
Tivoli WebSEAL - Sizing and Capacity
Planning

���

ii Tivoli WebSEAL - Sizing and Capacity Planning

Contents

Tivoli WebSEAL - Sizing and capacity
planning 1
Objectives for the Tivoli WebSEAL performance tests 1
Summary for the Tivoli WebSEAL performance tests 2
Hardware equipment and software environment for
the Tivoli WebSEAL performance tests 3

Test environment 5
Test case setup for the Tivoli WebSEAL performance
tests 5

Benchmark scenarios 6
WebSEAL setup 8
Web pages 9
System z9 cryptographic hardware 9
Data collection and output 10

Results for the Tivoli WebSEAL performance tests 10
Non-SSL page access through a TCP junction,
unauthenticated 10
SSL page access through a TCP junction 13
SSL page access through a TCP junction with “-c
all” option. 17
SSL page access through an SSL junction . . . 20
SSL page access with new authentication and
new SSL session every request 22

Detailed set up examples for the Tivoli WebSEAL
performance tests 24
Other sources of information for the Tivoli
WebSEAL performance tests 29
Notices for the Tivoli WebSEAL performance tests 29

iii

iv Tivoli WebSEAL - Sizing and Capacity Planning

Tivoli WebSEAL - Sizing and capacity planning

WebSEAL provides an authentication and authorization mechanism based on Tivoli
Access Manager. It enables an end-to-end Single Sign On (SSO) solution for secure
transactions for WebSphere application servers.

Published September 2007

Here WebSEAL is used as proxy inside a DMZ from a secure WebSphere
Application server environment. Each server runs on virtual hardware under
z/VM.

The paper describes how to setup the environment and how it performs in various
scenarios. Additionally it shows the impressive advantage of the IBM system z
cryptographic hardware features CPACF and CEX2C cards and how to setup the
system to get cryptographic hardware support. It also demonstrates that the
implementation of a DMZ with all its services and servers is a very good case for
server consolidation on z/VM.

To view or download the PDF version of this document, click on the following
link:

Tivoli WebSEAL - Sizing and Capacity Planning (about 948 KB)

Objectives for the Tivoli WebSEAL performance tests
The Tivoli WebSEAL Sizing and Capacity Planning project performance tests were
performed to determine performance characteristics for the WebSEAL environment
on Linux for IBM System z.

WebSEAL is a component of Tivoli® Access Manager for e-business that provides
an authentication and authorization mechanism to enable end-to-end Single Sign
On (SSO) for HTTP based Web servers. One such Web server is WebSphere®

Application Server residing on z/OS®. With the WebSEAL solution, the z/OS
system can remain safely isolated from Internet traffic and threats. In this solution,
WebSEAL acts as a reverse proxy (a proxy that lets users into a protected network
as opposed to one that lets users out). The WebSEAL reverse proxy would likely be
deployed in the DMZ or similar security zone. A client would be authenticated by
WebSEAL via userID and password, and a token would be assigned and associated
with the transaction for the remainder of the communication. Authentication via
WebSEAL can be safely performed in the DMZ with no risk to applications
running on z/OS.

While WebSEAL does not run on the z/OS platform, it does run on Linux® for
IBM® System z®. An integrated solution with WebSEAL on Linux for System z
providing authentication, authorization, and SSO for applications running in
WebSphere on z/OS has been tested and documented as an IBM System z Linux
Utility Service. See the System z Linux Utility Service Web page at:

http://www.ibm.com/systems/z/os/linux/utilities/index.html

The objectives of this project were to determine performance characteristics for the
WebSEAL environment. The information obtained in these tests should not be used

1

to develop capacity sizing rules-of-thumb for customer environments. For sizing
and capacity planning, contact our educated specialists from the IBM System z
sizing team who use the appropriate capacity planning tools.

Summary for the Tivoli WebSEAL performance tests
After performing performance tests on a Tivoli WebSEAL environment on Linux
for IBM System z, we compiled a summary of our results and recommendations.

Test results and recommendations are specific to the test environment. Findings
useful in the test environment might not apply in other environments with other
workloads. For our detailed test results information, see “Results for the Tivoli
WebSEAL performance tests” on page 10.

The following are our summary results:
v The most critical resource was the CPU at the WebSEAL server. Just increasing

the number of CPUs from one to two increased the throughput by nearly a
factor of two without increasing the number of workload generators.

v The CPU load of the other servers needed for WebSEAL was very low, making
this is an ideal environment to host on z/VM® because z/VM offers the
capability of running with more virtual CPUs than physical CPUs available,
which allows the sharing of unused CPU capacity among the guests.

v The log file is a resource where the access is serialized. This is a bottleneck
whose impact increases with the number of workload generators. This shows
that the I/O bandwidth for the log file is another constraint besides CPU
capacity. To ensure the maximum I/O bandwidth, it is recommended to place
the log file at least on a separate disk to avoid the sequential I/O flow being
interrupted by other I/O requests or use a logical volume striped over disks
from several ranks, which is the better option. Be aware that all our
measurements were logging to a file.

v As expected, SSL encryption has a negative impact on throughput because the
encryption/decryption is a significant effort. Using CP Assist for Cryptographic
Function (CPACF) hardware support reduces that impact significantly. By using
large pages, throughput is improved by a factor of 2.4.

v When the WebSEAL server runs CPU constrained it is a bottleneck limiting
throughput. The cryptographic hardware support gives the CPU some relief,
which enables the possibility to increase the workload beyond what could be
driven without the hardware support.

v Using an SSL junction from WebSEAL to the back end WebSphere application
server leads to a significant degradation of the throughput. The WebSEAL server
has much more work to do in this scenario. The encrypted packages have to be
decrypted, analyzed, and encrypted again. The degradation could be reduced by
using hardware support for encryption. Be aware that the alternative to this
overhead, like an isolated network using a HiperSockets™ connection or a z/VM
guest LAN, can be easily implemented on System z and produces the same
grade of security without this overhead.

v Using the CPACF from the CPU for decryption and encryption of the requests
and the CEX2C cryptographic adapter feature for the authentication results in an
improvement by the hardware cryptographic support up to a factor of three.
See “Enable and run WebSEAL with cryptographic hardware support” on page
24 for a description on how to setup the cryptographic hardware support.

