
Linux on IBM Z and IBM LinuxONE

SMC-D via ISM pass-through
performance evaluation for KVM
guests on IBM® Z®

About this publication
Before using this information and the product it supports, please read the information in chapter 11
Notices and disclaimer on page 31.

The following study compares SMC-D via ISM pass-through for KVM guests to HiperSockets
connectivity that uses MacVTap. Both networking solutions apply to KVM-guest-to-LPAR
communication within a single CPC. Comparison metrics include throughput and processor
consumption.
A separate chapter deals with tuning of buffer sizes for SMC-D and its influence on performance.
Furthermore, it is explained how to set up SMC-D via ISM pass-through and what needs to be
considered.

Authors: Jens Markwardt, Nils Hoppmann
© Copyright International Business Machines Corporation 2023. All rights reserved.

Table of contents
1 Abstract..4
2 Introduction...4

2.1 How this paper is structured..5
3 About SMC-D via ISM pass-through..5

3.1 Shared Memory Communications (SMC)...5
3.1.1 SMC-D and SMC-R...5
3.1.2 HiperSockets traffic and SMC-D via ISM...6
3.1.3 SMC version 2 and SMC-D version 2...6

3.2 PCI pass-through..6
3.3 Definition of terms “MacVTap HiperSockets” and “SMC-D via ISM pass-through”..............7
3.4 SMC rendezvous..7

4 Workload..7
4.1 Workload profiles...8
4.2 Processor consumption..8

5 Test environment...9
5.1 LPAR configuration...9
5.2 Linux and KVM host configuration...9
5.3 KVM guest configuration..10
5.4 MacVTap HiperSockets measurement setup...10
5.5 SMC-D via ISM pass-through measurement setup..11

6 Setup guidance..11
6.1 Setting up MacVTap HiperSockets..11

6.1.1 HiperSockets definition in the IOCDS...12
6.1.2 Setting up HiperSockets in layer 2 mode and increasing the buffer count......................12
6.1.3 MacVTap interface configuration..12

6.2 Setting up ISM pass-through to a KVM guest...12
6.2.1 ISM device definition...13

6.2.1.1 UID...13
6.2.1.2 PNET ID, native and non-native ISM devices...13

2

6.2.1.3 Excursion: CLC handshake for SMC...14
6.2.2 KVM host setup...14

6.2.2.1 Checking for vfio-pci kernel module...14
6.2.2.2 Useful software packages...15
6.2.2.3 Determining the PCI address of the ISM device..15
6.2.2.4 Configuring PCI pass-through to a KVM guest...16

6.3 Enabling workloads for SMC-D (by the example of uperf)..17
6.3.1 Options to enable SMC-D..17
6.3.2 SMC-D connection statistics..18

7 Results...18
7.1 Request-response workload...18
7.2 Streaming workload...20
7.3 SMC-D via ISM pass-through with buffer-size tuning..22

7.3.1 Applying SMC buffer-size tuning..23
7.3.2 Impact of buffer-size tuning on the request-response workload......................................24
7.3.3 Impact of buffer-size tuning on the streaming workload...24

8 Takeaways..26
9 Appendix..27

9.1 Output of lsqeth command for HiperSockets..27
9.2 profile.xml for a medium-size request-response workload..28
9.3 SMC-D connection statistics for a medium-size request-response workload.........................29

10 Bibliography..30
11 Notices and disclaimer...31

List of figures
Figure 1: Linux and KVM host configuration w/o network connectivity..9
Figure 2: MacVTap HiperSockets measurement setup..10
Figure 3: SMC-D via ISM pass-through measurement setup...11
Figure 4: rr1c-200x1000 normalized transaction times (close up)...19
Figure 5: rr1c-200x1000 normalized transaction times (full picture)..19
Figure 6: rr1c-200x1000 normalized processor consumption of LPAR A...20
Figure 7: str-readx30k normalized throughput...20
Figure 8: str-readx30k normalized processor consumption of LPAR A...21
Figure 9: str-readx30k throughput with and without SMC buffer-size tuning...................................25
Figure 10: str-readx30k processor consumption savings of LPAR A due to buffer tuning................25

3

1 Abstract
This study compares two network interconnect solutions for KVM guests within a Central
Processor Complex (CPC). The conventional HiperSockets technology is compared with a new
approach that utilizes pass-through of Internal Shared Memory (ISM) devices exploiting the Shared
Memory Communications – Direct Memory Access (SMC-D) protocol. The evaluation is
performed on an IBM® z16TM running Red Hat® Enterprise Linux® (RHEL) 8.8 for IBM Z®.
Both networking solutions are compared in terms of latency, throughput and processor consumption
using the uperf network benchmark. Uperf scenarios include a request-response and a streaming
workload. Furthermore, the impact of tuning buffer sizes on the performance of SMC-D workloads
is discussed as a separate topic.
Results demonstrate that SMC-D via ISM pass-through for KVM guests (definition provided in
chapter 3.3) exhibits superior performance characteristics. It clearly outperforms HiperSockets
connectivity via MacVTap in terms of latency and throughput as well as processor consumption.

2 Introduction
The focus of this study for IBM® Z® and IBM® LinuxONE is on network communication between a
Linux system as KVM guest on a logical partition (LPAR) and another Linux system on (bare-
metal) LPAR. For ease of reading this configuration is subsequently called guest-to-LPAR
communication. Hereby, both LPARs reside within a single CPC.

Current networking solutions for guest-to-LPAR communication within a CPC are typically based
on HiperSockets technology. In those setups, the attachment of HiperSockets to the KVM guest is
often accomplished using virtio networking along with the vhost-net host device driver in MacVTap
mode. This solution is easy to set up and does not require any additional hardware or cabling.
However, despite being tuned for optimal performance the vhost-net/virtio-net architecture for
KVM guests still adds considerable overhead compared to direct-attached network adapters within
LPAR installations. This overhead is often visible as increased processor consumption of the KVM
host, lower networking throughput, and increased latency.

This study introduces SMC-D via ISM pass-through for KVM guests as an additional networking
option for guest-to-LPAR communication within a CPC. SMC-D is based on ISM technology and
uses virtual PCI network adapters. These are directly attached to a KVM guest via PCI pass-through
and thus eliminate the overhead introduced by the vhost-net/virtio-net architecture.
For the sake of completeness, it should be mentioned that SMC-D via ISM pass-through
connectivity can be utilized not only for guest-to-LPAR communication, but also for
communication between KVM guests within a CPC. Hereby, the guests can either reside in the
same KVM host or in different LPARs. However, the focus here is solely on guest-to-LPAR
communication. Of course, SMC-D can as well be used for communication between LPARs.

SMC-D via ISM pass-through is available for IBM z15 and z16 with the ISM feature enabled. A list
of supported Linux on IBM Z distributions is provided in chapter 3.2.

4

2.1 How this paper is structured
Chapter 3 explains what SMC-D via ISM pass-through stands for and provides a technical overview
of related terms and definitions. It also briefly discusses different SMC flavors and versions as well
as the distinction between SMC-D via ISM and TCP/IP via HiperSockets.

Chapter 4 introduces uperf as the network benchmark used in this study. It further describes the
applied workload patterns and processor consumption metrics.

Chapter 5 discusses the individual components of the test environment. This includes a detailed
configuration description of the logical partitions involved, the operating system and the KVM
guest setup. Hereby, special focus is on network connectivity.

Readers who wish to execute the benchmark tests mentioned in this study themselves will find
instructions on how to reproduce the test environment in chapter 6. Instructions for running uperf
can be found here as well.

