
IBM® Tivoli® Federated Identity Manager
Version 6.2.2.7

Configuration Guide

GC27-2719-02

���

IBM® Tivoli® Federated Identity Manager
Version 6.2.2.7

Configuration Guide

GC27-2719-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 785.

Edition notice

Note: This edition applies to version 6, release 2, modification 2.7 of IBM Tivoli Federated Identity Manager
(product number 5724-L73) and to all subsequent releases and modifications until otherwise indicated in new
editions.

© Copyright IBM Corporation 2006, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xi

Tables xiii

About this publication xvii
Intended audience xvii
Access to publications and terminology xvii
Accessibility xviii
Tivoli technical training xviii
Support information. xviii
Statement of Good Security Practices xix
Conventions used in this book xix

Typeface conventions xix
Operating system-dependent variables and paths xx

Part 1. Federation First Steps tool
setup and use 1

Chapter 1. Customizing federation
templates 3
Customizing a federation template 3

Modifying the federation template in the
fedfirststeps directory 3
Modifying the federation template in a different
directory. 3

Using the customized federation template 4

Chapter 2. Federation First Steps tool . . 5
Launching the Federation First Steps tool 5
Identity provider side configuration 5

Creating a generic SAML 2.0 federation with a
new or existing domain. 6
Configuring risk-based access with the Federation
First Steps tool. 6
Adding a service provider with the Federation
First Steps tool. 8

Service provider side configuration 9
First Steps plug-in for Google Apps 9
First Steps plug-in for Microsoft Office 365 . . . 11
First Steps plug-in for Salesforce 17
First Steps plug-in for Workday 18

Part 2. Configuration of a domain 21

Chapter 3. Domain configuration . . . 23
Worksheet for domain configuration 26
Creating and deploying a new domain 26
Mapping the runtime to a Web server 29
Enabling replication in a WebSphere cluster . . . 30

Part 3. Configuration of a single
sign-on federation 33

Chapter 4. Overview of configuration
tasks for federated single sign-on . . . 35

Chapter 5. Identity provider and service
provider roles. 37

Chapter 6. Using keys and certificates
to secure communications 39
Message-level security 39
Transport-level security 40
Storage and management of keys and certificates . . 43
Creation of keystores, keys, and certificates 44
Key selection criteria 45

Chapter 7. Configuring LTPA and its
keys 47

Chapter 8. Setting up message security 49
Preparing the keystores 49

Changing a keystore password 50
Creating a keystore 50
Importing a keystore 51

Planning message-level security 52
Obtaining your keys and certificates 55

Using the default key as your signing and
decryption key 55
Creating self-signed certificates 56
Requesting CA-signed certificates 56

Adding your certificates to your keystore 58
Importing a certificate 58
Receiving a signed certificate from a CA. . . . 59

Obtaining a certificate from your partner 60
Importing certificates from your partner's
metadata file 61
Importing a certificate from your partner . . . 61

Providing certificates to your partner 63
Exporting certificates to a metadata file 63
Exporting a certificate 64

Updating the cryptography policy 65
Removing default keystores 65
Enabling certificate revocation checking 66

Enabling WebSphere for certificate revocation
checking 66
Enabling the IbmPKIX trust manager for SSL
connection. 68

Chapter 9. Setting up transport security 71
Enabling SSL on the WebSphere Application Server 71

Creating a certificate request. 72
Receiving a signed certificate issued by a
certificate authority 73
Associating a certificate with your SSL
configuration 74

© Copyright IBM Corp. 2006, 2013 iii

Deleting the default certificate 75
Extracting a certificate to share with your partner 75

Configuring client authentication requirements . . 76
Configuring access with no authentication . . . 76
Configuring basic authentication access 77
Configuring access with client certificate
authentication 78

Configuring your client certificates 80
Retrieving the server certificate from your
partner 80
Obtaining your client certificate 81

Chapter 10. Selecting a point of contact
server 83

Chapter 11. Configuring WebSphere as
point of contact server 87
Using IBM HTTP Server with WebSphere as point of
contact 87
Confirming WebSphere Application Server security
properties 88
Enabling multiple language encoding on WebSphere
Application Server 89
Mapping application roles to users 90
Configuring IHS for client worksheet 91
Setting up an outbound HTTP proxy server . . . 91
WebSphere as point of contact for identity providers 93

Configuring form-based authentication 95
Configuring SPNEGO authentication 99

WebSphere point of contact server for a service
provider 108

Configuring a WebSphere Application Server
point of contact server (service provider) . . . 111

Chapter 12. Configuring a Web server
plug-in 117
Configuring service provider components 119
Configuring your Web server 119

Selecting and installing a user registry 120
Configuring the user registry for the target
application 120
Configuring an SSL connection to the user
registry 121
Configuring a separate WebSphere Application
Server to host applications 121
Configuring an IIS, IHS, or Apache server to
host the application 124

Configuring the target application 128
Configuring the login for your application . . 128
Instructing users to enable cookies 129

Chapter 13. Setting up the alias
service database 131
Configuring a JDBC alias service database. . . . 132

Modifying alias service settings 134
Configuring an LDAP alias service database . . . 134

Using tfimcfg to configure LDAP for the alias
service. 135
Creating an LDAP suffix 138

Planning configuration of the alias service
properties 139
Modifying alias service settings for LDAP . . . 141

Configuring Oracle alias service database 142

Chapter 14. Planning the mapping of
user identities 143
Identity mapping overview. 144
Use of XSL language for creating mapping rules
files 149
Tivoli Directory Integrator identity mapping
module 151

Configuring the Tivoli Directory Integrator trust
module 151
Configuring the Tivoli Directory Integrator
Server 153
Configuring SSL for Tivoli Directory Integrator
trust module 155

Creating a custom mapping module 162
Adding a custom mapping module 163
Adding an instance of a custom mapping
module 163

Chapter 15. SAML federations
overview 165
SAML 1.x 165
SAML 2.0. 167

Chapter 16. SAML endpoints and
URLs 173
SAML 1.x endpoints and URLs 174
SAML 2.0 endpoints and URLs 177

Chapter 17. Sample identity mapping
rules for SAML federations 183
Mapping a local user identity to a SAML 1.x token 183
Mapping a SAML 1.x token to a local user identity 184
Mapping a local identity to a SAML 2.0 token
using an alias 185
Mapping a SAML 2.0 token to a local identity . . 186

Chapter 18. SAML 2.0 Attribute query 189
Configuring attribute query 191
Creating a federation as an attribute authority . . 192

Using the administration console to create a
federation as an attribute authority 192
Using the command line interface to create a
federation as an attribute authority 193

Creating an identity provider partner or service
provider partner for an attribute authority
federation 194

Using the administration console to create a
service provider or identity provider partner . . 194
Using a command-line interface to create a
service provider or identity provider partner . . 196

Creating an attribute query request partner . . . 196
SAML 2.0 attribute query federation response file
parameters 197

iv IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

SAML 2.0 attribute query partner response file
parameters 198

Chapter 19. Establishing a SAML
federation 199
Gathering your federation configuration
information 199

SAML 1.x service provider worksheet 199
SAML 1.x identity provider worksheet 201
SAML 2.0 service provider worksheet 203
SAML 2.0 identity provider worksheet 208

Creating your role in the federation 214
Configuring a WebSEAL point of contact server for
the SAML federation 214
Configuring WebSphere as a point of contact server 216
Providing guidance to your partner 216
Obtaining federation configuration data from your
partner 218

SAML 1.x service provider partner worksheet 219
SAML 1.x identity provider partner worksheet 224
SAML 2.0 service provider partner worksheet 230
SAML 2.0 identity provider partner worksheet 237

Adding your partner 245
Providing federation properties to your partner 247

Exporting federation properties 247
Viewing federation properties 248

Synchronizing system clocks in the federation . . 248

Chapter 20. Configuring a SAML
federation using CLI 249
Configuring a SAML 1.x Identity Provider
federation using CLI 249
Configuring a SAML 1.x Service Provider
federation using CLI 252
Importing a SAML 1.x Service Provider into the
SAML identity provider federation 255
Importing a SAML 1.x Identity Provider into the
SAML Service Provider federation 257
Configuring a SAML 2.0 Identity Provider
federation using CLI 260
Configuring a SAML 2.0 service provider
federation using CLI 264
Importing a SAML 2.0 Service Provider into the
SAML Identity Provider federation 266
Importing a SAML 2.0 Identity Provider into the
SAML service provider federation 268

Chapter 21. Planning an Information
Card federation 271
Overview of the Information Card identity
provider 272

Issuing of managed cards 272
Identity provider federations 275
Information Card claims. 276
Information Card error pages 277

Overview of the Information Card relying party 278
User access to a relying party 278
Relying party federations 280

Website enablement for Information Card 281
Configuration requirements for Information Card 285

Requirement for WebSphere Version 6.1 . . . 286
Updating the cryptography policy for
Information Card 286
Information Card requirement for alias service 287
Decryption key from point of contact server . . 287
Information Card time synchronization
requirements 287

Identity mapping for Information Card. 288
Identity provider configuration worksheet 289
Relying party configuration worksheet 291
Managed partner worksheet 293

Chapter 22. Configuring an
Information Card federation 297
Verifying Information Card dependencies 297
Configuring an Infocard federation 297
Configuring WebSEAL as a point of contact server
for an Information Card federation 298
Configuring WebSphere as a point of contact server 299
Specifying a persona index 299

Chapter 23. Information Card
reference 301
Replacement macros in the infocard_template XML
file 301
Information Card claims. 302
Federation properties for identity providers . . . 304
Federation properties for relying party 307
Properties for identity provider partners for relying
party federations 309
Properties for relying party partners for identity
provider federations 310

Chapter 24. OpenID planning overview 313
OpenID ID URLs 313
Identity provider federations 318
Identity provider trust chains 320
Relying Party Discovery 322
Authentication modes 322
Consumer federations 323
OpenID login 325
Consumer trust chains 327
User agent policy 331
OpenID Extensions 334

OpenID Simple Registration Extension 334
OpenID Attribute Exchange Extension 334
OpenID Provider Authentication Policy
Extension. 337

Identity provider configuration worksheet 338
Consumer configuration worksheet 344

Chapter 25. Configuring OpenID . . . 349
Verifying OpenID dependencies 349
Configuring an OpenID federation 349
Configuring performance improvement for OpenID 350
Configuring a WebSEAL point of contact server for
an Open ID federation 351
Configuring WebSphere as a point of contact server 352
Configuring login pages 352

Contents v

Chapter 26. OpenID reference 353
Supported algorithms and transports 353
Template page for advertising an OpenID server 353
Template page for consent to authenticate 354
Template HTML page for trusted site management 359
Template page for OpenID error 362
Template page for OpenID 2.0 indirect post . . . 363
Template page returned for checkid_immediate . . 364
Template page returned for server error 365

Chapter 27. OAuth planning overview 367
OAuth Concepts 367
OAuth endpoints 368
OAuth 1.0 workflow 370

About two-legged OAuth 371
Security Token Service interface for two-legged
OAuth flow 372

OAuth 2.0 workflow 373
Client authentication considerations at the
OAuth 2.0 token endpoint 377
Configuring the SOAP endpoint authentication
settings 379

Client registration 380
State management 380
Trusted clients management 385
OAuth EAS overview 385

OAuth data 386
Error responses. 387

Federation and partner configuration information 387
OAuth 1.0 service provider worksheet 388
OAuth 1.0 service provider partner worksheet 391
OAuth 2.0 service provider worksheet 392
OAuth 2.0 service provider partner worksheet 396

Chapter 28. Configuring an OAuth
federation 399
Configuring an OAuth service provider federation 399
Enabling two-legged OAuth validation 400
Configuring a WebSEAL point of contact server for
the OAuth federation. 400
Configuring WebSphere as a point of contact server 402
Adding a partner to an OAuth federation 402
Configuring the WebSphere OAuth Trust
Association Interceptor 403
Configuring the WebSphere OAuth Servlet Filter 404
WebSEAL OAuth EAS configuration. 406

Configuring the WebSEAL OAuth EAS
manually 407
Configuring the WebSEAL OAuth EAS with the
tfimcfg tool 409

Chapter 29. OAuth reference 411
OAuth STS Interface for Authorization
Enforcement Points 411
OAuth Trust Association Interceptor and Servlet
Filter custom properties 422
OAuth EAS stanza reference 424

[aznapi-external-authzn-services] stanza . . . 425
[azn-decision-info] stanza 426
[aznapi-configuration] stanza 427

[oauth-eas] stanza 428
OAuth 1.0 and OAuth 2.0 template pages for
trusted clients management 436
OAuth 1.0 template page for consent to authorize 437
OAuth 1.0 template page for response 441
OAuth 1.0 template page for denied consent . . . 441
OAuth 1.0 template page for errors 442
OAuth 2.0 template page for consent to authorize 442
OAuth 2.0 template page for response 446
OAuth 2.0 template page for errors 446

Chapter 30. Planning a Liberty
federation 449
Identity provider and service provider roles . . . 449
Liberty single sign-on profiles 450
Liberty register name identifier 451
Liberty federation termination notification. . . . 451
Liberty single logout 452
Liberty identity provider introduction 453
Liberty message security 454
Liberty communication properties 454
Liberty token modules 455
Liberty identity mapping 456

Mapping a Tivoli Access Manager credential to
a Liberty or SAML 2 token 456
Mapping a Liberty or SAML 2 token to a Tivoli
Access Manager credential 459

Liberty alias service 461

Chapter 31. Configuring a Liberty
federation 463
Creating a Liberty identity provider 463
Creating a Liberty service provider 465
Configuring a WebSEAL point of contact server for
the Liberty federation 467
Configuring WebSphere as a point of contact server 469
Exporting Liberty federation properties. 469
Exporting SOAP endpoint authentication
information to a Liberty federation partner . . . 469
Obtaining metadata from a Liberty federation
partner 470
Importing SOAP endpoint authentication
information from a Liberty federation partner . . 471
Adding a partner to a Liberty federation 473
Configuring the alias service for Liberty 476

Creating an LDAP suffix for the alias service 476
Configuring LDAP server settings 477

Chapter 32. Planning a WS-Federation
single sign-on federation 479
Identity provider and service provider roles . . . 479
WS-Federation single sign-on profiles 480
WS-Federation single sign-on properties 480
WS-Federation token properties 481
WS-Federation identity mapping 481

Mapping a Tivoli Access Manager credential to
a SAML 1 token 481
Mapping a SAML 1 token to a Tivoli Access
Manager credential 484

vi IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 33. Configuring a
WS-Federation single sign-on
federation 487
Creating a WS-Federation single sign-on federation 487
Configuring WebSEAL as the point of contact
server 488
Configuring WebSphere as a point of contact server 489
Exporting WS-Federation properties 490
Obtaining configuration information from a
WS-Federation partner 490
WS-Federation properties to exchange with your
partner 491
Adding a partner to your WS-Federation single
sign-on federation 492

Part 4. Web services security
management configuration 495

Chapter 34. Web services security
management configuration 497

Part 5. Configuring security token
service. 499

Chapter 35. Kerberos constrained
delegation overview 501
Overview of Kerberos constrained delegation with
WebSEAL junctions 502
Deployment overview 503

Chapter 36. Enabling integrated
Windows authentication 505

Chapter 37. Configuring Active
Directory and WebSphere for
constrained delegation 507

Chapter 38. Tivoli Federated Identity
Manager configuration for a Kerberos
junction scenario. 513
Planning configuration of the trust chain 513
Worksheet for trust chain configuration 517
Creating a Kerberos constrained delegation module
instance 519
Creating a trust chain for Kerberos constrained
delegation 519
Tivoli Federated Identity Manager configuration
notes 521

Chapter 39. WebSEAL configuration 523
Verifying a WebSEAL installation 523
Planning WebSEAL Kerberos junction configuration 524
Kerberos junction configuration worksheet . . . 528
Configuring a WebSEAL Kerberos junction . . . 529
WebSEAL configuration notes 530

Chapter 40. SSL configuration task for
a Kerberos junctions deployment. . . 533

Part 6. Configuring User Self Care 535

Chapter 41. Understanding User Self
Care 537
Effectively customizing User Self Care 539
Understanding User Self Care operations 539

User ID existence check operation 541
Enrollment operation 541
Password management operations 542
Profile management operations 543
Forgotten user ID operation 544
Forgotten Password operation 544
Account deletion operation 545
Captcha operation 545
Registry attributes operations 545
Secret question operation 546

User Self Care URLs 547
User Self Care HTTP requests 547
User Self Care HTTP responses 549

Captcha demonstration 550

Chapter 42. Deploying User Self Care 553
Configuring a Tivoli Federated Identity Manager
domain 553
Domain configuration 554
Configuring a user registry 557

Configuring a Tivoli Directory Server 557
Configuring a Tivoli Access Manager adapter
for WebSphere Federated Repository 558
Configuring an Active Directory server 563

Configuring a response file 564
Configuring User Self Care 566

Showing trust chains 566
Configuring the Captcha demonstration . . . 567
Using a response file to configure User Self Care 568
Configuring a point of contact server 568
Modifying checks on user ID and password . . 570
Enabling multiple secret question. 577
Custom attribute definition 594
Creating an attribute for a new custom field in
User Self Care 597
User Self Care session information storage . . 598
Customizing the User Self Care HTML pages 601

Integrating User Self Care with WebSEAL 609
Permitting unauthenticated access to the User
Self Care change password form 611
Modifying the user self care WebSEAL change
password form 612
Modifying a WebSEAL expired password form 613
Supporting redirection back to WebSEAL . . . 614

Modifying a User Self Care federation 614
Unconfiguring User Self Care 614

Chapter 43. Tuning User Self Care 617
Account create cache 618
Forgotten password cache 618

Contents vii

Secret question failure cache 619
Notes about tuning caches 619

Chapter 44. Response file parameters 621

Part 7. Configuring one-time
password 629

Chapter 45. One-time password . . . 631
One-time password overview 631
One-time password configuration overview . . . 632

Chapter 46. One-time password
deployment 635
Configuring a one-time password federation . . . 635
Activating the one-time password point of contact 636
Configuring the one-time password in a federated
single sign-on flow 636
Verifying the one-time password federated single
sign-on configuration. 637
Configuring one-time password extended
authentication with WebSEAL as point of contact . 637
Verifying the one-time password extended
authentication configuration 641
Creating your own one-time password point of
contact 642

HTTP request claims for authentication policy
callback 644

One-time password resend support 649
Configuring an unauthenticated one-time password
flow 649
Migrating one-time password files into an existing
environment. 650
Customizing one-time password 651

Customizing one-time password mapping rules 651
Customizing one-time password template pages 656
Authentication policy mapping rule
customization 663
Creating user-defined macros 664
manageItfimOneTimePassword 665
One-time password response file 669
manageItfimPointOfContact 677
Point of contact response file 681
One-time password provider plug-in reference 685
One-time password delivery plug-in reference 690
One-time password user information provider
plug-in reference 694

Chapter 47. Tuning the one-time
password 699

Part 8. Customization 701

Chapter 48. Customizing runtime
properties 703
Creating a custom property 703
Deleting a custom property. 703
Custom properties reference 704

General properties. 704
Custom properties for single sign-on protocol
service. 705
Custom properties for the trust service 707
Custom properties for OAuth 2.0 709
Custom properties for SAML 1.0 709
Custom properties for SAML 1.1 709
Custom properties for the key service 710
Custom properties for a SOAP client 711
Custom properties for SAML 2.0 712
Custom properties for the console 714
Custom property for OpenID 715
Custom property for transport security protocol 715
Custom properties for LTPA tokens 716

Chapter 49. Customizing an
authentication login form for single
sign-on 717
Supported macros for customizing an
authentication login form 717
Configuring a point of contact server to support
customization of login pages 720
Pass SAML request element to the point of contact
server 721

Chapter 50. Customizing single
sign-on event pages 723
Generation of event pages 723
Page identifiers and template files 724
Template page for the WAYF page 732
Modifying or creating the template files 734
Publishing updates 735
Creating a page locale 736
Deleting a page locale 736
Customizing multiple-use physical page templates 737
Customizing the Consent to Federate Page for
SAML 2.0. 737

Chapter 51. Developing a custom
point of contact server 741
Publishing callback plug-ins 742
Creating a new point of contact server 742
Creating a point of contact server like an existing
server 744
Activating a point of contact server 746

Chapter 52. Customizing signature
X.509 certificate settings 747

Chapter 53. Running WebSphere
Application Server with Java 2 749

Part 9. Appendixes 751

Appendix A. tfimcfg reference 753
Configuring WebSEAL or Web Gateway Appliance
as point of contact with the tfimcfg tool 754

Running the tfimcfg tool 756

viii IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuring the SOAP traffic with the tfimcfg
tool. 758
Setting up a soapusers group and certificate . . 760

tfimcfg limitation with Sun Java 1.4.2.4 761
tfimcfg LDAP properties reference 761
Default ldapconfig.properties file 764
Sample output from tfimcfg configuration of LDAP 765

Appendix B. URLs for initiating SAML
single sign-on actions 767
SAML 1.x initial URL. 767
SAML 2.0 profile initial URLs 769

Assertion consumer service initial URL (service
provider) 769
Single sign-on service initial URL (identity
provider) 772
Single logout service initial URL 774

Name identifier management service initial URL 775

Appendix C. Using the command-line
interface to configure Tivoli Federated
Identity Manager SHA256 support . . 777

Appendix D. Disabling logging to
enhance performance 783

Notices 785

Glossary 789

Index 793

Contents ix

x IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Figures

1. Example of WebSphere Application Server
with form-based authentication 94

2. Example of WebSphere Application Server
with SPNEGO TAI authentication 95

3. Example of the ktpass command 101
4. tai.properties.template file 106
5. Example of Tivoli Federated Identity Manager

and a Web application server 109
6. Example of LTPA attribute to HTTP header

mapping 118
7. Example of identity mapping 145
8. STS Universal User document schema 147
9. Token processing 148

10. XSL code sample showing mapping of a local
user identity into a Principal name for a
SAML token 184

11. XSL code sample showing assignment of
authentication method as an Attribute for a
SAML token 184

12. XSL code sample showing assignment of a
value for the Principal name for a SAML
token. 185

13. XSL code sample showing verification of a
value for the AuthenticationMethod 185

14. XSL code sample showing mapping of a local
user identity into a SAML token, using an
alias 186

15. XSL code sample showing assignment of a
value for the Principal name for a SAML 2.0
token. 187

16. XSL code sample showing AttributeList for a
SAML 2.0 token. 187

17. Example claims from a Information Card
identity agent 277

18. Example login format for use by Relying
Party 279

19. OBJECT syntax example 282
20. Example of InfoCard XHTML syntax 283
21. Example WebSEAL login page with OBJECT

tags 285
22. Example code for returning a pointer to your

OpenID server from your identity URL using
HTML discovery 314

23. Example claims during the identity provider
invocation of the trust service 321

24. Simple OpenID login form 325
25. OpenID login form with registry extension

parameters 326
26. OpenID claims during a Consumer WS-Trust

call 329
27. Example STSUU during trust service request

at the OpenID Consumer 330
28. Default-deny hostname regular expressions 332
29. Default-deny IP address netmasks 332
30. Sample Simple Registration Extension 334
31. Sample Attribute Exchange Extension 335

32. Template file openid_server.html 354
33. Handling consent of individual optional

attributes 356
34. Template HTML file sitemanager.html 361
35. Template HTML file error.html. 363
36. Template file indirect_post.html 364
37. Template page immediate.html. 365
38. Template file server_error.html 366
39. OAuth 1.0 XSL sample code with state

management 382
40. OAuth 2.0 XSL sample code with state

management 384
41. Sample JavaScript code for OAuth 1.0 405
42. Sample JavaScript code for OAuth 2.0 406
43. OAuth STS trust chain workflow 412
44. OAuth authorization enforcement point

workflow 422
45. Template for clients_manager.html 437
46. Template for user_consent.html 440
47. Template for user_response.html 441
48. Template for user_consent_denied.html 442
49. Template for user_error.html 442
50. Template for user_consent.html 445
51. Template for user_response.html 446
52. HTML template for user_error 447
53. XSL code sample showing mapping of a

value from a Tivoli Access Manager
credential into a Principal name for a Liberty
token 458

54. XSL code sample showing assignment of
authentication method as an Attribute for a
Liberty token. 458

55. XSL code sample showing assignment of
optional attributes for a Liberty token . . . 459

56. XSL code sample showing optional
assignment of GroupList value to an attribute
for a Liberty token 459

57. XSL code sample showing assignment of a
value for the Principal name for a Liberty
token. 460

58. XSL code sample showing optional
assignment of attributes for a Liberty token. . 461

59. XSL code sample showing mapping of a
value from a Tivoli Access Manager
credential into a Principal name for a SAML
token 483

60. XSL code sample showing assignment of
authentication method as an Attribute for a
SAML token 483

61. XSL code sample showing assignment of
optional attributes for a SAML token . . . 484

62. XSL code sample showing optional
assignment of GroupList value to an attribute
for a SAML token 484

© Copyright IBM Corp. 2006, 2013 xi

63. XSL code sample showing assignment of a
value for the Principal name for a SAML
token. 485

64. XSL code sample showing optional
assignment of attributes for a SAML token. . 486

65. Kerberos constrained delegation with a
WebSEAL junction 502

66. User Self Care solution 538
67. Captcha example 551
68. Sample wimconfig.xml settings 563
69. Profile management attributes in the response

file 625
70. Template for allerror.html 658

71. Template for error_generating_otp.html 658
72. Template for

error_get_delivery_options.html 659
73. Template for error_otp_delivery.html 660
74. Template for error_sts_invoke_failed.html 661
75. Template for

error_could_not_validate_otp.html 662
76. Template page for sms_message.xml 663
77. Template for email_message.xml 663
78. Template page wayf-html.html 734
79. Default values for ldapconfig.properties 765
80. Sample output from tfimcfg.jar. 766

xii IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Tables

1. Domain configuration properties 26
2. Tivoli Access Manager environment properties 26
3. SSL server authentication certificate

requirements 41
4. SSL client authentication certificate

requirements 42
5. Your keys 53
6. Keys you need from your partner 53
7. Keys you must provide to your partner 54
8. A list of all the possible name and values for

an outbound HTTP proxy server 92
9. Parameters to use with the Microsoft

Windows ktpass command 100
10. Signer certificate details in SPNEGO

environment 103
11. Parameters for the LDAP directory in

SPNEGO environment 104
12. Macros used in the tai.properties.template file 107
13. LDAP properties to modify for tfimcfg 138
14. LDAP Search property 139
15. LDAP environment properties 140
16. LDAP server properties 140
17. Example mapping rules 149
18. Sample mapping rules files for the

demonstration application 151
19. Tivoli Directory Integrator Module

configuration properties worksheet 153
20. STSUUSER entries used to generate a SAML

token 183
21. SAML token information that is converted

into a STS universal user document 184
22. STSUUSER entries used to generate a SAML

token, using an alias 186
23. SAML token information that is converted

into an STS universal user document . . . 187
24. Attribute query parameters for federation

response file 197
25. Attribute query parameters for partner

response file 198
26. General information for service provider in

SAML 1.x federation 199
27. Contact information for service provider in

SAML 1.x federation 199
28. Federation protocol for service provider in

SAML 1.x federation 200
29. Point of contact server information for service

provider in SAML 1.x federation 200
30. Signature information for service provider in

SAML 1.x federation 200
31. Identity mapping information for service

provider in SAML 1.x federation 201
32. General information for identity provider in

SAML 1.x federation 201
33. Contact information for identity provider in

SAML 1.x federation 201

34. Federation protocol information for identity
provider in SAML 1.x federation 201

35. Point of contact server for identity provider
in SAML 1.x federation 202

36. Signing information for identity provider in
SAML 1.x federation 202

37. SAML Message Settings information for
identity provider in SAML 1.x federation . . 202

38. Token Settings information for identity
provider in SAML 1.x federation 203

39. Identity mapping information for identity
provider in SAML 1.x federation 203

40. General information for service provider in
SAML 2.0 federation 204

41. Contact information for service provider in
SAML 2.0 federation 204

42. Federation protocol for service provider in
SAML 2.0 federation 204

43. Point of contact server information for service
provider in SAML 2.0 federation 204

44. Profile selection and configuration
information for service provider in SAML 2.0
federation. 204

45. Signature information for service provider in
SAML 2.0 federation 205

46. Encryption information for service provider
in SAML 2.0 federation 206

47. SAML message settings for service provider
in SAML 2.0 federation 206

48. Attribute query information for service
provider 207

49. Attribute query mapping information for
service provider in SAML 2.0 federation . . 208

50. Identity mapping information for service
provider in SAML 2.0 federation 208

51. General information for identity provider in
SAML 2.0 federation 209

52. Contact information for identity provider in
SAML 2.0 federation 209

53. Federation protocol for identity provider in
SAML 2.0 federation 209

54. Point of contact server information for
identity provider in SAML 2.0 federation . . 209

55. Profile selection and configuration
information for identity provider in SAML 2.0
federation. 209

56. Signature information for identity provider in
SAML 2.0 federation 210

57. Encryption information for identity provider
in SAML 2.0 federation 211

58. SAML message settings for identity provider
in SAML 2.0 federation 211

59. Token Settings information for identity
provider in SAML 2.0 federation 212

60. Attribute query information for identity
provider 212

© Copyright IBM Corp. 2006, 2013 xiii

61. Attribute query mapping information for
identity provider 213

62. Identity mapping information for identity
provider in SAML 2.0 federation 213

63. Metadata options for adding service provider
partner in SAML 1.x federation 219

64. Contact information for service provider
partner in SAML 1.x federation 219

65. SAML message settings for service provider
partner in SAML 1.x federation 219

66. Signature validation information for service
provider partner in SAML 1.x federation . . 220

67. Security token settings information for service
provider partner in SAML 1.x federation . . 221

68. Identity mapping information for service
provider partner in SAML 1.x federation . . 224

69. Metadata options for adding identity
provider partner in SAML 1.x federation . . 225

70. Contact information for identity provider
partner in SAML 1.x federation 225

71. SAML message settings for identity provider
partner in SAML 1.x federation 225

72. Signature validation information for identity
provider partner in SAML 1.x federation . . 226

73. Server certificate validation for your identity
provider partner in a SAML 1.x federation . . 227

74. Client authentication for SOAP for your
identity provider partner in a SAML 1.x
federation. 228

75. Security token settings information for
identity provider partner in SAML 1.x
federation. 228

76. Identity mapping information for identity
provider partner in SAML 1.x federation . . 230

77. Federation to which you are adding a service
provider partner in a SAML 2.0 federation . . 230

78. Metadata file from your service provider
partner in a SAML 2.0 federation 231

79. Signature validation for your service provider
partner in a SAML 2.0 federation 231

80. Keystore for storing the encryption key from
your service provider partner in a SAML 2.0
federation. 231

81. Server certificate validation for your service
provider partner in a SAML 2.0 federation . . 232

82. Client authentication for your service
provider partner in a SAML 2.0 federation . . 232

83. Partner settings for your service provider
partner in a SAML 2.0 federation 232

84. SAML Assertion settings for your service
provider partner in a SAML 2.0 federation . . 235

85. Attribute query mapping information for
your service provider partner 236

86. Identity Mapping options for your service
provider partner in a SAML 2.0 federation . . 237

87. Federation to which you are adding an
identity provider partner in a SAML 2.0
federation. 237

88. Metadata file from your identity provider
partner in a SAML 2.0 federation 238

89. Signature validation for your identity
provider partner in a SAML 2.0 federation . . 238

90. Keystore for storing the encryption key from
your identity provider partner in a SAML 2.0
federation. 238

91. Server certificate validation for your identity
provider partner in a SAML 2.0 federation . . 239

92. Client authentication for your identity
provider partner in a SAML 2.0 federation . . 239

93. Partner settings for your identity provider
partner in a SAML 2.0 federation 239

94. SAML Assertion settings for your identity
provider partner in a SAML 2.0 federation . . 242

95. Attribute query information for identity
provider partner 243

96. Attribute query mapping information for
identity provider partner. 244

97. Identity Mapping options for your identity
provider partner in a SAML 2.0 federation . . 245

98. Response file settings for identity provider in
SAML 1.x federation 250

99. Response file settings for service provider in
SAML federation 253

100. Response file settings for service provider
partner in SAML 1.x federation 255

101. Response file settings for Identity Provider
partner in SAML 1.x federation 258

102. Response file settings for Identity Provider in
SAML 2.0 federation 260

103. Response file settings for service provider in
SAML 2.0 federation 264

104. Response file settings for Service Provider
partner in SAML 2.0 federation 267

105. Response file settings for Identity Provider
partner in SAML 2.0 federation 269

106. Worksheet for identity provider federation
properties 291

107. Worksheet for relying party federation
properties 293

108. Worksheet for managed partner configuration
properties 294

109. Worksheet for federation identification
properties 343

110. Configuration properties for OpenID
consumer 347

111. OAuth 1.0 endpoint definitions and URLs 369
112. OAuth 2.0 endpoint definitions and URLs 370
113. Configurations supported 378
114. Worksheet for OAuth 1.0 federation

configuration properties 388
115. Worksheet for OAuth 1.0 partner

configuration properties 391
116. Worksheet for OAuth 2.0 federation

configuration properties 393
117. Worksheet for OAuth 2.0 partner

configuration properties 396
118. Trust association interceptor and servlet filter

properties 423
119. Out-STSUUSER entries used to generate a

Liberty or SAML 2 token. 457

xiv IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

120. Token information that is converted into a
STS universal user document 460

121. LDAP Search property 477
122. LDAP environment properties 477
123. LDAP server properties 478
124. In-STSUUSER entries generated from a Tivoli

Access Manager credential 482
125. Out-STSUUSER entries used to generate a

SAML token 482
126. SAML token information that is converted

into a STS universal user document 485
127. WS-Federation properties 491
128. WS-Federation data 491
129. SAML token module properties 492
130. Example server hostnames used in this

documentation 504
131. Module identification panels properties 517
132. Kerberos Delegation Module Configuration

panel property 517
133. Chain mapping identification properties 517
134. Chain Mapping Lookup properties 517
135. Chain identification panel 518
136. Chain assembly panel. 518
137. Access Manager Credential Module

Configuration property 518
138. Kerberos delegation module (Issue mode)

Configuration property 518
139. tfimsso and tfim-cluster stanza properties 528
140. HTTP Requests 547
141. HTTP Responses 549
142. Using the com.tivoli.pd.rgy.util.RgyConfig

utility 560
143. User Self Care response file parameters 565
144. Conditions found in the HTML validation

function 571
145. HTML pages 581
146. HTML pages 583

147. HTML files 594
148. List of attributes that are stored during a user

enrollment flow 599
149. List of attributes that are stored during a

forgotten password flow 600
150. List of attributes that are stored during a

forgotten user ID flow 600
151. Account create cache parameters 618
152. Forgotten password cache parameters 618
153. Secret question failure cache parameters 619
154. Values for the -operation parameter 666
155. Values for the manageItfimPointOfContact

-operation parameter. 677
156. Parameters used in point of contact response

files 682
157. Supported Protocol independent macros 718
158. Supported SAML protocol macros 718
159. Supported OpenID protocol macros 719
160. Supported OAuth protocol macros 720
161. General page identifiers and their template

files 724
162. SAML 1.x page identifiers and their template

files 725
163. SAML 2.0 page identifiers and their template

files 726
164. Liberty page identifiers 727
165. WS-Federation page identifiers. 728
166. Independent page identifiers 729
167. Macros used in the template files 730
168. Supported consent values for SAML 2.0

response 738
169. SAML 2.0 SHA256 Parameter Configuration

Matrix 777
170. Identity Provider and Service Provider

SHA256 Federation and Partner Response File
Parameters 779

Tables xv

xvi IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this publication

IBM® Tivoli® Federated Identity Manager Version 6.2.2 implements solutions for
federated single sign-on, Web services security management, and provisioning that
are based on open standards. IBM Tivoli Federated Identity Manager extends the
authentication and authorization solutions provided by IBM Tivoli Access Manager
to simplify the integration of multiple existing Web solutions.

This guide describes how to configure IBM Tivoli Federated Identity Manager.

Intended audience
The target audience for this book includes network security architects, system
administrators, network administrators, and system integrators. Readers of this
book should have working knowledge of networking security issues, encryption
technology, keys, and certificates. Readers should also be familiar with the
implementation of authentication and authorization policies in a distributed
environment.

This book describes an implementation of a Web services solution that supports
multiple Web services standards. Readers should have knowledge of specific Web
services standards, as obtained from the documentation produced by the standards
body for each respective standard.

Readers should be familiar with the development and deployment of applications
for use in a Web services environment. This includes experience with deploying
applications into an IBM WebSphere® Application Server environment.

Access to publications and terminology
This section provides:
v A list of publications in the IBM Tivoli Federated Identity Manager library.
v Links to “Online publications” on page xviii.
v A link to the “IBM Terminology website” on page xviii.

IBM Tivoli Federated Identity Manager library

The following documents are available in the IBM Tivoli Federated Identity
Manager library:
v IBM Tivoli Federated Identity Manager Quick Start Guide

v IBM Tivoli Federated Identity Manager Installation Guide, GC27-2718-01
v IBM Tivoli Federated Identity Manager Configuration Guide, GC27-2719-02
v IBM Tivoli Federated Identity Manager Installing, configuring, and administering

risk-based access, SC27-4445-02
v IBM Tivoli Federated Identity Manager Configuring web services security,

GC32-0169-04
v IBM Tivoli Federated Identity Manager Administration Guide, SC23-6191-02
v IBM Tivoli Federated Identity Manager Auditing Guide, GC32-2287-05
v IBM Tivoli Federated Identity Manager Troubleshooting Guide, GC27-2715-01
v IBM Tivoli Federated Identity Manager Error Message Reference, GC32-2289-04

© Copyright IBM Corp. 2006, 2013 xvii

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Tivoli Federated Identity Manager Information Center
The http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.tspm.doc_7.1/welcome.html site displays the information center
welcome page for this product.

IBM Security Systems Documentation Central and Welcome page
IBM Security Systems Documentation Central provides an alphabetical list
of all IBM Security Systems product documentation and links to the
product information center for specific versions of each product.

Welcome to IBM Security Systems Information Centers provides and
introduction to, links to, and general information about IBM Security
Systems information centers.

IBM Publications Center
The http://www-05.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss site offers customized search functions to help you find all the IBM
publications you need.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Accessibility
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You also can
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see the "Accessibility" topic in the information center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM

xviii IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/ic/ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6226/ic/ic-homepage.html
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20Security%20Systems%20Documentation%20Central/page/Welcome
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html

software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, see the IBM Tivoli Federated Identity Manager Installation
Guide. Also see: http://www.ibm.com/software/support/isa.

Troubleshooting Guide
For more information about resolving problems, see the IBM Tivoli
Federated Identity Manager Troubleshooting Guide.

Statement of Good Security Practices
IT system security involves protecting systems and information through
prevention, detection and response to improper access from within and outside
your enterprise. Improper access can result in information being altered, destroyed,
misappropriated or misused or can result in damage to or misuse of your systems,
including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure
can be completely effective in preventing improper use or access. IBM systems,
products and services are designed to be part of a comprehensive security
approach, which will necessarily involve additional operational procedures, and
may require other systems, products or services to be most effective. IBM DOES
NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE
IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE
MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

Conventions used in this book
This reference uses several conventions for special terms and actions and for
operating system-dependent commands and paths.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples

About this publication xix

http://www.ibm.com/software/support/isa

v File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with % variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

xx IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 1. Federation First Steps tool setup and use

The topics in the Configuration section provide a step-by-step guide to configuring
the Federation First Steps feature. The management console provides wizards to
guide you through many of the configuration tasks.

You can use the Federation First Steps tool to create a SAML 2.0 federation based
on a template and your preferred role.

Start with the topic Chapter 1, “Customizing federation templates,” on page 3.

© Copyright IBM Corp. 2006, 2013 1

2 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 1. Customizing federation templates

The Federation First Steps tool contains federation templates which you can use to
create SAML 2.0 federations. The federation templates are response files that
contain macros which are expanded during runtime. You can edit the federation
templates to customize some properties.

About this task

Before you use the Federation First Steps tool to create a federation, you can
customize the federations templates. The following sections guide you through the
process.
v Customizing the federation template
v Using the customized federation template

Customizing a federation template
About this task

You can customize a federation template in two ways:
v Modifying the federation template in the fedfirststeps directory
v Modifying the federation template in a different directory

Modifying the federation template in the fedfirststeps directory
Procedure
1. Go to <FIM install folder>/firststeps/fedfirststeps/templates and locate

the template that you must customize.
2. Use a text editor to edit the template that you must customize.
3. Edit the variables that you must change. You can specify your preferred value

for the company name, mapping rule, and so on.
4. Click Save.

Modifying the federation template in a different directory
Procedure
1. Go to <FIM install folder>/firststeps/fedfirststeps/templates and locate

the template that you must customize.
2. If you must put the templates folder in another location, copy the templates

folder from <FIM install folder>/firststeps/fedfirststeps/templates. Move
it in another directory, and rename it.

3. Use a text editor application to customize the template.
4. Edit the variables that you must change. You can specify your preferred value

for the company name, mapping rule, and so on.
5. Click Save.

© Copyright IBM Corp. 2006, 2013 3

Using the customized federation template
About this task

There are two ways to use the customized federation template in the Federation
First Steps tool: by modifying the fedfirststep.ini file, or by using the
command-line interface. If, for example, your custom templates are in
c:\custom_tfim_fed_templates\, follow these procedures:

Procedure
v Modify the fedfirststep.ini file, then run the Federation First Steps tool.

1. Go to FIM_Install/tools/fedfirststeps/fedfirststeps.ini and open the
fedfirststep.ini file in a text editor.

2. Add -custom-template-dir.
3. Click Save.
4. Launch the Federation First Steps tool.

v Use the command-line interface
1. Open the command-line interface.
2. In the command-line interface, enter:

– fedfirststeps.exe -custom-template-dir

– c:\custom_tfim_fed_templates

4 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 2. Federation First Steps tool

Use the Federation First Steps tool to create a generic SAML federation, configure
risk-based access, or add service providers as a partner.

The Federation First Steps tool has the following limitations:
v The Federation First Steps tool User Interface does not support wrapping of the

check box label. The text does not display in the next line and gets truncated
because of a known Standard Widget Toolkit issue.

v The use of Federation First Steps tool in cluster environments is not supported.

Launching the Federation First Steps tool
Launch the Federation First Steps tool to create federations.

Before you begin
v For Linux and Solaris users, ensure that you are running GIMP Toolkit (GTK)

version 2.12.0 or later.
v For AIX® users, ensure that you have the latest version of motif installed.

Procedure

Choose any of the following options to launch the Federation First Steps tool.
v In the installation wizard, the Launch the First steps console option check box

is selected by default. Click Finish.

Note: This option is only available on a new installation of Tivoli Federated
Identity Manager.

v In the fedfirststeps directory, launch fedfirststeps.exe or fedfirststeps.
v Run the following commands in the command-line interface:

– Microsoft Windows
$FIM_INSTALL_DIR\firststeps\fedfirststeps\fedfirststeps.exe

– UNIX
$FIM_INSTALL_DIR/firststeps/fedfirststeps/fedfirststeps

Note: If you are using a 64-bit operating system and the Federation First
Steps tool does not launch, ensure that the contents of the
$FIM_INSTALL_DIR/firststeps/fedfirststeps.ini file is
-vm
$FIM_INSTALL_DIR/_uninst/_jvm/bin
-nl
en_US

Identity provider side configuration
Configure the identity provider federation settings using the Federation First Steps
tool.

© Copyright IBM Corp. 2006, 2013 5

Creating a generic SAML 2.0 federation with a new or existing
domain

The Federation First Steps wizard creates a generic federation so that Tivoli
Federated Identity Manager users can access the applications of the service
provider.

Before you begin

You must know the following information to complete the wizard:
v The signing key option. See Storage and management of keys and certificates.
v The domain name. See Domain configuration.
v The point of contact server. See Managing point of contact servers.

Procedure
1. Launch the Federation First Steps tool.
2. Select SAML 2.0 Wizard.
3. Click Start. The tool scans your existing configuration settings.
4. Provide the information that is requested by the wizard.
5. Click Finish to start the task processing. Click Back if you want to change

anything.
6. Optional: Activate the local domain.

a. Log on to the Integrated Solutions Console.
b. Click Tivoli Federated Identity Manager > Domains. A prompt for the

detected local domain is displayed.
c. Click OK to activate the local domain.

7. Optional: Check the details of the federation that you created.
a. Log on to the Integrated Solutions Console.
b. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations.
c. The Federations panel shows a list of configured federations. Select the new

federation that you created.
d. Click Properties.
e. Select the properties to modify. Federation properties are described in the

online help.
f. Click OK to close the Federation Properties panel.

Configuring risk-based access with the Federation First Steps
tool

Use the IBM Tivoli Federated Identity Manager Federation First Steps tool to
configure and enable risk-based access. Risk-based access is a component for IBM
Tivoli Federated Identity Manager. Risk-based access provides access decision and
enforcement that is based on a dynamic risk assessment or confidence level of a
transaction.

Before you begin

Before you start the Federation First Steps tool, complete the following steps:

6 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2/installconfig/concept/managementofcertsSAML.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2/installconfig/concept/PlanningDomainConfiguration.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.1/task/config/console/managingcustomPOC.html

1. If you have a WebSphere Application Server clustered environment, you must
create and configure a JNDI context named jdbc/rba in WebSphere Application
Server and create the database schema for risk-based access. See Manually
configuring the database.

2. Install risk-based access. See Installing risk-based access.
3. Configure the WebSEAL point of contact server for IBM Tivoli Federated

Identity Manager. See Configuring WebSEAL point of contact server for SAML
federation.

You must know the following information to complete the wizard:
v URL of the Point of Contact Server for IBM Tivoli Federated Identity Manager
v URI of the IBM Tivoli Access Manager secure resource that you want to protect

with risk-based access
v WebSEAL instance name

Procedure
1. Launch the Federation First Steps tool.
2. Select Risk-based Access Configuration Wizard.
3. Click Start. The tool scans your existing configuration settings.
4. Provide the information that is requested by the wizard.
5. Optional: On the General Configuration Settings page, select Configure Tivoli

Access Manager, if you want to set up IBM Tivoli Access Manager
environment so that it delegates authorization decisions to risk-based access for
your secure resources.

Note: If you select this option, you must ensure that IBM Tivoli Access
Manager is installed and configured locally on the same system as IBM Tivoli
Federated Identity Manager.

6. Specify the URL of the Point of Contact Server for IBM Tivoli Federated
Identity Manager, which is used for collecting attributes.
http://host_name/webseal-junction-name

For example:
http://mywebsealhost.company.com/FIM

After the configuration process is completed, the Risk-based Access
Configuration Summary page describes whether the configuration failed or was
successful.
v If the configuration completes successfully, the next steps to complete the

setup for risk-based access are displayed on the Risk-based Access
Configuration Summary page. Follow the instructions in the summary page
to complete the IBM Tivoli Access Manager and external authorization
service (EAS) setup for your environment.

v If the configuration fails, the log and failure messages are displayed on the
Risk-based Access Configuration Summary page. Use the details that are
provided in the log and failure messages to check where the configuration
process failed and the probable causes of failure. Resolve the configuration
issues and run the Federation First Steps tool again to configure risk-based
access.

7. Click Finish.

Chapter 2. Federation First Steps tool 7

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.rba.doc/rbaConfiguringDB.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.rba.doc/rbaConfiguringDB.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.rba.doc/rbaInstallingRisk-basedAccess.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.1%2Ftask%2FConfiguringSAML2POC.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.1%2Ftask%2FConfiguringSAML2POC.html

What to do next

After you complete all of the next steps that are specified on the summary page,
verify that risk-based access is configured correctly on your system. See Verifying
the configuration.

Adding a service provider with the Federation First Steps tool
The Federation First Steps wizard adds a service provider as a partner so that
Tivoli Federated Identity Manager users can access the applications of the service
provider. Supported service providers include Salesforce, Google Apps, Microsoft
Office 365, and Workday.

Before you begin

You must know the following information to complete the wizard:
v Partner and domain names of the service provider that you want to add as a

partner.
v Federation name
v Federated user names
v If you have multiple domain names in Google Apps, the issuer in the SAML

request must be set as google.com/a/example.com instead of google.com. This
option must match the single sign-on option in Google Apps.

v Signing key option
v Point of contact server

About this task

The Federation First Steps wizard adds a service provider as a partner in the
following scenarios:
v To an existing domain and an existing federation
v To an existing domain and a new federation
v To a new domain and a new federation

Procedure
1. Launch the Federation First Steps tool.
2. Select the service provider-specific plug-in that you want to use.
3. Click Start. The tool scans your existing configuration settings.
4. Provide the information that is requested by the wizard.
5. Click Finish if you want to start the task processing. Click Back if you want to

change anything.
6. Optional: Check the details of the federation that you created.

a. Log on to the Integrated Solutions Console.
b. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations.
c. The Federations panel shows a list of configured federations. Select the new

federation that you created.
d. Click Properties.
e. Select the properties to modify. Federation properties are described in the

online help.
f. Click OK to close the Federation Properties panel.

8 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.rba.doc/rbaConfigVerifying.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.rba.doc/rbaConfigVerifying.html

7. Optional: Check the details of the partner that was created.
a. Log on to the Integrated Solutions Console.
b. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Partners.
c. The Partners panel shows a list of configured partners. Select the new

partner that you created.
d. Click Properties.
e. Select the properties to modify. Partner properties are described in the

online help.
f. Click OK to close the Partner Properties panel.

8. Optional: Activate the local domain.
a. Log on to the Integrated Solutions Console.
b. Click Tivoli Federated Identity Manager > Domains. A prompt for the

detected local domain is displayed.
c. Click OK to activate the local domain.

Related concepts:
“Overview on the UPN and immutableID strategy for Microsoft Office 365” on
page 11
You must choose a strategy for ImmutableID before configuring single sign-on
settings for Microsoft Office 365. Microsoft Office 365 users are identified by the
User Principal Name or UPN and ImmutableID.

Service provider side configuration
Configure the service provider federation settings using the Federation First Steps
tool.

Note: The configuration instructions for these service providers may change. See
the service provider-specific documentation for updates.

First Steps plug-in for Google Apps
Use the first steps plug-in to create a federation with Google Apps.
1. Select the appropriate configuration for your identity provider. For more

information, see “Identity provider side configuration” on page 5.
2. “Configuring Google Apps single sign-on settings”
3. “Provisioning users to Google Apps” on page 10
4. “Testing the single sign-on to Google Apps” on page 10

Configuring Google Apps single sign-on settings
Configure the Google Apps single-sign on settings to enable user authentication.

Before you begin

The configuration requires you to provide a certificate that is used to sign the
SAML message in your Federated Identity Manager. Export your Federated
Identity Manager certificate into a Privacy-Enhanced Message (PEM) format. See
"Exporting a certificate" in the IBM Tivoli Federated Identity Manager Configuration
Guide.

Chapter 2. Federation First Steps tool 9

Procedure
1. Navigate to the website of your service provider.

a. Open a web browser.
b. Enter the URL provided by Google to access your account. For example,

https://www.google.com/a/example.com.
2. Log in with your credentials.
3. Navigate to the single sign-on configuration page.

a. Click Advanced Tools.
b. Select Set up single sign-on (SSO).

4. Select the Enable Single Sign-on setting.
5. Configure the single sign-on settings by providing the following information:

Sign-in page URL
Enter the Federated Identity Manager Login Endpoint URL. For
example, https://idp.example.com/FIM/sps/<federation
name>/saml20/login

Sign-out page URL
Enter the URL to redirect users when they log out.

Change password URL
Provide the URL to let users change their password in your system.

6. Upload the verification certificate that you exported at the beginning of this
task in this field. This certificate must contain the public key from the key-pair
that is used for signing SAML messages in your Federated Identity Manager.

7. Save your settings.

What to do next

Test the single sign-on on Google Apps.

Provisioning users to Google Apps
Provision users to Google Apps so they can be authenticated through single
sign-on.

Procedure
1. Log in to Google Apps.
2. Click Organization & users.
3. Click Create a new user.
4. Specify the required information about your user.
5. Follow the on-screen instructions to complete the steps for adding a user.

Results

Users are added in Google Apps.

Testing the single sign-on to Google Apps
Test the single sign-on authentication to Google Apps after completing all the
federation and domain configuration steps.

Before you begin

Ensure that you have added users in Google Apps and Federated Identity
Manager. For more information on how to add users in Google Apps, see

10 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

“Provisioning users to Google Apps” on page 10. For more information about how
to add single sign-on users in Federated Identity Manager, see the IBM Tivoli
Federated Identity Manager Configuration Guide.

About this task

The steps provide instructions on how you can test the single sign-on.

Procedure

Initiate the single sign-on.
v To initiate single sign-on from the Identity Provider side:

1. Navigate to the login-initial endpoint of the Identity Provider.
2. Indicate google.com as the PartnerId.
3. Set the target to any string. For example, https://idp.example.com/sps/

<federationName>/saml20/logininitial?PartnerId=google.com
&Target=<anystring>. You are redirected to the Identity Provider login page.

Note: If you do not specify a value for Target or set it to an empty string,
Google displays an error message stating that the required response
parameter RelayState is missing.

4. Login with the user ID and password of the user that you are testing.
v To initiate single sign-on from Google:

1. Access the protected resource URL. For example, https://drive.google.com/
a/example.com. You are redirected to the Identity Provider login page.

2. Login with the user ID and password of the user that you are testing.

Results

The user can access the protected resource in Google Apps.

First Steps plug-in for Microsoft Office 365
Use the first steps plug-in to create a federation with Microsoft Office 365. The
usage of Windows PowerShell for single sign-on to provision users is not
supported by IBM®.
1. “Overview on the UPN and immutableID strategy for Microsoft Office 365”

a. “Populating the Federated Identity Manager alias service” on page 13
b. “Sending a request to the Tivoli Federated Identity Manager Security Token

Service” on page 14
2. Select the appropriate configuration for your identity provider. For more

information, see “Identity provider side configuration” on page 5.
3. “Configuring Microsoft Office 365 single sign-on settings” on page 15
4. “Provisioning users to Microsoft Office 365” on page 16
5. “Testing the single sign-on to Microsoft Office 365” on page 16

Overview on the UPN and immutableID strategy for Microsoft
Office 365
You must choose a strategy for ImmutableID before configuring single sign-on
settings for Microsoft Office 365. Microsoft Office 365 users are identified by the
User Principal Name or UPN and ImmutableID.

UPN The UPN is the local account user name that is appended with

Chapter 2. Federation First Steps tool 11

@domainname for a registered domain you own. The Federation First Steps
tool automatically generates the mapping rule that maps the local account
user name to the UPN format.

ImmutableID
This identifier is a non-recycled unique identifier for the account. It must
be passed as an attribute in the SAML assertion during single sign-on to
Microsoft Office 365.

You must determine the ImmutableID value and where it is stored.

Using the Tivoli Access Manager principal UUID as the ImmutableID
This technique applies only if you use Tivoli Access Manager WebSEAL as
your point of contact for Federated Identity Manager. It applies during
standard user authentication from the Tivoli Access Manager registry.

Tivoli Access Manager assigns a principal UUID to each user account. This
UUID is used during user provisioning and during single sign-on with
WS-Federation in Federated Identity Manager.

The advantage of using this technique is that during single sign-on at run
time, the UUID is already in the Tivoli Access Manager credential. There is
no need to write a Federated Identity Manager mapping rule to retrieve it
and insert it into the SAML assertion.

The disadvantage of this technique is that there is no way of determining
whether a user is provisioned to Microsoft Office 365 before you attempt
single sign-on.

User provisioning must be done before a user attempts single sign-on.
Otherwise, single sign-on fails. See “Provisioning users to Microsoft Office
365” on page 16 for more details.

The following scenario shows a ldapsearch for a Tivoli Access Manager
principal UUID. For example, secUUID. The Tivoli Access Manager domain
is default. The user is jane. Type the command on one line.
/opt/IBM/ldap/V6.1/bin/idsldapsearch -L -h localhost -p 389 -D
cn=root -w <your_ldap_pwd> -b "cn=users,secauthority=default"
-s one "(&(objectclass=secUser)(principalName=jane))"

The following code is a sample result:
....
secDN: principalName=jane,cn=Users,secAuthority=Default
secUUID: a1a2a3a4-b1b2-c1c2-1111-000000000000
....

Using the Federated Identity Manager alias service to manage ImmutableID

This technique requires a configured alias service for Federated Identity
Manager. See IBM Tivoli Federated Identity Manager Information Center
for more details about alias service.

If Tivoli Access Manager is not your point of contact or if you do not want
to use the Tivoli Access Manager principal UUID as the Microsoft Office
365 ImmutableID, store and manage a different UUID.

Federated Identity Manager provides a generic alias service. It is used in
SAML 2.0 federations with persistent name identifiers.The supported
programmatic interface to the Federated Identity Manager alias service is
through the APIs in the IDMappingExtUtils class. The class can be called
from the Javascript and Java™ mapping rules in the Federated Identity
Manager Security Token Service.

12 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.2%2Fic%2Fic-homepage.html

To populate the alias service, you must create an STS trust chain and call
those APIs. See “Populating the Federated Identity Manager alias service.”

Using the Base64 encoded value of UPN
With this technique, the ImmutableID that is sent to Microsoft Office 365 is
the base64-encoded value of the UPN.

Note: Use this method only in a test environment and not in a production
environment.

Populating the Federated Identity Manager alias service:

To use the Federated Identity Manager alias service to manage ImmutableID,
populate the Federated Identity Manager alias service first.

Procedure

1. Create an STS chain with the following structure:
v Default STSUU (validate)
v Default Map (map)
v Default STSUU (issue)

2. Set the following addresses:
v AppliesTo Address http://appliesto/alias

v Issuer Address http://issuer/alias

3. Use the following JavaScript mapping rule for the default map module.
// BEGIN Javascript mapping rule
// mapping rule for performing simple store and fetch alias operations
importPackage(Packages.com.tivoli.am.fim.trustserver.sts);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.utilities);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);

// Figure out the "operation" being performed
var operation = stsuu.getAttributeValueByName("operation");

// store operation
if (operation != null && operation == "store") {
// get username, federation ID, and alias value to store
var username = stsuu.getPrincipalName();
var federationid = stsuu.getAttributeValueByName("federationID");
var alias = stsuu.getAttributeValueByName("alias");

if (username != null && federationid != null && alias != null) {
// store it, first removing any existing values
var existingAliasValues =

IDMappingExtUtils.lookupAliasesForUserAsStringArray(
federationid, username);

if (existingAliasValues != null) {
for (var i = 0; i < existingAliasValues.length; i++) {
IDMappingExtUtils.removeAliasForUser(

federationid, username, existingAliasValues[i]);
}
}
IDMappingExtUtils.addAliasForUser(federationid, username, alias);
}
}

// fetch operation
if (operation != null && operation == "fetch") {
// get username, federation ID
var username = stsuu.getPrincipalName();

Chapter 2. Federation First Steps tool 13

var federationid = stsuu.getAttributeValueByName("federationID");

if (username != null && federationid != null) {
// fetch alias value(s) and put in STSUU
var existingAliasValues =

IDMappingExtUtils.lookupAliasesForUserAsStringArray(
federationid, username);

var attr = new Attribute("alisValues", "", existingAliasValues);
stsuu.addAttribute(attr);
}
}

// delete operation
if (operation != null && operation == "delete") {
// get username, federation ID
var username = stsuu.getPrincipalName();
var federationid = stsuu.getAttributeValueByName("federationID");

if (username != null && federationid != null) {
// remove any existing values
var existingAliasValues =

IDMappingExtUtils.lookupAliasesForUserAsStringArray(
federationid, username);

if (existingAliasValues != null) {
for (var i = 0; i < existingAliasValues.length; i++) {
IDMappingExtUtils.removeAliasForUser(

federationid, username, existingAliasValues[i]);
}
}
}
}
// END Javascript mapping rule

4. Provision an alias for a user. See “Sending a request to the Tivoli Federated
Identity Manager Security Token Service.”

Sending a request to the Tivoli Federated Identity Manager Security Token
Service:

Use the curl utility to send requests to the Tivoli Federated Identity Manager
Security Token Service to provision a user alias.

Procedure

1. Save the following RequestSecurityToken 1.2 message in a file. For example,
rst.xml.
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header/>
<soapenv:Body>

<wst:RequestSecurityToken xmlns:wst=
"http://schemas.xmlsoap.org/ws/2005/02/trust">

<wst:RequestType xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust
">http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>

<wst:Issuer xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
<wsa:Address xmlns:wsa=

"http://schemas.xmlsoap.org/ws/2004/08/addressing">
http://issuer/alias</wsa:Address>

</wst:Issuer>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference xmlns:wsa=
"http://schemas.xmlsoap.org/ws/2004/08/addressing">

<wsa:Address>http://appliesto/alias</wsa:Address>
</wsa:EndpointReference>

14 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

</wsp:AppliesTo>
<wst:Base xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<stsuuser:STSUniversalUser
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>

<stsuuser:Attribute name="name"
type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>jane</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="operation">
<stsuuser:Value>store</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="federationID">

<stsuuser:Value>urn:federation:
MicrosoftOnline</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="alias">

<stsuuser:Value>myalias</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>

</wst:Base>
</wst:RequestSecurityToken>

</soapenv:Body>
</soapenv:Envelope>

2. Replace your own values for username and alias, which is the ImmutableID
attribute for each user you want to provision. In the example, the username is
jane and the alias is myalias.

3. Use curl utility to send the request to the WS-Trust 1.2 endpoint. For example:
curl --header "soapaction: blah"
--header "Content-Type: text/xml" \

--data-binary @rst.xml http://localhost:9080
/TrustServer/SecurityTokenService

Configuring Microsoft Office 365 single sign-on settings
Configuring Microsoft Office 365 single sign-on settings involves installing the
Windows PowerShell for Single sign-on, running the command-line tool, and
confirming the activation of your federated domain.

Procedure
1. Install Windows PowerShell for single sign-on. See Microsoft Online and search

for Windows PowerShell for single sign-on for more details.
2. Run the Windows PowerShell for single sign-on and create a federated domain.

a. Log in to MS Online Service by typing the following command:
Connect-MsolService

b. Create a new federated domain by typing the following command:
New-MsolDomain -authentication federated -DomainName example.com

c. Get the domain verification DNS by typing the following command:
Get-MsolDomainVerificationDns -DomainName example.com -Mode DnsTxtRecord

d. Log in to the domain registrar where you own the domain.
e. Add the mx entry.
f. Confirm the domain and fill in the federation properties.

In the following example, the federation name is office365 and the
WebSEAL junction is FIM.

Chapter 2. Federation First Steps tool 15

http://onlinehelp.microsoft.com

Confirm-MsolDomain \
-DomainName example.com \
-FederationBrandName "Example, Inc" \
-IssuerUri https://identityprovider.example.com/FIM/sps/office365/wsf \
-LogOffUri https://profile.example.com/FIM/sps/office365/wsf \
-PassiveLogOnUri https://profile.example.com/FIM/sps/office365/wsf \
-PreferredAuthenticationProtocol WsFed \
-SigningCertificate MIICBz........Q==

Note: This operation fails if Microsoft Office 365 cannot resolve the mx
entry. Allow time for the DNS propagation to be complete.

3. Confirm the activation of your federated domain.
a. Go to https://portal.microsoftonline.com.
b. Log in with your Admin account.
c. Navigate to Admin Overview > Management > Domains.
d. Check whether your domain is in the domains list and whether that the

status is Verified.

Provisioning users to Microsoft Office 365
Provision users to Microsoft Office 365 so they can be authenticated through single
sign-on. Using Windows PowerShell for single sign-on to provision users is not
supported by IBM.

Procedure
1. Log in to MS Online Service by typing the following command:

Connect-MsolService

2. Provision users with the New-MsolUser command. Enter the command on one
line.
New-MsolUser -userprincipalname $upn \

-immutableID $base64 \
-lastname $sn \
-firstname $gn \
-Displayname $displayName \
-BlockCredential $false \
-LicenseAssignment $license \
-usageLocation $usagelocation

Note: Use the Get-MsolAccountSku command to know what values you can set
for LicenseAssignment. See Windows PowerShell cmdlets for Microsoft Office
365 for more details.

Testing the single sign-on to Microsoft Office 365
Test the single sign-on authentication to Microsoft Office 365 after you complete
the federation and domain configuration steps to verify that it works correctly.

Before you begin

Ensure that you have added users in Microsoft Office 365 and Federated Identity
Manager. For more information on how to add users in Microsoft Office 365, see
“Provisioning users to Microsoft Office 365.” For more information about how to
add single sign-on users in Federated Identity Manager, see the IBM Tivoli
Federated Identity Manager Configuration Guide.

Procedure
1. Make sure that there are no existing browser sessions in Identity Provider and

Microsoft Office 365.

16 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://onlinehelp.microsoft.com/en-us/office365-enterprises/hh125002.aspx
http://onlinehelp.microsoft.com/en-us/office365-enterprises/hh125002.aspx

2. Go to https://portal.microsoftonline.com/.
3. Enter your provisioned user ID under the federated domain in the User ID

field. For example, john@example.com. The screen changes to indicate that you
do not need to provide a password.

4. Click Sign in at <domain name>. You are redirected to the login page of your
Identity Provider.

5. Log in with your credentials.

Results

You are redirected and logged in to Microsoft Office 365.

First Steps plug-in for Salesforce
Use the first steps plug-in to create a federation with Salesforce.
1. Select the appropriate configuration for your identity provider. For more

information, see Identity provider side configuration.
2. “Configuring Salesforce single sign-on settings”
3. “Testing the single sign-on to Salesforce” on page 18

Configuring Salesforce single sign-on settings
Configure the Salesforce single-sign on settings to enable user authentication.

Before you begin

The configuration requires you to provide a certificate that is used to sign the
SAML message in your Federated Identity Manager. Export your Federated
Identity Manager certificate into a Privacy-Enhanced Message (PEM) format. See
"Exporting a certificate" in the IBM Tivoli Federated Identity Manager Configuration
Guide.

Procedure
1. Navigate to the website of your service provider.

a. Open a web browser.
b. Enter the URL provided by Salesforce to access your account. For example,

https://www.salesforce.com.

2. Log in with your credentials.
3. Navigate to the single sign-on configuration page.

a. Click your account name to reveal the user menu.
b. Select Setup.

4. Configure the single sign-on settings.
a. Under Adminstration Setup, select Security Controls > Single Sign-On

Settings.
b. Click Edit.
c. Check the SAML Enabled option.

5. Provide the following information:

SAML Enabled
You must enable this option.

SAML Version
The plug-in supports SAML 1.1.

Issuer This option is the Federated Identity Manager Endpoint URL. For

Chapter 2. Federation First Steps tool 17

example, https://idp.example.com/sps/<federation name>/saml11.
This value must match the Issuer in the SAML assertion. The Issuer
value comes from the Provider ID value that is defined in the identity
provider SAML 1.1 federation settings.

Identity Provider Certificate
This option is the Federated Identity Manager Certificate that you
previously exported at the beginning of this task. It is the public
certificate of the key for signing the SAML messages. It must be an
uploaded PEM-encoded certificate file which contains the public key
that matches the signing certificate at the Federated Identity Manager
identity provider.

SAML user ID Type
Select the first option if you want to use the identities on your identity
provider website. If not, then select Assertion contains the Federation
ID from the User object. You must enter a Federation ID for each user
in the Manage Users Menu.

SAML user ID Location
The User ID Location is in the NameIdentifier element of the Subject
statement. Select the second option if you want to use advanced user
mapping scenarios. You can also select the second option if you want
the value to be read from a nominated attribute in the
AttributeStatement of the SAML assertion.

6. Save your settings.

Testing the single sign-on to Salesforce
Test the single sign-on authentication to Salesforce after all the federation and
domain configuration steps are completed.

Before you begin

Ensure that you have added users in Salesforce and Federated Identity Manager.
For more information on how to add users in Salesforce, see the Salesforce
documentation or consult your Salesforce system administrator. For more
information about how to add single sign-on users in Federated Identity Manager,
see the IBM Tivoli Federated Identity Manager Configuration Guide.

Procedure
1. Close any Identity Provider and Salesforce browser sessions.
2. Navigate to the login initial endpoint of the Identity Provider. You are

redirected to the Identity Provider login page. For example,
https://idp.example.com/FIM/sps/<fed name>/saml11/login?TARGET=https://
saml.salesforce.com

3. Enter your credentials.

Results

You are redirected and logged in to Salesforce.

First Steps plug-in for Workday
Use the first steps plug-in to create a federation with Workday.
1. Select the appropriate configuration for your identity provider. For more

information, see Identity provider side configuration.
2. “Configuring Workday single sign-on settings” on page 19

18 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

3. “Testing the single sign-on to Workday”

Configuring Workday single sign-on settings
Configure the Workday security configuration to enable single sign-on.

Before you begin

The configuration requires you to provide a certificate to sign the SAML message
in your Federated Identity Manager. Export your Federated Identity Manager
certificate into a Privacy-Enhanced Message (PEM) format. See "Exporting a
certificate" in the IBM Tivoli Federated Identity Manager Configuration Guide.

Procedure
1. Navigate to the website of your service provider.

a. Open a web browser.
b. Enter the URL provided by Workday to access your account. For example,

https://www.myworkday.com/<your company>/login.flex.
2. Log in with your Admin account.
3. Navigate to the single sign-on configuration page.

a. Click Workbench > Account Administration > Edit Tenant Setup -
Security

4. Configure the single sign-on settings by providing the following information:
a. Under SAML Setup, select the Enable SAML Authentication option.
b. Specify the following information:

Identity Provider ID
Enter the Federated Identity Manager Login Endpoint URL. For
example, https://idp.example.com/FIM/sps/<federation
name>/saml20/login

x509 Public Key
Upload the certificate that you exported at the beginning of this
task in this field. This certificate must contain the public key from
the key-pair that is used for signing SAML messages in your
Federated Identity Manager.

5. Save your settings.

What to do next

Test the single sign-on on Workday.

Testing the single sign-on to Workday
Test the single sign-on authentication to Workday after you complete all the
federation and domain configuration steps.

Before you begin

Ensure that you have added users in Workday and Federated Identity Manager.
For more information on how to add users in Workday, see the Workday
documentation or consult your Workday system administrator. For more
information about how to add single sign-on users in Federated Identity Manager,
see IBM Tivoli Federated Identity Manager Configuration Guide.

Chapter 2. Federation First Steps tool 19

Procedure
1. Initiate the single sign-on by navigating to the identity provider login endpoint.

For example, https://idp.example.com/FIM/sps/<fed name>/saml20/
logininitial?PartnerId=http%3A%2F%2Fwww.workday.com. You are redirected to
the Identity Provider login page.

2. Log in with your credentials.

Results

The user can access the protected resource in Workday.

20 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 2. Configuration of a domain

The topics in the Configuration section provide a step-by-step guide to configuring
a domain. The management console provides wizards to guide you through many
of the configuration tasks.

All Tivoli Federated Identity Manager deployments require the deployment of a
domain. You must deploy a domain before you configure other features such as
single sign-on federation, Web services security management, token services, or
User Self Care.

Start with the topic:
v Chapter 3, “Domain configuration,” on page 23

© Copyright IBM Corp. 2006, 2013 21

22 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 3. Domain configuration

A Tivoli Federated Identity Manager domain is a deployment of the Tivoli
Federated Identity Manager runtime component to either a WebSphere single
server or a WebSphere cluster.

There is one domain per WebSphere cluster. In a single server environment, there
can be only one domain.

Each domain is managed independently. You can use the installation of the Tivoli
Federated Identity Manager management console to manage multiple domains.
You can manage only one domain at a time. The domain that is being managed is
known as the active domain.

When Tivoli Federated Identity Manager is installed, no domains exist. Use the
management console to create a domain. When you installed Tivoli Federated
Identity Manager, the management service was deployed to a WebSphere server
(single server mode) or WebSphere Deployment Manager (WebSphere cluster
mode).

Connect with the management service and choose a WebSphere server or cluster to
which you must deploy the Tivoli Federated Identity Manager runtime component.
When the runtime is deployed and configured, you are ready to configure
additional features such as federated single sign-on or Web services security
management.

In a WebSphere Network Deployment environment, the deployment and
configuration of the Tivoli Federated Identity Manager runtime to cluster members
is an automated process. It is not necessary to perform additional installation of
Tivoli Federated Identity Manager or Tivoli Access Manager software onto the
WebSphere cluster computers.

The Tivoli Federated Identity Manager management service uses the application
deployment services of the WebSphere Deployment Manager to deploy and
configure the runtime application to distributed cluster members.

The management console provides a wizard to guide you through the creation of
the domain. The following sections list the properties that the wizard prompts you
to supply.

Domain management service endpoints properties

Host The fully qualified domain name for the Host where the WebSphere
Application Server is running. For example:
idp.example.com

SOAP Connector Port
The default WebSphere Application Server (standalone) SOAP port is 8880.
When you are creating a domain for use with a WebSphere Application
Server that is a member of a WebSphere cluster, the SOAP port number
might differ. For example, 8879. If you are unsure of the correct SOAP port
number, use the WebSphere Application Server administrative console to
determine the port.

© Copyright IBM Corp. 2006, 2013 23

WebSphere global security properties

WebSphere Application Server can optionally have global security enabled. When
global security is enabled, the security properties must be configured for the Tivoli
Federated Identity Manager management service. Global security is enabled in
most deployments.

Administrative user name
The WebSphere Application Server administrator name. For example,
wsadmin

Administrative user password
Password for the WebSphere Application Server administrator, as specified
during the WebSphere installation.

SSL Trusted Keystore file
Keystore file used by WebSphere Application Server.

When you have installed Tivoli Federated Identity Manager on a computer
that uses an existing WebSphere installation, the default path on Linux or
UNIX is:
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/etc/trust.p12

On Windows:
C:\Program Files\IBM\WebSphere\AppServer\

profiles\AppSrv01\etc\trust.p12

When you have installed embedded WebSphere as part of the Tivoli
Federated Identity Manager installation, the default path on Linux or
UNIX is:
/opt/IBM/FIM/ewas/profiles/
itfimProfile/etc/trust.p12

On Windows:
C:\Program Files\IBM\FIM\ewas\

profiles\AppSrv01\etc\trust.p12

SSL Trusted Keystore password
The password that is required to access the SSL trusted keystore file.

The default password for the WebSphere key is:
WebAS

SSL Client Keystore file
Keystore file used by WebSphere Application Server.

This keystore file is an optional configuration item. Some WebSphere
deployments do not use an SSL Client Keystore file.

SSL Client Keystore password
The password that is required to access the SSL client keystore file. This
field is needed when you have entered an SSL client keystore file.

WebSphere server or cluster name

The domain wizard prompts for the WebSphere server or cluster name when
creating a domain.

Server name
The name of the WebSphere Application Server into which the Tivoli
Federated Identity Manager management service is configured.

24 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The server is a single server, not part of a cluster.

The default name is automatically built by the wizard. For example, on
host named host1:
WebSphere:cell=host1Node01Cell,node=host1Node01,server=server1

Cluster name
The name of the WebSphere Application Server cluster into which the
Tivoli Federated Identity Manager management service is configured.

Tivoli Access Manager environment properties

The wizard prompts whether you want to configure into a Tivoli Access Manager
environment. Do not configure into a Tivoli Access Manager environment if you
are using a point of contact server other than WebSEAL. For example, do not
configure into a Tivoli Access Manager environment if you are using WebSphere as
a point of contact server.

The wizard presents the following prompt:

This environment uses Tivoli Access Manager
If you clear this check box, you do not have to set any properties for Tivoli
Access Manager.

If you select this check box, specify the properties listed in the following
table.

Administrator Username
The Tivoli Access Manager administrator. The default ID is sec_master. If
you chose another administrator ID when you installed Tivoli Access
Manager enter the administrator ID in the Administrator Username field.

Administrator Password
The password for the Tivoli Access Manager administrator.

Policy Server Hostname
The fully qualified host name of the computer running the Tivoli Access
Manager policy server. For example:
idp.example.com

Port The port number used to communicate with the policy server.

This number matches the port number that you specified when you
configured Tivoli Access Manager. The default value is 7135.

Authorization Server Hostname
The fully qualified host name of the computer running the Tivoli Access
Manager authorization server. For example:
idp.example.com

Port The port number used to communicate with the authorization server.

This number matches the port number that you specified when you
configured Tivoli Access Manager. The default value is 7136.

Tivoli Access Manager Domain
The name of the administrative Tivoli Access Manager domain that you
specified when you configured Tivoli Access Manager. The default value is
Default.

Chapter 3. Domain configuration 25

Worksheet for domain configuration
Complete this worksheet before running the wizard to create and deploy the
domain and runtime.

The properties on this worksheet are described in Chapter 3, “Domain
configuration,” on page 23.

Table 1. Domain configuration properties

Property Your value

Host

SOAP Connector Port

Administrative user name

Administrative user password

SSL Trusted Keystore file

SSL Trusted Keystore password

SSL Client Keystore file

SSL Client Keystore password

WebSphere cluster name

or

WebSphere server name

This environment uses Tivoli Access
Manager

Select or Clear

When your environment includes Tivoli Access Manager (for example, when using
WebSEAL as the point of contact server), you must also supply some Tivoli Access
Manager configuration properties.

Table 2. Tivoli Access Manager environment properties

Property Description

Administrator Username

Administrator Password

Policy Server Hostname

Port

Authorization Server Hostname

Port

Tivoli Access Manager Domain The default value is Default.

Creating and deploying a new domain
You must create a domain and deploy a runtime application for each instance of
the Tivoli Federated Identity Manager.

26 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity Manager
Security STS client while Tivoli Federated Identity Manager supports WebSphere
6.X. When Tivoli Federated Identity Manager discontinues its support for
WebSphere 6.X, use WebSphere Application Server version 7 Update 11 and later.
See WS-Trust client API and WS-Trust Clients for details.

A wizard prompts you to supply the necessary configuration properties. You can
use the properties on the worksheet that you prepared. For more information
about the worksheet, see Chapter 3, “Domain configuration,” on page 23

About this task

This task is a prerequisite to configure additional Tivoli Federated Identity
Manager features such as federated single sign-on or Web Services Security
Management. It is also a prerequisite for deployments that use the Tivoli Federated
Identity Manager security token service for token exchange.

An example of a token exchange scenario is deployment of Tivoli Federated
Identity Manager Kerberos constrained delegation with WebSEAL junctions.

Procedure
1. Verify that the WebSphere Application Server application is running.
2. Copy all the WebSphere key files from the Deployment Manager to all the

nodes in the cluster under the following circumstances:
v When you deploy a domain into a WebSphere Application Server cluster,
v When the WebSphere global security is enabled

Place the keys on each node in the same directory as on the Deployment
Manager. WebSphere 6.1 does this process automatically. However, ensure that
when the administration console is remote from the DMgr (Management
Service), the server certificate presented by the DMgr is trusted by the console.
One way to do this verification is to copy the truststore from the DMgr to the
console profile.

3. Log on to the WebSphere console.
4. Click Tivoli Federated Identity Manager → Getting Started.

The Getting Started portlet opens.
5. Click Manage Domains. The Domains portlet opens.
6. Click Create. The Domain wizard opens the Welcome panel.
7. Click Next. The Management Service Endpoint panel opens.
8. Enter values for the specified properties.
9. Click Next. The WebSphere Security panel opens.

10. Specify whether WebSphere global security is enabled.
v When global security is enabled, enter values for the specified properties

and click Next.
v When global security is not enabled, leave the remaining properties blank.

Click Next.
11. Click Test Connection. When successful, you can see an information message:

Chapter 3. Domain configuration 27

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

FBTCON317I Tivoli Federated Identity Manager connected successfully.

12. Click Next. The WebSphere Target Mapping panel opens.
13. Select or enter the name of your server or cluster.
14. When finished, click Next.

v When the WebSphere environment consists of a single server, the panel
shows a Server name menu with a default name.

v When the WebSphere environment consists of a cluster, the panel shows the
Cluster Name menu. This menu lists the names of clusters defined in the
cell. Select the name of the cluster to use.

The Select Domain panel opens. A default name is provided.
15. Accept default name or enter a name for the new domain. The Tivoli Access

Manager Environment Settings panel opens.
16. Select or clear This Environment Uses Tivoli Access Manager as appropriate.
17. Click Next. When you select this option, provide values for the rest of the

properties. The Summary panel opens
18. Verify that the domain information is correct.
19. Click Finish.

The domain is created and the domain wizard exits. The Create Domain
Complete panel opens.

20. Select both of the check boxes on the Create Domain Complete panel.
21. Click OK.

You must complete both of the tasks as part of the initial creation and
deployment of the Tivoli Federated Identity Manager management service and
runtime:
v Make this domain the active management domain

v Open Runtime Node Management upon completion

22. When you are deploying Tivoli Federated Identity Manager into a WebSphere
cluster, ensure that the WebSphere Node Agent is running on all the nodes in
the cluster.
Use the WebSphere administrative to verify the status of the node agents.
The Current Domain portlet and the Runtime Node Management portlet open.

23. In the Runtime Node Management portlet, click Deploy Runtime. A message
shows:
FBTCON355I - A request to deploy the Tivoli Federated Identity Manager
Runtime is in progress.

The following link shows:
Click to refresh runtime deployment status and check for completion.

The Deployment operation might take several minutes. During this time, you
can click the link to check for completion. When the deployment is complete,
then click the link to return to the message:
FBTCON132I The Runtime was successfully deployed to the domain.

The Runtime Node Management portlet is redrawn. An entry for the runtime
is added to the Runtime Nodes table for each node in the domain. The
Configure button is also activated.

24. In the Runtime Node table, select the check box for your node.
25. Click Configure.

The runtime application is configured into the environment.

28 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

26. In a WebSphere cluster environment, configure each node in the cluster by
repeating the previous step.

27. When all nodes are configured, click the Load configuration changes to the
Tivoli Federated Identity Runtime button.
The button is located in the Current Domain portlet.

28. Continue with the instructions that apply to your deployment:
v In a WebSphere cluster environment, continue with “Mapping the runtime

to a Web server.”
v In a WebSphere non-clustered (stand-alone server) environment, the domain

creation, and deployment is now complete. Continue with the appropriate
instructions for your scenario.

What to do next

Restart the WebSphere Application Server under the following circumstances:
v If you specified inaccurate information in the WebSphere Security panel in the

Domain wizard
v While creating a Tivoli Federated Identity Manager domain, or a connection to a

domain

If you attempted to correct the information and you still cannot connect to the
Tivoli Federated Identity Manager console, restart the WebSphere Application
Server.

Use Test Connection in the panel to verify the connection between the Tivoli
Federated Identity Manager console and the Management Service.

Mapping the runtime to a Web server
Learn how to map the Tivoli Federated Identity Manager runtime to the IBM
HTTP Web server for cluster environments.

About this task

When Tivoli Federated Identity Manager runtime is deployed, it is automatically
mapped to the default WebSphere Application Server. In WebSphere cluster
environments, WebSphere Application Server is deployed into a topology with a
web server such as IBM HTTP Web server. In this case, a WebSphere plug-in has
been installed and configured for the IBM HTTP Web server.

The IBM HTTP Web server performs the workload balancing across cluster
members. This means that the Tivoli Federated Identity Manager runtime must be
mapped to the web server.

Procedure
1. Log on to the WebSphere administrative console:

http://your_host_name:9060/admin

2. Select Enterprise Applications -> ITFIM Runtime. The Configuration tab
shows.

3. In the Web Module Properties section, select the Virtual hosts link. A section
titled Apply Multiple Mappings shows a table with a row entry for each Web
module.

Chapter 3. Domain configuration 29

4. Select the check box for each web module. Ensure that all check boxes are
selected.

5. Accept the default entry of default_host in the Virtual host field for each Web
module. A message box prompts you to save your changes.

6. Click the Save link. The Save panel opens.
7. Click Save.
8. Return to Enterprise Applications -> ITFIM Runtime. The Configuration tab

opens.
9. In the Modules section, select the Manage Modules link. The Enterprise

Application -> ITFIM Runtime -> Manage Modules page opens. At the top,
you can see the title Manage Modules.

10. Select the check box for each of the web modules. For Tivoli Federated Identity
Manager the list of modules can include, but is not limited to:
v ITFIM-Runtime
v ITFIM Security Token Service
v ITFIM Information Service
v TokenService
v TrustServerWST13

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity
Manager Security STS client while Tivoli Federated Identity Manager supports
WebSphere 6.X. When Tivoli Federated Identity Manager discontinues its
support for WebSphere 6.X, use WebSphere Application Server version 7
Update 11 and later. See WS-Trust client API and WS-Trust Clients for details.

11. A scrolling window lists Clusters and Servers. Select both of the following
entries:
v The entry for your cluster. For example, cluster=fimCluster.
v The entry for the web server. For example, server=webserver1

12. While both items are highlighted, click Apply. In the Module table, the
definition for each server and cluster is added to the entry, in the Server
column, for each of the web modules that you selected.

13. Click OK at the bottom of the page. A message prompts you to save your
changes.

14. Click the Save link. The Enterprise Applications → Save panel opens.
15. Click Save.
16. To finish configuring the Tivoli Federated Identity Manager runtime into a

WebSphere cluster, continue with “Enabling replication in a WebSphere
cluster.”

Enabling replication in a WebSphere cluster
Learn how to enable cache replication in a cluster environment to enhance the
Tivoli Federated Identity Manager runtime application.

30 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

About this task

Note: This configuration task applies to WebSphere cluster environments. When
you have configured Tivoli Federated Identity Manager runtime to a single server
WebSphere environment, skip this procedure.

WebSphere supports the use of a dynamic cache service for storing application data.
The data objects managed by this service can be separated into cache instances that
can be individually configured. The WebSphere administrator can configure
parameters such as cache size, persistence to disk, and others. Each cache instance
can belong to a replication domain. In a replication domain, the data in the cache is
replicated, and available to all the servers that participate in the replication
domain.

When the Tivoli Federated Identity Manager runtime is deployed, some
WebSphere configuration steps are automatically performed:
v A replication domain is created. The name of the replication domain is

FIM-your_cluster_name or FIM-your_server_name.
v Several cache instances are created that use the replication domain.

Additional configuration is required.

Application servers in the cluster must now have their dynamic cache service
configured as a consumer of the replication domain.

Note: The steps in this procedure must be completed for each server in the cluster.

Complete the following steps for each application server that is a member of the
cluster:

Procedure
1. In the WebSphere administrative console, select Servers -> Application

Servers -> your_server_name. The properties for the selected server show.
2. In the Container Setting section, expand Container Services. Click Dynamic

Cache Service.
3. In the General Properties section of the screen, go to the Consistency settings

section. Select Enable cache replication. Verify that the Consistency Settings
area has the following values:
v Full group replication domain

Select the name of the cluster into which you have deployed the runtime
application

v Replication type: Both push and pull

v Push frequency: 0

4. Click OK. When prompted to save your changes, select the Save link. When
the next page opens, click Save.

5. In the WebSphere administrative console, select Servers -> Application
Servers -> your_server_name.

Note: The properties in this section might already be defined.
6. In the Container Settings section, select Session management. The

Configuration tab shows.
7. In the Additional Properties section, select Distributed environment settings.

The General Properties panel is redrawn.

Chapter 3. Domain configuration 31

8. Examine the Distributed environment settings section.
a. Select Memory-to-memory replication.
b. Click the Memory-to-memory replication hyperlink.

The General Properties panel opens.
9. Specify your replication settings in the General Properties panel:

a. Set the Replication domain to the name of the cluster into which you have
deployed the Tivoli Federated Identity Manager runtime application.

b. Set Replication mode to Both client and server.
10. When prompted to save your changes, select the Save link. When the next

page opens, click Save.
11. From the Server Cluster panel, select the check box for your cluster, and click

Ripplestart.
You must restart the cluster to activate the changes you have made.

32 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 3. Configuration of a single sign-on federation

The topics in the Configuration section provide a step-by-step guide to configuring
a single sign-on federation. The management console provides wizards to guide
you through many of the configuration tasks.

Many configuration tasks are common to all federation types. Some configuration
tasks are unique to specific federation types.

Complete the configuration tasks in the following order:
1. Review the configuration tasks that are common to all types of federations.

Complete the configuration tasks applicable to your deployment.

Note: Most federation types support a variety of deployment scenarios. The
actual steps for each configuration task can vary, depending on the scenario.
a. Chapter 5, “Identity provider and service provider roles,” on page 37
b. Chapter 6, “Using keys and certificates to secure communications,” on page

39
c. Chapter 7, “Configuring LTPA and its keys,” on page 47
d. Chapter 8, “Setting up message security,” on page 49
e. Chapter 9, “Setting up transport security,” on page 71
f. Chapter 10, “Selecting a point of contact server,” on page 83
g. Chapter 11, “Configuring WebSphere as point of contact server,” on page 87
h. Chapter 12, “Configuring a Web server plug-in,” on page 117
i. Chapter 13, “Setting up the alias service database,” on page 131
j. Chapter 14, “Planning the mapping of user identities,” on page 143

2. Complete the instructions for your federation type:
v Chapter 15, “SAML federations overview,” on page 165
v Chapter 21, “Planning an Information Card federation,” on page 271
v Chapter 24, “OpenID planning overview,” on page 313
v Chapter 30, “Planning a Liberty federation,” on page 449
v Chapter 32, “Planning a WS-Federation single sign-on federation,” on page

479

© Copyright IBM Corp. 2006, 2013 33

34 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 4. Overview of configuration tasks for federated
single sign-on

Use Tivoli Federated Identity Manager to establish a single sign-on federation in
which users can log in once to access multiple web applications at different
providers.

A federation is a group of two or more trusted IBM Business Partners who want to
initiate or receive the transfer of user identities within the federation. The integrity
of the identity is based on existing trust relationships among members of the
federation, often codified by a legal agreement. A user of a company that
participated in a federation through federated single sign-on can securely access
the resources of their federated IBM Business Partner. Resource access is typically
done with a web browser.

When you use Tivoli Federated Identity Manager to establish the federation, you
can take advantage of the following product features:
v Open standards for single sign-on
v Integration with the single sign-on capabilities of IBM WebSphere Application

Server 6.1, eliminating the need for authentication by individual applications
v Support for an unlimited number of federations and the ability to tailor unique

configurations for each federation.
For example, you can assume either an identity provider role or a service
provider role in any federation with only one installation of Tivoli Federated
Identity Manager.

v Integration support for web applications running on any of the following types
of servers:
– WebSphere Application Server version 6.1 and later
– Microsoft Internet Information Server (IIS)
– IBM HTTP Server (IHS)
– Apache version 2.0 or 2.2 HTTP server

v Simplified Web-based administration

Deployment of a single sign-on federation requires completion of a series of tasks.
Some of the tasks are common to all types of federations. Others tasks are specific
to the protocol standard for the federation (for example, SAML 2.0).

To deploy a single sign-on federation, you can review the common tasks first and
then complete the configuration steps specific to the protocol standard.

Note: You must create a domain before deploying a single sign-on federation. If
you have not yet deployed a domain, complete the instructions in Chapter 3,
“Domain configuration,” on page 23.

The tasks described in the following topics are common to all types of federations.
Go through each topic in the following order, before you configure a federation for
your selected protocol.
1. Chapter 5, “Identity provider and service provider roles,” on page 37
2. Chapter 6, “Using keys and certificates to secure communications,” on page 39
3. Chapter 7, “Configuring LTPA and its keys,” on page 47

© Copyright IBM Corp. 2006, 2013 35

4. Chapter 8, “Setting up message security,” on page 49
5. Chapter 9, “Setting up transport security,” on page 71
6. Chapter 10, “Selecting a point of contact server,” on page 83
7. Chapter 11, “Configuring WebSphere as point of contact server,” on page 87
8. Chapter 12, “Configuring a Web server plug-in,” on page 117
9. Chapter 13, “Setting up the alias service database,” on page 131

10. Chapter 14, “Planning the mapping of user identities,” on page 143

For more information about federation concepts and assistance with architecting a
federated identity management solution, see the Federation concepts section of
Enterprise Security Architecture Using IBM Tivoli Security Solutions Redbook at
http://www.redbooks.ibm.com/redbooks/pdfs/sg246014.pdf.

36 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.redbooks.ibm.com/redbooks/pdfs/sg246014.pdf

Chapter 5. Identity provider and service provider roles

Each partner in a federation has a role. The role is either Identity Provider or
Service Provider. An identity provider is a federation partner that vouches for the
identity of a user. A service provider is a federation partner that provides services
to the user.
v Identity provider

The Identity Provider authenticates the user and provides an authentication token
(that is, information that verifies the authenticity of the user) to the service
provider.
The identity provider does either of the following authentication:
– Direct user authentication. For example, validating a user name and

password.
– Indirect user authentication. For example, validating an assertion about the

user identity as presented by a separate identity provider.
The identity provider handles the management of user identities to free the
service provider from this responsibility.

v Service Provider

Typically, service providers do not authenticate users but instead request
authentication decisions from an identity provider. Service providers rely on
identity providers to assert the identity of a user and certain attributes about the
user that are managed by the identity provider.
Service providers might also maintain a local account for the user, along with
attributes that are unique to their service.
Service providers can maintain a local account for the user, which can be
referenced by an identifier for the user.
Some federation protocols use different terminology to refer to the service
provider role:
– Relying party

The Information Card protocol specification uses the term Relying Party to
describe the service provider role. Select the Service Provider role for your
Relying Party when you configure the Information Card federation in the
Tivoli Federated Identity Manager wizard.

– Consumer

The OpenID protocol specification uses the term Consumer to describe the
service provider role. Select the Service Provider role for your Consumer
when you configure the OpenID in the Tivoli Federated Identity Manager
wizard.

Before installing Tivoli Federated Identity Manager, you must know whether to
assume the identity provider or the service provider role in each of the federations
to configure. You must also understand the point of contact server options for your
role.

© Copyright IBM Corp. 2006, 2013 37

38 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 6. Using keys and certificates to secure
communications

In a typical production environment, all messages and the communication of those
messages between partners and between users in the federation are secured. In
addition, you must secure the communication among the servers in your
environment, such as the communication between your server and your user
registry.

For example, the SAML standards state that the partners must use a Public Key
Infrastructure (PKI) and implement Secure Sockets Layer (SSL)-over-HTTP or
HTTPS, to establish a trust relationship. Doing so ensures the integrity and
confidentiality of the messages during transport.

Implementing security is a complex topic and is dependent on the configuration of
your environment and the security policies of your organization. This overview
explains the general concepts of securing the elements in a Tivoli Federated
Identity Manager environment. If you need assistance with this topic, review the
security requirements in the protocol specifications document or contact a
computer security consultant.

Message-level security
To secure the content of messages and assertions, the SAML standards specify the
use of a public key cryptography. By using this method, the federation partners
exchange public/private key pairs, and use the keys to sign, encrypt, validate, and
decrypt messages and the assertions within the messages. The message signing,
encryption, validation, and decrypting process are required in the SAML standard
or as appropriate to their environment.

When you configure a federation in Tivoli Federated Identity Manager, the
federation configuration wizard prompts you with either signing, validation, or
encryption requirements or signing, validation, or encryption options based on your
SAML protocol and profile or binding selections.

For example, if the choices you make when configuring your federation indicate
that a signature is required, the wizard prompts you for a signing key. If your
selections result in an option to sign or not, the wizard prompts you to make a
selection.

Before you use the federation configuration wizard, you must have created the
appropriate keys. The information in Chapter 8, “Setting up message security,” on
page 49 helps you plan which keys you need in your environment, and provides
instructions for creating or obtaining them.

The following sections provide general descriptions of the keys used in SAML
federations.

Signing

XML messages and SAML assertions are signed by one partner to protect the
integrity of the message. The signature enables the receiving party to check if the
message had been changed or modified during transmission.

© Copyright IBM Corp. 2006, 2013 39

Signing is done with a private key. The partner who receives the signed XML
message or SAML assertion needs the X.509 certificate (public key) that
corresponds to the private key of the message signer. By default, the X.509
certificate (public key) is included with the signature as a base64-encoded X.509
certificate. However, you have the option of specifying which certificate data you
want to include with your signatures.

Validation

The signatures in messages and assertions can be validated by the partner who
receives them. Validation confirms that the identity of the signer has been assured.
Validation is done with the public key of the partner who signed the messages or
assertions.

Encryption and decryption

In SAML 2.0, messages can be encrypted in addition to being signed. The use of
the public/private key pair during encryption and decryption differs from its use
during signing and validation. The public key of the intended recipient is used for
encryption. For one partner to encrypt a message, that partner must have the
public key of the partner to whom the message is being sent.

The partner who receives the encrypted message must use its private key to
decrypt the message. In Tivoli Federated Identity Manager, when SAML 2.0 is
used, both partners must obtain their own public/private key pairs to be used for
encryption. They must then exchange their public keys so that each partner can
encrypt messages to the other.

Transport-level security
Message-level security, as described in the preceding section, protects only the
content of the message. To protect the message as it is communicated between
partners, SAML requires the use of Secure Sockets Layer (SSL) with server
authentication, and in some cases with mutual authentication.

SSL is a protocol that establishes authenticity, integrity, and confidentiality among
parties who are transmitting data over various other protocols, such as HTTP, in a
network.

Note: SSL is a complex topic. This overview serves only as an introduction to
familiarize you with the basic concepts and terminology used in this book.

Server authentication

In a Tivoli Federated Identity Manager environment, SSL is used to protect the
endpoints at which SAML messages are sent and received. In an SSL-protected
communication between federation partners, one partner acts as client or the party
who is requesting data. The other partner acts as the server, or the receiver of the
request and the responder to the request.

In a SAML 1.x federation, a single sign-on request is received at the identity
provider partner. When an SSL connection is established between the federation
partners, the identity provider partner acts as the server, and the service provider
partner acts as the client.

40 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

In a SAML 2.0 federation, a single sign-on request can be received by either
partner. Therefore, either partner can be the server or client.

SSL can be configured on the server only (server authentication) or on both the
server and the client (mutual authentication). The SAML standards require the use of
a server authentication between partners, at a minimum. The addition of mutual
authentication provides added security.

To enable server authentication, you must create a public/private key pair and
obtain a certificate. Your server uses certificate to authenticate itself to the client.
The certificate is also known as a server certificate, or a personal certificate.

Although you can create your own server certificate with a software that supports
certificate creation in a production environment, you might want to obtain a server
certificate from a third-party. The server certificate is also known as a certificate
authority or CA that issues certificates.

Before attempting an SSL connection, the client that the server presents its
certificate to must obtain the certificate of the CA that issued the server certificate.
The client maintains a list of trusted issuers and adds the CA certificate to that list.

The server certificate contains the following information:
v the server certificate public key
v the certificate serial number
v the certificate validity period
v the distinguished name of the server which includes the host name associated

with the server
v the distinguished name of the issuer
v the digital signature of the issuer

To establish the SSL connection, the server presents its certificate and the client
must verify it. For example, the client checks its list of trusted issuers, or certificate
authorities, to see if the certificate issuer of the server is trusted. The client then
compares the digital signature of the issuer in the server certificate to the digital
signature of the issuer in the CA certificate.

The server must export its CA certificate and provide it to its client partner.

In summary, server authentication requires the following keys and certificates:

Table 3. SSL server authentication certificate requirements

Certificate required Who must obtain certificate Notes

Server certificate and private
key associated with that
certificate

A partner acting as the
server

In a SAML 1.x federation, the
identity provider always acts
as the server.

CA certificate of the server
certificate issuer

A partner acting as the client In a SAML 1.x federation, the
service provider always acts
as the client.

Instructions for enabling SSL are described in “Enabling SSL on the WebSphere
Application Server” on page 71.

Chapter 6. Using keys and certificates to secure communications 41

Client authentication

A server can be configured to require authentication from its clients in order to
confirm their identities. Tivoli Federated Identity Manager accepts either of the
following client authentication methods:

Basic (password-based) authentication
If basic authentication is configured, the server requests the client to
supply a user name and password to authenticate. No certificates are used
with this method.

Client certificate authentication
A client certificate is similar to a server certificate. To obtain a client
certificate, the client typically requests it from a CA. Before establishing a
federation, the partners typically agree on a CA to use for signing the
client certificate. The server must ensure that CA is in its list of trusted
issuers.

When client certificate authentication is configured, the server requests
authentication from the client. The client responds by sending its client
certificate and its digital signature in a randomly generated piece of data to
the server. The client certificate typically includes the following items:
v public key of the client
v serial number of the certificate
v validity period of the certificate
v distinguished name of the client
v distinguished name of the issuer
v digital signature of the issuer

The server verifies the client information. For example, the client exports
its certificate and provides it to the server partner. Then, the server uses
the public key of the client in the client certificate to do the following
tasks:
v validate the digital signature of the client
v checks its list of trusted issuers or certificate authorities
v to see if the client certificate issuer is trusted
v compare the digital signature of the issuer in the client certificate to the

digital signature of the issuer in the CA certificate

If client certificate authentication is used, the following certificates are required:

Table 4. SSL client authentication certificate requirements

Certificate required Who must obtain certificate Notes

Client certificate and its
associated private key

A partner acting as the client In a SAML 1.x federation, the
service provider always acts
as the client.

CA certificate of the client
certificate issuer

A partner acting as the
server

In a SAML 1.x federation, the
identity provider always acts
as the server.

Partners who act as servers must follow instructions for configuring a client
authentication requirement on their servers, “Configuring client authentication
requirements” on page 76.

42 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Partners who act as clients whose partners require client certificate authentication must
follow instructions for configuring their client certificates, “Configuring your client
certificates” on page 80.

Storage and management of keys and certificates
Keys and certificates are stored in keystores and truststores.

Keystores
Private keys and personal certificates are stored in keystores.

Truststores
Public keys and CA certificates are stored in truststores. A truststore is a
keystore that by convention contains only trusted keys and certificates.

In your Tivoli Federated Identity Manager environment, some keys and certificates
are stored in the WebSphere Application Server keystores and truststores, and
some are stored in the Tivoli Federated Identity Manager keystores and truststores.
A Tivoli Federated Identity Manager function called the key service manages these
keystores and truststores. The location depends on the purpose of the keys and
certificates being used.

Keys and certificates stored in a WebSphere Application Server keystore and
truststore:

v SSL server certificates and their private keys (in the WebSphere keystore
of the server partner)

v CA certificate for clients that presents a client certificate (in the
WebSphere truststore of the server partner)

Keys and certificates stored in a Tivoli Federated Identity Manager keystore and
truststore:

v SSL client certificates and their private keys
Certificates used for client certificate authentication. The private keys are
those that are in the client keystore

v CA certificates for servers that have SSL server authentication configured
Pertains to the certificates in the truststore of the client

v Signing keys, validation keys, and encryption keys are also managed in
the keystores and truststores in Tivoli Federated Identity Manager. For
example:

Signing keys
These are private keys that are stored in the keystores.

Validation keys
These are public keys that correspond to the private keys used
for signing. These keys are stored in the truststores.

Encryption keys

– The key used to encrypt data is a public key that was
obtained from your partner. You must store it in your
truststore.

– The key used to decrypt data is a private key. You must store
it in your keystore.

By default, both WebSphere Application Server and Tivoli Federated Identity
Manager have keystores, truststores, keys, and certificates that are intended to be
used in test environments.

Chapter 6. Using keys and certificates to secure communications 43

WebSphere Application Server
During profile creation, WebSphere Application Server creates:
v key.p12 keystore
v trust.p12 truststore
v a default self-signed certificate in the key.p12 keystore

The password for both the keystore and truststore is WebAS.

Tivoli Federated Identity Manager

Tivoli Federated Identity Manager supplies two default Java keystores, a
self-signed certificate, and some CA certificates:
v DefaultKeyStore.jks for signing and encryption keys. (Private keys)
v DefaultTrustedKeyStore.jks for CA certificates
v A self-signed certificate, with the alias testkey which can be used as a

signing key in a test environment in the keystore
v Several CA certificates in the truststore

The default password for the keystores is testonly.

The default keys and certificates are for test purposes only. You must create new
keys and certificates, and you might also want to create new keystores when you
configure Tivoli Federated Identity Manager.

For more information, see “Creation of keystores, keys, and certificates.”

Creation of keystores, keys, and certificates
As described in the preceding sections, to configure message-level security, and
transport-level security, you must use public/private key pairs and certificates. To
use the appropriate keys and certificates, you must follow a general process for
creating them, and for creating the keystores where you must store them, if you
choose not to use the default keystores.

The general steps for creating keys and certificates and their keystores are:
1. Create the keystore (either a keystore or truststore) or use an existing one.
2. Create the certificate request, which generates a public/private key pair and

can be sent to a certificate authority (CA). The certificate request contains the
public key and data about you, the requestor of the certificate.

3. Send the certificate request to the CA. The CA issues the certificate.
4. Receive the certificate from the CA and import it into the appropriate keystores.
5. Share the public keys of the certificates with your partner as needed.

In addition, you must also import some keys and certificates from your partner
into your keystores.

Both WebSphere Application Server and Tivoli Federated Identity Manager provide
utilities for creating certificate requests and for receiving the request from the
certificate authority.

Information about completing all message-level security tasks and transport-level
security tasks, including the creation of keystores, keys, and certificates using the
utilities is in the following sections of this book:

44 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Message-level security instructions:
Chapter 8, “Setting up message security,” on page 49.

Transport-level security instructions:
Chapter 9, “Setting up transport security,” on page 71

Key selection criteria
Configure the order of certificates or keys by using the runtime key selection
criteria.

By default, Tivoli Federated Identity Manager, version 6.1, builds a list of
certificates or keys sharing the same SubjectDN and optimized from longest to
shortest lifetime. This product function, known as Auto Key Rollover, has the
following characteristics:
v When signing documents, the function uses a valid key with the shortest

remaining lifetime (for example, the oldest X.509 Certificate or Private Key).
v During validation, the function cycles through the list of keys for the given

SubjectDN until validation is successful. An unsuccessful validation means that
all the available keys were invalid.

You can use the custom runtime property key.selection.criteria to configure the
order of certificates or keys. Use these values for the custom property:

only.alias
Alias only: The selected key only, without Auto rollover. If the key is
invalid, the software indicates failure. Configure the property to use the
value.

shortest.lifetime
Shortest lifetime: For signing, a valid key with the shortest available
lifetime. For validation, key lifetime availability runs from shortest to
longest.

longest.lifetime
Longest Lifetime: For signing, a valid key with the longest available
lifetime. For validation, key lifetime availability runs from longest to
shortest.

Chapter 6. Using keys and certificates to secure communications 45

46 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 7. Configuring LTPA and its keys

You must review the Lightweight Third Party Authentication (LTPA) on your
WebSphere Application Server after you have installed Tivoli Federated Identity
Manager. You can choose to use the default LTPA configuration or modify the
configuration so that it is appropriate for your environment.

About this task

The default LTPA configuration is as follows:

Key set group
The LTPA keys are used to encrypt and decrypt data that is sent between
the servers. The keys are stored in sets and the sets are stored in groups.
The default key set group is NodeLTPAKeySetGroup.

Key sets
The default key sets are NodeLTPAKeyPair and NodeLTPASecret.

Key generation
By default, LTPA keys are automatically generated the first time
you start the server after installation. LTPA keys are automatically
regenerated every 12 weeks at 2200 hours (on a 24-hour clock) on
Sundays.

Attention: If you are using a separate target application server in
your configuration, the LTPA keys must be on your WebSphere
Application Server point of contact server and on your target
application server. A separate target application server can be a
separate WebSphere Application Server, or a server that is
supported by the Tivoli Federated Identity Manager Web server
plug-in.

If you automatically generate keys, keep the keys on the
application server in sync with the keys that are generated on your
WebSphere Application Server point of contact server.

For more information about exporting keys from your WebSphere
Application Server and importing them to your application server,
see “Exporting LTPA key from the point of contact server” on page
115, and either “Importing the LTPA key to the WebSphere
Application Server” on page 122, or “Copying the LTPA key to the
Web server” on page 125 .

Authentication cache timeout
This value specifies how long an LTPA token is valid in minutes. The
default time is 10 minutes.

Timeout value for forwarded credentials between servers
This value specifies how long the server credentials from another server
are valid before they expire. The default value is 120 minutes.

To review or modify these settings, complete the steps in this procedure:

© Copyright IBM Corp. 2006, 2013 47

Procedure
1. Log on to the console.
2. Click Security > Secure administration, applications, and infrastructure.

Secure administration, applications, and infrastructure panel opens.
3. On the left, click Authentication mechanisms and expiration. The

Configuration tab shows. Use this tab to review or modify the Key set group
defined, the authentication cache timeout, and the timeout value for forwarded
credentials between servers.

4. To modify the key set group and key generation settings, click Key set groups.
Change your environment as appropriate, and then click Apply.

5. Return to the previous Configuration tab.
6. In the Authentication expiration section of the Configuration tab, review or

modify the values in the Authentication cache timeout field and the Timeout
value for forwarded credentials between servers field.

7. Click Apply when you are done.
8. Save the changes to the master configuration file.

What to do next

Continue with the configuration of your environment. For example, continue with
Chapter 8, “Setting up message security,” on page 49.

48 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 8. Setting up message security

Tivoli Federated Identity Manager uses certificates (pairs of public and private
keys) to secure messages.

Before establishing a federation, you and your partner must decide what security
configurations to use within your federation. Then, you must create or request
your certificates or obtain them from your partner, as appropriate, and import
them into the Tivoli Federated Identity Manager key service.

Note: Instructions for configuring SSL-related certificates, such as server
certificates, client certificates, and client authentication requirements are described
in Chapter 9, “Setting up transport security,” on page 71. The topics in this chapter
cover only message-level security, except for the topics related to preparing your
keystores.

Use the following tasks to set up message security in your environment:
1. Prepare your keystores. See “Preparing the keystores.”
2. Discuss message security requirements with your partner and make a list of the

keystores and certificates that each of you need. Consider using the checklists
in “Planning message-level security” on page 52.

3. Obtain the necessary certificates for your environment. See “Obtaining your
keys and certificates” on page 55.

4. Add your certificates into your keystores. See “Adding your certificates to your
keystore” on page 58.

5. Obtain any certificates you need from your partner. See “Obtaining a certificate
from your partner” on page 60.

6. Provide your partner with any of your certificates that might be needed by that
partner. See “Providing certificates to your partner” on page 63.

7. If any of the certificates you use are PKCS#12 files, you must update your Java
cryptography policy. See “Updating the cryptography policy” on page 65.

8. If you are setting up a production environment and do not use the default
keystores and certificates, remove them so that they are not used
unintentionally. See “Removing default keystores” on page 65.

Preparing the keystores
Prepare keystores in the Tivoli Federated Identity Manager key service, regardless
of the role that you assume in a federation or the SAML standard that you use.
The keystores store keys and certificates that are used to secure the content and
transport of messages.

About this task

You must at least have two keystores in the key service:

Signing/Encryption keystore
The keystore is where you store your private keys. Private keys are what
you use for signing and decryption. Private keys are also used for your
client certificate, if you are a client in an SSL connection with your partner,
and that partner requires that you authenticate with a certificate.

© Copyright IBM Corp. 2006, 2013 49

CA Certificates keystore (called a truststore or trusted keystore)
This keystore is where you store the public keys of your partner and CA
certificates for the CAs that you trust. Public keys are what you use to
validate signatures or encrypt data to your partner.

To prepare the keystore and truststore for your environment, you can either:
v Use the default keystore and truststore and change their passwords, so that their

default password is no longer used, as described in “Changing a keystore
password.”

v Create a keystore and a new truststore, as described in “Creating a keystore”
and then import them into the key service.

You can create as many keystores and truststores as you want to make it easier to
categorize keys that are unique to your federations.

Changing a keystore password
You can use the console to change the password of a keystore or a truststore.

About this task

You might want to change the keystore passwords in any of the following
situations:
v You want to use the default keystore or truststore in a production environment.
v The keystore password has been compromised.
v Your security policy requires that the keystore passwords be changed at a

regular interval.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
3. Select a keystore from the Keystore table. The Change Password option is

activated.
4. Click Change Password. The Change Keystore Password panel opens.
5. Enter the original password and the new password. The original password for

the default keystore and truststore is testonly.
6. Click OK. The password is changed.
7. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

What to do next

Repeat the process for each keystore that has a password that must be changed.
Then, continue with either creating new keystores or planning your message-level
security.

Creating a keystore
You must create a keystore if you need additional keystores, or if you do not want
to use the default keystores. The Tivoli Federated Identity Manager key service
supports only Java keystores (.jks)

50 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

Tivoli Federated Identity Manager does not provide a utility for creating keystores.
However, you can use any of several key generation utilities to create a keystore.
For example, use the keytool utility that is included with WebSphere Application
Server to create a keystore file as follows:
keytool -import -noprompt -trustcacerts -alias myca
-file myca.pem -keystore mykeys.jks -storepass passw0rd

For details about the keytool utility, see the WebSphere Application Server 8.0
information center http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/
index.jsp

What to do next

You must import the keystore into the Tivoli Federated Identity Manager key
service. See “Importing a keystore” for details.

Importing a keystore
If you have created a keystore, you must import it into the Tivoli Federated
Identity Manager key service before you can use it.

About this task

Procedure
1. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
2. Click Import. The Import wizard starts and opens the Import Keystore panel.
3. Enter a fully qualified path in the Location of keystore file field. For example:

/tmp/mykeys.jks

Optionally, you can click Browse to find the keystore file on the file system.

Note: The keystore to be imported must be on the same machine as the
browser being used to access the administration console.

4. Enter the Keystore Password.
Attention: Private (personal) keys in a keystore can be encrypted with a
password. The keystore itself is also protected by a password. However, the
key service keeps only one password for a keystore. Therefore, an encrypted
private key and its keystore must have the same password.

5. Enter the Keystore Name.
6. Specify the type.

v Signing/Encryption Keys

v CA Certificates

The type indicates the type of key or certificate you want to store in the
keystore. For example, if you want to use this keystore to store certificates from
your partner, choose CA Certificates. If you want to use the keystore to store
your own signing keys, you would choose Signing/Encryption Keys.
The type is for information purposes only, and does not prevent you from
adding other key types to the keystore. However, using the types consistently
(one for private and one for public) can help you organize and locate keys
more easily.

Chapter 8. Setting up message security 51

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

7. Repeat these steps for each keystore you must create for your certificates and
the certificates of your partner.

8. Click Finish.

What to do next

Your keystore is ready to receive keys and certificates. Repeat to import other
keystores or continue with “Planning message-level security.”

Planning message-level security
To begin the process of setting up message security for your environment, you
must determine your requirements.

Meet with your partner and discuss your environments. Use the following
checklist tables during your discussion. Consider recording your requirements in
the checklist tables.

The options for securing the content of messages depend on the SAML standard
and profile you are using in your federation. The security options also sometimes
depend on the role (identity provider or service provider) you have in the
federation.

In general, you can sign messages, sign assertions, and validate the signatures of
your partner. In a SAML 2.0 federation, each partner must also encrypt the data
that they send to each other. Then, each partner must decrypt the data so it can be
used in the federation.
v To sign, use your private key from a public/private key pair.
v To validate, use the public key of your partner that corresponds to the private

key the partner used to sign the data.
v To encrypt, use the public key of your partner that corresponds to the private

key the partner uses to decrypt the data. Likewise, give your public key to your
partner. Your partner must use it to encrypt data to you, and then you must
decrypt that data using your corresponding private key.

Use the following checklist to identify which public/private key pairs you need
and which keys you must exchange with your partner.

Your keys

Use the private key of a public/private key pair to perform the actions listed in the
following table. You can use the same key for all of these actions or you can use
different keys for each action. All of the keys are optional and available to all
SAML standards and provider roles unless otherwise noted in the Notes column.