2 Tivoli WebSEAL - Sizing and Capacity Planning

Hardware equipment and software environment for the Tivoli
WebSEAL performance tests

To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.

Host Hardware

Two LPARs on a 16-way IBM System z9®, type 2094-S18, equipped with:

Table 1. System memory and CPUs

System/LPAR Memory Dedicated CPUs

z/VM 5120 MB 3(4)

z/OS 4096 MB 2(4)

Additionally, the z/VM LPAR used:
v OSA Express 2 gigabit Ethernet card (OSA code level 0805)
v Crypto type: CEX2C (Supplies 2 cards)

Network setup
v The z/VM LPAR is connected to the clients via Fiber Gigabit Ethernet Interface
v The z/VM guests used virtual guest LANs
v The z/VM LPAR and the z/OS LPAR were connected via a HiperSockets

connection

Storage server setup

IBM TotalStorage® Enterprise Storage Server® (ESS) 2105 800
v IBM 3390 disk model 3
v Physical DDMS with 15,000 RPMs

z/VM guest setup

Table 2 shows the z/VM guest configuration we used for our tests. We used this
configuration for our tests using WebSphere Application Server on z/OS and our
tests using Apache HTTP Server on Linux.

Table 2. Test system configuration: WebSphere Application Server

System/Guest Memory CPUs

WebSEAL 512 MB 1(2)

Tivoli Access Manager/IBM
Tivoli Directory Service

1024 MB 1

DB2® UDB 2048 MB 1

Firewall1 512 MB 1

Firewall2 512 MB 1

Client hardware

4 x330 PCs with 2 processors, 1.26 Ghz

Tivoli WebSEAL - Sizing and capacity planning 3

Software

Table 3. Host and client software used

Product Version/Level

Apache HTTP Server 2.0.49

DB2 Client RTE Version 8.2 FixPak 4 (equivalent to Version
8.1 FixPak 11)

Curl curl-7.12.1-8.rhel4, curl-devel-7.12.1-8.rhel4

IBM DB2® Universal Database™ (DB2 UDB) 8.2

IBM Key Management (gskit) 7.0.3.13

OpenSSL 0.9.7d-15.21, openssl-32bit-9-200511222035

Red Hat Enterprise Linux RHEL 4 ES (client)

SUSE Linux Enterprise Server SLES9 SP3

Tcl Tcl-devel-8.4.7-2, tcl-8.4.7-2

Tivoli Access Manager for e-business
(contains WebSEAL, IBM Tivoli Directory
Service, and Tivoli Access Manager

6.0.0.1

WebSphere Application Server 6.0.2

z/OS 1.07

z/VM 5.2

z/VM guest configuration

z/VM guests were interconnected by a z/VM guest LAN configured as a
HiperSockets, MFS 24 K. All guests ran SLES9 SP3, kernel level 2.65-7.244-s390x.

Table 4. z/VM guests

Host Name IP address # Virtual CPUs Memory Function

LNX00080
10.10.80.95
192.168.40.95
10.10.50.95

1(2) 512 MB WebSEAL Server

LNX00081
10.10.80.200
192.168.30.200

1 2 GB DB2 UDB

LNX00082
10.10.80.85
192.168.30.85

1 1 GB Tivoli Access
Manager / IBM
Tivoli Directory
Service

LNX00090
10.10.80.21
192.168.30.21
192.168.40.21

1 512 MB Firewall 1

LNX00091
10.10.80.22
192.168.40.22
10.10.60.22

1 512 MB Firewall 2

4 Tivoli WebSEAL - Sizing and Capacity Planning

Test environment
Our Tivoli WebSEAL test environment consisted of an IBM System z and an IBM
System x server.

Figure 1 shows only the setup of the WebSEAL environment.

The System z contained a z/VM LPAR with five guests and a z/OS LPAR. The
network was split into three parts:
v The System x® and the System z systems were connected in the unsecured

external zone through a 1 Gb Ethernet connection. The System x system
contained the WebSEAL workload generator, which generated the workload.

v The DMZ contained one guest with the WebSEAL Proxy Server protected from
the external zone with a firewall (Firewall 2) running in a separate guest.

v The trusted internal zone is protected with another guest with a more restrictive
firewall (Firewall 1) and contains one guest for each of the following servers:
– The Tivoli Access Manager / IBM Tivoli Directory Service server and the DB2

client
– The DB2 UDB database server

v The z/OS LPAR is connected to the z/VM LPAR through a HiperSockets
connection and contained the WebSphere Application Server.

v The network zones on z/VM were implemented as HiperSockets guest LANs.

See the Red Paper IBM Tivoli Access Manager for e-business for general information
on the software products used in this test. The red paper can be found at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp3677.pdf

Test case setup for the Tivoli WebSEAL performance tests
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.

