdview -c /dev/dasda

This example displays:

dasdview

Chapter 62. Commands for Linux on IBM Z 619

encrypted disk : no
solid state device : no

• To include extended information:

dasdview -x /dev/dasdzzz

This example displays:

--- general DASD information --
device node : /dev/dasdzzz
busid : 0.0.0193
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex 64 dec 100
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096

--- extended DASD information ---
real device number : hex 452bc08 dec 72530952
subchannel identifier : hex e dec 14
CU type (SenseID) : hex 3990 dec 14736
CU model (SenseID) : hex e9 dec 233
device type (SenseID) : hex 3390 dec 13200
device model (SenseID) : hex a dec 10
open count : hex 1 dec 1
req_queue_len : hex 0 dec 0
chanq_len : hex 0 dec 0
status : hex 5 dec 5
label_block : hex 2 dec 2
FBA_layout : hex 0 dec 0
characteristics_size : hex 40 dec 64
confdata_size : hex 100 dec 256

characteristics : 3990e933 900a5f80 dff72024 0064000f
 e000e5a2 05940222 13090674 00000000
 00000000 00000000 24241502 dfee0001
 0677080f 007f4a00 1b350000 00000000

configuration_data : dc010100 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30509
 dc000000 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
 d4020000 4040f2f1 f0f5c5f2 f0c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f3050a
 f0000001 4040f2f1 f0f54040 40c9c2d4
 f1f3f0f0 f0f0f0f0 f0c6c3f1 f1f30500
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 00000000 00000000 00000000 00000000
 800000a1 00001e00 51400009 0909a188
 0140c009 7cb7efb7 00000000 00000800
#

• To display volume label information for a disk formatted with the compatible disk layout:

dasdview -l /dev/dasdzzz

This example displays:

dasdview

620 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

--- volume label --
volume label key : ascii 'åÖÓñ'
 : ebcdic 'VOL1'
 : hex e5d6d3f1

volume label identifier : ascii 'åÖÓñ'
 : ebcdic 'VOL1'
 : hex e5d6d3f1

volume identifier : ascii 'ðçðñùó'
 : ebcdic '0X0193'
 : hex f0e7f0f1f9f3

security byte : hex 40

VTOC pointer : hex 0000000101
 (cyl 0, trk 1, blk 1)

reserved : ascii '@@@@@'
 : ebcdic ' '
 : hex 4040404040

CI size for FBA : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

blocks per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

labels per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

reserved : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

owner code for VTOC : ascii '@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 4040

reserved : ascii '@@@@@@@@@@@@@@@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 40404040
 40404040 40404040 40404040

ldl_version : ascii '@'
 : ebcdic ' '
 : hex 40

formatted_blocks : dec 16565899579919558117
 : hex e5e5e5e5e5e5e5e5#

• To display volume label information for a disk formatted with theLinux disk layout:

dasdview

Chapter 62. Commands for Linux on IBM Z 621

--- volume label --
volume label key : ascii ' '
 : ebcdic ' '
 : hex 00000000

volume label identifier : ascii 'ÓÕçñ'
 : ebcdic 'LNX1'
 : hex d3d5e7f1

volume identifier : ascii 'ðçðñùó'
 : ebcdic '0X0193'
 : hex f0e7f0f1f9f3

security byte : hex 40

VTOC pointer : hex 4040404040
reserved : ascii '@@@@@'
 : ebcdic ' '
 : hex 4040404040

CI size for FBA : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

blocks per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

labels per CI (FBA) : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

reserved : ascii '@@@@'
 : ebcdic ' '
 : hex 40404040

owner code for VTOC : ascii '@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 4040

reserved : ascii '@@@@@@@@@@@@@@@@@@@@@@@@@@@@'
 ebcdic ' '
 hex 40404040 40404040 40404040 40404040
 40404040 40404040 40404040

ldl_version : ascii 'ò'
 : ebcdic '2'
 : hex f2

formatted_blocks : dec 18000
 : hex 0000000000004650

• To display partition information:

dasdview -t info /dev/dasdzzz

This example displays:

dasdview

622 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

--- VTOC info ---
The VTOC contains:
 3 format 1 label(s)
 1 format 4 label(s)
 1 format 5 label(s)
 0 format 7 label(s)
 0 format 8 label(s)
 0 format 9 label(s)
Other S/390 and zSeries operating systems would see the following data sets:
 +--+--------------+--------------+
 | data set | start | end |
 +--+--------------+--------------+
LINUX.V0X0193.PART0001.NATIVE	trk	trk
data set serial number : '0X0193'	2	500
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2009, day 55	0/ 2	33/ 5
+--+--------------+--------------+		
LINUX.V0X0193.PART0002.NATIVE	trk	trk
data set serial number : '0X0193'	501	900
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2009, day 55	33/ 6	60/ 0
+--+--------------+--------------+		
LINUX.V0X0193.PART0003.NATIVE	trk	trk
data set serial number : '0X0193'	901	1499
system code : 'IBM LINUX '	cyl/trk	cyl/trk
creation date : year 2009, day 55	60/ 1	99/ 14
 +--+--------------+--------------+
#

• To display VTOC format 4 label information:

dasdview -t f4 /dev/dasdzzz

This example displays:

--- VTOC format 4 label ---
DS4KEYCD : 04...
DS4IDFMT : dec 244, hex f4
DS4HPCHR : 0000000105 (cyl 0, trk 1, blk 5)
DS4DSREC : dec 7, hex 0007
DS4HCCHH : 00000000 (cyl 0, trk 0)
DS4NOATK : dec 0, hex 0000
DS4VTOCI : dec 0, hex 00
DS4NOEXT : dec 1, hex 01
DS4SMSFG : dec 0, hex 00
DS4DEVAC : dec 0, hex 00
DS4DSCYL : dec 100, hex 0064
DS4DSTRK : dec 15, hex 000f
DS4DEVTK : dec 58786, hex e5a2
DS4DEVI : dec 0, hex 00
DS4DEVL : dec 0, hex 00
DS4DEVK : dec 0, hex 00
DS4DEVFG : dec 48, hex 30
DS4DEVTL : dec 0, hex 0000
DS4DEVDT : dec 12, hex 0c
DS4DEVDB : dec 0, hex 00
DS4AMTIM : hex 0000000000000000
DS4AMCAT : hex 000000
DS4R2TIM : hex 0000000000000000
res1 : hex 0000000000
DS4F6PTR : hex 0000000000
DS4VTOCE : hex 01000000000100000001
 typeind : dec 1, hex 01
 seqno : dec 0, hex 00
 llimit : hex 00000001 (cyl 0, trk 1)
 ulimit : hex 00000001 (cyl 0, trk 1)
res2 : hex 00000000000000000000
DS4EFLVL : dec 0, hex 00
DS4EFPTR : hex 0000000000 (cyl 0, trk 0, blk 0)
res3 : hex 00
DS4DCYL : dec 100, hex 00000064
res4 : hex 0000
DS4DEVF2 : dec 64, hex 40
res5 : hex 00
#

• To print the contents of a disk to the console starting at block 2 (volume label):

dasdview

Chapter 62. Commands for Linux on IBM Z 623

dasdview -b 2b -s 128 /dev/dasdzzz

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
E5D6D3F1 E5D6D3F1 F0E7F0F1 F9F34000	VOL1VOL10X0193?.	??????????????@.
00000101 40404040 40404040 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 88001000 10000000 00808000	????h...........	@@@@?...........
00000000 00000000 00010000 00000200
21000500 00000000 00000000 00000000	?...............	!...............
+--+------------------+------------------+
#

• To display the contents of a disk on the console starting at block 14 (first FMT1 DSCB) with format 2:

dasdview -b 14b -s 128 -2 /dev/dasdzzz

This example displays:

+---------------+---------------+----------------------+----------+----------+
 | BYTE | BYTE | HEXADECIMAL | EBCDIC | ASCII |
 | DECIMAL | HEXADECIMAL | 1 2 3 4 5 6 7 8 | 12345678 | 12345678 |
 +---------------+---------------+----------------------+----------+----------+
57344	E000	D3C9D5E4 E74BE5F0	LINUX.V0	?????K??
57352	E008	E7F0F1F9 F34BD7C1	X0193.PA	?????K??
57360	E010	D9E3F0F0 F0F14BD5	RT0001.N	??????K?
57368	E018	C1E3C9E5 C5404040	ATIVE???	?????@@@
57376	E020	40404040 40404040	????????	@@@@@@@@
57384	E028	40404040 F1F0E7F0	????10X0	@@@@????
57392	E030	F1F9F300 0165013D	193.????	???.?e?=
57400	E038	63016D01 0000C9C2	??_?..IB	c?m?..??
57408	E040	D440D3C9 D5E4E740	M?LINUX?	?@?????@
57416	E048	40404065 013D0000	??????..	@@@e?=..
57424	E050	00000000 88001000h.?.?.?.
57432	E058	10000000 00808000	?....??.	?....??.
57440	E060	00000000 00000000
57448	E068	00010000 00000200	.?....?.	.?....?.
57456	E070	21000500 00000000	?.?.....	!.?.....
57464	E078	00000000 00000000
 +---------------+---------------+----------------------+----------+----------+
#

• To see what is at block 1234 (in this example there is nothing there):

dasdview -b 1234b -s 128 /dev/dasdzzz

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
+--+------------------+------------------+
#

• To try byte 0 instead:

dasdview

624 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

dasdview -b 0 -s 64 /dev/dasdzzz

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
C9D7D3F1 000A0000 0000000F 03000000	IPL1............	????............
00000001 00000000 00000000 40404040
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
40404040 40404040 40404040 40404040	????????????????	@@@@@@@@@@@@@@@@
+--+------------------+------------------+
#

• To display the contents of a disk on the console starting at cylinder 2 and printing one track of data:

dasdview -b 2c -s 1t /dev/dasdk

This example displays:

+--+------------------+------------------+
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 52B7DBEE D6B9530B 0179F420 CB6EA95E | ????O?????4??>z; | R?????S??y???n?^ |
| EF49C03C 513542E7 D8F17D9D 06DC44F7 | ??{????XQ1'????7 | ?I?<Q5B???}???D? |

...
| 92963D5B 0200B0FA 53745C12 C3B45125 | ko?$?........... | ??=[?........... |
| 0D6040C2 F933381E 7A4C4797 F40FEDAB | ?-?B9???:<?p4??? | ??@??38?zLG????? |
...

• To display the full record information of the same disk when it in raw-track access mode:

dasdview -b 2c -s 1t /dev/dasdk

This example displays:

dasdview

Chapter 62. Commands for Linux on IBM Z 625

cylinder 2, head 0, record 0
+--+
| count area: |
| hex: 0002000000000008 |
| cylinder: 2 |
| head: 0 |
| record: 0 |
| key length: 0 |
| data length: 8 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 00000000 00000000 | | |
+--+------------------+------------------+

cylinder 2, head 0, record 1
+--+
| count area: |
| hex: 0002000001000200 |
| cylinder: 2 |
| head: 0 |
| record: 1 |
| key length: 0 |
| data length: 512 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 52B7DBEE D6B9530B 0179F420 CB6EA95E | ????O?????4??>z; | R?????S??y???n?^ |
| EF49C03C 513542E7 D8F17D9D 06DC44F7 | ??{????XQ1'????7 | ?I?<Q5B???}???D? |
...
+--+------------------+------------------+

cylinder 2, head 0, record 2
+--+
| count area: |
| hex: 0002000002000200 |
| cylinder: 2 |
| head: 0 |
| record: 2 |
| key length: 0 |
| data length: 512 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 92963D5B 0200B0FA 53745C12 C3B45125 | ko?$?.^???*?C??? | ??=[?.??St\???Q% |
| 0D6040C2 F933381E 7A4C4797 F40FEDAB | ?-?B9???:<?p4??? | ??@??38?zLG????? |
...

• To display the contents of a disk, which is in raw-access mode, printing one track of data from the start
of the disk:

dasdview -s 1t /dev/dasdk

This example displays:

dasdview

626 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cylinder 0, head 0, record 0
+--+
| count area: |
| hex: 0000000000000008 |
| cylinder: 0 |
| head: 0 |
| record: 0 |
| key length: 0 |
| data length: 8 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 00000000 00000000 | | |
+--+------------------+------------------+

cylinder 0, head 0, record 1
+--+
| count area: |
| hex: 0000000001040018 |
| cylinder: 0 |
| head: 0 |
| record: 1 |
| key length: 4 |
| data length: 24 |
+--+
| key area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| C9D7D3F1 | IPL1............ | ????............ |
+--+------------------+------------------+
| data area: |
| HEXADECIMAL | EBCDIC | ASCII |
| 01....04 05....08 09....12 13....16 | 1.............16 | 1.............16 |
+--+------------------+------------------+
| 000A0000 0000000F 03000000 00000001 | .?.....??......? | .?.....??......? |
| 00000000 00000000 | | |
+--+------------------+------------------+
...

dasdview

Chapter 62. Commands for Linux on IBM Z 627

fdasd - Partition a DASD
Use the fdasd command to manage partitions on ECKD-type DASD that were formatted with the
compatible disk layout.

See “dasdfmt - Format a DASD” on page 610 for information about formatting a DASD. With fdasd you
can create, change, and delete partitions, and also change the volume serial number.

fdasd checks that the volume has a valid volume label and VTOC. If either is missing or incorrect, fdasd
re-creates it. See “IBM Z compatible disk layout” on page 133 for details about the volume label and
VTOC.

Calling fdasd with a node, but without options, enters interactive mode. In interactive mode, you are
given a menu through which you can display DASD information, add or remove partitions, or change the
volume identifier. Your changes are not written to disk until you type the write option on the menu. You
can quit without altering the disk at any time before this.

For more information about partitions, see “The IBM label partitioning scheme” on page 132.

Before you begin:

• To partition a SCSI disk, use fdisk rather than fdasd.
• The disk must be formatted with dasdfmt, using the compatible disk layout.

Attention: Careless use of fdasd can result in loss of data.

fdasd syntax

fdasd
 -s

 -r
 -C -a

 -k

 -l  <volser>
1

 -c  <conf_file>

 -i

 -p

 -f

3390,4096

<device_type>, <blocksize>

  <node>

Notes:
1 If neither the -l option nor the -k option is specified, a VOLSER is generated from the device
number through which the volume is accessed.

Where:
-s or --silent

suppresses messages.
-r or --verbose

displays additional messages that are normally suppressed.
-a or --auto

auto-creates one partition using the whole disk in non-interactive mode.

fdasd

628 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-k or --keep_volser
keeps the volume serial number when writing the volume label (see VOLSER). Keeping the serial
number is useful if the volume already has a serial number that should not be overwritten.

-l <volser> or --label <volser>
specifies the volume serial number (see VOLSER).

A volume serial consists of one through six alphanumeric characters or the following special
characters:

$ # @ %

All other characters are ignored. Avoid using special characters in the volume serial. Special
characters can cause problems when accessing a disk by VOLSER. If you must use special characters,
enclose the VOLSER in single quotation marks. In addition, any '$' character in the VOLSER must be
preceded by a backslash ('\').

For example, specify:

-l 'a@b\$c#'

to get:

A@B$C#

VOLSER is interpreted as an ASCII string and is automatically converted to uppercase, padded with
blanks and finally converted to EBCDIC before it is written to disk.

Do not use the following reserved volume serials:

• SCRTCH
• PRIVAT
• MIGRAT
• Lnnnnn (L followed by a five-digit number)

These volume serials are used as keywords by other IBM Z operating systems, such as z/OS.

Omitting this parameter causes fdasd to prompt for it, if it is needed.

-c <conf_file> or --config <conf_file>
creates partitions, in non-interactive mode, according to specifications in the configuration file
<conf_file>.

For each partition you want to create, add one line of the following format to <conf_file>:

[<first_track>,<last_track>,<type>]

<first_track> and <last_track> are required and specify the first and last track of the partition. You
can use the keyword first for the first possible track on the disk and the keyword last for the last
possible track on the disk.

<type> describes the partition type and is one of:
native

for partitions to be used for Linux file systems.
gpfs

for partitions to be used as part of an Elastic Storage file system setup.
swap

for partitions to be used as swap devices.
raid

for partitions to be used as part of a RAID setup.
lvm

for partitions to be used as part of a logical volume group.

fdasd

Chapter 62. Commands for Linux on IBM Z 629

The type specification is optional. If the type is omitted, native is used.

The type describes the intended use of a partition to tools or other operating systems. For example,
swap partitions could be skipped by backup programs. How Linux actually uses the partition depends
on how the partition is formatted and set up. For example, a partition of type native can still be used
in an LVM logical volume or in a RAID configuration.

Example: With the following sample configuration file, you can create three partitions:

[first,1000,raid]
[1001,2000,swap]
[2001,last]

-i or --volser
displays the volume serial number and exits.

-p or --table
displays the partition table and exits.

-f or --force
specifies values for the disk geometry instead of detecting them.

Note: Specifying incorrect values can render the disk unusable. Do not use this option if fdasd can
automatically detect the disk geometry. For example, do not use the force option for native DASD or
any disk with the disk geometry of a type 3390 DASD.

<device_type>,<blocksize>
specifies the disk device type. Valid device types are: 3390, 3380, and 9345. Valid block sizes are:
4096, 2048, 1024, and 512. The default specification is the combination of disk type 3390 with
block size 4096.

For disks with the default geometry, you can omit the specifications for the device type and block size,
and the following specifications are all valid:

• -f
• -f3390,4096
• --force
• --force=3390,4096

For all other disks, you must specify both values with the command. The following specifications are
all valid for a disk of type 3390 and block size 512:

• -f3390,512
• --force=3390,512

Use the verbose option for information about the disk geometry as computed from the specified or
default device type and block size.

<node>
specifies the device node of the DASD you want to partition, for example, /dev/dasdzzz. See “DASD
naming scheme” on page 136 for more details about device nodes.

-C or --check_host_count
checks the host-access open count to ensure that the device is not online to another operating system
instance. The operation is canceled if another operating system instance is accessing the device.

-h or --help
displays help on command-line arguments. To view the man page, enter man fdasd.

-v or --version
displays the version of fdasd.

fdasd menu
If you call fdasd in the interactive mode (that is, with just a node), a menu is displayed.

fdasd

630 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Command action
 m print this menu
 p print the partition table
 n add a new partition
 d delete a partition
 v change volume serial
 t change partition type
 r re-create VTOC and delete all partitions
 u re-create VTOC re-using existing partition sizes
 s show mapping (partition number - data set name)
 q quit without saving changes
 w write table to disk and exit

Command (m for help):

fdasd menu commands

Use the fdasd menu commands to modify or view information about DASDs

m
re-displays the fdasd command menu.

p
displays information about the DASD and the partitions.
DASD information:

• Number of cylinders
• Number of tracks per cylinder
• Number of blocks per track
• Block size
• Volume label
• Volume identifier
• Number of partitions defined

Partition information:

• Linux node
• Start track
• End track
• Number of tracks
• Partition ID
• Partition type

There is also information about the free disk space that is not used for a partition.

n
adds a partition to the DASD. You are asked to give the start track and the length or end track of the
new partition.

d
deletes a partition from the DASD. You are asked which partition to delete.

v
changes the volume identifier. You are asked to enter a new volume identifier. See VOLSER for the
format.

t
changes the partition type. You are prompted for the partition to be changed and for the new partition
type.

fdasd

Chapter 62. Commands for Linux on IBM Z 631

Changing the type changes the disk description but does not change the disk itself. How Linux uses
the partition depends on how the partition is formatted and set up. For example, as an LVM logical
volume or in a RAID configuration.

The partition type describes the partition to other operating systems so that; for example, swap
partitions can be skipped by backup programs.

r
re-creates the VTOC and deletes all partitions.

u
re-creates all VTOC labels without removing all partitions. Existing partition sizes are reused. This
option is useful to repair damaged labels or migrate partitions that are created with older versions of
fdasd.

s
displays the mapping of partition numbers to data set names. For example:

Command (m for help): s

device: /dev/dasdzzz
volume label ...: VOL1
volume serial ..: 0X0193

WARNING: This mapping may be NOT up-to-date,
 if you have NOT saved your last changes!

/dev/dasdzzz1 - LINUX.V0X0193.PART0001.NATIVE
/dev/dasdzzz2 - LINUX.V0X0193.PART0002.NATIVE
/dev/dasdzzz3 - LINUX.V0X0193.PART0003.NATIVE

q
quits fdasd without updating the disk. Any changes that you have made (in this session) are
discarded.

w
writes your changes to disk and exits. After the data is written, Linux rereads the partition table.

Example using the menu
This example shows how to use fdasd to create two partitions on a z/VM minidisk, change the type of
one of the partitions, save the changes, and check the results.

About this task
This example shows you how to format a z/VM minidisk with the compatible disk layout. The minidisk has
device number 193.

Procedure
1. Call fdasd, specifying the minidisk:

fdasd /dev/dasdzzz

fdasd reads the existing data and displays the menu:

fdasd

632 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

reading volume label: VOL1
reading vtoc : ok

Command action
 m print this menu
 p print the partition table
 n add a new partition
 d delete a partition
 v change volume serial
 t change partition type
 r re-create VTOC and delete all partitions
 u re-create VTOC re-using existing partition sizes
 s show mapping (partition number - data set name)
 q quit without saving changes
 w write table to disk and exit
Command (m for help):

2. Use the p option to verify that no partitions are created yet on this DASD:

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 2 1499 1498 unused

3. Define two partitions, one by specifying an end track and the other by specifying a length.
(In both cases the default start tracks are used):

Command (m for help): n
First track (1 track = 48 KByte) ([2]-1499):
Using default value 2
Last track or +size[c|k|M] (2-[1499]): 700
You have selected track 700

Command (m for help): n
First track (1 track = 48 KByte) ([701]-1499):
Using default value 701
Last track or +size[c|k|M] (701-[1499]): +400
You have selected track 1100

4. Check the results by using the p option:

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux native
 1101 1499 399 unused

5. Change the type of a partition:

fdasd

Chapter 62. Commands for Linux on IBM Z 633

Command (m for help): t

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux native
 1101 1499 399 unused

change partition type
partition id (use 0 to exit):

Enter the ID of the partition you want to change; in this example partition 2:

partition id (use 0 to exit): 2

6. Enter the new partition type; in this example type 2 for swap:

current partition type is: Linux native

 1 Linux native
 2 Linux swap
 3 Linux raid
 4 Linux lvm

new partition type: 2

7. Check the result:

Command (m for help): p

Disk /dev/dasdzzz:
 cylinders: 100
 tracks per cylinder ..: 15
 blocks per track: 12
 bytes per block: 4096
 volume label: VOL1
 volume serial: 0X0193
 max partitions: 3

 ------------------------------- tracks -------------------------------
 Device start end length Id System
 /dev/dasdzzz1 2 700 699 1 Linux native
 /dev/dasdzzz2 701 1100 400 2 Linux swap
 1101 1499 399 unused

8. Write the results to disk with the w option:

Command (m for help): w
writing VTOC...
rereading partition table...
#

Example using options
You can partition a DASD by using the -a or -c option without entering the menu mode.

This method is useful for partitioning with scripts, for example, if you need to partition several hundred
DASDs.

With the -a parameter you can create one large partition on a DASD:

fdasd

634 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

fdasd -a /dev/dasdzzz
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
rereading partition table...
#

This command creates a partition as follows:

 Device start end length Id System
 /dev/dasdzzz1 2 1499 1498 1 Linux native

Using a configuration file, you can create several partitions. For example, the following configuration file,
config, creates three partitions:

[first,500]
[501,1100,swap]
[1101,last]

Submitting the command with the -c option creates the partitions:

fdasd -c config /dev/dasdzzz
parsing config file 'config'...
writing volume label...
writing VTOC...
rereading partition table...
#

This command creates partitions as follows:

 Device start end length Id System
 /dev/dasdzzz1 2 500 499 1 Linux native
 /dev/dasdzzz2 501 1100 600 2 Linux swap
 /dev/dasdzzz3 1101 1499 399 3 Linux native

fdasd

Chapter 62. Commands for Linux on IBM Z 635

hmcdrvfs - Mount a FUSE file system for remote access to media in
the HMC media drive

Use the hmcdrvfs command for read-only access to contents in a DVD, CD, or USB-attached storage in
the media drive of an HMC.

Before you begin:

• The fuse.hmcdrvfs file system needs access to device node /dev/hmcdrv. This node is created
automatically when the hmcdrv kernel module is loaded, see Chapter 30, “HMC media device driver,” on
page 379.

• On the HMC, the media must be assigned to the associated system image (use menu Access Removable
Media).

• In a z/VM environment, the z/VM guest virtual machine must have at least privilege class B. The media
must be assigned to the LPAR where the z/VM hypervisor runs.

• For Linux in LPAR mode, the LPAR activation profile must allow issuing SCLP requests.

With the media assigned to your Linux instance, this command creates a fuse.hmcdrvfs file system
with the media content at the specified mount point.

To unmount file systems that you mounted with hmcdrvfs, you can use umount.

hmcdrvfs syntax

hmcdrvfs <mount-point>

 <fuse.hmcdrvfs-options> <mount-options> <fuse-options>

Where:

-o or --opt
FUSE or mount command options; for the FUSE options see the following lists, for mount options see
the mount man page.

<fuse.hmcdrvfs-options>
options specific to the fuse.hmcdrvfs file system:
-o hmclang=<language>

specifies the language setting on the HMC; for valid values, see the locale man page.
-o hmctz=<time zone>

specifies the time zone setting on the HMC; for valid values, see the tzset man page.
<mount-options>

options as available for the mount command. See the mount man page for details.
<fuse-options>

options for FUSE. The following options are supported by the cmsfs-fuse command. To use an
option, it must also be supported by the version of FUSE that you have.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-s

disables multi-threaded operation.

hmcdrvfs

636 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-o allow_other
allows access to the file system by other users.

-o allow_root
allows access to the file system by root.

-o default_permissions
enables permission checking by the kernel.

-o fsname=<name>
sets the file system name.

-o subtype=<type>
sets the file system type.

-o max_read=<n>
sets maximum size of read requests.

-o direct_io
uses direct I/O.

-o kernel_cache
caches files in the kernel.

-o [no]auto_cache
enables or disables caching based on modification times.

-o umask=<mask>
sets file permissions (octal).

-o uid=<n>
sets the file owner.

-o gid=<n>
sets the file group.

-o entry_timeout=<secs>
sets the cache timeout for names. The default is 1.0 second.

-o attr_timeout=<secs>
sets the cache timeout for attributes. The default is 1.0 second.

-o ac_attr_timeout=<secs>
sets the auto cache timeout for attributes. The default is the attr_timeout value.

-o max_readahead=<n>
sets the maximum read ahead value.

-o async_read
performs reads asynchronously (default).

-o sync_read
performs reads synchronously.

-o no_remote_lock
disables remote file locking.

-o intr
allows requests to be interrupted

-o intr_signal=<num>
specifies the signal to send on interrupt.

-v or --version
displays version information for the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man hmcdrvfs.

The following options for mount policy can be set in the file /etc/ fuse.conf file:

mount_max=<number>
sets the maximum number of FUSE mounts allowed for non-root users. The default is 1000.

hmcdrvfs

Chapter 62. Commands for Linux on IBM Z 637

user_allow_other
allows non-root users to specify the allow_other or allow_root mount options.

Examples

• To mount the contents of the HMC media drive at /mnt/hmc without any special options, use:

hmcdrvfs /mnt/hmc

• If the hmcdrv kernel module is not loaded, load it before you issue the hmcdrvfs command:

modprobe hmcdrv
hmcdrvfs /mnt/hmc

• To translate the UID and GID of files on the HMC media drive to your system users and groups along
with overriding the permissions, issue, for example:

hmcdrvfs /mnt/hmc -o uid=500 -o gid=1000 -o umask=0337

• To speed up transfer rates to frequently accessed directories, use the cache timeout option:

hmcdrvfs /mnt/hmc -o entry_timeout=60

• If the HMC is in a different timezone and is configured for a different language use, for example:

hmcdrvfs /mnt/hmc -o hmclang=de_DE -o hmctz=Europe/Berlin

• To also disregard any Daylight Saving Time, specifying hours west of the Prime Meridian (Coordinated
Universal Time):

hmcdrvfs /mnt/hmc -o hmclang=de_DE -o hmctz="GMT-1"

• To unmount the HMC media drive contents mounted on /mnt/hmc, issue:

umount -u /mnt/hmc

hmcdrvfs

638 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

hsci - Manage HSCI interfaces
Use the hsci command to add, delete, and list HiperSockets Converged Interface (HSCI) interfaces.

hsci syntax

hsci add <HipSock_if> <net_if>

del <HSCI_if>

show

Where:
add <HipSock_if> <net_if>

creates an HSCI interface by connecting a HiperSockets device with a network adapter.
del <HSCI_if>

deletes an HSCI interface by dissolving the connection between the HiperSockets interface and the
network interface.

show
lists all HSCI interfaces.

Examples

• To create an HSCI interface by connecting a HiperSockets interface encb112 and an OSA Express or
RoCE device with a network interface enca100. Both are assigned the same PNET ID, and none have an
IP address.

hsci add encb112 enca100
Verifying net dev enca100 and HiperSockets dev encb112
Adding hscib112 with a HiperSockets dev encb112 and an external dev enca100
Set encb112 MAC fe:c2:f4:35:00:12 on enca100 and hscib112
Successfully added HSCI interface hscib112

You can now assign an IP address to the new hscib112 interface.
• To list available HSCI interfaces, issue:

hsci show
HSCI PNET_ID HiperSockets External
--
hscib112 NET1 encb112 enca100

• To delete an HSCI interface, issue:

hsci del hscib112
Deleting HSCI interface hscib112 with the HiperSockets encb112 and the
external enca100
Deleting MAC fe:c2:f4:35:00:12 on enca100
Successfully deleted device hscib112

hsci

Chapter 62. Commands for Linux on IBM Z 639

hyptop - Display hypervisor performance data
Use the hyptop command to obtain a dynamic real-time view of a hypervisor environment on IBM Z.

It works with both the z/VM hypervisor and the LPAR hypervisor, Processor Resource/Systems Manager
(PR/SM). Depending on the available data, it shows, for example, CPU and memory information about
LPARs or z/VM guest virtual machines.

System names provided by hyptop are either LPAR names as shown on the SE or HMC, or z/VM guest IDs
that identify z/VM guest virtual machines.

The hyptop command provides two main windows:

• A list of systems that the hypervisor is currently running (sys_list).
• One system in more detail (sys).

You can run hyptop in interactive mode (default) or in batch mode with the -b option.

Before you begin: The following things are required to run hyptop:

• The debugfs file system must be mounted.
• The Linux kernel must have the required support to provide the performance data. Check that
<debugfs mount point>/s390_hypfs is available after you mount debugfs.

• The hyptop user must have read permission for the required debugfs files:

– z/VM: <debugfs mount point>/s390_hypfs/diag_2fc
– z/VM: <debugfs mount point>/s390_hypfs/diag_0c

(Required only for management time data, identifiers m and M. See “z/VM fields” on page 644)
– LPAR: <debugfs mount point>/s390_hypfs/diag_204

• You can always monitor the guest operating system where hyptop is running. To monitor any other
operating system instances running on the same hypervisor as hyptop, you will need additional
permissions:

– For z/VM: The guest virtual machine must be assigned privilege class B.
– For LPAR: On the HMC or SE security menu of the LPAR activation profile, select the Global

performance data control check box.

hyptop

640 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

hyptop syntax

hyptop

-wsys_list

-wsys

-s

,

<system>

-f

,

<field>

:<unit>

-S <field>

-t

,

CP

IFL

UN

-b -d <seconds>

-n <iterations>

Where:
-w <window name> or --window=<window name>

selects the window to display, either sys or sys_list. Use the options --sys, --fields, and --sort
to modify the current window. The last window that is specified with the --window option is used as
the start window. The default window is sys_list.

-s <system> or --sys=<system>
selects systems for the current window. If you specify this option, only the selected systems are
shown in the window. For the sys window, you can specify only one system. <system> can be an LPAR
name as shown on the SE or HMC, or it can be a z/VM guest ID that identifies a z/VM guest virtual
machine. Enter hyptop without any options to display the names of all available systems.

-f <field>[:<unit>] or --fields=<field>[:<unit>]
selects fields and units in the current window. The <field> variable is a one letter unique identifier for
a field (for example "c" for CPU time). The <unit> variable specifies the unit that is used for the field
(for example "us" for microseconds). See “Available fields and units” on page 643 for definitions. If
the --fields option is specified, only the selected fields are shown.

Note: If your field specification includes the number sign (#), enclose the specification in double
quotation marks. Otherwise, the command shell might interpret the number sign and all characters
that follow as a comment.

-S <field> or --sort=<field>
selects the field that is used to sort the data in the current window. To reverse the sort order, specify
the option twice. See “Available fields and units” on page 643 for definitions.

-t <type> or --cpu_types=<type>
selects CPU types that are used for dispatch time calculations. See “CPU types” on page 645 for
definitions.

-b or --batch_mode
uses batch mode. Batch mode can be useful for sending output from hyptop to another program, a
file, or a line mode terminal. In this mode no user input is accepted.

hyptop

Chapter 62. Commands for Linux on IBM Z 641

-d <seconds> or --delay=<seconds>
specifies the delay between screen updates.

-n <iterations> or --iterations=<iterations>
specifies the maximum number of screen updates before the program ends.

-h or --help
prints usage information, then exits. To view the man page, enter man hyptop.

-v or --version
displays the version of hyptop, then exits.

Navigating between windows
Use letter or arrow keys to navigate between the windows.

When you start the hyptop command, the sys_list window opens in normal mode. Data is updated at
regular intervals, and sorted by dispatch time. You can navigate between the windows as shown in Figure
104 on page 642.

Figure 104. hyptop window navigation overview

To navigate between the windows, use the and arrow keys. The windows have two modes, normal
mode and select mode.

You can get online help for every window by pressing the key. Press in the sys_list window to exit
hyptop.

Instead of using the arrow keys, you can use letter keys (equivalent to the vi editor navigation) in all
windows as listed in Table 74 on page 642.

Table 74. Using letter keys instead of arrow keys

Arrow key Letter key equivalent

Selecting data
You can scroll windows and select data rows.

To enter select mode, press the key. The display is frozen so that you can select rows. Select rows by
pressing the and keys and mark the rows with the Spacebar. Marked rows are displayed in bold font.
Leave the select mode by pressing the key.

To see the details of one system, enter select mode in the sys_list window, then navigate to the row for
the system you want to look at, and press the key. The sys window for the system opens. The key
always returns you to the previous window.

hyptop

642 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

To scroll any window, press the and keys or the Page Up and Page Down keys. Jump to the end of a
window by pressing the keys and to the beginning by pressing the key.

Sorting data
You can sort data according to column.

The sys window or sys_list window table is sorted according to the values in the selected column. Select
a column by pressing the hot key of the column. This key is underlined in the heading. If you press the hot
key again, the sort order is reversed. Alternatively, you can select columns with the and keys.

Filtering data
You can filter the displayed data by CPU types and by data fields.

From the sys or sys_list window you can access the fields selection window and the CPU-type selection
window as shown in Figure 105 on page 643.

Figure 105. Accessing the fields and CPU-type selection windows

Use the key to toggle between the CPU-type selection window and the main window. Use the key to
toggle between the fields selection window and the main window. You can also use the key to return to
the main window from the CPU types and fields windows.

In the fields and CPU-type selection windows, press the field or CPU type identifier key (see “LPAR
fields” on page 643, “z/VM fields” on page 644, and “CPU types” on page 645) to select or de-select.
Selected rows are bold and de-selected rows are grey. When you return to the main window, the data is
filtered according to your field and CPU type selections.

Available fields and units
Different fields are supported depending whether your hypervisor is LPAR PR/SM or z/VM.

The fields might also be different depending on machine type, z/VM version, and kernel version. Each
field has a unique one letter identifier that can be used in interactive mode to enable the field in the field
selection window. Also, use it to select the sort field in the sys or sys_list window. You can also select
fields and sort data using the --fields and --sort command line options.

LPAR fields
Some fields for Linux in LPAR mode are available in both the sys_list and sys windows others are available
only in the sys_list window or only in the sys window.

Identifier Column label Explanation

c core Core dispatch time per second

e the Thread time per second

m mgm Management time per second

C Core+ Total core dispatch time

E thE+ Total thread time

hyptop

Chapter 62. Commands for Linux on IBM Z 643

Identifier Column label Explanation

M Mgm+ Total management time

o online Online time

If multithreading is not available or not enabled, the values for core and for thread are identical.

In the sys_list window only:

Identifier Column label Explanation

y system Name of the LPAR

#core Number of cores (sum of initial and reserved)

T #The Number of threads (sum of initial and reserved)

In the sys window only:

Identifier Column label Explanation

i coreid Core identifier (always shown)

p type CPU type. See “CPU types” on page 645

v visual Visualization of core dispatch time per second

z/VM fields
Some fields for Linux on z/VM are available in both the sys_list and sys windows. Others are available only
in the sys_list window or only in the sys window.

In the sys_list and sys windows:

Identifier Column label Explanation

c cpu CPU time per second

m mgm Management time per second

C Cpu+ Total CPU time

M Mgm+ Total management time

o online Online time

Note: Data for the management time, identifiers m and M, is available only for the z/VM guest virtual
machine on which hyptop runs.

In the sys_list window only:

Identifier Column label Explanation

y system Name of the z/VM guest virtual machine (always shown)

#cpu Number of CPUs

O #cpuop Number of operating CPUs

u memuse Used memory

a memmax Maximum memory

r wcur Current weight

x wmax Maximum weight

hyptop

644 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

In the sys window only:

Identifier Column label Explanation

i cpuid CPU identifier (always shown)

v visual Visualization of CPU time per second

Units
Depending on the field type, the values can be displayed in different units.

In the sys_list and sys windows, the units are displayed under the column headings in parenthesis.
Each unit can be specified through the --fields command line option. Units can also be selected
interactively. To change a unit, enter select mode in the fields window. Then, select the field where you
want to change the unit, and press the "+" or "-" keys to go through the available units. The following units
are supported:

Units of time:

Unit Explanation

us Microseconds (10-6 seconds)

ms Milliseconds (10-3 seconds)

% Hundreds of a second (10-2 seconds) or percent

s Seconds

m Minutes

hm Hours and minutes

dhm Days, hours, and minutes

Units of memory:

Unit Explanation

KiB Kibibytes (1 024 bytes)

MiB Mebibytes (1 048 576 bytes)

GiB Gibibytes (1 073 741 824 bytes)

Other units:

Unit Explanation

str String

Count or number

vis Visualization

CPU types
Enable or disable CPU types in interactive mode in the cpu_types window.

The CPU types can also be specified with the --cpu_types command line option.

The calculation of the CPU data uses CPUs of the specified types only. For example, if you want to see how
much CPU time is consumed by your Linux systems, enable CPU type IFL.

On z/VM the processor type is always UN and you cannot select the type.

hyptop

Chapter 62. Commands for Linux on IBM Z 645

In an LPAR the following CPU types can be selected either interactively or with the --cpu_types
command line option:

Identifier Column label Explanation

i IFL Integrated Facility for Linux. On older machines IFLs might be
shown as CPs.

p CP CP processor type.

u UN Unspecified processor type (other than CP or IFL).

Examples
These examples show typical uses of hyptop.

• To start hyptop with the sys_list window in interactive mode, enter:

hyptop

– If your Linux instance is running in an LPAR that has permission to see the other LPARs, the output
looks like the following example:

12:30:48 | cpu-t: IFL(18) CP(3) UN(3) ?=help
system #core core mgm Core+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
S05LP30 10 461.14 10.18 1547:41 8:15 11:05:59
S05LP33 4 133.73 7.57 220:53 6:12 11:05:54
S05LP50 4 99.26 0.01 146:24 0:12 10:04:24
S05LP02 1 99.09 0.00 269:57 0:00 11:05:58
TRX2CFA 1 2.14 0.03 3:24 0:04 11:06:01
S05LP13 6 1.36 0.34 4:23 0:54 11:05:56
TRX1 19 1.22 0.14 13:57 0:22 11:06:01
TRX2 20 1.16 0.11 26:05 0:25 11:06:00
S05LP55 2 0.00 0.00 0:22 0:00 11:05:52
S05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

– If your Linux instance runs in a z/VM guest virtual machine that has permission to see the other z/VM
guest virtual machines, the output looks like the following example:

12:32:21 | cpu-t: UN(16) ?=help
system #cpu cpu Cpu+ online memuse memmax wcur
(str) (#) (%) (hm) (dhm) (GiB) (GiB) (#)
T6360004 6 100.31 959:47 53:05:20 1.56 2.00 100
DTCVSW1 1 0.00 0:00 53:16:42 0.01 0.03 100
T6360002 6 0.00 166:26 40:19:18 1.87 2.00 100
OPERATOR 1 0.00 0:00 53:16:42 0.00 0.03 100
T6360008 2 0.00 0:37 30:22:55 0.32 0.75 100
T6360003 6 0.00 3700:57 53:03:09 4.00 4.00 100
NSLCF1 1 0.00 0:02 53:16:41 0.03 0.25 500
PERFSVM 1 0.00 0:53 2:21:12 0.04 0.06 0
TCPIP 1 0.00 0:01 53:16:42 0.01 0.12 3000
DIRMAINT 1 0.00 0:04 53:16:42 0.01 0.03 100
DTCVSW2 1 0.00 0:00 53:16:42 0.01 0.03 100
RACFVM 1 0.00 0:00 53:16:42 0.01 0.02 100
 75 101.57 5239:47 53:16:42 15.46 22.50 3000

At the top, the sys and sys_list windows show a list of the CPU types that are used for the current CPU
and core dispatch time calculation.

• To start hyptop with the sys window showing performance data for LPAR MYLPAR, enter:

hyptop -w sys -s mylpar

The result looks like the following example:

hyptop

646 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

11:18:50 MYLPAR cpu-t: IFL(0) CP(24) UN(2) ?=help
coreid type core mgm visual
(#) (str) (%) (%) (vis)
0 CP 50.78 0.28 |####################### |
1 CP 62.76 0.17 |############################ |
2 CP 71.11 0.48 |################################ |
3 CP 32.38 0.24 |############### |
4 CP 64.35 0.32 |############################# |
5 CP 67.61 0.40 |############################## |
6 CP 70.95 0.35 |################################ |
7 CP 62.16 0.41 |############################ |
8 CP 70.48 0.25 |################################ |
9 CP 56.43 0.20 |######################### |
10 CP 0.00 0.00 | |
11 CP 0.00 0.00 | |
12 CP 0.00 0.00 | |
13 CP 0.00 0.00 | |
=:V:N 609.02 3.10

• To start hyptop with the sys_list window in batch mode, enter:

hyptop -b

• To start hyptop with the sys_list window in interactive mode, with the fields dispatch time (in
milliseconds), and online time (unit default), and sort the output according to online time, enter:

hyptop -f c:ms,o -S o

• To start hyptop with the sys_list window in batch mode with update delay 5 seconds and 10 iterations,
enter:

hyptop -b -d 5 -n 10

• To start hyptop with the sys_list window and use only CPU types IFL and CP for dispatch time
calculation, enter:

hyptop -t ifl,cp

• To start hyptop on Linux in LPAR mode with the sys_list window and display all LPAR fields, including
the thread information, enter:

hyptop -f "#,T,c,e,m,C,E,M,o"

The result looks like the following example:

13:47:42 cpu-t: IFL(0) CP(38) UN(0) ?=help
system #core #The core the mgm Core+ thE+ Mgm+ online
(str) (#) (#) (%) (%) (%) (hm) (hm) (hm) (dhm)
S35LP41 12 24 101.28 170.28 0.28 1056:10 1756:11 8:45 158:04:04
S35LP42 16 32 35.07 40.07 0.44 5194:52 6193:52 12:45 158:04:04
S35LP64 3 3 1.20 1.20 0.00 0:31 0:31 0:00 12:03:54
...

In the example, the Linux instances in LPARs S35LP41 and S35LP43 run with 2 threads per core. The
thread time, as the sum of the two threads, exceeds the core dispatch time.

The Linux instance in LPAR S35LP64 does not use simultaneous multithreading.
• To start hyptop on Linux on z/VM with the sys_list window and display a selection of z/VM fields,

including the management time, enter:

hyptop -f "#,c,m,C,M,o"

The result looks like the following example:

hyptop

Chapter 62. Commands for Linux on IBM Z 647

17:52:56 cpu-t: IFL(0) UN(2) ?=help
system #cpu cpu mgm Cpu+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
G3545010 3 0.55 0.05 0:05 0:02 0:03:14
G3545021 3 0.04 - 0:00 - 0:02:43
G3545025 2 0.01 - 0:00 - 0:04:08
...

G3545099 1 0.00 - 0:00 - 0:09:06
 52 0.61 0.05 0:27 0:02 0:09:06

In the example, hyptop runs on a Linux instance in z/VM guest virtual machine G3545010. In the
sys_list window, this is the only guest virtual machine for which management data is displayed.

Scenario
Perform the steps described in this scenario to start hyptop with the sys window with system MYLPAR
with the fields dispatch time (unit milliseconds) and total dispatch time (unit default), sort the output
according to the total dispatch time, and then reverse the sort order.