52 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 5. Your keys

Purpose of the key

Alias of
public/private key
pair

Keystore in which to
store key Notes

Signing key for
messages

Required if you are
an identity provider
in a SAML 1.x
federation.
Note: In SAML 2.0,
the same key is used
for signing messages
and assertions.

Signing key for
assertions

Required for identity
providers.
Note: In SAML 2.0,
the same key is used
for signing messages
and assertions.

Decryption key Required in SAML
2.0.

Not available in
SAML 1.x federation.

Keys you need from your partner

Use the public key from the public/private key pair of your partner to perform the
actions listed. The Notes column indicates if a key is required, or if it cannot be
used because of a specific provider role or the SAML specification used by the
federation.

In most cases, you can obtain these keys from your partner by way of a metadata
file. However, if you are using a SAML 1.x federation, you must obtain these keys
manually. Consider sharing this table with your partner to ensure that your
partner knows what keys it must provide to you.

Table 6. Keys you need from your partner

Purpose of the key Alias of public key
Truststore in which
to store key Notes

Validation key for
message signatures

Corresponds to the
signing key of your
partner.

Required if your
partner signs
messages.

Chapter 8. Setting up message security 53

Table 6. Keys you need from your partner (continued)

Purpose of the key Alias of public key
Truststore in which
to store key Notes

Validation key for
assertion signatures

Corresponds to the
signing key of your
partner.

Required if your
partner signs
assertions.

Not available for
identity providers
using SAML 1.x

Encryption key Corresponds to the
decryption key of
your partner.

Required in SAML
2.0

Not available in a
SAML 1.x federation

Keys you must provide to your partner

Provide your public key from your public/private key pair to your partner so that
your partner can perform the actions listed. The Notes column indicates if a key is
required or if it cannot be used because of a specific provider role or the SAML
specification used by the federation.

In most cases, you must provide these keys by exporting your federation
properties into a metadata file that your partner must import into its configuration.
However, if you are using a SAML 1.x federation, you must export these keys from
your federation and provide them to your partner manually.

Table 7. Keys you must provide to your partner

Purpose of the key

Alias of
public/private key
pair

Keystore in which
key is stored Notes

Validation key for
message signatures

Corresponds to your
signing key.

Required if you sign
messages.

Validation key for
assertion signatures

Corresponds to your
signing key.

Required if you sign
assertions.

Not available for
identity providers
using SAML 1.x

54 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 7. Keys you must provide to your partner (continued)

Purpose of the key

Alias of
public/private key
pair

Keystore in which
key is stored Notes

Encryption key Corresponds to your
decryption key.

Required in SAML
2.0

Not available in a
SAML 1.x federation

Obtaining your keys and certificates
After you have determined which keys and certificates you need for signing and
decryption, you must obtain them.

About this task

In general, you must obtain the following private keys:

Signing key
If you must sign messages or assertions, you must have public/private key
pair and use the private key for signing.

Decryption key
If you are using SAML 2.0, your partner must encrypt data to you. You
must have a public/private key pair for this purpose. Your partner can use
your public key to encrypt data that must be sent to you, and you must
use your private key to decrypt it.

The method you use to obtain these keys depends on whether you are using a test
environment or a production environment:
v In a test environment, you can use the default testkey or create a self-signed

certificate. See “Using the default key as your signing and decryption key” or
“Creating self-signed certificates” on page 56.

v In a production environment, you would want to request your keys from a
certificate authority. See “Requesting CA-signed certificates” on page 56.

The following types of certificates can be used in the Tivoli Federated Identity
Manager key service. When you obtain certificates, be sure to use these supported
types:
v PEM

Privacy-Enhanced Message. These are public certificates in PEM format.
v PKCS#12

Public Key Cryptography Standard #12: Personal Information Exchange Syntax
Standard.
Before using PKCS#12 certificates, you must update the cryptography policy. See
“Updating the cryptography policy” on page 65.

Using the default key as your signing and decryption key
In a test environment, you can use the testkey that is in the DefaultKeyStore as
your signing and decryption key.

Chapter 8. Setting up message security 55

About this task

Ensure that the testkey is in the keystore. No additional preparation is needed to
use this key.

Creating self-signed certificates
In a test environment, you can use a self-signed certificate for your signing and
decryption key. You can also use a self-signed certificate for the client
authentication certificate you might be required to present to the server during an
SSL communication.

About this task

A self-signed certificate is a public/private key pair that is randomly generated
and is signed by its own private key. You can use the utility in Tivoli Federated
Identity Manager to create a self-signed certificate. You can also use another key
creation utility. The following procedure describes using the Tivoli Federated
Identity Manager utility.

Note: This procedure is supported only on WebSphere Application Server Version
6.1 installations.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
3. Select a keystore from the Keystore table. The View Keys option is activated.
4. Click View Keys. The Password panel opens.
5. Type your keystore password and click OK.
6. Click Create Self-Signed Certificate. The Create Self-Signed Certificate panel

opens.
7. Provide the corresponding entry for each field.
8. Click OK. A public/private key pair is added to the keystore.
9. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

What to do next

To verify that the certificate was created, repeat steps 1 through 5.

Requesting CA-signed certificates
In a production environment, you must obtain your certificates for signing,
decryption, and client authentication from a certificate authority that signs the
certificates. You can use the console to generate a certificate sign request.

Before you begin

Ensure that you have a keystore ready in which to store the certificate request, and
later, the certificate.

56 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

A certificate sign request (CSR) is an electronic file that can be sent through using
email, FTP, or other communication methods as required by the certificate
authority, to a certificate authority, a CA, such as VeriSign, Thawte, and so on, as a
request for a certificate that is signed by that CA.

The CA uses the data contained within the CSR and generates the certificate and
then sign the certificate with its own private key.

The signature of the CA validates the certificate as being trustworthy.

A CSR contains the following data:
v The identity of the requestor (you) in the form of a subject distinguished name
v The extensions for the certificate (if any)
v The public key for the certificate
v The algorithms to be used for the signature and the key

When the request is generated, a temporary self-signed certificate is created in the
keystore. This temporary certificate is replaced by the CA-signed certificate when
you receive it from the CA.

Note: This procedure is supported only on WebSphere Application Server Version
6.1 installations.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
3. Select a keystore from the Keystore table. The View Keys option is activated.
4. Click View Keys. The Password panel opens.
5. Type your keystore password .
6. Click OK.
7. Click Create Certificate Request. The Create a certificate request panel opens.
8. Enter the appropriate value for each field.
9. Click OK. The Generated Certificate Signature Request window opens.

10. Copy and paste the request text into a text file or click Export Certificate
Signature Request to download it. The file that you save or download is
ready for you to send to a CA.

11. Click Done when you have saved the file. A public/private key pair is added
to the keystore and a file with the encoded BASE64 data is created. The
temporary self-signed certificate must be replaced with the signed certificate
from the CA.

12. Click Load configuration changes to Tivoli Federated Identity Manager
runtime.

What to do next

Repeat these steps for each certificate you want to request. For example, you might
want a separate certificate for each activity or you might want to use one
certificate for all activities. Some activity examples are: signing, decryption, and
client authentication.

Chapter 8. Setting up message security 57

When you have created all of your certificate sign requests, follow the instructions
of your CA for transmitting the request file. Then, continue with the steps for
receiving a CA certificate from the CA in “Receiving a signed certificate from a
CA” on page 59.

Adding your certificates to your keystore
Before you establish your federation, you must add the keys to sign and decrypt
your keystore.

About this task

The method by which you add your keys to your keystore depends on the way in
which you obtained your keys:

Created a self-signed certificate
If you use the utility in Tivoli Federated Identity Manager to create a
self-signed certificate, the certificate is automatically imported into your
keystore. If you created a self-signed certificate, but used a utility other
than the one provided with Tivoli Federated Identity Manager, import your
certificate into the keystore as described in “Importing a certificate.”

Requested a signed certificate
If you generated a certificate sign request and sent that request to a CA,
you will receive the certificate into your keystore as described in
“Receiving a signed certificate from a CA” on page 59.

Importing a certificate
Import a certificate if you received it using a utility or if you manually obtained it
from a CA.

About this task

You must import a certificate if you received the certificate in either of the
following ways:
v You have used a utility other than the one provided with Tivoli Federated

Identity Manager to create a self-signed certificate
v You manually obtained a certificate from a CA

You must also import a certificate that you have received from your partner. For
more information about importing partner certificates, see “Importing a certificate
from your partner” on page 61.

Attention: Private (personal) keys in a keystore can be encrypted with a
password. The keystore itself is also protected by a password. However, the key
service keeps only one password for a keystore. Therefore, an encrypted private
key and its keystore must have the same password.

Use this task to import either:
v A certificate from a PEM file, or
v A key from a PKCS#12 file

Note: If you must use a PKCS#12 file, follow the instructions in “Updating the
cryptography policy” on page 65.

58 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Ensure that your key or certificate is ready and available before continuing with
this procedure.

Imported keys are enabled by default.

Procedure
1. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens and is activated.
2. Select a keystore from the Keystore table to store your public/private key pair.

The View Keys option shows and is activated.

Attention: Do not import private keys (such as signing keys or encryption keys) into a
CA Certificate keystore. The CA Certificate type of keystores does not store a key
password, which is required for private keys.

3. Click View Keys.
4. Enter the keystore password when prompted.
5. Click OK The Keys panel opens. Keys in the selected keystore are listed.
6. Click Import. The Key wizard starts, and opens the Welcome panel.
7. Click Next. The Keystore Format panel opens.
8. Select the appropriate Keystore format for the file you want to import. The

formats are:

PEM)
(Privacy-Enhanced Message) Public certificate

PKCS#12
Public Key Cryptography Standard #12: Personal Information Exchange
Syntax Standard

JKS
Java Key Store

9. Then, click Next. The Upload Key File panel opens.
10. Specify the path to the location of the key, and if prompted, a password for

the key file. Then click Next.
11. Specify a label for the key and, if prompted, select the key to import.
12. Then click Next. A summary panel opens.
13. Click Finish to exit the wizard.
14. Repeat these steps to import all the keys and certificates you must use in the

federation.

What to do next

Next, add the keys of your partner into your truststore. See “Obtaining a certificate
from your partner” on page 60.

Receiving a signed certificate from a CA
If you use the console to create a certificate sign request and sent it to a CA, you
can receive the certificate from the CA to your keystore.

Chapter 8. Setting up message security 59

Before you begin

Ensure that you have completed the steps in “Requesting CA-signed certificates”
on page 56, and have saved the certificate from the CA to a location that is
accessible to the key service.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
3. Select the keystore where the CSR was generated in the Keystore table. The

View Keys option is activated.
4. Click View Keys. The Password panel opens.
5. Type your keystore password.
6. Click OK

7. Click Receive Certificate from CA.
8. Select the location of the certificate that you received from the CA.
9. Then click OK. The temporary self-signed certificate in the keystore is

replaced with the received signed certificate.
10. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

What to do next

Next, add the keys of your partner into your truststore. See “Obtaining a certificate
from your partner.”

Obtaining a certificate from your partner
Depending on the requirements of your environment, you must obtain certificates
from your partner.

Before you begin

Use the worksheet, “Planning message-level security” on page 52, to determine
which certificates you might need from your partner. In general, the public keys to
obtain from your partner include:

Validation key
If your partner signs messages or assertions and you must validate those
signatures, you must have the public key that corresponds to the key that
was used sign messages or assertions.

Encryption key
If you must encrypt data that you send to your partner, you must obtain a
public key from your partner. Use the public key to encrypt the data, and
your partner must use its corresponding private key to decrypt the data.

About this task

Typically in a SAML 2. 0 federation, you receive the validation and encryption
keys of your partner in a metadata file from your partner. This process is further

60 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

explained in “Importing certificates from your partner's metadata file.” In addition
to the keys, other information from your partner, such as company name, is
included in the metadata file.

When you create your partner in the federation, you are prompted to save the keys
of your partner into the appropriate keystore. Partner keys must be saved to your
truststore.

You can manually receive the keys (such as through an email, FTP, or other media)
and then import them into your truststore using the instructions in “Importing a
certificate from your partner” under the following circumstances:
v If you have already received the metadata of your partner, and only must

receive a new certificate from your partner, or
v If you are using a SAML 1.x federation

Importing certificates from your partner's metadata file
If your partner is supplying you with a metadata file of its federation
configuration, the public keys of your partner should be part of that file.

About this task

Depending on the message-level security and the SAML specification that you and
your partner are using in the federation, the metadata file should include one or
more of the following public keys:
v Key for validating signed assertions, if the partner signs assertions and you will

validate them
v Key for validating signed messages, if the partner signs messages and you will

validate them
v Key for encrypting (in a SAML 2.0 federation)

See “Planning message-level security” on page 52.

If your partner is using Tivoli Federated Identity Manager, the public keys that
correspond to the private keys that the partner defined in its configuration are
automatically added to the metadata file. The public keys are added to the
metadata file when the partner exports its configuration.

If you are obtaining the keys of your partner from a metadata file, import the
metadata as part of establishing your federation. To continue, complete the
remaining tasks in this chapter.

Importing a certificate from your partner
You can obtain the public keys of your partner in several ways, including from an
SSL connection or by importing a metadata file of your partner's configuration.
However, if either of these methods are not available, you can obtain the keys
manually and import them.

Before you begin

Ensure that you have received one or more public keys from your partner (such as
over FTP, through e-mail, or another transfer method).

Chapter 8. Setting up message security 61

About this task

You might need to import a certificate in any of the following situations:
v A self-signed certificate that you created using a utility other than the one

provided with Tivoli Federated Identity Manager
v A Certificate obtained manually from a CA

You might also need to import a certificate that you have received from your
partner. For more information on importing partner certificates, see “Importing a
certificate from your partner” on page 61.

Attention: Private (personal) keys in a keystore can be encrypted with a
password. The keystore itself is also protected by a password. However, the key
service keeps only one password for a keystore. Therefore, an encrypted private
key and its keystore must have the same password.

Use this task to import either:
v A certificate from a PEM file
v A key from a PKCS#12 file

Note: If you will use a PKCS#12 file, be sure to also follow the instructions in
“Updating the cryptography policy” on page 65.

Ensure that your key or certificate is ready and available before continuing with
this procedure.

Imported keys are enabled by default.

Procedure
1. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
2. Select a keystore from the Keystore table to store your public/private key pair.

The View Keys button is activated.

Attention: Do not import private keys (such as signing keys or encryption keys) into a
CA Certificate keystore. The CA Certificate type of keystores do not store a key password,
which is required for private keys.

3. Click View Keys.
4. Enter the keystore password when prompted.
5. Click OK. The Keys panel opens. Keys in the selected keystore are listed.
6. Click the Import button. The Key Wizard starts and opens the Welcome panel.
7. Click Next. The Keystore Format panel opens.
8. Select the appropriate Keystore format for the file you want to import. The

formats are:

PEM)
(Privacy-Enhanced Message) Public certificate

PKCS#12
Public Key Cryptography Standard #12: Personal Information Exchange
Syntax Standard

JKS
Java Key Store

62 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The Upload Key File panel opens.
9. Click Next.

10. Specify the path to the location of the key, and if prompted, a password for
the key file.

11. Click Next.
12. Specify a label for the key and, if prompted, select the key to import.
13. Click Next. A summary panel opens.
14. Click Finish to exit the wizard.
15. Repeat these steps to import all the keys and certificates that you use in the

federation.

What to do next

Provide your keys to your partner. See “Providing certificates to your partner.”

Providing certificates to your partner
Depending on the requirements of your environment, you might need to provide a
key to your partner.

Before you begin

See “Planning message-level security” on page 52 to determine which certificates
you might need to provide to your partner. In general, the public keys you will
need to provide include:

Validation key
If you sign messages or assertions and your partner validate those
signatures, you must provide the public key that corresponds to the key
that you used to sign messages or assertions.

Encryption key
For your partner to encrypt data to you, you must provide a public key to
your partner. Your partner uses the public key to encrypt the data and you
must use its corresponding private key to decrypt the data.

About this task

Provide your validation and encryption key in a metadata file that you will create
and provide to your partner. In addition to the keys, other information about you,
such as company name, is included in the metadata file. Create this file later in the
configuration process. For more information, see “Exporting certificates to a
metadata file.”

In a SAML 1.0 federation, you also have the option of providing this information
to your partner manually. See “Exporting a certificate” on page 64. You could also
use the manual method if you have already provided your metadata to your
partner and you need to provide an updated certificate by itself.

Exporting certificates to a metadata file
If you are supplying your partner with a metadata file of your federation
configuration, your public keys must be part of that file.

Chapter 8. Setting up message security 63

About this task

Depending on the message-level security and the SAML specification that you and
your partner are using in the federation, the metadata file should include one or
more of the following public keys:
v Key the partner will use for validating signed assertions, if you sign assertions
v Key the partner will use for validating signed messages, if you sign messages
v Key the partner will use for encrypting messages to you (in a SAML 2.0

federation)

See “Planning message-level security” on page 52.

If your partner is using Tivoli Federated Identity Manager, you can export your
configuration to a metadata file, including your keys, and your partner can import
the file.

If you choose this way to provide your keys to your partner, export the metadata
as part of establishing your federation. To continue, complete the remaining tasks
in this chapter.

Exporting a certificate
Export a certificate if you cannot provide a metadata file containing your keys to
your partner.

Procedure
1. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
2. Select the appropriate keystore from the Keystore table. You are prompted for

your keystore password.
3. Type the password.
4. Click OK. The View Keys button is active.
5. Click View Keys. The Keys panel opens. Keys in the selected keystore are

listed.
6. Select the keys you want to export.
7. Click the Export button. The Export Key panel opens.
8. Select the format of the key you are exporting.

(PEM)
(Privacy-Enhanced Message) Public certificate

PKCS#12
Public Key Cryptography Standard #12: Personal Information Exchange
Syntax Standard

9. Ensure that the Include Private Key check box is not selected. Only you
should have your private key.

10. Click Download Key.
11. When prompted, enter a file name for the exported key.

For example: mypublickey.pem
(Optional) Click Browse to find the file on the file system.

12. Click Cancel to exit.

64 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Updating the cryptography policy
Use of encryption technology is controlled by United States law. IBM Java Solution
Developer Kits (SDKs) include strong but limited jurisdiction policy files. To use
PKCS#12 files with Tivoli Federated Identity Manager, you must first obtain the
unlimited jurisdiction Java Cryptography Extension (JCE) policy files.

About this task

To review the security information for IBM Java SDKs, access the following URL:
http://www.ibm.com/developerworks/java/jdk/security/index.html

To obtain the unlimited jurisdiction policy files:

Procedure
1. Update WebSphere with unrestricted Java Cryptography Extension (JCE) policy

files. Access: http://www.ibm.com/developerworks/java/jdk/security/
index.html

2. Select the link to the SDK that matches your environment, for example, for Java
1.5, the SDK is J2SE 5.0. You will see a page that displays the heading Security
Information.

3. Select the link: IBM SDK Policy Files.

Note: After you click this link, you are redirected to the policy file in the SDK
that is compatible with your version of Java. However, the version number of
the SDK might not be the same as the version number of the Java version you
are using. For example, for Java 1.5 you might be directed to the SDK 1.4.

4. You are prompted to log on using your IBM user ID and password. If you do
not have an IBM user ID and password, you need to register. Follow the
registration link on the logon page.

5. Log on.
6. When prompted, select the .zip file for the version of Java you are using.
7. Click Continue to begin the download.
8. Unpack the .zip file. The JAR files are:

v local_policy.jar
v US_export_policy.jar

9. Place the files in the following directory:
your_Java_runtime_installation_dir/jre/lib/security

For example, your Java runtime might have been installed as part of the
embedded version of WebSphere Application Server. In this case, the directory
might be
/opt/IBM/FIM/ewas/java/jre/lib/security

Removing default keystores
Default keystores and certificates are included with Tivoli Federated Identity
Manager. If you have created your own keystores, you might want to delete the
default keystores. However, this task is optional.

Chapter 8. Setting up message security 65

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Procedure
1. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
2. Select DefaultKeyStore.
3. Click Delete. A message asks you to confirm that you want to delete the

specified keystore.
4. Click OK to delete the keystore.
5. Select DefaultTrustedKeyStore.
6. Click Delete. A message asks you to confirm that you want to delete the

specified keystore.
7. Click OK to delete the keystore.

Enabling certificate revocation checking
You can use the IbmPKIX trust manager to determine the validity of server
certificates. If you enable this function, the trust manager checks the certificate
presented by the SSL server when the SOAP client establishes an SSL connection.
Then, the trust manager checks the certificates that are used for XML messages
signing, validation, encryption, and decryption. The operation attempt fails if the
trust manager finds that the certificate has been revoked.

About this task

The following procedures are required to enable certificate revocation checking:
v “Enabling WebSphere for certificate revocation checking.”
v “Enabling the IbmPKIX trust manager for SSL connection” on page 68.
v “Enabling the IbmPKIX trust manager for XML messages signing, validation,

encryption, and decryption” on page 68

Enabling WebSphere for certificate revocation checking
You must enable some settings in WebSphere Application Server before you can
configure the Tivoli Federated Identity Manager to do certificate revocation
checking.

About this task

Enable the settings depending on the WebSphere Application Server type that you
use. Choose the appropriate procedure for your installation:

Embedded WebSphere Application Server
“Enabling CRC on embedded WebSphere Application Server,”

Existing WebSphere Application Server
“Enabling CRC on existing WebSphere Application Server” on page 67.

Enabling CRC on embedded WebSphere Application Server
If you are using the embedded version of WebSphere Application Server, you must
enable the settings that are required for certificate revocation checking (CRC)
before you can configure certificate revocation checking in your Tivoli Federated
Identity Manager environment.

66 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

Attention: Use this procedure only if you have installed Tivoli Federated Identity
Manager using the embedded version of WebSphere Application Server.

About this task

To enable the appropriate settings, complete the following steps:

Procedure
1. Open a command prompt.
2. Start the WebSphere Application Server wsadmin tool. From your WebSphere

profile, type the appropriate command for your operating system to start the
tool:

Windows
wsadmin.bat

AIX, Linux, HP-UX, or Solaris
wsadmin.sh

Note: For more information about the options that can be specified when you
run the wsadmin tool, see the http://publib.boulder.ibm.com/infocenter/
wasinfo/v8r0/index.jsp.

3. At the command prompt, run the following commands and replace server1 with
the name of your server:
set jvm [$AdminConfig getid

/Server:server1/JavaProcessDef:/JavaVirtualMachine:/]
$AdminConfig modify $jvm {{genericJvmArguments
"-Dcom.ibm.jsse2.checkRevocation=true
-Dcom.ibm.security.enableCRLDP=true"}}

$AdminConfig save

4. Restart WebSphere Application Server.

What to do next

Continue with the steps in “Enabling the IbmPKIX trust manager for SSL
connection” on page 68.

Enabling CRC on existing WebSphere Application Server
If you installed Tivoli Federated Identity Manager on an existing version of
WebSphere Application Server, you must enable the IbmPKIX trust manager before
you can configure certificate revocation checking in your Tivoli Federated Identity
Manager environment.

Procedure
1. Log on to the console for your WebSphere Application Server.
2. Click Servers > Application Servers.
3. Select your server.
4. Click Java and Process Management > Process Definition > Java Virtual

Machine.
5. Under Generic JVM Arguments, add the following text:

Dcom.ibm.jsse2.checkRevocation=true
Dcom.ibm.security.enableCRLDP=true

6. Restart WebSphere Application Server.

Chapter 8. Setting up message security 67

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

What to do next

Continue with the steps in “Enabling the IbmPKIX trust manager for SSL
connection.”

Enabling the IbmPKIX trust manager for SSL connection
Enable Tivoli Federated Identity Manager to use the IbmPKIX trust manager to
perform certificate revocation checking for certificates used for SSL connection.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Domain Management > Runtime

Node Management.
3. Click Runtime Custom Properties from the Runtime Node Management

panel. The Runtime Custom Properties panel opens.
4. Click Create. A list item is added to the list of properties with the name of

new key and a value of new value.
5. Click Create again. Another list item is added to the list of properties with the

name of new key and a value of new value.
6. Select one of the placeholder properties.
7. Type com.tivoli.am.fim.soap.client.jsse.provider in the Name field. Do

not insert the space character in this field.
8. Type JSSE2 in the Value field.
9. Select the next placeholder property.

10. Type com.tivoli.am.fim.soap.client.trust.provider in the Name field.
11. Type IbmPKIX in the Value field.
12. Click OK to apply the changes that you have made and exit from the panel.

What to do next

Use the IbmPKIX trust manager to ensure the validity of the certificates used in
XML security operations.

Enabling the IbmPKIX trust manager for XML messages signing,
validation, encryption, and decryption
You can configure IBM Tivoli Federated Identity Manager to use the IbmPKIX trust
manager. The IbmPKIX trust manager ensures that any certificates used in XML
security operations like signing, encryption, signature validation, and decryption
are valid according to their CRLs.

Procedure
1. Log on to the Integrated Solutions Console.
2. Select Tivoli Federated Identity Manager > Domain Management > Runtime

Node Management.
3. Click Runtime Custom Properties. The Runtime Custom Properties panel

opens.
4. Click Create. A list item is added to the list of properties with the name of new

key and a value of new value.
5. Select the newly created placeholder property.
6. Type kessjksservice.revocation.enabled in the Name field. Do not insert the

space character in this field.

68 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

7. Type true in the Value field.
8. Click OK to apply the changes that you have made. and exit from the panel.

Chapter 8. Setting up message security 69

70 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 9. Setting up transport security

To protect the message as it is communicated (transported) between the partners,
SAML requires the use of Secure Sockets Layer (SSL) with server authentication
and in some cases with mutual authentication.

About this task

In a Tivoli Federated Identity Manager environment, you can ensure transport
security by enabling SSL on the WebSphere Application Server where the runtime
and management services component is installed. In addition, if you are a client in
an SSL communication in which mutual authentication is required using a client
certificate, configure your client certificate.

The general steps for enabling server and client authentication include the
following tasks:

Procedure
1. “Enabling SSL on the WebSphere Application Server.”

Note: If you are a service provider in a SAML 1.x federation, you become the client in an
SSL configuration. Therefore, you do not need to configure server SSL. See the steps for
configuring client certificates in “Configuring your client certificates” on page 80.

Enabling SSL on a server includes the following subtasks:
a. “Creating a certificate request” on page 72.
b. “Receiving a signed certificate issued by a certificate authority” on page 73.
c. “Associating a certificate with your SSL configuration” on page 74.
d. Optionally, you might want to complete the steps in “Deleting the default

certificate” on page 75.
e. “Extracting a certificate to share with your partner” on page 75.

2. “Configuring client authentication requirements” on page 76. Your
authentication requirement options are:
v No authentication
v Basic authentication, in which a username and password are requested
v Client certificate authentication

3. If you act as a client in the federation and your partner requires a client
certificate, you must also complete the steps in “Configuring your client
certificates” on page 80.

Enabling SSL on the WebSphere Application Server
To ensure that messages are secure when they are communicated between the
federation partners, enable SSL on your WebSphere Application Server where the
runtime and management services component is installed.

© Copyright IBM Corp. 2006, 2013 71

Before you begin

Note: If you are a service provider in a SAML 1.x federation, you are always the
client in an SSL configuration. Therefore, you do not need to configure SSL on
your server. See the steps for configuring client certificates in “Configuring your
client certificates” on page 80.

Creating a certificate request
To ensure SSL communication, servers require a personal certificate (also referred
to as a server certificate) that is signed by a certificate authority (CA). You must
first create a personal certificate request to obtain a certificate that is signed by a
CA.

Before you begin

The keystore, which contains the certificate request and later the certificate, must
already exist. You can use the default WebSphere Application Server keystore,
NodeDefaultKeyStore, or you can create a new keystore. For instructions on
creating a new keystore, see the WebSphere Application Server 6.1 information
center http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

About this task

Complete the following tasks in the console. If you need additional details, see the
WebSphere Information Center topic about creating a certificate authority request.

Procedure
1. Log on to the console.
2. Click Security > SSL certificate and key management.
3. Under Related items on the right, click Key stores and certificates.
4. Click the name of the keystore where you must store the certificate, for

example, NodeDefaultKeyStore.
5. Click Personal certificate requests under Additional Properties.
6. Click New.
7. In the File for certificate request field, type the full path where you want the

certificate request to be stored and a file name. The file has an .arm extension.
For example: c:\servercertreq.arm (on a Windows server).

8. Type an alias name for the certificate in the Key label field. The alias is the
name you give to identify the certificate request in the keystore.

9. Type a common name value. The common name is the name of the entity that
the certificate represents. The common name is frequently the DNS host name
where the server resides.

10. In the Organization unit field, type the organization unit portion of the
distinguished name.

11. In the Locality field, type the locality portion of the distinguished name.
12. In the State or Province field, type the state portion of the distinguished

name.
13. In the Zip Code field, type the zip code portion of the distinguished name.
14. In the Country or region list, select the two-letter country code portion of the

distinguished name.
15. Click Apply.

72 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Attention:
Keystore tools (such as iKeyman and keyTool) cannot receive signed
certificates that are generated by certificate requests from WebSphere
Application Server. Similarly, WebSphere Application Server cannot accept
certificates that are generated by certificate requests from other keystore
utilities.

16. Click Save. The certificate request is created in the specified file location in the
keystore. The request functions as a temporary placeholder for the signed
certificate until you manually receive the certificate in the keystore.

17. Send the certificate request .arm file to a certificate authority for signing. Each
certificate authority has its own preferred method of receiving requests. Use
the method required by the certificate authority to whom you make your
request.

18. Make a backup copy of your keystore file before you receive the certificate
that you have requested. Use the path information of your keystore as shown
in the console to locate the file. Then copy it to a new location for
safe-keeping.

What to do next

Complete the process of obtaining a signed certificate for your server by receiving
the certificate from the CA as described in “Receiving a signed certificate issued by
a certificate authority.”

Receiving a signed certificate issued by a certificate authority
When a certificate authority (CA) receives a certificate request, it issues a new
certificate that functions as a temporary placeholder for a CA-issued certificate. A
keystore receives the certificate from the CA and generates a CA-signed personal
certificate that WebSphere Application Server can use for SSL security.

Before you begin

The certificate request must have been created and must be in a WebSphere
keystore as described in “Creating a certificate request” on page 72. Also, the
certificate must have been received from the CA and placed on your computer so
that you can receive it into the keystore.

WebSphere Application Server can receive only those certificates that are generated
by a WebSphere Application Server certificate request. It cannot receive certificates
that were requested using other keystore tools, such as iKeyman or keyTool.

About this task

Complete the following tasks in the console. If you need additional details, see the
WebSphere information center http://publib.boulder.ibm.com/infocenter/wasinfo/
v6r1/index.jsp topic about receiving a certificate issued by a certificate authority.

Procedure
1. Log on to the console.
2. Click Security > SSL certificate and key management > Manage endpoint

security configurations.
3. Click the name of your node on the Inbound tree.
4. Click the Manage certificates button.

Chapter 9. Setting up transport security 73

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

5. Click Receive a certificate from a certificate authority.
6. Type the full path and name of the certificate file that you received from the

certificate authority.
7. Select the default data type from the list.
8. Click Apply and Save. The keystore contains a new personal certificate that is

issued by a CA. The SSL configuration is ready to use the new CA-signed
personal certificate.

What to do next

Associate the certificate with your SSL configuration. See “Associating a certificate
with your SSL configuration.”

Associating a certificate with your SSL configuration
After you have added a signed certificate to your keystore, associate your server
SSL configuration settings with that certificate.

About this task

When you install WebSphere Application Server 6.1 and Tivoli Federated Identity
Manager, two SSL configurations are created on the WebSphere Application Server:
v NodeDefaultSSLSettings
v FIMSOAPEndpointSSLSettings

NodeDefaultSSLSettings is the default SSL configuration setting that is defined by
WebSphere Application Server. This configuration setting is for the SSL policy for
your WebSphere server. The FIMSOAPEndpointSSLSettings configuration is added
by Tivoli Federated Identity Manager to enable you to have a separate SSL policy
that is specifically for the communication of SOAP messages with your federation
partner.

After installation, both configurations use the default self-signed certificate in the
NodeDefaultKeystore.

When you request and receive a signed personal certificate, the settings for both
SSL configurations are set to none.

You must manually specify the personal certificate you want to use in each SSL
configuration. You could use the same certificate in each configuration. If you want
to use a different certificate, follow the instructions for “Creating a certificate
request” on page 72 and “Receiving a signed certificate issued by a certificate
authority” on page 73 to create and receive the additional signed certificate and
repeat these instructions.

Procedure
1. Log on to the console.
2. Click Security > SSL certificate and key management.
3. Under Related items on the right, click SSL configurations.
4. Click the name of the SSL configuration you want to configure. For example,

click NodeDefaultSSLSettings.
5. Ensure that the Keystore name shows the keystore where your certificate is

stored.

74 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

6. Click the Get certificate aliases button to ensure that all certificate aliases in
your keystore show.

7. In the Default server certificate alias field, select your signed certificate.
8. Click Apply.
9. Click Save when prompted to save the configuration to the master

configuration. The SSL configuration uses the new certificate.

What to do next

Repeat these steps to associate the other SSL configuration with the appropriate
certificate. Then, continue with the instructions for deleting the default certificate
in “Deleting the default certificate” to prevent it from being used inadvertently.

Deleting the default certificate
After you have received your personal signed certificate, delete the default key so
that it is not used inadvertently.

About this task

Attention: Ensure that none of your SSL configurations use the default key before
continuing with this procedure. See the instructions in “Associating a certificate
with your SSL configuration” on page 74.

Procedure
1. Log on to the console.
2. Click Security > SSL certificate and key management.
3. Under Related items, click Key stores and certificates.
4. Click NodeDefaultKeyStore.
5. Under Additional Properties, click Personal certificates.
6. Select the check box next to the default certificate.
7. Click the Delete button.
8. Click Apply and then Save.

What to do next

Continue with the instructions for “Extracting a certificate to share with your
partner” so that you can provide it to your partner.

Extracting a certificate to share with your partner
After you have added a signed CA certificate to your server, export a copy of that
CA certificate with its public key and provide it to your partner.

Before you begin

The keystore and the personal certificate must already exist.

Procedure
1. Log on to the console.
2. Click Security > SSL certificate and key management > Manage endpoint

security configurations.

Chapter 9. Setting up transport security 75

3. Select your node on the Outbound tree.
4. Click Manage certificates.
5. Select the CA signed certificate.
6. Click Extract in the upper-right corner.
7. Type the full path where you want to extract for the certificate. Include a

name for the certificate file in the path. The signer certificate is written to this
certificate file. For example, in Windows, you might specify:
c:\certificates\local_cert.arm

8. Select the default data type from the list.
9. Click Apply.

10. Click Save. The signer portion of the personal certificate is stored in the .arm
file that you specified.

What to do next

You are ready to provide the file to your partner so that your partner can add your
certificate to its truststore.

Note: If your partner is using Tivoli Federated Identity Manager, the partner must
import your certificate into its Tivoli Federated Identity Manager truststore.

To complete your SSL configuration, continue with the steps for “Configuring
client authentication requirements.”

Configuring client authentication requirements
As part of your options for securing messages, you can require your partner to
authenticate to your point of contact server.

About this task

Note: In a SAML 1.x federation, only the identity provider acts as the server;
therefore, only the identity provider partner must configure a client authentication
setting.

First, you must decide whether you require client authentication.
v If you do not require client authentication, see “Configuring access with no

authentication.”
v If you require client authentication, you have two options:

– Basic authentication. See “Configuring basic authentication access” on page
77.

– Client certificate authentication. See “Configuring access with client certificate
authentication” on page 78.

Configuring access with no authentication
If you do not require client authentication from your partner, configure the SOAP
authentication settings appropriately.

About this task

By default after installation, the endpoint security settings are set to Allow
unauthenticated users access to SOAP endpoints.

76 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: These instructions apply to stand-alone WebSphere servers. For WebSphere
Network Deployment servers in a cluster, see “Configuring IHS for client
worksheet” on page 91.

To ensure that this setting is selected:

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select the point of contact server that you use in your environment.
4. Click Advanced. The SOAP Endpoint Security Settings panel opens.
5. Ensure that the SOAP Port is correct in your configuration and that Allow

unauthenticated users access to SOAP endpoints is selected.
6. Click OK.
7. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

What to do next

If you are configuring a SAML 2.0 federation, continue with the steps for
configuring your client certificate, “Configuring your client certificates” on page 80.
If you are configuring a SAML 1.x federation, the task is complete.

Configuring basic authentication access
If you require basic authentication from your partner, create a user in your user
registry that represents your service provider partner.

Before you begin

Before beginning this task:
v Decide whether to allow access to the endpoint by authenticated users

individually or by authenticated users who are part of specific groups.
v Ensure that you know the username and password that to require your service

provider to use.

About this task

To configure basic authentication, complete the following steps.

Procedure
1. In your user registry, create a user with a name that reflects your service

provider partner. For example, create a user with a username of soapclient.

Note: See the user creation instructions for the user registry you have
configured for your environment.

2. Your next step depends on whether to allow individual authenticated users or
authenticated users who are part of specific groups.
v If you require basic authentication from individual users, repeat step 1 for

each service provider user you need to configure. Then, proceed to step 3 on
page 78.

Chapter 9. Setting up transport security 77

v If you require basic authentication from users in specific groups, create a
group for the users and add the user you created in step 1 on page 77 to the
group. For example, create a group with a name of soapgroup and then add
user soapclient to the group.

Note: See the group creation instructions for the user registry you have
configured for your environment.

3. Configure the SOAP authentication settings in the Tivoli Federated Identity
Manager console:

Note: These instructions apply to standalone WebSphere servers. For
WebSphere Network Deployment servers in a cluster, see “Configuring IHS for
client worksheet” on page 91.
a. Log on to the console.
b. Click Tivoli Federated Identity Manager > Manage Configuration > Point

of Contact.
c. Select the point of contact server that you are using in your environment.
d. Click Advanced. The SOAP Endpoint Security Settings panel opens.
e. Ensure that the SOAP Port is correct in your configuration and select the

appropriate option for your configuration:
v If you require individual users to authenticate, select Allow authenticated

users access to SOAP endpoints.
v If you require users in specific groups to authenticate, select Allow users

in the specified group access to SOAP endpoints and specify the group
name in the Group Name field.

f. Select Basic Authentication.
g. Click OK.
h. Click the Load configuration changes to Tivoli Federated Identity

Manager runtime button.

What to do next

If you are configuring a SAML 2.0 federation, continue with the steps for
configuring your client certificate, “Configuring your client certificates” on page 80.

If you are configuring a SAML 1.x federation, you have completed the task.

Configuring access with client certificate authentication
If you require client certificate authentication from your partner, you complete the
tasks in this topic.

Before you begin
1. Configure WebSphere Application Server to recognize the client certificate.
2. Create a user and possibly a group to represent the service provider partner.
3. Configure Tivoli Federated Identity Manager to require authentication.

Before beginning this task:
v Ensure you have the public key certificate for the client certificate that your

partner uses to access your artifact resolution endpoint.

78 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Ensure you have the common name attribute of the certificate that your partner
uses to access your endpoint. (For example, if the DN of the certificate is
"/C=US/ST=TX/L=AUSTIN/O=SERVICEPROVIDER/CN=soapclient," then the
CN is "soapclient.")

v Decide whether to allow access to the endpoint by authenticated users
individually or authenticated users who are part of specific groups.

Procedure
1. Copy the public key certificate that your partner presents for authentication to

your WebSphere Application Server.

Note: In these instructions the partner's certificate is named partnerca.pem
and the directory to which the certificate was copied is named /tmp.

2. Log on to the console.
3. Select Security > SSL Certificate and Key Management.
4. Select Key stores and certificates.
5. Select NodeDefaultTrustStore.
6. Select Signer certificates.
7. Select Add.
8. Complete the fields with the appropriate information for the certificate. For

example:
v Alias: CACert
v File name: /tmp/partnerca.pem
v Data type: Base64-encoded

9. Click OK.
10. WebSphere must be able to map the client certificate presented by your

partner to a user identity in your user registry, using the common name
attribute of the certificate. You can see the common name attribute by clicking
on the certificate in the console and locating its Issue to field.
a. In your user registry, create a user with a name that reflects your service

provider partner. For example, create a user with a username of
soapclient.

Note: See the user creation instructions for the user registry you have
configured for your environment.

b. Your next step depends on whether to allow individual authenticated
users or authenticated users who are part of specific groups.
v If you require client certificate authentication from individual users,

repeat step 10a for each service provider user you need to configure.
Then proceed to step 11.

v If you require client certificate authentication from users in specific
groups, create a group for the users and add the user you created in
step 10a to the group. For example, create a group with a name of
soapgroup and then add user soapclient to the group.

Note: See the group creation instructions for the user registry you have
configured for your environment.
Then proceed to step 11.

11. Configure the SOAP authentication settings in the Tivoli Federated Identity
Manager console:

Chapter 9. Setting up transport security 79

Note: These instructions apply to standalone WebSphere servers. For
WebSphere Network Deployment servers in a cluster, see “Configuring IHS
for client worksheet” on page 91.
a. Log on to the console.
b. Click Tivoli Federated Identity Manager > Manage Configuration > Point

of Contact.
c. Select the point of contact server that you are using in your environment.
d. Click Advanced. The SOAP Endpoint Security Settings panel opens.
e. Ensure that the SOAP Port is correct in your configuration and select the

appropriate option for your configuration:
v If you require individual users to authenticate, select Allow

authenticated users access to SOAP endpoints.
v If you require users in specific groups to authenticate, select Allow users

in the specified group access to SOAP endpoints and specify the group
name in the Group Name field.

f. Select Client Certificate Authentication.
g. Click OK.
h. Click the Load configuration changes to Tivoli Federated Identity

Manager runtime button.

What to do next

If you are configuring a SAML 2.0 federation, continue with the steps for
configuring your client certificate, “Configuring your client certificates.” If you are
configuring a SAML 1.x federation, you have completed the task.

Configuring your client certificates
If your partner requires client certificate authentication, create and import the
certificate that you must present to authenticate. Then, export the certificate to
your partner.

Retrieving the server certificate from your partner
If your partner has server authentication configured, you need the public key from
that server certificate. Store it in a truststore used by your Tivoli Federated Identity
Manager key service.

Before you begin

Before continuing with this procedure, ensure that you have a truststore prepared
for storing the certificate. See “Preparing the keystores” on page 49.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
3. Select the truststore where you want to store the certificate in the Keystore

table. The View Keys button is activated.
4. Click Retrieve Certificate from SSL Connection. The Password panel opens.
5. Type your truststore password .
6. Click OK.

80 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

7. Complete the fields to specify the host name and port name from which you
retrieve the certificate.
(Optional) Click the Show Signer Info to view the certificate before retrieving.

8. Complete the Alias field with the name you want to use for the certificate.
9. Click OK. The certificate is added to the truststore.

What to do next

If you assume the role of a client in an SSL connection with your partner and your
partner requires you to authenticate using a client certificate, continue with
“Obtaining your client certificate.”

Obtaining your client certificate
If assume the role of a client in an SSL connection with your partner and your
partner requires you to authenticate using a client certificate, obtain and configure
the certificate. Then, share that certificate with your partner.

Before you begin

Ensure that you have a keystore prepared for storing the certificate. See“Preparing
the keystores” on page 49.

Procedure
1. Request a public/private key pair certificate from a certificate authority (CA):

a. Log on to the console.
b. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
c. Select a keystore from the Keystore table. The View Keys button is

activated.
d. Click View Keys. The Password panel opens.
e. Type your keystore password and click OK.
f. Click Certificate Request. The Create a certificate request panel opens.
g. Complete the fields.
h. Then click OK. A public/private key pair is added to the keystore and a file

with the encoded BASE64 data is created. The temporary self-signed
certificate is replaced with the signed certificate from the CA.

Return to these instructions when your CA notifies you that your signed
certificate is ready.

2. Receive the signed certificate from the CA:
a. Log on to the console.
b. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
c. Select the keystore where the CSR was generated in the Keystore table. The

View Keys button is activated.
d. Click View Keys. The Password panel opens.
e. Type your keystore password and click OK.
f. Click Receive Certificate from CA.
g. Select the location of the certificate that you received from the CA.

Chapter 9. Setting up transport security 81

h. Click OK. The temporary self-signed certificate in the keystore is replaced
with the received signed certificate.

3. Provide the public key for this certificate to your partner:
a. Log on to the console.
b. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel opens.
c. Select the appropriate keystore from the Keystore table. You are prompted

for your keystore password.
d. Type the password.
e. Click OK. The View Keys button is active.
f. Click View Keys. The Keys panel opens. Keys in the selected keystore are

listed.
g. Select the keys you want to export.
h. Click the Export button. The Export Key panel opens.
i. Select the format of the key you are exporting.

(PEM)
(Privacy-Enhanced Message) Public certificate

PKCS#12
Public Key Cryptography Standard #12: Personal Information Exchange
Syntax Standard

j. Ensure that the Include Private Key check box is not selected. Only you
should have your private key.

k. Click Download Key.
l. When prompted, enter a file name for the exported key.

For example: mypublickey.pem
(Optional) Click Browse to find the file on the file system.

m. Click Cancel to exit.

What to do next

Provide the certificate to your partner. The partner must ensure that:
v It has, in its truststore, the CA certificate from the CA who issued your

certificate.
v The server can get to the CA certificate revocation list.

82 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 10. Selecting a point of contact server

The point of contact server is a proxy or application server that interacts with a
user, performs the authentication and manages sessions. In a typical deployment,
the point of contact is located at the edge of a protected network in front of a
firewall, such as in a DMZ.

Tivoli Federated Identity Manager is not directly involved in user authentication or
the creation of an application session. Instead, Tivoli Federated Identity Manager
relies on a point of contact server.

The point of contact server provides endpoints, which are the locations to and
from which messages are sent and received. Each endpoint has a URL, so that the
endpoints can be accessed by external users as Web sites on the Internet. The point
of contact receives access requests and provides the authentication service.

It serves as the first component capable of evaluating the authentication credentials
of the user that is requesting access to the protected network. It also manages
session lifecycle of the user, from session creation, to session access, to session
deletion (such as in response to session logout services).

The type of point of contact server to use is determined by the security architecture
and network topology requirements. Tivoli Federated Identity Manager supports
four options for the point of contact server:
v IBM WebSphere Application Server
v Tivoli Access Manager WebSEAL
v WebSEAL No ACLD
v Generic point of contact server
v A custom point of contact server

WebSphere as point of contact server

If you must use IBM WebSphere Application Server, your configuration options
depend on whether you assume the identity provider partner, or the service
provider partner role.

Identity Provider options
When you use IBM WebSphere Application Server as the point of contact
server and you are the identity provider in a federation, you have the
following options for the type of authentication to use:
v Forms authentication using any supported user registry
v SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) using

TAI (Trust Association Interceptor) authentication and using Microsoft
Active Directory as the user registry

Service Provider options
When you use IBM WebSphere Application Server as the point of contact
server and you are the service provider in a federation, single sign-on is
enabled using Lightweight Third-Party Authentication (LTPA).

You can use the following hosting application options in a federation that
is configured in Tivoli Federated Identity Manager:

© Copyright IBM Corp. 2006, 2013 83

v IBM WebSphere Application Server, either the same server on which
Tivoli Federated Identity Manager is installed or on a separate server
running either WebSphere Application Server version 5.1 or 6.x

v Microsoft Internet Information Services server 6.0 with the Tivoli
Federated Identity Manager Web Server plug-in installed

v IBM HTTP Server 6.1 with the Tivoli Federated Identity Manager Web
Server plug-in installed

v Apache HTTP Server 2.0 or 2.2 with the Tivoli Federated Identity
Manager Web Server plug-in installed

Each of these options has specific requirements. For more information about these
requirements, see “WebSphere as point of contact for identity providers” on page
93 and “WebSphere point of contact server for a service provider” on page 108.

WebSEAL as point of contact server

To satisfy the functional requirements for a point of contact server, Tivoli Federated
Identity Manager can leverage the extensive authentication and authorization
capabilities of Tivoli Access Manager. In environments that use Tivoli Access
Manager, a WebSEAL server typically acts as the point of contact.

WebSEAL is most commonly used as a reverse proxy that can control access to
extensive protected resources, through the establishment and management of
WebSEAL junctions. WebSEAL receives access requests, and serves as the first
component capable of evaluating the authentication credentials of the user that is
requesting access to the protected network. In addition, the point of contact must
handle Web session management for user sessions.

The federation creation wizard requires specification of a URL for point of contact
servers. The wizard presents a field in which to enter the URL that provides access
to endpoints on the Point of Contact server. The URL must contain the following
elements:
v The communications protocol. Either HTTPS or HTTP for communications

between the point of contact server and the user. Use HTTPS for optimal
security.
Note that this value must match how you configured your point of contact
server (WebSEAL).
For example:
https://

v The domain address of the WebSEAL server:
For example:
idp.example.com

v When using WebSEAL, the next element is name of the WebSEAL junction that
services requests for single sign-on services. This can be any value, but must
match the name of a junction on the WebSEAL server.
For example:
/FIM

v The final element is the string /sps. The element of the URL is defined by Tivoli
Federated Identity Manager to name a WebSphere context for single sign-on
services. The value of this string is fixed and cannot be changed.

These parts are combined to form a URL. For example:
https://idp.example.com/FIM/sps

84 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Later in the federation configuration, the URL is extended further when you select
a choice of single sign-on protocol and assign more specific endpoints for profiles
such as login and logout. This means that this URL becomes part of a number of
longer URL paths (endpoints) that are managed as Tivoli Access Manager
protected objects.

WebSEAL No ACLD as point of contact server

Tivoli Access Manager deployments often include both a policy server (pdmgrd)
and an authorization server (acld). Tivoli Access Manager requires a deployed
policy server, but does not require an active authorization server. Tivoli Federated
Identity Manager also requires only a deployed policy server. The WebSEAL point
of contact server does not depend on an authorization server for any
authentication or authorization services.

By default, the Default IVCred Module Instance in the product contacts the Tivoli
Access Manager authorization server (also known as pdacld) to issue a credential.
A skeleton credential is then built from the user name. This credential includes the
groups (and Universal User IDs) for that user as defined in the user registry for
Tivoli Access Manager. However, when you select WebSEAL No ACLD as the
point of contact, the product does not use the authorization server to build
credentials.

To configure the " WebSEAL No ACLD" point of contact profile:
1. Log on to console.
2. Select Tivoli Federation Identity Manager > Configure Trust Service >

Module Instances.
3. Select Default IVCred Token, and click Properties.
4. Clear Enable Access Manager (IVCred) credential issuing (requires PDJRTE

to be configured).
5. Click OK.

Note: If you switch the point of contact back to a WebSEAL server with an
authorization server, select Enable Access Manager (IVCred) credential issuing
(requires PDJRTE to be configured).

Generic point of contact server

The generic point of contact is an additional point of contact implementation
provided by Tivoli Federated Identity Manager. It is a HTTP-headers based
solution that provides administrators with the ability to modify their point of
contact environments (for example, Apache) to set and read headers. This allows
integration with Tivoli Federated Identity Manager without writing a custom point
of contact server.

The generic point of contact works pretty much the same as the WebSEAL point of
contact server. The main difference is that headers names are used for the user
information.

There generic point of contact server is included in the point of contact profiles
that ship with Tivoli Federated Identity Manager. The administrator must enable it
by selecting it on the console and setting it as active. The administrator can use the
console to modify the header names used by each callback.

Chapter 10. Selecting a point of contact server 85

Custom point of contact server

A custom point of contact server is made up of several customized callback
modules that define sign in, sign out, local ID, and authentication. A custom point
of contact server might be appropriate in your environment if you want to
integrate an existing authentication or Web access management application with
Tivoli Federated Identity Manager.

For example, a custom point of contact server would be useful in the following
scenarios:
v If you have an existing single sign-on cookie token that is used throughout your

existing enterprise, you could implement a custom point of contact server that
uses a SignIn callback that sets that custom single sign-on domain cookie that
conforms to your existing single sign-on strategy.

v If you have an existing Web access management product that exposes a custom
API for asserting a user identity to the environment or retrieving the current
user for the request.
You can choose from any of the point of contact server implementations:
– A point of contact server that uses a local identity callback to retrieve the user

for the transaction.
– A custom point of contact server that uses a SignIn callback to assert the user

identity to the environment.
– A point of contact server that uses both types of callbacks.

Developing a custom point of contact server requires programming experience
with developing callback modules and knowledge of Tivoli Federated Identity
Manager programming concepts. See the developerWorks® links in the information
center at http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html.

When you have completed the development work, integrate the solution with your
Tivoli Federated Identity Manager environment. For more information, see the IBM
Federated Identity Manager Administration Guide.

86 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html

Chapter 11. Configuring WebSphere as point of contact server

Tivoli Federated Identity Manager can be installed with either an embedded
WebSphere server or into an existing WebSphere environment. When you install
the embedded server, and use WebSphere as a point of contact server, the
installation automates much of the configuration. When you install into an existing
WebSphere environment, and want to use WebSphere as a point of contact server,
you must manually configure the WebSphere and IHS servers to fit your
deployment.

When configured as a point of contact server, WebSphere provides authentication
services. The authentication services are specific to the federation role (identity
provider or service provider).

Note: For WebSphere Application Server Version 6.0.2, WebSphere as a point of
contact is not supported by Tivoli Federated Identity Manager.

Set up an outbound HTTP proxy in the WebSphere Application Server so that you
can use it when Tivoli Federated Identity Manager makes connections to other
HTTP servers.

For more information, see the following topics:
v “Using IBM HTTP Server with WebSphere as point of contact”
v “WebSphere as point of contact for identity providers” on page 93
v “WebSphere point of contact server for a service provider” on page 108
v “Setting up an outbound HTTP proxy server” on page 91

Using IBM HTTP Server with WebSphere as point of contact
WebSphere Application Server Network Deployment (ND) can be deployed either
standalone or as part of a WebSphere cluster. In both cases, a typical deployment
environment includes an IBM HTTP Server (IHS) that is positioned between the
WebSphere server and external connections, such as those that come through a
firewall or demilitarized zone (DMZ).

Deployment of the IHS typically includes configuration of Secure Socket Layer
(SSL) connections, to secure both external connections and internal connections to
the WebSphere servers. Successful deployment of a Tivoli Federated Identity
Manager environment that use WebSphere as a point of contact server requires that
SSL is enabled on the IHS server.

Enablement of SSL on IHS requires the generation of an SSL key database and key.
You can use the ikeyman utility to generate the necessary keys. If you have not
enabled SSL on the IHS server, you must complete this task before configuring
Tivoli Federated Identity Manager.

For instructions, consult the information center for your IBM HTTP Server for
WebSphere Application Server: http://publib.boulder.ibm.com/infocenter/
wasinfo/v8r0/index.jsp. See the topics that describe how to secure an IBM HTTP
Server, including:
v Working with key database
v Securing with SSL communications

© Copyright IBM Corp. 2006, 2013 87

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Adding an SSL port for a SOAP backchannel

Tivoli Federated Identity Manager single sign-on federations support configuration
of certificate authentication or basic authentication between federation partners.
When the deployment environment includes IHS, you must configure a SOAP
backchannel to support these authentication methods.

You must add a virtual host to the IHS configuration. The configuration settings
are typically located in the standard IHS configuration file. For example, on Linux
or UNIX:
/opt/IBM/HTTPServer/httpd.conf

For instructions, consult the information center for your IBM HTTP Server for
WebSphere Application Serverhttp://publib.boulder.ibm.com/infocenter/wasinfo/
v8r0/index.jsp. See the topics that describe how to secure an IBM HTTP Server,
including:
v Securing with SSL communications

Updating federation configuration for SOAP connection

When the IBM HTTP Server is configured to listen on both the default port and
the SOAP backchannel port, you must define and configure your federations using
those ports for the federation URLs.

Federation URLs must use port 443. This port is the default HTTPS port, so there
is no need to include the actual port in the URL syntax. The SOAP backchannel
port is typically 9444.

Since the SOAP backchannel security involves a connection with the IHS server,
the typical configuration steps when defining a federation does not include
specifying client authentication on the SOAP backchannel.

Note: The WebSphere environment can include the configuration of SSL between
IHS and the nodes in the WebSphere cluster. See the WebSphere documentation if
this configuration is appropriate for your deployment.

Confirming WebSphere Application Server security properties
If you installed the embedded version of WebSphere Application Server with the
installation of the runtime and management services component, several of its
settings were configured during installation. If you are using an existing version of
WebSphere Application Server (such as a previously installed version or the
separately installable version), you must configure these settings manually.

Before you begin

The settings are:
v Application and administration security are enabled.
v Single sign-on (LTPA Cookie) is enabled.

Use the following procedures to confirm that the configuration settings are correct
for your Tivoli Federated Identity Manager environment.

Use the WebSphere management console to check the WebSphere settings.

88 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

About this task

Application and administration security is enabled

To confirm that application and administration security are enabled:
1. Click Security > Secure administration, applications and infrastructure.
2. Confirm that both administrative and application security are enabled.

Single sign-on is enabled

To confirm that single sign-on is enabled:
1. Click Security > Secure administration, applications and infrastructure.
2. Expand Web security on the right to show the following options:

v General settings

v single sign-on

v Trust association

3. Click single sign-on.
4. Ensure that Enabled is selected.
5. Select Security > Secure administration, applications and infrastructure >

Web security - General settings.
6. On the Configuration tab, in the General Properties section, select the check box

Use available authentication data when an unprotected URI is accessed.

Enabling multiple language encoding on WebSphere Application
Server

Enable multiple language encoding by enabling UTF-8 client encoding in
WebSphere Application Server.

About this task

The procedure for enabling multiple language encoding is the same for the
embedded version of WebSphere Application Server and on an existing WebSphere
Application Server.

Procedure
1. Open a command prompt.
2. Start the WebSphere Application Server wsadmin tool. From your WebSphere

profile, type the appropriate command for your operating system to start the
tool:

Windows
wsadmin.bat

AIX, Linux, or Solaris
wsadmin.sh

Note: For more information about the options that can be specified when you
run the wsadmin tool, see the WebSphere Application Server information
centerhttp://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp.

3. At the command prompt, run the following commands to enable UTF-8
encoding:
a. To show the current JVM properties:

Chapter 11. Configuring WebSphere as point of contact server 89

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

$AdminTask showJVMProperties { -propertyName genericJvmArguments }

b. To set the JVM properties:
$AdminTask setGenericJVMArguments { -genericJvmArguments
"<current-jvm-properties> -Dclient.encoding.override=UTF-8" }

c. To save the configuration changes:
$AdminConfig save

4. Restart WebSphere Application Server.

Mapping application roles to users
You can map different security application roles to the users of IBM Tivoli
Federated Identity Manager.

Before you begin

When IBM Tivoli Federated Identity Manager is deployed with embedded
WebSphere, the IBM Tivoli Federated Identity Manager installation automatically
maps application roles to users. When IBM Tivoli Federated Identity Manager is
deployed with an existing WebSphere server, IBM Tivoli Federated Identity
Manager, you must manually create the mappings.

You can specify the different roles depending on the security needs of your
deployment.

About this task

Use the WebSphere administration console to specify the mappings

Procedure
1. Select Enterprise Applications > ITFIMRuntime > Security role to user/group

mapping

2. Select the mappings in the table of roles.
For each role, select either Everyone or All authenticated.

Note: FIMAnyAuthenticated must not be mapped to Everyone.
Example roles:
v TrustClientRole
v FIMUnauthenticated
v FIMSoapClient
v FIMAnyAuthenticated
v FIMAdministrator
v TrustClientInternalRole
v FIMNobody

3. Click OK when you are finished.
4. Synchronize all nodes in the cluster.

For instructions, consult the WebSphere information center:
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp. See the
topic Mapping user to roles.

90 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Results

The Tivoli Federated Identity Manager runtime is now functional with WebSphere
as a point of contact server in a WebSphere Network Deployment (ND)
environment.

Configuring IHS for client worksheet
When you configure partners for a single sign-on federation, you can specify the
supported methods for client authentication. The federation partner GUI wizard
prompts you to specify either SSL certificate authentication or basic authentication.
Based on your choice, you must configure IBM HTTP Server (IHS) appropriately.

Complete the instructions in the following section for your authentication method.

Configuring certificate authentication for IHS

When the federation partner configuration includes SSL client certificate over a
SOAP connection, you must import that certificate as Trusted certificate authority
(CA) on the key database used by IHS for SSL.

For example, a key file database on Linux or UNIX is:
/usr/IBM/HTTPServer/conf/httpkeys.kdb

Use the ikeyman utility to import the certificate.

For instructions, consult the information center for your IBM HTTP Server for
WebSphere Application Server: http://publib.boulder.ibm.com/infocenter/
wasinfo/v8r0/index.jsp. See the topics that describe how to secure an IBM HTTP
Server, including:
v Storing a certificate authority certificate

Configuring basic authentication for IHS

When the federation partner configuration includes basic authentication over a
SOAP connection, you must enable LDAP authentication for IHS.

For instructions, consult the information center for your IBM HTTP Server for
WebSphere Application Server: http://publib.boulder.ibm.com/infocenter/
wasinfo/v8r0/index.jsp. See the topics that describe how to secure an IBM HTTP
Server, including:
v Authenticating with LDAP on IBM HTTP Server

Setting up an outbound HTTP proxy server
Set up an outbound HTTP proxy in the WebSphere Application Server so that you
can use it when Tivoli Federated Identity Manager makes connections to other
HTTP servers.

About this task

The configuration must be set on the Tivoli Federated Identity Manager runtime
nodes. The JVM configuration settings that enable outbound HTTP connections

Chapter 11. Configuring WebSphere as point of contact server 91

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

through a proxy applies to all outbound connections for all applications, including
Tivoli Federated Identity Manager, that are running on WebSphere Application
Server.

The following procedure applies to WebSphere Application Server 7.0. The steps
are similar to other WebSphere Application Server versions.

Procedure
1. Log on to the Integrated Solutions Console.
2. Select Servers > Server Types > WebSphere application servers.
3. Click the appropriate server. For example, server1.
4. Under Server Infrastructure, click Java and Process Management > Process

Definition.
5. Under Additional Properties, click Java Virtual Machine.
6. Click the Configuration tab.
7. Under Additional Properties, click Custom properties.
8. Click New.
9. Specify the appropriate Name and Value based on the required configuration.

The required configuration is based on whether you are using HTTP or
HTTPS. See Table 1 for more details.

10. Click OK.
11. Repeat steps 8 to 10 for each required configuration.
12. Click Save directly to the master configuration.
13. Restart the WebSphere Application Server.

Note: Repeat steps 2 to 13 for each server. This configuration is for
WebSphere Application Server JVM so it must be repeated for each Tivoli
Federated Identity Manager runtime node and WebSphere Application Server
instance.

Table 8. A list of all the possible name and values for an outbound HTTP proxy server

Name Sample values Description

http.proxyHost http.proxy.ibm.com The hostname or IP address
of the HTTP proxy

http.proxyPort 3128 The port of the HTTP proxy

http.proxyUser admin The username that is used to
authenticate to the proxy for
HTTP connections

http.proxyPassword password The password that is used to
authenticate to the proxy for
HTTP connections

https.proxyUser admin The username that is used to
authenticate to the proxy for
HTTPS connections

https.proxyPassword password The password that is used to
authenticate to the proxy for
HTTPS connections

https.proxyHost https.proxy.ibm.com The hostname or IP address
of the HTTPS proxy

https.proxyPort 3128 The port of the HTTPS proxy

92 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 8. A list of all the possible name and values for an outbound HTTP proxy
server (continued)

Name Sample values Description

http.nonProxyHosts host1.ibm.com|internal.
ibm.com

A list of hosts, which are
separated by |, which a
proxy must not be used

Note: The http.nonProxyHosts property applies for both HTTP and HTTPS
connections.

WebSphere as point of contact for identity providers
If you assume the identity provider role in your federation, and you are using IBM
WebSphere Application Server as your point of contact server, you have two
options for the authentication method you can use. Your choice of the
authentication method determines the requirements you must have in your
environment.

Choose one of the following options for the authentication method on your
WebSphere Application Server:
v Form-based authentication using any user registry that is supported by

WebSphere Application Server
v Windows desktop authentication using the WebSphere Application Server 8.0

SPNEGO TAI support and Microsoft Active Directory as the user registry

Attention: Before proceeding with the tasks described in this chapter, confirm
that your settings are correct using “Confirming WebSphere Application Server
security properties” on page 88.

Form-based authentication

In this configuration, the identity provider uses any user registry that is supported
by WebSphere Application Server with form-based authentication to authenticate
users who are requesting single sign-on. All of the identity provider's users must
exist in the supported user registry. When users try to use single sign-on to access
a resource (such as a Web application), Tivoli Federated Identity Manager presents
a login form. The login form is provided with Tivoli Federated Identity Manager.

An unauthenticated user who triggers a single sign-on request to a service
provider resource is authenticated against the configured WebSphere Application
Server user registry.

An example of this configuration is shown in Figure 1 on page 94.

Chapter 11. Configuring WebSphere as point of contact server 93

Notes on configuration:
v The WebSphere Application Server can be either an existing WebSphere

deployment (with the correct level of fix pack applied) or can be the embedded
version of WebSphere Application Server Version 8.0 that is distributed with
Tivoli Federated Identity Manager.

v A log on form presented by the WebSphere Application Server where Tivoli
Federated Identity Manager is installed. The log on form is provided.

Complete the tasks in “Configuring form-based authentication” on page 95.

Windows desktop authentication through SPNEGO TAI with
Microsoft Active Directory

This configuration uses a WebSphere Trust Association Interceptor (TAI) that
supports a silent authentication using the Simple and Protected GSSAPI
Negotiation Mechanism (SPNEGO) protocol, which is provided with WebSphere
Application Server. This configuration enables Tivoli Federated Identity Manager to
securely acquire the user's desktop identity, which is then used to create the
assertion for the federated single sign-on.

The identity provider uses Microsoft Active Directory as the user registry and
Microsoft Windows Domain authentication. Windows must be configured as a
domain controller. All of the identity provider's users must exist in the Active
Directory user registry. To single sign-on to a Web application, the users use their
Windows desktop credentials.

An example of this configuration is shown in Figure 2 on page 95.

Figure 1. Example of WebSphere Application Server with form-based authentication

94 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuration notes:
v The WebSphere Application Server can be either an existing WebSphere

deployment (with the correct level of fix pack applied) or can be the embedded
version of WebSphere Application Server Version 8.0 that is distributed with
Tivoli Federated Identity Manager.

v Microsoft Active Directory must be used as the user registry. Use a version that
is supported by Microsoft Windows Server 2003. The user registry must include
a user for the WebSphere administrative user and a user for the Kerberos
identity. In addition, a keytab file must be built for each user. You need the
LDAP connection properties for the Active Directory server prior to configuring
Tivoli Federated Identity Manager.
The user registry must be also be configured before configuring IBM WebSphere
Application Server.

v SPNEGO authentication is provided with WebSphere Application Server in a
Trust Association Interceptor (TAI) plug-in. It uses Kerberos to perform the
authentication.

v The users log on using their desktop logon to the Windows domain. This logon
method can also be referred to as desktop single sign-on.

v The browsers of your users must be configured so that Integrated Windows
Authentication is enabled.

Complete the tasks in “Configuring SPNEGO authentication” on page 99.

Configuring form-based authentication
If you are using WebSphere Application Server as your point of contact server with
form-based authentication, there are several configuration tasks that you must
complete.

Figure 2. Example of WebSphere Application Server with SPNEGO TAI authentication

Chapter 11. Configuring WebSphere as point of contact server 95

About this task

The tasks include:
1. “Selecting and installing the user registry”
2. “Configuring the user registry”
3. “Adding single sign-on users” on page 97
4. “Adding administrative users” on page 97
5. “Configuring user registry for embeddedWebSphere” on page 97
6. “Configuring an SSL connection to the user registry” on page 98
7. “Customizing the login form” on page 98

Selecting and installing the user registry
A user registry is required in your identity provider environment. The user registry
is used as the repository for information about the users to whom you are
providing single sign-on capabilities and the service providers with whom you
have a federation. The user registry can also be used as the repository for
information about the administrative users in your environment or you can choose
to keep administrative users in a separate user registry.

Before you begin

You must choose a user registry that is compatible for use with your IBM
WebSphere Application Server point of contact server and with the authentication
method you will use.

If you are using form-based authentication, you can choose a user registry from
many options. See the WebSphere Application Server 8.0 information center at
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp. Then, locate
information about selecting a user registry by selecting WebSphere Application
Server (Distributed platforms and Windows) > Securing applications and their
environment > Authenticating users > Selecting a registry or repository.

About this task

If you are using an existing installation of WebSphere Application Server, you
might have a compatible user registry already installed and configured.

If you are using a new installation of the embedded version of WebSphere
Application Server, you have the following options:
v Use the default file-based user repository realm (the federated repository), which

was installed with the embedded version of WebSphere Application Server. The
administrative user was configured in this registry during installation.
Additional tasks needed for adding the single sign-on users are provided later in
this chapter.

v Use a different user registry. Review the WebSphere Application Server
documentation for information about your user registry options. Then, install
and configure the user registry you chose, if you are not using a previously
existing user registry. Then, configure WebSphere to use that user registry.
See“Configuring user registry for embeddedWebSphere” on page 97.

Configuring the user registry
The configuration of your user registry is an important step in the overall
configuration.

96 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Before you begin

You must already have selected which user registry to use, and have installed it as
described in “Selecting and installing the user registry” on page 96.

About this task

In your user registry, create users to whom you are providing single sign-on
capabilities. You can also create users for the administrators in your environment
or you can choose to keep administrative users in a separate repository.

Adding single sign-on users:

In the identity provider environment, the user registry is used to authenticate the
users who will use single sign-on. Add these users to your user registry using the
documentation for your user registry.

Adding administrative users:

If you installed the embedded version of WebSphere Application Server, a
file-based user repository realm, also called as a federated repository was configured
for the administrative users of Tivoli Federated Identity Manager. If you prefer to
manage administrative users through the same user registry where your single
sign-on users are configured, you must add them to that user registry.

Before you begin

The administrative user that you specified during installation was created in the
default user repository during the installation of Tivoli Federated Identity Manager.

Procedure

1. Create the user by using the documentation for your user registry. Use the
name ID and password that was used for the administrator when Tivoli
Federated Identity Manager was installed.

2. Complete the instructions in “Configuring user registry for
embeddedWebSphere.”

Configuring user registry for embeddedWebSphere
If you installed the embedded version of WebSphere Application Server, the
federated repository was configured as your user registry. If you want to use a
user registry other than the default federated repository, modify the WebSphere
Application Server settings.

Procedure
1. Log on to the console.
2. Select Security > Secure administration, applications, and infrastructure. The

Configuration tab opens.
3. Click Security Configuration Wizard to change the user registry used by the

WebSphere runtime. The Specify extent of protection panel opens.
4. Verify that the check box Enable application security is selected.
5. Click Next. The Secure the application serving environment panel opens.
6. Select the appropriate option for the user registry to use:

v Federated repositories

v Standalone LDAP registry

Chapter 11. Configuring WebSphere as point of contact server 97

v Local operating system

v Standalone custom registry

7. Click Next. The Configure user repository panel opens.
8. Specify values for each of the registry configuration settings. See the online

help for descriptions of the fields presented.
9. Click Next and finish the wizard.

10. Save your configuration changes.
11. Stop the WebSphere Application Server.
12. Restart the WebSphere Application Server. You must use the same

administrative name you used to log on and make these changes.
13. From the console, select Tivoli Federated Identity Manager > Manage

Configuration > Domain properties.
14. In the WebSphere Security section of the panel, update the following values:

Administrative user name
Replace the existing entry with the LDAP administrator account name that
you entered in the previous step. For example, ldapadmin

Administrative user password
Enter the password for LDAP administrator.

15. Save the changes.
16. Stop the WebSphere Application Server.
17. Restart the WebSphere Application Server.

Configuring an SSL connection to the user registry
After you have configured your user registry, consider enabling SSL to protect the
connection between it and the server.

About this task

For instructions, see the WebSphere Application Server 8.0 information center at
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp. Locate
information about creating SSL connections by selecting WebSphere Application
Server (Distributed platforms and Windows) > Securing applications and their
environment > Securing communications.

You might also need to see the documentation for your user registry.

Customizing the login form
If you are using form-based authentication to authenticate the single sign-on users,
a login form and an error page to the login form are provided for you to use.

About this task

The login form and error page are part of the response pages that are generated by
Tivoli Federated Identity Manager. You can customize the pages to suit your
environment needs and to modify their appearance. The page identifiers for these
pages are:

proper/login/formlogin.html
The login page opens on the Web client side when single sign-on is
initiated at the identity provider by an unauthenticated user.

proper/login/formloginerror.html
On authentication failure, the error page opens.

98 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Configuring SPNEGO authentication
If you are using WebSphere Application Server as your point of contact server with
SPNEGO authentication, there are several configuration tasks that you must
complete.

About this task

Complete these configuration tasks to configure the SPNEGO authentication:

Procedure
1. Configuring the Microsoft Active Directory, including:

a. Creating an Active Directory user for the WebSphere administrative user.
b. Creating an Active Directory user that contains the Service Principal Name

(SPN) of the Tivoli Federated Identity Manager server.
c. Building a Kerberos keytab file and assigning the SPN for the Active

Directory user created in 1b.
d. Collecting the Active Directory configuration parameters.

2. Configuring the Windows domain and user logins.
3. Configuring WebSphere Application Server, including:

a. Configuring administration security, with Active Directory used as the type
of LDAP user registry.

b. (Optional) Configuring an SSL connection to Active Directory.
4. Enabling WebSphere SPNEGO and the Trust Association Interceptor (TAI),

using the Integrated Solutions Console.
(Optional) Customize the TAI attributes, as might be required in your
environment.

5. Instructing your users to configure Internet Explorer, as follows:
a. Adding the hostname as a trusted host in the Intranet Zone.
b. Enabling Integrated Windows Authentication.

Configuring Active Directory for use with SPNEGO
Use Microsoft Active Directory as your user registry when you use WebSphere
Application Server with SPNEGO authentication.

Before you begin

You must perform several configuration tasks in Microsoft Active Directory:
v Create a user for the WebSphere administrative user.
v Create a user that contains the Service Principal Name (SPN) of the Tivoli

Federated Identity Manager server.
v Build a Kerberos keytab file and assign the SPN to the Active Directory user that

was created for that purpose.
v Collect Active Directory connection parameters.

Microsoft Active Directory is a required component in an identity provider
environment in which IBM WebSphere Application Server with SPNEGO
authentication is used as the point of contact server. Install and configure your
Microsoft Active Directory for your network before you begin this task.

Chapter 11. Configuring WebSphere as point of contact server 99

About this task

For detailed information on completing the steps in this procedure, see the
Microsoft Active Directory documentation.

Procedure
1. Using the Active Directory Users and Computers Console, create an Active

Directory user for the WebSphere administrative user. This user is a regular
user account in Active Directory, with no special account privileges. Use a user
name that reflects the role of this user. For example, use wasadmin.

2. Using the Active Directory Users and Computers Console, create a user that
contain the Service Principal Name (SPN) of your Tivoli Federated Identity
Manager server. The user name for this account is not important. Use the
ktpass utility in a subsequent step to set the Service Principal Name of the
user. Give this user a secure password and set the password to never expire.

3. Use the ktpass command to build a keytab file for the WebSphere Kerberos
user. The ktpass utility is included with the Microsoft Windows 2003 Server
Support Tools package. Use the following parameters with the command:

Table 9. Parameters to use with the Microsoft Windows ktpass command

Parameter Example value Description

-out was1-krb5.keytab A file name in which to store the
secret key that is later used for
Kerberos authentication validation on
the WebSphere server. This file is
uploaded to the WebSphere server
when you enable SPNEGO. See
“Enabling and configuring SPNEGO
authentication” on page 104.

-princ HTTP/ibm-fim611-1.fimtest.
example.com@FIMTEST
.EXAMPLE.COM

The Kerberos service principal name
to use for generating the key. The
name is case-sensitive and must start
with HTTP/. The portion following the
HTTP/ must be the fully qualified
DNS domain name of the URL that
users see on their browsers when
accessing the WebSphere server.

-pass * The password to set for the Kerberos
principal. A value of * results in
prompting for the password. The
password must match the user
created in step 2.

-mapuser was-1 The Active Directory user to whom
the Kerberos service principal is
mapped. The value here must match
the user name you created in step 2.

-mapOp set Indicates that the SPN must
overwrite any existing value mapped
for this Active Directory user.

The following example shows an execution of the ktpass command. It also
shows the use of the setspn command to list service principal names for the
was-1 user, for information and verification purposes.

100 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The keytab file that is created in this step is uploaded to the Tivoli Federated
Identity Manager server during the configuration of WebSphere Application
Server. See “Configuring WebSphere for use with SPNEGO” on page 102 for
details.

4. Collect Active Directory connection configuration information to use in the
WebSphere Application Server configuration, as follows:
a. Locate the following information in the Active Directory LDAP tree:

Hostname
The host name of the Active Directory server.

Port Port number of the active directory server.

Base DN
The base search DN for active directory users.

Bind DN
The active directory DN of an administrative user for performing
LDAP searches. This value does not need to be the DN for the
domain administration account but rather the DN for any valid
active directory user.

Bind password
The password for the user represented by the Bind DN.

b. If an SSL connection is required to Active Directory, WebSphere must be
configured with the certificate of the issuing CA of the domain controller. If
Windows Certificate Services was installed on the domain controller, this
becomes the CA certificate of the Certificate Services on that domain
controller.
To export the CA certificate to a file:

C:\Program Files\Support Tools>ktpass -out was1-krb5.keytab
-princ HTTP/ibm-fim611-1.fimtest.example.com@FIMTEST.EXAMPLE.COM
-pass * -mapuser was-1 -mapOp set

Targeting domain controller: ibm-fimtest-ad.fimtest.example.com

Successfully mapped HTTP/ibm-fim611-1.fimtest.example.com:

Type the password again to confirm:

Key created.

Output keytab to was1-krb5.keytab:

Keytab version:0x502

keysize 76 HTTP/ibm-fim-611-1.fimtest.example.com@FIMTEST.EXAMPLE.COM
ptype 1 (KRB5_NT_PRINCIPAL) vno 3 etype 0x3 (DES-CBC-MD5)
keylength 8 (0x799b26bfe9ad3ba4)

Account was-1 has been set for DES-only encryption.

C:\Program Files\Support Tools>setspn -1 was-1

Registered ServicePrincipalNames for
CN=was-1,CN-Users,DC=fimtest,DC=ibm,DC=com:

HTTP/ibm-fim611-1.fimtest.ibm.com

Figure 3. Example of the ktpass command

Chapter 11. Configuring WebSphere as point of contact server 101

1) Open Administrative Tools > Certification Authority.
2) Right-click on the top-level CA name.
3) Click Properties.
4) Select the General tab and then click View Certificate.
5) Click the Details tab and click Copy to File.

The file is saved in DER encoded binary format. Use this file as part of
the WebSphere configuration, if SSL server authentication is needed to
contact the Active Directory server through the LDAP/SSL interface.

Configuring the Windows domain and user logins
To use Windows desktop single sign-on, the desktop logins of the user must be
authenticated to the Windows domain.

About this task

Use of the Windows desktop single sign-on to the Tivoli Federated Identity
Manager server requires that users log in to their desktop as members of a
Windows domain. In particular, the Windows domain must support Kerberos
authentication to a Microsoft Active Directory. See the Microsoft documentation for
the details of creating this environment.

This configuration enables the identity provider to support internal users who are
connected to the intranet of your identity provider using a desktop login made to
a Windows domain. However, an identity provider might also want to support
external users who do not have a Windows domain login. These external users
would need to authenticate using a login form.

By default, the SPNEGO TAI support in Tivoli Federated Identity Manager shows
a login form when a user who has not authenticated through the desktop login
attempts a single sign-on. By default, the login form is the sample login form that
is provided with Tivoli Federated Identity Manager.

You can customize the appearance of this form, as described in “Customizing the
login form” on page 98. If you do not want to show this login form, you can
modify the TAI attributes as described in “Configuring custom TAI attributes” on
page 107.

Configuring WebSphere for use with SPNEGO
Before you can use WebSphere Application Server with SPNEGO, you must
configure WebSphere application security with Active Directory set as the user
repository.

About this task

The steps include:
v (Optional) Loading the CA root certificate of the Active Directory server to

enable SSL between the server and Active Directory.
v Enabling WebSphere application security with Active Directory as the user

registry.
v Configuring details for the standalone LDAP directory to point to the Active

Directory server.

102 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. (Optional) Load the CA root certificate of the Active Directory server. This step

is required only if you use LDAP/SSL to communicate with the Active
Directory server.

2. Before continuing with this step, make sure you have completed the steps in
“Configuring Active Directory for use with SPNEGO” on page 99, especially
step 4b on page 101. If you are not using LDAP/SSL, continue with the next
step.
a. Log on to the console.
b. Click SSL certificate and key management.
c. On the SSL Certificate and key management panel, click Key stores and

certificates.
d. On the Key stores and certificates panel, click NodeDefaultTrustStore.
e. On the NodeDefaultTrustStore panel, click Signer certificates.
f. On the Signer certificates panel, click Add to add a new signer.
g. Complete the details for the signer certificate. Use the following values:

Table 10. Signer certificate details in SPNEGO environment

Field name Value

Alias Any alias name for the CA certificate from Active
Directory. For example, you might use the name of the
Active Directory domain controller.

File name The path and file name of the certificate. Note that this
path and file name is on the server where WebSphere
Application Server is installed, not on the server where
the browser is running. This means that the file must be
copied to the WebSphere server prior to completing this
step.

Data type The file format for the certificate. Use the same format
you used in step 4b on page 101.

After the certificate is successfully loaded, the certificate is added in the
signer certificates list.

h. Click OK.
3. Enable WebSphere application security with Active Directory set as the user

registry.

Note: To complete this step, you must be able to contact the Active Directory
server using port 389 (that is, without using SSL). During this step, the security
configuration wizard performs a connection test which does not support SSL.
The setup cannot proceed if this test fails. You can enable LDAP/SSL after the
test and setup have been completed.
a. In the console, select Security > Secure administration, applications, and

infrastructure.
b. Click the Security Configuration Wizard button to start the Security

Configuration wizard.
c. Click Next.
d. In step 1 of the wizard, make sure that the Enable application security

check box is selected.
e. Click Next.
f. In step 2 of the wizard, select Standalone LDAP directory.

Chapter 11. Configuring WebSphere as point of contact server 103

g. Click Next.
h. In step 3 of the wizard, enter the following parameters.

Table 11. Parameters for the LDAP directory in SPNEGO environment

Field name Value

Primary administrative user name Use the WebSphere administrative user name that was
created in the Active Directory.

Type of LDAP server Microsoft Active Directory

Host The hostname of the Active Directory server. For
example:

ibm-fimtest-ad.fimtest.example.com

Port Until you run the test step of this configuration wizard,
use a port that does not use SSL. For example, use 389.

Base distinguished name (DN) The base search DN for user entries. For example:

cn=users,dc=fimtest,dc=ibm,dc=com.

Bind distinguished name (DN) The DN of a valid Active Directory user. For example:

cn=administrator,cn=users,dc=fimtest,dc=ibm,dc=com.

Bind password The Active Directory password for the user represented
by the bind DN.

i. Click Next.
j. In step 4 of the wizard, the connection to the Active Directory server is

tested.
k. Click Finish to complete the wizard.

4. Configure details for the standalone LDAP directory to point to the Active
Directory server.
a. In the console, select Security > Secure administration, applications, and

infrastructure.
b. In the Available realm definition list, select Standalone LDAP registry

c. Click Configure.
d. Complete the details about your configuration, including SSL and SSL port

if necessary.
e. Click OK and save your changes.

Enabling and configuring SPNEGO authentication
Before you can use WebSphere Application Server with SPNEGO, you must enable
SPNEGO authentication in Tivoli Federated Identity Manager and configure its
properties.

About this task

Use the console to complete this procedure. This procedure includes:
v Enabling SPNEGO for use with Tivoli Federated Identity Manager.
v Configuring the WebSphere Kerberos client.
v Configuring the TAI properties file.
v Setting the JVM startup parameters.

Procedure
1. Log on to the console.

104 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of
Contact.

3. Select the point of contact server profile that you are using in your
environment.

4. Click the Advanced button. The SOAP Endpoint Security Settings panel opens.
5. Click SPNEGO Authentication Settings.
6. Select the Enable SPNEGO Authentication check box.
7. Complete the fields with the information for your authentication configuration.

See the online help for complete descriptions of the fields.
8. Import the Kerberos keytab file, which you created using the -out option of the

ktpass utility, as follows:
a. Click the Import Keytab file button.
b. In the Location of Keytab File field, type the path for the location of the

file.
(Optional) Use the Browse button to locate the file.

c. Click Finish.
9. Click OK.

Configuring the Trust Association Interceptor
If you enable and configure SPNEGO using the console, TAI is automatically
enabled in the WebSphere Application Server settings.

About this task

In general, no further configuration is necessary. The tai.properties.template file
contains default values for all of the WebSphere SPNEGO TAI. For additional
information about these values, see “SPNEGO TAI configuration attributes.”

Note: If you plan to make changes to these default values, see the instructions in
“Configuring custom TAI attributes” on page 107.

SPNEGO TAI configuration attributes:

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust
association interceptor (TAI) custom configuration attributes control different
operational aspects of the SPNEGO TAI. These attributes are stored in the
tai.properties.template file.

Content

The file is located in the following default directory:

AIX, Linux or Solaris
/opt/IBM/FIM/etc/tai.properties.template

Windows
C:\Program Files\IBM\FIM\etc\tai.properties.template

In general, you do not need to modify this file. You can configure the TAI by using
the console as described in “Configuring the Trust Association Interceptor.”
However, if you need to make additional changes that require updates to the
tai.properties.template, use the instructions in “Configuring custom TAI
attributes” on page 107.

Chapter 11. Configuring WebSphere as point of contact server 105

Note: The version of the tai.properties.template file that is installed as part of
Tivoli Federated Identity Manager contains additional attributes that are not
provided with WebSphere Application Server 8.0. If your environment requires the
use of attributes that are not described here, refer to the WebSphere Application
Server 8.0 information center for a list of all the attributes available for the
customization of SPNEGO TAI configuration. The information center is located at
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp.

The following figure describes the content of the tai.properties.template.

##
Template properties files for SPNEGO TAI
#
Where possible defaults have been provided.
#
##
#---
Hostname
#---
com.ibm.ws.security.spnego.SPN1.hostName=@POCHOST@

#---
(Optional) SpnegoNotSupportedPage
#---
com.ibm.ws.security.spnego.SPN1.spnegoNotSupportedPage=file:///@SPNEGOFAILED@

#---
(Optional) NTLMTokenReceivedPage
#---
com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage=file:///@SPNEGOFAILED@

#---
(Optional) FilterClass
#---
#com.ibm.ws.security.spnego.SPN1.filterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---
(Optional) Filter
#---
com.ibm.ws.security.spnego.SPN1.filter=request-url%=/sps/wasauth

#---
(Optional) Credential Delegation
#---
#com.ibm.ws.security.spnego.SPN1.enableCredDelegate

#---
(Optional) Credential Delegation
#---
#com.ibm.ws.security.spnego.SPN1.trimUserName=

Figure 4. tai.properties.template file

106 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Macros

The following macros are used in the tai.properties.template file.

Table 12. Macros used in the tai.properties.template file

Macro Description Default value

@POCHOST@ The fully qualified point of contact
hostname. This hostname is used in
the point of contact server URL.

poc.example.com

@SPNEGOFAILED@ The full path to an HTML file that is
sent to the browser when SPNEGO
authentication negotiation is
unsuccessful. This HTML file
automatically redirects the browser to
the sample login page, that is
provided with Tivoli Federated
Identity Manager.

installation_directory/etc/
spnego_failed.html

This parameter cannot be configured
using the console. The correct path is
configured when SPNEGO is
configured.

Configuring custom TAI attributes:

Configure the custom TAI attributes to suit your deployment requirements.

Before you begin

The TAI is enabled automatically when you enable SPNEGO using the console as
described in “Enabling and configuring SPNEGO authentication” on page 104.
However, if you need to customize TAI attributes, modify the
tai.properties.template file.

About this task

Review the content of the tai.properties.template file in “SPNEGO TAI
configuration attributes” on page 105.

Procedure

1. Locate the file and make a backup copy of it. The file is located in the
following default directory:

AIX, Linux or Solaris
/opt/IBM/FIM/etc/tai.properties.template

Windows
C:\Program Files\IBM\FIM\etc\tai.properties.template

2. Open the file in a text editor.
3. Make the changes that are appropriate for your environment.
4. Save and close the file.

Configuring browsers for use with SPNEGO
Users must use desktop single sign-on to access the Tivoli Federated Identity
Manager server after SPNEGO authentication is configured.

Before you begin

This requires that:

Chapter 11. Configuring WebSphere as point of contact server 107

v The browser of the user recognizes the Tivoli Federated Identity Manager server
as an intranet site.

v The user's browser is enabled for Integrated Windows Authentication.

The instructions in this procedure are for Windows Internet Explorer 6 and later.
For other browser types, such as Mozilla Firefox, see the documentation for the
browser.

About this task

In general, browser configuration for SPNEGO involves:
v Adding the hostname of the WebSphere Application Server that is used with

Tivoli Federated Identity Manager to the local intranet list.
v Verifying that Integrated Windows Authentication is checked in the Advanced

security settings of the browser.

Procedure
1. Add the hostname:

a. Start Windows Internet Explorer
b. Click Tools > Internet Options.
c. Click the Security tab.
d. Click Local intranet.
e. Click the Sites button. Make sure the Include all local (intranet) sites not

listed in other zones is checked.
f. Click Advanced.
g. Add the Web sites for the WebSphere Application Server as viewed at the

browser, using either http or https, as needed.

Note: This hostname must match the principal name configured for the
keytab file.
For example:
http://ibm-fim611-1.fimtest.example.com

https://ibm-fim611-1.fimtest.example.com

2. Verify that Integrated Windows Authentication is enabled:
a. Start Windows Internet Explorer.
b. Click Tools > Internet Options.
c. Click the Advanced tab and scroll to the Security section.
d. Ensure that the Enable Integrated Windows Authentication (requires

restart) box is selected.
e. Save the changes and restart the browser, if necessary.

WebSphere point of contact server for a service provider
There are several configuration options when you assume the service provider role
in your federation.

If you use WebSphere Application Server as your point of contact server, you can
use any of the following types of servers to host the target web applications that
your single sign-on users typically access:
v IBM WebSphere Application Server 5.1 or 6.0 or later

108 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

In most cases, you can host your web applications on an installation of
WebSphere Application Server that is separate from the server where Tivoli
Federated Identity Manager is installed.
You can use the same server for both the Tivoli Federated Identity Manager and
your applications under the following circumstances:
– If your WebSphere Application Server installation is version 6.1
– If your WebSphere Application Server installation meets the Tivoli Federated

Identity Manager installation and web application hosting requirements
v Microsoft Internet Information Service 6.0
v IBM HTTP Server 6.1
v Apache HTTP Server 2.0 and 2.2

If you choose a server other than WebSphere Application Server as the host for
your applications, you must install the Tivoli Federated Identity Manager Web
server plug-in on your application server. The figure that follows shows an
example of a Tivoli Federated Identity Manager environment in which applications
are hosted by a separate Web server.

In the configuration depicted, the target application is hosted by a server that is
separate from the Tivoli Federated Identity Manager server. The user authenticates
to the identity provider, and the credential is transferred from the identity provider
to Tivoli Federated Identity Manager. The service provider validates the token in
the Tivoli Federated Identity Manager, and returns an LTPA cookie with the user
identity. It also returns any attributes carried by the token, or added by the service
provider mapping rules.

Figure 5. Example of Tivoli Federated Identity Manager and a Web application server

Chapter 11. Configuring WebSphere as point of contact server 109

The user is redirected by some single sign-on protocol to the target application
where the LTPA cookie is transferred from the Tivoli Federated Identity Manager
node to the Web server node. The LTPA key must be shared between these nodes
for the cookie to be recognized.

If the Web server is not a WebSphere Application Server, the Tivoli Federated
Identity Manager Web server plug-in must be installed on that server. The plug-in
extracts the identity and attributes from the LTPA cookie and provides it to the
target application using one or more HTTP headers or server variables.

Environment requirements

Target applications can be hosted by any of the following servers:
v WebSphere Application Server 5.1 or 6.0 or later
v Microsoft Internet Information Server 6.0
v IBM HTTP Server 6.1
v Apache HTTP Server 2.0 and 2.2

Attention: If you host target applications on a server other than WebSphere
Application Server, you must install the Tivoli Federated Identity Manager Web
Server plug-in on that server.
v Applications must be able to accept user identity by way of an HTTP header or

server variable.
v A user registry is required in your environment for both your point of contact

server and your application server. The users to whom you are providing single
sign-on capabilities must exist in both user registries. Configure a user registry
for the separate server that hosts your target application.
Examples of separate server can be, another WebSphere Application Server, or a
supported server with a plug-in such as an IHS, IIS, or Apache server. Select a
user registry that can be used for your point of contact server and your Web
server to minimize the number of user registries you must maintain in your
environment.

Plug-in requirements

You must also ensure that your environment meets the following requirements:
v Applications must be able to accept user identity by way of an HTTP header or

server variable.
v The user name for each single sign-on user must exist in both the WebSphere

Application Server user registry and the user registry of the Web server. It
should be in the same location where the Tivoli Federated Identity Manager is
installed.

v The Tivoli Federated Identity Manager server and the Web server must be in the
same DNS domain and the LTPA cookie must be configured as a domain cookie.

v The LTPA key file and password must be on both the Tivoli Federated Identity
Manager server and the Web server where the plug-in is installed.

Configuring WebSphere

To configure your WebSphere Application Server point of contact server, continue
with the instructions in “Configuring a WebSphere Application Server point of
contact server (service provider)” on page 111.

110 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuring a WebSphere Application Server point of contact
server (service provider)

If you are using WebSphere Application Server for your point of contact server,
there are several configuration tasks that you must complete.

About this task

Attention: Before proceeding with the tasks described in this section, confirm that
your settings are correct using “Confirming WebSphere Application Server security
properties” on page 88.

Configuring the LTPA cookie
In general, federated single sign-on is available only if the applications share a
common domain name with assertion consumer service endpoint of the service
provider. To ensure that your applications share the proper domain name, you
must configure the LTPA as a domain cookie, using the domain of your assertion
consumer service endpoint.

Procedure
1. Log on to the console.
2. Click Security > Secure Administration, Applications, and Infrastructure >

Web Security.
3. Click single sign-on.
4. To restrict the LTPA cookie to SSL sessions, select Requires SSL.
5. Specify the domain name in the Domain name field. Precede the domain name

with a dot (.). Setting the domain name ensures that the LTPA cookie is made
available to all of the Web servers in that specified domain.

6. Clear the Interoperability Mode check box. Interoperability mode results in
two cookies (a version 1 LTPA cookie and a version 2 LTPA cookie) being
placed on the browser. The Tivoli Federated Identity Manager Web Plug-in
supports only version 2 LTPA cookies.

7. Click OK and then click Save.

What to do next

Additional information about setting the domain properly can be found in the
topic about implementing single sign-on to minimize Web user authentications of
the WebSphere Application Server 8.0 Information Center at http://
publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp.

Defining attributes for the LTPA token
By default, all available attributes are included in the LTPA token. If you want to
limit the attributes to specific ones, you must modify the attribute filtering settings
on your WebSphere Application Server.

About this task

Note: Your target application must be configured to make use of the attributes that
are included in the LTPA token. For more information about development topics,
see the developerWorks links on the Welcome page of the information center at
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html.

Chapter 11. Configuring WebSphere as point of contact server 111

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html

Procedure
1. Log on to the console.
2. Click Security > Secure Administration, Applications, and Infrastructure.
3. Expand the list for Java Authentication and Authorization Service.
4. Click System logins.
5. In the JAAS System logins panel, select FIM_OUTBOUND.
6. In the Additional Properties section of the FIM_OUTBOUND panel , select

JAAS login modules.
7. Select the class name for the WebSphere point of contact attribute map login

module.
com.tivoli.am.fim.fedmgr2.was.jaas.login.

WASPocAttributesMapLoginModule

A list of configuration properties shows.

Note: If you want to remove all attributes, select the check box next to
ssoAttributeNames. Click Delete. Otherwise, to modify the attributes,
continue with the remaining steps.

8. Click ssoAttributeNames to see the default properties. The
ssoAttributeNames setting is configured by default with an * in the Value
field to specify that all attributes should be included in the token.

9. If you want to change the attributes, remove the * and type an attribute name,
such as AuthenticationMethod or multiple attribute names, such as
AuthenticationMethod,AuthenticationInstant. If you specify multiple
attributes, separate them with a comma (,).

Note: The attributes available for you to specify depend on the customization
and configuration of your target application.

10. Click OK.

Selecting and installing a user registry
A user registry is required if you are using WebSphere Application Server as your
point of contact server. The user registry is used as the repository for information
about the users to whom you are providing single sign-on capabilities. The user
registry can also be used as the repository for information about the administrative
users in your environment or you can choose to keep administrative users in a
separate user registry.

Before you begin

Because you are using WebSphere Application Server as your point of contact
server, you can choose a user registry from many options. See the WebSphere
Application Server 8.0 information center at http://publib.boulder.ibm.com/
infocenter/wasinfo/v8r0/index.jsp. Then, locate information about selecting a user
registry by selecting WebSphere Application Server (Distributed platforms and
Windows) > Securing applications and their environment > Authenticating users
> Selecting a registry or repository.
v If you are using an existing installation of WebSphere Application Server, you

might have a compatible user registry already installed and configured.
v If you are using a new installation of the embedded version of WebSphere

Application Server, you have several options:
– Use the default file-based user repository realm (the federated repository),

which was installed with the embedded version of WebSphere Application

112 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

Server. The administrative user was configured in this registry during
installation. Additional tasks needed for adding the single sign-on users are
provided later in this chapter.

– Use a different user registry. Review the WebSphere Application Server
documentation for information about your user registry options. Then, install
and configure the user registry you chose, if you are not using a previously
existing user registry. Configure WebSphere to use that user registry. Refer to
“Configuring WebSphere to use the user registry” on page 114.

Note: If you must host your target application on a separate server, such as
another WebSphere Application Server or a supported server with a plug-in such
as an IHS, IIS, or Apache server, you must also configure a user registry for that
server. Consider selecting a user registry that can be used for your point of contact
server and your target application server to minimize the number of user registries
you must maintain in your environment.

Configuring the user registry
The configuration of your user registry is an important step in the overall
configuration.

Before you begin

Before continuing with this task, you should have already selected which user
registry to use and have installed it as described in “Selecting and installing a user
registry” on page 112.

About this task

In your user registry, create users to whom you are providing single sign-on
capabilities. You can also create users for the administrators in your environment,
or you can choose to keep administrative users in a separate repository.

Adding single sign-on users:

In the service provider environment, the user registry is used during the creation
of the local identity that is required for users to access the target application. Add
these users to your user registry using the documentation for your user registry.

Adding administrative users:

If you installed the embedded version of WebSphere Application Server, a
file-based user repository realm, referred to as a federated repository was configured
for the administrative users of Tivoli Federated Identity Manager. If you would
prefer to manage administrative users through the same user registry where your
single sign-on users are configured, you must add them to that user registry.

Before you begin

One administrative user was created in the default user repository during the
installation of Tivoli Federated Identity Manager.

About this task

To add this user to a different user registry:

Chapter 11. Configuring WebSphere as point of contact server 113

Procedure

1. Create the user using the documentation for your user registry.
2. Complete the instructions in “Configuring WebSphere to use the user registry.”

Configuring an SSL connection to the user registry:

After you have configured your user registry, consider enabling SSL to protect the
connection between it and the server.

About this task

For instructions, see the WebSphere Application Server 8.0 information center at
http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp. Locate
information about creating SSL connections by selecting WebSphere Application
Server (Distributed platforms and Windows) > Securing applications and their
environment > Securing communications.

You might also need to see the documentation for your user registry.

Configuring WebSphere to use the user registry
If you installed the embedded version of WebSphere Application Server, the
federated repository was configured as your user registry. If you want to use a
user registry other than the default federated repository, modify the WebSphere
Application Server settings.

Before you begin

Before continuing with this task, review the information in “Selecting and
installing the user registry” on page 96. Ensure that you have selected and
installed the appropriate user registry option for your environment.

About this task

To enable WebSphere to use your user registry:

Procedure
1. Log on to the console.
2. Select Security > Secure administration, applications, and infrastructure. The

Configuration tab opens.
3. Click Security Configuration Wizard to change the user registry used by the

WebSphere runtime.
4. The Specify extent of protection panel is displayed. Verify that the check box

Enable application security is selected. Click Next.
5. The Secure the application serving environment panel is displayed. Select the

appropriate option for the user registry to use:
v Federated repositories

v Standalone LDAP registry

v Local operating system

v Standalone custom registry

6. Click Next. The Configure user repository panel opens.
7. Specify values for each of the registry configuration settings. See the online

help for descriptions of the fields presented.

114 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/index.jsp

8. Click Next and finish the wizard. Save your configuration changes.
9. Stop the WebSphere Application Server.

10. Restart the WebSphere Application Server. You must use the same
administrative name you used to log on and make these changes.

11. From the console, select Tivoli Federated Identity Manager > Manage
Configuration > Domain properties.

12. In the WebSphere Security section of the panel, update the following values:

Administrative user name
Replace the existing entry with the LDAP administrator account name that
you entered in the previous step. For example, ldapadmin

Administrative user password
Enter the password for LDAP administrator.

13. Save the changes.
14. Stop the WebSphere Application Server.
15. Restart the WebSphere Application Server.

Exporting LTPA key from the point of contact server
If you use your WebSphere Application Server point of contact server with a target
application that is hosted by a separate WebSphere Application Server or by a
server where a Tivoli Federated Identity Manager plug-in is installed, you must
export your LTPA key so that you can share it with your target application.

Before you begin

Make sure that the date and the time settings are similar between the server from
which you exported the key and the server to which you are importing the key. If
the time or date is different, the server on which you must import the key might
mistakenly interpret that key to be expired.

Procedure
1. Log on to the console.
2. Click Security > Secure Administration, Applications, and Infrastructure >

Authentication mechanisms and expiration.
3. In the Password and Confirm password fields, enter the password that is used

to encrypt the LTPA key. Remember the password so that you can use it later
when the key is imported to the other server.

4. In the Fully qualified key file name field, specify the fully qualified path to
the location where you want the exported LTPA key to be saved. Use the
default key file name ltpa.keys. You must have write permission to this file.

5. Click Export keys to export the key to the location that you specified in the
Fully qualified key file name field.

6. Specify the Internal server ID that is used for interprocess communication
between servers. The server ID is protected with an LTPA token when sent
remotely. By default, this ID is the cell name.

7. Click OK.

What to do next

After exporting the key, you must share them with your target application. See the
appropriate instructions:

Chapter 11. Configuring WebSphere as point of contact server 115

v If you are using a separate WebSphere Application Server, see “Importing the
LTPA key to the WebSphere Application Server” on page 122.

v If you are using an Apache, IHS, or IIS server, see “Copying the LTPA key to the
Web server” on page 125.

116 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 12. Configuring a Web server plug-in

The Web server plug-in is required to be installed on your Web server only if that
server is a supported server other than WebSphere Application Server. The primary
function of the plug-in is to extract the user identity information from the LTPA
cookie in a Web request and make the identity information available to the target
application that is hosted by the Web server using either HTTP headers or server
variables (if supported by the Web server).

Web request processing

To ensure that you can properly configure the Web server plug-in and integrate
your application with the plug-in, it is helpful to understand how Web requests are
processed by the plug-in.

When a request to a Web application is received by the server, it is passed to the
plug-in for processing and the plug-in performs the following actions:
1. Retrieves the Web request URL.
2. Retrieves the LTPA token cookie from the request, if there is one.
3. Checks its configuration to see if the plug-in functionality is enabled. If it is not

enabled, processing ends. If it is enabled, the following actions occur:
a. Checks whether the URL in the request matches any of the URLs that are

configured in the plug-in configuration file. This capability enables you to
apply specific processing to specific applications.

b. Identifies the list of HTTP headers to strip from the request. The plug-in
configuration file identifies the HTTP headers to strip and prevents attacks
in which fake headers are added by the client.

c. The LTPA token cookie is examined and one of the following actions occurs:
v If the request does not contain a valid LTPA token cookie, the plug-in

identifies the list of session cookies, if any, to strip from the request based
on the configuration specified in the plug-in configuration file.
Cookies are stripped only if the LTPA token cookie is missing, expired, or
improperly encoded. Session cookies are present only after a federated
single sign-on, which is indicated by the presence of an LTPA token
cookie.
A session cookie without a valid LTPA token cookie implies that the
session cookie is no longer applicable. Processing ends.

v If the request contains a valid LTPA token cookie, the cookie is decoded.
If the decoding fails or if the LTPA token has expired, no further
processing occurs. The request is passed to the Web application without
the addition of HTTP headers and the application is left to handle the
condition.
If the LTPA token is decoded successfully, processing continues and the
plug-in creates a list of HTTP headers to set in the request. It creates a list
by using the configuration specified in the plug-in configuration file and
the LTPA attribute values in the token. For information about the LTPA
attribute to HTTP header mapping process, see “LTPA-attribute-to-HTTP-
header mapping” on page 118.

© Copyright IBM Corp. 2006, 2013 117

Note: Decoded LTPA tokens are saved in an in-memory cache until their
expiration time. When a request is received, the plug-in checks the cache
to see if a valid token is in the cache. If so, it is reused. If not, the token is
decoded and added to the cache. The cache is limited in size, which is
specified in number of cache entries. You can configure the size when you
configure the plug-in configuration file.

d. In the final processing step, the plug-in creates a list of server variables and
values, if they are present and supported by the Web server.

Note: The use of server variables is not supported in an IIS environment.
4. The completed Web request is then sent to the Web application to handle.

LTPA-attribute-to-HTTP-header mapping

To map the LTPA cookie information to an HTTP header, the plug-in relies on a
special configuration file, itfimwebpi.xml, which creates and then modifies or strips
(removes) the HTTP headers into the final HTTP request that is sent to the target
application.

The following figure shows how the content of the configuration file is used to
determine the final HTTP request. Note that the figure shows only an example.
LTPA attributes and headers are specific to each application that is used in an
environment.

1. The input HTTP request in the preceding figure contains:
v The LTPA cookie that was created by the service provider that is configured

in Tivoli Federated Identity Manager
v Two HTTP headers: 'Header-mail' and 'Other.'

2. The plug-in configuration file instructions the plug-in to map the LTPA
attributes as follows:
v LTPA attribute 'tagvalue_email' → Header-mail (strip if not in LTPA)
v LTPA attribute 'tagvalue_name' → Header-Name (strip if not in LTPA)
v LTPA attribute 'LTPA_Other' → Hdr-Other (strip if not in LTPA)
For all the headers, if the corresponding LTPA attribute does not exist, any
Header with the configured name should be stripped.

Figure 6. Example of LTPA attribute to HTTP header mapping

118 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For example, in the figure, the LTPA value 'LTPA_Other' is not present, so the
input HTTP header 'Hdr-Other' is stripped (removed). The LTPA value
'tagvalue_email' is present, so the existing header 'Header_mail' is modified to
contain the value from the LTPA cookie: "user@example.com." The LTPA value
'tagvalue_name' is present, so the header 'Header_Name' is created with the
value from the LTPA cookie: "User_Name."
Headers that are not listed in the configuration file remain unchanged. If an
LTPA cookie is not present, then all headers with "strip=yes" are removed.

The plug-in also has the ability to strip cookies if the LTPA cookie is not presented
and the ability to map LTPA attributes to server variables. However, these
scenarios are not shown in the figure.

For information about configuring your service provider environment, including
the plug-in configuration file, see “Configuring service provider components.”

Configuring service provider components
If you assume the service provider partner role and are using WebSphere
Application Server as your point of contact server, specific configuration tasks
must be completed before you can create a federation. Additional configuration
tasks are also required on the server that hosts your target application.

About this task

Complete the following tasks to configure service provider components:
1. Configure the application server that will host your target applications, as

described in “Configuring your Web server.”
2. Configure your target application, as described in “Configuring the target

application” on page 128.

Configuring your Web server
You have several options for the type of servers you can use to host the
applications that your users access using single sign-on. The applications that you
typically host are referred to as target applications because they are the target of the
single sign-on request.

About this task

Your options for servers in your Tivoli Federated Identity Manager environment
include:
v IBM WebSphere Application Server 5.1 or 6.0 or later

Note: The servers described here are typically dedicated to hosting a target
application. However, you also have the option of hosting your target
application on the same instance of WebSphere Application Server where you
installed the Tivoli Federated Identity Manager runtime component. Your
runtime component must have been installed on either of the following versions
of WebSphere:
– WebSphere Application Server version 6.1
– The embedded version of WebSphere Application Server 6.1, which came

with Tivoli Federated Identity Manager

Chapter 12. Configuring a Web server plug-in 119

v Microsoft Internet Information Service 6.0
v IBM HTTP Server 6.1
v Apache HTTP Server 2.0 or 2.2

When you set up your server, ensure that the Tivoli Federated Identity Manager
environment and the Web server are in the same DNS domain to enable the
transfer of the LTPA cookie between the two.

To configure the Web server so that it can be used in the Tivoli Federated Identity
Manager environment, complete the following tasks:

Procedure
1. Select and install a user registry for the server, as described in “Selecting and

installing a user registry.”
2. Configure an SSL connection to the user registry, as described in “Configuring

the user registry for the target application.”
3. “Configuring an SSL connection to the user registry” on page 121
4. If you host a target application using a WebSphere Application Server that is

separate from the server on which Tivoli Federated Identity Manager is
installed, complete the steps in “Configuring a separate WebSphere Application
Server to host applications” on page 121.

5. If you host a target application using an IIS, IHS, or Apache server, complete
the steps in “Configuring an IIS, IHS, or Apache server to host the application”
on page 124.

Selecting and installing a user registry
A user registry is required in your environment for both your point of contact
server and your application server. The users to whom you are providing single
sign-on capabilities must exist in both user registries.

Before you begin

In most cases, you want your application server to use the same user registry as
the one you configured for your point of contact server. If you use the same user
registry, ensure that it is compatible with both the point of contact server and the
application server.

However, if you use a separate user registry, ensure that it meets the requirements
for the server that is hosting your application. See your server documentation for
more information.

For example, if you are using WebSphere Application Server to host your
application, see the WebSphere Application Server library and locate the
information center for the version you are using: http://www.ibm.com/software/
webservers/appserv/was/library/. In the appropriate information center, search
for the topics about setting up a user registry.

Configuring the user registry for the target application
The configuration of your user registry is an important step in the overall
configuration.

120 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.ibm.com/software/webservers/appserv/was/library/
http://www.ibm.com/software/webservers/appserv/was/library/

Before you begin

Before continuing with this task, you must already have selected which user
registry to use and have installed it as described in “Selecting and installing a user
registry” on page 120.

About this task

If you are using the same user registry that you configured for your point of
contact server, no further registry configuration is necessary. However, if you are
using a separate registry, create users to whom you are providing single sign-on
capabilities. These must be the same users that are defined in your point of contact
user registry. See the documentation for your user registry for information on
adding users.

Configuring an SSL connection to the user registry
After you have configured your user registry, enable SSL to protect the connection
between it and the server.

About this task

If you are using the same user registry for your point of contact server and your
target application server, you might have completed this task already. If you are
using a separate user registry, see the documentation for that user registry for
information about configuring SSL.

What to do next

After you have configured SSL, continue with the appropriate steps for the server
on which your target applications are hosted:
v “Configuring a separate WebSphere Application Server to host applications”
v “Configuring an IIS, IHS, or Apache server to host the application” on page 124

Configuring a separate WebSphere Application Server to host
applications

In a Tivoli Federated Identity Manager environment, you can host your target
applications on the same WebSphere Application Server that is used as your point
of contact server or on a separate WebSphere Application Server.

About this task

To configure a separate WebSphere Application Server so that it can host
applications that your single sign-on users can access, complete the following
tasks:

Procedure
1. Import the LTPA key from your WebSphere Application Server point of contact

server as described in “Importing the LTPA key to the WebSphere Application
Server” on page 122.

2. Disable the automatic generation of LTPA keys as described in “Disabling the
automatic generation of an LTPA key” on page 122.

3. Configure the WebSphere Application Server to use the user registry as
described in “Configuring WebSphere to use the user registry” on page 123.

Chapter 12. Configuring a Web server plug-in 121

Importing the LTPA key to the WebSphere Application Server
If your target application is hosted on a WebSphere Application Server that is
separate from your WebSphere point of contact server, you must import the LTPA
key from the point of contact server onto your target application server.

Before you begin

Ensure that you have completed the following steps:
v Make sure the time between the servers is synchronized.
v Copy the LTPA keys from the location where they were exported to a location

on your target application server.
v Obtain the password for the LTPA keys. A password was assigned to the keys

when they were exported from the WebSphere point of contact server.

Procedure
1. Log on to the console on the target application server. Do not log on to your

Tivoli Federated Identity Manager console to perform these steps.
2. Select Security > Secure Administration, Applications, and Infrastructure >

Authentication mechanisms and expiration.
3. In the Password and Confirm password fields, enter the password that is used

to encrypt the LTPA keys. The password must match the password that was
used when the keys were exported.

4. In the Fully qualified key file name field, specify the fully qualified path to
the location where the LTPA keys are located. You must have write permission
to this file.

5. Click Import keys to import the keys.
6. Click OK.
7. Click Save to upload the changes to the master configuration.

What to do next

Disable the automatic generation of LTPA keys on the target application server, as
described in “Disabling the automatic generation of an LTPA key.”

Disabling the automatic generation of an LTPA key
By default, WebSphere Application Server automatically generates an LTPA key.
However, if you are using a WebSphere Application Server other than your point
of contact server to host your target application, you must use the LTPA key from
your point of contact server on your application server. Therefore, you must
disable the automatic key generation so that no conflicts occur.

Before you begin

To complete this task, you must know the name of the key set group and the
management scope where the key set group is defined.

Procedure
1. Log on to the console on the target application server. Do not log on to your

Tivoli Federated Identity Manager console to perform these steps.
2. Click Security > SSL certificate and key management > Manage endpoint

security configurations..
3. Expand the tree to the inbound or outbound management scope that contains

the key set group, and then click the scope link.

122 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

4. Under Related Items, click Key Set Groups

5. Click the key set group that you want to disable.
6. Clear the Automatically generate keys check box.
7. Click OK

8. Click Save to upload the changes to the master configuration.

What to do next

Continue with the steps for “Configuring WebSphere to use the user registry.”

Configuring WebSphere to use the user registry
Ensure that the WebSphere Application Server that you are using to host your
target application is configured to use the user registry that you selected and
installed.

Before you begin

Review the information in “Selecting and installing the user registry” on page 96.
Ensure that you have selected and installed the appropriate user registry option for
your environment.

About this task

To enable WebSphere to use your user registry, complete these steps:

Procedure
1. Log on to the console for your target application. Do not log on to your Tivoli

Federated Identity Manager console to perform these steps.
2. Select Security > Secure administration, applications, and infrastructure. The

Configuration tab opens.
3. Click Security Configuration Wizard to change the user registry used by the

WebSphere runtime. The Specify extent of protection panel opens.
4. Verify that the check box Enable application security is selected.
5. Click Next. The Secure the application serving environment panel opens.
6. Select the appropriate option for the user registry to use:

v Federated repositories

v Standalone LDAP registry

v Local operating system

v Standalone custom registry

7. Click Next. The Configure user repository panel opens.
8. Specify values for each of the registry configuration settings. See the online

help for descriptions of the fields presented.
9. Click Next and finish the wizard.