Finally, all measurement results including processor consumption are presented in chapter 7.
A separate subsection treats the impact of buffer-size tuning on workloads that use SMC-D.

The study is concluded with takeaways in chapter 8.

3 About SMC-D via ISM pass-through
This chapter provides a brief overview of the idea behind SMC-D via ISM pass-through, its basic
principles and the related terms and definitions in the context of this study.

3.1 Shared Memory Communications (SMC)
Before addressing SMC-D via ISM pass-through, this chapter will first outline the fundamentals
and variants of the underlying SMC protocol.

3.1.1 SMC-D and SMC-R

The SMC-D protocol is one form of shared memory communication that exploits ISM technology.
ISM is a virtual PCI adapter that enables direct access to shared virtual memory across LPARs
within a single CPC. For SMC-D frequently asked questions (FAQ), see [1].
The other shared memory communication protocol is Shared Memory Communications – Remote
Direct Memory Access (SMC-R). It makes use of the Remote Direct Memory Access (RDMA)
capabilities of RoCE Express adapters. Thus, SMC-R is primarily used for communication between
instances on different CPCs.
For communication within the same CPC, the use of SMC-D via ISM has a cost benefit of not
requiring any physical cabling or additional physical network devices. In this respect SMC-D via
ISM is similar to HiperSockets.

5

3.1.2 HiperSockets traffic and SMC-D via ISM

It is important to note that one cannot blindly replace HiperSockets traffic with SMC-D via ISM.
One major point here is that the SMC protocol is based on TCP. As a consequence, non-TCP based
network traffic - like UDP traffic - cannot use SMC. TCP also remains the fallback mechanism in
case SMC connection negotiation fails. Due to these requirements, SMC-D via ISM supplements
HiperSockets but does not replace them.

3.1.3 SMC version 2 and SMC-D version 2

SMC version 1 (SMCv1) only provides single IP subnet support, while SMC version 2 (SMCv2)
provides additional layer 3 support, thus enabling connectivity spanning over multiple IP subnets.
Note that the SMC protocol applies to both SMC-D and SMC-R. For in-depth technical information
about SMCv2, see [2].
Besides other extensions to SMC-D version 1 (SMC-Dv1), SMC-D version 2 (SMC-Dv2) allows
the use of non-native ISM devices. These are discussed in chapter 6.2.1.2 and beneficial for use
with virtio-net devices in a KVM guest.

SMC-Dv2 requires Internal Shared Memory version 2 (ISMv2) virtual PCI functions. The hardware
requirements are as follows:

• IBM z15 or z16 with ISMv2 feature: T01 MCL P46601.067 and T02 base

 SMC-Dv2 is available for the following (or later) Linux on IBM Z distributions:

• Red Hat® Enterprise Linux® 8.4
• SUSE Linux® Enterprise Server 15 SP3
• Ubuntu Server 21.04

Although the focus of this paper is on Linux, it should be mentioned that SMC-Dv2 is also available
for the IBM z/OS® operating system. Software requirements are:

• IBM z/OS® 2.4 SMCv2 enablement software: OA59152/UJ03768 and PH22695/UI71143

3.2 PCI pass-through
ISM devices are represented as virtual PCI adapters that can be attached to virtual machines via
PCI pass-through. The PCI pass-through feature allows a virtual machine direct access to a PCI
device function. It appears as if the PCI device was physically attached to the virtual machine. Thus,
the virtual machine does not see any kind of virtualized device, but the real PCI device.
PCI device pass-through for KVM guests is available for the following (or later) Linux on IBM Z
distributions:

• Red Hat® Enterprise Linux® 8.8 and 9.2
• SUSE Linux® Enterprise Server 15 SP5
• Ubuntu Server 23.04

6

3.3 Definition of terms “MacVTap HiperSockets” and
“SMC-D via ISM pass-through”
In the context of this study the following two terms are introduced for ease of reading:

1. MacVTap HiperSockets is a setup where a HiperSockets adapter is attached to a KVM
guest via virtio networking using the vhost-net host device driver in MacVTap mode.

2. SMC-D via ISM pass-through is a colloquial term meaning pass-through of an ISM virtual
PCI function to a virtual machine (e.g. a KVM guest) for use with the SMC-D protocol.

In the following, whenever referring to the term MacVTap HiperSockets, it is assumed that the
TCP/IP protocol is used.

3.4 SMC rendezvous
SMC-D requires an IP network and existing TCP/IP connectivity for initial connection setup. This
implies that both peers must be able to reach each other through TCP/IP. The connection setup
process consists of the TCP 3-way handshake and an additional SMC specific connection layer
control (CLC) handshaking step, that is described in chapter 6.2.1.3. This whole procedure is called
SMC rendezvous.
After the connection has been established, the actual data transfer is accomplished via DMA
utilizing the ISM adapter. Technically, the SMC protocol layer is transparently inserted as an “out of
band” communications layer under TCP/IP. The TCP/IP connection also serves as a possible
fallback mechanism if the SMC-D connection setup should fail.

When using SMC-D on LPAR, the IP network required for the SMC rendezvous can be provided
either via physical devices – by using OSA-Express or RoCE Express adapters – or via
HiperSockets. To avoid the use of physical adapters, the preferred method is HiperSockets.

For KVM guests any virtio-net device can be used for rendezvous processing. Thus, it is possible to
re-use existing MacVTap HiperSockets to perform the SMC rendezvous for SMC-D. Alternatively,
a RoCE Express adapter can be used as a pass-through PCI device for the same purpose. In cases
where virtio-net devices are utilized for rendezvous processing, non-native ISMv2 devices are a
natural choice if SMC-Dv2 is available. See chapter 6.2.1.2 for further explanations on this topic.

4 Workload
The network benchmark used is a slightly adapted version of uperf.

Uperf can be run either in client or server mode. Furthermore, a workload description in the form of
an XML file is required for its operation. This profile – for simplicity from now on called
profile.xml – resides on the uperf client. It contains the characteristics of the workload like sizes
of read and write messages, number of parallel connections, runtime as well as additional meta

7

information such as the IP address of the uperf server and the network protocol. An example is
provided in appendix 9.2.

The code snippet below shows how uperf can be invoked in server and client mode:

server# uperf -s
client# uperf -a -i 30 -m profile.xml

The benchmark is started in server mode using the ‘-s’ parameter. On the client side, uperf is called
with a set of parameters. The statement from above will cause uperf to gather all available statistics
(‘-a’) and print throughput metrics every 30 seconds (‘-i 30’) while running the workload defined
in the profile (‘-m profile.xml’). See http://uperf.org/ and https://github.com/uperf/uperf for more
information.

4.1 Workload profiles
In this study the focus is on two different uperf workload patterns, rr1c-200x1000 and str-readx30k.
The rr1c-200x1000 pattern is a request-response workload simulating highly transactional and
latency-critical traffic with medium data sizes (like web workloads). A client sends a request of 200
bytes and receives a 1000-byte response from the server. The focus is on transaction duration, i.e.
how fast data can be transferred instead of how much data. Lower transaction times are favored,
since they reflect a faster transmission.
The str-readx30k pattern is a streaming workload where the uperf server permanently sends data in
30720-byte chunks. The uperf client receives and acknowledges this data. This setup can mimic a
restore step of a backup operation. In this pattern, the focus is on throughput (Gb/s). Thus, higher
numbers are of interest.
The execution of each of the two workload patterns is repeated with 1, 10, 50 and 250 active
parallel connections. The runtime of a single measurement – with a fixed workload pattern and a
fixed number of parallel connections – is 300 seconds.