Procedure
1. Start hyptop.

hyptop

2. Go to select mode by pressing the key. The display will freeze.

3. Navigate to the row for the system you want to look (in the example MYLPAR) at using the and
keys.

12:15:00 | cpu-t: IFL(18) CP(3) UN(3) ?=help
system #core core mgm Core+ Mgm+ online
(str) (#) (%) (%) (hm) (hm) (dhm)
 MYLPAR______4___199.69___0.04___547:41_ 8:15_11:05:59
S05LP33 4 133.73 7.57 220:53 6:12 11:05:54
S05LP50 4 99.26 0.01 146:24 0:12 10:04:24
S05LP02 1 99.09 0.00 269:57 0:00 11:05:58
...
S05LP56 3 0.00 0.00 0:00 0:00 11:05:52
 413 823.39 23.86 3159:57 38:08 11:06:01

4. Open the sys window for MYLPAR by pressing the key.

12:15:51 MYLPAR cpu-t: IFL(18) CP(3) UN(2) ?=help
coreid type core mgm visual
(#) (str) (%) (%) (vis)
0 IFL 99.84 0.02 |##
1 IFL 99.85 0.02 |##
2 IFL 0.00 0.00 |
3 IFL 0.00 0.00 |
=:V:N 199.69 0.04

5. Press the key to go to the fields selection window:

Select Fields and Units ?=help
K S ID UNIT AGG DESCRIPTION
p * type str none CPU type
c * core % sum Core dispatch time per second
e the % sum Thread time per second
m * mgm % sum Management time per second
C core+ hm sum Total core dispatch time
E thE+ % sum Total thread time
M mgm+ hm sum Total management time
o online dhm max Online time
v * visual vis none Visualization of CPU time per second

hyptop

648 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Ensure that dispatch time per second and total dispatch time are selected and for dispatch time
microseconds are used as unit:

a. Press the key, the key, and the key to disable CPU type, Management time per
second, and Visualization.

b. Press the key to enable Total core dispatch time.

c. Then select the Core dispatch time per second row by pressing the and keys.
d. Press the minus key (-) to switch from the percentage (%) unit to the microseconds (ms) unit.

Select Fields and Units ?=help
K S ID UNIT AGG DESCRIPTION
p type str none CPU type
c * core ms sum Core dispatch time per second
e the % sum Thread time per second
m mgm % sum Management time per second
C * core+ hm sum Total core dispatch time
E thE+ % sum Total thread time
M mgm+ hm sum Total management time
o online dhm max Online time
v visual vis none Visualization of CPU time per second

Press the key twice to return to the sys window.

6. To sort by Total core dispatch time press the keys:

13:44:41 MYLPAR cpu-t: IFL(18) CP(3) UN(2) ?=help
coreid core Core+
(#) (ms) (hm)
0 23.84 548:52
1 37.48 492:55
3 0.00 0:00
2 0.00 0:00
=:^:N 61.33 1041:47

To reverse the sort order, press the keys again:

13:44:41 MYLPAR cpu-t: IFL(18) CP(3) UN(2) ?=help
coreid core Core+
(#) (ms) (hm)
2 0.00 0:00
3 0.00 0:00
1 37.48 492:55
0 23.84 548:52
=:^:N 61.33 1041:47

Results
You can do all of these steps in one by entering the command:

hyptop -w sys -s mylpar -f c:ms,C -S C -S C

hyptop

Chapter 62. Commands for Linux on IBM Z 649

lschp - List channel paths
Use the lschp command to display information about channel paths.

lschp syntax

lschp

 --help

 --version

where:
-v or --version

displays the version number of lschp and exits.
-h or --help

displays out a short help text, then exits. To view the man page, enter man lschp.

Output column description:

CHPID
Channel-path identifier.

Vary
Logical channel-path state:

• 0 = channel-path is not used for I/O.
• 1 = channel-path is used for I/O.

Cfg.
Channel-path configure state:

• 0 = stand-by
• 1 = configured
• 2 = reserved
• 3 = not recognized

Type
Channel-path type identifier.

Cmg
Channel measurement group identifier.

Shared
Indicates whether a channel path is shared between LPARs:

• 0 = channel path is not shared
• 1 = channel path is shared

PCHID
Physical channel path identifier, or, if enclosed in brackets, internal channel identifier. The mapping
might not be available to Linux when it is running as a z/VM guest. If so, use the CP command:

QUERY CHPID <num> PCHID

A column value of '-' indicates that a facility associated with the corresponding channel-path attribute is
not available.

lschp

650 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

• To query the configuration status of channel path ID 0.40 issue:

lschp

CHPID Vary Cfg. Type Cmg Shared PCHID
======================================
...
...
0.40 1 1 1b 2 1 0580
...
...

The value under Cfg. shows that the channel path is configured (1).

lschp

Chapter 62. Commands for Linux on IBM Z 651

lscpumf - Display information about the CPU-measurement
facilities

Use the lscpumf command to display information about the CPU-measurement facilities.

lscpumf syntax

lscpumf

 -i

 -c

 -C

 -s

 -h

 -v

where:
-i or --info

displays detailed information about available and supported CPU measurement facilities.
-c or --list-counters

lists counters that are provided by the CPU-measurement facility, omitting counters for which the
LPAR is not authorized. For counter measurements with the perf program, the raw event identifier and
symbolic counter name are displayed.

-C or --list-all-counters
lists all counters that are provided by the CPU-measurement counter facility, regardless of LPAR
authorization. To list only those counters for which the LPAR is authorized, use the -c option. For
counter measurements with the perf program, the raw event identifier and symbolic counter name are
displayed.

-s or --list-sampling-events
lists perf raw events that activate the sampling facility.

-v or --version
displays the version number of lscpumf and exits.

-h or --help
displays out a short help text, then exits. To view the man page, enter man lscpumf.

Examples

• To display the supported facilities, issue:

lscpumf
CPU-measurement Counter Facility
CPU-measurement Sampling Facility

• To display details about the facilities, issue:

lscpumf

652 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lscpumf -i
CPU-measurement Counter Facility
--
Version: 3.6

Authorized counter sets:
 Basic counter Set
 Crypto-Activity counter Set
 Extended counter Set
 MT-diagnostic counter Set
 Problem-State counter Set

Linux perf event support: Yes (PMU: cpum_cf)

CPU-measurement Sampling Facility
--
Sampling Interval:
 Minimum: 18200 cycles (approx. 285714 Hz)
 Maximum: 170388400 cycles (approx. 30 Hz)

Authorized sampling modes:
 basic: (sample size: 32 bytes)
 diagnostic: (sample size: 165 bytes)

Linux perf event support: Yes (PMU: cpum_sf)

Current sampling buffer settings for cpum_sf:
 Basic-sampling mode
 Minimum: 15 sample-data-blocks (64KB)
 Maximum: 8176 sample-data-blocks (32MB)

 Diagnostic-sampling mode (including basic-sampling)
 Minimum: 90 sample-data-blocks (364KB)
 Maximum: 49056 sample-data-blocks (192MB)
 Size factor: 6

• To display perf event information for authorized sampling functions, issue:

lscpumf -s
Perf events for activating the sampling facility
==

Raw
event Name Description
--
rb0000 SF_CYCLES_BASIC

 Sample CPU Cycles Using Basic-sampling Mode.
 This event is not associated with a counter set.

rbd000 SF_CYCLES_BASIC_DIAG

 Sample CPU Cycle Using Diagnostic-sampling Mode
 (not for ordinary use).
 This event is not associated with a counter set.

• To list all counters that are provided by your IBM Z hardware, issue:

lscpumf

Chapter 62. Commands for Linux on IBM Z 653

lscpumf -C
perf event counter list for IBM z15
==

Raw
event Name Description
--
9:0 CPU_CYCLES

 Cycle Count
 Counter 0 / Basic Counter Set.

9:1 INSTRUCTIONS

 Instruction Count
 Counter 1 / Basic Counter Set.

9:2 L1I_DIR_WRITES

 Level-1 I-Cache Directory Write Count
 Counter 2 / Basic Counter Set.

9:3 L1I_PENALTY_CYCLES

 Level-1 I-Cache Penalty Cycle Count
 Counter 3 / Basic Counter Set.

9:4 L1D_DIR_WRITES

 Level-1 D-Cache Directory Write Count
 Counter 4 / Basic Counter Set.

9:5 L1D_PENALTY_CYCLES

 Level-1 D-Cache Penalty Cycle Count
 Counter 5 / Basic Counter Set.

9:32 PROBLEM_STATE_CPU_CYCLES

 Problem-State Cycle Count
 Counter 32 / Problem-State Counter Set.

9:33 PROBLEM_STATE_INSTRUCTIONS

 Problem-State Instruction Count
 Counter 33 / Problem-State Counter Set.

9:64 PRNG_FUNCTIONS
....

The leading 9 for raw event identifiers in the output example is a value that the kernel assigns to the
CPU-measurement facilities. This number can vary across boot cycles.

lscpumf

654 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lscss - List subchannels
Use the lscss command to gather subchannel information from sysfs and display it in a summary format.

lscss syntax

lscss
 -s -u --avail --vpm

--io

--chsc

 --eadm

--vfio

-a

-t

,

<devicetype>

/ <model>

-d

,

<bus_id>

<from_bus_id>-<to_bus_id>

Where:

-s or --short
strips the 0.0. from the device bus-IDs in the command output.

Note: This option limits the output to bus IDs that begin with 0.0.

-u or --uppercase
displays the output with uppercase letters. The default is lowercase.

Changed default: Earlier versions of lscss printed the command output in uppercase. Specify this
option to obtain the former output style.

--avail
includes the availability attribute of I/O devices.

--vpm
shows verified paths in a mask. Channel paths that are listed in this mask are available to Linux device
drivers for I/O. Reasons for a channel path to be unavailable include:

• The corresponding bit is not set in at least one of the PIM, PAM, or POM masks.
• The channel path is varied offline.
• Linux received no interrupt to I/O when using this channel path.

--io
limits the output to I/O subchannels and corresponding devices. This option is the default.

--chsc
limits the output to CHSC subchannels.

--eadm
limits the output to EADM subchannels.

lscss

Chapter 62. Commands for Linux on IBM Z 655

--vfio
For KVM hosts: shows information for subchannels that are used for VFIO CCW mediated devices, see
“Setting up VFIO pass-through DASDs” on page 478.

-a or --all
does not limit the output.

-t or --devtype
limits the output to subchannels that correspond to devices of the specified device types and, if
provided, the specified model.

<devicetype>
specifies a device type.

<model>
is a specific model of the specified device type.

-d or --devrange
interprets bus IDs as specifications of devices. By default, bus IDs are interpreted as specifications of
subchannels.

<bus_id>
specifies an individual subchannel; if used with -d specifies an individual device. If you omit the
leading 0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these subchannels or
devices.

<from_bus_id>-<to_bus_id>
specifies a range of subchannels; if used with -d specifies a range of devices. If you omit the leading
0.<subchannel set ID>., 0.0. is assumed.

If you specify subchannels or devices, the command output is limited to these subchannels or
devices.

-h or --help
displays help information for the command. To view the man page, enter man lscss.

-v or --version
displays version information for the command.

Examples

• This command lists all subchannels, including subchannels that do not correspond to I/O devices:

lscss -a
IO Subchannels and Devices:
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.f500 0.0.05cf 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.f501 0.0.05d0 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.f502 0.0.05d1 1732/01 1731/01 yes 80 80 ff 76000000 00000000
0.0.6194 0.0.36e0 3390/0c 3990/e9 yes fc fc ff 32333435 40410000
0.0.6195 0.0.36e1 3390/0c 3990/e9 yes fc fc ff 32333435 40410000
0.0.6196 0.0.36e2 3390/0c 3990/e9 yes fc fc ff 32333435 40410000

CHSC Subchannels:
Device Subchan.

n/a 0.0.ff40

EADM Subchannels:
Device Subchan.

n/a 0.0.ff00
n/a 0.0.ff01
n/a 0.0.ff02
n/a 0.0.ff03
n/a 0.0.ff04
n/a 0.0.ff05
n/a 0.0.ff06
n/a 0.0.ff07

lscss

656 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

• This command limits the output to subchannels with attached DASD model 3390 type 0a:

lscss -t 3390/0a
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000

• This command limits the output to the subchannel range 0.0.0b00-0.0.0bff:

lscss 0.0.0b00-0.0.0bff
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000

• This command limits the output to subchannels 0.0.0a78 and 0.0.0b57 and shows the availability:

lscss --avail 0a78,0b57
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs Avail.

0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000 good
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000 good

• This command limits the output to subchannel 0.0.0a78 and prints uppercase output:

lscss -u 0a78
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2F08 0.0.0A78 3390/0A 3990/E9 YES C0 C0 FF 34400000 00000000

• This command limits the output to subchannels that correspond to I/O device 0.0.7e10 and the device
range 0.0.2f00-0.0.2fff:

lscss -d 2f00-2fff,0.0.7e10
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.2f08 0.0.0a78 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.2fe5 0.0.0b55 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe6 0.0.0b56 3390/0a 3990/e9 c0 c0 bf 34400000 00000000
0.0.2fe7 0.0.0b57 3390/0a 3990/e9 yes c0 c0 ff 34400000 00000000
0.0.7e10 0.0.1828 3390/0c 3990/e9 yes f0 f0 ef 34403541 00000000

• This example shows a CHPID with PIM, PAM, and POM masks that are OK. However, the entry in the
vpm column indicates that one of the paths, 0x41, is not usable for I/O.

lscss --vpm
Device Subchan. DevType CU Type Use PIM PAM POM VPM CHPIDs

0.0.f500 0.0.05cf 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.f501 0.0.05d0 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.f502 0.0.05d1 1732/01 1731/01 yes 80 80 ff 80 76000000 00000000
0.0.6194 0.0.3700 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6195 0.0.3701 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6196 0.0.3702 3390/0c 3990/e9 yes fc fc ff f8 32333435 40410000
0.0.6197 0.0.3703 3390/0c 3990/e9 fc fc ff 00 32333435 40410000
0.2.5600 0.2.0040 1732/03 1731/03 80 80 ff 00 5d000000 00000000

lscss

Chapter 62. Commands for Linux on IBM Z 657

lsdasd - List DASD devices
Use the lsdasd command to gather information about DASD devices from sysfs and display it in a
summary format.

lsdasd syntax

lsdasd
-a -b -s -v -l -c

-u -H <device_bus_id>

Where:

-a or --offline
includes devices that are currently offline.

-b or --base
omits PAV alias devices. Lists only base devices.

-s or --short
strips the bus ID in the command output down to the four-digit device number.

-v or --verbose
Obsolete. This option has no effect on the output.

-l or --long
extends the output to include attributes, the UID, and path information.

-c or --compat
creates output of this command as with versions earlier than 1.7.0.

-u or --uid
includes and sorts output by UID.

-H or --host_access_list
shows information about all operating system instances that use this device.

<device_bus_id>
limits the output to information about the specified devices only.

--version
displays the version of the command.

-h or --help
displays out a short help text, then exits. To view the man page, enter man lsdasd.

Examples

• The following command lists all DASD (including offline DASDS):

lsdasd

658 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsdasd -a
Bus-ID Status Name Device Type BlkSz Size Blocks
==
0.0.0190 offline
0.0.0191 offline
0.0.019d offline
0.0.019e offline
0.0.0592 offline
0.0.4711 offline
0.0.4712 offline
0.0.4f2c offline
0.0.4d80 active dasda 94:0 ECKD 4096 4695MB 1202040
0.0.4f19 active dasdb 94:4 ECKD 4096 23034MB 5896800
0.0.4d81 active dasdc 94:8 ECKD 4096 4695MB 1202040
0.0.4d82 active dasdd 94:12 ECKD 4096 4695MB 1202040
0.0.4d83 active dasde 94:16 ECKD 4096 4695MB 1202040

• The following command shows information only for the DASD with device number 0x4d80 and strips the
bus ID in the command output down to the device number:

lsdasd -s 0.0.4d80
Bus-ID Status Name Device Type BlkSz Size Blocks
==
4d80 active dasda 94:0 ECKD 4096 4695MB 1202040

• The following command shows only online DASDs in the format of lsdasd versions earlier than 1.7.0:

lsdasd -c
0.0.4d80(ECKD) at (94: 0) is dasda : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4f19(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 5896800 blocks, 23034 MB
0.0.4d81(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4d82(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 1202040 blocks, 4695 MB
0.0.4d83(ECKD) at (94: 16) is dasde : active at blocksize 4096, 1202040 blocks, 4695 MB

• The following command shows the device geometry, UID, path information, and some of the settings for
the DASD with device bus-ID 0.0.4d82:

lsdasd -l 0.0.4d82
0.0.4d82/dasdd/94:12
 status: active
 type: ECKD
 blksz: 4096
 size: 4695MB
 blocks: 1202040
 use_diag: 0
 readonly: 0
 eer_enabled: 0
 erplog: 0
 hpf: 1
 uid: IBM.75000000010671.4d82.16
 fc_security: Encryption
 paths_installed: 30 31 32 33 3c 3d
 paths_in_use: 31 32 33
 paths_non_preferred:
 paths_invalid_cabling: 3c
 paths_cuir_quiesced: 30
 paths_invalid_hpf_characteristics: 3d
 paths_error_threshold_exceeded:

In the example, three of the installed paths are unused for different reasons:

– The path with CHPID 3c is not used because of a cabling error to the storage system. This channel
path does not connect to the same physical disk space as the other channel path for this device.

– The path with CHPID 30 is not used because of a control-unit initiated reconfiguration (CUIR).
– The path with CHPID 3d is not used because its High Performance FICON characteristics do not

match with the paths currently in use.
• The following command shows whether other operating system instances access device 0.0.bf45:

lsdasd

Chapter 62. Commands for Linux on IBM Z 659

lsdasd -H bf45
Host information for 0.0.bf45
Path-Group-ID LPAR CPU FL Status Sysplex Max_Cyls Time
==
88000d29e72964ce8570b8 0d 29e7 50 ON TRX1LNX1 268434453 0
88000e29e72964ce8570c3 0e 29e7 50 ON 268434453 0
88000f29e72964ce8570d1 0f 29e7 50 ON 268434453 0
88011d29e72964ce8570d4 1d 29e7 50 ON 268434453 0
88011e29e72964ce8570d9 1e 29e7 50 ON 268434453 0
88011f29e72964ce8570e3 1f 29e7 50 ON 268434453 0
88022d29e72964ce8570e6 2d 29e7 50 ON 268434453 0
88022e29e72964ce8570ea 2e 29e7 50 ON 268434453 0
88022f29e72964ce8570f1 2f 29e7 50 ON 268434453 0
88033d29e72964ce8570f7 3d 29e7 50 ON 268434453 0
88033e29e72964ce8570fe 3e 29e7 50 ON 268434453 0
88033f29e72964ce85710e 3f 29e7 50 ON 268434453 0
80004229e72964ce7dce74 42 29e7 00 OFF 65520 0
80004a29e72964ce7db60d 4a 29e7 00 OFF 65520 0
80003c29e72964ce8481a6 3c 29e7 00 OFF 65520 0
80004629e72964ce7f1c13 46 29e7 70 ON-RSV 65520 1424174863

Status values are:
ON

The device is online.
OFF

The device is offline.
ON-RSV

The device is online and reserved.
OFF-RSV

The device is offline and reserved by an operating system instance in another LPAR.
The meaning of the columns is as follows:
Path-group-ID

A 22-digit hexadecimal number assigned by the operating system when setting the DASD online.
This ID uniquely identifies the operating system to the storage server.

LPAR
A 2 digit LPAR ID.

CPU
A 4 digit CPU ID, as it is defined in the HMC or can be read from /proc/cpuinfo.

FL
A 2 digit hexadecimal flag. 0x20 means reserved, 0x50 means online.

Sysplex
The 8-character EBCDIC name of the SYSPLEX.

MAX_CYLS
The maximum number of cylinders per volume that are supported by the host.

TIME
Time the device has been reserved in seconds since July 1, 1970.

lsdasd

660 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lshmc - List media contents in the HMC media drive
Use the lshmc command to display the contents of the media in the HMC media drive.

Before you begin: To be able to use this command, you need the hmcdrv module (see Chapter 30, “HMC
media device driver,” on page 379).

lshmc syntax

lshmc

<filepath> -s

Where:

<filepath>
specifies a directory or path to a file to be listed. Path specifications are relative to the root of the
file system on the media. You can use the asterisk (*) and question mark (?) as wildcards. If this
specification is omitted, the contents of the root directory are listed.

-s or --short
limits the output to regular files in a short listing format. Omits directories, symbolic links, and device
nodes and other special files.

-v or --version
displays version information for the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man lshmc.

Examples

• To list the files in the root directory of the media in the HMC's media drive, issue:

lshmc

• If the hmcdrv kernel module is not loaded, load it before you issue the lshmc command:

modprobe hmcdrv
lshmc

• To list all HTML files in subdirectory www, issue:

lshmc /www/*.html

lshmc

Chapter 62. Commands for Linux on IBM Z 661

lsluns - Discover LUNs, or show encryption state of attached LUNs
Use the lsluns command to list logical unit numbers (LUNs) discovered in the Fibre Channel storage
area networks (SAN), or to show the encryption state of zfcp-attached LUNs.

lsluns is designed for environments where all SCSI devices are attached through the zfcp device driver.

lsluns lists all LUNs discovered in the Fibre Channel SAN. “Discover LUNs in the Fibre Channel storage
area network (SAN)” on page 662

lsluns -a shows the encryption state of the attached LUNs. “Show the encryption state of zfcp-
attached LUNs” on page 663

For all other uses, such as listing attached LUNs or properties other than encryption, use other tools such
as

• lszfcp −D See “lszfcp - List zfcp devices” on page 686
• lszdev zfcp-lun −ii See “lszdev - Display IBM Z device configurations” on page 682
• lsscsi −tv See the man page for more details.

Discover LUNs in the Fibre Channel storage area network (SAN)
Discovering LUNs only makes sense for NPIV-enabled FCP devices without zfcp automatic LUN
scan. zfcp automatic LUN scan is available as of kernel version 2.6.37, if not disabled with
zfcp.allow_lun_scan=0. See “Setting up the zfcp device driver” on page 174.

Note: Discovering LUNs causes extra SAN traffic for each target port WWPN.

Temporary LUN Attachment
If not attached already, lsluns temporarily attaches LUN 0 (or if this fails, the WLUN
0xc101000000000000) during runtime. Do not terminate lsluns with a signal. Signals interfere
with the removal of temporarily attached LUNs.

Storage Products
Some storage products return a peripheral device type of 31==0x1f with peripheral qualifier 0 in
a SCSI standard INQUIRY command for an unmapped FCP LUN 0. Examples are: IBM Storwize
products, including IBM V7000, IBM V840, IBM V9000, and IBM SAN Volume Controller. For lsluns
to work with such storage products, you must have a host mapping on the storage side, which maps
some volume to exported FCP LUN 0x0000000000000000 (Storwize host map property "SCSI ID"
0) for each used FCP-device initiator WWPN. The volume can be a minimum-sized thin-provisioned
shared stand-in volume.

lsluns syntax
Filter the listing by specifying one or more FCP device bus-IDs, target port WWPNs, or both.

lsluns

-c <device_bus_id> -p <wwpn>

Where:
-c <device_bus_id> or --ccw <device_bus_id>

filters LUNs by one or more adapters with the specified FCP device-bus IDs. When used in conjunction
with −p, only those LUNs are listed that also satisfy at least one of the −p constraints.

lsluns

662 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-p <wwpn> or --port <wwpn>
filters LUNs by one or more target ports with the specified WWPNs. When used in conjunction with −c,
only those LUNs are listed that also satisfy at least one of the −c constraints.

-v or --version
displays version information and exits.

-h or --help
displays an overview of the syntax. To view the man page, enter man lsluns.

Examples

• This example lists all LUNs discovered in the FC SAN on adapter 0.0.3922:

lsluns -c 0.0.3922

• This example shows all LUNs discovered in the FC SAN on target port 0x500507630300c562:

lsluns -p 0x500507630300c562
Scanning for LUNs on adapter 0.0.5922
 at port 0x500507630300c562:
 0x4010400000000000
 0x4010400100000000
 0x4010400200000000
 0x4010400300000000
 0x4010400400000000
 0x4010400500000000

• This example shows all LUNs discovered in the FC SAN on:

– Adapter 0.0.3922 and port 0x5005123456789000
– Adapter 0.0.3922 and port 0x5005abcdefabc000
– Adapter 0.0.fc00 and port 0x5005123456789000
– Adapter 0.0.fc00 and port 0x5005abcdefabc000

lsluns -c 0.0.3922 −c 0.0.fc00 −p 0x5005123456789000 −p 0x5005abcdefabc000

Show the encryption state of zfcp-attached LUNs
lsluns -a shows the encryption state of the attached LUNs.

Note: Running lsluns -a causes extra SAN traffic for each attached LUN.

lsluns syntax
Filter the listing by specifying one or more FCP device bus-IDs, target port WWPNs, or both.

lsluns -a

-c <device_bus_id> -p <wwpn>

Where:

-a or --active
shows the encryption state of the attached LUNs. Encrypted devices are indicated with a bracketed X
immediately after the LUN number.

-c <device_bus_id> or --ccw=<device_bus_id>
filters LUNs by one or more adapters with the specified FCP device-bus IDs. When used in conjunction
with −p, only those LUNs are listed that also satisfy at least one of the −p constraints.

lsluns

Chapter 62. Commands for Linux on IBM Z 663

-p <wwpn> or --port=<wwpn>
filters LUNs by one or more target ports with the specified WWPNs. When used in conjunction with −c,
only those LUNs are listed that also satisfy at least one of the −c constraints.

-v or --version
displays version information and exits.

-h or --help
displays an overview of the syntax. To view the man page, enter man lsluns.

Examples

• This example shows the encryption status of attached LUNs:

lsluns -a
adapter = 0.0.3c02
 port = 0x500507630300c562
 lun = 0x401040a200000000(X) /dev/sg0 Disk IBM:2107900
 lun = 0x401040a300000000 /dev/sg1 Disk IBM:2107900
 ...
 port = 0x500507630303c562
 ...
adapter = 0.0.593a
 ...

The (X) after the LUN number indicates that the device is encrypted.

lsluns

664 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsqeth - List qeth-based network devices
Use the lsqeth command to display a summary of information about qeth-based network devices.

Before you begin: To be able to use this command, you must also install qethconf (see “qethconf -
Configure qeth devices” on page 703). You install both qethconf and lsqeth with the s390-tools
package.

lsqeth syntax

lsqeth
-p <interface>

Where:

-p or --proc
displays the interface information in the former /proc/qeth format. This option can generate input
to tools that expect this particular format.

<interface>
limits the output to information about the specified interface only.

-v or --version
displays version information for the command.

-h or --help
displays a short help text, then exits. To view the man page, enter man lsqeth.

Examples

• The following command lists information about interface encf500 in the default format:

lsqeth encf500
Device name : encf500

 card_type : OSD_10GIG
 cdev0 : 0.0.f5a2
 cdev1 : 0.0.f5a3
 cdev2 : 0.0.f5a4
 chpid : B5
 online : 1
 portname : no portname required
 portno : 0
 route4 : no
 route6 : no
 state : UP (LAN ONLINE)
 priority_queueing : always queue 2
 fake_broadcast : 0
 buffer_count : 64
 layer2 : 0
 isolation : none
 sniffer : 0
 switch_attrs : [802.1] rr

• The following command lists information about all qeth-based interfaces in the former /proc/qeth
format:

lsqeth -p
devices CHPID interface cardtype port chksum prio-q'ing rtr4 rtr6 lay'2 cnt
-------------------------- ----- ---------- -------------- ---- ------ ---------- ---- ---- ----- -----
0.0.833f/0.0.8340/0.0.8341 xFE enc8000 HiperSockets 0 sw always_q_2 no no 0 128
0.0.f5a2/0.0.f5a3/0.0.f5a4 xB5 encf500 OSD_1000 0 sw always_q_2 no no 1 64
0.0.fba2/0.0.fba3/0.0.fba4 xB0 ence400 OSD_1000 0 sw always_q_2 no no 0 64

lsqeth

Chapter 62. Commands for Linux on IBM Z 665

lsreipl - List IPL and re-IPL settings
Use the lsreipl command to find out which boot device and which options are used if you issue the
reboot command.

You can also display information about the current boot device.

lsreipl syntax

lsreipl

-i

where:
-i or --ipl

displays the IPL setting.
-v or --version

displays the version number of lsreipl and exits.
-h or --help

displays an overview of the syntax. Any other parameters are ignored. To view the man page, enter
man lsreipl.

By default the re-IPL device is set to the current IPL device. Use the chreipl command to change the
re-IPL settings.

This example shows the current re-IPL settings:

lsreipl
Re-IPL type: fcp
WWPN: 0x500507630300c562
LUN: 0x401040b300000000
Device: 0.0.1700
bootprog: 0
br_lba: 0
Loadparm: ""
Bootparms: ""
clear: 0

lsreipl

666 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsscm - List storage-class memory increments
Use the lsscm command to list status and other information about available storage-class memory
increments.

lsscm syntax

lsscm

 -h

 -v

Where:
-h or --help

displays help information for the command. To view the man page, enter man lsscm.
-v or --version

displays version information for the command.
In the output table, the columns have the following meaning:

SCM Increment
Starting address of the storage-class memory increment.

Size
Size of the block device that represents the storage-class memory increment.

Name
Name of the block device that represents the storage-class memory increment.

Rank
A quality ranking in the form of a number in the range 1 - 15 where a lower number means better
ranking.

D_state
Data state of the storage-class memory increment. A number that indicates whether there is data on
the increment. The data state can be:
1

The increment contains zeros only.
2

Data was written to the increment.
3

No data was written to the increment since the increment was attached.
O_state

Operation state of the storage-class memory increment.
Pers

Persistence attribute.
ResID

Resource identifier.

Examples

• This command lists all increments:

lsscm

Chapter 62. Commands for Linux on IBM Z 667

 # lsscm
 SCM Increment Size Name Rank D_state O_state Pers ResID
--
0000000000000000 16384MB scma 1 2 1 2 1
0000000400000000 16384MB scmb 1 2 1 2 1

lsscm

668 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lsshut - List the current system shutdown actions
Use the lsshut command to see how the Linux instance is configured for the halt, poff, reboot,
restart, and panic system shutdown triggers.

For more information about the shutdown triggers and possible shutdown actions, see Chapter 8,
“Shutdown actions,” on page 119.

If the action is kdump, a second action might be listed. This second action is the backup action that is
taken if kdump fails. See Using the Dump Tools, SC33-8412 for details about using kdump.

lsshut syntax

lsshut

 -h

 -v

where:
-h or --help

displays a short help text, then exits. To view the man page, enter man lsshut.
-v or --version

displays the version number of lsshut and exits.

Examples

• To query the configuration issue:

lsshut
Trigger Action
========================
Halt stop
Power off vmcmd (LOGOFF)
Reboot reipl
Restart kdump,dump_reipl
Panic kdump,dump_reipl

lsshut

Chapter 62. Commands for Linux on IBM Z 669

lstape - List tape devices
Use the lstape command to gather information about tape devices and display it in a summary format.

It gathers information about the following types of tape devices:

• CCW-attached tape devices
• Tape drive and medium charger devices that are available through the sysfs SCSI bus (see “Displaying

tape information” on page 224)

CCW-attached tape devices and tape devices that are attached to the SCSI bus from sysfs.

For information about SCSI tape devices, the command uses the following sources for the information
displayed:

• The IBMtape or the open source lin_tape driver.
• The sg_inq command from the scsi/sg3_utils package.

Note: Issuing lstape without option --ccw-only causes extra SAN traffic for each SCSI tape or
changer device.

• The st (SCSI tape) device driver in the Linux kernel.
• The ch SCSI medium changer device driver in the Linux kernel.

If you use the IBMtape or lin_tape driver, the sg_inq utility is required. If sg_inq is missing, certain
information about the IBMtape or lin_tape driver cannot be displayed.

lstape syntax

lstape
-s

-t

,

<devicetype>

--online

--offline

,

<device_bus_id>
1 --ccw-only

--scsi-only

--verbose

Notes:
1 specify the first device bus-ID with a leading blank.

Where:

-s or --shortid
strips the "0.<n>." from the device bus-IDs in the command output. For CCW-attached devices only.

-t or --type
limits the output to information about the specified type or types of CCW-attached devices only.

--ccw-only
limits the output to information about CCW-attached devices only.

--scsi-only
limits the output to information about tape devices that are attached to the SCSI bus.

--online | --offline
limits the output to information about online or offline CCW-attached tape devices only.

lstape

670 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<device_bus_id>
limits the output to information about the specified CCW-attached tape device or devices.

-V or --verbose
For tape devices attached to the SCSI bus only. Displays the serial of the tape and information about
the FCP or virtio-scsi-ccw connection as an additional text line that follows each SCSI tape in the list.

-h or --help
displays a short help text. To view the man page, enter man lstape.

-v or --version
displays the version of the command.

Examples

• This command displays information about all tapes found, here one CCW-attached tape and one tape
and changer device that is configured for zFCP:

lstape
FICON/ESCON tapes (found 1):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
0 0.0.0480 3480/01 3480/04 auto UNUSED --- UNLOADED

SCSI tape devices (found 2):
Generic Device Target Vendor Model Type State
sg4 IBMchanger0 0:0:0:0 IBM 03590H11 changer running
sg5 IBMtape0 0:0:0:1 IBM 03590H11 tapedrv running

If only the st tape device driver and the ch changer device driver are loaded, the output lists those
names in the device section:

lstape
FICON/ESCON tapes (found 1):
TapeNo BusID CuType/Model DevType/Model BlkSize State Op MedState
0 0.0.0480 3480/01 3480/04 auto UNUSED --- UNLOADED

SCSI tape devices (found 2):
Generic Device Target Vendor Model Type State
sg0 sch0 0:0:0:0 IBM 03590H11 changer running
sg1 st0 0:0:0:1 IBM 03590H11 tapedrv running

• This command displays information about all available CCW-attached tapes.

lstape –-ccw-only
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
0 0.0.0132 3590/50 3590/11 auto IN_USE --- LOADED
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
2 0.0.0133 3590/50 3590/11 auto IN_USE --- LOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED
N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

• This command limits the output to tapes of type 3480 and 3490.

lstape -t 3480,3490
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED
N/A 0.0.01f8 3480/01 3480/04 N/A OFFLINE --- N/A

• This command limits the output to those tapes of type 3480 and 3490 that are currently online.

lstape -t 3480,3490 --online
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
1 0.0.0110 3490/10 3490/40 auto UNUSED --- UNLOADED
3 0.0.012a 3480/01 3480/04 auto UNUSED --- UNLOADED

• This command limits the output to the tape with device bus-ID 0.0.012a and strips the "0.<n>." from
the device bus-ID in the output.

lstape

Chapter 62. Commands for Linux on IBM Z 671

lstape -s 0.0.012a
TapeNo BusID CuType/Model DevType/DevMod BlkSize State Op MedState
3 012a 3480/01 3480/04 auto UNUSED --- UNLOADED

• This command limits the output to SCSI devices but gives more details. The serial numbers are only
displayed if the sg_inq command is found on the system.

lstape --scsi-only --verbose
Generic Device Target Vendor Model Type State
 HBA WWPN Serial
sg0 st0 0:0:0:1 IBM 03590H11 tapedrv running
 0.0.1708 0x500507630040727b NO/INQ
sg1 sch0 0:0:0:2 IBM 03590H11 changer running
 0.0.1708 0x500507630040727b NO/INQ

• Example details about a zfcp-attached SCSI tape library with multiple paths operated by the IBM
lin_tape device driver instead of Linux st or ch.

lstape --scsi-only --verbose
SCSI tape devices (found 8):
Generic Device Target Vendor Model Type State
 HBA WWPN Serial
sg0 IBMtape0 0:0:0:0 IBM ULT3580-TD6 tapedrv running
 0.0.5080 0x2002000e1115c62f 10WT037733
sg1 IBMchanger0 0:0:0:1 IBM 3573-TL changer running
 0.0.5080 0x2002000e1115c62f 00L4U78W6497_LL0
sg4 IBMtape2 0:0:1:0 IBM ULT3580-TD6 tapedrv running
 0.0.5080 0x2008000e1115c62f 10WT037701
sg5 IBMchanger2 0:0:1:1 IBM 3573-TL changer running
 0.0.5080 0x2008000e1115c62f 00L4U78W6497_LL0
sg6 IBMtape3 1:0:0:0 IBM ULT3580-TD6 tapedrv running
 0.0.50c0 0x2002000e1115c62f 10WT037733
sg7 IBMchanger3 1:0:0:1 IBM 3573-TL changer running
 0.0.50c0 0x2002000e1115c62f 00L4U78W6497_LL0
sg2 IBMtape1 1:0:1:0 IBM ULT3580-TD6 tapedrv running
 0.0.50c0 0x2008000e1115c62f 10WT037701
sg3 IBMchanger1 1:0:1:1 IBM 3573-TL changer running
 0.0.50c0 0x2008000e1115c62f 00L4U78W6497_LL0

Data fields for SCSI tape devices
There are specific data fields for SCSI tape devices.

Table 75. lstape data fields for SCSI tape devices

Attribute Description

Generic SCSI generic device file for the tape drive (for example /dev/sg0). This attribute is
"N/A" if the SCSI generic device driver, sg, is not available.

Device Main device file for accessing the tape drive, for example:

• /dev/st0 for a tape drive that is attached through the Linux st device driver
• /dev/sch0 for a medium changer device that is attached through the Linux

changer device driver
• /dev/IBMchanger0 for a medium changer that is attached through the IBMtape

or lin_tape device driver
• /dev/IBMtape0 for a tape drive that is attached through the IBMtape or

lin_tape device driver

Target The ID in Linux used to identify the SCSI device.

Vendor The vendor field from the tape drive.

Model The model field from the tape drive.

Type "Tapedrv" for a tape driver or "changer" for a medium changer.

lstape

672 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 75. lstape data fields for SCSI tape devices (continued)

Attribute Description

State The state of the SCSI device in Linux. This state is an internal state of the Linux
kernel, any state other than "running" can indicate problems.

HBA The bus-ID of the FCP device or of the virtio-scsi-ccw virtual HBA to which the tape
drive is attached. "N/A" if the device does not have a sysfs ancestor with subsystem
ccw.

WWPN The WWPN (worldwide port name) of the tape drive in the SAN. "N/A" if the device
is not attached through zfcp.

Serial The serial number field from the tape drive. "NO/SG" if the SCSI generic device
driver, sg, is not available. "NO/INQ" if sg is available, but the sg_inq command
from the scsi/sg3_utils package is unavailable.

lstape

Chapter 62. Commands for Linux on IBM Z 673

lsstp - Show STP configuration information
Use the lsstp command to display information about the current Server Time Protocol (STP)
configuration like Coordinated Timing Network (CTN) ID, timing state, and leap seconds.

lsstp syntax

lsstp

 -h

 -v

Where:
-h or --help

displays a short help text. To view the man page, enter man lsstp.
-v or --version

displays the version of the lsstp command.

Output description:
STP online

Indication of the online state.
CTN ID

The ID of the CTN. If it can be decoded as EBCDIC, it is shown as an EBCDIC string, otherwise a
hexadecimal representation is shown.

CTN Type
The type of timing network.
No CTN

STP is not configured for attachment to a CTN.
STP-only

STP is configured and attached to a CTN with only STP nodes.
Mixed

STP is configured and attached to a CTN with both STP and external time reference (ETR) nodes.
Stratum

The number of servers in the timing path between the local STP clock and the selected primary time
server.

Timing mode
The timing mode of the Time-of-day (TOD) clock.
Local

The TOD clock is stepped by the local hardware oscillator and is not steered by the STP facility.
ETR

The TOD clock is synchronized with an attached 9037 Sysplex Timer.
STP

The TOD clock is steered by the STP facility to maintain synchronization with a Coordinated Server
Time (CST).

Uninitialized
The TOD clock is not initialized. The STP facility is allowed to perform a step adjustment to the
TOD clock for synchronization.

Timing state
The synchronization state of the STP facility. Can be unsynchronized, synchronized, or stopped.

lsstp

674 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

DST offset
The Daylight Savings Time (DST) offset relative to UTC in minutes.

Timezone offset
The offset of the local time relative to UTC in minutes.

Time offset
The total time offset at the server. This field is valid only in mixed CTN configurations.

Active leap seconds
The number of leap seconds that are currently in effect at the STP facility.

Scheduled leap second
If a leap second insertion or deletion is scheduled in the STP facility, this field shows the day and time
of the scheduled change.

Example

• # lsstp
STP online: yes
CTN ID: STPM46
CTN type: STP-only
Stratum: 1
Timing mode: STP
Timing state: Synchronized
DST offset: 60
Timezone offset: 60
Time offset: 120
Active leap seconds: 27
Scheduled leap second: -

lsstp

Chapter 62. Commands for Linux on IBM Z 675

lszcrypt - Display zcrypt devices
Use the lszcrypt command to display information about cryptographic adapters that are managed by
zcrypt and its AP bus attributes.

To set the attributes, use “chzcrypt - Modify the zcrypt configuration” on page 581. The following
information can be displayed for each cryptographic adapter:

• The card type
• The status

– online: The card is online to Linux.
– offline: The card is configured at the LPAR level, but set offline within Linux.
– deconfigured: The card is available to the LPAR, but not configured at the LPAR level. The card is also

offline within Linux.
• The online status
• The hardware card type
• The card capability
• The hardware queue depth
• The request count
• The zcrypt submodule or alternative device driver that handles the device

For information about alternative device drivers, see “Freeing AP queues for KVM guests” on page 508.

The following AP bus attributes can be displayed:

• The default AP domain
• The configuration timer
• The poll thread status
• The poll timeout
• The AP interrupt status

lszcrypt

676 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lszcrypt syntax

lszcrypt

-b

-c <device_ID>

-d

-V

 <device_ID>

--cardonly

--queueonly

--accelonly

--cardonly

--ccaonly

--ep11only

--queueonly

Where:
<device ID>

specifies a cryptographic adapter to display. A cryptographic device can be either an adapter ID or an
AP queue device. If no devices are specified, information about all available devices is displayed. Both
the adapter ID representation and the AP queue device representation are hexadecimal.

-b or --bus
displays the AP bus attributes.

-c <device ID> or --capability <device ID>
shows the capabilities of a cryptographic adapter. The capabilities of a cryptographic adapter depend
on the card type and the installed function facilities. A cryptographic adapter can provide one or more
of the following capabilities:

• RSA 2 K Clear Key
• RSA 4 K Clear Key
• CCA Secure Key (full function set)
• CCA Secure Key (restricted function set)
• EP11 Secure Key
• Long RNG

The restricted function set for CCA Secure Key applies to shared adapters for z/VM guests (see
“Cryptographic devices on z/VM” on page 491).

-d or --domains
shows the usage and control domains of the cryptographic device. The displayed domains of the
cryptographic device depend on the initial cryptographic configuration.

• "C" indicates a control domain.
• "U" indicates a usage domain.
• "B" indicates both (control and usage domain).

lszcrypt

Chapter 62. Commands for Linux on IBM Z 677

-V or --verbose
enables the verbose level for cryptographic device information. It displays card type, online status,
hardware card type, hardware queue depth, request count, pending request queue count, outstanding
request queue count, and installed function facilities.

The installed functions are shown, as a sequence of letters, in the FUNCTION column of the verbose
output mode, with the following meaning:
S

APSC facility available
M and C

RSA 4096 bit support
D

CCA Coprocessor function available
A

Accelerator function available
X

EP11 Coprocessor function available
N

APXA facility available
F

Full function set available
R

Restricted function set (only stateless)

Depending on the hypervisor configuration, the hypervisor might filter cryptographic requests to
allow only a subset of functions within the virtual runtime environment. For example, a shared
CCA Coprocessor can be restricted by the hypervisor to allow only clear-key operations within the
guests.

--accelonly
limits the output to cryptographic adapters in accelerator mode.

--cardonly
limits the output to adapters only.

--ccaonly
limits the output to cryptographic adapters in CCA-Coprocessor mode.

--ep11only
limits the output to cryptographic adapters in EP11-Coprocessor mode.

--queueonly
limits the output to AP queues only.

-s or --serial
displays the serial numbers of CCA and EP11 cryptographic adapters.

-h or --help
displays help information for the command. To view the man page, enter man lszcrypt.

-v or --version
displays version information.

Examples

These examples illustrate common uses for lszcrypt.

• To display information about all available cryptographic devices and AP queues:

lszcrypt

lszcrypt

678 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

This command lists all devices grouped by cryptographic device, similar to the following example. Card
and domain IDs are hexadecimal values.

CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
0a CEX7P EP11-Coproc online 2506
0a.0011 CEX7P EP11-Coproc online 1615
0a.0036 CEX7P EP11-Coproc online 891
0c CEX7A Accelerator online 3506
0c.0011 CEX7A Accelerator online 1753
0c.0036 CEX7A Accelerator online 1753
0e CEX7C CCA-Coproc online 1507
0e.0011 CEX7C CCA-Coproc online 753
0e.0036 CEX7C CCA-Coproc online 754

• To display AP bus information:

lszcrypt -b

This command displays output similar to the following example:

ap_domain=0x11
ap_max_domain_id=0x54
ap_interrupts are enabled
config_time=30 (seconds)
poll_thread is disabled
poll_timeout=250000 (nanoseconds)

• To display the capabilities for the cryptographic device with adapter ID 0x0e:

lszcrypt -c 0x0e

This command displays output similar to the following example:

card0e provides capability for:
RSA 4K Clear Key
CCA Secure Key (full function set)
Long RNG

• To list the usage and control domains of the cryptographic devices:

lszcrypt -d

This command displays a table that lists all domains (in hex notation) similar to the following example:

DOMAIN 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
--
 00 B
 10
 20
 30
 40
 50 . B
 60
 70
 80
 90
 a0
 b0
 c0
 d0
 e0
 f0
--
C: Control domain
U: Usage domain
B: Both (Control + Usage domain)

lszcrypt

Chapter 62. Commands for Linux on IBM Z 679

• To display detailed information of all available cryptographic devices:

lszcrypt -V

This example shows a CEX6S cryptographic device in accelerator mode (ID 0x03). It also shows
three CEX7S devices, two of them in CCA coprocessor mode (IDs 0x08 and 0x0e) and one in EP11
coprocessor mode (ID 0x0a). The configured domains are 17 (0x0011) and 54 (0x0036). Adapter IDs
and domain IDs are hexadecimal values.

lszcrypt -V
CARD.DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
--
03 CEX6A Accelerator online 2095 0 12 08 -MC-A-NF- cex4card
03.0011 CEX6A Accelerator online 1047 0 12 08 -MC-A-NF- cex4queue
03.0036 CEX6A Accelerator online 1048 0 12 08 -MC-A-NF- cex4queue
08 CEX7C CCA-Coproc online 0 0 13 08 S--D--NF- cex4card
08.0011 CEX7C CCA-Coproc - 0 0 13 08 S--D--NF- -no-driver-
08.0036 CEX7C CCA-Coproc - 0 0 13 08 S--D--NF- -no-driver-
0a CEX7P EP11-Coproc online 2506 0 13 08 -----XNF- cex4card
0a.0011 CEX7P EP11-Coproc online 1615 0 13 08 -----XNF- cex4queue
0a.0036 CEX7P EP11-Coproc online 891 0 13 08 -----XNF- cex4queue
0e CEX7C CCA-Coproc online 1507 0 13 08 S--D--NF- cex4card
0e.0011 CEX7C CCA-Coproc online 753 0 13 08 S--D--NF- cex4queue
0e.0036 CEX7C CCA-Coproc online 754 0 13 08 S--D--NF- cex4queue

"-no-driver-" in the DRIVER column means that the AP queue has been freed for use by alternative
device drivers (see “Freeing AP queues for KVM guests” on page 508), but no such device driver
is available. In the example, the vfio_ap device driver is not loaded. Otherwise, "vfio_ap" would be
displayed instead of "-no-driver-".

In the example, all domains for adapter 0x08 have been freed from control by zcrypt. AP queues that
are not handled by the zcrypt device driver are omitted from the non-verbose listing.

lszcrypt
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
03 CEX6A Accelerator online 2095
03.0011 CEX6A Accelerator online 1047
03.0036 CEX6A Accelerator online 1048
08 CEX7C CCA-Coproc online 0
0a CEX7P EP11-Coproc online 2506
0a.0011 CEX7P EP11-Coproc online 1615
0a.0036 CEX7P EP11-Coproc online 891
0e CEX7C CCA-Coproc online 1507
0e.0011 CEX7C CCA-Coproc online 753
0e.0036 CEX7C CCA-Coproc online 754

• To limit the scope of the lszcrypt -V command, specify one or more device IDs as arguments to the
command.

lszcrypt -V 0x0a
CARD.DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
--
0a CEX7P EP11-Coproc online 2506 0 13 08 -----XNF- cex4card
0a.0011 CEX7P EP11-Coproc online 1615 0 13 08 -----XNF- cex4queue
0a.0036 CEX7P EP11-Coproc online 891 0 13 08 -----XNF- cex4queue

Tip: In the device specification, you can also use one-digit hexadecimal or decimal notation. The
following specifications are all equivalent:

– 0x0 0x2 0xb
– 0x00 0x02 0x0b
– 0 2 11

• To filter the output by adapter mode, for example, to list only adapters in CCA-Coprocessor mode, issue
lszcrypt --ccaonly:

lszcrypt

680 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

lszcrypt --ccaonly
CARD.DOMAIN TYPE MODE STATUS REQUESTS
--
04 CEX7A CCA-Coproc online 2095
04.0016 CEX7A CCA-Coproc online 1047
05 CEX7A CCA-Coproc online 1048
...

• To list only the adapters, issue lszcrypt -V --cardonly:

lszcrypt -V --cardonly
CARD.DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER

00 CEX7A Accelerator online 0 0 13 08 -MC-A-NF- cex4card
01 CEX7A Accelerator online 0 0 13 08 -MC-A-NF- cex4card
04 CEX7C CCA-Coproc online 4 0 13 08 S--D--NF- cex4card
05 CEX7C CCA-Coproc online 2 0 13 08 S--D--NF- cex4card
06 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- cex4card
07 CEX7P EP11-Coproc online 0 0 13 08 -----XNF- cex4card
09 CEX7C CCA-Coproc online 2 0 13 08 S--D--NF- cex4card

• To list the AP queues, issue lszcrypt -V --queueonly:

lszcrypt -V --queueonly
CARD.DOMAIN TYPE MODE STATUS REQUESTS PENDING HWTYPE QDEPTH FUNCTIONS DRIVER
--
00.0016 CEX7A Accelerator online 1615 0 13 08 -----XNF- cex4queue
01.0016 CEX7A Accelerator online 891 0 13 08 -----XNF- cex4queue
04.0016 CEX7C CCA-Coproc online 4 0 13 08 S--D--NF- cex4queue
...

• To display the serial number of adapters;

lszcrypt --serial
CARD.DOM TYPE MODE STATUS SERIALNR
--
04 CEX8C CCA-Coproc online 93AADHR3
05 CEX8C CCA-Coproc online 93AADHZV
06 CEX8P EP11-Coproc online 93AADFK7
0c CEX7C CCA-Coproc deconfig -
0d CEX7C CCA-Coproc online 93AADEY1
0f CEX7C CCA-Coproc online 93AADEVV
17 CEX8P EP11-Coproc online 93AADH0C
1a CEX7P EP11-Coproc online 93AADFAD

lszcrypt

Chapter 62. Commands for Linux on IBM Z 681

lszdev - Display IBM Z device configurations
Use the lszdev command to display the configuration of devices and device drivers that are specific
to IBM Z. Supported device types include storage devices (DASD and zFCP) and networking devices
(QETH and LCS). For more examples of how to use the command, see Chapter 25, “Persistent device
configuration,” on page 351.

Configuration information is taken from three sources: the active configuration of the currently running
system, the persistent configuration stored in configuration files, and the auto-configuration from the
Support Element (SE). By default, lszdev displays information from all available sources. If no auto-
configuration data is displayed, the mainframe model does not support such data, or none has been
specified. For details about the auto-configuration, see Chapter 3, “Device auto-configuration for Linux in
LPAR mode,” on page 21.

The lszdev command supports two different views:

• The list view provides overview information for selected devices in list form with configurable columns
• The details view provides detailed per-device information

lszdev main syntax

lszdev

Device selection

Device type selection

--persistent --active --auto-conf

--active

--persistent

--auto-conf

 --info

 --columns

,

<column_name>

 --no-headings

 --pairs

 --base  <path> | <key=value> --quiet

 --verbose

Device selection

lszdev

682 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

  <type>

,

<device>

<from_dev>-<to_dev>

 --all

 --by-attrib  <key=value> |  <key!=value>

 --by-interface  <interface>

 --by-node  <device_node>

 --by-path  <path>

 --configured

 --existing --online

 --offline

Device type selection
  <type> --type

lszdev help functions
lszdev --list-types

 --list-columns

 --help

 --version

Where:

<type>
restricts the output to the specified device type. A device type typically corresponds to a device driver.
Multiple device types are sometimes provided for the same driver, for example, both "dasd-eckd" and
"dasd-fba" are related to the DASD device driver. You can work with types in the following ways:

• To display data for devices with matching type and ID only, specify a device type and a device ID, for
example:

lszdev dasd 0.0.8000

• To display the configuration of the device type itself, specify a device type together with the --type
option, for example:

lszdev dasd --type

To get a list of supported device types, use the --list-types option.
<device>

limits the output to information about a single device or a range of devices by device ID. To select a
range of devices, specify the ID of the first and the last device in the range separated by a hyphen (-).
Specify multiple IDs or ID ranges by separating IDs with a comma (,).

lszdev

Chapter 62. Commands for Linux on IBM Z 683

--all
lists all existing and configured devices. This option is the default.

--by-attrib <key=value> | <key!=value>
selects devices with a specified attribute, <key> that has a value of <value>. When specified as <key!
=value>, lists all devices that do not provide an attribute named <key> with a value of <value>.

Tip: You can use the --list-attributes option to display a list of available attributes and the
--help-attribute to get more detailed information about a specific attribute.

--by-interface <interface>
selects devices by network interface, for example, encf500. The <interface> parameter must be the
name of an existing networking interface.

--by-node <node>
selects devices by device node, for example, /dev/sda. The <node> must be the path to a block
device or character device special file.

Note: If <node> is the device node for a logical device (such as a device mapper device), lszdev
tries to resolve the corresponding physical device nodes. The lsblk tool must be available for this
resolution to work.

--by-path <path>
selects devices by file-system path, for example, /usr. The <path> parameter can be the mount point
of a mounted file system, or a path on that file system.

Note: If the file system that provides <path> is stored on multiple physical devices (such as supported
by btrfs), lszdev tries to resolve the corresponding physical device nodes. The lsblk tool must be
available and the file system must provide a valid UUID for this resolution to work.

--configured
narrows the selection to those devices for which a persistent configuration exists.

--existing
narrows the selection to devices that are present in the active configuration.

--online
narrows the selection to devices that are enabled in the active configuration.

--offline
narrows the selection to devices that are disabled in the active configuration.

-a or --active
lists information obtained from the active configuration, that is, information from the running system.

-p or --persistent
lists information from the persistent configuration.

--auto-conf
lists information from the auto-configuration, see Chapter 3, “Device auto-configuration for Linux in
LPAR mode,” on page 21.

-i or --info
displays detailed information about the configuration of the selected device or device type.

-c <columns> or --columns <columns>
specifies a comma-separated list of columns to display.

Example:

lszdev --columns TYPE,ID

Tip: To get a list of supported column names, use the --list-columns option.

-n or --no-headings
suppresses column headings for list output.

lszdev

684 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

--pairs
produces output in <key="value"> format. Use this option to generate output in a format more suitable
for processing by other programs. In this format, column values are prefixed with the name of
the corresponding column. Values are enclosed in double quotation marks. The lszdev command
automatically escapes quotation marks and slashes that are part of the value string.

--base <path> | <key=value>
changes file system paths that are used to access files. If <path> is specified without an equal sign
(=), it is used as base path for accessing files in the active and persistent configuration. If the specified
parameter is in <key=value> format, only those paths that begin with <key> are modified. For these
paths, the initial <key> portion is replaced with <value>.

Example:

lszdev --persistent --base /etc=/mnt/etc

-t <device_type> or --type <device_type>
lists information about a device type. Use this option to display configuration information of a device
type instead of a device.

-q or --quiet
prints only minimal run-time information.

-V or --verbose
prints additional run-time information.

-L or --list-types
lists all available device types that you can use with the --type option.

-l or --list-columns
lists all available columns that you can use with the --columns option.

-h or --help
displays help information for the command.

-v or --version
displays the version number of lszdev, then exits.

Input files
The lszdev command uses these input files:
/etc/udev/rules.d/

lszdev reads udev rules that represent the persistent configuration of devices from this directory.
The udev rules are named 41-<device subtype>-<id>.rules.

/etc/modprobe.d/
lszdev reads modprobe configuration files that represent the persistent configuration of certain
device types from this directory. File names start with s390x-.

/usr
lszdev reads udev rules that represent the auto-configuration of devices from this directory.

Examples

• To display a list of all devices:

lszdev

• To return type and ID of root device in machine-readable format:

lszdev --columns TYPE,ID --by-path /

• To display DASD driver settings:

lszdev --type dasd

lszdev

Chapter 62. Commands for Linux on IBM Z 685

lszfcp - List zfcp devices
Use the lszfcp command to gather information about zfcp devices, ports, units, and their associated
class devices from sysfs and to display it in a summary format.

lszfcp syntax

lszfcp

-H -P -D -Z -V -e

-b <device_bus_id>

-p <port_name>

-l <lun>

-a
-m

-mm

-s /sys

-s <mount_point>

Where:

-H or --hosts
shows information about hosts.

-P or --ports
shows information about ports.

-D or --devices
shows information about SCSI devices.

-Z or --modparms
lists zfcp module parameters with a scope of the device driver.

-V or --verbose
shows sysfs paths of associated class and bus devices.

-e or --extended
generates extended output.

-b or --busid <device_bus_id>
limits the output to information about the specified device.

-p or --wwpn <port_name>
limits the output to information about the specified port name.

-l or --lun <lun>
limits the output to information about the specified LUN.

-a or --attributes
shows the main attributes of the specified objects.

-m or --moreattrs
shows more attributes of the specified objects.

Specify twice (-mm) to show even more attributes for SCSI devices.

-s or --sysfs <mount_point>
specifies the mount point for sysfs.

-v or --version
displays version information.

-h or --help
displays a short help text. To view the man page, enter man lszfcp.

lszfcp

686 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

• This command displays information about all available hosts, ports, and SCSI devices.

lszfcp -H -D -P
0.0.3d0c host0
0.0.500c host1
...
0.0.3c0c host5
0.0.3d0c/0x500507630300c562 rport-0:0-0
0.0.3d0c/0x50050763030bc562 rport-0:0-1
0.0.3d0c/0x500507630303c562 rport-0:0-2
0.0.500c/0x50050763030bc562 rport-1:0-0
...
0.0.3c0c/0x500507630303c562 rport-5:0-2
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:1077035024
0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1077100560
0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:1077035024
0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:1077035024
0.0.500c/0x50050763030bc562/0x4010403200000000 1:0:0:1077035024
...
0.0.3c0c/0x500507630303c562/0x4010403200000000 5:0:2:1077035024

• This command shows SCSI devices and limits the output to the devices that are attached through the
FCP device with bus ID 0.0.3d0c:

lszfcp -D -b 0.0.3d0c
0.0.3d0c/0x500507630300c562/0x4010403200000000 0:0:0:1077035024
0.0.3d0c/0x500507630300c562/0x4010403300000000 0:0:0:1077100560
0.0.3d0c/0x50050763030bc562/0x4010403200000000 0:0:1:1077035024
0.0.3d0c/0x500507630303c562/0x4010403200000000 0:0:2:1077035024

lszfcp

Chapter 62. Commands for Linux on IBM Z 687

mon_fsstatd – Monitor z/VM guest file system size
The mon_fsstatd command is a user space daemon that collects physical file system size data from
Linux on z/VM.

The daemon periodically writes the data as defined records to the z/VM monitor stream using the
monwriter character device driver.

You can start the daemon with the systemd service unit mon_fsstatd. When the daemon is started as a
service unit, it reads the configuration file /etc/sysconfig/mon_fsstatd.

Before you begin:

• Install the s390-tools-statd package, for example with apt-get:

apt-get install s390-tools-statd

• Install the monwriter device driver and set up z/VM to start the collection of monitor sample data. See
Chapter 36, “Writing z/VM monitor records,” on page 415 for information about the setup for and usage
of the monwriter device driver.

• Customize the configuration file /etc/sysconfig/mon_fsstatd if you plan to call it as a systemd
service.

• The Linux instance on which the mon_fsstatd deamon runs requires a z/VM guest virtual machine with
the OPTION APPLMON statement in the CP directory entry.

The following publications provide general information about DCSSs, DIAG x'DC', CP commands, and
APPLDATA:

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

• See z/VM: CP Programming Services, SC24-6272 for information about the DIAG x'DC' instruction.
• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands.
• See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

You can run the mon_fsstatd command in two ways.

• Calling mon_fsstatd as a systemd service. This method reads the configuration file /etc/sysconfig/
mon_fsstatd. This method uses the default configuration with an interval of 60 seconds. If you want
to use a different interval, consider starting mon_fsstatd manually.

• Calling mon_fsstatd manually from a command line.

mon_fsstatd service utility syntax
If you run the mon_fsstatd daemon as a systemd service unit, you configure the daemon through
specifications in a configuration file.

systemctl start

stop

status

restart

reload

enable

disable

mon_fsstatd

Where:

mon_fsstatd

688 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

start
starts monitoring of guest file system size, using the configuration in /etc/sysconfig/
mon_fsstatd.

stop
stops monitoring of guest file system size.

status
shows current status of guest file system size monitoring.

restart
stops and restarts monitoring.

reload
reloads the configuration. Use reload to re-read the configuration file when it was changed.

enable
starts the service automatically at boot time.

disable
disables automatic start of the service at boot time.

Configuration file keywords
FSSTAT_INTERVAL="<n>"

specifies the wanted sampling interval in seconds.

Examples of systemd service unit use
This example configuration file for mon_fsstatd (/etc/sysconfig/mon_fsstatd) sets the sampling
interval to 30 seconds:

FSSTAT_INTERVAL="30"

Examples of mon_fsstatd use:

• To start guest file system size monitoring:

systemctl start mon_fsstatd

• To display the status:

systemctl status mon_fsstatd
| mon_fsstatd.service - Monitor z/VM guest file system size
...
 Active: active (running) since Wed 2018-02-21 14:52:11 CET; 4s ago

• To stop guest file system size monitoring:

systemctl stop mon_fsstatd

• To display the status again and check that monitoring is now stopped:

systemctl status mon_fsstatd
| mon_fsstatd.service - Monitor z/VM guest file system size
...
 Active: inactive (dead)
...

• To restart the daemon and re-read the configuration file:

systemctl restart mon_fsstatd

mon_fsstatd

Chapter 62. Commands for Linux on IBM Z 689

mon_fsstatd command-line syntax
If you call the mon_fsstatd daemon from the command line, you configure the daemon through
command parameters.

mon_fsstatd
 -i 60

 -i  <seconds> -a

Where:
-i or --interval <seconds>

specifies the wanted sampling interval in seconds.
-a or --attach

runs the daemon in the foreground.
-h or --help

displays help information for the command. To view the man page, enter man mon_fsstatd.
-v or --version

displays version information for the command.

Examples of command-line use
• To start mon_fsstatd with default setting:

> mon_fsstatd

• To start mon_fsstatd with a sampling interval of 30 seconds:

> mon_fsstatd -i 30

• To start mon_fsstatd and have it run in the foreground:

> mon_fsstatd -a

• To start mon_fsstatd with a sampling interval of 45 seconds and have it run in the foreground:

> mon_fsstatd -a -i 45

Processing monitor data
The mon_fsstatd daemon writes physical file system size data for Linux on z/VM to the z/VM monitor
stream.

The following is the format of the file system size data that is passed to the z/VM monitor stream. One
sample monitor record is written for each physical file system that is mounted at the time of the sample
interval. The monitor data in each record contains a header that consists of a time stamp, the length of
the data, and an offset. The header is followed by the file system data (as obtained from statvfs). The file
system data fields begin with "fs_".

Table 76. File system size data format

Type Name Description

__u64 time_stamp Time at which the file system data was sampled.

__u16 data_len Length of data that follows the header.

mon_fsstatd

690 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 76. File system size data format (continued)

Type Name Description

__u16 data_offset Offset from start of the header to the start of the file
system data (that is, to the fields that begin with fs_).

__u16 fs_name_len Length of the file system name. The file system name can
be too long to fit in the monitor record. If so, this length
is the portion of the name that is contained in the monitor
record.

char [fs_name_len] fs_name The file system name. If the name is too long to fit in the
monitor record, the name is truncated to the length in the
fs_name_len field.

__u16 fs_dir_len Length of the mount directory name. The mount directory
name can be too long to fit in the monitor record. If so, this
length is the portion of the name that is contained in the
monitor record.

char[fs_dir_len] fs_dir The mount directory name. If the name is too long to fit in
the monitor record, the name is truncated to the length in
the fs_dir_len field.

__u16 fs_type_len Length of the mount type. The mount type can be too long
to fit in the monitor record. If so, this length is the portion
that is contained in the monitor record.

char[fs_type_len] fs_type The mount type (as returned by getmntent). If the type is
too long to fit in the monitor record, the type is truncated to
the length in the fs_type_len field.

__u64 fs_bsize File system block size.

__u64 fs_frsize Fragment size.

__u64 fs_blocks Total data blocks in file system.

__u64 fs_bfree Free blocks in fs.

__u64 fs_bavail Free blocks avail to non-superuser.

__u64 fs_files Total file nodes in file system.

__u64 fs_ffree Free file nodes in fs.

__u64 fs_favail Free file nodes available to non-superuser.

__u64 fs_flag Mount flags.

Use the time_stamp to correlate all file systems that were sampled in a given interval.

Reading the monitor data
All records that are written to the z/VM monitor stream begin with a product identifier.

The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where for records that are written
by mon_fsstatd, these values are:
ppppppp

is a fixed ASCII string LNXAPPL.
ff

is the application number for mon_fsstatd = x'0001'.

mon_fsstatd

Chapter 62. Commands for Linux on IBM Z 691

n
is the record number = x'00'.

vv
is the version number = x'0000'.

rr
is reserved for future use and should be ignored.

mm
is reserved for mon_fsstatd and should be ignored.

Note: Though the mod_level field (mm) of the product ID varies, there is no relationship between any
particular mod_level and file system. The mod_level field should be ignored by the reader of this monitor
data.

There are many tools available to read z/VM monitor data. One such tool is the Linux monreader character
device driver. For more information about monreader, see Chapter 37, “Reading z/VM monitor records,”
on page 419.

mon_fsstatd

692 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

mon_procd – Monitor Linux on z/VM
The mon_procd command is a user space daemon that gathers system summary information and
information about up to 100 concurrent processes on Linux on z/VM.

The daemon writes this data to the z/VM monitor stream by using the monwriter character device driver.
You can start the daemon as a systemd service mon_procd or call it manually. When it is called as a
systemd service unit, it reads the configuration file /etc/sysconfig/mon_procd.

Before you begin:

• Install the s390-tools-statd package, for example with apt-get:

apt-get install s390-tools-statd

• Install the monwriter device driver and set up z/VM to start the collection of monitor sample data. See
Chapter 36, “Writing z/VM monitor records,” on page 415 for information about the setup for and usage
of the monwriter device driver.

• Customize the configuration file /etc/sysconfig/mon_procd if you plan to call it as a systemd
service unit.

• The Linux instance on which the mon_procd deamon runs requires a z/VM guest virtual machine with
the OPTION APPLMON statement in the CP directory entry.

The following publications provide general information about DCSSs, CP commands, and APPLDATA:

• See z/VM: Saved Segments Planning and Administration, SC24-6322 for general information about
DCSSs.

• See z/VM: CP Commands and Utilities Reference, SC24-6268 for information about the CP commands.
• See z/VM: Performance, SC24-6301 for information about monitor APPLDATA.

You can run the mon_procd command in two ways:

• Calling mon_procd as a systemd service. This method reads the configuration file /etc/sysconfig/
mon_procd. This method uses the default configuration with an interval of 60 seconds. If you want to
use a different interval, consider starting mon_procd manually.

• Calling mon_procd manually from a command line.

mon_procd service utility syntax
If you run the mon_procd daemon as a systemd service unit, you configure the daemon through
specifications in a configuration file.

systemctl start

stop

status

restart

reload

enable

disable

mon_procd

Where:
start

starts monitoring of guest process data, using the configuration in /etc/sysconfig/mon_procd.

mon_procd

Chapter 62. Commands for Linux on IBM Z 693

stop
stops monitoring of guest process data.

status
shows current status of guest process data monitoring.

restart
stops and restarts guest process data monitoring.

reload
reloads the configuration. Use reload to re-read the configuration file when it was changed.

enable
starts the service automatically at boot time.

disable
disables automatic start of the service at boot time.

Configuration file keywords
PROC_INTERVAL="<n>"

specifies the desired sampling interval in seconds.
PROC="yes | no"

specifies whether to enable the mon_procd daemon. Set to "yes" to enable the daemon. Anything
other than "yes" will be interpreted as "no".

Examples of systemd service unit use
This example configuration file for mon_procd (/etc/sysconfig/mon_procd) sets the process
monitoring interval to 60 seconds:

PROC_INTERVAL=60

Examples of mon_procd use:

• To start guest process data monitoring:

systemctl start mon_procd

• To display the status:

systemctl status mon_procd
| mon_procd.service - Monitor Linux on z/VM
...
 Active: active (running) since Mon 2018-02-26 12:16:00 CET; 4s ago

• To stop guest process data monitoring:

systemctl stop mon_procd

• To display the status again and check that monitoring is now stopped:

systemctl status mon_procd
| mon_procd.service - Monitor Linux on z/VM
...
 Active: inactive (dead)
...

• To restart the daemon and re-read the configuration file:

systemctl restart mon_procd

mon_procd

694 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

mon_procd command-line syntax
If you call the mon_procd daemon from the command line, you configure the daemon through command
parameters.

mon_procd
 -i 60

 -i  <seconds> -a

Where:
-i or --interval <seconds>

specifies the wanted sampling interval in seconds.
-a or --attach

runs the daemon in the foreground.
-h or --help

displays help information for the command. To view the man page, enter man mon_procd.
-v or --version

displays version information for the command.

Examples of command-line use
• To start mon_procd with default setting:

> mon_procd

• To start mon_procd with a sampling interval of 30 seconds:

> mon_procd -i 30

• To start mon_procd and have it run in the foreground:

> mon_procd -a

• To start mon_procd with a sampling interval of 45 seconds and have it run in the foreground:

> mon_procd -a -i 45

Processing monitor data
The mon_procd daemon writes process data to the z/VM monitor stream.

The data includes system summary information and information of each process for up to 100 processes
currently being managed by an instance of Linux on z/VM to the z/VM monitor stream.

At the time of the sample interval, one sample monitor record is written for system summary data. Then,
one sample monitor record is written for each process for up to 100 processes currently being managed
by the Linux instance. If more than 100 processes exist in a Linux instance at a given time, processes
are sorted by the sum of CPU and memory usage percentage values. Only the top 100 processes' data is
written to the z/VM monitor stream.

The monitor data in each record begins with a header (a time stamp, the length of the data, and the
offset). The data after the header depends on the field "record number" of the 16-bit product ID and can
be summary data or process data. See “Reading the monitor data” on page 698 for details.

mon_procd

Chapter 62. Commands for Linux on IBM Z 695

Table 77. System summary data format

Type Name Description

__u64 time_stamp Time at which the process data was sampled.

__u16 data_len Length of data that follows the header.

__u16 data_offset Offset from start of the header to the start of the process
data.

__u64 uptime Uptime of the Linux instance.

__u32 users Number of users on the Linux instance.

char[6] loadavg_1 Load average over the last 1 minute.

char[6] loadavg_5 Load average over the last 5 minutes.

char[6] loadavg_15 Load average over the last 15 minutes.

__u32 task_total total number of tasks on the Linux instance.

__u32 task_running Number of running tasks.

__u32 task_sleeping Number of sleeping tasks.

__u32 task_stopped Number of stopped tasks.

__u32 task_zombie Number of zombie tasks.

__u32 num_cpus Number of CPUs.

__u16 puser A number that represents (100 * percentage of total CPU
time used for normal processes executing in user mode).

__u16 pnice A number that represents (100 * percentage of total CPU
time used for niced processes executing in user mode).

__u16 psystem A number that represents (100 * percentage of total CPU
time used for processes executing in kernel mode).

__u16 pidle A number that represents (100 * percentage of total CPU
idle time).

__u16 piowait A number that represents (100 * percentage of total CPU
time used for I/O wait).

__u16 pirq A number that represents (100 * percentage of total CPU
time used for interrupts).

__u16 psoftirq A number that represents (100 * percentage of total CPU
time used for softirqs).

__u16 psteal A number that represents (100 * percentage of total CPU
time spent in stealing).

__u64 mem_total Total memory in KB.

__u64 mem_used Used memory in KB.

__u64 mem_free Free memory in KB.

__u64 mem_buffers Memory in buffer cache in KB.

__u64 mem_pgpgin Data read from disk in KB.

__u64 mem_pgpgout Data written to disk in KB

mon_procd

696 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Table 77. System summary data format (continued)

Type Name Description

__u64 swap_total Total swap memory in KB.

__u64 swap_used Used swap memory in KB.

__u64 swap_free Free swap memory in KB.

__u64 swap_cached Cached swap memory in KB.

__u64 swap_pswpin Pages that are swapped in.

__u64 swap_pswpout Pages that are swapped out.

The following is the format of a process information data that is passed to the z/VM monitor stream.

Table 78. Process data format

Type Name Description

__u64 time_stamp Time at which the process data was sampled.

__u16 data_len Length of data that follows the header.

__u16 data_offset Offset from start of the header to the start of the process data.

__u32 pid ID of the process.

__u32 ppid ID of the process parent.

__u32 euid Effective user ID of the process owner.

__u16 tty Device number of the controlling terminal or 0.

__s16 priority Priority of the process

__s16 nice Nice value of the process.

__u32 processor Last used processor.

__u16 pcpu A number that represents (100 * percentage of the elapsed cpu
time that is used by the process since last sampling).

__u16 pmem A number that represents (100 * percentage of physical memory
that is used by the process).

__u64 total_time Total cpu time the process used.

__u64 ctotal_time Total cpu time the process and its dead child processes used.

__u64 size Total virtual memory that is used by the task in KB.

__u64 swap Swapped out portion of the virtual memory in KB.

__u64 resident Non-swapped physical memory that is used by the task in KB.

__u64 trs Physical memory that is devoted to executable code in KB.

__u64 drs Physical memory that is devoted to other than executable code in
KB.

__u64 share Shared memory that is used by the task in KB.

__u64 dt Dirty page count.

__u64 maj_flt Number of major page faults occurred for the process.

char state Status of the process.

mon_procd

Chapter 62. Commands for Linux on IBM Z 697

Table 78. Process data format (continued)

Type Name Description

__u32 flags The process current scheduling flags.

__u16 ruser_len Length of real user name of the process owner and should not be
larger than 64.

char[ruser_len] ruser Real user name of the process owner. If the name is longer than
64, the name is truncated to the length 64.

__u16 euser_len Length of effective user name of the process owner and should not
be larger than 64.

char[euser_len] euser Effective user name of the process owner. If the name is longer
than 64, the name is truncated to the length 64.

__u16 egroup_len Length of effective group name of the process owner and should
not be larger than 64.

char [egroup_len] egroup Effective group name of the process owner. If the name is longer
than 64, the name is truncated to the length 64.

__u16 wchan_len Length of sleeping in function's name and should not be larger than
64.

char[wchan_len] wchan_name Name of sleeping in function or '-'. If the name is longer than 64,
the name is truncated to the length 64.

__u16 cmd_len Length of command name or program name that is used to start
the process and should not be larger than 64.

char[cmd_len] cmd Command or program name that is used to start the process. If the
name is longer than 64, the name is truncated to the length 64.

__u16 cmd_line_len Length of command line that is used to start the process and
should not be larger than 1024.

char
[cmd_line_len]

cmd_line Command line that is used to start the process. If the name is
longer than 1024, the name is truncated to the length 1024.

Use the time_stamp to correlate all process information that were sampled in a given interval.

Reading the monitor data
All records that are written to the z/VM monitor stream begin with a product identifier.

The product ID is a 16-byte structure of the form pppppppffnvvrrmm, where for records that are written
by mon_procd, these values are:
ppppppp

is a fixed ASCII string LNXAPPL.
ff

is the application number for mon_procd = x'0002'.
n

is the record number as follows:

• x'00' indicates summary data.
• x'01' indicates process data.

vv
is the version number = x'0000'.

mon_procd

698 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

rr
is the release number, which can be used to mark different versions of process APPLDATA records.

mm
is reserved for mon_procd and should be ignored.

Note: Though the mod_level field (mm) of the product ID varies, there is no relationship between any
particular mod_level and process. The mod_level field should be ignored by the reader of this monitor
data.

This item uses at most 101 monitor buffer records from the monwriter device driver. A maximum number
of buffers is set when a monwriter module is loaded. Because of this, the maximum number of buffers
must not be less than the sum of buffer records that are used by all monwriter applications.

There are many tools available to read z/VM monitor data. One such tool is the Linux monreader character
device driver. For more information about monreader, see Chapter 37, “Reading z/VM monitor records,”
on page 419.

mon_procd

Chapter 62. Commands for Linux on IBM Z 699

osasnmpd – Start OSA-Express SNMP subagent
Use the osasnmpd command to start the OSA-Express Simple Network Management Protocol (SNMP)
subagent (osasnmpd).

osasnmpd syntax

osasnmpd

 -l  /var/log/osasnmpd.log

 -l  <logfile>

 -L

 -A -f -P  <pidfile>

 -x  /var/agentx/master

 -x  <agentx_socket>

-l or --logfile <logfile>
specifies a file for logging all subagent messages and warnings, including stdout and stderr. If no
path is specified, the log file is created in the current directory. The default log file is /var/log/
osasnmpd.log.

-L or --stderrlog
prints messages and warnings to stdout or stderr.

-A or --append
appends to an existing log file rather than replacing it.

-f or --nofork
prevents forking from the calling shell.

-P or --pidfile <pidfile>
saves the process ID of the subagent in a file <pidfile>. If a path is not specified, the current directory
is used.

-x or --sockaddr <agentx_socket>
specifies the socket to be used for the AgentX connection. The default socket is /var/agentx/
master.

The socket can either be a UNIX domain socket path, or the address of a network interface. If a
network address of the form inet-addr:port is specified, the subagent uses the specified port. If a
net address of the form inet-addr is specified, the subagent uses the default AgentX port, 705. The
AgentX sockets of the snmpd daemon and osasnmpd must match.

-h or --help
displays help information for the command.

-v or --version
displays version information for the command.

Examples

To start the osasnmpd subagent with all default settings:

osasnmpd

osasnmpd

700 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

qetharp - Query and modify ARP data
Use the qetharp command to query and purge address data such as MAC and IP addresses from the ARP
cache of the OSA and HiperSockets hardware.

Before you begin:

• The qetharp command applies only to devices in layer 3 mode (see “Layer 2 and layer 3” on page
236).

• The qetharp command supports IPv6 only for real HiperSockets and z/VM guest LAN HiperSockets.
• For HiperSockets, z/VM guest LAN and VSWITCH interfaces, the qetharp command supports only the
--query option.

qetharp syntax

qetharp
-n

-c
 -6

-q <interface>

-a <interface> -i <ip_address> -m <mac_address>

-d <interface> -i <ip_address>

-p <interface>

Where:
-q or --query

shows the address resolution protocol (ARP) information about the specified network interface.
Depending on the device that the interface was assigned to, this information is obtained from an
OSA feature's ARP cache or a HiperSockets ARP cache.

The default command output shows symbolic host names and includes only numerical addresses for
host names that cannot be resolved. Use the -n option to show numerical addresses instead of host
names.

By default, qetharp omits IPv6 related information. Use the -6 option to include IPv6 information for
HiperSockets.

-n or --numeric
shows numerical addresses instead of trying to resolve the addresses to the symbolic host names.
This option can be used only with the -q option.

-c or --compact
limits the output to numerical addresses only. This option can be used only with the -q option.

-6 or --ipv6
includes IPv6 information for HiperSockets. For real HiperSockets, shows the IPv6 addresses. For
guest LAN HiperSockets, shows the IPv6 to MAC address mappings. This option can be used only with
the -q option.

<interface>
specifies the qeth interface to which the command applies.

-a or --add
adds a static ARP entry to the OSA adapter. Static entries can be deleted with -d.

-d or --delete
deletes a static ARP entry from the OSA adapter. Static entries are created with -a.

qetharp

Chapter 62. Commands for Linux on IBM Z 701

-p or --purge
flushes the ARP cache of the OSA. The cache contains dynamic ARP entries, which the OSA adapter
creates through ARP queries. After flushing the cache, the OSA adapter creates new dynamic entries.
This option works only with OSA devices. qetharp returns immediately.

-i <ip_address> or --ip <ip_address>
specifies the IP address to be added to or removed from the OSA adapter.

-m <mac_address> or --mac <mac_address>
specifies the MAC address to be added to the OSA adapter.

-v or --version
displays version information and exits.

-h or --help
displays usage information and exits. To view the man page, enter man qetharp.

Examples

• Show all ARP entries of the OSA defined as encf500:

qetharp -q encf500

• Show all ARP entries of the HiperSockets interface that is defined as enc8000 including IPv6 entries:

qetharp -6q enc8000

• Show all ARP entries of the OSA defined as encf500 without resolving host names:

qetharp -nq encf500

• Show all ARP entries, including IPv6 entries, of the HiperSockets interface that is defined as enc8000
without resolving host names:

qetharp -n6q enc8000

• Flush the OSA ARP cache for encf500:

qetharp -p encf500

• Add a static entry for encf500 and IP address 1.2.3.4 to the OSA ARP cache, with MAC address
aa:bb:cc:dd:ee:ff:

qetharp -a encf500 -i 1.2.3.4 -m aa:bb:cc:dd:ee:ff

• Delete the static entry for encf500 and IP address 1.2.3.4 from the OSA ARP cache.

qetharp -d encf500 -i 1.2.3.4

qetharp

702 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

qethconf - Configure qeth devices
Use the qethconf command to configure IP address takeover, virtual IP address (VIPA), and proxy ARP
for layer3 qeth devices.

See Chapter 16, “qeth device driver for OSA-Express (QDIO) and HiperSockets,” on page 231 for details
about the following concepts:

• IP address takeover
• VIPA (virtual IP address)
• Proxy ARP

You cannot use this command with the layer2 option.

From the arguments that are specified, qethconf assembles the function command and redirects it to
the corresponding sysfs attributes. You can also use qethconf to list the already defined entries.

qethconf syntax

qethconf ipa add

 del

 <ip_addr>/<mask_bits>

 inv4

 inv6

 <interface>

 list

 vipa

 parp

 add

 del

 <ip_addr> <interface>

 list

 list_all

 list_msg

The qethconf command has these function keywords:
ipa

configures qeth for IP address takeover (IPA).
vipa

configures qeth for virtual IP address (VIPA).
parp or rxip

configures qeth for proxy ARP.

The qethconf command has these action keywords:
add

adds an IP address or address range.
del

deletes an IP address or address range.
inv4

inverts the selection of address ranges for IPv4 address takeover. This inversion makes the list of IP
addresses that was specified with qethconf add and qethconf del an exclusion list.

inv6
inverts the selection of address ranges for IPv6 address takeover. This inversion makes the list of IP
addresses that was specified with qethconf add and qethconf del an exclusion list.

qethconf

Chapter 62. Commands for Linux on IBM Z 703

list
lists existing definitions for specified qeth function.

list_all
lists existing definitions for IPA, VIPA, and proxy ARP.

<ip_addr>
specifies the IP address. Can be specified in one of these formats:

• IP version 4 format, for example, 192.168.10.38
• IP version 6 format, for example, FE80::1:800:23e7:f5db
• 8- or 32-character hexadecimals prefixed with -x, for example, -xc0a80a26

<mask_bits>
specifies the number of bits that are set in the network mask. Enables you to specify an address
range.

Example: A <mask_bits> of 24 corresponds to a network mask of 255.255.255.0.

<interface>
specifies the name of the interface that is associated with the specified address or address range.

list_msg
lists qethconf messages and explanations.

-h or --help
displays help information. To view the man page, enter man qethconf.

-v or --version
displays version information.

Examples

• List existing proxy ARP definitions:

qethconf parp list
parp add 1.2.3.4 encf500

• Assume responsibility for packages that are destined for 1.2.3.5:

qethconf parp add 1.2.3.5 encf500
qethconf: Added 1.2.3.5 to /sys/class/net/encf500/device/rxip/add4.
qethconf: Use "qethconf parp list" to check for the result

Confirm the new proxy ARP definitions:

qethconf parp list
parp add 1.2.3.4 encf500
parp add 1.2.3.5 encf500

• Configure encf500 for IP address takeover for all addresses that start with 192.168.10:

qethconf ipa add 192.168.10.0/24 encf500
qethconf: Added 192.168.10.0/24 to /sys/class/net/encf500/device/ipa_takeover/add4.
qethconf: Use "qethconf ipa list" to check for the result

Display the new IP address takeover definitions:

qethconf ipa list
ipa add 192.168.10.0/24 encf500

• Configure VIPA for ence400:

qethconf

704 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

qethconf vipa add 10.99.3.3 ence400
qethconf: Added 10.99.3.3 to /sys/class/net/ence400/device/vipa/add4.
qethconf: Use "qethconf vipa list" to check for the result

Display the new VIPA definitions:

qethconf vipa list
vipa add 10.99.3.3 ence400

• List all existing IPA, VIPA, and proxy ARP definitions.

qethconf list_all
parp add 1.2.3.4 encf500
parp add 1.2.3.5 encf500
ipa add 192.168.10.0/24 encf500
vipa add 10.99.3.3 ence400

qethconf

Chapter 62. Commands for Linux on IBM Z 705

qethqoat - Query OSA address table
Use the qethqoat command to query the OSA address table and display physical and logical device
information.

qethqoat syntax

qethqoat
 -r

-s
1

 0

 -h

 -v

where:

-r or --raw
writes raw data to stdout.

-s or --scope
defines the scope of the query. The following values are valid:
0

queries the level of the OSA address table.
1

interface (this option is the default).
-h or --help

displays help information. To view the man page, enter man qethqoat.
-v or --version

displays version information.

Examples

To display physical and logical device information for interface encf500, issue:

qethqoat

706 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

qethqoat encf500
PCHID: 0x0310
CHPID: 0xa9
Manufacturer MAC address: 6c:ae:8b:48:0b:68
Configured MAC address: 00:00:00:00:00:00
Data device sub-channel address: 0xf402
CULA: 0x00
Unit address: 0x02
Physical port number: 0
Number of output queues: 1
Number of input queues: 1
Number of active input queues: 0
CHPID Type: OSD
Interface flags: 0x0a000000
OSA Generation: OSA-Express7S
Port speed/mode: 25 Gb/s / full duplex

Port media type: multi mode (SR/SX)
Jumbo frames: yes
Firmware: 0x00000c9a

IPv4 router: no
IPv6 router: no
IPv4 vmac router: no
IPv6 vmac router: no
Connection isolation: not active
Connection isolation VEPA: no
IPv4 assists enabled: 0x00111c77
IPv6 assists enabled: 0x00f15c60
IPv4 outbound checksum enabled: 0x0000003a
IPv6 outbound checksum enabled: 0x00000000
IPv4 inbound checksum enabled: 0x0000003a
IPv6 inbound checksum enabled: 0x00000000

IPv4 Multicast Address: MAC Address:
----------------------- ------------
224.0.0.1 01:00:5e:00:00:01

IPv6 Address: IPA Flags:
------------- ----------
fe80::6cae:8b00:748:b68 0x00000000

IPv6 Multicast Address: MAC Address:
----------------------- ------------
ff01::1 33:33:00:00:00:01
ff02::1 33:33:00:00:00:01
ff02::1:ff48:b68 33:33:ff:48:0b:68
ff02::1:3 33:33:00:01:00:03

This example uses scope 0 to query the supported OAT level and descriptor header types.

qethqoat -s 0 encf500
Supported Scope mask: 0x00000001
Supported Descriptor hdr types: 0x0001070f

This example shows how the binary output from qethqoat can be processed in another tool. Here it is
displayed in a hexdump viewer:

qethqoat

Chapter 62. Commands for Linux on IBM Z 707

qethqoat -r encf500 | hexdump
0000000 0158 0000 0008 0000 0000 0101 0000 0000
0000010 0000 0001 0000 0000 0000 0000 0000 0000
0000020 0004 0050 0001 0000 0000 0000 d7c8 4040
0000030 0120 0094 001a 643b 8a22 0000 0000 0000
0000040 e102 0002 0000 0004 0001 0000 0800 0000
0000050 0100 0480 0000 0766 0000 0000 0000 0000
0000060 0000 0000 0000 0000 0000 0000 0000 0000
0000070 0008 0060 0001 0000 0000 0000 d3c8 4040
0000080 0000 0000 0000 0000 0000 0000 0000 0000
0000090 0000 0000 0000 0000 0000 0000 0011 1c77
00000a0 0021 5c60 0000 001a 0000 0000 0000 001a
00000b0 0000 0000 0000 0000 0000 0000 0000 0000
00000c0 0002 0000 0000 0000 0000 0000 0000 0000
00000d0 0010 0030 0001 0000 0000 0000 c4c8 f4d4
00000e0 0000 0002 0000 0000 0000 0001 0000 0010
00000f0 0001 0001 0000 0000 0000 0000 0000 0000
0000100 e000 0001 0100 5e00 0001 0000 0000 0000
0000110 0010 0030 0001 0000 0000 0000 c4c8 f6d4
0000120 0000 0008 0000 0000 0000 0001 0000 0018
0000130 0001 0001 0000 0000 0000 0000 0000 0000
0000140 ff02 0000 0000 0000 0000 0000 0000 0001
0000150 3333 0000 0001 0000
0000158

qethqoat

708 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

scsi_logging_level - Set and get the SCSI logging level
Use the scsi_logging_level command to create, set, or get the SCSI logging level.