10. Save your configuration changes.
11. Stop the WebSphere Application Server.
12. Restart the WebSphere Application Server. You must use the same

administrative name you used to log on and make these changes.
13. From the console, select Tivoli Federated Identity Manager > Manage

Configuration > Domain properties.
14. In the WebSphere Security section of the panel, update the following values:

Chapter 12. Configuring a Web server plug-in 123

Administrative user name
Replace the existing entry with the LDAP administrator account name that
you entered in the previous step. For example, ldapadmin

Administrative user password
Enter the password for LDAP administrator.

15. Save the changes.
16. Stop the WebSphere Application Server.
17. Restart the WebSphere Application Server.

What to do next

When you are done, continue with the appropriate step for your environment:
v If you are hosting applications on an IHS, IIS, or Apache server, continue with

“Configuring an IIS, IHS, or Apache server to host the application.”
v If you are hosting applications on only your WebSphere server, your server

configuration is complete. Continue with the target application configuration in
“Configuring the target application” on page 128.

Configuring an IIS, IHS, or Apache server to host the
application

If you must host your target applications using a Microsoft Internet Information
Services server, an IBM HTTP Server, or an Apache HTTP Server, you must
complete specific configuration tasks.

Before you begin

Before continuing with these tasks, you must have installed the plug-in.

Ensure that:
v The plug-in is installed on the server that is hosting the target application.
v The server is in the same domain as the Tivoli Federated Identity Manager

server.

Also, ensure that you have completed the steps in “Configuring your Web server”
on page 119, including:
v “Selecting and installing a user registry” on page 120
v “Configuring the user registry for the target application” on page 120
v “Configuring an SSL connection to the user registry” on page 121

About this task

Complete the following tasks to prepare your plug-in environment:

Procedure
1. Copy the LTPA key to your server, as described in “Copying the LTPA key to

the Web server” on page 125.
2. Create the plug-in configuration file, as described in “Creating the plug-in

configuration file” on page 125.
3. Copy the plug-in configuration file to the server, as described in “Copying the

plug-in configuration to the server” on page 127.

124 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Copying the LTPA key to the Web server
The LTPA key that is used by WebSphere Application Server on your point of
contact server must be shared with the server where the plug-in is installed.

Before you begin

Ensure that you have completed the following tasks:
v Installed the plug-in on the Web server.
v Completed the configuration of your point of contact server, as described in

“Configuring a WebSphere Application Server point of contact server (service
provider)” on page 111.

v Exported the LTPA keys from your point of contact server, as described in
“Exporting LTPA key from the point of contact server” on page 115.

v Verified that the time on the point of contact server and on the server to which
you are copying the LTPA key are synchronized.

Procedure
1. Copy the LTPA key, which should be named ltpa.keys, from the location to

which it was exported.
2. Paste the LTPA key in the webpi directory on the application server. For

example:

On an IHS or Apache server:
/opt/IBM/FIM/webpi/etc

On an IIS server:
C:\Program Files\IBM\FIM\webpi\etc

What to do next

Continue with “Creating the plug-in configuration file.”

Creating the plug-in configuration file
After you have installed the plug-in and prepared your environment to use the
plug-in, you must configure it with specific information about the Web applications
to be accessed by your single sign-on users.

Before you begin

To complete this task, you need the following information:
v The password that was used to encrypt the LTPA key when it was exported.
v The name and URL of each target application that is hosted by this server.
v The appropriate HTTP header and LTPA attribute mappings for your

environment. You must know which LTPA attribute you want to map to which
HTTP header or server variable. The HTTP header and server variables are those
expected by the target application.

v A list of cookies to remove if the LTPA cookie is missing or is not valid, which
usually indicates that the user is not a federated single sign-on user.

v A list of mappings between server variable names and LTPA token attribute
names. Server variables are an alternative mechanism for presenting LTPA
attributes to the application instead of using HTTP headers.

Note: The use of server variables is not supported on IIS.

Chapter 12. Configuring a Web server plug-in 125

For more information about HTTP header and LTPA attribute mappings and how
the plug-in functions in the environment, see Chapter 12, “Configuring a Web
server plug-in,” on page 117.

Procedure
1. Log on to the console.
2. Select Tivoli Federated Identity Manager > Manage Configuration > Web

Server Plugin Configuration. The Web Plugin Single Sign-on Configuration
panel opens.

3. Complete the information that is required for your server in the Web Server
Plug-in Single Sign-on Configuration and the Web Server Plug-in Logging
Configuration sections. See the online help for descriptions of the fields.

Note: Make sure the that the password you specify in the LTPA password
field matches the password you created when you exported the ltpa.keys file.

4. When you have completed all of the fields, click Save.
5. In the Web Server Plug-in Applications Configuration, define an application

to the single sign-on configuration by clicking Create. The Application
Properties panel opens.
a. Complete the information about the application that you want to make

available to your single sign-on users.
b. Click Apply.
c. Click HTTP Header to LTPA Attribute Mappings.
d. Accept the default settings by clicking Apply or modify the settings by

clicking Create.
e. When you have completed this panel, click Apply.
f. Click Client Cookies to be Removed.

g. Accept the default settings by clicking Apply or modify the settings by
clicking Create.

h. When you have completed this panel, click Apply.
i. Click Server Variables to LTPA Attribute Mappings.
j. Accept the default settings by clicking Apply or modify the settings by

clicking Create.
k. When you have completed this panel, take one of the following actions:

v If you want to add other applications, click Apply and then repeat the
preceding steps for each application until all additional applications have
been added.

v If you have completed the addition of the application to the server, click
OK.

6. Click Save.
7. Click Export Web Server Plug-in Configuration File. Then complete the

following steps:
a. Click Save in the pop-up window to save the configuration to a file called

itfimwebpi.xml.
b. Select the installation directory for your Web server plug-in. For example,

save itfimwebpi.xml to the /opt/IBM/FIM/webpi/etc directory.

What to do next

Continue with “Copying the plug-in configuration to the server” on page 127.

126 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Copying the plug-in configuration to the server
After you have created the plug-in configuration file, you must copy that
configuration to your Web server.

Procedure
1. Locate the configuration file that you created using the steps in “Creating the

plug-in configuration file” on page 125. The file is named itfimwebpi.xml and
was created in the directory that you specified when you exported the file.

2. Copy the file and then paste the file in the webpi directory on your Web server:

On an IHS or Apache server:
/opt/IBM/FIM/webpi/etc

On an IIS server:
C:\Program Files\IBM\FIM\webpi\etc

3. Restart your Web server for the changes to take effect.

What to do next

The configuration of your server is complete. Continue with the target application
configuration in “Configuring the target application” on page 128.

Verifying plug-in configuration on Apache or IBM HTTP Server
After you have configured the plug-in on an Apache HTTP Server or an IBM
HTTP Server, you can verify that the configuration was successful.

Before you begin

Before continuing with this task, ensure that you have completed the following
tasks:
v “Configuring a WebSphere Application Server point of contact server (service

provider)” on page 111
v “Configuring an IIS, IHS, or Apache server to host the application” on page 124

Procedure
1. On the server, locate the httpd.conf file. The location of this file is dependent

on your installation. For example:
/etc/httpd/conf/httpd.conf

2. Open the file in a text editor and locate the appropriate line for the plug-in you
are using:
Apache HTTP Server 2.2:
LoadModule fimwebpi_module /opt/IBM/FIM/webpi/lib/libitfimwebpi-apache22.so

Apache HTTP Server 2.0 or IBM HTTP Server:
LoadModule fimwebpi_module /opt/IBM/FIM/webpi/lib/libitfimwebpi-apache20.so

Make sure that the webpi module (libitfimwebpi-apache22.so or
libitfimwebpi-apache20.so) has write access to the log file path that is defined
in your plug-in configuration file (itfimwebpi.xml).

What to do next

Continue with the tasks in “Configuring the target application” on page 128.

Chapter 12. Configuring a Web server plug-in 127

Configuring the target application
As the service provider, your role in the federation is to provide a service, such as
a Web application, to the user.

About this task

As part of this role, ensure that the application (referred to as the target application)
that you are providing to the users is configured appropriately for use in a Tivoli
Federated Identity Manager environment:
v The application must be able to accept user identity information using an HTTP

headers or server variables.
v The Tivoli Federated Identity Manager environment and the application must be

in the same DNS domain.
v The application must be hosted by a supported Web server, such as:

– Microsoft Internet Information Services (IIS) server 6.0, with the Tivoli
Federated Identity Manager plug-in installed

– IBM HTTP Server 6.1, with the Tivoli Federated Identity Manager plug-in
installed

– Apache HTTP Server 2.0 or 2.2, with the Tivoli Federated Identity Manager
plug-in installed

– WebSphere Application Server version 5.1
– WebSphere Application Server version 6.0 or later

Note: You can also use the same instance of WebSphere Application Server
where you installed the Tivoli Federated Identity Manager runtime
component as the server to host your target application. The version of that
WebSphere Application Server is either:
- WebSphere Application Server version 6.1 with fix pack 15
- The embedded version of WebSphere Application Server, which came with

Tivoli Federated Identity Manager

For information about configuring your target application, see the documentation
for the server that will host the application. For example, if you are hosting your
target application on WebSphere Application Server, see the Information Center for
the version of WebSphere Application Server you are using from the library at
http://www.ibm.com/software/webservers/appserv/was/library/.

Configuring the login for your application
Before using Tivoli Federated Identity Manager, you probably used a login method
that was specific to your application. For example, you might have provided a
URL to your users that directed them to a login form or required client
authentication. In your Tivoli Federated Identity Manager environment, your
identity provider partner is responsible for authenticating users. Depending on the
configuration of your federation, you need to either direct your users to a new
URL (such as one hosted by your identity provider partner) or by redirecting users
from your site to the appropriate login method used by your identity provider
partner.

128 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.ibm.com/software/webservers/appserv/was/library/

About this task

Discuss login requirements with your identity provider partner. Then, ensure that
your environment is configured appropriately to send your users to the
appropriate login location.

Instructing users to enable cookies
Users must enable cookies in their browsers when using single sign-on to a service
provider who is using WebSphere Application Server as its point of contact server.

About this task

Advise users to follow the instructions for enabling cookies for their browsers.

Chapter 12. Configuring a Web server plug-in 129

130 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 13. Setting up the alias service database

SAML 2.0 supports the use of name identifiers (aliases) for communication of user
identities between partners. Aliases are intended to increase the privacy of the user
when that user accesses resources at a service provider. When aliases are used, an
identifier that both the identity and service provider recognize is sent instead of
the actual account name of the user. Aliases are created and recorded during
account linkage (federation). After account linkage, the alias is in all messages that
are sent between the partners. A different alias is used with each partner. The alias
used in one direction, such as from identity provider to service provider, can be
different from the alias that is used in the other direction, such as from service
provider to identity provider.

About this task

Note: The use of aliases is optional in SAML 2.0.

The default setting for the alias service is to use persistent IDs.

A service in Tivoli Federated Identity Manager, called the alias service, generates
new aliases, associates aliases with local users, and performs mapping from alias to
user and from user to alias.

Most aliases are persistent and must be retained for a long time. Therefore, some
type of database must be used to store them. You have two options for the type of
database you can use:
v JDBC database, such as the Derby database in WebSphere Application Server
v LDAP database, such as IBM Tivoli Directory Server, which is available

separately

The tasks you must perform to set up your alias service database depend on
whether you installed the embedded version of WebSphere Application Server, or
are using an existing version of WebSphere Application Server with your
installation of the Tivoli Federated Identity Manager Runtime and Management
Services component.

Embedded version of WebSphere
Your database options are:
v JDBC database

If you installed the embedded version of WebSphere Application Server,
a JDBC database, Cloudscape 10, also known as Derby, was configured
on WebSphere Application Server to be used for storing alias
information. No further tasks for setting up the database are required.

v LDAP database

You have the option of using an LDAP database, such as IBM Tivoli
Directory Server, that you have purchased, installed, and configured
separately from Tivoli Federated Identity Manager. See the information
in “Configuring an LDAP alias service database” on page 134. Then, to
use that LDAP database with Tivoli Federated Identity Manager, you
must modify the alias service settings, as described in “Modifying alias
service settings” on page 134.

© Copyright IBM Corp. 2006, 2013 131

Existing version of WebSphere Application Server
Your database options are:
v JDBC database

If you installed Tivoli Federated Identity Manager on an existing version
of WebSphere Application Server, and you want to use a JDBC database,
you must manually create and configure the database, using a procedure
similar to the procedures below for Cloudscape 10 (Derby), as described
in “Configuring a JDBC alias service database.” (As previously stated, if
you installed the embedded version of WebSphere Application Server,
these steps were performed automatically and are already completed.)

v LDAP database

You have the option of using an LDAP database, such as IBM Tivoli
Directory Server, that you have downloaded, installed, and configured
separately from your Tivoli Federated Identity Manager. See the
information in “Configuring an LDAP alias service database” on page
134. Then, to use that LDAP database with Tivoli Federated Identity
Manager, you must modify the alias service settings, as described in
“Modifying alias service settings” on page 134.

Configuring a JDBC alias service database
If you installed Tivoli Federated Identity Manager on an existing version of
WebSphere Application Server and you want to use a JDBC database, you must
manually create and configure the database. If you installed the embedded version
of WebSphere Application Server, these steps were performed automatically and
are already completed.

About this task

The following instructions describe how to create and use the JDBC Derby
database that is provided with WebSphere Application Server. The Derby database
is created by an Apache tool called ij. It is implemented with the Java class
org.apache.derby.tools.ij.

Procedure
1. Create the FIMAliases database and import the schema:

a. Open a command prompt and start the ij tool, which is located in the
/derby/bin/embedded directory where you installed WebSphere Application
Server.

On AIX, Linux, or Solaris
Type $was_home/derby/bin/embedded/ij.sh.

On Windows
Type $was_home/derby/bin/embedded/ij.bat.

b. From the ij command line, create the database and the schema by typing the
following commands:
connect ’jdbc:derby:FIMAliases;create=true’;
run ’/opt/IBM/FIM/etc/Table.ddl’;
quit;

Note: The location of the Table.ddl file is in the installation directory of
Tivoli Federated Identity Manager. If you used a different installation

132 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

directory, use that path with the run command. On Windows, the default
installation directory is C:\Program Files\IBM\FIM.

2. Verify the database and schema:
a. Open a command prompt and locate the $was_home/derby/FIMAliases

directory.
b. Verify that the SQL file output contains the FIMAliases schema.

On AIX, Linux, or Solaris
Type $was_home/derby/bin/embedded/dblook.sh -d
jdbc:derby:FIMAliases -o FIMAliase.sql.

On Windows
Type $was_home/derby/bin/embedded/dblook.bat -d
jdbc:derby:FIMAliases -o FIMAliases.sql.

3. Create the Derby embedded JDBC provider and data source:
a. Open the WebSphere administration console.
b. Click Resources > JDBC > JDBC Providers.
c. Set the scope to Cell, for example Cell=myhostNode01Cell, from the Scope

setting list.
d. Click New.
e. Complete the required fields as follows:

Database type
Select Derby.

Provider type
Select Derby JDBC Provider.

Implementation type
Select Connection pool data source.

Name Use a name to indicate that this entry is the JDBC provider of the
alias service for Tivoli Federated Identity Manager.

For example, use ITFIM Alias Service JDBC Provider.
f. Click Next.
g. Click Finish.

4. Create a data source for this JDBC provider:
a. In the WebSphere administration console, click Resources > JDBC > JDBC

Providers > ITFIM Alias Service JDBC Provider > Data sources > New.
b. Complete the required fields as follows:

Database source name
Type a name that identifies the data source, such as ITFIM Alias
Service Datasource.

JNDI name
Type jdbc/IdServiceJdbc.

Attention: Use this name exactly as shown so that the mappings
between the alias service and the data source occurs automatically.

c. Click Next.
d. Provide a name for the database, such as FIMAliases.
e. Click Next.
f. Click Finish.

Chapter 13. Setting up the alias service database 133

5. To verify the connection to the database, select the data source you configured
and click Test connection.

Modifying alias service settings
You can modify the setting for your name identifier database in the Integrated
Solutions Console.

About this task

To modify the setting for your name identifier database:

Procedure
1. Log on to the console. The Alias Service Settings portlet opens.
2. Select Tivoli Federated Identity Manager > Manage Configuration > Alias

Service Settings.
3. Select JDBC Provider and Data Source

Use this option if you use a JDBC database to store name identifier
information.

4. Click Apply.
5. Click OK.

Configuring an LDAP alias service database
If you install Tivoli Federated Identity Manager with embedded WebSphere, a
JDBC database is the default setting for an alias service database in Tivoli
Federated Identity Manager. However, you can use an LDAP database instead.

Before you begin

If you install Tivoli Federated Identity Manager with an existing WebSphere
deployment, you might already have an LDAP database in use as a user registry.
When using WebSEAL as the point of contact server, you are installing into an
environment that includes Tivoli Access Manager. The most common LDAP
deployment with Tivoli Access Manager is IBM Tivoli Directory Server.

The Tivoli Federated Identity Manager alias service stores alias information in a
user registry. The alias service supports the following user registries:
v IBM Tivoli Directory Server
v Sun ONE

Note:

You can write your own alias service for use with other registries, such as Lotus®

Domino® or Microsoft Active Directory.

The alias service requires a location in LDAP to store the necessary information,
and the Tivoli Federated Identity Manager runtime and management services
feature needs an account on the LDAP server to search for alias information.

If you do not have an LDAP database installed already, you must install an LDAP
product to use the alias service.

134 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

If you need LDAP, you could use the IBM Tivoli Directory Server product, which
can be downloaded from http://www-306.ibm.com/software/tivoli/resource-
center/security/code-directory-server.jsp.

About this task

If you use an LDAP database, the following configuration tasks are required:
v “Using tfimcfg to configure LDAP for the alias service”

Tivoli Federated Identity Manager provides a utility that automates this process,
when used with either IBM Tivoli Directory Server or Sun ONE Directory
Server.Configuring the LDAP user registry for the alias service

v “Creating an LDAP suffix” on page 138
v “Modifying alias service settings” on page 134

Using tfimcfg to configure LDAP for the alias service
Use the tfimcfg utility to automate the LDAP configuration for the alias service.

About this task

This installation guide instructs you to run tfimcfg for the purpose of configuring
the alias service.

The tfimcfg uses a data file called ldapconfig.properties to decide which actions to
take. You can modify the tfimcfg behavior by using a text editor to modify values
in this file. You can specify whether or not specific sets of LDAP properties are
defined. For each set that you create, you can specify the values of the individual
properties.

In order for tfimcfg to configure LDAP programmatically, the utility must know
some LDAP information, such as the LDAP hostname, LDAP port number, and
administrator account information. The ldapconfig.properties file contains entries
for each of these properties. Default values are provided. You must modify the
values to fit your deployment environment.

The following steps list the properties for which you should define a value.

Procedure
1. Obtain a copy of ldapconfig.properties. You can view the file contents by either:

v Viewing the default file listing in Appendix A, “tfimcfg reference,” on page
753

v Accessing your installation software (CD or installation directory), and
viewing the default file:

AIX, Solaris, or Linux

/opt/IBM/FIM/tools/tamcfg/ldapconfig.properties

Windows

C:\Progra~1\IBM\FIM\tools\tamcfg\ldapconfig.properties

2. Specify whether tfimcfg adds suffixes to the LDAP server as needed.
Default:
ldap.suffix.add=true

Chapter 13. Setting up the alias service database 135

http://www-306.ibm.com/software/tivoli/resource-center/security/code-directory-server.jsp
http://www-306.ibm.com/software/tivoli/resource-center/security/code-directory-server.jsp

The tfimcfg utility adds a number of suffixes, based on other settings in the
ldapconfig.properties file. If you want to override the creation of any suffixes,
set this value to false.
The suffixes that can be created are:
v A suffix for the hierarchy to hold alias service information (user identity

aliases)
Default: cn=itfim

v A suffix for use by the Tivoli Access Manager servers
Default: secAuthority=Default

v A suffix for a hierarchy for storing user and group information
Default: dc=com

3. Specify whether tfimcfg creates LDAP containers to store Tivoli Federated
Identity Manager server users and groups.
The Tivoli Federated Identity Manager users and groups are:
Default:
ldap.suffix.user.configuration=true
ldap.organization.configuration=true

v When ldap.suffix.user.configuration=true, tfimcfg adds an LDAP suffix
dc=com and creates an object for it. The utility also sets additional properties
as specified in ldapconfig.properties. The list of properties, with their default
values, is:
ldap.suffix.user.dn=dc=com
ldap.suffix.user.name=com
ldap.suffix.user.attributes=dc
ldap.suffix.user.objectclasses=domain

v When ldap.organization.configuration=true, tfimcfg sets additional
properties. The properties are specified in ldapconfig.properties. The list of
properties, with their default values, is:
ldap.user.container.dn=cn=users,dc=example,dc=com
ldap.group.container.dn=cn=groups,dc=example,dc=com
ldap.organization.dn=dc=example,dc=com
ldap.organization.name=example
ldap.organization.attributes=dc
ldap.organization.objectclasses=domain
ldap.user.objectclasses=person,organizationalPerson,inetOrgPerson
ldap.group.objectclasses=groupOfUniqueNames
ldap.user.shortname.attributes=cn,sn,uid

You can use a text editor to modify the values for these LDAP containers.
4. Specify whether tfimcfg creates an LDAP suffix to store single sign-on aliases.

Default:
ldap.suffix.alias.configuration=true

When you do not want the utility to specify a new suffix, set this to false.
When this property is set to true, tfimcfg uses the value set in the following
property:
ldap.suffix.alias.dn=cn=itfim

You can use a text editor to modify the DN value. This value of this property
must begin with cn=.

5. Specify whether tfimcfg creates the secAuthority=Default suffix for Tivoli
Access Manager.

136 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

This suffix is used by Tivoli Access Manager to define an LDAP hierarchy for
use by the Tivoli Access Manager servers. This suffix is typically created by the
Tivoli Access Manager installation scripts. The tfimcfg utility adds the suffix if
it does not already exist.
Default:
ldap.suffix.tam.configuration=true

v When you have already configured Tivoli Access Manager set this value to
false.

v When Tivoli Access Manager is not using this LDAP server, set this value to
false.

Note: When the secAuthority=Default suffix already exists, the tfimcfg
program ignores the value of the ldap.suffix.tam.configuration property.

6. Specify whether tfimcfg configures LDAP for the Tivoli Federated Identity
Manager alias service.
Default:
ldap.fim.configuration=true

Default value: true.
When this value is true, tfimcfg sets the following properties, as specified in
ldapconfig.properties:
v The distinguished name, short name, and password that the Tivoli Federated

Identity Manager server (runtime and management service) uses to bind to
the LDAP server. Defaults:
ldap.fim.server.bind.dn=uid=fimserver,cn=users,dc=example,dc=com
ldap.fim.server.bind.shortname=fimserver
ldap.fim.server.bind.password=passw0rd

v The distinguished name and short name for the group to which the user
identity for the Tivoli Federated Identity Manager server (fimserver) belongs.
Defaults:
ldap.fim.admin.group.dn=cn=fimadmins,cn=groups,dc=example,dc=com
ldap.fim.admin.group.shortname=fimadmins

The tfimcfg utility then adds the user:
uid=fimserver,cn=users,dc=example,dc=com

to the group:
cn=fimadmins,cn=groups,dc=example,dc=com

7. Specify whether tfimcfg attaches appropriate ACLs (access control lists) to the
LDAP server.
Default:
ldap.modify.acls=true

When this is set to false, you must attach the ACLs manually.
These ACLs grant read and write access to the Tivoli Federated Identity
Manager administrative users created by tfimcfg.
For example, when ldap.modify.acls=true, and tfimcfg is run using the default
values for creation of suffixes, ACLs are set for the following suffixes:
v cn=itfim
v secAuthority=Default
v dc=com

Note: tfimcfg attaches ACLs for IBM LDAP and Sun ONE servers. For other
LDAP servers, you must attach the ACLs manually.

Chapter 13. Setting up the alias service database 137

8. Specify values for each property that describes your LDAP deployment.
Default values are provided for most properties. Modify the properties to
match your deployment. When LDAP security is enabled, enter the name of the
Java keystore that contains the certificate used for SSL, and enter the password
to be used by the Tivoli Federated Identity Manager management service.

Table 13. LDAP properties to modify for tfimcfg

Property Description Your value

ldap.hostname The system that hosts the LDAP server. Default
value is localhost.

ldap.port The LDAP port. Default value is 389 for non-SSL
communication.

ldap.admin.dn LDAP administrator name. Default: cn=root

ldap.admin.password The password for the LDAP administrator

ldap.security.enabled Boolean value that specifies whether LDAP
security is enabled. This value is disabled by
default.

ldap.security.trusted.jks.filename The name of the Java keystore that contains the
signer of the LDAP-presented SSL certificate that
LDAP presents during trusted communications.
There is no default entry.

ldap.fim.server.bind.password The password for servers that communicate with
the LDAP servers. Change the default to values
used in your deployment.

9. To configure the LDAP server, see Appendix A, “tfimcfg reference,” on page
753.

Creating an LDAP suffix
You must create an LDAP suffix, such as cn=itfim, to enable the alias service to
access the LDAP user registry.

Before you begin

The following instructions are for IBM Tivoli Directory Server. Make sure you have
installed IBM Tivoli Directory Server and completed initial configuration as
described in its documentation before continuing with the following steps.

Procedure
1. Stop the IBM LDAP server.

AIX, Linux, or Solaris:
ibmdirctl -D cn=root -w passw0rd stop

Windows
Use the Services icon.

2. Add the suffix: # idscfgsuf -s "cn=itfim".
3. Start the IBM LDAP server.

AIX, Linux, and Solaris:
ibmdirctl -D cn=root -w passw0rd start

Windows
Use the Services icon.

4. Use ldapmodify to update the LDAP schema file. For example, on Linux:

138 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

ldapmodify -D cn=root -w passw0rd -f
/opt/IBM/FIM/etc/itfim-secuser.ldif

Planning configuration of the alias service properties
Use these instructions to specify the alias service properties for accessing one or
more LDAP servers.

About this task

The alias service manages aliases by accessing an LDAP user registry. The alias
service needs to know a number of pieces of information about the LDAP
environment in which it operates. The management console provides a GUI
interface that you can use to specify the necessary properties. The properties are
stored in a Tivoli Federated Identity Manager property file specific to the current
Tivoli Federated Identity Manager domain.

This topic describes the properties that you need to specify. It also provides a
worksheet that you can use to enter the values for your environment. For many
properties, you can use a default value.

The value to set for some of the properties correspond to values that you specified
previously, when you planned the use of the tfimcfg utility. At that time, you
identified values to edit in the file ldapconfig.properties. The tables in the
following task sequence identify the GUI fields with values that should match the
properties in ldapconfig.properties.

Procedure
1. Determine the value for the LDAP search property.

The following table describes the Root suffix, the LDAP search property that is
configurable through the GUI. You can expedite the configuration by
identifying at this time the appropriate value for your deployment
environment.

Table 14. LDAP Search property

Property Description Your value

Root suffix Specifies the root suffix where alias settings are written. This property
can have one value (suffix) only.

The value of this property matches the value for the following
property in ldapconfig.properties:

ldap.suffix.alias.dn

For example: cn=itfim.

2. Determine values for LDAP environment properties.

Chapter 13. Setting up the alias service database 139

Table 15. LDAP environment properties

Property Description Your value

SSL Enabled A check box that specifies whether communication between the alias
service and the LDAP servers should be secured using Secure Socket
Layer (SSL). When the LDAP servers are configured to use SSL, the
alias service must use SSL when communicating with them.

This value of this property corresponds to the value for the following
property in ldapconfig.properties:

ldap.security.enabled

When using SSL, the SSL Enabled check box should be selected, and
the value of ldap.security.enabled should be true.

Keystore When the SSL Enabled check box is selected, you must select a
keystore from the Keystore menu list. The selected keystore is the
name of the trusted keystore containing the CA certificate of the LDAP
server.
Note: The certificate authority certificates for all LDAP servers must
be in the same keystore.

This value of this property corresponds to the value for the following
property in ldapconfig.properties:

ldap.security.trusted.jks.filename

3. Determine values for LDAP server properties

Table 16. LDAP server properties

Property Description Your value

LDAP
Hostname

The LDAP Hosts box lists the configured servers in order of preference. The
alias service tries first to contact the server at the start (top) of the list. If
that contact is unsuccessful, the alias service attempts to contact the next
server on the list.

This value of this property includes the value for the following property in
ldapconfig.properties:

ldap.hostname

The ldapconfig.properties file holds only one value for this property, but
you can specify multiple values for LDAP Hostname.

Port The port on which the LDAP server listens.

This value of this property matches the value for the following property in
ldapconfig.properties:

ldap.port

Default port for non-SSL communication: 389

Default port for SSL communication: 636

Bind DN The distinguished name (DN) that the alias service uses to bind to the
LDAP server.

This value of this property matches the value for the following property in
ldapconfig.properties:

ldap.fim.server.bind.dn

The GUI panel provides a default of cn=root. However, root access is not
required to complete the bind. You can specify the DN of the alias service.
Default value: uid=fimserver

140 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 16. LDAP server properties (continued)

Property Description Your value

Bind Password The password for the DN specified in the Bind DN field.

This value of this property matches the value for the following property in
ldapconfig.properties:

ldap.fim.server.bind.password

Mode The default is read-write.

When you configure multiple LDAP servers, typically only one should be
read-write. In this scenario, the other LDAP servers are typically deployed
for failover purposes, and are expected to have read-only copies of the user
registry.

Minimum
number of
connections

The initial number of connections (binds) for the alias service to establish to
the LDAP server. The minimum valid number is zero (0). The maximum
valid number is limited only by the maximum value supported by the data
type.

The default value is 2. Use the default value unless you have a specific need
to increase it.

Maximum
number of
connections

The maximum number of connections (binds) for the alias service to
establish to the LDAP server. The maximum valid number is limited only by
the maximum value supported by the data type.

The default value is 10. Use the default value unless you have a specific
need to increase it.

Modifying alias service settings for LDAP
Learn about modifying the setting for your name identifier database

Procedure
1. Log on to the console. The Alias Service Settings portlet opens.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Alias

Service Settings.
3. Select LDAP.

Specify the properties that you put in the worksheet in “Planning configuration
of the alias service properties” on page 139

4. If you select SSL for communication with the LDAP, select the name of the
trusted keystore containing the CA of the LDAP server. If you have not moved
the LDAP CA to the Tivoli Federated Manager key service yet, you can retrieve
the certificate over SSL as follows:
a. In the console, select Tivoli Federated Identity Manager > Key Service.
b. Select the truststore where you want to store the certificate in the Keystore

table. The View Keys button is activated.
c. Click Retrieve Certificate from SSL Connection. The Password panel

opens.
d. Type your truststore password.
e. Click OK.
f. Complete the fields to specify the host name and port name from which you

retrieve the certificate.
(Optional) Click Show Signer Info to view the certificate before retrieving.

Chapter 13. Setting up the alias service database 141

g. Complete the Alias field with the name you want to use for the certificate.
Then, click OK. The certificate is added to the truststore.

5. Click Apply.
6. Click OK.

Configuring Oracle alias service database
You can configure IBM Tivoli Federated Identity Manager to use Oracle as the alias
service.

About this task

The instructions describe how to configure IBM Tivoli Federated Identity Manager
for use of Oracle as the alias service.

Procedure
1. Create a backup of the itfim.ear file. Use the commands:

mkdir /tmp/work

rm FIM_INSTALL_DIR/pkg/release/itfim.ear

2. Modify the EAR to be Oracle-aware for deployment. Use the commands:
mkdir /tmp/work

rm FIM_INSTALL_DIR/pkg/release/itfim.ear

WEBSPHERE_INSTALL_DIR/AppServer/bin/ejbdeploy.sh FIM_INSTALL_DIR/pkg/
release/itfim-orig.ear /tmp/work FIM_INSTALL_DIR/pkg/release/itfim-
oracle.ear -dbschema FIMAliasesSchema -dbname FIMAliases -dbvendor
ORACLE_V10G -trace

cp FIM_INSTALL_DIR/pkg/release/itfim-oracle.ear FIM_INSTALL_DIR/pkg/
release/itfim.ear

rm -rf /tmp/work

3. A new FIM_INSTALL_DIR/pkg/release/itfim.ear is available for deployment to
work with Oracle. Use a text editor to update the file FIM_INSTALL_DIR/pkg/
software.properties to change the property
com.tivoli.am.fim.rte.software.serialId to a different value for example,
increment.

4. Use the IBM Tivoli Federated Identity Manager console to navigate to Tivoli
Federated Identity Manager > Domain Management > Runtime Node
Management A message indicating that a new run time is available for
deployment.

5. Use the console to deploy the new run time.
6. Restart the WebSphere process where the run time is deployed.

142 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 14. Planning the mapping of user identities

Plan the mapping of user identities appropriate to your deployment.

Task overview:
1. Read this series of topics on the mapping of user identities
2. Review the default mapping rules files for your protocol. Decide if you can use

them, either as they are, or by making your own modifications as appropriate
for your deployment.

3. If the requirements for your deployment cannot be met by the use of a
mapping rule, you can choose one of the succeeding options:
v Use the Tivoli Directory Integrator mapping module that is provided

withTivoli Federated Identity Manager.
v Develop a custom mapping module.

A primary function of the Tivoli Federated Identity Manager trust service is the
transfer of user identity information (credentials) between partners in a single
sign-on federation. This transfer requires changing user identity information
formats several times to move between formats local to each partner and the
agreed token format for exchanging credentials.

The identity information transfer includes an identity mapping step where the user
information is mapped from the structure provided by one credential or token
type, into the required structure by another token type.

To complete this mapping step, choose one of the succeeding options:
v Write an identity mapping rule
v Deploy the Tivoli Directory Integrator mapping module

Use of this module requires an understanding of the Tivoli Directory Integrator
features and configuration. See the product documentation for Tivoli Directory
Integrator.
Tivoli Federated Identity Manager provides a user interface for setting some
configuration properties. See “Tivoli Directory Integrator identity mapping
module” on page 151.

v Develop a custom mapping module.
Building your own module that is tailored to the needs of the applications in
your deployment is a development task. See “Creating a custom mapping
module” on page 162.

If you choose to write an identity mapping rule, use the eXtensible Stylesheet
Language (XSL), and save it to disk as an XSL file. When you create a federation,
the federation wizard prompts you to supply the name of your mapping rule file.
The wizard imports this file into the configuration for the federation.

Each identity mapping rule file is specific to a particular role and a particular
federation. For example, when you create a SAML federation for an identity
provider, use a different mapping rule from the rule you use to create a SAML
federation service provider. The identity mapping rule for a Liberty federation is
also different from the mapping rule for a SAML federation on an identity
provider.

© Copyright IBM Corp. 2006, 2013 143

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

You must create and save a mapping rule file before you create a federation.

Note: An identity mapping rule specifies the attributes that are associated with a
user credential. Users can access multiple applications after they authenticate, so
you must make sure that your rule sets the appropriate attributes for all of the
applications that the user accesses.

The Tivoli Federated Identity Manager management console provides a Federation
wizard that guides you through the configuration of a single sign-on federation.
The wizard contains an Identity Mapping panel, which prompts the administrator
to supply the name of an identity mapping rule file. The wizard imports the file,
and uses it when building the configuration for the trust module chain that is
specific to the federation.

The administrator must create the identity mapping file before using the wizard to
configure the federation. The wizard panel expects that the administrator has
created an eXtensible Stylesheet Language (XSL) file that describes identity
mapping rules. The identity mapping rules are used to convert information that
must move across the federation between the partners (identity provider and
service provider). Each identity mapping rule must provide:
v The information structure that is required by the security token to be generated.
v The information content (identity attributes) that is required by applications that

use the federation.

To write an identity mapping rule, you must understand:
v The role of the identity mapping module.
v The expression of user identity information in XML files.
v The use of the XSL language to specify rules for manipulating the user identity

information.

Identity mapping overview
When exchanging security tokens with partners, it is not enough to understand the
different token standards. It is important to know what information a particular
partner is expecting in tokens from your site, and what information you expect to
receive from partners. You can use the Tivoli Federated Identity Manager identity
mapping and trust service to customize the format and content of incoming and
outgoing tokens to meet the requirements of each partner.

In a single sign-on federation, an identity provider authenticates the user. This
authentication creates user credentials in the identity provider environment. For
example, an identity provider might require users to authenticate with a user name
and password. The user information is validated against the user registry of the
identity provider. Then, a local credential that contains group membership data
along with optional attributes about the user is created.

In the most typical use case of SAML 2.0, the user name is not carried by the
assertion. Instead, the user is represented by an alias.

A service provider also has specific requirements for its user credentials, which
users must access applications. In many cases, the credentials that the service
provider requires, differ in format or content from the credentials created by the

144 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

identity provider. For example, the service provider might want a specific attribute
to be included in the credential, such as the social security number of the user.
Therefore, the identity credentials must be mapped between the identity provider
and the service provider.

In Tivoli Federated Identity Manager, on the identity provider side, the locally
authenticated user (the input identity) can be mapped to a different user before the
creation of the single sign-on token (the output identity). Similarly, on the service
provider side, the identity that is received from the sign-on token (the input
identity) can be mapped to a local identity that is needed for access to service
provider applications (the output identity). The mapping process is shown in
Figure 7.

Several methods can be used during the user mapping activity to achieve the
required output identity. For example, hard-coded information can be added to the
outgoing token. Or Java code can be developed and used to acquire information
from external sources and that information can be added to the outgoing token.
This flexibility is achieved through identity mapping rules that are defined in either
of two ways:
v An eXtensible Stylesheet Language Transformation (XSLT) file and processed by

the Tivoli Federated Identity Manager Identity Mapping module.
v A custom mapping module that you create using Java.

Before you decide which method to use, you must understand the following
factors:
v how user identities are represented in Tivoli Federated Identity Manager
v how tokens are processed, and
v how identities are mapped between partners.

Security Token Service (STS) Universal User document

To ensure that an incoming token can be converted properly into an outgoing
token that contains the content and format that is required by the partner, Tivoli
Federated Identity Manager creates an intermediate document in a generic XML

Figure 7. Example of identity mapping

Chapter 14. Planning the mapping of user identities 145

format that holds identity information. This document is called the STS Universal
User or STSUU. The STSUU document contains three sections:
v Principal information
v Group information
v Attribute information

To create the STSUU document, Tivoli Federated Identity Manager uses an XML
schema that specifies the structure. The schema is defined in the file stsuuser.xsd.
The following code sample contains the entire contents of the secure token service
universal user XML schema.

146 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Although the schema is used as the base for all STSUU documents, the exact
information contained in any specific STSUU document is dependent on the token

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:ibm:names:ITFIM:1.0:stsuuser"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser"
elementFormDefault="qualified">

<xsd:element name="STSUniversalUser">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="Principal" type="stsuuser:PrincipalType"
minOccurs="1" maxOccurs="1"/>

<xsd:element name="GroupList" type="stsuuser:GroupListType"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="AttributeList" type="stsuuser:AttributeListType"
minOccurs="0" maxOccurs="1"/>

<xsd:element name="RequestSecurityToken" type="stsuuser:RequestSecurityTokenType"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
<xsd:attribute name="version" type="xsd:string" use="required"/>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="PrincipalType">
<xsd:sequence>
<xsd:element name="Attribute" type="stsuuser:AttributeType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="RequestSecurityTokenType">
<xsd:sequence>
<xsd:element name="Attribute" type="stsuuser:AttributeType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AttributeType">
<xsd:sequence>
<xsd:element name="Value" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:string" use="optional" />
<xsd:attribute name="nickname" type="xsd:string" use="optional" />
<xsd:attribute name="preferEncryption" type="xsd:boolean" use="optional" />

</xsd:complexType>

<xsd:complexType name="AttributeListType">
<xsd:sequence>
<xsd:element name="Attribute" type="stsuuser:AttributeType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GroupListType">
<xsd:sequence>
<xsd:element name="Group" type="stsuuser:GroupType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GroupType">
<xsd:sequence>
<xsd:element name="Attribute" type="stsuuser:AttributeType"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required" />
<xsd:attribute name="type" type="xsd:string" use="optional" />
</xsd:complexType>

</xsd:schema>

Figure 8. STS Universal User document schema

Chapter 14. Planning the mapping of user identities 147

type for the security token that was used as input. The information required in an
STSUU document after transformation by identity mapping depends on:
v The token type to be generated.
v The specific mapping rule being used for the conversion.

During token processing for a typical single sign-on configuration, two STSUUs are
created. One is an input STSUU, which is created from the original input token.
The other is an output STSUU, which is created after the identity mapping rules
are applied. For more information, see “Token processing.”

Token processing

In a typical single sign-on configuration, tokens are processed by the Tivoli
Federated Identity Manager trust service and three specific types of modules.
When used in combination, the modules are referred to as a trust chain. Figure 9
provides a diagram of token processing. The input to the trust chain is the input
security token. This token is created using the local credentials that are received
when a user logs in.

The first module in the trust chain converts the input token to an STSUU
document. All attributes that are in the input token are available in the STSUU
document. The STSUU document is now used as input to the identity mapping
module. This module can be the Tivoli Federated Identity Manager mapping
module that is used with an XSLT file. Or it can be a custom mapping module that
you have created.

A given mapping module might be used in common for many partners in the
federation or one that is unique to a specific partner. The output of the mapping
module is another STSUU document. This "output" STSUU document is used as
input to the third token module, which converts the "output" STSUU to the output
token. The output token is then sent to the partner.

Figure 9. Token processing

148 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Use of XSL language for creating mapping rules files
The identity mapping module uses the Java API for XML Parsing (JAXP) to
transform the input document. The transformation is done based on XSL stylesheet
that you specify in an XSL file.

XSL is a language that can be used to transform and format documents. XSL is
used to define style sheets for HTML and to format XML data, so that it can be
shown in a web browser. Part of the XSL standard defines transformations for
moving data from one form to another. The transformation language can include
conditional statements, variables, and callouts to Java programs.

The trust service uses XSL to create mapping rules. The mapping rules created
specify how to transform an input STS universal user document into an output
STS universal user document. The output STS universal user document is used as
input to the next module in the chain. This module is often used to generate an
output token, but it can also be another mapping module. The XSL parser
processes XSL documents by looking for matching templates. When a template is
found, the contents of the template are processed.

The main tasks that are performed in mapping rules are:
v Moving identity information between elements.
v Reformatting existing identity information.
v Adding new elements with new identity information.
v Removing unwanted identity information.

You can use the IBM Rational® Application Developer tool set to run an XSL
debugger from a command line. Use the developer tool set to test your XSL code
without running the trust service.

Tivoli Federated Identity Manager provides two sets of sample identity mapping
files. The first set shows the minimum contents of each type of mapping, while the
second set does advanced functionality that is used in the demonstration
application.

The location of the basic mapping files is:
/opt/IBM/FIM/examples/mapping_rules/

The following table lists the example mapping rules files.

Table 17. Example mapping rules

File name Mapping description

ip_liberty.xsl Maps a Tivoli Access Manager credential or a local user
identity to a Liberty token.

ip_saml_1x.xsl Maps a local user identity to a SAML 1.0 or SAML 1.1
token.

ip_saml_20.xsl Uses a token to maps a local user identity to a SAML
2.0 token.

ip_saml_20_email_nameid.xsl Uses the email address of the user for the identity
without an alias, to map a local user identity to a SAML
2.0 token .

ip_wsfederation.xsl Maps a Tivoli Access Manager credential or a local user
identity to a SAML token.

Chapter 14. Planning the mapping of user identities 149

Table 17. Example mapping rules (continued)

File name Mapping description

ip_infocard.xsl Maps an incoming token or a local user identity to a
SAML 1.1 token. The primary purpose of this rule is to
populate the requested claims attributes with values.

ip_openid.xsl Maps an IVCred token or a local user identity to a
Security Token Service Universal User (STSUU) token.
The primary purpose of this rule is to populate
requested attributes (SREG and AX) and to act on
requested PAPE policies.

rp_infocard.xsl Maps a SAML 1.1 token or a local user identity to an
IVCred token.

sp_liberty.xsl Maps a Liberty token to a Tivoli Access Manager
credential or a local user identity.

sp_saml_20.xsl Maps a SAML 2.0 token to a local user identity.

sp_saml_1x.xsl Maps a SAML 1.0 or 1.1 token to a local user identity.

sp_saml_1x_ext.xsl Maps a SAML 1.0 or 1.1 token to a local user identity
and verifies that the authentication method is an
acceptable one. It demonstrates that the service provider
can require the authentication at identity provider to be
at a certain level. In this mapping rule, password
authentication is not accepted. It produces an error if
password authentication was used.

sp_wsfederation.xsl Maps a SAML token to a Tivoli Access Manager
credential or a local user identity.

sp_tagvalue.xsl Maps a SAML token to a Tivoli Access Manager IV
Cred credential with WebSEAL tag/value attributes or a
local user identity.

username_ivcred.xsl Maps a Username token to a Tivoli Access Manager
credential or a local user identity.

sp_oauth_10.xsl Supports OAuth 1.0 flow.

sp_oauth_20.xsl Supports OAuth 2.0 flow.

Note: For more information about the sample mapping rules for each protocol, see
the protocol-specific configuration instructions in this guide.

The demonstration application provides sample XSL identity mapping rules files.
These files expand upon the minimal mapping rules described in the preceding
table to perform mapping that is customized for the user accounts. The
demonstration application configuration scripts create the user accounts.

The location of the sample mapping scripts for the demonstration application is:
/opt/IBM/FIM/examples/demo/demo_rules/

Note: The file names are the same as the minimal mapping rules, but the files are
located in different directories.

The sample mapping files are automatically installed during installation.

The following table lists the files for each federation type on each provider type.

150 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 18. Sample mapping rules files for the demonstration application

Provider Federation Type Mapping rule file

Identity
Provider

Liberty ip_liberty.xsl

SAML 1.0 ip_saml_10.xsl

SAML 1.1 ip_saml_11.xsl

SAML 2.0 ip_saml_20.xsl

WS-Federation ip_wsfederation.xsl

Information Card ip_openid.xsl

OpenID ip_infocard.xsl

Service
Provider

Liberty sp_liberty.xsl

SAML 1.0 or 1.1 sp_saml_1x.xsl

SAML 2.0 sp_saml_20.xsl

WS-Federation sp_wsfederation.xsl

Information Card rp_infocard.xsl

OpenID sp_openid.xsl

OAuth 1.0 sp_oauth_10.xsl

OAuth 2.0 sp_oauth_20.xsl

Tivoli Directory Integrator identity mapping module
This module performs generic user and attribute mapping functions.

An assembly line executing on a Tivoli Directory Integrator server is called to
perform mapping of user and attribute data in an STSUniversalUser. Data may be
resolved from a variety of data sources natively supported by the server, including
LDAP and relational databases. Custom code is also supported through JavaScript
connectors.

Tivoli Federated Identity Manager provides a demonstration Tivoli Directory
Integrator mappings file. The file is located with the other example files. For
example, on Linux or UNIX, the file location is
/opt/IBM/FIM/examples/tdi_mappings/tdi_demo_mappings.xml

Deployment of this module requires:
v Configuration of the Tivoli Directory Integrator trust module settings
v Configuration of the Tivoli Directory Integrator server
v Configuration of SSL communication between the Tivoli Directory Integrator

server and the client, also known as the trust module

Complete the configuration instructions in:
v “Configuring the Tivoli Directory Integrator trust module”
v “Configuring the Tivoli Directory Integrator Server” on page 153
v “Configuring SSL for Tivoli Directory Integrator trust module” on page 155

Configuring the Tivoli Directory Integrator trust module
You must supply the configuration properties for the Tivoli Directory Integrator
security token module during the creation of a trust chain.

Chapter 14. Planning the mapping of user identities 151

The properties are described in this topic, and a worksheet is provided for you to
consult when you use the administration console to configure your module.

Configuration properties

Server Hostname
Host name or IP address of the computer on which the Tivoli Directory
Integrator server is running. The default value is localhost. For example,
tdiserver.company.com

Server Port
Port number on which the Tivoli Directory Integrator server is configured
to run. The default value is 1099.

Assembly Line Handler Pool Size
Number of assembly line handlers to maintain for this trust chain. The
value must be a positive integer. The default value is 10.

Number of Wait Threads
Maximum number of threads that can be waiting for an assembly line
handler for this chain. The value must be a positive integer. The default
value is 0.

Amount of time for threads to wait for an assembly line handler to
become available

Determine the amount of time for threads to wait for an assembly line
handler to become available. Select one of these options.

Wait indefinitely
Do not put a limit on the time for threads to wait for the assembly line
handler to become available. This option is the default choice.

Do not wait for assembly line handler after initial try
Threads must not wait for an assembly line handler. If an assembly
line handler is not available immediately, the Tivoli Directory
Integrator module returns a timeout.

Use the following maximum wait value
Specify a value for the maximum time to wait.

Maximum Wait Time (milliseconds)
The maximum time a thread waits for an assembly line handler
before returning a wait timeout. This value is specified in
milliseconds and it must be a positive integer.

Discover configuration settings
Use the server host name and port that were supplied earlier in this panel
to connect to the Tivoli Directory Integrator server. When connected, you
can discover which configurations and assembly lines are available. You
must enter the Server Hostname and Server Port before you can select this
option. After you select this option, two drop-down list boxes are available.

Select Configuration File
Select which configuration file to use from the list.

Select Assembly Line
Select which assembly line to use from the list. This list is derived from
the configuration file you have selected in the preceding field.

Enter configuration settings manually
Enter the configuration settings manually by supplying the following
fields:

152 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuration File
Solution name, or the file name of the configuration file, to use. For
example, tdi_demo_mappings.xml

Assembly Line Name
Name of the assembly line to use. For example, assemblyLine1

Select the identification format for the Work Entry attributes
Select the Work Entry attribute identification format. Select one from the
following options:

Attribute name
The Work Entry is going to use the name to identify its attributes.

Attribute name and attribute type
The Work Entry is going to use both the name and type to identify its
attributes. Use this method if multiple attributes with the same name
exist.

Table 19. Tivoli Directory Integrator Module configuration properties worksheet

Property Your value

Server hostname

Server Port

Assembly Line Handler Pool Size

Number of Wait Threads

Amount of time for threads to wait for an
assembly line handles to become available

Configuration panel provides 3 options:

v Wait indefinitely

v Do not wait for assembly line handler
after initial try

v Use the following maximum wait value:

Maximum Wait Time (milliseconds)

Method for selecting the assembly line
settings

2 choices:

v Discover configuration settings

v Enter configuration settings manually

Configuration file

Assembly Line Name

Identification format for the Work Entry
attributes

2 choices:

v Attribute name

v Attribute name and attribute type

Configuring the Tivoli Directory Integrator Server
This topic contains the minimum procedure required for configuring a default
installation of the Tivoli Directory Integrator (TDI) server. This procedure applies
to the TDI server versions 6.1.1, 7.0, and 7.1.

About this task

Configure the Tivoli Directory Integrator server to run assembly lines with Tivoli
Federated Identity Manager and the TDI STS module. The tdi_demo_mappings.xml
file is used as an example configuration.

Chapter 14. Planning the mapping of user identities 153

For more detailed TDI configuration instructions, see the Tivoli Directory
Integrator Information Center: http://publib.boulder.ibm.com/infocenter/tivihelp/
v2r1/topic/com.ibm.IBMDI.doc_7.1/welcome.htm

The TDI installation prompts you to select a solutions directory from the following
choices:
v TDI subdirectory under your home directory (default)
v Installation directory
v Select a directory to use

This procedure assumes the use of TDI server version 7.1, and the default solutions
directory.

Procedure
1. Establish solution files.

After the initial installation, a subdirectory under the home directory of the root
user: /root/TDI is created. This directory originally does not contain any
solution files.
To populate solution files in the /root/TDI directory, start the TDI server
without any parameters:
/opt/IBM/TDI/V7.1/ibmdisrv

Another option is to start the TDI configuration editor. After the server starts,
solution files are generated in the /root/TDI directory, including the
solutions.properties file.

2. Update the solutions.properties file.

api.remote.on
This property allows the use of the remote server API used by the TDI STS
module. Change the default value from false to true.

api.remote.ssl.on
These instructions show the TDI configuration without SSL. The SSL
configuration is stated in the Configuring SSL for Tivoli Directory Integrator
trust module section. Change the default value from true to false.

api.remote.nonssl.hosts
This property is needed when the TDI server is running on a different host
from the Tivoli Federated Identity Manager runtime, and when SSL is not
used. Specify the IP address of machine running the runtime (trust server).

3. Establish and populate the TDI configuration directory.
The solutions.properties file contains a setting which describes the location
for the TDI configuration files you can edit through the server API. This
property, and its default value, is:
api.config.folder=/opt/IBM/TDI/V7.1/configs

You can choose a different directory. Ensure that the directory exists, and that it
has the configuration file that you want the TDI STS module to use. For
example, create a directory and copy the sample TDI configuration file into that
directory, as follows:
mkdir /opt/IBM/TDI/V7.1/configs
cp /opt/IBM/FIM/examples/tdi_mappings/tdi_demo_mappings.xml

/opt/IBM/TDI/V7.1/configs

4. Start the TDI server in daemon mode.
Enter this command to start the server without SSL support:
/opt/IBM/TDI/V7.1/ibmdisrv -d

154 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_7.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDI.doc_7.1/welcome.htm

The server must be running, and log information can be viewed in
/root/TDI/logs/ibmdi.log.

Results

The TDI STS module is now able to load and run assembly lines.

Configuring SSL for Tivoli Directory Integrator trust module
The Tivoli Directory Integrator Security Token Service module acts as a client to
the Tivoli Directory Integrator server. Configuration of SSL communication
between the two can be done in a number of different ways. Configuration of the
server and the client is done separately.

See the Tivoli Directory Integrator Information Center for details about security in
general, and SSL configuration. There are several server API authentication
scenarios available, but this document describes only mutually authenticated SSL.
This scenario is the supported deployment pattern for secured installations with
the Tivoli Directory Integrator Security Token Service module.

Configuring SSL for the Tivoli Directory Integrator Server
Learn how to configure mutually authenticated SSL for Tivoli Directory Integrator
server versions 6.1,1, 7.0, and 7.1.

About this task

This topic contains the following information:
v One of the various ways of configuring SSL.
v One possible scenario when configuring SSL for the Tivoli Directory Integrator

server.

Complete information can be found in the Tivoli Directory Integrator Information
Center:
v For Tivoli Directory Integrator version 6.1.1

Tivoli Directory Integrator version 6.1.1 information center. See the topic on
Secure Sockets Layer (SSL) Support from the Administration Guide.

v For Tivoli Directory Integrator version 7.0
Tivoli Directory Integrator version 7.0 information center. See the topic on Secure
Sockets Layer (SSL) Support from the Installation and Administration Guide.

v For Tivoli Directory Integrator version 7.1
Tivoli Directory Integrator version 7.1 information center. See the topic on Secure
Sockets Layer (SSL) Support from the Installation and Administration Guide.

The Tivoli Directory Integrator server needs two pieces of information for a
mutually authenticated SSL configuration.
v A private key and certificate for the server
v The public certificate or trusted signer of the client

To enable mutually authenticated SSL support on the Tivoli Directory Integrator
server, complete the steps in this procedure:

Procedure
1. Store the private key and certificate in a Java keystore file, such as

server_identity.jks.

Chapter 14. Planning the mapping of user identities 155

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_6.1.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.0/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.1/welcome.htm

The certificate alias of the private key in that keystore is called tdi_server. In
this example, the .jks files have been created with the IBM iKeyman utility,
which requires a keystore password.
The utility, however, does not create a separate key password for the individual
private key. This other key password is important when creating the Tivoli
Directory Integrator server stash file. In this example, the keystore password is
passw0rd, and the private key password does not exist.

2. Store the public certificate or trusted signer of the client in a Java keystore, such
as client_signer.jks.

Note: The certificate alias of the trusted signer certificate is not important for
this configuration. The password used for the keystore is important, and this
example uses passw0rd.
The distinguished name (DN) of the client certificate is important. In this
example, the DN of the client certificate is:
CN=tdi_client, O=ibm, C=US

3. Modify solution.properties for Tivoli Directory Integrator server SSL support:

Note: The properties vary depending on the version of the Tivoli Directory
Integrator server. Do not add properties that are not in the
solution.properties file of the Tivoli Directory Integrator server version you
are working on.

com.ibm.di.server.keystore (for version 6.1.1) or api.keystore (for
versions 7.0 and 7.1)

Specifies the keystore file which contains the private key and certificate of
the Tivoli Directory Integrator server.

The server_identity.jks file must be located in the solutions directory
(/root/TDI for our example). Change the default of testserver.jks to
server_identity.jks.

com.ibm.di.server.key.alias (for version 6.1.1) or api.key.alias (for
versions 7.0 and 7.1)

Specifies the certificate alias in the server keystore file which represents the
private key of the Tivoli Directory Integrator server.

Change the default of server to tdi_server.

{protect}-api.keystore.password
Specifies the keystore password for the keystore in the api.keystore
property.

{protect}-api.key.password
Specifies the password for the key alias in the api.key.alias property.

com.ibm.di.server.encryption.keystore
Specifies the data encryption for the keystore that hosts the key used by the
Tivoli Directory Integrator server.

com.ibm.di.server.encryption.key.alias
Specifies the encryption keystore key alias.

com.ibm.di.server.encryption.keystoretype
Specifies the type of keystore that hosts the encryption key of the Tivoli
Directory Integrator server.

156 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

com.ibm.di.server.encryption.transformation
Specifies the name of the cryptography transformation used for encryption.
This value can be set to either RSA (public key encryption) or to some
secret key transformation.

api.truststore
Specifies a keystore containing trusted signer certificates and CA for server
API clients.

The client_signer.jks file must be located in the solutions directory
(/root/TDI for our example). Change the default of testserver.jks to
client_signer.jks.

{protect}-api.truststore.pass
Specifies the keystore password for the keystore in the api.truststore
property.

Put the prefix {protect}-, to automatically encrypt it the next time the
server is run. Change the default of {encr}-key_string to passw0rd.

api.remote.ssl.on
Set this property to true to enable SSL.

4. Create the Tivoli Directory Integrator server stash file.
The Tivoli Directory Integrator server stash file is idisrv.sth, which is located
in the solutions directory. This file can contain one or two passwords.
The first password opens the keystore containing the server identity
(server_identity.jks). The second (optional) password is for the key itself
within that keystore. If only one password is specified, the new password is
assumed to be the same as the first.
When using the IBM iKeyman utility to create a self-signed certificate in a
keystore file, the keystore password is manually specified when you create the
keystore. However, there is no private key password for the private key.
You must create the Tivoli Directory Integrator server stash file with a keystore
password. Then, set the private key password to null (the empty string), as
follows:
/opt/IBM/TDI/V6.1.1/bin/createstash.sh passw0rd ""

5. Update the Tivoli Directory Integrator server registry to recognize the DN of
the client as an administrator.
The Tivoli Directory Integrator server performs authorization on authenticated
server API requests through a user registry and its assigned roles. The default
registry is a text file, located in:
<solutions_directory>/serverapi/registry.txt

Add the following text to the registry.txt file:
[USER]
[ID]:CN=tdi_client, O=ibm, C=US
[ROLE]:admin
[ENDUSER]

The text must be the same with the values for issued to and issued by. To check
these values, select the label for tdi_client.jks in iKeyman and click
View/Edit.
For more advanced registry configuration, see the Tivoli Directory Integrator
information center.

6. Start the Tivoli Directory Integrator server and validate that the startup
message indicates SSL is in use, as follows:

Chapter 14. Planning the mapping of user identities 157

/opt/IBM/TDI/V6.1.1/ibmdisrv -d
CTGDKD024I Remote API successfully started on port:1099,
bound to:’SessionFactory’. SSL and Client Authentication
are enabled.

Results

The server-side SSL configuration is complete.

Configuring SSL for the Tivoli Directory Integrator client
You can configure the Tivoli Directory Integrator client-side to achieve a mutually
authenticated SSL in many ways.

About this task

This topic contains the following information:
v One of the various ways of configuring SSL.
v One possible scenario when configuring it for the Tivoli Directory Integrator

client.

Complete information can be found in the Tivoli Directory Integrator Information
Center:
v For Tivoli Directory Integrator version 6.1.1

Tivoli Directory Integrator version 6.1.1 information center. See the topic on
Secure Sockets Layer (SSL) Support from the Administration Guide.

v For Tivoli Directory Integrator version 7.0
Tivoli Directory Integrator version 7.0 information center. See the topic on Secure
Sockets Layer (SSL) Support from the Installation and Administration Guide.

v For Tivoli Directory Integrator version 7.1
Tivoli Directory Integrator version 7.1 information center. See the topic on Secure
Sockets Layer (SSL) Support from the Installation and Administration Guide.

The Tivoli Directory Integrator Security Token Services module acts as an SSL
client, and can operate in either one of the configurations:
v WebSphere Application Server JSSE

Using the WebSphere Application Server JSSE configuration for SSL support.

Note: You must use this option with embedded WebSphere.
v Java system properties

Specifying Java system properties to control which keystore and truststore the
Tivoli Directory Integrator server API uses.

Note: This option does not work with embedded WebSphere.

For both options, the client needs two pieces of information for a mutually
authenticated SSL configuration:
v A private key and certificate for the client identity.
v The public certificate or trusted signer of the server.

To configure the client-side SSL, complete the steps in this procedure:

158 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_6.1.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.0/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.1/welcome.htm

Procedure
1. Store the private key and certificate in a Java keystore file, such as

client_identity.jks. The certificate alias of the private key in that keystore is
called tdi_client.

Note: In this example, the .jks file is created with the IBM iKeyman utility,
and the keystore password is passw0rd. iKeyman does not assign a second
password assigned to the key. To successfully start the Java Virtual Machine, it
is necessary to assign a password for the key. Use the same password as the
keystore password.

2. Store the public certificate or trusted signer of the server in a Java keystore,
such as server_signer.jks.

Note: The certificate alias of the trusted signer certificate is not important for
this configuration, but the keystore password keystore is needed. Set the
password to passw0rd.

3. Use the Java keytool parameter to modify the keystore that was created with
iKeyman and assign a password to the key, as follows:
/opt/IBM/WebSphere/AppServer/java/bin/keytool -keypasswd
-alias tdi_client -new passw0rd -keystore client_identity.jks
-storepass passw0rd

4. Use the Tivoli Federated Identity Manager key service to import both keystore
files into the WebSphere configuration repository, for future reference.
a. From the administration console, select Configure Key Service > Keystores

menu to import client_identity.jks and server_signer.jks.
b. On the user interface panel for the client_identity.jks, specify a keystore

name of tdi_client and a type of signing or encryption keys.
c. On the user interface panel for server_signer.jks, specify a keystore name

of tdi_server and a type of CA certificates.

The files in the WebSphere configuration repository file system are at:
<config_root>/itfim/<fim_domain>/etc/jks/tdi_client.jks
<config_root>/itfim/<fim_domain>/etc/jks/tdi_server.jks

This configuration example uses a fim_domain value of idp.
5. Use either one of the following methods for client-side SSL configuration of the

Tivoli Directory Integrator Security Token Services module:
v “Configuring client-side SSL using WebSphere JSSE”
v “Configuring client-side SSL using Java system properties” on page 161

Note: You must complete only one of the two methods.

Configuring client-side SSL using WebSphere JSSE
Use the WebSphere JSSE to configure the client-side SSL.

About this task

This topic summarizes information described in detail in the following locations:
v WebSphere Application Server information center.
v developerWorks topic: SSL, certificate, and key management enhancements for even

stronger security in WebSphere Application Server version 6.1:
http://www-128.ibm.com/developerworks/websphere/techjournal/0612_birk/
0612_birk.html?ca=drs-

Chapter 14. Planning the mapping of user identities 159

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/welcome_base60.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html?ca=drs-
http://www-128.ibm.com/developerworks/websphere/techjournal/0612_birk/0612_birk.html?ca=drs-

The dynamic outbound endpoint SSL configuration cannot be used for the
following reasons:
v It requires the SSL client to use the WebSphere JSSEHelper class to set specific

connection information parameters.
v Tivoli Directory Integrator uses only standard Java JSSE interfaces.

Consequently, the scoped SSL configuration for the server, which is running the
Tivoli Federated Identity Manager runtime, must be modified. Depending on
whether you are running a cluster or a stand-alone application server, you can
modify it at either cell or node level.

This example uses a stand-alone application server and modifies the node default
keystore and node default truststore. The node default keystore is named as
NodeDefaultKeyStore, and the node default truststore is named as
NodeDefaultTrustStore.

Follow these tasks:
v Import the client private key and certificate to update the NodeDefaultKeyStore.
v Import the public certificate of the server to update the NodeDefaultTrustStore.

Procedure
1. Use the WebSphere administration console to import the client private key and

certificate into the NodeDefaultKeyStore.
a. Select Security > SSL certificate and key management > Key stores and

certificates > NodeDefaultKeyStore > Personal certificates.
b. Click Import to import a new key, and enter the following values:

Key file name
/opt/IBM/WebSphere/AppServer/profiles/idp/config/itfim/idp/etc/
jks/tdi_client.jks

Type
JKS

Key file password
passw0rd

Note: Click Get key file aliases.

Certificate alias to import
tdi_client

Imported certificate alias
tdi_client

c. After the import, the key must show in the Alias column as tdi_client.
Save the WebSphere configuration after loading the key.

Before the public certificate of the server is imported into the
NodeDefaultTrustStore, the server certificate must be in a simple file format
rather than in the JKS. For example, PEM ASCII format or DER binary format.
Use IBM iKeyman or keytool to export the public certificate of the server from
the file:
<config_root>/itfim/<fim_domain>/etc/jks/tdi_server.jks

For example, you can export the public key using iKeyman into a PEM ASCII
format in a file called:
/root/keys/tdi_server.arm

160 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

2. Use the WebSphere administration console to import the server public
certificate into the NodeDefaultTrustStore.
a. Select Security > SSL certificate and key management > Key stores and

certificates > NodeDefaultTrustStore > Signer certificates.
b. Click Add to add a certificate.

The Add Signer Certificate panel opens.
c. Enter the following values:

Alias
tdi_server

File name
/root/keys/tdi_server.arm

Data type
Base-64 encoded ASCII data

d. The certificate named tdi_server must now be in the list of certificates.
Save the WebSphere configuration after committing this change.

3. Click Retrieve from Port.
4. Enter the general properties section which consists of Host, Port, and SSL

configuration for outbound connection.
5. Restart WebSphere Application Server instance.

Results

The client is configured for SSL.

Configuring client-side SSL using Java system properties
Use the Java system properties to select keystores and certificates for SSL
communications.

About this task

The Java system properties for client-side SSL are described in the following
locations:
v For Tivoli Directory Integrator version 6.1.1

Tivoli Directory Integrator version 6.1.1 information center. See the topic on
Remote Server API from the Administration Guide.

v For Tivoli Directory Integrator version 7.0
Tivoli Directory Integrator version 7.0 information center. See the topic on Server
API Access Security from the Installation and Administration Guide.

v For Tivoli Directory Integrator version 7.1
Tivoli Directory Integrator version 7.1 information center. See the topic on Server
API Access Security from the Installation and Administration Guide.

Note: Configuring the client-side using Java system properties is not available for
embedded WebSphere installations.

These Java system properties can be used select keystores and certificates for SSL
communications:

api.client.ssl.custom.properties.on
Instructs the Tivoli Directory Integrator server API to use custom properties for
keystore and truststore configuration rather than the JSSE configuration. For
example: true.

Chapter 14. Planning the mapping of user identities 161

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_6.1.1/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.0/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.IBMDI.doc_7.1/welcome.htm

api.client.keystore
Specifies the keystore containing the client certificate. For example:
${USER_INSTALL_ROOT}/config/itfim/idp/etc/jks/tdi_client.jks

api.client.keystore.pass
Specifies the password for the file specified in api.client.keystore. For
example, passw0rd.

api.client.key.pass
Specifies the password for the actual key in api.client.keystore.

Leave unspecified as the keytool utility is used to make the key password the
same as the keystore password.

api.truststore
Specifies the keystore containing the Tivoli Directory Integrator server public
certificate. For example:
${USER_INSTALL_ROOT}/config/itfim/idp/etc/jks/tdi_server.jks

api.truststore.pass
Specifies the password for the file specified in api.truststore. For example,
passw0rd.

Use the WebSphere administration console to update the servers Java Virtual
Machine startup parameters.

Procedure
1. Select Servers > Application Servers > server1 > Java and Process

Management > Process Definition > Java Virtual Machine.
2. Update the properties:

Generic Java Virtual Machine arguments:
-api.client.ssl.custom.properties

3. Restart WebSphere Application Server instance.

Results

The client is configured for SSL.

Creating a custom mapping module
Creating a custom mapping module is a programming-intensive procedure that
involves writing a Java class and installing the class into the plug-ins directory for
your domain.

Before you begin

To create a custom mapping module, you must be familiar with the structure of
Tivoli Federated Identity Manager trust service modules and the proper procedures
for creating them and adding them to your environment.

About this task

Learn more about trust service modules in:
v Federated Identity Management and Web Services Security with IBM Tivoli Security

Solutions (SG24-6394-01). This book is available in PDF (Portable Document

162 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Format) at http://www.redbooks.ibm.com/redbooks/pdfs/sg246394.pdf or in
HTML (Hypertext Markup Language) at http://www.redbooks.ibm.com/
redbooks/SG246394/

v A developerWorks article titled Tivoli Federated Identity Manager: Implementing and
deploying custom trust modules at http://www-128.ibm.com/developerworks/
tivoli/library/t-sts-custom/

Adding a custom mapping module
To add a custom mapping module that you have created, you must first define the
module as a new module type in the Tivoli Federated Identity Manager
environment.

Before you begin

You must write a Java class for a new module type and install the class into the
plug-ins directory for your domain. You can then use the following instructions to
create a new module type entry in the console.

About this task

This task is necessary only when the XSL Transformation module that is supplied
with Tivoli Federated Identity Manager does not meet the requirements of your
deployment.

Procedure
1. Click Tivoli Federated Identity Manager > Manage Configuration > Runtime

Node Management. The Runtime Node Management panel opens.
2. Click the Publish plug-ins button.
3. When prompted, click the Load configuration changes to Tivoli Federated

Identity Manager runtime. The new module type shows in the Module Type
list.

What to do next

Continue with the task for adding an instance of the mapping file in “Adding an
instance of a custom mapping module.”

Adding an instance of a custom mapping module
After you have created your mapping module and added it as a module type, you
must create an instance of that module type to use it in the Tivoli Federated
Identity Manager environment.

Before you begin

Be sure that you have completed the following tasks before continuing with these
instructions:
v “Creating a custom mapping module” on page 162
v “Adding a custom mapping module”

About this task

The console provides a wizard to guide you through adding the module instance.

Chapter 14. Planning the mapping of user identities 163

http://www-128.ibm.com/developerworks/tivoli/library/t-sts-custom/
http://www-128.ibm.com/developerworks/tivoli/library/t-sts-custom/

Procedure
1. Select Tivoli Federated Identity Manager > Configure Trust Service > Module

Instances. The Module Instances panel shows module instances that are created
by default. It also shows any module instances that you have added.

2. Click Create. The Token Type panel shows the module types that have been
defined. The list includes the default token types and any custom token types
that you have defined.

3. Select a token type.
4. Click Next. The Module Instances wizard opens the Module Instances Name

panel.
5. Enter values for the requested properties.
6. Click Finish. See the online help for descriptions of the fields.

What to do next

The new mapping file is available in the list of modules that you can choose from
when establishing a federation.

164 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 15. SAML federations overview

SAML (Security Assertion Markup Language) is an XML standard for exchanging
single sign-on information. It relies on the use of SOAP among other technologies
to exchange XML messages over computer networks. The XML messages are
exchanged through a series of requests and responses. In this process, one of the
federation partners sends a request message to the other federation partner. Then,
that receiving partner immediately sends a response message to the partner who
sent the request.

Tivoli Federated Identity Manager supports the following OASIS Security
specifications for exchanging information in a federation:
v SAML 1.0 and 1.1 (1.x)
v SAML 2.0

The SAML specifications include descriptors to establish a federation, initialize,
and manage single sign-on. The following descriptors specify the structure, content
of the messages, and the way the messages are communicated between partners
and users.

Assertions
XML-formatted tokens that are used to transfer user identity information,
such as the authentication, attribute, and entitlement information, in the
messages.

Protocols
The types of request messages and response messages that are used for
obtaining authentication data and for managing identities.

Bindings
The communication method used to transport the messages.

Profiles
Combinations of protocols, assertions, and bindings that are used together
to create a federation and enable federated single sign-on.

When using Tivoli Federated Identity Manager, you and your partner must do the
following tasks:
v Use the same SAML specification (1.0, 1.1, or 2.0).
v Agree on which protocols, bindings, and profiles to use.

The next topics provide brief descriptions of how SAML 1.x and SAML 2.0
specifications are used in Tivoli Federated Identity Manager. However, these
descriptions do not provide all of the details of the specifications. See the OASIS
specification documents at http://www.oasis-open.org/specs/index.php for more
details.

SAML 1.x
Tivoli Federated Identity Manager supports both SAML 1.0 and SAML 1.1. These
specifications are referred to collectively as SAML 1.x.

© Copyright IBM Corp. 2006, 2013 165

http://www.oasis-open.org/specs/index.php

If you and your partner choose to use SAML 1.x in your federation, you need to
understand the SAML 1.x support that is provided in Tivoli Federated Identity
Manager.

Assertions

The assertions created by Tivoli Federation Identity Manager contain
authentication statements, which assert that the principal (that is, the entity
requesting access) was authenticated. Assertions can also carry attributes about the
user that the identity provider wants to make available to the service provider.

Assertions are usually passed from the identity provider to the service provider.

The following variables control the content of the assertions created by Tivoli
Federated Identity Manager:
v The specification (SAML 1.0 or 1.1) that you select when you establish a

federation.
v The definitions used in the TFIM identity mapping method that you configure.

Identity mapping specifies how identities are mapped between federation partners.

The Tivoli Federated Identity Manager identity mapping method can either be a
custom mapping module or an XSL transformation file.

Protocol

In Tivoli Federated Identity Manager, SAML 1.x uses a simple request-response
protocol to make authentication requests.

Binding

SAML 1.x both plain HTTP (using browser redirects) or SOAP for the
transportation of messages. The profile used in the federation further specifies how
the communication of the messages takes place.

Profiles

SAML 1.x specifies two options for profiles:

Browser artifact
Browser artifact uses SOAP-based communications (also called the SOAP
backchannel) to exchange an artifact during the establishment and use of a
trusted session between an identity provider, a service provider, and a
client (browser).

Browser POST
Browser POST uses a self-posting form during the establishment and use
of the trusted session between an identity provider, a service provider, and
a client (browser).

Tivoli Federated Identity Manager supports browser artifact by default when you
select SAML 1.0 or SAML 1.1 as the profile for your federation. However, you can
use browser POST in your federation on a per-partner basis. For example, if you
are a service provider, you can specify that your identity provider partner uses
Browser POST when you configure that partner. If you are an identity provider,
you can enable the IBM PROTOCOL extension when configuring a SAML 1.x
federation.

166 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The URL that is used to initiate single sign-on differs depending on whether the
identity provider is using this extension. For more information about URLs, see
“SAML 1.x initial URL” on page 767.

SAML 2.0
The SAML 2.0 specification introduced more flexibility than the previous SAML 1.x
specifications.

Assertions

The assertions created by Tivoli Federated Identity Manager contain authentication
statements. These authentication statements assert that the principal (that is, the
entity requesting access) was authenticated. Assertions can also carry attributes
about the user that the identity provider wants to make available to the service
provider.

Assertions are typically passed from the identity provider to the service provider.

The content of the assertions that are created is controlled by the specification
(SAML 2.0). Select these assertions when you establish a federation. You can also
select these assertions by the definitions used in the Tivoli Federated Identity
Manager identity mapping method that you configure.

The identity mapping method can either be a custom mapping module or an XSL
transform file. The identity mapping also specifies how identities are mapped
between federation partners.

Protocols

SAML 2.0 defines several request-response protocols, all correspond to the action
being communicated in the message. The SAML 2.0 protocols that are supported in
Tivoli Federated Identity Manager are:
v Authentication request
v Single logout
v Artifact resolution
v Name identifier management

Bindings

When you use SAML 2.0 in Tivoli Federated Identity Manager, you have several
binding options. These options specify the way in which messages can be
transported:

HTTP redirect
HTTP redirect enables SAML protocol messages to be transmitted within
URL parameters. It enables SAML requestors and responders to
communicate using an HTTP user agent as an intermediary.

The intermediary might be necessary if the communicating entities do not
have a direct path of communication. The intermediary might also be
necessary if the responder requires interaction with a user agent, such as
an authentication agent.

HTTP redirect is sometimes called browser redirect in single sign-on
operations. This profile is selected by default.

Chapter 15. SAML federations overview 167

HTTP POST
HTTP POST enables SAML protocol messages to be transmitted within an
HTML form using base64-encoded content. It enables SAML requestors
and responders to communicate using an HTTP user agent as an
intermediary.

The agent might be necessary if the communicating entities do not have a
direct path of communication. The intermediary might also be necessary if
the responder requires interaction with a user agent such as an
authentication agent.

HTTP POST is sometimes called Browser POST, particularly when used in
single sign-on operations. It uses a self-posting form during the
establishment and use of a trusted session between an identity provider, a
service provider, and a client (browser).

HTTP artifact
HTTP artifact is a binding in which a SAML request or response (or both)
is transmitted by reference using a unique identifier called an artifact.

A separate binding, such as a SOAP binding, is used to exchange the
artifact for the actual protocol message. It enables SAML requestors and
responders to communicate using an HTTP user agent as an intermediary.

This setting is used when it is not preferable to expose the message content
to the intermediary.

HTTP artifact is sometimes called browser artifact, particularly when used
in single sign-on operations. The HTTP artifact uses a SOAP back channel.
The SOAP back channel is used to exchange an artifact during the
establishment and use of a trusted session between an identity provider, a
service provider, and a client (browser).

SOAP

SOAP is a binding that uses Simple Object Access Protocol (SOAP) for
communication.

The choice of binding you have depends on the profile you choose to use in your
federation.

Profiles

Tivoli Federated Identity Manager supports the configuration of the single sign-on
profile on a per-partner basis. The profiles supported are:

Web browser single sign-on
The Web Browser SSO profile is the consolidation of the browser artifact
and browser POST profiles that were introduced in SAML 1.x.

Using this profile, an authentication request message is sent from a service
provider to an identity provider. A response message containing a SAML
assertion is sent from the identity provider to the service provider.
Additional messages are sent related to artifact resolution, if that binding is
used.

This profile provides options regarding the initiation of the message flow
and the transport of the messages:

Message initiation
The message flow can be initiated from the identity provider or the
service provider.

168 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

When the identity provider initiates the message flow, a
RelayState parameter can be provided in the unsolicited response
delivered by the identity provider to the service provider. This
parameter contains the URL-encoded value of the Target element
provided in the single sign-on service initial URL (identity
provider).

Bindings
In a Tivoli Federated Identity Manager environment, the following
bindings can be used in the Web browser SSO profile:
v HTTP Redirect (available only in an identity provider

configuration)
v HTTP POST
v HTTP artifact

The choice of binding depends on the type of messages being sent.
For example, an authentication request message can be sent from a
service provider to an identity provider. The response message can
be sent from an identity provider to a service provider using either
HTTP POST or HTTP artifact. A pair of partners in a federation do
not need to use the same binding.

Options
The Web Browser single sign-on profile in Tivoli Federated Identity
Manager also provides the following option:

Enhanced Client Proxy This profile option enables an enhanced
client or proxy (ECP) to communicate with an identity provider
and service provider on behalf of a user (client).
For example, a user might request a resource from a service
provider. The service provider might not know which identity
provider to access to authenticate the user.
Using the ECP profile option, the service provider can contact
the ECP, which knows how to locate and access the appropriate
identity provider. The ECP profile supports SOAP and reverse
SOAP (PAOS) bindings during the processing of authentication
requests.

Single Logout
The Single Logout profile is used to terminate all the login sessions
currently active for a specified user within the federation. A user who
achieves single sign-on to a federation establishes sessions with more than
one participant in the federation.

The sessions are managed by a session authority, which in many cases is
an identity provider. When the user wants to end sessions with all session
participants, the session authority can use the single logout profile to
globally terminate all active sessions.

Message initiation
The message flow can be initiated from the identity provider or the
service provider.

Bindings
In a Tivoli Federated Identity Manager environment, the following
bindings can be used in the Single Logout profile:
v HTTP Redirect
v HTTP POST

Chapter 15. SAML federations overview 169

v HTTP artifact
v SOAP

Name Identifier Management
The Name Identifier Management profile manages user identities that are
exchanged between identity providers and service providers.

The profile enables identity providers to notify service providers. Service
providers are notified when there is a change to the content or format of
an identity for a given user (principal).

The profile enables service providers to specify unique aliases for the
principal. Service providers can also send those aliases to the identity
provider to be used instead of the principal name.

The profile also enables either provider. The profile notifies its partner
when it decides to no longer issue or accept messages that use the identity
of the principal.

To manage the aliases, Tivoli Federated Identity Manager uses a function
called the alias service. The alias service stores and retrieves aliases that are
related to a federated identity. Aliases can be used in the following ways:

Persistent aliases
When persistent aliases are used, the identity of the user is
federated by the identity provider to the identity of the user at the
service provider. A persistent SAML name identifier is used. The
user remains in the federation permanently, that is, until a request
is made to terminate the federation.

Transient aliases
When transient aliases are used, a temporary identifier is used to
federate between the identity provider and service provider. A
temporary identifier is used only for the life of the single sign-on
session of the user.

In a Tivoli Federated Identity Manager environment, aliases are stored in
and retrieved from one of the following types of repositories:
v An LDAP database.
v A relational database that supports JDBC.

During the configuration of Tivoli Federated Identity Manager, you can
configure your environment to use one of these repository types.

Message initiation
The message flow can be initiated from the identity provider or the
service provider.

Bindings
The following bindings can be used in the Name Identifier
Management profile:
v HTTP Redirect
v HTTP POST
v HTTP artifact
v SOAP

Identity Provider Discovery
The Identity Provider Discovery profile is used by service providers to
discover which identity provider is used by a user (principal) during Web
browser single sign-on.

170 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Some deployments have more than one identity provider, and the service
provider must be able to determine which identity provider a principal
uses.

The Identity Provider Discovery profile uses a cookie. The cookie is created
in a domain that is common between identity providers and service
providers in a given deployment. The cookie contains the list of identity
providers and is called the common domain cookie.

When you configure your federation using the Tivoli Federated Identity Manager
console, your profile options are:

Basic: Web Browser SSO, Single Logout
This setting enables the following profiles and bindings:
v Web Browser single sign-on with HTTP POST and HTTP Artifact

bindings.
v Single logout, with HTTP POST and HTTP Artifact bindings.

Typical: Web Browser SSO, Single Logout, and Name Identifier
This setting enables the following profiles and bindings:
v Web Browser single sign-on, with HTTP POST and HTTP Artifact

bindings.
v Single logout, with HTTP POST and HTTP Artifact bindings.
v Enhanced client or proxy
v Name Identifier Management, with HTTP POST and HTTP Artifact

bindings.

Enable all profiles and bindings
This setting enables all the available profiles and bindings:
v Web Browser single sign-on, with HTTP POST, HTTP Artifact, and HTTP

Redirect bindings.

Note: HTTP Redirect is available only in an identity provider
configuration.

v Enhanced client or proxy.
v Single logout, with HTTP Redirect, HTTP POST, and HTTP Artifact

bindings.
v Name Identifier Management, with HTTP Redirect, HTTP POST, HTTP

Artifact, and SOAP
v Identity Provider Discovery

Manual: Choose individual profiles and bindings
All supported profiles and available bindings are presented so that you can
choose the ones you want to use.

Account linkage

In SAML 2.0, account linkage enables a user to link an identity provider account to
a service provider. The link happens during the single sign-on initiated at the
identity provider and service provider. In both scenarios, account linkage requires
a user to be authenticated at both the service provider and identity provider.

An administrator can enable this feature in the partner settings panel. If this
feature is enabled, the user must authenticate in the service provider when a
persistent alias is received. The alias can not have been previously linked to an
account in the service provider for the authentication to occur.

Chapter 15. SAML federations overview 171

After the user authenticates, the SAML 2.0 implementation stores the alias at the
service provider alias service and establishes account linkage.

Handling an unknown alias

SAML 2.0 supports aliases to communicate user identities between partners.

An administrator can configure the SAML 2.0 partner settings to handle an
unknown alias in one of the following ways:
v The authentication page shows an error page when the service provider does not

know the alias received from the identity provider. This setting is the default
when you
– Do not select Force authentication to achieve account linkage.
– Do not select Map unknown name identifiers to the anonymous username.

v The SAML 2.0 implementation maps the identity of the user to the default user
account. A guest account establishes the single sign-on session. This setting
requires that you
– Do not select Force authentication to achieve account linkage.
– Select Map unknown name identifiers to the anonymous username.

v The user must authenticate at the service provider, which enables account
linkage. This setting requires that you
– Select Force authentication to achieve account linkage.
– Do not select Map unknown name identifiers to the anonymous username.

172 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 16. SAML endpoints and URLs

Communications within a federation take place through endpoints on the servers
of the identity provider and service provider partners.

In a Tivoli Federated Identity Manager environment, endpoints fall into two
categories:
v Endpoints that are specified by the federation specification (such as SAML 1.x or

SAML 2.0) and are used for partner-to-partner communication.
v Endpoints that end users can access to initiate a single sign-on activity.

All endpoints can be accessed through URLs. The syntax of the URLs is specific to
the purpose of the access and whether the access is by a partner or by an end user.

URLs for partner communication

The URLs that are used for partner-to-partner communication, such as the
exchange of requests, in both SAML 1.x and SAML 2.0 federations are referred to
collectively as endpoint URLs or individually by the name of the protocol and
binding or service that they are related to. Administrators who are responsible for
installing, configuring, and maintaining the Tivoli Federated Identity Manager
environment and the partner-to-partner communication in that environment will
see references to these endpoint URLs and might find it helpful to understand
their purpose. See “SAML 1.x endpoints and URLs” on page 174 or “SAML 2.0
endpoints and URLs” on page 177.

URLs for user access

While the SAML specifications define the endpoints for partner-to-partner
communication, they provide limited or no guidance about the endpoints or
methods that end users must use to initiate single sign-on actions. Tivoli Federated
Identity Manager supports specific URLs for end-user initiation of single sign-on
actions.

In a SAML 1.x federation, the single sign-on process is always initiated at the
intersite transfer service. The method by which the request arrives at this endpoint is
not specified in the SAML specification. The syntax for the intersite transfer service
URL in a Tivoli Federated Identity Manager environment is described in “SAML
1.x initial URL” on page 767.

In a SAML 2.0 federation, single sign-on actions can be initiated at the identity
provider site or the service provider site. URLs that can be used by users to initiate
a sign-on action are specific to the a single sign-on action (such as initiate a
federated sign on, perform a single logout, or end account linkage) and to whether
the action is being initiated at the identity provider or service provider site. In a
Tivoli Federated Identity Manager environment, the URLs that can be used for
initiating sign-on actions are referred to as profile initial URLs. Architects and
application developers, who design and implement the interactions of their users
with the single sign-on process, need to understand profile initial URLs. See
“SAML 2.0 profile initial URLs” on page 769.

© Copyright IBM Corp. 2006, 2013 173

SAML 1.x endpoints and URLs
Several endpoints are configured on your point of contact server so that you and
your partner can communicate. These endpoints are configured when you
configure your federation in Tivoli Federated Identity Manager. The endpoints are
accessible through URLs, and are used by the partners in the federation.

If you are responsible for installing, configuring, or maintaining a federation in
Tivoli Federated Identity Manager, you might find it helpful to be familiar with the
SAML 1.x endpoints and URLs.

The following endpoints are used in a SAML 1.x federation.

Point of contact server
The endpoint on the point of contact server where communication takes
place. The syntax of the point of contact server URL is:
https://hostname:port_number

Where:

https https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443, if SSL is enabled, or 9080 if SSL is not enabled.

You are prompted for your point of contact server URL when you
configure your federation. After the configuration, your point of contact
server URL has /sps appended to it so that the syntax of the configured
point of contact server URL is
https://hostname:port_number/sps

The /sps indicates that the URL is defined for single sign-on services.

Intersite transfer service
The endpoint on the identity provider point of contact server where the
sign-on request process begins. This endpoint is where the single sign-on
requests are sent. SAML does not specify how the requests arrive at this
endpoint.

If you are an identity provider using Tivoli Federated Identity Manager,
the method used depends on how and where the users are logging in. For
example, if the users log in at the service provider partner website, your
service provider partner needs the URL for your inter-site transfer service.

Your service provider partner also must configure some type of redirect
that takes the users from their site to your login form.

The URL is based on the URL that you specify for your point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/samlxx/login

Where:

https

https might be http if SSL is not enabled on the server.

174 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

samlxx
The version of SAML that is configured for the federation. The
values can be:
v saml (for SAML 1.0)
v saml11 (for SAML 1.1)

login

The designation of what type of endpoint is using the port. login
is used for the intersite transfer service in SAML 1.x federations.

This endpoint is used only on identity provider configurations and is
defined automatically for you when you configure your federation.

Artifact resolution service
The endpoint on the identity provider point of contact server where
artifacts are exchanged for assertions. This endpoint is the location where
the federation partners communicate. It is sometimes referred to as the
SOAP endpoint on the identity provider point of contact server.

Note: You might also be familiar with this endpoint as the responder service.

The URL is based on the URL that you specify for your point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/samlxx/soap

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number is 9444.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

samlxx
The version of SAML that is configured for the federation. The
values can be:

Chapter 16. SAML endpoints and URLs 175

v saml (for SAML 1.0)
v saml11 (for SAML 1.1)

soap

The designation of what type of endpoint is using the port. soap is
used for the artifact resolution service in SAML 1.x federations.

This endpoint is used only on identity provider configurations and is
defined automatically for you when you configure your federation.

Assertion consumer service
The endpoint on the service provider point of contact server that receives
assertions or artifacts. This endpoint is the location where the federation
partners communicate. This endpoint is sometimes referred to as the SOAP
endpoint on the service provider point of contact server.

Note: If you are using the browser artifact profile, you might be familiar
with this endpoint as the artifact consumer service or the artifact receiver
service.

The URL is based on the URL that you specify for your point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/samlxx/login

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

samlxx
The version of SAML that is configured for the federation. The
values can be:
v saml (for SAML 1.0)
v saml11 (for SAML 1.1)

login

The designation of what type of endpoint is using the port. login
is used for the assertion consumer service.

This endpoint is used only on service provider configurations in SAML 1.x
federations and is defined automatically for you when you configure your
federation.

176 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

SAML 2.0 endpoints and URLs
Several endpoints are configured on your point of contact server so that
communications can be exchanged between you and your partner. These endpoints
are configured when you configure your federation in Tivoli Federated Identity
Manager. The endpoints are accessible through URLs and are used by the partners
in the federation.

If you are responsible for installing, configuring, or maintaining a federation in
Tivoli Federated Identity Manager, you might find it helpful to be familiar with
these endpoints and URLs.

The following endpoints are used in a SAML 2.0 federation.

Point of contact server
The endpoint on the point of contact server where communication takes
place. The point of contact server URL is also used as the provider ID. The
syntax of the point of contact server URL is:
https://hostname:port_number

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443, if SSL is enabled, or 9080 if SSL is not enabled.

You are prompted for your point of contact server URL when you
configure your federation. After the configuration, your point of contact
server URL has /sps appended to it so that the syntax of the configured
point of contact server URL is
https://hostname:port_number/sps

The /sps indicates that URL is defined for single sign-on services.

Artifact resolution service (or SOAP endpoint)
The endpoint on either the identity provider or service provider point of
contact server where artifacts are exchanged for SAML messages. This
endpoint is the location where the federation partners communicate. It is
sometimes called as the SOAP endpoint.

Note: You might also be familiar with this endpoint as the responder service.

The URL is based on the URL that you specify for the point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/saml20/soap

Where:

https

https might be http if SSL is not enabled on the server.

Chapter 16. SAML endpoints and URLs 177

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number is 9444.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

saml20
The designation of the SAML protocol you choose to use in your
federation.

soap

The designation of what type of endpoint is using the port. soap is
used for the artifact resolution service in SAML 2.0 federations.

This endpoint is defined automatically for you when you configure your
federation.

Assertion consumer service
The endpoint on the service provider point of contact server that receives
assertions or artifacts. This endpoint is the location where the federation
partners communicate.

The URL is based on the URL that you specify for the point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/saml20/login

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443, if SSL is enabled, or 9080 if SSL is not enabled.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

saml20
The designation of the SAML protocol you choose to use in your
federation.

login

The designation of what type of endpoint is using the port. login
is used for the assertion consumer service in SAML 2.0 federations.

178 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

This endpoint is used only on service provider configurations in SAML 2.0
federations and is defined automatically for you when you configure your
federation.

Single sign-on service
The endpoint on the identity provider point of contact server that receives
authentication requests.

The URL is based on the URL that you specify for the point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/saml20/login

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443, if SSL is enabled, or 9080 if SSL is not enabled.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

saml20
The designation of the SAML protocol you choose to use in your
federation.

login

The designation of what type of endpoint is using the port. login
is used for the assertion consumer service in SAML 2.0 federations.

This endpoint is used only on identity provider configurations in SAML
2.0 federations and is defined automatically for you when you configure
your federation.

Single logout service
The endpoint on the identity provider or service provider point of contact
server that receives logout requests.

The URL is based on the URL that you specify for the point of contact
server. The syntax is:
https://hostname:port_number/sps/federation_name/saml20/slo

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

Chapter 16. SAML endpoints and URLs 179

port_number
The port number where communications take place on the server.
The default port number on a WebSphere Application Server is
9443, if SSL is enabled, or 9080 if SSL is not enabled.

The port is assigned with the default value unless the port is
unavailable when Tivoli Federated Identity Manager is installed. If
the default port is unavailable, the installation program adds a
value of 1 to the port number until it finds an available port of that
number.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

saml20
The designation of the SAML protocol you choose to use in your
federation.

slo

The designation of what type of endpoint is using the port. slo is
used for the single logout service in SAML 2.0 federations.

Name identifier management service
The endpoint on the identity provider or service provider point of contact
server that receives messages related to name management. The URL is
based on the URL that you specify for the point of contact server and on
the binding that is used.

The syntax for HTTP Redirect, HTTP POST, and HTTP Artifact is:
https://hostname:port_number/sps/federation_name/saml20/mnids

The syntax for SOAP is:
https://hostname:port_number/sps/federation_name/saml20/soap

Where:

https

https might be http if SSL is not enabled on the server.

hostname
The host name of the point of contact server.

port_number
The port number where communications take place on the server.
The port depends on the binding being used. The default ports are:

HTTP SOAP: 9444

HTTP POST, HTTP Artifact, HTTP Redirect: 9443

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

180 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

saml20
The designation of the SAML protocol you choose to use in your
federation.

mnids or soap
The designation of what type of endpoint is using the port. mnids
is used for the name identifier management service in SAML 2.0
federations that use HTTP Redirect, HTTP POST, or HTTP Artifact.
soap is used when SOAP is used as the binding.

Common Domain Cookie Service URL used by the Identity Provider Discovery
service

By default, Tivoli Federated Identity Manager provides a common domain
service implementation that makes it possible for an identity provider to
inform a service provider that a specific user is ready to use a federation.

The default URL is used internally and specifies if the common domain
cookie service is going to read or write (get or set) the values using
cdcwriter (the identity provider) or cdcreader (the service provider)
appended to the end of the URL. The default syntax for the URL is:
https://common_domain_name/sps/federation_name/saml20/[cdcreader|cdcwriter}

Where:

https

https might be http if SSL is not enabled on the server.

common_domain_name
The shared common domain name.

sps

The context root for the single sign-on application on WebSphere
Application Server. This part of the URL cannot be changed.

federation_name
The name you give to the federation when you configure it.

saml20
The designation of the SAML protocol you choose to use in your
federation.

cdcwriter or cdcreader
The designation of what type of action (read/get or write/set) is
used.

Note: Tivoli Federated Identity Manager also supports the use of a
third-party or custom discovery service.

Chapter 16. SAML endpoints and URLs 181

182 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 17. Sample identity mapping rules for SAML
federations

The following topics show the sample identity mapping rules that are provided for
SAML federations. If you have decided to use identity mapping rules for your
federation, you can review the XSLT rules.

For an overview of identity mapping, including discussion of identity mapping
options that do not use XSLT mapping rules files, see Chapter 14, “Planning the
mapping of user identities,” on page 143
v “Mapping a local user identity to a SAML 1.x token”
v “Mapping a SAML 1.x token to a local user identity” on page 184
v “Mapping a local identity to a SAML 2.0 token using an alias” on page 185
v “Mapping a SAML 2.0 token to a local identity” on page 186

Mapping a local user identity to a SAML 1.x token
This scenario occurs when messages are exchanged between partners in a SAML
1.0 or SAML 1.1 single sign-on federation.

When a user request is received (for example, for access to a remote resource)
Tivoli Federated Identity Manager contacts the point of contact server (for
example, WebSphere Application Server) and obtains a local user identity.

The Tivoli Federated Identity Manager server places the local user identity
information into an XML document that conforms to the security token service
universal user (STSUUSER) schema. The server then consults its configuration
entry for the federation partner (for example, the destination that hosts a requested
resource). The configuration indicates the type of token to be created. In this case,
the token type is SAML.

The identity mapping module then modifies the XML document to contain the
information required to build a SAML token.

Table 20. STSUUSER entries used to generate a SAML token

STSUUSER element SAML Token Information Required?

Principal Attr: Name AuthenticationStatement/Subject/NameIdentifier Required

Attribute List Additional custom attributes Optional

The mapping module is responsible for two tasks:
1. Mapping Principal Attr Name to a Principal Name entry.

The type must be valid for SAML. For example:
urn:oasis:names:tc:SAML:1.0:assertion#emailAddress

Figure 10 on page 184 shows part of the default mapping rule file,
ip_saml_1x.xsl.

© Copyright IBM Corp. 2006, 2013 183

In this example, the local user identity is referred to as the iv user name.
<stsuuser:Value>

<xsl:value-of select="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]
[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />

2. Setting the authentication method to the password mechanism. This action is
required by the SAML standard.
See Figure 11.

Mapping a SAML 1.x token to a local user identity
The service provider receives a SAML 1.0 or SAML 1.1 token. Tivoli Federated
Identity Manager converts the token contents into a XML file that conforms to the
security token service universal user schema.

Table 21. SAML token information that is converted into a STS universal user document

SAML Token Information STSUUSER element

AuthenticationStatement/Subject/NameIdentifier Principal Attr: Name

Tivoli Federated Identity Manager converts this information to a local user identity.
v The NameIdentifier is used to populate the name attribute of the Principal.

Figure 12 on page 185 shows the assignment of a set value for the Principal
name. This code sample is from the default mapping file sp_saml_1x.xsl

<!--
This template replaces the entire Principal element with one that contains
just the iv user name.
-->
<xsl:template match="//stsuuser:Principal">
<stsuuser:Principal>
<stsuuser:Attribute name="name" type="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">
<stsuuser:Value>
<xsl:value-of select="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]
[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
</xsl:template>

Figure 10. XSL code sample showing mapping of a local user identity into a Principal name for a SAML token

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

<!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:AttributeList>

</xsl:template>

Figure 11. XSL code sample showing assignment of authentication method as an Attribute for a SAML token

184 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Another sample mapping file that maps a SAML 1.x token to a local identity is
sp_saml_1x_ext.xsl. This file performs the mapping as described, but adds a section
that verifies if the identity provider has used an acceptable level of authentication.
In this sample file, an exception is thrown if the identity provider has used
password authentication.

Mapping a local identity to a SAML 2.0 token using an alias
This scenario occurs when messages are exchanged between partners in a SAML
2.0 single sign-on federation.

When a user request is received, Tivoli Federated Identity Manager contacts the
point of contact server, and obtains a local user identity. For example, a request can
be made to access a remote resource, and the point of contact server can be a
WebSphere Application Server. The scenario described here uses the ip_saml_20.xsl
sample mapping file in which an alias is used for the identity.

The Tivoli Federated Identity Manager server places the local user identity
information into an XML document that conforms to the security token service
universal user (STSUUSER) schema. The server then consults its configuration
entry for the federation partner (for example, the destination that hosts a requested
resource). The configuration indicates the type of token to be created. In this case,
the token type is SAML.

The identity mapping module then modifies the XML document to contain the
information required to build a SAML 2.0 token.

<!--
This will replace the principal name with the user’s local name.
-->
<xsl:template match="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]">
<stsuuser:Attribute name="name" type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value><xsl:value-of
select="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]/stsuuser:Value"/>

</stsuuser:Value>
</stsuuser:Attribute>

</xsl:template>

Figure 12. XSL code sample showing assignment of a value for the Principal name for a SAML token.

<xsl:param name="message">Detected an unacceptable authentication method.
A higher level of authentication is required.</xsl:param>
<xsl:template match="//stsuuser:AttributeList">
<xsl:variable name="result" select="//stsuuser:AttributeList/
stsuuser:Attribute[@name=’AuthenticationMethod’]/stsuuser:Value"/>
<xsl:if test="(contains($result,’password’)) = ’true’">
<xsl:value-of select="mapping-ext:throwSTSException($message)" />
</xsl:if>
</xsl:template>

Figure 13. XSL code sample showing verification of a value for the AuthenticationMethod

Chapter 17. Sample identity mapping rules for SAML federations 185

Table 22. STSUUSER entries used to generate a SAML token, using an alias

STSUUSER element SAML Token Information Required?

Attribute:

AuthContextClassRef

The authentication context class reference. This element is set to
password by default regardless of the authentication method that
is set in the credential. You can change the value for this element
in the mapping rule.

Required

Attribute:
AudienceRestriction

The audience of the audience restriction condition. Optional

Attribute List Additional custom attributes. Optional

The mapping module is responsible for the following tasks:
1. Mapping Principal Attr Name to a Principal Name entry. When the token

module generates the token, this Principal name is not directly used. Instead,
the value in the Name field is sent as input to the Tivoli Federated Identity
Manager alias service. The alias service obtains the alias name, name identifier,
for the principal, and places the returned alias in the generated token module.
The type must be valid for SAML. For example:
urn:oasis:names:tc:SAML:2.0:assertion

2. Setting the authentication method to the password mechanism. This action is
required by the SAML standard.
The following code sample shows part of the default mapping rule file,
ip_saml_20.xsl.

3. Setting the audience of the audience restriction condition to the value of the
STSUU element AudienceRestriction. If this STSUU element is not present, the
audience is set to the Provider ID of the federation partner.

4. Populating the attribute statement of the assertion with the attributes in the
AttributeList in the In-STSUU. This information becomes custom information in
the token.
There can be custom attributes that are required by applications that uses
information that is to be transmitted between federation partners.

Mapping a SAML 2.0 token to a local identity
Map a SAML 2.0 token to a local identity to conform to the security token service
universal user schema.

<!--
Note: No Principal template is necessary for identity provider on SAML 2.0 since name identifiers
will be carried in the Subject element of the assertion.
-->

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

<!-- First the authentcation context class ref. attribute -->
<stsuuser:Attribute name="AuthnContextClassRef" type="urn:oasis:names:tc:SAML:2.0:assertion">
<stsuuser:Value>urn:oasis:names:tc:SAML:2.0:ac:classes:Password</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:AttributeList>
</xsl:template>

Figure 14. XSL code sample showing mapping of a local user identity into a SAML token, using an alias

186 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The service provider receives a SAML 2.0. Then, Tivoli Federated Identity Manager
converts the token contents into an STSUU document that conforms to the security
token service universal user schema.

Table 23. SAML token information that is converted into an STS universal user document

SAML Token Information STSUUSER element

AuthenticationStatement/Subject/NameIdentifier Principal Attr: Name

Additional custom attributes AttributeList (Optional)

The token module reads the token and obtains the NameIdentifier. The token
module passes the NameIdentifier, an alias, to the alias service. The alias service
converts the received alias to the local identity. The token module puts the local
identity into the Principal element in the STSUU document.
v The NameIdentifier alias that is returned is used to populate the name attribute

of the Principal. This is the local user ID.
The following code example shows the assignment of a set value for the
Principal name. This code sample is from the default mapping file
sp_saml_20.xsl.

v Other information from the token is used to populate Attributes in the
AttributeList.
The following code example shows the optional assignment of additional values
to attributes. This code sample is from the default mapping file sp_saml_20.xsl.

<!--
This will replace the principal name with the user’s local name.
-->
<xsl:template match="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]">
<stsuuser:Attribute name="name" type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>
<xsl:value-of select="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]/stsuuser:Value"/>
</stsuuser:Value>
</stsuuser:Attribute>
</xsl:template>

Figure 15. XSL code sample showing assignment of a value for the Principal name for a SAML 2.0 token.

<xsl:variable name="department">
<xsl:value-of select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’Department’]/stsuuser:Value"/>
</xsl:variable>

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>
<stsuuser:Attribute type="urn:ibm:names:ITFIM:5.1:accessmanager">
<xsl:attribute name="Department">
<stsuuser:Value>

<xsl:value-of select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’Department’]
/stsuuser:Value"/>

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

Figure 16. XSL code sample showing AttributeList for a SAML 2.0 token.

Chapter 17. Sample identity mapping rules for SAML federations 187

188 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 18. SAML 2.0 Attribute query

The SAML 2.0 attribute query feature extends the capability of the SAML 2.0
protocol. Traditional SAML 2.0 function requires that the identity provider sends all
required user attributes to the federation partner. The attributes are included as
part of the assertion generated during the single sign-on flow.

The SAML 2.0 attribute query feature eliminates this limitation. Administrators for
identity providers can include in the single sign-on flow only the attributes that are
used by most targeted applications. Applications can use a SAML 2.0 attribute
query flow to obtain any attribute requirements or specialized values.

Support for attribute query provides a set of core attributes when the initial
authentication context is established. You can query user information as needed
during the application runtime operation. Different applications require different
user information. For example, applications that require fine grained authorization
require specific user entitlements to make the authorization decisions.

Attribute query supports the following modes:

Direct mode
The requesting application issues a direct call to the identity provider to
obtain any required attributes.

On-behalf mode
The requesting application contacts the service provider, which proxies the
attribute request to the identity provider.

Direct mode

In direct mode, the requesting application sends an AttributeQuery request to the
SAML 2.0 federation SOAP endpoint on the identity provider. The SOAP delegate
protocol finishes the necessary protocol actions and issues a SAML assertion. The
SAML attribute query function uses the attribute query secure token service (STS)
module to issue the assertion.

The direct mode requires the application (attribute requester) to be known to the
identity provider. To make an application known at the identity provider, use the
command-line interface command manageItfimPartner to import the requester
metadata.

The single sign-on flow for direct mode is:
1. The user requires access to a resource or application and initiates a federated

single sign-on flow.
2. The identity provider authenticates the user and issues a SAML assertion with

a subset of attributes that most applications or resources require.
3. The application or resource determines if any additional attributes are required.

If so, the application issues an AttributeQuery to the identity provider obtain
them.

4. The identity provider returns a SAML assertion with the requested attributes.
5. The application or resource obtains the attributes returned by the identity

provider in the attribute query SAML response message.

© Copyright IBM Corp. 2006, 2013 189

On-behalf mode

On-behalf mode requires that applications send query requests to the service
provider, which then proxies them to the identity provider. The identity provider
supplies the requested attributes. On-behalf mode supports two different types of
requests:
v SAML 2.0 <AttributeQuery> requests

The application must send AttributeQuery messages to the service provider
SOAP endpoint. If an AttributeQuery request message is used, the service
provider returns a SAML Response message with the corresponding assertion.

v WS-Trust Request Security Token messages.
For this protocol, the application must send WS-Trust messages to the trust
service endpoint. If the requesting application sends a WS-Trust message, the
response message is a Universal User Token.

Note: If your application is a WS-Trust client, you can use this option instead of
using the SAML protocol.

The on-behalf mode limits the amount of configuration required at the identity
provider for many service provider applications to query user attributes. In this
mode, the service provider is the only known entity at the identity provider.

The single sign-on flow for on-behalf mode is:
1. The user requires access to a resource or application on the service provider

and initiates a federated single sign-on flow.
2. The identity provider authenticates the user and issues a SAML assertion with

a subset of attributes that most applications or resources require.
3. The service provider selects which attributes to make available to the resource

or application. The service provider then creates the authenticated session for
the user.

4. The application or resource determines if any additional attributes are required.
If so, the application issues an AttributeQuery or a WS-Trust
RequestSecurityToken to obtain them. The application sends the request to the
service provider. The service provider proxies the request to the identity
provider.

5. The Identity Provider returns a SAML assertion with the requested attributes.
6. The application or resource obtains the attributes returned by the Identity

Provider in the attribute query SAML response message. If a WS-Trust request
is made, the attributes are returned to the client application using a Universal
User Token. If the request is a SAML AttributeQuery request, the attributes are
returned in a SAMLResponse generated by the Service Provider.

Attribute query request partner

The Attribute query feature defines a new type of role. Application partners to a
SAML 2.0 federation can now act in an attribute query requester role. This role is
different from the role of service provider partner or identity provider partner.

An attribute query requester is an entity that makes SOAP-based <AttributeQuery>
request calls to obtain user attributes.

If you plan to configure an attribute query requester partner, you must generate a
metadata file as specified by the SAML 2.0 specification. Tivoli Federated Identity

190 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Manager uses this metadata file to create the attribute request partner. You must
use the manageItfimPartner command to create the partner. This command uses a
response file, which contains a parameter that specifies the location of the
metadata file.

Developing an attribute query STS module

The attribute query function uses an STS token module called the attribute query
module. You must configure the module for the STS trust chain for the SAML 2.0
federation.

Before you configure attribute query, you must:
1. Determine the attributes that your resource or application wants to request

from the identity provider.
2. Develop a script or module that requests the attributes. This request can be

made by an XSLT or JavaScript file, a Tivoli Directory Integrator assembly line,
or a custom secure token service (STS) mapping module.

Limitation with migrating from previous release of Tivoli
Federated Identity Manager

Tivoli Federated Identity Manager supports migration of SAML 2.0 federations
from the previous release to the current release. The attribute query feature was
not available in previous releases. Without the attribute query feature, attribute
query is not automatically enabled in the new release when you migrate SAML 2.0
federations from the previous release.

To enable attribute query for the federation, take the following steps after you have
migrated the federation:
v Select the check box on the federation properties page to enable attribute query.
v Use the graphical user interface on the federation properties page to configure

an attribute query module.
v Use the Add Partner wizard to add all partners that previously existed for the

federation.

Configuring attribute query
You can configure SAML 2.0 federations and partners to support the attribute
query feature.

The steps for attribute query configuration vary depending on the deployment
scenario. Deployment includes the creation of a federation and the addition of a
partner to the federation.

When you configure the federations, the identity provider partners, and the service
provider partners, you can use a graphical user interface that prompts for attribute
query settings. The section provides detailed descriptions of these settings.

Some settings for attribute query use existing values for SAML 2.0 federations. For
these settings, you are not prompted for additional configuration for attribute
query.

For example, providers sign or validate assertions based on the configuration
settings established for the SAML 2.0 federation or partner. The federation or

Chapter 18. SAML 2.0 Attribute query 191

partner signs or validates the attribute query assertions as required by the
federation partner. You are not required to specify additional settings to enforce
signing or validation.

If you install SAML 2.0 with the Typical or All profiles, signing and validation are
activated automatically. If you select manual installation of profiles, the wizard
prompts you to specify whether to sign and validate messages. The wizard
requires these settings whether the attribute query feature is configured or not
configured.

To configure your federation and partner in direct mode, complete the following
tasks:
v “Creating a federation as an attribute authority”
v “Creating an attribute query request partner” on page 196

To configure your federation and partner in on-behalf mode, complete the
following tasks:
v “Creating a federation as an attribute authority”
v “Creating an identity provider partner or service provider partner for an

attribute authority federation” on page 194
v “Creating an attribute query request partner” on page 196

Creating a federation as an attribute authority
You can use either the administration console or the command-line interface to
create a SAML 2.0 federation as an attribute authority.

Choose one of the following methods:
v “Using the administration console to create a federation as an attribute

authority”
v “Using the command line interface to create a federation as an attribute

authority” on page 193

Using the administration console to create a federation as an
attribute authority

You can use the administration console to create a SAML 2.0 federation as an
attribute authority.

About this task

The configuration for attribute query uses the same wizard as is used for all SAML
federations. When you use the wizard, you activate attribute query, and are
prompted to provide configuration settings.

Parameters for attribute query are described in the worksheets for federation
configuration. See the topic for your partner type:
v “SAML 2.0 identity provider worksheet” on page 208.
v “SAML 2.0 service provider worksheet” on page 203.

Note: Combine the information in this procedure below with the step by step
configuration instructions for SAML 2.0 federations in Chapter 19, “Establishing a
SAML federation,” on page 199.

192 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. On the Profiles panel in the wizard, select All or Manual.
2. On the Profile Details panel, go to Attribute Query and select Enabled.

Selection of this check box causes additional panels to be shown.
3. On the SAML Assertions panel, specify the amount of time before the issue

date that an assertion is considered valid. Specify also the amount of time that
the assertion is valid after being issued.

Note: When you are using a service provider federation for attribute query, the
federation must issue assertions. This requirement means that when you have
activated attribute query for a service provider federation, the SAML assertions
panel opens, and you must specify values. When you configure a service
provider federation without attribute query, you are not required to set values
for SAML assertions.

The SAML Assertions panel is shown for identity provider federation creation
regardless of whether attribute query is selected. In this type of federation,
SAML assertions are issued for multiple purposes.

4. On the Attribute Module Selection panel, select one of the following choices:
v XSLT or JavaScript transformation
v Tivoli Directory Integrator module
v Custom mapping module.
Base your selection on the method you identified for your deployment when
you planned the configuration.

Using the command line interface to create a federation as an
attribute authority

You can use the command-line interface to create a SAML 2.0 federation as an
attribute authority.

About this task

When using the command-line interface to create a SAML 2 federation, you must
first create and populate a SAML 2 federation response file. To establish the SAML
2 federation as an attribute authority, you must set values in the response file for
the following parameters:
v AttributeQueryMappingRule

v AttributeQueryMappingRuleFileName

v AttributeAuthorityEnabled

v SignAttributeQueryRequest

v SignAttributeQueryResponse

For descriptions of the parameters needed, see “SAML 2.0 attribute query
federation response file parameters” on page 197.

For more information about using the command-line interface to create a SAML 2
federation and a response file, see the IBM Tivoli Federated Identity Manager
Administration Guide.

Chapter 18. SAML 2.0 Attribute query 193

Procedure
1. Create a SAML 2 response file.

For example, to create a SAML 2 response file based on an existing federation:
$AdminTask manageItfimFederation {-operation createResponseFile
-fimDomainName domain1 -federationName idpsaml2
-fileId c:\temp\saml2idp.rsp }

2. Edit the SAML 2 response file to set the attribute query parameters.
In the example, the response file is c:\temp\saml2idp.rsp

3. Create the SAML 2 federation as an attribute authority.
To create an identity provider or service provider federation that is activated
for attribute query, use the standard syntax. There are no additional options to
specify.
For example, if the response file is c:\temp\saml2idp.rsp:
$AdminTask manageItfimFederation { -operation create -fimDomainName domain1
-fileId c:\temp\saml2idp.rsp }

Creating an identity provider partner or service provider partner for an
attribute authority federation

You can create an identity provider partner or service provider partner for a SAML
2.0 federation that has been configured as an attribute authority.