4.2 Processor consumption
The processor consumption is measured in terms of how much CPU time was spent to transfer a
certain amount of data. Thus, the time is indicated in CPU microseconds (μs) per transferred
Gigabit (Gb). The processor consumption for the uperf client and server systems can potentially
differ a lot, especially with asymmetric workloads.
This study focuses on processor consumption of the uperf server only. Within the test environment,
the uperf server runs in a KVM guest (see chapter 5.2). The measured processor consumption
comprises the entire LPAR and includes both the KVM host and the KVM guest. This allows for a
direct comparison of the CPU consumption overhead that is introduced by MacVTap HiperSockets
versus SMC-D via ISM pass-through. The processor consumption of the uperf client – that runs on
bare-metal LPAR – is not analyzed.
Detailed information on the math behind uperf throughput and processor consumption calculations
can be found in [3].

8

https://github.com/uperf/uperf
http://uperf.org/

5 Test environment
This chapter describes the setup of the test environment. It includes LPAR, operating system and
KVM guest configuration. Particular attention is paid to network connectivity setup.

5.1 LPAR configuration
The test environment consists of two LPARs located in a single IBM z16 CPC. Both LPARs are
defined with the same characteristics:

• Microcode level: Driver D51C, Bundle S12
• Number of cores (Integrated Facilities for Linux): 4
• Number of SMT-2 threads / CPUs: 8
• Memory: 32 GiB
• Network: HiperSockets, 32K MTU size,

ISMv2 device, PNET ID = none

The test environment uses only layer 2 connectivity.

5.2 Linux and KVM host configuration
The setup comprises three instances of RHEL 8.8 based on Linux kernel version
4.18.0-477.10.1.el8_8.s390x.

On the KVM host, the following additional packages provided by RHEL 8.8 are used:
• qemu-kvm-6.2.0-32
• libvirt-8.0.0-19

There are two instances of RHEL 8.8 on LPAR A – KVM host and a single KVM guest – and a
third instance on LPAR B as figure 1 illustrates. It should be noted that figure 1 only shows the base
setup without any network connectivity.

During benchmark execution LPAR B takes the role of the client whereas the KVM guest on
LPAR A acts as the server.

9

Figure 1: Linux and KVM host configuration w/o network connectivity

KVM

Linux RHEL8.8 (KVM guest)

Linux RHEL8.8 (KVM host)LPAR A LPAR B

uperf server

Linux RHEL8.8

uperf client

IBM z16

5.3 KVM guest configuration
The KVM guest is set up as follows:

• Number of virtual CPUs: 8
• Memory: 4 GiB
• Network: MacVTap HiperSockets,

Pass-through ISMv2 device

In the test setup, the MacVTap HiperSockets adapter uses the vhost-net host device driver in
MacVTap mode with one rx/tx queue. The corresponding MacVTap interface domain xml is
discussed in chapter 6.1.3.

5.4 MacVTap HiperSockets measurement setup

Figure 2 depicts a typical setup for a guest-to-LPAR communication based on HiperSockets. On
LPAR A the HiperSockets adapter is attached to the KVM guest via virtio networking in MacVTap
mode. In this study, this setup serves as the reference for subsequent measurements. The
HiperSockets implementation is based on the Queued Direct I/O (QDIO) protocol. For details see
the IBM HiperSockets Implementation Guide [4].

10

Figure 2: MacVTap HiperSockets measurement setup

KVM

Linux RHEL8.8

Linux RHEL8.8LPAR A LPAR B

vhs32k_0

PR/SM

uperf server

10.x.y.1/8

Linux RHEL8.8

uperf client

HiperSockets
hs32k_0

10.x.y.2/8

IBM z16

MacVTap

HiperSockets
hs32k_0

Internal QDIO

5.5 SMC-D via ISM pass-through measurement setup

Figure 3 illustrates the proposed SMC-D setup. It is based on PCI pass-through of a virtual ISM PCI
function (ISM FID) to the KVM guest, thereby enabling it for SMC-D communication.
In this setup the MacVTap HiperSockets connectivity is only used to perform the SMC rendezvous
(see chapter 3.4). The actual data transfer is carried out via SMC-D using the internal ISM fabric.
The terms FID and PNET ID mentioned in figure 3 are explained in chapter 6.2.1.

It should be pointed out that the described SMC-D setup just adds an ISM device with pass-through
functionality. The existing HiperSockets setup is not affected by this and remains fully functional.
Eventually, the operator of the environment can decide whether to use MacVTap HiperSockets or
SMC-D via ISM pass-through.

For information on other KVM-related networking options to tune KVM host and KVM guest
environments, see [9].

6 Setup guidance
This chapter provides some guidance for setting up MacVTap HiperSockets and ISM pass-through.
It is further explained how to invoke the uperf benchmark for SMC-D workloads.

6.1 Setting up MacVTap HiperSockets
Before using MacVTap HiperSockets, some prior configuration steps are required in the
Input/Output Configuration Data Set (IOCDS) as well as on the KVM host.

11

Figure 3: SMC-D via ISM pass-through measurement setup

KVM

Linux RHEL8.8

Linux RHEL8.8LPAR A LPAR B

PR/SM

uperf server

10.x.y.1/8

ISM FID n1

ISM internal fabric, PNET ID = none

HiperSockets
 hs32k_0

vhs32k_0

Linux RHEL8.8

uperf client

ISM FID n2

PCI VFIO
 pass-
through

10.x.y.2/8

MacVTap

Internal QDIO

HiperSockets
hs32k_0

IBM z16

6.1.1 HiperSockets definition in the IOCDS

HiperSockets are defined in the IOCDS. The test environment of this study uses HiperSockets with
an MTU size of 32 KiB and a frame size of 40 KiB. For details see [4], chapter 2: “HiperSockets
environment definitions”.

6.1.2 Setting up HiperSockets in layer 2 mode and increasing the buffer
count

On the KVM host, the HiperSockets adapter needs to be configured in layer 2 mode to make it work
properly as a virtio device in the KVM guest.
For performance reasons the buffer count is increased from 64 to 128. The example below shows
the required steps using sysfs for a HiperSockets adapter with channel ID 0.0.8200:

Set device offline
echo 0 > /sys/devices/qeth/0.0.8200/online
Set layer 2 mode
echo 1 > /sys/devices/qeth/0.0.8200/layer2
Increase buffer count to 128
echo 128 > /sys/devices/qeth/0.0.8200/buffer_count
Set device online again
echo 1 > /sys/devices/qeth/0.0.8200/online

The settings can be verified using the lsqeth command (requires package qethconf).
See appendix 9.1 for an lsqeth example output for a HiperSockets adapter in layer 2 mode and a
buffer count of 128.
Persistent changes of device attributes can be accomplished using the chzdev command. Examples
can be found in [5]: Setting the layer2 attribute and Specifying the number of inbound buffers. For
details about lsqeth see lsqeth - List qeth-based network devices.

6.1.3 MacVTap interface configuration

A MacVTap interface is defined in the guest domain xml on the KVM host. The procedure is
described in [6]: Configuring a MacVTap interface as well as in [7]. The latter also contains
additional performance considerations.
The test environment uses the following MacVTap definition which needs to be placed into the
interface section of the domain xml:

<interface type="direct" dev="vhs32k_0">
 <mac address="12:34:56:78:9a:bc"/>
 <source dev="hs32k_0" mode="bridge"/>
 <model type="virtio"/>
 <driver name="vhost"/>
</interface>

Note that the device names and the mac address must be adjusted accordingly.