Figure 1. WebSEAL test environment

Tivoli WebSEAL - Sizing and capacity planning 5

Creating the IBM Tivoli Directory Server (LDAP) Database on the
DB2 Server

The following commands were used to create the database used by IBM Tivoli
Directory Server for our measurements:
db2 create db ldapdb2 using codeset UTF-8 territory US
db2 CREATE BUFFERPOOL LDAPBP SIZE 1230 PAGESIZE 32K NOT EXTENDED STORAGE
db2 ALTER BUFFERPOOL IBMDEFAULTBP SIZE 29500
db2 "CREATE TABLESPACE LDAPSPACE PAGESIZE 32K MANAGED BY SYSTEM
db2 update dbm cfg using svcename idsservice
db2set DB2COMM=TCPIP
db2empfa ldapdb2
db2 update db cfg for ldapdb2 using APPLHEAPSZ 1024
db2 update db cfg for ldapdb2 using DBHEAP 1200

Creating the users in the LDAP Registry

The following commands were used to create 10,000 user entries:
user create user1 cn=user1,c=us user1 user1 linux390
user modify user1 account-valid yes

where user1 was varied from user1 though user10000.

Benchmark scenarios
To test the different levels of security, we used three categories of test procedures
for our Tivoli WebSEAL performance tests.

There were three categories of test procedures we used:
v Non-SSL (or TCP)

This accesses an unprotected Web page. There is no SSL or authentication set up.
Used in “Non-SSL page access through a TCP junction, unauthenticated” on
page 10.

v SSL
This accesses a protected Web page that requires authentication. It establishes
the SSL session and authentication at the beginning of the test and reuses both
throughout the remainder of the test.
Used in “SSL page access through a TCP junction” on page 13, “SSL page access
through a TCP junction with “-c all” option” on page 17, and “SSL page access
through an SSL junction” on page 20.

v SSL authentication
This is an authentication test. It requests a protected web page that requires
authentication. The SSL session is re-established and a new user is authenticated
with each page requested during the test.
Used in “SSL page access with new authentication and new SSL session every
request” on page 22.

The Tivoli Access Manager administrative command utility (pdadmin) was used to
configure the WebSEAL server for the workloads driven by the benchmarks. The
following table describes the WebSEAL configuration, including the pdadmin
command options, used for each benchmark scenario.

6 Tivoli WebSEAL - Sizing and Capacity Planning

Table 5. Benchmark scenarios

Benchmark Description Junction Crypto Auth.
type

Page Size Back end

1 HTTP page access to a TCP
junction to back end

TCP None None 5.8 KB WebSphere
z/OS

pdadmin -a sec_master -p <password> server task webseald-<webseal host> create -t
tcp -p 9080 -h <websphere server> /ivload/tcp-jct-wasserver-unauth

2 HTTPS page access to TCP
junction to back end

TCP AES-128
sw/hw

Once,
with
session
reuse

5.8 KB
12 KB
2.9 MB

WebSphere
z/OS

pdadmin -a sec_master -p <password> server task webseald-<webseal host> create -t
tcp -p 9080 -h <websphere server> /ivload/tcp-jct-wasserver

3 HTTPS page access to TCP
junction to back end with
“-c all” option

TCP AES-128
sw/hw

Once
with
session
reuse

5.8 KB WebSphere
z/OS

pdadmin -a sec_master -p <password> server task webseald-<webseal host> create -t
tcp -p 9080 -h <websphere server> -c all /ivload/tcp-jct-wasserver

4 HTTPS page access to SSL
junction to back end

SSL DES-168
sw/hw

Once
with
session
reuse

5.8 KB 12
KB

WebSphere
Linux

pdadmin -a sec_master -p <password> server task webseald-<webseal host> create -t
ssl -p 9443 -h <websphere server> /ivload/ssl-jct-apache2

5 HTTPS authentication page
access

None AES-128
sw/hw

Each,
with
new
session

100 B None

Note: While it is possible to have an HTTP page access to an SSL junction back end, this
configuration was not tested because it is counter intuitive.

Authentication process

Basic authentication requires two requests from the browser. The first request is
unauthenticated. It asks for the Web page without providing authentication
information, for example, the authentication header. The Web server rejects this
request with a HTTP 401 error indicating that authentication is required. The Web
browser pops up a user name and password authentication header so that
re-authentication does not occur.

SSL sessions

Negotiating a new SSL session is costly in terms of performance (CPU usage). The
test that authenticates with each request also negotiates a new session with each
request. Although both are very costly, both events occur together, so it is a
realistic representation of common usage to perform the test in this way.

″Session reuse″ means the SSL session is negotiated at the beginning of the test and
the session is reused on each subsequent request.

Authentication types

Tivoli WebSEAL - Sizing and capacity planning 7

Authentication type ″None″ means the request is unauthenticated. For these tests,
an Access Control List (ACL) is placed in the WebSEAL object space indicating that
the page does not require authentication.

Authentication type ″Once″ means there is one authentication per load generating
client and subsequent requests are performed after this authentication by reusing
the same session. The authentication is not part of the measured results. Other
than at the beginning of the test, there are no LDAP operations for consecutive
tests refers to an authenticated page access request after an initial authentication.
Post authentication cases do not perform any operations to the LDAP server.

Authentication type ″Each″ means that each request creates a new session, which
requires a new SSL session negotiation. This includes a user login using Basic
Authentication (BA).