When a federation has been configured to as an attribute authority, you can add
partners of the following types:
v Service provider partner

Add a traditional service provider partner to an identity provider federation.
You can configure this partner to exchange attribute query request-responses
with the federation provider.

v Identity provider partner
Add a traditional identity provider partner to a service provider federation. You
can configure this partner to exchange attribute query request-responses with the
federation provider.

v Attribute query request partner
This type of partner is a special case for use when the requesting application or
resource does not have Tivoli Federated Identity Manager installed.

Note: The instructions in this topic do not apply to attribute query request
partners. See “Creating an attribute query request partner” on page 196.

To add either an identity provider partner or a service provider partner, see:
v “Using the administration console to create a service provider or identity

provider partner”
v “Using a command-line interface to create a service provider or identity

provider partner” on page 196

Using the administration console to create a service provider
or identity provider partner

You can use the administration console to create a service provider or identity
provider partner.

194 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

You can use the Add Partner wizard to add a service provider partner or identity
provider partner to a federation. This wizard is also used for adding SAML 2.0
partners without attribute query.

When you use the wizard to add a partner to a federation, the configuration
program determines if the federation is configured as an attribute query authority.
If the federation is an attribute query authority, additional panels prompt you to
enter more information.

The configuration panels differ slightly for identity provider partners or service
provider partners. See the following table.

Configuration panel Partner type Description

SAML Assertions Identity provider partner for a
service provider federation only

The SAML Assertions settings
panel permits you to specify
which attributes to include in
the assertion. The default value
is to include all attributes. You
can use this setting to specify a
base set of attributes.

The SAML Assertions panel also
permits you to specify which
attributes get encrypted, and
which encryptions algorithms to
use.

Attribute Module
Selection

Both identity provider partner
for a service provider federation
and service provider partner for
an identity partner federation

On the Attribute Module
Selection panel, you must select
one of:

v XSLT or JavaScript
transformation

v Tivoli Directory Integrator
module

v Custom mapping module.

Base your selection on the
method you identified for your
deployment when you planned
the configuration.

The parameters for partner configuration for attribute query are described in the
worksheets for SAML 2.0 partner configuration. See the topic for your partner
type:
v “SAML 2.0 identity provider partner worksheet” on page 237
v “SAML 2.0 service provider partner worksheet” on page 230

The graphical user interface wizard for adding SAML 2.0 partners includes the
panels for attribute query configuration. To configure the identity provider or
service provider partner, see the SAML 2.0 instructions: “Adding your partner” on
page 245

Chapter 18. SAML 2.0 Attribute query 195

Using a command-line interface to create a service provider or
identity provider partner

You can create an identity provider partner or service provider partner for a SAML
2.0 federation that has been configured as an attribute authority.

About this task

When using the command-line interface to create a partner, you must first create
and populate a SAML 2 federation response file. To configure the partners to use
the attribute query capability, you must set values for the following parameters in
the response file:
v AttributeQueryMappingRule

v AttributeQueryMappingRuleFileName

v ValidateAttributeQueryRequest

v ValidateAttributeQueryResponse

For information about using the command-line interface to create a SAML 2
partner and partner response file, see the IBM Tivoli Federated Identity Manager
Administration Guide.

Procedure
1. Create a SAML 2 partner response file.

For example, to create a SAML 2 partner response file based on an existing
partner:
$AdminTask manageItfimPartner {-operation createResponseFile
-fimDomainName domain1 -federationName fed1
-partnerName idppartner -fileId c:\temp\saml2idp.rsp }

2. Edit the SAML 2 partner response file to set the attribute query parameters.
In the example, the response file is c:\temp\saml2idp.rsp

For descriptions of the attribute query response file parameters, see “SAML 2.0
attribute query partner response file parameters” on page 198.

3. To create an identity provider partner that is configured for attribute query, use
the standard syntax.
You can optionally specify the partner role in the command line. You are not
required to specify the partner role. When the role is not specified the program
automatically sets the partner role based on the federation role.
For example, if the response file is c:\temp\saml2idp.rsp:
$AdminTask manageItfimPartner { -operation create -fimDomainName domain1
-federationName idpsaml2 -partnerName idpartner
-fileId c:\temp\saml2idp.rsp
-signingKeystorePwd testonly -encryptionKeystorePwd testonly }

If you want to specify the partner role in the command line, add the
-partnerRole option, and specify either sp or idp. For example, to specify a
service provider partner:
$AdminTask manageItfimPartner { -operation create -fimDomainName domain1
-federationName idpsaml2 -partnerName idpartner
-partnerRole sp
-fileId c:\temp\saml2sp.rsp
-signingKeystorePwd testonly -encryptionKeystorePwd testonly }

Creating an attribute query request partner
Use the command-line interface to create an attribute query request partner.

196 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

You must use the command-line interface to add an attribute query request partner
to a federation. The administration graphical user interface does not provide a
wizard for this task.

Use the manageItfimPartner command to create the partner. This command
supports a partner role parameter qr that indicates that a query requester partner
is created.

Procedure
1. Create a SAML 2 partner response file.

For example, to create a SAML 2 attribute query request partner response file
based on an existing partner:
$AdminTask manageItfimPartner { -operation createResponseFile
-fimDomainName fimipdomain -federationName saml20ip
-partnerRole qr -fileId /downloads/qr.out }

2. Edit the response file to show the location of the metadata file from the
attribute query request partner. This file name is a parameter in the response
file. You also must add information specific to the partner.
For information about using the command-line interface to create a SAML 2
partner and partner response file, see the IBM Tivoli Federated Identity Manager
Administration Guide.

3. Create an attribute requester partner:
$AdminTask manageItfimPartner { -operation create
-fimDomainName fimipdomain
-federationName saml20ip -partnerName samlqr
-partnerRole qr -fileId /downloads/qr.out
-signingKeystorePwd testonly
-encryptionKeystorePwd testonly}

SAML 2.0 attribute query federation response file parameters
The SAML 2.0 federation response file contains parameters that are used by
attribute query.

Table 24. Attribute query parameters for federation response file

Parameter Value Description

AttributeQueryMappingRule contents of the mapping
rule file

Contains the actual mapping rule contents
(XSL) that are used to format the rule, so that it
can be contained in the XML response file.

Use this property to specify a mapping rule
without using a file on the file system.

Use this property also if you are modifying a
federation.

If you want to edit the XSLT rule as a regular
file, supply it to the response file using the
AttributeQueryMappingRuleFileName
property. This rule is used for attribute query
operations.

Chapter 18. SAML 2.0 Attribute query 197

Table 24. Attribute query parameters for federation response file (continued)

Parameter Value Description

AttributeQueryMappingRuleFileName path and file name Specifies path name to an XSLT file that is used
as a mapping rule. When defined, it takes
precedence over the
AttributeQueryMappingRule property. This
rule is used for attribute query operations.

AttributeAuthorityEnabled true or false Specifies whether the attribute query feature is
configured in the federation. The value true
activates attribute query. The value false
disables attribute query.

Default: false

SignAttributeQueryResponse true or false Specifies whether attribute query responses are
signed.

SignAttributeQueryRequest true or false Specifies whether attribute query requests are
signed.

SAML 2.0 attribute query partner response file parameters
The SAML 2.0 partner response file contains parameters that are used by attribute
query.

Table 25. Attribute query parameters for partner response file

Parameter Value Description

AttributeQueryMappingRule contents of the mapping
rule file

Contains the actual mapping rule contents
(XSL) that are used to format the rule, so that
it can be contained in the XML response file.

Use this property if you want to specify a
mapping rule without using a file on the file
system.

Use this property also if you are modifying a
federation.

If you want to edit the XSLT rule as a regular
file, supply it to the response file using the
AttributeQueryMappingRuleFileName
property. This rule is used for attribute query
operations.

AttributeQueryMappingRuleFileName path and file name Specifies path name to an XSLT file that is
used as a mapping rule. When defined, it
takes precedence over the
AttributeQueryMappingRule property. This
rule is used for attribute query operations.

ValidateAttributeQueryResponse true or false Specifies that validation of the partner
signatures takes places on attribute query
responses that are received. An error is
shown if the message is not signed.

ValidateAttributeQueryRequest true or false Specifies that an attribute query request that
was received from the partner signature is
validated. An error is shown if the message
is not signed.

198 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 19. Establishing a SAML federation

Establish a SAML federation to complete the configuration of your federation.

Complete the following tasks to configure your federation:
1. “Gathering your federation configuration information.”
2. “Creating your role in the federation” on page 214.
3. “Providing guidance to your partner” on page 216.
4. “Obtaining federation configuration data from your partner” on page 218.
5. “Adding your partner” on page 245.
6. “Providing federation properties to your partner” on page 247.

Gathering your federation configuration information
The Federation wizard prompts you for information that is used in your
federation. Before starting the wizard, prepare for the configuration process by
gathering your configuration information using the appropriate worksheet.

About this task

Choose a worksheet based on the SAML standard that you want to use in the
federation and your role in the federation.
v “SAML 1.x service provider worksheet”
v “SAML 1.x identity provider worksheet” on page 201
v “SAML 2.0 service provider worksheet” on page 203
v “SAML 2.0 identity provider worksheet” on page 208

SAML 1.x service provider worksheet
If you assume the role of the service provider in the federation, and use SAML 1.0
or SAML 1.1, record your configuration information in the following tables.

Table 26. General information for service provider in SAML 1.x federation

General Information Description Your value

Federation name The unique name you give to
the federation.

Role The role you provide in the
federation. (In these
instructions, you are the
service provider.)

Service provider

Table 27. Contact information for service provider in SAML 1.x federation

Contact Information Description Your value

Company name, Company
URL, and contact name and
information.

Your company name and
other optional information
about the contact associated
with your role in the
federation.

© Copyright IBM Corp. 2006, 2013 199

Table 28. Federation protocol for service provider in SAML 1.x federation

Federation Protocol Description Your value

Protocol The SAML protocol you and
your partner use in the
federation.

One of the following:

v SAML 1.0

v SAML 1.1

Table 29. Point of contact server information for service provider in SAML 1.x federation

Point of contact server Description Your value

Point of contact server URL The URL that provides access
to the endpoints on the point
of contact server.

Table 30. Signature information for service provider in SAML 1.x federation

Signatures Description Your value

Sign Artifact Resolution
Requests

A check box that indicates
that you will sign request
messages. Default value: No
signing. The check box is not
selected.

One of the following:

v Sign request messages.
(Select check box.)

v Do not sign request
messages. (Clear check
box.)

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Private key you will use to
sign request messages

If you select the check box,
you must supply the signing
key that you will use to sign
the requests.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service prior to this task.
See Chapter 8, “Setting up
message security,” on page
49.

Keystore name:

Keystore password:

Key alias name:

200 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 31. Identity mapping information for service provider in SAML 1.x federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v An XSL transformation
(XSLT) file containing
mapping rules

v A custom mapping
module

The type of identity mapping
you will use. You must know
whether to use an XSLT file
for identity mapping or a
custom mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, your
mapping module must be
created and added to the
environment as a module
type and module instance
before you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed the tables, continue with the instructions in “Creating
your role in the federation” on page 214.

SAML 1.x identity provider worksheet
If you assume the role of the identity provider in the federation, and use SAML 1.0
or SAML 1.1, record your configuration information in the following tables.

Table 32. General information for identity provider in SAML 1.x federation

General Information Description Your value

Federation name The unique name you give to
the federation.

Role The role you provide in the
federation. (In these
instructions, you are the
identity provider.)

Identity provider

Table 33. Contact information for identity provider in SAML 1.x federation

Contact Information Description Your values

Company name, Company
URL, and contact name and
information.

Company name and
optionally other information
about the contact associated
with the federation.

Company name:

Table 34. Federation protocol information for identity provider in SAML 1.x federation

Federation Protocol Description Your value

Protocol The SAML protocol you and
your partner use in the
federation.

One of the following:

v SAML 1.0

v SAML 1.1

Chapter 19. Establishing a SAML federation 201

Table 35. Point of contact server for identity provider in SAML 1.x federation

Point of Contact Server Description Your value

Point of contact server URL The URL that provides access
to the endpoints on the point
of contact server.

Table 36. Signing information for identity provider in SAML 1.x federation

Signatures Description Your value

Signature options:

v SAML messages for
Browser POST profile are
signed (required)

v Sign SAML messages for
artifact profile (optional)

v When browser POST is
used as the profile, SAML
messages must be signed.
Therefore, it is pre-selected
and cannot be deselected.

v You have the option of
also signing the SAML
messages when browser
artifact is used.

One of the following:

v Sign browser artifact
messages. (Select check
box.)

v Do not sign browser
artifact messages. (Clear
check box.)

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Private key you will use
for signing

Because Browser POST
messages must be signed,
you are required to supply a
signing key. If you select to
also sign messages when
browser artifact is used, the
same signing key is used to
sign them.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service prior to this task.
See Chapter 8, “Setting up
message security,” on page
49.

Keystore name:

Keystore password:

Key alias name:

Table 37. SAML Message Settings information for identity provider in SAML 1.x federation

SAML Message Settings Description Your value

Artifact Resolution Service
URL

The URL for your artifact
resolution endpoint. (Note:
The value for this field is
filled in automatically using
the point of contact server
URL you specified earlier.)

Artifact Cache Lifetime
(seconds)

The artifact cache lifetime in
seconds. Default value: 30
seconds.

202 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 37. SAML Message Settings information for identity provider in SAML 1.x
federation (continued)

SAML Message Settings Description Your value

Allow IBM Protocol
Extension

You must specify whether
you will allow the use of the
IBM PROTOCOL extension.
The extension allows a
query-string parameter that
specifies whether browser
artifact or browser POST is
used. For more information,
see “SAML 1.x” on page 165.

One of the following:

v Allow IBM Protocol
Extension. (Select the
check box.)

v Do not allow Protocol
Extension. (Clear the check
box.)

Table 38. Token Settings information for identity provider in SAML 1.x federation

Configure Token Settings Description Your value

Amount of time before the
issue date that an assertion
is considered valid

The number of seconds that
an assertion is considered
valid before its issue date.
Default value: 60

Amount of time the
assertion is valid after being
issued

The number of seconds that
an assertion is considered
valid after its issue date.
Default value: 60

Table 39. Identity mapping information for identity provider in SAML 1.x federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v An XSL transformation
(XSLT) file containing
mapping rules

v A custom mapping
module

The type of identity mapping
you will use. You must know
whether to use an XSLT file
for identity mapping or a
custom mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, your
mapping module must be
created and added to the
environment as a module
type and module instance
before you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed the tables, continue with the instructions in “Creating
your role in the federation” on page 214.

SAML 2.0 service provider worksheet
If you assume the role of the service provider in the federation, and use SAML 2.0,
record your configuration information in the following tables.

Chapter 19. Establishing a SAML federation 203

Table 40. General information for service provider in SAML 2.0 federation

General Information Description Your value

Federation name The unique name you give to
the federation.

Role The role you provide in the
federation. (In these
instructions, you are the
service provider.)

Service provider

Table 41. Contact information for service provider in SAML 2.0 federation

Contact Information Description Your value

Company name, Company
URL, and contact name and
information.

Your company name and
optionally other information
about the contact associated
with your role in the
federation.

Table 42. Federation protocol for service provider in SAML 2.0 federation

Federation Protocol Description Your value

Protocol The SAML protocol you and
your partner use in the
federation.

SAML 2.0

Table 43. Point of contact server information for service provider in SAML 2.0 federation

Point of contact server Description Your value

Point of contact server URL The URL that provides access
to the endpoints on the point
of contact server.

Table 44. Profile selection and configuration information for service provider in SAML 2.0
federation

Profile selection Description Your value

SAML 2.0 profile options:

Choose one of the following
profile options:

The profile for your
federation.

For more information about
profiles, see “SAML 2.0” on
page 167.

One of the following:

v Basic

v Typical

v All

v Manual

Basic: Web Browser SSO,
Single Logout

This setting enables the
following profiles with all
supported bindings:

v Web browser SSO

v Single Logout

(No additional values
required.)

204 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 44. Profile selection and configuration information for service provider in SAML 2.0
federation (continued)

Profile selection Description Your value

Typical: Web Browser SSO,
Single Logout and Name
Identifier Management

This setting enables the
following profiles with all
supported bindings:

v Web browser SSO

v Single Logout

v Enhanced client or proxy

v Name Identifier
Management

(No additional values
required.)

Enable all profiles and
bindings

If you choose Enable all
profiles and bindings, you
must be ready to provide the
following information on
subsequent panels:

Identity Provider Discovery
Settings panel:

v Common domain name

v Common domain cookie
service URL

Enhanced Client Proxy
panel:

v HTTP headers

Identity Provider Discovery
Settings

v Common domain name:

v Common domain cookie
service URL:

Enhanced Client Proxy

HTTP headers:

Manual: Choose individual
profiles and bindings

If you choose Manual, you
must be ready to select
individual profiles and
supported bindings.

Profiles and bindings:

Table 45. Signature information for service provider in SAML 2.0 federation

Signatures Description Your value

Require signature on
incoming messages and
assertions

A check box that specifies
that your partner uses its
private key to sign the
message and assertion.
Default value: The check box
is checked.

One of the following:

v Partner will sign. (Check
box is selected.)

v Partner will not sign.
(Check box is not
selected.)

Select which outgoing
messages and assertions you
will sign

Buttons that indicate which
outgoing messages you will
sign. The default setting is
for the typical set of
outgoing SAML messages
and assertions (except for
ArtifactResponse and
AuthnResponse) to be
signed.

One of the following:

v Typical set of outgoing
SAML messages are
signed.

v All outgoing SAML
messages and assertions
are signed.

v No outgoing SAML
messages and assertions
are signed.

Chapter 19. Establishing a SAML federation 205

Table 45. Signature information for service provider in SAML 2.0 federation (continued)

Signatures Description Your value

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Private key you will use to
sign messages

If you sign messages and
assertions, you must supply
the signing key that you use
to sign them.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service prior to this task.
See Chapter 8, “Setting up
message security,” on page
49.

Keystore name:

Keystore password:

Key alias name:

Table 46. Encryption information for service provider in SAML 2.0 federation

Encryption Description Your value

Encryption Key:

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Public/private key pair
that will be used for data
you receive from your
partner.

A public/private key pair
used in encryption. Your
partner uses the public key
to encrypt data to you. You
will use the private key to
decrypt data that your
partner sends to you.

You must specify the key
pair to use.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service prior to this task.

Keystore name:

Keystore password:

Key alias name:

Table 47. SAML message settings for service provider in SAML 2.0 federation

Message settings Description Your value

Message Options:

v Message Lifetime in
seconds

v Artifact Lifetime in
seconds

v Session Timeout

Amount of time in seconds
that messages, artifacts, and
sessions are valid. The
default values are:

v Message lifetime: 300

v Artifact lifetime: 120

v Session timeout: 7200

Message Lifetime in seconds:

Artifact Lifetime in seconds:

Session Timeout:

Single sign-On Options

v Identity Provider is
allowed to interact with
user

v Single sign-on is passive

v Force Identity Provider to
authenticate user

Specifies how the identity
provider is to interact with
the users.

One of the following:

v Identity Provider is
allowed to interact with
user

v Single sign-on is passive

v Force Identity Provider to
authenticate user

206 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 47. SAML message settings for service provider in SAML 2.0 federation (continued)

Message settings Description Your value

SOAP Endpoint The URL of the SOAP
endpoint.

Default value: The value in
this field is based on the
point of contact server URL
that you supplied earlier.
Note: If the SOAP binding is
not used in the profile you
selected, this field is not
shown.

Table 48. Attribute query information for service provider

Attribute query Description Your value

Enabled Indicates if the provider is
permitted to act as the
attribute authority. If the
check box is selected, the
attribute query profile is
activated.

Amount of time before the
issue date that an assertion is
considered valid

The number of seconds that
an assertion is considered
valid before its issue date.
Default value: 60

Amount of time the assertion
is valid after being issued

The number of seconds that
an assertion is considered
valid after its issue date.
Default value: 60

Chapter 19. Establishing a SAML federation 207

Table 49. Attribute query mapping information for service provider in SAML 2.0 federation

Attribute query mapping Description Your value

Attribute query mapping
options

One of the following:

v An XSL transformation file
or JavaScript containing
mapping rules

v Tivoli Directory Integrator
mapping module

v A custom mapping
module

The type of attribute query
mapping you are using. You
must select either an XSLT
file, a Tivoli Directory
Integrator mapping module,
or a custom mapping
module.

If you use an XSLT file, you
must have the file created
before you configure the
federation.

The Tivoli Directory
Integrator mapping module
is an STS module.

Custom mapping is an
advanced option. If you use
this option, you must create
and add a new module type
and module instance before
you can use it in your
configuration.

One of the following values:

v XSLT file path

v Tivoli Directory Integrator
mapping module

v Custom mapping module
instance name

Table 50. Identity mapping information for service provider in SAML 2.0 federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v An XSL transformation file
containing mapping rules

v A custom mapping
module

The type of identity mapping
you will use. You must know
whether to use an XSLT file
for identity mapping or a
custom mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, your
mapping module must be
created and added to the
environment as a module
type and module instance
before you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed the tables, continue with the instructions in “Creating
your role in the federation” on page 214.

SAML 2.0 identity provider worksheet
If you will be the identity provider in the federation and will use SAML 2.0, record
your configuration information in the following tables.

208 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 51. General information for identity provider in SAML 2.0 federation

General Information Description Your value

Federation name The unique name that you
give to the federation.

Role The role that you provide in
the federation. (In these
instructions, you are the
identity provider.)

Identity provider

Table 52. Contact information for identity provider in SAML 2.0 federation

Contact Information Description Your value

Company name, Company
URL, and contact name and
information.

Your company name and
other optional information
about the contact associated
with your role in the
federation.

Table 53. Federation protocol for identity provider in SAML 2.0 federation

Federation Protocol Description Your value

Protocol The SAML protocol you and
your partner use in the
federation.

SAML 2.0

Table 54. Point of contact server information for identity provider in SAML 2.0 federation

Point of contact server Description Your value

Point of contact server URL The URL that provides access
to the endpoints on the point
of contact server.

Table 55. Profile selection and configuration information for identity provider in SAML 2.0
federation

Profile selection Description Your value

SAML 2.0 profile options:

Choose one of the following
profile options:

The profile for your
federation.

For more information about
profiles, see “SAML 2.0” on
page 167.

One of the following:

v Basic

v Typical

v All

v Manual

Basic: Web Browser SSO,
Single Logout

This setting enables the
following profiles with all
supported bindings:

v Web browser SSO

v Single Logout

(No additional values
required.)

Chapter 19. Establishing a SAML federation 209

Table 55. Profile selection and configuration information for identity provider in SAML 2.0
federation (continued)

Profile selection Description Your value

Typical: Web Browser SSO,
Single Logout and Name
Identifier Management

This setting enables the
following profiles with all
supported bindings:

v Web browser SSO

v Single Logout

v Enhanced client or proxy

v Name Identifier
Management

(No additional values
required.)

Enable all profiles and
bindings

If you choose Enable all
profiles and bindings, you
must be ready to provide the
following information on
subsequent panels:

Identity Provider Discovery
Settings panel

v Common domain name

v Common domain cookie
service URL

v Common domain cookie
lifetime in seconds.
Default value: 1

Enhanced Client Proxy
panel

v HTTP headers

Identity Provider Discovery
Settings panel

v Common domain name

v Common domain cookie
service URL

v Common domain cookie
lifetime in seconds.
Default value: 1

Enhanced Client Proxy
panel

v HTTP headers

Manual: Choose individual
profiles and bindings

If you choose Manual, you
must be ready to select
individual profiles and
supported bindings.

Profiles and bindings:

Table 56. Signature information for identity provider in SAML 2.0 federation

Signatures Description Your value

Require signature on
incoming messages and
assertions

A check box that specifies
that your partner uses its
private key to sign the
message and assertion.
Default value: The check box
is checked.

One of the following:

v Partner will sign. (Check
box is selected.)

v Partner will not sign.
(Check box is not
selected.)

Select which outgoing
messages and assertions you
will sign

Buttons that indicate which
outgoing messages you sign.
The default setting is for the
typical set of outgoing SAML
messages and assertions
(except for ArtifactResponse
and AuthnResponse) to be
signed.

One of the following:

v Typical set of outgoing
SAML messages are
signed.

v All outgoing SAML
messages and assertions
are signed.

v No outgoing SAML
messages and assertions
are signed.

210 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 56. Signature information for identity provider in SAML 2.0 federation (continued)

Signatures Description Your value

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Private key you will use to
sign messages

If you sign messages and
assertions, you must supply
the signing key that you use
to sign them.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in theTivoli
Federated Identity Manager
key service prior to this task.

Keystore name:

Keystore password:

Key alias name:

Table 57. Encryption information for identity provider in SAML 2.0 federation

Encryption Description Your value

Encryption Key:

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Public/private key pair
that will be used for data
you receive from your
partner.

A public/private key pair
used in encryption. Your
partner uses the public key
to encrypt data to you. You
use the private key to
decrypt data that your
partner sends to you.

You must specify the key
pair to use.
Note: Be sure you have
created the key and imported
it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service prior to this task.
See Chapter 8, “Setting up
message security,” on page
49.

Keystore name:

Keystore password:

Key alias name:

Table 58. SAML message settings for identity provider in SAML 2.0 federation

Message settings Description Your value

Message Options:

v Message Lifetime in
seconds

v Artifact Lifetime in
seconds

v Session Timeout

Amount of time in seconds
that messages, artifacts, and
sessions are valid. The
default values are:

v Message lifetime: 300

v Artifact lifetime: 120

v Session timeout: 7200

Message Lifetime in seconds:

Artifact Lifetime in seconds:

Session Timeout:

Require Consent to Federate If you select this check box,
you are required to present a
page to the user to verify
that the user has made a
federation request. Default
value: Requires consent to
federate.

One of the following:

v Require Consent to
Federate (Check box is
selected.)

v Do not require consent to
federate. (Check box is not
selected.)

Chapter 19. Establishing a SAML federation 211

Table 58. SAML message settings for identity provider in SAML 2.0 federation (continued)

Message settings Description Your value

SOAP Endpoint The URL of the SOAP
endpoint.

Default value: The value in
this field is based on the
point of contact server URL
that you supplied earlier.
Note: If the SOAP binding is
not used in the profile you
selected, this field is not
displayed.

Table 59. Token Settings information for identity provider in SAML 2.0 federation

Configure Token Settings Description Your value

Amount of time before the
issue date that an assertion
is considered valid

The number of seconds that
an assertion will be
considered valid before its
issue date. Default value: 60

Amount of time the
assertion is valid after being
issued

The number of seconds that
an assertion will be
considered valid after its
issue date. Default value: 60

Table 60. Attribute query information for identity provider

Attribute query Description Your value

Enabled Indicates if the provider is
permitted to act as the
attribute authority. If
selected, the attribute query
profile is activated.

212 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 61. Attribute query mapping information for identity provider

Attribute query mapping Description Your value

Attribute query mapping
options

One of the following:

v An XSL transformation file
or JavaScript containing
mapping rules

v Tivoli Directory Integrator
mapping module

v A custom mapping
module

The type of attribute query
mapping you are using. You
must select either an XSLT
file, a Tivoli Directory
Integrator mapping module,
or a custom mapping
module.

If you use an XSLT file, you
must have the file created
before you configure the
federation.

The Tivoli Directory
Integrator mapping module
is an STS module.

Custom mapping is an
advanced option. If you use
this option, you must create
and add a new module type
and module instance before
you can use it in your
configuration.

One of the following values:

v XSLT file path

v Tivoli Directory Integrator
mapping module

v Custom mapping module
instance name

Table 62. Identity mapping information for identity provider in SAML 2.0 federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v An XSL transformation file
containing mapping rules

v A custom mapping
module

The type of identity mapping
you will use. You must know
whether to use an XSLT file
for identity mapping or a
custom mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, your
mapping module must be
created and added to the
environment as a module
type and module instance
before you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed the tables, continue with the instructions in “Creating
your role in the federation” on page 214.

Chapter 19. Establishing a SAML federation 213

Creating your role in the federation
Use the console to create a federation. To begin, the Federation Wizard prompts
you to supply the necessary information about your role in the federation. For
descriptions of the fields that you are prompted for by the wizard, see the online
help.

Before you begin

Before beginning this procedure, complete the worksheet that is appropriate for the
SAML standard you will use and for your role in the federation:
v “SAML 1.x service provider worksheet” on page 199
v “SAML 1.x identity provider worksheet” on page 201
v “SAML 2.0 service provider worksheet” on page 203
v “SAML 2.0 identity provider worksheet” on page 208

About this task

During the configuration, you might be prompted to restart WebSphere
Application Server. Make sure the server has restarted completely before
continuing with the task.

Procedure
1. Log on to the console
2. Select Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations portlet shows several action buttons.
3. Click Create. The Federation Wizard starts. The General Information panel

opens.
4. Use your worksheet to complete the panels that the Federation wizard open.

Use your completed worksheet as a guide for completing the fields that are
displayed. If you need to go back to a previous panel, click Back. If you want
to end the configuration, click Cancel. Otherwise, click Next after you complete
each panel. When you have completed all configuration panels, the Summary
panel opens.

5. Verify that the configuration settings are correct.
6. Click Finish. The Create Federation Complete portlet opens.
7. You can add your partner now or later. Choose one:

v Click Add partner to start the Partner Wizard and add your partner's
configuration using the steps described in:
a. “Obtaining federation configuration data from your partner” on page 218,

including complete the appropriate worksheet for your partner's role in
the federation.

b. “Adding your partner” on page 245.
v To add your partner at a later time, click Done. You will return to the

Federations panel.

Configuring a WebSEAL point of contact server for the SAML
federation

When you plan to use WebSEAL as the point of contact server, you must configure
it for SAML federation.

214 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that the WebSEAL point of contact profile has been
activated.

About this task

The federation wizard provides a button that you can use to obtain the Tivoli
Federated Identity Manager configuration utility tool. You must obtain the tool and
run it. To configure WebSEAL as the point of contact server, complete the following
steps in this procedure.

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.

Note: The management console gives you the option of adding a partner now,
but for this initial configuration of the federation other tasks are completed
first.

2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

You must know the Tivoli Access Manager administration user (default:
sec_master) and administration user password. The utility configures endpoints
on the WebSEAL server, creates a WebSEAL junction, attaches the appropriate
ACLs, and enables the necessary authentication methods.

Example

For example, when you have placed tfimcfg.jar in /tmp, and the WebSEAL instance
name is default, the command is:
java -jar /tmp/tfimcfg.jar -action tamconfig -cfgfile webseald-default

For more information, see Appendix A, “tfimcfg reference,” on page 753.

Chapter 19. Establishing a SAML federation 215

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use Tivoli Access
Manager WebSEAL as the default point of contact server. To configure WebSphere
as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Select Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select WebSphere

4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Providing guidance to your partner
When you are working with partners to establish a federation, provide information
to them and collect information from them.

Depending on the role you assume in your federations, you might find that you
must give guide or assist to your partner, aside from providing them with
configuration information. The experience of your partner can help you decide the
best way to provide guidance.

Partners who have experience with single sign-on might need limited guidance,
such as through phone calls or e-mail. However, partners who are new to single
sign-on might need an orientation, such as through a tutorial or written
description.

The time at which you provide guidance is up to you. You might want to provide
it at the same time you solicit information from your partner. You might also want
to share introductory information in the early stages of your federated relationship,
before any configuration has taken place.

Use the outline below to help you prepare a guidance document for your partner.
The outline assumes that you are the partner who is providing guidance; however,
if you are the partner who needs guidance, consider providing the outline to your
partner or modifying the outline into a questionnaire that you can use to request
information from your partner.

Integration Guide outline

I. Introduction

a. Describe single sign-on and consider explaining your use of Tivoli Federated
Identity Manager.
b. Define terminology such as federation, identity provider, service provider,
and possibly protocol, profile, and binding.
c. Identify which role you assume and which your partner assumes in the
federation.
d. Describe how the end users interact with your site and with the site of your
partner.

216 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For example, identify the service that the end users are trying to access.
Consider including a graphic that identifies the flow of activities among the
participants such as the end user signing on, the identity provider
authenticating the user, the service provider granting access, and the end user
accessing the service.

II. Technical specifications

a. State requirements or options for protocol, binding, and profile.
For example, perhaps you require your partner to use SAML 1.1 with Browser
Artifact. Or perhaps you require your partner to use SAML 1.1 but the profile
type is the partner's choice.
b. Explain assertion requirements or options.
For example, you might require that the partner include specific fields in the
assertion, such as a user group mapping key with an individual identifier. Or,
you might need to explain that assertion options need to be specified such as
assertion lifetime, artifact lifetime (if using Browser Artifact), and signing
information.
c. Present any limitations about the types of devices that can use the single
sign-on function.
For example, the federation might support only Web browser interaction from
end users.
d. Describe auditing and logging requirements. For more information, refer to
the IBM Tivoli Federated Identity Manager Auditing Guide.
e. Explain how end users experience event messages when interacting with the
federation.
For example, if you are a service provider you might provide customization
options to your partner for how end users log out or receive system messages
about timeouts or other events. If you are an identity provider, you might
provide customization options to your partner for how its end users log in.
f. Agree how you and your partner will synchronize your system clocks.

III. Security

a. State SSL requirements.
b. Request certificate information (such as the name of the certificate authority
that issued the certificate of your partner or a copy of the certificate of your
partner).
c. Explain signing requirements or options.

IV Data exchange

Establish how federation data, including keys are exchanged.
In SAML 1.x federations, data can be exchanged through a metadata file or
manually. In SAML 2.0, a metadata file must be used.
If a manual method is used, list the information that you require from your
partner. Use the worksheets in “Obtaining federation configuration data from
your partner” on page 218 and “Providing federation properties to your
partner” on page 247.

V Testing

Explain your capability for testing the federation and include any requirements
that your partner must follow before using the federation in a production
environment. Consider including the URLs that are needed by your partner for
testing purposes.

Chapter 19. Establishing a SAML federation 217

For example, if you are the service provider in a SAML 1.x federation, you
might need to provide a target URL and assertion consumer URL to your
partner.

VI. Production

Explain what conditions must be met before the federation is ready for
production. You might provide production URLs or explain how you provide
those URLs at a later time.

VII. Support

Explain how the end user or administrator support is handled in the federation.

VIII. Partner worksheet

At various points throughout the preceding sections, you might have requested
information from your partner or explained why you would be requesting that
information.
At the end of your document, consider adding a worksheet where your partner
can record that requested information. The worksheet might contain fields, such
as:

v Endpoint URLs for testing
v Endpoint URLs for production
v Contact information
v SSL certificate information (name of the certificate authority, and so on)
v Signing information (what is signed, what must be validated, and so on)
v Data exchange method (manual or metadata). If a manual method is used, you

might need to add other fields to the worksheet to request the needed
information.

Obtaining federation configuration data from your partner
You must obtain configuration information from your partner before you can add
that partner to a federation.

The partner can export the federation configuration to a metadata file or, if the
partner is using SAML 1.x, the partner can manually communicate the federation
configuration to you. (Configuring partners manually is not supported in SAML
2.0 federations.)

To help you gather the appropriate information from your partner, complete the
appropriate worksheet for the SAML standard you plan to use in the federation
and for the role that your partner will have in the federation:
v If you are the identity provider, add a service provider partner. Use the service

provider partner worksheet for the SAML standard you are using in your
federation:
– “SAML 1.x service provider partner worksheet” on page 219
– “SAML 2.0 service provider partner worksheet” on page 230

v If you are the service provider, add an identity provider partner. Use the identity
provider partner worksheet for the SAML standard you are using in your
federation:
– “SAML 1.x identity provider partner worksheet” on page 224
– “SAML 2.0 identity provider partner worksheet” on page 237

218 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

When you have gathered the configuration information of your partner, you can
then use the Partner wizard in the console to add the federation properties of your
partner. See “Adding your partner” on page 245.

SAML 1.x service provider partner worksheet
You must add a service provider partner to your federation if you are an identity
provider who uses SAML 1.x. Some information can be supplied to you in a
metadata file, or all of the information can be supplied to you manually.

Use the following worksheet to gather the necessary information from your
partner. Modify this worksheet to reflect the specific information that you need
from your partner. You must also ask your partner to complete that modified
worksheet.

Table 63. Metadata options for adding service provider partner in SAML 1.x federation

Metadata Options Description Your values

Enter SAML settings
manually

Import metadata file

Specifies how you must enter
data about the partner.

You can receive a metadata
file from your partner or
enter the information of your
partner manually.

If you choose to import a
metadata file, you need the
file name and its location.

Choose either:

v Enter SAML settings
manually

v Import metadata file and
specify file name and path:

Table 64. Contact information for service provider partner in SAML 1.x federation

Contact Information Description Your value

Note: This panel opens only if you are entering the partner information manually.

Company Name, URL, and
contact person information

Company name and
optionally other information
about the contact associated
with the federation.

Company name:

Table 65. SAML message settings for service provider partner in SAML 1.x federation

SAML Message Settings Description Your value

Note: This panel opens only if you are entering the partner information manually.

Provider ID The URL for the point of
contact server of the service
provider, which is used as
the Provider ID.

Provider ID:

Assertion Consumer Service
URL

The URL for the assertion
consumer service endpoint at
the service provider site.

Assertion Consumer Service
URL:

Partner uses Browser POST
profile for Single Sign-On

A check box that indicates
that the service provider
partner uses Browser POST.

One of the following:

v Partner uses Browser
POST (Select check box.)

v Partner does not use
Browser POST (Clear
check box.)

Chapter 19. Establishing a SAML federation 219

Table 66. Signature validation information for service provider partner in SAML 1.x
federation

Signatures Description Your value

Signature Algorithm for
signing SAML Messages

Specifies the signature
algorithm to use for the
transaction.

The selected key used to sign
the SAML messages must
match the option chosen in
the drop-down menu to
prevent signature failure.

Select the signature
algorithm from the following
options.

v RSA-SHA1

v DSA-SHA1

v RSA-SHA256

Validate Signatures on
Artifact Requests

You can validate the SAML
message signatures when
browser artifact is used. To
use this option, select the
Validate Signatures check
box.

One of the following:

v Validate signatures for
artifact. (Select check box.)

v Do not validate signatures
for artifact. (Clear check
box.)

Select Validation truststore
or key

v Truststore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the truststore

v Public key you will use for
validation

If you select to validate
messages when browser
artifact is used, you must
provide a key for the
validation.

The key must be the public
key that corresponds to the
private key that your partner
uses to sign the messages.
Note: If you are importing
the data of your partner, the
key is supplied in the
metadata file. You are
prompted to choose a
keystore for the key. Be sure
that you have created the
keystore before this task.

If you are manually entering
the data of your partner, be
sure that you have obtained
the key. Then, import the key
into the appropriate keystore
in the Tivoli Federated
Identity Manager key service
before this task. See
Chapter 8, “Setting up
message security,” on page
49.

Metadata method:

v Truststore name:

v Truststore password:

v Label for key:

Manual method:

v Truststore name:

v Truststore password:

v Key alias name:

220 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 67. Security token settings information for service provider partner in SAML 1.x
federation

Configure Security Token Description Your value

Sign SAML Assertions You have the option of
signing SAML assertions.

One of the following:

v Enable SAML signatures.
(Select check box.)

v Do not enable signatures.
(Clear check box.)

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the keystore

v Private key you will use
for signing the assertion.

If you choose to sign the
assertion signatures, you
must select a keystore and a
key.
Note: Create the keystore
and key before this task. See
Chapter 8, “Setting up
message security,” on page
49.

v Keystore name:

v Keystore password:

v Key alias name:

Include the X509 certificate
data

If you choose to sign the
SAML assertion, specify
whether you want the
BASE64 encoded certificate
data to be included with
your signature.

The default action is to
include the X.509 certificate
data (Yes).

Or, you can also choose to
exclude the X.509 certificate
data (No).

Include the X509 Subject
Issuer Details

If you choose to sign the
SAML assertion, specify
whether you want the issuer
name and the certificate
serial number to be included
with your signature.

The default action is to
exclude (No) the X.509
subject issuer details .

Or, you can choose to
include the X.509 subject
issuer details (Yes).

Include the X509 Subject
Name

If you choose to sign the
SAML assertion, specify
whether you want the
subject name to be included
with your signature.

The default action is to
exclude the X.509 subject
name (No).

Or, you can choose to
include the X.509 subject
name (Yes).

Chapter 19. Establishing a SAML federation 221

Table 67. Security token settings information for service provider partner in SAML 1.x
federation (continued)

Configure Security Token Description Your value

Include the X509 Subject
Key Identifier

If you choose to sign the
SAML assertion, specify
whether you want the X.509
subject key identifier to be
included with your
signature.

The default action is to
exclude the subject key
identifier (No).

Or, you can choose to
include the X.509 subject key
identifier (Yes).

Include the Public Key If you choose to sign the
SAML assertion, specify
whether you want the public
key to be included with your
signature.

The default action is to
exclude the public key (No).

Or, you can choose to
include the public key (Yes).

Include the
InclusiveNamespaces
element

If you choose to sign the
SAML assertion, you can
select to use the
InclusiveNamespaces
element in the
canonicalization of the
assertion during signature
creation.

The default is unchecked.

Signature Algorithm for
signing SAML Assertions

Specifies the signature
algorithm to use for the
transaction. The selected key
used to sign the SAML
assertions must match the
option chosen in the
drop-down menu to prevent
signature failure.

Select the signature
algorithm from the following
options.

v RSA-SHA1

v DSA-SHA1

v RSA-SHA256

222 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 67. Security token settings information for service provider partner in SAML 1.x
federation (continued)

Configure Security Token Description Your value

Include the following
attribute types

Select the check box to
specify the types of attributes
to include in the assertion.

The asterisk (*), which is the
default setting, indicates that
all of the attribute types that
are specified in the identity
mapping file, or by the
custom mapping module are
included in the assertion.

To specify one or more
attribute types individually,
type each attribute type in
the box.

For example, if you want to
include only attributes of
type
urn:oasis:names:tc:SAML:
2.0:assertion, enter that value
in the box. Use && to
separate multiple attribute
types.

Chapter 19. Establishing a SAML federation 223

Table 68. Identity mapping information for service provider partner in SAML 1.x federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v A custom mapping
module

v An XSL transformation file
containing mapping rules

v Leave all options blank to
use the identity mapping
option that is currently
defined for the federation.

The type of identity mapping
to use with this partner.

You can leave these fields
blank, if you want this
partner to use the identity
mapping option that is
already configured for your
federation.

Or, you can choose a specific
mapping option to use with
this specific partner. To
choose a mapping option,
you must know whether to
use an XSLT file for identity
mapping or a custom
mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, first, your
mapping module must be
created and added to the
environment as a module
type and module instance.
Then, you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

Leave all options blank to
use existing mapping
configuration.

Or, use one of the following
values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed this worksheet, continue with the steps in “Adding
your partner” on page 245.

SAML 1.x identity provider partner worksheet
You must add an identity provider partner to your federation if you are a service
provider who uses SAML 1.x. Some information can be supplied to you in a
metadata file, or all of the information can be supplied to you manually.

Use the following worksheet to gather the necessary information from your
partner. Modify this worksheet to reflect the specific information that you need
from your partner. You must also ask your partner to complete the modified
worksheet.

224 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 69. Metadata options for adding identity provider partner in SAML 1.x federation

Metadata Options Description Your values

Enter SAML settings
manually

Import metadata file

Specifies how to enter data
about the partner. You can
receive a metadata file from
your partner or enter the
information of your partner
manually.

If you choose to import a
metadata file, you need the
file name and the location of
the metadata.

Choose either:

v Enter SAML settings
manually

v Import metadata file and
specify file name and path:

Table 70. Contact information for identity provider partner in SAML 1.x federation

Contact Information Description Your value

Note: This panel opens only if you are entering the partner information manually.

Company Name, URL, and
contact person information

Company name and
optionally other information
about the contact associated
with the federation.

Company name:

Table 71. SAML message settings for identity provider partner in SAML 1.x federation

SAML Message Settings Description Your value

Note: This panel opens only if you are entering the partner information manually.

Provider ID The URL for the point of
contact server of the service
provider, which is used as
the Provider ID.

Provider ID:

Source ID

v Generate Source ID
automatically

v Enter explicit value for
source ID

You have the option of
generating a source ID for
the partner or providing one.

Source ID:

Endpoints

v Intersite Transfer Service
URL

v Artifact Resolution Service
URL

The URLs for the Intersite
Transfer Service and Artifact
Resolution Service endpoints.

Intersite Transfer Service
URL:

Artifact Resolution Service
URL:

Chapter 19. Establishing a SAML federation 225

Table 72. Signature validation information for identity provider partner in SAML 1.x
federation

Signature Validation Description Your value

Signature Algorithm for
singing SAML Artifact
Resolution Requests

Specifies the signature
algorithm to use for the
transaction.

The selected key used to sign
the SAML Artifact Resolution
Requests must match the
option chosen in the
drop-down menu to prevent
signature failure.
Note: This option is not
shown if you did not choose
to sign the Artifact resolution
Request for the Federation.

Select the signature
algorithm from the following
options.

v RSA-SHA1

v DSA-SHA1

v RSA-SHA256

SAML Messages for
Browser POST are signed
and must be validated
(required)

Validate Signatures on
SAML Messages for Artifact
Profile (optional)

v When browser POST is
used as the profile, SAML
messages must be signed
and validated. Therefore,
this option is pre-selected
and cannot be cleared.

v You also have the option
of also validating the
SAML message signatures
when browser artifact is
used.

One of the following:

v Validate signatures for
artifact. (Select check box.)

v Do not validate signatures
for artifact. (Clear check
box.)

226 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 72. Signature validation information for identity provider partner in SAML 1.x
federation (continued)

Signature Validation Description Your value

Select Validation Truststore
or Key

v Truststore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the truststore

v Public key to use for
validating the signature of
your partner

Because Browser POST
messages must be signed
and validated, you are
required to specify a key to
validate the signature.

If you select to also validate
messages when browser
artifact is used, the same
validation key is used to
validate them.

The key you use is the public
key that corresponds to the
private key that your partner
uses to sign messages.
Note: If you are importing
the data of your partner, the
key is supplied in the
metadata file. You are asked
to choose a keystore for the
key. Be sure that you have
created the keystore before
this task.

If you are manually entering
the data of your partner, be
sure that you have obtained
the key from your partner.
Then import the key into the
appropriate keystore in the
Tivoli Federated Identity
Manager key service before
this task. See Chapter 8,
“Setting up message
security,” on page 49.

Metadata method:

v Truststore name:

v Truststore password:

v Label for key:

Manual method:

v Truststore name:

v Truststore password:

v Key alias name:

Table 73. Server certificate validation for your identity provider partner in a SAML 1.x
federation

Server Certificate Validation
for SOAP Description Your value

Select Server Validation
Certificate

The public key for the
certificate that shows during
SSL communication with
your partner.

You and your partner must
agree on which certificate to
use. You must have already
obtained the certificate and
keystore for the certificate.
See “Retrieving the server
certificate from your partner”
on page 80.

Truststore name:

Truststore password:

Certificate name:

Chapter 19. Establishing a SAML federation 227

Table 74. Client authentication for SOAP for your identity provider partner in a SAML 1.x
federation

Client Authentication for
SOAP Description Your value

Client authentication
information

Either:

v Basic authentication

– Username

– Password

v Client certificate
authentication

– Certificate you must
present to the server of
the identity provider.

The certificate that you
and your identity
provider partner agreed
that you would present.

– Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

– Password for the
keystore

If your partner requires
mutual authentication, you
must know which type you
must use.

If it is basic authentication,
you need a user name and
password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.
Note: If you need a
certificate, be sure that you
have agreed with your
partner where to get it. Then,
import it into the appropriate
keystore in the Tivoli
Federated Identity Manager
key service before this task.
See “Obtaining your client
certificate” on page 81

One of the following:

v Basic authentication
information:

– Username:

– Password:

v Client certificate
authentication information:

– Keystore name:

– Password for the
keystore:

– Key alias:

Table 75. Security token settings information for identity provider partner in SAML 1.x
federation

Configure Security Token Description Your value

Enable Signature Validation If your partner signs
assertions, you can choose to
validate those signatures. In
some cases, your partner
require you to validate the
signatures.

One of the following:

v Enable validation
signatures. (Select check
box.)

v Do not validate signatures.
(Clear check box.)

Select Validation Key Specify the type of signature
validation to use.

One of the following:

v Use the KeyInfo of the
XML signature to find
X.509 certificate for
signature validation

v Use keystore alias to find
public key for signature
validation. (The default
action.)

v Specify the Subject DN
expression for the
allowable X.509
certificates.

228 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 75. Security token settings information for identity provider partner in SAML 1.x
federation (continued)

Configure Security Token Description Your value

Select key and truststore

v Truststore in Tivoli
Federated Identity
Manager key service,
where the key is stored

v Password for the truststore

v Public key to use for
validating the signature

If you choose to validate the
assertion signatures or your
partner requires signature
validation, you must select a
keystore and a key.
Note: The key you use must
be the public key that
corresponds to the private
key that your partner uses to
sign the assertions. Obtain
this key and create the
keystore before this task.
(space betChapter 8, “Setting
up message security,” on
page 49.

v Truststore name:

v Truststore password:

v Key alias name:

Create multiple attribute
statements in the Universal
User

Select this check box to keep
multiple attribute statements
in the groups they were
received in.

This option might be
necessary if your custom
identity mapping rules are
written to operate on one or
more specific groups of
attribute statements.

If this check box is not
selected, multiple attribute
statements are arranged into
a single group (AttributeList)
in the STSUniversalUser
document.

The default setting of the
check box is not selected and
this setting is appropriate for
most configurations.

Chapter 19. Establishing a SAML federation 229

Table 76. Identity mapping information for identity provider partner in SAML 1.x federation

Identity mapping Description Your value

Identity mapping options

One of the following:

v A custom mapping
module

v An XSL transformation file
containing mapping rules

v Leave all options blank to
use the identity mapping
option that is currently
defined.

The type of identity mapping
to use with this partner.

You can leave these fields
blank, if you want this
partner to use the identity
mapping option that is
already configured for your
federation.

Or, you can choose a specific
mapping option to use with
this specific partner. To
choose a mapping option,
you must know whether to
use an XSLT file for identity
mapping or a custom
mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, first, your
mapping module must be
created and added to the
environment as a module
type and module instance.
Then you can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

Leave all options blank to
use existing mapping
configuration.

Or, select one of the
following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed this worksheet, continue with the steps in “Adding
your partner” on page 245.

SAML 2.0 service provider partner worksheet
If use SAML 2.0 in your role as an identity provider, you must add a service
provider partner to your federation.

Use the following worksheet to gather the necessary information from your
partner. Modify this worksheet to reflect the specific information that you need
from your partner and ask your partner to complete that modified worksheet.

Table 77. Federation to which you are adding a service provider partner in a SAML 2.0
federation

Select Federation Description Your value

Federation name The name of the federation
to which you are adding the
partner.

230 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 78. Metadata file from your service provider partner in a SAML 2.0 federation

Import metadata Description Your value

Metadata file The name and path of the
file you obtained from your
partner that contains the
configuration information of
your partner.

Table 79. Signature validation for your service provider partner in a SAML 2.0 federation

Signature Validation Description Your value

Select which incoming
SAML messages and
assertions require a
signature

These options indicate which
incoming messages your
partner signs.

The default setting is for the
typical set of incoming
SAML messages and
assertions (except for
ArtifactResponse and
AuthnResponse) to be
signed.

One of the following options:

v Typical set of incoming
SAML messages and
assertions are signed.

v All incoming SAML
messages and assertions
are signed.

v No incoming SAML
messages and assertions
are signed.

Keystore The truststore in which you
store the key that your
partner has provided to
validate its signature in
messages when signing
messages and assertions.

You must have already
created the keystore for this
key. See “Preparing the
keystores” on page 49 for
details.

Truststore name:

Truststore password:

Key label:

Table 80. Keystore for storing the encryption key from your service provider partner in a
SAML 2.0 federation

Encryption Description Your value

Keystore The truststore in which you
store the key to encrypt
messages to your partner.

This option shows because
your partner has provided a
public key in its metadata for
you to use for encryption.

You must have already
created the keystore for this
key. See “Preparing the
keystores” on page 49 for
details.

Truststore name:

Truststore password:

Key label:

Chapter 19. Establishing a SAML federation 231

Table 81. Server certificate validation for your service provider partner in a SAML 2.0
federation

SSL Server Authentication
for Artifact Resolution Description Your value

Select Server Validation
Certificate

The public key for the
certificate that shows during
SSL communication with
your partner.

You and your partner must
agree which certificate to
use. You must have already
obtained the certificate and
added it to your truststore.
See “Retrieving the server
certificate from your partner”
on page 80 for details.

Truststore name:

Truststore password:

Certificate name:

Table 82. Client authentication for your service provider partner in a SAML 2.0 federation

SSL Client Authentication
for Artifact Resolution Description Your value

Client authentication
information

Either:

v Basic authentication

– Username

– Password

v Client certificate
authentication

– Certificate to present to
the server of the
identity provider.

This certificate is the
certificate that you and
your identity provider
partner agreed to
present.

– Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

– Password for the
keystore

If your partner requires
mutual authentication, you
must know that which type
to use.

If it is basic authentication,
you need a user name and
password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.

Note: If you need a
certificate, be sure that you
have agreed with your
partner where it comes from.
Obtain and import it into the
appropriate keystore in the
Tivoli Federated Identity
Manager key service before
this task. See “Obtaining
your client certificate” on
page 81 for details.

One of the following options:

v Basic authentication
information:

– Username:

– Password:

v Client certificate
authentication information:

– Keystore name:

– Password for the
keystore:

– Key alias:

Table 83. Partner settings for your service provider partner in a SAML 2.0 federation

Partner Settings Description Your value

Session Timeout (seconds) The number of seconds that
a session remains valid when
there is no activity. Default
value: 3600 seconds.

Session timeout:

232 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 83. Partner settings for your service provider partner in a SAML 2.0
federation (continued)

Partner Settings Description Your value

Logout Request Lifetime
(seconds)

Specifies the maximum time,
in seconds, that the logout
request remains valid. The
default value is 120 seconds.

Logout lifetime:

Signature Algorithm:

Either:

v DSA-SHA1

OR

v RSA-SHA1

v RSA-SHA256

Note: The Signature
Algorithm options are only
available in the Tivoli
Federated Identity Manager,
version 6.2.2 or later.

The type of signature
algorithm to generate the
XML signatures for your
partner.

The list of options shows all
possible algorithms based on
the key type you have
chosen for your Federation.
Only the algorithms that are
supported by the runtime are
shown.

If you use a DSA key,
DSA-SHA1 is selected by
default. If you use an RSA
key, RSA-SHA1 is selected by
default.

Note: The system shows the
RSA-SHA256 option
depending on the WebSphere
Application Server fix pack
version that runs in your
system.

Choose one of the following
options:

v DSA-SHA1

v RSA-SHA1

v RSA-SHA256

Chapter 19. Establishing a SAML federation 233

Table 83. Partner settings for your service provider partner in a SAML 2.0
federation (continued)

Partner Settings Description Your value

Alias Service Settings

v Include federation ID
when performing alias
service operations

Note: The Alias Service
Settings option is only
available in the Tivoli
Federated Identity Manager,
version 6.2.2 or later.

Indicates whether the key for
indexing into the alias
service combines the
federation ID with the
partner Provider ID when
performing alias service
operations.

This feature is useful in
scenarios where two or more
federations, that use
persistent name identifiers,
import the same partner
metadata.

Note: In the previous Tivoli
Federated Identity Manager
versions (before 6.2.2), aliases
were stored based on a key
using only the partner
Provider ID. Use the
migration steps to migrate
aliases between different
formats on a per-partner
level. See the Migrating
SAML 2.0 alias service
entries section in the IBM
Tivoli Federated Identity
Manager Installation Guide for
more information about the
migration steps.

Select or clear the check box.

234 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 84. SAML Assertion settings for your service provider partner in a SAML 2.0
federation

SAML Assertion Settings Description Your value

Include the following
attribute types

Select the check box to
specify the types of attributes
to include in the assertion.
The asterisk (*), is the default
setting. It indicates that all of
the attribute types that are
specified in the identity
mapping file, or by the
custom mapping module are
included in the assertion. To
specify one or more attribute
types individually, type each
attribute type in the box. For
example, if you want to
include only attributes of the
following type, enter that
value in the box:

urn:oasis:names:tc:SAML:
2.0:assertion

Use && to separate multiple
attribute types.

Encryption options:

v Encrypt name identifiers

v Encrypt assertions

v Encrypt all assertion
attributes

These check boxes indicate
which assertion parts to
encrypt.

If you do not make a
selection and leave the boxes
blank, no assertion parts in
your messages are encrypted.

Leave blank or choose one or
more of the following
options:

v Encrypt name identifiers

v Encrypt assertions

v Encrypt all assertion
attributes

Encryption algorithm:

v AES-128

v AES-256

v AES-192

v Triple DES

The type of encryption
algorithm to use for
encrypting data to your
partner. If you do not select
an algorithm, Triple DES is
used.

Choose one of the following
options, if you chose an
encryption option:

v AES-128

v AES-256

v AES-192

v Triple DES

Chapter 19. Establishing a SAML federation 235

Table 85. Attribute query mapping information for your service provider partner

Attribute query mapping Description Your value

Attribute query mapping
options

One of the following options:

v An XSL transformation file
or JavaScript containing
mapping rules

v Tivoli Directory Integrator
mapping module

v A custom mapping module

The type of attribute query
mapping you are using. You
must select either an XSLT
file, a Tivoli Directory
Integrator mapping module,
or a custom mapping
module.

If you use an XSLT file, you
create the file before you
configure the federation.

The Tivoli Directory
Integrator mapping module
is an STS module.

Custom mapping is an
advanced option. If you use
this option, you must create
and add a new module type
and module instance before
you can use it in your
configuration.

One of the following values:

v XSLT file path

v Tivoli Directory Integrator
mapping module

v Custom mapping module
instance name

236 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 86. Identity Mapping options for your service provider partner in a SAML 2.0
federation

Identity Mapping Options Description Your value

Identity mapping options

One of the following:

v An XSL transformation file
containing mapping rules

v A custom mapping
module

v Leave all options blank to
use the identity mapping
option that is currently
defined.

The type of identity mapping
to use with this partner.

You can leave these fields
blank, if you want this
partner to use the identity
mapping option that is
already configured for your
federation.

Or, you can choose a specific
mapping option to use with
this specific partner. To
choose a mapping option,
you must know whether to
use an XSLT file for identity
mapping or a custom
mapping module.

Custom mapping is an
advanced option. If you plan
to use this option, create and
add your mapping module
to the environment as a
module type and module
instance. Do so before you
can use it in your
configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

Leave all options blank to
use existing mapping
configuration.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed this worksheet, continue with the steps in “Adding
your partner” on page 245.

SAML 2.0 identity provider partner worksheet
If you use SAML 2.0 in your role as a service provider, you must add an identity
provider partner to your federation.

Use the following worksheet to gather the necessary information from your
partner. Modify this worksheet to reflect the specific information that you need
from your partner and ask your partner to complete that modified worksheet.

Table 87. Federation to which you are adding an identity provider partner in a SAML 2.0
federation

Select Federation Description Your value

Federation name The name of the federation
to which you are adding the
partner.

Chapter 19. Establishing a SAML federation 237

Table 88. Metadata file from your identity provider partner in a SAML 2.0 federation

Import metadata Description Your value

Metadata file The name and path of the
file you obtained from your
partner that has their
configuration information.

Table 89. Signature validation for your identity provider partner in a SAML 2.0 federation

Signature Validation Description Your value

Select which incoming
SAML messages and
assertions require a
signature

These options indicate which
incoming messages your
partner signs.

The default setting is for the
typical set of incoming
SAML messages and
assertions (except for
ArtifactResponse and
AuthnResponse) to be
signed.

One of the following options:

v Typical set of incoming
SAML messages and
assertions are signed.

v All incoming SAML
messages and assertions
are signed.

v No incoming SAML
messages and assertions
are signed.

Keystore The truststore where you
store the key from your
partner to validate its
signature when signing
messages and assertions.

You must have already
created the keystore for this
key. See “Preparing the
keystores” on page 49 for
details.

Truststore name:

Truststore password:

Key label:

Table 90. Keystore for storing the encryption key from your identity provider partner in a
SAML 2.0 federation

Encryption Description Your value

Keystore The truststore where you
store the key to encrypt
messages to your partner.

The system shows this
option because your partner
has provided a public key in
its metadata for you to use
for encryption.

You must have already
obtained the certificate and
imported it into a keystore.
See Chapter 8, “Setting up
message security,” on page
49 for details.

Truststore name:

Truststore password:

Key label:

238 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 91. Server certificate validation for your identity provider partner in a SAML 2.0
federation

SSL Server Authentication
for Artifact Resolution Description Your value

Select Server Validation
Certificate

The public key for the
certificate that shows during
SSL communication with
your partner.

You and your partner must
agree on which certificate to
use. You must have already
obtained the certificate and
added it to your truststore.
See “Retrieving the server
certificate from your partner”
on page 80 for details.

Truststore name:

Truststore password:

Certificate name:

Table 92. Client authentication for your identity provider partner in a SAML 2.0 federation

SSL Client Authentication
for Artifact Resolution Description Your value

Client authentication
information

Either:

v Basic authentication

– Username

– Password

v Client certificate
authentication

– Certificate to present to
the identity provider
server.

This certificate is what
you and your identity
provider partner agreed
to present.

– Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

– Password for the
keystore

If your partner requires
mutual authentication, you
must know which type to
use.

If it is basic authentication,
you need a user name and
password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.

Note: If you need a
certificate, be sure that you
have agreed with your
partner where it comes from.
Obtain and import it into the
appropriate keystore in the
Tivoli Federated Identity
Manager key service before
this task. See “Obtaining
your client certificate” on
page 81 for details.

One of the following options:

v Basic authentication
information:

– Username:

– Password:

v Client certificate
authentication information:

– Keystore name:

– Password for the
keystore:

– Key alias:

Table 93. Partner settings for your identity provider partner in a SAML 2.0 federation

Partner Settings Description Your value

Default Post-Authentication
Target URL

The location to which the
user is redirected when the
service provider does not
provide a target URL during
the initial request. This URL
must be valid but does not
have to be active.

Chapter 19. Establishing a SAML federation 239

Table 93. Partner settings for your identity provider partner in a SAML 2.0
federation (continued)

Partner Settings Description Your value

Force authentication to
achieve account linkage

Specifies if a user is forced to
authenticate at the service
provider to perform account
linkage. This event occurs if
a SAML response is received
with an unknown alias in the
service provider.

Signature Algorithm:

Either:

v DSA-SHA1

OR

v RSA-SHA1

v RSA-SHA256

Note: The Signature
Algorithm options are only
available in the Tivoli
Federated Identity Manager,
version 6.2.2 or later.

The type of signature
algorithm to generate the
XML signatures for your
partner.

The list of options shows all
possible algorithms based on
the key type you have
chosen for your Federation.
Only the algorithms that are
supported by the runtime are
shown.

If you use a DSA key,
DSA-SHA1 is selected by
default. If you use an RSA
key, RSA-SHA1 is selected by
default.

Note: The system shows the
RSA-SHA256 option
depending on the WebSphere
Application Server fix pack
version that runs in your
system.

Choose one of the following
options:

v DSA-SHA1

v RSA-SHA1

v RSA-SHA256

240 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 93. Partner settings for your identity provider partner in a SAML 2.0
federation (continued)

Partner Settings Description Your value

Alias Service Settings

v Include federation ID
when performing alias
service operations

Note: The Alias Service
Settings option is only
available in the Tivoli
Federated Identity Manager,
version 6.2.2 or later.

Indicates whether the key for
indexing into the alias
service combines the
federation ID with the
partner Provider ID when
performing alias service
operations.

This feature is useful in
scenarios where two or more
federations, that use
persistent name identifiers,
import the same partner
metadata.

Note: In versions of Tivoli
Federated Identity Manager
before 6.2.2, aliases were
stored based on a key using
only the partner Provider ID.
Use the migration steps to
migrate aliases between
different formats on a
per-partner level. For more
information about the
migration steps, see the
'Migrating SAML 2.0 alias
service entries' topic in the
IBM Tivoli Federated Identity
Manager Installation Guide.

Select or clear the check box.

Chapter 19. Establishing a SAML federation 241

Table 94. SAML Assertion settings for your identity provider partner in a SAML 2.0
federation

SAML Assertion Settings Description Your value

Username to be used for
anonymous users

Use this name identifier to
access a service through an
anonymous identity. The
user name entered here is
one that the service provider
recognizes as a one-time
name identifier for a
legitimate user in the local
user registry.

This feature gives users
access to a resource on the
service provider without
establishing a federated
identity.

This feature is useful in
scenarios where the service
provider does not need to
know the identity of the user
account but must only know
that the identity provider has
authenticated (and can vouch
for) the user.

Map unknown name
identifiers to the
anonymous username

Specifies that the service
provider can map an
unknown persistent name
identifier alias to the
anonymous user account. By
default, this option is
disabled.

Create multiple attribute
statements in the universal
user

Select this check box to keep
multiple attribute statements
in the groups they were
received in.

This option might be
necessary if your custom
identity mapping rules are
written to operate on one or
more specific groups of
attribute statements.

If this check box is not
selected, multiple attribute
statements are arranged into
a single group (AttributeList)
in the STSUniversalUser
document and in the
assertion.

The default setting of the
check box is not selected and
this setting is appropriate for
most configurations.

242 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 94. SAML Assertion settings for your identity provider partner in a SAML 2.0
federation (continued)

SAML Assertion Settings Description Your value

Encryption options:

v Encrypt name identifiers

The check box indicates
whether to encrypt the name
identifiers in assertions or
not.

Select or clear the check box.

Table 95. Attribute query information for identity provider partner

Attribute query Description Your value

Include the following
attribute types

Select the check box to
specify the types of attributes
to include in the assertion.

The asterisk (*), is the default
setting. It indicates that all of
the attribute types that are
specified in the identity
mapping file, or by the
custom mapping module, are
included in the assertion.

To specify one or more
attribute types individually,
type each attribute type in
the box.

For example, if you want to
include only attributes of the
following type, enter that
value in the box:

urn:oasis:names:tc:SAML:
2.0:assertion

Use && to separate multiple
attribute types.

Encryption options:

v Encrypt name identifiers

v Encrypt assertions

v Encrypt all assertion
attributes

These check boxes indicate
which assertion parts to
encrypt.

If you do not make a
selection and leave the boxes
blank, no assertion parts in
your messages are encrypted.

Encrypt all assetion
attributes indicates whether
all attributes in the assertion
are encrypted.

When this option is not
selected (set to false), you
can manage the encryption
of specific attributes through
an XSLT SAML token
mapping rule.

Leave blank or choose one or
more of the following
options:

v Encrypt name identifiers

v Encrypt assertions

v Encrypt all assertion
attributes

Chapter 19. Establishing a SAML federation 243

Table 95. Attribute query information for identity provider partner (continued)

Attribute query Description Your value

Encryption algorithm:

v AES-128

v AES-256

v AES-192

v Triple DES

The type of encryption
algorithm to use for
encrypting data to your
partner. If you do not select
an algorithm, Triple DES is
used.

Choose one of the following
encryption, if you chose an
encryption option:

v AES-128

v AES-256

v AES-192

v Triple DES

Table 96. Attribute query mapping information for identity provider partner

Attribute query mapping Description Your value

Attribute query mapping
options

One of the following options:

v An XSL transformation file
or JavaScript containing
mapping rules

v Tivoli Directory Integrator
mapping module

v A custom mapping
module

The type of attribute query
mapping you are using. You
must select either an XSLT
file, a Tivoli Directory
Integrator mapping module,
or a custom mapping
module.

If you use an XSLT file, you
create the file before you
configure the federation.

The Tivoli Directory
Integrator mapping module
is an STS module.

Custom mapping is an
advanced option. If you use
this option, you must create
and add a new module type
and module instance before
you can use it in your
configuration.

One of the following values:

v XSLT file (path and name)

v Tivoli Directory Integrator
mapping module

v Custom mapping module
instance name

244 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 97. Identity Mapping options for your identity provider partner in a SAML 2.0
federation

Identity Mapping Options Description Your value

Identity mapping options

One of the following options:

v An XSL transformation file
containing mapping rules.

v A custom mapping
module.

v Leave all options blank to
use the identity mapping
option that is currently
defined.

The type of identity mapping
to use with this partner.

You can leave these fields
blank, if you want this
partner to use the identity
mapping option that is
already configured for your
federation.

Or, you can choose a specific
mapping option to use with
this specific partner. To
choose a mapping option,
you must know whether to
use an XSLT file for identity
mapping or a custom
mapping module.

Custom mapping is an
advanced option. If you plan
to use the custom mapping
option, create and add the
mapping module to the
environment as a module
type and module instance.
Only then can you use it in
your configuration.

If you choose to use an XSLT
file, you must have the file
ready to use for the
federation.

Leave all options blank to
use existing mapping
configuration.

One of the following values:

v XSLT file (path and name):

v Custom mapping module
instance name:

When you have completed this worksheet, continue with the steps in “Adding
your partner.”

Adding your partner
After you have configured your role in the federation and gathered information
about your partner, you will need to add your partner.

Before you begin

Before beginning this procedure, complete the appropriate partner information
worksheet.
v If you are the identity provider, you will add a service provider partner. Use the

service provider worksheet for the SAML standard you are using in your
federation:
– “SAML 1.x service provider partner worksheet” on page 219
– “SAML 2.0 service provider partner worksheet” on page 230

v If you are the service provider, you will add an identity provider partner. Use
the identity provider worksheet for the SAML standard you are using in your
federation:

Chapter 19. Establishing a SAML federation 245

– “SAML 1.x identity provider partner worksheet” on page 224
– “SAML 2.0 identity provider partner worksheet” on page 237

About this task

After completing the appropriate partner worksheet, use the Partner wizard in the
console to add the partner. For descriptions of the fields that you are prompted for
by the wizard, refer to the worksheet and the online help.

Note: During the configuration, you might be prompted to restart WebSphere
Application Server. Make sure the server has restarted completely before
continuing with the task.

Procedure
1. Make sure you have gathered the partner information as described in the

worksheets.
For example, if you are using a metadata file from your partner, copy the file to
an easily accessible location on your computer.

2. Log on to the console.
3. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations panel opens.
4. Select the federation to which you will add the partner.
5. Click Add partner. Depending on the SAML standard you are using in the

federation, one of the following panels open:

Metadata Options
This panel opens if you are adding a partner to a SAML 1.x federation.
From this panel, click either:
v Import Metadata

v Enter SAML data manually

Import Metadata
This panel opens if you are adding a partner to a SAML 2.0 federation.

6. Use your completed worksheet as a guide for completing the fields that show
in each panel.
If you need to go back to a previous panel, click Back. If you want to end the
configuration, click Cancel. Otherwise, click Next after you complete each
panel.

7. Verify that the settings are correct.
8. Click Finish. The Add Partner Complete panel opens. The partner has been

added to the federation, but is disabled by default as a security precaution. You
must enable the partner.

9. Click Enable Partner to activate this partner.

What to do next

If you have not already provided your configuration information to your partner,
you can do that now using the instructions in “Providing federation properties to
your partner” on page 247.

246 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Providing federation properties to your partner
When your partner wants to add you as a partner to their federation configuration,
you must provide your partner with the necessary information.

The steps to take are specific to whether you can provide a metadata file or
whether you must manually provide the information.
v Metadata file method

If your partner has a way to import your data, you can use the metadata file
method whether you have configured a SAML 1.x or SAML 2.0 federation.
1. Use the console to generate a metadata file that contains the necessary

federation configuration and a key for validating response message
signatures, if you require validation of the signatures. Follow the instructions
in “Exporting federation properties.”

2. You might also need to provide your partner with the appropriate keys and
certificates for your role and SAML standard in the federation. See Chapter 8,
“Setting up message security,” on page 49.

v Manual method

You have the option of manually collecting the necessary configuration instead
of exporting the properties to a file, if you configured a SAML 1.x federation.

Note: Use of a metadata file is preferable because it eliminates the chance of
errors being made during the manual input of data.
If you need to collect information manually, complete the following task.
1. Use the Federation Properties in the console to obtain the properties. To

display the Federation Properties panel for your federation, follow the
instructions in “Viewing federation properties” on page 248.
Use the contents of the Federation Properties panel to guide you to the
properties that apply to your federation.

2. You might also need to provide your partner with appropriate keys and
certificates for your federation. See Chapter 8, “Setting up message security,”
on page 49.

Exporting federation properties
When you want to join the federation of a partner, you must supply your
federation configuration properties. You can export your federation properties to a
file to share them with your partner.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations panel opens.
3. Select a federation from the table.
4. Click Export. The browser shows a message window that prompts you to save

the file containing the exported data.
5. Click OK. The browser download window prompts for a location to save the

file.
6. Select a directory and metadata file. Metadata file names have the following

syntax:
federationname_companyname_metadata.xml

Chapter 19. Establishing a SAML federation 247

For example, for a federation named federation1 and a company named ABC,
the metadata file would be named:
federation1_ABC_metadata.xml

Place the file in an easily accessible location. Provide this file to your partner,
when your partner wants to import configuration information for the
federation.

7. Click Save.

Viewing federation properties
Use the Federations properties selection to view the details about an existing
federation or to modify an existing federation. This task can be helpful if you need
to manually collect your federation properties to share them with your partner.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations panel shows a list of configured
federations.

3. Select a federation.
4. Click Properties to view properties for an existing federation.
5. Select the properties to modify. Federation properties are described in the

online help.
6. When finished viewing or modifying properties, click OK to close the

Federation Properties panel.

Synchronizing system clocks in the federation
Because security tokens have expiration times, you and your partner's system
clocks must be synchronized.

About this task

In your environment, ensure that the clock on the system where you have the
Tivoli Federated Identity Manager runtime and management services component
installed is synchronized with your partner.

See the information of your operating system documentation for information about
your system clock and time synchronization. Consider using the NTP time
synchronization protocol.

248 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 20. Configuring a SAML federation using CLI

To configure a SAML federation using CLI, you must configure the Identity
Provider federation, configure the Service Provider federation, and provide the
federation configuration properties to your partner.

The following topics detail configurations for specific SAML versions and roles
using CLI
v “Configuring a SAML 1.x Identity Provider federation using CLI”
v “Configuring a SAML 1.x Service Provider federation using CLI” on page 252
v “Importing a SAML 1.x Service Provider into the SAML identity provider

federation” on page 255
v “Importing a SAML 1.x Identity Provider into the SAML Service Provider

federation” on page 257
v “Configuring a SAML 2.0 Identity Provider federation using CLI” on page 260
v “Configuring a SAML 2.0 service provider federation using CLI” on page 264
v “Importing a SAML 2.0 Service Provider into the SAML Identity Provider

federation” on page 266
v “Importing a SAML 2.0 Identity Provider into the SAML service provider

federation” on page 268

Configuring a SAML 1.x Identity Provider federation using CLI
Use CLI commands to configure a SAML Identity Provider federation by creating a
response file and creating an Identity Provider federation.

About this task

This task requires the use of the command manageItfimFederation. The
manageItfimFederation command requires specific parameters to execute
operations on a federation. For more information, see the IBM Tivoli Federated
Identity Manager Administration Guide.

Procedure
1. Create a response file by issuing the following command in the WebSphere

wsadmin console:
wsadmin>$AdminTask manageItfimFederation { -operation createResponseFile
-fimDomainName fimipdomain -role ip -protocol SAML1_1 -fileId
/downloads/saml11_ip_properties.xml }

Note: Change the SAML protocol type depending on the SAML version you
intend to use. Use one of the following parameters for the protocol type:
v SAML1_1
v SAML1_0

2. Edit the response file to modify the following values:

© Copyright IBM Corp. 2006, 2013 249

Table 98. Response file settings for identity provider in SAML 1.x federation

Configuration item Description Your value CLI Properties or Names

Federation name The unique name of
the federation.
(Required)

Any name

For example, saml11ip

FedName

Company name The name of the
company that is
associated with the
federation.
(Required)

Any name

For example, IDP Company
Name

CompanyName

Company URL A URL for a website
of the company that
is associated with
the federation.
(Required)

URL of the website your
company.

CompanyUrl

Provider ID The SAML protocol
provider ID used by
the federation. A
unique identifier that
identifies the
provider to its
partner provider.
(Required)

The value consists of the
protocol and host name of
the Identity Provider URL
(Optional).

It can include a port
number.

For example, for a
federation namedsaml_fed:
https://idp.example.com/
FIM/sps/saml_fed/saml, set
all the properties on the
next column to the same
value.

ProviderID

SAML11AssertionIssuerName

Point of contact
server URL

The URL that
provides access to
the endpoints on the
point of contact
server. (Required)

A URL

For example, https://
www.idpexample.com/FIM/
sps

BaseUrl

SAML messages for
Browser POST
profile are signed

When the browser
POST is used as the
profile, SAML
messages must be
signed. Therefore, it
is preselected and
cannot be cleared.
(Required)

Sign browser artifact
messages.

(Set to true.)

SignArtifactResponse

250 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 98. Response file settings for identity provider in SAML 1.x federation (continued)

Configuration item Description Your value CLI Properties or Names

Select Signing Key

Keystore in Tivoli
Federated Identity
Manager key service,
where the key is
stored.

Enter a signing key
because the Browser
POST messages
must be signed.

If you also select to
sign messages when
using the browser
artifact, the same
signing key is used
to sign them.
(Required)

Note: Before you
complete this task,
create the key and
import it into the
appropriate keystore
in the Tivoli
Federated Identity
Manager key service.

Keystore name:

Key alias name:

This data is provided in the
format of

"Keystore Name"
_"Alias Name"

For example,

DefaultKeyStore_
testkey

SigningKeyId

Single Sign-on
Service URL

The URL for your
single sign-on
endpoint.

This setting is also
known as the
intersite transfer
service URL, or the
URL to which the
Service Provider
sends authentication
requests. (Required)

Specify the assertion
resolution service url.

For example, for a
federation named saml_fed:
https://idp.example.com/
FIM/sps/saml_fed/saml11/
login

SignonEndpoint

Artifact Resolution
Service URL

The URL for your
artifact resolution
endpoint. (Required)

Specify the assertion
resolution service url

For example, for a
federation named saml_fed:
https://idp.example.com/
FIM/sps/saml_fed/saml11/
soap

ArtifactResolutionServiceEndpoint

Artifact Cache
Lifetime (seconds)

The artifact cache
lifetime in seconds.

Default value: 30
seconds.

Use the default value. ArtifactCacheLifetime

Chapter 20. Configuring a SAML federation using CLI 251

Table 98. Response file settings for identity provider in SAML 1.x federation (continued)

Configuration item Description Your value CLI Properties or Names

Allow IBM Protocol
Extension

Specify whether to
use the IBM
PROTOCOL
extension.

The extension
contains a
query-string
parameter that
specifies whether to
use browser artifact
or browser
POST.(Required)

Do not allow Protocol
Extension.

Set to false.

AllowIBMProtocolExtension

Amount of time
before the issue date
that an assertion is
considered valid

The number of
seconds that an
assertion is
considered valid
before its issue date.

Default value: 60

Use the default value. SAML11AssertionValidBefore

Amount of time the
assertion is valid
after being issued

The number of
seconds that an
assertion is
considered valid
after its issue date.

Default value: 60

Use the default value. SAML11AssertionValidAfter

Identity mapping
options

v An XSL
transformation
(XSLT) file
containing mapping
rules

The type of identity
mapping to use.

Use an XSLT file for
identity mapping,
and have the file
ready to use for the
federation.(Required)

XSLT File that corresponds
to the IP role for SAML 1.1
federations:
/opt/IBM/FIM/examples/
mapping_rules/
ip_saml_1x.xsl

MappingRuleFileName

3. Type the following command in a command prompt to create the Identity
Provider federation:
wsadmin>$AdminTask manageItfimFederation { -operation create
-fimDomainName fimipdomain -fileId
/downloads/saml11_ip_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

What to do next

Continue with Configuring a SAML 1.x Service Provider federation using CLI.

Configuring a SAML 1.x Service Provider federation using CLI
Use CLI commands to configure a SAML 1.x Service Provider federation by
creating a response file and creating a Service Provider federation.

252 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

This task requires the use of the command manageItfimFederation. The
manageItfimFederation command requires specific parameters to execute
operations on a federation. For more information, see the IBM Tivoli Federated
Identity Manager Administration Guide.

Procedure
1. Create a response file by issuing the following command in the WebSphere

wsadmin console:
wsadmin>$AdminTask manageItfimFederation { -operation createResponseFile
-fimDomainName fimspdomain -protocol SAML1_1 -role sp -fileId
/downloads/saml11_sp_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

Note: Change the SAML protocol type depending on the SAML version you
intend to use. Use one of the following parameters for the protocol type:
v SAML1_1
v SAML1_0

2. Edit the response file to modify the following values:

Table 99. Response file settings for service provider in SAML federation

Configuration item Description Your value CLI Properties or Names

Federation name The unique name of the
federation. (Required)

Any name

For example, saml11ip

FedName

Company name The name of the company
that is associated with the
federation. (Required)

Any name

For example, SP Company
Name

CompanyName

Company URL A URL for a website of the
company that is associated
with the federation.
(Required)

URL of the website of your
company

CompanyUrl

Protocol The SAML protocol that
you and your partner use
in the federation.
(Required)

One of the following
values:

v SAML1_1

v SAML1_0

Protocol

Chapter 20. Configuring a SAML federation using CLI 253

Table 99. Response file settings for service provider in SAML federation (continued)

Configuration item Description Your value CLI Properties or Names

ProviderId The SAML protocol
provider ID used by the
federation. A unique
identifier that identifies the
provider to its partner
provider. (Required)

The value consists of the
protocol and host name of
the Service Provider URL.
(Optional)

It can include a port
number.

For example, for a
federation named
saml_fed:
https://sp.example.com/
FIM/sps/saml_fed/saml, set
all the properties on the
next column to the same
value.

ProviderId

Point of contact server
URL

The URL that provides
access to the endpoints on
the point of contact server.
(Required)

A URL

For example,
https:/sp.example.com/
FIM/sps

BaseUrl

Sign Artifact Resolution
Requests

The SAML artifact request
must be signed.

Sign request messages. (Set
to true.)

SignArtifactRequest

Select Signing Key

Keystore in Tivoli
Federated Identity Manager
key service, where the key
is stored.

If you also selected to sign
the artifact request, enter a
signing key. (Required)

Note: Before you complete
this task, create the key and
import it into the
appropriate keystore in the
Tivoli Federated Identity
Manager key service.

Keystore name:

Key alias name:

This data is provided in the
format of "Keystore
Name"_"Alias Name".

For example,
DefaultKeyStore_ testkey

SigningKeyId

Single Sign-on Service
URL

The URL for your single
sign-on endpoint.

This setting is also known
as the intersite transfer
service URL, or the URL to
which the Service Provider
sends authentication
requests. (Required)

Specify the assertion
resolution service URL For
example:
https://sp.example.com/
FIM/sps/saml_fed/saml11/
login

SignonEndpoint

Identity mapping options

v An XSL transformation
(XSLT) file containing
mapping rules

The type of identity
mapping to use. Use an
XSLT file for identity
mapping, and have the file
ready to use for the
federation. (Required)

XSLT File that corresponds
to the IP role for SAML 1.1
federations:
/opt/IBM/FIM/examples/
mapping_rules/
sp_saml_1x.xsl

MappingRuleFileName

3. Type the following command in a command prompt to create the Service
Provider federation:
wsadmin>$AdminTask manageItfimFederation { -operation create
-fimDomainName fimspdomain -fileId
/downloads/saml11_sp_properties.xml }

The following confirmation message shows:

254 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

FBTADM001I Command completed successfully

What to do next

Continue with Importing a SAML 1.X Service Provider into the SAML Identity
Provider federation.

Importing a SAML 1.x Service Provider into the SAML identity provider
federation

To add a Service Provider to the Identity Provider federation, you must import the
Service Provider configuration properties.

Procedure
1. Type the following command in a command prompt to export the Service

Provider metadata and obtain most of the environmental information:
wsadmin>$AdminTask manageItfimFederation { -operation export
-fimDomainName fimspdomain -federationName saml11sp -fileId
/downloads/saml11_sp_metadata.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

2. Create a Service Provider response file by issuing the following command in
the WebSphere wsadmin console:
wsadmin>$AdminTask manageItfimPartner { -operation createResponseFile
-fimDomainName fimipdomain -federationName saml11ip -partnerRole sp -fileId
/downloads/saml11_sp_partner_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

3. Edit the response file to modify the following values:

Table 100. Response file settings for service provider partner in SAML 1.x federation

Configuration item Description Your value CLI Properties or Names

Import metadata file To import a
metadata file, you
need the file name
and its location.
(Required)

The fully specified metadata
file name.

For example:
/downloads/saml11_
sp_metadata.xml

metadataFileName

Validate Signatures on
Artifact Requests

Validate the SAML
message signatures
when you use the
browser artifact.
(Optional)

Validate signatures for artifact.
(Set to true.)

ValidateArtifactRequest

Chapter 20. Configuring a SAML federation using CLI 255

Table 100. Response file settings for service provider partner in SAML 1.x federation (continued)

Configuration item Description Your value CLI Properties or Names

Validation Key Identifier If you select to
validate messages
when the browser
artifact is used, you
must provide a key
for the validation.

The key must be the
public key that
corresponds to the
private key that your
partner uses to sign
the messages.
(Required)

Note: If you are
importing partner
data, the key is
supplied in the
metadata file. Before
importing the data,
create a keystore,
then specify a
keystore for the key.

Before entering
partner data
manually, obtain the
key from the partner
and import it into
the appropriate
keystore in the Tivoli
Federated Identity
Manager key service.

Metadata method:

v Truststore name:

v Label for key:

ValidateKeyIdentifier

Sign SAML Assertions Sign SAML
assertions. (Optional)

Enable SAML signatures. (Set
to true.)

com.tivoli.am.fim.
sts.saml.1.1.
assertion.sign

Select Signing Key

v Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored

If you choose to sign
the assertion
signatures, you must
select a keystore and
a key. (Required)

Note: Create the
keystore and key
before this task.

v Keystore name:

v Key alias name:

This data is provided in the
format of

"Keystore Name"_
"Alias Name"

For example:

DefaultKeyStore_
testkey

Set both properties to the same
value.

SigningKeyId,

SAML11SigningKeyIdentifier

256 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 100. Response file settings for service provider partner in SAML 1.x federation (continued)

Configuration item Description Your value CLI Properties or Names

Include the following
attribute types

Select the check box
to specify the types
of attributes to
include in the
assertion.

The default setting
(marked with an
asterisk), indicates
that all attribute
types specified in the
identity mapping file
included in the
assertion. (Required)

Use the default value (*) SAML11ExtendedAttributeTypes

Partner uses Browser
POST profile for Single
Sign-On

A Boolean that
indicates that the
Service Provider
partner uses Browser
POST. (Required)

Partner uses Browser POST (Set
to true.)

PartnerUsesBrowserPost

4. Type the following command in a command prompt to add the new Service
Provider partner to the Identity Provider federation:
wsadmin>$AdminTask manageItfimPartner { -operation create
-fimDomainName fimipdomain
-federationName saml11ip -partnerName saml11sp -fileId
/downloads/saml11_sp_partner_properties.xml
-signingKeystorePwd testonly}

The following confirmation message shows:
FBTADM001I Command completed successfully

What to do next

Continue with Importing a SAML 1.x Identity Provider into the SAML Service
Provider federation.

Importing a SAML 1.x Identity Provider into the SAML Service Provider
federation

To add an Identity Provider to the Service Provider federation, you must import
the Identity Provider configuration properties.

Procedure
1. Type the following command in a command prompt to export the Identity

Provider metadata and obtain most of the environmental information:
wsadmin>$AdminTask manageItfimFederation { -operation export
-fimDomainName fimipdomain -federationName saml11ip -fileId
/downloads/saml11_ip_metadata.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

2. Create an Identity Provider response file by issuing the following command in
the WebSphere wsadmin console:

Chapter 20. Configuring a SAML federation using CLI 257

wsadmin>$AdminTask manageItfimPartner { -operation createResponseFile
-fimDomainName fimspdomain -federationName saml11sp -partnerRole ip -fileId
/downloads/saml11_ip_partner_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

3. Edit the response file to modify the following values:

Table 101. Response file settings for Identity Provider partner in SAML 1.x federation

Configuration
item Description Your value CLI Properties or Names

Import metadata
file

To import a metadata file,
you need the file name and
its location. (Required)

The fully specified metadata
file name. For example:

/downloads/saml11_
ip_metadata.xml

metadataFileName

Validate
Signatures on
Artifact
Resolution
Requests

You have the option of
validating the SAML message
signatures when browser
artifact is used.

Validate signatures for artifact.
(Set to true.)

ValidateArtifactResponse

Validation Key
Identifier

Because Browser POST
messages must be signed and
validated, you must specify a
key to validate the signature.

If also you select to validate
messages when using a
browser artifact, use the same
validation key to validate
them.

The key you use is the public
key that corresponds to the
private key that your partner
uses to sign messages.

Note: If you are importing
partner data, the key is
supplied in the metadata file.
Before importing the data,
create a keystore, then specify
a keystore for the key.

Before entering partner data
manually, obtain the key from
the partner and import it into
the appropriate keystore in
the Tivoli Federated Identity
Manager key service.

Metadata method:

v Truststore name:

v Label for key:

ValidateKeyIdentifier

Server Certificate
Validation

Enable server certificate
validation

Set to true. UseSoapServerCertAuth

258 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 101. Response file settings for Identity Provider partner in SAML 1.x federation (continued)

Configuration
item Description Your value CLI Properties or Names

Select Server
Validation
Certificate

The public key for the
displayed certificate during
SSL communication with your
partner.

Determine the certificate used
by you and your partner. You
must already have the
certificate and keystore for the
certificate.

v Truststore password:

v Certificate name: 30 access

rtAuthKeyId

Client
authentication
information

Either:

v Basic
authentication

– Username

– Password

v Client
certificate
authentication

– Certificate to
present to
the server of
the Identity
Provider.
The specified
certificate is
determined
by you and
your Identity
Provider
partner.

– Keystore in
Tivoli
Federated
Identity
Manager key
service,
where the
key is stored

– Password for
the keystore

If your partner requires
mutual authentication,
determine which type to use.

v For basic authentication,
specify a user name and
password.

v For client certificate
authentication, specify the
certificate that you and
your partner agreed to use.

Note: Before performing this
task, be sure that you and
your partner agreed where
the certificate to be obtained,
and imported it into the
keystore in the Tivoli
Federated Identity Manager
key service.

Disable client authentication by
setting the properties on the
next column to false.

UseClientBasicAuth

UseSoapClientCertAuth

Validate SAML
Assertions
Signature

Validate the SAML assertions
signature. (Optional)

Enable SAML signature
validation. (Set to true.)

com.tivoli.am.fim
.sts.saml.1.1
.assertion.verify
.signatures

Select Validation
Key for Assertion
signature

Specify the assertion signature
validation key to use.

Use keystore alias to find
public key for signature
validation. (Default)

SAML11ValidationKey

Chapter 20. Configuring a SAML federation using CLI 259

Table 101. Response file settings for Identity Provider partner in SAML 1.x federation (continued)

Configuration
item Description Your value CLI Properties or Names

Create multiple
attribute
statements in the
Universal User

Select this option to keep
multiple attribute statements
in the groups they were
received in.

This option might be
necessary if your custom
identity mapping rules are
written to operate on one or
more specific groups of
attribute statements.

If this option is not selected,
multiple attribute statements
are arranged into a single
group (AttributeList) in the
STSUniversalUser document.

Set the value to false. SAML11Create

MultipleUniversal

UserAttributes

4. Type the following command in a command prompt to add the new Service
Provider partner to the Identity Provider federation:
wsadmin>$AdminTask manageItfimPartner { -operation create -fimDomainName
fimspdomain -federationName saml11sp -partnerName saml11ip -fileId
/downloads/saml11_ip_partner_properties.xml -signingKeystorePwd testonly}

The following confirmation message shows:
FBTADM001I Command completed successfully

Configuring a SAML 2.0 Identity Provider federation using CLI
Use CLI commands to configure a SAML Identity Provider federation by creating a
response file and creating an Identity Provider federation.

About this task

This task requires the use of the command manageItfimFederation. The
manageItfimFederation command requires specific parameters to execute
operations on a federation. For more information, see the IBM Tivoli Federated
Identity Manager Administration Guide.

Procedure
1. Create a response file by issuing the following command in the WebSphere

wsadmin console:
wsadmin>$AdminTask manageItfimFederation { -operation createResponseFile
-fimDomainName fimipdomain -role ip -protocol SAML2_0 -fileId
/downloads/saml20_ip_properties.xml }

2. Edit the response file to modify the following values:

Table 102. Response file settings for Identity Provider in SAML 2.0 federation

Configuration
item Description Your value CLI Properties or Names

Federation name The unique name of the
federation. (Required)

Any name

For example, saml20ip

FedName

260 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 102. Response file settings for Identity Provider in SAML 2.0 federation (continued)

Configuration
item Description Your value CLI Properties or Names

Company name The name of the company
that is associated with the
federation. (Required)

Any name

For example, IDP Company Name

CompanyName

Company URL A URL for a website of
the company that is
associated with the
federation. (Required)

URL of the website of your
company

CompanyUrl

Point of Contact
Server

The URL of the point of
contact server with the
federation name and the
protocol name, such as
/saml20, appended to it.
(Required)

A URL

For example, for a federation
named saml_fed:
https://idp.example.com/FIM/sps/
saml_fed/saml20

BaseUrl

Provider ID A URL or URN that
uniquely identifies the
provider.

By default Tivoli
Federated Identity
Manager uses the URL of
the point of contact server
with the federation name
and the protocol name,
such as /saml20,
appended to it.

A URL

For example, for a federation
named saml_fed:https://
idp.example.com/FIM/sps/
saml_fed/saml20)

ProviderId

Select Signing
Key

Keystore in
Tivoli Federated
Identity Manager
key service,
where the key is
stored.

Enter a signing key for the
Identity Provider.

The protocol mandates
that a SAML Response
that contains the assertion
is signed when using the
HTTP POST binding.

If you also select to sign
any other messages the
specified signing key is
used to sign them.
(Required)

Keystore name:

Key alias name:

This data is provided in the format
of

"Keystore Name"
_"Alias Name"

For example,

DefaultKeyStore_
testkey

SigningKeyIdentifier

Chapter 20. Configuring a SAML federation using CLI 261

Table 102. Response file settings for Identity Provider in SAML 2.0 federation (continued)

Configuration
item Description Your value CLI Properties or Names

Select
Encryption Key

Keystore in
Tivoli Federated
Identity Manager
key service,
where the key is
stored.

A public/private key pair
used in encryption.

Your partner uses the
public key to encrypt data
to you.

Use the private key to
decrypt data that your
partner sends to you.

You must specify the key
pair to use.

Note: Before you
complete this task, create
the key and import it into
the appropriate keystore
in the Tivoli Federated
Identity Manager key
service.(Required)

Keystore name:

Key alias name:

This data is provided in the format
of

"Keystore Name"
_"Alias Name"

For example,

DefaultKeyStore_
testkey

EncryptionKeyIdentifier

Single Sign-on SAML 2.0 supports single
sign-on using different
profiles, use this setting to
enable them accordingly.

True or false.

Default: false.

You must enable at least one
property.

For example, set SsoPostEnabled to
true.

SsoPostEnabled

SsoArtifactEnabled

SsoRedirectEnabled

Single Logout To enable single logout,
set at least one to true and
they can choose which
binding and provider that
can be used to initiate
single logout.

True or false.

Default: false.

You must enable at least one
property to enable the single logout
profile for the federation.

For example, set SloIPPostEnabled
to true.

SloIPArtifactEnabled

SloIPPostEnabled

SloIPRedirectEnabled

SloIPSOAPEnabled

SloSPArtifactEnabled

SloSPPostEnabled

SloSPRedirectEnabled

SloSPSOAPEnabled

262 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 102. Response file settings for Identity Provider in SAML 2.0 federation (continued)

Configuration
item Description Your value CLI Properties or Names

Artifact
Resolution
Service URL

The Artifact Resolution
Service is a SOAP
endpoint on the Identity
Provider point-of-contact
server where artifacts are
exchanged for SAML
messages.

By default, Tivoli
Federated Identity
Manager configures one
SOAP endpoint for the
Artifact Resolution
Service.

You can optionally define
additional SOAP
endpoints.

Specify the assertion resolution
service URL, the URL index.

Set to true if you use the endpoint
use as the default.

Set to false otherwise.

For example, https://
idp.example.com/FIM/sps/
saml_fed/saml20/soap;0;true

ArtifactResolutionServiceList

Artifact Cache
Lifetime
(seconds)

The artifact cache lifetime
in seconds. Default value:
120 seconds.

Use the default value. ArtifactLifetime

Amount of time
before the issue
date that an
assertion is
considered valid

The number of seconds
that an assertion is
considered valid before its
issue date. Default value:
60

Use the default value AssertionValidBefore

Amount of time
the assertion is
valid after being
issued

The number of seconds
that an assertion is
considered valid after its
issue date. Default value:
60

Use the default value AssertionValidAfter

Identity
mapping
options

An XSL
transformation
(XSLT) file
containing
mapping rules

The type of identity
mapping to use. Use an
XSLT file for identity
mapping, and have the
file ready to use for the
federation. (Required)

XSLT File that corresponds to the IP
role for SAML 2.0 federations:
/opt/IBM/FIM/examples/
mapping_rules/
ip_saml_20_email_nameid.xsl

MappingRuleFileName

3. Type the following command in a command prompt to create the Identity
Provider federation:
wsadmin>$AdminTask manageItfimFederation { -operation create
-fimDomainName fimipdomain -fileId
/downloads/saml20_ip_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

What to do next

Continue with Configuring a SAML 2.0 Service Provider federation using CLI.

Chapter 20. Configuring a SAML federation using CLI 263

Configuring a SAML 2.0 service provider federation using CLI
Use CLI commands to configure a SAML 2.0 service provider federation by
creating a response file and creating a service provider federation.

About this task

This task requires the use of the command manageItfimFederation. The
manageItfimFederation command requires specific parameters to execute
operations on a federation. For more information, see the IBM Tivoli Federated
Identity Manager Administration Guide.

Procedure
1. Create a response file by issuing the following command in the WebSphere

wsadmin console:
wsadmin>$AdminTask manageItfimFederation { -operation createResponseFile
-fimDomainName fimspdomain -protocol SAML2_0 -role sp -fileId
/downloads/saml20_sp_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

2. Edit the response file to modify the following values:

Table 103. Response file settings for service provider in SAML 2.0 federation

Configuration item Description Your value CLI Properties or Names

Federation name The unique name of the
federation. (Required)

Any name

For example, saml20sp

FedName

Company name The name of the company
that is associated with the
federation. (Required)

Any name

For example, SP
Company Name

CompanyName

Company URL A URL for a website of the
company that is associated
with the federation.
(Required)

URL of the website of
your company

CompanyUrl

Provider ID A URL or URN that
uniquely identifies the
provider.

By default Tivoli Federated
Identity Manager uses the
URL of the point of contact
server with the federation
name and the protocol
name, such as /saml20,
appended to it.

URL

For example, for a
federation named
saml_fed:
https://
sp.example.com/FIM/
sps/saml_fed/saml20

ProviderId

Point of Contact Server
URL

The URL of the point of
contact server with the
federation name and the
protocol name, such as
/saml20, appended to it.
(Required)

A URL

For example, for a
federation named
saml_fed:
https://
sp.example.com/FIM/
sps/saml_fed/saml20

BaseUrl

264 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 103. Response file settings for service provider in SAML 2.0 federation (continued)

Configuration item Description Your value CLI Properties or Names

Select Signing Key

Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored.

Enter a signing key for the
service provider. If you
also select to sign any other
messages the specified
signing key is used to sign
them. (Required)

Note: Before you complete
this task, create the key
and import it into the
appropriate keystore in the
Tivoli Federated Identity
Manager key service.

Keystore name:

Key alias name:

This data is provided in
the format of

"Keystore Name"
_"Alias Name"

For example,

DefaultKeyStore_
testkey

SigningKeyIdentifier

Single sign-on The URL to which the
Service Provider sends
authentication requests.

True or false.

Default: false.

You must enable at
least one property.

For example, set
SsoPostEnabled to true.

SsoPostEnabled

SsoArtifactEnabled

SsoRedirectEnabled

Select Encryption Key

Keystore in Tivoli
Federated Identity
Manager key service,
where the key is stored.

A public/private key pair
used in encryption. Your
partner uses the public key
to encrypt data to you.

Use the private key to
decrypt data that your
partner sends to you.

You must specify the key
pair to use.

Note: Before you complete
this task, create the key
and import it into the
appropriate keystore in the
Tivoli Federated Identity
Manager key
service.(Required)

Keystore name:

Key alias name:

This data is provided in
the format of

"Keystore Name"
_"Alias Name"

For example,

DefaultKeyStore_
testkey

EncryptionKeyIdentifier

Single Logout Profile The URL that the partner
contacts to use the Single
Logout profile.

To enable single logout, set
at least one property to
true. Then, you can choose
which binding and
provider to use to initiate
single logout.

True or false.

Default: false.

You must enable at
least one property to
enable the single logout
profile for the
federation.

For example, set
SloSPPostEnabled to
true.

SloIPArtifactEnabled

SloIPPostEnabled

SloIPRedirectEnabled

SloIPSOAPEnabled

SloSPArtifactEnabled

SloSPPostEnabled

SloSPRedirectEnabled

SloSPSOAPEnabled

Chapter 20. Configuring a SAML federation using CLI 265

Table 103. Response file settings for service provider in SAML 2.0 federation (continued)

Configuration item Description Your value CLI Properties or Names

Artifact Resolution Service
list

The Artifact Resolution
Service is a SOAP endpoint
on the service provider
point of contact server
where artifacts are
exchanged for SAML
messages.

By default, Tivoli Federated
Identity Manager
configures one SOAP
endpoint for the Artifact
Resolution Service.

You can optionally define
additional SOAP
endpoints.

Specify the assertion
resolution service URL,
the URL index, and set
to true if the endpoint
is used as the default.
Otherwise, set to false.

For example,
https://
sp.example.com/FIM/
sps/saml_fed/saml20/
soap;0;true

ArtifactResolutionServiceList

Identity mapping options

An XSL transformation
(XSLT) file containing
mapping rules

The type of identity
mapping to use. Use an
XSLT file for identity
mapping, and have the file
ready to use for the
federation. (Required)

XSLT File that
corresponds to the SP
role for SAML 2.0
federations:
/opt/IBM/FIM/
examples/
mapping_rules/
sp_saml_20.xsl

MappingRuleFileName

3. Type the following command in a command prompt to create the Service
Provider federation:
wsadmin>$AdminTask manageItfimFederation { -operation create
-fimDomainName fimspdomain -fileId
/downloads/saml20_sp_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

What to do next

Continue with Importing a SAML 2.0 service provider into the SAML identity
provider federation.

Importing a SAML 2.0 Service Provider into the SAML Identity Provider
federation

To add a Service Provider to the Identity Provider federation, you must import the
Service Provider configuration properties.

Procedure
1. Type the following command in a command prompt to export the Service

Provider metadata and obtain most of the environmental information:
wsadmin>$AdminTask manageItfimFederation { -operation export
-fimDomainName fimspdomain -federationName saml20sp -fileId
/downloads/saml20_sp_metadata.xml }

The following confirmation message shows:

266 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

FBTADM001I Command completed successfully

2. Create a Service Provider response file by issuing the following command in
the WebSphere wsadmin console:
wsadmin>$AdminTask manageItfimPartner { -operation createResponseFile
-fimDomainName fimipdomain -federationName saml2ip -partnerRole sp -fileId
/downloads/saml20_sp_partner_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

3. Edit the response file to modify the following values:

Table 104. Response file settings for Service Provider partner in SAML 2.0 federation

Configuration item Description Your value CLI Properties or Names

Import metadata file To import a
metadata file, you
need the file name
and its location.
(Required)

The fully specified metadata file
name. For example:

/downloads/saml20_
sp_metadata.xml

metadataFileName

Signature Validation
Options

The partner
metadata contains
the key to use for
signature
validation.

Specify the keystore
name and alias
name where Tivoli
Federated Identity
Manager stores the
key included on the
metadata.

DefaultTrustedKeyStore signatureKeystoreName

The alias name
under which the
key is stored on the
specified keystore.

spsignkey signatureKeyAlias

Encryption Options The partner
metadata contains
the key to use for
encryption.

Specify the keystore
name and alias
name where Tivoli
Federated Identity
Manager stores the
key included on the
metadata.

DefaultTrustedKeyStore encryptionKeystore

The alias name
under which the
key is stored on the
specified keystore.

spenckey encryptionKeyAlias

Assertion Attribute
Types

Specify the
attribute types to
be added to the
assertion generated
by the Identity
Provider.

* (Default) AssertionAttributeTypes

Chapter 20. Configuring a SAML federation using CLI 267

Table 104. Response file settings for Service Provider partner in SAML 2.0 federation (continued)

Configuration item Description Your value CLI Properties or Names

Partner Server SSL
Certificate Validation

The Identity
Provider makes a
direct connection to
the Service
Provider for some
SAML bindings.

Specify the key to
use to validate the
server ssl
certificate.
Note: Before you
complete this task,
import the key into
the appropriate
keystore in the
Tivoli Federated
Identity Manager
key service.

DefaultTrustedKeystore_spsslcert ServerCertKeyId

4. Type the following command in a command prompt to add the new Service
Provider partner to the Identity Provider federation:
wsadmin>$AdminTask manageItfimPartner { -operation create
-fimDomainName fimipdomain
-federationName saml20ip -partnerName saml20sp -fileId
/downloads/saml20_sp_partner_properties.xml
-signingKeystorePwd testonly}
-encryptionKeystorePwd testonly }

The following confirmation message shows:
FBTADM001I Command completed successfully

What to do next

Continue with Importing a SAML 2.0 Identity Provider into the SAML Service
Provider federation.

Importing a SAML 2.0 Identity Provider into the SAML service provider
federation

To add an Identity Provider to the Service Provider federation, you must import
the Identity Provider configuration properties.

Procedure
1. Type the following command in a command prompt to export the Identity

Provider metadata and obtain most of the environmental information:
wsadmin>$AdminTask manageItfimFederation { -operation export
-fimDomainName fimipdomain -federationName saml20ip -fileId
/downloads/saml20_ip_metadata.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

2. Create an Identity Provider response file by issuing the following command in
the WebSphere wsadmin console:

268 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

wsadmin>$AdminTask manageItfimPartner { -operation createResponseFile
-fimDomainName fimspdomain -federationName saml20sp -partnerRole ip -fileId
/downloads/saml20_ip_partner_properties.xml }

The following confirmation message shows:
FBTADM001I Command completed successfully

3. Edit the response file to modify the following values:

Table 105. Response file settings for Identity Provider partner in SAML 2.0 federation

Configuration item Description Your value CLI Properties or Names

Import metadata file To import a
metadata file, you
need the file name
and its location.
(Required)

The fully specified metadata file
name. For example:

/downloads/saml20_
ip_metadata.xml

metadataFileName

Signature Validation
Options

The partner
metadata contains
the key to use for
signature
validation.

Specify the
keystore name
and alias name
where Tivoli
Federated Identity
Manager stores
the key included
on the metadata.

DefaultTrustedKeyStore signatureKeystoreName

The alias name
under which the
key is stored on
the specified
keystore.

ipsignkey signatureKeyAlias

Encryption Options The partner
metadata contains
the key to use for
encryption.

Specify the
keystore name
and alias name
where Tivoli
Federated Identity
Manager stores
the key included
on the metadata.

DefaultTrustedKeyStore encryptionKeystore

The alias name
under which the
key is stored on
the specified
keystore.

ipenckey encryptionKeyAlias

Chapter 20. Configuring a SAML federation using CLI 269

Table 105. Response file settings for Identity Provider partner in SAML 2.0 federation (continued)

Configuration item Description Your value CLI Properties or Names

Partner Server SSL
Certificate Validation

The Identity
Provider makes a
direct connection
to the Service
Provider for some
SAML bindings.

Specify the key to
use to validate the
server ssl
certificate.

Note: Before you
complete this task,
import the key
into the
appropriate
keystore in the
Tivoli Federated
Identity Manager
key service.

DefaultTrustedKeystore_ipsslcert ServerCertKeyId

Default Target URL Default target
URL where the
browser is sent to,
when a successful
single sign on
happens at the
Service Provider.

This location is
only used if a
Target URL was
not specified on
the request.

https://saml20clisp:444/FIM/fimivt/
protected/ivtlanding.jsp

DefaultPostAuthTargetURL

Default Single Sign
On User

Default user name
for single sign on
at the Service
Provider side.

guest AnonymousUserUserName

4. Type the following command in a command prompt to add the new Service
Provider partner to the Identity Provider federation:
wsadmin>$AdminTask manageItfimPartner { -operation create -fimDomainName
fimspdomain -federationName saml20sp -partnerName saml20ip -fileId
/downloads/saml20_ip_partner_properties.xml -signingKeystorePwd testonly}
-encryptionKeystorePwd testonly }

The following confirmation message shows:
FBTADM001I Command completed successfully

270 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 21. Planning an Information Card federation

This planning guide reviews the Tivoli Federated Identity Manager implementation
of the Information Card standard, and describes how to plan the configuration
process. This guide does not provide a comprehensive review of the Information
Card standard.

You can use the Information Card system to manage your digital identities from
various identity providers. Then, you can and use these digital identities to access
various services that accept these digital identities.

Administrators who are not familiar with the standard must review the
Information Card documentation in the Microsoft website.

The Tivoli Federated Identity Manager support for Information Card includes
deployment of Tivoli Federated Identity Manager in both of the Information Card
roles: Managed Identity Provider and Relying Party.

The protocol flow when the user provides an information card to authenticate at a
website, resembles the forms-based login flow. However, it requires extra steps.
1. User directs the browser to a protected web page that requires authentication.
2. The site redirects the browser to a login page. In an Information Card-enabled

browser, the login page contains an HTML tag that allows the user choose an
Information Card to authenticate to the site. When the user selects the tag, the
browser starts the identity selector.

Note: An identity selector is a browser plug-in that enables the browser to use
the Information Card protocol. The plug-ins are sometimes called identity
agents.

3. The browser support code for Information Cards starts the identity selector.
Then, the browser passes to the identity selector the parameter values supplied
by the Information Card HTML tag obtained from the website in Step 2.
The user then selects an Information Card, which represents a digital identity
that can be used to authenticate at the site.

4. The identity selector sends the information card to the Tivoli Federated Identity
Manager identity provider. The identity provider uses the Tivoli Federated
Identity Manager security token service to process the WS-Trust message and
WS-Metadata Exchange. Then, it generates a token that contains the user
credentials. The identity provider returns the token to the browser.

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity
Manager Security STS client while Tivoli Federated Identity Manager supports
WebSphere 6.X. When Tivoli Federated Identity Manager discontinues its
support for WebSphere 6.X, use WebSphere Application Server version 7
Update 11 and later. See WS-Trust client API and WS-Trust Clients for details.

5. The browser forwards the user credentials to the website that protects the
requested resource. The site validates the credentials and redirects the browser
back to the requested page.

© Copyright IBM Corp. 2006, 2013 271

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

In the protocol flow, the Relying Party and the identity provider do not
communicate directly with each other. By default, neither party is aware of the
other. The Relying Party does not know which identity provider was selected by
the user until the token is received in Step 5. At that time, the Relying Party can
learn the identity by examining the Issuer field in the token.

You can use the Information Card to prompt the identity provider to require
identification from the Relying Party. However, doing so is not a requirement, and
is typically discouraged.

Overview of the Information Card identity provider
Tivoli Federated Identity Manager, when operating as an identity provider,
supports the issuing of managed cards, and issues security tokens for managed
cards.

The identity provider supports:
v Issuing managed cards

The issuing of managed cards is triggered when a user authenticates to a Tivoli
Federated Identity Manager identity provider and accesses a card download
URL. The URL sends the user a template HTML form, requesting user
information that is required in order to issue the card. When the user supplies
the necessary information, Tivoli Federated Identity Manager issues the card and
sends it to the browser of the user. The user can save this card for future use.

v Retrieval of security tokens for managed cards
This support is provided through the Security Token Service (STS). This
component supports two types of SOAP messages from an Information Card
identity selector. The SOAP messages are required for an identity selector to
obtain a security token for the managed information card of the user.

Note: An identity selector is a browser plug-in. It is sometimes called an identity
agent.
Only SAML 1.1 security tokens are supported.

The support includes the following features:
v Issuing of managed cards
v Endpoints for metadata exchange, and processing of WS-Trust messages
v Support for Information Card claims
v A unique federation to contain the identity provider endpoints
v A trust service chain to convert user identity information into a SAML 1.1 token

Note: Information Card federations do not maintain configuration settings as
metadata. There is no metadata to export or import between identity providers and
relying parties for Information Card deployments.

Issuing of managed cards
Tivoli Federated Identity Manager provides support for identity providers to issue
managed cards, and to retrieve security tokens from managed cards that have been
issued by other authorities.

Tivoli Federated Identity Manager provides a protected endpoint that permits the
downloading of a managed card. When a user, through a browser, accesses the

272 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

endpoint, an HTML template file is loaded and returned the user. The user is
prompted to supply information that is required in order to issue the managed
card.

The required information is:
v User name

The user name is an arbitrary value that the user assigns to the card.
v The set of claims that the card supports.

A claim is a Uniform Resource Indicator (URI) that represents qualified attribute
names. Tivoli Federated Identity Manager uses the list of claims to determine
which information to place into the security token that is generated at runtime,
when the managed card is processed. Examples of the information placed in the
security token are each claim, and its corresponding value.

v When the federation uses an authentication method called self-issued credential or
self-signed SAML assertion, part of the request is to prompt the user to post a
token generated by a self-issued card.
When the federation uses an authentication method called username token, the
user does not need to provide this parameter.

Tivoli Federated Identity Manager provides two template HTML pages.
v When the authentication method is username token, the template

getcard_ut.html is used.
v When the authentication method is self-issued credential, the template

getcard_sss.html is used.

Administrators can modify the template HTML files to best suit the local
deployment.

The getcard_* template files contain the following macros, which are replaced with
values specific to the request from the user.

@FORMACTION@
This macro is replaced with the required form action URL, to which the
HTML form is posted.

@USERNAME@
This macro is replaced with the user name, as supplied by either the login
name for the Tivoli Access Manager user, or by an authenticated
WebSphere user. The Tivoli Access Manager user name is used when
WebSEAL is the point of contact server. The WebSphere user name is used
when WebSphere is the point of contact server.

This value can be used pre-populate the card name parameter in the
template.

When the user posts the form back to Tivoli Federated Identity Manager, the
information is placed into macros in an XML template file called
infocard_template.xml. This template file represents the managed card that is
returned to the user through the browser.

In most deployments, system administrators do not need to modify the macros in
infocard_template.xml. However, the file provides a number of macros that can be
modified if needed.

Chapter 21. Planning an Information Card federation 273

Note: To view a list of macros, see “Replacement macros in the infocard_template
XML file” on page 301.

Tivoli Federated Identity Manager support for Information Card includes the
SAML 1.1 token type only. The SAML 1.1 token type has two representations:

SAML 1.1
urn:oasis:names:tc:SAML:1.0:assertion

SAML 1.1
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV1.1

Most managed information cards support both representations. The user does not
select the token type. The @SUPPORTED_TOKENS@ macro in
infocard_template.xml is defined in the two preceding SAML representations.