6.2 Setting up ISM pass-through to a KVM guest
Setting up pass-through of an ISM virtual PCI function to a KVM guest include defining the ISM
device in the IOCDS and setting up the KVM host for PCI device pass-through to the guest.

12

https://www.ibm.com/docs/en/linux-on-systems?topic=devices-direct-interfaces
https://www.ibm.com/docs/en/linux-on-systems?topic=devices-direct-interfaces
https://www.ibm.com/docs/en/linux-on-systems?topic=c-lsqeth
https://www.ibm.com/docs/en/linux-on-systems?topic=wd-inbound-buffers
https://www.ibm.com/docs/en/linux-on-systems?topic=wd-setting-layer2

6.2.1 ISM device definition

ISM devices are defined in the IOCDS. Since ISM is a virtual (firmware) device it is provided with
a virtual channel ID (VCHID). For further details on ISM VCHIDs, see [2].
Each ISM device is configured with multiple virtual functions (VFs). These show up as virtual PCI
devices and are identified by a unique function ID (FID).
ISM FIDs can be assigned to LPARs or guests and hereby provide similar conceptual functions as
single-root input/output virtualization (SR-IOV). Be aware that each individual FID can only be
assigned to one single LPAR or guest. Thus, for multi-guest scenarios each guest requires its own
FID.
It should be noted that two peers can only communicate via SMC-D if their FIDs belong to the
same ISM device (same VCHID).

6.2.1.1 UID

For PCI pass-through to a KVM guest, the PCI device to be passed through is selected by its PCI
address. However, PCI addresses may change across reboots and when additional FIDs are assigned
to (or removed from) an LPAR. Persistent PCI addresses can be achieved by defining a unique ID
(UID) for each FID along with the activation of unique user-defined identifier (UUID) checking for
that LPAR in the IOCDS.
The described test environment uses a configuration where the UID equals the FID.
Note that the UID also determines the PCI domain of a virtual function.

6.2.1.2 PNET ID, native and non-native ISM devices

The physical network ID (PNET ID) is set in the IOCDS and used to associate an ISM device with
an Ethernet device such as a RoCE Express, OSA-Express or HiperSockets adapter to perform the
SMC rendezvous. In that context an ISM device and an Ethernet device are called associated if they
have the same PNET ID. An ISM device with a PNET ID set is called a native ISM device. Note
that in a native ISM setup, both peers must have the same PNET ID for SMC-D communication to
work. The native ISM setup is supported with both SMC-Dv1 and SMC-Dv2. For more information
about device association using PNET IDs, see [5]: Internal shared memory device driver.

In contrast to SMCv1, SMCv2 allows to perform the SMC rendezvous for ISMv2 devices that do
not have a PNET ID set. Those are called non-native ISMv2 devices and do not have an associated
Ethernet device. In a non-native ISMv2 setup, none of the peers may have a PNET ID set.

The use of non-native ISM devices is beneficial if the SMC rendezvous is performed using virtio-
net interfaces (e.g. MacVTap HiperSockets). This is because virtio-net interfaces cannot be assigned
a PNET ID in the IOCDS since they only exist while the KVM guest is running. Even though it is
possible to manually assign a PNET ID to an Ethernet interface from within Linux using the
smc_pnet command (see [5]: smc_pnet - Create network mapping table) it is more convenient to use
non-native ISMv2 devices instead.

13

https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-pnet
https://www.ibm.com/docs/en/linux-on-systems?topic=n-ism-device-driver

6.2.1.3 Excursion: CLC handshake for SMC

This subsection is a brief digression into the topic of CLC handshake for SMC. It was deliberately
placed here because all the necessary terms needed to be introduced first.

As already mentioned in chapter 3.4, the CLC handshake is part of the SMC rendezvous.
During the CLC handshake, it is checked whether SMC-D or SMC-R can be utilized. If both
options are available SMC-D is prioritized. If neither is possible, TCP is used as fallback. As the
focus of this work is on SMC-D, it is assumed in the following section that no SMC-R/RDMA-
capable devices are available.

As part of the CLC handshake procedure for SMC-D, both peers check whether a common ISM
VCHID exists, as this is a prerequisite for the use of SMC-D. For that purpose one side proposes
either a single VCHID or a list of VCHIDs to its peer on the other side:

• A single VCHID is proposed for native ISM devices that have already been associated via a
PNET ID with the Ethernet device initiating handshake.

• A list of other available VCHIDs is proposed for non-native ISMv2 devices, since none of
them is associated with the Ethernet device initiating the handshake.

After one or more VCHIDs have been proposed, the peer on the other side in turn evaluates all its
available VCHIDs to determine whether any common VCHID exists. If a common VCHID is found
during the CLC handshake, the common ISM device can be used as DMA device. Otherwise, TCP
fallback mode is used.
Please note that the given description is only a very simplified representation of the actual
handshake procedure. In reality, numerous additional tests are necessary before an ISM device can
be used for DMA.

From a performance perspective, carrying out the CLC handshake takes some additional time. This
results in a disadvantage of SMC-D for "short lived" connections compared to pure TCP/IP
workloads. For example, if a workload only sends one request and then expects a short response,
SMC-D simply has an overhead that it cannot make up for.

6.2.2 KVM host setup

This subsection provides detailed information about setting up a KVM host for PCI device pass-
through to a KVM guest using ISM device pass-through as an example. It discusses the
prerequisites, delivers instructions for creating the required domain xml entries and advises on how
to achieve persistent PCI mappings.

6.2.2.1 Checking for vfio-pci kernel module

To use an ISM device for PCI pass-through it must be controlled by the vfio-pci device driver. The
modinfo command can be used to verify that the kernel module is available and loaded:

kvmhost# modinfo vfio-pci
filename: /lib/modules/4.18.0-477.10.1.el8_8.s390x/kernel/drivers/
 vfio/pci/vfio-pci.ko.xz
description: VFIO PCI - User Level meta-driver

14

6.2.2.2 Useful software packages

The smc-tools package should be installed. It provides commands like smc_rnics and smc_run:

• smc_rnics lists RoCE Express adapters and ISM PCI functions.
• smc_run runs a TCP socket program using the SMC protocol.

It is used to run the uperf benchmark in this study (see chapter 6.3.1).

For more information, see [5]: smc_rnics - list RoCE Express PCI functions and control their online
state and smc_run - Run a TCP socket program with the SMC protocol using a preloaded library.
In addition, the pciutils package can be helpful for debugging purposes, as it provides the lspci
command. lspci lists PCI devices attached to the system and their characteristics.

6.2.2.3 Determining the PCI address of the ISM device

The smc_rnics or lspci commands can be used to check whether the ISM device is present and to
determine its PCI address. Note that smc_rnics (without arguments) outputs one line for each FID:

host# smc_rnics
FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev
--
605 1 0605:00:00.0 07c8 ISM n/a n/a n/a

host# lspci -v
0605:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM)
virtual PCI device
 Physical Slot: 00000605
 Flags: bus master, fast devsel, latency 0, IOMMU group 0
 Memory at 4000000000000000 (64-bit, prefetchable) [virtual] [size=256T]
 Memory at 4001000000000000 (64-bit, prefetchable) [virtual] [size=256]
 Capabilities: [40] MSI: Enable+ Count=1/32 Maskable- 64bit+
 Kernel driver in use: ism
 Kernel modules: ism

A PCI address has the following format: <domain>:<bus>:<slot>.<function>. For more
information about the meaning of the address component values for Linux on IBM Z, see [5]: PCI
Express support.
Note that the PNET_ID reported by the smc_rnics command shows ‘n/a’ indicating that the ISM
device has been defined in non-native mode.