The SCSI logging feature is controlled by a 32-bit value – the SCSI logging level. This value is divided into
3-bit fields that describe the log level of a specific log area. Due to the 3-bit subdivision, setting levels or
interpreting the meaning of current levels of the SCSI logging feature is not trivial. The scsi_logging_level
script helps with both tasks.

scsi_logging_level syntax

scsi_logging_level

-a <level>

-E <level>

-T <level>

-S <level>

-M <level>

--mlqueue <level>

--mlcomplete <level>

-L <level>

--llqueue <level>

--llcomplete <level>

-H <level>

--hlqueue <level>

--hlcomplete <level>

-I <level>

-s

-g

-c

Where:

-a <level> or --all <level>
specifies value for all SCSI_LOG fields.

-E <level> or --error <level>
specifies SCSI_LOG_ERROR.

-T <level> or --timeout <level>
specifies SCSI_LOG_TIMEOUT.

-S <level> or --scan <level>
specifies SCSI_LOG_SCAN.

-M <level> or --midlevel <level>
specifies SCSI_LOG_MLQUEUE and SCSI_LOG_MLCOMPLETE.

--mlqueue <level>
specifies SCSI_LOG_MLQUEUE.

--mlcomplete <level>
specifies SCSI_LOG_MLCOMPLETE.

-L <level> or --lowlevel <level>
specifies SCSI_LOG_LLQUEUE and SCSI_LOG_LLCOMPLETE.

scsi_logging_level

Chapter 62. Commands for Linux on IBM Z 709

--llqueue <level>
specifies SCSI_LOG_LLQUEUE.

--llcomplete <level>
specifies SCSI_LOG_LLCOMPLETE.

-H <level> or --highlevel <level>
specifies SCSI_LOG_HLQUEUE and SCSI_LOG_HLCOMPLETE.

--hlqueue <level>
specifies SCSI_LOG_HLQUEUE.

--hlcomplete <level>
specifies SCSI_LOG_HLCOMPLETE.

-I <level> or --ioctl <level>
specifies SCSI_LOG_IOCTL.

-s or --set
creates and sets the logging level as specified on the command line.

-g or --get
gets the current logging level.

-c or --create
creates the logging level as specified on the command line.

-v or --version
displays version information.

-h or --help
displays help text.

You can specify several SCSI_LOG fields by using several options. When multiple options specify the
same SCSI_LOG field, the most specific option has precedence.

Examples

• This command displays the logging word of the SCSI logging feature and each logging level.

scsi_logging_level -g
Current scsi logging level:
dev.scsi.logging_level = 0
SCSI_LOG_ERROR=0
SCSI_LOG_TIMEOUT=0
SCSI_LOG_SCAN=0
SCSI_LOG_MLQUEUE=0
SCSI_LOG_MLCOMPLETE=0
SCSI_LOG_LLQUEUE=0
SCSI_LOG_LLCOMPLETE=0
SCSI_LOG_HLQUEUE=0
SCSI_LOG_HLCOMPLETE=0
SCSI_LOG_IOCTL=0

• This command sets all logging levels to 3:

scsi_logging_level -s -a 3
New scsi logging level:
dev.scsi.logging_level = 460175067
SCSI_LOG_ERROR=3
SCSI_LOG_TIMEOUT=3
SCSI_LOG_SCAN=3
SCSI_LOG_MLQUEUE=3
SCSI_LOG_MLCOMPLETE=3
SCSI_LOG_LLQUEUE=3
SCSI_LOG_LLCOMPLETE=3
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=3
SCSI_LOG_IOCTL=3

• This command sets SCSI_LOG_HLQUEUE=3, SCSI_LOG_HLCOMPLETE=2 and assigns all other
SCSI_LOG fields the value 1.

scsi_logging_level

710 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

scsi_logging_level --hlqueue 3 --highlevel 2 --all 1 -s
New scsi logging level:
dev.scsi.logging_level = 174363209
SCSI_LOG_ERROR=1
SCSI_LOG_TIMEOUT=1
SCSI_LOG_SCAN=1
SCSI_LOG_MLQUEUE=1
SCSI_LOG_MLCOMPLETE=1
SCSI_LOG_LLQUEUE=1
SCSI_LOG_LLCOMPLETE=1
SCSI_LOG_HLQUEUE=3
SCSI_LOG_HLCOMPLETE=2
SCSI_LOG_IOCTL=1

scsi_logging_level

Chapter 62. Commands for Linux on IBM Z 711

smc_chk - Verify SMC setups
Use the smc_chk command to verify that SMC-D or SMC-R connectivity is set up correctly and is
operable.

The command runs a connectivity test, and displays errors if the test fails.

smc_chk syntax

smc_chk -C <IP_address>
-6

-S

-p <port>

-i <interface>

-d

Where:
-C or --connect <IP_address>

Obtains diagnostic information about the SMC support of a service that runs at a specified IP address.
Use the -p option to specify a port.

-S or --server
Starts a server for manual tests. Use the -p option to specify a port.

-p or --port <port>
Specifies the port to use for tests. When you start a server by using -S, and if the specified port is in
use, the next free port is chosen.

-i or --pnetid <interface>
Prints the PNET ID of the specified interface and exits.

-6 or --ipv6
The IP address that is provided is in IPv6 format.

-d or --debug
Shows debug messages.

-v or --version
Displays version information.

-h or --help
Displays a brief smc_chk usage information.

Examples

• To check whether a z/OS instance with IP address 192.168.37.1 is enabled for SMC using the 3270
console service that is running on port 23:

smc_chk -C 192.168.37.1 -p 23
Test with target IP 192.168.37.1 and port 23
 Live test (SMC-D and SMC-R)
 Success, using SMC-D

• To print the PNET ID of interface encf5f0:

smc_chk -i encf5f0
PNET5

• To start a server on port 45901 (or the next available free port):

smc_chk -S -p 45901

smc_chk

712 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

smcd - Display information about SMC-D link groups and devices
SMC-D connections are based on ISM devices, see Chapter 22, “Internal shared memory device driver,”
on page 335.

smcd linkgroup
show

help

all

<LG-ID>

device
show

help

all

-d -a
stats

show

reset

json

help

seid
show

enable

disable

help

ueid
show

add <eid>

del <eid>

flush

help

info

Where:
Generic options

These options are available for all subcommands.
show

depending on the subcommand, displays information about link groups, devices, statistics, the
system enterprise ID (EID), or user defined EIDs. This is the default option.

-h or --help
displays help information for the specified subcommand. To view the man page, enter man smcr.

linkgroup options
The linkgroup subcommand displays information about SMC-D link groups and links.
all

displays information about all link groups. This is the default.
<LG-ID>

limits the information to the specified link group.
device options

The device subcommand displays information about SMC-D devices.

smcd

Chapter 62. Commands for Linux on IBM Z 713

all
displays information about all SMC-D devices. This is the default.

stats options
The stats subcommand displays statistics for SMC-D.
-d or --details

displays detailed SMC-D statistics.
-a or --absolute

ignores any counter resets and displays statistics beginning with smc module load.
reset

displays the current statistics and resets all SMC-D statistics counters to zero.
json

displays the current statistics in JSON format.
seid options

The seid subcommand controls the system EID.
enable

uses the system EID for your Linux instance.
disable

does not use the system EID for your Linux instance. At least one user defined EID must exists. A
disabled system EID is automatically enabled when the last user defined EID entry is deleted.

ueid options
the ueid subcommand manages user defined EIDs.
add <ueid>

add a user defined EID.

For <ueid>, specify up 32 uppercase alphabetic (A-Z) characters, numerals (0-9), hyphens (-), and
dots (.). The first character must be alphanumeric, and dots must not be consecutive.

del <ueid>
delete the specified user defined EID.

flush
delete all user defined EIDs.

info
displays a summary of the SMC levels supported in the Linux kernel, and the capabilities of the
hardware:
Kernel Capabilities

Shows the Linux kernel’s SMC capabilities independently of any hardware prerequisites.
Hardware Capabilities

Shows the hardware’s capabilities independently of support for it in Linux.
-v or --version

displays version information.

Output columns for linkgroup and device
In the output table, the columns headers have the following meanings:
FID

Function ID of the PCI device.
Type

Type of the underlying PCI device. For SMC-D connections, the type is ISM.
PCI-ID

ID of the PCI device.

smcd

714 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

PCHID
Physical channel ID of the PCI device.

InUse
Shows whether the ISM device is in use. The value can be:
Yes

At least one link group runs on the ISM device.
No

No link group runs on the ISM device.
#LGs

Number of link groups on the device.
PNET-ID

PNET ID of the device. A leading asterisk (*) means that the PNET ID is set by the user. For example,
"*NET1".

Output of stats
For the output of the stats sub-command, see “Obtaining statistics for SMC connections” on page 327.

Examples

• To display all SMC-D devices, issue:

smcd device
FID Type PCI-ID PCHID InUse #LGs PNET-ID
02e1 ISM 0002:00:00.0 07c2 No 0 NET1

The same output results with the command: smcd device show all.
• To show SMC-D statistics:

smcd stats

• To show detailed SMC-D statistics and reset SMC-D statistics counters:

smcd -d stats reset

• To ignore any counter resets and show detailed SMC-D statistics since module load in JSON format:

smcd -da stats json

• To show all user defined EIDs.

smcd ueid
BUILDING-19
BUILDING-04

• To show the system EID.

smcd seid IBM-SYSZ-ISMSEID000000002E488561 [enabled]

• To disable the system EID.

smcd seid disable

• To display a summary of SMC capabilities, issue:

smcd

Chapter 62. Commands for Linux on IBM Z 715

smcd info
 Kernel Capabilities
 SMC Version: 2.0
 SMC Hostname: myHost
 SMC-D Features: v1 v2
 SMC-R Features: v1

 Hardware Capabilities
 SEID: IBM-SYSZ-ISMSEID00000000XYZ
 ISM: v1 v2
 RoCE: n/a

The example shows that SMC-D version 1 and SMC-D version 2 could be used, as the kernel and
ISM supports both versions. However, SMC-R would not be available: While the kernel supports it, the
hardware is missing.

smcd

716 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

smcr - Display information about SMC-R
SMC-R connections are based on RoCE devices, see Chapter 21, “RDMA over Converged Ethernet,” on
page 331.

smcd linkgroup
show

help

all

<LG-ID>

device
show

help

all

-d -a
stats

show

reset

json

help

seid
show

enable

disable

help

ueid
show

add <eid>

del <eid>

flush

help

info

Where:
Generic options

These options are available for all subcommands.
show

depending on the subcommand, displays information about link groups, devices, statistics, or user
defined enterprise IDs (EIDs). This is the default option.

-h or --help
displays help information for the specified subcommand. To view the man page, enter man smcd.

These options have the same meaning for all applicable subcommands.
-d or --details

displays detailed information about SMC-R link groups, devices, or statistics.
-dd or --ddetails

displays more details about SMC-R link groups or devices.
linkgroup options

The linkgroup subcommand displays information about SMC-R link groups and links.

smcr

Chapter 62. Commands for Linux on IBM Z 717

link-show
displays information about links. The default is information about link groups.

all
displays information about all link groups.

<LG-ID>
limits the displayed information to the link group with the specified ID. Combined with the link-
show option, information is narrowed to links for the specified link group.

device options
The device subcommand displays information about SMC-R devices.
all

displays information about all SMC-R devices. This is the default.
ibdev <dev>

limits the command output to the device port with the specified RoCE device name.
netdev <dev>

limits the command output to the device with the specified network device name.
stats options

The stats subcommand displays statistics for SMC-R.
-a or --absolute

ignores any counter resets and displays statistics beginning with smc module load.
reset

displays the current statistics and resets all SMC-R statistics counters to zero.
json

displays the current statistics in JSON format.
ueid options

The ueid subcommand manages user defined EIDs.
add <ueid>

add a user defined EID.

For <ueid>, specify up 32 uppercase alphabetic characters (A-Z), numerals (0-9), hyphens (-), and
dots (.). The first character must be alphanumeric, and dots must not be consecutive.

del <ueid>
delete the specified user defined EID.

flush
delete all user defined EIDs.

info
displays a summary of the SMC levels supported in the Linux kernel, and the capabilities of the
hardware:
Kernel Capabilities

Shows the Linux kernel’s SMC capabilities independently of any hardware prerequisites.
Hardware Capabilities

Shows the hardware’s capabilities independently of support for it in Linux.
-v or --version

displays version information.

Output columns for linkgroup and device
In the output tables for smcr linkgroup and smcr device, the columns headers have the following
meanings:

Net-Dev
Network device name.

smcr

718 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IB-Dev
RoCE (InfiniBand) device name.

IB-P
InfiniBand port of the RoCE device. The port count starts with 1. Consequently, devices where each
port is represented as a separate device indicate the port as the first port for all ports.

IB-State
State of the RoCE device port. The state can be INACTIVE or ACTIVE.

Type
Type of the underlying PCI device. For SMC-R, the type can be:

• RoCE_Express
• RoCE_Express 2

Crit
Show whether the device is critical, that is, without a failover possibility. The value can be:
Yes

At least one link group runs on the device with state "SINGLE" or locally "ASYMMETRIC", which
means that one or more link groups lack a failover device.

No
No link group running on the device with state "SINGLE" or locally "ASYMMETRIC", which means
that the link group or groups all have a fallback device.

FID
Function ID of the PCI device.

PCI-ID
ID of the PCI device.

PCHID
Physical channel ID of the PCI device.

#Links
Number of links on the device.

PNET-ID
PNET ID of the device. A leading asterisk (*) means that the PNET ID is set by the user. For example,
"*NET1".

Output of stats
For the output of the stats sub-command, see “Obtaining statistics for SMC connections” on page 327.

Examples

• To display all SMC-R link groups, issue:

smcr linkgroup show all
LG-ID LG-Role LG-Type VLAN #Conns PNET-ID
00000100 CLNT SYM 0 1 NET1

• To display all SMC-R links, issue:

smcr linkgroup link-show all
LG-ID LG-Role LG-Type Net-Dev Link-State #Conns
00000100 CLNT SYM ens281 LINK_ACTIVE 1
00000100 CLNT SYM enP1s282 LINK_ACTIVE 0

• To display SMC-R devices, issue:

smcr

Chapter 62. Commands for Linux on IBM Z 719

smcr device show all
Net-Dev IB-Dev IB-P IB-State Type Crit #Links PNET-ID
ens281 mlx4_0 1 ACTIVE RoCE_Express No 1 NET1
ens281d1 mlx4_0 2 INACTIVE RoCE_Express No 1 NET2

• To limit the output to device ens281, issue:

smcr device show netdev ens281
Net-Dev IB-Dev IB-P IB-State Type Crit #Links PNET-ID
ens281 mlx4_0 1 ACTIVE RoCE_Express No 1 NET1

• To show SMC-R statistics:

smcr stats

• To show detailed SMC-R statistics and reset SMC-R statistics counters:

smcr -d stats reset

• To ignore any counter resets and show detailed SMC-R statistics since module load in JSON format:

smcr -da stats json

• To add a user defined EID, GROUP-1.5.

smcr ueid add GROUP-1.5

• To show all user defined EIDs.

smcr ueid
ASSEMBLY5
GROUP-1.5
GROUP-7

smcr

720 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

smc_pnet - Create network mapping table
Use the smc_pnet command to map a RoCE adapter port to a standard Ethernet interface.

The SMC protocol requires grouping of standard Ethernet and RoCE networks or ISM devices. Such groups
are called physical networks (PNETs). The mapping is configured within a table called PNET table. Within
the same Converged Ethernet fabric, any available Ethernet interface can be combined with an available
RDMA-capable network interface card (RNIC) or a DMA-capable ISM device.

Note: The mapping of a RoCE adapter port or ISM device to a standard Ethernet interface can be defined
in the IOCDS or it can be defined as an entry in a PNET table. Only use the smc_pnet command if the
IOCDS does not contain the required PNET IDs. IOCDS specifications override PNET table entries that are
created with smc_pnet.

smc_pnet syntax
smc_pnet

-a <PNET_ID> -I <Ethernet_IF>

-I <Ethernet_IF>

-D <device>
-P 1

-P <IB_port>

-d

-s

 <PNET_ID>

-f

Enter smc_pnet without parameters to display all entries in the PNET table.

-a <PNET_ID> or --add <PNET_ID>
creates a new entry in the PNET table and allocates the specified ID, if it does not already exist. Only
one entry can be defined for a specific Ethernet interface and a specific Infiniband device port or ISM
device. A PNET ID consists of up to 16 alphanumeric uppercase characters without blanks.

-I <Ethernet_IF> or --interface <Ethernet_IF>
specifies the name of the Ethernet interface for a new PNET.

-D <IB_device> or --ibdevice <IB_device>
specifies the name of the Infiniband device or ISM device for a new PNET.

-P <IB_port> or --ibport <IB_port>
Optional: specifies the port number of the Infiniband device port. Valid values are 1 or 2. The default
value is 1.

-s <PNET_ID> or --show <PNET_ID>
displays the PNET table entry with the specified ID.

-d <PNET_ID> or --delete <PNET_ID>
deletes the PNET table entry with the specified ID.

-f or --flush
removes all entries from the PNET table.

-h or --help
displays help information for the command.

-v or --version
displays the version number of smc_pnet.

smc_pnet

Chapter 62. Commands for Linux on IBM Z 721

Examples

• To create a PNET with ID ABC for the Ethernet interface names eth0 and bond0, and add Infiniband
device with ID 0001:00:0.0 on port number 2 and ISM device with ID 0004:00:00.0 on port 1:

smc_pnet −a ABC −I eth0
smc_pnet −a ABC −I bond0
smc_pnet −a ABC −D 0001:00:00:00.0 −P 2
smc_pnet −a ABC −D 0004:00:00:00.0

• To show all PNET entries:

smc_pnet
ABC eth0 n/a 255
ABC bond0 n/a 255
ABC n/a 0001:00:00.0 2
ABC n/a 0004:00:00.0 1

• To define PNET ID XYZ for the Ethernet interface name vlan0201 and the InfiniBand device ID
0001:00:00.0 on port 1:

smc_pnet −a XYZ −I vlan0201 −D 0001:00:00.0 −P 1

• To show all entries for PNET ID XYZ:

smc_pnet −s XYZ
XYZ vlan0201 n/a 255
XYZ n/a 0001:00:00.0 1

• To delete a PNET table entry with PNET ID ABC:

smc_pnet -d ABC

• To delete all entries in the PNET table:

smc_pnet -f

For command return codes, see the man page.

smc_rnics - list RoCE Express PCI functions and control their
online state

Use smc_rnics to list RoCE Express PCI functions and to set these PCI functions online or offline.

Setting a PCI function offline on Linux in LPAR mode or in a DPM partition also deconfigures it in the
partition.

Syntax

smc_rnics syntax
smc_rnics

-a -r -I

-e <fid>

-d <fid>

where:
-a or --all

lists all PCI functions, regardless of their online state. By default, only online PCI functions are listed.

smc_rnics

722 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-r or --rawids
displays the type as raw vendor and device IDs.

-I or --IB-dev
lists the PCI functions with their RDMA properties. Because RDMA is based on the InfiniBand (IB)
communications standard, this parameter and output table columns with RDMA information use IB
terminology. The default list shows the network device properties.

-e or --enable <fid>
sets the specified PCI function online. In the command, <fid> is the function ID in hexadecimal
notation. Leading zeroes can be omitted.

-d or --disable <fid>
sets the specified PCI function offline. In the command, <fid> is the function ID in hexadecimal
notation. Leading zeroes can be omitted.

-h or --help
displays help information for the smc_rnics command. To view the man page, issue man
smc_rnics.

-v or --version
displays the version of the smc_rnics command.

Examples

• This example lists the online PCI functions.

smc_rnics
 FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev

 8ca 1 0008:00:00.0 01c8 RoCE_Express2 0 NET25 eno8
 8ea 1 0009:00:00.0 01c8 RoCE_Express2 1 NET26 eno9

• This example lists online and offline PCI functions.

smc_rnics -a
 FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev

 50a 0
 8ca 1 0008:00:00.0 01c8 RoCE_Express2 0 NET25 eno8
 8ea 1 0009:00:00.0 01c8 RoCE_Express2 1 NET26 eno9

• This example sets the PCI function with FID 0x050a online.

smc_rnics -e 50a

• This example lists the online PCI functions with their RDMA properties.

smc_rnics -I
 FID Power PCI_ID PCHID Type IPrt PNET_ID IB-Dev

 50a 1 000a:00:00.0 01c8 RoCE_Express2 1 NET26 mlx5_0
 8ca 1 0008:00:00.0 01c8 RoCE_Express2 1 NET25 mlx5_1
 8ea 1 0009:00:00.0 01c8 RoCE_Express2 1 NET26 mlx5_2

smc_rnics

Chapter 62. Commands for Linux on IBM Z 723

smc_run - Run a TCP socket program with the SMC protocol using a
preloaded library

Use the smc_run command to start a TCP socket program that uses SMC as the networking protocol.

smc_run syntax
smc_run

 -d -r <size> -t <size>

<program> <program parameters>

Where:

smc_run <program> <program_parameters>
Starts the specified TCP socket program with the specified parameters, using the SMC protocol.

-d
Optional: Display diagnostic messages while the program is running.

-h
displays help information for the command.

-r <size>
requests a receive buffer with a specific size. Specify the size in bytes, use a suffix (k or K) for
kilobytes, or use a suffix (m or M) for megabytes.

-t <size>
requests a transmit buffer with a specific size. Specify the size in bytes, use a suffix (k or K) for
kilobytes, or use a suffix (m or M) for megabytes.

-v
displays the version of the smc_run command.

Examples

• To start a program called iperf3 with parameters "-s -p 12345":

smc_run iperf3 -s -p 12345

Server listening on 12345

...

• To start a program called iperf3 with parameters "-s -p 12345" and diagnostic messages:

smc_run -d iperf3 -s -p 12345

• To start a program called iperf3 with parameters "-s -p 12345", and with a request for a receive buffer
of 16 KB and a transmit buffer of 512 KB:

smc_run -r 16384 -t 512k iperf3 -s -p 12345

For command return codes, see the man page.

smc_run

724 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

smcss - Display information about the AF_SMC sockets and link
groups

Use the smcss command to display information about the AF_SMC sockets and link groups.

smcss syntax
smcss

 -a -d -D -R -l -w

Entering smcss without any parameters displays a list of connecting, closing, or connected SMC sockets.

-a or --all
lists all SMC sockets: listening, opening, closing, and connected.

-d or --debug
displays debug information, such as the shutdown state.

-D or --smcd
lists SMC-D sockets only. Displays additional SMC-D specific information.

-R or --smcr
lists SMC-R sockets only. Displays additional SMC-R specific information.

-l or --listening
lists listening sockets only. These are omitted in the default listing.

-w or --wide
prevents truncation of IP addresses.

-h or --help
displays help information for the command.

-v or --version
displays the version number of smcss.

Meaning of the output fields

Entry Values and meaning

State INIT
The SMC socket is being initialized. It is not connected nor listening yet.

CLOSED
The SMC socket is closed. It is not connected nor listening anymore.

LISTEN
The SMC socket is a listening socket, waiting for incoming connection
requests.

ACTIVE
The SMC socket has an established connection. In this state, the TCP
connection is fully established, rendezvous processing has been completed,
and SMC peers can exchange data via RDMA.

PEERCLW1
No further data will be sent to the peer.

PEERCLW2
No further data will be sent to or received from the peer.

APPLCLW1
No further data will be received from the peer.

smcss

Chapter 62. Commands for Linux on IBM Z 725

Entry Values and meaning

APPLCLW2
No further data will be received from or sent to the peer.

APPLFINCLW
The peer has closed the socket.

PEERFINCLW
The socket is closed locally.

PEERABORTW
The socket was abnormally closed locally.

PROCESSABORT
The peer has closed the socket abnormally.

Inode denotes the inode of the SMC socket.

UID denotes the unique ID of the SMC socket.

Local Address denotes address and port number of the local end of the SMC socket. Trailing
dots indicate a truncated address. Use the -w option to display full addresses.

Peer Address denotes address and port number of the remote end of the socket.

Intf denotes that if the socket is explicitly bound with setsockopt option
SO_BINDTODEVICE, Intf shows the interface number of the Ethernet device to
which the socket is bound.

Mode can have the following values:
SMCD

The SMC socket uses SMC-D for data exchange.
SMCR

The SMC socket uses SMC-R for data exchange.
TCP

An SMC connection could not be established. The SMC socket uses the TCP
protocol for data exchange.

ShutD (shutdown) can take the following values:
<->

The SMC socket has not been shut down.
R->

The SMC socket is shut down one-way and cannot receive data.
<-W

The SMC socket is shut down one-way and cannot send data.
R-W

The SMC socket is shut down and cannot receive or send data.

Token is a unique ID of the SMC socket connection.

Sndbuf denotes the size of the to-be-sent window of the SMC socket connection.

Rcvbuf denotes the size of the receiving window of the SMC socket connection (filled by
peer).

Peerbuf denotes the size of the peer receiving window of the SMC socket connection (to
fill during RDMA-transfer).

rxprod-Cursor Describes the current cursor location of the "Rcvbuf" for data to be received
from the peer.

smcss

726 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Entry Values and meaning

rxcons-Cursor Describes the current cursor location of the "Peerbuf" for data sent to peer and
confirmed by the peer.

rxFlags SMC socket connection flags set by and received from the peer.

txprod-Cursor Describes the current cursor location of the "Peerbuf" for data sent to peer.

txcons-Cursor Describes the current cursor location of the "Rcvbuf" for data received from the
peer and confirmed to the peer.

txFlags SMC socket connection flags set locally and sent to the peer.

txprep-Cursor Describes the current cursor location of the "Sndbuf" for data to be sent. The
data is to be moved to the "Peerbuf" by using RDMA-write.

txsent-Cursor Describes the current cursor location of the "Sndbuf" for data sent. The data was
moved to the "Peerbuf" by using RDMA-write.

txfin-Cursor Describes the current cursor location of the "Sndbuf" for data sent and send
completion confirmed. The data was moved to the "Peerbuf" by using RDMA-
write and completion was confirmed.

Role "Role" can take the following values:
CLNT

The link group of the SMC socket is used for client connections.
SERV

The link group of the SMC socket is used for server connections.

IB-Device Name of the RoCE device used by the link group to which the SMC socket
belongs.

Port Port of the RoCE device used by the link group to which the SMC socket belongs.

Linkid unique link ID of the link within the link group to which the SMC socket belongs.

GID Group identifier of the RoCE port used by the link group to which the SMC socket
belongs.

Peer-GID GID of the foreign RoCE port used by the link group to which the SMC socket
belongs.

Examples
• To display information about all SMC sockets on the server:

[root@myserver]# smcss -a
State UID Inode Local Address Peer Address Intf Mode
INIT 00000 0000000
ACTIVE 00000 0060177 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40812 0000 SMCD
ACTIVE 00000 0060173 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40804 0000 SMCD
LISTEN 00000 0059058 :::6668

• To list listening sockets on the server:

[root@myserver]# smcss -l
State UID Inode Local Address Peer Address Intf Mode
LISTEN 00000 0059058 :::6668

• To display debug information about all SMC sockets on the server:

smcss

Chapter 62. Commands for Linux on IBM Z 727

[root@myserver]# smcss -d
State UID Inode Local Address Peer Address Intf Mode Shutd Token
ACTIVE 00000 0060177 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40812 0000 SMCD <-> 00...
ACTIVE 00000 0060173 ::ffff:10.100.80..:6668 ::ffff:10.100.8..:40804 0000 SMCD <-> 00...
...

For command return codes, see the man page.

smcss

728 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

tape390_crypt - Manage tape encryption
Use the tape390_crypt command to enable and disable tape encryption for a channel attached tape
device. You can also specify key encrypting keys (KEK) by using labels or hashes.

For 3592 tape devices, it is possible to write data in an encrypted format. The encryption keys are stored
on an encryption key manager (EKM) server, which can run on any machine with TCP/IP and Java support.
The EKM communicates with the tape drive over the tape control unit by using TCP/IP. The control unit
acts as a proxy and forwards the traffic between the tape drive and the EKM. This type of setup is called
out-of-band control-unit based encryption.

The EKM creates a data key that encrypts data. The data key itself is encrypted with KEKs and is stored in
so called external encrypted data keys (EEDKs) on the tape medium.

You can store up to two EEDKs on the tape medium. With two EEDKs, one can contain a locally available
KEK and the other can contain the public KEK of the location or company to where the tape is to be
transferred. Then, the tape medium can be read in both locations.

When the tape device is mounted, the tape drive sends the EEDKs to the EKM. The EKM tries to unwrap
one of the two EEDKs and sends back the extracted data key to the tape drive.

Linux can address KEKs by specifying either hashes or labels. Hashes and labels are stored in the EEDKs.

Note: If a tape is encrypted, it cannot be used for IPL.

Before you begin:

To use tape encryption, you need:

• A 3592 crypto-enabled tape device and control unit that is configured as system-managed encryption.
• A crypto-enabled 3590 channel-attached tape device driver.
• A key manager. See Encryption Key Manager Component for the Java(TM) Platform Introduction,

Planning, and User's Guide, GA76-0418 for more information.

tape390_crypt syntax

tape390_crypt -q

-e on

off

Keys

<node>

Keys

1
-k <value>

<char>label

<char>hash

-d :

-d <char> -f

Notes:
1 The -k or --key operand can be specified maximally twice.

where:
-q or --query

displays information about the tape's encryption status. If encryption is active and the medium is
encrypted, additional information about the encryption keys is displayed.

-e or --encryption
sets tape encryption on or off.

tape390_crypt

Chapter 62. Commands for Linux on IBM Z 729

-k or --key
sets tape encryption keys. You can specify the -k option only if the tape medium is loaded and
rewound. While processing the -k option, the tape medium is initialized and all previous data
contained on the tape medium is lost.

You can specify the -k option twice because the tape medium can store two EEDKs. If you specify the
-k option once, two identical EEDKs are stored.

<value>
specifies the key encrypting key (KEK), which can be up to 64 characters long. The keywords
label or hash specify how the KEK in <value> is to be stored on the tape medium. The default
store type is label.

-d or --delimiter
specifies the character that separates the KEK in <value> from the store type (label or hash). The
default delimiter is ":" (colon).
<char>

is a character that separates the KEK in <value> from the store type (label or hash).
-f or --force

specifies that no prompt message is to be issued before writing the KEK information and initializing
the tape medium.

<node>
specifies the device node of the tape device.

-h or --help
displays help text. To view the man page, enter man tape390_crypt.

-v or --version
displays information about the version.

Examples

The following scenarios illustrate the most common use of tape encryption. In all examples /dev/
ntibm0 is used as the tape device.

Querying a tape device before and after encryption is turned on
This example shows a query of tape device /dev/ntibm0. Initially, encryption for this device is off.
Encryption is then turned on, and the status is queried again.

tape390_crypt -q /dev/ntibm0
ENCRYPTION: OFF
MEDIUM: NOT ENCRYPTED

tape390_crypt -e on /dev/ntibm0

tape390_crypt -q /dev/ntibm0
ENCRYPTION: ON
MEDIUM: NOT ENCRYPTED

Then, two keys are set, one in label format and one in hash format. The status is queried and there is now
additional output for the keys.

tape390_crypt

730 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

tape390_crypt -k my_first_key:label -k my_second_key:hash /dev/ntibm0
--->> ATTENTION! <<---
All data on tape /dev/ntibm0 will be lost.
Type "yes" to continue: yes
SUCCESS: key information set.

tape390_crypt -q /dev/ntibm0
ENCRYPTION: ON
MEDIUM: ENCRYPTED
KEY1:
 value: my_first_key
 type: label
 ontape: label
KEY2:
 value: my_second_key
 type: label
 ontape: hash

Using default keys for encryption
1. Load the cartridge. If the cartridge is already loaded:

• Switch off encryption:

tape390_crypt -e off /dev/ntibm0

• Rewind:

mt -f /dev/ntibm0 rewind

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Write data.

Using specific keys for encryption
1. Load the cartridge. If the cartridge is already loaded, rewind:

mt -f /dev/ntibm0 rewind

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Set new keys:

tape390_crpyt -k key1 -k key2 /dev/ntibm0

4. Write data.

Writing unencrypted data
1. Load the cartridge. If the cartridge is already loaded, rewind:

mt -f /dev/ntibm0 rewind

2. If encryption is on, switch off encryption:

tape390_crypt -e off /dev/ntibm0

3. Write data.

Appending new files to an encrypted cartridge
1. Load the cartridge

tape390_crypt

Chapter 62. Commands for Linux on IBM Z 731

2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Position the tape.
4. Write data.

Reading an encrypted tape
1. Load the cartridge
2. Switch encryption on:

tape390_crypt -e on /dev/ntibm0

3. Read data.

tape390_crypt

732 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

tape390_display - Display messages on tape devices and load
tapes

Use the tape390_display command to show messages on the display unit of a physical tape device,
optionally in conjunction with loading a tape.

tape390_display syntax

tape390_display

-l -q

-t standard

-t load

unload

noop

-b

 <message1>

 <message1> <message2>

 -t reload <message1> <message2>

<node>

where:
-l or --load

instructs the tape unit to load the next indexed tape from the automatic tape loader (if installed).
Ignored if no loader is installed or if the loader is not in "system" mode. The loader "system" mode
allows the operating system to handle tape loads.

-t or --type
The possible values have the following meanings:
standard

displays the message or messages until the physical tape device processes the next tape
movement command.

load
displays the message or messages until a tape is loaded; if a tape is already loaded, the message
is ignored.

unload
displays the message or messages while a tape is loaded; if no tape is loaded, the message is
ignored.

reload
displays the first message while a tape is loaded and the second message when the tape is
removed. If no tape is loaded, the first message is ignored and the second message is displayed
immediately. The second message is displayed until the next tape is loaded.

noop
is intended for test purposes only. It accesses the tape device but does not display the message or
messages.

-b or --blink
causes <message1> to be displayed repeatedly for 2 seconds with a half-second pause in between.

<message1>
is the first or only message to be displayed. The message can be up to 8 byte.

<message2>
is a second message to be displayed alternately with the first, at 2-second intervals. The message can
be up to 8 byte.

tape390_display

Chapter 62. Commands for Linux on IBM Z 733

<node>
is a device node of the target tape device

-q or --quiet
suppresses all error messages.

-h or --help
displays help text. To view the man page, enter man tape390_display.

-v or --version
displays information about the version.

Note:

1. Symbols that can be displayed include:
Alphabetic characters:

A through Z (uppercase only) and spaces. Lowercase letters are converted to uppercase.
Numeric characters:

0 1 2 3 4 5 6 7 8 9
Special characters:

@ $ # , . / ' () * & + - = % : _ < > ? ;

The following are included in the 3490 hardware reference but might not display on all devices: | ¢
2. If only one message is defined, it remains displayed until the tape device driver next starts to move or

the message is updated.
3. If the messages contain spaces or shell-sensitive characters, they must be enclosed in quotation

marks.

Examples

The following examples assume that you are using standard devices nodes and not device nodes that are
created by udev:

• Alternately display "BACKUP" and "COMPLETE" at 2-second intervals until device /dev/ntibm0
processes the next tape movement command:

tape390_display BACKUP COMPLETE /dev/ntibm0

• Display the message "REM TAPE" while a tape is in the physical tape device followed by the
message"NEW TAPE" until a new tape is loaded:

tape390_display --type reload "REM TAPE" "NEW TAPE" /dev/ntibm0

• Attempts to unload the tape and load a new tape automatically, the messages are the same as in the
previous example:

tape390_display -l -t reload "REM TAPE" "NEW TAPE" /dev/ntibm0

tape390_display

734 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

tunedasd - Adjust low-level DASD settings
Use the tunedasd command to adjust performance relevant settings and other low-level DASD device
settings.

In particular, you can perform these tasks:

• Query and set a DASD's cache mode
• Display and reset DASD performance statistics

Tip: Use the dasdstat command to display performance statistics. This command includes and
extends the statistics that are available through the tunedasd command.

• Reserve and release DASD
• Break the lock of an online DASD (to learn how to access a boxed DASD that is not yet online, see

“Accessing DASD by force” on page 145)

tunedasd syntax

tunedasd

 -g

 -c  <mode>

 -n  <cylinders>

 -Q

 -S

 -L

 -O

 -R

 -P

 -I  <row>

 -p  <chpid> --path_reset_all

  <node>

Where:
<node>

specifies a device node for the DASD to which the command is to be applied.
-g or --get_cache

gets the current caching mode of the storage controller. This option applies to ECKD only.
-c <mode> or --cache <mode>

Sets the caching mode on the storage controller to <mode>. This option applies to ECKD only.

Today's ECKD devices support the following behaviors:
normal

for normal cache replacement.
bypass

to bypass cache.
inhibit

to inhibit cache.
sequential

for sequential access.

tunedasd

Chapter 62. Commands for Linux on IBM Z 735

prestage
for sequential prestage.

record
for record access.

-n <cylinders> or --no_cyl <cylinders>
specifies the number of cylinders to be cached. This option applies to ECKD only.

-Q or --query_reserve
queries the reserve status of the device. The status can be:
none

the device is not reserved.
implicit

the device is not reserved, but there is a contingent or implicit allegiance to this Linux instance.
other

the device is reserved to another operating system instance.
reserved

the device is reserved to this Linux instance.
For details, see the "Storage Control Reference" of the attached storage server.

This option applies to ECKD only.

-S or --reserve
reserves the device. This option applies to ECKD only.

-L or --release
releases the device. This option applies to ECKD only.

-O or --slock
unconditionally reserves the device. This option applies to ECKD only.

Note: This option is to be used with care as it breaks any existing reserve by another operating
system.

-R or --reset_prof
resets the profile information of the device.

-P or --profile
displays a usage profile of the device.

-I <row> or --prof_item <row>
displays the usage profile item that is specified by <row>. <row> can be one of:
reqs

number of DASD I/O requests.
sects

number of 512-byte sectors.
sizes

histogram of sizes.
total

histogram of I/O times.
totsect

histogram of I/O times per sector.
start

histogram of I/O time until ssch.
irq

histogram of I/O time between ssch and irq.
irqsect

histogram of I/O time between ssch and irq per sector.

tunedasd

736 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

end
histogram of I/O time between irq and end.

queue
number of requests in the DASD internal request queue at enqueueing.

-p or --path_reset <chpid>
resets a channel path <chpid> of a selected device. A channel path might be suspended due to high
IFCC error rates or a High Performance FICON failure. Use this option to resume considering the
channel path for I/O.

--path_reset_all
resets all channel paths of a selected device. The channel paths might be suspended due to high IFCC
error rates or a High Performance FICON failure. Use this option to resume considering all defined
channel paths for I/O.

-v or --version
displays version information.

-h or --help
displays help information. To view the man page, enter man tunedasd.

Examples

• The following sequence of commands first checks the reservation status of a DASD and then reserves it:

tunedasd -Q /dev/dasdzzz
none
tunedasd -S /dev/dasdzzz
Reserving device </dev/dasdzzz>...
Done.
tunedasd -Q /dev/dasdzzz
reserved

• This example first queries the current setting for the cache mode of a DASD with device node /dev/
dasdzzz and then sets it to one cylinder "prestage".

tunedasd -g /dev/dasdzzz
normal (0 cyl)
tunedasd -c prestage -n 2 /dev/dasdzzz
Setting cache mode for device </devdasdzzz>...
Done.
tunedasd -g /dev/dasdzzz
prestage (2 cyl)

• In this example two device nodes are specified. The output is printed for each node in the order in which
the nodes where specified.

tunedasd -g /dev/dasdzzz /dev/dasdzzy
prestage (2 cyl)
normal (0 cyl)

• The following command displays the usage profile of a DASD.

tunedasd

Chapter 62. Commands for Linux on IBM Z 737

tunedasd -P /dev/dasdzzz

19617 dasd I/O requests
with 4841336 sectors(512B each)

 __<4 ___8 __16 __32 __64 _128 _256 _512 __1k __2k __4k __8k _16k _32k _64k 128k
 _256 _512 __1M __2M __4M __8M _16M _32M _64M 128M 256M 512M __1G __2G __4G _>4G
Histogram of sizes (512B secs)
 0 0 441 77 78 87 188 18746 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times (microseconds)
 0 0 0 0 0 0 0 0 235 150 297 18683 241 3 4 4
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O times per sector
 0 0 0 18736 333 278 94 78 97 1 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time till ssch
 19234 40 32 0 2 0 0 3 40 53 128 85 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq
 0 0 0 0 0 0 0 0 387 208 250 18538 223 3 4 4
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between ssch and irq per sector
 0 0 0 18803 326 398 70 19 1 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Histogram of I/O time between irq and end
 18520 735 246 68 43 4 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
of req in chanq at enqueuing (1..32)
 0 19308 123 30 25 130 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

• The following command displays a row of the usage profile of a DASD. The output is on a single line as
indicated by the (cont...) (... cont) in the illustration:

tunedasd -P -I irq /dev/dasdzzz
 0| 0| 0| 0| 0| 0| 0| 0| 503| 271|(cont...)
 (... cont) 267| 18544| 224| 3| 4| 4| 0| 0| 0|(cont...)
 (... cont) 0| 0| 0| 0| 0| 0| 0| 0| 0|(cont...)
 (... cont) 0| 0| 0| 0|

• The following command resets a failed channel path with CHPID 45:

tunedasd -p 45 /dev/dasdc

tunedasd

738 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

vmcp - Send CP commands to the z/VM hypervisor
Use the vmcp command to send control program (CP) commands to the z/VM hypervisor and display the
response from z/VM.

The vmcp command expects the command line as a parameter and returns the response to stdout. Error
messages are written to stderr.

You can issue CP commands through the /dev/vmcp device node (see Chapter 41, “z/VM CP interface
device driver,” on page 445) or with the vmcp command.

vmcp syntax

vmcp

-k

-b 8k

-b <size>

<command>

Where:
-k or --keepcase

preserves the case of the characters in the specified command string. By default, the command string
is converted to uppercase characters.

-b <size> or --buffer=<size>
specifies the buffer size in bytes for the response from z/VM CP. Valid values are from 4096 (or 4k)
up to 1048756 (or 1M). By default, vmcp allocates an 8192 byte (8k) buffer. You can use k and M
to specify kilo- and megabytes. The suffixes are not case sensitive, so k is equivalent to K and m is
equivalent to M.

<command>
specifies the command that you want to send to CP.

-h or --help
displays help information. To view the man page, enter man vmcp.

-v or --version
displays version information.

If the command completes successfully, vmcp returns 0. Otherwise, vmcp returns one of the following
values:

1. CP returned a non-zero response code.
2. The specified buffer was not large enough to hold CP's response. The command was run, but the

response was truncated. You can use the --buffer option to increase the response buffer.
3. Linux reported an error to vmcp. See the error message for details.
4. The options that are passed to vmcp were erroneous. See the error messages for details.

Examples

• To get your user ID issue:

vmcp query userid

• To attach the device 1234 to your guest, issue:

vmcp attach 1234 *

• If you add the following line to /etc/sudoers:

vmcp

Chapter 62. Commands for Linux on IBM Z 739

ALL ALL=NOPASSWD:/sbin/vmcp indicate

every user on the system can run the indicate command by using:

sudo vmcp indicate

• If you need a larger response buffer, use the --buffer option:

vmcp --buffer=128k q 1-ffff

vmcp

740 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

vmur - Work with z/VM spool file queues
Use the vmur command to work with z/VM spool file queues.

The vmur command provides these main functions:
Receive

Read data from the z/VM reader file queue. The command performs the following steps:

• Places the reader queue file to be received at the beginning of the queue.
• Changes the reader queue file attribute to NOHOLD.
• Closes the z/VM reader after the file is received.

The vmur command detects z/VM reader queue files in:

• VMDUMP format as created by CP VMDUMP.
• NETDATA format as created by CMS SENDFILE or TSO XMIT.

Punch or print
Write data to the z/VM punch or printer file queue and transfer it to another user's virtual reader,
optionally on a remote z/VM node. The data is sliced up into 80-byte or 132-byte chunks (called
records) and written to the punch or printer device. If the data length is not an integer multiple of 80
or 132, the last record is padded.

List
Display detailed information about one or all files on the specified spool file queue.

Purge
Remove one or all files on a spool file queue.

Order
Position a file at the beginning of a spool file queue.

Before you begin: To use the receive, punch, and print functions, the vmur device driver must be loaded
and the corresponding unit record devices must be set online.

Serialization
The vmur command provides strict serialization of all its functions other than list, which does not affect
a file queue's contents or sequence. Thus concurrent access to spool file queues is blocked to prevent
unpredictable results or destructive conflicts.

For example, this serialization prevents a process from issuing vmur purge -f while another process is
running vmur receive 1234. However, vmur is not serialized against concurrent CP commands that are
issued through vmcp: If one process is running vmur receive 1234 and another process issues vmcp
purge rdr 1234, then the received file might be incomplete. To avoid such unwanted effects, always
use vmur to work with z/VM spool file queues.

Spooling options
With the vmur command, you can temporarily override the z/VM settings for the CLASS, DEST, FORM, and
DIST spooling options for virtual unit record devices. The vmur command restores the original settings
before it returns control.