Tivoli Federated Identity Manager supports two methods for the identity selector
to authenticate the user to the identity provider security token service. Each
method supports a different replacement template for the @USERCRED@ macro in
the information card template (infocard_template.xml).

The type of authentication is specified by the administrator when the federation is
configured. The configuration values for the authenticationMethod parameter map
to template files as follows:

UsernameToken
Maps to the template file infocard_usercred_usernametoken.xml

The template file has one replacement macro:

@USERNAME@
This macro is replaced with the user name. The user name is
supplied either by the login name for the Tivoli Access Manager
user or an authenticated WebSphere user. The Tivoli Access
Manager user name is used when WebSEAL is the point of contact
server. The WebSphere user name is used when WebSphere is the
point of contact server.

SelfSignedSAML
Maps to the template file infocard_usercred_selfsignedsaml.xml.

The template file has one replacement macro:

@PPID@
This macro is replaced with the PPID of the self-issued card that is
posted as part of the getcard_sss.html form. This process occurs
when the federation uses the SelfSignedSAML authentication
method.

Tivoli Federated Identity Manager stores this value as an alias for
the current user in the Tivoli Federated Identity Manager alias
service. The alias is used to map the self-issued card back to the
Tivoli Federated Identity Manager user.

This process occurs when the self-issued card is used at runtime to
generate a SAML assertion and authenticate the identity provider
security token service.

274 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Identity provider federations
The configuration of Information Card federations differs from the configuration of
other single sign-on protocol federations, such as SAML 2.0, Liberty,
WS-Federation, or OpenID. The main difference is that the Information Card
identity provider does not have to know the security token recipient. The identity
provider security token service interacts only with the identity selector. This
eliminates the need to configure any properties that contain information about
partners.

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

The concept of partner configuration exists in Information Card configurations
only as part of the configuration of token modules used by the trust service.

The key properties that define a federation for an identity provider are:

ProtocolID
Tivoli Federated Identity Manager uses a ProtocolID as a unique identifier.
The Information Card federation has the succeeding protocolId syntax:
https://<hostname:port>/FIM/sps/<federation_name>/infocard

For example:
https://www.exampleidentitydemo.com/FIM/sps/csip/infocard

Endpoint for obtaining a managed card
An endpoint for processing HTML interaction with an authenticated user,
in order to build and download a managed card.

The URL for the endpoint is based on the ProtocolID. For example:
https://www.exampleidentitydemo.com/FIM/sps/csip/infocard/getcard.crd

The Tivoli Federated Identity Manager component (single sign-on protocol
service delegate) for the endpoint completes the succeeding tasks:
1. Prompts the user for information required to generate an information

card. The information card information includes the card name and the
supported claims. When the authentication method is self-issued
credential, a personal information card is generated.

2. When the authentication mechanism is self-issued card, also called
SelfSignedSAML, the delegate creates and store an alias in the alias
service. The alias maps the personal card presented by the user during
this process to the user account of the person currently authenticated in
the browser session.

3. Generates the managed card from an XML template, with various
pieces populated dynamically. The delegate signs the card with the
private key of the SSL certificate associated with the point-of-contact
server. Then, the delegate sends the card back to the browser.

Endpoint for exchanging metadata
The identity selector uses an endpoint at runtime to exchange metadata.
Using an endpoint at runtime to exchange metadata determines the
identity provider security token service RST connection and message
formatting requirements.

The URL for the metadata endpoint is based on the ProtocolID. For
example:
https://www.exampleidentitydemo.com/FIM/sps/csip/infocard/mex

Chapter 21. Planning an Information Card federation 275

The metadata exchange endpoint has a template XML file called
metadata_template.xml. This file has some macros available for
replacement.

Note: Administrators can use the default macros. You do not have to
modify the macros in order to use the template file.

The replacement macros for metadata_template.xml are:

@IPSTS@
The URL of the identity provider security token service endpoint
for the federation.

@IPPOLICY@
This value consists of WS-Policy information. The information is
dependent upon the type of authentication token that is used to
authenticate to the identity provider security token service. The
WS-Policy information is read from a template file.

@IPCERTIFICATE@
The base-64 encoded public SSL certificate for the point of contact
server.

Each of the supported authentication methods supports a different
replacement template for the @IPPOLICY@ macro in the metadata
exchange template.

The template files for each authentication method are:

UsernameToken authentication
metadata_policy_usernametoken.xml

SelfSignedSAML authentication
metadata_policy_selfsignedsaml.xml

The metadata_policy_usernametoken.xml and
metadata_policy_selfsignedsaml.xml have no replacement macros. The
template files consist of different sets of policy, as appropriate for each
method. Information Card administrators do not have to modify these files.

An endpoint for receiving WS-Trust messages
The identity provider security token service has an endpoint that receives
WS-Trust messages from the identity selector. The Information Card
identity provider module processes the incoming request, modifies the
Tivoli Federated Identity Manager trust service, and communicates with
the trust service to get the token.

Information Card claims

Information Card uses information called claims to define attributes that can be
required in order to fulfill a user request. An information card contains the
Uniform Resource Indicators (URIs) for the set of claims that are supported by its
issuer.

An identity selector can use the claims information to determine if an identity card
can be useful for signing in to a specific relying party. For example, when a relying
party requires the e-mail address claim, and the identity provider associated with a
given managed card does not support that claim, the identity provider does not
offer the managed card as an option for signing in to that relying party.

276 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The Tivoli Federated Identity Provider managed card provider places no
restrictions on the set of claims that can be specified in cards. The templates
(getcard_ut.html and getcard_sss.html) contain the full set of the standard
supported claims. Administrators can add support for additional claims by
modifying the templates.

The Information Card identity agent sends a WS-Trust request to the Tivoli
Federated Identity Manager module (delegate) for the single sign-on protocol
service. The WS-Trust request contains a claims element (wst:Claims) that contains
the set of requested claims.

Figure 17 shows some example claims.

Information Card error pages

The following Page Identifiers are provided:

/infocard/error_get_card.html
Maps to the following page:
/infocard/error_get_card.html

Used to show an error in HTML when a user is attempting to download a
card.

/infocard/error_get_metadata.html
Maps to the following page:
/infocard/error_get_metadata.html

Used to show an error in HTML when an identity selector user is
attempting to download metadata using HTTP GET (rather than SOAP
over HTTP/POST).

<wst:Claims>
<wsid:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"
xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity" />
<wsid:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"
xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity" />
<wsid:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname"
xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity" />
<wsid:ClaimType
Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/

privatepersonalidentifier"
xmlns:wsid="http://schemas.xmlsoap.org/ws/2005/05/identity" />

</wst:Claims>

To view the standard set of claims supported by Microsoft, see: http://
schemas.xmlsoap.org/ws/2005/05/identity/claims.xsd.

Figure 17. Example claims from a Information Card identity agent

Chapter 21. Planning an Information Card federation 277

http://schemas.xmlsoap.org/ws/2005/05/identity/claims.xsd.
http://schemas.xmlsoap.org/ws/2005/05/identity/claims.xsd.

Overview of the Information Card relying party
The role of Relying Party is similar to the role of a service provider, as supported by
Tivoli Federated Identity Manager for other single sign-on protocols. The Relying
Party consists of a login service implemented a single sign-on protocol service
component (delegate) and a WS-Trust chain.

The Tivoli Federated Identity Manager implementation supports:
v Reception of SAML 1.x assertion tokens
v The use of login with both self-issued cards and managed cards issued by other

identity providers.

In the Information Card model, the Secure Socket Layer (SSL) public key is used to
encrypt the token that is sent to the endpoints for the Relying Party. The SSL key is
the key of the SSL session established between the browser and the site presenting
the Web page (as specified in the embedded OBJECT tags). This means that Tivoli
Federated Identity Manager needs access to the SSL keys used by Point of Contact
server.

The administrator must configure access to these keys during Tivoli Federated
Identity Manager Information Card configuration.

Web sites must use X509v3 certificates with logotypes (also known as Extended
Validation certificates) instead of SSL server certificates when providing
identification of the enterprise.

The Information Card term Relying Party refers to a role that is similar to the
Service Provider role in other single sign-on protocols that are supported by Tivoli
Federated Identity Manager.

As a Relying Party, Tivoli Federated Identity Manager supports both Managed and
Self-Issuing Identity Providers.

Tivoli Federated Identity Manager configuration enables administrators to
configure support for one or both types of providers.

Prior to completing the Tivoli Federated Identity Manager configuration steps, the
relying party administrator can obtain public keys from the identity provider, for
use when validating digital signatures on assertions received from that provider.

The Tivoli Federated Identity Manager implementation includes support for:
v User access to the relying party
v Information Card claims
v Federations for processing requests
v Token exchange

User access to a relying party

When a user attempts to access a protected resource at a Web site, and the user has
not previously established credentials, a Point of Contact Web server typically
prompts the user to establish credentials by filling out a login page. The use of
Information Card in this scenario is dependent on the prior establishment of the
following:

278 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v The user must be using a browser that has been enabled for Information Card.
Browsers that support for Information Card have an identity selector plug-in
installed.

v The login page from the Point of Contact that is protecting the resources at the
Web site must be tagged with specific OBJECT tags. The OBJECT tags in the
page trigger the browser to start the Information Card interaction.

v The URL that the browser accesses must use the HTTPS protocol.

Figure 18 shows sample XML elements in the required login format. The login
format requires several important parameters:

Form method action
The value of the action parameter must be the URL of the Information
Card federation endpoint. The Information Card enabled browser redirects
to this endpoint to process the security token received from the Identity
Provider.

Note: The administrator specifies this endpoint when configuring Tivoli
Federated Identity Manager Information Card.

Input type hidden name
The login form should have a hidden element with:
v The name parameter set to TARGET

v The value set to the URL to which the browser is redirected when the
login process completes.

There is an alternative way to specify the URL to which the browser is to
be redirected. The target can be specified using a query string parameter
on the value of the action parameter. For example, using the values from
Figure 18:
action=’’FIM/sps/infocard-fed/infocard/login?TARGET=/theResource’’

When WebSEAL is the Point of Contact server, the %URL% macro supported
by WebSEAL can be used to specify the target URL.

Object type name
The value of the name parameter on the OBJECT element must be xmlToken.

The browser sends this value to the Relying Party. The Tivoli Federated
Identity Manager implementation for Information Card Relying Party uses
this parameter to access the security token.

Tivoli Federated Identity Manager as a Relying Party supports the following SAML
token types:

<form method="post" action="/FIM/sps/infocard-fed/infocard/login">
...
<input type="hidden" name="TARGET" value="/TheResource"/>
<object type="application/x-informationCard" name="xmlToken">

<param name="requiredClaims"
value="http://schemas.xmlsoap.org/ws/2005/05/identity/

claims/privatepersonalidentifier" />
</object>
<input type="submit" value="Login"/>
...

</form>

Figure 18. Example login format for use by Relying Party

Chapter 21. Planning an Information Card federation 279

v URI supported for all provider types:
urn:oasis:names:tc:SAML:1.0:assertion

v URI supported for self-issuing identity providers only:
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1

One or more of these type URIs can be specified in the tokenType parameter of the
OBJECT tag.

Relying party federations

Tivoli Federated Identity Manager establishes and uses federations for Information
Card in a manner that is similar to, but not identical to, the federations used for
other single sign-on protocols. The differences are:
v The Relying Party interaction is part of the authentication process used by the

Point of Contact server (for example, WebSEAL) to grants access to protected
resources.
For other single sign-on protocols, the Point of Contact server presents a login
page when a protected resource is accessed, and then authenticates the user and
produces credentials for the user. For Information Card, Tivoli Federated Identity
Manager as a relying party performs the authentication process and produces
the credentials for the user.
The Relying Party becomes aware that a user sign-on is in progress when a
security token (assertion) is received at its message endpoint. The Relying Party
must then decide whether to accept or reject the security token.

v Unlike a service provider for other single sign-on protocols, the Relying Party
does not send messages to the identity provider. The messages are sent by the
Identity Selector, without the knowledge of the Relying Party

v In a Information Card federation, the identity providers are a set of
loosely-federated entities from which the Web site accepts assertion tokens.

v Information Card supports the Self-Issuing Identity provider.

Information Card requires creation of a federation to represent the Relying Party
self. The term self should not to be confused with Self-Issuing Identity provider.
The term is used to distinguish the federation originator (creator) from any
partners that are subsequently added to the federation. The self entity properties
include:
v The login endpoint
v Parameters that indicate the types of tokens that are accepted
v The keystore alias for the private key from the Point of Contact server, for use in

Secure Socket Layer (SSL) connections.
v A default mapping rule. The mapping rule can be overridden by a partner's

configuration.

The Information Card federation uses the standard Tivoli Federated Identity
Manager naming convention for protocolID. The syntax is:
https://<hostname:port>/FIM/sps/<federation name>/infocard

For example, when the host for the federation endpoints is rp.example.com,
listening on port 443, with a federation named MyInfoCard-rp, the protocolID is:
https://rp.example.com:443/FIM/sps/MyInfoCard-rp/infocard

280 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Partner federations are needed to represent identity providers. There can be only
one self-issuing token partner. There can be any number of Managed Identity
provider partners. An any Identity Provider partner may also be added. This
partner can be used for guest account access.

Self-Issuing partner

Tivoli Federated Identity Manager configures a partner with the protocolId
set to:
http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self

This partner is used to process Self-issued cards.

Named Managed Identity Provider Partner
A managed provider partner must have a unique Issuer URI. The Issuer
field of the trust chain mapping is set to the protocolID value. When
assertions from this provider are signed, a public key alias must be
configured for the partner.

The administrator must import the public key into a Tivoli Federated
Identity Manager keystore before configuring the federation. The Tivoli
Federated Identity Manager key service should be used to import the key.

Any Provider Partner
The Any provider allows the configuration of a wildcard Assertions from
these providers must use one of the following values
for<saml:SubjectConfirmationMethod> :
urn:oasis:names:tc:SAML:1.0:cm:bearer
urn:oasis:names:tc:SAML:1.0:cm:sender-vouches

When the assertion is signed, the assertion must include a <ds:KeyInfo>
element in the signature containing a public key that is to be used for
validating the signatures.

Note: This configuration should only be used for guest user access. In this
configuration, all users are mapped to a guest account.

Website enablement for Information Card
The Tivoli Federated Identity Manager implementation of the Information Card
profile interoperates with the Microsoft CardSpace™ Version 1.0 implementation.
Both implementations are based on Information Card Profile Version 1.0. This
version is supported in Microsoft Internet Explorer Version 7.

Browsers that support Information Card must:
v recognize special HTML or XHTML tags for starting the Identity Selector,
v pass encoded parameters on to the Identity Selector on the platform, and
v post back the token resulting from the authentication type selected by the user

for choice of a digital identity.

Websites that employ Information Card-based authentication must support two
pieces of functionality:
v Addition of HTML or XHTML tags to their login page to request an Information

Card-based login
v Code to log the user in to the site, using the credentials supplied by the user in

the HTTP POST operation

Chapter 21. Planning an Information Card federation 281

In response to the Information Card-based login, the website typically responds by:
v Writing the same client-side browser cookie as it would when logins occur based

on username-password authentication (or other mechanisms)
v Issuing the same browser redirects

Changes to login pages

HTML extensions such as the OBJECT tag are used to signal to the browser when
to start the Identity Selector. However, not all HTML extensions are supported by
all browsers.

Also, some commonly supported HTML extensions are disabled in browser high
security configurations. For example, the OBJECT tag is disabled by high security
settings on some browsers, including Internet Explorer.

An alternative to the use of HTML extensions is the use of an XHTML syntax that
is not disabled by changing browser security settings. However, not all browsers
provide full support for XHTML.

To provide a solution that addresses the range of scenarios, there are two HTML
extension formats. Browsers might support one or both extension formats.

OBJECT syntax

Figure 19 shows an example of a page that uses the OBJECT syntax to request that
the user login using an Information Card.

Notice the OBJECT of type application/x-informationCard. When the user selects
a card, the resulting security token is included in the response (POST) as the

<html>
<head>
<title>Welcome to Fabrikam</title>
</head>
<body>

<form name="ctl00" id="ctl00" method="post"
action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx">
<center>

<input type="submit" name="InfoCardSignin" value="Log in"
id="InfoCardSignin" />
</center>
<OBJECT type="application/x-informationCard" name="xmlToken">
<PARAM Name="tokenType"
Value="urn:oasis:names:tc:SAML:1.0:assertion">
<PARAM Name="issuer" Value=
"http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self">
<PARAM Name="requiredClaims" Value=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname">
</OBJECT>
</form>
</body>
</html>

Figure 19. OBJECT syntax example

282 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

xmlToken value of the form. Parameters of the Information Card OBJECT are used
to encode the required WSSecurityPolicy information in HTML.

In this example, the relying party is requesting a SAML 1.0 token from a
self-issued identity provider, supplying the required claims emailaddress,
givenname, and surname.

Note: You can omit the Issuer to indicate that any issuer of an Information Card
available in the browser for the user is acceptable.

XHTML syntax

The XHTML syntax is as follows:

Identity selector invocation parameters

The parameters to the OBJECT and XHTML Information Card objects are used to
encode information in HTML. In cases where an Identity Selector is used in a Web
services context, this information would be supplied as WS-SecurityPolicy
information through use of WSMetadataExchange.

The following list shows parameters supported by the Information Card standard
for Identity Selector invocation.

Note: All parameters are optional. None of them are required.

issuer This parameter specifies the URL of the security token service (STS) from
which to obtain a token. When omitted, no specific STS is requested. The

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:ic>
<head>
<title>Welcome to Fabrikam</title>
</head>
<body>

<form name="ctl00" id="ctl00" method="post"
action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx">
<ic:informationCard name=’xmlToken’
style=’behavior:url(#default#informationCard)’
issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self"
tokenType="urn:oasis:names:tc:SAML:1.0:assertion">
<ic:add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"
optional="false" />
<ic:add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname"
optional="false" />
<ic:add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"
optional="false" />
</ic:informationCard>
<center>
<input type="submit" name="InfoCardSignin" value="Log in"
id="InfoCardSignin" />
</center>
</form>
</body>
</html>

Figure 20. Example of InfoCard XHTML syntax

Chapter 21. Planning an Information Card federation 283

special value http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/
self specifies that the token comes from a self-issued identity provider.

Note: This parameter is not supported by Tivoli Federated Identity
Manager.

issuerPolicy
This parameter specifies the URL of an endpoint from which the
WS-SecurityPolicy can be retrieved using WS-MetadataExchange. If
omitted, the value <issuer>/mex is used. This endpoint must use HTTPS.

Note: This parameter is not supported by Tivoli Federated Identity
Manager.

tokenType
This parameter specifies the type of the token to be requested from the STS
as a URI. You can omit the parameter under the following circumstances:
v when the STS and the website point of contact have either previously

agreed what token type is to be provided, or
v if the website is willing to accept any token type.

requiredClaims
This parameter specifies the types of claims that must be supplied by the
identity. If omitted, there are no required claims. The value of
requiredClaims is a space-separated list of URIs, each specifying a required
claim type.

optionalClaims
This parameter specifies the types of optional claims that might be
supplied by the identity. If omitted, there are no optional claims. The value
of optionalClaims is a space-separated list of URIs, each specifying a claim
type that can be optionally submitted.

privacyURL
This parameter specifies the URL of the human-readable privacy policy of
the site, if provided.

privacyVersion
This parameter specifies the privacy policy version. The parameter must be
a value greater than 0 if a privacyUrl is specified. If this value changes, the
UI notifies the user and allows them to review the change to the privacy
policy.

Example of a WebSEAL login page

The next figure is an example of the WebSEAL login.html that has been modified
with the OBJECT tags shown highlighted in bold font.

284 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuration requirements for Information Card
Configure the requirements for the Information Card before you can create a
federation.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<!-- Copyright (C) 2000 Tivoli Systems, Inc. -->
<!-- Copyright (C) 1999 IBM Corporation -->
<!-- Copyright (C) 1998 Dascom, Inc. -->
<!-- All Rights Reserved. -->
<HTML>
<HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<TITLE>Access Manager for e-business Login</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000">
Access Manager for e-business Login (www-default---2)

%ERROR%

<!--- DO NOT TRANSLATE OR MODIFY any part of the hidden parameter(s) --->

<!---
The following block of code provides users with a warning message
if they do not have cookies configured on their browsers.
If this environment does not use cookies to maintain login sessions,
simply remove or comment out the block below.

--->

<!--- BEGIN Cookie check block --->
<!---
<! edited from this example for brevity
<!--- END Cookie check block --->

<form name="ctl00" id="ctl00" method="post"

action="https://example.com:443/FIM/sps/infocard/login">
<center>

<input type="submit" name="InfoCardSignin" value="Log in"
id="InfoCardSignin" />

</center>
<OBJECT type="application/x-informationCard" id="oCard" name="xmlToken">

<PARAM Name="tokenType" Value="urn:oasis:names:tc:SAML:1.0:assertion">
<PARAM Name="issuer" Value=

"http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self">
<PARAM Name="requiredClaims" Value=

"http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/privatepersonalidentifier">

<PARAM Name="optionalClaims" Value=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname
"> </OBJECT>

</form>
</BODY>

</HTML>

Figure 21. Example WebSEAL login page with OBJECT tags

Chapter 21. Planning an Information Card federation 285

Requirement for WebSphere Version 6.1
Tivoli Federated Identity Manager supports Information Card on WebSphere
Application Server 6.1. Information Card is not supported on WebSphere 6.0.
Information Card uses the encryption algorithm rsa-oaep-mgf1p for key wrap. This
algorithm is supported by WebSphere 6.1, but is not available on WebSphere 6.0.

Tivoli Federated Identity Manager requires application of a fix pack for WebSphere
Application Server 6.1. See the hardware and software requirements on the Tivoli
Federated Identity Manager information center for the required fix pack level.

Updating the cryptography policy for Information Card
The encryption algorithms used by Information Card require strong cryptographic
library support. This means that a replacement is needed for the default Java
security files local_policy.jar and US_export_policy.jar.

About this task

Use of encryption technology is controlled by United States law. IBM Java Solution
Developer Kits (SDKs) include strong but limited jurisdiction policy files. To
deploy Information Card with Tivoli Federated Identity Manager, you must first
obtain the unlimited jurisdiction Java Cryptography Extension (JCE) policy files.

To review the security information for IBM Java SDKs, access the following URL:
http://www.ibm.com/developerworks/java/jdk/security/index.html

Procedure
1. Update WebSphere with unrestricted Java Cryptography Extension (JCE) policy

files. Access: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

2. Select the link to the SDK that matches your environment, for example, for Java
1.5, the SDK is J2SE 5.0. A page that shows the heading Security Information
opens.

3. Select the link: IBM SDK Policy Files.

Note: After you click this link, you are redirected to the policy file in the SDK
that is compatible with your version of Java; note, however, that the version
number of the SDK might not be the same as the version number of the Java
version you are using. For example, for Java 1.5 you might be directed to the
SDK 1.4.

4. You will be prompted to log on using your IBM user ID and password. If you
do not have an IBM user ID and password, you need to register. Follow the
registration link on the logon page.

5. Log on.
6. When prompted, select the .zip file for the version of Java you are using. Then

click Continue to begin the download.
7. Unpack the .zip file. The JAR files are:

v local_policy.jar
v US_export_policy.jar

8. Place the files in the following directory:
your_Java_runtime_installation_dir/jre/lib/security

286 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

For example, your Java runtime might have been installed as part of the
embedded version of WebSphere Application Server. In this case, the directory
might be
/opt/IBM/FIM/ewas/java/jre/lib/security

Information Card requirement for alias service

The alias service must be configured if managed cards backed with
self-issued-credential authentication are to be used.

Decryption key from point of contact server

Information Card configuration requires the specification of a key for decrypting
messages in the federation. Decryption is required.

This means that a decryption key alias must be added to the Tivoli Federated
Identity Manager keystore. The key must be the point of contact server's private
key. The key must be imported using the Tivoli Federated Identity Manager key
service.

This means that a decryption key alias must be added to the Tivoli Federated
Identity Manager keystore. The key is from whichever Web site presents, to the
Information Card-enabled browser, the HTML page tagged with the required
OBJECT tags. The site can be the point of contact server, but does not have to be.
The URL that results in the tagged page must use SSL.

For example:
https://pointofcontact.example.com/FIM

The SSL key used for the URL must be imported into a Tivoli Federated Identity
Manager keystore for the Relying Party.

Note: When the SSL key is changed or updated for the Web site or point of
contact, the administrator must also update the Tivoli Federated Identity Manager
keystore with the new SSL key. This may also include modification of the
configuration to update the keystore alias.

Information Card time synchronization requirements
Successful deployment of Information Card is dependent on time synchronization
between systems.

The following requirements must be met to achieve a successful deployment:
v When the UsernameToken method of authentication is configured for a

federation, then time must be synchronized between the identity provider and
the relying party systems.

v When the self-issued credentials method of authentication for a managed card is
used, the browser system (which hosts the browser with Information Card
functionality) must also be time synchronized.

v When a self-issued card is used to log on to the relying party, the browser
system (which hosts the browser with Information Card functionality) must also
be time synchronized.

Chapter 21. Planning an Information Card federation 287

The required time synchronization can be specified by the clock skew property for
each Information Card federation. You can use the Tivoli Federated Identity
Manager administration console to modify this property from the federation
partner properties panel.

Identity mapping for Information Card
The Tivoli Federated Identity Manager support for Information Card identity
providers uses a trust chain that contains modules to perform the standard actions
of validate, map, and issue.

Identity provider

The validate operation is performed on the authentication token sent by the
identity selector to represent the user. The token is either a Username token or
SAML assertion. The SAML assertion is used with self-issued credentials
authentication.

The mapping module can be one of the following items:
v XSLT mapping module
v Tivoli Directory Integrator module
v A custom-developed Java map module

Tivoli Directory Integrator is commonly used as the mapping module with
Information Card. In Information Card deployments, a primary goal of the trust
chain is to identify claims values and populate them in the security token service
universal user. The claims values can come from external data sources, such as an
LDAP registry.

The Tivoli Directory Integrator module can, for example, convert LDAP entries for
a user into the corresponding claims values, as defined in the schema that
Microsoft has specified.

Tivoli Directory Integrator modules can also easily be used to combine claims
values from various sources. For example, some claims values might come from an
LDAP registry, while others originate from sources such as databases, Java or
JavaScript code, or other web services.

The output of the mapping module is used to produce a SAML 1.1 token in issue
mode.

Relying party

The trust chain for a relying party federation consists of:
v A SAML 1.1 token module, in validate mode.
v The default Map module.
v The IVCred token module, in issue mode.

The federation wizard prompts the administrator to specify identity mapping rules,
using XSLT, as appropriate for the deployment. The mapping rules use the
attributes of the assertions or the information in the claims to determine the use
identity.

288 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The SAML token modules create STSUniversalUser attributes for each attribute in
the SAML assertion. The name, namespace, and value for each SAML attribute are
used to set the STSUniversalUser/Attribute name, type, and value.

Identity provider configuration worksheet
Tivoli Federated Identity Manager provides a wizard to guide you through the
configuration of Information Card federations. The wizard prompts you to supply
properties for your deployment.

This worksheet describes the prompts. Use this worksheet to plan your properties,
and refer to it when running the wizard.

Federation name
An arbitrary string that you choose to name this federation. For example:
infocard-idp

Federation role
Select identity provider.

Company name
The wizard requests contact information. The Company Name field is
required. This can be any string. Other fields are optional.

Federation protocol
Select Information Card.

Point of contact server
The server that acts as initial point of contact for incoming requests. For
example:
https://pointofcontact.example.com/FIM

Note: For Information Card support, the point of contact server must use
Secure Socket Layer (SSL). The URL must specify https://.

SSL Endpoint Key Identifier

The configuration wizard asks you to specify a key to use for decryption
operations for the federation. The key must be the key used by the point of
contact server for SSL operations.

The wizard asks for this key on the Infocard Configuration Settings panel.
You specify the key by selecting the Keystore and then the Key.

Note: You must import this key from the point of contact server into the
Tivoli Federated Identity Manager keystore before configuring the
federation.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

Key to select
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Authentication option

Chapter 21. Planning an Information Card federation 289

You will select one authentication option:
v Authentication with a self-issued card
v Authentication with a username and password

Authentication with a self-issued card is the default option.

The choice of authentication option determines the default value for the
property Download card template file.

Download card template file
This is an HTML template file that prompts you to enter the input
parameters needed to issue a managed Information Card. The
configuration wizard provides default values. You can use the defaults
unless you have modified and renamed the template files.
v When you select Authentication with a self-issued card, the default value

is:
/infocard/getcard_sss.html

v When you select Authentication with a username and password, the
default value is:
/infocard/getcard_ut.html

Information card template file
This is an HTML template file that comprises the Information Card that is
sent back to you. Default file:
/infocard/infocard_template.xml

Information card image file
This is the image file to use for the Information Card. It must be located in
the directory for the current locale. The default value is identical for both
authentication options. Default file:
/infocard/fim_infocard.gif

Card expiration
This property specifies the number of days from the issue date for which
the information card is valid. The default value is identical for both
authentication options. Default value:
365

Identity mapping options
You must select one of the following options:
v Use XSL for identity mapping

Select this option when you want to use an XSLT mapping rule. You
must provide the name of a file that supplies identity mapping rules.
Tivoli Federated Identity Manager provides a sample identity mapping
rules file for Information Card identity providers federations:
/installation_directory/examples/ip_infocard.xsl

v Use Tivoli Directory Integrator for mapping
Select this option when you have previously configured a Tivoli
Directory Integrator assembly line for the identity mapping required for
your Information Card federation.

v Use custom mapping module instance
Select this option when you have written and deployed a custom trust
service module for the identity mapping required for your Information
Card federation.

290 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 106. Worksheet for identity provider federation properties

Property Your value

Federation name

Role Identity Provider

Company Name

Federation Protocol Information Card

Point of Contact server

SSL Endpoint Key Identifier: Keystore

SSL Endpoint Key Identifier: Keystore
password

SSL Endpoint Key Identifier: Key to
select

Authentication option

Download card template file

Information card template file

Information card image file Default: /infocard/fim_infocard.gif

Card expiration Default: 365 days

Identity mapping options Select one:

v Use XSL for identity mapping

v Use Tivoli Directory Integrator for mapping

v Use custom mapping module instance

Identity mapping rules file If using XSL for identity mapping, specify the
mapping rule file name:

Custom mapping module If using a custom mapping module, make note of
the name of the module:

Relying party configuration worksheet
Tivoli Federated Identity Manager provides a wizard to guide you through the
configuration of Information Card federations. The wizard prompts you to supply
properties for your deployment.

This worksheet describes the prompts. Use this worksheet to plan your properties,
and refer to it when running the wizard.

Federation name
An arbitrary string that you choose to name this federation. For example,
infocard-rp.

Federation role
Select service provider. This value is required for the relying party.

Chapter 21. Planning an Information Card federation 291

Company name
The wizard requests contact information. The Company Name field is
required. This can be any string. Other fields are optional.

Federation protocol
Select Information Card.

Point of contact server
The server that acts as initial point of contact for incoming requests. For
example:
https://pointofcontact.example.com/FIM

Note: For Information Card support, the point of contact server must use
Secure Socket Layer (SSL). The URL must specify https://.

Decryption

The configuration wizard asks you to specify a key to use for decryption
operations for the federation. The key must be the key used by the point of
contact server for SSL operations.

The wizard for asks for this key on the Decryption panel. You specify the
key by selecting the Keystore and then the Key.

Note: You must import this key from the point of contact server into the
Tivoli Federated Identity Manager keystore before configuring the
federation.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

Key to select
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Standard Partner
The wizard prompts you to select one option:
v Add a partner that can handle any identity provider

This option is the default.
Selecting this option results in a partner being automatically added. This
partner configuration can accept any Information Card identity provider,
including a self-issuing provider.

v Add a partner that can handle the self-issuing identity provider
Selecting this option results in a partner being automatically added. This
Tivoli Federated Identity Manager partner only accepts personal cards
issued by the self-issuing provider built into the browser.

v Do not add a standard partner
Selecting this option results in no standard partners being added. The
administrator must explicitly add partners using the Tivoli Federated
Identity Manager console Add Partner wizard.

Identity mapping options
You must select one of the following options:

292 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Use XSL for identity mapping
Select this option when you want to use an XSLT mapping rule. You
must provide the name of a file that supplies identity mapping rules.
Tivoli Federated Identity Manager provides a sample identity mapping
rules file for Information Card identity providers federations:
/installation_directory/examples/rp_infocard.xsl

v Use Tivoli Directory Integrator for mapping
Select this option when you have previously configured a Tivoli
Directory Integrator assembly line for the identity mapping required for
your Information Card federation.

v Use custom mapping module instance
Select this option when you have written and deployed a custom trust
service module for the identity mapping required for your Information
Card federation.

Table 107. Worksheet for relying party federation properties

Property Your value

Federation name

Role Service Provider

Company Name

Federation Protocol Information Card

Point of Contact server

Decryption: Keystore

Decryption: Keystore password

Decryption: Key to select

Standard Partner Default option: Add a partner that can handle
any identity provider.

Your option:

Identity mapping options Select one:

v Use XSL for identity mapping

v Use Tivoli Directory Integrator for mapping

v Use custom mapping module instance

Identity mapping rules file If using XSL for identity mapping, specify the
mapping rule file name:

Custom mapping module If using a custom mapping module, make note of
the name of the module:

Managed partner worksheet

When you create a federation for an identity provider, a partner is automatically
created.

Chapter 21. Planning an Information Card federation 293

After you create a federation for a relying party, you can choose one of several
options for configuring a partner. When you choose not to add a standard partner,
you can later create a partner for the federation. When you do this, you will need
to provide some configuration values.

The Tivoli Federated Identity Manager console provides a wizard to guide you
through this process.

Identity Provider Company name
Contact information.

Security Token Issuer
This value is used to set the protocolID and endpoint URL in etc/feds.xml
and the Issuer field in the STS chain mapping configuration. For example:
https://example.com

Maximum allowable clock skew between hosts (seconds)
This is the maximum allowable clock skew between the relying party host
and the identity provider host. The clock skew value is used during
validation of the assertion's validity period.

The default value is 60 seconds.

Validate signatures on Information Card tokens
You can select this checkbox to specify that incoming security tokens must
be signed. When you select this option, you must use the additional
configuration properties to specify the public key that is to be used to
validate the digital signature.

Type of signature validation key
You must select one of the following:
v Public key from the KeyInfo in the signature of the Information Card

token
You can choose this option if you do not want to distribute and update
public keys, and need only to ensure that token integrity is maintained.

v Public key from a keystore
This public key must have previously been obtained from the managed
identity provider and imported into a Tivoli Federated Identity
Managerkeystore using the Key Services.

Keystore
The Tivoli Federated Identity Manager keystore containing the key

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

Key to select
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Table 108. Worksheet for managed partner configuration properties

Property Your value

Identity Provider Company name

Security Token Issuer

294 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 108. Worksheet for managed partner configuration properties (continued)

Property Your value

Maximum allowable clock skew
between hosts (seconds)

Validate signatures on Information
Card tokens

Type of signature validation key If validating signatures, select one:

v Public key from the KeyInfo in the signature of the
Information Card token

v Public key from a keystore

Keystore When using Public key from a keystore:

Keystore password

Key to select

Chapter 21. Planning an Information Card federation 295

296 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 22. Configuring an Information Card federation

Verifying Information Card dependencies
Verify that the requirements in creating an Information Card federation have been
considered.

Before you begin

Before you use the federation creation wizard, ensure that the Information Card
dependences have been met.

Procedure
1. Verify that you are installing on WebSphere Application Server 6.1. Older

versions are not supported. See “Requirement for WebSphere Version 6.1” on
page 286.

2. Verify that you have the correct encryption libraries. See “Updating the
cryptography policy for Information Card” on page 286.

3. Review whether you need to configure the alias service. See “Information Card
requirement for alias service” on page 287.

4. Ensure that you have imported the encryption key for the point of contact
server This key must be imported into the Tivoli Federated Identity Manager
Key service.

Configuring an Infocard federation
To configure a Infocard single sign-on federations, you must create the federation,
add your partner to your federation, and provide your partner with configuration
information from your new federation.

Before you begin

Ensure that you have prepared configuration information before using the wizard
to create the federation. The planning activities are described in a series of topics in
this guide. See Chapter 4, “Overview of configuration tasks for federated single
sign-on,” on page 35.

About this task

To use the federation wizard to create and configure an Infocard federation,
complete the steps in this procedure:

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager → Configure Federated Single

Sign-on → Federations. The Current Domain and Federations portlets show.
The Federations portlet shows several action buttons.

3. Click Create. The Federation Wizard starts. The wizard presents a series of
configuration panels.

© Copyright IBM Corp. 2006, 2013 297

4. Use your completed worksheet to provide values at each panel. Supply the
necessary values. You can view the online help for information about specific
fields.
a. The first series of panels requests settings for the federation name, role,

protocol, and point of contact server.
b. Next, the Infocard configuration panel requests the values needed for an

Infocard identity provider or relying party.
c. The last series of panels requests settings for the identity mapping

configuration.

When you finish entering configuration settings, the Summary panel opens.
5. Click Next to proceed to the next panel. If you need to go back to adjust a

configuration setting, click Back.
6. Verify that the configuration settings are correct .
7. Click Finish. The Create Federation Complete portlet opens.

Configuring WebSEAL as a point of contact server for an Information
Card federation

When you plan to use WebSEAL as the point of contact server, you must configure
it for the Information Card federation.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that the WebSEAL point of contact profile has been
activated.

About this task

The Create Federation Complete portlet provides a button that you can use to
obtain the Tivoli Federated Identity Manager configuration utility tool. You must
obtain the tool and run it. To configure WebSEAL as the point of contact server,
complete the steps in this procedure:

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.

Note: The management console gives you the option of adding a partner now,
but for this initial configuration of the federation other tasks are completed
first.

2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

298 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

You must know the Tivoli Access Manager administration user (default:
sec_master) and administration user password. The utility configures endpoints
on the WebSEAL server, creates a WebSEAL junction, attaches the appropriate
ACLs, and enables the necessary authentication methods.

Example

For example, when you have placed tfimcfg.jar in /tmp, and the WebSEAL instance
name is default, the command is:
java -jar /tmp/tfimcfg.jar -action tamconfig -cfgfile webseald-default

For more information, see Appendix A, “tfimcfg reference,” on page 753.

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use Tivoli Access
Manager WebSEAL as the default point of contact server. To configure WebSphere
as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select WebSphere.
4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Specifying a persona index
A persona index is a collection of several sets of attributes, available to a user on
an identity provider. The user can specify attributes that describe a persona. For
example, a user might have a work persona containing work email address and
telephone, and a home persona containing personal email address and telephone.
These personas might be called work and home.

When a user downloads a managed card, the user might want to associate that
managed card with a particular persona. Doing so helps the identity provider
determine which set of persona attributes to use to populate the token when a
single sign-on token is requested for the card.

The use of personas is enabled by the use of an optional form field parameter
called userdata. This parameter can be included in getcard_ut.html and
getcard_sss.html template pages.

Chapter 22. Configuring an Information Card federation 299

This input field is not included in the shipped template files, but is supported.

When this parameter is provided, a replacement macro called @USERDATA@ can
be populated in the infocard_template.html. The @USERDATA@ macro is used in
the CardId part of the infocard_template.html file.

The default infocard_template.html file contains the following macro pattern for
CardId:
<InformationCardReference>

<CardId>@IPSTS@/@UUID@</CardId>
<CardVersion>1</CardVersion>

</InformationCardReference>

When administrators want to use @USERDATA@, a suggested macro pattern is:
<InformationCardReference>

<CardId>@IPSTS@/@UUID@/@USERDATA@</CardId>
<CardVersion>1</CardVersion>

</InformationCardReference>

The CardId information is part of the RST that the identity selector sends to Tivoli
Federated Identity Manager when requesting a single sign-on token. Information
mapping rules can read and differentiate which persona to use when you have the
CardId information.

Using this pattern, a user would be prompted for their persona index when
downloading a managed card, and the card is tied to a particular persona. A user
can download different cards for each persona they have specified at the identity
provider. The mapping rule in the STS trust chain can read the CardID, and the
persona index. It can also populate the runtime identity token with attributes from
the correct persona.

300 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 23. Information Card reference

Replacement macros in the infocard_template XML file
Provides a list of the replacement macros and their uses in the infocard_template
XML file.

The replacement macros for infocard_template.xml are:

@IPSTS@
The Uniform Resource Locator (URL) of the identity provider endpoint for
the federation.

@IPMEX@
The Uniform Resource Locator (URL) of the identity provider Metadata
exchange endpoint for the managed card. Note that the URL is specific to
the authentication type used.

@UUID@
This macro is replaced with a randomly generated universal user identifier
(UUID). This value ensures that the Card identity is unique.

@USERDATA@
This macro is not included in the default file. You can add this macro to
the CardId container when you want to specify attributes. This macro is
useful when users in your deployment have multiple personas. The users
can provide attributes that identify the persona to be used.

@CARDNAME@
The card name that the user specified in the response posting to the form
getcard_ut.html or getcard_sss.html.

@CARDIMAGE@
A Multi-purpose Internet Email Extension (MIME) encoded image file that
is displayed to the user by the identity selector. There is one image file for
each federation.

@ISSUETIME@
The time the card is issued. The time is calculated at runtime.

@EXPIRETIME@
The time the card expires. The time is calculated by adding card the value
of the card lifetime to the issue time.

@IPCERTIFICATE@
This is the base64-encoded public certificate configured for the federation.
It should also be the public certificate of the SSL endpoint for the point of
contact server.

@USERCRED@
This is a piece of metadata about the type of credential that is used by the
identity selector to authenticate the user to the identity provider (security
token service) endpoint. The metatdata comes from another template file,
depending on the type of authentication used.

Tivoli Federated Identity Manager support for Information Card includes
support for two forms of authentication:
v Username token

© Copyright IBM Corp. 2006, 2013 301

The metadata for the user credential is loaded from the template file
inforcard_usercred_usernametoken.xml.

v Self-issued credential
The metadata for the user credential is loaded from the template file
infocard_usercred_selfsignedsaml.xml.

@SUPPORTED_TOKENS@
Tivoli Federated Identity Manager support for Information Card includes
the SAML 1.1 token type only. There are two default representations.

@SUPPORTED_CLAIMS@
The set of claims supported by this card. These values come from the form
posted by the user in getcard_*.html. The values must be presented in the
XML format dictated by the Information Card specifications.

Information Card claims
Provides a list of claim types with the URI and description for each.

The claims types are summarized here for convenience, but users should consult
the official list in the referenced schema.

Note: Information Card support in Tivoli Federated Identity Manager is not
limited to this set of claims.

First Name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname

Preferred name or first name of a subject. RFC 2256 uses givenName states:
"This attribute is used to hold the part of the name of a person which is
not their surname nor middle name."

Last Name
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

Surname or family name of a subject. RFC 2256 uses sn and states: "This is
the X.500 surname attribute which contains the family name of a person."

Email Address
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress

Preferred address for the To: field of email to be sent to the subject,
usually of the form <user>@<domain>.

The term mail is used by inetOrgPerson using RFC1274, which states: "This
attribute type specifies an electronic mailbox attribute following the syntax
specified in RFC 822."

Street Address
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress

Street address component of address information for the subject.

RFC 2256 uses the term street, and states: "This attribute contains the
physical address of the object to which the entry corresponds, such as an
address for package delivery." Its content is arbitrary, but typically given as
a PO Box number or apartment or house number followed by a street
name. For example, 303 Mulberry St.

Locality Name or City
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality

302 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Locality component of the address information for a subject. RFC 2256 uses
the term l, and states: "This attribute contains the name of a locality, such
as a city, county or other geographic region." For example, Austin.

State or Province
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince

Abbreviation for state or province name of the address information for a
subject. RFC 2256 uses the term st, and states: "This attribute contains the
full name of a state or province. The values should be coordinated on a
national level and if well-known shortcuts exist, like the two-letter state
abbreviations in the US, these abbreviations are preferred over longer full
names."

For example, the abbreviation TX is used to indicate the state of Texas.

Postal code
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode

Postal code or zip code component of the address information for a
subject. X.500(2001) uses the term postalCode, and states: "The postal code
attribute type specifies the postal code of the named object. If this attribute
value is present, it will be part of the object's postal address - zip code in
USA, postal code for other countries."

Country
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country

Country of a subject. RFC 2256 uses the term c and states: "This attribute
contains a two-letter ISO 3166 country code."

Telephone Number
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone

Primary or home telephone number of a subject. The term homePhone is
used in inetOrgPerson using RFC 1274, which states: "This attribute type
specifies a home telephone number associated with a person."

Attribute values should follow the agreed format for international
telephone numbers. For example, +99 99 999 9999.

Secondary or Work Telephone Number
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone

Secondary or work telephone number of a subject. X.500(2001) uses the
term telephoneNumber and states: "This attribute type specifies an
office/campus telephone number associated with a person."

Attribute values should follow the agreed format for international
telephone numbers. For example, +99 99 999 9999.

Mobile Telephone Number
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone

Mobile telephone number of a subject. The term mobile is used by
inetOrgPerson using RFC 1274, which states: “This attribute type specifies
a mobile telephone number associated with a person.”

Attribute values should follow the agreed format for international
telephone numbers. For example, +99 99 999 9999.

Date of Birth
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth

The date of birth of a subject in a form allowed by the xs:date data type.

Chapter 23. Information Card reference 303

Gender
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender

Gender of a subject. The value must be one of the following string values:

0 Unspecified

1 Male

2 Female

Use of these values allows them to be language neutral.

Private Personal Identifier
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
privatepersonalidentifier

A private personal identifier (PPID) that identifies the subject to a relying
party. The word private means that the subject identifier is specific to a
given relying party and therefore is known only to (or private to) that
relying party. The PPID of a subject at one relying party cannot be
correlated with the PPID for the same subject at another relying party.

Web Page
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage

The Web page of a subject expressed as a URL.

Federation properties for identity providers
When you create an Information Card federation for an identity provider, the
configuration wizard automatically assigns default values to some properties.

You cannot modify the federation properties for identity providers during the
initial configuration. However, you can modify federation properties after the
initial configuration completes.

Federation identification

Federation name
An arbitrary string that you choose to name this federation.

For example, for a managed identity provider:
infocard-idp

Company name
The wizard requests contact information. The only field that is required in
the Company name. The value can be any string.

Single sign-on properties

Provider ID
A unique identifier that identifies the provider to its partner provider. The
value consists of the protocol and host name of the identity provider URL.
Optionally it can include a port number. For example, for a federation
named infocard_fed:
https://idp.example.com/sps/infocard_fed/infocard

Download Card Endpoint
Endpoint to create and download a managed card. The extension of the file
name must be .crd. The default value is:
Provider_ID/getCard.crd

304 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Metadata Exchange Endpoint
The endpoint used by identity selectors to request metadata about the
Security Token Service (STS) of the identity provider. The default value is:
Provider_ID/mex

Security Token Service Endpoint
The endpoint used by identity selectors to request security tokens for a
user as part of an Information Card authentication. The default value is:
Provider_ID/sts

Alias Management Endpoint
The endpoint used to manage the association, or link between a self-issued
card and the Tivoli Federated Identity Manager account of the user. The
link is established when a user downloads a managed card using the
self-issued card authentication mechanism. This endpoint might be used to
review and delete that link. The default value is:
Provider_ID/alias

This property is not used when you have selected the authentication
option for user name and password.

Authentication option

You can change the authentication option to one of the following options:
v Authentication with a self-issued card
v Authentication with a username and password

Download card template file
This property is an HTML template file that prompts the user to enter the
necessary input parameters to issue a managed Information Card.
v When you selected Authentication with a self-issued card, the default

value was:
/infocard/getcard_sss.html

v When you selected Authentication with a username and password, the
default value was:
/infocard/getcard_ut.html

Information card template file
This property is an HTML template file that comprises the Information
Card that is sent back to you. Default file:
/infocard/infocard_template.xml

The default value is the same for both authentication options.

Information card image file
This property is the image file to use for the Information Card. It must be
located in the directory for the current locale. The default value is identical
for both authentication options. Default file:
/infocard/fim_infocard.gif

The default value is the same for both authentication options.

Metadata Card Template
The name of the file to use as the template for the metadata or the
Information Card. The default file is:
/infocard/metadata_template.xml.

Chapter 23. Information Card reference 305

Self Signed SAML Credentials Metadata Policy
The name of the policy file to use for the self-signed SAML credentials
metadata. The default file is:
/infocard/metadata_policy_selfsignedsaml.xml

This field is only displayed when you select Authenticate with a
self-issued card.

Username Credentials Metadata Policy
The name of the policy file to use for the user name credentials metadata.
The default file is:
/infocard/metadata_policy_usernametoken.xml

This field is only displayed when you select Authenticate with a username
and password.

Card expiration
This property specifies the number of days from the issue date for which
the Information Card is valid. The default value is identical for both
authentication options. Default value:
365

SSL Endpoint key identifier

Note: The SSL Endpoint key identifier is the key that you must import from the
point of contact server into the Tivoli Federated Identity Manager keystore before
configuring the federations.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

List Keys
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Information Card signing key identifier

The public and private key pair that is used to sign newly issued Information
Cards.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

List Keys
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

306 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Token module properties

When the Information Card federation is initially configured, the trust chain is
automatically built and configured. The trust chain contains trust modules that
require configuration. The properties in this section can be changed.

Enable one-time assertion use enforcement
Use the assertion only one time and do not cache it for future use. This
property is enabled by default.

This property is used only with self-issued card authentication.

Skip password validation
Do not perform password validation for the Username token. The default
is unchecked, which means that password validation occurs.

This property is used only with username and password authentication.

Amount of time before the issue date that an assertion is considered valid
(seconds)

Default: 60 seconds. There is no minimum or maximum value enforced.

Amount of time the assertion is valid after being issued (seconds)
Default: 60 seconds. There is no minimum or maximum value enforced.

Identity mapping properties

The identity mapping properties are the same as all other protocols supported by
Tivoli Federated Identity Manager.

Identity Mapping Module Instance
This value reflects your choice at initial configuration time.

Change Identity Mapping Module Instance
Invokes the Identity Mapping Options panel. The Identity Mapping
Options panel enables you to select an XSL transformation, Tivoli Directory
Integrator, or a custom mapping module instance.

Modify Current® Properties
Invokes another panel where you can modify properties:
v When the federation uses an XSL transformation, select this option to

open the Identity Mapping Rule panel. You can modify or delete the
identity mapping rule in this panel.

v When the federation uses a custom mapping module, select this option
to open a panel where you can view or modify the custom mapping
instance properties.

Federation properties for relying party
Provides a list of values and their descriptions for the federation properties for a
relying party.

Federation identification

Federation name
An arbitrary string that you choose to name this federation.

For example, for a relying provider:
infocard-rp

Chapter 23. Information Card reference 307

Company name
The wizard requests contact information. The only field that is required in
the Company name. This can be any string.

Single sign-on properties

Provider ID
A unique identifier that identifies the provider to its partner provider. The
value consists of the protocol and host name of the identity provider URL.
Optionally it can include a port number. For example, for a federation
named infocard_fed:
https://rp.example.com/sps/infocard_fed/infocard

Authentication URL
The URL to which the user sends authentication requests. This value
cannot be changed on the Properties panel. For example, for a federation
named infocard_fed, the authentication URL would be:
https://idp.example.com/sps/infocard_fed/infocard/login

Decryption key properties

The key to use for decrypting incoming tokens. Note that this must be the same
key that is used for SSL by the point of contact server (for example, WebSEAL).

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

List Keys
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Identity mapping properties

The identity mapping properties are the same as all other protocols supported by
Tivoli Federated Identity Manager.

Identity Mapping Module Instance
This value reflects your choice at initial configuration time.

Change Identity Mapping Module Instance
Invokes the Identity Mapping Options panel. The Identity Mapping
Options panel enables you to select an XSL transformation, Tivoli Directory
Integrator, or a custom mapping module instance.

Modify Current Properties
Invokes another panel that enables you to modify properties:
v When the federation uses an XSL transformation, this button invokes the

Identity Mapping Rule panel. This panel enables you to modify or delete
the identity mapping rule.

v When the federation uses a custom mapping module, this button
invokes a panel that enables you to view or modify the custom mapping
instance properties.

308 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Properties for identity provider partners for relying party federations
Provides a list of property values and their descriptions for identity provider
partners for relying party federations.

Federation identification

Member of federation name
The federation to which this partner has been added. You cannot modify
this property.

For example, the identity provider is now a partner of the relying provider
federation:
infocard-rp

Partner role
Identity provider. You cannot modify this property.

Status The Partner properties page displays a partner status of Enabled or
Disabled. Partners must be enabled (activated) before they can participate
in a federation.
v When partner status is Disabled, click Enable to activate the partner.
v When partner status is Enabled, click Disabled to deactivate the partner.

Identity provider company name
The name of the partner company. This can be any string. The space
character is allowed. This field is required.

Company URL
The URL of the partner company. This field is optional. For example:
http://www.example.com

Contact person
Optional contact information for the administrator. You can use the Other
information field if necessary.

Token properties

Security Token Issuer
Specify the identity provider's unique issuer Uniform Resource Identifier
(URI). This value must be used in the saml:Issuer element of the
saml:Assertion. Following is an example:
https://example.com

You can enter an asterisk (*) to indicate that any identity provider is
acceptable.

Maximum allowable clock skew between hosts (seconds)
Specify an integer value indicating the maximum amount of allowable
clock skew, in seconds, between the Relying Party host and the Identity
Provider host. You must specify a minimum value of zero seconds for this
field. The default value is 60. This field is only available when the
federation uses the Authenticate with a self-issued card authenticate
option.

Signature validation key properties

Validate signatures on Infocard tokens
When checked, indicates that you must sign the Information Card tokens

Chapter 23. Information Card reference 309

and then indicate what type of public key to use to validate the digital
signature. Clear the check box to turn off signature validation. This check
box is selected by default.

Type of signature validation key

v Public key from the KeyInfo in the signature of the Information Card
token

Select to use the public key from the KeyInfo in the signature of the
Information Card token. This is the default selection.

v Public key from a keystore

Select to use a public key from a keystore. If you select this option, you
must select the keystore and key.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

List Keys
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Identity mapping properties

The identity mapping properties are the same as all other protocols supported by
Tivoli Federated Identity Manager.

Identity Mapping Module Instance
This value reflects your choice at initial configuration time.

Change Identity Mapping Module Instance
Invokes the Identity Mapping Options panel. The Identity Mapping
Options panel enables you to select an XSL transformation, Tivoli Directory
Integrator, or a custom mapping module instance.

Modify Current Properties
Invokes another panel that enables you to modify properties:
v When the federation uses an XSL transformation, this button invokes the

Identity Mapping Rule panel. This panel enables you to modify or delete
the identity mapping rule.

v When the federation uses a custom mapping module, this button
invokes a panel that enables you to view or modify the custom mapping
instance properties.

Properties for relying party partners for identity provider federations
Provides a list of property values and their descriptions for relying party partners
for identity provider federations.

Federation identification

Member of federation name
The federation to which this partner has been added. You cannot modify
this property.

310 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For example, the relying party is now a partner of the identity provider
federation:
infocard-idp

Partner role
Service provider (Relying party). You cannot modify this property.

Status The Partner properties page displays a partner status of Enabled or
Disabled. Partners must be enabled (activated) before they can participate
in a federation. You cannot modify this property because this property
applies to all relying parties.

Service provider company name
This value indicates that this partner configuration is used for all partners.

For example, for an identity provider federation named infocard-idp, the
default value is:
All Relying Parties for infocard-idp

Company URL
The URL of the partner company. This field is optional. For example:
http://www.example.com

Contact person
Optional contact information for the administrator. You can use the Other
information field if necessary.

Infocard global partner settings

Maximum allowable clock skew between hosts (seconds)
Specify an integer value indicating the maximum amount of allowable
clock skew, in seconds, between the Relying Party host and the Identity
Provider host. You must specify a minimum value of zero seconds for this
field. The default value is 60. This field is only available when the
federation uses the Authenticate with a self-issued card authenticate
option.

Select Key for Signing Assertions
Specify the key to use for signing SAML assertions.

Keystore
The Tivoli Federated Identity Manager keystore containing the key.

For example, Tivoli Federated Identity Manager supplies a keystore called
DefaultKeystore.

Keystore password
Password required to access the specified keystore.

List Keys
The wizard presents a list of key aliases (names) stored in the keystore.
You must select the key to use.

Token properties

Include the following attribute types
Specify the types of attributes to include in the assertion. The asterisk (*),
which is the default setting, indicates that all of the attribute types that are
specified in the identity mapping file or by the custom mapping module
will be included in the assertion. To specify one or more attribute types
individually, type each attribute type in the box. Use && to separate
multiple attribute types.

Chapter 23. Information Card reference 311

Include the InclusiveNamespaces element in the canonicalization of the
assertion during signature creation

Select to use the InclusiveNamespaces element in the canonicalization of
the assertion during signature creation. The default is unchecked.

Include the X509 Certificate data in the KeyInfo element of the signature
Select to use the X509 Certificate data in the KeyInfo element of the
signature. The default is checked.

Include the public key data in the KeyInfo element of the signature
Select to use the public key data (X509 public RSA/DSA key) in the
KeyInfo element of the signature. The default is checked. KeyInfo element
contains information about the key that is needed to validate the signature.

Identity mapping properties

The identity mapping properties are the same as all other protocols supported by
Tivoli Federated Identity Manager.

Identity Mapping Module Instance
This value reflects your choice at initial configuration time.

Change Identity Mapping Module Instance
Invokes the Identity Mapping Options panel. The Identity Mapping
Options panel enables you to select an XSL transformation, Tivoli Directory
Integrator, or a custom mapping module instance.

Modify Current Properties
Invokes another panel that enables you to modify properties:
v When the federation uses an XSL transformation, this button invokes the

Identity Mapping Rule panel. This panel enables you to modify or delete
the identity mapping rule.

v When the federation uses a custom mapping module, this button
invokes a panel that enables you to view or modify the custom mapping
instance properties.

312 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 24. OpenID planning overview

Tivoli Federated Identity Manager supports single sign-on through use of the
OpenID protocol.

This overview describes the Tivoli Federated Identity Manager implementation of
OpenID. The information in the overview enables an administrator to deploy and
configure single sign-on federations.

The OpenID specifications refer to an OpenID Provider or Identity Provider as the
party who asserts that a user owns a particular identity URL. A Relying Party or
Consumer is referred to as the party who receives that information from the identity
provider. In Tivoli Federated Identity Manager, the term identity provider is a direct
match for the OpenID concept of OpenID Provider or Identity Provider. The OpenID
Consumer fits well into the Tivoli Federated Identity Manager concept of service
provider.

Tivoli Federated Identity Manager support for OpenID authentication allows for all
the OpenID message modes:

associate
A mode for establishing a shared secret with the consumer.

checkid_immediate
A mode for performing a non-blocking check to see if a user owns the
claimed identifier URL.

checkid_setup
A mode for performing a check to see if a user owns the claimed identifier
URL. The check can optionally include interaction with the user.

check_authentication
A mode for determining if a message signature is valid. This mode is
typically used for dumb or stateless consumers.

Note: For a complete description of the OpenID specifications, see the Open ID
Web site:

http://www.openid.net

OpenID 1.1 and 2.0 support

Both OpenID 1.1 and OpenID 2.0 are supported.

OpenID ID URLs
An OpenID Identity URL is a digital identity designed to be used to authenticate
users and grant access to services.

Identity URL with a WebSEAL point of contact

Use the following example values to build an Identity URL with a WebSEAL point
of contact:
v An identity provider federation called openidfedip

© Copyright IBM Corp. 2006, 2013 313

http://www.openid.net

v A Tivoli Federated Identity Manager server where the point of contact server is
WebSEAL, with the hostname webseal.example.com.

v A user identity (in this case a Tivoli Access Manager user) of john.

The OpenID Identity URL can be any URL that meets the following requirements:
v Be resolvable to your Web site. For our example, the URL must either:

– Start with http(s)://webseal.example.com

– Or, if you are using DNS wildcard entries and a site certificate for
*.example.com, it could be a value like http(s)://john.example.com

v It must contain an identifier that is unique to the user. Typically this identifier is
your user identity at the identity provider, however it can be a generated alias
for privacy reasons.

v It must match a regular expression that you configure for your OpenID identity
provider federation.

v The OpenID identity provider endpoint must be discoverable using either Yadis
or HTML discovery from your identity URL as described in the OpenID
specifications.

Identity URL with a WebSphere point of contact

Use the following examples values to build the Identity URL with a WebSphere
point of contact:
v An identity provider federation called openidfedip

v A Tivoli Federated Identity Manager server where the point of contact server is
WebSphere, with the hostname poc.example.com

v A user identity of john

The same requirements apply to the URL as discussed for the first example.
Figure 22 shows a sample code when a WebSphere point of contact server is
deployed and HTML discovery is used.

Note: You can also use Yadis discovery for returning a pointer to your OpenID
server from your identity URL.

Example identity URL

When you configure a federation for OpenID, set a regular expression for identity
URLs. An easy way to ensure that you can return a link to your OpenID server
endpoint from the page returned from your identity URL is to:
1. Ensure that identity URL page is an unprotected page.
2. Embed the OpenID server link in the login form for the point of contact server.

<html>
<head>
<link rel="openid.server"
href="https://poc.example.com/sps/openidfedip/openid/sso">
<link rel="openid2.provider"
href="https://poc.example.com/sps/openidfedip/openid/sso">
</head>
...
</html>

Figure 22. Example code for returning a pointer to your OpenID server from your identity
URL using HTML discovery

314 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The point of contact server is typically WebSEAL or WebSphere.

This method has the limitation that there can be only one OpenID identity
provider federation on the computer. Normally, this restriction causes no problems,
and matches the typical deployment of OpenID.

Examples:
v For example, when the configured regular expression is:

http://webseal.example.com/@ID@

an example identity URL is:

http://webseal.example.com/john

This simple method of configuration requires no interaction with the user to
establish the identity URL. Tivoli Federated Identity Manager determines if a user
owns this identity URL by:
1. Replacing the @ID@ macro in the configured regular expression with the Tivoli

Federated Identity Manager username, and
2. Verifying that the identity URL claimed by the user in the single sign-on

request is an exact match.
v Another deployment example is one that where the deployment:

– Uses a site certificate with CN=*.example.com

– Uses a DNS wildcard entry which maps *.example.com to a site that is
protected by WebSEAL.

– Allows user to have either http or https OpenID URLs.
For this example, the following identity URLs are valid:
– john.example.com

– http://john.example.com

– https://john.example.com

Note:

– When the protocol is not specified, as in the first example, http is used.
The regular expression that is configured for this federation would include
the wildcard hostname and multi-protocol support. For example:
http[s]?://@ID@.example.com

The @ID@ macro maps to a user name.
– In some application environments, you might want to use a trailing slash in

the patterns for the identity URLs:
webseal.example.com/john/

Some applications add a trailing slash (/) when normalizing user entry. A
mismatch occurs when a trailing slash is added by the application but not
specified for the identity URL. Access is not granted.
In these environments, ensure that the configured regular expression includes
the trailing slash. For example:
http://webseal.example.com/@ID@/

Chapter 24. OpenID planning overview 315

Private Personal Identifier Generator

In some authentication scenarios, you might want to maintain the privacy of the
user by hiding their identity from the relying party. In addition, you might also
want the same user to log in to two different relying parties using different
claimed identifiers.

The Private Personal Identifier (PPID) Generator creates the identifier. The relying
party is prevented from colliding user identities by using different claimed
identifiers.

This type of authentication scenario is called directed identity. Directed identity
requires the user to initiate login at the relying party using a shared identity
provider identifier. For example https://example.ibm.com

Depending on the configuration, the OpenID Provider generates an identifier for
the user of a specific relying-party. A Private Personal Identifier (PPID) Generator
creates the identifier. The OpenID Provider generates a separate identifier for each
relying party to which the same user authenticates.

Creating different claimed identifiers prevents information sharing between
relying-parties. This feature also effectively protects the identity of the user.

Using the Private Personal Identifier Generator feature requires the OpenID
Provider to advertise its server endpoint information using an Extensible Resource
Descriptor Sequence (XRDS) document. The XRDS document is required.

A user can only log in to a relying party using an identity provider identifier that
is discoverable through the XRDS document. The XRDS document is the only way
for the relying party to differentiate between the claimed identifier of a user and
an identity provider identifier.

A plug-in provides a Private Personal Identifier Generator in the identity provider
implementation. The plug-in provides several standard generator implementations.
An administrator can also use the plug-in to write and integrate a custom
IDGenerator. This feature determines how to generate the identity of a claimed
identifier for a particular user at a particular relying party.

When an identity provider identifier is used at the relying party to initiate
authentication, the identity provider is responsible for generating the claimed
identifier for the user. Tivoli Federated Identity Manager generates a claimed
identifier using a simple configured pattern URL. The URL must contain the @ID@
macro. The value of the @ID@ is generated by the PPID generator.

For example, the default configuration is:

https://myidp.com/@ID@

The following IDGenerators can be used to replace the @ID@ macro of the identity
URL:
v Username ID Generator
v Hash ID Generator
v Alias service ID Generator

316 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Username ID Generator

When the Username ID Generator is used, a username is returned as the @ID@
portion of the expression for identity URLs.

For example, when the identity URL expression is:

http://webseal.example.com/@ID@

an example identity URL is:

http://webseal.example.com/john

This setting is the default behavior of Tivoli Federated Identity Manager.

Hash ID Generator

The Hash ID Generator replaces the @ID@ value with a sha256 hash value. This
hash value is a combination of the current federation ID, the username, and the
relying party trust root.

The benefit of hash mode is that the username is not exposed to each site used for
OpenID single sign-on. The hash value is fast to generate with no external lookups.
This hiding of the account name helps to protect the user from malicious hackers
who are intent on identity theft. Exposing the account name provides a staring
point for phishing attacks or for locking a user from an account.

For example, when the configured regular expression is:

http://webseal.example.com/@ID@

an example identity URL is:

http://webseal.example.com/
3d0f1d5e9a3a617771608b390b5c7fc1601a3839f161060cbad8e93b98f034c2

Alias service ID Generator

The Alias Service implementation automatically assigns a randomly generated
UUID for the @ID@ value.

On first use, a UUID is generated and stored in the alias service. The lookup key
for the UUID is based on the username, the current federation ID, and the relying
party trust root. On subsequent uses, the same UUID is retrieved from the alias
service. This method ensures that a consistent identifier is used for the user at that
particular relying party.

Like the hash mode, the username is not exposed to each site used for OpenID
single sign-on.

For example, when the configured regular expression is:

http://webseal.example.com/@ID@

an example identity URL is: http://webseal.example.com/c84911b2-0124-14f0-
991a-a5a8f0e6f99d

Chapter 24. OpenID planning overview 317

Avoiding reuse of user identities for identity URLs

OpenID identity URLs must never be reused. Once a URL has been assigned to an
individual user, it must never be reassigned to another user. This specification is
important because any consumer Web site to which the original user has
authenticated can still have an account associated with the URL.

The requirement to ensure that OpenID identity URLs are never reused must be
enforced by the deployment environment. Tivoli Federated Identity Manager
cannot check for reuse. The provisioning of user names must follow a process that
ensures that each URL is allocated only once.

Identity provider federations
OpenID identity provider federations share similarities with other single sign-on
federations supported by Tivoli Federated Identity Manager. However, the
concepts of federation and partners are applied differently.

A key difference is that an OpenID identity provider does not need to know about
the consuming party in advance. Shared secret negotiation is part of the protocol,
and no pre-configuration of keys or partners is necessary.

In OpenID, the user is involved in the decision on whether to trust particular
consuming partners. The decision is made by examining the trust_root URL on the
consent-to-authenticate page. This means that the concept of partner service
providers is unnecessary.

Note: In OpenID 2.0, the trust_root is called a realm.

The federation configuration contains some partner configuration properties, but
these properties are used by the token modules for the security token service.

The OpenID federation naming follows the standard Tivoli Federated Identity
Manager naming convention for a unique identifier or protocolID. The syntax is:
https://<hostname:port>/FIM/sps/<federation_name>/openid

For example:
https://www.example.com/FIM/sps/openidfedip/openid

Single sign-on endpoint

The single sign-on endpoint is the OpenID server URL. It supports requests from
the consumer and from the browser, when redirected by the consumer. This URL
requires unauthenticated access, in order that queries from anonymous consumer
clients can be made for the following message modes:
v associate
v checkid_immediate
v check_authentication

When a checkid_setup request is received, and the user has not previously trusted
the consumer, this URL also supplies the consent-to-authenticate prompt.

This endpoint returns authentication results to consuming sites.

Example endpoint:

318 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

https://webseald.example.com/FIM/sps/openidfedip/openid/sso

Authentication endpoint

When a user has not previously logged into an identity provider, the single sign-on
endpoint redirects the browser to this authentication endpoint. The user is then
authenticated. This endpoint is required during checkid_setup operations when the
user has not already authenticated to the identity provider, and single sign-on is
initiated from a consumer.

When authentication succeeds, the end point typically redirects the user back to
the single sign-on endpoint for further processing. The redirect is provided as a
query-string parameter. The syntax is:
<protocolID>/authn?return=<url>

For example, as one continuous string:
https://webseald.example.com/FIM/sps/openidfedip/openid/authn?return=

https://webseald.example.com/FIM/sps/openidfedip/sso

Site management endpoint

When the identity provider receives a checkid_setup message, the identity provider
asks the user for permission (consent) to provide the consumer authentication and
attribute information for the user.

The identity provider uses a page template, and a browser cookie for that user to
remember the user preferences. The identity provider must be able to retrieve the
saved preferences in order to successfully answer messages in the
checkid_immediate message mode, and to automate single sign-on responses for
checkid_setup mode.

Tivoli Federated Identity Manager saves user preferences through use of a trusted
sites manager extension point. The extension point uses a pluggable interface,
which enables administrators to replace the default extension implementation with
a custom implementation that, for example, supports a server-side storage model.
Another purpose for this extension point is that a custom implementation might be
used to auto-consent all trust decisions in a closed authentication environments.

The identity provider uses the trusted site manager to manage trusted and
untrusted consumer sites. When the site manager asks the user to provide consent
to authenticate, the user can specify policy for the specified consumer, as follows:
v Always Allow
v Allow Once
v Deny Once
v Always Deny

The user can later use the site manager to access and modify the saved
preferences. Users can optionally remove a permanently trusted site or untrusted
site from the list. When a user does this, the user is prompted with
consent-to-authenticate on the next attempted single sign-on to that consumer.

The trusted site manager also remembers any optional attributes requested by a
service provider (if the user has allowed the attributes to be shared).

The endpoint completes the following tasks:

Chapter 24. OpenID planning overview 319

1. Uses an HTML template to prompt the user with their set of permanently
remembered trusted and untrusted sites.

2. Allow the user to remove sites from the permanent list.

The syntax for the endpoint URL is:
<protocolID>/sites

For example:
https://webseald.example.com/FIM/sps/openidfedip/openid/sites

Identity provider trust chains
In the OpenID model, the consumer can require that specific attributes be provided
for each user identity. Tivoli Federated Identity Manager uses a trust service chain
on the identity provider to obtain the attributes and place them in a simple XML
token.

When a user contacts the identity provider by presenting an OpenID identity URL,
the identity provider verifies the user identity. When the identity provider is
operating in either checkid_immediate or checkid_setup mode, the trust service is
started to acquire and populate the attribute data. In addition, the trust service is
used to validate that any requested Provider Authentication Policy Extension
(PAPE) authentication requirements have been met.

The identity provider uses a chain of trust service modules primarily to enable the
retrieval of required and optional attribute values. The trust chain follows the
standard module flow:
1. Validate

The validate operation is performed on an IVCred token that is generated from
the authentication credential for the user.

2. Map
The mapping module can be any of the supported module types. When
attribute data for the user can be extracted from the IVCred input token, an
XSLT mapping rule is often a good option. A Tivoli Directory Integrator
mapping module, or a custom Java mapping module, is useful when the
attribute data must be obtained from an external source.

3. Issue
The issue operation produces a Security Token Service Universal User (STSUU)
token. The token supplies the set of required and optional attributes to the
single sign-on protocol service, along with validated PAPE authentication
information. This operation enables the service to generate an OpenID login
response, or prompts again for authentication if needed to satisfy additional
requested PAPE policies.

In order for the mapping module to populate required and optional attributes, it
must know the list of required and optional attributes. The list of required and
optional attributes are sent to the trust service in claims. The requested PAPE
information is also available to the mapping rule in claims information.

The list of claims can also contain user preference data. For example, a persona
index can be posted in the consent-to-authenticate form. The index is retrieved
from the trusted consumers management extension point, and included in the
claims.

320 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Figure 23 shows an example of claims being passed into the trust service. Note the
optional claims in the RequestedAttributes list:
v openid.sreg.email

v openid.sreg.nickname

v openid.sreg.fullname

When attributes are required, the optional value is set to false.

In the example, notice that the property userdata is an empty string. This empty
string indicates that there was no optional data defined during the
consent-to-authenticate. This data (and the reading of it in the mapping module of
the chain) is where persona-specific attribute retrieval can be accomplished for a
user.

Handling large amounts of user attribute data

OpenID authentication works with URL redirects. When an authentication
response from the identity provider must contain more than 2 kb of user registry

<fimopenid:OpenIDClaims
xmlns:fimopenid="urn:ibm:names:ITFIM:openid"
xmlns:fimpape="urn:ibm:names:ITFIM:openid:PAPE"
xmlns:fimqs="urn:ibm:names:ITFIM:queryservice"
ClaimedId="http://specs.openid.net/auth/2.0/identifier_select"
DiscoveredIdentifier="https://www.myidp.ibm.com/FIM/op/

85da8845-0127-1a04-9a9f-dca9f50a9649"
IdentityURL="http://specs.openid.net/auth/2.0/identifier_select"
IsOPIdentifierLogin="true"
IsRPReturnToValidated="false"
OPLocalId="http://specs.openid.net/auth/2.0/

identifier_select"
OpenIDServerURL="https://www.myidp.ibm.com/

FIM/sps/openididp/openid/sso"
PolicyURL="http://www.ibm.com"
ReauthCount="0"
ReturnTo="https://www.myrp.ibm.com/sps/myrp/openid/

loginreturn?nonce=uuid85d96a6f-0127-1f6e-bafb-c3b7deb3ed5d"
TrustRoot="https://www.myrp.ibm.com/"
Userdata=""
Version="http://specs.openid.net/auth/2.0">

<fimopenid:PrincipalName>shane</fimopenid:PrincipalName>
<fimqs:RequestedAttributes>

<fimqs:Attribute name="openid.sreg.email" optional="false" />
<fimqs:Attribute name="openid.sreg.nickname" optional="true" />
<fimqs:Attribute name="openid.sreg.fullname" optional="true" />

</fimqs:RequestedAttributes>
<fimpape:OpenIDPAPEClaims>

<fimpape:Attribute name="openid.pape.preferred_auth_levels">
<fimpape:Value>urn:ibm:names:ITFIM:5.1:accessmanager</fimpape:Value>

</fimpape:Attribute>
<fimpape:Attribute name="openid.pape.preferred_auth_policies">

<fimpape:Value>http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/privatepersonalidentifier</fimpape:Value>

<fimpape:Value>http://www.idmanagement.gov/schema/2009/05/
icam/openid-trust-level1.pdf</fimpape:Value>

</fimpape:Attribute>
</fimpape:OpenIDPAPEClaims>

</fimopenid:OpenIDClaims>

Figure 23. Example claims during the identity provider invocation of the trust service

Chapter 24. OpenID planning overview 321

data, Tivoli Federated Identity Manager automatically switches to POST messages.
This behavior supports the OpenID 2.0 specification, which allows for auto-posting
POST transactions for indirect messages.

Note: The automatic switch to POST messages is not supported in OpenID 1.1
deployments.

Relying Party Discovery
Using Relying-Party (RP) discovery, OpenID Providers can detect and verify the
return_to addresses of realms that support OpenID.

Relying-Party discovery is performed when an OpenID Provider receives a
solicited single sign-on request. Relying-Party then performs the discovery process
on the URL specified in the openid.realm parameter of the sign-on message.
Relying parties must publish their return_to URL in XRDS.

An administrator can configure the identity provider properties panel to enforce
successful Relying-party discovery. The macro in the consent.html page makes it
possible for the identity provider to indicate if the Relying-Party discovery has not
been done yet. For more information about consent to authenticate page see, .

This specification enables OpenID Providers to verify authentication requests and
ensure that responses are redirected to valid return_to endpoints.

If discovery cannot verify the return_to URL on the Relying Party realm Tivoli
Federated Identity Manager either shows an error or warning, depending on the
configuration.

The IsRPReturnToValidated claim attribute tells the mapping rule if the return_to
URL validation occurred. Tivoli Federated Identity Manager adds this attribute to
the OpenIDClaims element passed to the security token service. It enables a
mapping rule to detect when Relying-Party discovery fails and performs an
appropriate action. The value for this claims attribute can be true or false.

Authentication modes
OpenID support two authentication modes: checkid_immediate, and checkid_setup

The checkid_immediate authentication mode is typically used in rich client
environments where a widget does the following tasks:
v Determine whether a browser user owns a particular claimed OpenID URL
v Avoid having the browser interact with the user

To initiate a checkid_immediate request from the consumer to an identity provider,
add this input parameter in the login form:
<input type=’’hidden’’ name=’’openid.mode’’ value=’’checkid_immediate’’>

The Tivoli Federated Identity Manager single sign-on protocol URL endpoint
initiates the login from the consumer.
v When the response from the identity provider is a successful assertion that the

user owns the identity URL, Tivoli Federated Identity Manager performs a
security token service token exchange, and login to the point of contact server.
This behavior is the same as for checkid_setup.

322 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v When the response from the identity provider is a failed assertion, an HTML
page template is loaded from the page factory. The replacement macro in the
page is populated with the value of the open.user_setup_url parameter that
was returned from the identity provider.

The checkid_setup authentication mode allows the identity provider to interact
with the user, to request authentication or self-registration before returning a result
to the consumer. When no authentication mode is specified in the login form,
checkid_setup is the default mode.

Since checkid_setup is the default mode, it is not necessary to specify the mode in
the login form. However, the consumer can specifically request this mode. See the
following code to request this mode:
<input type=’’hidden’’ name=’’openid.mode’’ value=’’checkid_setup’’>

Tivoli Federated Identity Manager support for checkid_setup is a federated single
sign-on flow with redirect to the identity provider for authentication, including
user interaction for approval of sign-on. The result of the authentication flow is the
return of signed response attributes to the consumer. When the digital signature is
validated, the attributes are built into a Security Token Service Universal User
(STSUU) token and sent to the trust service for exchange for an IVCred credential.
The credential is then used for the login.

Consumer federations
The Tivoli Federated Identity Manager OpenID consumer plays a role like a service
provider in other single sign-on protocols.

The OpenID consumer uses a Tivoli Federated Identity Manager federation that
has some similarities to, but significant differences from, the federations for other
single sign-on protocols.

In particular, there is no need to directly associate identity provider partners with
OpenID consumer federations. The key exchange and association with particular
identity providers is controlled by the OpenID identity URL, as determined at
runtime. Partners are not added and configured for an OpenID service provider
federation.

The Tivoli Federated Identity Manager federation entity for the consumer contains:
v A login endpoint
v A login return endpoint
v A trust root URL (known as a realm in OpenID 2.0)
v Parameters indicating the type of map module in the trust chain
v Any associated configuration parameters
v User-agent policy controlling the allowed range of IP addresses, networks, and

(or) hostname patterns for OpenID identity URLs and OpenID server endpoints.

The syntax for the OpenID federation protocolID is:
https://<hostname:port>/FIM/sps/<federation name>/openid

For example:
https://webseald.example.com/FIM/sps/openidfedsp/openid

Chapter 24. OpenID planning overview 323

The login endpoint

The Tivoli Federated Identity Manager consumer supports a login URL. The login
URL receives the POST of the initial login form and initiates a checkid_setup or
checkid_immediate.

Using the previous example federation protocolID, the endpoint is:
https://webseald.example.com/FIM/sps/openidfedsp/openid/login

Note: An example endpoint for deployments with WebSphere as point of contact
server is:
https://poc.example.com/sps/openidfedsp/openid/login

The single sign-on delegate at the endpoint completes the following tasks:
1. Determines from the incoming login form the OpenID identity URL plus any

extension parameters.
2. Determine the canonical form of the identity URL, in accordance with the

applicable OpenID authentication specification. Yadis and HTML discovery are
supported.

3. Retrieve the final identity URL, including delegates, for the user. Determine the
OpenID server for the user.

4. When an association does not exist with an identity provider, establish one.
5. Build a checkid_setup or checkid_immediate request to the OpenID server and

redirect the browser to the identity provider.

The login return endpoint

Tivoli Federated Identity Manager support a login return URL. The browser is
redirected by the identity provider to this URL after single sign-on processing is
complete. This endpoint is passed as the openid.return_to parameter during the
single sign-on request.

For example, this endpoint would be:
https://webseald.example.com/FIM/sps/openidfedsp/openid/loginreturn

The single sign-on delegate at this endpoint processes responses from
checkid_setup and checkid_immediate. The delegate processes these responses, and
any check_authentication requests or association handle invalidation that might
occur as a result.
v When a response is returned with a successfully validated signature, the trust

service uses the parameters in the response. The parameters are used to build a
Security Token Service Universal User (STSUU) token. The delegate uses the
trust service to exchange the STSUU token for an IVCred credential. The
credential is then used for Tivoli Federated Identity Manager authentication.

v When the response is returned with an unsuccessful response, an error page is
displayed.

The trust root or realm URL

The Tivoli Federated Identity Manager consumer also supplies a trust root or realm
URL. This URL serves as the basis for trust shown to the user at the identity
provider.

324 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Tivoli Federated Identity Manager reads the trust root URL from configuration
properties. This property is initially generated by entries done by the administrator
to combine the following values:
v Protocol

For example, https.
v Hostname

Host name for the point of contact server
v Port

Optional. Specified only when not the standard port.
v A forward slash (/)

For example:
https://webseald.example.com/

OpenID login
The Tivoli Federated Identity Manager consumer presents a login form to request
the OpenID URL from the user. The form can use either POST or GET methods to
the Tivoli Federated Identity Manager consumer login endpoint. The included
parameters can contain more than the URL if required.

Tivoli Federated Identity Manager supports:
v OpenID 1.1 authentication specifications
v OpenID 2.0 authentication specifications
v OpenID Simple Registration Extension 1.0
v OpenID Simple Registration Extension 1.1
v OpenID Attribute Exchange Extension
v Provider Authentication Policy Extension 1.0

Note: The method for login by the Tivoli Federated Identity Manager consumer is
the same when accessing either a Tivoli Federated Identity Manager identity
provider, or another identity provider.

For example, consider the following deployment scenario:
v WebSEAL as the point of contact for a host called www.example.com

v An OpenID consumer federation called openidfedsp

Figure 24 shows a sample login form for this example.

The Tivoli Federated Identity Manager service provider completes the following
steps:

<html>
<form method="post"
action="https://www.example.com/FIM/sps/openidfedsp/openid/login">

<input type="text" name="openid_identifier" />
<input type="submit" value="Login" />

</form>
</html>

Figure 24. Simple OpenID login form

Chapter 24. OpenID planning overview 325

1. Reads the openid_identifier parameter
2. Performs the authentication flow specified for OpenID Authentication 2.0
3. Performs an External Authentication Interface (EAI) login to WebSEAL

After a successful checkid_immediate or checkid_setup response, the Tivoli
Federated Identity Manager consumer calls the trust service to perform any
required attribute or user identity manipulation.

During the login process, the consumer can request attributes from the identity
provider by specifying additional parameters in the login form. The parameters
must correspond to the parameter names described in the OpenID Simple
Registration Extension 1.0. You can also use other supported specifications such as
Simple Registration Extension 1.1, Attribute Exchange 1.0 and Private Personal
Identifier Generator 1.0.

For example, Figure 25 shows a login form that accomplishes the following
requirements using Simple Registration Extension:
v Requires the e-mail address from the identity provider
v Requires the date of birth from the identity provider
v Optionally requests the full name for the user
v Provides a policy URL that links to a page that describes a privacy policy

When these parameters are present in the login request, Tivoli Federated Identity
Manager sends them to the identity provider. This action is done during
checkid_immediate and checkid_setup requests.

The parameters do not have to be hidden, and do not have to be a
comma-separated list.

The parameters can consist of multi-valued attributes. The use of multi-valued
attributes enables the server to present the user with radio buttons, list boxes, or
other multi-valued widgets in the HTML. Tivoli Federated Identity Manager treats
each value as a comma-separated list. Multiples values consisting of one entry only
(each) are allowed.

You can implement login with automatic redirection to a specified URL. When
WebSEAL is the point of contact server, the rules for processing EAI authentication
apply. You can include an optional TARGET parameter in the login form, to redirect
the user after successful authentication.

<html>
<form method="post"
action="https://www.example.com/FIM/sps/openidfedsp/openid/login">

<input type="hidden" name="openid.sreg.required"
value="email,dob" />
<input type="hidden" name="openid.sreg.optional"
value="fullname" />
<input type="hidden" name="openid.sreg.policy_url"

value="http://www.example.com/privacy_policy.html" />

<input type="text" name="openid_identifier" />
<input type="submit" value="Login" />

</form>
</html>

Figure 25. OpenID login form with registry extension parameters

326 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Template pages

The Tivoli Federated Identity Manager consumer uses several template HTML
pages when processing authentication requests and errors:
v When the consumer processes a checkid_immediate request, and the identity

provider cannot determine if the OpenID URL for the user is valid, the
consumer returns a template file.
See “Template page returned for checkid_immediate” on page 364.

v The consumer uses a template file as part of supporting POST transport for large
indirect messages. The Tivoli Federated Identity Manager consumer supports
POST transport for large indirect messages. The support uses a template file.
See “Template page for OpenID 2.0 indirect post” on page 363.

v When a checkid_immediate or checkid_setup request results in an error, the
consumer uses a template file to return an error.
See “Template page returned for server error” on page 365.

v When an error occurs on the consumer that halts processing, the consumer uses
a template file to return the error.
See “Template page for OpenID error” on page 362.

Consumer trust chains
During the login process, Tivoli Federated Identity Manager handles attribute and
identity mapping. When a checkid_immediate or checkid_setup response comes
back from the identity provider and reports a successful assertion, Tivoli Federated
Identity Manager builds all the attributes and PAPE response data returned from
the identity provider into a Security Token Service Universal User (STSUU) token,
and uses the trust service to exchange that token for an IVCred credential.

The trust chain consists of:
v An STSUU Token in validate mode

The token contains the OpenID identity URL plus any extension parameters
including user attributes. The STSUU token is built by the OpenID login return
delegate when it has verified the signature on a login response from the identity
provider.

v A mapping module
The consumer can use the map module to do any necessary identity and
attribute mapping.
The type of mapping module to use for the consumer federation is set when the
federation is configured. The standard map module types are supported:
– XSLT or Javascript mapping rules
– Tivoli Directory Integrator mapping module
– Custom mapping modules.
In many cases, the use of scripted mapping rules is sufficient, since typically
there are no external attributes to retrieve.
The Tivoli Federated Identity Manager product distribution includes sample
scripted mapping rules and a sample Tivoli Directory Integrator assembly line
(mapping module).

v A IVCred credential in issue mode

Account linking

Chapter 24. OpenID planning overview 327

An important consumer scenario for OpenID is to perform account linking. For
example, when a user has authenticated directly to a website which is also an
OpenID consumer, the website might enable the user to link their account with an
OpenID. By performing an OpenID login while the user is already logged in to the
website, the consuming site can associate that OpenID with the current logged in
account.

To support this scenario, Tivoli Federated Identity Manager sends claims in a
WS-Trust call to the security token service. The call includes the current logged in
user name when an authenticated session exists.

Figure 26 on page 329 shows an example of the claims format sent to the trust
service. This is available to map module implementors as part of the STSUU.

328 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The PrincipalName attribute in the claims, when present, contains the Tivoli
Federated Identity Manager user name of the currently authenticated user. This
enables trust chains, through the use of mapping rules, to automatically associate a
particular OpenID with an existing account.

The example contains other claims which are parameters from the single sign-on
response from the OpenID server. The Identity URL attribute is what the user
presented in the login form as the identity URL. The NormalizedIdentityURL
attribute is the canonical form of the identity URL that results from normalization
that occurs as part of the discovery process.

<fimopenid:OpenIDClaims
xmlns:fimopenid="urn:ibm:names:ITFIM:openid"
xmlns:fimpape="urn:ibm:names:ITFIM:openid:PAPE"
ClaimedId="https://www.myidp.ibm.com/FIM/op/
85da8845-0127-1a04-9a9f-dca9f50a9649"
IdentityURL="https://www.myidp.ibm.com/FIM/op"
IsOPIdentifierLogin="true"
IsRPReturnToValidated="false"
NormalizedIdentityURL="https://www.myidp.ibm.com/FIM/op/
85da8845-0127-1a04-9a9f-dca9f50a9649"
OPLocalId="https://www.myidp.ibm.com/FIM/op/
85da8845-0127-1a04-9a9f-dca9f50a9649"
OpenIDServerURL="https://www.myidp.ibm.com/FIM/
sps/openididp/openid/sso"
ReauthCount="0"
ReturnTo="https://www.myrp.ibm.com/sps/myrp/openid/
loginreturn?nonce=uuid85e85b2a-0127-1286-99d4-d5e72a774a5f"
Signed="openid.op_endpoint,openid.return_to,
openid.response_nonce,openid.assoc_handle,
openid.claimed_id,openid.identity,
openid.sreg.dob,openid.sreg.gender,
openid.sreg.email,openid.sreg.language,
openid.sreg.timezone,openid.sreg.fullname,
openid.sreg.postcode,openid.sreg.country,
openid.sreg.nickname,openid.ns.sreg,
openid.ns.pape,openid.pape.auth_time,
openid.pape.auth_policies,openid.pape.auth_level.ns1,
openid.pape.auth_level.ns.ns1"
Target="https://www.myrp.ibm.com/fimivt/protected/ivtlanding.jsp"
Version="http://specs.openid.net/auth/2.0">
<fimpape:OpenIDPAPEClaims>
<fimpape:Attribute name="satisfied_auth_age">
<fimpape:Value>true</fimpape:Value>
</fimpape:Attribute>
<fimpape:Attribute name="openid.pape.preferred_auth_levels">
<fimpape:Value>urn:ibm:names:ITFIM:5.1:accessmanager
</fimpape:Value>
</fimpape:Attribute>
<fimpape:Attribute name="satisfied_auth_policies">
<fimpape:Value>true</fimpape:Value>
</fimpape:Attribute>
<fimpape:Attribute name="openid.pape.preferred_auth_policies">
<fimpape:Value>http://www.idmanagement.gov/schema/
2009/05/icam/openid-trust-level1.pdf</fimpape:Value>
<fimpape:Value>http://schemas.xmlsoap.org/ws/2005
/05/identity/claims/privatepersonalidentifier</fimpape:Value>
</fimpape:Attribute>
</fimpape:OpenIDPAPEClaims>
</fimopenid:OpenIDClaims>

Figure 26. OpenID claims during a Consumer WS-Trust call

Chapter 24. OpenID planning overview 329

The STSUU token sent with the request to the trust service contains attributes for
each of the listed components of the Signed set of attributes, plus any other query
string parameters.

Figure 27 shows the STSUU generated from the WS-Trust call shown in Figure 26
on page 329.

<?xml version="1.0" encoding="UTF-8" ?>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal><stsuuser:Attribute name="name"><stsuuser:Value>https://www.myidp.ibm.com/FIM/
op/85da8845-0127-1a04-9a9f-dca9f50a9649</stsuuser:Value></stsuuser:Attribute>
</stsuuser:Principal><stsuuser:AttributeList><stsuuser:Attribute name="openid.identity">
<stsuuser:Value>https://www.myidp.ibm.com/FIM/op/85da8845-0127-1a04-9a9f-dca9f50a9649</stsuuser:Value>
</stsuuser:Attribute></stsuuser:AttributeList><stsuuser:RequestSecurityToken />
<stsuuser:ContextAttributes><stsuuser:Attribute name="openid.op_endpoint">
<stsuuser:Value>https://www.myidp.ibm.com/FIM/sps/openididp/openid/sso</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.email">
<stsuuser:Value>jsmith@ibm.com</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.sig"><stsuuser:Value>NuKNV1ypZC16d3og6HbvjbCedPVjhRbWAWZ9Gq6g1DU=
</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.pape.auth_level.ns1"><stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.claimed_id">
<stsuuser:Value>https://www.myidp.ibm.com/FIM/op/85da8845-0127-1a04-9a9f-dca9f50a9649</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.ns">
<stsuuser:Value>http://specs.openid.net/auth/2.0</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.language">
<stsuuser:Value>en</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.sreg.fullname"><stsuuser:Value>John Smith</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="nonce">
<stsuuser:Value>uuid85e85b2a-0127-1286-99d4-d5e72a774a5f</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.pape.auth_time">
<stsuuser:Value>2010-03-22T12:47:41Z</stsuuser:Value> </stsuuser:Attribute>
<stsuuser:Attribute name="openid.return_to"><stsuuser:Value>https://www.myrp.ibm.com/sps/myrp/
openid/loginreturn?nonce=uuid85e85b2a-0127-1286-99d4-d5e72a774a5f</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.signed"><stsuuser:Value>
op_endpoint,return_to,response_nonce,assoc_handle,claimed_id,identity,sreg.dob,
sreg.gender,sreg.email,sreg.language,sreg.timezone,sreg.fullname,
sreg.postcode,sreg.country,sreg.nickname,ns.sreg,ns.pape,pape.auth_time,
pape.auth_policies,pape.auth_level.ns1,pape.auth_level.ns.ns1</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.nickname">
<stsuuser:Value>Smithy</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.identity">
<stsuuser:Value>https://www.myidp.ibm.com/FIM/
op/85da8845-0127-1a04-9a9f-dca9f50a9649</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.ns.sreg">
<stsuuser:Value>http://openid.net/extensions/sreg/1.1</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.pape.auth_level.ns.ns1">
<stsuuser:Value>urn:ibm:names:ITFIM:5.1:accessmanager</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.dob">
<stsuuser:Value>1980-12-25</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.sreg.postcode"><stsuuser:Value>99999</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.assoc_handle">
<stsuuser:Value>uuid85ca8353-0127-1776-9b7b-c75a4586c507</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.country">
<stsuuser:Value>AU</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.pape.auth_policies">
<stsuuser:Value>http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/privatepersonalidentifier http://www.idmanagement.gov/schema/2009/05/icam/
openid-trust-level1.pdf</stsuuser:Value></stsuuser:Attribute>
<stsuuser:Attribute name="openid.mode"><stsuuser:Value>id_res</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.timezone">
<stsuuser:Value>Australia/Brisbane</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.ns.pape">
<stsuuser:Value>http://specs.openid.net/extensions/pape/1.0</stsuuser:Value>
</stsuuser:Attribute><stsuuser:Attribute name="openid.sreg.gender">
<stsuuser:Value>M</stsuuser:Value> </stsuuser:Attribute>
<stsuuser:Attribute name="openid.response_nonce">
<stsuuser:Value>2010-03-22T12:48:08Zuuid85ea7849-0127-1515-b2b5-e9223d6c6970
</stsuuser:Value></stsuuser:Attribute></stsuuser:ContextAttributes>
<stsuuser:AdditionalAttributeStatement />
</stsuuser:STSUniversalUser>

Figure 27. Example STSUU during trust service request at the OpenID Consumer

330 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

User agent policy
The user agent can be configured to restrict the set of locations that it tried to
access. This setting is done to prevent malicious users attempting to make the
user-agent connect to internal resources.

The Consumer uses a user agent (HTTP client) to connect directly to OpenID
identity URLs, and to the OpenID server URLs they reference. The Provider also
uses the same type of user agent policy configuration for relying-party discovery
operations.

The restrictions are managed through the use of a static connection policy
configuration and a customizable dynamic endpoint authorization module. The
dynamic endpoint module can be used to further restrict access to endpoints at
runtime.

Each Tivoli Federated Identity Manager federation has one global policy setting.
The setting defines default behavior when the host is not explicitly found in the
allow or deny access lists. This setting either permits or denies access to URLs as a
default behavior. In addition to the global policy, administrators can create custom
dynamic endpoint access plug-ins. These plug-ins can check an online list of
trusted or untrusted endpoints. Administrators can add the custom plug-ins to the
list of dynamic endpoint access authorization modules.

Static connection policy

With a static connection policy, an administrator can list allowed and denied hosts.
Depending on the selected default behavior, the administrator also can specify a
list of hosts in the allow or deny list.

When the default behavior selected is deny, only hosts in the allow lists can be
accessed by the user agent. This setting is restrictive. Every OpenID identity URL
and server for which you want to allow access must be covered in the allow lists.
When the default behavior set to deny, any deny access lists are not useful. By
default all hosts are denied unless they are explicitly included in an allow list.

When the default behavior selected is allow, the host is contacted, unless it is
included in a deny list. This setting is more liberal and generally enables users to
log in from any legitimate OpenID server on the Internet. However, when the
default setting selected is allow, the deny lists must be carefully configured.

Tivoli Federated Identity Manager supports the following types of lists:

Allow lists:
v A user-configurable list of hostname regular expressions
v A user-configurable list of IP address netmasks (IPv4 and IPv6)

Deny lists:
v A user-configurable list of hostname regular expressions
v A user-configurable list of IP address netmasks (IPv4 and IPv6)
v A built-in list of default-deny hostname regular expressions
v A built-in list of default-deny IP address netmasks

Note: The allow lists take precedence over the deny lists.

Chapter 24. OpenID planning overview 331

The access lists for host names follow the standard Java Regular Expression syntax
as defined by the Pattern class. The list uses regular expressions to match the host
names.

The built-in deny lists cannot be changed by users. However, the list can be
overridden to allow certain entries by adding the hostname regular expressions or
netmasks to the user-configurable allowed lists.

Figure 28 shows the default-deny host names. The default values provide
protection against attacks that try to access arbitrary URLs on the local system.

Figure 29 shows the default-deny IP address netmasks. These netmasks include
various non-routable IPv4 and IPv6 addresses. This list can be overridden by
adding the networks that you want to allow connection to the allowed list of IP
netmasks.

Dynamic endpoint access plug-in

A dynamic endpoint access plug-in is a custom module. An administrator can
create the custom dynamic endpoint access plug-in to check external lists of trusted
and untrusted hosts.

When an administrator selects a custom dynamic endpoint access plug-in in the
dynamic endpoint access authorization module, the software checks specified
endpoints. The specified endpoints are checked to determine if they can be trusted.
You can use this setting with the allow or deny access list. However, if you set the
dynamic endpoint authorization to the default access approval, the software uses
only endpoints in the allow or deny lists.

Example – allowing any Internet OpenID server, deny access to
9.x.x.x intranet
v To configure this environment, the default access policy show be allow

v The allowed hosts list is ignored.
v The denied hosts list is ignored.

.*\.localdomain
localhost

Figure 28. Default-deny hostname regular expressions

0.0.0.0/8
10.0.0.0/8
127.0.0.0/8
169.254.0.0/16
172.16.0.0/12
192.168.0.0/16
255.255.255.255
::/128
::1/128
::/96
fc00::/7
fe80::/10
ff00::/8

Figure 29. Default-deny IP address netmasks

332 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v The denied IP address netmask is 9.0.0.0/8.
Multiple netmasks can be added if there is more than one intranet, and IPv6
equivalents must be added if the network supports both IPv4 and IPv6.

Example – only allow OpenID login from example1 and example2
companies
v To configure this environment, the default access policy show be deny

v The list of denied hosts and IP address netmasks are ignored.
v The allowed-hosts regular expression list is:

.*\.example1\.com,openid\.example2\.com,openidserver\.example2\.com

Example1 OpenIDs look like john.example1.com and the OpenID server that the
identity URLs resolves to is:
https://www.example1.com/openidProcessing.action

For example 2, OpenIDs look like openid.example2.com/<example2_screenname>,
and this resolves to an HTML page which points to the OpenID server:
https://api.screenname.exmple2.com/auth/openidServer

The need for this URL is why both these host names appear in the list.

Example - allow any hostname containing .ibm.com string

This example shows the settings to allow a user to access any hostname containing
the .ibm.com string.
v To configure this environment, select a custom plug-in.
v The allowed hosts list is checked.
v The denied hosts list is checked.
v The custom dynamic endpoint plug-in is:
package com.tivoli.am.fim.demo.ibmaccessapproval;

import java.net.MalformedURLException;
import java.net.URL;
import java.util.Map;
import java.util.logging.Level;
import java.util.logging.Logger;

import com.tivoli.am.fim.useragent.AccessApproval;

public class IBMAccessApproval implements AccessApproval {

final static String CLASS = IBMAccessApproval.class.getName();

final static Logger _log = Logger.getLogger(CLASS);

public IBMAccessApproval() {
}

public boolean canAccess(Map ctx) {
String methodName = "canAccess";
_log.entering(CLASS, methodName, new Object[] { ctx });
boolean result = false;
boolean finestLoggable = _log.isLoggable(Level.FINEST);
try {
String endpoint = (String) ctx.get(AccessApproval.CTX_ENDPOINT);
String fedname = (String) ctx

.get(AccessApproval.CTX_FEDERATION_NAME);
String fedid = (String) ctx

Chapter 24. OpenID planning overview 333

.get(AccessApproval.CTX_FEDERATION_ID);

if (finestLoggable) {
_log.logp(Level.FINEST, CLASS, methodName, "Fedname: "

+ fedname + " Fedid: " + fedid + " Endpoint: " + endpoint);
}

try {
URL u = new URL(endpoint);
String hostname = u.getHost();
if (hostname != null && hostname.indexOf(".ibm.com") > 0) {
result = true;
}
} catch (MalformedURLException e) {
e.printStackTrace();
}

} finally {
_log.exiting(CLASS, methodName, "" + result);
}
return result;
}
}

OpenID Extensions

OpenID Simple Registration Extension
During the login process, the consumer can request attributes from identity
providers by specifying additional parameters in the login form. The parameters
must correspond to the parameter names described in the OpenID Simple
Registration Extension 1.0 or Attribute Exchange Extension 1.0, whichever is
applicable. Simple Registration Extension (SREG) is an extension to the OpenID
Authentication protocol and supports a simple list of common user registration
information.

For more information, see OpenID documentation at: http://openid.net/specs/
openid-simple-registration-extension-1_0.html

OpenID Attribute Exchange Extension
Identity providers can use OpenID extensions to obtain and communicate user
attributes to consumers.

<form name="openidLoginForm" method="post"
action="https://sp.example.com/FIM/sps/openidsp/openid/login">
<input name="openid.mode" type="hidden"
value="checkid_setup">
<input name="openid.sreg.required" type="hidden"
value="email">
<input name="openid.sreg.optional" type="hidden"
value="fullname,dob">
<input name="openid.sreg.policy_url" type="hidden"
value="https://sp.example.com/privacy_policy.html">
<input name="TARGET" type="hidden"
value="https://sp.example.com/myapp">
<input name="openid_identifier" type="text">
<input value="OpenID Login" type="submit">
</form>

Figure 30. Sample Simple Registration Extension

334 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://openid.net/specs/openid-simple-registration-extension-1_0.html
http://openid.net/specs/openid-simple-registration-extension-1_0.html

The attribute exchange extension provides identity providers the ability to
communicate user attributes to consumers.

The Attribute Exchange Extension (AX) protocol can be extended to accommodate
varying types of attributes and multi-valued attributes. The attributes are identified
by a unique URI and typically correspond to personal identity information. For
more information see OpenID documentation at: http://openid.net/specs/openid-
attribute-exchange-1_0.html

Attribute Exchange Extension provides strict compatibility with OpenID 2.0. You
can use either or both extensions simultaneously. Use Attribute Exchange Extension
unless you need to be compatible with older OpenID 1.1 implementations that
only support SREG.

As an administrator, you can add a set of parameters to the OpenID login form
posted to the login endpoint.

The example shows a login form with the following requirements:
v Requires the e-mail address from the identity provider
v Optionally requests for the full name, date of birth, friends and groups.

Note: If no explicit count is requested for an attribute exchange parameter, the
default max count value is 1.

Tivoli Federated Identity Manager sends parameters to the identity provider
during checkid_immediate and checkid_setup requests. The fetch messages sent
with the request retrieves the personal identity attributes of the user. For additional
information about fetch messages see the OpenID documentation:
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch

<form name="openidLoginForm" method="post"
action="https://sp.example.com/FIM/sps/openidsp/openid/login">
<input name="openid.mode" type="hidden" value="checkid_setup">
<input name="openid.ax.required" type="hidden" value="axemail">
<input name="openid.ax.if_available" type="hidden"
value="axfullname,axdob,axfriends,axgroups">
<input name="openid.ax.type.axemail" type="hidden"
value="http://axschema.org/contact/email">
<input name="openid.ax.type.axfullname" type="hidden"
value="http://axschema.org/namePerson">
<input name="openid.ax.type.axdob" type="hidden"
value="http://axschema.org/birthDate">
<input name="openid.ax.type.axfriends" type="hidden"
value="http://example.com/myschema/friends">
<input name="openid.ax.count.axfriends" type="hidden"
value="5">
<input name="openid.ax.type.axgroups" type="hidden"
value="http://example.com/myschema/groups">
<input name="openid.ax.count.axgroups" type="hidden"
value="unlimited">
<input name="TARGET" type="hidden"
value="https://sp.example.com/myapp">
<input name="openid_identifier" type="text">
<input value="OpenID Login" type="submit">
</form>

Figure 31. Sample Attribute Exchange Extension

Chapter 24. OpenID planning overview 335

http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html#fetch

Attribute Exchange Extension fetch requests parameters

The Attribute Exchange Extension supports an information model that combines a
subject identifier, an attribute type identifier, a count, and a value. Including
additional parameters attaches the Attribute Exchange Extension fetch request on a
standard authentication request. To enable the consumer to retrieve information
from the identity provider, specify the following form field parameters in the login
form.

openid.ax.required
Fetches required attributes from the identity provider. The value is a list of
aliases, which are labels that represent individual attributes at the identity
provider. Bind each alias to a URI that identifies the attribute in a separate
openid.ax.type.alias parameter. (Optional)

openid.ax.if_available
Fetches an attribute that is available from the identity provider. The value
has the same requirements as openid.ax.required. (Optional)

Note: You must specify either openid.ax.required or openid.ax.if_available in
the request. Each requested attribute alias must have an associated
openid.ax.type.alias parameter.

openid.ax.type.alias
Binds the alias to a URI that defines the meaning of the attribute. You must
specify a parameter for each alias specified in either openid.ax.required or
openid.ax.if_available. (Optional)

Many typical attributes already have defined type URIs at
http://www.axschema.org/types/

openid.ax.sendalways
Includes OpenID Attribute Exchange Extension information in
authentication requests to the identity provider. The consumer runtime
sends Attribute Exchange Extension request information if the identity
provider advertises Attribute Exchange Extension support with XRDS. The
default value is false. (Optional)

Attribute Exchange Extension fetch response parameters

After granting access to an identity provider, a fetch response message supplies the
information in the fetch request parameters. The following optional fetch response
parameters specify the retrieved personal attributes from the identity provider.

openid.ax.type.alias
Specifies the URI type for the fetched attribute identified by alias.
(Optional)

openid.ax.count.alias
Returns the number of values specified for the attribute that corresponds
to alias. If you do not specify a specific value, it returns only one value.

openid.ax.value.alias
Assigns a value specified for the attribute that corresponds to alias.
(Optional)

openid.ax.value.alias.number
Assigns a value specified for the attribute that corresponds to alias. This
parameter is required if openid.ax.count.alias is sent and at least one

336 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.axschema.org/types/

value is configured for the associated attribute. There should be a separate
parameter for each value for the alias, with incrementing numbers.

OpenID Provider Authentication Policy Extension
Use the administration console to configure the OpenID Provider Authentication
Policy Extension.

When a user initiates authentication from a relying party with an OpenID
identifier, the relying party requests the identity provider to authenticate the user.

The OpenID Provider Authentication Policy Extension (PAPE) is a mechanism
where the relying party can:
v request identity providers to use specific authentication policies when

authenticating a user.
v require an identity provider to inform the relying party of the authentication

policies used during authentication.
v require an identity provider to communicate the levels of authentication used as

defined in sets of requested custom assurance levels.

Depending on your role in the federation, certain parameters are available in the
configuration properties panel of the administration console.

Note: PAPE settings can only be configured AFTER creating a federation. Use the
Federation Properties panel to specify the configuration settings.

Relying party PAPE implementation

Use the relying party configuration properties panel to enable PAPE. Once enabled,
the specified PAPE attributes are sent to the identity provider in the authentication
request. When a relying party sends the authentication request with the specified
PAPE attributes, the identity provider sends a response. The response indicates
which requirements have been met and which have not. Based on the response, the
relying party can determine whether to authenticate a user.

Specify the following parameters in the relying party configuration properties
panel:

Enforcement Mode

v Strict
Specifies that a user is not authenticated if the PAPE requirements are
not met.

v Lenient
Specifies that a user is authenticated even if the PAPE requirements are
not met. The mapping rule used in the federation accesses the response
information. The response indicates which requirements have been met
and which have not been met. This setting allows the author of the
mapping rule to decide whether to log in the user based on that
information. The mapping rule provides a more restricted authorization.

Authentication policies
Specifies a set of authentication policy URIs. The URIs represent
authentication policies to be satisfied by the identity provider when
authenticating a user. If multiple policies are requested, the identity
provider must satisfy as many of them as it can. The identity provider then
indicates which authentication policies were satisfied in the response.

Chapter 24. OpenID planning overview 337

Maximum authentication age
Specifies the length of time in which the user must have been
authenticated. If this time has expired, the identity provider must
re-authenticate the user.

Preferred assurance level
Specifies an ordered list of preferred assurance level namespace URIs. The
assurance level namespace values determine the level of trust placed in the
authentication of the user. Relying parties request information about these
assurance level namespaces from the identity provider.

Identity provider PAPE implementation

The identity provider configuration properties panel specifies the conditions for
when a user must authenticate.

Note: If you plan to use WebSEAL cookie management with OpenID PAPE
implementation, ensure that the list of managed cookies does not include the
WebSphere session cookie. See “Configuring WebSEAL to manage cookies” on
page 532

Specify the following parameters in the identity provider configuration properties
panel:

Force authentication on any requested PAPE maximum authentication age
This parameter specifies that a user must always authenticate. If selected,
the Maximum authentication age allowable clock skew field is disabled.

Maximum authentication age allowable clock skew
When a maximum authentication age is requested by a service provider
during single sign-on, the identity provider mapping rule must return the
last authentication time of the user. This parameter is used to account for
clock skew between:
v the last authentication time returned by the identity provider mapping

rule
v the clock of the identity provider

Typically the skew time is a small number, but can account for differences
between the point of contact machine and the runtime machine.

Identity provider configuration worksheet
Tivoli Federated Identity Manager provides a wizard to guide you through the
configuration of OpenID federations. The wizard prompts you to supply properties
for your deployment. This worksheet describes the properties.

Use this worksheet to plan your properties, and refer to it when running the
wizard.

Federation name
The name can be any character string. For example, openid-idp. This field
is required.

Federation role
Your role is identity provider.

338 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Company name
The name of the company that is creating this federation. The value can be
any string. You can also use the space character along with the other
characters. This field is required.

Federation protocol
OpenID.

Point of contact server
The URL address of the server that acts as initial point of contact for
incoming requests. The address consists of a protocol specification, the
server host name, and (optionally) a port number. When WebSEAL is the
point of contact server, the WebSEAL junction is specified.

Example value:
https://webseald.example.com/FIM

Note: For OpenID support, the point of contact server must use Secure
Socket Layer (SSL). The URL must specify https://.

Association expiration (seconds)
Specifies the lifetime of the association handle. This identity provider
controls this value. Enter a positive number. The default value is 3600
seconds.

Response nonce expiration time (seconds)
Indicates how many seconds a relying party that is operating without an
established association has, before they must perform the
check_authentication request. If set to a positive number, this feature
prevents replay of check_authentication. This restriction applies to
customers with Relying Parties that cannot create or store associations. The
default value is 30 seconds.

ID Generator
Specifies which ID generator creates a value that replaces the @ID@ of an
identity URL. Different ID generators create different values for @ID@.

OpenID Identity URL pattern

Represents the regular expression on which identity URLs are matched for
the federation. Tivoli Federated Identity Manager replaces the @ID@ part.
The default value is the URL for the single sign-on protocol host name
provided by the installation wizard.

For example, if you specified the following point of contact server in the
wizard:
https://webseald.example.com/FIM

the default Identity URL pattern is:
https://webseald.example.com/@ID@

User setup URL
Specifies the URL that is sent in response to a checkid_immediate request
from a consumer. The URL is used when the identity provider is unable to
determine if a user owns a particular identity URL.

The default URL is the point of contact server URL you specified on the
Point of Contact Server panel.
For example, when you have previously specified, in the wizard, a point of
contact server:
https://webseald.example.com/FIM

Chapter 24. OpenID planning overview 339

the default user setup URL is:
https://webseald.example.com/

Trusted Sites Manager
Selects the implementation class for a trusted sites manager. The
implementation persists data concerning consent-to-authenticate decisions
made by a user during OpenID authentications.

Support OP Identifier
Specifies if the identifier_select is supported when a consumer initiates
single sign-on. Use this option if an identity provider uses XRDS. Not
selecting this option disables all other options for identifier_select.

You can use a configuration option to enable or disable support for OP
identifier.

To enable the configuration option, you must change <was_config_root
>/itfim/<i><tfim_domain></i>/etc/feds.xml on the identity
provider to add this parameter:

<fc:EntityProperty name="OPENID.IPSupportOPIdentifier"

<fim:Value>true</fim:Value>

</fc:EntityProperty>

If the value is missing, the default value is false.

If the OPENID.IPSupportOPIdentifier is true, then this additional parameter
must also be included:

<fc:EntityProperty name="OPENID.IPGeneratedClaimedIDPattern">

<fim:Value>see_below</fim:Value>

</fc:EntityProperty>

Use a string template for the value. It contains the @ID@ pattern that is
replaced with the user name of the user.

Note: The parameter is similar to the existing Identity Pattern parameter
that is used to verify regular claimed identifier logins (not OP-identifier
logins). The exception is that the OPENID.IPGeneratedClaimedIDPattern
parameter is not a regular expression. It is just a template that must
include the replacement macro @ID@. For example the value can be:
https://myidp.com/@ID@

OP Generated Claimed Identifier Pattern
Specifies a valid URL that must contain the @ID@ string. It enables a relying
party to initiate single sign-on with a claimed identifier set to
identifier_select.

The default URL is derived from the point of contact server URL specified
during federation configuration.

For example, if the point of contact URL was specified as:
https://webseal.example.com/FIM

the default OP Generated Claimed Identifier Pattern is:
https://webseal.example.com/@ID@

Relying-Party Discovery Options
Provides two options:

340 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Perform RP Discovery
Specifies whether to attempt relying party discovery. Not selecting
this option disables all other options for relying party discovery.

Require successful RP Discovery
Specifies if Tivoli Federated Identity Manager halts with an error
when it cannot complete relying party discovery for the identity
provider. This option applies only if you enable Perform RP
Discovery.

RP Discovery cache expiration time
Determines how many seconds to cache information discovered about
relying parties in seconds. If you enter less than zero, information is never
cached.