15

https://www.ibm.com/docs/en/linux-on-systems?topic=sr-pci-express-support
https://www.ibm.com/docs/en/linux-on-systems?topic=sr-pci-express-support
https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-run
https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-rnics
https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-rnics

6.2.2.4 Configuring PCI pass-through to a KVM guest

To enable PCI device pass-through to a KVM guest an additional element called <hostdev...>
needs to be added into the <devices...> section of the KVM guest domain xml as shown below:

<hostdev mode="subsystem" type="pci" managed="yes">
 <source>
 <address domain="0x0605" bus="0x00" slot="0x00" function="0x0"/>
 </source>
 <address type="pci">
 <zpci uid="0x00605" fid="0x00000605"/>
 </address>
</hostdev>

The source address attribute elements (domain, bus, slot, function) need to match the PCI
address as printed by the lspci or smc_rnics command on the KVM host as listed in 6.2.2.3.

Just like in the KVM host, the PCI address of the pass-through device in the KVM guest can change
across reboots. The concept of UIDs for persistent PCI addresses, as discussed in chapter 6.2.1.1,
also applies to KVM guests in the same way. The UID can be freely chosen and has to be entered
using the uid attribute in the <zpci...> element of the guest domain xml. As with the KVM host
before, the UID=FID setting is used here.

The PCI address as seen in the guest is solely determined by the uid attribute that becomes the PCI
domain. All remaining elements of the PCI address (bus, slot, function) are set to zero.

For more information, see [6]: Preparing PCI pass-through devices and Configuring pass-through
PCI devices. There is also a related “KVM on IBM Z and LinuxONE” blog post [8] describing
more technical details.

When the KVM guest is started, the lspci or smc_rnics command can be used to verify that the ISM
pass-through device is present and uses the ism kernel module:

guest# lspci -v
0605:00:00.0 Non-VGA unclassified device: IBM Internal Shared Memory (ISM)
virtual PCI device

Physical Slot: 00000605
Flags: bus master, fast devsel, latency 0, IRQ 12, IOMMU group 1
Memory at 4001000000000000 (64-bit, prefetchable) [virtual] [size=256T]
Memory at 4002000000000000 (64-bit, prefetchable) [virtual] [size=256]
Capabilities: [40] MSI: Enable+ Count=1/32 Maskable- 64bit+
Kernel driver in use: ism
Kernel modules: ism

guest# smc_rnics
FID Power PCI_ID PCHID Type PPrt PNET_ID Net-Dev
--
605 1 0605:00:00.0 07c8 ISM n/a n/a n/a

16

https://www.ibm.com/docs/en/linux-on-systems?topic=vfio-pass-through-pci
https://www.ibm.com/docs/en/linux-on-systems?topic=vfio-pass-through-pci
https://www.ibm.com/docs/en/linux-on-systems?topic=through-pci

6.3 Enabling workloads for SMC-D (by the example of uperf)
To use uperf with SMC-D workloads, it is generally not necessary to adapt the profile.xml.
The IP address to be specified for the uperf server in the profile.xml is the address of the TCP
interface that is used for SMC rendezvous processing. Remember that SMC can only be used with
TCP workload profiles.

6.3.1 Options to enable SMC-D

The SMC network protocol can be used in three ways:

1. Use of the smc_run command as a prefix to the TCP socket program:

smc_run <program> <program_parameters>

2. Definition of libsmc_preload as a preload library before running the TCP socket program:

export LD_PRELOAD=$LD_PRELOAD:libsmc_preload.so;
<program> <program_parameters>

Note that LD_PRELOAD can also be set globally in the system-wide configuration file
/etc/environment.

3. Adjustment of socket calls in the program code by replacing the address family type
AF_INET by AF_SMC.

Under the cover, all three variants eventually only change the address family type to AF_SMC.

To run uperf, the test environment uses the first and simplest method – the smc_run command – as
shown below:

1. Start the uperf server in the KVM guest on LPAR A:

server# smc_run uperf -s

2. Start the uperf client on LPAR B:

client# smc_run uperf -a -i 30 -m profile.xml

For more information about the smc_run command, see [5]: smc_run - Run a TCP socket program
with the SMC protocol using a preloaded library.

17

https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-run
https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-run

6.3.2 SMC-D connection statistics

The smcd command is also part of the smc-tools package and can be used to display various
connection statistics for SMC-D.
Part of the output contains information about whether an SMC connection was established
successfully or whether the connection used TCP instead (fallback mode).

The example below shows a snippet for a medium-size uperf request-response workload with 50
parallel connections. The line labeled TCP fallback reports cases where the underlying ISM device
was not used and the data transfer was accomplished with TCP. Note that there is one extra
connection being opened and used by uperf for management purposes. Thus, a total of 51
connections is reported:

client# smcd -d stats
SMC-D Connections Summary
 Total connections handled 51
 SMC connections 51 (client 51, server 0)
 v1 0
 v2 51
 Handshake errors 0 (client 0, server 0)
 Avg requests per SMC conn 14046725.0
 TCP fallback 0 (client 0, server 0)

The output indicates that all (51) connections used SMC-Dv2 and none of them went into TCP
fallback mode. For the sake of completeness, the full output is listed in appendix 9.3. For more
information, see [5]: smcd - Display information about SMC-D link groups and devices.

7 Results
Measurement results are presented in this chapter. In the first two subsections, SMC-D via ISM
pass-through performance is compared with MacVTap HiperSockets for the request-response and
the streaming workloads stated in chapter 4.1. A third subsection deals with tuning of buffer sizes
for SMC-D and its influence on performance.

7.1 Request-response workload
Figure 4 shows a comparison of transaction times between MacVTap HiperSockets and SMC-D via
ISM pass-through for the medium-size request-response workload (rr1c-200x1000). The
measurements were repeated four times with different numbers of active connections, i.e. 1, 10, 50
and 250 parallel connections. The transaction times shown are normalized to the single-connection
MacVTap HiperSockets case. Shorter bars correspond to lower transaction times and are hence
preferred.

18

https://www.ibm.com/docs/en/linux-on-systems?topic=c-smcd

For the single-connection case the transaction times of SMC-D via ISM pass-through are less than
half compared to MacVTap HiperSockets. With an increasing number of connections SMC-D
becomes even more beneficial. Note that figure 4 depicts a closeup where the 250-connection case
for MacVTap HiperSockets is truncated.

Figure 5 shows the full picture of the same measurement and illustrates that for 250 connections
SMC-D yields 83% lower transaction times than MacVTap HiperSockets.

Figure 6 belongs to the same set of measurements described above. It depicts the processor
consumption of LPAR A – including KVM host and KVM guest (uperf server) – comparing
MacVTap HiperSockets and SMC-D via ISM pass-through. Processor consumption is measured in
µs/Gb and normalized to the single-connection MacVTap HiperSockets case like in figures 4 and 5.

19

Figure 4: rr1c-200x1000 normalized transaction times (close up)

Figure 5: rr1c-200x1000 normalized transaction times (full picture)

1

10

50

250

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

SMC-D via ISM pass-through MacVTap HiperSockets

Normalized transaction times [single connection MacVTap HiperSockets = 1] ◄ better

C
o

n
n

e
ct

io
n

s

21.3 >>

1

10

50

250

0 5 10 15 20 25

21.3

SMC-D via ISM pass-through MacVTap HiperSockets

Normalized transaction times [single connection MacVTap HiperSockets = 1] ◄ better

C
o

n
n

e
ct

io
n

s

The reduced transaction times for SMC-D go hand in hand with a lower processor consumption.
CPU time savings range from 49% for 10 connections up to 76% for 250 connections. Single
connection also yields significant savings with 71% lower transaction times.