For more information about the spooling options, see the z/VM product information. In particular, see the
sections about the z/VM CP SPOOL, QUERY VIRTUAL RDR, QUERY VIRTUAL PUN, and QUERY VIRTUAL
PRT commands in z/VM: CP Commands and Utilities Reference, SC24-6268.

vmur

Chapter 62. Commands for Linux on IBM Z 741

vmur syntax
vmur

receive

 -d /dev/vmrdr-0.0.000c

 -d <  device_node >

 < spoolid >Receive options

punch

 -d /dev/vmpun-0.0.000d

 -d <  device_node >

print

 -d /dev/vmprt-0.0.000e

 -d <  device_node >

Punch and print options

 list

 purge

 -C  <class> --form  <form_name>

 --form  OFF

 -f

 -q rdr

 -q pun

 -q prt

 < spoolid >

 order

 -q rdr

 -q pun

 -q prt

 < spoolid >

Receive options

 -H -O

<outfile>

 -f -t

 -b  <sep>, <pad>

 -c

 -C *

 -C  <class>

Punch and print options

 -C  <class> --dist *

 --dist OFF

 --dist  <dist_code>

 --form  <form_name>

 --form OFF

 --dest  <device>

 --dest ANY

 --dest OFF

  <file> -N <name>
. <type>

 -f -t

 -b  <sep>, <pad>

-r
-u <user>

 -n <  node>

Where these options are the main commands:

vmur

742 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

re or receive
receives a file from the z/VM reader queue.

pun or punch
writes to the z/VM punch queue.

pr or print
writes to the z/VM printer queue.

li or list
lists information about one or all files on a z/VM spool file queue.

pur or purge
purges one or all files from a z/VM spool file queue.

or or order
places a file on a z/VM spool file queue at the beginning of the queue.

Note: The short forms that are given for receive, punch, print, list, purge, and order are the shortest
possible abbreviations. In keeping with z/VM style, you can abbreviate commands by dropping any
number of letters from the end of the full keywords until you reach the short form. For example, vmur re,
vmur rec, or vmur rece are all equivalent.

The remaining specifications are listed alphabetically by switch. Variable specifications that do not require
a switch are listed first.
<file>

specifies a file, in the Linux file system, with data to be punched or printed. If this specification is
omitted, the data is read from standard input.

<outfile>
specifies a file, in the Linux file system, to receive data from the reader spool file. If neither a file name
nor --stdout are specified, the name and type of the spool file to be received are used to build an
output file name of the form <name>.<type>. The name and type are the same as the NAME and TYPE
columns in vmur list output. If the spool file to be received is an unnamed file, an error message is
issued.

Use the --force option to overwrite existing files without a confirmation prompt.

<spoolid>
specifies the spool ID of a file on the z/VM reader, punch, or printer queue. Spool IDs are decimal
numbers in the range 0-9999.

For the list or purge function: omitting the spool ID lists or purges all files in the queue.

-b <sep>,<pad> or --blocked <sep>,<pad>
receives or writes a file in blocked mode, where <sep> specifies the separator and <pad> specifies the
padding character in hexadecimal notation. Example: <sep>

--blocked 0xSS,0xPP

Use this option to use character sets other than IBM037 and ISO-8859-1 for conversion.

• For the receive function: All trailing padding characters are removed from the end of each record
that is read from the virtual reader and the separator character is inserted afterward. The receive
function's output can be piped to iconv by using the appropriate character sets. Example:

vmur rec 7 -b 0x25,0x40 -O | iconv -f EBCDIC-US -t ISO-8859-1 > myfile

• For the punch or print function: The separator is used to identify the line end character of the file to
punch or print. If a line has fewer characters than the record length of the used unit record device,
the residual of the record is filled up with the specified padding byte. If a line exceeds the record
size, an error is printed. Example:

 # iconv test.txt -f ISO-8859-1 -t EBCDIC-US | vmur pun -b 0x25,0x40 -N test

vmur

Chapter 62. Commands for Linux on IBM Z 743

-c or --convert
converts a VMDUMP spool file into a format appropriate for further analysis with crash.

-C <class> or --class <class>
specifies a spool class.

• For the receive function: The file is received only if it matches the specified class.
• For the purge function: Only files with the specified class are purged.
• For the punch or printer function: Sets the spool class for the virtual reader or virtual punch device.

Output files inherit the spool class of the device.

The class is designated by a single alphanumeric character. For receive, it can also be an asterisk (*) to
match all classes. Lowercase alphabetic characters are converted to uppercase.

See also “Spooling options” on page 741.

--dest <device>
sets the destination device for spool files that are created on the virtual punch or printer device. The
value can be ANY, OFF, or it must be a valid device as defined on z/VM.

See also “Spooling options” on page 741.

-d or --device
specifies the device node of the virtual unit record device.

• If omitted in the receive function, /dev/vmrdr-0.0.000c is assumed.
• If omitted in the punch function, /dev/vmpun-0.0.000d is assumed.
• If omitted in the print function, /dev/vmprt-0.0.000e is assumed.

--dist <distcode>
sets the distribution code for spool files that are created on the virtual punch or printer device. The
value can be an asterisk (*), OFF, or it must be a valid distribution code as defined on z/VM.

OFF and * are equivalent. Both specifications reset the distribution code to the value that is set in the
user directory.

See also “Spooling options” on page 741.

-f or --force
suppresses confirmation messages.

• For the receive function: overwrites an existing output file without prompting for a confirmation.
• For the punch or print option: automatically converts the Linux input file name to a valid spool file

name without any error message.
• For the purge function: purges the specified spool files without prompting for a confirmation.

--form <form_name>
sets the form name for spool files that are created on the virtual punch or printer device. The value
can be OFF, to use the system default, or it must be a valid z/VM form name.

See also “Spooling options” on page 741.

-h or --help
displays help information for the command. To view the man page, enter man vmur.

-H or --hold
keeps the spool file to be received in the reader queue. If omitted, the spool file is purged after it is
received.

-n <node> or --node <node>
specifies the node name of the z/VM system to which the data is to be transferred. Remote Spooling
Communications Subsystem (RSCS) must be installed on the z/VM systems and the specified node
must be defined in the RSCS machine's configuration file.

The default node is the local z/VM system. The node option is valid only with the -u option.

vmur

744 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-N <name>.<type> or --name <name>.<type>
specifies a name and, optionally, a type for the z/VM spool file to be created by the punch or print
option. To specify a type after the file name, enter a period followed by the type. For example:

vmur pun -r /boot/parmfile -N myname.mytype

Both the name and the type must comply with z/VM file name rules, for example, they must be 1 - 8
characters long.

If omitted, a spool file name is generated from the Linux input file name, if applicable.

Use the --force option to suppress warning messages about automatically generated file names or
about specified file names that do not adhere to the z/VM file naming rules.

-O or --stdout
writes the reader file content to standard output.

-q or --queue
specifies the z/VM spool file queue to be listed, purged, or ordered. If omitted, the reader file queue is
assumed.

-r or --rdr
transferres a punch or print file to a reader.

-t or --text
converts the encoding between EBCDIC and ASCII according to character sets IBM037 and
ISO-8859-1.

• For the receive function: receives the reader file as text file. That is, it converts EBCDIC to ASCII and
inserts an ASCII line feed character (0x0a) for each input record that is read from the z/VM reader.
Trailing EBCDIC blanks (0x40) in the input records are stripped.

• For the punch or print function: punches or prints the input file as text file. That is, converts ASCII to
EBCDIC and pads each input line with trailing blanks to fill up the record. The record length is 80 for
a punch and 132 for a printer. If an input line length exceeds 80 for punch or 132 for print, an error
message is issued.

The --text and the --blocked attributes are mutually exclusive.
-u <user> or --user <user>

specifies the z/VM user ID to whose reader the data is to be transferred. If omitted, the data is
transferred to your own machine’s reader. The user option is valid only with the -r option.

-v or --version
displays version information.

Examples
These examples illustrate common scenarios for unit record devices.

In all examples the following device nodes are used:

• /dev/vmrdr-0.0.000c as virtual reader.
• /dev/vmpun-0.0.000d as virtual punch.

Besides the vmur device driver and the vmur command, these scenarios require that:

• The vmcp module is loaded.
• The vmcp and vmconvert commands from the s390-tools package are available.

Creating and reading a guest memory dump
You can use the vmur command to read a guest memory dump that was created, for example, with the
vmcp command.

vmur

Chapter 62. Commands for Linux on IBM Z 745

Procedure
1. Produce a memory dump of the z/VM guest virtual machine memory:

vmcp vmdump

Depending on the memory size this command might take some time to complete.
2. List the spool files for the reader to find the spool ID of the dump file, VMDUMP.

In the example, the spool ID of VMDUMP is 463.

vmur li

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
T6360025 0463 V DMP 00020222 001 NONE 06/11 15:07:42 VMDUMP FILE T6360025

3. Read and convert the VMDUMP spool file to a file in the current working directory of the Linux file
system:

vmur rec 463 -c linux_dump

Using FTP to receive and convert a dump file
Use the --convert option with the --stdout option to receive a VMDUMP spool file straight from the
z/VM reader queue, convert it, and send it to another host with FTP.

Procedure
1. Establish an FTP session with the target host and log in.
2. Enter the FTP command binary.
3. Enter the FTP command:

put |"vmur re <spoolid> -c -O" <filename_on_target_host>

Logging and reading the z/VM guest virtual machine console
You can use the vmur command to read a console transcript that was spooled, for example, with the vmcp
command.

Procedure
1. Begin console spooling:

vmcp sp cons start

2. Produce output to the z/VM console.
Use, for example, CP TRACE.

3. Stop console spooling, close the file with the console output, and transfer the file to the reader queue.
In the resulting CP message, the spool ID follows the FILE keyword. In the example, the spool ID is
398:

vmcp sp cons stop close * rdr

RDR FILE 0398 SENT FROM T6360025 CON WAS 0398 RECS 1872 CPY 001 T NOHOLD NOKEEP

4. Read the file with the console output into a file in the current working directory on the Linux file
system:

vmur re -t 398 linux_cons

vmur

746 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Preparing the z/VM reader as an IPL device for Linux
You can use the vmur command to transfer all files for booting Linux to the z/VM reader. You can also
arrange the files such that the reader can be used as an IPL device.

Procedure
1. Send the kernel parameter file, parmfile, to the z/VM punch device and transfer the file to the reader

queue.
The resulting message shows the spool ID of the parameter file.

vmur pun -r /boot/parmfile

Reader file with spoolid 0465 created.

2. Send the kernel image file to the z/VM punch device and transfer the file to the reader queue.
The resulting message shows the spool ID of the kernel image file.

vmur pun -r /boot/vmlinuz -N image

Reader file with spoolid 0466 created.

3. Optional: Check the spool IDs of image and parmfile in the reader queue. In this example, the spool
ID of parmfile is 465 and the spool ID of image is 466.

vmur li

ORIGINID FILE CLASS RECORDS CPY HOLD DATE TIME NAME TYPE DIST
T6360025 0463 V DMP 00020222 001 NONE 06/11 15:07:42 VMDUMP FILE T6360025
T6360025 0465 A PUN 00000002 001 NONE 06/11 15:30:31 parmfile T6360025
T6360025 0466 A PUN 00065200 001 NONE 06/11 15:30:52 image T6360025

4. Move image to the first and parmfile to the second position in the reader queue:

vmur or 465
vmur or 466

5. Configure the z/VM reader as the re-IPL device:

chreipl ccw 0.0.000c

For details about the chreipl command, see “chreipl - Modify the re-IPL configuration” on page 574.
To pass additional options, use the -p option.

6. Boot Linux from the z/VM reader:

reboot

Sending a file to different z/VM guest virtual machines
You can use the vmur command to send files to other z/VM guest virtual machines.

About this task
This scenario describes how to send a file called lnxprofile.exec from the file system of an instance
of Linux on z/VM to other z/VM guest virtual machines.

For example, lnxprofile.exec could contain the content of a PROFILE EXEC file with CP and CMS
commands to customize z/VM guest virtual machines for running Linux.

vmur

Chapter 62. Commands for Linux on IBM Z 747

Procedure
1. Send lnxprofile.exec to two z/VM guest virtual machines: z/VM user ID t2930020 at node

boet2930 and z/VM user ID t6360025 at node boet6360.

vmur pun lnxprofile.exec -t -r -u t2930020 -n boet2930 -N PROFILE
vmur pun lnxprofile.exec -t -r -u t6360025 -n boet6360 -N PROFILE

2. Log on to t2930020 at boet2930, IPL CMS, and issue the CP command:

QUERY RDR ALL

The command output shows the spool ID of PROFILE in the FILE column.
3. Issue the CMS command:

RECEIVE <spoolid> PROFILE EXEC A (REPL

In the command, <spoolid> is the spool ID of PROFILE found in step “2” on page 748.
4. Repeat steps “2” on page 748 and “3” on page 748 for t6360025 at boet6360.

Sending a file to a z/VSE instance
You can use the vmur command to send files to a z/VSE instance.

Procedure
To send lserv.job to user ID vseuser at node vse01sys, issue:

vmur pun lserv.job -t -r -u vseuser -n vse01sys -N LSERV

vmur

748 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zdsfs - Mount a z/OS DASD
Use the zdsfs command to mount z/OS DASDs as a Linux file system.

The zdsfs file system translates the z/OS data sets, which are stored on the DASDs in records of arbitrary
or even variable size, into Linux semantics.

Through the zdsfs file system, applications on Linux can read z/OS physical sequential data sets (PS)
and partitioned data sets (PDS) on the DASD. In the Linux file system, physical sequential data sets are
represented as files. Partitioned data sets are represented as directories that contain the PDS members
as files. Other z/OS data set formats, such as extended format data sets or VSAM data sets, are not
supported. zdsfs is optimized for sequential read access.

Attention:

• Unless you use a z/OSMF REST server to access the DASD, set the DASDs offline in z/OS before
you mount them in Linux, to avoid data inconsistencies.

• Through the zdsfs file system, the whole DASDs are accessible to Linux, but the access is not
controlled by z/OS auditing mechanisms.

To avoid security problems, you might want to dedicate the z/OS DASDs only for providing data
for Linux.

Per default, only the Linux user who mounts the zdsfs file system has access to it. Configure file access
behavior by using the allow_other, default_permissions, umask, uid, and gid options.

Tip: If you want to grant a user group access to the zdsfs file system, mount it with the fuse options
default_permissions, allow_other, and gid.

To unmount file systems that you mounted with zdsfs, you can use umount.

See z/OS DFSMS Using Data Sets, SC26-7410 for more information about z/OS data sets.

Controlling read access using a REST server
You can use a z/OSMF REST server to control access. A configuration file configures access to the REST
server, see “zdsfs configuration file” on page 754.

Using a REST server, the DASD does not have to be offline for Linux to access it. The REST server also
enables authorization checking and audit capabilities.

To authenticate with the REST server from Linux, use a .netrc file. The .netrc file must be in your home
directory and contain an entry for the REST server. Example .netrc file:

machine example.com
login user
password secret

Before you begin:

• The FUSE library must be installed on your system. Ubuntu Server installs this library for you by default.
You can also obtain it from sourceforge at sourceforge.net/projects/fuse.

• The raw-track access mode of the DASD must be enabled.

Make sure that the DASD is set offline when you enable the raw-track access mode.

See “Accessing full ECKD tracks” on page 156 for details.
• The DASD must be online.

Tip: You can use the chccwdev command to enable the raw-track access mode and set the device
online afterward in one step.

zdsfs

Chapter 62. Commands for Linux on IBM Z 749

http://sourceforge.net/projects/fuse

Unless you use a z/OSMF REST server to access the DASD, set the DASD offline in z/OS before you set it
online in Linux.

• You must have the appropriate read permissions for the device node.
• To use a REST server for read access:

– A z/OSMF REST server must be up and running in z/OS.
– A user ID must exist in z/OS that is allowed to access the required data sets. This user's login

credentials must be used for zdsfs.

zdsfs syntax

zdsfs

 <zdsfs-options> <fuse-options>

-l <file-name>

 <node-list>

 <mount-point>

where:
<zdsfs-options>

zdsfs-specific options.
-c <config_file>

provides a configuration file for zdsfs. The default is /etc/zdsfs.conf.
-o ignore_incomplete

represents all complete data sets in the file system, even if there are incomplete data sets.
Incomplete data sets are not represented.

In z/OS, data sets might be distributed over different DASDs. For each incomplete data set, a
warning message is issued to the standard error stream. If there are incomplete data sets and this
option is not specified, the zdsfs command returns with an error.

-o rdw
keeps record descriptor words (RDWs) of data sets that are stored by using the z/OS concept of
variable record lengths.

-o restapi
uses z/OSMF REST services for coordinated read-access to data sets. The user credentials
are read from the .netrc file in the user's home directory, or from the location the NETRC
environment variable points to.

-o restserver=<server_URL>
specifies up to three server URLs to z/OSMF REST services. If more than one server is specified,
the first that responds is used.

-o tracks=<n>
specifies the track buffer size in tracks. The default is 128 tracks.

zdsfs allocates a track buffer of <n>*120 KB for each open file to store and extract the user data.
Increasing the track buffer size might improve your system performance.

-o seekbuffer=<s>
sets the maximum seek history buffer size in bytes. The default is 1,048,576 B.

zdsfs saves offset information about a data set in the seek history buffer to speed up the
performance of a seek operation.

-o check_host_count
checks the host-access open count to ensure that the device is not online to another operating
system instance. The operation is canceled if another operating system instance is accessing the
volume.

zdsfs

750 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<fuse-options>
options for FUSE. The following options are supported by the zdsfs command. To use an option, it
must also be supported by the version of FUSE that is installed.
-d or -o debug

enables debug output (implies -f).
-f

runs the command as a foreground operation.
-o allow_other

allows access to other users.
-o allow_root

allows access to root.
-o default_permissions

enables permission checking by the kernel.
-o max_read=<n>

sets maximum size of read requests.
-o kernel_cache

caches files in the kernel.
-o [no]auto_cache

enables or disables caching based on modification times.
-o umask=<mask>

sets file permissions (octal).
-o uid=<n>

sets the file owner.
-o gid=<n>

sets the file group.
-o max_write=<n>

sets the maximum size of write requests.
-o max_readahead=<n>

sets the maximum readahead value.
-o async_read

performs reads asynchronously (default).
-o sync_read

performs reads synchronously.
<node-list>

one or more device nodes for the DASDs, separated by blanks.
<file-name>

a file that contains a node list.
<mount-point>

the mount point in the Linux file system where you want to mount the z/OS data sets.
-h or --help

displays help information for the command. To view the man page, enter man zdsfs.
-v or --version

displays version information for the command.

File characteristics
There are two ways to handle the z/OS characteristics of a file:

• The file metadata.txt:

The metadata.txt file is in the root directory of the mount point. It contains one row for each file or
directory, where:

zdsfs

Chapter 62. Commands for Linux on IBM Z 751

dsn
specifies

– the name of the file in the form <file-name> for z/OS physical sequential data sets.
– the name of the directory in the form <directory-name>, and the name of a file in that directory in

the form <directory-name>(<file-name>) for z/OS partitioned data sets.

dsorg
specifies the organization of the file. The organization is PO for a directory, and PS for a file.

lrecl
specifies the record length of the file.

recfm
specifies the z/OS record format of the file. Supported record formats are: V, F, U, B, S, A, and M.

Example:

dsn=FOOBAR.TESTF.TXT,recfm=FB,lrecl=80,dsorg=PS
dsn=FOOBAR.TESTVB.TXT,recfm=VB,lrecl=100,dsorg=PS
dsn=FOOBAR.PDSF.DAT,recfm=F,lrecl=80,dsorg=PO
dsn=FOOBAR.PDSF.DAT(TEST1),recfm=F,lrecl=80,dsorg=PS
dsn=FOOBAR.PDSF.DAT(TEST2),recfm=F,lrecl=80,dsorg=PS
dsn=FOOBAR.PDSF.DAT(TEXT3),recfm=F,lrecl=80,dsorg=PS

• Extended attributes:
user.dsorg

specifies the organization of the file.
user.lrecl

specifies the record length of the file.
user.recfm

specifies the z/OS record format of the file.

You can use the following system calls to work with extended attributes:
listxattr

to list the current values of all extended attributes.
getxattr

to read the current value of a particular extended attribute.

You can use these system calls through the getfattr command. For more information, see the man
pages of these commands and of the listxattr and getxattr system calls.

Examples

• To mount the z/OS DASD represented by the file node /dev/dasde and specifying a z/OSMF REST
server for coordinated read-access:

zdsfs -o restapi -o restserver=zos1.server.tld/zosmf /dev/dasde /mnt

• To mount disks with a REST server in place:

zdsfs /dev/disk/by-path/ccw-0.0.edc0 /dev/disk/by-path/ccw-0.0.edc7 /mnt/
Using z/OSMF REST services on https://example.com/zosmf/

The mount process informs you of which REST server is used.
• Enable the raw-track access mode of DASD device 0.0.7000 and set the device online afterward:

chccwdev -a raw_track_access=1 -e 0.0.7000

• Mount the partitioned data set on the DASDs represented by the file nodes /dev/dasde and /dev/
dasdf at /mnt:

zdsfs

752 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zdsfs /dev/dasde /dev/dasdf /mnt

• As user "myuser", mount the partitioned data set on the DASD represented by the file node /dev/
dasde at /home/myuser/mntzos:

– Access the mounted file system exclusively:

zdsfs /dev/dasde /home/myuser/mntzos

– Allow the root user to access the mounted file system:

zdsfs -o allow_root /dev/dasde /home/myuser/mntzos

The ls command does not reflect these permissions. In both cases, it shows:

ls -al /home/myuser/mntzos
total 121284
dr-xr-x--- 2 root root 0 Dec 3 15:54 .
drwx------ 3 myuser myuser 4096 Dec 3 15:51 ..
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN1.DAT
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN2.DAT
-r--r----- 1 root root 2833200 Jun 27 2012 EXPORT.BIN3.DAT
-r--r----- 1 root root 2833200 Feb 14 2013 EXPORT.BIN4.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS1.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS2.DAT
dr-xr-x--- 2 root root 13599360 Aug 9 2012 EXPORT.PDS3.DAT
dr-xr-x--- 2 root root 55247400 Aug 9 2012 EXPORT.PDS4.DAT
-r--r----- 1 root root 981 Dec 3 15:54 metadata.txt

$ ls -al /dev/dasde
brw-rw---- 1 root disk 94, 16 Dec 3 13:58 /dev/dasde

• As root user, mount the partitioned data set on the DASD represented by the file node /dev/dasde
at /mnt on behalf of the user ID "myuser" (UID=1002), and permit the members of the group ID
"zosimport" (GID=1002) file access:

zdsfs /dev/dasde /mnt -o uid=1002,gid=1002,allow_other,default_permissions

The ls command indicates the owner "myuser" and the access right for group "zosimport":

$ ls -al /mnt
total 121284
dr-xr-x--- 2 myuser zosimport 0 Dec 3 14:22 .
drwxr-xr-x 23 root root 4096 Dec 3 13:59 ..
-r--r----- 1 myuser zosimport 981 Dec 3 14:22 metadata.txt
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN1.DAT
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN2.DAT
-r--r----- 1 myuser zosimport 2833200 Feb 14 2013 EXPORT.BIN3.DAT
-r--r----- 1 myuser zosimport 2833200 Jun 27 2012 EXPORT.BIN4.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS1.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS2.DAT
dr-xr-x--- 2 myuser zosimport 55247400 Aug 9 2012 EXPORT.PDS3.DAT
dr-xr-x--- 2 myuser zosimport 13599360 Aug 9 2012 EXPORT.PDS4.DAT

• Unmount the partitioned data set that is mounted at /mnt:

fusermount -u /mnt

• Show the extended attributes of a file, FB.XMP.TXT, on a z/OS DASD that is mounted on /mnt:

getfattr -d /mnt/FB.XMP.TXT

• Show the extended attributes of all files on a z/OS DASD that is mounted on /mnt:

cat /mnt/metadata.txt

zdsfs

Chapter 62. Commands for Linux on IBM Z 753

zdsfs configuration file
The default path to the zdsfs configuration file is /etc/zdsfs.conf. Specify a different configuration file
location with the -c <config_file> option.

The configuration file can contain the following options:
restapi = 0 | 1

Enables (1) or disables (0) the use of z/OSMF REST services. If enabled, a valid REST server must
be specified with the restserver= option, as well as a .netrc file with a valid z/OS user ID and
password.

restserver = <URL>
Specifies the URL of the z/OSMF REST server that is used for coordinated read-access.

For failover scenarios: Optionally, provide up to three additional server addresses. These are tried in
the specified order if one of the servers cannot be reached during mount. If a server is unresponsive
during operation, all specified servers are probed again.

keepalive = <timeout_in_seconds>
Changes the keepalive timer for ENQs. By default the keepalive refreshes the access after 540
seconds (9 minutes). The 9 minutes are chosen to prevent a timeout by z/OS after 10 minutes.

An example of a zdsfs.conf file could look similar to the following:

rest enabled
restapi = 1

rest server
restserver = example.com/zosmf/

backup rest server
restserver=https://example.com/zosmf/

keepalive timeout in seconds (default 540)
keepalive = 540

zdsfs

754 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zhypinfo - obtain information about virtualization layers on IBM Z
Use the zhypinfo command to display information about the virtualization environment of your Linux
instance.

zhypinfo

-j -l -L

Where:

-j or --json
writes all available information including STHYI in JSON format. No character set conversion or
escaping is done.

-l or --layers
prints the number of virtualization layers.

Each virtualization layer that can host multiple guests constitutes a virtualization level. Layers include
the physical hardware and hypervisors.

-L or --levels
prints the number of virtualization levels.

Output table
The command prints a table with the following columns.

#
Index number of the respective layer.

Layer_Type
Type of virtualization layer.

Lvl
Virtualization level, where each layer of category ’HOST’ constitutes a new level.

Categ
Category to which the virtualization layer belongs, virtualization host or guest.

Name
Name of the respective entity.

IFLs
Number of logical IFLs defined for the layer.

CPs
Number of logical CPs defined for the layer.

Total
Sum of logical CPUs in the layer.

Unavailable data is indicated by a dash (-).

Example
• To display information about a Linux instance running as a KVM guest:

zhypinfo

Chapter 62. Commands for Linux on IBM Z 755

[kvmguest]# zhypinfo

Layer_Type Lvl Categ Name IFLs CPs Total
--
3 KVM-guest 1 GUEST zhyp135 10 0 10
2 KVM-hypervisor 1 HOST - 9 0 9
1 LPAR 0 GUEST S38LP40 9 0 9
0 CEC 0 HOST S38 125 4 129

zhypinfo

756 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zipl-editenv - Edit the zipl environment block
Use the zipl-editenv command to display and change the zipl environment block.

Modifications that are made with zipl-editenv are lost after rerunning zipl. Modifications that are
made with the zipl-editenv command do not affect the zipl environment file. Keep the environment
file current to avoid inconsistencies. For more information about the zipl environment file, see “zipl
environment - Variables for the kernel command line” on page 82.

CAUTION: Do not modify the zipl environment block by any other means than the zipl-editenv
command.

zipl-editenv syntax

zipl-editenv

-t /boot

-t <target_dir>

-l

-s <keyword>=<value>

-u <keyword>

-r

Where:
-t <target_dir> or --target <target_dir>

specifies a directory that contains the boot data. The default is -t /boot.
-l or --list

prints a list of all keyword-value pairs in the zipl environment block.
-s <keyword>=<value> or --set <keyword>=<value>

assigns the specified value to the keyword. The value can consist of any printable characters, but
must not contain functions, such as the new-line symbol. If a keyword does not exist it is added.

The keyword must satisfy the following requirements:

• Consist of uppercase letters A - Z, digits 0 = 9, and the "_" (underscore).
• Must not begin with a digit.

The maximum number of keyword-value pairs per boot partition is 512.

-u <keyword> or --unset <keyword>
removes the specified keyword from the zipl environment block.

-r or --reset
removes all keywords from a zipl environment block. All variables on the command line then resolve
to the empty string.

-h or --help
displays help text.

-v or --version
displays information about the version.

Examples

• To list the zipl environment block, issue:

zipl-editenv -l
ROOT=/dev/dasda1
PANIC_TIMEOUT=panic=8

• To change the value of PANIC_TIMEOUT to panic=9, issue:

zipl-editenv

Chapter 62. Commands for Linux on IBM Z 757

zipl-editenv -s PANIC_TIMEOUT=panic=9

Use the --list option to check that the keywords and their values are now as expected:

zipl-editenv -l
ROOT=/dev/dasda1
PANIC_TIMEOUT=panic=9

zipl-editenv

758 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zname - Obtain information about the IBM Z hardware
Use the zname command to display information about the hardware your Linux instance runs on.

zname
-n

-a

-c -i -m -n -u

Where:

-a or --all
prints all available information in the following order: Name, model, capacity, model, manufacturer.

-c or --capacity
prints capacity information.

-i or --cpuid
prints the CPU identifier.

-m or --model
prints model information.

-n or --name
prints the model name. This is the default.

-u or --manufacturer
prints manufacturer information.

Examples
• To print the default information (the name), issue:

zname
IBM z16

• To print all available data, issue:

zname -a
IBM z16 A01 701 3931 IBM

The sample output is for IBM z16, model A01, with a CPU capacity of 701, machine type 3931, and with
IBM as the manufacturer.

zname

Chapter 62. Commands for Linux on IBM Z 759

znetconf - List and configure network devices
Use the znetconf command to list, configure, add, and remove network devices.

The znetconf command:

• Lists potential network devices.
• Lists configured network devices.
• Automatically configures and adds network devices.
• Removes network devices.

For automatic configuration, znetconf first builds a channel command word (CCW) group device from
sensed CCW devices. It then configures any specified option through the sensed network device driver
and sets the new network device online.

During automatic removal, znetconf sets the device offline and removes it.

Attention: Removing all network devices might lead to complete loss of network connectivity.
Unless you can access your Linux instance from a terminal server on z/VM (see How to Set up a
Terminal Server Environment on z/VM, SC34-2596), you might require the HMC or a 3270 terminal
session to restore the connectivity.

Before you begin: The qeth or lcs device drivers must be loaded. If needed, the znetconf command
attempts to load the particular device driver.

znetconf syntax

znetconf

-a

,

< device_bus_id >

-A

 -e <  device_bus_id >

 -o <  attribute >=< value>

 -d <  driver >

-r

,

< device_bus_id >

-R

 -e <  device_bus_id >

 -n

 -u

 -c

Where:
-a or --add

configures the network device with the specified device bus-ID. If you specify only one bus ID, the
command automatically identifies the remaining bus IDs of the group device. You can enter a list of
device bus-IDs that are separated by commas. The znetconf command does not check the validity
of the combination of device bus-IDs.

znetconf

760 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

<device_bus_id>
specifies the device bus-ID of the CCW devices that constitute the network device. If a device bus-
ID begins with "0.0.", you can abbreviate it to the final hexadecimal digits. For example, you can
abbreviate 0.0.f503 to f503.

-A or --add-all
configures all potential network devices. After you run znetconf -A, enter znetconf -c to see
which devices were configured. You can also enter znetconf -u to display devices that were not
configured.

-e or --except
omits the specified devices when configuring all potential network devices or removing all configured
network devices.

-o or --option <attribute>=<value>
configures devices with the specified sysfs option.

-d or --driver <driver name>
configures devices with the specified device driver. Valid values are qeth or lcs.

-n or --non-interactive
answers all confirmation questions with "Yes".

-r or --remove
removes the network device with the specified device bus-ID. You can enter a list of device bus-IDs
that are separated by a comma. You can remove only configured devices as listed by znetconf -c.

-R or --remove-all
removes all configured network devices. After successfully running this command, all devices that are
listed by znetconf -c become potential devices that are listed by znetconf -u.

-u or --unconfigured
lists all network devices that are not yet configured.

-c or --configured
lists all configured network devices.

-h or --help
displays help information for the command. To view the man page, enter man znetconf.

-v or --version
displays version information.

If the command completes successfully, znetconf returns 0. Otherwise, 1 is returned.

Examples

• To list all potential network devices:

znetconf -u
Device IDs Type Card Type CHPID Drv.
--
0.0.f500,0.0.f501,0.0.f502 1731/01 OSA (QDIO) 00 qeth
0.0.f503,0.0.f504,0.0.f505 1731/01 OSA (QDIO) 01 qeth

• To configure device 0.0.f503:

znetconf -a 0.0.f503

or

znetconf -a f503

• To configure the potential network device 0.0.f500 with the layer2 option with the value 0 and the
portno option with the value 1:

znetconf -a f500 -o layer2=0 -o portno=1

znetconf

Chapter 62. Commands for Linux on IBM Z 761

• To list configured network devices:

znetconf -c
Device IDs Type Card Type CHPID Drv. Name State

0.0.f500,0.0.f501,0.0.f502 1731/01 Virt.NIC QDIO 00 qeth encf500 online
0.0.f503,0.0.f504,0.0.f505 1731/01 Virt.NIC QDIO 01 qeth encf503 online
0.0.f5f0,0.0.f5f1,0.0.f5f2 1731/01 OSD_1000 76 qeth encf5f0 online

• To remove network device 0.0.f503:

znetconf -r 0.0.f503

or

znetconf -r f503

• To remove all configured network devices except the devices with bus IDs 0.0.f500 and 0.0.f5f0:

znetconf -R -e 0.0.f500 -e 0.0.f5f0

• To configure all potential network devices except the device with bus ID 0.0.f503:

znetconf -A -e 0.0.f503

znetconf

762 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zpcictl - Manage defective PCIe devices
Use the zpcictl to manage PCIe devices on Linux in LPAR mode and Linux on z/VM. In particular, use
this command to initiate recovery actions and to report defective PCIe devices to the Support Element
(SE).

Note: With the smartmontools package installed, diagnostic data might be collected and sent with the
recovery action. Whether diagnostic data is collected and which data is available depends on the PCIe
device type.

zpcictl syntax

zpcictl --reset-fw

--reset

--deconfigure

--report-error

<function_address>

Where:
--reset-fw

starts a firmware-driven device reset that triggers automatic recovery and reports an error to the
Support Element (SE).

--reset
disruptively resets the device and reports an error to the Support Element (SE). Use this reset option
only if automatic recovery failed or if it did not succeed to restore regular operations of the device and
manual intervention is required.

This reset method includes a controlled shutdown and a subsequent re-enabling of the device. As
a result, higher level interfaces such as network interfaces and block devices are destroyed and
re-created. Manual configuration steps might be required to re-integrate the device, for example, in
bonded interfaces or software RAIDs.

--deconfigure
deconfigures the device to prepare for any repair action.

--report-error
reports the device error to the SE.

<function_address>
the PCI function address of the device, for example, 0000:00:00.0.

-h or --help
displays help information for the command. To view the man page, enter man zpcictl.

-v or --version
displays version information.

Example

• In this example, firmware-driven recovery is triggered for a PCIe device with function address
0000:00:00.0.

zpcictl --reset-fw 0000:00:00.0

• In this example, an error is reported for a PCIe device with slot ID 0000:00:00.0.

zpcictl --report-error 0000:00:00.0

zpcictl

Chapter 62. Commands for Linux on IBM Z 763

zcryptctl - Control access to AP queues and functions
Use the zcryptctl command to control access to AP queues and functions.

For more information about cryptographic device nodes, see “Creating customized device nodes” on page
495.

zcryptctl syntax

zcryptctl list

create

<device_name>

destroy <device_name>

addap

delap

<device_name>

,

<adapter>

adddom

deldom

<device_name>

,

<domain>

addioctl

delioctl

<device_name>

,

<ioctlexp>

config <config_file>

listconfig

Where:
list

lists all zcrypt device nodes.
create <node_name>

creates a new zcrypt device node. The <device_name> is optional and must be unique. If no node
name is provided, the zcrypt device driver creates one with a name of the form: zcrypt_<n>, where
<n> is the next free number. By default no adapter, domain, or IOCTL is allowed on the new device.

By default the device node file is created with permissions 0600 and might need adjustments to be
usable by non-root users.

destroy <device_name>
destroys a zcrypt device. Marks the given zcrypt device as disposable. The device is removed when the
use counter is zero.

addap <device_name> <adapter>
adds a cryptographic adapter to be accessible through this device. The adapter argument is a number
in the range 0 - 255. Specify ALL to enable all adapters.

delap <device_name> <adapter>
deletes the adapter from the specified device. The adapter argument is a number in the range 0 - 255.
Specify ALL to remove all adapters.

zcryptctl

764 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

adddom <device_name> <domain_nr>
adds a domain to be accessible through the specified device. The domain argument is a number in the
range 0 - 255. Specify ALL to enable all domains.

deldom <device_name> <domain_nr>
deletes a domain from the specified device. Specify ALL to delete all domains.

addioctl<device_name> <ioctl_exp>
adds an IOCTL to the functions supported by the specified device. Specify the IOCTL by its name or
the corresponding numeric value in the range 0 - 255. Specify ALL to include all IOCTLs. The IOCTL
macros, to be used as name, and their numbers are listed in arch/s390/include/uapi/asm/
zcrypt.h.

Set IOCTLs according to the functions you want to support. The following table lists the IOCTLs that
are required by the CCA, EP11, and libica library.

Table 79. IOCTLs required by cryptographic libraries

Library Functions Required IOCTLs

CCA Secure key cryptographic
functions on CCA coprocessors.

ZSECSENDCPRB

EP11 Secure key cryptographic
functions on EP11 coprocessors.

ZSENDEP11CPRB

libica Clear key cryptographic
functions.

ICARSAMODEXPO, ICARSACRT, ZSECSENDCPRB

delioctl <device_name> <ioctl_exp>
deletes the specified IOCTL from the functions supported by the specified device. Specify the IOCTL
by its name or the corresponding numeric value in the range 0 - 255. Specify ALL to delete all IOCTLs.

config <config_file>
processes a configuration file.

listconfig
lists the current configuration in a format suitable for the config command.

Tip: Use listconfig to generate a configuration file that can be used as input to the config
command.

Examples

These examples illustrate common uses for zcryptctl.

• To set up a zcrypt device with access to secure key operations on domain 81 of two CCA adapters, 7 and
10.

zcryptctl new zcrypt_0
zcryptctl addap zcrypt_0 7
zcryptctl addap zcrypt_0 10
zcryptctl adddom zcrypt_0 81
zcryptctl addioctl zcrypt_0 ZSECSENDCPRB

You might have to change the access rights to the device before a container can use it.
• To list the currently defined devices and their attributes:

zcryptctl

Chapter 62. Commands for Linux on IBM Z 765

zcryptctl list
zcdn node name: zcrypt_2
 device node: /dev/zcrypt_2
 major:minor: 250:2
 ioctls: ICARSAMODEXPO,ICARSACRT,ZSECSENDCPRB
 adapter: 4,8,9
 domains: 6,11,81
zcdn node name: zcrypt_0
 device node: /dev/zcrypt_0
 major:minor: 250:0
 ioctls: ZSECSENDCPRB
 adapter: 7,10
 domains: 81
zcdn node name: zcrypt_1
 device node: /dev/zcrypt_1
 major:minor: 250:1
 ioctls: ZSECSENDCPRB
 adapter: 6,11
 domains: 11

• To remove an obsolete device.

zcryptctl destroy zcrypt_0

Creating a configuration file
The given configuration file is read line by line and the actions are executed. The syntax is as follows:

• A node=<node_name> line creates a new device node with the given name. The subsequent actions
act on this node until another node= line encountered. For example, to create a device node called
zcdn_node_1:

node = zcdn_node_1

• The aps=<list_of_ap_numbers> action adds allowed adapters to the node configuration. The
adapters must be separated by space, tab, or commas. For example, to add adapters 1,2,5, and 7:

aps = 1, 2, 5, 7

• The doms=<list_of_domain_numbers> action adds allowed domains to the node configuration. The
domains must be separated by space, tab, or commas. For example, to allow domain 6:

doms = 6

• The ioctls=<list_of_ioctl_as_number_or_symbolic_name> adds allowed IOCTLs to the node
configuration. The IOCTLs must be separated by space, tab, or commas. For example, to allow
ZSECSENDCPRB:

ioctls = ZSECSENDCPRB

The IOCTL macros, to be used as name, and their numbers are listed in arch/s390/include/
uapi/asm/zcrypt.h.

The symbol ALL is also recognized for the aps, doms and ioctls actions.

Empty lines are ignored and the number sign (#) marks the rest of the line as a comment. Each action
must fit on one line, multiple lines is not supported. You can use more than one aps, doms, or ioctls line
to customize the same node.

zcryptctl

766 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Example configuration file

##
Sample zcrypt device node configuration
##
node 1 for CCA requests on domain 6
node = zcdn_node_1
aps = 1, 2, 5, 7
doms = 6
ioctls = ZSECSENDCPRB

node 2 for CCA requests on domain 11
node = zcdn_node_2
aps = 1, 2, 5, 7
doms = 11
ioctls = ZSECSENDCPRB

node 3 for EP11 on domain 6 and 11
node = zcdn_node_3
aps = 3, 6, 11
doms = 6, 11
ioctls = ZSENDEP11CPRB

node 4 for clear key on everything
node = zcdn_node_4
aps = ALL
doms = ALL
ioctls = ICARSAMODEXPO, ICARSACRT, ZSECSENDCPRB

node 5 special EP11 on adapter 10, any domain
node = zcdn_node_5
aps = 0x0a
doms = ALL
ioctls = ZSENDEP11CPRB

node 6 special CCA only on adapter 7, domain 81
node = zcdn_node_6
aps = 7
doms = 0x51
ioctls = ZSECSENDCPRB

zcryptctl

Chapter 62. Commands for Linux on IBM Z 767

zcryptstats - Display crypto statistics
Use the zcryptstats command to report cryptographic performance measurement data for
cryptographic devices at specified intervals.

Device node /dev/chsc must exist. Ubuntu Server loads the chsh_sch kernel module during the boot
process and makes the device node /dev/chsc available to you.

zcryptstats syntax

zcryptstats
-i 10

-i <time> -c <no.> -t

-T

-o JSON

TABLE

CSV

-M <mapping> -A

-O

<device_ID>

Where:
-i or --interval <time>

specifies the time interval between reports in seconds. The default is 10 seconds.
-c or --count <no.>

specifies the number of reports to be generated. By default the zcryptstats command keeps
generating reports until it is stopped with Ctrl+C.

-o or --output JSON|TABLE|CSV

displays the statistics in the specified format. By default, a comprehensive report is displayed in a
human readable format. Supported output formats are: JSON, TABLE, or CSV.

With TABLE and CSV, only the totals are displayed, that is, TABLE and CSV formats imply the --only-
totals option.

With JSON or the default display, you can optionally specify one of the --only-totals or -no-
totals options.

-t or --no-totals
omits the totals of all counters of a cryptographic adapter (CARD) or queue device (APQN). This option
cannot be specified together with the --only-totals option or the --output TABLE | CSV
option.

-T or --only-totals
omits the individual counters of a cryptographic adapter or a queue device. This option is implied with
the --output TABLE | CSV option.

-a or --no-apqn
displays only the counters of the cryptographic adapter, but omits the counters of the queue device.
This option is implied for mainframes before the October 2018 upgrade of IBM z14®.

zcryptstats

768 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

-M or --map-type <mapping>
maps unknown cryptographic device types and modes to known types and modes. Use this option
only when new, unknown cryptographic devices are found. You can map unknown devices to known
devices and modes, if the new device reports the same counters as the known device. Specify the
mapping as a comma-separated list of FROM-TYPE:FROM-MODE=TO-TYPE:TO-MODE specifications.
The type and mode values must be specified in decimal notation.

-A or --all
displays all adapter devices and queue devices, not only those devices that are available to the LPAR
in which Linux runs. Using this option, additional cryptographic devices that are available in the CEC
are also monitored. This option cannot be specified together with the --only-online option.

-O or --only-online
displays only online cryptographic adapters and queue devices. This option cannot be specified
together with the --all option.

-V or --verbose
displays additional information messages during processing.

-h or --help
displays help information for the command. To view the man page, enter man zcryptstats.

-v or --version
displays version information for the command.

<device_ID>

List of cryptographic device IDs, separated by blanks, for which statistics are displayed. Device IDs
can either be cryptographic adapter IDs or queue device IDs (<adapter_ID>.<domain_ID>). To filter
all devices according to a dedicated domain, provide ".<domain_ID>". If no IDs are given, all available
devices are displayed.