WebSEAL setup
For our Tivoli WebSEAL performance tests, we setup a WebSEAL junction, a
connection between a WebSEAL server and a backend Web application server.

v The connection between a WebSEAL server and a back end Web application
server is known as a WebSEAL junction. A WebSEAL junction is a TCP or SSL
connection between a front end WebSEAL server and a back end server. The
back end server can be another WebSEAL server or, more commonly, a
third-party Web application server. The back end server Web space is
″connected″ to the WebSEAL server at a specially designated junction (mount)
point in the WebSEAL Web space. A junction allows WebSEAL to provide
protective services on behalf of the back end server. WebSEAL can perform
authentication and authorization checks on all requests before passing those
requests on to the back end server.

v WebSEAL maintains the following HTTP log files, which record HTTP activity:
– request.log
– agent.log
– referer.log

Figure 2. WebSEAL junction

8 Tivoli WebSEAL - Sizing and Capacity Planning

By default, these log files are located in the /var/pdweb/www-default/log
directory. Stanza entries for configuring traditional HTTP logging are located in
the [logging] stanza of the WebSEAL configuration file. The WebSEAL web
server request logs are not automatically deleted by WebSEAL. The logs will
grow until manually deleted or the file system in which they are placed becomes
full. In our tests the log files, when used, were reset at the beginning of each
run.

Web pages
For our Tivoli WebSEAL tests, our web pages needed to be stored in specific
directories. Also, commands were used to create ACL definitions.

All Web pages were stored in the WebSphere Application Server installed
applications directory structure under the sample application PlantsbyWebSphere
directory. Pages were also placed in the WebSEAL document root directory on the
WebSEAL server. Benchmarks that did not use a junction retrieved their pages
from WebSEAL’s document root directory.

ACL definitions

The following commands create the ACL that was attached to the web pages for
the unauthenticated benchmark:
pd_host=websealserver.pdl.pok.ibm.com
cat <<EOF | pdadmin -a sec_master -p lsc2lsc
acl create test-unauthenticated
acl modify test-unauthenticated set Group iv-admin TcmdbsvaBRrxl
acl modify test-unauthenticated set Group webseal-servers Tgmdbsrxl
acl modify test-unauthenticated set User sec_master TcmdbsvaBRrxl
acl modify test-unauthenticated set Any-other Trx
acl modify test-unauthenticated set Unauthenticated Tr
EOF

The above ACL was attached to the following objects in the WebSEAL object space:
pdadmin -a sec_master -p lsc2lsc acl attach ↓
/WebSEAL/$pd_host-default/ivload/tcp-jct-wasserver-unauth tcp test-unauthenticated

Note: The ↓ symbol indicates that the text continues on the next line. These lines
should be entered on one line, not broken into multiple lines.

System z9 cryptographic hardware
Several of the workloads run in our tests used the HTTPS protocol. For these
workloads we compared software encryption/decryption against the System z9
hardware assist for cryptographic functions. Our tests used asymmetric and
symmetric cryptographic functions.

The SSL handshakes use asymmetric functions while the data is encrypted and
decrypted with symmetric functions. The System z9 cryptographic adapter cards,
Crypto Express 2 (CEX2), can accelerate asymmetric cryptographic operations. The
System z9 CPACF from the System z processor can accelerate symmetric
cryptographic operations (DES, TDES, and SHA-1 on z990/z890 and DES, TDES,
SHA-1, SHA-256 and AES-128 on a z9®). Software support for System z9
cryptographic hardware is provided by libICA and the z90crypt device driver.
WebSEAL requires the openCryptoki and GSKit libraries to interface to the z9
cryptographic hardware.

Tivoli WebSEAL - Sizing and capacity planning 9

The CEX2C cryptographic adapter feature was used in these measurements. It
provides two processors and both processors were used to accelerate asymmetric
cryptographic operations.

SSL handshakes use asymmetric functions. Handshakes occur at the start of all SSL
sessions. The encryption/decryption of the data is performed by symmetric
functions.

Data collection and output
For our Tivoli WebSEAL tests, the number of successful HTTP/S requests for a
page were tracked and recorded.

The WebSEAL benchmarks were driven by tcl Curl scripts which ran on RedHat
Linux on a System x box. The tcl Curl script generated HTTP/S requests for a
page. The scripts counted the number of satisfied requests within the total run
length and reported this number as transactions per second.

Results for the Tivoli WebSEAL performance tests
After performing our Tivoli WebSEAL performance tests, we charted our test
results, interpreted the results, and created recommendations.

We ran the following tests:
v “Non-SSL page access through a TCP junction, unauthenticated”
v “SSL page access through a TCP junction” on page 13
v “SSL page access through a TCP junction with “-c all” option” on page 17
v “SSL page access through an SSL junction” on page 20
v “SSL page access with new authentication and new SSL session every request”

on page 22

Non-SSL page access through a TCP junction,
unauthenticated

In this test case the client accesses the Web page on the back end WebSphere
Application Server, unauthenticated via an unencrypted connection (TCP junction).

10 Tivoli WebSEAL - Sizing and Capacity Planning

Using a page size of 5.8 KB

Figure 4 shows the CPU utilization of the z/VM and z/OS LPARs in a curve and
the details of the z/VM guests as stacked bars. Guests with a utilization of nearly
zero, like the Tivoli Access Manager server, do not appear.

Observations

v The CPU utilization of the Firewall 1 system, the system with the Tivoli Access
Manager and LDAP servers, and of the DB2 UDB server is very low.

v Scalability was good with 1.9 for 8 clients and 1.8 for 10 clients.

Figure 3. 5.8 KB non-SSL page access through a TCP junction, unauthenticated - throughput
per second

Figure 4. 5.8 KB non-SSL page access through a TCP junction, unauthenticated - % CPU

Tivoli WebSEAL - Sizing and capacity planning 11

v The CPU utilization on the WebSEAL server seemed to be a major bottleneck,
even though it was only 85% utilized.

v Increasing the number of clients with two CPUs resulted in a throughput
improvement of about 9%.

v The CPU load on the other related systems (firewalls, DB2 UDB, Tivoli Access
Manager / IBM Tivoli Directory Service server) was very low.