Permitted OpenID Server Protocols
Specifies the allowed protocols for the OpenID servers to which the user
agent permits connection. You can choose either or both values. For best
practice, the parameter is typically is set to HTTPS only.

Choose one or both of the following:
v HTTPS
v HTTP

HTTP Connection Timeout
Specifies how many seconds before a timeout occurs during
communications with the HTTP client. Enter a positive number. If you
enter zero (0), the software uses the Java defaults for URLConnection
objects. The default value is 30 seconds.

Keystore
Specifies the keystore used to validate the certificates of SSL endpoints
during communications for relying-party discovery. This keystore must
contain the certified authority signer certificates of all relying-parties for
which relying-party discovery is to be performed.

User Agent Connection Policy
Specifies policy for connections by the user agent. You must select one of
the following options.
v Allow access to OpenID hosts by default

The host is contacted, unless it is included in the deny list. This setting
is more liberal and generally enables users to log in from any legitimate
OpenID server on the Internet.

v Deny access to OpenID hosts by default
Only hosts in the allow lists can be accessed by the user agent. This
setting is restrictive, and every OpenID identity URL and server for
which you want to allow access must be covered in the allow lists.

To review the policy choices, see “User agent policy” on page 331.

Allowed Hostname Regular Expressions
Specifies a list of regular expressions that identify host names to which the
user agent can request access. Enter one string per line.

For example:
.*\.ibm\.com

The value is optional.

Chapter 24. OpenID planning overview 341

Allowed IP Address / Netmasks
Specifies IP addresses or netmasks to which the user agent can request
access. User regular expressions, and enter one string per line. Enter one
string per line.

For example:
10.1.1.0/24
192.168.0.10

This value is optional.

Dynamic Endpoint Access Authorization Module
Specifies a list of custom dynamic endpoint access plug-ins. The plug-ins
can check external lists of trusted and untrusted hosts. This setting is used
in addition to configuration in the User Agent Connection Policy. If set to
the default access approval, configuration settings specified under User
Agent Connection Policy are used.

Denied Hostname Regular Expressions
Specifies the host names to which the user agent cannot request access.
User regular expressions, and enter one string per line.
v When the User Agent Connection Policy is set to Deny access to OpenID

hosts by default, this property is not used.
v When the User Agent Connection Policy is set to Allow access to

OpenID hosts by default, use of this property is optional.

For example:
.*\.example\.com
.*\.example2\.com

Denied IP Address / Netmasks
Specifies a list of regular expressions that identify IP addresses or netmasks
to which the user agent cannot request access. Enter one string per line.
v When the User Agent Connection Policy is set to Deny access to OpenID

hosts by default, this property is not used.
v When the User Agent Connection Policy is set to Allow access to

OpenID hosts by default, use of this property is optional.

For example:
11.12.13.0/24
192.168.0.10

Identity mapping options
Select one of the following options:
v Use XSLT or Javascript mapping rules for identity mapping

Select this option when you create an XSLT or a Javascript mapping rule
that supplies identity mapping rules.
Tivoli Federated Identity Manager provides a sample identity mapping
rules file for OpenID identity provider federations:
/installation_directory/examples/ip_openid.xsl

v Use Tivoli Directory Integrator for mapping

Select this option when you have a Tivoli Directory Integrator assembly
line for the identity mapping required for your OpenID federation.

v Use custom mapping module instance

Select this option when you have a custom trust service module for the
identity mapping required for your OpenID federation.

342 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 109. Worksheet for federation identification properties

Property to specify Your value

Federation name

Role identity provider

Company name

Federation Protocol OpenID

Point of Contact server

Association expiration time
(seconds)

Default: 3600 seconds

Response nonce expiration
(seconds)

Default: 30 seconds

ID Generator (generates value
of @ID@)

OpenID Identity URL Pattern

User Setup URL

Support OP Identifier OP Generated Claimed Identifier Pattern

OP Generated Claimed
Identifier Pattern

Perform RP Discovery

Require successful RP
Discovery

RP Discovery cache expiration
time

Permitted OpenID Server
Protocols

HTTP Connection Timeout

Keystore

User Agent Connection Policy

Allowed Hostname Regular
Expressions

Allowed IP Addresses /
Netmasks

Dynamic Endpoint Access
Authorization module

Denied Hostname Regular
Expressions

Denied IP Addresses /
Netmasks

Identity mapping options Select one:

v Use XSLT or JavaScript for identity mapping

v Use Tivoli Directory Integrator for mapping

v Use custom mapping module instance

Chapter 24. OpenID planning overview 343

Table 109. Worksheet for federation identification properties (continued)

Property to specify Your value

Identity mapping rules file If using XSLT or JavaScript for identity mapping, specify
the mapping rule file name:

Custom mapping module If using a custom mapping module, make note of the
name of the module:

Consumer configuration worksheet
Tivoli Federated Identity Manager provides a wizard to guide you through the
configuration of OpenID federations.

The wizard prompts you to supply properties for your deployment. This
worksheet describes the properties.

Use this worksheet to plan your properties, and refer to it when running the
wizard.

Federation name
An arbitrary string that you choose to name this federation. For example,
openid-consumer.

Federation role
Your role is service provider. You must select service provider when
configuring the consumer role.

Company name
A string value for the Company name. You can optionally provide
additional contact information.

Federation protocol
OpenID.

Point of contact server
The URL address of the server that acts as initial point of contact for
incoming requests. The address consists of a protocol specification, the
server hostname, and (optionally) a port number. When WebSEAL is the
point of contact server, the WebSEAL junction is specified. Example value:
https://webseald.example.com/FIM

Note: For OpenID support, the point of contact server must use Secure
Socket Layer (SSL). The URL must specify https://.

Advertised trust root
This value is a URL that is the root of the trust URLs for the federation. It
defaults to the base URL for the federation, where the base URL is the path
to the single sign-on protocol service hostname. When the port is not the
default number, the port value is also included. The value must end in a
forward slash (/).

This value must be a URL parent of the login return delegate endpoint. It
is used as the openid.trust_root parameter in the single sign-on request
that is sent to the identity provider.

344 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For example, when you have previously specified, in the wizard, a point of
contact server:
https://webseald.example2.com/FIM

the default authentication trust root is:
https://webseald.example2.com/

Enable Yadis Protocol
Specifies whether to perform the Yadis discovery. For best practices, choose
enabled.

Enable XRI Identifiers
Specifies whether to resolve URL or XRI-based claimed identifiers. If you
do not select an option, the software uses only URL-based claimed
identifiers.

XRI Proxies
Specifies a list of URLs for resolving XRI identifiers. The URL must contain
the @XRI@ macro.

Discovered information expiration
Specifies how long the cache stores the discovered information. If you do
not enter a positive number, the cache is disabled and discovery is
performed at every login.

Response nonce skew time
Specifies a value in seconds used for validating the response nonce from
OpenID 2.0 identity providers. Validation is only performed if this skew is
a positive number. Validation is performed by taking the time of the
response nonce and the configured response nonce skew.

If the number of seconds is outside this range, the authentication response
is rejected. If the number of seconds is within this range, a response nonce
cache is checked. The check ensures that the authentication response is not
a replay.

When validation is successful, the response nonce is added to the response
nonce cache for as long as it would be within the skew period. The
response nonce is added to the nonce cache to ensure that future
authentication responses are not replays.

Permitted OpenID Server Protocols
This value represents the set of allowed protocols for the OpenID servers
to which the user agent permits connection. For best practice, the
parameter is typically is set to HTTPS only.

Choose one or both of the following:
v HTTPS
v HTTP

HTTPS is the default. You must select at least one protocol.

HTTP Connection Timeout
This value specified the communications timeout for the HTTP client. The
value must be a valid positive integer. The maximum value is the
maximum integer value. A value of zero (0) means to use the Java defaults
for URLConnection objects. The default value is 30 seconds.

Keystore
This value is the name of a keystore that has previously been configured in

Chapter 24. OpenID planning overview 345

the Tivoli Federated Identity Manager key service. The keystore must hold
certificate authority signer certificates only.

The HTTP client for the consumer uses this keystore when communicating
with SSL-enabled identity providers. The keystore is used to determine if
the host that is to be connected to can be trusted. This check occurs when
processing associate and check_authentication messages.

Default:
DefaultTrustedKeyStore

User Agent Connection Policy
This value specifies policy for connections by the user agent. You must
select one of the following options.
v Allow access to OpenID hosts by default
v Deny access to OpenID hosts by default

To review the policy choices, see “User agent policy” on page 331.

Allowed Hostname Regular Expressions
A list of regular expressions that specify host names to which the user
agent can request access. Enter one string per line. For example:
.*\.ibm\.com

This value is optional.

Allowed IP Addresses / Netmasks
A list of regular expressions that specify IP addresses or netmasks to which
the user agent can request access. Enter one string per line. For example:
10.1.1.0/24
192.168.0.10

This value is optional.

Denied Hostname Regular Expressions
A list of regular expressions that specify host names to which the user
agent cannot request access. Enter one string per line. For example:
.*\.example\.com
.*\.example2\.com

v When the User Agent Connection Policy is set to Deny access to
OpenID hosts by default, this property is not used.

v When the User Agent Connection Policy is set to Allow access to
OpenID hosts by default, use of this property is optional.

Denied IP Addresses / Netmasks
A list of regular expressions that specify IP addresses or netmasks to which
the user agent cannot request access. Enter one string per line. For
example:
11.12.13.0/24
192.168.0.10

v When the User Agent Connection Policy is set to Deny access to
OpenID hosts by default, this property is not used.

v When the User Agent Connection Policy is set to Allow access to
OpenID hosts by default, use of this property is optional.

Dynamic Endpoint Access Authorization Module
Specifies a list of custom dynamic endpoint access plug-ins. The plug-ins
can check external lists of trusted and untrusted hosts. This setting is used

346 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

in addition to configuration in the User Agent Connection Policy. If set to
the default access approval, configuration settings specified under User
Agent Connection Policy are used.

Identity mapping options
You are asked to select one of the following options:
v Use XSLT or Javascript mapping rules for identity mapping

Select this option when you have created an XSLTfile or a Javascript
mapping rule that supplies identity mapping rules.
Tivoli Federated Identity Manager provides a sample identity mapping
rules file for OpenID consumer federations:
/installation_directory/examples/sp_openid.xsl

v Use Tivoli Directory Integrator for mapping
Select this option when you have previously configured a Tivoli
Directory Integrator assembly line for the identity mapping required for
your OpenID federation.

v Use custom mapping module instance
Select this option when you have written and deployed a custom trust
service module for the identity mapping required for your OpenID
federation.

Table 110. Configuration properties for OpenID consumer

Property Your value

Federation name

Role service provider

Company name

Federation Protocol OpenID

Point of Contact server URL

Advertised trust root

Enable Yadis Protocol

Enable XRI Identifiers

XRI Proxies

Discovered information expiration

Response nonce skew time

Permitted OpenID Server Protocols HTTPS or HTTP or both

HTTP Connection Timeout (seconds) Default: 30 seconds

Keystore

User Agent Connection Policy

Allowed Hostname Regular Expressions

Allowed IP Addresses / Netmasks

Chapter 24. OpenID planning overview 347

Table 110. Configuration properties for OpenID consumer (continued)

Property Your value

Denied Hostname Regular Expressions

Denied IP Addresses / Netmasks

Dynamic Endpoint Access Authorization
module

Identity mapping options Select one:

v Use XSL for identity mapping

v Use Tivoli Directory Integrator for mapping

v Use custom mapping module instance

Identity mapping rules file If using XSL for identity mapping, specify the
mapping rule file name:

Custom mapping module If using a custom mapping module, make note
of the name of the module:

348 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 25. Configuring OpenID

Configure an OpenID federation by creating the federation, setting up the point of
contact server, and updating the information on the login pages.

Verifying OpenID dependencies
Verify that the requirements in creating an OpenID federation have been
considered.

Before you begin

Before you use the Federation Creation wizard, ensure that the OpenID
dependences have been met. Complete the required planning activities by
reviewing the overview material in the planning section.

Procedure
1. Determine your strategy for identity mapping.

v If you use a mapping rules file, ensure that the XSLT or Javascript mapping
rule has been written to match the requirements of your deployment.

v If you use a Tivoli Directory Integrator assembly line, ensure that the
assembly line has been constructed.

v When using a custom mapping module, ensure that the module has been
written and tested.

2. Ensure that you have established the user agent policy for both the consumer
and identity provider.

3. Complete the worksheet for the federation. Complete one of the following:
v “Identity provider configuration worksheet” on page 338
v “Consumer configuration worksheet” on page 344

Configuring an OpenID federation
Use the Federation wizard to create and configure an OpenID federation.

Before you begin

Ensure that you have prepared configuration information before using the wizard
to create the federation.

About this task

To use the Federation wizard to create and configure an OpenID federation,
complete the steps in this procedure:

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Current Domain and Federations portlets open.
3. Click Create. The Federation wizard starts. The wizard presents a series of

configuration panels.

© Copyright IBM Corp. 2006, 2013 349

4. Use your completed worksheet to provide values at each panel.
5. Supply the necessary values.

a. The first series of panels requests settings for the federation name, role,
protocol, and point of contact server.

b. Next, the OpenID configuration panel requests the values needed for an
OpenID identity provider or consumer.

c. The last series of panels requests settings for the identity mapping
configuration.

When you finish entering configuration settings, the Summary panel opens.
6. Click Next to proceed to the next panel. If you need to go back to adjust a

configuration setting, click Back. You can view the online help for information
about specific fields.

7. Verify that the configuration settings are correct.
8. Click Finish. The Create Federation Complete portlet opens.

Configuring performance improvement for OpenID
Use OpenID parameters to improve performance in white-list scenario.

About this task

Single sign-on scenarios where a relying-party includes an OpenID identity
provider in a whitelist can use two parameters to improve performance. The two
parameters are:
v OPENID.DiscoveredInformationExpirationSeconds - the time for which an

OpenID relying party caches discovery information retrieved from an OpenID
provider-Identifier. This parameter can save one direct communications round
trip for every login after the first login has occurred.
Discovery is not performed more than once within the expiration period for a
given OpenID provider-Identifier.
In environments where a common well-known OpenID provider is used, this
parameter can improve authentication performance.

v OPENID.SkipClaimedIdDiscovery - when set to true, the relying party does not
perform discovery on a claimed identifier returned from an OpenID provider
during an OpenID provider-Identifier login. An example scenario is when
authentications use identifier_select.
For security reasons, use this parameter only when trusted, white-listed OpenID
providers are the only providers which you can use with the relying party.
Enabling this option saves one direct communications round trip for every log
in. The parameter is typically enabled within an intranet environment where a
common OpenID provider was used by many remote relying parties.
The parameter is often used with
OPENID.DiscoveredInformationExpirationSeconds.

Procedure
1. Edit the <was_config_root>/itfim/<tfim_domain>/etc/feds.xml file.
2. Add the configuration parameters to the Self configuration parameters for the

OpenID relying party federation.
3. Insert text similar to:

<fc:EntityProperty name="OPENID.DiscoveredInformationExpirationSeconds">

<fim:Value>604800</fim:Value>

350 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

</fc:EntityProperty>

<fc:EntityProperty name="OPENID.SkipClaimedIdDiscovery">

<fim:Value>true</fim:Value>

</fc:EntityProperty>

A good reference for the location to add the configuration parameters is to
search for the existing parameter OPENID.AuthenticationMode and add the
configuration parameters next to that.

Configuring a WebSEAL point of contact server for an Open ID
federation

When you plan to use WebSEAL as the point of contact server, you must configure
it for the OpenID federation.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that the WebSEAL point of contact profile has been
activated.

About this task

The Create Federation Complete portlet provides a button that you can use to
obtain the Tivoli Federated Identity Manager configuration utility tool. You must
obtain the tool and run it. To configure WebSEAL as the point of contact server,
complete the steps in this procedure:

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.

Note: The management console gives you the option of adding a partner now,
but for this initial configuration of the federation other tasks are completed
first.

2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

Chapter 25. Configuring OpenID 351

You must know the Tivoli Access Manager administration user (default:
sec_master) and administration user password. The utility configures endpoints
on the WebSEAL server, creates a WebSEAL junction, attaches the appropriate
ACLs, and enables the necessary authentication methods.

Example

For example, when you have placed tfimcfg.jar in /tmp, and the WebSEAL instance
name is default, the command (as one continuous line) is:
java -jar /tmp/tfimcfg.jar -action tamconfig
-cfgfile /<fully_qualified_path>/webseald-default

For more information, see Appendix A, “tfimcfg reference,” on page 753.

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use WebSphere
Application Server WebSEAL as the point of contact server. To configure
WebSphere as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select WebSphere.
4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Configuring login pages

As part of configuring a point of contact server, you should configure the
information on login pages.
v Consumers must provide a login form for presentation to the end user.

Administrators who use WebSEAL as a point of contact server can choose to
modify the default WebSEAL login.html page.

v Identity providers need to provide discovery information using Yadis or HTML
discovery. The discovery information is provided at the OpenID identity URL of
the user, or the identity provider identifier URL or both.

352 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 26. OpenID reference

This section contains a list of references for OpenID. It discusses supported
algorithms and transports, and the template pages that are used in a single-sign on
flow.

Supported algorithms and transports

Tivoli Federated Identity Manager supports the OpenID specifications for the
session type of the shared-secret session (association):
v OpenID 1.1

– clear text
– DH-SHA1
For security reasons the Tivoli Federated Identity Manager service provider
(consumer) support of OpenID 1.1 will only request session types of DH-SHA1.

v OpenID 2.0
– DH-SHA256
– DH-SHA1
– no-encryption
The Tivoli Federated Identity Manager consumer tries DH-SHA256 by default.
When an identity provider returns an error indicating that a requested session
type is unsupported, the identity provider may state which session types are
supported. In this case, the Tivoli Federated Identity Manager consumer tries the
suggested session type.

Note: The Tivoli Federated Identity Manager consumer attempts to use
no-encryption only when the OpenID server is an SSL endpoint.

The identity provider endpoints that are used by consumers to access OpenID
should be configured to use SSL.

In most deployments, non-protected endpoints (for example, HTTP instead of
HTTPS) are used for resolution of the identity URL for a user. The following URLs,
which are returned as HTML header links, should use SSL:
v openid.server
v openid2.provider

The consumer endpoints should be HTTPS (SSL).

Template page for advertising an OpenID server

The OpenID authentication specifications states that when an identity provider
single sign-on URL should return a notification whenever it receives with an HTTP
GET request that has no parameters (as specified by the OpenID 1.1 specification).
The page to be returned is required to have the following text:
This is an OpenID server endpoint. For more information, see http://openid.net/

Tivoli Federated Identity Manager provides the file openid_server.html. The file
does not have any replaceable macros.

© Copyright IBM Corp. 2006, 2013 353

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

This template is used on the identity provider only.

Template page for consent to authenticate
Use the template page for consent to authenticate at the identity provider to
determine and store user consent information about authentication permissions to
a particular consumer. It is also used to indicate which optional attributes to share
with the consumer.

During an OpenID checkid_setup operation, the user is redirected to the Identity
Provider to validate they are logged in. At this time, the identity provider asks the
user for permission to provide authentication and attribute information to the
consuming site. The Tivoli Federated Identity Manager identity provider provides
an HTML template page called consent.html.

Tivoli Federated Identity Manager retains knowledge of decisions about whether a
user trusts a particular consuming site, in the form of the trust_root or realm.
This saved knowledge enables Tivoli Federated Identity Manager to not have to
prompt the user every time a user logs on to the same consumer.

The consent page shows the list of attributes that the single sign-on request (from
the consumer) has indicated as required or optional. Since these lists can be of
indeterminate length, the template supports multiple copies of stanzas, repeated
once for each attribute in either list. The support for repeated stanzas is provided
through the simple registration extension specification.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

This template file provides several replacement macros:

@OPENID_TRUSTURL@
This macro is replaced with the openid.trust_root parameter in the
checkid_setup request.

@OPENID_POLICYURL@
This macro is replaced with the openid.sreg.policy_url parameter in the
checkid_setup request when the URL exists. When the URL does not exists,
the value is an empty string.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<title>OpenID Server</title>

</head>
<body>

This is an OpenID server endpoint. For more information,
see http://openid.net/

</body>
</html>

Figure 32. Template file openid_server.html

354 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

@OPENID_IDENTITYURL@
This macro is replaced with the openid.identity parameter in the
checkid_setup request.

@OPENID_SSOURL@
This macro is replaced with the endpoint of the OpenID server delegate
(endpoint) on the identity provider. This value is used for the FORM action
parameter to post the results of the consent form back to the OpenID
server.

@OPENID_RETURN_TO_VALIDATED@
This macro is replaced with true or false to notify the user if return_to
URL validation has been performed as part of Relying-Party discovery.

@REQUIRED_ATTRIBUTE@
A multi-valued macro that belongs inside a [RPT requiredAttrs]
repeatable replacement list. The values show the list of required attributes
from the service provider, as specified for the simple registration extension.
This macro is replaced for each value contained within the
openid.sreg.required parameter in the request with the string
openid.sreg. prepended.

@OPTIONAL_ATTRIBUTE@
A multi-valued macro that belongs inside a [RPT optionalAttrs]
repeatable replacement list. The values show the list of optional attributes
from the service provider, as specified for the simple registration extension.
This macro is replaced for each value contained within the
openid.sreg.optional parameter in the request with the string
openid.sreg. prepended.

Optional attributes require special consideration. The identity provider allows
users to specify individually which of the optional attributes they can send to a
specified consumer. The user preferences are denoted by the true or false
parameters for each optional attribute, as specified in the form contained in the
HTML page for consent-to-authenticate. To enable this feature, the parameter name
must begin with the prefix optattr_ and end with the full name of the optional
attribute.

For example:
optattr_openid.sreg.email=true&optattr_openid.sreg.nickname=false

The following figure shows an example of the handling of optional attributes.

Chapter 26. OpenID reference 355

Note: The check box input parameter in the form builds the name using the
optattr_ prefix, and the name of the optional attribute. For each optional attribute
in the request from the service provider, the code processing this form at the
identity provider looks for a parameter like optattr_<attributename>. The identity
provider then treats the value as true or false. A value of true indicates consent of
the optional attribute. When a parameter does not exist in the posted form, consent
is false.

One possible deployment scenario might be the development of a persona portal for
individual users. Users can have different personas created when they use a
persona portal. Each persona can have different attribute sets managed in an
external data store. This function enables the user to associate a particular persona
with a particular OpenID consumer. Doing so gives user the flexibility to select
persona attributes when the user logs in to the specified consumer.

For example, you can use the identity provider to dynamically create, name, and
populate sets of attributes for each persona.

This scenario is supported by the use of an optional FORM parameter called
userdata. The userdata can be a menu list that where the user can select the
persona from which the attributes are populated.

When userdata is included in the input form, its URL-encoded string value is
included in the claims sent to the security token service during identity mapping.

The following code sample shows the example HTML template file consent.html.

This template is used on the identity provider only.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>OpenID Consent-to-Authenticate</title>

<script type="text/javascript">

// when "All optional attributes" is selected,
uncheck any checked individual optional attributes
function allOptionalAttributes() {

var theForm = document.forms[0];
for (i = 0; i < theForm.elements.length; i++) {

if (theForm.elements[i].type == "checkbox") {

The following optional attributes have been requested. Please select
which attributes you are prepared to send, or select
"All Optional Attributes":

<input id="chk_all_optional_attributes" type="checkbox"
checked="checked" name="all_optional_attributes"
onClick="allOptionalAttributes()" />
<label for="chk_all_optional_attributes">All Optional Attributes
</label>

[RPT optionalAttrs]
<input id="chk_@OPTIONAL_ATTRIBUTE@" type="checkbox"

name="optattr_@OPTIONAL_ATTRIBUTE@" onClick="oneOptionalAttribute()" />
<label for="chk_@OPTIONAL_ATTRIBUTE">@OPTIONAL_ATTRIBUTE@
</label>

[ERPT optionalAttrs]

Figure 33. Handling consent of individual optional attributes

356 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

var cbName = theForm.elements[i].name;
if (cbName.indexOf("optattr_") == 0) {

theForm.elements[i].checked = false;
}

}
}

}

// when an individual optional attribute is selected, be sure to
uncheck "All optional attributes"
function oneOptionalAttribute() {

document.forms[0].all_optional_attributes.checked = false;
}

// utility function to show a section
function showDiv(f) {

if (f.style) {
f.style.display=’block’;

}
}

</script>
</head>
<body>

This consuming site has asked for an OpenID login from you:
@OPENID_TRUSTURL@

<p />
The consuming site’s policy can be found at: @OPENID_POLICYURL@
<p />

<script type="text/javascript">
//
// RP-discovery information
//
var txtWarningReturnTo = "WARNING: The return_to URL for the site has not

been successfully validated using relying-party discovery";
var returntoValidated = @OPENID_RETURN_TO_VALIDATED@;
if (!returntoValidated) {

document.write(txtWarningReturnTo);
}

</script>

<p />
Your identity URL is: @OPENID_IDENTITYURL@

<script type="text/javascript">
//
// Display claimed identifier if different from identity URL

(e.g. if delegation was being used)
//
var txtClaimedID = "Your claimed identifier is: ";
var identityurl = "@OPENID_IDENTITYURL@";
var claimedid = "@OPENID_CLAIMEDID@";
if (claimedid != identityurl) {

document.write("<p />");
document.write(txtClaimedID);
document.write("");
document.write(claimedid);
document.write("");

}
</script>

<p />
<script type="text/javascript">

//

Chapter 26. OpenID reference 357

// PAPE information
//
var txtMaxAuthnAge = "Requested Maximum Authentication Age (seconds): ";
var txtRequestedAuthnPolicies = "Requested Authentication Policies";
var txtRequestedAssuranceLevels = "Requested Assurance Levels";

var nopii = false;
var maxAuthenticationAge = @MAXIMUM_AUTHENTICATION_AGE@;
if (maxAuthenticationAge >= 0) {

document.write("<p/>" + txtMaxAuthnAge + maxAuthenticationAge);
}

var strAuthPolicies = "";
[RPT authenticationPolicies]

strAuthPolicies += "@REQUESTED_AUTHENTICATION_POLICY@"+",";
[ERPT authenticationPolicies]
if (strAuthPolicies.length > 0) {

// strip last comma and split into array
strAuthPolicies =

strAuthPolicies.substring(0,strAuthPolicies.lastIndexOf(","));
var authPolicies = strAuthPolicies.split(",");
document.write("<p/>");
document.write("<table border>");
document.write("<tr><th>" + txtRequestedAuthnPolicies + "</th></tr>");
for (var i = 0; i < authPolicies.length; i++) {

document.write("<tr><td>"+authPolicies[i]+"</td></tr>");

// check if this is the nopii policy
if (authPolicies[i] ==

"http://www.idmanagement.gov/schema/2009/05/icam/no-pii.pdf") {
nopii = true;

}
}
document.write("</table>");

}

var strAssuranceLevels = "";
[RPT assuranceLevels]

strAssuranceLevels += "@REQUESTED_ASSURANCE_LEVEL@"+",";
[ERPT assuranceLevels]

if (strAssuranceLevels.length > 0) {
// strip last comma and split into array
strAssuranceLevels =

strAssuranceLevels.substring(0,strAssuranceLevels.lastIndexOf(","));
var assuranceLevels = strAssuranceLevels.split(",");
document.write("<p/>");
document.write("<table border>");
document.write("<tr><th>" + txtRequestedAssuranceLevels + "</th></tr>");
for (var i = 0; i < assuranceLevels.length; i++) {

document.write("<tr><td>"+assuranceLevels[i]+"</td></tr>");
}
document.write("</table>");

}

</script>

<form action="@OPENID_SSOURL@" method="post">
<input type="hidden" name="openid.mode" value="consent_to_authenticate" />
<div id="DIV_ATTRIBUTES" name="DIV_ATTRIBUTES" style="display: none;">

The following required attributes have been requested:

[RPT requiredAttrs]

@REQUIRED_ATTRIBUTE@
[ERPT requiredAttrs]

358 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<p />
The following optional attributes have been requested. Please select

which attributes you are prepared to send, or select
"All Optional Attributes":

<input id="chk_all_optional_attributes" type="checkbox"
checked="checked" name="all_optional_attributes"
onClick="allOptionalAttributes()" />

<label for="chk_all_optional_attributes">
All Optional Attributes</label>

[RPT optionalAttrs]
<input id="chk_@OPTIONAL_ATTRIBUTE@" type="checkbox"

name="optattr_@OPTIONAL_ATTRIBUTE@" onClick="oneOptionalAttribute()" />
<label for="chk_@OPTIONAL_ATTRIBUTE@"

>@OPTIONAL_ATTRIBUTE@</label>

[ERPT optionalAttrs]

</div>
<p />
Do you wish to authenticate to this site, sending all

required attributes and
the selected optional attributes?

<div>
<input id="rd_permit_forever" type="radio"

name="consent" value="permit_forever"
checked="checked" /><label for="rd_permit_forever">
Allow Authentication forever
(add to my trusted sites)</label>

<input id="rd_permit_once" type="radio"
name="consent" value="permit_once" />
<label for="rd_permit_once">Allow Authentication this time only</label>

<input id="rd_deny_once" type="radio" name="consent"
value="deny_once" />
<label for="rd_deny_once">Do not authenticate to this
site this time only</label>

<input id="rd_deny_forever" type="radio" name="consent"
value="deny_forever" />
<label for="rd_deny_forever">Do not ever authenticate to this site
(add to my untrusted sites)</label>

</div>
<p /><label for="tx_userdata">User data or persona information:</label>

<input id="tx_userdata" type="text" name="userdata" />
<p /><input type="submit" name="submit" value="Submit" />

</form>
<script type="text/javascript">

//
// if the nopii policy was requested, leave the attribute information hidden

(as we shouldn’t send it), otherwise show it
//
if (!nopii) {

showDiv(document.getElementById("DIV_ATTRIBUTES"));
}

</script>

</body>
</html>

Template HTML page for trusted site management

This page is used at the identity provider. The HTML page is used to manage the
persisted set of trusted or untrusted sites. The user establishes the sites through the
consent.html page during single sign-on operations.

OpenID identity provider functionality includes the ability to store and retrieve
certain user preference attributes including:

Chapter 26. OpenID reference 359

v Whether or not a particular consumer site, as identified by trust_root value, is
trusted. The trust values can be once, never, or always.

v The list of optional attributes that can be sent to a particular trusted consumer.
v Any optional user preference data that the identity provider might choose to use

when building an attribute set for a single sign-on request to a consumer. For
example, the optional detail could include a persona index.
Tivoli Federated Identity Manager provides a mechanism that stores the
attributes in persistent cookies on the browser.

The Tivoli Federated Identity Manager server includes a page template and
supporting code. The page template and supporting code use the interface for
storing and retrieving information about trusted consumers. Users can use the
page template to display and manage this list.

The template file is sitemanager.html.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

The template has the following replacement macros:

@USERNAME@
This macro is replaced with the Tivoli Federated Identity Manager user
name.

@SITE_NAME@
This macro is a multi-valued and is used inside either a [RPT
trustedSites] or [RPT untrustedSites] repeatable replacement list. The
macro is used to display information about sites that are configured for
one of the following states:
v trusted forever
v denied forever

This macro displays the trust_root URL for the trusted or untrusted site.

@REQUIRED_ATTRIBUTES@
This macro is multi-valued and is used inside a [RPT trustedSites]
repeatable replacement list. The macro is used to display a
comma-separated list of the specific set of required attributes that the user
must send to the consumer.

@OPENID_SITEMANAGERURL@
This macro is replaced with the URL endpoint of the site manager delegate
which is used to process the remove action on trusted sites.

@ALL_OPTIONAL_ATTRIBUTES@
This macro is multi-valued and is used inside a [RPT trustedSites]
repeatable replacement list to for the trusted site. The macro us used to
indicate if the user is prepared to send all requested optional attributes to
that consumer. Supported values are true or false.

@LISTED_OPTIONAL_ATTRIBUTES@
This macro is multi-valued and is used inside a [RPT trustedSites]
repeatable replacement list. The macro is used to display a
comma-separated list of the specific set of optional attributes the user is
prepared to send to that consumer. This value is a non-empty string when
@ALL_OPTIONAL_ATTRIBUTES@ is false for the trusted site. When
@ALL_OPTIONAL_ATTRIBUTES@ is true, this value is an empty string.

360 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

@USERDATA@
This macro is multi-valued and is used inside a [RPT trustedSites]
repeatable replacement list. The macro is used to display optional user
data. The data can be specified by a user when the user processed the
consent-to-authenticate page, as part of choosing to permanently trust the
site. When no user data is specified, the value of the macro is the empty
string

This template is used on the identity provider only.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;

charset=UTF-8"/>
<title>OpenID Site Manager</title>
</head>
<body>
OpenID Site Manager</titleb>@USERNAME@
<p/>
Trusted Sites

<table border="1">
<tr><td>Site</td><td>Required Attributes</td><td>All Optional

Attributes?</td><td>Permitted Optional Attributes</td><td>User
Data</td><td>Action</td></tr>
[RPT trustedSites]

<tr>
<td>@SITE_NAME@</td>
<td>@REQUIRED_ATTRIBUTES@</td>
<td>@ALL_OPTIONAL_ATTRIBUTES@</td>
<td>@LISTED_OPTIONAL_ATTRIBUTES@</td>
<td>@USERDATA@</td>
<td><a href="@OPENID_SITEMANAGERURL@?action=

remove&site=@SITE_NAME@">Remove</td>
</tr>

[ERPT trustedSites]
</table>
<p/>
Untrusted Sites

<table border="1">
<tr><td>Site</td><td>Action</td></tr>
[RPT untrustedSites]
<tr>
<td>@SITE_NAME@</td>
<td>@OPENID_SITEMANAGERURL@?

action=remove&site=@SITE_NAME@">Remove</td>
</tr>
[ERPT untrustedSites]
</table>
</body>
</html>

Figure 34. Template HTML file sitemanager.html

Chapter 26. OpenID reference 361

Template page for OpenID error

Tivoli Federated Identity Manager uses a generic error page template to show the
detailed error text information under the following circumstances:
v An error halts processing on the identity provider or the consumer.
v The error is not returned.

For example:
v On an identity provider this page is used when processing the trusted sites page

or when a single sign-on request lacks a valid return_to URL.
v On a consumer, this page is used when bad parameters are returned in the login

page.

The template page is error.html.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

The following replacement macros are supported:

@REQ_ADDR@
This macro is replaced with the URL of the currently called delegate
endpoint.

@TIMESTAMP@
This macro is replaced with the current time in UTC.

@DETAIL@
This macro is replaced with the native language support (NLS) text of the
error message associated with the error.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of any exception that caused
the error.

362 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

This template is used on both the identity provider and consumer.

Template page for OpenID 2.0 indirect post

OpenID 2.0 specifies that HTTP POST requests can be used instead of HTTP
redirects, to send indirect messages between the identity provider and relying
party (consumer). The messages are sent to the browser and then redirected to the
target.

Tivoli Federated Identity Manager automatically switches messages into a
self-posting FORM using HTTP POST (rather than a 302 redirect) when the
following conditions are true:
v OpenID 2.0 is being used
v The message size exceeds 2K bytes

When POST is used, a page is loaded with a self-posting FORM (rather than a 302
redirect) containing the same parameters that would otherwise have been passed
on the query string.

The template file is indirect_post.html.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

The file supports the following replacement macros:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>
<title>An OpenID error has occurred</title>

</head>
<body style="background-color:#ffffff">

<div>
<h2 style="color:#ff8800">An error has occurred</h2>
<div id="infoDiv" style="background-color:#ffffff;color:#000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color:#999999; border-style:solid;
border-width:1px; border-color:#000000">

<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color:#999999;

border-style:solid; border-width:1px; border-color:#000000">
<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

Figure 35. Template HTML file error.html

Chapter 26. OpenID reference 363

@OPENID_PARTNER_URL@
This macro is replaced with the URL of the destination partner. This is
used for the FORM action parameter.

@PARAM_NAME@ / @PARAM_VALUE@
These are multi-valued macros that are used inside a [RPT formFields]
repeatable replacement list. They are used for parameters to pass to the
recipient.

This template is used on the identity provider only.

Template page returned for checkid_immediate

When a checkid_immediate request is initiated by the Tivoli Federated Identity
Manager service provider, and the identity provider returns a status that it cannot
determine whether the user owns the URL, the identity provider also returns one
of the following attributes:
v openid.user_setup_url

For OpenID 1.1
v openid.mode=user_setup_needed

For OpenID 2.0

When the Tivoli Federated Identity Manager consumer receives this type of reply,
it returns a page template file.

The page template file is immediate.html.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>OpenID Message</title>

</head>
<body>

<form method="post" name="openid_message" action="@OPENID_PARTNER_URL@">
[RPT formFields]

<input type="hidden" name="@PARAM_NAME@" value="@PARAM_VALUE@" />
[ERPT formFields]
<noscript>
<button type="submit">Send OpenID Message</button>

<!-- included for requestors that do not support javascript -->
</noscript>

</form>
<script type="text/javascript">

var signOnText = ’Sending OpenID message...’;
document.write(signOnText);
setTimeout(’document.forms[0].submit()’, 0);

</script>
</body>

</html>

Figure 36. Template file indirect_post.html

364 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The file has the following replacement macro:

@OPENID_USER_SETUP_URL@
This macro is replaced with the URL returned in the openid.user_setup_url
parameter of an identity provider response to the checkid_immediate
request. When the request is an OpenID 2.0 request, this parameter can be
the empty string.

This template is used by the consumer only.

Template page returned for server error

The identity provider server returns openid.mode set to error and specifies the
error text in openid.error under the following circumstances:
v When the Tivoli Federated Identity Manager consumer sends a

checkid_immediate or checkid_setup request
v When the checkid_immediate or checkid_setup request results in an error

In this case, the consumer returns the server_error.html page.

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

The template page supports the following replacement macros:

@OPENID_SERVER@
This macro is replaced with the OpenID server URL that the consumer was
communicating with when the error occurred.

@OPENID_ERROR@
The text from openid.error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<title>Results from checkid_immediate</title>

</head>
<body>

<script type="text/javascript">
var setup_url = "@OPENID_USER_SETUP_URL@";
if (setup_url) {

document.write(’<a href="’);
document.write(setup_url);
document.write(’">Please click here to complete identity
provider requirements’);

} else {
document.write(’Unable to proceed as authentication is required at

the OpenID Identity Provider.’);
}

</script>
</body>

</html>

Figure 37. Template page immediate.html

Chapter 26. OpenID reference 365

This template is used on the consumer only.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>

<head>
<title>OpenID Error Returned By Server</title>

</head>
<body>

The OpenID Server: @OPENID_SERVER@ has returned
the following error text:

@OPENID_ERROR@

</body>
</html>

Figure 38. Template file server_error.html

366 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 27. OAuth planning overview

Tivoli Federated Identity Manager supports OAuth 1.0 and OAuth 2.0 protocols.
The implementation of OAuth in Tivoli Federated Identity Manager strictly follows
the OAuth standards.

Note: Every mention of the OAuth 1.0 protocol in the guide refers to the RFC5849
version.

You must be familiar with the OAuth specification before implementing a single
sign-on federation. You must be prepared with the following requirements for your
OAuth 2.0 implementation:
v Information you are required to provide to your business partners
v Information your partner must provide to you

OAuth Concepts
This topic introduces the main concepts of OAuth 1.0 and OAuth 2.0.

OAuth is an HTTP-based authorization protocol. It gives third-party applications
scoped access to a protected resource on behalf of the resource owner. It gives
scoped access by creating an approval interaction between the resource owner,
client, and the resource server. It gives users the ability to share their private
resources between sites without providing user names and passwords. Private
resources can be anything, but common examples include photos, videos, contact
lists, and so on.

For a complete description of the OAuth specifications, see the OAuth website:
http://www.oauth.net.

The following concepts are common for both OAuth 1.0 and OAuth 2.0.

Resource owner
An entity capable of authorizing access to a protected resource. When the
resource owner is a person, it is called an end user.

OAuth client
A third-party application that wants access to the private resources of the
resource owner. The OAuth client can make protected resource requests on
behalf of the resource owner after the resource owner grants it
authorization. OAuth 2.0 introduces two types of clients: confidential and
public. Confidential clients are registered with a client secret, while public
clients are not.

OAuth server
Known as the Authorization server in OAuth 2.0. The server that gives
OAuth clients scoped access to a protected resource on behalf of the
resource owner. The server issues an access token to the OAuth client after
it successfully does the following actions:
v Authenticates the resource owner.
v Validates a request or an authorization grant.
v Obtains resource owner authorization.

© Copyright IBM Corp. 2006, 2013 367

http://www.oauth.net

An authorization server can also be the resource server. Tivoli Federated
Identity Manager takes the role of these two servers.

Access token
A string that represents authorization granted to the OAuth client by the
resource owner. This string represents specific scopes and durations of
access. It is granted by the resource owner and enforced by the OAuth
server.

Protected resource
A restricted resource that can be accessed from the OAuth server using
authenticated requests.

Additional concepts are introduced for the OAuth 2.0 protocol. These new concepts
are as follows:

Resource server
The server that hosts the protected resources. It can use access tokens to
accept and respond to protected resource requests. The resource server
might be the same server as the authorization server.

Authorization grant
A grant that represents the resource owner authorization to access its
protected resources. OAuth clients use an authorization grant to obtain an
access token. There are four authorization grant types: authorization code,
implicit, resource owner password credentials, and client credentials.

Authorization code
A code that the Authorization server generates when the resource owner
authorizes a request.

Refresh token
A string that is used to obtain a new access token.

A refresh token is optionally issued by the authorization server to the
OAuth client together with an access token. The OAuth client can use the
refresh token to request another access token based on the same
authorization, without involving the resource owner again.

OAuth endpoints
Endpoints provide OAuth clients the ability to communicate with the OAuth
server or authorization server within a federation.

All endpoints can be accessed through URLs. The syntax of the URLs is specific to
the purpose of the access.

If you are responsible for installing, configuring, or maintaining a federation in
Tivoli Federated Identity Manager, you might find it helpful to be familiar with
these endpoints and URLs.

OAuth 1.0 federations

The OAuth 1.0 federation naming follows the standard Tivoli Federated Identity
Manager naming convention for a unique identifier or protocolID. The syntax is:
https://<hostname:port>/FIM/sps/<federation_name>/oauth10

For example:
https://server.oauth.com/FIM/sps/MySocialNetwork/oauth10

368 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The following table describes the endpoints that are used in an OAuth 1.0
federation.

Table 111. OAuth 1.0 endpoint definitions and URLs

Endpoint name Description Example

Clients manager endpoint A URL for resource owners to manage
their trusted clients.

The resource owner can use the clients
manager endpoint to access and modify
the list of clients that have been authorized
to access the protected resource. The
trusted clients manager shows the client
name and permitted scope of an
authorized client.

Note: The list does not show clients that
have been disabled or deleted from the
federation.

The resource owner can optionally remove
trusted client information from the list. In
doing so, the resource owner is prompted
for consent to authorize the next time the
OAuth client attempts to access the
protected resource.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth10/clients

Temporary credential
request endpoint

A request URL that the OAuth client uses
to obtain a set of temporary credentials.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth10/request

Resource owner
authorization endpoint

An authorization URL where the resource
owner grants authorization to the OAuth
client to access the protected resource.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth10/authorize

Token request endpoint An access URL where the OAuth client
exchanges the set of temporary credentials
and verification code for a set of token
credentials.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth10/access

OAuth 2.0 federations

The OAuth 2.0 federation naming follows the standard Tivoli Federated Identity
Manager naming convention for a unique identifier or protocolID. The syntax is:
https://<hostname:port>/FIM/sps/<federation_name>/oauth20

For example:
https://server.oauth.com/FIM/sps/MySocialNetwork/oauth20

The following table describes the endpoints that are used in an OAuth 2.0
federation.

Note: Not all authorization grant types use all three endpoints in a single OAuth
2.0 flow.

Chapter 27. OAuth planning overview 369

Table 112. OAuth 2.0 endpoint definitions and URLs

Endpoint name Description Example

Clients manager endpoint A URL for resource owners to manage
their trusted clients.

The resource owner can use the clients
manager endpoint to access and modify
the list of clients that have been authorized
to access the protected resource. The
trusted clients manager shows the client
name and permitted scope of an
authorized client.

Note: The list does not show clients that
have been disabled or deleted from the
federation.

The resource owner can optionally remove
trusted client information from the list. In
doing so, the resource owner is prompted
for consent to authorize the next time the
OAuth client attempts to access the
protected resource.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth20/clients

Authorization endpoint An authorization URL where the resource
owner grants authorization to the OAuth
client to access the protected resource.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth20/authorize

Token endpoint A token request URL where the OAuth
client exchanges an authorization grant for
an access token and an optional refresh
token.

https://server.oauth.com/FIM/sps/
MySocialNetwork/oauth20/token

OAuth 1.0 workflow
The RFC5849 version of OAuth 1.0, or Open Authorization, is an HTTP-based
authorization protocol. OAuth 1.0 support makes it possible for users to share their
private resources between sites without providing users and passwords. Private
resources can be anything, but common examples include photos, videos, and
contact lists.

The OAuth 1.0 function of the Tivoli Federated Identity Manager can be configured
through the following methods:
v Tivoli Federated Identity Manager console
v Command-line interface

OAuth 1.0 workflow

An OAuth server issues tokens to OAuth clients. OAuth clients can access
resources on behalf of the resource owner using tokens that have scope, lifetimes,
and other attributes.

370 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Client

Resource
Owner

Server

The OAuth 1.0 protocol runtime workflow diagram involves the following steps:
1. The OAuth client requests a set of temporary credentials from the OAuth

server to start the authentication process. Temporary credentials distinguish
individual OAuth client requests to the OAuth server.

2. The OAuth server validates the request and returns a set of temporary
credentials to the OAuth client.

3. The OAuth client redirects the resource owner to the authorized URI to obtain
the approval to access the protected resource.

4. The resource owner authenticates with the OAuth server using its client
credentials and authorizes the request from the OAuth client.

5. The OAuth server validates the temporary credentials and after the resource
owner authorizes the OAuth client, a verification code is generated.

6. The resource owner is redirected to the callback URI provided by the OAuth
client in the previous request.

7. The OAuth client requests the access token using the temporary credentials and
verification code.

8. The OAuth server validates the request and returns an access token to the
OAuth client to access the protected resource.

About two-legged OAuth
Use two-legged OAuth to implement a delegation of authority in the client.

Two-legged OAuth is also called a Signed Fetch. In the two-legged OAuth scenario,
the OAuth client uses the client secret to sign the request and directly access the
protected resource. The OAuth server trusts the OAuth client to provide data
without asking the resource owner for authorization.

Chapter 27. OAuth planning overview 371

Security Token Service interface for two-legged OAuth flow
The Security Token Service interface processes requests differently for a two-legged
OAuth flow.

This section provides the following information about the two-legged OAuth
scenario:
v The behavior of Tivoli Federated Identity Manager Security Token Service.
v The significance of the WebSphere Trust Association Interceptor enforcement

point.

When an OAuth client accesses a protected resource that uses two-legged OAuth,
no OAuth token or authorizing resource owner is associated with the request. The
OAuth client signs the request with its client credentials, proving that the request
came from that client. This method is similar to a traditional basic authentication,
except that the request is digitally signed rather than containing the client
credentials in clear text.

The two-legged OAuth flow follows this process:
1. An OAuth enforcement point receives a two-legged OAuth request.
2. The enforcement point contacts the Security Token Service for validation.
3. The Security Token Service then processes the two-legged OAuth request sent

from the enforcement point, and validates the request signature.
4. The Security Token Service returns a username response attribute as part of the

validation response. This attribute is set to the value of the client identifier,
which is also known as the client key.

Note: This method is different from a traditional three-legged OAuth flow,
where the username attribute is set to the user name of the resource owner. The
user is the same entity who authorized the access of the OAuth client to the
protected resource.

The OAuth enforcement point can use the returned username response attribute for
audit, authentication, or downstream protected resource application.

Tivoli Federated Identity Manager provides sample OAuth mapping rules that
detect a two-legged OAuth scenario. When detected, the mapping rule changes the
value of the returned username attribute from the client identifier to the predefined
value me_guest.

You can modify the mapping rule to either leave the username attribute as the
client identifier or map it to something else. This change becomes important only
when your enforcement point or downstream protected resource application rely
on the value of the returned username attribute for special processing.

The Trust Association Interceptor enforcement point requires and relies on the
value of the returned username attribute. The enforcement point performs a
WebSphere authentication as the username that is returned from the Security Token
Service. The WebSphere Application Server user registry must contain a user that
matches the username attribute returned by the custom mapping rule in the
Security Token Service.

If you are using the example mapping rule as is, you must create a user in the
WebSphere user registry called me_guest. This step is only needed for two-legged
OAuth with the Trust Association Interceptor enforcement point.

372 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

OAuth 2.0 workflow
The OAuth 2.0 support in Tivoli Federated Identity Manager provides four
different ways for an OAuth client to obtain access the protected resource.

The OAuth 2.0 function of the Tivoli Federated Identity Manager can be configured
through the following methods:
v Tivoli Federated Identity Manager console
v Command-line interface

OAuth 2.0 workflow

Tivoli Federated Identity Manager supports the following OAuth 2.0 workflows.

Authorization code flow

The authorization code grant type is suitable for OAuth clients that can keep their
client credentials confidential when authenticating with the authorization server.
For example, a client implemented on a secure server. As a redirection-based flow,
the OAuth client must be able to interact with the user agent of the resource
owner. It also must be able to receive incoming requests through redirection from
the authorization server.

1. Client identifier and redirect URI

2. User authenticates

Client

Resource
owner

3.Authorization code

5. Access token with optional refresh token

Authorization
server

User agent

4. Client credentials, authorization
code, and redirect URI

1

2

3

The authorization code workflow diagram involves the following steps:
1. The OAuth client initiates the flow when it directs the user agent of the

resource owner to the authorization endpoint. The OAuth client includes its
client identifier, requested scope, local state, and a redirection URI. The
authorization server sends the user agent back to the redirection URI after
access is granted or denied.

Chapter 27. OAuth planning overview 373

2. The authorization server authenticates the resource owner through the user
agent and establishes whether the resource owner grants or denies the access
request.

3. If the resource owner grants access, the OAuth client uses the redirection URI
provided earlier to redirect the user agent back to the OAuth client. The
redirection URI includes an authorization code and any local state previously
provided by the OAuth client.

4. The OAuth client requests an access token from the authorization server
through the token endpoint. The OAuth client authenticates with its client
credentials and includes the authorization code received in the previous step.
The OAuth client also includes the redirection URI used to obtain the
authorization code for verification.

5. The authorization server validates the client credentials and the authorization
code. The server also ensures that the redirection URI received matches the URI
used to redirect the client in Step 3. If valid, the authorization server responds
back with an access token.

The authorization server can be the same server as the resource server or a
separate entity. A single authorization server can issue access tokens accepted by
multiple resource servers.

Authorization code flow with refresh token

1. Authorization grant and client credentials

2. Access token and refresh token

Client

3. Access token

4. Protected resource

5. Access token

6. Invalid token error

Resource
server

Authorization
server

7. Refresh token and client credentials

8. Access token and refresh token

The authorization code workflow with refresh token diagram involves the
following steps:
1. The OAuth client requests an access token by authenticating with the

authorization server with its client credentials, and presenting an authorization
grant.

2. The authorization server validates the client credentials and the authorization
grant. If valid, the authorization server issues an access token and a refresh
token.

3. The OAuth client makes a protected resource request to the resource server by
presenting the access token.

374 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

4. The resource server validates the access token. If the access token is valid, the
resource owner serves the request.

5. Repeat steps 3 and 4 until the access token expires. If the OAuth client knows
that the access token has expired, skip to Step 7. Otherwise, the OAuth client
makes another protected resource request.

6. If access token is not valid, the resource server returns an error.
7. The OAuth client requests a new access token by authenticating with the

authorization server with its client credentials, and presenting the refresh token.
8. The authorization server validates the client credentials and the refresh token,

and if valid, issues a new access token and a new refresh token.

Implicit grant flow

The implicit grant type is suitable for clients that are not capable of maintaining
their client credentials confidential for authenticating with the authorization server.
An example can be in the form of client applications that are in a user agent,
typically implemented in a browser using a scripting language such as JavaScript.

As a redirection-based flow, the OAuth client must be able to interact with the user
agent of the resource owner, typically a web browser. The OAuth client must also
be able to receive incoming requests through redirection from the authorization
server.

1. Client identifier and redirect URI

2. User authenticates

Client

Resource
owner

3.Redirect URI with access
token in fragment

5. Script

Web server with
client resource

Authorization
server

User agent

4. Redirect URI without fragment

1

2

7. Access token

6

Chapter 27. OAuth planning overview 375

The implicit grant workflow diagram involves the following steps:
1. The OAuth client initiates the flow by directing the user agent of the resource

owner to the authorization endpoint. The OAuth client includes its client
identifier, requested scope, local state, and a redirection URI. The authorization
server sends the user agent back to the redirection URI after access is granted
or denied.

2. The authorization server authenticates the resource owner through the user
agent and establishes whether the resource owner grants or denies the access
request.

3. If the resource owner grants access, the authorization server redirects the user
agent back to the client using the redirection URI provided earlier. The
redirection URI includes the access token in the URI fragment.

4. The user agent follows the redirection instructions by making a request to the
web server without the fragment. The user agent retains the fragment
information locally.

5. The web server returns a web page, which is typically an HTML document
with an embedded script. The web page accesses the full redirection URI
including the fragment retained by the user agent. It can also extract the access
token and other parameters contained in the fragment.

6. The user agent runs the script provided by the web server locally, which
extracts the access token and passes it to the client.

Resource owner password credentials flow

The resource owner password credentials grant type is suitable in cases where the
resource owner has a trust relationship with the client. For example, the resource
owner can be a computer operating system of the OAuth client or a highly
privileged application.

You can only use this grant type when the OAuth client has obtained the
credentials of the resource owner. It is also used to migrate existing clients using
direct authentication schemes by converting the stored credentials to an access
token.

2. Client credentials and resource
owner password credentials

3. Access token with
optional refresh token

Client

Resource
owner

Authorization
server

1. Password credentials

The resource owner password credentials workflow diagram involves the
following steps:
1. The resource owner provides the client with its user name and password.

376 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

2. The OAuth client requests an access token from the authorization server
through the token endpoint. The OAuth client authenticates with its client
credentials and includes the credentials received from the resource owner.

3. After the authorization server validates the resource owner credentials and the
client credentials, it issues an access token and optionally a refresh token.

Client credentials flow

The client credentials flow is used when the OAuth client requests an access token
using only its client credentials. This flow is applicable in one of the following
situations:
v The OAuth client is requesting access to the protected resources under its

control.
v The OAuth client is requesting access to a different protected resource, where

authorization has been previously arranged with the authorization server.

1. Client credentials

2. Access token

Client Authorization
server

The client credentials workflow diagram involves the following steps:
1. The OAuth client requests an access token from the token endpoint by

authenticating with its client credentials.
2. After the authorization server validates the client credentials, it issues an access

token.

Client authentication considerations at the OAuth 2.0 token
endpoint

The OAuth 2.0 token endpoint is used for direct communications between an
OAuth client and the authorization server.

The token endpoint is used to obtain an OAuth token. The client type, whether
public or confidential, determines the authentication requirements of the OAuth 2.0
token endpoint.

OAuth 2.0 workflows for confidential clients that require client authentication at
the token endpoint, can be configured in one of the following ways:
1. The Tivoli Federated Identity Manager point of contact requires authentication

at the token endpoint:
v The point of contact is responsible for authenticating the client.
v The Allow public clients to access the token endpoint check box from the

Federation properties panel is not relevant. A client_secret parameter must
not be sent in the token endpoint request.

v If a client_id parameter is sent in the request, it must match the identity of
the client that is authenticated by the point of contact.

2. The Tivoli Federated Identity Manager point of contact permits unauthenticated
access to the token endpoint:
v The client_id parameter in the token endpoint request is used to identify

the client.
v The federation partner, also known as the client, must be enabled in order

for it to be identified.

Chapter 27. OAuth planning overview 377

v The Allow public clients to access the token endpoint check box from the
Federation properties panel determines whether a client_secret parameter
is required in the token endpoint request. A client secret is required for
confidential clients only.

Note: When enforcing client authentication at the token endpoint, the point of
contact must contain the client ID and client secret within its user registry. The
point of contact must be able to map the authenticated user credential to the
client_id parameter sent in the OAuth 2.0 token endpoint request.

Based on this information, the following configurations are supported:

Table 113. Configurations supported

Client types Configurations

WebSEAL point of
contact token endpoint
URI considerations

WebSphere Application
Server point of contact token
endpoint URI considerations

Check box setting
for the “Allow
public clients to
access the token
endpoint”
parameter

Confidential
clients

The point of contact
performs client
authentication.

v Authenticated ACL on
token endpoint is
required.

v Token endpoint port
must match WebSEAL
port.

v Token endpoint port must
match Tivoli Federated
Identity Manager SOAP
port.

v OAuth Client must be in the
FIMSoapClient role.

N/A

Confidential
clients

The client_id and
client_secret
parameters in the
token endpoint request
are used to perform
client authentication.

v Unauthenticated ACL
on token endpoint is
required.

v Token endpoint port
must match WebSEAL
port.

Token endpoint must use the
same point-of-contact host
name and port as the
authorize and clients manager
endpoints.

Must be set to
false.

Public
clients

The client_id
parameter is used to
perform client
validation.

v Unauthenticated ACL
on token endpoint is
required.

v Token endpoint port
must match the
WebSEAL port.

Token endpoint must use the
same point-of-contact host
name and port as the
authorize and clients manager
endpoints.

Must be set to
true.

Using WebSphere Application Server as the point of contact at
the token endpoint

When enforcing authentication at the token endpoint for a WebSphere Application
Server point of contact, the token endpoint URL must use the Tivoli Federated
Identity Manager SOAP port. This condition ensures that authorization is enforced
by the FIMSoapClient role. The Tivoli Federated Identity Manager SOAP endpoint
can then be configured for the appropriate client authentication mechanisms, such
as Basic Authentication or client certificate. See “Configuring the SOAP endpoint
authentication settings” on page 379 for more details.

Note: You must manually set the TFIM.SOAP.Port and SOAP.AuthType runtime
custom properties when using WebSphere Application Server in the following
manner:
v As the point of contact server in a cluster
v To enforce authentication for the OAuth 2.0 token endpoint

378 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The Allow public clients to access the token endpoint check box from the
Federation properties panel has no influence on request processing when the point
of contact is enforcing authentication.

The token endpoint URL must use the same point of contact host name and port
as the authorize and clients manager endpoints when the following conditions
apply:
v WebSphere Application Server is used as the point of contact.
v Unauthenticated access to the token endpoint is accepted.

In this case, the FIMUnauthenticated role is used. Additional authorization is
based on whether the client is currently enabled. The Allow public clients to
access the token endpoint check box from the Federation properties panel
determines whether the client_secret parameter is required in the token endpoint
request. A public client is not required to provide a client_secret parameter.

Using Tivoli Access Manager WebSEAL as the point of contact at
the token endpoint

You can use the Tivoli Federated Identity Manager tfimcfg utility to configure
WebSEAL as a point of contact for an OAuth 2.0 federation.

When enforcing authentication at WebSEAL for the token endpoint, use separate
WebSEAL instances for the token and authorization endpoints. This condition
makes it possible for clients to authenticate with authentication mechanisms, such
as Basic Authentication and client certificates at the token endpoint. At the same
time, users can still authenticate by using forms authentication at the authorize and
clients manager endpoints. In this case, the token endpoint configuration within
the OAuth 2.0 federation must match the host name and port of the appropriate
token endpoint WebSEAL. For more details on how to use the tfimcfg utility to
configure WebSEAL as a point of contact for an OAuth 2.0 federation, see
“Configuring a WebSEAL point of contact server for the OAuth federation” on
page 400.

Configuring the SOAP endpoint authentication settings
You can configure the Tivoli Federated Identity Manager SOAP endpoint to use
Basic Authentication or client certificate as its client authentication mechanism.

About this task

The token endpoint URL uses the Tivoli Federated Identity Manager SOAP port
when authentication for a WebSphere Application Server point of contact is
enforced.

You can set how a client is authenticated by selecting a SOAP endpoint
authentication type.

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select the point of contact server profile that you are using in your

environment.
4. Click Advanced. The SOAP Endpoint Security Settings panel opens.

Chapter 27. OAuth planning overview 379

5. Select the SOAP endpoint authentication type from the following options:
v Basic Authentication

Authentication that requires your OAuth client to provide the client identifier
and shared-secret.

v Client Certificate Authentication
Authentication that requires your OAuth client to present a certificate to
establish a secure authenticated session.

6. Click OK.
7. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

Client registration
A client is added to an OAuth federation as a partner. It neither is a Service
Provider or an Identity Provider.

Creating a partner in an OAuth federation is the same as registering a client to an
OAuth server or authorization server. An OAuth server or authorization server can
have more than one client. Consequently, an OAuth federation can have more than
one partner.

An OAuth federation can communicate with OAuth clients that are either
managed in Tivoli Federated Identity Manager, or from an external client provider.

The OAuth federation generates a unique set of client credentials, during each
partner creation. The client key and client secret are examples of the set of client
credentials the OAuth federation generates. Clients use these credentials to identify
themselves to an OAuth server or authorization server when requesting access to a
protected resource.

State management
The state_id parameter in the STSUniversalUser module is used as a key to store
or retrieve state information for each invocation of the trust chain of an OAuth
flow.

Tivoli Federated Identity Manager provides sample mapping rules for the
demonstration application that can place information into a WebSphere Application
Server distributed map, IDMappingExtCache. These sample mapping rules use
state management API and are applicable to both OAuth 1.0 and OAuth 2.0
protocols. The location of these sample mapping rules is:
/opt/IBM/FIM/examples/demo/demo_rules/

You can call the state management API from the XSLT or JavaScript mapping rule,
or from a custom mapping module. This function is not available in a Tivoli
Directory Integrator mapping rule. The Tivoli Directory Integrator server runs in a
separate Java process, and therefore cannot use IDMappingExtUtil functions to
access the WebSphere Application Server distributed map.

OAuth 1.0

OAuth 1.0 tokens have a state_id parameter that is used in Security Token Service
mapping rules. The state_id parameter maintains state between associated
Security Token Service calls in an OAuth 1.0 flow.

380 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The state_id attribute is established when an OAuth client requests temporary
credentials and remains the same in an entire OAuth 1.0 flow. It helps differentiate
between two OAuth flows for the same OAuth client.

The sample mapping rule adds the storage time of the tokens to a distributed map
and retrieves it during a request for a protected resource.

Figure 39 on page 382 shows sections of the sample OAuth 1.0 XSLT mapping rule
that demonstrates the use of the state management API.

Chapter 27. OAuth planning overview 381

OAuth 2.0

OAuth 2.0 tokens, such as grants, access tokens, and refresh tokens, have a
state_id parameter that is used in Security Token Service mapping rules. The
state_id parameter maintains state between associated Security Token Service calls
in an OAuth 2.0 flow.

xmlns:cache-ext="com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtCache"
xmlns:mapping-ext="com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils"
extension-element-prefixes="mapping-ext cache-ext" version="1.0">

...
<!-- The token_type parameter for this request. -->

<xsl:variable name="token_type"
select="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’token_type’]

[@type=’urn:ibm:names:ITFIM:oauth:request’]/stsuuser:Value"/>
...
<!-- The state id handle for this OAuth token -->
<xsl:variable name="state_id">

<xsl:value-of select="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’state_id’]
[@type=’urn:ibm:names:ITFIM:oauth:state’]/stsuuser:Value"/>

</xsl:variable>
...
<!-- This template matches on a ContextAttribute for the parameter "state_id"

with type "urn:ibm:names:ITFIM:oauth:state". If the current request is in request mode,
we store the UTC time of the request into a cache with state_id as the key. If
the current request is in validate mode and authorization succeeded, we retrieve the
stored state value (i.e. the original UTC time of the request for a temporary token) and
put it into an attribute named recovered_state. This is here just to demonstate use of the
state management API.

-->
<xsl:template

match="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’state_id’]
[@type=’urn:ibm:names:ITFIM:oauth:state’]">

<!-- First preserve this attribute in the output -->
<stsuuser:Attribute>

<xsl:attribute name="name">
<xsl:value-of select="@name"/>

</xsl:attribute>
<xsl:attribute name="type">

<xsl:value-of select="@type"/>
</xsl:attribute>
<xsl:for-each select="stsuuser:Value">

<stsuuser:Value>
<xsl:value-of select="."/>

</stsuuser:Value>
</xsl:for-each>

</stsuuser:Attribute>

<!-- If the mode is "request", store something in the state cache -->
<xsl:if test="$token_type = ’request’">

<xsl:variable name="utc_time"
select="concat(’State storage time was: ’, mapping-ext:getCurrentTimeStringUTC())"/>

<!-- Get the cache -->
<xsl:variable name="cache" select="mapping-ext:getIDMappingExtCache()"/>

<!--
Store the UTC time to cache
Some containers ignore the variable declaration if the variable is not used.
That’s why here we output a comment even though no output is needed to
call the method ’put’ on the cache extension.

-->
<xsl:comment>

<xsl:value-of
select="cache-ext:put($cache, $state_id, $utc_time, 1000)" />

</xsl:comment>

</xsl:if>

<!-- If the mode is "validate" and authorization succeeded,
get something from the state cache. -->

<xsl:if test="$token_type = ’validate’ and $authorizationResult = ’TRUE’">
<!-- Get the cache and put it in recovered_state attribute -->
<xsl:variable name="cache" select="mapping-ext:getIDMappingExtCache()"/>

<stsuuser:Attribute name="recovered_state"
type="urn:ibm:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>
<xsl:value-of select="cache-ext:get($cache, $state_id)"/>

</stsuuser:Value>
</stsuuser:Attribute>

</xsl:if>
</xsl:template>

Figure 39. OAuth 1.0 XSL sample code with state management

382 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Similar to OAuth 1.0, the OAuth 2.0 mapping rule uses the state_id as the key to
issue an authorization grant. The key is used to add the token storage time to a
distributed map. The storage time is then retrieved from the cache during a request
for a protected resource.

Figure 40 on page 384 shows sections of the sample OAuth 2.0 XSLT mapping rule
that demonstrates the use of the state management API.

Chapter 27. OAuth planning overview 383

<!--
The request_type parameter for this request. If none is supplied, assume "resource"
-->
<xsl:variable name="requestType">
<xsl:choose>
<xsl:when test="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’request_type’]

[@type=’urn:ibm:names:ITFIM:oauth:request’]/stsuuser:Value">
<xsl:value-of select="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’request_type’]
[@type=’urn:ibm:names:ITFIM:oauth:request’]/stsuuser:Value"/>

</xsl:when>
<xsl:otherwise>resource</xsl:otherwise>

</xsl:choose>
</xsl:variable>
<!-- The state id handle for this OAuth token -->
<xsl:variable name="stateId">
<xsl:value-of select="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’state_id’]

[@type=’urn:ibm:names:ITFIM:oauth:state’]/stsuuser:Value"/>
</xsl:variable>
<!-- The grant type for this OAuth request -->
<xsl:variable name="grantType">
<xsl:value-of select="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’grant_type’]

[@type=’urn:ibm:names:ITFIM:oauth:body:param’]/stsuuser:Value"/>
</xsl:variable>

...

<!-- This template matches on a ContextAttribute for the parameter "state_id"
with type "urn:ibm:names:ITFIM:oauth:state". It does the following, if:

request_type = ’authorization’ ==> Store the UTC time of the request into a cache
with state_id as key [authorization_code, implicit]

request_type = ’access_token’ && grant_type = ’client_credentials’ ==> Store the UTC time
of the request into a cache with state_id as key [client_credentials]

request_type = ’access_token’ && grant_type = ’password’ ==> Store the UTC time of the request
into a cache with state_id as key [password]

request_type = ’resource’ ==> Retrieve the stored time and
put it into an attribute named recovered_state

This is here just to demonstrate use of the state management API.
-->

<xsl:template match="//stsuuser:ContextAttributes/stsuuser:Attribute[@name=’state_id’]
[@type=’urn:ibm:names:ITFIM:oauth:state’]">

<!-- First preserve this attribute in the output -->
<stsuuser:Attribute>
<xsl:attribute name="name">
<xsl:value-of select="@name"/>

</xsl:attribute>
<xsl:attribute name="type">
<xsl:value-of select="@type"/>

</xsl:attribute>
<xsl:for-each select="stsuuser:Value">
<stsuuser:Value>
<xsl:value-of select="."/>

</stsuuser:Value>
</xsl:for-each>

</stsuuser:Attribute>
<xsl:choose>

<!-- Store the UTC time as state when this is either:
Authorization step, for authorization_code or implicit flows
Token step, but only for client_credentials or resource owner credentials flows
-->
<xsl:when test="$requestType = ’authorization’ or
($requestType = ’access_token’ and
($grantType = ’client_credentials’ or $grantType = ’password’))">

<xsl:variable name="utc_time"
select="concat(’State storage time was: ’, mapping-ext:getCurrentTimeStringUTC())"/>

<!-- Get the cache -->
<xsl:variable name="cache" select="mapping-ext:getIDMappingExtCache()"/>
<!--

Store the UTC time to cache.
Some containers ignore the variable declaration if the variable is not used.
That’s why here we output a comment even though no output is needed to
call the method ’put’ on the cache extension.

-->
<xsl:comment>
<xsl:value-of select="cache-ext:put($cache, $stateId, $utc_time, 1000)"/>

</xsl:comment>
</xsl:when>
<xsl:when test="$requestType = ’resource’">
<!-- Get the cache and put it in recovered_state attribute -->
<xsl:variable name="cache" select="mapping-ext:getIDMappingExtCache()"/>
<stsuuser:Attribute name="recovered_state"

type="urn:ibm:names:ITFIM:oauth:response:attribute">
<stsuuser:Value>
<xsl:value-of select="cache-ext:get($cache, $stateId)"/>

</stsuuser:Value>
</stsuuser:Attribute>

</xsl:when>
</xsl:choose>

</xsl:template>

Figure 40. OAuth 2.0 XSL sample code with state management

384 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Trusted clients management
Tivoli Federated Identity Manager stores trusted client information based on the
decisions of a resource owner on which clients to trust.

The trusted clients manager support applies to both OAuth 1.0 and OAuth 2.0
federations.

In an OAuth flow, the resource owner is asked to provide consent on the scopes
requested by an OAuth client to access the protected resource. The resource owner
can either grant permission or deny the OAuth client from its access request.

The OAuth server or authorization server uses the trusted clients manager
endpoint to manage information about trusted clients.

During the authorization step, the OAuth server or authorization server checks
whether an OAuth client with a specific scope is stored in the trusted clients
management endpoint. If the OAuth client has stored scope information, the
OAuth server does not require the resource owner to grant authorization to access
the protected resource.

Administrators can save information of a trusted client partner through the
following options:
v Store trusted clients information in a browser cookie
v Do an auto-consent to all trust decisions in a closed authentication environment
v Store trusted clients information in memory (to be used for test use only)

By default, trusted clients information is stored on the browser of the resource
owner as persistent cookies. Tivoli Federated Identity Manager provides a
TrustedClientsManager extension point that administrators can use to write their
own custom plug-in for storing and retrieving information.

OAuth EAS overview
The external authorization service (EAS) is a modular authorization service
plug-in. System designers can use IBM Tivoli Access Manager authorization as an
add-on to their own authorization models when they have the external
authorization service (EAS).

The EAS plug-in uses the IBM Tivoli Federated Identity Manager OAuth
capabilities.

Using the OAuth EAS, OAuth decisions can be made part of the standard
authorization on WebSEAL requests. This means that WebSEAL can be used as the
authorization enforcement point for access to OAuth-protected resources. The
OAuth EAS plug-in works for both OAuth 1.0 and 2.0 protocols.

To learn more about the EAS plug-in, see the topic on "External authorization
service plug-ins" in the IBM Tivoli Access Manager for e-business Information
Center: http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.itame.doc/welcome.htm.

The OAuth EAS is responsible for the following actions in an authorization
process:
v Receives the authorization request.

Chapter 27. OAuth planning overview 385

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/welcome.htm

v Verifies that all required data is available in the request.
v Constructs a Request Security Token (RST) and sends it to the Policy Decision

Point (PDP), which is Tivoli Federated Identity Manager.
v Grants or denies access to the protected resource based on the decision received

from Tivoli Federated Identity Manager.

The OAuth EAS communicates with Tivoli Federated Identity Manager through
the Security Token Service (STS) interface. See “OAuth STS Interface for
Authorization Enforcement Points” on page 411 for more information.

OAuth data
Tivoli Federated Identity Manager requires specific information regarding the
request to return an authorization decision.

Configuration data
The OAuth EAS accepts two optional configuration parameters as query
string parameters in the request. These parameters affect the composition
of the message the OAuth EAS sends to Tivoli Federated Identity Manager
to obtain an authorization decision.

These parameters can also be configured statically in the OAuth EAS
configuration stanza. See “[oauth-eas] stanza” on page 428 for more
information.
v Mode (Either OAuth10 or OAuth20Bearer)
v Federation ID (The provider ID of the Tivoli Federated Identity Manager

OAuth federation associated with the OAuth Client)

Authorization data

The following OAuth request data is obtained from either the authorization
header, the post body, or the query string.

An OAuth 1.0 request consists of the following data:
v Realm (Optional)
v Consumer Key
v Token (Optional)
v Signature Method
v Time Stamp
v Nonce
v Signature
v Version (Optional)

An OAuth 2.0 request requires the Access Token. Tivoli Federated Identity
Manager currently supports the bearer token specification only.

Resource information
This data is obtained from the HTTP request and is used by Tivoli
Federated Identity Manager to validate the OAuth signature. This data is
sent to Tivoli Federated Identity Manager regardless of the OAuth version.

The resource information includes the following data:
v Request Method (For example, GET or POST)
v Scheme (For example, HTTP or HTTPS)
v Host header from the request
v Request Path

386 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Request Query
v Request Body

Only if the following conditions apply:
– The entity-body is single-part.
– The entity-body follows the encoding requirements of the

application/x-www-form-urlencoded content-type as defined by the
W3C HTML 4.0 specification. See http://www.w3.org/TR/1998/REC-
html40-19980424/.

– The HTTP request entity-header includes the Content-Type header
field set to application/x-www-form-urlencoded.

v Port
Only if the following conditions apply:
– It is present in the request URL.
– It is not the default port for the scheme. For example, if the scheme is

HTTP and the port is not 80.

WebSEAL uses the EAS plug-in to provide the required data and use the OAuth
feature in Tivoli Federated Identity Manager.

Error responses
An HTTP response indicates the type of error that has occurred when an action in
an authorization process fails.

In some circumstances, the following HTTP error responses must be returned to
the client:
v 400 Bad Request
v 401 Unauthorized
v 502 Bad Gateway

For the 401 response, an additional WWW-Authenticate header is added to the
response in the following format:
WWW-Authenticate: OAuth realm = <realm-name>

The HTML component of the responses is preinstalled from files that have been
specified in the EAS configuration.

See the WebSEAL Administration Guide for details on how to configure response
template files for the OAuth EAS.

Federation and partner configuration information
Tivoli Federated Identity Manager provides wizards to create OAuth 1.0 and
OAuth 2.0 federations and register a client as a partner. Complete the appropriate
worksheets before running the Federation and Partner creation wizards.

Use the appropriate worksheet to gather information when preparing for the
configuration process:
v “OAuth 1.0 service provider worksheet” on page 388
v “OAuth 1.0 service provider partner worksheet” on page 391
v “OAuth 2.0 service provider worksheet” on page 392
v “OAuth 2.0 service provider partner worksheet” on page 396

Chapter 27. OAuth planning overview 387

http://www.w3.org/TR/1998/REC-html40-19980424/
http://www.w3.org/TR/1998/REC-html40-19980424/
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/am611_webseal_admin527.htm#customizedauth

OAuth 1.0 service provider worksheet
Use this worksheet to plan your properties in creating an OAuth 1.0 federation,
and refer to it when running the wizard.

The following table provides descriptions of the OAuth 1.0 federation properties
and a space for you to write your values for each property.

Table 114. Worksheet for OAuth 1.0 federation configuration properties

Property Description Your value

Federation Name Specifies the name of the federation.
(Required)

Use a name that describes the purpose of
the federation. Enter an alphanumeric
value.

For example, a social networking site can
be an OAuth server. A photo printing
service that can print photos stored in the
social networking site can be an OAuth
client. The name of the federation might
be: MySocialNetwork

My Role Specifies your role in the federation.

Default: Service Provider

A service provider provides a service to
users. In most cases, the OAuth service
provider protects the resources, and
resource owners can authorize OAuth
Clients to access these protected resources.

Service Provider

Company Name Specifies the name of the company that is
creating this federation. The value can be
any string. You can also use the space
character. (Required)

Company URL Specifies the URL of the company that is
creating this federation. (Optional)

For example:

http://www.example.com

First Name and Last Name Specifies the name of the contact person of
the company in this federation. (Optional)

For example:

John Smith

Email Address Specifies the email address of the contact
person of the company in this federation.
(Optional)

For example:

johnsmith@example.com

388 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 114. Worksheet for OAuth 1.0 federation configuration properties (continued)

Property Description Your value

Phone Number Specifies the telephone number of the
contact person of the company in this
federation. (Optional)

For example:

+1-555-555-5555

Contact Type Specifies the type of contact. (Optional)

The choices are:

v Technical

v Support

v Administrative

v Billing

v Other

Other Information Specifies an optional text field for entering
additional information about the
federation contact. (Optional)

Federation Protocol Specifies the federation protocol.

Default: OAuth 1.0

OAuth 1.0

Point of contact server Specifies the URL address of the server
that acts as initial point of contact for
incoming requests. The address consists of
a protocol specification, the server host
name, and (optionally) a port number.
When WebSEAL is the point of contact
server, the WebSEAL junction is specified.
(Required)

Example value:

https://webseald.example.com/FIM

OAuth Client Provider Specifies the client provider for your
OAuth 1.0 federation. (Required)

You can select from one of the options:

v Clients managed by IBM Tivoli
Federated Identity Manager

v Clients managed by external client
provider

Default: Clients managed by IBM Tivoli
Federated Identity Manager

Chapter 27. OAuth planning overview 389

Table 114. Worksheet for OAuth 1.0 federation configuration properties (continued)

Property Description Your value

External Client Provider
Implementation

Specifies how OAuth clients are managed
externally. (Required if the Clients
managed by external client provider
option is selected as the OAuth Client
Provider)

You can write custom implementations for
the OAuth 1.0 Client Provider Extension
Point. Tivoli Federated Identity Manager
reads client configuration data from your
external configuration source. The external
client provider plug-in supports GUIXML
for parameter configuration.

Maximum allowable clock
skew between OAuth
server and client (seconds)

Specifies the maximum time difference
between the OAuth server and the OAuth
client.

This parameter accounts for clock skew
between:

v The clock of the OAuth server

v The clock of the OAuth client

Typically the skew time is a small number.
(Required)
Default: 300

Temporary credentials and
verification code lifetime
(seconds)

Specifies the validity of the temporary
credentials and verification code in
seconds. (Required)

Default: 300

Maximum token credentials
lifetime (seconds)

Specifies the OAuth access token lifetime
lapse in seconds. When this lifetime
expires, the client cannot access the
protected resource. The resource owner
must reauthorize the client to access the
protected resource. (Required)

Default: 604800

390 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 114. Worksheet for OAuth 1.0 federation configuration properties (continued)

Property Description Your value

Identity mapping options Specifies how you want to do identity
mapping for your OAuth federation.
(Required)

Select one of the following options:

v Use XSLT or Javascript mapping rules
for identity mapping

Select this option when you create an
XSLT or a Javascript mapping rule for
identity mapping.

v Use Tivoli Directory Integrator for
mapping

Select this option when you have a
Tivoli Directory Integrator assembly line
for the identity mapping.

v Use custom mapping module instance

Select this option when you have a
custom trust service module for the
identity mapping.

Identity mapping rules file Specifies the mapping rule file name if the
XSLT or JavaScript for identity mapping is
used.

Custom mapping modules Specifies the name of the module if the
custom mapping module is used as the
identity mapping rule.

Make note of the module name:

OAuth 1.0 service provider partner worksheet
Use this worksheet to plan your OAuth 1.0 partner properties, and refer to it when
running the wizard.

Note: Partner creation and configuration are applicable only to federations that use
Tivoli Federated Identity Manager as its client provider.

The following table provides descriptions of the OAuth 1.0 partner properties and
a space for you to write your values for each property.

Table 115. Worksheet for OAuth 1.0 partner configuration properties

Property Description Your value

OAuth Client Company
Name

Specifies the name of the company for this
partner. It can be any character string.
(Required)

Company URL Specifies the URL of the company for this
partner. (Optional)

For example:

http://www.example.com

First Name and Last Name Specifies the name of the contact person
for this partner. (Optional)

For example:

John Smith

Chapter 27. OAuth planning overview 391

Table 115. Worksheet for OAuth 1.0 partner configuration properties (continued)

Property Description Your value

Email Address Specifies the email address of the contact
person for this partner. (Optional)

For example:

johnsmith@example.com

Phone Number Specifies the telephone number of the
contact person for this partner. (Optional)

For example:

+1-555-555-5555

Contact Type Specifies the type of contact. (Optional)

The choices are:

v Technical

v Support

v Administrative

v Billing

v Other

Other Information Specifies an optional text field for entering
additional information about the partner
contact. Use any character string.
(Optional)

Client Identifier Specifies a unique identifier that is
supplied to the OAuth client to identify
itself to the OAuth server. You cannot
modify this value from this panel.
(Required)

Client Shared-Secret Specifies a secret shared between the
OAuth client and OAuth server that is
used for signing requests. This field is
automatically generated by the OAuth
server, but you can overwrite it with a
value of your choice. (Required)

Client Callback URI Specifies a callback URI to which the
resource owner is redirected to when
authorization is completed. An
out-of-band configuration to receive
callbacks can be supported by setting this
value to oob. If you do not register a
callback URI, Tivoli Federated Identity
Manager treats it as an oob. (Optional)

Override the registered
client callback URI

Specifies whether to override the
registered client callback URI. Select this
check box to override the registered client
callback URI with the callback URI
parameter in the request for temporary
credentials. (Optional)

OAuth 2.0 service provider worksheet
Use this worksheet to plan your properties in creating an OAuth 2.0 federation,
and refer to it when running the wizard.

392 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The following table provides descriptions of the OAuth 2.0 federation properties
and a space for you to write your values for each property.

Table 116. Worksheet for OAuth 2.0 federation configuration properties

Property Description Your value

Federation Name Specifies the name of the federation. (Required)

Use a name that describes the purpose of the federation.
Enter an alphanumeric value.

For example, a social networking site can be an
Authorization server. A photo printing service that can
print photos stored in the social networking site can be
an OAuth client. The name of the federation might be
MySocialNetwork.

My Role Specifies your role in the federation. (Required)

Default: Service Provider

A service provider provides a service to users. In most
cases, the OAuth service provider protects the resources,
and resource owners can authorize OAuth Clients to
access these protected resources.

Service Provider

Company Name Specifies the name of the company that is creating this
federation. The value can be any string. You can also use
the space character. (Required)

Company URL Specifies the URL of the company that is creating this
federation. (Optional)

For example:

http://www.example.com

First Name and Last Name Specifies the name of the contact person of the company
in this federation. (Optional)

For example:

John Smith

Email Address Specifies the email address of the contact person of the
company in this federation. (Optional)

For example:

johnsmith@example.com

Phone Number Specifies the telephone number of the contact person of
the company in this federation. (Optional)

For example:

+1-555-555-5555

Contact Type Specifies the type of contact. (Optional)

The choices are:

v Technical

v Support

v Administrative

v Billing

v Other

Chapter 27. OAuth planning overview 393

Table 116. Worksheet for OAuth 2.0 federation configuration properties (continued)

Property Description Your value

Other Information Specifies an optional text field for entering additional
information about the federation contact. (Optional)

Federation Protocol Specifies the federation protocol. (Required)

Default: OAuth 2.0

OAuth 2.0

Point of contact server Specifies the URL address of the server that acts as initial
point of contact for incoming requests. (Required)

The address consists of a protocol specification, the server
host name, and (optionally) a port number. When
WebSEAL is the point of contact server, the WebSEAL
junction is specified.

Example value:

https://webseald.example.com/FIM

OAuth Client Provider Specifies the client provider for your OAuth 2.0
federation. (Required)

You can select from one of the options:

v Clients managed by IBM Tivoli Federated Identity
Manager

v Clients managed by external client provider

Default: Clients managed by IBM Tivoli Federated
Identity Manager

External Client Provider
Implementation

Specifies how OAuth clients are managed externally.
(Required if the Clients managed by external client
provider is selected as the OAuth Client Provider)

You can write custom implementations for the OAuth 2.0
Client Provider Extension Point. Tivoli Federated Identity
Manager reads client configuration data from your
external configuration source. The external client provider
plug-in supports GUIXML for parameter configuration.

Authorization Grant Types Specifies the list of supported grant types for an OAuth
2.0 federation. (Required)

You must select at least one grant type:

v Authorization code

v Implicit grant

v Client credentials

v Resource owner password credentials

Default: Authorization code and implicit grant

394 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 116. Worksheet for OAuth 2.0 federation configuration properties (continued)

Property Description Your value

Maximum authorization
grant lifetime (seconds)

Specifies the maximum duration of a grant where the
resource owner authorized the OAuth client to access the
protected resource. (Required)

This field applies only to the authorization code and
resource owner password credentials grant types.

This lifetime affects the validity of an authorization code,
an access token, and a refresh token. The value for this
lifetime must be greater than the values specified for the
authorization code and access token lifetimes.

When this lifetime expires, the resource owner must
reauthorize the OAuth client to obtain an authorization
grant to access the protected resource.
Default: 604800

Authorization code
lifetime (seconds)

Specifies the validity of the authorization code in
seconds. (Required)

This option applies only to an authorization code grant
type. The authorization server generates an authorization
code and issues it to the OAuth client. The OAuth client
uses the authorization code in exchange for an access
token.
Default: 300

Issue refresh token Specifies whether a refresh token is issued to the OAuth
client. (Optional)

A refresh token obtains a new set of an access token and
a refresh token. This option applies only to authorization
code and resource owner password credentials grant
types.
Default: No (The check box is not selected)

OAuth Access Token Type Specifies the type of OAuth access token used by an
OAuth client to make protected resource requests.
(Required)

The default value is OAuth Bearer Token Type. A bearer
token is a security token that gives ownership to whoever
holds the token.
Default: OAuth Bearer Token Type

Access token lifetime
(seconds)

Specifies the validity of the access token in seconds.
(Required)

When this lifetime expires, the OAuth client cannot use
the current access token to access the protected resource.
Default: 3600

Chapter 27. OAuth planning overview 395

Table 116. Worksheet for OAuth 2.0 federation configuration properties (continued)

Property Description Your value

Identity mapping options Specifies how you want to do identity mapping for your
OAuth federation. (Required)

Select one of the following options:

v Use XSLT or Javascript mapping rules for identity
mapping

Select this option when you create an XSLT or a
Javascript mapping rule for identity mapping.

v Use Tivoli Directory Integrator for mapping

Select this option when you have a Tivoli Directory
Integrator assembly line for the identity mapping.

v Use custom mapping module instance

Select this option when you have a custom trust
service module for the identity mapping.

Identity mapping rules file Specifies the mapping rule file name if the XSLT or
JavaScript for identity mapping is used.

Custom mapping modules Specifies the name of the module if the custom mapping
module is used as the identity mapping rule.

Make note of the module
name:

OAuth 2.0 service provider partner worksheet
Use this worksheet to plan your properties for your OAuth 2.0 partner, and refer
to it when running the wizard.

Note: Partner creation and configuration are applicable only to federations that use
Tivoli Federated Identity Manager as its client provider.

The following table provides descriptions of the OAuth 2.0 partner properties and
a space for you to write your values for each property.

Table 117. Worksheet for OAuth 2.0 partner configuration properties

Property Description Your value

OAuth Client Company
Name

Specifies the name of the company for this
partner. It can be any character string.
(Required)

Company URL Specifies the URL of the company for this
partner. (Optional)

For example:

http://www.example.com

First Name and Last Name Specifies the name of the contact person for this
partner. (Optional)

For example:

John Smith

Email Address Specifies the email address of the contact
person for this partner. (Optional)

For example:

johnsmith@example.com

396 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 117. Worksheet for OAuth 2.0 partner configuration properties (continued)

Property Description Your value

Phone Number Specifies the telephone number of the contact
person for this partner. (Optional)

For example:

+1-555-555-5555

Contact Type Specifies the type of contact. (Optional)

The choices are:

v Technical

v Support

v Administrative

v Billing

v Other

Other Information Specifies an optional text field for entering
additional information about the partner
contact. Use any character string. (Optional)

Client Identifier Specifies a unique identifier supplied to the
client to identify itself to the authorization
server. This field is automatically generated by
the authorization server, but you can overwrite
it with an alphanumeric value of your choice.
(Required)

Client Shared-Secret Specifies a secret shared between the OAuth
client and the authorization server. This field is
automatically generated by the OAuth server,
but you can overwrite it with a value of your
choice. If you do not register the OAuth client a
secret, it becomes a public client. If you do
register a secret, the OAuth client becomes a
confidential client. (Optional)

Client Redirection URI Specifies a URI to which the resource owner is
redirected to when authorization is completed.
The authorization server returns grants or
tokens only to this registered redirection URI or
its child. (Optional)

Chapter 27. OAuth planning overview 397

398 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 28. Configuring an OAuth federation

To configure an OAuth federation, you must create the federation, add your
partner to your federation, and configure the enforcement point for the protected
resource.

Configuring an OAuth service provider federation
Use the federation wizard to create and configure a service provider federation.

Before you begin

Before beginning this procedure, complete the worksheet that is appropriate for the
OAuth protocol:
v “OAuth 1.0 service provider worksheet” on page 388
v “OAuth 2.0 service provider worksheet” on page 392

About this task

For detailed descriptions of the fields in the Federation wizard, see the online help.

Procedure
1. Log on to the Integrated Solutions Console.
2. Select Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations The Current Domain and Federations portlets open.
3. Click Create to start the Federation wizard.
4. Use the completed worksheet as a guide for completing the fields.
5. To proceed to the next panel, click Next.

a. (Optional) If you must go back to adjust a configuration setting, click
Back.

b. (Optional) If you want to end the configuration, click Cancel.
When you have completed all configuration panels, the Summary panel
opens.

6. Verify that the configuration settings are correct.
7. Click Finish. The Create Federation Complete portlet opens.
8. (Optional) If you are using the internal client provider, you can add your

partner now or later.
v Click Add partner to start the Partner wizard and register an OAuth client

to your OAuth service provider federation. See the steps described in
“Adding a partner to an OAuth federation” on page 402.

v Click Done to add your partner at a later time.
9. (Optional) If you are using an external client provider, click Done to return

the Federation portlet.
10. Click Load configuration changes to Tivoli Federated Identity Manager

runtime to deploy the changes.

© Copyright IBM Corp. 2006, 2013 399

Enabling two-legged OAuth validation
Configure the properties of an existing OAuth 1.0 federation when you want to
enable two-legged OAuth validation in your federation.

Before you begin

You must have an existing OAuth 1.0 federation before doing this task. To
configure an OAuth 1.0 federation, see “Configuring an OAuth service provider
federation” on page 399.

If you use the WebSphere Trust Association Interceptor as an enforcement point,
you must create a user in the WebSphere registry that matches the user name
returned by your mapping rule. See the WebSphere Application Server Version 6.0
Information Center for information about user creation. To understand how the
Security Token Service and enforcement point behave in a two-legged OAuth, see
“Security Token Service interface for two-legged OAuth flow” on page 372.

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federation panel shows a list of configured
federations.

3. Select an OAuth federation from the table and click Properties. The Federation
Properties panel opens.

4. Select the Enable two-legged OAuth validation check box.
5. Cick OK to exit the panel.
6. Click Load configuration changes to Tivoli Federated Identity Manager

runtime to reload your changes.

Results

Two-legged OAuth validation has been enabled in the federation.

Configuring a WebSEAL point of contact server for the OAuth
federation

If you use WebSEAL as the point of contact server for your OAuth federation, you
must configure it using the configuration utility tool.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Before starting this procedure:
v The WebSEAL point of contact profile must be activated.
v You must know the Tivoli Access Manager administration user (default:

sec_master) and administration user password.

400 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

About this task

The Federation wizard provides a button that you can use to obtain the
configuration utility tool. The procedure includes information on how to obtain
and run the utility. The utility configures endpoints on the WebSEAL server, creates
a WebSEAL junction, attaches the appropriate ACLs, and enables the necessary
authentication methods.

The steps are applicable for OAuth 1.0 and 2.0 federations.

To configure WebSEAL as the point of contact server, complete the steps in this
procedure:

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.
2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Notes:

v If Federal Information Processing Standards (FIPS) is enabled, you must
specify the secure socket connection factory. For example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

v For OAuth 1.0 federations: If an OAuth client sends OAuth protocol
parameters through the HTTP Authorization header, the OAuth server must
be able to accept the HTTP Authorization header. Use the -b ignore option
on the junction between WebSEAL and Tivoli Federated Identity Manager to
forward the HTTP Authorization header to the backend server. This option is
not required on the junction if the OAuth client uses either the query string
or POST body method.

v For OAuth 2.0 federations: If an OAuth client accesses a Policy Enforcement
Point that expects an HTTP Authorization header, the OAuth server must be
able to accept the HTTP Authorization header. Use the -b ignore option on
the junction between WebSEAL and Policy Enforcement Point to forward the
HTTP Authorization header to the backend server. This option is only
necessary if the Policy Enforcement Point reading the OAuth Authorization
header is on a server behind WebSEAL. It is not necessary to run the -b
ignore option when using the WebSEAL EAS enforcement point for OAuth
2.0.

Example

For example, when you have placed tfimcfg.jar file in /tmp, and the WebSEAL
instance name is default, the command is:
java -jar /tmp/tfimcfg.jar -action tamconfig -cfgfile webseald-default

For more information, see Appendix A, “tfimcfg reference,” on page 753.

Chapter 28. Configuring an OAuth federation 401

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use Tivoli Access
Manager WebSEAL component as the point of contact server. To configure
WebSphere as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select WebSphere.
4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Adding a partner to an OAuth federation
You can add a partner to your OAuth federation through the administration
console.

Before you begin

Note: You can add partners to a federation only if the federation is configured to
use the Tivoli Federated Identity Manager as the client provider.

Before beginning this procedure, complete the worksheet that is appropriate for the
OAuth protocol:
v “OAuth 1.0 service provider partner worksheet” on page 391
v “OAuth 2.0 service provider partner worksheet” on page 396

About this task

These steps apply to OAuth 1.0 and OAuth 20 federations with internal client
providers.

After completing the appropriate partner worksheet, use the Partner wizard in the
console to add the partner.

For detailed descriptions of the fields in the federation wizard, see the online help.

Procedure
1. Log on to the Integrated Solutions Console.
2. Select Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Partners. The Current Domain and Federation Partners portlet
opens.

3. Click Create to start the Federation Partner wizard.
4. Select the OAuth federation to which you want to add a partner.
5. Click Next.
6. Enter the contact properties.
7. Click Next.

402 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

8. Configure the OAuth client registration.
9. Click Next.

10. Click Next to see a summary of all the information you entered.
11. Verify that the settings are correct.
12. Click Finish. The Add Partner Complete portlet opens.

Note: The partner has been added to the federation, but it is disabled as a
security precaution.

13. Click Enable Partner to activate this partner.
14. Click Load configuration changes to Tivoli Federated Identity Manager

runtime to deploy the changes.

Configuring the WebSphere OAuth Trust Association Interceptor
You can configure the WebSphere Trust Association Interceptor (TAI) component to
act as an OAuth authorization enforcement point.

Before you begin

Review the properties that you must configure your enforcement point for either
an OAuth 1.0 or an OAuth 2.0 federation. See “OAuth Trust Association
Interceptor and Servlet Filter custom properties” on page 422 for more information.

About this task

You can use the WebSphere OAuth Trust Association Interceptor only to protect
access to WebSphere resources that require authentication for access. Trust
Association Interceptors are not started on every web request, but only when
authentication is required.

The steps are applicable for OAuth 1.0 and OAuth 2.0 federations.

Procedure
1. Copy the com.tivoli.am.fim.ws.oauth.jar file from the following locations:

v AIX, Linux, or Solaris
/opt/IBM/FIM/tools/oauth/com.tivoli.am.fim.ws.oauth.jar

v Windows
C:\Program Files\IBM\FIM\tools\oauth\com.tivoli.am.fim.ws.oauth.jar

to the following directories:
v AIX, Linux, or Solaris

/opt/IBM/WebSphere/AppServer/lib/ext

v Windows
C:\Program Files\IBM\WebSphere\AppServer\lib\ext

2. Log on to the WebSphere administration console.

For WebSphere 6.1:
select Security > Secure administration, applications and
infrastructure > Web security > Trust association.

For WebSphere 7 and WebSphere 8:
Select Security > Global security > Web and SIP security > Trust
association.

3. Select Enable trust association.

Chapter 28. Configuring an OAuth federation 403

4. Click Apply.
5. Click Interceptors.
6. Click New to add a new interceptor.
7. Enter the interceptor class name:

com.tivoli.am.fim.ws.oauth.tai.OAuthTAI

8. Click Apply.
9. Click Custom properties.

10. Add custom properties for your environment. See “OAuth Trust Association
Interceptor and Servlet Filter custom properties” on page 422 for a list of the
properties.

11. Save the configuration updates.
12. Restart WebSphere.

Configuring the WebSphere OAuth Servlet Filter
You can configure the WebSphere Servlet Filter component as an OAuth
authorization enforcement point.

About this task

This topic applies to OAuth 1.0 and OAuth 2.0 federations.

The OAuth Servlet Filter handles authentication for protected resources hosted in
WebSphere, the same way that the trust association interceptor does.

You can use the com.tivoli.am.fim.ws.oauth.jar file as your Servlet Filter
application library.

Procedure
1. Include the com.tivoli.am.fim.ws.oauth.jar file in your custom EAR

application.
2. Open the MANIFEST.MF file of the WAR application.
3. Specify com.tivoli.am.fim.ws.oauth.jar in the class path header field.
4. Save the manifest file.
5. Open the web deployment descriptor of the protected resource, which is the

web.xml file.
6. Add the filter with initialization parameters to match your environment. See

the topic on “OAuth Trust Association Interceptor and Servlet Filter custom
properties” on page 422 for information about the initialization parameters. The
Servlet Filter has the same parameters as the configuration properties for the
trust association interceptor.

Example

Figure 41 on page 405 shows a sample code (web.xml) for OAuth 1.0 that contains a
JSP that is protected by the Servlet Filter

404 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Figure 42 on page 406 shows a sample code (web.xml) for OAuth 2.0 that contains a
JSP that is protected by the Servlet Filter

<display-name>com.tivoli.am.fim.war.fimivt</display-name>
<filter>

<description>Performs OAuth authorization</description>
<display-name>OAuth servlet filter</display-name>
<filter-name>OAuth servlet filter</filter-name>
<filter-class>com.tivoli.am.fim.ws.oauth.sf.OAuthServletFilter</filter-class>

<init-param>
<description/>
<param-name>DefaultMode</param-name>
<param-value>OAuth10</param-value>

</init-param>
<init-param>

<description/>
<param-name>ModeParameterName</param-name>
<param-value>mode</param-value>

</init-param>
<init-param>

<description/>
<param-name>URIPrefix</param-name>
<param-value>/fimivt/oauth/sfprotected.jsp</param-value>

</init-param>
<init-param>

<description/>
<param-name>STSEndpoint</param-name>
<param-value>http://server.oauth.com/TrustServer/SecurityTokenService</param-value>

</init-param>
<init-param>

<description/>
<param-name>OAuthRealm</param-name>
<param-value>https://server.oauth.com//</param-value>

</init-param>
<init-param>

<description/>
<param-name>PointOfContact</param-name>
<param-value>https://server.oauth.com/</param-value>

</init-param>
<init-param>
<description/>
<param-name>DefaultFederationId</param-name>
<param-value>https://server.oauth.com/FIM/MySocialNetwork/oauth10</param-value>

</init-param>
<init-param>

<description/>
<param-name>OAuthTokenCacheSize</param-name>
<param-value>2</param-value>

</init-param></filter>
<init-param>

<description/>
<param-name>FederationIdRequestParameterName</param-name>
<param-value>FederationId</param-value>

</init-param>
</filter>

<filter-mapping>
<filter-name>OAuth servlet filter</filter-name>
<url-pattern>/oauth/sfprotected.jsp</url-pattern>

</filter-mapping>

Figure 41. Sample JavaScript code for OAuth 1.0

Chapter 28. Configuring an OAuth federation 405

WebSEAL OAuth EAS configuration
Configure the OAuth external authorization service (EAS), which is a WebSEAL
policy enforcement point (PEP), to support both OAuth 1.0 and OAuth 2.0.

<display-name>com.tivoli.am.fim.war.fimivt</display-name>
<filter>

<description>Performs OAuth authorization</description>
<display-name>OAuth servlet filter</display-name>
<filter-name>OAuth servlet filter</filter-name>
<filter-class>com.tivoli.am.fim.ws.oauth.sf.OAuthServletFilter</filter-class>
<init-param>

<description/>
<param-name>DefaultMode</param-name>
<param-value>OAuth20Bearer</param-value>

</init-param>
<init-param>

<description/>
<param-name>ModeParameterName</param-name>
<param-value>mode</param-value>

</init-param>
<init-param>

<description/>
<param-name>URIPrefix</param-name>
<param-value>/fimivt/oauth/sfprotected.jsp</param-value>

</init-param>
<init-param>

<description/>
<param-name>STSEndpoint</param-name>
<param-value>http://server.oauth.com/TrustServer/SecurityTokenService</param-value>

</init-param>
<init-param>

<description/>
<param-name>OAuthRealm</param-name>
<param-value>https://server.oauth.com//</param-value>

</init-param>
<init-param>

<description/>
<param-name>PointOfContact</param-name>
<param-value>https://server.oauth.com/</param-value>

</init-param>
<init-param>

<description/>
<param-name>DefaultFederationId</param-name>
<param-value>https://server.oauth.com/FIM/MySocialNetwork/oauth20</param-value>

</init-param>
<init-param>

<description/>
<param-name>FederationIdRequestParameterName</param-name>
<param-value>FederationId</param-value>

</init-param>
<init-param>

<description/>
<param-name>OAuthTokenCacheSize</param-name>
<param-value>2</param-value>

</init-param></filter>
<filter-mapping>

<filter-name>OAuth servlet filter</filter-name>
<url-pattern>/oauth/sfprotected.jsp</url-pattern>

</filter-mapping>

Figure 42. Sample JavaScript code for OAuth 2.0

406 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configure the WebSEAL OAuth external authorization service with one of the
following methods:
v Configuring the WebSEAL OAuth EAS manually
v “Configuring the WebSEAL OAuth EAS with the tfimcfg tool” on page 409

OAuth decisions are included as part of the standard authorization on WebSEAL
requests. Both configuration methods ensure that the correct data is passed to the
OAuth EAS for each request.
Related concepts:
“OAuth EAS overview” on page 385
The external authorization service (EAS) is a modular authorization service
plug-in. System designers can use IBM Tivoli Access Manager authorization as an
add-on to their own authorization models when they have the external
authorization service (EAS).

Configuring the WebSEAL OAuth EAS manually
Manually configure the OAuth external authorization service (EAS) for
circumstances when you do not want to use default values.

Before you begin

IBM® Tivoli® Access Manager for e-business version 6.1.1 or later must be installed.
If version 6.1.1 is installed, fix pack 5 or later must be applied.

Procedure
1. Enable OAuth EAS.

a. Open the default WebSEAL configuration file with any file editor.

UNIX or Linux
/opt/pdweb/etc/webseald-default.conf

Windows
C:\Program Files\Tivoli\PDWeb\etc\webseald-default.conf

b. Specify the <policy-trigger> entry in the [aznapi-external-authzn-services]
stanza. The OAuth EAS requires a single parameter that corresponds to the
configuration file that contains the OAuth EAS configuration data. The
plug-in name for the OAuth EAS is amwoautheas. Its library is contained in
the pdwebrte/lib directory.

For example:

UNIX or Linux
oauth_pop_trigger = /opt/pdwebrte/lib/libamwoautheas.so &
/opt/pdweb/etc/oauth_eas.conf

Windows
oauth_pop_trigger = C:\Program Files\Tivoli\PDWebRTE\bin\
libamwoautheas.dll & C:\Program Files\Tivoli\PDWeb\etc\
oauth_eas.conf

For more information, see “[aznapi-external-authzn-services] stanza” on page
425.

2. Configure the required authorization decision data.

Chapter 28. Configuring an OAuth federation 407

The OAuth EAS requires various data from the request. You can specify the
request as HTTP request elements in the [azn-decision-info] stanza. The
following configuration entries are required for the OAuth EAS to function
correctly:
[azn-decision-info]
##
The following information will be provided to the authorization
framework for every authorization request. This information
is required by the OAuth EAS when validating an OAuth token.
#
HTTP_REQUEST_METHOD = method
HTTP_REQUEST_SCHEME = scheme
HTTP_REQUEST_URI = uri
HTTP_HOST_HDR = header:host
HTTP_CONTENT_TYPE_HDR = header:content-type
HTTP_TRANSFER_ENCODING_HDR = header:transfer-encoding
HTTP_AZN_HDR = header:authorization

[aznapi-configuration]

resource-manager-provided-adi = AMWS_pb_

Note: The required request data is the same for all environments.
3. Create the required HTML response files.

For more information about the response file configuration parameters, see
“[oauth-eas] stanza” on page 428.

4. Configure the extra EAS-specific data.
The OAuth EAS requires specific configuration data to function correctly. This
data is contained in the [oauth-eas] stanza of the configuration file. The
configuration file name is provided as an argument to the [aznapi-external-
authzn-services] stanza for the amwoautheas configuration entry of the
WebSEAL configuration file.
a. Open the OAuth EAS configuration file that you specified in Step 1b with

any file editor.
b. Specify the default-fed-id, default-mode, realm-name, custom response files, and

server url. See “Sample EAS configuration data” on page 428 for an example
of the [oauth-eas] stanza with the configuration details.

Note: One of the required configuration entries in the [oauth-eas] stanza is
cluster-name. It specifies the name of the Tivoli Federated Identity Manager
cluster that hosts the OAuth service. You must configure a corresponding
[tfim-cluster:<cluster>] stanza to define the specified cluster.
See “[oauth-eas] stanza” on page 428 for more details on the required
configuration entries.

5. Define the policy to start the OAuth EAS. For example:
#pdadmin -a sec_master
Enter password: passw0rd
pop create test-pop
pop modify test-pop set attribute eas-trigger oauth_pop_trigger
pop attach /WebSEAL/webseal.example.com-default/oauth test-pop
server replicate
quit

Note: If OAuth Clients are send OAuth parameter data in the Authorization
header mechanism, set -b ignore flag for the junction which you attach to the
OAuth POP. For more information, see IBM WebSEAL Administration Guide.

6. Restart WebSEAL to apply the configuration changes.

408 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.itame.doc/am611_webseal_admin.htm

UNIX or Linux
/opt/pdweb/bin/pdweb_start restart

Windows
Use the Services Control Panel:

Start > Settings > Control Panel > Administrative Tools > Services

Configuring the WebSEAL OAuth EAS with the tfimcfg tool
Use the tfimcfg tool to easily configure WebSEAL OAuth EAS.

Before you begin

IBM® Tivoli® Access Manager for e-business version 6.1.1 or later must be installed.
If version 6.1.1 is installed, fix pack 5 or later must be applied.

Procedure
1. Run the tfimcfg tool.

Use the following tfimcfg attributes:
v For a WebSEAL server:

java -jar tfimcfg.jar -action tamconfig -cfgfile
WebSEAL_filename

v For a Web Gateway Appliance server:
java -jar tfimcfg.jar -action wgaconfig -cfgurl
Web_Gateway_Appliance_URL

See the tfimcfg reference for information about the tool parameters in the
Federated Identity Manager Information Center.
If you use the JRE provided with WebSphere Application Server, version 8.0 or
later, you might encounter an error when you use -action tamconfig. See the
"Known problems and solutions" topic in the Federated Identity Manager
Information Center for the required tfimcfg parameters.

2. Provide the following OAuth PEP specific information:
a. For the Federation to configure prompt, select OAuth policy enforcement

point.
b. Provide the following OAuth PEP parameters:

v OAuth external authorization service library
– Linux:

/opt/pdwebrte/lib/libamwoautheas.so

– AIX:
/opt/pdwebrte/lib/libamwoautheas.a

– Windows:
C:\Program Files\Tivoli\PDWebRTE\bin\amwoautheas.dll

v The ’400 Bad Request’ response page
v The ’401 Unauthorized’ response page
v The’502 Bad Gateway’ response page
v The default OAuth federation
v The default OAuth mode

c. Provide the following service parameters:
Provide the following service parameters:
v Optional ITFIM Security Token Service client user ID

Chapter 28. Configuring an OAuth federation 409

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html

v Optional ITFIM Security Token Service client password

d. The tfimcfg tool attempts to connect to the server that hosts OAuth service.
If the connection is invalid, you are prompted to enter the parameters again.

3. Attach the oauth-pop to the resource that OAuth PEP must protect. For
example, if MyJct is the resource to protect, run the following command:
#pdadmin -a sec_master
Enter password: passw0rd
pop attach /WebSEAL/localhost-default/MyJct oauth-pop
server replicate
quit

410 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 29. OAuth reference

This topic contains references about the enforcement points and their custom
properties, external authorization service (EAS) stanzas, and HTML template pages
for both. This topic applies to both OAuth 1.0 and OAuth 2.0.

OAuth STS Interface for Authorization Enforcement Points
Use the WS-Trust interface to directly contact an OAuth Security Token Service
(STS) trust chain in Tivoli Federated Identity Manager to validate a request for an
OAuth protected resource. An OAuth enforcement point intercepts requests for
OAuth protected resources. The OAuth enforcement point also validates the
request with Tivoli Federated Identity Manager, and passes the request through, if
it is valid. If the request is not valid, the enforcement point denies access to the
protected resource.

OAuth STS overview

You can develop your own customized policy enforcement point to work with the
Security Token Service (STS) trust chain through the STS interface. Some examples
of existing customized policy enforcement points are WebSphere Servlet Filter,
Trust Association Interceptor (TAI), and a reverse proxy such as WebSEAL. As
Tivoli Federated Identity Manager supports both OAuth 1.0 and OAuth 2.0
federations, you can develop customized policy enforcement points to work with
either type of the OAuth federations. The following diagram illustrates the
relationship between the OAuth STS trust chain and other OAuth components.

© Copyright IBM Corp. 2006, 2013 411

This section describes the process an OAuth enforcement point undertakes to
transform an HTTP request for an OAuth protected resource into a WS-Trust
message.

The transformation makes it possible for the Tivoli Federated Identity Manager STS
to validate the request. It also describes the possible responses an enforcement
point can receive from the STS and how to deal with them.

The interface and message structure is the same for both OAuth 1.0 and OAuth
2.0. However, this document provides distinct examples of each case to highlight
the different requirements.

The following information about the policy decision point in Tivoli Federated
Identity Manager must be made available to the enforcement point:
v The absolute URL of the Tivoli Federated Identity Manager trust service

endpoint. (For example: http://idp.tfim622.com:9080/TrustServer/
SecurityTokenService)

v The basic authentication user name and password for the Tivoli Federated
Identity Manager trust service (if required).

v The ProviderID of the Tivoli Federated Identity Manager federation the client
belongs to, which is used as the AppliesTo address for WS-Trust requests.
Optionally, the enforcement point accepts a provider ID from the OAuth client
as a request parameter to serve more than one federation concurrently.

Consumer Application
(often a web application)

(Policy Decision Point)

Tivoli Federated
Identity Manager

Security Token Service
(STS)

Single Sign-on
Protocol Service

(SPS)

Private resources

User

Policy Enforcement Point

STS
interface

Figure 43. OAuth STS trust chain workflow

412 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Authorization decision request (OAuth 1.0)

Configuration

For OAuth 1.0 requests, the enforcement point must additionally know the Tivoli
Federated Identity Manager OAuth 1.0 issuer address prefix
(urn:ibm:ITFIM:oauth:consumer:).

HTTP request

When an OAuth 1.0 client retrieves a protected resource with its access token, it
constructs a request similar to the following examples. These three examples are
logically the same request.

OAuth 1.0 Example 1 (authorization header)
POST /fimivt/oauth/sfprotected.jsp?username=steve HTTP/1.1
Host: idp.tfim622.com:9443
Content-Type: application/x-www-form-urlencoded
Authorization: OAuth oauth_consumer_key="YvMhsjmtEEi2gjv8Tqsl",

oauth_token="YPxa78JggdW7hvcFRJph",
oauth_signature_method="HMAC-SHA1",
oauth_timestamp="1302828764",
oauth_nonce="xWlY1PbsxjpiSZ4lVGVf",
oauth_signature="Jpo6apiLE9hVSa8GqBSHUjFt7lg="

OAuth 1.0 Example 2 (post body)
POST /fimivt/oauth/sfprotected.jsp?username=steve HTTP/1.1
Host: idp.tfim622.com:9443
Content-Type: application/x-www-form-urlencoded

oauth_consumer_key=YvMhsjmtEEi2gjv8Tqsl&oauth_token=YPxa78JggdW7hvcFRJph&
oauth_signature_method=HMAC-SHA1&oauth_timestamp=1302828764&
oauth_nonce=xWlY1PbsxjpiSZ4lVGVf&oauth_signature=Jpo6apiLE9hVSa8GqBSHUjFt7lg%3D

OAuth 1.0 Example 3 (query string)
POST /fimivt/oauth/sfprotected.jsp?username=steve&

oauth_consumer_key=YvMhsjmtEEi2gjv8Tqsl&oauth_token=YPxa78JggdW7hvcFRJph&
oauth_signature_method=HMAC-SHA1&oauth_timestamp=1302828764&
oauth_nonce=xWlY1PbsxjpiSZ4lVGVf&oauth_signature=Jpo6apiLE9hVSa8GqBSHUjFt7lg%3D HTTP/1.1

Host: idp.tfim622.com:9443
Content-Type: application/x-www-form-urlencoded

Authorization decision request

The OAuth 1.0 enforcement point is responsible for the following actions:
v Transform the HTTP request into a WS-Trust SOAP message.
v Send the WS-Trust SOAP message to the Tivoli Federated Identity Manager STS

for request validation.

The HTTP request is transformed into the following WS-Trust SOAP message:

OAuth 1.0 Token Validate Request (Request Security Token)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws
/2005/02/trust">

<wst:RequestType xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

</wst:RequestType>
<wst:Issuer xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08
/addressing">

urn:ibm:ITFIM:oauth:consumer:YvMhsjmtEEi2gjv8Tqsl
</wsa:Address>

</wst:Issuer>
<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org
/ws/2004/08/addressing">

Chapter 29. OAuth reference 413

<wsa:Address>https://idp.tfim622.com:9443/sps/oauth10fed
/oauth10</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:Base xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM
:1.0:stsuuser">

<stsuuser:Principal/>
<stsuuser:AttributeList/>
<stsuuser:ContextAttributes>

<stsuuser:Attribute name="oauth_token"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="port"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>9443</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="method"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>POST</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="username"
type="urn:ibm:names:ITFIM:oauth:query:param">
<stsuuser:Value>steve</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="path"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>/fimivt/oauth/sfprotected.jsp
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="scheme"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>https</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_nonce"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>xWlY1PbsxjpiSZ4lVGVf</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="host"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>idp.tfim622.com</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_timestamp"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>1302828764</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_consumer_key"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>YvMhsjmtEEi2gjv8Tqsl</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_signature"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>Jpo6apiLE9hVSa8GqBSHUjFt7lg=
</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_signature_method"
type="urn:ibm:names:ITFIM:oauth:param">

<stsuuser:Value>HMAC-SHA1</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:ContextAttributes>
</stsuuser:STSUniversalUser>

</wst:Base>
</wst:RequestSecurityToken>

</soapenv:Body>
</soapenv:Envelope>

The following attributes are defined by the WS-Trust specification. They are used
by Tivoli Federated Identity Manager to identify the federation associated with this
request and to identify the OAuth 1.0 client.