Examples

• To display statistics for the cryptographic adapter with ID 0x02.

zcryptstats 02

• Display statistics for domain 0x0005 on adapter 0x02 (APQN 02.0005).

zcryptstats 02.0005

• Example of output in default display format:

zcryptstats

Chapter 62. Commands for Linux on IBM Z 769

zcryptstats 06
Linux <version> <system> 16/01/20 s390x
**
TIME: 16/01/20 10:48:34 INTERVAL: 1

DEVICE TYPE TIMESTAMP
--
06 CARD CEX7A (Accelerator) 16/01/20 10:48:34
 COUNTER OPS RATE UTILIZATION AVG.DURATION

 RSA 1024 ME 0 0.00 0.00 % 0.000 usec
 RSA 2048 ME 4149 4148.81 17.46 % 42.074 usec
 RSA 1024 CRT 0 0.00 0.00 % 0.000 usec
 RSA 2048 CRT 4564 4563.79 82.12 % 179.943 usec
 RSA 4096 ME 0 0.00 0.00 % 0.000 usec
 RSA 4096 CTR 0 0.00 0.00 % 0.000 usec

 Total 8713 8712.60 99.58 % 114.292 usec

DEVICE TYPE TIMESTAMP
--
06.0011 APQN CEX7A (Accelerator) 16/01/20 10:48:34

 COUNTER OPS RATE UTILIZATION AVG.DURATION

 RSA 1024 ME 0 0.00 0.00 % 0.000 usec
 RSA 2048 ME 2166 2165.90 10.06 % 46.428 usec
 RSA 1024 CRT 0 0.00 0.00 % 0.000 usec
 RSA 2048 CRT 1302 1301.94 23.31 % 179.071 usec
 RSA 4096 ME 0 0.00 0.00 % 0.000 usec
 RSA 4096 CTR 0 0.00 0.00 % 0.000 usec

 Total 3468 3467.84 33.37 % 96.226 usec

DEVICE TYPE TIMESTAMP
--
06.0023 APQN CEX7A (Accelerator) 16/01/20 10:48:34
...

• Example of the same output in TABLE format:

Linux <version> <system> 16/01/20 s390x
TIMESTAMP DEVICE OPS RATE UTILIZATION AVG.DURATION

16/01/20 10:48:34 06 8713 8712.60 99.58 % 114.292 usec
16/01/20 10:48:34 06.0011 3468 3467.84 33.37 % 96.226 usec
16/01/20 10:48:34 06.0023 3267 3266.85 30.15 % 92.278 usec
16/01/20 10:48:34 06.0024 1978 1977.91 36.06 % 182.325 usec
....

• Example of the same output in CSV format:

TIMESTAMP,DEVICE,OPS,RATE,UTILIZATION,AVG.DURATION
16/01/20 10:48:34,06,8713,8712.60,99.58 %,0.000114292
16/01/20 10:48:34,06.0011,3468,3467.84,33.37 %,0.000096226
16/01/20 10:48:34,06.0023,3267,3266.85,30.15 %,0.000092278
16/01/20 10:48:34,06.0024,1978,1977.91,36.06 %,0.000182325
....

• Example of the same output in JSON format:

zcryptstats

770 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

{"zcryptstats": {
 "host": {
 "nodename": "lpar01",
 "sysname": "Linux",
 "release": "5.4",
 "machine": "s390x",
 "date": "16/01/20",
 "statistics": [
 {
 "interval": 1, "timestamp": "16/01/20 10:48:34", "devices": [
 {"device": "06", "type": "CEX7A (Accelerator)",
 "counters": [
 {"counter": "RSA 1024 ME", "ops": 0, "rate": 0.00,
 "utilization": 0.00, "duration": 0.000000000},
 {"counter": "RSA 2048 ME", "ops": 4149, "rate": 4148.81,
 "utilization": 17.46, "duration": 0.000042074},
 {"counter": "RSA 1024 CRT", "ops": 0, "rate": 0.00,
 "utilization": 0.00, "duration": 0.000000000},
 {"counter": "RSA 2048 CRT", "ops": 4564, "rate": 4563.79,
 "utilization": 82.12, "duration": 0.000179943},
 {"counter": "RSA 4096 ME", "ops": 0, "rate": 0.00,
 "utilization": 0.00, "duration": 0.000000000},
 {"counter": "RSA 4096 CTR", "ops": 0, "rate": 0.00,
 "utilization": 0.00, "duration": 0.000000000},
 {"counter": "Total", "ops": 8713, "rate": 8712.60,
 "utilization": 99.58, "duration": 0.000114292}
]},
 {"device": "06.0011", "type": "CEX7A (Accelerator)",
 "counters": [
....

zcryptstats

Chapter 62. Commands for Linux on IBM Z 771

zcryptstats

772 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 63. Selected kernel parameters
You can use kernel parameters that are beyond the scope of an individual device driver or feature to
configure Linux in general.

Kernel parameters that are specific to a particular device driver or feature are described in the setup
section of the respective device driver or feature.

See Chapter 4, “Kernel and module parameters,” on page 25 for information about specifying kernel
parameters.

© Copyright IBM Corp. 2000, 2023 773

cio_ignore - List devices to be ignored
Use the cio_ignore= kernel parameter to list specifications for I/O devices that are to be ignored.

When an instance of Linux on IBM Z boots, it senses and analyzes all available I/O devices. You can use
the cio_ignore= kernel parameter to list specifications for devices that are to be ignored. This exclusion
list can cover all possible devices, even devices that do not actually exist. The following applies to ignored
devices:

• Ignored devices are not sensed and analyzed. The device cannot be used until it is analyzed.
• Ignored devices are not represented in sysfs.
• Ignored devices do not occupy storage in the kernel.
• The subchannel to which an ignored device is attached is treated as if no device were attached.
• For Linux on z/VM, cio_ignore might hide essential devices such as the console. The console is typically

device number 0.0.0009.

See also “Changing the exclusion list” on page 775.

Format

cio_ignore syntax
cio_ignore= all

<device_spec>

,

,

!

<device_spec>

<device_spec>
<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

ipldev

condev

Where:
all

states that all devices are to be ignored.
<device_bus_id>

specifies a device. Device bus-IDs are of the form 0.<n>.<devno>, where <n> is a subchannel set ID
and <devno> is a device number.

<from_device_bus_id>-<to_device_bus_id>
are two device bus-IDs that specify the first and the last device in a range of devices.

ipldev
specifies the IPL device. Use this keyword with the ! operator to avoid ignoring the IPL device.

condev
specifies the CCW console. Use this keyword with the ! operator to avoid ignoring the console device.

!
makes the following term an exclusion statement. This operator is used to exclude individual devices
or ranges of devices from a preceding more general specification of devices.

cio_ignore

774 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Examples

• This example specifies that all devices in the range 0.0.b100 through 0.0.b1ff, and the device 0.0.a100
are to be ignored.

cio_ignore=0.0.b100-0.0.b1ff,0.0.a100

• This example specifies that all devices except the console are to be ignored.

cio_ignore=all,!condev

• This example specifies that all devices but the range 0.0.b100 through 0.0.b1ff, and the device
0.0.a100 are to be ignored.

 cio_ignore=all,!0.0.b100-0.0.b1ff,!0.0.a100

• This example specifies that all devices in the range 0.0.1000 through 0.0.1500 are to be ignored, except
for devices in the range 0.0.1100 through 0.0.1120.

cio_ignore=0.0.1000-0.0.1500,!0.0.1100-0.0.1120

This is equivalent to the following specification:

cio_ignore=0.0.1000-0.0.10ff,0.0.1121-0.0.1500

• This example specifies that all devices in range 0.0.1000 through 0.0.1100 and all devices in range
0.1.7000 through 0.1.7010, plus device 0.0.1234 and device 0.1.4321 are to be ignored.

cio_ignore=0.0.1000-0.0.1100, 0.1.7000-0.1.7010, 0.0.1234, 0.1.4321

Changing the exclusion list
Use the cio_ignore command or the procfs interface to view or change the list of I/O device
specifications that are ignored.

When an instance of Linux on IBM Z boots, it senses and analyzes all available I/O devices. You can use
the cio_ignore kernel parameter to list specifications for devices that are to be ignored.

On a running Linux instance, you can view and change the exclusion list through a procfs interface or
with the cio_ignore command (see “cio_ignore - Manage the I/O exclusion list” on page 591). This
information describes the procfs interface.

After booting Linux you can display the exclusion list by issuing:

cat /proc/cio_ignore

To add device specifications to the exclusion list issue a command of this form:

echo add <device_list> > /proc/cio_ignore

When you add specifications for a device that is already sensed and analyzed, there is no immediate
effect of adding it to the exclusion list. For example, the device still appears in the output of the lscss
command and can be set online. However, if the device later becomes unavailable, it is ignored when it
reappears. For example, if the device is detached in z/VM it is ignored when it is attached again.

To make all devices that are in the exclusion list and that are currently offline unavailable to Linux issue a
command of this form:

echo purge > /proc/cio_ignore

This command does not make devices unavailable if they are online.

cio_ignore

Chapter 63. Selected kernel parameters 775

To remove device specifications from the exclusion list issue a command of this form:

echo free <device_list> > /proc/cio_ignore

When you remove device specifications from the exclusion list, the corresponding devices are sensed and
analyzed if they exist. Where possible, the respective device driver is informed, and the devices become
available to Linux.

In these commands, <device_list> follows this syntax:

<device_list>
all

<device_spec>

,

,

!

<device_spec>

<device_spec>
<device_bus_id>

<from_device_bus_id>-<to_device_bus_id>

Where the keywords and variables have the same meaning as in “Format” on page 774.

Ensure device availability
After the echo command completes successfully, some time might elapse until the freed device becomes
available to Linux. Issue the following command to ensure that the device is ready to be used:

echo 1 > /proc/cio_settle

This command returns after all required sysfs structures for the newly available device are completed.
The cio_ignore command (see “cio_ignore - Manage the I/O exclusion list” on page 591) also returns
after any new sysfs structures are completed. You do not need a separate echo command when using
cio_ignore to remove devices from the exclusion list.

Results
The dynamically changed exclusion list is taken into account only when a device in this list is newly made
available to the system, for example after it is defined to the system. It does not have any effect on setting
devices online or offline within Linux.

Examples
• This command removes all devices from the exclusion list.

echo free all > /proc/cio_ignore

• This command adds all devices in the range 0.0.b100 through 0.0.b1ff and device 0.0.a100 to the
exclusion list.

echo add 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

• This command lists the ranges of devices that are ignored by common I/O.

cio_ignore

776 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

cat /proc/cio_ignore
0.0.0000-0.0.a0ff
0.0.a101-0.0.b0ff
0.0.b200-0.0.ffff

• This command removes all devices in the range 0.0.b100 through 0.0.b1ff and device 0.0.a100 from the
exclusion list.

echo free 0.0.b100-0.0.b1ff,0.0.a100 > /proc/cio_ignore

• This command removes the device with bus ID 0.0.c104 from the exclusion list.

echo free 0.0.c104 > /proc/cio_ignore

• This command adds the device with bus ID 0.0.c104 to the exclusion list.

echo add 0.0.c104 > /proc/cio_ignore

• This command makes all devices that are in the exclusion list and that are currently offline unavailable
to Linux.

echo purge > /proc/cio_ignore

cio_ignore

Chapter 63. Selected kernel parameters 777

cmma - Reduce hypervisor paging I/O overhead
Use the cmma= kernel parameter to reduce hypervisor paging I/O overhead.

With Collaborative Memory Management Assist (CMMA, or "cmm2") support, the z/VM control program
and guest virtual machines can communicate attributes for specific 4K-byte blocks of guest memory. This
exchange of information helps both the z/VM host and the guest virtual machines to optimize their use
and management of memory.

Format

cmma syntax
cmma= yes

on

cmma= no

off

Examples

This specification disables the CMMA support:

 cmma=off

Alternatively, you can use the following specification to disable the CMMA support:

 cmma=no

cmma

778 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

fips - Run Linux in FIPS mode
In Federal Information Processing Standard (FIPS) mode, the kernel enforces FIPS 140-2 security
standards. For example, in FIPS mode only FIPS 140-2 approved encryption algorithms can be used
(see “FIPS restrictions of the hardware capabilities” on page 529).

Note: Enabling FIPS mode is not sufficient to make your kernel certified according to FIPS 140-2.

FIPS 140-2 certification is specific to a particular hardware platform and kernel build. Typically, running in
FIPS mode is required, but not sufficient to be FIPS 140-2 certified.

Check with Ubuntu to find out whether your kernel is certified according to FIPS 140-2. See the Ubuntu
Security Certifications at:

https://ubuntu.com/server/docs/security-certificates

For more information about FIPS 140-2, go to csrc.nist.gov/publications/detail/fips/140/2/final.

Format

fips syntax
fips=0

fips=1

1 enables the FIPS mode. 0, the default, disables the FIPS mode.

Example

 fips=1

fips

Chapter 63. Selected kernel parameters 779

https://ubuntu.com/server/docs/security-certificates
https://csrc.nist.gov/publications/detail/fips/140/2/final

maxcpus - Limit the number of CPUs Linux can use at IPL
Use the maxcpus= kernel parameter to limit the number of CPUs that Linux can use at IPL and that are
online after IPL.

If the real or virtual hardware provides more than the specified number of CPUs, these surplus CPUs are
initially offline. For example, if five CPUs are available, maxcpus=2 results in two online CPUs and three
offline CPUs after IPL.

Offline CPUs can be set online dynamically unless the possible_cpus= parameter is set and specifies
a maximum number of online CPUs that is already reached. The possible_cpus= parameter sets an
absolute limit for the number of CPUs that can be online at any one time (see possible_cpus). If both
maxcpus= and possible_cpus= are set, a lower value for possible_cpus= overrides maxcpus= and
makes it ineffective.

Format

maxcpus syntax
maxcpus=  <number>

Examples

 maxcpus=2

maxcpus

780 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

nokaslr - Disable kernel randomization
By default, Linux uses KASLR. Specify the nokaslr kernel parameter to disable kernel randomization,
that is, cause the kernel to be loaded at its standard location.

For more information about kernel randomization, see Chapter 10, “KASLR support,” on page 127.

Format

nokaslr kernel parameter syntax
nokaslr

nokaslr

Chapter 63. Selected kernel parameters 781

nosmt - Disable simultaneous multithreading
By default, Linux in LPAR mode uses simultaneous multithreading if it is supported by the hardware.
Specify the nosmt kernel parameter to disable simultaneous multithreading. See also “smt - Reduce the
number of threads per core” on page 789.

For more information about simultaneous multithreading, see “Simultaneous multithreading” on page
339 .

Format

nosmt syntax
nosmt

nosmt

782 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

novx - Disable the Vector Extension Facility
By default, Linux uses the Vector Extension Facility if it is supported by the hardware. Specify the novx
kernel parameter to disable the Vector Extension Facility.

Do not disable the Vector Extension Facility for regular operations. This parameter is intended for test and
diagnostics.

Format

novx syntax
novx

novx

Chapter 63. Selected kernel parameters 783

possible_cpus - Limit the number of CPUs Linux can use
Use the possible_cpus= parameter to set an absolute limit for the number of CPUs that can be online
at any one time. If the real or virtual hardware provides more than the specified maximum, the surplus
number of CPUs must be offline. Alternatively, you can use the common code kernel parameter nr_cpus.

Use the maxcpus= parameter to limit the number of CPUs that are online initially after IPL (see maxcpus).

Format

possible_cpus syntax
possible_cpus=  <number>

Examples

 possible_cpus=8

possible_cpus

784 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

ramdisk_size - Specify the ramdisk size

Use the ramdisk_size= kernel parameter to specify the size of the ramdisk in kilobytes.

Format

ramdisk_size syntax
ramdisk_size=  <size>

Examples

 ramdisk_size=32000

ramdisk_size

Chapter 63. Selected kernel parameters 785

rd.zdev=no-auto - Override initial device availability for DPM mode
Use the rd.zdev=no-auto kernel parameter to override device availability defaults for Linux in a DPM
partition.

Format

rd.zdev syntax
rd.zdev=no-auto

Device exclusion list
As a default for Linux in a DPM partition, auto-configuration data overrides device exclusion through
cio_ignore. With rd.zdev=no-auto, the auto-configuration data is ignored and the exclusion list is
enforced unchanged.

For more information about auto-configuration data, see Chapter 3, “Device auto-configuration for Linux
in LPAR mode,” on page 21. For cio_ignore, see “cio_ignore - Manage the I/O exclusion list” on page
591.

PCIe or cryptographic devices
With the s390-tools package installed, the initial online status of PCIe devices and cryptographic devices
for Linux in a DPM partition is "online". Likewise, these devices are online after a reboot even if they were
explicitly set offline before the reboot.

Using rd.zdev=no-auto, the initial online status of PCIe devices and cryptographic devices depends
on defaults of your hardware and firmware levels. The online status of these devices on a running Linux
instance is then preserved across reboots.

Linux in traditional LPAR mode
The rd.zdev=no-auto parameter does not affect Linux in traditional LPAR mode. After a reboot in this
environment, the cio_ignore exclusion list is always enforced, and PCIe and cryptographic devices
preserve their online status. The initial online status of a PCIe or cryptographic device depends on its
hardware definition.

rd.zdev=no-auto

786 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

ro - Mount the root file system read-only
Use the ro kernel parameter to mount the root file system read-only.

Format

ro syntax
ro

ro

Chapter 63. Selected kernel parameters 787

root - Specify the root device
Use the root= kernel parameter to tell Linux what to use as the root when mounting the root file system.

Format

root syntax
root= <rootdevice>

Examples

This example makes Linux use /dev/dasda1 when mounting the root file system:

 root=/dev/dasda1

root

788 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

smt - Reduce the number of threads per core
By default, Linux in LPAR mode uses the maximum number of threads per core that is supported by the
hardware. Use the smt= kernel parameter to use fewer threads. The value can be any integer in the range
1 to the maximum number of threads that is supported by the hardware.

Specifying smt=1 effectively disables simultaneous multithreading. See also “nosmt - Disable
simultaneous multithreading” on page 782.

For more information about simultaneous multithreading, see “Simultaneous multithreading” on page
339 .

Format

smt syntax
smt= <hwmax>

smt= <number>

where <hwmax> is the maximum number of threads per core that is supported by the hardware, and
<number> is an integer in the range 1 - <hwmax>.

Examples

 smt=1

smt

Chapter 63. Selected kernel parameters 789

vdso - Optimize system call performance
Use the vdso= kernel parameter to control the vdso support for the gettimeofday, clock_getres,
and clock_gettime system calls.

The virtual dynamic shared object (vdso) support is a shared library that the kernel maps to all
dynamically linked programs. The glibc detects the presence of the vdso and uses the functions that
are provided in the library.

Because the vdso library is mapped to all user-space processes, this change is visible in user space. In
the unlikely event that a user-space program does not work with the vdso support, you can disable the
support.

The default, which is to use vdso support, works well for most installations. Do not override this default,
unless you observe problems.

The vdso support is included in the Linux kernel.

Format

vdso syntax
vdso= 1

on

vdso= 0

off

Examples

This example disables the vdso support:

 vdso=0

vdso

790 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

vmhalt - Specify CP command to run after a system halt
Use the vmhalt= kernel parameter to specify a command to be issued to CP after a system halt.

This command applies only to Linux on z/VM.

Format

vmhalt syntax
vmhalt=  <COMMAND>

Examples

This example specifies that an initial program load of CMS is to follow the Linux halt command:

 vmhalt="CPU 00 CMD I CMS"

Note: The command must be entered in uppercase.

vmhalt

Chapter 63. Selected kernel parameters 791

vmpanic - Specify CP command to run after a kernel panic
Use the vmpanic= kernel parameter to specify a command to be issued to CP after a kernel panic.

This command applies only to Linux on z/VM.

Note: Ensure that the dumpconf service is disabled when you use this kernel parameter. Otherwise,
dumpconf will override the setting.

Format

vmpanic syntax
vmpanic=  <COMMAND>

Examples

This example specifies that a VMDUMP is to follow a kernel panic:

 vmpanic="VMDUMP"

Note: The command must be entered in uppercase.

vmpanic

792 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

vmpoff - Specify CP command to run after a power off
Use the vmpoff= kernel parameter to specify a command to be issued to CP after a system power off.

This command applies only to Linux on z/VM.

Format

vmpoff syntax
vmpoff=  <COMMAND>

Examples

This example specifies that CP is to clear the guest virtual machine after the Linux power off or halt
-p command:

 vmpoff="SYSTEM CLEAR"

Note: The command must be entered in uppercase.

vmpoff

Chapter 63. Selected kernel parameters 793

vmreboot - Specify CP command to run on reboot
Use the vmreboot= kernel parameter to specify a command to be issued to CP on reboot.

This command applies only to Linux on z/VM.

Format

vmreboot syntax
vmreboot=  <COMMAND>

Examples

This example specifies a message to be sent to the z/VM guest virtual machine OPERATOR if a reboot
occurs:

 vmreboot="MSG OPERATOR Reboot system"

Note: The command must be entered in uppercase.

vmreboot

794 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Chapter 64. Linux diagnose code use
Linux on IBM Z issues several diagnose instructions to the hypervisor (LPAR or z/VM).

Read /sys/kernel/debug/diag_stat to find out which diagnose instructions are called how
frequently on your Linux instance.

cat /sys/kernel/debug/diag_stat
 CPU0 CPU1
diag 008: 7 7 Console Function
diag 00c: 0 0 Pseudo Timer
diag 010: 0 0 Release Pages
diag 014: 0 0 Spool File Services
diag 044: 616 962 Voluntary Timeslice End
diag 064: 0 0 NSS Manipulation
diag 09c: 7772 6606 Relinquish Timeslice
diag 0dc: 0 0 Appldata Control
diag 204: 2 0 Logical-CPU Utilization
diag 210: 3 6 Device Information
diag 224: 0 0 EBCDIC-Name Table
diag 250: 0 0 Block I/O
diag 258: 1 1 Page-Reference Services
diag 26c: 2 0 Certain System Information
diag 288: 0 0 Time Bomb
diag 2c4: 0 0 FTP Services
diag 2fc: 2 0 Guest Performance Data
diag 304: 0 0 Partition-Resource Service
diag 308: 1 1 List-Directed IPL
diag 318: 1 0 CP Name and Version Codes
diag 500: 0 0 Virtio Service

The z/VM configuration can modify and restrict the diagnose calls that are available to its guests (see
“Function unavailable or degraded in Linux on z/VM” on page 561).

© Copyright IBM Corp. 2000, 2023 795

796 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Appendix A. Accessibility
Accessibility features help users who have a disability, such as restricted mobility or limited vision, to use
information technology products successfully.

Documentation accessibility
The Linux on IBM Z and IBM LinuxONE publications are in Adobe™ Portable Document Format (PDF) and
should be compliant with accessibility standards. If you experience difficulties when you use the PDF file
and want to request a Web-based format for this publication send an email to eservdoc@de.ibm.com or
write to:

IBM Deutschland Research & Development GmbH
Information Development
Department 3282
Schoenaicher Strasse 220
71032 Boeblingen
Germany

In the request, be sure to include the publication number and title.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

IBM and accessibility
See the IBM Human Ability and Accessibility Center for more information about the commitment that IBM
has to accessibility at

www.ibm.com/able

© Copyright IBM Corp. 2000, 2023 797

https://www.ibm.com/able

798 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Appendix B. Understanding syntax diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and top to bottom.

• The ►►─── symbol indicates the beginning of a syntax diagram.
• The ───► symbol, at the end of a line, indicates that the syntax diagram continues on the next line.
• The ►─── symbol, at the beginning of a line, indicates that a syntax diagram continues from the

previous line.
• The ───►◄ symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

• Directly on the line (required)
• Above the line (default)
• Below the line (optional)

If defaults are determined by your system status or settings, they are not shown in the diagram. Instead
the rule is described together with the option, keyword, or variable in the list following the diagram.

Case sensitivity
Unless otherwise noted, entries are case sensitive.

Symbols
You must code these symbols exactly as they appear in the syntax diagram
*

Asterisk
:

Colon
,

Comma
=

Equals sign
-

Hyphen
//

Double slash
()

Parentheses
.

Period
+

Add
$

Dollar sign

For example:

dasd=0.0.7000-0.0.7fff

Variables
An <italicized> lowercase word enclosed in angled brackets indicates a variable that you must
substitute with specific information. For example:

© Copyright IBM Corp. 2000, 2023 799

 -p <interface>

Here you must code -p as shown and supply a value for <interface>.

An italicized uppercase word in angled brackets indicates a variable that must appear in uppercase:
vmhalt = <COMMAND>

Repetition
An arrow returning to the left means that the item can be repeated.

<repeat>

A character within the arrow means you must separate repeated items with that character.

,

<repeat>

Defaults
Defaults are above the line. The system uses the default unless you override it. You can override the
default by coding an option from the stack below the line. For example:

A

B

C

In this example, A is the default. You can override A by choosing B or C.
Required Choices

When two or more items are in a stack and one of them is on the line, you must specify one item. For
example:

A

B

C

Here you must enter either A or B or C.
Optional Choice

When an item is below the line, the item is optional. Only one item may be chosen. For example:

A

B

C

Here you may enter either A or B or C, or you may omit the field.

800 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any reference
to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Adobe is either a registered trademark or trademark of Adobe Systems Incorporated in the United States,
and/or other countries.

© Copyright IBM Corp. 2000, 2023 801

https://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

The registered trademark Linux is used pursuant to a sublicense from the Linux Foundation, the exclusive
licensee of Linus Torvalds, owner of the mark on a worldwide basis.

UNIX is a registered trademark of The Open Group in the United States and other countries.

802 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Glossary

This glossary includes IBM product terminology as well as selected other terms and definitions.

Additional information can be obtained in:

• The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute (ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42nd Street, New York, New York 10036.

• The ANSI/EIA Standard–440-A, Fiber Optic Terminology. Copies may be purchased from the Electronic
Industries Association, 2001 Pennsylvania Avenue, N.W., Washington, DC 20006.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1,
of the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1).

• The IBM Dictionary of Computing, New York: McGraw-Hill, 1994.
• Internet Request for Comments: 1208, Glossary of Networking Terms
• Internet Request for Comments: 1392, Internet Users' Glossary
• The Object-Oriented Interface Design: IBM Common User Access Guidelines, Carmel, Indiana: Que,

1992.

Numerics

10 Gigabit Ethernet
An Ethernet network with a bandwidth of 10000-Mbps.

3215
IBM console printer-keyboard.

3270
IBM information display system.

3370, 3380 or 3390
IBM direct access storage device (disk).

3480, 3490, 3590
IBM magnetic tape subsystem.

3DES
See Triple Data Encryption Standard.

9336 or 9345
IBM direct access storage device (disk).

© Copyright IBM Corp. 2000, 2023 803

A

address space
The range of addresses available to a computer program or process. Address space can refer to physical
storage, virtual storage, or both.

asynchronous transfer mode (ATM)
A transfer mode in which the information is organized into cells; it is asynchronous in the sense that
the recurrence of cells containing information from an individual user is not necessarily periodic. ATM is
specified in international standards such as ATM Forum UNI 3.1.

auto-detection
Listing the addresses of devices attached to a card by issuing a query command to the card.

C

CEC
(Central Electronics Complex). A synonym for CPC.

channel subsystem
The programmable input/output processors of the IBM Z, which operate in parallel with the CPU.

checksum
An error detection method using a check byte appended to message data

CHPID
channel path identifier. In a channel subsystem, a value assigned to each installed channel path of the
system that uniquely identifies that path to the system.

compatible disk layout
A disk structure for Linux on IBM Z which allows access from other IBM Z operating systems. This
replaces the older Linux disk layout.

Console
In Linux, an output device for kernel messages.

CPC
(Central Processor Complex). A physical collection of hardware that includes main storage, one or more
central processors, timers, and channels. Also referred to as a CEC.

CRC
cyclic redundancy check. A system of error checking performed at both the sending and receiving station
after a block-check character has been accumulated.

CSMA/CD
carrier sense multiple access with collision detection

804 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

CUU
control unit and unit address. A form of addressing for IBM Z devices using device numbers.

D

DASD
direct access storage device. A mass storage medium on which a computer stores data.

device driver
• A file that contains the code needed to use an attached device.
• A program that enables a computer to communicate with a specific peripheral device; for example, a

printer, a videodisc player, or a CD-ROM drive.
• A collection of subroutines that control the interface between I/O device adapters and the processor.

DIAGNOSE
In z/VM, a set of instructions that programs running on z/VM guest virtual machines can call to request CP
services.

disconnected device
In Linux on z Systems®, a device that is online, but to which Linux can no longer find a connection.
Reasons include:

• The device was physically removed
• The device was logically removed, for example, with a CP DETACH command in z/VM
• The device was varied offline

E

ECKD
extended count-key-data device. A disk storage device that has a data transfer rate faster than some
processors can utilize and that is connected to the processor through use of a speed matching buffer. A
specialized channel program is needed to communicate with such a device.

ESCON
enterprise systems connection. A set of IBM products and services that provide a dynamically connected
environment within an enterprise.

Ethernet
A 10-Mbps baseband local area network that allows multiple stations to access the transmission medium
at will without prior coordination, avoids contention by using carrier sense and deference, and resolves
contention by using collision detection and delayed retransmission. Ethernet uses CSMA/CD.

F

Fast Ethernet (FENET)
Ethernet network with a bandwidth of 100 Mbps

Glossary 805

FBA
fixed block architecture. An architecture for a virtual device that specifies the format of and access
mechanisms for the virtual data units on the device. The virtual data unit is a block. All blocks on the
device are the same size (fixed size). The system can access them independently.

FDDI
fiber distributed data interface. An American National Standards Institute (ANSI) standard for a 100-
Mbps LAN using optical fiber cables.

fibre channel
A technology for transmitting data between computer devices. It is especially suited for attaching
computer servers to shared storage devices and for interconnecting storage controllers and drives.

FTP
file transfer protocol. In the Internet suite of protocols, an application layer protocol that uses TCP and
Telnet services to transfer bulk-data files between machines or hosts.

G

Gigabit Ethernet (GbE)
An Ethernet network with a bandwidth of 1000-Mbps

H

hardware console
A service-call logical processor that is the communication feature between the main processor and the
service processor.

Host Bus Adapter (HBA)
An I/O controller that connects an external bus, such as a Fibre Channel, to the internal bus (channel
subsystem).

In a Linux environment HBAs are normally virtual and are shown as an FCP device.

HMC
hardware management console. A console used to monitor and control hardware such as the IBM Z
microprocessors.

HFS
hierarchical file system. A system of arranging files into a tree structure of directories.

I

intraensemble data network (IEDN)
A private 10 Gigabit Ethernet network for application data communications within an ensemble. Data
communications for workloads can flow over the IEDN within and between nodes of an ensemble. All of
the physical and logical resources of the IEDN are configured, provisioned, and managed by the Unified
Resource Manager.

806 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

intranode management network (INMN)
A private 1000BASE-T Ethernet network operating at 1 Gbps that is required for the Unified Resource
Manager to manage the resources within a single zEnterprise node. The INMN connects the Support
Element (SE) to the zEnterprise CPC and to any attached zEnterprise BladeCenter Extension (zBX).

ioctl system call
Performs low-level input- and output-control operations and retrieves device status information. Typical
operations include buffer manipulation and query of device mode or status.

IOCS
input / output channel subsystem. See channel subsystem.

IP
internet protocol. In the Internet suite of protocols, a connectionless protocol that routes data through a
network or interconnected networks and acts as an intermediary between the higher protocol layers and
the physical network.

IP address
The unique 32-bit address that specifies the location of each device or workstation on the Internet. For
example, 9.67.97.103 is an IP address.

IPIP
IPv4 in IPv4 tunnel, used to transport IPv4 packets in other IPv4 packets.

IPL
initial program load (or boot).

• The initialization procedure that causes an operating system to commence operation.
• The process by which a configuration image is loaded into storage at the beginning of a work day or after

a system malfunction.
• The process of loading system programs and preparing a system to run jobs.

IPv6
IP version 6. The next generation of the Internet Protocol.

IUCV
inter-user communication vehicle. A z/VM facility for passing data between virtual machines and z/VM
components.

K

kernel
The part of an operating system that performs basic functions such as allocating hardware resources.

kernel module
A dynamically loadable part of the kernel, such as a device driver or a file system.

Glossary 807

kernel image
The kernel when loaded into memory.

L

LCS
LAN channel station. A protocol used by OSA.

LDP
Linux Documentation Project. An attempt to provide a centralized location containing the source material
for all open source Linux documentation. Includes user and reference guides, HOW TOs, and FAQs. The
homepage of the Linux Documentation Project is

www.linuxdoc.org

Linux
a variant of UNIX which runs on a wide range of machines from wristwatches through personal and small
business machines to enterprise systems.

Linux disk layout
A basic disk structure for Linux on IBM Z. Now replaced by compatible disk layout.

Linux on IBM Z
the port of Linux to the IBM Z architecture.

LPAR
logical partition of an IBM Z.

LVS (Linux virtual server)
Network sprayer software used to dispatch, for example, http requests to a set of web servers to balance
system load.

M

MAC
medium access control. In a LAN this is the sub-layer of the data link control layer that supports medium-
dependent functions and uses the services of the physical layer to provide services to the logical link
control (LLC) sub-layer. The MAC sub-layer includes the method of determining when a device has access
to the transmission medium.

Mbps
million bits per second.

MIB (Management Information Base)
• A collection of objects that can be accessed by means of a network management protocol.
• A definition for management information that specifies the information available from a host or gateway

and the operations allowed.

808 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.linuxdoc.org/

MTU
maximum transmission unit. The largest block which may be transmitted as a single unit.

Multicast
A protocol for the simultaneous distribution of data to a number of recipients, for example live video
transmissions.

N

NIC
network interface card. The physical interface between the IBM mainframe and the network.

O

OSA-Express
Abbreviation for Open Systems Adapter-Express networking features. These include 10 Gigabit Ethernet,
Gigabit Ethernet, Fast Ethernet, and ATM.

OSPF
open shortest path first. A function used in route optimization in networks.

P

POR
power-on reset

POSIX
Portable Operating System Interface for Computer Environments. An IEEE operating system standard
closely related to the UNIX system.

R

router
A device or process which allows messages to pass between different networks.

S

SE
Support Element.

A hardware unit that provides communications, monitoring, and diagnostic functions to a central
processor complex (CPC).

SNA
systems network architecture. The IBM architecture that defines the logical structure, formats, protocols,
and operational sequences for transmitting information units through, and controlling the configuration

Glossary 809

and operation of, networks. The layered structure of SNA allows the ultimate origins and destinations of
information (the users) to be independent of and unaffected by the specific SNA network services and
facilities that are used for information exchange.

SNMP (Simple Network Management Protocol)
In the Internet suite of protocols, a network management protocol that is used to monitor routers and
attached networks. SNMP is an application layer protocol. Information about devices managed is defined
and stored in the application's Management Information Base (MIB).

Sysctl
system control programming manual control (frame). A means of dynamically changing certain Linux
kernel parameters during operation.

T

TDEA
See Triple Data Encryption Standard.

TDES
See Triple Data Encryption Standard.

Telnet
A member of the Internet suite of protocols which provides a remote terminal connection service. It
allows users of one host to log on to a remote host and interact as if they were using a terminal directly
attached to that host.

Terminal
A physical or emulated device, associated with a keyboard and display device, capable of sending and
receiving information.

Triple Data Encryption Standard
A block cipher algorithm that can be used to encrypt data transmitted between managed systems and
the management server. Triple DES is a security enhancement of DES that employs three successive DES
block operations.

U

Unified Resource Manager
IBM zEnterprise Unified Resource Manager. Licensed internal code (LIC), also known as firmware, that is
part of the Hardware Management Console. The Unified Resource Manager provides energy monitoring
and management, goal-oriented policy management, increased security, virtual networking, and data
management for the physical and logical resources of a given ensemble.

UNIX
An operating system developed by Bell Laboratories that features multiprogramming in a multiuser
environment. The UNIX operating system was originally developed for use on minicomputers but has
been adapted for mainframes and microcomputers.

810 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

V

VEPA
Virtual Ethernet Port Aggregator

V=R
In VM, a guest whose real memory (virtual from a VM perspective) corresponds to the real memory of VM.

V=V
In VM, a guest whose real memory (virtual from a VM perspective) corresponds to virtual memory of VM.

Virtual Ethernet Port Aggregator
The capability of a physical server to collaborate with an adjacent bridge to provide frame relay services
between multiple virtual machines, which are located on a server and also on the external network.

Virtual LAN (VLAN)
A group of devices on one or more LANs that are configured (using management software) so that they
can communicate as if they were attached to the same wire, when in fact they are located on a number of
different LAN segments. Because VLANs are based on logical rather than physical connections, they are
extremely flexible.

volume
A data carrier that is usually mounted and demounted as a unit, for example a tape cartridge or a disk
pack. If a storage unit has no demountable packs the volume is the portion available to a single read/write
mechanism.

Z

z13
IBM z13.

z13s
IBM z13s.

A member of the IBM Z® family. The IBM® z13® mainframe offers high capacity and processing power,
real-time insight to personalize customer experiences, and security to minimize client exposure and
protect against cyber threats.

z14
IBM z14.

A member of the IBM Z® family. z14 is the enterprise platform for pervasive encryption, integrating
data, transactions, and insights into the data. IBM z14 servers are designed with improved scalability,
performance, security, resiliency, availability, and virtualization. The superscalar design allows z14
servers to deliver a record level of capacity over the prior IBM Z platforms. In its maximum configuration,
z14 is powered by up to 170 client characterizable microprocessors (cores) running at 5.2 GHz. This
configuration can run more than 146,000 million instructions per second (MIPS) and up to 32 TB of client
memory.

Glossary 811

z15
A member of the IBM Z® family. IBM z15 enables cloud native services while extending the value of
your most valuable data and application investments to address today’s business challenges and lead
tomorrow's transformation.

zBX
IBM zEnterprise BladeCenter Extension.

812 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Bibliography

The publications listed in this chapter are considered useful for a more detailed study of the topics
contained in this publication.

Linux on IBM Z and IBM LinuxONE publications
The Linux on IBM Z and IBM LinuxONE publications can be found on the IBM Documentation website.

You can find the latest versions of these publications
on IBM Documentation at
ibm.com/docs/en/linux-on-systems?topic=distributions-ubuntu-server.

For each of the following publications, you can find the version that most closely reflects Ubuntu Server
22.04 LTS:

• Using the Dump Tools, SC33-8412
• How to use FC-attached SCSI devices with Linux on z Systems, SC33-8413
• libica Programmer's Reference, SC34-2602
• Exploiting Enterprise PKCS #11 using openCryptoki, SC34-2713
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294
• Getting started with pervasive disk encryption, SC34-2783
• Troubleshooting, SC34-2612
• How to Improve Performance with PAV, SC33-8414
• How to Set up a Terminal Server Environment on z/VM, SC34-2596

z/VM publications
The publication numbers listed are for z/VM version 7.

For the complete library including other versions, see

www.ibm.com/vm/library

• z/VM: Connectivity, SC24-6267
• z/VM: CP Commands and Utilities Reference, SC24-6268
• z/VM: CP Planning and Administration, SC24-6271
• z/VM: CP Programming Services, SC24-6272
• z/VM: Getting Started with Linux on System z, SC24-6287
• z/VM: Performance, SC24-6301
• z/VM: Saved Segments Planning and Administration, SC24-6322
• z/VM: Systems Management Application Programming, SC24-6327
• z/VM: TCP/IP Planning and Customization, SC24-6331
• z/VM: Virtual Machine Operation, SC24-6334
• z/VM: REXX/VM Reference, SC24-6314
• z/VM: REXX/VM User's Guide, SC24-6315

© Copyright IBM Corp. 2000, 2023 813

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaaf/lnz_r_ubuntu.html
https://www.ibm.com/vm/library

IBM Redbooks publications
You can search for, view, or download Redbooks publications, Redpapers, Hints and Tips, draft
publications and additional materials on the Redbooks website.

See

www.ibm.com/redbooks

• Building Linux Systems under IBM VM, REDP-0120
• Networking Overview for Linux on zSeries, REDP-3901
• IBM Communication Controller Migration Guide, SG24-6298
• Linux on IBM eServer zSeries and S/390: TCP/IP Broadcast on z/VM Guest LAN, REDP-3596
• z/VM: Secure Configuration Guide, SG24-6323
• Linux on IBM eServer zSeries and S/390: VSWITCH and VLAN Features of z/VM 4.4, REDP-3719
• Fibre Channel Protocol for Linux and z/VM on IBM System z, SG24-7266
• IBM Fibre Channel Endpoint Security for IBM DS8900F and IBM Z, SG24-8455
• Reduce Storage Occupancy and Increase Operations Efficiency with IBM zEnterprise Data Compression,

SG24-8259

Other IBM Z publications
General IBM Z publications that might be of interest in the context of Linux on IBM Z.

• System z Application Programming Interfaces, SB10-7030
• IBM TotalStorage Enterprise Storage Server® System/390® Command Reference 2105 Models E10, E20,

F10, and F20, SC26-7295
• Processor Resource/Systems Manager Planning Guide, SB10-7041
• z/Architecture Principles of Operation, SA22-7832
• z/Architecture The Load-Program-Parameter and the CPU-Measurement Facilities, SA23-2260
• IBM The CPU-Measurement Facility Extended Counters Definition for z10, z196/z114, zEC12/zBC12, z13/

z13s, z14, z15 and z16, SA23-2261

Networking publications
• HiperSockets Implementation Guide, SG24-6816
• Open Systems Adapter-Express Customer's Guide and Reference, SA22-7935
• OSA-Express Implementation Guide, SG24-5948

Security related publications
• zSeries Crypto Guide Update, SG24-6870
• Secure Key Solution with the Common Cryptographic Architecture Application Programmer's Guide,

SC33-8294

ibm.com resources
On the ibm.com® website you can find information about many aspects of Linux on IBM Z and IBM
LinuxONE including z/VM, I/O connectivity, and cryptography.