Conclusion

The most critical resource was the CPU at the WebSEAL server. Just increasing the
number of CPUs from one to two increased the throughput by nearly a factor of
two without increasing the number of workload generators. The CPU load of the
other servers needed from the WebSEAL server was very low, making this is an
ideal environment to host on z/VM. For details on logging see “Effects of
WebSEAL logging on throughput.”

Effects of WebSEAL logging on throughput

This test is a repeat of the scenario one test except that it is being used to compare
the effect of WebSEAL logging. We reran the scenario one test with the WebSEAL
logs assigned to files and with the logs assigned to /dev/null. These tests were
done with WebSEAL’s guest machine assigned two CPUs.

Observations

Logging to /dev/null improves the throughput, where the improvement for eight
clients is 4.3% and for ten clients is 5.1%

Figure 5. 5.8 KB non-SSL page access, no junction, unauthenticated

12 Tivoli WebSEAL - Sizing and Capacity Planning

Conclusion

The log file is a resource where the access is serialized. This is a bottleneck whose
impact increases with the number of workload generators. This shows that the I/O
bandwidth for the log file is another constraint besides CPU capacity. To ensure the
maximum I/O bandwidth, it is recommended to place the log file at least on a
separate disk to avoid the sequential I/O flow being interrupted by other I/O
requests or use a logical volume striped over disks from several ranks, which is the
better option.

Be aware that all our measurements using logging to a file suffered from this
constraint.
Related information

Tivoli WebSEAL - hardware equipment and software environment
To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.
Tivoli WebSEAL - test case setup
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.
Tivoli WebSEAL - detailed set up examples
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.
Tivoli WebSEAL - other sources of information
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.

SSL page access through a TCP junction
In this set of tests, we investigated three scenarios; using a page size of 5.8 KB,
using a page size of 12 KB, and using a page size of 2.9 MB.

Using a page size of 5.8 KB

In this test case the client has an SSL connection to the WebSEAL server, which
requires authentication and encryption, and accesses the Web page on the back end
WebSphere Application Server via an unencrypted connection (TCP junction).

Because it involves SSL access, these tests compare software encryption against
hardware encryption. Encryption occurs between the client and WebSEAL. The
AES-128 encryption algorithm was used for encryption operations between the
client and WebSEAL. In this test, only one handshake occurred.

Encryption algorithm: AES-128

Tivoli WebSEAL - Sizing and capacity planning 13

Observations

The WebSEAL system ran fully CPU constrained with one CPU in these tests. The
cryptographic hardware support increased the throughput. However, using more
workload generators only had an impact when additional CPU capacity was
available.

Conclusion

In this environment there are two systems, the WebSEAL server and the
WebSphere Application Server, that have high CPU loads. Therefore, the
availability of CPU resources for these systems is a major component that affects
the total throughput. The cryptographic hardware support gives the CPU on the
WebSEAL server some relief, which leads to an increase in throughput. Using more
CPUs resulted in higher throughput and allowed us to increase the number of
workload generators, which increased the throughput further. In all cases, the CPU
utilization for the other servers needed to implement the WebSEAL environment is
very low. This confirms that this environment is ideal for consolidation under
z/VM because of the capability to run with more virtual CPUs than physical CPUs
available. The four CPUs of the z/VM LPAR are only utilized to 50%, which
means we could have run this test with only three CPUs on the LPAR while
granting one more CPU to the WebSEAL system to use the full system.

Using a page size of 12 KB

In this test case the client had an SSL connection to the WebSEAL server, which
requires authentication and encryption, and accesses the Web page on the back end
WebSphere Application Server via an unencrypted connection (TCP junction). In
order to better show the benefits of the symmetric encryption acceleration, the
page size was increased to 12 KB.

Encryption algorithm: AES-128

Figure 6. 5.8 KB SSL page access through a TCP junction

14 Tivoli WebSEAL - Sizing and Capacity Planning

Observations

The larger the page size, the lower the throughput in terms of pages per second.

Conclusion

This is expected because the larger page size needs more time to be transferred
from the application server to the client. For the impact of the hardware
cryptography support, see the conclusion of “Using a page size of 2.9 MB.”

Using a page size of 2.9 MB

In this test case the client has an SSL connection to the WebSEAL server, which
requires authentication and encryption, and accesses the Web page on the back end
WebSphere Application Server via an unencrypted connection (TCP junction). In
order to better show the benefits of the symmetric encryption acceleration, the
page size was increased from 12 KB to 2.9 MB.

Encryption algorithm: AES-128

Figure 7. 5.8 KB versus 12 KB SSL access through a TCP junction

Tivoli WebSEAL - Sizing and capacity planning 15

Impact of cryptographic hardware

For a better comparison, the throughput was normalized to throughput per client.
Figure 9 shows the improvement using the cryptographic hardware for encryption
for each request size.

Observations

Figure 8. 2.9 MB page SSL access through a TCP junction

Figure 9. Improvement by hardware cryptographic support versus software encryption for an
increasing request size

16 Tivoli WebSEAL - Sizing and Capacity Planning

Comparing Figure 6 on page 14 in “SSL page access through a TCP junction” on
page 13 with Figure 3 on page 11 in “Non-SSL page access through a TCP junction,
unauthenticated” on page 10 shows that using SSL encryption between the client
and WebSEAL server degraded the throughput by about 35% for a page size of 5.8
KB without hardware support. Using hardware support increased the throughput
by 30%, so the throughput was now only 12% below the unencrypted case.
Figure 9 on page 16 shows that the advantage of the hardware encryption increases
with the page size as expected. For the 2.9 MB page size, the improvement was up
to 143% which is more than twice what software encryption gets.