The issuer address element (highlighted in italics) must be set to the Tivoli
Federated Identity Manager OAuth 1.0 issuer address prefix
(urn:ibm:ITFIM:oauth:consumer:) with the consumer key appended to the end.

414 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The AppliesTo address element (highlighted with underline) must be set to the
Provider ID of the OAuth 1.0 federation at Tivoli Federated Identity Manager. This
element can be found on the federation properties page.

The following attributes are defined by the OAuth 1.0 protocol. The attributes that
are not marked as optional are mandatory in the WS-Trust message that is sent to
Tivoli Federated Identity Manager.

The attributes must be appended to the ContextAttributes section of the
STSUniversalUser within the WS-Trust Request Security Token, and must have the
type urn:ibm:names:ITFIM:oauth:param. If one of the mandatory parameters is
missing from the request from the OAuth 1.0 client, the enforcement point does
not validate the request with Tivoli Federated Identity Manager. It can instantly
return an HTTP 400 Bad Request status code, and can also include a description of
the error in the body.
v consumer_key

v nonce

v realm (optional)
v signature

v signature_method

v timestamp

v token (optional only if two-legged OAuth is enabled)
v version (optional)

The following attributes are defined by the OAuth 2.0 protocol. The attributes are
mandatory in the WS-Trust message sent to Tivoli Federated Identity Manager. The
attributes are also used to reconstruct the original signature base string URI of the
request.

The attributes must be appended to the ContextAttributes section of the
STSUniversalUser within the WS-Trust Request Security Token, and must have the
type urn:ibm:names:ITFIM:oauth:request.
v host - host header from the request
v method - the HTTP method of the request (GET/POST)
v path - the requested path
v port - the port number on the host (Only if the request is received on a

non-standard HTTP/HTTPS port.)
v scheme - (HTTP/HTTPS)

Any additional parameters that the OAuth 1.0 enforcement point finds in the
request must be appended to the ContextAttributes section of the
STSUniversalUser within the WS-Trust Request Security Token. Additional
parameters can be a query, or post body parameters that are not of OAuth 1.0. The
type value is determined by the following table.

HTTP parameter location Attribute type value

URL Query String Parameters urn:ibm:names:ITFIM:oauth:query:param

HTTP Request Body Parameters urn:ibm:names:ITFIM:oauth:body:param

Post body parameters must be included only if the following conditions are met:
v The entity-body is single-part.

Chapter 29. OAuth reference 415

v The entity-body follows the encoding requirements of the “application/x-www-
form-urlencoded” content-type as defined by [W3C.REC-html40-19980424].

v The HTTP request entity-header includes the “Content-Type” header field set to
“application/x-www-form-urlencoded”

Authorization decision request (OAuth 2.0)

Configuration

For OAuth 2.0 requests, the enforcement point must additionally know the Tivoli
Federated Identity Manager OAuth 2.0 issuer address prefix
(urn:ibm:ITFIM:oauth20:token:).

HTTP request

When an OAuth 2.0 client retrieves a protected resource with its access token, it
constructs a request similar to any of the following examples. Each of these three
examples are logically the same request. All that differs is the transmission
mechanism (HTTP header, query string, post body) for sending the OAuth 2.0
bearer access token:

OAuth 2.0 Example 1 (Access token in authorization header)
POST /fimivt/oauth/sfprotected.jsp HTTP/1.1
Host: idp.tfim622.com:9443
Authorization: Bearer YPxa78JggdW7hvcFRJph
Content-Type: application/x-www-form-urlencoded

username=steve

OAuth 2.0 Example 2 (Access token in post body)
POST /fimivt/oauth/sfprotected.jsp HTTP/1.1
Host: idp.tfim622.com:9443
Content-Type: application/x-www-form-urlencoded

username=steve&access_token=YPxa78JggdW7hvcFRJph

OAuth 2.0 Example 3 (Access token in query string)
POST /fimivt/oauth/sfprotected.jsp?access_token=YPxa78JggdW7hvcFRJph HTTP/1.1
Host: idp.tfim622.com:9443
Content-Type: application/x-www-form-urlencoded

username=steve

Authorization decision request

The OAuth 2.0 enforcement point is responsible for the following actions:
v Transform HTTP requests into a WS-Trust SOAP message.
v Send the WS-Trust SOAP message to the Tivoli Federated Identity Manager STS

for request validation.

The HTTP request is transformed into the following WS-Trust SOAP message:

OAuth 2.0 Token Validate Request (Request Security Token)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<wst:RequestSecurityToken xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wst:RequestType xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
http://schemas.xmlsoap.org/ws/2005/02/trust/Validate

</wst:RequestType>
<wst:Issuer xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
/08/addressing">

urn:ibm:ITFIM:oauth20:token:bearer
</wsa:Address>

</wst:Issuer>

416 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004
/09/policy">

<wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap
.org/ws/2004/08/addressing">

<wsa:Address>https://idp.tfim622.com:9443/sps/oauth20fed/oauth20</wsa:Address>
</wsa:EndpointReference>

</wsp:AppliesTo>
<wst:Base xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal/>
<stsuuser:AttributeList/>
<stsuuser:ContextAttributes>

<stsuuser:Attribute name="access_token"
type="urn:ibm:names:ITFIM:oauth:param">
<stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="username"
type="urn:ibm:names:ITFIM:oauth:body:param">
<stsuuser:Value>steve</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="port"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>9443</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="method"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>POST</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="path"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>/fimivt/oauth/sfprotected.jsp</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="scheme"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>https</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="host"
type="urn:ibm:names:ITFIM:oauth:request">
<stsuuser:Value>idp.tfim622.com</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:ContextAttributes>

</stsuuser:STSUniversalUser>
</wst:Base>

</wst:RequestSecurityToken>
</soapenv:Body>

</soapenv:Envelope>

The following attributes are defined by the WS-Trust specification. They are used
by Tivoli Federated Identity Manager to identify the federation associated with this
request and to identify the type of OAuth 2.0 access token being used.
v The Issuer address element (highlighted in bold) must be set to the Tivoli

Federated Identity Manager OAuth 2.0 issuer address prefix
(urn:ibm:ITFIM:oauth20:token:). The token type must be appended at the end,
separated by a colon. Currently, the only token type supported is bearer, which
means the issuer address must be set to urn:ibm:ITFIM:oauth20:token:bearer.

v The AppliesTo address element (highlighted in italics) must be set to the
Provider ID of the OAuth federation at Tivoli Federated Identity Manager. This
element can be found on the federation properties page.

The access_token attribute with type urn:ibm:names:ITFIM:oauth:param is
mandatory in the WS-Trust message sent to Tivoli Federated Identity Manager. It
must be appended to the ContextAttributes section of the STSUniversalUser
within the WS-Trust Request Security Token.

If access_token attribute is missing from the request from the OAuth 2.0 client, the
enforcement point does not validate the request with Tivoli Federated Identity
Manager. It can instantly return an HTTP 400 Bad Request status code and
optionally can include a description of the error in the body.

Chapter 29. OAuth reference 417

Note: If the access token is included in the authorization header in the
Authorization: Bearer <token> format, the token must still be added to the
ContextAttributes section of the STSUU. The same format must be used as if the
access token was sent through a query string or post body.

The following attributes are not mandatory in the WS-Trust message sent to Tivoli
Federated Identity Manager for OAuth 2.0. However, they might be useful to a
custom mapping rule that is being ran by Tivoli Federated Identity Manager.

The following attributes must be appended to the ContextAttributes section of the
STSUniversalUser within the WS-Trust Request Security Token, and must have the
type urn:ibm:names:ITFIM:oauth:request.
v method - the HTTP method of the request (GET/POST)
v scheme - (http/https)
v host - host header from the request
v port - the port number on the host (only if it is a non-standard port. For

example, not 80 if the method is HTTP or not 443 if the method is HTTPS)
v path - the requested path

Any additional parameters that the OAuth 2.0 enforcement point finds in the
request, such as query or post body parameters that are not of OAuth 2.0, must be
appended to the Context Attribute section of the STSUniversalUser within the
WS-Trust Request Security Token. The type value is determined by the following
table.

In an OAuth 1.0 request, additional request parameters are required to be
appended to the STSUniversalUser to calculate the correct request signature. In
OAuth 2.0 requests, these parameters are NOT required. However, they might be
useful to a custom mapping rule being ran by Tivoli Federated Identity Manager,
and so must be appended.

HTTP Parameter Location Attribute Type Value

URL Query String Parameters urn:ibm:names:ITFIM:oauth:query:param

HTTP Request Body Parameters urn:ibm:names:ITFIM:oauth:body:param

Post body parameters must be included only if the following conditions are met:
v The entity-body is single-part.
v The entity-body follows the encoding requirements of the “application/x-www-

form-urlencoded”content-type as defined by [W3C.REC-html40-19980424].
v The HTTP request entity-header includes the “Content-Type” header field set to

“application/x-www-form-urlencoded”.

Authorization decision response (OAuth 1.0 and OAuth 2.0)

The SOAP message response from Tivoli Federated Identity Manager (regardless of
OAuth version) echoes all the context attributes sent in the original request and
some extra response context attributes.

OAuth Token Validate Response (RSTR)
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Body>
<wst:RequestSecurityTokenResponse wsu:

418 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Id="uuid56a54e7c-012f-1207-9133-c24cad886d75"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401
-wss-wssecurity-utility-1.0.xsd">

<wsp:AppliesTo xmlns:wsa="http://schemas.xmlsoap.org/ws/2004
/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

<wsa:EndpointReference>
<wsa:Address>https://idp.tfim622.com:9443/sps/oauth10fed
/oauth10</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wst:RequestedSecurityToken>

<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names
:ITFIM:1.0:stsuuser">

<stsuuser:Principal/>
<stsuuser:AttributeList/>
<stsuuser:ContextAttributes>

<stsuuser:Attribute name="authorized"
type="urn:ibm:names:ITFIM:oauth:response:decision">

<stsuuser:Value>TRUE</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="expires" type="urn:ibm
:names:ITFIM:oauth:response:decision">

<stsuuser:Value>2011-04-22T00:52:18Z</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="scope" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>email</stsuuser:Value>
<stsuuser:Value>first</stsuuser:Value>
<stsuuser:Value>last</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="username" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>wasadmin</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="username_is_self"
type="urn:ibm:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>FALSE</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="oauth_token" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>YPxa78JggdW7hvcFRJph</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="recovered_state" type="urn:ibm
:names:ITFIM:oauth:response:attribute">

<stsuuser:Value>State storage time was:
2011-04-15T00:52:18Z</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="state_id" type="urn:ibm
:names:ITFIM:oauth:state">

<stsuuser:Value>2cJsZ3QhXV5rDVZHNePp</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:ContextAttributes>
<stsuuser:AdditionalAttributeStatement id=""/>

</stsuuser:STSUniversalUser>
</wst:RequestedSecurityToken>
<wst:Status>

<wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status
/valid</wst:Code>

</wst:Status>
</wst:RequestSecurityTokenResponse>

</soapenv:Body>
</soapenv:Envelope>

The following context attributes returned to the enforcement point by Tivoli
Federated Identity Manager relate to the authorization decision. It also has the
attribute type urn:ibm:names:ITFIM:oauth:response:decision highlighted in italics
in the previous RSTR example. It is up to the enforcement point to decide whether
to down-stream these attributes to the OAuth protected resource.

Chapter 29. OAuth reference 419

These attributes are primarily for the use of the enforcement point itself to
determine the authorization status.

Context attributes Description

authorized The value is set to TRUE if the OAuth request is valid and
authorized; FALSE if otherwise.

expires The UTC time that the access token used in the request is no
longer valid. This attribute is not present for OAuth 1.0
two-legged as that flow does not use an access token.

The following context attributes returned to the enforcement point by Tivoli
Federated Identity Manager must be down-streamed from the enforcement point to
the OAuth protected resource. They might be appended to the original HTTP
request in any way deemed suitable by the enforcement point and the protected
resource. This way, the protected resource can retrieve them (for example, as
additional HTTP headers).

These context attributes have the attribute type
urn:ibm:names:ITFIM:oauth:response:attribute (highlighted in bold in the
previous RSTR example).

Custom mapping rules that are ran after the OAuth trust chain might also append
attributes with this type. Therefore, any attribute with this type must be
down-streamed to the requested protected resource.

Context attributes Description

access_token (OAuth
2.0)

The OAuth access token used in the protected resource request.

client_type (OAuth
2.0)

The type of client that this token was issued to, can be either
public or confidential. Public clients are clients that do not have
client credentials and therefore cannot authenticate to the
authorization server.

oauth_token_client_id
(OAuth 2.0)

The unique identifier of the client to which the current access
token was issued. This parameter is not returned for OAuth 1.0
requests as the consumer key is sent in the initial request.
Therefore, it is still in the STSUU with the name consumer_key and
the type urn:ibm:names:ITFIM:oauth:request.

oauth_token (OAuth
1.0)

The OAuth access token used in the protected resource request.
This attribute is not present for OAuth 1.0 two-legged as that flow
does not use an access token.

scope A list of strings that represents the resource scope authorized by
the user at the OAuth resource owner authorization step. The
OAuth protected resource can use this attribute to determine
which resources to return in the response. This attribute is only
present for OAuth flows that include a user authorization step.

username The name of the user who authorized the OAuth token to access
their protected resources on their behalf. With OAuth flows that
do not involve a separate resource owner, this value is the client
identifier.

Additional attributes with the type
urn:ibm:names:ITFIM:oauth:response:attribute are sometimes appended by a
custom mapping rule, such is the case with recovered_state and username_is_self
in the example.

420 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The state_id context attribute returned to the enforcement point by Tivoli
Federated Identity Manager is used by a custom mapping rule that is ran after the
OAuth trust chain. It has the attribute type urn:ibm:names:ITFIM:oauth:state
(highlighted with an underline) and can be ignored by the enforcement point.

The state_id attribute is a unique identifier for the current OAuth token used to
store state information.

If the state_id attribute is required by the OAuth protected resource, a custom
mapping rule can be implemented to make a copy of this attribute. The type can
be changed to urn:ibm:names:ITFIM:oauth:response:attribute from the custom
mapping rule to ensure that it is down-streamed to the resource.

Error responses

An OAuth enforcement point can do as much or as little validation of OAuth
requests as it prefers. Any validation it performs is repeated by Tivoli Federated
Identity Manager. Doing some validation before sending an authorization request
to Tivoli Federated Identity Manager might improve performance. The following
validation must be performed by the enforcement point before sending a request to
Tivoli Federated Identity Manager.
v Validate that some OAuth data is present. If not, return an HTTP 401

Unauthorized status code.
v Validate that none of the required OAuth parameters are missing. If any of them

are not present in the request, return an HTTP 400 Bad Request status code.
v Validate that none of the required OAuth parameters occur more than once in

the request. They must also occur only in the one component of the request; for
example, the query string or the authorization header. If the validation fails,
return an HTTP 400 Bad Request status code.

The enforcement point must return an HTTP 401 Unauthorized status code to the
OAuth client if the following scenarios occur:
v The enforcement point sends an authorization request to Tivoli Federated

Identity Manager.
v The enforcement point receives a SOAP message with an authorized context

attribute that has a value of FALSE.

The enforcement point must return an HTTP 503 Service Unavailable status code
to the OAuth client if the following scenarios occur:
v Tivoli Federated Identity Manager encounters an error.
v Tivoli Federated Identity Manager does not return a constructed SOAP message

or the SOAP message does not contain an authorized context attribute.

The enforcement point might also optionally return a WWW-Authenticate HTTP
header to indicate its support for OAuth.

Flow chart

The following chart shows the expected workflow of an OAuth authorization
enforcement point.

Chapter 29. OAuth reference 421

OAuth Trust Association Interceptor and Servlet Filter custom
properties

You must customize the property of the WebSphere Trust Association Interceptor
(TAI) or the Servlet Filter (SF) component as an enforcement point to your OAuth
federation.

Figure 44. OAuth authorization enforcement point workflow

422 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The enforcement points properties are used to call the Tivoli Federated Identity
Manager Security Token Service (STS) for validation and authorization.

This topic lists the configuration properties of the WebSphere TAI and SF
components for both OAuth 1.0 and OAuth 2.0 federations.

Table 118. Trust association interceptor and servlet filter properties
Property Name Description Example

FederationIdRequestParameterName Specifies the name of the request parameter.
(Optional)

The value of the corresponding runtime request
parameter is used as the AppliesTo address in calls
to the STS. It must match the Provider ID of the
federation for which the OAuth client is a member.

Customization of the request parameter name can be
done through this property. You can modify the
protected resource URL to include a query string
parameter with:

v a name matching the value of this configuration
property, and

v a value matching the Provider ID of the federation
that the OAuth client is a member of.

This property makes it possible for one enforcement
point to service requests for more than one
federation at a time.

If this property is not supplied, the value of the
DefaultFederationId property is used as the static
Provider ID value in calls to the STS.

FederationId

Example usage:
sfprotected.jsp?FederationId=https://
server.oauth.com/FIM/MySocialNetwork/oauth20

DefaultFederationId Sets the default value of the Federation Provider ID
used for communication with the STS. (Required)

It is used when:

v the FederationIdRequestParameterName property
is not provided.

v there is no request parameter in the incoming
request with a name matching the value of the
FederationIdRequestParameterName property.

https://server.oauth.com/FIM/MySocialNetwork/
oauth20

DefaultMode Determines how to validate a request against either
OAuth 1.0 or OAuth 2.0. (Required)

It is used to distinguish the different versions of an
OAuth protocol. The supported token type for an
OAuth 2.0 protocol is also specified in the value.

It is used when:

v the ModeParameterName property is not
provided.

v there is no request parameter in the incoming
request with a name matching the value of the
ModeParameterName property.

For OAuth 1.0:
OAuth10

For OAuth 2.0:
OAuth20Bearer

Chapter 29. OAuth reference 423

Table 118. Trust association interceptor and servlet filter properties (continued)
Property Name Description Example

ModeParameterName Specifies the name of the request parameter.
(Optional)

The request parameter name can be customized to
carry the mode value. You can modify the protected
resource URL to include a query string parameter
with:

v a name matching the value of this configuration
property, and

v a value matching the Provider ID of the federation
that the OAuth client is a member of.

A single policy enforcement point (PEP) can service
both OAuth 1.0 and OAuth 2.0 federations at the
same time if these conditions occur:

v the ModeParameterName property used with the
FederationIdRequestParameterName property.

v the OAuth clients send the FederationId and mode
parameters in the request for the protected
resource.

If this property is not supplied, the value of the
DefaultMode property is used to determine whether
to validate the incoming request as OAuth 1.0 or
OAuth 2.0.

mode

Example usage:

For OAuth 1.0:
sfprotected.jsp?mode=OAuth10

For OAuth 2.0:
sfprotected.jsp?mode=OAuth20Bearer

OAuthRealm Specifies the realm in the WWW-Authenticate header
that is sent back to a request that does not contain an
authorized OAuth token. (Required)

https://server.oauth.com/FIM/

OAuthTokenCacheSize Specifies the maximum size of a cache. This cache is
used to map OAuth 2.0 bearer tokens to results, such
as token existence and expiry time, from the Security
Token Services call. (Optional)

2

PointOfContact Specifies the point of contact URL for clients of the
server. The IBM HTTP Server or WebSEAL can be
used in front of WebSphere, in which case the URL is
going to look different from the example. (Optional)

https://server.oauth.com/FIM/

STSEndpoint Specifies the WS-Trust 1.2 endpoint of the STS.
(Optional)

https://server.oauth.com/FIM/

STSUsername Specifies the basic authentication user name for
communication with the STS. (Required depending
on the security of the TrustClientInternalRole in
the ITFIMRuntime.)

wasadmin

STSPassword Specifies the basic authentication password for
communication with the STS. (Required depending
on the security of the TrustClientInternalRole in
the ITFIMRuntime.)

password

STSSSLConfiguration Specifies a WebSphere SSL configuration object that
contains keys suitable for server, and client if
necessary, SSL authentication of the WS-Trust URL.
(Required only if HTTPS URL to STS endpoint is
used.)

mysslcfg

URIPrefix Specifies a string that is compared with the start of
the request URI to see if the TAI or servlet filter must
protect this request. To protect ALL resources, use /.
(Required)

/snoop

OAuth EAS stanza reference
This topic contains the stanza reference for the OAuth EAS configuration.
v [aznapi-external-authzn-services] stanza
v [azn-decision-info] stanza
v [aznapi-configuration] stanza
v [oauth] stanza

424 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

[aznapi-external-authzn-services] stanza

policy-trigger

Syntax
policy-trigger = plug-in_location [-weight N [& plug-in_parameters]]

Description

Defines the external authorization service.

Options

policy-trigger

Any string that is recognized as a valid key name. Stanza key names
cannot contain white space or the open bracket ([) and close bracket (])
characters. The bracket characters are used to define new stanza names.
The policy-trigger is case sensitive for action set definitions because the
actions themselves are case sensitive. However, the policy-trigger is case
insensitive if the trigger is a protected object policy (POP) attribute.

plug-in_location

The path name to the shared library or DLL module that contains the
implementation of the plug-in for the specified policy trigger. The path
name can be in a truncated form if the external authorization service is to
be loaded by clients on multiple platforms. In this case, the service
dispatcher searches for the plug-in using platform-specific prefixes and
suffixes to match DLL names.

The name of the OAuth EAS plug-in is amwoautheas and its library is
contained in the pdwebrte/lib directory. For example:
/opt/pdwebrte/lib/libamwoautheas.so

N

The weight parameter is an unsigned size_t value and is optional. The
value signifies the weight that any decision returned by this external
authorization service is given in the entire decision process.

plug-in_parameters

Optionally, the external authorization service can be passed additional
initialization information in the form of arguments. The arguments must be
preceded by the ampersand "&". The authorization service takes the
remainder of the string following the ampersand &, breaks the string up
into white space separated tokens, and passes the tokens directly to the
administration service's initialization interface, azn_svc_initialize(), in
the argv array parameter. The number of strings in the argv array is
indicated by the argc function parameter.

A single parameter is required by the OAuth EAS. This parameter
corresponds to the name of the OAuth EAS configuration file. That is, the
file that contains the [oauth-eas] stanza and the corresponding
[tfim-cluster:<cluster>] stanza.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Chapter 29. OAuth reference 425

Default value

None.

Example

The following example is an operation-based trigger with a user-defined action
group of Printer and the actions rxT within that group. To specify the primary
action group you would specify only :rxT. The primary action group can be
represented with an empty action group name or the string primary can be used
explicitly. All lowercase letters are required if primary is used explicitly. Any
policy-trigger that does not contain a colon (:) character is considered to be a POP
attribute name.
Printer:rxT = eas_plugin -weight 60 & -server barney

The following example is for a POP attribute trigger called webseal_pop_trigger.
When a POP that contains a reference to this string is encountered, the appropriate
external authorization service is called to take part in the access decision.
webseal_pop_trigger = eas_plugin_2 -weight 70 & -hostname fred

Note that in order for the above POP attribute trigger to work, POP configuration
must have been completed previously by the secure domain administrator, using
the pdadmin pop commands.

The following is an example configuration for the OAuth EAS, where the file
/opt/pdweb/etc/oauth_eas.conf contains the [oauth-eas] stanza and the
corresponding [tfim-cluster:<cluster>] stanza. This example is entered as one line
in the WebSEAL configuration file:
webseal_pop_trigger = /opt/pdwebrte/lib/libamwoautheas.so & /opt/pdweb/etc
/oauth_eas.conf

[azn-decision-info] stanza

azn-decision-info

Syntax
<attr-name> = <http-info>

Description

This stanza defines any extra information that is available to the authorization
framework when making authorization decisions. This extra information can be
obtained from various elements of the HTTP request, namely:
v HTTP method
v HTTP scheme
v Request URI
v HTTP headers
v POST data

If the requested element is not in the HTTP request, no corresponding attribute is
added to the authorization decision information.

426 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Options

<attr-name>
The name of the attribute that contains the HTTP information.

<http-info>
The source of the information. It can be one of the following values:
v method
v scheme
v uri
v header:<header-name>
v post-data:<post-data-name>

Usage

This stanza entry is required when configuring OAuth EAS authentication and
must contain the following elements:
HTTP_REQUEST_METHOD = method
HTTP_REQUEST_SCHEME = scheme
HTTP_REQUEST_URI = uri
HTTP_HOST_HDR = header:host
HTTP_CONTENT_TYPE_HDR = header:content-type
HTTP_TRANSFER_ENCODING_HDR = header:transfer-encoding
HTTP_AZN_HDR = header:authorization

Default value

N/A

Example
HTTP_REQUEST_METHOD = method
HTTP_HOST_HEADER= header:Host

[aznapi-configuration] stanza

resource-manager-provided-adi

Syntax
resource-manager-provided-adi = prefix

Description

A list of string prefixes that identify Access Decision Information (ADI) to be
supplied by the resource manager (in this case, WebSEAL).

Options

prefix The default settings tell the authorization engine that when it requires ADI
with the prefixes AMWS_hd_, AMWS_qs_ ,or AMWS_pb_ to evaluate a
boolean authorization rule, and the ADI is not available in either the
credential or application context passed in with the access decision call,
that the engine should fail the access decision and request that the resource
manager retry the request and provide the required data in the application
context of the next request.

Chapter 29. OAuth reference 427

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

AMWS_hd_, AMWS_pb_, AMWS_qs_

Example
resource-manager-provided-adi = AMWS_hd_
resource-manager-provided-adi = AMWS_pb_
resource-manager-provided-adi = AMWS_qs_

[oauth-eas] stanza
You can configure the [oauth-eas] stanza to support OAuth authorization decisions
as part of WebSEAL requests.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Note: This stanza can be included in a separate configuration file that is specified
for amwoautheas in the [aznapi-external-authzn-services] stanza.

Sample EAS configuration data
The [oauth-eas] stanza contains the configuration details for the OAuth EAS.

The example shows the OAuth EAS configuration data with the default federation
id and mode set for an OAuth 1.0 federation.
[oauth-eas]

The maximum number of OAuth 2.0 bearer token authorization decisions to cache.
This EAS has a built in cache for storing authorization decisions so that
repeated use of the same OAuth 2.0 bearer token does not require repeated
requests to TFIM. Bearer token decisions can be cached because they do not
require signing of the request, unlike OAuth 1.0 requests. The lifetime of the
cache entry is based on the Expires attribute returned by TFIM. If this
attribute is not returned, the decision will not be cached.
#
This EAS implements a Least Recently Used cache, meaning the decision
associated with the least recently used bearer token will be forgotten when a
new bearer token decision is cached. A cache-size of 0 will disable caching of
authorization decisions
cache-size = 0

The Provider ID of the default OAuth federation at TFIM. If a Provider ID
is not provided in the request using the fed-id-param option, this provider
ID will be used for OAuth requests. The Provider ID of a federation can be
found on the federation properties page.
default-fed-id = https://server.oauth.com/FIM/sps/oauthfed/oauth10

The name of the request parameter that can be used to override the
default-fed-id option configured above. By deleting this configuration
option, you can enforce that the default fed id is always used.
fed-id-param = FederationId

The default OAuth mode that this EAS will operate under. It affects the
validation of request parameters, as well as the construction of the RST

428 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

sent to TFIM. The default mode can be overriden for an individual request
by providing a valid mode value [OAuth10|OAuth20Bearer] in a request
parameter with the name specified in the mode-param option below.
default-mode = OAuth10

The name of the request parameter that can be used to override the
default-mode option configured above. By deleting this configuration
option, you can enforce that the default mode is always used.
mode-param = mode

The name of the OAuth realm which will be used in a 401 request
for OAuth data.
realm-name = oauth-realm

The name of the file which contains the body used when constructing a
’400 Bad Request’ response. This response will be generated when
required OAuth elements are missing from a request.
bad-request-rsp-file = /EAS/oauth_eas/400.html

The name of the file which contains the body used when constructing a
’401 Unauthorized’ response. This response will be generated when:
- all OAuth data is missing from a request, or
- the OAuth data fails validation.
unauthorized-rsp-file = /EAS/oauth_eas/401.html

The name of the file which contains the body used when constructing a
’502 Bad Gateway’ response. This response will be generated when
TFIM fails to process the request.
bad-gateway-rsp-file = /EAS/oauth_eas/502.html

The name of the TAM trace component which is used by the EAS.
trace-component = pdweb.oauth

Should the native TAM ACL policy still take affect, in addition to the
OAuth authorization?
apply-tam-native-policy = false

The name of the TFIM cluster which houses this OAuth service. There should
also be a corresponding [tfim-cluster:<cluster>] stanza which contains the
definition of the cluster.
cluster-name = oauth-cluster

[tfim-cluster:oauth-cluster]

#
This stanza contains definitions for a particular cluster of TFIM
servers.
#

#
A specification for the server which is used when communicating with a
single TFIM server which is a member of this cluster. Values for this
entry are defined as follows:
#
{[0-9],}<URL>
#
Where the first digit (if present) represents the priority of the server
within the cluster (9 being the highest, 0 being lowest). If the priority
is not specified, a priority of 9 is assumed. The <URL> can be any
well-formed HTTP or HTTPS URL.
#
Multiple server entries can be specified for failover and load balancing
purposes. The complete set of these server entries defines the
membership of the cluster for failover and load balancing.

Chapter 29. OAuth reference 429

#
server = 9,http://tfim.example.com/TrustServerWST13/services/RequestSecurityToken

...

cache-size

Syntax
cache-size = cache_size

Description

The maximum number of OAuth 2.0 bearer token authorization decisions to cache.
This cache stores authorization decisions so that repeated use of the same token
does not require repeated requests to Tivoli Federated Identity Manager. A
cache-size of 0 will disable caching of authorization decisions.

Options

cache_size
The size of the OAuth token cache.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
cache-size = 2

default-fed-id

Syntax
default-fed-id = provider_id

Description

The Provider ID of the default OAuth federation in Tivoli Federated Identity
Manager. If a Provider ID is not provided in the request using the fed-id-param
option, this provider ID is used for OAuth requests. The Provider ID of a
federation can be found on the federation properties page.

Options

provider_id
The Provider ID of the OAuth federation.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

430 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Example
default-fed-id = https://server.oauth.com/FIM/MySocialNetwork/oauth20

fed-id-param

Syntax
fed-id-param = request_param_name

Description

The name of the request parameter that can be used to override the default-fed-id
option. The value must match the Provider ID of the federation for which the
OAuth client is a member.

Delete this configuration option to enforce that the default fed id is always used.

Options

request_param_name
The name of the request parameter.

Usage

This stanza entry is optional. If it is not supplied, the value of the default-fed-id
option is used as the static Provider ID value in calls to the STS.

Default value

None.

Example
fed-id-param = FederationId

default-mode

Syntax
default-mode = mode_value

Description

The default OAuth mode that the EAS operates under. It affects the validation of
request parameters, as well as the construction of the RST sent to Tivoli Federated
Identity Manager. Provide a valid mode value in a request parameter with the
name specified in the mode-param option to override the default mode for an
individual request.

Options

mode_value
The valid mode value for the OAuth 1.0 protocol is OAuth10, while the
valid mode value for the OAuth 2.0 protocol is OAuth20Bearer.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Chapter 29. OAuth reference 431

Default value

None.

Example

For OAuth 1.0:
default-mode = OAuth10

For OAuth 2.0:
default-mode = OAuth20Bearer

mode-param

Syntax
mode-param = request_param_name

Description

The name of the request parameter that can be customized to carry the mode
value. This configuration option can be used to override the default-mode option.
Delete this configuration option to enforce that the default mode is always used.

Options

request_param_name
The name of the request parameter.

Usage

This stanza entry is optional. If it is not supplied, the value of the default-mode
option is used to determine whether or not to validate the incoming request as
OAuth 1.0 or OAuth 2.0.

Default value

None.

Example
mode-param = mode

realm-name

Syntax
realm-name = realm_name

Description

The name of the OAuth realm that is used in a 401 request for OAuth data.

Options

realm_name
The name of the OAuth realm.

432 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
realm-name = realmOne

bad-request-rsp-file

Syntax
bad-request-rsp-file = file_name

Description

The fully qualified name of the file that contains the body that is used when
constructing a '400 Bad Request' response. This response is generated when
required OAuth elements are missing from a request.

Options

file_name
The name of the 400 Bad Request response file.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
bad-request-rsp-file = /tmp/bad_rqst.html

Here is an example of the HTML response file:
<html>
<body>
400 Bad Request
</body>
</html>

unauthorized-rsp-file

Syntax
unauthorized-rsp-file = file_name

Description

The fully qualified name of the file that contains the body that is used when
constructing a '401 Unauthorized' response. This response is generated when:
v All OAuth data is missing from a request, or
v The OAuth data fails validation.

Chapter 29. OAuth reference 433

Options

file_name
The name of the 401 Unauthorized response file.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
unauthorized-rsp-file = /tmp/unauth_response.html

Here is an example of the HTML response file:
<html>
<body>
401 Unauthorized
</body>
</html>

bad-gateway-rsp-file

Syntax
bad-gateway-rsp-file = file_name

Description

The fully qualified name of the file that contains the body that is used when
constructing a '502 Bad Gateway' response. This response is generated when Tivoli
Federated Identity Manager fails to process the request.

Options

file_name
The name of the 502 Bad Gateway response file.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
bad-gateway-rsp-file = /tmp/bad_gateway.html

Here is an example of the HTML response file:
<html>
<body>
502 Bad Gateway
</body>
</html>

434 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

trace-component

Syntax
trace-component = component_name

Description

The name of the Tivoli Access Manager trace component that is used by the EAS.

Options

component_name
The name of the Tivoli Access Manager trace component.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
trace-component = pdweb.oauth

apply-tam-native-policy

Syntax
apply-tam-native-policy = <true | false>

Description

Determines whether the native Tivoli Access Manager ACL policy still takes affect,
in addition to the OAuth authorization.

Options

true The native Tivoli Access Manager ACL policy still takes affect.

false The native Tivoli Access Manager ACL policy does not take affect.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
apply-tam-native-policy = false

cluster-name

Syntax
cluster-name = cluster_name

Chapter 29. OAuth reference 435

Description

The name of the Tivoli Federated Identity Manager cluster that hosts this OAuth
service. There should also be a corresponding [tfim-cluster:<cluster>] stanza,
which contains the definition of the cluster.

Options

cluster_name
The name of the Tivoli Federated Identity Manager cluster where the
OAuth service is hosted.

Usage

This stanza entry is required when configuring OAuth EAS authentication.

Default value

None.

Example
cluster-name = oauth-cluster

For this example, there needs to be a corresponding [tfim-cluster:oauth-cluster]
stanza to define the cluster.

OAuth 1.0 and OAuth 2.0 template pages for trusted clients
management

Tivoli Federated Identity Manager provides an HTML page template which
resource owners can use to show and manage trusted clients information for
OAuth 1.0 and OAuth 2.0 federations.

There are different trusted clients management template pages for each OAuth
protocol. These pages look the same, and use the same replacement macros. The
template pages for OAuth 1.0 and OAuth 2.0 are both named as
clients_manager.html.

The resource owner establishes the OAuth clients through the user_consent.html
page during authorization requests.

The templates have the following replacement macros:

@USERNAME@
This macro is replaced with the Tivoli Federated Identity Manager user
name.

@OAUTH_CLIENT_COMPANY_NAME@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with the name of the
company that requests access to the protected resource.

@PERMITTED_SCOPES@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with the token scopes
to which the OAuth client has access.

436 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

@DENIED_SCOPES@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with the token scopes
to which the OAuth client does not have access.

@OAUTH_CUSTOM_MACRO@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with trusted client
information that contains additional information about an authorized
OAuth client.

@OAUTH_CLIENTMANAGERURL@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with the endpoint of
the trusted clients manager.

@UNIQUE_ID@
A multi-valued macro that belongs inside a [RPT trustedClients]
repeatable replacement list. The values are replaced with a unique
identifier that identifies the trusted clients information for each entry in the
list.

OAuth 1.0 template page for consent to authorize
The OAuth server uses this page to determine and store user consent information
about which OAuth clients are authorized to access the protected resource. This
page also indicates which scope is requested by the OAuth client.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>OAuth Client Manager</title>
</head>
<body>
Username: @USERNAME@
<p />
Trusted Clients

<table border="1">

<tr><td>Client</td><td>Permitted Scopes</td><td>Denied Scopes</td>
<td>Additional Information</td><td>Action</td></tr>

<!-- START NON-TRANSLATABLE -->
[RPT trustedClients]

<!-- END NON-TRANSLATABLE -->
<tr>

<td>@OAUTH_CLIENT_COMPANY_NAME@</td>
<td>@PERMITTED_SCOPES@</td>
<td>@DENIED_SCOPES@</td>
<td>@OAUTH_CUSTOM_MACRO@</td>
<td><a href="@OAUTH_CLIENTMANAGERURL@?action=remove&id=

@UNIQUE_ID@">Remove</td>
</tr>

<!-- START NON-TRANSLATABLE -->
[ERPT trustedClients]

<!-- END NON-TRANSLATABLE -->
</table>
</body>
</html>

Figure 45. Template for clients_manager.html

Chapter 29. OAuth reference 437

The Tivoli Federated Identity Manager provides an HTML page template called
user_consent.html.

Tivoli Federated Identity Manager stores the decisions made by the resource owner
about which OAuth clients to trust. The resource owner is not prompted every
time the same client requests authorization to access the protected resource.

The authorization request from the OAuth client shows a list of approved scopes,
and a list of scopes to be approved. These lists are shown in the consent page and
can be of indeterminate length. The template supports multiple copies of stanzas
that are repeated once for each scope in either list.

This template file provides several replacement macros:

@OAUTH_AUTHORIZE_URI@
This macro is replaced with the URI for the resource owner authorization
endpoint.

@OAUTH_CLIENT_CALLBACK@
This macro is replaced with the callback URI that the OAuth server uses to
send the verification code to. The value depends on the following items:
v Callback URI that is entered during partner registration.
v oauth_callback parameter in the request for a temporary credential.
v override registered client callback URI setting.

@OAUTH_CLIENT_COMPANY_NAME@
This macro is replaced with the name of the company that is requesting
access to the protected resource.

@OAUTH_CUSTOM_MACRO@
This macro is replaced with trusted client information that contains
additional information about an authorized OAuth client.

@USERNAME@
This macro is replaced with the Tivoli Federated Identity Manager user
name.

@OAUTH_OTHER_PARAM_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@
A multi-valued macro that belongs either inside [RPT
oauthTokenScopePreapprovedRepeatable] or [RPT
oauthTokenScopeNewApprovalRepeatable] repeatable replacement lists. The
values inside the [RPT oauthTokenScopePreapprovedRepeatable] show the
list of token scopes that have been previously approved by the resource
owner. Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable] show the list of token scopes that
have not yet been approved by the resource owner.

@CONSENT_FORM_VERIFIER@
This macro is replaced with a unique identifier for the
consent_form_verifier parameter value. The consent_form_verifier

438 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

parameter value is automatically generated by the OAuth server. The
parameter name and value must not be modified.

Chapter 29. OAuth reference 439

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>OAuth - Consent to Authorize</title>

</head>
<body>

<h1>OAuth - Consent to Authorize</h1>

<p>The following site is requesting access to an OAuth protected resource:</p>
<p>@OAUTH_CLIENT_CALLBACK@</p>
<p>Company Name: @OAUTH_CLIENT_COMPANY_NAME@</p>
<p>Additional Information: @OAUTH_CUSTOM_MACRO@</p>

<p>User Name: @USERNAME@</p>

<form action="@OAUTH_AUTHORIZE_URI@" method="post">
<p>The client provided the following extra request parameters:</p>
<!-- START NON-TRANSLATABLE -->
[RPT oauthOtherParamsRepeatable]
@OAUTH_OTHER_PARAM_REPEAT@=@OAUTH_OTHER_PARAM_VALUE_REPEAT@
<input type="hidden" name="@OAUTH_OTHER_PARAM_REPEAT@"

value="@OAUTH_OTHER_PARAM_VALUE_REPEAT@" />
[ERPT oauthOtherParamsRepeatable]
<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes
that have been previously approved:</p>

<!-- START NON-TRANSLATABLE -->

[RPT oauthTokenScopePreapprovedRepeatable]
@OAUTH_TOKEN_SCOPE_REPEAT@
<input type="hidden" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" />
[ERPT oauthTokenScopePreapprovedRepeatable]

<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes
that have not yet been approved:</p>

<!-- START NON-TRANSLATABLE -->
[RPT oauthTokenScopeNewApprovalRepeatable]
<input type="checkbox" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@"

checked="checked"/> <label>@OAUTH_TOKEN_SCOPE_REPEAT@</label>

[ERPT oauthTokenScopeNewApprovalRepeatable]
<!-- END NON-TRANSLATABLE -->

<p>Would you like to approve this access?</p>

<input type="hidden" name="consent_form_verifier" value="@CONSENT_FORM_VERIFIER@" />

<!--
The scope parameters can be:
1. Requested as part of the redirect for authorization by the client

by appending them to the authorize URL as query string parameters, or
2. If not requested by the client, and you know what authorization options

are valid for the OAuth-protected resources being requested, you may
also manually prompt for them in this page template as demonstrated
by the following example scope’s

-->
<!--
<table>

<tr>
<td>Scopes to be authorized: </td>
<td>Scope 1</td><td><input type="checkbox" name="scope"

value="token_scope_1" /></td>
<td>:: Scope 2</td><td><input type="checkbox" name="scope"

value="token_scope_2" /></td>
<td>:: Scope 3</td><td><input type="checkbox" name="scope"

value="token_scope_3" /></td>
</tr>

</table>
-->

<table>
<tr><td>Permit </td><td><input type="radio" name="trust_level"

value="permit" checked /></td></tr>
<tr><td>Deny </td><td><input type="radio" name="trust_level"

value="deny" /></td></tr>
</table>

<input type="submit" name="submit" value="Submit" style="width:80px"/>
</form>

</body>
</html>

Figure 46. Template for user_consent.html

440 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

OAuth 1.0 template page for response
Use this HTML page when the callback URI is set to oob in the request for
temporary credentials or in the partner registration.

When the OAuth client does not specify a callback URI or cannot receive callbacks,
the OAuth server does not know where to redirect the resource owner after the
authorization process. As a result, the OAuth client does not receive the
verification code that it must exchange for a set of token credentials.

Tivoli Federated Identity Manager provides an HTML template page called
user_response.html. This page shows the OAuth token and verification code that
the resource owner can provide to a trusted OAuth client.

The template has the following replacement macros:

@OAUTH_TOKEN@
This macro is replaced with the oauth_token parameter specified in the
request for temporary credentials.

@OAUTH_VERIFIER@
This macro is replaced with the oauth_verifier parameter specified in
authorization response.

OAuth 1.0 template page for denied consent
Use the denied consent HTML page when the resource owner has not granted the
OAuth client access to the protected resource.

Tivoli Federated Identity Manager provides the file user_consent_denied.html.

The template does not have any replaceable macros.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>OAuth - Response</title>
</head>
<body>

<h1>OAuth - Response</h1>

<p>Your OAuth client did not provide a callback URL.

Supply these values to your client:</p>

<p>OAuth Token: @OAUTH_TOKEN@</p>

<p>OAuth Verification Code:

@OAUTH_VERIFIER@</p>
</div>
</div>
</body>
</html>

Figure 47. Template for user_response.html

Chapter 29. OAuth reference 441

OAuth 1.0 template page for errors
Tivoli Federated Identity Manager uses a generic error template page to show
detailed text information when an error occurs in an OAuth 1.0 flow.

The template page is user_error.html.

The following replacement macro is supported:

@OAUTH_ERROR@
This macro is replaced with the native language support (NLS) text of the
error message associated with the error.

OAuth 2.0 template page for consent to authorize
The authorization server uses this page to determine and store user consent
information about which OAuth clients are authorized to access the protected
resource. This page also indicates scopes that the OAuth client requests.

The Tivoli Federated Identity Manager provides an HTML page template called
user_consent.html. The macros in the template are specifically for an OAuth 2.0
flow.

!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>OAuth - Consent Denied</title>
</head>
<body>

<h1>OAuth - Consent Denied</h1>

<div id="content">
<p>You have denied consent to access your protected resources.<p>
</div>
</div>
</body>
</html>

Figure 48. Template for user_consent_denied.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>OAuth - Error</title>
</head>
<body>

<h1>OAuth - Error</h1>

<p>The following error occured while processing your OAuth request: </p>
<p>@OAUTH_ERROR@</p>

</body>
</html>

Figure 49. Template for user_error.html

442 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Tivoli Federated Identity Manager stores the decisions made by the resource owner
about which OAuth clients to trust. The resource owner is not prompted every
time the same OAuth client requests authorization to access the protected resource.

The authorization request from the OAuth client shows a list of approved scopes,
and a list of scopes to be approved. These lists are shown in the consent page and
can be of indeterminate length. The template supports multiple copies of stanzas
that are repeated once for each scope in either list.

This template file provides several replacement macros:

@OAUTH_AUTHORIZE_URI@
This macro is replaced with the URI for the authorization endpoint.

@OAUTH_CLIENT_COMPANY_NAME@
This macro is replaced with the name of the company that is requesting
access the protected resource.

@CLIENT_ID@
This macro is replaced with the client_id parameter specified in the
authorization request.

@REDIRECT_URI@
This macro is replaced with the redirect URI that the authorization server
uses to send the authorization code to. The value depends on the following
items:
v Redirect URI that is entered during partner registration
v oauth_redirect parameter specified in the authorization request

@STATE@
This macro is replaced with the state parameter specified in the
authorization request.

@RESPONSE_TYPE@
This macro is replaced with the response_type parameter specified in the
authorization request.

@OAUTH_CUSTOM_MACRO@
This macro is replaced with trusted client information that contains
additional information about an authorized OAuth client.

@USERNAME@
This macro is replaced with the Tivoli Federated Identity Manager user
name.

@OAUTH_OTHER_PARAM_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@
A multi-valued macro that belongs inside a [RPT
oauthOtherParamsRepeatable] repeatable replacement list. The values show
the list of extra parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@
A multi-valued macro that belongs either inside [RPT
oauthTokenScopePreapprovedRepeatable] or [RPT
oauthTokenScopeNewApprovalRepeatable] repeatable replacement lists. The
values inside the [RPT oauthTokenScopePreapprovedRepeatable] show the
list of token scopes that have been previously approved by the resource

Chapter 29. OAuth reference 443

owner. Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable] show the list of token scopes that
have not yet been approved by the resource owner.

@CONSENT_FORM_VERIFIER@
This macro is replaced with a unique identifier for the
consent_form_verifier parameter value. The consent_form_verifier
parameter value is automatically generated by the authorization server.
The parameter name and value must not be modified.

444 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>OAuth 2.0 - Consent to Authorize</title>

</head>
<body>
<form action="@OAUTH_AUTHORIZE_URI@" method="GET">
<h1>OAuth 2.0 - Consent to Authorize</h1>

<p>The following site is requesting access to an OAuth 2.0 protected resource:</p>
<p>@OAUTH_CLIENT_COMPANY_NAME@</p>

<p>The client provided the following OAuth 2.0 request parameters:</p>

Client Id: @CLIENT_ID@
Redirect URI: @REDIRECT_URI@
State: @STATE@
Response Type: @RESPONSE_TYPE@

<p>Additional Information: @OAUTH_CUSTOM_MACRO@</p>

<p>By approving this request you will be providing
delegated authorization on behalf of:</p>

<p>@USERNAME@</p>

<p>The client provided the following extra request parameters:</p>
<!-- START NON-TRANSLATABLE -->

[RPT oauthOtherParamsRepeatable]
@OAUTH_OTHER_PARAM_REPEAT@=@OAUTH_OTHER_PARAM_VALUE_REPEAT@
<input type="hidden" name="@OAUTH_OTHER_PARAM_REPEAT@"

value="@OAUTH_OTHER_PARAM_VALUE_REPEAT@" />
[ERPT oauthOtherParamsRepeatable]

<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes
that have been previously approved:</p>

<!-- START NON-TRANSLATABLE -->

[RPT oauthTokenScopePreapprovedRepeatable]
@OAUTH_TOKEN_SCOPE_REPEAT@
<input type="hidden" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@" />
[ERPT oauthTokenScopePreapprovedRepeatable]

<!-- END NON-TRANSLATABLE -->

<p>The client requested the following token scopes
that have not yet been approved:</p>

<!-- START NON-TRANSLATABLE -->
[RPT oauthTokenScopeNewApprovalRepeatable]
<input type="checkbox" name="scope" value="@OAUTH_TOKEN_SCOPE_REPEAT@"

checked="checked"/><label>@OAUTH_TOKEN_SCOPE_REPEAT@</label>

[ERPT oauthTokenScopeNewApprovalRepeatable]
<!-- END NON-TRANSLATABLE -->

<p>Would you like to approve access to this scope?</p>
<input type="hidden" name="consent_form_verifier" value="@CONSENT_FORM_VERIFIER@" />

<!--
The scope parameters can be:
1. Requested as part of the redirect for authorization by the client

by appending them to the authorize URL as query string parameters,
and/or

2. If not requested by the client, and you know what authorization options
are valid for the protected resources being requested, you may
also manually prompt for them in this page template as demonstrated
by the following example scope’s

-->
<!--
<table>

<tr>
<td>Scopes to be authorized: </td>
<td>Scope 1</td><td><input type="checkbox" name="scope"

value="token_scope_1" /></td>
<td>:: Scope 2</td><td><input type="checkbox" name="scope"

value="token_scope_2" /></td>
<td>:: Scope 3</td><td><input type="checkbox" name="scope"

value="token_scope_3" /></td>
</tr>

</table>
-->

<table>
<tr>
<td>Permit </td>
<td><input type="radio" name="trust_level" value="permit" checked /></td>

</tr>
<tr>
<td>Deny </td>
<td><input type="radio" name="trust_level" value="deny" /></td>

</tr>
</table>

<input type="submit" name="submit" value="Submit" style="width: 80px" />
</form>

</body>
</html>

Figure 50. Template for user_consent.html

Chapter 29. OAuth reference 445

OAuth 2.0 template page for response
Use this HTML page to show the authorization code of an OAuth client that did
not specify a client redirection URI upon partner registration.

When the OAuth client does not specify a client redirection URI or cannot receive
redirects, the authorization server does not know where to send the resource
owner after authorization. The OAuth client does not receive the authorization
code required to exchange for an access token or refresh token.

The Tivoli Federated Identity Manager provides an HTML template page called
user_response.html. This page shows the authorization code that the resource
owner can provide to a trusted OAuth client.

The following replacement macro is supported:

@OAUTH_CODE@
This macro is replaced with the oauth_code parameter specified in
authorization response.

OAuth 2.0 template page for errors
Tivoli Federated Identity Manager uses a generic error template page to show
detailed text information when an error occurs in an OAuth 2.0 flow.

The template page is user_error.html.

The following replacement macro is supported:

@ERROR_CODE@
This macro is replaced with characters that uniquely identify the error.

@ERROR_DESCRIPTION@
This macro is replaced with the native language support (NLS) text of the
error message associated with the error.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>OAuth - Response</title>

</head>
<body>

<h1>OAuth - Response</h1>

<p>Your OAuth client did not provide a redirect URI.
Supply this value to your client:</p>

<p>OAuth Authorization Code: @OAUTH_CODE@</p>

</body>
</html>

Figure 51. Template for user_response.html

446 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>OAuth 2.0 - Error</title>

</head>
<body>

<h1>OAuth 2.0 - Error</h1>

<p>The following error was encountered while processing your OAuth request:</p>

<p>Error Code: @ERROR_CODE@</p>
<p>Error Description: @ERROR_DESCRIPTION@</p>

</body>
</html>

Figure 52. HTML template for user_error

Chapter 29. OAuth reference 447

448 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 30. Planning a Liberty federation

You must specify the values for federation properties when configuring a Liberty
federation. Keep in mind however, that support for Liberty protocol will be
deprecated in the later versions of IBM Tivoli Federated Identity Manager.

Familiarize yourself with the Liberty standards documentation before
implementing a single sign-on federation. The standards specify data exchange and
message processing. Know what information you must provide to your partners,
and what information your partner must provide to you.

Liberty Alliance
http://www.projectliberty.org

The Federation wizard prompts you to supply values for a number of properties.
Most of them can be modified later, after federation creation.

The choice of profile (or profiles) to use is based on both business policy decisions
and network security architecture. Federation partners must agree on the profile
choices in order to activate user single sign-on across the federation. The choice
must be made before configuring the federation.

The Liberty standard supports a unique range of single sign-on profiles. The
profiles extend beyond specifications for achieving federated single sign-on, and
can include other functions such as single logout, federation termination
notification, and register name identification.

Identity provider and service provider roles
Each partner in a federation has a role. The role is either Identity Provider or
Service Provider. This section provides descriptions for the two roles.

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.
v Identity provider

An identity provider is a federation partner that vouches for the identity of a
user. The Identity Provider authenticates the user, and provides an
authentication token to the service provider.
The identity provider directly authenticates the user by doing any of the
following tasks:
– validating a user name and password,
– indirectly authenticating the user,
– validating an assertion about the user identity, as presented by a separate

identity provider.
The identity provider also handles the management of user identities to free the
service provider from this responsibility.

v Service Provider
A service provider is a federation partner that provides services to user.
Typically, service providers do not authenticate users but instead request
authentication decisions from an identity provider. Service providers rely on

© Copyright IBM Corp. 2006, 2013 449

identity providers to assert the identity of a user, and rely on identity providers
to manage user identities for the federation.
Service providers can maintain a local account for the user, which can be
referenced by an identifier for the user.

Liberty single sign-on profiles
Liberty supports more than one single sign-on profile. You must select at least one
profile. Keep in mind however, that support for Liberty protocol will be deprecated
in the later versions of IBM Tivoli Federated Identity Manager.

You can optionally configure both Browser artifact and Browser POST profiles
when configuring an identity provider. You can configure only one profile when
configuring a service provider.

Browser artifact
Browser artifact uses a SOAP backchannel to exchange an artifact during the
establishment and use of a trusted session between an identity provider, a
service provider, and a client (browser).

You can optionally configure browser artifact when configuring an identity
provider or a service provider.

When you select browser artifact, enter the name of an encryption key for the
trusted session. Specify a key even if you choose to not require the signing of
assertions for other Liberty message communications.

Browser POST
Browser POST uses a self-posting form during the establishment and use of a
trusted session between an identity provider, a service provider, and a client
(browser).

You can optionally configure browser POST when configuring an identity
provider or a service provider.

Note: When configuring an identity provider, you can select both browser
artifact and browser POST profiles. However, when configuring a service
provider, you can select only one profile – either browser artifact or browser
POST.

Liberty-enabled client/proxy (LECP) single sign-on profile
A Liberty-enabled client or Liberty-enabled proxy has, or knows how to obtain
the information required to connect to the identity provider that the user
(principal) wants to use with the service provider. A Liberty-enabled proxy is
an HTTP proxy such as a Wireless Application Protocol (WAP) gateway that
emulates a Liberty-enabled client.

LECP Providers
A comma delimited list of header variables used by LECP. This property is
set when configuring both identity providers and service providers. There
is no default value.

An example of single header variable:
ibm_msisdn

An example of multiple header variables:
ibm_msisdn,x_msisdn

450 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Liberty register name identifier
This profile updates the identifier for a specific user or principal. Keep in mind
however, that support for Liberty protocol will be deprecated in the later versions
of IBM Tivoli Federated Identity Manager.

Liberty requires identity providers and service providers to exchange an alias (also
called an identifier) to each user account. The alias exchange is done instead of
exchanging the real account name of the user. The alias exchange enables account
linkage while hiding the user account name.

Configuration of the Register Name Identifier profile is optional.

When the profile is selected, the administrator must select the communication
bindings to use between providers. The bindings can be specified separately for
the identity provider and the service provider. The supported bindings are:
v HTTP redirect

The identity provider and service provider communicate by sending HTTP 302
redirects to the browser. Updates to name identifiers are accomplished serially
through the redirects. HTTP redirect is the default binding for both identity and
service providers.

v SOAP/HTTP
Updates to name identifiers are accomplished by direct exchanges between
providers over a SOAP connection.

The endpoints are:

Register Name Identifier Service URL
The URL endpoint is used for user-agent-based Register Name Identifier
protocols. A default value is provided. For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/rni

Register Name Identifier Return URL
The URL endpoint used for redirection after HTTP name registration has taken
place. A default value is provided. For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/rnireturn

This value is required for RNI with HTTP Redirect communication. This value
is not required for SOAP/HTTP communication.

Liberty federation termination notification
This profile terminates account linkage across the federation for a specified user.
This profile is disabled by default.

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Configuration of this profile is optional. When the profile is selected, you must
select the communication bindings to use between providers. The bindings can be
specified separately for the identity provider and the service provider. The
supported bindings are:
v HTTP redirect

Chapter 30. Planning a Liberty federation 451

The identity provider and service provider communicate by sending HTTP 302
redirects to the browser. Termination of account federation is accomplished
serially through the redirects. HTTP redirect is the default binding for both
identity and service providers.

v SOAP/HTTP
Termination of account federation is accomplished by direct exchanges between
providers over a SOAP connection.

The endpoints are:

Federation Termination Notification Service URL
The URL on the provider to which single federation termination notification
processes are sent. A default value is provided. For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/ftn

Federation Termination Notification Return URL
The URL used by the identity or service Provider when redirecting the user
agent at the end of the user-agent-based federation termination notification
process.
https://idp.example.com/FIM/sps/libertyfed/liberty/ftnreturn

This value is required for FTN when using HTTP Redirect communication.

Liberty single logout
This profile terminates all login sessions within the federation for a specified user.
This profile is disabled by default.

Note: Support for Liberty protocol will be deprecated in the later versions of IBM
Tivoli Federated Identity Manager.

Configuration of this profile is optional. When the profile is selected, the
administrator must select the communication bindings to use between providers.
The bindings can be specified separately for the identity provider and the service
provider. The supported bindings are:
v HTTP redirect

The identity provider and service provider communicate by sending HTTP 302
redirects to the browser. Logout of user sessions is accomplished serially through
the redirects. HTTP redirect is the default binding for both identity and service
providers

v HTTP GET
Identity providers can use Image Tags to cause the browser to use HTTP GET to
communicate the logout requests to the service providers. Logout requests are
processed concurrently rather than serially. If a logout request fails, any
remaining logout requests are unaffected, and are sent to the appropriate service
provider. By contrast, when logout requests are processed serially (HTTP
redirect) a failed logout request cancels any remaining logout requests.

Note: This option is specified only on identity providers. Service providers
cannot set this option.

v SOAP/HTTP
Logout of user sessions is accomplished by direct exchanges between providers
over a SOAP connection.

The endpoints are:

452 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Single Logout Service URL
The URL to which the service provider sends a request to log out a user. A
default value is provided. For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/slo

Single Logout Return URL
The URL used by the service provider when redirecting the user agent to the
identity provider at the end of the single logout profile process. A default
value is provided. For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/sloreturn

This value is required for SLO using HTTP Redirect communication.

Liberty identity provider introduction
Identity Provider Introduction enables a service provider to discover which
identity providers are used by a user (Principal).

Support for Liberty protocol will be deprecated in the later versions of IBM Tivoli
Federated Identity Manager.

The Introduction profile relies on a cookie that is written in a domain that is
common between identity providers and service providers in an identity federation
network.

This profile is configured only on an identity provider.

Common DNS Domain

The common DNS domain is a virtual domain into which a component is
configured to set or retrieve a cookie. Use of this common domain enables
identity providers and service providers, which typically exist in separate
domains, to access a cookie. The domain does not have to exist before setting
this configuration property. However, you must create it before a user attempts
single sign-on while relying on the identity provider introduction profile. This
property is set only when configuring an identity provider. There is no default
value. For example:
cot.projectliberty.org

IPI configuration requires that you enter a value for this field.

Common Domain Hostname

The name of a host system in the common DNS domain. This host receives
requests to either set or read the common domain cookie used by the identity
provider introduction profile. This property is set only when configuring an
identity provider. There is no default value. For example:
idp.cot.projectliberty.org

The domain name portion of this host name must match the value specified in
the Common DNS Domain. In this example, the host system value must
include cot.projectliberty.org.

IPI configuration requires that you enter a value for this field.

Chapter 30. Planning a Liberty federation 453

Liberty message security
The federation creation wizard prompts you whether you want to sign Liberty
messages. When you chose to sign Liberty messages, you must specify a key or
certificate to use.

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Digital signature options

In some cases, you must still enter a key or certificate if you do not select Sign
Liberty Messages. For example:
v You must specify a key to sign messages sent across the backchannel for the

artifact when you select the browser artifact profile.
v You must specify a key or certificate when you select one of the optional

profiles, and specify the SOAP communication the service provider initiates.

Provide the following configuration information if you must enter a key or
certificate:

Keystore file name
The wizard presents a choice of the keystores that you configured before
you began configuration of the single sign-on federation.

Keystore password
You must supply the password for the keystore you specify.

Key name
You must specify which key to use.

Liberty communication properties
You must know how to fill out the Liberty communication properties for your
identity provider and service provider. Keep in mind however, that support for
Liberty protocol will be deprecated in the later versions of IBM Tivoli Federated
Identity Manager.

Liberty Message Lifetime

An integer value indicating the amount of time, in seconds, that a Liberty
message remains valid. This property is set on both the identity provider and
the service provider.

Minimum value: 60 seconds

Maximum: No maximum other than the maximum integer supported by the
data type.

Default: 60 seconds.

Liberty Artifact Lifetime

An integer indicating the time, in seconds, in which a service provider must
retrieve an assertion from an identity provider. The service provider uses an
artifact to retrieve the assertion. The identity provider keeps the mapping of
the artifact to the assertion in its cache for this amount of time. When the
service provider does not collect the artifact in this amount of time, the cache
purges the artifact and the service provider login fails.

This property is specified only when configuring an identity provider with
browser artifact single sign-on profile.

454 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: This value is not used for browser POST profile.

Minimum value: 120 seconds

Default: 120 seconds.

Require Consent to Federate

Enables or disables the requirement that the identity provider prompt the user
to consent to joining the federation. This property is set on the identity
provider only. This message is presented when federating of the user account
occurs. Default value is disabled. Select the check box to activate the issuing of
the prompt.

SOAP Endpoint

The Simple Object Access Protocol (SOAP) endpoint location at the service
provider or identity provider to which Liberty SOAP messages are sent.

This setting is required when one or both of the following conditions is or are
true:
v Browser artifact single sign-on profile is selected on the Liberty profiles

window.
v One or more of the optional Liberty profiles are selected and SOAP/HTTP

communication initiated by at least one of the service providers is selected.

For example:
https://idp.example.com/FIM/sps/libertyfed/liberty/soap

Single Sign-on is Passive (Identity Provider does not interact with user)

Enables or disables the requirement that the identity provider must not interact
with principal (user) and must not take control of the user interface from the
service provider. This property is set only when configuring a service provider.
Select the check box to enable this requirement. Default value: Disabled

Force Identity Provider to authenticate user

Enables or disables a requirement that the identity provider must authenticate
a user (Principal) regardless of whether the user is already authenticated. This
value is specified only when the Single Sign-on is Passive (Identity Provider
does not interact with user) check box is cleared. This property is set only
when configuring a service provider.

When this setting is cleared, the identity provider must authenticate the user
(Principal) only when the user is not presently authenticated.
v Select the Force Identity Provider to authenticate user check box to enable

this requirement.
v Clear the check box to disable this requirement.

Liberty token modules
When you create a single sign-on federation, you must configure an instance of a
security token module for the federation. Keep in mind however, that support for
Liberty protocol will be deprecated in the later versions of IBM Tivoli Federated
Identity Manager.

The token module corresponds to a security token type that defines the format for
the encrypted token that contains user credential information.

Chapter 30. Planning a Liberty federation 455

The identity provider and service provider exchange tokens as part of the
authentication and authorization services to process user access request.

When you use the federation creation wizard, a token type is automatically
selected for you based on your choice of single sign-on protocol.

Configuration of the Liberty token module is required only on the identity
provider. No configuration is required when deploying a service provider.

The configuration property is the same for both Liberty v1.1 tokens and Liberty
v1.2 tokens.

Amount of time the assertion is valid after being issued (seconds)
An integer value that specifies the number of seconds that the assertion
remains valid. This integer value is specified for Liberty tokens. The minimum
value is 120 seconds. The maximum value is 300 seconds.

Liberty identity mapping
The federation creation wizard prompts you to specify either an XSLT mapping
rule file or a custom mapping module instance. Keep in mind however, that
support for Liberty protocol will be deprecated in the later versions of IBM Tivoli
Federated Identity Manager.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

The XSLT mapping file or custom mapping module instance must be prepared
before you configure the federation.

XSLT Transformation for Identity Mapping
Select this button in the wizard if you can provide an XSL file containing the
identity mapping. Enter the name of a file on the local file system.

Custom Mapping Module Instance
Select this button in the wizard if you can provide a custom mapping module
instance to use instead of an XSL file. The system prompts you to enter any
configuration properties that your custom mapping module instance requires.

Mapping a Tivoli Access Manager credential to a Liberty or
SAML 2 token

This scenario occurs when messages are exchanged between partners in a Liberty
or SAML 2 single sign-on federation, and user identity information is managed by
Tivoli Access Manager

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

456 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

When a user request is received (for example, for access to a remote resource) the
trust service contacts Tivoli Access Manager and obtains a Tivoli Access Manager
credential for the user identity.

In this scenario, the trust service Tivoli Access Manager credential module operates
in validate mode. In this mode, it converts the Tivoli Access Manager credential to
an Input STS universal user document (In-STSUUSER). The In-STSUUSER that is
created from the Tivoli Access Manager credential module has all of the
information from the credential. This information is available for possible use by
the trust service module that builds the outgoing token.

The trust service consults its configuration entry for the federation partner (for
example, the destination that hosts a requested resource). The configuration
indicates the type of token to be created.

Next, the identity mapping module converts the In-STSUUSER into an Output STS
universal user (Out-STSUUSER). The Out-STSUUSER must contain the information
that is needed by the Tivoli Federated Identity Manager Liberty (or SAML 2) token
module to generate a Liberty (or SAML 2) token.

The Out-STSUUSER must contain the following information in order for the token
module to be able to generate a valid token:

Table 119. Out-STSUUSER entries used to generate a Liberty or SAML 2 token

Out-STSUUSER
element Token Information Required?

Principal Attr: Name Name to be passed to the alias service Required

Attribute:
AuthenticationMethod

The authentication method. N
Note: This element is always set to "password"
(Username/password) regardless of the
authentication mechanism set in the Tivoli
Access Manager credential.

Required

Attribute List Additional custom attributes. Optional

The mapping module is responsible for:
1. Mapping Principal Attr Name in In-STSUUSER to a Principal name entry in the

Out-STSUUSER.

Note: When the token module generates the token, this Principal name is not
directly used. Instead, the value in the Name field is sent as input to the Tivoli
Federated Identity Manager alias service. The alias service obtains the alias
(name identifier) for the principal, and places the returned alias in the
generated token module.
Figure 53 on page 458 shows a sample mapping rule file from the
demonstration application mapping file, ip_liberty.xsl. No

Note: Liberty tokens are extensions to SAML tokens. Therefore, comments in
the sample code that refer to SAML tokens, are correct in this context.

Chapter 30. Planning a Liberty federation 457

2. Setting the authentication method to the "password" mechanism, regardless of
the value obtained from the Tivoli Access Manager credential. This action is
required by the token module.
Figure 54 shows a sample mapping rule file from the demonstration application
mapping file, ip_liberty.xsl.

3. Populating the attribute statement of the assertion with the attributes in the
AttributeList in the In-STSUUSER. This information becomes custom
information in the token.
There can be custom attributes that are required by applications that use the
information transmitted between federation partners.
Figure 55 on page 459 shows a sample mapping rule file from the
demonstration application mapping file, ip_liberty.xsl.

</xsl:template>
<!-- This template replaces the entire Principal element with one that contains

just the email address (from the ivcred tagvalue_email) and the data type
appropriate for SAML. -->

<xsl:template match="//stsuuser:Principal">
<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress">
<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_email’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
</xsl:template><!--

Figure 53. XSL code sample showing mapping of a value from a Tivoli Access Manager
credential into a Principal name for a Liberty token

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList><!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 54. XSL code sample showing assignment of authentication method as an Attribute for
a Liberty token.

458 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

4. The GroupList element of the In-STSUUSER is not read by the token module.
However, information in this element can optionally be used to populate
custom attributes of the Out-STSUUSER.
Figure 56 shows the optional assignment of a GroupList value to an attribute.
This code sample is from the demonstration application mapping file
ip_liberty.xsl.

Mapping a Liberty or SAML 2 token to a Tivoli Access
Manager credential

Map a Liberty or SAML 2.0 token to a Tivoli Access Manager credential for a
single sign-on federation scenario.

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
<!-- Now the commonName attribute -->

<stsuuser:Attribute name="commonName"
type="http://example.com/federation/v1/commonName">

<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_name’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>
<!-- Now the ssn attribute -->
<stsuuser:Attribute name="ssn" type="http://example.com/federation/v1/ssn">
<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_ssn’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 55. XSL code sample showing assignment of optional attributes for a Liberty token

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
<!-- Now the role attribute (can be multi-valued) -->

<stsuuser:Attribute name="role"
type="http://example.com/federation/v1/role">

<xsl:for-each select="//stsuuser:GroupList/stsuuser:Group">
<stsuuser:Value>
<xsl:value-of select="@name" />
</stsuuser:Value>
</xsl:for-each>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 56. XSL code sample showing optional assignment of GroupList value to an attribute
for a Liberty token

Chapter 30. Planning a Liberty federation 459

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

The service provider receives a Liberty or SAML 2 token. The token module,
operating in validate mode, creates an In-STSUUSER document from the token.
Table 120 shows the information from the token that is converted into an
In-STSUUSER document.

Table 120. Token information that is converted into a STS universal user document

Token Information In-STSUUSER element
Required in
Out-STSUUSER?

UserID obtained from the
alias service

Principal Attr: Name Required

Additional custom attributes Attribute List Optional

Note that the token module does not populate the GroupList element in the
In-STSUUSER document.

The token module reads the token and obtains the NameIdentifier. The token
module passes the NameIdentifier (an alias) to the alias service. The alias service
converts the received alias to the local Tivoli Access Manager User ID. The token
module puts the User ID into the Principal element in the In-STSUUSER
document.

The trust service must convert this information to a Tivoli Access Manager
credential, in order to make an authorization decision on the request from the user
identity.
v The NameIdentifier alias that is returned is used to populate the name attribute

of the Principal. This is the local user ID.
Figure 57 shows the assignment of a set value for the Principal name. This code
sample is from the demonstration application mapping file sp_liberty.xsl.

v Other information from the token is used to populate Attributes in the Attribute
List.
Figure 58 on page 461 shows the optional assignment of additional values to
attributes. This code sample is from the demonstration application mapping file

<!-- This will replace the principal name (which was the email address
in the SAML assertion) with the user "me_guest". -->

<xsl:template match="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]">
<stsuuser:Attribute name="name"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>

<xsl:value-of
select="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

</xsl:template>

Figure 57. XSL code sample showing assignment of a value for the Principal name for a
Liberty token.

460 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

sp_liberty.xsl

Liberty alias service
The Liberty standards for single sign-on protocols standards require the use of
aliases when a user identity is sent in a message between partners in a single
sign-on federation. The standards require aliases as a method of increasing the
privacy of the end user when accessing resources at a service provider.

The specifications refer to the aliases as Name Identifiers. Name identifiers for a user
are registered during account federation (account linkage) and are thereafter used
in all messages between partners. Aliases are randomly generated and do not
contain any meaningful identity information.

For each user, a different Name Identifier is required for use with each partner.
Optionally, a different Name Identifier can be created for messages in each
direction. This capability means that a different alias is used for a user when the
identity provider contacts the service provider rather than when the service
provider sends a message to the identity provider.

Tivoli Federated Identity Manager provides an alias service that handles the alias
management tasks. This service hides most of the alias generation and exchange
tasks from the federation administrator. The alias service provides the following
services:
v Generation of new aliases and association of them with local users
v Look up of a local user identity when an alias is received from a partner
v Look up of the alias for a local user when the provider needs to send a message

to a partner

The Tivoli Federated Identity Manager alias service stores alias information in a
user registry. The alias service supports the following user registries:
v IBM Tivoli Directory Server
v Sun ONE

For each of these LDAP servers, you will set some configuration parameters after
you have created the Liberty federation.

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
....

<!-- The tagvalue_sso attribute -->
<stsuuser:Attribute name="tagvalue_sso"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>isSingleSignOn</stsuuser:Value>

</stsuuser:Attribute>
<!-- The tagvalue_fedname attribute -->
<stsuuser:Attribute name="tagvalue_fedname"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>libertyfed</stsuuser:Value>

</stsuuser:Attribute>
....
....

</stsuuser:AttributeList>
</xsl:template>

Figure 58. XSL code sample showing optional assignment of attributes for a Liberty token.

Chapter 30. Planning a Liberty federation 461

The alias service does not support Lotus Domino or Microsoft Active Directory
user registries. You can write your own alias service for use with those registries.

462 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 31. Configuring a Liberty federation

Configure a Liberty federation by creating the federation, adding a partner to your
federation, and providing the new federation configuration information to your
partner.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Complete these tasks:

Procedure
1. “Creating a Liberty identity provider”
2. “Creating a Liberty service provider” on page 465
3. “Configuring a WebSEAL point of contact server for the Liberty federation” on

page 467
4. “Exporting Liberty federation properties” on page 469
5. “Exporting SOAP endpoint authentication information to a Liberty federation

partner” on page 469
6. “Obtaining metadata from a Liberty federation partner” on page 470
7. “Importing SOAP endpoint authentication information from a Liberty

federation partner” on page 471
8. “Adding a partner to a Liberty federation” on page 473

Creating a Liberty identity provider
Create a Liberty identity provider to authenticate your users directly or indirectly
when using your service provider.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

To create a Liberty identity provider federation, complete the steps in this
procedure:

Procedure
1. Log on to the management console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Current Domain and Federations portlets open.
3. Click Create. The Federation wizard starts. The General Information panel

opens.
4. Enter a name for the federation and select a role.
5. Click Next.
6. Enter the contact information.
7. click Next.

© Copyright IBM Corp. 2006, 2013 463

8. Select the Liberty 1.1 or Liberty 1.2 protocol.
9. click Next. he Point of Contact Server panel opens.

10. Enter the point of contact address and click Next.
11. Specify the profiles to use with this federation.

a. Select at least one of the Liberty single sign-on profiles.
Liberty supports three single sign-on profiles. You must select at least one
profile. You can optionally select both Browser artifact and Browser POST
profiles when configuring an identity provider. You can select only one
profile when configuring a service provider.

b. Select any of the optional profiles that you want to configure:
v Register Name Identifier

v Federation Termination Notification

v Single Logout

v Identity Provider Introduction.
For identity providers only.

12. When finished, click Next. The Digital Signature Options panel opens.
13. Select or clear the check box for Sign Liberty Messages. When you chose to

sign Liberty messages, you must specify a key or certificate to use.
In some cases, when you do not select Sign Liberty Messages, you must still
enter a key or certificate. For example:
v You must specify a key to sign messages that are sent across the back

channel for the artifact when you select a browser artifact profile,
v You must specify a key or certificate when you select one of the optional

profiles, and specify the SOAP communication to be initiated by the service
provider.

14. Select a keystore and enter the keystore password if you must enter a key or
certificate. Click List Keys to show the keys or certificates in the selected
keystore, and select a key.
v The password for the default DefaultKeyStore keystore is testonly.
v A sample key is provided for test purposes only. Do not use this key in a

production environment.
15. Click Next.
16. Configure the Liberty data properties:

a. A default value is provided for the SOAP endpoint. Use this value unless
there is an endpoint conflict on your host.

b. Specify Liberty Message Lifetime.
c. Specify Liberty Artifact Lifetime.
d. Select or clear the check box for Require Consent to Federate.
e. When LECP profile has been selected, enter LECP providers.
f. When Identity Provider Introduction has been selected, enter Common

DNS Domain and Common Domain Hostname.
g. Click Next.

The Liberty Token Module Configuration panel opens. The panel contents are
the same for both Liberty v1.1 tokens and Liberty v1.2 tokens.

17. Specify a value in the Amount of time the assertion is valid after being
issued (seconds) field.

18. Click Next.
19. The Identity Mapping Options panel opens. Select one of the radio buttons.

464 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Use XSL Transformation for Identity Mapping
Indicates that you must provide an XSL file containing the required identity
mapping.
a. When you select this choice and click Next, the Identity Mapping panel

opens. Enter the name of a file on the local file system that contains the
identity mapping rule in the XSLT File Containing Identity Mapping
Rule field.
A file that you have prepared before the installation.
Optionally you can click the Browse button to locate the file on the local
file system.

b. Click Next.
An error is shown if the file cannot be found or if the file does not
contain valid XSLT (eXtensible Stylesheet Language Transform).

v Use Custom Mapping Module Instance
Indicates that you must provide a custom mapping module instance to use
instead of an XSL file.
a. When you select Use Custom Mapping Module Instance, a table of

Module Instances shows. Select the radio button for the module instance
to use and click Next.

b. When your custom mapping module instance requires you to specify
values for properties, you will be prompted for them now. Otherwise,
the panel shows a message indicating that there are no properties to
configure for the specified module instance.

The Summary panel opens.
20. Verify that the configuration settings are correct.
21. Click Finish. The Create Federation Complete portlet opens.

What to do next

If you are using WebSEAL as your Point of Contact server, configure it now. Do
not exit the management console. See “Configuring a WebSEAL point of contact
server for the Liberty federation” on page 467 for details.

Creating a Liberty service provider
Create a Liberty service provider to request authentication decisions from your
identity provider.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Procedure
1. Log on to the management console.
2. click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Current Domain and Federations portlets open.
3. Click Create. The Federation wizard starts. The General Information panel

opens.
4. Enter a name for the federation and select a role.
5. Click Next.

Chapter 31. Configuring a Liberty federation 465

6. Enter the contact information.
7. Click Next.
8. Select the Liberty 1.1 or Liberty 1.2 protocol.
9. Click Next. The Point of Contact Server panel opens.

10. Enter the point of contact address and click Next.
11. Specify the profiles to use with this federation.

a. Select at least one of the Liberty single sign-on profiles.
Liberty supports three single sign-on profiles. You must select at least one
profile. You can optionally select both Browser artifact and Browser POST
profiles when configuring an identity provider. You can select only one
profile when configuring a service provider.

b. Select any of the optional profiles that you want to configure:
v Register Name Identifier

v Federation Termination Notification

v Single Logout

v Identity Provider Introduction.
For identity providers only.

12. Click Next when finished. The Digital Signature Options panel opens.
13. Select or clear the check box for Sign Liberty Messages. When you chose to

sign Liberty messages, you must specify a key or certificate to use.
In some cases, when you do not select Sign Liberty Messages, you must still
enter a key or certificate. For example:
v When you select browser artifact profile, you must specify a key to be used

to sign messages that are sent across the backchannel for the artifact.
v When you select one of the optional profiles, and specify the SOAP

communication to be initiated by the service provider, you must specify a
key or certificate.

14. If you must enter a key or certificate, select a keystore and enter the keystore
password. Click List Keys to show the keys or certificates contained in the
selected keystore, ans select a key.
v The password for the default DefaultKeyStore keystore is testonly.
v A sample key is provided for test purposes only. Do not use this key in a

production environment.
15. Configure the settings for Liberty profile service provider:

a. If you selected an optional Liberty profile (register name identifier,
federation termination notification or single logout), and you chose
SOAP/HTTP as the communication protocol, you must specify a SOAP
endpoint. A default value is provided. You can accept the default unless
you have a specific configuration requirement that calls for a different
SOAP endpoint.

b. Specify a value in the Liberty Message Lifetime (in seconds) field.
c. Select or clear the check mark for Single Sign-on is Passive (Identity

Provider does not interact with user).
d. Select or clear the check mark for Force Identity Provider to authenticate

user.
e. If you selected LECP single sign-on profile, enter a LECP Provider. Click

Next.
16. Click Next.
17. The Identity Mapping Options panel opens. Select one of the radio buttons.

466 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Use XSL Transformation for Identity Mapping
Indicates that you will provide an XSL file containing the required identity
mapping.
a. When you select this choice and click Next, the Identity Mapping panel

opens. Enter the name of a file on the local file system that contains the
identity mapping rule in the XSLT File Containing Identity Mapping
Rule field.
A file that you have prepared before this installation.
Optionally you can click the Browse button to locate the file on the local
file system.

b. Click Next.
An error is shown if the file cannot be found or if the file does not
contain valid XSLT (eXtensible Stylesheet Language Transform).

v Use Custom Mapping Module Instance
Indicates that you must provide a custom mapping module instance to use
instead of an XSL file.
a. When you select Use Custom Mapping Module Instance, a table of

Module Instances is shown. Select the radio button for the module
instance to use and click Next.

b. When your custom mapping module instance requires you to specify
values for properties, you will be prompted for them now. Otherwise,
the panel shows a message indicating that there are no properties to
configure for the specified module instance.

The Summary panel opens.
18. Verify that the configuration settings are correct.
19. Click Finish. The Create Federation Complete portlet opens.
20. Click Restart WebSphere.

What to do next

If you are using WebSEAL as your Point of Contact server, configure it now. Do
not exit the management console. See:
v “Configuring a WebSEAL point of contact server for the Liberty federation”

Configuring a WebSEAL point of contact server for the Liberty
federation

When you plan to use WebSEAL as the Point of Contact server, you must
configure it for the Liberty federation.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that the WebSEAL point of contact profile has been
activated.

Chapter 31. Configuring a Liberty federation 467

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

The Create Federation Complete portlet provides a button that you can use to
obtain the Tivoli Federated Identity Manager configuration utility tool. You must
obtain the tool and run it.

To configure WebSEAL as the point of contact server, complete the steps in this
procedure:

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.

Note: The management console gives you the option of adding a partner now,
but for this initial configuration of the federation other tasks are completed
first.

2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

You must know the Tivoli Access Manager administration user (default:
sec_master) and administration user password. The utility configures endpoints
on the WebSEAL server, creates a WebSEAL junction, attaches the appropriate
ACLs, and enables the necessary authentication methods.

Example

For example, when you have placed tfimcfg.jar in /tmp, and the WebSEAL instance
name is default, the command is:
java -jar /tmp/tfimcfg.jar -cfgfile webseald-default -action tamconfig

For more information, see:
v Appendix A, “tfimcfg reference,” on page 753

What to do next

The next task is to export your Liberty federation properties to a file. See
“Exporting Liberty federation properties” on page 469.

468 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use Tivoli Access
Manager WebSEAL as the default point of contact server. To configure WebSphere
as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select WebSphere

4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Exporting Liberty federation properties
When you want to join a federation hosted by a partner, you must supply your
Liberty federation configuration properties.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Use the management console to create a metadata file that contains the properties
for your federation. Give the metadata file to your federation partner.

Procedure
1. Log on to the management console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations panel opens.
3. Select your Liberty federation from the table.
4. Click Export. The browser shows a message window that prompts you to save

the file containing the exported data.
5. Click OK. The browser download window prompts for a location to save the

file.
6. Select a directory and file name. Place the file in an accessible location.
7. Click Save.

Exporting SOAP endpoint authentication information to a Liberty
federation partner

Supply your partner with any keys, certificates, user names, or passwords needed
to complete SSL communication over SOAP ports.

Before you begin

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Chapter 31. Configuring a Liberty federation 469

About this task

Note: Securing of SOAP ports with SSL, keys, certificates, user names, and
passwords, are not required but are typically done to optimize network security.

Liberty provides a SOAP backchannel that is used with browser artifact single
sign-on profile, and can be used with additional Liberty profiles that support
SOAP binding. The SOAP backchannel can optionally be protected through the use
of SSL (HTTPS endpoints). Use of SSL is common for SOAP endpoints.

For Liberty federations, you might also need to provide authentication information
(certificates and basic authentication information) to your partner, for use when
accessing SOAP endpoints.

This task is done outside of the management console.

Note: If your federation does not use SSL to secure SOAP ports, you can skip this
task.

Procedure
1. Provide your partner with a validation certificate. The validation certificate

validates the SSL communication that your federation provider sends to the
SOAP endpoint of the partner.

2. If you want your partner to authenticate as a client, you must specify whether
the partner is to use client certificate authentication or basic authentication.
Only one form of authentication can be specified.
Client certificate authentication

v When you require client certificate authentication, you and your partner
must decide which certificate the partner must present when establishing the
SSL session. Choosing a certificate is a business decision. The certificate can
be one that your partner already has, or one that you provide to your
partner for this purpose.

Basic authentication

v When you require basic authentication, you must supply your partner with a
user name and password to be used when establishing an authenticated
session

Obtaining metadata from a Liberty federation partner
When you want to add a partner to your Liberty single sign-on federation, you
must obtain necessary configuration information about their Liberty federation
from them.

Before you begin

Your partner must have already installed and configured a Liberty federation. The
federation of your partner plays the opposite role to your federation. For example,
when your federation is configured as an identity provider, the federation of your
partner is configured as a service provider.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

470 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. Your partner must export configuration information about the Liberty

federation into a metadata file.
The partner must use the Tivoli Federated Identity Manager management
console to export the configuration settings to the metadata file. This is the
same feature that you used to provide your configuration settings to your
partner.
The Export feature uses a naming scheme for metadata files, based on the name
of the federation and a time stamp. The administrator can override the default
name for the metadata file, and change the name to any arbitrary name.

2. Your partner must provide you with the metadata file.
This action takes place outside of the Tivoli Federated Identity Manager
console. Your partner must use whatever process has been agreed to as part of
the business agreement that was previously negotiated between the partner
companies.

3. Place the metadata file onto the local file system where the Liberty federation
configuration is kept. You can choose any location for the metadata file. You
have now completed the preparation task. You must later use the Tivoli
Federated Identity Manager management console to add the partner to your
Liberty federation. The console provides an Add Partner wizard that prompts
you to supply the name of the file containing the metadata of your partner. The
documentation guides you through this task at the appropriate time.

Importing SOAP endpoint authentication information from a Liberty
federation partner

Liberty provides a SOAP backchannel that is used with browser artifact single
sign-on profile, and with additional Liberty profiles that support SOAP binding.
The SOAP backchannel can optionally be protected through the use of SSL (HTTPS
endpoints). Using SSL is common for SOAP endpoints.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

For Liberty federations, you might need to obtain authentication information
(certificates and basic authentication information) from your partner. Use the
authentication information when you want to access SOAP endpoints on the
federation of your partner.

This task is done outside of the management console.

Note: If the federation of your partner does not use SSL to secure SOAP ports, you
can skip this task.

Procedure
1. Get a validation certificate from your partner. Use the validation certificate to

validate SSL communication or messages that your partner sends to your SOAP
endpoint.

2. Get the authentication requirement from your partner. Use the authentication
requirement to authenticate when your client contacts the SOAP endpoint of
your partner.

Chapter 31. Configuring a Liberty federation 471

If your partner wants your client to authenticate, the partner must tell you
whether to use client certificate authentication or basic authentication. Only one
form of authentication can be specified.
Client certificate authentication

v When your partner requires client certificate authentication, you and your
partner must decide which certificate you to present when establishing the
SSL session. Choosing a certificate is a business decision. The certificate can
be one that you already have, or one that your partner gives you to use for
this purpose.

Basic authentication

v When your partner requires basic authentication, your partner must supply
you with a user name and password to be used when establishing an
authenticated session

3. When your partner uses SSL communication for SOAP ports, you must import
the certificate you obtained from your partner. You can import the certificate
into any keystore that is managed by the Tivoli Federated Identity Manager key
service.

Note: Tivoli Federated Identity Manager provides a default keystore
(DefaultTrustedKeystore) that contains some common CA certificates that you
might be able to use as validation certificates. In most cases, however, you
must import a certificate obtained from your partner.
a. Click Tivoli Federated Identity Manager > Key Service.

The Keystores panel is displayed.
b. Select a keystore from the Keystore table. The View Keys button is

activated.
c. Click View Keys. The Keys panel opens. Keys in the selected keystore are

listed.
d. Click the Import button. The Key wizard starts and opens the Keystore

Format panel.
e. Select the appropriate Keystore format for the file you want to import.

(PEM)
(Privacy-Enhanced Message) Public certificate

PKCS#12
Public Key Cryptography Standard #12: Personal Information Exchange
Syntax Standard

f. For PKCS#12, specify whether the keystore contains multiple key pairs.
1) Select the Contains multiple key pairs field when appropriate.
2) Clear (remove the check mark from) the Contains multiple key pairs

field when there is only one key pair. The key wizard automatically
imports the key.

g. Click Next. The Import Key panel opens.
h. Enter a fully qualified path in the Location of Keystore File field.

This field is displayed for all format types.
Optionally, you can click Browse to find the file on the file system.

i. If prompted, enter the Password for the keystore file.

Note: This field is displayed only for PKCS#12 format.
j. If prompted, enter the key name in the Enter the name of the key you want

to import field.

472 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: This field is displayed only for PKCS#12 format files that contain
multiple key pairs.

k. Enter a string that names the new key in the New Key Label field.
This field is displayed for all format types.

l. Click Finish to exit the wizard.
4. When your partner requires client basic authentication, you must retain the

user name and password strings. After you have created your federation, and
are using the management console to add a partner, the Partner wizard
prompts you to enter these values. You do not need to use these strings in any
other way.

Adding a partner to a Liberty federation
You can add a partner to the Liberty federation that you have created.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Procedure
1. Copy the metadata file from the partner to an easily accessible location on

your computer For example, /tmp.

Note: When the partner also uses Tivoli Federated Identity Manager this file
was created on the partner computer by using the management console to
export the federation properties.

2. Log on to the IBM Integrated Solutions Console.
3. Select Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Partners. The Federation Partner wizard starts and opens the Select
Federation panel.

4. Select the radio button next to the Liberty federation.
5. Click Next.
6. Enter the full path of the metadata file on the local computer in the Partner's

Liberty Metadata File field. For example:
/tmp/libertyfed11_metadata_sp.xml

7. Click Next.
8. The next configuration task is controlled by whether the imported metadata

contains information about a key or certificate.
Typically, the metadata that you imported contains a key that you must
import into an existing keystore.
v When the imported metadata contains information about a key or

certificate, the Partner Key panel opens. Continue with step 9
v When the imported metadata does not contain information about a key or

certificate, the Server Certificate Validation for SOAP panel opens. Continue
with step 10 on page 474

9. Enter the requested information for the Partner key.

Note: This key or certificate is used to sign Liberty messages, and to sign or
validate Liberty tokens. This key is not used for securing SOAP
communications over HTTPS.

Chapter 31. Configuring a Liberty federation 473

a. Select a keystore from the keystore table.
b. Enter the password in the Keystore Password field.
c. Enter a value in the Enter a label for your partner's key field. For

example:
benefits.example.com

d. Select or clear the Require Partner to Sign Liberty Messages field.
e. Click Next.

10. The next configuration step is determined by whether the imported metadata
contains a SOAP endpoint that is specified to use HTTPS. Choose one of the
following actions:
v When the imported metadata contains a SOAP endpoint that is specified to

use HTTPS, you are prompted to specify the keys or certificates to use.
Continue with step 11.

v When the SOAP endpoint does not use HTTPS, you do not have to specify
keys or certificates. Continue with step 15 on page 475.

Note: In a typical deployment, you must specify keys or certificates for use
with the SOAP endpoint. Typical practice for optimal security is to secure this
endpoint with HTTPS.

11. When the Server Certificate Validation for SOAP panel opens, complete the
following steps:
a. Select a keystore from the Keystore drop-down menu.

Tivoli Federated Identity Manager supplies a DefaultTrustedKeyStore.
If you are using one of the default CA certificates (based on your
agreement with your partner), you can select this keystore. Otherwise,
access the keystore where you placed the certificate you obtained from
your partner, for use with SSL communication between SOAP endpoints.
In a test or prototype environment, you can select
DefaultTrustedKeyStore.

b. Enter the password in the Keystore Password field.
The default password for DefaultTrustedKeyStore is testonly.

c. Click List Keys.
d. Select the radio button for the certificate you want, as indicated by the

value in the Alias column in the key table.
In a test or prototype environment, you can select testwebseal.

e. Click Next. The Client Authentication for SOAP panel opens.
12. You are prompted to specify whether the partner requires either client

certificate authentication or client basic authentication.
The partner can require only one of these authentication methods. When you
select one of the authentication types on the wizard panel, the panel entries
for the other authentication type are deactivated.
v When the partner requires client certificate authentication, continue with 13.
v When the partner requires client basic authentication, continue with 14 on

page 475.
13. Specify the values for client certificate authentication.

a. Select the Partner Requires Client Certificate Authentication check box.
b. Select a keystore in the Keystore menu.

The selected keystore is where you placed the certificate to use for client
certificate authentication.

474 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

c. Enter the password in the Keystore Password field.
d. Click List Keys.
e. Select the radio button for the appropriate key in the key table.
f. Click Next.
g. Continue with 15.

14. Specify the values for client basic authentication.
a. Select the Partner Requires Client Basic Authentication field.
b. Enter the Username and Password that you obtained from your partner.
c. Click Next.
d. Continue with 15.

15. The next panel to open depends on your federation role (identity provider or
service provider) and your version of Liberty (1.1 or 1.2). In most cases, you
must specify properties for the Liberty token. Select the following instruction
that matches your configuration:
v When adding a service provider partner to an identity provider federation,

continue with 16.
v When adding an identity provider partner to a service provider federation

continue with 17.
16. Specify the token module configuration data for adding a service provider

partner to an identity provider federation. The required data is identical for
Liberty v1.1 or Liberty v1.2. The Liberty v1.1 or v1.2 Token Module
Configuration panel opens.
a. Specify the types of attributes to include in the Liberty token in the

Include the following types of attribute types (a "*" means include all
types) field.
You can accept the default entry of asterisk (*) to include all types, or
specify attribute types.

b. Click Next.
c. Continue with 15.

17. Specify the token module configuration data for adding an identity provider
partner to a service provider federation. Select the action that matches the
version of Liberty protocol (v1.1 or v1.2).
v When adding an identity provider partner to a service provider federation,

using Liberty v1.1, no token module configuration is required. The Identity
Mapping panel opens. Continue with 18.

v When adding an identity provider partner to a service provider federation,
using Liberty v1.2, complete the following steps:

a. You can optionally supply a value for the Username for anonymous users
field. If you are not using this Liberty feature, you can leave this field
blank.

b. Click Next. The Identity Mapping panel opens.
c. Continue with step 18.

18. Choose the following action that matches your use of an identity mapping
rule:
v If you want to use the mapping file default identity mapping rule that you

entered in the Federation Creation wizard, complete the following steps:
a. Leave the identity mapping rule blank.
b. Click Next.

Chapter 31. Configuring a Liberty federation 475

v If you have a customized mapping file for use with this partner, complete
the following steps:
a. Enter the file path to the file.
b. Click Import.
c. Click Next.

The Summary panel opens.
19. Verify that the settings are correct.
20. Click Finish.

The Add Partner Complete panel opens.
21. Click Enable Partner to activate this partner.

The partner has been added to the federation, but is disabled by default as a
security precaution. You must activate the partner.

Configuring the alias service for Liberty
The alias service must be configured to operate with the same user registry as the
Tivoli Federated Identity Manager management service. Keep in mind however,
that support for Liberty protocol will be deprecated in the later versions of IBM
Tivoli Federated Identity Manager.

About this task

These instructions describe configuration of IBMTivoli Directory Server LDAP.

Procedure
1. “Creating an LDAP suffix for the alias service”
2. “Configuring LDAP server settings” on page 477

Creating an LDAP suffix for the alias service
You must create an LDAP suffix cn=itfim to enable the alias service to access the
LDAP user registry.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

To create an LDAP suffix for the alias service, complete the steps in this procedure:

Procedure
1. Stop the IBM LDAP server.

UNIX
ibmdirctl -D cn=root -w passw0rd stop

Windows
Use the Services icon.

2. Add the suffix:
idscfgsuf -s "cn=itfim"

3. Start the IBM LDAP server.

UNIX
ibmdirctl -D cn=root -w passw0rd start

476 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Windows
Use the Services icon.

4. Use ldapmodify to update the LDAP schema file. For example, on UNIX or
Linux:
v IBM Tivoli Directory Server:

ldapmodify -D cn=root -w passw0rd -f
/opt/IBM/FIM/etc/itfim-secuser.ldif

v Sun ONE Directory server:
ldapmodify -D cn=root -w passw0rd -f

/opt/IBM/FIM/etc/itfim-secuser-sunone.ldif

Configuring LDAP server settings
You must configure the alias service with the correct LDAP settings. Keep in mind,
however, that support for Liberty protocol will be deprecated in the later versions
of IBM Tivoli Federated Identity Manager

About this task

The alias service is used by the Liberty protocol. The alias service communicates
with the user registry server (LDAP) to manipulate user identity information. You
must configure the alias service with the correct LDAP settings.

Procedure
1. Click Tivoli Federated Identity Manager → Domain Management → Alias

Service Settings. The Alias Service Settings panel is displayed.
2. In the Root Suffix field, under LDAP Search Settings, specify the property for

the alias service to use when searching the LDAP user registry.

Table 121. LDAP Search property

Property Description

Root suffix Specifies the root suffix where alias settings are written. This
property can have 1 value (suffix) only. For example:

cn=itfim

3. Specify communication properties for the alias service to use when
communicating with LDAP servers. Use the menu choices in the LDAP
Environment portion of the window to specify communication properties.

Table 122. LDAP environment properties

Property Description

SSL Enabled Use this check box to specify whether to use Secure Socket Layer (SSL)
to secure the communication between the alias service and the LDAP
servers. If the LDAP servers are configured to use SSL, the alias service
must use SSL when communicating with them. Select SSL Enabled
when using SSL. Clear the SSL Enabled check box when not using SSL.

Keystore When the SSL Enabled check box is selected, select a keystore from the
Keystore menu list. The selected keystore is the name of the trusted
keystore containing the CA certificate of the LDAP server.
Note: The certificate authority certificates for all LDAP servers must be
in the same keystore.

4. Specify configuration parameters for each LDAP server. Use the LDAP Servers
portion of the window to configure properties for LDAP servers used by the
alias service.

Chapter 31. Configuring a Liberty federation 477

You can perform several configuration actions from this section of the window.
For each LDAP server, you can specify values for a number of configuration
properties.
v Click Add to activate the LDAP configuration fields for the selected server.
v Click Save to save the LDAP properties that you entered into the

configuration fields for a server. When you save the properties, the console
inserts the host name and port number into the LDAP hosts box.

Table 123. LDAP server properties

Property Description

LDAP Hostname The LDAP Hosts box lists the configured servers in order of preference.
The alias service tries first to contact the server at the start (top) of the
list. If that contact is unsuccessful, the alias service attempts to contact
the next server on the list.

Use the up and down arrows located on the right side of the box to
move individual LDAP servers higher or lower in the order of priority.

Port The port on which the LDAP server listens.

Default port for non-SSL communication:

389

Default port for SSL communication:

636

Bind DN The distinguished name (DN) that the alias service uses to bind to the
LDAP server. Default value:

cn=root

Bind Password The password for the DN specified in the Bind DN field.

Key Name The name of the encryption key to use when establishing SSL
communication. Select a key name from the list of names. The names on
the list are obtained from the keystore that is specified in the Keystore
field in the LDAP environment portion of this configuration window.

Minimum
number of
connections

The initial number of connections (binds) for the alias service to
establish to the LDAP server. The minimum valid number is zero (0).
The maximum valid number is limited only by the maximum value
supported by the data type.

The default value is 2. Use the default value unless you must increase
it.

Maximum
number of
connections

The maximum number of connections (binds) for the alias service to
establish to the LDAP server. The maximum valid number is limited
only by the maximum value supported by the data type.

The default value is 10. Use the default value unless you must increase
it.

5. Click OK to save configuration properties and exit from the window.

478 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 32. Planning a WS-Federation single sign-on
federation

You must specify values for federation properties when configuring
WS-Federation.

WS-Federation protocol defines a standardized, multi-vendor Web-based single
sign-on solution based on a collection of integrated Web Services (WS*) standards
including WS-Security, WS-Trust, and WS-Federation. When you configure Tivoli
Federated Identity Manager, select the WS-Federation Passive Profile.

You should be familiar with the WS-Federation standards documents before
implementing a single sign-on federation. The standards specify data exchange and
message processing. You should understand what information you are required to
provide to your business partners, and what information your partner must
provide to you.

Web Services Federation Language (WS-Federation):
http://wwww.ibm.com/developerworks/library/ws-fed

The Federation wizard will prompt you to supply values for a number of
properties. Most of them can be modified later, after federation creation.

The profile or profiles to use is based on both business policy decisions and
network security architecture. Federation partners must agree on the profile choices
in order to enable user single sign-on across the federation. The choice must be
made prior to configuring the federation.

SAML 2 supports a unique range of single sign-on profiles. The profiles extend
beyond specifications for achieving federated single sign-on, and can include other
functions such as single logout and federation termination.

Identity provider and service provider roles
Each partner in a federation has a role. The role is either Identity Provider or
Service Provider. Understand the behaviour of each role.
v Identity provider

An identity provider is a federation partner that vouches for the identity of a
user. The Identity Provider authenticates the user, and provides an
authentication token to the service provider.
The identity provider is responsible for the following tasks:
– Directly authenticates the use by validating a user name and password.
– Indirectly authenticates the user by validating an assertion about the user's

identity as presented by a separate identity provider.
The identity provider handles the management of user identities in order to free
the service provider from this responsibility.

v Service Provider
A service provider is a federation partner that provides services to the end user.
Typically, service providers do not authenticate users, but instead request
authentication decisions from an identity provider. Service providers rely on

© Copyright IBM Corp. 2006, 2013 479

identity providers to assert the identity of a user, and rely on identity providers
to manage user identities for the federation.
Service providers can maintain a local account for the user, which can be
referenced by an identifier for the user.

WS-Federation single sign-on profiles
The single sign-on profiles enable a client using a Web browser to achieve single
sign-on access to resources within a WS-Federation 1.0 federation.

Typically the user wants to access a resource provided by a service provider, and
must authenticate with an identity provider in order to be granted that access.

The profile provides a mechanism for the Web user to obtain an authentication
assertion that can be used to establish a security context within the federation.
Establishment of the security context enables a user to access multiple resources
within the federation without having to authenticate more than once.

WS-Federation support two profiles for use with single sign-on sessions:

Browser POST
Browser POST uses a self-posting form during the establishment and use of a
trusted session between an identity provider, a service provider, and a client
(browser).

WS-Federation supports browser POST by default. No configuration is
required.

Single logout
This profile terminates all log in sessions within the federation for a specified
user. WS-Federation supports single logout by default. No configuration is
required.

WS-Federation single sign-on properties
WS-Federation Realm

The name of the WS-Federation Realm. This name is the unique identifier for
this instance of Tivoli Federated Identity Manager The Realm name is included
in assertions that are sent to federation partners. Partners rely on finding a
known (defined) Realm name in order to accept the assertions. A default value
is provided. For example:
https://idp.example.com/FIM/sps/wsfed/wsf

In the example above, the string wsfed is the name of the federation. The
endpoint is automatically created. You can accept the default name.

WS-Federation Endpoint
The endpoint for all requests for WS-Federation services. A default value is
provided. For example:
https://idp.ibm.com/FIM/sps/wsfed/wsf

In the example above, the string wsfed is the name of the federation. The
endpoint is automatically created. You can accept the default name.

480 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

WS-Federation token properties

When you create a single sign-on federation, you must configure an instance of a
security token module for the federation. The token module corresponds to a
security token type that defines the format for the encrypted token that contains
user credential information.

The token is exchanged between the identity provider and service provider as part
of the authentication and authorization services for the processing of each user
access request.

When you use the federation creation wizard to create a WS-Federation single
sign-on federation, the SAML 1 token type is automatically selected for you.

When you configure an identity provider, you will be prompted to specify token
module properties. When you configure a service provider, you do not have to
specify any token module properties.

Number of seconds before the issue date that an assertion is considered
valid

Specified during token configuration on identity provider only. Default value
60 seconds. There is no minimum or maximum enforced.

Amount of time the assertion is valid after being issued (seconds)
An integer value that specifies the number of seconds that the assertion
remains valid. The default value is 60 seconds. There is no minimum or
maximum enforced. Specified during token configuration on identity provider
only.

WS-Federation identity mapping

The federation creation wizard will prompt you to specify either an XSLT mapping
rule file or a custom mapping module instance.

The XSLT mapping file or custom mapping module instance must be prepared
before you configure the federation.

XSLT Transformation for Identity Mapping
Selection of this button in the wizard indicates that you will provide an XSL
file containing the identity mapping. Enter the name of a file on the local file
system.

Custom Mapping Module Instance
Selection of this button in the wizard indicates that you will provide a custom
mapping module instance to use instead of an XSL file. You will be prompted
to enter any configuration properties that your custom mapping module
instance requires.

Mapping a Tivoli Access Manager credential to a SAML 1
token

Map the Tivoli Access Manager credential to a SAML 1 token when messages are
exchanged between partners in a SAML 1.0, SAML 1.1, or WS-Federation
federation. You must also map the credential when Tivoli Access Manager manages
the user identity information.

Chapter 32. Planning a WS-Federation single sign-on federation 481

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

When a user request is received (for example, for access to a remote resource), the
trust service contacts Tivoli Access Manager and obtains a Tivoli Access Manager
credential for the user identity.

In this scenario, the trust service Tivoli Access Manager credential module operates
in validate mode. In this mode, it converts the Tivoli Access Manager credential to
an Input STS universal user document (In-STSUUSER).

The In-STSUUSER that is created from the Tivoli Access Manager credential
module has all of the information from the credential, as shown in Table 124. This
information is available for possible use by the trust service module that will build
the outgoing token.

Table 124. In-STSUUSER entries generated from a Tivoli Access Manager credential

Tivoli Access Manager
credential In-STSUUSER element

User ID Principal Attr: name

Domain Principal Attr: domain

Registry ID Principal Attr: registryid

User UUID Principal Attr: uuid

Group Name Group Name

Group Registry ID Group Attr: registryid

Group UUID Group Attr: uuid

Other credential entries
xxx

Attrlist Attr: xxx

The trust service consults its configuration entry for the federation partner (for
example, the destination that hosts a requested resource). The configuration
indicates the type of token to be created. In this case, the token type is SAML.

Next, the identity mapping module converts the In-STSUUSER into an Output STS
universal user (Out-STSUUSER). The Out-STSUUSER must contain the information
needed by the Tivoli Access Manager SAML token module to generate a SAML
token.

The Out-STSUUSER must contain the following information in order for the SAML
token module to be able to generate a valid SAML token:

Table 125. Out-STSUUSER entries used to generate a SAML token

Out-STSUUSER
element SAML Token Information Required?

Principal Attr:
Name

AuthenticationStatement/Subject/NameIdentifier Required

Attribute List Additional custom attributes Optional

482 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The mapping module is responsible for:
1. Mapping Principal Attr Name in In-STSUUSER to a Principal name entry in the

Out-STSUUSER.
The type must be valid for SAML. For example:
urn:oasis:names:tc:SAML:1.0:assertion#emailAddress

Figure 59 shows a sample mapping rule file from the demonstration application
mapping file, ip_saml_10.xsl.

2. Setting the authentication method to the "password" mechanism, regardless of
the value obtained from the Tivoli Access Manager credential. This action is
required by the SAML standard.
Figure 60 shows a sample mapping rule file from the demonstration application
mapping file, ip_saml_10.xsl.

3. Populating the attribute statement of the SAML assertion with the attributes in
the AttributeList in the In-STSUUSER. This information becomes custom
information in the SAML token.
There can be custom attributes that are required by applications that will make
use of the information to be transmitted between federation partners.
Figure 61 on page 484 shows the mapping of custom attributes in the sample
mapping file for the Tivoli Federated Identity Manager demonstration

<!--
This template replaces the entire Principal element with one that contains
just the email address (from the ivcred tagvalue_email) and the data type
appropriate for SAML.
-->
<xsl:template match="//stsuuser:Principal">
<stsuuser:Principal>
<stsuuser:Attribute name="name"

type="urn:oasis:names:tc:SAML:1.0:assertion#emailAddress">
<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_email’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
</xsl:template>

Figure 59. XSL code sample showing mapping of a value from a Tivoli Access Manager
credential into a Principal name for a SAML token

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
<!-- First the authentcation method attribute -->
<stsuuser:Attribute name="AuthenticationMethod"

type="urn:oasis:names:tc:SAML:1.0:assertion">
<stsuuser:Value>urn:oasis:names:tc:SAML:1.0:am:password</stsuuser:Value>
</stsuuser:Attribute>

....

....
</stsuuser:AttributeList>

</xsl:template>

Figure 60. XSL code sample showing assignment of authentication method as an Attribute for
a SAML token

Chapter 32. Planning a WS-Federation single sign-on federation 483

application.

4. Populating custom attributes. The GroupList element of the In-STSUUSER is
not read by the SAML token module. However, information in this element can
optionally be used to populate custom attributes of the Out-STSUUSER.
Figure 62 shows the optional assignment of a GroupList value to an attribute.
This code sample is from the demonstration application mapping file
ip_saml_10.xsl.

Mapping a SAML 1 token to a Tivoli Access Manager
credential

The service provider receives a SAML token. The SAML token module, operating
in validate mode, creates an In-STSUUSER document from the SAML token.

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
....

<!-- Now the commonName attribute -->
<stsuuser:Attribute name="commonName"

type="http://example.com/federation/v1/commonName">
<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_name’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>

<!-- Now the ssn attribute -->
<stsuuser:Attribute name="ssn"

type="http://example.com/federation/v1/namevalue">
<stsuuser:Value>
<xsl:value-of
select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’tagvalue_ssn’]

[@type=’urn:ibm:names:ITFIM:5.1:accessmanager’]/stsuuser:Value" />
</stsuuser:Value>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 61. XSL code sample showing assignment of optional attributes for a SAML token

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
<!-- Now the role attribute (can be multi-valued) -->

<stsuuser:Attribute name="role" type="http://example.com/federation/v1/role">
<xsl:for-each select="//stsuuser:GroupList/stsuuser:Group">
<stsuuser:Value>
<xsl:value-of select="@name" />
</stsuuser:Value>
</xsl:for-each>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 62. XSL code sample showing optional assignment of GroupList value to an attribute
for a SAML token

484 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Table 126 shows the information from the token that is converted into an
In-STSUUSER document.

Note: This topic applies to both SAML 1.0 and SAML 1.1 tokens.

Table 126. SAML token information that is converted into a STS universal user document

SAML Token Information In-STSUUSER element
Required for
Out-STSUUSER?

AuthenticationStatement/Subject/
NameIdentifier

Principal Attr: Name Required

Additional custom attributes Attribute List Optional

Note: The SAML token module does not populate the GroupList element in the
In-STSUUSER document.

The trust service must convert this information to a Tivoli Access Manager
credential, in order to make an authorization decision on the request from the user
identity. The identity mapping module converts the In-STSUUSER data into an
Out-STSUUSER XML file.
v The NameIdentifier is used to populate the name attribute of the Principal.

Figure 63 shows the assignment of a set value for the Principal name. This code
sample is from the demonstration application mapping file sp_saml_1x.xsl.

v Other information from the token is used to populate Attributes in the Attribute
List.
Figure 64 on page 486 shows the optional assignment of additional values to
attributes. This code sample is from the demonstration application mapping file
sp_saml_1x.xsl.

<!--
This will replace the principal name (which was the email address in
the SAML assertion) with the user "me_chris".
-->
<xsl:template match="//stsuuser:Principal/stsuuser:Attribute[@name=’name’]">
<stsuuser:Attribute name="name" type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>me_chris</stsuuser:Value>
</stsuuser:Attribute>

</xsl:template>

Figure 63. XSL code sample showing assignment of a value for the Principal name for a
SAML token.

Chapter 32. Planning a WS-Federation single sign-on federation 485

<xsl:template match="//stsuuser:AttributeList">
<stsuuser:AttributeList>

....
<!-- The tagvalue_name attribute -->

<stsuuser:Attribute name="tagvalue_name"
type="urn:ibm:names:ITFIM:5.1:accessmanager">

<stsuuser:Value>
<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’commonName’]
[@type=’http://example.com/federation/v1/commonName’]/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

<!-- The tagvalue_ssn attribute -->
<stsuuser:Attribute name="tagvalue_ssn"

type="urn:ibm:names:ITFIM:5.1:accessmanager">
<stsuuser:Value>
<xsl:value-of

select="//stsuuser:AttributeList/stsuuser:Attribute[@name=’ssn’]
[@type=’http://example.com/federation/v1/namevalue’]/stsuuser:Value" />

</stsuuser:Value>
</stsuuser:Attribute>

....
</stsuuser:AttributeList>

</xsl:template>

Figure 64. XSL code sample showing optional assignment of attributes for a SAML token.

486 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 33. Configuring a WS-Federation single sign-on
federation

To configure a WS-Federation single sign-on federations, you must create the
federation, add your partner to your federation, and provide your partner with
configuration information from your new federation.
1. “Creating a WS-Federation single sign-on federation”
2. “Configuring WebSEAL as the point of contact server” on page 488
3. “Exporting WS-Federation properties” on page 490
4. “Obtaining configuration information from a WS-Federation partner” on page

490
5. “Adding a partner to your WS-Federation single sign-on federation” on page

492

Creating a WS-Federation single sign-on federation
Use the WS-Federation passive protocol in to create and configure a federation
through the Federation wizard.

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Current Domain and Federations portlets open.
3. Click Create. The Federation wizard starts. The General Information panel

opens.
4. Enter a name for the federation and select a role.
5. Click Next.
6. Enter the contact information.
7. Click Next.
8. Select the WS-Federation Passive Protocol.
9. Click Next. The Point of Contact Server panel opens.

10. Enter the point of contact address.
11. Click Next.
12. Choose one of the following options:

v When configuring a service provider, the next step is identity mapping.
Continue with step 14

v When configuring an identity provider, the Configure Security Token panel
opens. Specify the requested token properties.
See Chapter 32, “Planning a WS-Federation single sign-on federation,” on
page 479.

13. Click Next. The Identity Mapping Options panel opens.
14. Select one of the radio buttons.

v Use XSL Transformation for Identity Mapping
Indicates that you will provide an XSL file containing the required identity
mapping.

© Copyright IBM Corp. 2006, 2013 487

a. When you select this choice and click Next, the Identity Mapping panel
opens. Enter the name of a file on the local file system that contains the
identity mapping rule in the XSLT File Containing Identity Mapping
Rule field.
This is a file that you have prepared prior to this installation.
Optionally, you can click the Browse button to locate the file on the
local file system.

b. Click Next.
An error opens if the file cannot be found or if the file does not contain
valid XSLT (eXtensible Stylesheet Language Transform).

v Use Custom Mapping Module Instance
Indicates that you will provide a custom mapping module instance to use
instead of an XSL file.
a. When you select Use Custom Mapping Module Instance, a table of

Module Instances opens. Select the radio button for the module instance
to use and click Next.

b. When you custom mapping module instance requires you to specify
values for properties, you will be prompted for them now. Otherwise,
the panel opens a message indicating that there are no properties to
configure for the specified module instance.