• For CMS and CP Data Areas, Control Block information, and the layout of the z/VM monitor records see

www.ibm.com/vm/pubs/ctlblk.html

814 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

https://www.ibm.com/redbooks
https://www.ibm.com/vm/pubs/ctlblk.html

• For I/O connectivity on IBM Z information, see

www.ibm.com/systems/support/storage/ssic/interoperability.wss

• For I/O networks to servers and storage devices to deliver high-performing, secure networking and
connectivity, see

www.ibm.com/it-infrastructure/z/capabilities/networking

• For Communications server for Linux information, see

www.ibm.com/software/network/commserver/linux

• For information about performance monitoring on z/VM, see

www.vm.ibm.com/perf

• For cryptographic coprocessor information, see

www.ibm.com/security/cryptocards

• (Requires registration.) For information for planning, installing, and maintaining IBM systems, see

www.ibm.com/servers/resourcelink

• For information about STP, see

www.ibm.com/systems/z/advantages/pso/stp.html

Bibliography 815

https://www.ibm.com/systems/support/storage/ssic/interoperability.wss
https://www.ibm.com/it-infrastructure/z/capabilities/networking
https://www.ibm.com/software/network/commserver/linux
https://www.vm.ibm.com/perf/
https://www.ibm.com/security/cryptocards
https://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/advantages/pso/stp.html

816 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

Index

Special Characters
*ACCOUNT, z/VM record 425
*LOGREC, z/VM record 425
*MONITOR record reader 419
*SYMPTOM, z/VM record 425
/debug, mount point xi
/proc, mount point xi
/proc, sysinfo 555
/sys, mount point xi
/sys/kernel/debug, mount point xi

Numerics
10 Gigabit Ethernet

SNMP 299
1000Base-T Ethernet

LAN channel station 309
SNMP 299

1750, control unit 131
2105, control unit 131
2107, control unit 131
3088, control unit 309
3270 emulation 48
3270 terminal device driver

switching the views of 50
3370, DASD 131
3380, DASD 131
3390, DASD 131
3480 tape drive 219
3490 tape drive 219
3590 tape drive 219
3592 tape drive 219
3880, control unit 131
3990, control unit 131
3DES 517
6310, control unit 131
64-bit ix
9336, DASD 131
9343, control unit 131
9345, DASD 131

A
acceleration

applications, user space 383
kernel 383

acceleration, in-kernel cryptography 529
access control

osasnmpd 301
access_denied

zfcp attribute (FCP LUN) 200
zfcp attribute (port) 189
zfcp attribute (SCSI device) 200

access_shared
zfcp attribute 200

accessibility 797

ACCOUNT, z/VM record 425
actions, shutdown 119
ACTIVE_CONSOLES 46
adapter outage 286
adapter virtualization 490
add, DCSS attribute 438
adding and removing cryptographic adapters 507
Address Resolution Protocol, See ARP
AES 529
aes_s390, kernel module 530
AF_IUCV

addressing sockets in applications 317
set up devices for addressing 316

AF_IUCV address family
features 315
set up support for 315

af_iucv, kernel module 316
AgentX protocol 299
alias

DASD attribute 165
allow_lun_scan=, module parameters 174
AP

devices 7
AP bus

attributes 497
ap module

parameters 31
AP queue

master key state 501
mkvps attribute 501
verification pattern 501

AP queues 504
ap_functions

cryptographic adapter attribute 499
ap_interrupts

cryptographic adapter attribute 506
ap.apmask=

kernel parameter 493
ap.aqmask=

kernel parameter 493
ap.domain=

kernel parameter 493
ap.poll_thread=

kernel parameter 493
API

cryptographic 511
FC-HBA 173
GenWQE zlib 396
HMC Web Services 103, 106
zfcp HBA 210

apmask, cryptographic device driver attribute 508
APPLDATA monitor records

monitoring Linux instances 405
APPLDATA, monitor stream 409
applet

emulation of the HMC Operating System Messages 53
applications

Index 817

applications (continued)
addressing AF_IUCV sockets in 317

aqmask, cryptographic device driver attribute 508
arch

trng counter 522
ARP

proxy ARP 273
query/purge OSA-Express ARP cache 701

attributes
device 9
for CCW devices 9
for subchannels 13
qeth 245–247
setting 10

authorization
CPU-measurement counter facility 541

auto-configuration
managing 22

auto-detection
DASD 140

autoconfiguration, IPv6 238
autopurge, z/VM recording attribute 428
autorecording, z/VM recording attribute 427
availability

common CCW attribute 9
DASD attribute 145

avg_*, cmf attributes 538, 539
avg_control_unit_queuing_time, cmf attribute 539
avg_device_active_only_time, cmf attribute 539
avg_device_busy_time 539
avg_device_busy_time, cmf attribute 539
avg_device_connect_time, cmf attribute 538
avg_device_disconnect_time, cmf attribute 539
avg_function_pending_time, cmf attribute 538
avg_initial_command_response_time, cmf attribute 539
avg_sample_interval, cmf attribute 539
avg_utilization, cmf attribute 539

B
b2b_credit, zfcp attribute 184
balloon device 462
base device

helper script 66
base name, ethernet 468
ber_stop=, module parameters 174
block devices

major and minor numbers 466
naming 466

block_size_bytes
memory sysfs attribute 347

blocksize, tape attribute 224
BLS 80
book_siblings

CPU sysfs attribute 342
boot configuration

module parameters 30
boot devices

logical 64
preparing 57

boot loader code 91
Boot Loader Specification 80
boot menu

DASD, LPAR example 94

boot menu (continued)
zipl 70

boot_image
kernel parameter 29

booting Linux
troubleshooting 561

bridge_hostnotify, qeth attribute 242
bridge_invisible, qeth attribute 278
bridge_role, qeth attribute 242, 275
bridge_state, qeth attribute 242
broadcast forwarding 278
btrfs 387
buffer_count, qeth attribute 253
buffer-overflow protection 533
buffer, CPU-measurement sampling facility 544
bus ID 9
byte_counter

prandom attribute 518
trng attribute 522

C
cachesize=, module parameters 379
capability

CPU sysfs attribute 340
capped

S/390 hypervisor file system attribute, z/VM guest 371
card_type, qeth attribute 255
card_version, zfcp attribute 178
case conversion 54
Castagnoli 529
CBC 529
CCA coprocessor 487
CCW

channel measurement facility 537
common attributes 9
devices 7
group devices 7
hotplug events 18
setting attributes 569
setting devices online/offline 569

CCW terminal device
switching on- or offline 50

CD-ROM, loading Linux 99
CD/DVD drive 471
Central Processor Assist for Cryptographic Function, See
CPACF
CEX3A (Crypto Express3) 487
CEX3C (Crypto Express3) 487
CEX4A (Crypto Express4S) 487
CEX4C (Crypto Express4S) 487
CEX4P (Crypto Express4S) 487
CEX5A (Crypto Express5S) 487
CEX5C (Crypto Express5S) 487
CEX5P (Crypto Express5S) 487
CEX6A (Crypto Express6S) 487
CEX6C (Crypto Express6S) 487
CEX6P (Crypto Express6S) 487
CEX7A (Crypto Express7S) 487
CEX7C (Crypto Express7S) 487
CEX7P (Crypto Express7S) 487
CEX8A (Crypto Express8S) 487
CEX8C (Crypto Express8S) 487
CEX8P (Crypto Express8S) 487

818 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

change, CPU capability 340
channel measurement facility

cmb_enable attribute 538
features 537
kernel parameters 537
read-only attributes 538

channel path
changing status 571
determining usage 559
ensuring correct status 559
list 650

channel path availability
planned changes 559
unplanned changes 559

channel path ID 15
channel path measurement 14
channel subsystem view 12
channel-attached tape 219
chccwdev 10
chccwdev, Linux command 569
chchp, Linux command 571
chcpu, Linux command 339
chcpumf, Linux command 573
checksum

inbound 261
outbound 261
receive 261
transmit 261

CHID
mapping physical to virtual 16

Chinese-Remainder Theorem 487
chiucvallow, Linux command 45
CHPID

in sysfs 15
map to PCHID 16
online attribute 15, 16
read FCES status 18

chpids, subchannel attribute 14
chreipl-fcp-mpath 173
chreipl, Linux command 574
chshut, Linux command 579
chunksize

prandom attribute 518
chunksize=, module parameters 517
chzcrypt, Linux command 581
chzdev 10
chzdev command 351
chzdev, Linux command 584
cio_ignore

disabled wait 560
procfs interface 775

cio_ignore, Linux command 591
cio_ignore=, kernel parameter 774
clock synchronization

enabling and disabling 375
switching on and off 375

cm_enable
channel subsystem sysfs attribute 14

cmb_enable
cmf attribute 538
common CCW attribute 9
tape attribute 224

cmd=, diag288 watchdog 124
cmf.format=, kernel parameter 537

cmf.maxchannels=, kernel parameter 537
cmm

avoid swapping with 407
background information 406

CMM
unload module 560

cmm.sender=, kernel parameters 451
CMMA 778
cmma=, kernel parameter 778
CMS disk layout 135
CMS1 labeled disk 135
cmsfs-fuse, Linux command 594
code page

for x3270 48
Collaborative Memory Management Assist 778
collecting QETH performance statistics 265
commands

SMC-D 319
commands, Linux

chccwdev 569
chchp 571
chcpu 339
chcpumf 573
chiucvallow 45
chreipl 574
chshut 579
chzcrypt 581
cio_ignore 591
cmsfs-fuse 594
cpacfstats 598
cpuplugd 601, 602
dasdfmt 610
dasdstat 615
dasdview 617
dmesg 5, 468
dumpconf 120
execstack 533
fdasd 628
genwqe_echo 391
genwqe_gunzip 391
genwqe_gzip 391
gunzip 393
gzip 393
hmcdrvfs 636
hsci 639
hyptop 640
icainfo 567
icastats 567
ip 3
iucvconn 46
iucvtty 46
lschp 650
lscpu 339
lscpumf 652
lscss 655
lsdasd 658
lshmc 661
lsluns 662
lsqeth 665
lsreipl 666
lsscm 667
lsshut 669
lsstp 674
lstape 670

Index 819

commands, Linux (continued)
lszcrypt 676
lszfcp 686
mon_fsstatd 688
mon_procd 693
osasnmpd 700
qetharp 701
qethconf 703
qethqoat 706
readelf 533
readlink 5, 468
scsi_logging_level 709
sg_inq 670
smc_chk 712
smc_rnics 722
smcd 713
smcr 717
tape390_crypt 729
tape390_display 733
tar 393
time 393
tunedasd 735
vmconvert 745
vmcp 739
vmur 741
zcryptctl 764
zcryptstats 768
zdsfs 749
zfcp_ping 212
zfcp_show 212
zhypinfo 755
zipl 57
zipl-editenv 757
zname 759
znetconf 760
zpcictl 763

commands, z/VM
sending from Linux 739

communication facility
Inter-User Communication Vehicle 315

compatible disk layout 133
compress=, btrfs mount option 387
compression

GenWQE 389
tape 226

conceal=, diag288 watchdog 124
config

cryptographic adapter attribute 503
configuration file

CPU control 603
cpuplugd 608
memory control 604
zipl 75

configure LPAR I/O devices 559
configuring standby CPU 340
conmode=, kernel parameter 43
connector_type, zfcp attribute 184
ConnectX-3 EN 331
ConnectX-4 331
console

definition 37
device names 37
device nodes 38
mainframe versus Linux 37

console device driver
kernel parameter 44
overriding default driver 43
restricting access to HVC terminal devices 45
SCLP line-mode buffer page reuse 45
SCLP line-mode buffer pages 45
specifying preferred console 44
specifying the number of HVC terminal devices 45

console device drivers
device and console names 37
features 35
terminal modes 38

console=, kernel parameter 44
control characters 51
control program identification 551
control unit

1750 131
2105 131
2107 131
3880 131
3990 131
6310 131
9343 131

controlling automatic port scans 187
converged network interface 282
converged network, attach KVM virtual server 284
cooperative memory management

set up 451
Coordinated Timing Network (CTN) 375, 674
coprocessor, cryptographic 487
core 339
core_siblings

CPU sysfs attribute 342
count

S/390 hypervisor file system attribute, z/VM guest 371
counters, hardware 598
CP Assist for Cryptographic Function 517
CP commands

send to z/VM hypervisor 739
VINPUT 55

CP Error Logging System Service 425
CP VINPUT 55
CP1047 594
CPACF

in-kernel cryptography 529
number of operations 598
protected key 523
support modules, in-kernel cryptography 530

cpacfstats, Linux command 598
cpc_name attribute 377
CPI

set attribute 552
sysplex_name setting 551
system_level setting 551, 553
system_name setting 551

CPI (control program identification) 551
CPU

managing 339
CPU capability change 340
CPU configuration 598, 601
CPU control

complex rules 607
configuration file 603

CPU hotplug

820 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

CPU hotplug (continued)
sample configuration file 608

CPU hotplug rules 605
CPU sysfs attribute

book_siblings 342
capability 340
core_siblings 342
dispatching 343
online 341
polarization 343
thread_siblings 342

CPU sysfs attributes
location of 339

cpu_delay
S/390 hypervisor file system attribute, z/VM guest 371

cpu_using
S/390 hypervisor file system attribute, z/VM guest 371

CPU-measurement counter facility 545
CPU-measurement facilities

chcpumf command 573
lscpumf command 652

CPU-measurement sampling facility
buffer limits 544

CPU, configuring standby 340
CPU, state 340
cpuplugd

complex rules 607
configuration file 608
service utility syntax 601

cpuplugd, Linux command 601, 602
cpustat

cpuplugd keywords
use with historical data 606

cputime
S/390 hypervisor file system attribute, LPAR 370

cputime_us
S/390 hypervisor file system attribute, z/VM guest 371

CRC32 529
create HSCI interface 282
CRT 487
crypto

display statistics 768
Crypto Express3 487
Crypto Express4 487
Crypto Express5 487
Crypto Express6S 487
Crypto Express7S 487
Crypto Express8S 487
cryptographic

request processing 489
cryptographic adapter

attributes 499
display information 676
master key state 501
verification pattern 501

cryptographic adapters
adding and removing dynamically 507
detection 489

cryptographic coprocessor 487
cryptographic device

Linux 491
LPAR 490
z/VM 491

cryptographic device driver

cryptographic device driver (continued)
API 511
features 487
hardware and software prerequisites 488
uevents 512
See also zcrypt

cryptographic device nodes 489
cryptographic domain

control 491
usage 491

cryptographic operations
number of 598

csulincl.h 511
CTN, Coordinated Timing Network 375, 674
CTR 529
cutype

common CCW attribute 9
tape attribute 224

D
DASD

access by udev-created device nodes 139
access by VOLSER 138
alias attribute 165
availability attribute 145
boot menu, LPAR example 94
booting from 92, 107
boxed 145
CMS disk layout 135
compatible disk layout 133
control unit attached devices 131
device driver 131
device names 136
discipline attribute 165
disk layout summary 136
displaying information 617
displaying overview 658
eer_enabled attribute 147
erplog attribute 150
expires attribute 151
extended error reporting 131
failfast attribute 150
fc_security attribute 161
features 131
forcing online 145
formatting ECKD 610
High Performance FICON 156
host_access_count attribute 160
hpf attribute 163
last_known_reservation_state attribute 159
Linux disk layout 135
module parameter 140
online attribute 148, 149
partitioning 628
partitions on 132
path_interval attribute 162
path_threshold attribute 162
PAV 156
performance statistics 615
performance tuning 735
raw_track_access attribute 156
readonly attribute 166
reservation_policy attribute 158

Index 821

DASD (continued)
safe_offline attribute 148
statistics 152
status attribute 166
timeout attribute 151, 166
uid attribute 166
use_diag attribute 146, 167
vendor attribute 167
virtual 131
volume label 133

DASD attributes in sysfs 164
DASD information, displaying 164
dasd_diag_mod 141
dasd_eckd_mod 141
dasd_fba_mod 141
dasd_mod 140
DASD, SCSI, and tape 67
dasd=

module parameter 140
dasdfmt, Linux command 610
dasdstat, Linux command 615
dasdview, Linux command 617
data

compression 389
consistency checking, SCSI 206
integrity extension 206
integrity field 206

datarouter=, module parameters 174
dbfsize=, module parameters 174
DCSS

access mode 440
add attribute 438
adding 438
device driver 435
device names 435
device nodes 435
exclusive-writable mode 435
minor number 439
performance monitoring using 406
remove attribute 442
save attribute 441
saving with properties 441
seglist attribute 439
shared attribute 440
with options 436

dcssblk 436
deactivating a qeth interface 259
debug feature 408
debugfs

DASD statistics 152
debugging

mlx4 334
mlx5 334

decompression, GenWQE 389
decryption 487
dedicated

S/390 hypervisor file system attribute, z/VM guest 371
delete, zfcp attribute 205
depth

cryptographic adapter attribute 499
des_s390, kernel module 530
determine channel path usage 559
device

interoperability matrix 169

device bus-ID
of a qeth interface 258

device driver
crypto 487
DASD 131
DCSS 435
Generic Work Queue Engine 389
HiperSockets 231
HMC media 379
internal shared memory 335
LCS 309
mlx4_en 331
mlx5_core 331
monitor stream application 415
OSA-Express (QDIO) 231
overview 7
PCIe 397
protected key 523
pseudorandom number 517
qeth 231
SCSI-over-Fibre Channel, See zfcp
smsgiucv_app 447
storage-class memory 213
tape 219
true random number 521
virtio CCW transport 465
vmcp 445
vmur 433
watchdog 123
z/VM *MONITOR record reader 419
z/VM recording 425
zcrypt 487

device drivers
support of the FCP environment 170

device names
block devices 466
console 37
DASD 136
DCSS 435
SCSI-attached tape 469
storage-class memory 213
tape 220
vmcp 445
vmur 433
z/VM *MONITOR record 419
z/VM recording 425

device nodes
block devices 466
CD/DVD drive 471
console 38
DASD 137
DCSS 435
GenWQE 391
SCSI 171
storage-class memory 213
tape 221
vmcp 445
vmur 433
z/VM *MONITOR record 419
z/VM recording 425
zcrypt 495
zfcp 171

device numbers 3
device special file, See device nodes

822 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

device view
by category 12
by device drivers 11

device_blocked
zfcp attribute (SCSI device) 200

devices
alias 165
attributes 9
balloon 462
base 165
CCW, types of 462
corresponding interfaces 5, 468
display for SMC-D 713
display for SMC-R 717
ignoring 774
in sysfs 9
initialization errors 10
types of CCW 462
working with newly available 10

devtype
common CCW attribute 9
tape attribute 224

DFLTCC 385
DFLTCC_LEVEL_MASK 385
dfltcc=, kernel parameter 387
dhcp 295
DHCP

required options 294
DIAG

access method 146
DIAG access method

for ECKD 136
for FBA 136

DIAG call 561, 795
diag_max_age, zfcp attribute 178
diagnose call 561, 795
diagnostics and troubleshooting 547
diagnostics, FCP channel 183
DIF 206
dif=, module parameters 174
Direct Access Storage Device, See DASD
Direct SNMP 299
disabled wait

booting stops with 561
cio_ignore 560

discipline
DASD attribute 165
qeth 244

discontiguous saved segments, See DCSS
disk layout

CMS 135
compatible 133
LDL 135
summary 136

dispatching
CPU sysfs attribute 343

displaying DASD information 164
displaying information

FCP channel and device 177
displaying IPL parameters 111
DIX 206
dix=, kernel parameters 174
dmesg 5, 468
domain, cryptographic 490

DPM 21
DPM Linux, booting 103
DPM partition, booting 103
drive, CD/DVD 471
drivers, See device driver
dsn

metadata file attribute 749
dsorg

metadata file attribute 749
dump

creating automatically after kernel panic 561
dump device

ECKD DASD 69
dump file

receive and convert 746
dump, virtual server 563
dumpconf, Linux command 120
dumped_frames, zfcp attribute 179
DVD drive 471
DVD drive, HMC 379
DVD, loading Linux 99
Dynamic Host Configuration Protocol, See DHCP
Dynamic Partition Manager Linux, booting 103
Dynamic Partitioning Manager 21

E
EADM subchannels

list 214
working with 214

EBCDIC
conversion through cmsfs-fuse 594
kernel parameters 91

ECB 529
ECDSA

P-256 529
P-384 529
P-521 529

ECKD
devices 131
disk layout summary 136
raw_track_access attribute 156

ECKD type DASD
preparing for use 143

EdDSA
Ed25519 529
Ed448 529

edit characters, z/VM console 55
Edwards-Curve Digital Signature Algorithm 529
EEDK 729
eer_enabled

DASD attribute 147
EKM 729
Elliptic Curve Digital Signature Algorithm 529
emulation of the HMC Operating System Messages applet 53
enable, qeth IP takeover attribute 270
encoding 594
encryption 487
encryption key manager 729
end-of-line character 54
end-to-end data consistency, SCSI 206
Endpoint Security, Fibre Channel 207
Enterprise PKCS#11 487
Enterprise Storage Server 131

Index 823

enviroment variable
DFLTCC 385
DFLTCC_LEVEL_MASK 385

environment variable 448
environment variables

for CP special messages 448
TERM 46
ZIPLCONF 75
ZLIB_CARD 392
ZLIB_DEFLATE_IMPL 392
ZLIB_INFLATE_IMPL 392
ZLIB_TRACE 392

EP11
display adapter information 676
supported functions 487

EP11 coprocessor 487
ep11.h 511
erplog, DASD attribute 150
Error Logging System Service 425
error_frames, zfcp attribute 179
errorflag

prandom attribute 518
escape character

for terminals 54
ESS 131
ethernet

CCW devices 468
interface names 468

Ethernet
interface name 238
LAN channel station 309

exclusive-writable mode
DCSS access 435

execstack, Linux command 533
expires, DASD attribute 151
extended error reporting

DASD 147
extended error reporting, DASD 131
extended remote copy 375
external encrypted data key 729

F
fabric_name

zfcp attribute 178
failed

zfcp attribute (channel) 182
zfcp attribute (port) 191

failfast, DASD attribute 150
fake_broadcast, qeth attribute 269
Fast Ethernet

LAN channel station 309
FBA

disk layout summary 136
FBA devices 131
FBA type DASD

preparing for use 144
FC Endpoint Security 207
fc_security

DASD attribute 161
zfcp attribute (port) 189

fc_security, zfcp attribute 178
FC-HBA 173
FC-HBA API functions 210

FCES
read for a CHPID 18

FCP
channel 169
channel path limits 169
debugging 173
device 169
traces 173

FCP channel
diagnostic data 183
displaying information 177

FCP channel path limits 169
FCP device

displaying information 177
FCP devices

listing 209
status information 186
sysfs structure 170

FCP environment 170
fcp_control_requests zfcp attribute 180
fcp_input_megabytes zfcp attribute 180
fcp_input_requests zfcp attribute 180
fcp_output_megabytes zfcp attribute 180
fcp_output_requests zfcp attribute 180
fdasd

menu commands 631
menu example 632
options, example 634

fdasd menu 630
fdasd, Linux command 628
fdisk command 172
fec_active, zfcp attribute 184
Federal Information Processing Standard 529, 779
Fibre Channel 169
Fibre Channel Endpoint Security

reading status of CHPID 18
Fibre Channel Endpoint Security, DASD 161
Field Programmable Gate Array 389
file

configuration, zipl 75
file system

hugetlbfs 365
file systems

cmsfs-fuse for z/VM minidisk 594
sysfs 7
XFS 206
zdsfs for z/OS DASD 749

FIPS 529
FIPS restrictions 529
fips=, kernel parameter 779
firmware_version

zfcp attribute 179
Flash Express memory 213
flooding, qeth attribute 278
for performance measuring 535
formatting 143
FPGA 389
FTP server, loading Linux 99
full ECKD tracks 156
full-screen mode terminal 46
function_handle

PCIe attribute 400
function_id

PCIe attribute 400

824 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

functions
qeth device driver 234

G
GB xi
Generic Work Queue Engine, See GenWQE
GenWQE

environment variables 392
Java acceleration 389
load distribution 391

genwqe_echo, command 391
genwqe_gunzip, command 391
genwqe_gzip, command 391
genwqe, package 391
getxattr 594, 749
GHASH 529
ghash_s390, kernel module 530
giga xi
Gigabit Ethernet

SNMP 299
GNU_STACK 533
gpfs, partition type 628
group

LCS attribute 310
qeth attribute 248

group devices
LCS 309
qeth 237

guest console transcript
vmur command 746

guest LAN sniffer 296
guest live migration 458
guest memory dump

vmur command 745
guest swapping 560
gunzip, command 393
gzip 383
gzip, command 393

H
hardware

configuration 21
random number 521
service level 561

hardware adapters, SAN access 169
hardware counter

reading with perf tool 542
hardware counters 598
hardware facilities 535
hardware information 555, 556
Hardware Management Console, See HMC
hardware status, z90crypt

hardware status, zcrypt 504
online

zcrypt sysfs attribute 504
zcrypt

hardware status 504
zcrypt sysfs attribute

online 504
hardware_version

zfcp attribute 179

hardware_version, zfcp attribute 178
hardware-acceleration, in-kernel cryptography 529
HBA API

developing applications that use 210
functions 210
running applications that use 211

HBA API support
zfcp 210

High Performance FICON 156
High Performance FICON, suppressing 141
high resolution polling timer 581
HiperSockets

bridge port 242
device driver 231
interface name 238
network traffic analyzer 295

HiperSockets Network Concentrator 290
historical data

cpuplugd keywords 606
HMC

as terminal 48
definition 37
for booting Linux 90
Integrated ASCII console applet 39, 40
Operating System Messages applet

on HMC 39
using in LPAR 39
using on z/VM 40
Web Services API 103, 106

HMC DVD drive 380, 381
HMC media

list media contents 661
mount media 636

HMC media, device driver 379
HMC Operating System Messages applet

emulation of the 53
HMC removable media

assign to LPAR 380
hmc_network attribute 377
hmcdrvfs, kernel module 379
hmcdrvfs, Linux command 636
host

KVM, setup 473
host_access_count

DASD attribute 160
hotplug

adding memory 348
CCW devices 18
memory 345

hotplug memory
defining to LPAR 346
defining to z/VM 347
huge pages 366
reboot 346

hotplug rules
CPU 605
memory 606

hpage=, module parameter 473
hpf

DASD attribute 163
HSCI interfaces

attach KVM virtual servers 284
creating 282
MacVTap 284

Index 825

HSCI interfaces (continued)
manage 639
using 281

hsci, Linux command 639
hsci, using on Linux 281
hsuid, qeth attribute 274
huge page support

change number of 366
display information about 366
read current number of 366

huge page support attribute
nr_hugepages 367

huge pages
hotplug memory 366

hugepages=, kernel parameters 365
hugetlbfs

virtual file system 365
HVC device driver 42
hvc_iucv_allow=, kernel parameter 45
hvc_iucv=, kernel parameter 45
hw_trap

qeth attribute 265
hwrng

trng counter 522
hwtype

cryptographic adapter attribute 499
Hyper-Threading 339
HyperPAV 156
hypervisor

service level 561
hypervisor capability 557
hypervisor information 556
hypfs 369
hyptop

select data 642
sort data 643
units 645

hyptop command
z/VM fields 644

hyptop, Linux command 640

I
IBM compatible disk layout 133
IBM Endpoint Security, Fibre Channel 207
IBM Java 394
IBM label partitioning scheme 132
IBM TotalStorage Enterprise Storage Server 131
ica_api.h 511
icainfo, Linux command 567
icastats, Linux command 567
idle

S/390 hypervisor file system attribute, z/VM guest 371
IDRC compression 226
ids=, module parameter 477
IEEE 802.3 Ethernet 529
IEP 533
if names 4
if_name

qeth attribute 257
IFCC 162
immediate failure of I/O requests 150
Improved Data Recording Capability compression 226
in_recovery

in_recovery (continued)
zfcp attribute (channel) 182
zfcp attribute (port) 189, 191
zfcp attribute (SCSI device) 200

in_recovery, zfcp attribute 178
in-kernel cryptography 529
inbound checksum

offload operation 260
inbound checksum, qeth 261
inbuf_size, qeth attribute 254
information

SMC-D 319
Initial Program Load, See IPL
initial RAM disk 92
initrd

module parameters 30
input/output configuration data set 21
instruction execution protection 533
Integrated Accelerator for zEDC 383
Integrated ASCII console applet

on HMC 39
interface

MTIO 221
network 3

interface control check 162
interface names

ethernet 468
qeth 238, 257
RoCE 332
storage-class memory 213
versus devices 5, 468
vmcp 445
vmur 433

interfaces
FC-HBA 173

internal shared memory
device driver 335

invalid_crc_count zfcp attribute 180
invalid_tx_word_count zfcp attribute 180
IOCDS 21
iocounterbits

zfcp attribute 200
ioctl

protected key device driver 526
iodone_cnt

zfcp attribute (SCSI device) 200
ioerr_cnt

zfcp attribute (SCSI device) 200
IOMMU 475
iorequest_cnt

zfcp attribute (SCSI device) 200
ip 3
IP address

confirming 259
duplicate 259
takeover 270
virtual 274

IP address takeover, activating and deactivating 271
ip-link

command 289
ipa_takeover, qeth attributes 270
IPL

displaying current settings 666
hotplug memory 346

826 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IPL (continued)
SCSI device

secure boot 58
IPL configurations 76
IPL device

FCP
device, IPL parameter 111
lun, IPL parameter 111
wwpn, IPL parameter 111

IPL devices
for booting 90
preparing 57

IPLipl_type
device 111
loadparm 111
parameters, displaying 111
secure 111

IPv6
qeth support for 238
stateless autoconfiguration 238

ISM
device driver 335
listing devices 335

ism module 335
ISO-8859-1 594
isolation, qeth attribute 262
IUCV

accessing terminal devices over 49
authorizations 316
enablement 316
maximum number of connections 316
OPTION MAXCONN 316

iucvconn
set up a z/VM guest virtual machine for 46
using on z/VM 42

iucvtty 46
iucvtty, Linux command 46

J
Java

huge page support 366
Java, GenWQE 389
Java, GenWQE acceleration 394
journaling file systems

write barrier 144

K
KASLR 127
KB xi
kdump 437, 563
KEK 729
kernel address space

layout randomization 127
kernel command line

variables 82
kernel configuration menu options

channel measurement facility 537
kernel cryptographic API 529
kernel module

aes_s390 530
af_iucv 316

kernel module (continued)
appldata_mem 409
appldata_net_sum 409
appldata_os 409
dasd_diag_mod 141
dasd_eckd_mod 141
dasd_fba_mod 141
dasd_mod 140
dcssblk 436
des_s390 530
eadm_sch 213
ghash_s390 530
hmcdrvfs 379
lcs 309
monwriter 415
paes_s390 530
pkey 523
qdio 231
qeth 244
qeth_l2 244
qeth_l3 244
scm_block 213
sha1_s390 530
sha256_s390 530
sha3_256_s390 530
sha3_512_s390 530
sha512_s390 530
smsgiucv_app 447
tape_34xx 222
tape_3590 222
vfio_ap 479
vfio_ccw 478
vfio_mdev 478, 479
vfio_pci 477
virtio_blk 462
virtio_gpu 462
virtio_input 462
virtio_net 462
virtio_rng 462
virtio_scsi 462
vmlogrdr 426
vmur 433

kernel panic
creating dump automatically after 561

kernel parameter
pci= 397

kernel parameter file
for z/VM reader 27

kernel parameter line
length limit for booting 27, 28
module parameters 30

kernel parameter linecommon variables 86
kernel parameter linereserve parameters 87
kernel parameters

and zipl 63
ap.apmask= 493
ap.aqmask= 493
ap.domain= 493
ap.poll_thread= 493
channel measurement facility 537
cio_ignore= 774
cmf.format= 537
cmf.maxchannels= 537
cmm.sender= 451

Index 827

kernel parameters (continued)
cmma= 778
conmode= 43
console= 44
dfltcc= 387
dix= 174
encoding 25
fips= 779
general 773
hugepages= 365
hvc_iucv_allow= 45
hvc_iucv= 45
maxcpus= 780
noexec= 533
nokaslr 781
nosmt 782
novx 783
possible_cpus= 784
ramdisk_size= 785
rd.zdev=no-auto 786
reboot 29
ro 787
root= 788
sclp_con_drop= 45
sclp_con_pages= 45
smt= 789
specifying 25
topology= 343
vdso= 790
vmhalt= 791
vmpanic= 792
vmpoff= 793
vmreboot= 794
zipl 25

kernel parameters, example 29
kernel source tree ix
kernel zlib 383
key

pkey-generated protected 524
key encrypting key 729
kilo xi
KVM

host setup 473
nested hosts 473
VFIO 475

KVM guest
console access, virsh 40

KVM virtual server, attach to converged network 284

L
LAN

sniffer 295
z/VM guest LAN sniffer 296

LAN channel station, See LCS
lancmd_timeout, LCS attribute 311
large page support 365
last_known_reservation_state, DASD attribute 159
layer 2

qeth discipline 236
layer 3

qeth discipline 236
layer2

qeth attribute 250

layer2, qeth attribute 239
lcs

recover attribute 313
LCS

activating an interface 312
device driver 309
group attribute 310
lancmd_timeout attribute 311
online attribute 311
subchannels 309
ungroup attribute 311

LCS device driver
setup 309

LDL disk layout 135
leap seconds 376
learning_timeout, qeth attribute 278
learning, qeth attribute 278
LGR 408
libcard, GenWQE 389
libfuse

package 594, 749
libhbaapi-dev 210
libica 488
libvirt 473
libzadc4, package 391
libzfcphbaapi0 211
libzfcphbaapi0, package 211
libzHW 389
lic_version, zfcp attribute 178
limits

of FCP channel path 169
line edit characters, z/VM console 55
line-mode terminal

control characters 51
special characters 51

link groups
display for SMC-D 713
display for SMC-R 717

link_failure_count, zfcp attribute 180
links

display for SMC-R 717
Linux

as LAN sniffer 295
Linux commands

generic options 567
Linux device special file, See device nodes
Linux guest relocation 408
Linux in DPM partition, booting 103
Linux in LPAR mode, booting 92
Linux on KVM, booting 111
Linux on z/VM

booting 106
reducing memory of 407

Linux source tree xi
lip_count, zfcp attribute 179
list media contents 380
listxattr 594, 749
live migration, virtual server 458
LNX1 labeled disk 135
LOADDEV 109
LOADNSHR operand

DCSS 435
log file, osasnmpd 305
log information

828 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

log information (continued)
FCP devices 186

logging
I/O subchannel status
549

logical boot device
base parameters 65
helper script 66

login at terminals 46
LOGREC, z/VM record 425
loss_of_signal_count, zfcp attribute 180
loss_of_sync_count, zfcp attribute 180
lost DASD reservation 158
LPAR

configuration
device pre-configuration 21
storage-class memory 213

DPM mode 21
hardware counters 541
I/O devices, configuring 559

LPAR configuration 213
LPAR Linux, booting 92
lrecl

metadata file attribute 749
lschp, Linux command 650
lscpu, Linux command 339
lscpumf, Linux command 652
lscss, Linux command 214, 655
lsdasd, Linux command 658
lshmc, Linux command 661
lsluns, Linux command 662
lsqeth

command 257
lsqeth, Linux command 665
lsreipl, Linux command 666
lsscm, Linux command 214, 667
lsshut, Linux command 669
lsstp, Linux command 674
lstape, Linux command 670
lszcrypt, Linux command 676
lszdev command 351
lszdev, Linux command 682
lszfcp, Linux command 686
LUNs

finding available 209
LVM 215
lvm, partition type 628

M
MAC

address learning 278
MAC addresses 239
MAC header

layer2 for qeth 239
MacVTap 284
magic sysrequest functions

hvc0 51
line-mode terminal 51
VT220 terminal 51

major and minor
block devices 466

major number
console devices 37

major number (continued)
DASD devices 136
tape devices 220
vmcp 445
z/VM recording 425
zcrypt with udev 495

management information base 299
manufacturer

zfcp attribute 179
master key state 501
max_KiB

S/390 hypervisor file system attribute, z/VM guest 371
maxcpus=, kernel parameter 780
maxframe_size

zfcp attribute 179
maximum frame size

qeth 254
MB xi
mcast_flooding, qeth attribute 278
measurement

channel path 14
measurements

PCIe attribute 401
Media Access Control (MAC) addresses 239
mediated device

VFIO AP 479
VFIO CCW 478

mediated device, VFIO 475
Medium Access Control (MAC) header 240
medium_state, tape attribute 225
mega xi
Mellanox

ConnectX-3 EN 331
ConnectX-4 331

mem_dela
S/390 hypervisor file system attribute, z/VM guest 371

memory
adding hotplug 348
block_size_bytes attribute 347
Flash Express 213
guest, reducing 407
hotplug 345
hotplug and reboot 346
state attribute 347
storage-class 213

memory control
complex rules 607
configuration file 604

memory hotplug
sample configuration file 608

memory hotplug rules 606
memory sysfs attribute

block_size_bytes 347
menu configuration 70, 77
metadata file for z/OS DASD 749
MFS 254
mgmtime

S/390 hypervisor file system attribute 370
S/390 hypervisor file system attribute, LPAR 370

MIB (management information base) 299
migration, virtual server 458
min_KiB

S/390 hypervisor file system attribute, z/VM guest 371
minor and major

Index 829

minor and major (continued)
block devices 466

minor number
console devices 37
DASD devices 136
DCSS devices 439
tape devices 220
vmcp 445
z/VM recording 425
z90crypt with udev 495

mkvps
AP queue attribute 501
cryptographic adapter attribute 501

mlx4_en
device driver 331

mlx4, debug 334
mlx5_core

device driver 331
mlx5, debug 334
modalias

common CCW attribute 9
cryptographic adapter attribute 499

mode
prandom attribute 518

mode terminal
full-screen 46

model
zfcp attribute 179
zfcp attribute (SCSI device) 200

modprobe 30
module

ism 335
module parameter

hpage= 473
ids= 477
nested= 473

module parameters
allow_lun_scan= 174
ber_stop= 174
boot configuration 30
cachesize= 379
chunksize= 517
dasd= 140
datarouter= 174
dbfsize= 174
dif= 174
kernel parameter line 30
mode=

module parameters 517
mondcss= 415, 421
queue_depth= 174
reseed_limit= 517
scm_block= 213
sender= 447

modules
qeth, removing 245

modulus-exponent 487
mon_fsstatd

command-line syntax 690
monitor data, processing 690
monitor data, reading 691
systemd service unit syntax 688

mon_fsstatd, command 688
mon_procd

mon_procd (continued)
command-line syntax 695
monitor data, reading 698

mon_procd, command 693
mon_statd

monitor data, processing 695
systemd service unit syntax 693

mondcss=, module parameters 415, 421
monitor data

read 406
monitor DCSS 421
monitor stream

module activation 410
on/off 409
sampling interval 410

monitor stream application
device driver 415

monitoring
z/VM performance 405

monitoring Linux instances 405
mount media contents 381
mount point

debugfs xi
procfs xi
sysfs xi

mt-st, package 226
MTIO interface 221
MTU

qeth 258
multicast forwarding 278
multicast_router, value for qeth router attribute 267
multipath

failover 173
multithreading 339

N
name

devices, See device names
ethernet interfaces 468

names
DASD 136

native, partition type 628
nested hosts, KVM 473
nested=, module parameter 473
net-snmp 299
network concentrator

examples 292
Network Concentrator 290
network interfaces 3
network names 4
network traffic analyzer

HiperSockets 295
no_prio_queueing 251
no_router, value for qeth router attribute 267
node_name

zfcp attribute (port) 189
node, device, See device nodes
noexec=

kernel parameter 533
nokaslr, kernel parameter 781
non-operational terminals

preventing re-spawns for 47
non-priority commands 53

830 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

non-rewinding tape device 219
nos_count, zfcp attribute 179
nosmt, kernel parameter 782
novx, kernel parameter 783
nowayout=, diag288 watchdog 124
NPIV

example 185
FCP channel mode 185
for FCP channels 173
removing SCSI devices 205

nr_hugepages
huge page support attribute 367

NVM Express 217
NVMe 217
NVMe disk 67

O
object ID 299
offline

CHPID 15, 16
devices 9

offload operations
inbound checksum 260
outbound checksum 260
TCP segmentation offload (TSO) 260

OID (object ID) 299
on-chip data compression 383
online

CHPID 15, 16
common CCW attribute 9
CPU attribute 341
cryptographic adapter attribute 504
DASD attribute 148, 149
LCS attribute 311
qeth attribute 256
tape attribute 223, 224
TTY attribute 51
zfcp attribute 176

onlinetime
S/390 hypervisor file system attribute, LPAR 370

Open Source Development Network, Inc. 299
openCryptoki, library 511
Operating System Messages applet

emulation of the HMC 53
operation, tape attribute 225
optical_port, zfcp attribute 184
OPTION MAXCONN 316
optional properties

DCSS 436
OSA-Express

device driver 231
LAN channel station 309
SNMP subagent support 299

OSA-Express MIB file 301
osasnmpd

access control 301
checking the log file 305
master agent 299
setup 300
starting the subagent 304
stopping 306
subagent 299

osasnmpd, command 700

osasnmpd, OSA-Express SNMP subagent 299
OSDN (Open Source Development Network, Inc.) 299
other

S/390 hypervisor file system attribute, z/VM guest 371
outbound checksum

offload operation 260
outbound checksum, qeth 261
overlap with guest storage 420

P
package

genwqe 391
libfuse 749
libhbaapi-dev 210
libhugetlbfs 365
libica 488
libzadc4 391
mt-st 226
openCryptoki 511
qclib 567
s390-tools 567
smc-tools 567
util-linux 339

paes_s390, kernel module 530
page pool

static 407
timed 407

para-virtualization 455
parallel access volume (PAV) 165
parameter

kernel and module 25
parameters

displaying IPL 111
partition

on DASD 132
schemes for DASD 132
table 134

partitioning
SCSI devices 172

pass-through, VFIO 475
path_interval

DASD attribute 162
path_threshold

DASD attribute 162
PAV (parallel access volume) 165
PAV enablement, suppression 141
pchid

PCIe attribute 400
PCHID

map to CHPID 16
pci=, kernel parameter 397
PCIe

defective 400
device driver 397
function_handle attribute 400
function_id attribute 400
pchid attribute 400
pfgid attribute 400
pfip attribute 400, 401
power attribute 398
recover attribute 399
set up 397
statistics attribute 401

Index 831

PCIe (continued)
uid attribute 400
vfn attribute 400, 401

peer_d_id, zfcp attribute 178
peer_wwnn, zfcp attribute 178
peer_wwpn, zfcp attribute 178
pendingq_count

cryptographic adapter attribute 500, 501
perf tool

reading a hardware counter 542
reading sample data 544

performance
CPU-measurement facilities 541
DASD 152, 615

performance measuring
with hardware facilities 535

performance monitoring
z/VM 405

performance statistics, QETH 265
Peripheral Component Interconnect 397
permanent_port_name, zfcp attribute 179, 185
permissions

S/390 hypervisor file system 372
persistent device configuration 351
pfgid

PCIe attribute 400
pfip

PCIe attribute 400, 401
physical channel ID

for CHPID 16
physical_s_id, zfcp attribute 185
pimpampom, subchannel attribute 14
pkey

protected AES key 525
secure key 524

pkey-generated protected key 524
pkey, kernel module 523
pksc11.h 511
PNET ID 335
polarization

CPU sysfs attribute 343
values 343

poll thread
enable using chcrypt 581

poll_thread
AP bus 497
cryptographic adapter attribute 505

poll_timeout
cryptographic adapter attribute 506
set using chcrypt 581

port scan
controlling 187

port_id
zfcp attribute (port) 189

port_id, zfcp attribute 179
port_name

zfcp attribute (port) 189
port_name, zfcp attribute 179
port_remove, zfcp attribute 191
port_rescan, zfcp attribute 186
port_scan_backoff 187
port_scan_ratelimit 187
port_state

zfcp attribute (port) 189

port_tx_type, zfcp attribute 184
port_type, NPIV 193
port_type, zfcp attribute 179
portno, qeth attribute 254
ports

listing 209
possible_cpus=, kernel parameter 784
power attribute

PCIe 398
prandom

byte_counter attribute 518
chunksize attribute 518
errorflag attribute 518
mode attribute 518

preferred console 44
preparing as dump device 67
preparing ECKD 143
preparing FBA 144
prerequisites 131
prim_seq_protocol_err_count, zfcp attribute 180
primary_connector, value for qeth router attribute 267
primary_router, value for qeth router attribute 267
prio_queueing_prec 251
prio_queueing_skb 251
prio_queueing_vlan 251
prio_queueing, value for qeth priority_queueing attribute 252
priority command 53
priority_queueing, qeth attribute 251
prng

module 517
reseed 520
reseed_limit 519

processors
cryptographic 7

procfs
appldata 409
cio_ignore 775
magic sysrequest function 52
VLAN 289

programming interfaces
protected key device driver 526

promiscuous mode 242
prot_capabilities

zfcp attribute 206
protected key

pkey generated 524
protected key device driver

programming interfaces 526
protected keyswap disk 525
proxy ARP 273
proxy ARP attributes 247
pseudorandom number

device driver 517
PSW

disabled wait 561
purge, z/VM recording attribute 428
PVMSG 53

Q
qclib 556
qclib, package 567
QDIO 237
QEMU 473

832 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

qeth
activating an interface 258
activating and deactivating IP addresses for takeover
271
auto-detection 238
bridge_hostnotify attribute 242
bridge_invisible attribute 278
bridge_role attribute 242, 275
bridge_state attribute 242
buffer_count attribute 253
card_type attribute 255
configuration tool 703
deactivating an interface 259
device driver 231
discipline, switching 244
displaying device overview 665
enable attribute for IP takeover 270
fake_broadcast attribute 269
flooding attribute 278
function summary 234
group attribute 248
group devices, names of 236
hsuid attribute 274
hw_trap attribute 265
if_name attribute 257
inbuf_size attribute 254
ipa_takeover attributes 270
isolation attribute 262
layer 2 236
layer 3 236
layer2 attribute 239, 250
learning attribute 278
learning_timeout attribute 278
mcast_flooding attribute 278
MTU 258
online attribute 256
portno attribute 254
priority_queueing attribute 251
problem determination attribute 246
proxy ARP attributes 247
recover attribute 260
removing modules 245
route4 attribute 266
route6 attribute 266
rx_bcast attribute 278
sniffer attributes 247
subchannels 237
summary of attributes 245–247
takeover_learning attribute 278
takeover_setvmac attribute 278
TCP segmentation offload 262
VIPA attributes 247
vnicc attributes 278

qeth device driver
IPv6 238

qeth interfaces, mapping 5, 468
QETH performance statistics 265
qetharp, Linux command 701
qethconf, Linux command 703
qethqoat, Linux command 706
query FCES

DASD 161
query host access

DASD 160

query HPF
DASD 163

queue_depth, zfcp attribute 201
queue_depth=, module parameters 174
queue_ramp_up_period, zfcp attribute 201
queueing, priority 251

R
raid, partition type 628
RAM disk, initial 92
ramdisk_size=, kernel parameter 785
random number

device driver 517, 521
random numbers

reading 518, 521
randomization

kernel address space layout 127
raw_track_access, DASD attribute 156
raw-track access mode 156, 617, 749
rd.zdev=no-auto, kernel parameter 786
RDMA 397
read monitor data 406
readelf, Linux command 533
readlink, Linux command 5, 468
readonly

DASD attribute 166
reboot

alternative source 114
hotplug memory 346
kernel parameters 29

receive checksum, qeth 261
recfm

metadata file attribute 749
record layout

z/VM 425
recording, z/VM recording attribute 427
recover

PCIe attribute 399
recover, lcs attribute 313
recover, qeth attribute 260
reflective relay mode 262
relative port number

qeth 254
Remote Direct Memory Access (RDMA) 397
Remote Spooling Communications Subsystem 741
Removable media, loading Linux 99
remove channel path

DASD 162
remove, DCSS attribute 442
request processing

cryptographic 489
request_count

cryptographic adapter attribute 499
requestq_count

cryptographic adapter attribute 500, 501
rescan

zfcp attribute (SCSI device) 203
reseed

prandom attribute 518
prng 520

reseed_limit
prandom attribute 518
prng 519

Index 833

reseed_limit=, module parameters 517
reservation state

DASD 159
reservation_policy, DASD attribute 158
reset_statistics

zfcp attribute 179
respawn prevention 47
restrictions 131
retrieving hardware information 556
rev

zfcp attribute (SCSI device) 200
rewinding tape device 219
RFC

1950 (zlib) 389
1951 (deflate) 389
1952 (gzip) 389
2131 (DHCP) 294
2132 (DHCP options and BOOTP Vendor Extensions)
294

Rivest-Shamir-Adleman 487
ro, kernel parameter 787
RoCE 397
roles

zfcp attribute (port) 189
root=, kernel parameter 788
route4, qeth attribute 266
route6, qeth attribute 266
router

IPv4 router settings 266
IPv6 router settings 266

RSA 487
RSA exponentiation 487
RSCS 741
rx_bcast, qeth attribute 278
rx_frames, zfcp attribute 179
rx_power, zfcp attribute 184
rx_words, zfcp attribute 179