Conclusion

The additional effort for the SSL encryption and decryption requires CPU
resources, which, in the case of a fully utilized system, leads to a degradation of
the throughput. Using the CPACF hardware support reduces the cost to a
minimum. For large pages we saw an improvement of a factor of 2.4 compared
with software encryption.
Related information

Tivoli WebSEAL - hardware equipment and software environment
To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.
Tivoli WebSEAL - test case setup
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.
Tivoli WebSEAL - detailed set up examples
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.
Tivoli WebSEAL - other sources of information
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.

SSL page access through a TCP junction with “-c all” option
In this test case the client has an SSL connection to the WebSEAL server, which
requires authentication and encryption, and accesses the Web page on the back end
WebSphere Application server via an unencrypted connection (TCP junction).

Using a page size of 5.8 KB

This test involves SSL access that compares software encryption against hardware
encryption. Encryption occurs between the client and WebSEAL. The AES-128
encryption algorithm was used for encryption operations between the client and
WebSEAL. In this test, only one handshake occurred. The -c option allows you to
insert Tivoli Access Manager-specific client identity and group membership
information into the HTTP headers of requests destined for junctioned third-party
servers. The HTTP header information enables applications on junctioned
third-party servers to perform user-specific actions (such as SSO) based on the
client’s Tivoli Access Manager identity.

Tivoli WebSEAL - Sizing and capacity planning 17

HTTP header information must be transformed by the back end server to
environment variable format for use by a service on the back end server. Header
information is transformed into a CGI environment variable format by replacing all
dashes (-) with under bars (_) and adding ″HTTP″ to the beginning of the string.
The value of the HTTP header becomes the value of the new environment variable.

The Tivoli Access Manager-specific HTTP header entries are available to CGI
programs as the environment variables HTTP_IV_USER, HTTP_IV_GROUPS and
HTTP_IV_CREDS. For other application framework products, see the product’s
documentation for instructions on extracting headers from HTTP requests.

The -c all option inserts all three types of identity information into the HTTP
header. The addition of the -c option places additional processing overhead on
WebSEAL.

Encryption algorithm: AES-128

Figure 11 on page 19 is a comparison between 5.8KB SSL page access through a
TCP junction with the -c option and 5.8KB SSL page access through a TCP junction
without the -c option.

Figure 10. 5.8 KB SSL page access through a TCP junction with -c all

18 Tivoli WebSEAL - Sizing and Capacity Planning

Observations

The case with a single CPU shows only the improvement of using hardware
cryptography. The additional workload had nearly no impact on the scenarios with
one CPU as without -c all option because these runs are CPU constrained. The
more interesting case is when two CPUs are used. In this case, the throughput
degraded by 17% using cryptographic hardware even though there is some CPU
capacity available. This indicated that the access to the Tivoli Access Manager
introduced some latencies.

Conclusions

In the one CPU case, the -c all option does not have an impact on the throughput
because WebSEAL is CPU constrained. In the two CPU case, WebSEAL is not CPU
constrained and there is a small degradation in throughput as would be expected
due to the additional processing required in WebSEAL to support this feature.

Figure 11. 5.8 KB SSL page access through a TCP junction versus 5.8 KB SSL page access
through a TCP with -c all

Tivoli WebSEAL - Sizing and capacity planning 19

Related information

Tivoli WebSEAL - hardware equipment and software environment
To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.
Tivoli WebSEAL - test case setup
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.
Tivoli WebSEAL - detailed set up examples
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.
Tivoli WebSEAL - other sources of information
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.

SSL page access through an SSL junction
In this test case the client has an SSL connection to the WebSEAL server and
accessed the Web page on the back end WebSphere Application Server via an SSL
connection (SSL junction).

Using page sizes of 5.8 KB and 12 KB

This test involves two SSL accesses comparing software encryption against
hardware encryption. Encryption occurs between the client and WebSEAL on the
front end and between WebSEAL and the back end server. We initially tried
WebSphere Application Server running on z/OS as the back end server, however,
we were not able to get the WebSphere Application Server to select DES-168 as the
cipher suite. To get around this problem, we used the Apache HTTP server under
Linux running on a separate LPAR as the back end server. The DES-168 encryption
algorithm was used for encryption operations between the client and WebSEAL
and WebSEAL and Apache Web server. In this test only one handshake occurs.

Encryption algorithm: DES-168

20 Tivoli WebSEAL - Sizing and Capacity Planning

Observations

The improvement of hardware encryption was, again, between 30% and 50%. The
degradation of the throughput compared with SSL through a TCP junction (see
Figure 10 on page 18) was about 60%. The CPU load on the WebSEAL system was
high, between 80% and 95%.

Conclusion

The WebSEAL server has much more work to do in this scenario, the encrypted
packages have to be decrypted, analyzed, and encrypted again. This leads to a
significant degradation of the throughput, which could be reduced by using
hardware support for encryption. Be aware that the alternative to this overhead,
like an isolated network using a HiperSockets connection or a z/VM guest LAN,
can be easily implemented on System z and produces the same grade of security
without this overhead.

Figure 12. 5.8 KB and 12 KB SSL page access through an SSL junction

Tivoli WebSEAL - Sizing and capacity planning 21

Related information

Tivoli WebSEAL - hardware equipment and software environment
To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.
Tivoli WebSEAL - test case setup
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.
Tivoli WebSEAL - detailed set up examples
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.
Tivoli WebSEAL - other sources of information
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.

SSL page access with new authentication and new SSL
session every request

In this test case the client has an SSL connection to the WebSEAL server, which
requires authentication and encryption, and accesses the Web page on the back end
WebSphere Application Server via an unencrypted connection (TCP junction).
These transactions involve a handshake for every transaction and a transfer on 100
(encrypted) bytes.