7.2 Streaming workload
Figure 7 depicts a throughput comparison between MacVTap HiperSockets and SMC-D via ISM
pass-through for the streaming read workload (str-readx30k).

As before, the values have been normalized to the single-connection MacVTap HiperSockets case.
Longer bars mean higher throughput and thus are preferred.

20

Figure 7: str-readx30k normalized throughput

Figure 6: rr1c-200x1000 normalized processor consumption of LPAR A

1

10

50

250

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMC-D via ISM pass-through MacVTap HiperSockets

Normalized processor consumption [single connection MacVTap HiperSockets = 1] ◄ better

C
o

n
n

e
ct

io
n

s

1

10

50

250

0 1 2 3 4 5 6 7 8

SMC-D via ISM pass-through MacVTap HiperSockets

Normalized throughput [single connection MacVTap HiperSockets = 1] ► better

C
o

n
n

e
ct

io
n

s

For the single-connection case, SMC-D achieves 38% higher throughput than MacVTap
HiperSockets. Furthermore, SMC-D throughput also scales well as the number of parallel
connections is increased. This cannot be observed with MacVTap HiperSockets where throughput
reaches saturation with as little as 10 connections.

With 50 parallel connections SMC-D outperforms MacVTap HiperSockets by a factor of nearly 6.4.
At this point all available SMT-2 threads of LPAR A are almost fully utilized (in transferring data).
As a consequence, with 250 connections there is only slight increase in throughput resulting in a
factor of 6.6 compared to MacVTap HiperSockets. This is because the system was already heavily
CPU bound with 50 connections.
Thus, an important observation gained from the tests is that SMC-D via ISM pass-through is very
efficient in terms of utilizing all available SMT-2 threads, especially for large request-response and
streaming workloads with multiple connections. This implies that adding more CPU cores is most
likely beneficial for multi-connection workloads where an additional increase in throughput is
required.

Figure 8 shows a comparison of the normalized processor consumption between SMC-D via ISM
pass-through and MacVTap HiperSockets of LPAR A – the KVM server – for the streaming
workload.
While SMC-D already outperforms MacVTap HiperSockets in terms of throughput, the processor
consumption (µs/Gb) is lower as well. CPU time savings range from 36% for 10 connections up to
60% for the 250 connections case. Single connection processor consumption savings for SMC-D
via ISM pass-through amount to a value of 44%.
Furthermore, MacVTap HiperSockets show an increase in processor consumption when going from
50 to 250 connections.

21

Figure 8: str-readx30k normalized processor consumption of LPAR A

1

10

50

250

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMC-D via ISM pass-through MacVTap HiperSockets

Normalized processor consumption [single connection MacVTap HiperSockets = 1] ◄ better

C
o

n
n

e
ct

io
n

s

7.3 SMC-D via ISM pass-through with buffer-size tuning
To investigate the influence of buffer sizes, all SMC-D measurements were repeated with larger
SMC receive and transmit buffers. The results were compared with the previous measurements that
used SMC buffer sizes based on default settings.

The only network tuning that has been applied so far was to increase the buffer count for
HiperSockets (see chapter 6.1.2). Apart from this, no further tuning was implemented and only
default distribution settings were used. In particular receive and transmit buffer sizes have been left
untouched at their RHEL 8.8 defaults. The sysctl command can be used to display and alter various
kernel parameters, including buffer sizes:

sysctl net.ipv4.tcp_rmem
net.ipv4.tcp_rmem = 4096 87380 6291456
sysctl net.ipv4.tcp_wmem
net.ipv4.tcp_wmem = 4096 16384 4194304

The three values represent the minimum, default and maximum sizes of the TCP receive and
transmit buffers.

For SMC-D an extra set of SMC receive and transmit buffers is created. Their size is derived from
the default values of the TCP receive and transmit buffers1. The calculation of the SMC buffer size
has changed in different kernel versions. In RHEL 8.8 with kernel version
4.18.0-477.10.1.el8_8.s390x the calculation is carried out as follows: First, if the default TCP buffer
size is not a power of two already, its value is rounded up to the next higher power of two. In a
second step, half of this number determines the size of the SMC buffer under the condition that its
minimum size is 16 KiB.
To illustrate this, the following snippet shows the SMC buffer sizes for a workload with 50
connections. The SMC buffer sizes in bold have been derived from the settings of the default TCP
buffer sizes shown above:

smcd -d stats

[...]

RX Stats
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 0 0 51 0 0 0 0

[...]

TX Stats
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 51 0 0 0 0 0 0

1 This only applies if the SMC buffer size was not set directly, e.g. via the smc_run command.

22

7.3.1 Applying SMC buffer-size tuning

The following tuning sets the default SMC receive and transmit buffer sizes to 128 KiB.
According to the calculation outlined above, this requires the TCP default buffers to be set to 256
KiB. In the test environment, the following sysctl settings were applied to both, the KVM guest as
the server and the client LPAR:

sysctl net.ipv4.tcp_rmem="4096 262144 6291456"
sysctl net.ipv4.tcp_wmem="4096 262144 4194304"

For persistent overrides the /etc/sysctl.conf configuration file can be used instead:

net.ipv4.tcp_rmem="4096 262144 6291456"
net.ipv4.tcp_wmem="4096 262144 4194304"

The snippet below shows the resulting 128 KiB SMC buffers derived from the increased 256 KiB
default TCP buffer setting, again for a workload with 50 connections:

smcd -d stats

[...]

RX Stats
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 0 0 0 51 0 0 0

[...]

TX Stats
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 0 0 0 51 0 0 0

Note that above settings are applied on a per-socket basis. Therefore setting buffer sizes too large
wastes memory. Furthermore it should be mentioned that setting SMC buffer sizes via
net.ipv4.tcp_rmem[1] and net.ipv4.tcp_wmem[1] also changes the default sizes of the TCP
buffers. For most applications, however, this effect should be negligible.

The sysctl settings of the SMC buffer sizes are queried every time a new connection is established
(i.e. every time a new socket is created) and adopted for the new connection. This means that
changing the sysctl settings for the server is still possible even if it has already been started via the
smc_run command. The modified sysctl settings of SMC buffer sizes then take effect for new
connections from the client. However, it is not possible to change SMC buffer size for existing
connections.

Another possibility to set SMC buffer sizes is to use the ‘-r’ and ‘-t’ switches of the smc_run
command (see [5]: smc_run - Run a TCP socket program with the SMC protocol using a preloaded
library).

23

https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-run
https://www.ibm.com/docs/en/linux-on-systems?topic=c-smc-run

Thus, instead of altering sysctl values, one could also directly set the SMC receive and transmit
buffer sizes to 128 KiB as follows:

server# smc_run -r 128k -t 128k uperf -s
client# smc_run -r 128k -t 128k uperf -a -i 30 -m profile.xml

Those parameters override the global sysctl settings. This can be convenient if buffer sizes only
need to be changed on a per-application basis. One could think of scenarios where a single
workload generates “streaming-like” traffic, but the majority of applications use “highly
transactional” patterns instead. Without getting too far ahead of the results, it might therefore be
appropriate to increase the SMC buffers for a streaming application via the ‘-r’ and ‘-t’ switches
of the smc_run command and let transactional workloads use the smaller default buffers derived
from the system-wide sysctl settings.