S
s_id, zfcp attribute 185
S/390 hypervisor file system

defining access rights 372
directory structure 369
LPAR directory structure 369
updating hypfs information 373
z/VM directory structure 370

s390_sthyi() 556
s390-tools, package 567
s390dbf 408
safe_offline

DASD attribute 148
sample_count, cmf attribute 538
sampling facility

reading data 544
SAN access, adapters 169
save, DCSS attribute 441
sclp_con_drop=, kernel parameter 45
sclp_con_pages=, kernel parameter 45
SCM 215
scm_block=, module parameters 213
script

base device 66
SCSI

SCSI (continued)
data consistency checking 206
multipath devices 172
tape 469
virtual CD/DVD drive 471
virtual HBA 462

SCSI device
automatically attached, configuring 193
configuring manually 193

SCSI devices
information in sysfs 199
partitioning 172
removing 205
sysfs structure 170

SCSI tape
lstape data 672

scsi_host_no, zfcp attribute 195
scsi_id, zfcp attribute 195
scsi_level

zfcp attribute (SCSI device) 200
scsi_logging_level, Linux command 709
scsi_lun, zfcp attribute 195
scsi_target_id

zfcp attribute (port) 189
SCSI-over-Fibre Channel 169
SCSI-over-Fibre Channel device driver 169
SCSI, booting from 92, 108
SE (Support Element) 90
secondary_connector, value for qeth router attribute 267
secondary_router, value for qeth router attribute 267
seconds_since_last_reset

zfcp attribute 179
secure boot

zipl syntax 58
secure key

pkey 524
seglist, DCSS attribute 439
segmentation offload, TCP 262
send files

vmur command 747
send files to z/VSE

vmur command 748
sender=, module parameter 447
serial_number, zfcp attribute 179
Server Time Protocol

show information 674
service levels

reporting to IBM Support 561
service utility

cpuplugd 601
set, CPI attribute 552
setup

KVM host 473
LCS device driver 309
standard VIPA 285

setxattr 594
sfp_invalid, zfcp attribute 183
sg_inq, Linux command 670
sg3_utils, package 670
SHA-1 529
SHA-256 529
SHA-512

in-kernel cryptography 529
sha1_s390, kernel module 530

834 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

sha256_s390, kernel module 530
sha3_256_s390, kernel module 530
sha3_512_s390, kernel module 530
SHA3-256 529
SHA3-512 529
sha512_s390, kernel module 530
share_KiB

S/390 hypervisor file system attribute, z/VM guest 371
shared, DCSS attribute 440
shutdown actions 119
SIE capability 557
Simple Network Management Protocol 299
simultaneous multithreading 339
smc_chk, Linux command 712
smc_pnet, Linux command 721
smc_rnics, Linux command 722
smc_run, Linux command 724
SMC-D

information 319
tools 319
troubleshooting 319

smc-tools, package 567
smcd info 713
smcd, Linux command 713
smcr info 717
smcr, Linux command 717
smcss, Linux command 725
SMSG_ID 448
SMSG_SENDER 448
smsgiucv_app

device driver 447
SMT 339
smt=, kernel parameter 789
sniffer

attributes 247
sniffer, guest LAN 296
snippet, BLS 80
SNMP 299
SNMP queries 305
snmpcmd command 305
source tree, Linux xi
special characters

line-mode terminals 51
z/VM console 55

special file
DASD 137
See also device nodes

speed, zfcp attribute 179
ssch_rsch_count, cmf attribute 538
standard VIPA

adapter outage 286
setup 285

standby CPU, configuring 340
state

sysfs attribute 347
zfcp attribute (SCSI device) 204

state, tape attribute 225
stateless autoconfiguration, IPv6 238
static page pool

reading the size of the 451
static page pool size

setting to avoid guest swapping 560
statistics

crypto 768

statistics (continued)
DASD 152, 615
display for SMC-D 713
display for SMC-R 717
PCIe attribute 401
QETH 265

status
DASD attribute 166

status information
FCP devices 186

status, CHPID attribute 15, 16
STHYI instruction 556
storage

memory hotplug 345
storage-class memory

device driver 213
device names 213
device nodes 213
displaying overview 667
working with increments 214

Store Hypervisor Information instruction 556
STP

leap seconds 376
show information 674
sysfs interface 375

strength
prandom attribute 518

subchannel
status logging 549

subchannels
attributes in sysfs 13
CCW and CCW group devices 7
displaying overview 655
EADM 213
in sysfs 12
LCS 309
qeth 237

support
AF_IUCV address family 315

Support Element 90
supported_classes

zfcp attribute (port) 189
supported_classes, zfcp attribute 179
supported_speeds, zfcp attribute 179
swap disk

pkey-generated protected key 525
swap, partition type 628
swapping

avoiding 407
symbolic_name, zfcp attribute 179
SYMPTOM, z/VM record 425
syntax diagrams 799
syntax overview

zipl 58
sysfs

channel subsystem view 12
device view 12
device view by category 12
device view by drivers 11
FCP devices 170
information about SCSI devices 199
SCSI devices 170

sysfs attribute
block_size_bytes 347

Index 835

sysfs attribute (continued)
cm_enable 14
state 347

sysfs, DASD attributes 164
sysinfo 555
sysplex_name, CPI setting 551
system states

displaying current settings 669
system time 375
system time protocol 375
system_level, CPI setting 551, 553
system_name, CPI setting 551
systemd 47

T
T10 DIF 207
takeover_learning, qeth attribute 278
takeover_setvmac, qeth attribute 278
tape

blocksize attribute 224
booting from 92, 98, 106
cmb_enable attribute 224
cutype attribute 224
device names 220
device nodes 221
devtype attribute 224
display support 733
displaying overview 670
encryption support 729
IDRC compression 226
loading and unloading 226
medium_state attribute 225
MTIO interface 221
online attribute 223, 224
operation attribute 225
state attribute 225
uid attribute 401

tape device driver 219
tape devices

typical tasks 222
tape390_crypt, Linux command 729
tape390_display, Linux command 733
tar command, acceleration 393
TCP segmentation offload 262
TCP segmentation offload (TSO)

offload operation 260
TCP/IP

ARP 241
DHCP 294
service machine 332, 335

TDEA 517
TDES

in-kernel cryptography 529
temperature, zfcp attribute 183
TERM, environment variable 46
terminal

3270, switching the views of 50
accessing over IUCV 49
CCW, switching device on- or offline 50
enabling user logins with /etc/sysconfig/init 46
line-mode 46
mainframe versus Linux 37
non-operational, preventing re-spawns for 47

terminal (continued)
provided by the 3270 terminal device driver 46

terminals
escape character 54

tgid_bind_type, zfcp attribute 179
thread_siblings

CPU sysfs attribute 342
time

command 393
cpuplugd keyword

use with historical data 606
time-of-day clock 375
time, command 393
timed page pool

reading the size of the 452
timed page pool size

setting to avoid guest swapping 560
timeout

DASD attribute 166
DASD I/O requests 151
zfcp attribute (SCSI device) 204

timeout for LCS LAN commands 311
timeout, DASD attribute 151
TOD

leap seconds 376
TOD clock 375
topology=, kernel parameter 343
total

S/390 hypervisor file system attribute, z/VM guest 371
transmit checksum

offload operation 260
transmit checksum, qeth 261
Triple Data Encryption Standard 517
triple DES 517
trng

byte_counter attribute 522
TRNG device driver

setup 521
troubleshooting

SMC-D 319
true random numbers

reading 521
true random-number device driver

setup 521
TTY

console devices 37
online attribute 51
routines 38

ttyrun
systemd 47

tunedasd, Linux command 735
tuning automatic port scans 187
tx_bias, zfcp attribute 184
tx_frames, zfcp attribute 179
tx_power, zfcp attribute 184
tx_words, zfcp attribute 179
type

cryptographic adapter attribute 499
S/390 hypervisor file system attribute 370
S/390 hypervisor file system attribute, LPAR 370
zfcp attribute (SCSI device) 200

836 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

U
udev

DASD device nodes 137
handling CP special messages 448

uevent 448
uevents, crypto 512
uid

DASD attribute 166
PCIe attribute 400, 401

ungroup
LCS attribute 311

unit_add, zfcp attribute 193
unit_remove, zfcp attribute 205
update

S/390 hypervisor file system attribute 369
S/390 hypervisor file system attribute, z/VM 370

updating information
S/390 hypervisor file system 373

USB storage, HMC 379
USB-attached storage, loading Linux 99
use_diag

DASD attribute 167
use_diag, DASD attribute 146
used_KiB

S/390 hypervisor file system attribute, z/VM guest 371
user terminal login 47
user.dsorg

extended attribute for z/OS data set
749

user.lrecl
extended attribute for z/OS data set
749

user.recfm
extended attribute for z/OS data set
749

using HSCI interfaces 281
using SCM devices with 215

V
VACM (View-Based Access Control Mechanism) 301
variables

for kernel command line 82
vcc, zfcp attribute 183
vdso=, kernel parameter 790
vendor

DASD attribute 167
zfcp attribute (SCSI device) 200

VEPA mode 262
verification pattern 501
versus guest storage 437
VFIO 475
VFIO virtualization 455
vfio_ap, kernel module 479
vfio_ccw, kernel module 478
vfio_mdev, kernel module 478, 479
vfio_pci, kernel module 477
vfn

PCIe attribute 400, 401
view

channel subsystem 12
device 12
device by category 12

view (continued)
device by drivers 11

View-Based Access Control Mechanism (VACM) 301
VINPUT

CP command 55
VIPA (virtual IP address)

attributes 247
description 274, 285
example 286

VIPA, standard
adapter outage 286
setup 285

virtio paravirtualization 455
virtio-blk 455, 466
virtio-net 455
virtio, kernel modules 462
virtual

DASD 131
IP address 274

virtual dynamic shared object 790
Virtual Ethernet Port Aggregator mode 262
Virtual Flash Memory 213
Virtual Function I/O 475
virtual server

dump 563
live migration 458

virtualization
VFIO 455
virtio 455

VLAN
configure 289
introduction to 287

VLAN example 289
vmconvert, Linux command 745
vmcp

device driver 445
device names 445
device nodes 445

vmcp, Linux command 739
vmhalt=, kernel parameter 791
vmpanic=, kernel parameter 792
vmpoff=, kernel parameter 793
vmreboot=, kernel parameter 794
VMRM 408
VMSG 53
vmur

device driver 433
device names 433
device nodes 433

vmur command
FTP 746
guest memory dump 745
log console transcript 746
read console transcript 746
send files 747
send files to z/VSE 748
z/VM reader as IPL device 747

vmur, Linux command 741
VNIC characteristics 278
vnicc, qeth attributes 278
VOL1 labeled disk 133
VOLSER 133
VOLSER, DASD device access by 138
volume label 133

Index 837

Volume Table Of Contents 134
VTOC 133, 134

W
watchdog

device driver 123
when adding DCSS 438

Web Services API
HMC 103, 106

weight_cur
S/390 hypervisor file system attribute, z/VM guest 371

weight_max
S/390 hypervisor file system attribute, z/VM guest 371

write barrier 144
wwpn, zfcp attribute 185

X
x3270 code page 48
XFS 206
XRC, extended remote copy 375
XTS 529

Z
z/VM

guest LAN sniffer 296
monitor stream 409
performance monitoring 405

z/VM *MONITOR record
device name 419
device node 419

z/VM *MONITOR record reader
device driver 419

z/VM console, line edit characters 55
z/VM discontiguous saved segments, See DCSS
z/VM reader

booting from 110
z/VM reader as IPL device

vmur command 747
z/VM record layout 425
z/VM recording

device names 425
device nodes 425

z/VM recording device driver
autopurge attribute 428
autorecording attribute 427
purge attribute 428
recording attribute 427

z/VM spool file queues 741
z90crypt

hardware status 504
z90crypt sysfs attribute

poll_thread 505
zcrypt

device driver 487
device nodes 495
kernel parameter 493

zcrypt configuration 581, 676, 764
zcrypt sysfs attribute

ap_interrupts 506
depth 499

zcrypt sysfs attribute (continued)
hwtype 499
modalias 499
poll_thread 505
request_count 499
type 499

zcryptctl, Linux command 764
zcryptstats, Linux command 768
zdev:early 21
zdsfs, Linux command 749
zEDC

applications in user space 383
compression levels 384
features 383
kernel 383

zEDC Express 389
zEnterprise Data Compression 383
zfcp

access_denied attribute (FCP LUN) 200
access_denied attribute (port) 189
access_denied attribute (SCSI device) 200
access_shared attribute 200
b2b_credit attribute 184
card_version attribute 178
connector_type attribute 184
delete attribute 205
device driver 169
device nodes 171
device_blocked attribute (SCSI device) 200
diag_max_age attribute 178
dumped_frames attribute 179
error_frames attribute 179
fabric_name attribute 178
failed attribute (channel) 182
failed attribute (port) 191
fc_security attribute 178
fc_security attribute (port) 189
fcp_control_requests attribute 180
fcp_input_megabytes attribute 180
fcp_input_requests attribute 180
fcp_output_megabytes attribute 180
fcp_output_requests attribute 180
features 169
fec_active attribute 184
firmware_version attribute 179
hardware_version attribute 178, 179
HBA API support 210
in_recovery attribute 178
in_recovery attribute (channel) 182
in_recovery attribute (port) 189, 191
in_recovery attribute (SCSI device) 200
invalid_crc_count attribute 180
invalid_tx_word_count attribute 180
iocounterbits attribute 200
iodone_cnt attribute (SCSI device) 200
ioerr_cnt attribute (SCSI device) 200
iorequest_cnt attribute (SCSI device) 200
lic_version attribute 178
link_failure_count attribute 180
lip_count attribute 179
loss_of_signal_count attribute 180
loss_of_sync_count attribute 180
manufacturer attribute 179
maxframe_size attribute 179

838 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

zfcp (continued)
model attribute 179
model attribute (SCSI device) 200
node_name attribute (port) 189
nos_count attribute 179
online attribute 176
optical_port attribute 184
peer_d_id attribute 178
peer_wwnn attribute 178
peer_wwpn attribute 178
permanent_port_name attribute 179, 185
physical_s_id attribute 185
port_id attribute 179
port_id attribute (port) 189
port_name attribute 179
port_name attribute (port) 189
port_remove attribute 191
port_rescan attribute 186
port_state attribute (port) 189
port_tx_type attribute 184
port_type attribute 179
prim_seq_protocol_err_count attribute 180
prot_capabilities attribute 206
queue_depth attribute 201
queue_ramp_up_period attribute 201
rescan attribute (SCSI device) 203
reset_statistics attribute 179
rev attribute (SCSI device) 200
roles attribute (port) 189
rx_frames attribute 179
rx_power attribute 184
rx_words attribute 179
s_id attribute 185
scsi_host_no attribute 195
scsi_id attribute 195
scsi_level attribute (SCSI device) 200
scsi_lun attribute 195
scsi_target_id attribute (port) 189
seconds_since_last_reset attribute 179
serial_number attribute 179
sfp_invalid attribute 183
speed attribute 179
state attribute (SCSI device) 204
supported_classes attribute 179
supported_classes attribute (port) 189
supported_speeds attribute 179
symbolic_name attribute 179
temperature attribute 183
tgid_bind_type attribute 179
timeout attribute (SCSI device) 204
tx_bias attribute 184
tx_frames attribute 179
tx_power attribute 184
tx_words attribute 179
type attribute (SCSI device) 200
unit_add attribute 193
unit_remove attribute 205
vcc attribute 183
vendor attribute (SCSI device) 200
wwpn attribute 185
zfcp_access_denied attribute (SCSI device) 200
zfcp_failed attribute (SCSI device) 202
zfcp_in_recovery attribute (SCSI device) 200, 202

zfcp HBA API 173

zfcp HBA API library 211
zfcp traces 173
zfcp_access_denied

zfcp attribute (SCSI device) 200
zfcp_failed

zfcp attribute (SCSI device) 202
zfcp_in_recovery

zfcp attribute (SCSI device) 200, 202
zfcp_ping 212
zfcp_show 212
zhmc command, DPM 106
zhmc command, LPAR 103
zhypinfo, Linux command 755
zipl

and kernel parameters 63
base functions 57
base parameters 65
configuration file 75
configuration file structure 75
environment file 82, 86, 87
installed environment editing 757
Linux command 57
menu configurations 77
modes 58
parameters 71
syntax overview 58

zipl boot menu 37
zipl environment 85
zipl syntax

secure boot 58
zipl-editenv, Linux command 757
ZIPLCONF, environment variable 75
zlib 383
ZLIB_CARD, environment variable 392
ZLIB_DEFLATE_IMPL, environment variable 392
ZLIB_INFLATE_IMPL, environment variable 392
ZLIB_TRACE, environment variable 392
zlib, GenWQE 389
zlib, RFC 1950 389
zname, Linux command 759
znetconf, Linux command 760
zpcictl 399
zpcictl, Linux command 763

Index 839

840 Linux on Z and LinuxONE: Ubuntu Server 22.04 LTS Device Drivers, Features, and Commands

IBM®

Part Number:

SC34-2765-03

(1
P)
 P

/N
:

	Contents
	Summary of changes
	What's new for Ubuntu Server 22.04 LTS

	About this document
	How this document is organized
	Who should read this document
	Hypervisor-specific information
	Conventions and assumptions used in this publication
	Authority
	Terminology
	sysfs and procfs
	debugfs
	The Linux source tree
	Number prefixes
	Hexadecimal numbers
	Highlighting

	Part 1. General concepts
	Chapter 1. How devices are accessed by Linux
	Device nodes and major/minor numbers
	Network interfaces
	Predictable network device names
	Matching devices with the corresponding interfaces
	Main steps for setting up a network interface

	Chapter 2. Devices in sysfs
	Device categories
	Device directories
	Device attributes
	Setting attributes
	Working with newly available devices

	Device views in sysfs
	Device driver view
	Device category view
	Device view
	Channel subsystem view
	Subchannel attributes

	Channel path measurement
	Channel path ID information
	Setting a CHPID logically online or offline
	Configuring a CHPID on LPAR
	Finding the physical channel associated with a CHPID
	Checking the FCES status of a CHPID

	CCW hotplug events

	Chapter 3. Device auto-configuration for Linux in LPAR mode
	Making devices available to Linux
	Managing auto-configuration data
	Displaying auto-configuration data
	Modifying the auto-configuration
	Overriding the auto-configuration for devices that are used early in the boot process

	Chapter 4. Kernel and module parameters
	Kernel parameters
	Specifying kernel parameters
	Including kernel parameters in a boot configuration
	Running zipl in configuration-file mode
	Running zipl in command-line mode

	Using a kernel parameter file in the z/VM reader
	Specifying kernel parameters when booting Linux
	Adding kernel parameters to a boot configuration
	Replacing all kernel parameters in a boot configuration

	How kernel parameters from different sources are combined
	Examples for kernel parameters
	Displaying the current kernel parameter line
	Kernel parameters for rebooting

	Module parameters
	Specifying module parameters
	Specifying module parameters with modprobe
	Module parameters on the kernel parameter line

	Including module parameters in a boot configuration
	Displaying information about the modules

	Part 2. Booting and shutdown
	Chapter 5. Console device drivers
	Console features
	What you should know about the console device drivers
	Console terminology
	Before you have a Linux terminal - the zipl boot menu
	Device and console names
	Device nodes
	Terminal modes
	How console devices are accessed
	Using the HMC for Linux in an LPAR
	Using the HMC for Linux on z/VM
	Using virsh on a KVM host
	Using a 3270 terminal emulation for Linux on z/VM
	Using a 3270 terminal emulation for Linux on KVM
	Using iucvconn on Linux on z/VM

	Setting up the console device drivers
	Console kernel parameter syntax
	Setting up a z/VM guest virtual machine for iucvconn
	Setting up a line-mode terminal
	Setting up a full-screen mode terminal
	Setting up a terminal provided by the 3270 terminal device driver
	Enabling user logins
	Enabling user logins for 3270 terminals
	Preventing respawns for non-operational HVC terminals

	Setting up the code page for an x3270 emulation on Linux

	Working with Linux terminals
	Using the terminal applets on the HMC
	Accessing terminal devices over z/VM IUCV
	Switching the views of the 3270 terminal device driver
	Setting a CCW terminal device online or offline
	Entering control and special characters on line-mode terminals
	Using the magic sysrequest feature
	Activating and deactivating the magic sysrequest feature
	Triggering magic sysrequest functions from procfs

	Using a z/VM emulation of the HMC Operating System Messages applet
	Priority and non-priority commands
	Case conversion
	Using the escape character
	Using the end-of-line character
	Simulating the Enter and Spacebar keys

	Using a 3270 terminal in 3215 mode

	Chapter 6. Initial program loader for IBM Z - zipl
	Usage
	zipl base functions
	zipl modes and syntax overview
	Preparing a boot device
	How kernel parameters from different sources are combined

	Preparing a logical device as a boot device
	Using a helper script
	Using base device parameters
	Writing your own helper script

	Preparing a dump device
	Preparing a multi-volume dump on ECKD DASD
	Installing a menu configuration

	Parameter overview
	Configuration file structure
	Default section
	IPL configurations
	Menu configurations

	BLS configuration snippets
	zipl environment - Variables for the kernel command line
	Creating variables for the kernel command line
	zipl environment file syntax
	Modifying a zipl environment block with zipl-editenv
	Specifying common variables across multiple boot menu entries
	Specifying variables for future use

	Chapter 7. Booting Linux
	IPL and booting
	Control point and boot medium
	Menu configurations
	Boot data
	Boot loader code
	Kernel parameters
	Initial RAM disk image
	Rebuilding the initial RAM disk image

	Booting Linux in LPAR mode
	Booting from DASD
	Booting from SCSI
	Booting in LPAR mode from an NVMe device
	Booting from tape
	Secure boot
	Loading Linux from removable media or from an FTP server
	Using the HMC Web Services API to boot in LPAR mode

	Booting Linux in a DPM partition
	Booting in a DPM partition from a SCSI boot device
	Using the HMC Web Services API to boot in DPM mode

	Booting Linux in a z/VM guest virtual machine
	Booting from a tape device
	Booting from a DASD
	Booting from a SCSI device
	Booting from the z/VM reader

	Booting Linux on KVM
	Displaying current IPL parameters
	Rebooting from an alternative source
	Attributes for ccw
	Attributes for fcp
	Attributes for nvme
	Attributes for nss
	Kernel panic settings
	Examples for configuring re-IPL

	Chapter 8. Shutdown actions
	The shutdown configuration in sysfs
	Configuring z/VM CP commands as a shutdown action

	Chapter 9. The diag288 watchdog device driver
	What you should know about the diag288 watchdog device driver
	Setting up the diag288 watchdog device driver
	Setting the timeout action

	External programming interfaces

	Chapter 10. KASLR support

	Part 3. Storage
	Chapter 11. DASD device driver
	Features
	What you should know about DASD
	The IBM label partitioning scheme
	DASD partitions
	IBM Z compatible disk layout
	Volume label
	VTOC

	Linux disk layout
	CMS disk layout
	Disk layout summary
	DASD naming scheme
	DASD device nodes
	Accessing DASD by udev-created device nodes

	Setting up the DASD device driver
	Working with DASDs
	Preparing an ECKD type DASD for use
	Preparing an FBA-type DASD for use
	Accessing DASD by force
	Enabling the DASD device driver to use the DIAG access method
	Using extended error reporting for ECKD type DASD
	Setting a DASD online or offline
	Dynamic attach and detach

	Enabling and disabling logging
	Enabling and disabling immediate failure of I/O requests
	Setting the timeout for I/O requests
	Working with DASD statistics in debugfs
	Examples for gathering and reading DASD statistics in debugfs
	Interpreting the data rows
	Scenario: Verifying that PAV and HPF are used

	Accessing full ECKD tracks
	Handling lost device reservations
	Reading and resetting the reservation state
	Checking for access by other operating system instances
	Querying the encryption setting of a channel path
	Setting defective channel paths offline automatically
	Querying the HPF setting of a channel path
	Displaying DASD information

	Chapter 12. SCSI-over-Fibre Channel device driver
	Features
	What you should know about zfcp
	sysfs structures for FCP devices and SCSI devices
	SCSI device nodes
	Partitioning a SCSI device
	zfcp HBA API (FC-HBA) support
	N_Port ID Virtualization for FCP channels
	Automatic re-IPL path failover

	Setting up the zfcp device driver
	Working with FCP devices
	Setting an FCP device online or offline
	Displaying FCP channel and device information
	Recovering a failed FCP device
	Obtaining diagnostic data for FCP channels
	Finding out whether NPIV is in use
	Logging I/O subchannel status information

	Working with target ports
	Scanning for ports
	Controlling automatic port scanning
	Displaying port information
	Recovering a failed port
	Removing ports

	Working with SCSI devices
	Configuring SCSI devices
	Automatically attached SCSI devices
	Manually configured FCP LUNs and their SCSI devices

	Mapping the representations of a SCSI device in sysfs
	Displaying information about SCSI devices
	Setting the queue depth
	Recovering failed SCSI devices
	Updating the information about SCSI devices
	Setting the SCSI command timeout
	Controlling the SCSI device state
	Removing SCSI devices
	Removing automatically attached SCSI devices
	Removing manually configured FCP LUNs and their SCSI device

	Confirming end-to-end configurations
	Confirming end-to-end data consistency checking
	Investigating IBM Fibre Channel Endpoint Security

	Scenario for finding available LUNs
	API provided by the zfcp HBA API support
	Developing applications
	Functions provided

	Getting ready to run applications
	Tools for investigating your SAN configuration

	Chapter 13. Storage-class memory device driver
	What you should know about storage-class memory
	Storage-class memory device nodes

	Setting up the storage-class memory device driver
	Working with storage-class memory increments
	Displaying EADM subchannels
	Listing storage-class memory increments
	Combining SCM devices with LVM

	Chapter 14. Managing NVMe devices
	Chapter 15. Channel-attached tape device driver
	Features
	What you should know about channel-attached tape devices
	Tape device modes and logical devices
	Tape naming scheme
	Tape device nodes
	Using the mt command

	Loading the tape device driver
	Working with tape devices
	Setting a tape device online or offline
	Displaying tape information
	Enabling compression
	Loading and unloading tapes

	Part 4. Networking
	Chapter 16. qeth device driver for OSA-Express (QDIO) and HiperSockets
	Device driver functions
	What you should know about the qeth device driver
	Layer 2 and layer 3
	qeth group devices
	Overview of the steps for setting up a qeth group device
	qeth interface names and device directories
	Support for IP Version 6 (IPv6)
	MAC headers in layer 2 mode
	MAC headers in layer 3 mode
	Outgoing frames
	Incoming frames
	IP addresses
	ARP

	Layer 2 promiscuous mode

	Setting up the qeth device driver
	Loading the qeth device driver modules
	Switching the discipline of a qeth device
	Removing the modules

	Working with qeth devices
	Enabling a qeth device
	Setting the layer2 attribute
	Using priority queueing
	Specifying the number of inbound buffers
	Finding out the maximum frame size
	Specifying the relative port number
	Finding out the type of your network adapter
	Setting a device online or offline
	Finding out the interface name of a qeth group device
	Finding out the bus ID of a qeth interface
	Activating an interface
	Confirming that an IP address has been set under layer 3
	Duplicate IP addresses

	Deactivating an interface
	Recovering a device
	Configuring hardware checksum offload operations
	Configuring the receive checksum offload feature
	Configuring the transmit checksum offload feature
	Enabling and disabling TCP segmentation offload

	Isolating data connections
	Displaying and resetting QETH performance statistics
	Capturing a hardware trace

	Working with qeth devices in layer 3 mode
	Setting up a Linux router
	Faking broadcast capability
	Taking over IP addresses
	Stage 1: Enabling a qeth group device for IP takeover
	Stage 2: Activating and deactivating IP addresses for takeover
	IPv4 example
	IPv6 example

	Stage 3: Issuing a command to take over the address

	Configuring a device for proxy ARP
	Configuring a device for virtual IP address (VIPA)
	Configuring a HiperSockets device for AF_IUCV addressing

	Working with qeth devices in layer 2 mode
	Configuring a network device as a member of a Linux bridge
	Advanced packet-handling configuration
	Working with HiperSockets Converged Interfaces
	Creating an HSCI interface
	Using an HSCI interface as a base device for MacVTap or OpenVSwitch

	Scenario: VIPA – minimize outage due to adapter failure
	Setting up standard VIPA
	Adapter outage
	Example of how to set up standard VIPA

	Introduction to VLANs
	Configuring VLAN devices
	Example: Creating two VLANs
	HiperSockets Network Concentrator
	Examples for setting up a network concentrator

	Setting up for DHCP with IPv4
	Required options for using dhcpcd with layer3

	Setting up Linux as a LAN sniffer
	Setting up a HiperSockets network traffic analyzer
	Setting up a z/VM guest LAN sniffer

	Chapter 17. OSA-Express SNMP subagent support
	What you should know about osasnmpd
	Setting up osasnmpd
	Installing MIBs
	Downloading the IBM OSA-Express MIB
	Configuring access control

	Working with the osasnmpd subagent
	Starting the osasnmpd subagent
	Checking the log file
	Issuing queries
	Stopping osasnmpd

	Chapter 18. LAN channel station device driver
	What you should know about LCS
	LCS group devices

	Setting up the LCS device driver
	Working with LCS devices
	Creating an LCS group device
	Removing an LCS group device
	Specifying a timeout for LCS LAN commands
	Setting an LCS group device online or offline
	Activating and deactivating an interface
	Recovering an LCS group device

	Chapter 19. AF_IUCV address family support
	Features
	Setting up the AF_IUCV address family support
	Setting up HiperSockets devices for AF_IUCV addressing
	Setting up your z/VM guest virtual machine for IUCV
	Loading the IUCV modules

	Addressing AF_IUCV sockets in applications

	Chapter 20. SMC protocol support
	Information and troubleshooting tools
	Setting up the SMC support
	Investigating PNET IDs
	Obtaining statistics for SMC connections

	Chapter 21. RDMA over Converged Ethernet
	Network interface names
	Working with the RoCE support
	Enabling debugging

	Chapter 22. Internal shared memory device driver
	Loading the ISM device driver
	Listing ISM devices

	Part 5. System resources
	Chapter 23. Managing CPUs
	Simultaneous multithreading
	CPU capability change
	Changing the configuration state of CPUs
	Setting CPUs online or offline
	Examining the CPU topology
	Overriding topology default assumptions
	CPU polarization

	Chapter 24. Memory hotplug
	What you should know about memory hotplug
	Hotplug memory management overhead
	How memory is represented in sysfs
	Memory state and reboot
	Memory zones

	Setting up hotplug memory
	Performing memory management tasks
	Finding out the memory block size
	Listing the available memory blocks
	Adding memory
	Removing memory

	Chapter 25. Persistent device configuration
	Selecting devices and device drivers
	Enabling and disabling a device
	Viewing the configuration
	Changing device or device driver settings
	Importing and exporting configuration data
	Configuring the root device

	Chapter 26. Huge-page support
	Setting up hugetlbfs huge-page support
	Working with hugetlbfs huge-page support

	Chapter 27. S/390 hypervisor file system
	Directory structure
	LPAR directories and attributes
	z/VM directories and attributes

	Setting up the S/390 hypervisor file system
	Working with the S/390 hypervisor file system
	Defining access permissions
	Updating hypfs information

	Chapter 28. TOD clock synchronization
	Enabling clock synchronization when booting
	Enabling and disabling clock synchronization
	Leap second handling

	Chapter 29. Identifying the IBM Z hardware
	Chapter 30. HMC media device driver
	Module parameters
	Working with the HMC media
	Assigning the removable media of the HMC to an LPAR
	Listing files on the removable media at the HMC
	Mounting the content of the removable media at the HMC

	Chapter 31. Data compression with the Integrated Accelerator for zEDC
	Features
	Compression levels and defaults
	Confirming that the on-chip accelerator is used
	Overriding the defaults
	Overrides for applications
	Overrides for the kernel zlib

	Accelerating btrfs

	Chapter 32. Data compression with GenWQE and zEDC Express
	Features
	What you should know about GenWQE
	The GenWQE accelerated zlib
	GenWQE device nodes
	Virtual accelerators
	Tradeoff between best compression and speed

	Setting up GenWQE hardware acceleration
	Installing the GenWQE hardware-accelerated zlib
	Environment variables

	Examples for using GenWQE
	Activating the GenWQE hardware-accelerated zlib for an application
	Compressing data with genwqe_gzip
	Running tar with GenWQE hardware-acceleration

	GenWQE hardware-acceleration for IBM Java
	Exploring the GenWQE setup
	Listing your GenWQE accelerator cards
	Checking the GenWQE device driver setup
	Confirming that the accelerator hardware can be reached

	External programming interfaces

	Chapter 33. PCI Express support
	Setting up the PCIe support
	Using PCIe hotplug on LPAR
	Recovering a PCIe device
	Reporting defective PCIe devices
	Displaying PCIe information
	Reading statistics for a PCIe device

	Part 6. z/VM virtual server integration
	Chapter 34. z/VM concepts
	Performance monitoring for z/VM guest virtual machines
	Monitoring on z/VM
	Monitoring on Linux
	Further information

	Cooperative memory management background
	Linux guest relocation

	Chapter 35. Writing kernel APPLDATA records
	Setting up the APPLDATA record support
	Generating APPLDATA monitor records
	Enabling or disabling the support
	Activating or deactivating individual data-gathering modules
	Setting the sampling interval

	APPLDATA monitor record layout
	Programming interfaces

	Chapter 36. Writing z/VM monitor records
	Setting up the z/VM *MONITOR record writer device driver
	Loading the module
	Setting up the user z/VM guest virtual machine

	Working with the z/VM *MONITOR record writer
	Writing data and stopping data-writing
	Using the monwrite_hdr structure

	Chapter 37. Reading z/VM monitor records
	What you should know about the z/VM *MONITOR record reader device driver
	Setting up the z/VM *MONITOR record reader device driver
	Providing the required z/VM user directory statements
	Assuring that the DCSS is addressable for your Linux instance
	Specifying the monitor DCSS name

	Working with the z/VM *MONITOR record reader support
	Opening and closing the character device
	Reading monitor records

	Chapter 38. z/VM recording device driver
	Features
	What you should know about the z/VM recording device driver
	z/VM recording device nodes
	About records

	Setting up the z/VM recording device driver
	Working with z/VM recording devices
	Starting and stopping record collection
	Purging existing records
	Querying the z/VM recording status
	Opening and closing devices

	Scenario: Connecting to the *ACCOUNT service

	Chapter 39. z/VM unit record device driver
	What you should know about the z/VM unit record device driver
	Working with z/VM unit record devices

	Chapter 40. z/VM DCSS device driver
	What you should know about DCSSs
	DCSS naming scheme
	DCSS device nodes
	Accessing a DCSS in exclusive-writable mode
	DCSS options

	Setting up the DCSS device driver
	Avoiding overlaps with your guest storage
	Working with DCSS devices
	Adding a DCSS device
	Listing the DCSSs that map to a particular device
	Finding the minor number for a DCSS device
	Setting the access mode
	Saving updates to a DCSS or set of DCSSs
	Workaround for saving DCSSs with optional properties
	Removing a DCSS device

	Scenario: Changing the contents of a DCSS

	Chapter 41. z/VM CP interface device driver
	What you should know about the z/VM CP interface
	Using the device node

	Chapter 42. z/VM CP special messages uevent support
	Setting up the CP special message device driver
	Working with CP special messages
	Sending CP special messages
	Accessing CP special messages through uevent environment variables
	Writing udev rules for handling CP special messages
	Example udev rule

	Chapter 43. Cooperative memory management
	Setting up cooperative memory management
	Working with cooperative memory management
	Reading the size of the static page pool
	Reading the size of the timed page pool

	Part 7. KVM virtual server integration
	Chapter 44. KVM virtualization on IBM Z
	Linux on KVM versus Linux on z/VM or Linux in LPAR mode
	Linux as a KVM guest on IBM Z versus distributed systems
	Live guest migration
	Linux as an IBM Secure Execution host or guest

	Chapter 45. The virtual channel subsystem
	Listing devices with lscss
	Types of paravirtualized CCW devices
	Listing channel paths with lschp

	Chapter 46. The virtio CCW transport device driver
	Setting CCW devices offline or online
	Virtual block devices
	Block device naming-scheme
	Mapping block devices to CCW devices
	Partitioning virtual block devices

	Virtual network devices
	Interface names
	Mapping interfaces to CCW devices
	Activating an interface

	Virtual SCSI-attached tape devices
	Virtual SCSI-attached CD/DVD drives

	Chapter 47. Setting up Ubuntu Server 22.04 LTS as a KVM host
	Chapter 48. Setting up a KVM host for VFIO pass-through
	What you should know about VFIO
	Host setup for VFIO pass-through devices
	Setting up PCI devices for VFIO pass-through
	Setting up VFIO pass-through DASDs
	Setting up cryptographic adapter resources for VFIO pass-through

	Part 8. Security
	Chapter 49. Generic cryptographic device driver
	Features
	Supported cryptographic adapters
	Supported facilities
	Hardware and software prerequisites

	What you should know about the cryptographic device driver
	Functions provided by the cryptographic device driver
	Adapter discovery
	Request processing
	Cryptographic domains
	AP queue status overview

	Setting up the cryptographic device driver
	Kernel parameters
	Accessing cryptographic devices

	Creating customized device nodes
	Displaying information about the AP bus
	Working with cryptographic devices
	Displaying information about cryptographic devices
	Investigating master key states and verification patterns
	Setting the LPAR configuration status
	Setting devices online or offline
	Setting the polling thread
	Using AP adapter interrupts
	Setting the polling interval
	Dynamically adding and removing cryptographic adapters
	Freeing AP queues for KVM guests

	External programming interfaces
	AP bus and zcrypt uevents

	Chapter 50. Pseudorandom number generator device driver
	Loading and configuring the PRNG device driver
	Working with the PRNG device driver
	Reading pseudorandom numbers
	Displaying PRNG information
	Setting the reseed limit
	Reseeding the PRNG

	Chapter 51. True random-number generator device driver
	Setting up the TRNG device driver
	Working with the TRNG device driver
	Reading random numbers
	Displaying TRNG information

	Chapter 52. Protected key device driver
	Generating volatile protected keys by using the pkey device driver
	Generating secure keys using the pkey device driver
	Setting up an encrypted swap disk
	External programming interfaces

	Chapter 53. Hardware-accelerated in-kernel cryptography
	Hardware dependencies and restrictions
	Support modules
	Confirming hardware support for cryptographic operations

	Chapter 54. Instruction execution protection
	Setting up instruction execution protection
	Controlling stack execution protection

	Part 9. Performance measurement using hardware facilities
	Chapter 55. Channel measurement facility
	Setting up the channel measurement facility
	Working with the channel measurement facility
	Enabling, resetting, and switching off data collection
	Reading data

	Chapter 56. Using the CPU-measurement facilities
	Working with the CPU-measurement facilities
	Authorizing an LPAR
	Reading CPU-measurement counters
	Collecting CPU-measurement sample data
	Setting limits for the sampling facility buffer
	Obtaining details about the CPU-measurement facilities

	Part 10. Diagnostics and troubleshooting
	Chapter 57. Logging I/O subchannel status information
	Chapter 58. Control program identification
	Providing CPI values through a configuration file
	Setting CPI values through the sysfs interface
	System level CPI value

	Chapter 59. Displaying system information
	Displaying hardware and hypervisor information
	Retrieving STHYI data
	Check whether the Linux instance can be a hypervisor

	Chapter 60. Avoiding common pitfalls
	Ensuring correct channel path status
	Determining channel path usage on LPAR
	Ignore unnecessary I/O devices
	Using cio_ignore
	Excessive guest swapping
	Including service levels of the hardware and the hypervisor
	Booting stops with disabled wait state
	Preparing for dump-on-panic
	Function unavailable or degraded in Linux on z/VM

	Chapter 61. Creating a kernel dump
	Creating a kernel dump of Linux in LPAR mode or of a z/VM guest
	Creating a kernel dump of a KVM guest

	Part 11. Reference
	Chapter 62. Commands for Linux on IBM Z
	Generic command options
	chccwdev - Set CCW device attributes
	chchp - Change channel path status
	chcpumf - Set limits for the CPU measurement sampling facility buffer
	chreipl - Modify the re-IPL configuration
	chshut - Control the system shutdown actions
	chzcrypt - Modify the zcrypt configuration
	chzdev - Configure IBM Z devices
	cio_ignore - Manage the I/O exclusion list
	cmsfs-fuse - Mount a z/VM CMS file system
	cpacfstats - Monitor CPACF cryptographic activity
	cpuplugd - Control CPUs and memory
	cpuplugd service utility syntax
	cpuplugd command-line syntax
	Configuration file structure
	Basic configuration file for CPU control
	Basic configuration file for memory control
	Predefined keywords
	Keywords for CPU hotplug rules
	Keywords for memory hotplug rules
	Using historical data

	Writing more complex rules

	Sample configuration file

	dasdfmt - Format a DASD
	dasdstat - Display DASD performance statistics
	dasdview - Display DASD structure
	fdasd - Partition a DASD
	fdasd menu
	Example using the menu
	Example using options

	hmcdrvfs - Mount a FUSE file system for remote access to media in the HMC media drive
	hsci - Manage HSCI interfaces
	hyptop - Display hypervisor performance data
	Navigating between windows
	Selecting data
	Sorting data
	Filtering data
	Available fields and units
	LPAR fields
	z/VM fields
	Units

	CPU types
	Examples
	Scenario

	lschp - List channel paths
	lscpumf - Display information about the CPU-measurement facilities
	lscss - List subchannels
	lsdasd - List DASD devices
	lshmc - List media contents in the HMC media drive
	lsluns - Discover LUNs, or show encryption state of attached LUNs
	Discover LUNs in the Fibre Channel storage area network (SAN)
	Show the encryption state of zfcp-attached LUNs

	lsqeth - List qeth-based network devices
	lsreipl - List IPL and re-IPL settings
	lsscm - List storage-class memory increments
	lsshut - List the current system shutdown actions
	lstape - List tape devices
	Data fields for SCSI tape devices

	lsstp - Show STP configuration information
	lszcrypt - Display zcrypt devices
	lszdev - Display IBM Z device configurations
	lszfcp - List zfcp devices
	mon_fsstatd – Monitor z/VM guest file system size
	mon_fsstatd service utility syntax
	mon_fsstatd command-line syntax
	Processing monitor data
	Reading the monitor data

	mon_procd – Monitor Linux on z/VM
	mon_procd service utility syntax
	mon_procd command-line syntax
	Processing monitor data
	Reading the monitor data

	osasnmpd – Start OSA-Express SNMP subagent
	qetharp - Query and modify ARP data
	qethconf - Configure qeth devices
	qethqoat - Query OSA address table
	scsi_logging_level - Set and get the SCSI logging level
	smc_chk - Verify SMC setups
	smcd - Display information about SMC-D link groups and devices
	smcr - Display information about SMC-R
	smc_pnet - Create network mapping table
	smc_rnics - list RoCE Express PCI functions and control their online state
	smc_run - Run a TCP socket program with the SMC protocol using a preloaded library
	smcss - Display information about the AF_SMC sockets and link groups
	tape390_crypt - Manage tape encryption
	tape390_display - Display messages on tape devices and load tapes
	tunedasd - Adjust low-level DASD settings
	vmcp - Send CP commands to the z/VM hypervisor
	vmur - Work with z/VM spool file queues
	Examples
	Creating and reading a guest memory dump
	Using FTP to receive and convert a dump file

	Logging and reading the z/VM guest virtual machine console
	Preparing the z/VM reader as an IPL device for Linux
	Sending a file to different z/VM guest virtual machines
	Sending a file to a z/VSE instance

	zdsfs - Mount a z/OS DASD
	zhypinfo - obtain information about virtualization layers on IBM Z
	zipl-editenv - Edit the zipl environment block
	zname - Obtain information about the IBM Z hardware
	znetconf - List and configure network devices
	zpcictl - Manage defective PCIe devices
	zcryptctl - Control access to AP queues and functions
	zcryptstats - Display crypto statistics

	Chapter 63. Selected kernel parameters
	cio_ignore - List devices to be ignored
	Changing the exclusion list

	cmma - Reduce hypervisor paging I/O overhead
	fips - Run Linux in FIPS mode
	maxcpus - Limit the number of CPUs Linux can use at IPL
	nokaslr - Disable kernel randomization
	nosmt - Disable simultaneous multithreading
	novx - Disable the Vector Extension Facility
	possible_cpus - Limit the number of CPUs Linux can use
	ramdisk_size - Specify the ramdisk size
	rd.zdev=no-auto - Override initial device availability for DPM mode
	ro - Mount the root file system read-only
	root - Specify the root device
	smt - Reduce the number of threads per core
	vdso - Optimize system call performance
	vmhalt - Specify CP command to run after a system halt
	vmpanic - Specify CP command to run after a kernel panic
	vmpoff - Specify CP command to run after a power off
	vmreboot - Specify CP command to run on reboot

	Chapter 64. Linux diagnose code use

	Appendix A. Accessibility
	Appendix B. Understanding syntax diagrams
	Notices
	Trademarks

	Glossary
	Numerics
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	Z

	Bibliography
	Linux on IBM Z and IBM LinuxONE publications
	z/VM publications
	IBM Redbooks publications
	Other IBM Z publications
	ibm.com resources

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