Using a page size of 100 B

Encryption algorithm: AES-128

This test case puts a large load on the client machines. The client encryption and
decryption is done in software and as the number of clients on a single machine
increases, a single client becomes a bottleneck. For one of our test cases, four client
machines were used. Performance Toolkit for z/VM showed the utilization on the
cryptographic accelerator cards as follows:

Figure 13. 100 B SSL page access BA

22 Tivoli WebSEAL - Sizing and Capacity Planning

v Total operations: 119589
v Utilization: 18.7%

Table 6 shows the results of collecting statistics on the cryptographic card every 5
seconds during the workload execution. We were interested in the length of the
pending operations queue.

Table 6. Collection statistics on the cryptographic card

Pending Queue Length Total Operations

0 1 2 3 4 5 6 7 8 Average Card 1 Card 2

Frequency 4 13 16 10 3 7 2 1 4 2.88 63949 55640

Observations

Using software encryption leads to a complete utilization of the WebSEAL server
with one CPU. Even with hardware encryption, the system is almost fully utilized,
therefore, we did not increase the load further. Increasing the number of CPUs
from one to two resulted in an improvement of 88% for the same workload. Here
we have the biggest improvement when using hardware encryption support. It is
between a factor of two and a factor of three for the same workloads. The average
queue length of the cryptographic cards of 2.88 shows that the cards are under a
significant load.

Conclusion

This test does only authentication with very small pages to generate the maximum
overhead. Both hardware cryptographic features, the CPACF from the CPU for
decryption and encryption of the requests and the CEX2C cryptographic adapter
feature for the authentication are used. This enables the workload to be increased
beyond what is possible using software encryption. In the last test we were able to
improve the total throughput of the system by about a factor of three by using
hardware cryptographic support.

Tivoli WebSEAL - Sizing and capacity planning 23

Related information

Tivoli WebSEAL - hardware equipment and software environment
To perform our Tivoli WebSEAL performance tests, we created a customer-like
environment. We configured the hardware and software, the network, the storage
server, and the z/VM guests.
Tivoli WebSEAL - test case setup
To perform our Tivoli WebSEAL performance tests, we identified and set up the
software and hardware for various test case scenarios. We set up our DB2 server,
set up three levels of security, created a WebSEAL junction, put our Web pages in
the correct directories, created ACL descriptions, and used the System z9
cryptographic hardware functionality.
Tivoli WebSEAL - detailed set up examples
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.
Tivoli WebSEAL - other sources of information
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.

Detailed set up examples for the Tivoli WebSEAL performance tests
The detailed setup we performed to enable WebSEAL with cryptographic hardware
support is provided here.

Enable and run WebSEAL with cryptographic hardware support

Use the following steps to enable and run WebSEAL with cryptographic hardware
support.
1. Load the System z9 crypto device driver using the following command

(performed at each system startup):

/etc/init.d/z90crypt start
2. Start the PKCS11 subsystem using the following command (performed at each

system startup):

/etc/init.d/pkcsslotd start
3. Configure the PKCS#11 device by doing the following (this is performed once)

a. Initialize the token using the following command:

/usr/lib/pkcs11/methods/pkcsconf -c 0 -I
b. When prompted, enter the default Security Officer (SO) PIN (87654321) and

a unique token label as shown below:

/usr/lib/pkcs11/methods/pkcsconf -c 0 -I
Enter the SO PIN: ********
Enter a unique token label: websealserver

For our example, 87654321 was the SO PIN default password and a token
label name of ″websealserver″ was used.

c. Set the SO PIN to a value different from the default (87654321) as show
below:

24 Tivoli WebSEAL - Sizing and Capacity Planning

/usr/lib/pkcs11/methods/pkcsconf -c 0 -P
Enter the SO PIN: ******** 87654321
Enter the new SO PIN: ******** 76543210
Re-enter the new SO PIN: ******** 76543210

″76543210″ is just an example. You can choose any number you wish.
d. Set the user PIN as shown below:

/usr/lib/pkcs11/methods/pkcsconf -c 0 –u
Enter the SO PIN: ******** 76543210
Enter the new user PIN: ******** 12345678
Re-enter the new user PIN: ******** 12345678

e. Change the user PIN as shown below:
/usr/lib/pkcs11/methods/pkcsconf -c 0 -p
Enter user PIN: ******** 12345678
Enter the new user PIN: ******** 01234567
Re-enter the new user PIN: ******** 01234567

4. Create a self-signed certificate using the PKCS#11 token, to be used by
WebSEAL by doing the following (this is performed once). Use the gsk7ikm
utility to add a self-signed certificate to the CMS Cryptographic Token.

Note: Before starting the gsk7ikm utility, set the JAVA_HOME environment
variable to point to your Java™ JRE and ensure Java is in the PATH as shown
below:

export JAVA_HOME=/opt/IBMJava2-s390-142/jre/
export PATH=/opt/IBMJava2-s390-142/jre/bin:$PATH
gsk7ikm
a. Run gsk7ikm.

The following screen appears.

Tivoli WebSEAL - Sizing and capacity planning 25

1) From Figure 14, select Key Database File –> Open.
2) The following box opens.

1) Select the Key Database Type of CMS Cryptographic Token.
2) Enter PKCS11_API.so for the file name.
3) Enter ″/usr/lib/pkcs11″ for the location.
4) Click the OK button and the following screen appears:

Figure 14. IBM key management screen

Figure 15. Key database file entry box

26 Tivoli WebSEAL - Sizing and Capacity Planning

1) Enter the cryptographic token password that you set before (01234567).
2) Deselect the Open existing secondary key database file box.
3) Click OK.
4) On the IBM key management screen (see Figure 14 on page 26), click on

New Self-Signed...
The following screen is displayed:

Figure 16. Open cryptographic token screen

Figure 17. Create new self-signed certificate screen

Tivoli WebSEAL - Sizing and capacity planning 27

1) Enter the appropriate information to create the certificate.
2) Click OK.
The self-signed certificate you just created will now be visible on the IBM
Key Management screen as show below.