Note:
Kernel version 6.52 introduced a set of SMC-specific sysctl tunables called net.smc.rmem and
net.smc.wmem. They allow SMC buffer sizes to be set independently from the TCP buffers.

7.3.2 Impact of buffer-size tuning on the request-response workload

In the test setup, tuning SMC buffer sizes has a slightly negative impact on transaction times for the
single-connection SMC-D request-response workload of about 4%. However, SMC-D request-
response transaction times for 10 and more connections remain unaffected by buffer-size tuning.
Furthermore, tuning SMC buffer sizes does not have an impact on processor-consumption for the
request-response workload.

7.3.3 Impact of buffer-size tuning on the streaming workload

Figure 9 shows the impact of tuning SMC buffer sizes on throughput for the streaming workload.
The SMC-D measurements with default-sized buffers (as described in chapter 7.2) serve as
reference. Throughput numbers are normalized to the single-connection case with default SMC
buffer size.

2 The commit id of this feature is 833bac7e.

24

The results (see figure 9) show that tuning buffer sizes significantly helps to improve throughput
rates, especially in the single-connection case with nearly 44% improvement. The multi-connection
cases still yield throughput improvements in a range from 16% to 22%.
Similar to previous measurements with default-sized buffers, LPAR A is almost CPU bound again
when using 50 or more parallel connections. Thus, adding more processor cores might help to
further increase throughput for scenarios with a high number of parallel connections.

Finally, figure 10 illustrates how buffer-size tuning contributes to saving processor consumption
(µs/Gb) for the streaming workload.

The savings range from 14% to 29%, again with the largest savings for the single-connection case.

25

Figure 9: str-readx30k throughput with and without SMC buffer-size tuning

Figure 10: str-readx30k processor consumption savings of LPAR A due to buffer tuning

1

10

50

250

0 1 2 3 4 5 6 7

SMC-D via ISM pass-through w/ buffer size tuning

SMC-D via ISM pass-through w/ default buffer size

Normalized throughput [single connection w/ default buffer size = 1] ► better

C
o

n
n

e
ct

io
n

s

1

10

50

250

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SMC-D via ISM pass-through w/ buffer size tuning

SMC-D via ISM pass-through w/ default buffer size

Normalized processor consumption [single connection w/ default buffer size = 1] ◄ better

C
o

n
n

e
ct

io
n

s

8 Takeaways
This study compares two possible networking options for guest-to-LPAR communication within a
CPC: MacVTap HiperSockets and SMC-D via ISM pass-through.

SMC-D via ISM pass-through outperforms MacVTap HiperSockets for highly transactional/latency-
critical request-response traffic patterns with up to 83% reduced latency. Additionally, SMC-D can
increase throughput of streaming workloads by up to 6.6 times. These performance benefits go hand
in hand with significant processor consumption savings in the high double-digit range.

The streaming performance of SMC-D can be further enhanced by increasing SMC buffer sizes.
With the selected tuning of 128 KiB for SMC transmit and receive buffers, throughput was
increased by up to 44% and processor consumption reduced by up to 29% – both compared to
performance metrics using default sized buffers. It should be noted that SMC-D streaming
workloads could benefit from even larger SMC buffers.

SMC-Dv2 is available for IBM z15 and z16 with the ISM feature enabled.
PCI device pass-through for KVM guests is supported with the following (or later) Linux on IBM Z
distributions: Red Hat Enterprise Linux 8.8 and 9.2, SUSE Linux Enterprise Server 15 SP5 and
Ubuntu Server 23.04.

26

9 Appendix

9.1 Output of lsqeth command for HiperSockets
The following output of the lsqeth command shows the characteristics of a HiperSockets adapter in
layer 2 mode with an increased buffer count of 128 as used in the test environment:

kvmhost# lsqeth
Device name : hs32k_0

 card_type : HiperSockets
 cdev0 : 0.0.8200
 cdev1 : 0.0.8201
 cdev2 : 0.0.8202
 chpid : FC
 online : 1
 portname : no portname required
 portno : 0
 state : UP (LAN ONLINE)
 priority_queueing : disabled
 buffer_count : 128
 layer2 : 1
 isolation : none
 bridge_role : none
 bridge_state : inactive
 bridge_hostnotify : 0
 bridge_reflect_promisc : none
 vnicc/bridge_invisible : 0
 vnicc/flooding : 0
 vnicc/learning : 0
 vnicc/learning_timeout : 600
 vnicc/mcast_flooding : 0
 vnicc/rx_bcast : 1
 vnicc/takeover_learning : 0
 vnicc/takeover_setvmac : 0

27

9.2 profile.xml for a medium-size request-response
workload
The following uperf profile.xml defines a medium-size request-response workload with 50
parallel connections and a runtime of 300 seconds:

<?xml version="1.0"?>
<profile name="TCP_RR">
 <group nprocs="50">
 <!-- if one wants to run threads instead of processes -->
 <!--group nthreads="50"-->
 <transaction iterations="1">
 <flowop type="connect" options="remotehost=10.x.y.1
 protocol=tcp tcp_nodelay" />
 </transaction>
 <transaction duration="300">
 <flowop type="write" options="size=200"/>
 <flowop type="read" options="size=1000"/>
 </transaction>
 <transaction iterations="1">
 <flowop type="disconnect" />
 </transaction>
 </group>
</profile>

28

9.3 SMC-D connection statistics for a medium-size request-
response workload
The SMC-D connection statistics shown below refer to a medium-size request-response workload
with 50 parallel connections:

client# smcd -d stats
SMC-D Connections Summary
 Total connections handled 51
 SMC connections 51 (client 51, server 0)
 v1 0
 v2 51
 Handshake errors 0 (client 0, server 0)
 Avg requests per SMC conn 14046725.0
 TCP fallback 0 (client 0, server 0)

RX Stats
 Data transmitted (Bytes) 358191451596 (358.2G)
 Total requests 358191491
 Buffer full 0 (0.00%)
 Buffer downgrades 0
 Buffer reuses 51
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 0 0 51 0 0 0 0
 Reqs 358.2M 1 0 0 0 0 0 0

TX Stats
 Data transmitted (Bytes) 71638302336 (71.64G)
 Total requests 358191501
 Buffer full 0 (0.00%)
 Buffer full (remote) 0 (0.00%)
 Buffer too small 0 (0.00%)
 Buffer too small (remote) 0 (0.00%)
 Buffer downgrades 0
 Buffer reuses 51
 8KB 16KB 32KB 64KB 128KB 256KB 512KB >512KB
 Bufs 0 51 0 0 0 0 0 0
 Reqs 358.2M 0 0 0 0 0 0 0

Extras
 Special socket calls 50
 cork 0
 nodelay 50
 sendpage 0
 splice 0
 urgent data 0

29

10 Bibliography
1: IBM Washington Systems Center, Shared Memory Communications –
Direct Memory Access (SMC-D) Frequently Asked Questions, 2023,
https://www.ibm.com/support/pages/node/7004951

2: Randall Kunkel, Jerry Stevens, IBM Shared Memory Communications: Version 2,
Third Edition, 2023,
https://www.ibm.com/support/pages/ibm-shared-memory-communications-version-2

3: Nils Hoppmann, Exploring the performance of network adapters for Linux on IBM Z, 2021,
https://www.ibm.com/docs/en/linuxonibm/pdf/z_performance_of_network_adapters_Linux_on_IBM_Z.pdf