Exit the gsk7ikm application.
5. Configure WebSEAl to use the PKCS#11 devices for cryptographic operations as

detailed below (this is performed once):
v Add ivmgr to group pkcs11 by issuing the following:

usermod -G ivmgr,tivoli,pkcs11 ivmgr
v Update the following parameters in the webseald-xxx.conf file (in our case

webseald-default.conf):

unix-group = pkcs11
webseal-cert-keyfile-label = websealserver:leeds

[The value for the webseal-cert-keyfile-label directive has the
form – token_label:certificate_label]

[ssl]
pkcs11-driver-path = /usr/lib/pkcs11/PKCS11_API.so
pkcs11-token-label = websealserver
pkcs11-token-pwd = 01234567 (user PIN set during token

initialization)
pkcs11-symmetric-cipher-support = yes (this directive enables the use

of CPACF)

[ssl-qop]

ssl-qop-mgmt = yes

Figure 18. IBM Key Management screen showing self-signed certificate

28 Tivoli WebSEAL - Sizing and Capacity Planning

[ssl-qop-mgmt-default]
default = AES-128 or

DES-168
6. Start or re-start WebSEAL using one of the following commands:

pdweb start or
pdweb restart

Other sources of information for the Tivoli WebSEAL performance
tests

Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and at various Web
sites.
v For information on WebSphere Application Server see:

http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/
apptransaction

v For information on Linux on System z see:
www.ibm.com/systems/z/os/linux

v For information on z/VM see:
www.vm.ibm.com

v For information on installing WebSEAL see:
http://www-03.ibm.com/systems/z/os/linux/utilities/pdf/lu26st00.pdf

v For information about the Linux utilities for IBM System z see:
http://www-03.ibm.com/systems/z/os/linux/utilities/

v For information on IBM open source projects see:
www.ibm.com/developerworks/opensource/index.html

v For information on hardware encryption see the IBM Red Book Using
Cryptographic Adapters for Web Servers with Linux on IBM System z9 and zSeries® at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4131.pdf

v For general information on the software products used in this test, see the IBM
red paper IBM Tivoli Access Manager for e-business at:
http://www.redbooks.ibm.com/redpapers/pdfs/redp3677.pdf

Notices for the Tivoli WebSEAL performance tests
Additional resources to provide information on the products, hardware, and
software discussed in this paper can be found in various books and various Web
sites.

IBM, IBM eServer, IBM logo, DB2, DB2 Universal Database, DS8000, ECKD,
FICON, HiperSockets, Performance Toolkit for z/VM, System Storage, System z,
System z9, WebSphere, xSeries, and z/VM are trademarks or registered trademarks
of International Business Machines Corporation of the United States, other
countries or both.

The following are trademarks or registered trademarks of other companies

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries or both.

Tivoli WebSEAL - Sizing and capacity planning 29

http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/apptransaction
http://www.ibm.com/software/info1/websphere/index.jsp?tab=products/apptransaction
http://www.ibm.com/systems/z/os/linux
http://www.vm.ibm.com
http://www-03.ibm.com/systems/z/os/linux/utilities/pdf/lu26st00.pdf
http://www-03.ibm.com/systems/z/os/linux/utilities/
http://www.ibm.com/developerworks/opensource/index.html
http://www.redbooks.ibm.com/redpapers/pdfs/redp4131.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp3677.pdf

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Intel and Xeon are trademarks of Intel Corporation in the United States, other
countries or both.

Linux is a registered trademark of Linus Torvalds in the United States and other
countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

Other company, product and service names may be trademarks or service marks of
others.

Information concerning non-IBM products was obtained from the suppliers of their
products or their published announcements. Questions on the capabilities of the
non-IBM products should be addressed with the suppliers.

IBM hardware products are manufactured from new parts, or new and serviceable
used parts. Regardless, our warranty terms apply.

IBM may not offer the products, services or features discussed in this document in
other countries, and the information may be subject to change without notice.
Consult your local IBM business contact for information on the product or services
available in your area.

All statements regarding IBM’s future direction and intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

Performance is in Internal Throughput Rate (ITR) ratio based on measurements
and projections using standard IBM benchmarks in a controlled environment. The
actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve
throughput improvements equivalent to the performance ratios stated here.

30 Tivoli WebSEAL - Sizing and Capacity Planning

	Contents
	Tivoli WebSEAL - Sizing and capacity planning
	Objectives for the Tivoli WebSEAL performance tests
	Summary for the Tivoli WebSEAL performance tests
	Hardware equipment and software environment for the Tivoli WebSEAL performance tests
	Test environment

	Test case setup for the Tivoli WebSEAL performance tests
	Benchmark scenarios
	WebSEAL setup
	Web pages
	System z9 cryptographic hardware
	Data collection and output

	Results for the Tivoli WebSEAL performance tests
	Non-SSL page access through a TCP junction, unauthenticated
	SSL page access through a TCP junction
	SSL page access through a TCP junction with “-c all” option
	SSL page access through an SSL junction
	SSL page access with new authentication and new SSL session every request

	Detailed set up examples for the Tivoli WebSEAL performance tests
	Other sources of information for the Tivoli WebSEAL performance tests
	Notices for the Tivoli WebSEAL performance tests