4: Mike Ebbers, Micky Reichenberg, Alexandra Winter,
IBM HiperSockets Implementation Guide (SG24-6816-02), 2014,
https://www.redbooks.ibm.com/redbooks/pdfs/sg246816.pdf

5: Device Drivers, Features, and Commands on Red Hat Enterprise Linux 8.6 (SC34-7715-06), 2022,
https://www.ibm.com/docs/en/linux-on-systems?topic=commands-red-hat-enterprise-linux-86

6: KVM Virtual Server Management (SC34-2752-08), 2022,
https://www.ibm.com/docs/en/linux-on-systems?topic=management-november-2022

7: Dr. Juergen Doelle, KVM Network Performance Best Practices and Tuning Recommendations, 2020,
https://public.dhe.ibm.com/software/dw/linux390/perf/KVM_Network_Performance-
Best_Practices_and_Tuning.pdf

8: Stefan Raspl, libvirt v4.10 released, providing PCI passthrough support, 2019,
http s ://kvmonz.blogspot.com/2019/01/libvirt-v410-released-providing-pci.html

9: Mark A. Peloquin, Dr. Juergen Doelle, KVM Network Performance - Best Practices and Tuning
Recommendations, 2018,
https://www.ibm.com/docs/en/linux-on-systems?topic=kvm-network-performance-best-practices-tuning-
recommendations

30

https://kvmonz.blogspot.com/2019/01/libvirt-v410-released-providing-pci.html
https://www.ibm.com/docs/en/linux-on-systems?topic=management-november-2022
https://public.dhe.ibm.com/software/dw/linux390/perf/KVM_Network_Performance-Best_Practices_and_Tuning.pdf
https://public.dhe.ibm.com/software/dw/linux390/perf/KVM_Network_Performance-Best_Practices_and_Tuning.pdf
https://kvmonz.blogspot.com/2019/01/libvirt-v410-released-providing-pci.html
https://www.ibm.com/docs/en/linux-on-systems?topic=kvm-network-performance-best-practices-tuning-recommendations
https://www.ibm.com/docs/en/linux-on-systems?topic=kvm-network-performance-best-practices-tuning-recommendations
https://kvmonz.blogspot.com/2019/01/libvirt-v410-released-providing-pci.html
https://www.ibm.com/docs/en/linux-on-systems?topic=commands-red-hat-enterprise-linux-86
https://www.redbooks.ibm.com/redbooks/pdfs/sg246816.pdf
https://www.ibm.com/docs/en/linuxonibm/pdf/z_performance_of_network_adapters_Linux_on_IBM_Z.pdf
https://www.ibm.com/support/pages/ibm-shared-memory-communications-version-2
https://www.ibm.com/support/pages/node/7004951

11 Notices and disclaimer
© 2023 International Business Machines Corporation. No part of this document may be reproduced
or transmitted in any form without written permission from IBM.

U.S. Government Users Restricted Rights – use, duplication or disclosure restricted by GSA
ADP Schedule Contract with IBM.

Information in these presentations (including information relating to products that have not yet been
announced by IBM) has been reviewed for accuracy as of the date of initial publication and could
include unintentional technical or typographical errors. IBM shall have no responsibility to update
this information. This document is distributed "as is" without any warranty, either express or
implied. In no event, shall IBM be liable for any damage arising from the use of this
information, including but not limited to, loss of data, business interruption, loss of profit or
loss of opportunity. IBM products and services are warranted per the terms and conditions of the
agreements under which they are provided.

IBM products are manufactured from new parts or new and used parts. In some cases, a product
may not be new and may have been previously installed. Regardless, our warranty terms apply.

Any statements regarding IBM’s future direction, intent or product plans are subject to
change or withdrawal without notice.

Performance data contained herein was generally obtained in a controlled, isolated environment.
Customer examples are presented as illustrations of how those customers have used IBM products
and the results they may have achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

References in this document to IBM products, programs, or services does not imply that IBM
intends to make such products, programs or services available in all countries in which IBM
operates or does business.

Workshops, sessions and associated materials may have been prepared by independent session
speakers, and do not necessarily reflect the views of IBM. All materials and discussions are
provided for informational purposes only, and are neither intended to, nor shall constitute legal or
other guidance or advice to any individual participant or their specific situation.

It is the customer’s responsibility to insure its own compliance with legal requirements and to
obtain advice of competent legal counsel as to the identification and interpretation of any relevant
laws and regulatory requirements that may affect the customer’s business and any actions the
customer may need to take to comply with such laws. IBM does not provide legal advice or
represent or warrant that its services or products will ensure that the customer follows any
law.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
about this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products. IBM does not warrant the quality of any third-party
products, or the ability of any such third-party products to interoperate with IBM’s products.

31

IBM expressly disclaims all warranties, expressed or implied, including but not limited to, the
implied warranties of merchantability and fitness for a purpose.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks of International Business Machines Corporation,
registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright
and trademark information" at: https://www.ibm.com/legal/copyright-trademark.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

The provision of the information contained herein is not intended to, and does not, grant any right
or license under any IBM patents, copyrights, trademarks or other intellectual property right. Refer
to https://www.ibm.com/legal for further legal information.

32

https://www.ibm.com/legal
https://www.ibm.com/legal/copyright-trademark

	1 Abstract
	2 Introduction
	2.1 How this paper is structured

	3 About SMC-D via ISM pass-through
	3.1 Shared Memory Communications (SMC)
	3.1.1 SMC-D and SMC-R
	3.1.2 HiperSockets traffic and SMC-D via ISM
	3.1.3 SMC version 2 and SMC-D version 2

	3.2 PCI pass-through
	3.3 Definition of terms “MacVTap HiperSockets” and “SMC-D via ISM pass-through”
	3.4 SMC rendezvous

	4 Workload
	4.1 Workload profiles
	4.2 Processor consumption

	5 Test environment
	5.1 LPAR configuration
	5.2 Linux and KVM host configuration
	5.3 KVM guest configuration
	5.4 MacVTap HiperSockets measurement setup
	5.5 SMC-D via ISM pass-through measurement setup

	6 Setup guidance
	6.1 Setting up MacVTap HiperSockets
	6.1.1 HiperSockets definition in the IOCDS
	6.1.2 Setting up HiperSockets in layer 2 mode and increasing the buffer count
	6.1.3 MacVTap interface configuration

	6.2 Setting up ISM pass-through to a KVM guest
	6.2.1 ISM device definition
	6.2.1.1 UID
	6.2.1.2 PNET ID, native and non-native ISM devices
	6.2.1.3 Excursion: CLC handshake for SMC

	6.2.2 KVM host setup
	6.2.2.1 Checking for vfio-pci kernel module
	6.2.2.2 Useful software packages
	6.2.2.3 Determining the PCI address of the ISM device
	6.2.2.4 Configuring PCI pass-through to a KVM guest

	6.3 Enabling workloads for SMC-D (by the example of uperf)
	6.3.1 Options to enable SMC-D
	6.3.2 SMC-D connection statistics

	7 Results
	7.1 Request-response workload
	7.2 Streaming workload
	7.3 SMC-D via ISM pass-through with buffer-size tuning
	7.3.1 Applying SMC buffer-size tuning
	7.3.2 Impact of buffer-size tuning on the request-response workload
	7.3.3 Impact of buffer-size tuning on the streaming workload

	8 Takeaways
	9 Appendix
	9.1 Output of lsqeth command for HiperSockets
	9.2 profile.xml for a medium-size request-response workload
	9.3 SMC-D connection statistics for a medium-size request-response workload

	10 Bibliography
	11 Notices and disclaimer