The Summary panel opens.
15. Verify that the configuration settings are correct.
16. Click Finish. The Create Federation Complete portlet opens.
17. Click Restart WebSphere.

What to do next

If you are using WebSEAL as your Point of Contact server, configure it now. Do
not exit the management console. See:
v “Configuring WebSEAL as the point of contact server”

Configuring WebSEAL as the point of contact server
When you plan to use WebSEAL as the point of contact server, you must configure
it for the WS-Federation single sign-on federation.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that the WebSEAL point of contact profile has been
activated.

About this task

The Federation wizard provides a button that you can use to obtain the Tivoli
Federated Identity Manager configuration utility tool. You must obtain the tool and

488 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

run it. To configure WebSEAL as the point of contact server, complete the steps in
this procedure:

Procedure
1. After creating the federation, click Load configuration changes to Tivoli

Federated Identity Manager runtime to reload your changes.

Note: The management console gives you the option of adding a partner now,
but for this initial configuration of the federation other tasks are completed
first.

2. Click Done to return to the Federations panel.
3. Click Download Tivoli Access Manager Configuration Tool.
4. Save the configuration tool to the file system on the computer that hosts the

WebSEAL server.
5. Run the configuration tool from a command line. The syntax is:

java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

You must know the Tivoli Access Manager administration user (default:
sec_master) and administration user password. The utility configures endpoints
on the WebSEAL server, creates a WebSEAL junction, attaches the appropriate
ACLs, and enables the necessary authentication methods.

Example

For example, when you have placed tfimcfg.jar in /tmp, and the WebSEAL instance
name is default, the command is:
java -jar /tmp/tfimcfg.jar -action tamconfig -cfgfile webseald-default

For more information, see Appendix A, “tfimcfg reference,” on page 753.

What to do next

The next task is to manually export your WS-Federation properties to your partner.
See “Exporting WS-Federation properties” on page 490.

Configuring WebSphere as a point of contact server
Tivoli Federated Identity Manager is configured by default to use Tivoli Access
Manager WebSEAL as the default point of contact server. To configure WebSphere
as your point of contact server, you must make a configuration change.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select WebSphere.

Chapter 33. Configuring a WS-Federation single sign-on federation 489

4. Click Make Active.

Results

The WebSphere server is now configured to be the point of contact server.

Exporting WS-Federation properties
When you want to join a federation hosted by another business partner, you must
supply your federation configuration properties. You can easily export the
properties and provide it to your partner.

About this task

For WS-Federation, you must manually prepare a file that contains the
configuration properties. Give this file to your federation partner.

Procedure
1. Log on to the management console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations. The Federations panel opens.
3. Select your WS-Federation single sign-on federation from the table.
4. Display the federation properties. Obtain the properties listed in

“WS-Federation properties to exchange with your partner” on page 491
5. Deliver the file to your partner, in the manner specified in the business

agreement between your company and your partner's company.

What to do next

You need to provide this file to your partner, when your partner wants to add
your configuration information to their WS-Federation single sign-on federation.

Obtaining configuration information from a WS-Federation partner
You must obtain configuration information from your WS-Federation your partner.

Before you begin

When you want to add your business partner as a partner to your WS-Federation
single sign-on federation, you must obtain from them the necessary configuration
information about their WS-Federation single sign-on federation.

Your partner must have already installed and configured a WS-Federation single
sign-on federation. The federation of the partner plays the opposite role to your
federation. For example, when your federation is configured as an identity
provider, the federation of your partner is configured as a service provider.

You obtain the information by having your partner manually assemble the
configuration properties for their federation. The partner must then provide the
information to you through a method that has been agreed upon as part of the
business agreement between you and your partner.

490 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. Your partner must use the management console to collect the properties for

their federation. The partner should provide you with the properties listed in
“WS-Federation properties to exchange with your partner.”

2. You partner should deliver the file to you, in the manner specified in the
business agreement between your company and your partner's company.

WS-Federation properties to exchange with your partner
You and your partner must be prepared with the information that you must
exchange before you can add your partner to a federation.

Federation properties

Table 127. WS-Federation properties

Property Description

Federation name A character string that names the federation

Role Identity provider or service provider

Protocol WS-Federation Passive Profile

Company name The name of the company that created this
federation. (Required)

Company URL A URL for the company that created this
federation. (Optional)

First Name and Last Name The name of the person who serves as
contact for other companies in the
federation. (Optional)

Email address The email address of the person who serves
as contact for other companies in the
federation. (Optional)

Phone number The telephone number of the person who
serves as contact person for other companies
in the federation. (Optional)

Contact Type A string that describes a business role type
such as technical or support. (Optional)

WS-Federation data

Table 128. WS-Federation data

Property Description

WS-Federation Realm The unique name of the WS-Federation Realm.

For example:

https://idp.example.com/FIM/sps/wsfed/wsf

WS-Federation Endpoint The endpoint of your partner for all the
WS-Federation services requests. For example:

https://idp.example.com/FIM/sps/wsfed/wsf

Maximum Request Lifetime (in
seconds)

The maximum length of time, in seconds, that a
request or message that is received from a
WS-Federation partner is valid.

Chapter 33. Configuring a WS-Federation single sign-on federation 491

SAML token module configuration

Table 129. SAML token module properties

Property Description

Enable the Signing of Assertions Indicates whether the identity provider signs
assertions before sending them to the service
provider partner.

Select Key for Signing Assertions The name of the key to use when signing
assertions. Specified for a service provider
partner.

Signature Algorithm for signing SAML
Assertions

Specifies the signature algorithm to use to
sign the SAML assertion. Select one from the
following options:

v RSA-SHA1

v DSA-SHA1

v RSA-SHA256

Include the following attribute types (a '*'
means include all types)

The types of attributes to include in the
SAML token module. Specified for a service
provider partner.

Enable signature validation When selected, indicates that the service
provider validates the signature on
assertions received from the identity
provider partner. Specified for an identity
provider partner

Select Validation Key The name of the key to use when validating
signatures. Specified for an identity provider
partner.

Adding a partner to your WS-Federation single sign-on federation
You can use the administration console to add a partner to a WS-Federation single
sign-on federation.

About this task

The configuration steps are the same for adding all partners. The configuration
properties differ for identity provider and service provider partners. The Partner
wizard prompts you for the necessary properties.

Procedure
1. Log on to the IBM Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Partners. The Federation Partners panel opens.
3. Click Create. The Select Federation panel opens.
4. Select the federation to which you would like to add a partner.
5. Click Next. The Contact Information panel opens.
6. Enter the Contact properties.

The company name is required. The other fields are optional.
7. Click Next. The WS-Federation Data panel opens.
8. Enter the requested properties.
9. Click Next. The Configure Security Token panel opens.

492 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

10. Enter the configuration properties for the federated security token.
The configuration properties are specific to the partner role:
v When adding an identity provider partner:

a. When assertions should be signed click Enable the Signing of
Assertions. When you select this check box, you must specify a key for
signing assertions. Select the Keystore, enter the Keystore Password,
click List Keys and select the key from the key table.

b. Optionally specify attributes in the field: Include the following
attribute types (a '*' means include all types.

c. Click Next.
v When adding a service provider partner:

a. When signatures should be validates click Enable Signature Validation.
When you select this check box, specify a key to use for validating
signatures. Select the Keystore, enter the Keystore Password, click List
Keys and select the key from the key table.

b. Click Next.

The Identity Mapping Options panel opens.
11. Select one of the radio buttons.

v Use XSL Transformation for Identity Mapping
Indicates that you will use an XSL file to provide any required identity
mapping.
a. When you select this choice and click Next, the Identity Mapping panel

opens. Leave the identity mapping blank when you want to use the
default identity mapping rule that you entered in the Federation
Creation wizard.
When you want to override the default mapping rule with a rule
specific to this partner, enter the name of a file on the local file system
that contains the identity mapping rule in the XSLT File Containing
Identity Mapping Rule field.
Optionally, you can click the Browse button to locate the file on the local
file system.

b. Click Next.
v Use Custom Mapping Module Instance

Indicates that you will provide a custom mapping module instance to use
instead of an XSL file.
a. When you select Use Custom Mapping Module Instance, a table of

Module Instances opens. Select the radio button for the module instance
to use and click Next.

b. When you custom mapping module instance requires you to specify
values for properties, you will be prompted for them now. Otherwise,
the panel opens a message indicating that there are no properties to
configure for the specified module instance.

The Summary panel opens.
12. Verify that the settings are correct and click Finish. The Add Partner Complete

panel opens.
13. Click Enable Partner to activate this partner.

The partner has been added to the federation, but is disabled by default as a
security precaution. You must enable the partner.

Chapter 33. Configuring a WS-Federation single sign-on federation 493

494 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 4. Web services security management configuration

The topics in the Configuration section provide a step-by-step guide to configuring
Web services security management for Tivoli Federated Identity Manager.

Read the overview section first:
Chapter 34, “Web services security management configuration,” on page 497

© Copyright IBM Corp. 2006, 2013 495

496 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 34. Web services security management configuration

Configuration of Web services security management starts with the establishment
of a Tivoli Federated Identity Manager domain. When the domain is established,
you can configure the Web services security management component.

Configuration of Web services security management consists of these steps:
1. Configuration of a Tivoli Federated Identity Manager domain.

The deployment of a Tivoli Federated Identity Manager scenario requires the
creation of a Tivoli Federated Identity Manager domain.
You must create and configure a domain before you can configure the Web
services security management component.
See Chapter 3, “Domain configuration,” on page 23.

2. Configuration of the Web services security management component.
The component can be configured in many different ways, to reflect the
deployment scenarios. Configuration is described in detail in the IBM Tivoli
Federated Identity Manager Web Services Security Management Guide.

© Copyright IBM Corp. 2006, 2013 497

498 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 5. Configuring security token service

The topics in the Configuration section provide a step-by-step guide to configuring
a security token service as part of an integrated solution for management of user
identities in a distributed network environment.

This section describes the deployment of a Kerberos delegation security token
service module as support for a Kerberos junction solution provided by combining
Tivoli Federated Identity Manager with Tivoli Access Manager for e-Business
WebSEAL, along with WebSphere and additional products.

First read the overview of the deployment scenario:
Chapter 35, “Kerberos constrained delegation overview,” on page 501

© Copyright IBM Corp. 2006, 2013 499

500 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 35. Kerberos constrained delegation overview

Tivoli Federated Identity Manager provides a security token service (STS) that can
exchange security token formats. This function is used to move user credential
information between different token formats, as needed for different applications.

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity Manager
Security STS client while Tivoli Federated Identity Manager supports WebSphere
6.X. When Tivoli Federated Identity Manager discontinues its support for
WebSphere 6.X, use WebSphere Application Server version 7 Update 11 and later.
See WS-Trust client API and WS-Trust Clients for details.

The STS is an integral part of the Tivoli Federated Identity Manager single sign-on
solutions, but can also be used standalone. Tivoli Federated Identity Manager can
be integrated into various heterogeneous network deployments given the
stand-alone capability.

One such deployment is an environment that uses Microsoft Windows integrated
authentication (SPNEGO) with Kerberos tickets. In this environment, Tivoli
Federated Identity Manager can be deployed to take user credentials and convert
them to the necessary Kerberos format.

To use this capability, Tivoli Federated Identity Manager includes a security token
service module specifically for Kerberos constrained delegation. The Kerberos
delegation module facilitates the issuing of Kerberos Constrained Delegation
application service tickets, also known as Service for User To Proxy (S4U2Proxy).

The module supports only the issuing of tokens, and only Windows Kerberos
application service tickets through the Constrained Delegation model.

A main feature of the Kerberos constrained delegation model is that the password
of the user that needs the Kerberos service ticket can be concealed from the
application generating the ticket. In this case the application is WebSphere plus
Tivoli Federated Identity Manager. The application must know only the user name
of the user, and the service principal name (SPN) of the destination Kerberos
service.

The Kerberos constrained delegation STS module is primarily intended to enable
Tivoli Access Manager WebSEAL to support single sign-on across Kerberos
junctions. These junctions are junctions to a Web server that is configured for
Integrated Windows Authentication (SPNEGO).

WebSEAL can maintain a user session with whatever authentication mechanism it
chooses, and then connect to a Web server (for example, IIS) by using the SPNEGO
authentication flow. This authentication flow uses a Kerberos ticket.

The use of Kerberos credentials for single sign-on to junctions provides the
following capabilities:
v Kerberos credentials are easily used by ASP.NET web applications without

requiring special code to be deployed.

© Copyright IBM Corp. 2006, 2013 501

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

v Kerberos credentials can be forwarded across applications while maintaining a
cryptographic signature, providing stronger security.

Note: This module is different from the Tivoli Federated Identity Manager native
Java Kerberos STS module. The Java Kerberos module supports the generic issuing
and validation of other Kerberos tickets.

More information about the Windows Kerberos extensions can be found at:
v http://technet2.microsoft.com/WindowsServer/en/Library/c312ba01-318f-46ca-

990e-a597f3c294eb1033.mspx
v http://msdn2.microsoft.com/en-us/library/aa480585.aspx
v http://msdn.microsoft.com/msdnmag/issues/03/04/SecurityBriefs/

Overview of Kerberos constrained delegation with WebSEAL junctions
Tivoli Federated Identity Manager uses the Kerberos constrained delegation
security token service (STS) module to generate Kerberos tokens.

WebSEAL retrieves the Kerberos tokens by delegating the token request to the STS
module.

Figure 65 shows a sample deployment of the applications involved in achieving
this type of single sign-on. The diagram also shows how the messages flow
between the different physical components.
1. Client uses the standard Tivoli Access Manager authentication process to

authenticate to WebSEAL over HTTPS or HTTP and requests an object on the

Figure 65. Kerberos constrained delegation with a WebSEAL junction

502 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://technet2.microsoft.com/WindowsServer/en/Library/c312ba01-318f-46ca-990e-a597f3c294eb1033.mspx
http://technet2.microsoft.com/WindowsServer/en/Library/c312ba01-318f-46ca-990e-a597f3c294eb1033.mspx
http://msdn2.microsoft.com/en-us/library/aa480585.aspx
http://msdn.microsoft.com/msdnmag/issues/03/04/SecurityBriefs/

junctioned server. WebSEAL authorizes the request from the client, and
determines that a Kerberos ticket is needed to access the junctioned
application.

2. WebSEAL generates a WS-Trust issue key message intended for the Tivoli
Federated Identity Manager server. A single WS-Trust issue key can be used to
request multiple Kerberos tokens. WebSEAL opens a connection to the
WebSphere server running Tivoli Federated Identity Manager. WebSEAL sends
the SOAP request to the WebSphere server.

3. The Tivoli Federated Identity Manager server running on the WebSphere
server verifies that the WebSEAL server is authorized to start the security
token service (STS).
The STS then starts a Tivoli Federated Identity Manager trust module to
request the configured number of Kerberos tickets for the junctioned Web
server on behalf of the client. The trust module uses Kerberos, over TCP or
UDP port 88 to communicate with the Active Directory domain controller.

4. The Active Directory domain controller verifies that the Tivoli Federated
Identity Manager server is authorized to request tickets for the junctioned
Web server on behalf of the user. The Active Directory domain controller
returns the configured number of Kerberos tickets to the Tivoli Federated
Identity Manager runtime.

5. The Tivoli Federated Identity Manager runtime returns the tickets as a SOAP
response to the WebSEAL server.

6. The WebSEAL server caches the Kerberos tickets and forwards one of the
tickets along with the client request to the junctioned Web server over either
HTTP or HTTPS.

7. The junctioned Web server requests validation of the Kerberos ticket from the
Kerberos domain controller (KDC). The KDC is shown here as being the same
system as the Active Directory server.

8. The KDC verifies that the Kerberos ticket is valid. The Kerberos ticket is used
as proof of the client identity, which might also be used for further
authorization checks.

9. The junctioned Web server returns an HTTP response to WebSEAL.
10. WebSEAL returns the HTTP response to the client.

A new Kerberos ticket is sent along with the request to the junctioned Web server
under the following circumstances:
v on each subsequent request from the same client, and
v on the same login session to the same junctioned Web server.

The new Kerberos ticket is either taken from the WebSEAL cache of Kerberos
tickets or a request is sent to the WebSphere server running Tivoli Federated
Identity Manager to obtain a new set of Kerberos tickets.

Deployment overview
The Kerberos deployment has specific software prerequisites. This section lists
those prerequisites and the tasks involved in the deployment.

Software prerequisites
v Tivoli Federated Identity Manager must run on Windows 2003 Server Service

Pack 2 or later.

Chapter 35. Kerberos constrained delegation overview 503

The service pack is required due to a known memory leak in the Windows
Isass.exe process on earlier versions. See http://support.microsoft.com/kb/
907524/

v The WebSEAL server can run on any supported platform.
The WebSEAL server does not need to be part of the Active Directory domain.

v WebSphere can be deployed either in standalone mode or in cluster mode. All
WebSphere servers in the cluster should be installed on Windows systems, and
should be part of the domain.

v When the Tivoli Access Manager users are stored in Active Directory, the Tivoli
Access Manager policy server must be on Windows and be a member of the
domain.

v All domain controllers in the Active Directory domain should run at the
Windows Server 2003 functional level.

v The Tivoli Federated Identity Manager support for Kerberos delegation modules
is not included in the Tivoli Federated Identity Manager Business Gateway
product.

Deployment task overview
1. Enable integrated Windows authentication
2. Configure Active Directory and WebSphere for constrained delegation
3. Install and configure a Tivoli Federated Identity Manager domain and runtime
4. Configure a Kerberos module instance and trust chain for the Kerberos

constrained delegation STS module
5. Configure WebSEAL to support a Kerberos junction

Table 130. Example server hostnames used in this documentation

Server role Example Value

Backend server (junctioned Web server) mydataserver.example.com

WebSEAL server websealhost.example.com

Active Directory hostname activedirectoryhost.example.com

504 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://support.microsoft.com/kb/907524/
http://support.microsoft.com/kb/907524/

Chapter 36. Enabling integrated Windows authentication

These instructions describe how to configure Microsoft IIS for SPNEGO
authentication.

Before you begin

These instructions assume that you have Windows Server 2003 deployed with
Active Directory. These steps must be completed before you can set up constrained
delegation.

Procedure
1. On the domain controller, select Start > Programs > Administrative Tools >

Active Directory Users and Computers.
2. Create a user that acts as a proxy for the IIS server. For example, iisuser.
3. Specify the user password as never expires.
4. Open a command prompt.

a. Change directory to C:\Program Files\Support Tools.
b. Enter the appropriate ktpass command.

Syntax for ktpass:
ktpass -princ HTTP/IIS_server_name.domain_name@DOMAIN_NAME

-mapuser IIS_user_name -mapOp set

where:
v -princ is the Principal Name, in the form user@REALM

v -mapuser maps the -princ value to this use account. This is not done by
default.

v -mapOp specifies how to set the mapping attribute: set set_value

5. View the account properties for iisuser. Verify that the field User logon name
is set to the following value:
HTTP/IIS_server_name.domain_name

For example:
HTTP/mydataserver.example.com

6. Configuring the Application Pool Identity.
a. On the IIS server system, select Start > Programs > Administrative Tools

> Internet Information Service (IIS) Manager.
b. Select your_server_name/IIS name > Programs > Administrative Pools >

Default App Pool.
c. Right-click and select Properties.
d. Select the identity tab, and specify the domain identity for your IIS user

(for example iisuser).
For detailed instructions on the Windows task Configuring Application Pool
Identity with IIS 6.0, see
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/
Library/IIS/f05a7c2b-36b0-4b6e-ac7c-662700081f25.mspx?mfr=true.

7. Open Windows Explorer.
a. Go to C:\WINNT\Microsoft.NET\Framework\v1.1.4322\Temporary ASP.NET

Files.

© Copyright IBM Corp. 2006, 2013 505

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/f05a7c2b-36b0-4b6e-ac7c-662700081f25.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/f05a7c2b-36b0-4b6e-ac7c-662700081f25.mspx?mfr=true

b. Select Properties.
c. Select the Security tab.
d. Grant domain user iisuser full control over the directory.

8. Go to the IIS system, and select Start > Programs > Administrative Tools >
Computer Management.
a. Open Local Users and groups.
b. Open groups.
c. Right click on the local group IIS_WPG.
d. Select properties.
e. Select Add.
f. Add the domain user (in our case, iisuser) to this local group.

9. On IIS system, open the server's local security policy.
a. Click Start > Run and enter secpol.msc.
b. Expand local polices and browse to User Rights assignment.
c. Open up the Log on as Service right.

Note that any account or group in this list can logon as a service.
d. Click Add User or Group.
e. Enter (or browse for) the domain user iisuser account.
f. When the right is granted, reboot the server.

The system reboot is required because security settings are applied during
the startup phase of any Windows 2003 Server machine.

10. On the IIS system, select Start > Programs > Administrative Tools > IIS
Manager.
a. Open the local computer.
b. Right-click on the DefaultAppPool.
c. Select Recycle to restart the pool.

11. Open a browser and access http://web_server.
When this is a new IIS server without existing content, you should see the IIS
Under Construction page. When the IIS server has content, you should be able
to see the content.

12. On the IIS system, select Start > Programs > Administrative Tools > IIS
Manager.
a. Right-click on Default Web Site
b. Select Properties and select the Directory Security tab.
c. Click the Edit button next to Enable anonymous access, and edit the

authentication messages for this resource.
d. Disable anonymous access.
e. Enable integrated windows authentication.
f. Click OK.
g. Click OK again.

13. Open your browser and access http://web_server. You are prompted to log on.
14. Enter a valid domain user. For example, user@mydomain.com. When the log

on is successful you can view the IIS content.

506 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 37. Configuring Active Directory and WebSphere for
constrained delegation

You must configure Active Directory and WebSphere for your Kerberos delegation
to work.

About this task

The WebSphere node agent that hosts the Tivoli Federated Identity Manager
runtime needs to run under a special account in Active Directory in order to have
permission to obtain Kerberos tickets for other users and a constrained set of
targets. Before your Kerberos delegation trust chain can work, you must complete
the following tasks:
v Create the account.
v Set the appropriate options.,
v Modify the WebSphere service to use the account.

The following instructions describe how to complete these tasks.

Procedure
1. Verify that DNS is configured correctly on the Active Directory domain

controller.
The DNS server must be configured for both forward and reverse lookups.
Each host in the Active Directory domain must be configured to use the
Domain Controller's DNS server.
To verify, use nslookup commands for both hostname and IP address on
computers in the domain. The results of the nslookup commands should
show that the domain part of the resolved name is the domain of the domain
controller.

2. Ensure that Time Services are running on all machines in the Active Directory
domain and that the clocks of all machines are synchronized.

3. Verify that the Windows Server 2003 system (or multiple systems, when
deployed in a WebSphere cluster) is configured into an Active Directory
domain. The server can optionally be a domain controller.

4. Verify that all domain controllers in the domain are running at the Windows
Server 2003 functional level. To do this:
a. Open the Active Directory Users and Computers control panel.
b. Right-click on the domain and select Raise Domain Function Level.
c. Select Windows Server 2003 and click OK.

The Raise Domain Functional Level window is displayed. It should contain
the messages:
Current domain functional level
Windows Server 2003

This domain is operating at the highest possible functional level.

5. On the domain controller, create a user in Active Directory for delegation. The
WebSphere server that hosts the Tivoli Federated Identity Manager runtime
runs as this user identity.
a. Create a user. For example, tfimdeleguser. You can use a different user

identity. This user name will be used in these instructions.

© Copyright IBM Corp. 2006, 2013 507

b. Select the Password never expires check box.

Note: You can optionally set the password to expire. If you do, then when
you change it in the future, you will also need to reset the password for
the WebSphere node agent Windows service.

6. On the domain controller, add the tfimdeleguser user to the Domain
administrative group. To verify the settings:
a. Select Active Directory Users and Computer.
b. For the domain, click Users and click Domain Admins.
c. Select the Members tab. Verify that the tfimdeleguser is listed as a group

member.
7. Ensure that the Microsoft Support Tools are installed on the domain controller.

For example to obtain the Windows Server 2003 Service Pack 1 32-bit Support
Tools:
http://www.microsoft.com/downloads/details.aspx?FamilyId=6EC50B78-
8BE1-4E81-B3BE-4E7AC4F0912D&displaylang=en

8. On the domain controller, create an service principal name (SPN) for the user
tfimdeleguser. To complete this task::
a. Open a command prompt on the domain controller where the support

tools are installed.
b. Enter the setspn command.

The syntax for the command is:
setspn -A tfim/<tfim_delegation_user> <tfim_delegation_user>

For example:
setspn -A tfim/tfimdeleguser tfimdeleguser

9. On the domain controller, go to Active Directory Users and Computers and
open the properties for the user tfimdeleguser.
a. Select the Delegation tab.

Note: If you do not see the Delegation tab, return to the previous step
and ensure that the setspn command runs successfully.

b. Select the Trust this user for delegation to specified services only radio
button.

c. Select the Use any authentication protocol radio button.
d. Click the Add button on the Delegation tab.
e. Add the target services to which tfimdeleguser can delegate. These are the

target services for constrained delegation. In this example, the IIS Web
server runs as the user.

f. Click the Users or Computers button to search for particular services.
g. Select the domain user (service) that runs as the IIS server for the

WebSEAL Kerberos junction.

When you are finished, the Delegation tab should show a target service in the
window Services to which this account can present delegated credentials.
For example, the window could show a Service Type of HTTP, with User or
Computer showing a host and domain name such as
mydataserver.example.com

Select the HTTP/mydataserver.example.com entry. Press OK to continue.
10. Add the tfimdeleguser to the Windows Authorization Access Groups object.

To do this:

508 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.microsoft.com/downloads/details.aspx?FamilyId=6EC50B78-8BE1-4E81-B3BE-4E7AC4F0912D&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=6EC50B78-8BE1-4E81-B3BE-4E7AC4F0912D&displaylang=en

a. Open the Active Directory Users and Computers panel.
b. Select the Builtin object under the domain.
c. Locate the Windows Authorization Access Groups object.
d. Right click and select Properties. Select the Members tab.
e. Click Add and add the delegation user (in our example, tfimdeleguser) as

a member.
11. Grant the delegation user (tfimdeleguser) the Act as part of the operating

system privilege.
The actual process that must run as a Windows service depends on the
WebSphere environment:
v The service name in a standalone environment is the WebSphere Application

Server running the Tivoli Federated Identity Manager runtime
v The service name in a cluster environment is the WebSphere Application

server running the WebSphere node agent for the Tivoli Federated Identity
Manager runtime.

Note: For a cluster environment, this step must be repeated on all machines
hosting a node member of WebSphere cluster running the Tivoli Federated
Identity Manager runtime.
To do this:
a. Access the menu appropriate for your deployment:

v On the domain controller, select Start > Programs > Administrative
Tools > Domain Security Policy.

v On a non-domain controller computer, select Start > Programs >
Administrative Tools > Local Security Policy.

b. Expand Local Policies.
c. Select User Rights Assignment > Act as part of the operating system.
d. Right-click and select Properties.
e. Click the Define these policy settings check box.
f. Click Add user or group to add the delegation user (tfimdeleguser) to the

list of users authorized to act as part of the operating system.
g. Click OK.

12. Grant the delegation user (tfimdeleguser) the necessary privileges:
v When the Tivoli Federated Identity Manager application is running on a

member of the domain, grant the user the permission Log on as a service
privilege on the local machine.

v When the Tivoli Federated Identity Manager application is running on the
domain controller, grant the user the permission Log on as a service
privilege on the domain controller

a. Return to the Security Policy menu opened in the previous step.
b. Select User Rights Assignment > Log on as service.
c. Right-click and select Properties.
d. Click the Define these policy settings check box.
e. Click Add user or group to add the delegation user (tfimdeleguser) to the

list of users authorized to act as part of the operating system.
f. Click OK.

13. Enable the WebSphere process that runs the Tivoli Federated Identity Manager
application to run as a Windows service.
Use the wasservice command. Default location:

Chapter 37. Configuring Active Directory and WebSphere for constrained delegation 509

C:\Program Files\IBM\WebSphere\AppServer\bin

Example command:
C:\Program Files\IBM\WebSphere\AppServer\bin>wasservice -add ndagentwinser
-servername nodeagent
-profilePath "C:\Program Files\IBM\WebSphere\AppServer\profiles\Custom01"
-wasHome "C:\Program Files\IBM\WebSphere\AppServer"
-logfile "c:\Program Files\IBM\WebSphere\AppServer\profiles\

Custom01\logs\ws_startserver.log"
-logRoot "c:\Program Files\IBM\WebSphere\AppServer\profiles\

Custom01\logs\nodeagent"
-restart true

Example output from the command:
Adding Service: ndagentwinser

Config Root:
C:\Program Files\IBM\WebSphere\AppServer\profiles\Custom01\config
Server Name: nodeagent
Profile Path: C:\Program Files\IBM\WebSphere\AppServer\profiles\Custom01
Was Home: C:\Program Files\IBM\WebSphere\AppServer\
Start Args:
Restart: 1

IBM WebSphere Application Server V6.1
- ndagentwinser service successfully added

To obtain a usage message for the wasservice command, enter:
> WASService.exe

without any arguments.
14. If running in a cluster environment, modify the WebSphere service from the

previous step to start as the delegation user (tfimdeleguser)
a. Open the Services control panel and locate either the service for the Tivoli

Federated Identity Manager runtime or the Tivoli Federated Identity
Manager runtime node agent for a cluster environment.

b. Select the LogOn tab.
c. Specify the delegation user tfimdeleguser.
d. Specify the password for the delegation user.
e. Click OK.

15. Restart the WebSphere nodeagent.
This step is required to ensure that the Websphere node manager start the
managed nodes under the new identity.
a. Log on to the WebSphere console.
b. Select Servers > Application servers for a standalone environment or

Servers > Clusters for a cluster environment.
c. Select the check box for the server or cluster to be restarted and press the

Stop button for a standalone environment or the Ripplestart button for a
cluster environment.

d. In a standalone environment, after the server has been stopped, select the
check box for the server or cluster to be restarted and press the Start
button.

What to do next

Further information:
v Microsoft configuration principles:

http://technet2.microsoft.com/windowsserver/en/library/c312ba01-318f-46ca-
990e-a597f3c294eb1033.mspx?mfr=true

v Configuration instructions:

510 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://technet2.microsoft.com/windowsserver/en/library/c312ba01-318f-46ca-990e-a597f3c294eb1033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/c312ba01-318f-46ca-990e-a597f3c294eb1033.mspx?mfr=true

http://technet2.microsoft.com/windowsserver/en/library/e5d4cdbd-f071-4a1a-
b24e-92713f7fafc11033.mspx?mfr=true

v IBM instructions for configuring WebSphere to run as an account other than
Local System.
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/
com.ibm.websphere.base.doc/info/aes/ae/tsec_actwindows.html

Chapter 37. Configuring Active Directory and WebSphere for constrained delegation 511

http://technet2.microsoft.com/windowsserver/en/library/e5d4cdbd-f071-4a1a-b24e-92713f7fafc11033.mspx?mfr=true
http://technet2.microsoft.com/windowsserver/en/library/e5d4cdbd-f071-4a1a-b24e-92713f7fafc11033.mspx?mfr=true
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/tsec_actwindows.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/topic/com.ibm.websphere.base.doc/info/aes/ae/tsec_actwindows.html

512 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 38. Tivoli Federated Identity Manager configuration
for a Kerberos junction scenario

Before you being configuring Kerberos delegation, ensure that you have created a
domain, as described in Chapter 3, “Domain configuration,” on page 23.

Configuration steps:
1. “Planning configuration of the trust chain”
2. Completing the “Worksheet for trust chain configuration” on page 517
3. “Creating a Kerberos constrained delegation module instance” on page 519
4. “Creating a trust chain for Kerberos constrained delegation” on page 519

Planning configuration of the trust chain
Plan the configuration in deploying a trust chain for Kerberos constrained
delegation.

To deploy a trust chain for Kerberos constrained delegation, you must complete
two tasks:
1. Create an instance of a Kerberos constrained delegation trust service module.
2. Create a trust chain for Kerberos constrained delegation.

Tivoli Federated Identity Manager provides configuration wizards for each task.
The wizards prompt you to supply values for the required configuration
properties.

Kerberos delegation module instance

The default set of Tivoli Federated Identity Manager trust modules does not
include an instance of the Kerberos constrained delegation module type. You must
create the instance.

Although it is possible for you to create more than one instance, you should create
only one instance for each Tivoli Federated Identity Manager domain. This instance
can be used in any module chain that is required.

The reason for the restriction to only one instance is that Kerberos constrained
delegation module loads a native DLL (Windows dynamically loaded library) that
is shared by all instances of the module. All instances share the same configuration
parameters.

When more than one module instance is created, only the last module to be
initialized determines the size of the user cache created in the native code. To
prevent confusion, the best practice is to create only one module instance.

Module Type
This required property is requested on the Module Type panel. The
module type to use is:
com.tivoli.am.fim.trustserver.sts.modules.KerberosDelegationSTSModule

© Copyright IBM Corp. 2006, 2013 513

Module Instance name
This required property is requested on the Module Instance Name panel.
Supply a string of your choosing. For example:
MyKerberosDelegationInstance

Module Instance Description
This optional property is requested on the Module Instance Name panel.
You can enter a string that describes the instance.

Maximum size of the user credential cache

This required property is requested on the Kerberos Delegation Module
Configuration panel. This number determines the number of impersonation
handles and user credentials cached in the DLL loaded by the module.

The caching is done to improve performance. Set this number to the
approximate number of expected concurrent end users of the service for
high-volume transactions.

The default setting is 100.

Note: The higher the number, the more memory that will be consumed by
Tivoli Federated Identity Manager runtime application.

Kerberos delegation trust chain

Chain Mapping Name

This required property is requested on the Chain Mapping Identification
panel. You can specify any name for the chain. For example:
ivcred_to_kerberos

Chain Description
This optional property is requested on the Chain Mapping Identification
panel. The description can be any string.

Create a Dynamic Chain
This property is requested on the Chain Mapping Identification panel. This
option is not used with Kerberos delegation trust chains. Clear this option.

Request Type
This required property is requested on the Chain Mapping Lookup panel.
Select Issue Oasis URI.

Lookup Type
Select the radio button Use Traditional WS-Trust Elements (AppliesTo,
Issuer, and Token Type).

(AppliesTo) Address
This required property is requested on the Chain Mapping Lookup panel.
Enter an Address that corresponds to the applies-to property in the
[tfimsso:jct_name] stanza in the WebSEAL configuration file. For example:
http://websealhost.example.com/kerbjct

(AppliesTo) Service Name
This required property is requested on the Chain Mapping Lookup panel.

This property has two fields.

For the first field, either set this value to asterisk (*) to match all service
names, or set it to value of service-name property in the [tfimsso:jct name]
stanza in the WebSEAL configuration file.

514 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For the second field, always set this value to asterisk (*).

(AppliesTo) Port Type
This property is requested on the Chain Mapping Lookup panel.

This property takes two fields.

Leave both fields blank.

(Issuer) Address
This required property is requested on the Chain Mapping Lookup panel.
In the Address field, enter:
amwebrte-sts-client

(Issuer) Service Name
This optional property is requested on the Chain Mapping Lookup panel.
Leave this field blank.

(Issuer) Port Type
This optional property is requested on the Chain Mapping Lookup panel.
Leave this field blank.

Token Type
This required property is requested on the Chain Mapping Lookup panel.
Select Kerberos GSS V5.

Initialize the chain upon startup of runtime
This required property is requested on the Chain Identification panel. Do
not select this option.

Module Instances and modes
These required properties are requested on the Chain Assembly panel.

The Chain Assembly panel prompts you to enter values for the Module
Instances in the chain. For each module instance, you must select a mode.
You will then click a button to add the instance-mode pair to the chain.

For Kerberos constrained delegation, you want to configure a specific
sequence of trust service modules:
1. The first Module Instance is Default IVCred Token. Choose a mode of

validate.
2. The second Module Instance is the Kerberos delegation module

instance that you created, as named in the Module Instance Name
property within the module instance wizard. For example:
MyKerberosDelegationInstance

Select the issue mode.

Note: The wizard will warn you that your chain does not contain a
module in map mode. For a Kerberos constrained delegation, the map
mode is not required.

You can add a map mode if your deployment requires it. A map module
would be needed if the Tivoli Access Manager user name needs to be
mapped to a different user name in the Active Directory registry.

In a typical deployment, this mapping is not required. For example, in
many deployments, Tivoli Access Manager will be installed to use the
Active Directory registry. In these cases, there is only one identity for each
user.

Chapter 38. Tivoli Federated Identity Manager configuration for a Kerberos junction scenario 515

Enable signature validation
This property is requested on the Access Manager Credential (IVCred)
Module Configuration panel. Do not select this option.

Default target Service Principal Name
This property is requested on the Kerberos Delegation module
configuration panel, as Partner property.

In a typical deployment, you can leave this value blank.

This value can be used for WS-Trust clients that do not send the target
Service Principal Name (SPN) in the AppliesTo/ServiceName element of
the RequestSecurityToken (RST). The clients would also not have a
mapping rule to configure the target SPN as a security token service
universal user (STSUU) context attribute.

Options for adding a Tivoli Access Manager username for Kerberos
authentication

The options allow you to specify whether the module will auto-append a
suffix to the user name in the STSUniversalUser. The options are useful
when deploying the Kerberos delegation module with a Tivoli Access
Manager WebSEAL deployment. Options include:
v Do not add a suffix to the username.

This option leaves the user name unmodified.
v Add the machine DNS domain as a suffix to the username.

This option auto-appends the DNS domain suffix for the Tivoli
Federated Identity Manager runtime machine to the principal name in
the STSUniversalUser before calling the Windows API to obtain a
Kerberos ticket. The DNS domain is read from the Windows Registry
Key:
SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Domain

This option optimizes the module behavior for use in Tivoli Access
Manager configurations using Kerberos junctions. The addition of the
DNS domain enables the Windows API to successfully match the user
name against the user record in the Active Directory user registry.
Note that the module auto-appends the DNS domain name when the
STSUniversalUser principal name does not already contain the @
character. This means that if a mapping rule was used to append a suffix
containing the @ character to the user principal name, or if the Tivoli
Access Manager username contains the @ character, this setting has no
effect.

v Add the configured suffix to the username
This option is used to optimize the module behavior for use in Tivoli
Access Manager configurations using Kerberos junctions.
This option allows the administrator to manually specify the suffix. This
option is for special cases where the userPrincipalName attribute for the
user does not match the DNS domain name of the Windows machine
running the Tivoli Federated Identity Manager Runtime. This option has
no effect when the principal name already contains an @ character.

The suffix to add if using a configured suffix
For example:
@mydomain.com

516 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Worksheet for trust chain configuration
Complete the worksheets before configuring the trust chain.

The properties on the worksheets are described in “Planning configuration of the
trust chain” on page 513.

Kerberos module instance worksheet

The following tables correspond to the panels presented by the module instance
creation wizard.

Table 131. Module identification panels properties

Property Value

Module type com.tivoli.am.fim.trustserver.sts.modules.KerberosDelegationSTSModule

Module Instance
name

Module Instance
description

Table 132. Kerberos Delegation Module Configuration panel property

Property Your value

Maximum size of the user credential Default: 100

Kerberos module trust chain worksheet

The trust chain wizard presents a series of configuration panels. The following
tables correspond to each panel.

Table 133. Chain mapping identification properties

Property Your value

Chain Mapping Name

Chain Description

Create a Dynamic Chain This option must be deselected

Table 134. Chain Mapping Lookup properties

Property Your value

Request Type Issue Oasis URI

Lookup Type Use Traditional WS-Trust Elements
(AppliesTo, Issuer, and TokenType)

(AppliesTo) Address

(AppliesTo) Service Name Two fields

Use asterisk (*) for each field

(AppliesTo) Port Type Two fields

Leave both fields blank

Chapter 38. Tivoli Federated Identity Manager configuration for a Kerberos junction scenario 517

Table 134. Chain Mapping Lookup properties (continued)

Property Your value

(Issuer) Address

(Issuer) Service Name Two fields

Leave both fields blank

(Issuer) Port Type Two fields

Leave both fields blank

Token Type Kerberos GSS V5

Table 135. Chain identification panel

Property Your value

Initialize the chain upon startup of runtime Do not select this option

Table 136. Chain assembly panel

Property Your value

First module instance Default IVCred Token

First module mode validate

Second module instance The name of your Kerberos module instance:

Second module mode Issue

Table 137. Access Manager Credential Module Configuration property

Property Your value

Enable signature validation Deselect this option

Table 138. Kerberos delegation module (Issue mode) Configuration property

Property Your value

Default target Service Principal Name

Options for adding a Tivoli Access Manager
username for Kerberos authentication
Options:

v Do not add a suffix to the username.

v Add the machine DNS domain as a suffix
to the username.

v Add the configured suffix to the username

The suffix to add if using a
configured suffix

For example:

@mydomain.com

518 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Creating a Kerberos constrained delegation module instance
Learn how to create a module instance for a Kerberos constrained delegation.

About this task

A wizard guides you through the creation of the module instance. For information
about each requested property, see “Planning configuration of the trust chain” on
page 513.

You can also consult the “Worksheet for trust chain configuration” on page 517.

Procedure
1. Log on to the WebSphere console.
2. Click Tivoli Federated Identity Manager > Configure Trust Service >

Module Instances. The Module Instances portlet opens.
3. Click Create. The Module Instance wizard starts, and the Module Type panel

opens.
4. Select

com.tivoli.am.fim.trustserver.sts.modules.KerberosDelegationSTSModule.
5. Click Next. The Module Instance Name panel opens.
6. Enter a value in the Module Instance Name field.

For example:
Kerberos Junction

7. Optionally, enter a description in the Module Instance Description field.
8. Click Next. The Kerberos Delegation Module Configuration panel opens.
9. Enter a value in the field Maximum size of the user credential cache.

10. Click Finish. The Module Instances panel opens. The Current Domain portlet
also opens, and prompts you to load the new configuration changes.

11. Click the Load configuration changes to Tivoli Federated Identity Manager
runtime button.

12. Continue with “Creating a trust chain for Kerberos constrained delegation.”

Creating a trust chain for Kerberos constrained delegation
You must create a trust chain and configure its properties for Kerberos constrained
delegation using the trust chain wizard.

Before you begin

The domain must contain an instance of a Kerberos constrained delegation trust
module before you build the trust chain. If you have not already created an
instance, do so now. See “Creating a Kerberos constrained delegation module
instance.”

About this task

To configure the trust chain correctly, you must ensure that the properties align
with WebSEAL configuration properties. Before running the trust chain wizard,
you should:
v Review the topic “Planning configuration of the trust chain” on page 513
v Complete the “Worksheet for trust chain configuration” on page 517

Chapter 38. Tivoli Federated Identity Manager configuration for a Kerberos junction scenario 519

Procedure
1. Log on to the WebSphere console.
2. Click Tivoli Federated Identity Manager > Configure Trust Service > Trust

Service Chains. The Trust Service Chains portlet opens.
3. Click Create. The configuration wizard opens.
4. Click Next. The Chain Mapping Identification panel opens.
5. Enter the requested values.

a. Enter a name in the Chain Mapping Name field.
b. Optionally enter a description in the Description field.
c. Do not select the field Create a dynamic chain

d. Click Next. The Chain Mapping Lookup panel opens.
6. Enter the requested values.

a. Set Request Type to Issue Oasis URI.
The corresponding value for Request Type URI is automatically entered by
the wizard.

b. Set Lookup Type to Use Traditional WS-Trust Elements (AppliesTo,
Issuer, and TokenType).

c. Enter values in the AppliesTo section.
v Enter an Address.

For example:
http://websealhost.example.com/krbjct

v Enter the Service Name.
For example, set both fields to the asterisk character (*).

v Leave the Port Type fields blank.
For help, see “Planning configuration of the trust chain” on page 513.

d. Enter values in the Issuer section.
v In the Address field, enter:

amwebrte-sts-client

v Leave the Service Name field and Port Type field blank.
e. For Token Type, select Kerberos GSS V5.
f. Click Next.

The Chain Identification panel is displayed.
7. Do not select Initialize the chain upon startup of runtime. Click Next.

The Chain Assembly panel opens.
8. Build the trust chain:

a. For Module Instance, select Default IVCred Token.
b. For Mode, select validate.
c. Click Add selected module to chain.
d. For Module Instance, select the Module Instance Name you specified in

“Creating a Kerberos constrained delegation module instance” on page
519. For example,
Kerberos Junction

e. For Mode, select issue.
f. Click Add selected module to chain.

9. Click Next.

520 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: You will see a warning stating that your chain lacks a module in map
mode. You can ignore this warning. For more information, see “Planning
configuration of the trust chain” on page 513.
The Access Manager Credential (IVCred) Module Configuration panel is
displayed.

10. Do not select Enable signature validation. Click Next.
The Kerberos Delegation Module Configuration panel opens.

11. If necessary, specify the Default target Service Principal Name or change the
options for adding a suffix to the Tivoli Access Manager user name for
Kerberos Authentication.

Note: In most cases, you can leave this field blank and leave the default
selection for the options. See “Planning configuration of the trust chain” on
page 513.

12. Click Next. The Summary panel opens.
13. Click Finish.
14. In the Current Domain portlet, click Load configuration changes to the Tivoli

Federated Identity Manager runtime.

Results

The trust chain configuration is now complete.

Tivoli Federated Identity Manager configuration notes
Configuring a Kerberos junction scenario might require you to verify some
configuration settings. This section provides notes on what you need to verify.

Verify Tivoli Federated Identity Manager trust chain configuration

Verify that the WebSphere Deployment manager can communicate with the
WebSphere Application Server that hosts Tivoli Federated Identity Manager.

To do this, access the URL:
http://<IHS_server>/TrustServerWST13/RequestSecurityToken

You will see a template response similar to the following:
RequestSecurityToken ... Hi there this is an AXIS service!
Perhaps there will be a form for invoking the service here...

Verify WebSphere module mappings

Ensure that the WebSphere Application Server module mappings and virtual host
mappings were propagated. To do this, access the URL:
http://<IHS_server>/Info/InfoService

You will see a template response similar to the following:
Hi there this is a Web service!

High availability in a cluster configuration

Multiple WAS servers will be deployed in a WAS cluster for high-availability. The
individual WAS nodes in the cluster will receive their configuration instructions
from a deployment manager.

Chapter 38. Tivoli Federated Identity Manager configuration for a Kerberos junction scenario 521

Most administration tasks will be performed by communicating to the deployment
manager. However, all of the protocol flows necessary to service requests to the
TFIM trust service are served by individual WAS nodes. Failure of the deployment
manager does not impact those protocol flows. Failure of the WAS nodes, however,
will impact the protocol flow.

522 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 39. WebSEAL configuration

You must install and configure the Tivoli Access Manager policy server before you
install WebSEAL.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that you have successfully installed and configured the
policy server.

Complete a standard installation of WebSEAL. The exact steps to take depend
upon your deployment environment. See the IBM Tivoli Access Manager Installation
Guide for instructions.

Task overview:
1. “Verifying a WebSEAL installation”
2. “Planning WebSEAL Kerberos junction configuration” on page 524
3. Completing a “Kerberos junction configuration worksheet” on page 528
4. “Configuring a WebSEAL Kerberos junction” on page 529

Verifying a WebSEAL installation
This topic shows you how to verify that the basic WebSEAL server configuration is
correct, so that you extend the configuration to support Kerberos junctions.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

These instructions assume that you have installed and configured IBM Tivoli
Access Manager for e-business. The instructions also assume that you have
successfully installed a WebSEAL server.

About this task

To verify the basic configuration, create a regular WebSEAL junction and verify
that Tivoli Access Manager correctly prompts for a user login.

Procedure
1. Obtain the WebSEAL server name.

The server name is based on the host name. For example, with a host name of
websealhost:
pdadmin sec_master> server list

default-webseald-websealhost

© Copyright IBM Corp. 2006, 2013 523

2. Create a simple junction.
For example, when the protected server is mydataserver, the following
command creates a junction at /jct:
pdadmin sec_master> server task default-webseald-websealhost
create -t tcp -h mydataserver/jct

3. Obtain the list of the /WebSEAL object.
This value is needed in order to correctly attach an access control list (ACL):
pdadmin sec_master> object list /WebSEAL

/WebSEAL/websealhost-default

4. Attach an ACL to the new junction.
The ACL is used to control the actions that can be taken by specified users
within the Tivoli Access Manager protected object space. This step assumes the
existence of an ACL named testacl.
pdadmin sec_master> acl attach /WebSEAL/websealhost-default/testacl

5. To confirm that the junction and ACL are configured correctly, complete the
following steps:
a. Place a test file under the documentRoot on the protected Web server.

For example, in the documentRoot for mydataserver, create a test directory
and add an index.html that displays some content. For example, under the
junction point, add the file:
/testdir/index.html

b. Access the protected content:
https://websealhost.example.com/jct/testdir/index.html

c. WebSEAL prompts you to log in. Log in with a valid Tivoli Access Manager
user identity and password.
When successful, you can view the contents of testdir/index.html.

Planning WebSEAL Kerberos junction configuration
Before you can configure WebSEAL for Kerberos junctions, you must determine the
values required by your deployment for each property.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

WebSEAL configuration properties are specified in the WebSEAL configuration file.
The default configuration file is webseald-default.conf. For example, on UNIX or
Linux systems:
/opt/pdweb/etc/webseald-default.conf

The configuration file contains properties that support the deployment of Kerberos
junctions.

The properties are grouped into two stanzas:
[tfimsso:jct-id]
[tfim-cluster:cluster]

524 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

In some cases, the introduction of a Kerberos single signon for junctioned servers
can impact performance. Each Kerberos token is valid only for one Kerberos
authentication.

WebSEAL must request a new Kerberos token for each separate transaction.
Performance can also be impacted by the communication channel, which requires
WebSEAL to obtain tokens through a SOAP request to Tivoli Federated Identity
Manager.

[tfimsso:jct_id] stanza

[tfimsso:jct_id] stanza

Use the [tfimsso:<jct-id>] stanza to specify configuration options for
using Kerberos single signon. This stanza contains the Tivoli Federated
Identity Manager single sign-on configuration information for a single
junction.
v For standard junctions, the stanza name must be qualified with the

name of the junction point, including the leading forward slash. For
example:
[tfimsso:/kerbjct]

v For virtual host junctions, the stanza name must be qualified with the
virtual host label, for example:
[tfimsso:www.example.com]

always-send-tokens

Boolean property. This property can be used to optimize performance
when the back-end (junctioned) server is capable of maintaining session
state. In this case, you can specify whether WebSEAL should send a
Kerberos token for every HTTP request, or if WebSEAL should wait for a
401 response before requesting the token.

A 401 response means that authorization is required. When session state is
maintained, it not necessary to authorize prior to each request. To limit the
retrieval of Kerberos tokens to only those times when authorization is
required, set
always-send-tokens = false

When the backend server cannot maintain session state, and a security
token should be sent for every HTTP request, set:
always-send-tokens = true

applies-to
This property specifies the search criteria to use when locating the correct
security token service module within Tivoli Federated Identity Manager.

The value is typically a path consisting of the format:
http://webseal_server_host/junction_name

For example:
http://websealhost.example.com/kerbjct

service-name
This important property is used for two purposes:
1. To specify the service principal name that is used when generating a

Kerberos token.

Chapter 39. WebSEAL configuration 525

This value is used by Tivoli Federated Identity Manager when it
searches for a matching trust chain. The Tivoli Federated Identity
Manager chain configuration includes an Applies-to section that
contains a Service Name property. The value of the WebSEAL
service-name setting is compared against the Service Name property.
To ensure a successful match, service-name should match the Service
Name property in the Tivoli Federated Identity Manager configuration.

Note: One way to ensure a successful match is to use, within the Tivoli
Federated Identity Manager configuration, a wildcard character such as
asterisk (*).

2. To specify the service principal name of the delegating user when
creating the Kerberos token. The service principal name (SPN) is set on
the Microsoft Windows system.
To determine the SPN, go to the Windows server, and use the setspn
command. For example:
setspn -L user_name

The junctioned Web server runs with the identity user_name. For
example, iisuser.

The syntax for this property is:
service-name=service_principal_name

The format is:
HTTP/IIS_server_name.domain_name

For examples:service-name = HTTP/B16INTEL3.tamad.com

renewal-window
The length of time, in seconds, by which the expiry time of a security
token is reduced. This entry is used to accommodate differences between
system times, and to allow for transmission times for the security tokens.
renewal-window = 15

tfim-cluster-name
The name of the WebSphere cluster where the Tivoli Federated Identity
Manager service is deployed. This value should be matched by another
stanza entry [tfim-cluster:<cluster>], where cluster matches
tfim-cluster-name.

For example:
tfim-cluster-name = STSCluster2

token-collection-size
To optimize performance, WebSEAL can request multiple Kerberos tokens
from Tivoli Federated Identity Manager within one SOAP request. This is
done through use of the WS-Trust Web service specification. The tokens are
cached in the user's session and used on subsequent requests.

WebSEAL requests additional tokens from Tivoli Federated Identity
Manager only after all of the cached tokens have been used or have
expired.
You can specify the number of tokens to retrieve from Tivoli Federated
Identity Manager. When this number is increased, the number of requests
to Tivoli Federated Identity Manager is decreased, but the size of (and
processing time for) each request is increased. The Kerberos tokens can be
quite large.

526 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

If you specify a large value for this property, you can significantly increase
the session size and memory usage for WebSEAL.
The default value is 10:
token-collection-size = 10

token-type
The only supported token type is kerberos. This is the default value. Use
this value. Do not change it.

tfim-cluster cluster stanza

[tfim-cluster:cluster]

This value defines the name of the WebSphere cluster for the Tivoli
Federated Identity Manager service. The cluster name for this stanza must
match the tfim-cluster-name option in a [tfimsso:jct-id] stanza.

server Specifies the priority level and URL for a single Tivoli Federated Identity
Manager server that is a member of the cluster identified for this stanza.

You can have multiple server entries in the stanza. This enables you to
specify multiple server entries for failover and load balancing purposes
between WebSEAL and the WebSphere Application Server proxy.

When the Tivoli Federated Identity Manager cluster is configured,
WebSEAL checks the status of the Tivoli Federated Identity Manager proxy
Web server once every minute.

When you have multiple servers, you can use the priority level to specify
the order in which the servers are accessed to perform processing. The
priority level is an integer in the range [0-9].

When you have only one server, you can omit the priority level. When the
priority level is not specified, the level is assumed to be 9 (highest).

Syntax:
server = [0-9],server_URL

Example:
9,http://mydataserver.example.com/TrustServerWST13/services
/RequestSecurityToken

handle-pool-size
Specifies the maximum number of cached handles to use when
communicating with Tivoli Federated Identity Manager.

Default: 10

handle-idle-timeout
The length of time, in seconds, before an idle handle is removed from the
handle pool cache.

Default: 240 seconds

timeout
The length of time, in seconds, to wait for a response from Tivoli Federated
Identity Manager.

Default: 240 seconds

ssl-keyfile
The name of the key database file which houses the client certificate to be
used.

Chapter 39. WebSEAL configuration 527

This SSL entries, and the ones following, are optional and are only
required when:
v At least one server entry indicates that SSL (HTTPS) is to be used.
v A certificate is required other than that which is used by this server

when communicating with the policy server.

Note: This value, and the following SSL entry values, must be shared for
all server variables that use HTTPS. When deploying into a WebSphere
cluster, the values must be the same for each server in the cluster that uses
HTTPS.

ssl-keyfile-stash
The name of the password stash file for the key database file.

ssl-keyfile-label
The label of the client certificate within the key database.

ssl-valid-server-dn
This configuration entry specifies the DN of the server (obtained from the
server SSL certificate) which will be accepted. When no entry is configured,
all DN's will be considered to be valid. Multiple DN's can be specified by
including multiple configuration entries of this name.

ssl-fips-enabled
This entry controls whether FIPS communication is enabled with Tivoli
Federated Identity Manager or not. When no configuration entry is
present, the global FIPS setting, as determined by the TAM policy server,
will take effect.

Note: For a complete description of each stanza property, see the IBM Tivoli Access
Manager WebSEAL Administration Guide. See also the comments within the
WebSEAL configuration file.

Kerberos junction configuration worksheet

Use this worksheet to assemble the values that you must add to the WebSEAL
configuration file.

Table 139. tfimsso and tfim-cluster stanza properties

Property Your value

[tfimsso:junction_id]

always-send-tokens default: false

applies-to

service-name

renewal-window default: 15

tfim-cluster-name

token-collection-size default: 10

token-type kerberos

[tfim-cluster:cluster]

server

528 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 139. tfimsso and tfim-cluster stanza properties (continued)

Property Your value

handle-pool-size default: 10

handle-idle-timeout default: 240

timeout default: 240

ssl-keyfile

ssl-keyfile-stash

ssl-keyfile-label

ssl-valid-server-dn

ssl-fips-enabled

Configuration tips:
v Ensure that the service-name property matches the Tivoli Federated Identity

Manager trust chain configuration.
v Ensure that the tfim-cluster-name property matches the cluster property in the

stanza [tfim-cluster:cluster].
v Ensure that the cluster property in [tfim-cluster:cluster] matches the name of the

WebSphere cluster.

Configuring a WebSEAL Kerberos junction
Configure the WebSEAL Kerberos junction by editing the WebSEAL configuration
file, and using the pdadmin command to create the junction, and attach access
control lists (ACLs).

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

About this task

Configuration of a WebSEAL Kerberos junction consists of two tasks:
v Edit the WebSEAL configuration file.

You must specify properties in the WebSEAL configuration file to support the
specific junctions for Kerberos single-signon before you can use the pdadmin
command to create the junction.

v Use the pdadmin command to create the junction and attach the necessary
access control lists (ACLs).
To create a standard junction that is enabled for Kerberos single signon, use the
junction create command (server task create) with option -Y. The -Y option
specifies that SPNEGO/Kerberos single sign-on is required for the junction.
To create a virtual host junction that is enabled for Kerberos single signon, use
the virtualhost create command (server task create) with the -Y option.

Chapter 39. WebSEAL configuration 529

WebSEAL supports many options for creating junctions. You can combine the -Y
option with other options, as required for your deployment. For complete
information on WebSEAL junction options, see the IBM Tivoli Access Manager
WebSEAL Administration Guide.

Procedure
1. Use a text editor to edit the WebSEAL configuration file.

Use the values that you assembled in the worksheet for Kerberos junction
support.
For more information, see “Planning WebSEAL Kerberos junction
configuration” on page 524

2. Use the pdadmin command to create the Kerberos junction and attach the
necessary ACLs.
You can create either regular Kerberos junctions or virtual host Kerberos
junctions.

Note:

v The name of the junction must match the jct_id value for the [tfimsso:jct_id]
stanza in the WebSEAL configuration file.

v Ensure that you have configured the WebSEAL configuration file for the type
of junction that you want to use. If you have not edited the WebSEAL
configuration file, the administration command will not succeed, and will
return an error message.

Regular Kerberos junctions

a. Create the junction:
pdadmin sec_master> server task default-webseald-websealhost

create -t tcp -h mydataserver.example.com -Y /kerbjct

The host mydataserver.example.com is the IIS backend server.
b. Attach the ACL:

pdadmin sec_master> acl attach /WebSEAL/websealhost-default/kerbjct testacl

Virtual host Kerberos junctions

a. Create the junction:
pdadmin sec_master> server task default-webseald-websealhost virtualhost

create -t tcp -h mydataserver.example.com -v website.example.com
-Y kerbvirtjct

b. Attach the ACL:
pdadmin sec_master> acl attach /WebSEAL/websealhost-default/kerbvirtjct

testacl

Results

Error messages are logged in the WebSEAL configuration log file. For example, on
UNIX or Linux:
/opt/pdweb/log/msg__webseald-default.log

WebSEAL configuration notes
Use the following WebSEAL configuration notes for your communication between
WebSEAL and the client.

530 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Configuration notes for communication between WebSEAL and
the client
v High availability for the WebSEAL server is typically done by placing a

load-balancer in front of the WebSEAL server. See the IBM Developer Works
article Load Balancers for Tivoli Access Manager:
http://www-128.ibm.com/developerworks/tivoli/library/t-tlb/index.html

v Security of the communication path between the client and WebSEAL is typically
provided by purchasing an SSL server certificate for the WebSEAL server.

v Clients may authenticate to WebSEAL through any supported method.
v No change to these standard configurations will be necessary for Kerberos

junction support.

Configuration notes for communication between WebSEAL and
the junction
v High availability for the junctioned server is typically done by configuring

multiple junction servers for the junction point. See the IBM Developer Works
article Load Balancers for Tivoli Access Manager:
http://www-128.ibm.com/developerworks/tivoli/library/t-tlb/index.html

v Security of the communication path between WebSEAL and the junction is
typically guaranteed by mutually authenticated SSL certificates.

v No change to these standard configurations is required for Kerberos junction
support.

Time synchronization between WebSphere and WebSEAL

Verify that time settings are synchronized between the system that hosts the
WebSphere Application Server that runs Tivoli Federated Identity Manager and the
system that hosts Tivoli Access Manager WebSEAL.

To view the settings:
1. On the WebSphere system, select Default Domain Security Settings > Account

Policies > Kerberos Policy.
2. Review the Maximum tolerance for computer clock synchronization.

When the time difference is large between the WebSphere Application Server and
the WebSEAL server, the security tokens generated by Tivoli Federated Identity
Manager might expire before they can be used.

Configuration error messages

The following error messages are displayed when one of the following conditions
are true:
v The service-name property does not match the Tivoli Federated Identity

Manager trust chain configuration.
v WebSEAL retrieves tokens from Tivoli Federated Identity Manager, but the

tokens have expired. This can happen, for example, when the time settings on
each of the servers are not synchronized.

Chapter 39. WebSEAL configuration 531

http://www-128.ibm.com/developerworks/tivoli/library/t-tlb/index.html
http://www-128.ibm.com/developerworks/tivoli/library/t-tlb/index.html

v The browser returns an error. For example:
Server Error
Access Manager WebSEAL could not complete your request due to an
unexpected error.
Diagnostic Information
Method: GET
URL: /kjct/index.html
Error Code: 0x38cf027c
Error Text: DPWWA0636E No TFIM single sign-on tokens were available.

v The WebSEAL log contains errors. For example (some lines split for formatting
purposes):
DPWWA2852E An error occurred when attempting to communicate with the SOAP

server URL
http://d06win13.testlab.example.com/TrustServerWST13/services/

RequestSecurityToken: +JNI:
Error running InitializeSecurityContext for HTTP/d02jlnx.testlab.example.com:
-2146893042 (No credentials are available in the security package).
File h:\fim620\src\kerberoswin32\KerbUserState.cpp,
line 641 (error code: 71/0x47).
2008-03-04-13:08:10.080-06:00I----- 0x38CF027C
webseald ERROR wwa sso ThirdPartyJunction.cpp 4124 0x00000070
DPWWA0636E No TFIM single sign-on tokens were available.

Debugging a Kerberos junction

To debug a Kerberos junction deployment, turn on tracing for Tivoli Federated
Identity Manager and Tivoli Access Manager. A relevant trace point for Tivoli
Access Manager and WebSEAL is pdweb.sso.tfim.

For example, in a Linux or UNIX environment:
pdadmin> server task default-webseald-c1sun1 trace set pdweb.sso.tfim 9

file path=/var/pdweb/log/debug.log

Set the trace level to 0 to turn off tracing.

Configuring WebSEAL to manage cookies

By default, WebSEAL does not delete cookies upon logout. If you plan to configure
WebSEAL to manage cookies, the list of managed cookies should not include the
WebSphere session cookie.

532 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 40. SSL configuration task for a Kerberos junctions
deployment

For optimal security, configure SSL communication between servers in a Kerberos
junction deployment.

This topic provides an overview of the steps to configure a WebSphere cluster
environment to use SSL to communicate between WebSEAL, IBM HTTP Server
(IHS), WebSphere Application Server Plug-in, WebSphere Application Server and
Tivoli Federated Identity Manager. These steps do not address SSL communication
between the client and WebSEAL or to the back-end Web server. No changes to
these standard SSL configurations are necessary for Kerberos junction support.

Tip: Consider deploying a working configuration without SSL prior to adding SSL.

For each component, create a public/private key pair, and extract the public key to
a known location.

On the WebSEAL server:
1. Copy the IHS public key to the WebSEAL system.
2. Use the ikeyman utility to add the IHS public key. When there is more then

one IHS proxy in the environment, complete this task for each IHS server.
3. Configure appropriate values for the following [tfim-cluster:cluster]

variables: server, ssl-keyfile, ssl-keyfile-stash. Optionally, configure the
ssl-valid-server-dn variable if applicable.
For more information, see “Planning WebSEAL Kerberos junction
configuration” on page 524.

4. Restart WebSEAL to activate the changes made to the WebSEAL configuration
file.

On the IBM HTTP Server:
1. Copy the WebSEAL public key to the IHS system.
2. Use the ikeyman utility on IHS to add the WebSEAL public key.
3. Copy the WebSphere public key from the WebSphere Deployment Manager

(dmgr) system to the IHS system.
4. Use the ikeyman utility on IHS to add the WebSphere public key.
5. Update the httpd.conf file to configure or add a virtual host to support SSL

connections.
6. Restart IHS to activate the changes.
7. When your deployment includes multiple IHS proxies, repeat the above steps

for each IHS proxy.

On the WebSphere plug-in located on the IHS server:
1. Copy the WebSphere public key to the plug-in system.
2. Use the ikeyman utility for the plug-in to add the WebSphere public key.
3. Copy the WebSphere node public key from the WebSphere node to the plug-in

server.
4. Use the ikeyman utility for the plug-in to add the WebSphere node public key.

© Copyright IBM Corp. 2006, 2013 533

5. When your deployment includes multiple plug-ins, repeat the above steps for
each plug-in.

On the WebSphere Network Deployment Manager (dmgr):
1. Ensure that the public key for the plug-in is located in a file path that can be

accessed through the WebSphere administration console.
2. Use the WebSphere console to add the public key for the plug-in to the

CellDefaultTrustStore.
3. When your deployment includes multiple plug-ins, repeat the above steps for

each plug-in.
4. Ensure that the public key for Node is located in a file path that can be

accessed through the WebSphere administration console.
5. Use the WebSphere console to add the public key for the Node to the

CellDefaultTrustStore.
6. When your deployment includes multiple nodes, repeat the above steps for

each nodes.
7. Configure client authentication if appropriate for your deployment.

On the WebSphere Node:
1. Ensure that the public key for the Deployment Manager (dmgr) is located in a

file path that can be accessed through the WebSphere administration console.
2. Use the WebSphere console to add the dmgr public key to the

NodeDefaultTrustStore.
3. When your deployment includes multiple nodes, repeat the above steps for

each nodes.

534 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 6. Configuring User Self Care

The topics in the Configuration section provide a step-by-step guide to configuring
User Self Care.

This section describes the deployment of User Self Care. First read the overview of
the User Self Care feature:

Chapter 41, “Understanding User Self Care,” on page 537

© Copyright IBM Corp. 2006, 2013 535

536 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 41. Understanding User Self Care

User Self Care provides a method by which users can be provisioned into
business-to-consumer environments.

User Self Care accomplishes this provisioning by supplying a set of operations that
users can use to create and administer their own accounts. The operations include:
v Creating an account
v Creating and updating attributes associated with the account
v Changing passwords
v Recovering forgotten user IDs and passwords
v Deleting accounts

User Self Care is based upon the Tivoli Federated Identity Manager secure token
service (STS) technology.

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity Manager
Security STS client while Tivoli Federated Identity Manager supports WebSphere
6.X. When Tivoli Federated Identity Manager discontinues its support for
WebSphere 6.X, use WebSphere Application Server version 7 Update 11 and later.
See WS-Trust client API and WS-Trust Clients for details.

With the STS framework, administrators can plug their own token creation and
consumption modules in. User Self Care uses the STS framework and the HTTP
components of Tivoli Federated Identity Manager, but it is not used for token
creation and consumption.

Users access User Self Care operations through an HTTP interface. Users interact
with web pages that prompt for input, collect data, and provide feedback. User
Self Care provides a small set of URLs that serve as endpoints for accessing
operations.

You can customize User Self Care. STS modules plug-ins that are started
sequentially in a chain implement business logic. To provide additional capability
for each chain, you can replace individual modules or add new ones. You can
modify or replace the HTML forms as necessary.

User Self Care uses the clustering, distribution, scaling, and configuration
capabilities provided by WebSphere. User Self Care also uses the WebSphere
Federated Repositories component for making registry adapters available to the
operating environment. Administrators can add or replace registries.

User Self Care also integrates with Tivoli Access Manager WebSEAL. WebSEAL
provides authentication and authorization for business-to-consumer transactions.

The figure shows the software pieces that comprise the User Self Care solution.

© Copyright IBM Corp. 2006, 2013 537

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

v WebSphere provides the framework for most of the software pieces.
v The Tivoli Federated Identity Manager run time provides two components that

support User Self Care:

User Self Care presentation management
Provides a set of default pages. Users interact with these pages by
requesting User Self Care URLs. The management framework supports
customization and replacement of these pages. This support includes the
ability to substitute (customize) macros on the pages.

Secure token service (STS) trust chains
Supports the building of dynamic chains of plug-in modules for
performing business logic. User Self Care support includes a number of
STS chains. Each chain maps to a User Self Care operation. You can
extend the chains. You can replace or modify the component modules in

Figure 66. User Self Care solution

538 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

each chain. Validating user input and sending a confirmation email is an
example of a User Self Care chain operation.

v The STS modules use the WebSphere Federated Repository to communicate with
the user registry. When the target user registry is Tivoli Access Manager, User
Self Care uses the product adapter to communicate to the Tivoli Access Manager
registry through the Tivoli Access Manager Registry Direct Java API.

User Self Care works with various user registries. Each registry has a unique
syntax for performing management operations. The WebSphere Federated
Repositories component allows User Self Care to issue a management command,
such as user create, using a consistent syntax. The Federated Repositories
component then passes the request to the appropriate registry adapter, which
translates the command into the registry-specific syntax.

Since WebSphere Federated Repositories provides a plug-in interface for adapters,
you can add new registries without modifying the User Self Care.

Effectively customizing User Self Care
Deployments of User Self Care are generally customized for specific business
needs. You can most effectively customize your deployment when you understand
how the User Self Care pieces work together.
1. Understand the User Self Care technology.

v User Self Care is based on a series of operations. See “Understanding User
Self Care operations.”

v Users interact with User Self Care features through HTTP request and
response exchanges. HTML pages as URL drive the exchanges The default
HTML pages are templates for the information you want to exchange with
your users. You can (and should) customize the HTML pages to reflect your
business needs. For more information on default HTML pages, see “User Self
Care URLs” on page 547.

v Many Internet sites use Captcha (Completely Automated Public Turing test
to tell Computers and Humans Apart) challenge-response tests to protect
against machine-generated attacks. This technology is part of many User Self
Care deployments. The User Self Care product provides a Captcha
demonstration module. See “Captcha demonstration” on page 550

2. Deploy Tivoli Federated Identity Manager and configure User Self Care.
This document provides configuration steps that you must do in a specific
order. See Chapter 42, “Deploying User Self Care,” on page 553.

3. Understand the methods for tuning distributed caches to optimize performance.
See Chapter 43, “Tuning User Self Care,” on page 617.

Understanding User Self Care operations
A User Self Care operation is the series of steps required for a user to accomplish a
task.

An example of a task is when a user recovers a forgotten password. To perform
this task, the user must take several steps:
1. Submit a web form with their user ID.
2. Submit a second form that asks them to answer their secret question and to

provide a new password.
3. Click a link in an email that is sent to them.

Chapter 41. Understanding User Self Care 539

The combination of steps comprises an operation.

Every user-initiated action performed as part of User Self Care is in the form of an
HTTP request. Example requests are requesting a page, submitting a form, or
clicking a link in an email. Every HTTP request has a corresponding HTTP
response. Some example responses are providing the user with the input form or
informing them that an email has been sent. Each User Self Care operation consists
of one or more request-response exchanges.

In most cases, each request-response exchange is an atomic event. For example,
when a user requests the Profile Management page, User Self Care finishes a
discrete operation by returning the page. User Self Care does not retain any state
or knowledge that the user has made the initial request. There are exceptions to
this treatment of user state, which are described in the individual operation topics
of this documentation.

This documentation groups the request-response exchanges based on their
association with an operation. Each operation is associated with a particular secure
token service trust chain. The STS trust chains do the bulk of the work in
processing a User Self Care operation.

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity Manager
Security STS client while Tivoli Federated Identity Manager supports WebSphere
6.X. When Tivoli Federated Identity Manager discontinues its support for
WebSphere 6.X, use WebSphere Application Server version 7 Update 11 and later.
See WS-Trust client API and WS-Trust Clients for details.

A typical request-response exchange

The typical flow when a user submits a request to User Self Care is:
1. The user requests a User Self Care URL that specifies an HTML form.
2. The User Self Care presentation management component returns the

appropriate HTML form.
If the Captcha module is used, the Captcha STS chain is started to obtain the
image shown to the user for validation.

3. The user supplies data for the form and submits the form.
4. The presentation management component sends the resulting HTTP request to

the appropriate STS trust chain.
5. The User Self Care STS trust modules in the chain are started in a specified

order, to perform tasks such as:
v Validating data
v Mapping attribute
v Interacting with registries
v Sending email

6. The STS modules return the process results to the presentation management
component.

7. The presentation management component returns an HTTP response to the
user. See the following list of typical responses:
v Another form

540 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

v The same form with a message
v An error page
v An informational page
Depending upon the operation, the user task is either finished or requires
another step. If another step is required , the preceding or similar sequence is
repeated.

Operations and STS chains

Each user self care operation maps to a single STS chain. During the operation, the
STS chain might be started multiple times. User Self Care determines what stage of
the operation is being performed and controls behavior accordingly.

For example, Captcha validation might be performed when a user submits the
initial enrollment form. However, it is not performed when the user clicks the link
in the email. In both cases, the same STS chain is started, and the Captcha STS
module is present at the start of the chain. In the second case, the Captcha module
is not supposed to do anything, and passes the request to the next STS module in
the chain.

You can use the administration console to view each trust chain. Trust chains
correspond to one or more User Self Care operations. When you view the trust
chains, you see the STS modules that accomplish the operation. You can then
customize the modules and chains for your deployment.

Note: For information about how to customize User Self Care, see the Tivoli
Federated Identity Manager Wiki:

http://www.ibm.com/developerworks/wikis/display/
tivolifederatedidentitymanager/Home

User ID existence check operation
On the initial enrollment page, the user enters a user ID in a specified field. User
Self Care provides an icon that the user can click to check if the ID exists in the
registry.

The user ID existence operation is an exception to the rule of one STS chain per
operation. This operation maps to the same STS trust chain as the enrollment
operation. However, it is conceptually different and uses a different URL.

Operation task flow:
1. User enters their requested user ID in a form field.
2. User clicks the icon.
3. The Create Account STS Chain is started.

v The registry is queried to determine whether the user ID exists.
v The internal cache is also queried.

The check of the internal cache is described in “Enrollment operation.”

Enrollment operation
The enrollment operation takes place in two request-response exchanges: when you
obtain user information in preparation for sending a validation email; and when
the user validates the operation by clicking a link in the email.

Chapter 41. Understanding User Self Care 541

http://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home
http://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home

Initial enrollment request

Operation task flow:
1. User requests and receives an Enrollment Request form. User supplies data for

the form fields with enrollment details such as:
v User ID
v E-mail address
v Password
v Choice of profile attributes, including the secret question attribute.

2. User submits the Enrollment Request form.
3. The Create Account STS Chain is started.

v If any errors are encountered, they are returned to the user. The errors are
shown as a message on the form that the user initially processed.

v If no errors are encountered, an email is sent to the user for validation. User
Self Care shows a page to the user, advising them of the email.

4. An entry is created in an internal cache that preserves the user enrollment
information during the validation. This internal cache also preserves the user
ID so that no other user can use it for enrollment. You can configure the time
limits for how long data is retained in the internal cache.

Enrollment validation

The email that was sent during the initial enrollment request contains a link with a
query string appended. The query string contains a key to the internal cache entry
so that the data that the user initially submitted can be recovered and enrollment
finished.

Task flow:
1. User clicks a link in the validation email.
2. The Create Account STS Chain is started.
3. If any errors are encountered, they are shown in a page that is sent to the user.

If no errors are encountered, User Self Care:
a. Creates an entry in the registry for the new user account.
b. Removes the internal cache entry.
c. Sends a success message to the user.

Password management operations
There are two password management operations: a user-initiated change of
password, and a password change required by expiration of an existing password

User-initiated change password

Task flow:
1. The user requests the Change Password Form URL.
2. User Self Care provides the user with a form in which they enter their old

password and a new password twice.
3. The user submits the form to the Change Password URL.
4. User Self Care starts the Change Password STS Chain.

v If any errors are encountered, User Self Care sends the user on an
informational page containing the errors.

542 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v If no errors are encountered, the password is changed. User self care then
sends a success page to the user.

Change password following password expiration

The task flow is the same as in the User-initiated change password topic, with the
exceptions that:
v The user makes an initial request for a protected resource
v The point of contact server requires the user to change their password.

The initial request from the user is intercepted by the authenticating point of
contact server, such as WebSEAL or WebSphere Application Server. The point of
contact server handles the communications flow and must direct the user to User
Self Care in order to change their password.

User self care provides deployment suggestions and enhancements for
accomplishing this using WebSEAL as a point of contact server. For more
information, see “Integrating User Self Care with WebSEAL” on page 609.

User self care can function as a callable component for a capability such as the
Tivoli Access Manager Local Response Redirect feature. This feature redirects the
user to the User Self Care handler to perform a change password operation. The
user is then redirected back after the operation succeeds.

Profile management operations
You can use the Profile Management to manage extended information specific to
their account.

Examples of such information are:
v Address
v Phone number
v Secret question

Initial Profile Management Request

Task flow:
1. User submits request for the Profile Management Form URL. This URL must be

a protected resource.
2. The user identity is obtained from the authenticated context.
3. User Self Care starts the profile management STS Chain, and provides the user

identity.
v If errors are encountered, they are shown in an informational page that is

sent to the user.
v If no errors are encountered, the STS retrieves the attributes from the registry.

4. User Self Care presents the user with the Profile Management Form containing
their existing attributes. The user can then update profile information,
including their secret question.

Submit Profile Update

Task flow:
1. User modifies the wanted fields and submits the form.

Chapter 41. Understanding User Self Care 543

2. The user identity is obtained from the authenticated context.
3. User Self Care starts the profile management STS Chain.

v If errors are encountered, they are shown in an informational page that is
sent to the user.

v If no errors are encountered, the registry is updated. User self care sends a
success page to the user.

Forgotten user ID operation
A forgotten ID can still be retrieved by following the steps in this procedure.

Operation task flow:
1. User clicks on the Forgotten ID URL. This URL must not be a protected

resource.
2. The Forgotten ID form is returned to the user.
3. User enters their e-mail address.

A custom solution can use a different registry attribute, such as a customer
account number, for example. The default User Self Care form uses the e-mail
address.

4. User submits the form.
5. User Self Care passed the form contents to the Forgotten ID STS Chain. The

modules in this chain retrieve all the user IDs associated with the e-mail
address from the registry, and then e-mail them to the user.
v If errors are encountered, they are shown in an informational page sent to

the user.
v If no errors are encountered, User Self Care sends the Forgotten ID

Acknowledgement informational page to the user. The page informs the user
that the user IDs have been sent to their e-mail address.

Forgotten Password operation
The forgotten password operation takes place in several request-response
exchanges.

Task flow:
1. The user requests the Forgotten Password URL. This URL must not be a

protected resource.
2. User Self Care sends the Forgotten Password Form to the user.
3. The user enters their user ID and submits the form.
4. User Self Care passes the form contents to the Forgotten ID STS Chain to

retrieve the secret question.
5. The STS module sends the Forgotten Password Secret Question Form to the

user. The form has the secret question and a field in which the user must enter
the answer. The form also provides two fields for capturing a new password.

6. The user edits and submits the Secret Question form.
7. User Self Care passes the form contents to the Forgotten ID STS Chain to

perform Secret Question Validation.
a. The STS tracks the number of failed attempts in an internal cache. If the

number exceeds the configured limit, the STS sends an error to the user.
b. The STS stores the password change request in an internal cache.
c. The STS sends an e-mail to the user containing a link to the Forgotten

Password Validation Form URL. The e-mail contains a link with a query

544 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

string appended. The query string contains a key to the internal cache entry.
The key is used so that the data that the user submitted can be recovered
and the password change finished.

8. The user requests the link in the e-mail.
9. User Self Care passes the request to the Forgotten ID STS Chain. The chain

modules recover the data from the internal cache and attempt to change the
password.
v If errors occur, they are shown in an informational page sent to the user.
v If no errors occur, User Self Care sends to the user the Forgotten Password

Acknowledgement informational page. This page tells the user that the
password has been changed.

Account deletion operation
Account deletion operation follows an operation task flow.

Operation task flow:
v The user requests the Account Deletion page. This page must be a protected

resource.
v The user clicks a link on the page.
v The user identity is obtained from the authenticated context.
v The Account Deletion STS chain is started.
v The Account Deletion STS trust chain finishes the deletion of the user account.
v User Self Care returns the Account Deletion success informational page to the

user.

Captcha operation
Captcha is not a separate User Self Care operation. Instead, the Captcha operation
is implemented as a Captcha STS module.

You can place the Captcha STS module first in any of the secure token service trust
chains used by User Self Care.

Note: IBM deprecated the Tivoli Federated Identity Manager Security Token
Service (STS) Client in this release.

If you use WebSphere 6.X, you can still use the Tivoli Federated Identity Manager
Security STS client while Tivoli Federated Identity Manager supports WebSphere
6.X. When Tivoli Federated Identity Manager discontinues its support for
WebSphere 6.X, use WebSphere Application Server version 7 Update 11 and later.
See WS-Trust client API and WS-Trust Clients for details.
When the Captcha module is present, Captcha validation is performed before
execution of any other operations.

For more information, see “Captcha demonstration” on page 550.

Registry attributes operations
User Self Care does not provide the capability to modify user registry schema. You
must modify your registry schema as required to create the registry attributes
required for supporting profiles. You must also modify the schema to support the
secret question attribute.

Chapter 41. Understanding User Self Care 545

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/rwbs_samltrustclientapi.html
https://www-304.ibm.com/connections/blogs/sweeden/entry/ws_trust_clients?lang=en_us

User Self Care provides an example function. User Self Care uses the LDAP
attribute businessCategory to store the secret question profile attribute. The
example implementation also uses the LDAP attribute mobile to store a mobile
phone number for the user.

When you deploy User Self Care, you must create a schema that can contain the
profile attributes you must provide for your users. When you have identified and
defined these attributes, you must customize the HTML forms and STS modules to
work with them.

In a full deployment, it is necessary to create a schema that can contain the profile
attributes you must provide for your users. When these attributes are selected, you
must customize the HTML forms and the STS modules in order to work with the
new attributes.

For more information, see the Tivoli Federated Identity Manager Wiki:

http://www.ibm.com/developerworks/wikis%2Fdisplay
%2Ftivolifederatedidentitymanager%2Fhome.

Secret question operation
The secret question is a secondary password and hint stored in the user registry as a
user attribute. User Self Care treats the management of the secret question as
another profile element.

User Self Care provides an example implementation of the secret question by using
the LDAP attribute businessCategory to store the secret question profile. You can
customize this implementation to best fit your business needs.

The following topics describe how the example implementation works.

Selection of secret question during enrollment

A User Self Care enrollment form provides a menu that permits a user to select
one of the following questions:
v Maiden name of mother
v Town where you were born
v Name of first pet

The selection of one of these items populates a form field with a numeric value
that corresponds to the index of the entry in the list. The name of this field on the
HTML forms provided with user self care is usc.form.profile.secret.question.

A separate form field is used to specify the answer to the question in text. The
name of this attribute on the HTML forms provided with User Self Care is
usc.form.profile.secret.question.answer.

When the user submits the enrollment form, each of these parameters is passed to
the Enrollment STS trust chain. The index and the answer are concatenated
together and stored in the LDAP attribute businessCategory.

Showing the secret question during profile management

When the user requests the profile management form, User Self Care retrieves the
user attributes, including the secret question, from the registry. The profile

546 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

https://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home
https://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home

management STS module parses the attribute and determines the index specifying
the secret question that the user has previously selected. User Self Care then uses
this index value to show the appropriate value from the menu in the profile
management form.

Using the secret question to validate the user identity

When the user submits the forgotten password form, User Self Care uses the user
ID to retrieve the businessCategory registry attribute. The Forgotten Password STS
module then parses the value of the attribute and returns the index to the
presentation management component. This component uses the index to perform a
macro substitution. The substitution provides a value to JavaScript that drives the
selection of the matching secret question.

Secret question implementation tip

The security of the secret question approach is improved when users can create
their own secret question. The convenience offered by a menu list is more than
offset by the risk of providing pieces of identifying information. The information is
often reused across many Internet sites.

The default values provided by User Self Care are for example use only. They
include commonly used values such as maiden name of mother, favorite color, and
name of first pet. As a preferred security practice, do not use these values in an
enterprise deployment.

User Self Care URLs
User Self Care provides a set of default HTML pages for communicating with the
user. The HTML pages facilitate the exchange of HTTP requests and responses.
v “User Self Care HTTP requests”
v “User Self Care HTTP responses” on page 549

User Self Care HTTP requests
The following table lists the URLs that are requested by users when interacting
with User Self Care. Some URLs are listed for more than one request. Each URL is
unique to a User Self Care operation and maps to an STS chain. User Self Care
determines what phase of the operation is performed by examining the contents of
the request.

Note: User authentication is required for some URLs. If the description does not
mention user authentication, no authentication is required.

Table 140. HTTP Requests

Name HTTP Method Request URI and Description

Master Page GET Optional custom page not hosted by User Self Care.

You might want to create a page that contains links to User Self
Care operations but is not hosted by User Self Care.

Enrollment Request Form GET /sps/federation_name/usc/self/account/create

Requests the enrollment form.

Enrollment Request Submit POST /sps/federation_name/usc/self/account/create

Submits the enrollment form.

Chapter 41. Understanding User Self Care 547

Table 140. HTTP Requests (continued)

Name HTTP Method Request URI and Description

Retrieve user ID POST /sps/federation_name/usc/global/userid/search

Maps to a separate User Self Care operation that determines if a
user ID exists. This page results from clicking a link on the
Enrollment Request Form.

Enrollment Validation POST /sps/federation_name/usc/self/account/create/validate

Specifies the base URL in the e-mail sent to the user during
enrollment validation. The final URL has a query string
appended to it.

Change Password Form GET /sps/federation_name/usc/self/password/update

Authentication required

Requests the change password form.

Change Password Submit POST /sps/federation_name/usc/self/password/update

Authentication required

Submits the change password form.

Forgotten ID Form GET /sps/federation_name/usc/self/account/recover/userid

Requests the forgotten ID form.

Forgotten ID Submit POST /sps/federation_name/usc/self/account/recover/userid

Submits the forgotten ID form.

Forgotten password Form GET /sps/federation_name/usc/self/account/recover/password

Requests the forgotten password form.

Forgotten password Form POST /sps/federation_name/usc/self/account/recover/password

Submits the forgotten password form.

Forgotten Password Secret
Question Form

POST /sps/federation_name/usc/self/account/
recover/password/secretquestion

Submits the secret question validation form. This form is
presented to the user after they submit the forgotten password
form.

Forgotten Password Validation
Form

POST /sps/federation_name/usc/self/account/
recover/password/validate

Specifies the base URL in the e-mail sent to the user during
forgotten password validation. The final URL has a query string
appended to it.

Profile Update Form GET /sps/federation_name/usc/self/profile/update

Authentication required

Requests the profile update form.

Profile Update Submit POST /sps/federation_name/usc/self/profile/update

Authentication required

Submits the profile update form.

548 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 140. HTTP Requests (continued)

Name HTTP Method Request URI and Description

Account Delete Form GET /sps/federation_name/usc/self/account/delete

Authentication required

Requests the account delete form.

Account Delete Submit POST /sps/federation_name/usc/self/account/delete

Authentication required

Submits the account delete form.

User Self Care HTTP responses
This topic lists the set of pages that are presented by User Self Care to the user.

This set fits into the following categories:

Info
Informational page presenting instructions, errors, or a success statement.

Form
An HTML form for the user to supply data.

Redirect
An HTTP redirect.

Table 141. HTTP Responses

Name Type Description

Enrollment Request Form Form Gathers the following information:

v Requested user ID

v E-mail address

v Password

v Password confirmation

v Profile attributes

v Captcha input (optional)

Enrollment Validation Form Informs the user that an e-mail has been sent for validation
purposes or that an error has occurred.

Enrollment Result Info Informs the user that their account has been created or that an
error has occurred.

Change Password Form Gathers the following information:

v Old password

v New password

v New password confirmation

Change Password Result Info Informs the user that their password has been changed or that an
error has occurred.

Forgotten ID Form Gathers the following to help a user recover a forgotten user ID:

v E-mail address

v Captcha input.

This value is optional.

Chapter 41. Understanding User Self Care 549

Table 141. HTTP Responses (continued)

Name Type Description

Forgotten Password Form Gathers the following information:

v User ID

v Captcha input

This value is optional.

Forgotten Password Secret
Question

Form Shows the secret question. Gathers the following information:

v Answer to secret question

v New password

v New password confirmation

v Captcha input

This value is optional.

Post Forgotten ID Info Presents an error or success statement following attempted
recovery of a forgotten ID.

Profile Update Form Presents the user with their current profile details and gathers
modifications to the fields.

Post Profile Management Info Presents an error or success statement following profile
management operations.

Account Delete Form Presents an icon for the user to click to delete their account.

Post Account Delete Info Presents an error or success statement following account deletion.

Validating form contents

Consider providing client-side input validation to verify that form fields contain
data appropriate for their intended type. The provided User Self Care HTML pages
contain several examples.

Captcha demonstration
The Captcha demonstration STS Module provides an example of how to integrate
Captcha with User Self Care.

User Self Care provides HTML pages that support the user self care operations.
Several of these pages are good candidates for the type of input validation that
Captcha provides. You can configure these pages to include a macro for Captcha.

The User Self Care application can replace the macro value with the HTML source
necessary to support the Captcha demonstration. When Captcha is not configured,
the macro is not substituted and the Captcha elements are not shown on the page.

When a user initially requests a page that contains a Captcha challenge, the
Captcha STS module is contacted. The module randomly selects an image from the
set of configured images. This image constructs the macro on the HTML page that
is shown to the user.

After the macro substitution occurs, a block of code like the example code in the
figure is shown on the page.

550 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

This block provides a src tag and two input fields. The src tag shows the image to
the user. The first input field provides the name of the image. The second gathers
the user input, which is the text in the image.

When the form is submitted, the two input fields are provided to the
demonstration Captcha STS module. This module compares the user answer with
the string that is associated with that image. If a match is correct, the validation is
finished.

Note: The first input field specifies a value that is the URL of a server hosting the
images that are shown to the user.

The Captcha demonstration package is in the directory:
Federated_Identity_Manager_installation_directory/examples/demo/captcha

This directory contains:
v A readme file
v A com.tivoli.am.fim.demo.sts.captcha.jar file containing both the compiled

code and the source code for the Captcha STS demonstration module.
v A captchaTestImages directory containing:

– A set of six JPEG images
– A DemoCaptchaImagesInfo.txt file that shows the mapping between the image

file names and the text string that the user must enter when presented with
the associated image.

For configuration instructions, see “Configuring the Captcha demonstration” on
page 567.

<label for="demo_captcha">
Please enter the verification word(s) shown below (required)

</label>

<input type="hidden"

name="usc.demo.captcha.challenge.field"
id="usc.demo.captcha.challenge.field"
value="http://myserver/public/captcha_test/hello.jpg" />

<input style="background-color:#F8F8C8;"
type="text"
name="usc.demo.captcha.response.field"
id="usc.demo.captcha.response.field" />

Figure 67. Captcha example

Chapter 41. Understanding User Self Care 551

552 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 42. Deploying User Self Care

Tivoli Federated Identity Manager automatically installs User Self Care as part of
the runtime. You are not required to install any additional software, unless you
plan to use Tivoli Access Manager as the target user registry.

Administrations who want to deploy User Self Care must be familiar with the
administration of:
v WebSphere Application Server, including the wsadmin administration interface.
v Tivoli Federated Identity Manager secure token service (STS) modules and trust

chains.
v Tivoli Directory Server LDAP.

Administrations who want to use Tivoli Access Manager as the target user registry
or WebSEAL as the point of contact serve must be familiar with Tivoli Access
Manager for e-business administration.

The following list summarizes the tasks for deploying User Self Care and the order
in which to perform them. Before you start a task, ensure that you have finished
any prerequisite tasks.
1. Configure a Tivoli Federated Identity Manager domain. The configuration steps

include configuring the runtime management.
The steps for this task are identical for all Tivoli Federated Identity Manager
scenarios. There are no tasks in this topic that are unique to User Self Care. The
task links point you to common task topics in the Tivoli Federated Identity
Manager Configuration Guide.

“Configuring a Tivoli Federated Identity Manager domain”
2. Integrate User Self Care with the user registry for your deployment. User Self

Care supports Tivoli Directory Server and Tivoli Access Manager registries. You
are directed to the instructions that match your registry type.
“Configuring a user registry” on page 557

3. User Self Care configuration relies on values obtained from a response file. In
this task, you populate a response file with values applicable to your
deployment.
“Configuring a response file” on page 564

4. Use the response file created in the previous task to configure your User Self
Care deployment. This step describes how to view pre-configured trust chains
from the administration interface. This step also describes how to use the Tivoli
Federated Identity Manager command-line interface to deploy your User Self
Care environment. Optionally, you can configure the Captcha demonstration.
“Configuring User Self Care” on page 566

5. When your deployment includes Tivoli Access Manager WebSEAL server as a
point of contact server, you must integrate some User Self Care features with
WebSEAL. These tasks instruct you on how to accomplish the integration.
“Integrating User Self Care with WebSEAL” on page 609

Configuring a Tivoli Federated Identity Manager domain
You must configure a Tivoli Federated Identity Manager domain.

© Copyright IBM Corp. 2006, 2013 553

Before you begin

Install the following Tivoli Federated Identity Manager components:
v Runtime management
v Administration console

Procedure
1. Log on to the administration console.
2. Create a domain. Follow the instructions in Chapter 3, “Domain configuration,”

on page 23.

What to do next

Continue with “Configuring a user registry” on page 557.

Domain configuration
A Tivoli Federated Identity Manager domain is a deployment of the Tivoli
Federated Identity Manager runtime component to either a WebSphere single
server or a WebSphere cluster.

There is one domain per WebSphere cluster. In a single server environment, there
can be only one domain.

Each domain is managed independently. You can use the installation of the Tivoli
Federated Identity Manager management console to manage multiple domains.
You can manage only one domain at a time. The domain that is being managed is
known as the active domain.

When Tivoli Federated Identity Manager is installed, no domains exist. Use the
management console to create a domain. When you installed Tivoli Federated
Identity Manager, the management service was deployed to a WebSphere server
(single server mode) or WebSphere Deployment Manager (WebSphere cluster
mode).

Connect with the management service and choose a WebSphere server or cluster to
which you must deploy the Tivoli Federated Identity Manager runtime component.
When the runtime is deployed and configured, you are ready to configure
additional features such as federated single sign-on or Web services security
management.

In a WebSphere Network Deployment environment, the deployment and
configuration of the Tivoli Federated Identity Manager runtime to cluster members
is an automated process. It is not necessary to perform additional installation of
Tivoli Federated Identity Manager or Tivoli Access Manager software onto the
WebSphere cluster computers.

The Tivoli Federated Identity Manager management service uses the application
deployment services of the WebSphere Deployment Manager to deploy and
configure the runtime application to distributed cluster members.

The management console provides a wizard to guide you through the creation of
the domain. The following sections list the properties that the wizard prompts you
to supply.

554 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Domain management service endpoints properties

Host The fully qualified domain name for the Host where the WebSphere
Application Server is running. For example:
idp.example.com

SOAP Connector Port
The default WebSphere Application Server (standalone) SOAP port is 8880.
When you are creating a domain for use with a WebSphere Application
Server that is a member of a WebSphere cluster, the SOAP port number
might differ. For example, 8879. If you are unsure of the correct SOAP port
number, use the WebSphere Application Server administrative console to
determine the port.

WebSphere global security properties

WebSphere Application Server can optionally have global security enabled. When
global security is enabled, the security properties must be configured for the Tivoli
Federated Identity Manager management service. Global security is enabled in
most deployments.

Administrative user name
The WebSphere Application Server administrator name. For example,
wsadmin

Administrative user password
Password for the WebSphere Application Server administrator, as specified
during the WebSphere installation.

SSL Trusted Keystore file
Keystore file used by WebSphere Application Server.

When you have installed Tivoli Federated Identity Manager on a computer
that uses an existing WebSphere installation, the default path on Linux or
UNIX is:
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/etc/trust.p12

On Windows:
C:\Program Files\IBM\WebSphere\AppServer\

profiles\AppSrv01\etc\trust.p12

When you have installed embedded WebSphere as part of the Tivoli
Federated Identity Manager installation, the default path on Linux or
UNIX is:
/opt/IBM/FIM/ewas/profiles/
itfimProfile/etc/trust.p12

On Windows:
C:\Program Files\IBM\FIM\ewas\

profiles\AppSrv01\etc\trust.p12

SSL Trusted Keystore password
The password that is required to access the SSL trusted keystore file.

The default password for the WebSphere key is:
WebAS

SSL Client Keystore file
Keystore file used by WebSphere Application Server.

Chapter 42. Deploying User Self Care 555

This keystore file is an optional configuration item. Some WebSphere
deployments do not use an SSL Client Keystore file.

SSL Client Keystore password
The password that is required to access the SSL client keystore file. This
field is needed when you have entered an SSL client keystore file.

WebSphere server or cluster name

The domain wizard prompts for the WebSphere server or cluster name when
creating a domain.

Server name
The name of the WebSphere Application Server into which the Tivoli
Federated Identity Manager management service is configured.

The server is a single server, not part of a cluster.

The default name is automatically built by the wizard. For example, on
host named host1:
WebSphere:cell=host1Node01Cell,node=host1Node01,server=server1

Cluster name
The name of the WebSphere Application Server cluster into which the
Tivoli Federated Identity Manager management service is configured.

Tivoli Access Manager environment properties

The wizard prompts whether you want to configure into a Tivoli Access Manager
environment. Do not configure into a Tivoli Access Manager environment if you
are using a point of contact server other than WebSEAL. For example, do not
configure into a Tivoli Access Manager environment if you are using WebSphere as
a point of contact server.

The wizard presents the following prompt:

This environment uses Tivoli Access Manager
If you clear this check box, you do not have to set any properties for Tivoli
Access Manager.

If you select this check box, specify the properties listed in the following
table.

Administrator Username
The Tivoli Access Manager administrator. The default ID is sec_master. If
you chose another administrator ID when you installed Tivoli Access
Manager enter the administrator ID in the Administrator Username field.

Administrator Password
The password for the Tivoli Access Manager administrator.

Policy Server Hostname
The fully qualified host name of the computer running the Tivoli Access
Manager policy server. For example:
idp.example.com

Port The port number used to communicate with the policy server.

This number matches the port number that you specified when you
configured Tivoli Access Manager. The default value is 7135.

556 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Authorization Server Hostname
The fully qualified host name of the computer running the Tivoli Access
Manager authorization server. For example:
idp.example.com

Port The port number used to communicate with the authorization server.

This number matches the port number that you specified when you
configured Tivoli Access Manager. The default value is 7136.

Tivoli Access Manager Domain
The name of the administrative Tivoli Access Manager domain that you
specified when you configured Tivoli Access Manager. The default value is
Default.

Configuring a user registry
Integrate User Self Care with the user registry set up for your deployment.

User Self Care supports these registries through WebSphere Federated Repositories
configuration:
v IBM Tivoli Directory Server. See “Configuring a Tivoli Directory Server.”
v IBM Tivoli Access Manager. See “Configuring a Tivoli Access Manager adapter”

on page 558.
v Microsoft Active Directory. See “Configuring an Active Directory server” on

page 563.

Configuring a Tivoli Directory Server
Configure WebSphere Federated Repository for Tivoli Directory Server LDAP.

About this task

Do not use this task if you are using Tivoli Access Manager as a user registry. See
“Configuring a Tivoli Access Manager adapter” on page 558.

Procedure
1. Log on to the administrative console.
2. Select the Security tab, and select Global Security.
3. Click Configure.

The icon is located to the right of the Federated Repositories menu.
4. Click Add Base Entry to Realm.
5. Click Add Repository.
6. Enter a name for Repository Identifier.

You can specify an identifier name.
7. Enter values in the following fields:

v Directory Type

v Primary Host Name

v Port

v Bind distinguished name

v Bind password

You can optionally provide values for additional fields.

Chapter 42. Deploying User Self Care 557

8. Click OK and save. You now see a page that requests Distinguished name of
a base entry that uniquely identifies this set of entries in the realm.

9. Enter a base entry name.
If necessary, see the WebSphere Application Server documentation on
WebSphere Federated Repository.

Note: Remember the base entry name. You must use it when configuring user
self care.

10. Click OK and save. The configuration page for defaultWIMFileBasedRealm is
shown.

11. Examine the table labeled Repositories in the realm. Verify that you new
realm is shown, and that the Base Entry is set to the value you entered.

12. Click OK and save. The administrative console returns to the Global Security
page.

13. Click the Enable Application Security check box.
14. Click OK and save.

What to do next

Continue with “Configuring a response file” on page 564.

Configuring a Tivoli Access Manager adapter for WebSphere
Federated Repository

To configure a Tivoli Access Manager adapter for User Self Care, you must
configure the adapter and then add it to WebSphere Federated Repository as a
custom registry.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Complete the following tasks:
1. “Configuring a Tivoli Access Manager adapter.”
2. “Configuring the adapter as a WebSphere Application Server custom registry”

on page 560.

If necessary, consult the troubleshooting information in “Troubleshooting
WebSphere Application Server login failures” on page 562.

Configuring a Tivoli Access Manager adapter
Configure this adapter when User Self Care manages the Tivoli Access Manager
registry.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

558 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

This adapter uses the Tivoli Access Manager Registry Direct Java API to perform
administration commands such as creating users and groups. The Tivoli Access
Manager installation provides this adapter.

Note: If you are not using a Tivoli Access Manager adapter, do not use these
instructions. See “Configuring a Tivoli Directory Server” on page 557.

Procedure
1. Ensure that you have installed Tivoli Access Manager.
2. Ensure that you have installed and configured Tivoli Access Manager using

Tivoli Directory Server as the user registry.
3. Ensure that you have installed the Tivoli Access Manager 6.1.1 Java run time

component.
4. Copy TAM_installation_directory/java/export/rgy/com.tivoli.pd.rgy.jar to

WebSphere_installation_directory/lib.
5. Create a Tivoli Access Manager user identity that runs the Java API.

For example:
pdadmin -a sec_master -p sec_master_password
pdadmin sec_master> user create -no-password-policy user_name
cn=user_name,registry_suffix user_name user_name password
(SecurityGroup ivacld-servers remote-acl-users)
pdadmin sec_master> user modify user_name account-valid yes

In the example, user_name is your choice of name for the user. A good naming
scheme would be:
tamVMMAdapter-machine_name

The value registry_suffix is the suffix of the registry where this user must be
stored. For example:
o=ibm,c=us

6. Go to the computer where the Tivoli Access Manager adapter is to be
configured. Change directory to WebSphere_installation_directory/lib . Run
the com.tivoli.pd.rgy.until.RgyConfig tool.
Use the IBM Java runtime environment to run this tool. For example:
<WebSphere install>/AppServer/java/jre/bin/java

Chapter 42. Deploying User Self Care 559

Table 142. Using the com.tivoli.pd.rgy.util.RgyConfig utility

Syntax:

java com.tivoli.pd.rgy.util.RgyConfig properties_file_destination create Default
Default "ldaphostname:389:readwrite:5" "DN" DN_password

properties_file_destination
Specifies the full path to an existing directory and the name of a file that is created
when this command is run. Place the file in a directory appropriate for your
WebSphere Application Server deployment:

v For a non-clustered WebSphere Application Server server:

WebSphere_application_server/profiles/server_name/config/itfim

v For a WebSphere Application Server cluster (replicated) environment, create the file
on the DMgr:

WebSphere_application_server/profiles/DMgr_server_name/config/itfim

ldaphostname
The host name of the LDAP server to which Tivoli Access Manager is configured. The
host name is specified in the Tivoli Access Manager runtime configuration file:

Tivoli Access Manager_installation_directory/etc/ldap.conf

389
The default LDAP port. Modify as needed for your deployment.

"DN"
The Distinguished Name (DN) specified in the pdadmin user creation command.
Ensure that the value is surrounded by double quotation marks.

DN_password
The password for the DN.

Example command:

java com.tivoli.pd.rgy.util.RgyConfig
WebSphere_application/profiles/<server>/config/itfim/tamVMMAdapter.properties
create Default Default "myldapsystem:389:readwrite:5"
"cn=tamVMMAdapter-myhost,o=ibm,c=us" mypasswordmypassword

7. Update the configuration as needed for your WebSphere Application Server
deployment:
v For a non-clustered WebSphere Application Server server, reload the Tivoli

Federated Identity Manager configuration.
v For a WebSphere Application Server cluster (replicated) environment,

perform a full WebSphere Application Server resynchronization, and reload
the Tivoli Federated Identity Manager configuration.

What to do next

Continue with “Configuring the adapter as a WebSphere Application Server
custom registry.”

Configuring the adapter as a WebSphere Application Server
custom registry
To integrate with WebSphere, configure the Tivoli Access Manager adapter as a
WebSphere Application Server custom registry.

560 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Complete the task “Configuring a Tivoli Access Manager adapter” on page 558.

About this task

After configuring the Tivoli Access Manager adapter with the Tivoli Access
Manager runtime environment, you must configure the Virtual Member Manager
(VMM) Tivoli Access Manager Adapter into WebSphere Application Server as a
custom registry.

Note: For information about configuring WebSphere Federated Repository custom
registries, see the WebSphere Application Server documentation. For WebSphere
Application Server Network Deployment 6.1, see the WebSphere information
center.

Procedure
1. Stop the WebSphere Application Server.
2. Change directory to:

WebSphere_Installation_directory/profiles/profile_name/config/
cells/cell_name/wim/config

3. Use a text editor to open wimconfig.xml.

Note: Back up wimconfig.xml before you change it.
4. Add a new config:repositories element to the file. Place this element before

the config:realmConfiguration element.
This entry specifies the class name of the adapter, and sets an identifier for the
repository. For example, to specify a class name of
com.tivoli.pd.vmm.adapter.tam.TAMRegistryAdapter and to set the
TAMRegistryAdapter repository as the identifier:
<config:repositories
adapterClassName="com.tivoli.pd.vmm.adapter.tam.TAMRegistryAdapter"
id="TAMRegistryAdapter"/>

5. Save the wimconfig.xml file, and close the text editor.
6. Copy the TAM_installation_directory/java/export/vmm_tam_adapter/

VMMTamAdapter.jar file to WebSphere_install_directory/lib.
7. Start wsadmin in no connection mode:

wsadmin -conntype none

8. Disable paging in the common repository configuration. Set the supportPaging
parameter for the updateIdMgrRepository command to false to disable
paging.
$AdminTask updateIdMgrRepository {-id TAMRegistryAdapter
-supportPaging false }

Note: A warning is shown until the configuration of the sample repository is
finished.

9. Add a custom property for the TAMRegistryAdapter.

Chapter 42. Deploying User Self Care 561

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rwim_dev_vmmca.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rwim_dev_vmmca.html

$AdminTask setIdMgrCustomProperty {-id TAMRegistryAdapter
-name tamConfFile -value "properties_file_destination"}

properties_file_destination
The properties file that was created as the result of running
com.tivoli.pd.rgy.util.RgyConfig in the prerequisite task “Configuring a
Tivoli Access Manager adapter” on page 558.

10. Add a base entry to the adapter configuration using the
addIdMgrRepositoryBaseEntry command to specify the name of the base
entry for the specified repository:
$AdminTask addIdMgrRepositoryBaseEntry {-id TAMRegistryAdapter
-name base_entry_name }

base_entry_name
This name must match the suffix used by the Tivoli Access Manager user
registry.

11. Use the addIdMgrRealmBaseEntry command to add the base entry to the
realm. This action links the realm with the repository.
$AdminTask addIdMgrRealmBaseEntry {-name defaultWIMFileBasedRealm
-baseEntry base_entry_name }

base_entry_name
This name must match the value you specified in the previous command.

defaultWIMFileBasedRealm
The default realm name is defaultWIMFileBasedRealm. If this realm name
was renamed, use the new realm name instead of
defaultWIMFileBasedRealm.

12. Save your configuration changes. Enter the following commands to save the
new configuration and close the wsadmin tool:
$AdminConfig save
exit

13. Restart the WebSphere Application Server.

What to do next

Select one of the following tasks:
v If you can successfully log on to WebSphere Application Server, continue with

“Configuring a response file” on page 564.
v If you cannot log on to WebSphere Application Server, see “Troubleshooting

WebSphere Application Server login failures.”

Troubleshooting WebSphere Application Server login failures
If you cannot log on to WebSphere Application Server following configuration of
the adapter, review these troubleshooting tips.

About this task

If a registry cannot be contacted, WebSphere Application Server prevents you from
logging on. This limitation occurs even if the WebSphere Application Server
administration account is located in a different registry. Wrong configuration or
lack of availability of a required registry can result in WebSphere Application
Server preventing you from logging in as the administrator.

If you encounter this problem after configuring the Tivoli Access Manager adapter,
follow the troubleshooting steps in this procedure:

562 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. Ensure that the Tivoli Access Manager registry is available. Since Tivoli Access

Manager Registry adapter does not maintain an authentication cache, you see a
"cannot log in" error immediately when the registry is unavailable.
a. Use pdadmin to connect to the registry and perform a test user creation to

confirm.
b. Restart the registry and correct any connection issues if necessary.
c. If the problem persists, continue to the next step.

2. Open the wimconfig.xml file and verify the settings in the new code that you
created.

v Confirm that the location or name of the properties file is correct.
v Confirm that the suffix is correct for the Tivoli Access Manager registry.

Note: If you modify the configuration file, you must restart WebSphere
Application Server. WebSphere Application Server requires you to log on as the
administrator to stop WebSphere Application Server. However, if you cannot
log on you must stop the WebSphere Application Server process. You can then
restart WebSphere Application Server without logging on.

3. If in the previous step you did not identify any problems with the
configuration file, roll back to the backup copy of the wimconfig.xml file.
a. Make a backup of your new wimconfig.xml file.
b. Restore the backup of the original wimconfig.xml file.
c. Restart WebSphere Application Server.

Note: WebSphere Application Server requires you to log on as the
administrator to stop WebSphere Application Server. However, if you cannot
log on you must stop the WebSphere Application Server process. You can
then restart WebSphere Application Server without logging on.

If you can log in after restoring the backed up file, there is a problem with the
Tivoli Access Manager adapter configuration. Review the configuration and
correct any errors.

Configuring an Active Directory server
Configure WebSphere Federated Repository for Microsoft Active Directory.

About this task

Do not use this task if you are using Tivoli Access Manager as a user registry. See
“Configuring a Tivoli Access Manager adapter” on page 558.

<config:repositories adapterClassName="com.tivoli.pd.vmm.adapter.tam.TAMRegistryAdapter"
id="TAMRegistryAdapter" supportPaging="false">
<config:baseEntries name="o=ibm,c=us"/>
<config:CustomProperties
name="tamConfFile"
value="/opt/IBM/WebSphere/AppServer/profiles/dmgr/config/itfim/tamVMMAdapter.properties"/>
</config:repositories>

Figure 68. Sample wimconfig.xml settings

Chapter 42. Deploying User Self Care 563

Procedure
1. Log on to the administrative console.
2. Select the Security tab, and select Global Security.
3. Click Configure.

The icon is located to the right of the Federated Repositories menu.
4. Click Add Base Entry to Realm.
5. Click Add Repository.
6. Enter a name for Repository Identifier.

You can specify an identifier name.
7. Enter values in the following fields:

v Directory Type

v Primary Host Name

v Port

v Bind distinguished name

v Bind password

You can optionally provide values for additional fields.
8. On the WebSphere Application Server console, select Require SSL

communications.

Note: Configuration of SSL communication between a WebSphere Application
Server and a user registry such as Active Directory requires additional steps.
See the documentation for your version of WebSphere Application Server for
instructions on configuring SSL connections with WebSphere Application
Server.

9. Click OK and save. You now see a page that requests Distinguished name of
a base entry that uniquely identifies this set of entries in the realm.

10. Enter a base entry name.
If necessary, see the WebSphere Application Server documentation on
WebSphere Federated Repository.

Note: Remember the base entry name. You must use it when configuring user
self care.

11. Click OK and save. The configuration page for defaultWIMFileBasedRealm is
shown.

12. Examine the table labeled Repositories in the realm. Verify that you new
realm is shown, and that the Base Entry is set to the value you entered.

13. Click OK and save. The administrative console returns to the Global Security
page.

14. Click the Enable Application Security check box.
15. Click OK and save.

What to do next

Continue with “Configuring a response file.”

Configuring a response file
Create a response file and then populate it with values specific to your
deployment.

564 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

About this task

User Self Care loads configuration from an XML properties file called a response file.
This file contains the responses to configuration options. In most cases, response
file contents are generated by administrator choices during initial deployment. For
user self care, loading a properties file is required as part of initial configuration.

Procedure
1. Create a response file as needed for your deployment. Use wsadmin:

$AdminTask manageItfimUserSelfCare {-operation createResponseFile
-fileId target_location }

The value target_location is the fully qualified path to a file that is created.
2. Determine a value of each parameter in the response file, as required by your

deployment.
Optionally, use the following worksheet to plan your response file. The
worksheet identifies the required parameters. In the response file, you can
search for the string REQUIRED to find these parameters.
For more information about each parameter in this worksheet, see Chapter 44,
“Response file parameters,” on page 621

Table 143. User Self Care response file parameters
Response file parameter Required? Default Value Your value

AccountCreateLifetime yes 86400

AccountRecoveryFailureLifetime no 86400

AccountRecoveryFailureLimit no 3

AccountRecoveryFailureLockoutTime no 86400

AccountRecoveryLookupAttribute no mail

AccountRecoveryLookupField no none This field is deprecated.

AccountRecoveryValidationAttributes no mail

AccountRecoveryValidationLifetime no 86400

AttributeMappingFilename yes none

BaseURL yes none

CaptchaSTSModuleId yes default-usc-captcha-
noop

DemoCaptchaImageAndKeyList Yes, if using
Captcha

Fixed content. Do not modify.

DemoCaptchaImageRootURL Yes if using
Captcha

none

EnrollmentEmailSender yes none

EntitySuffix yes o=ibm,c=us

GroupMembershipGroups no none

PasswordRecoveryEmailSender yes none

ProfileManagementAttributes yes businessCategory
roomNumber
mobile
mail

SecretQuestionMinimumNumber no 2

SecretQuestionMaximumNumber no 3

SecretQuestionRequiredForValidationNumber no 2

SMTPAuthenticatePassword no, unless
your SMTP
server
requires it

none

SMTPAuthenticateUsername no, unless
your SMTP
server
requires it

none

SMTPServerName yes none

3. Update your response file with the values.
4. Save the file.

Chapter 42. Deploying User Self Care 565

What to do next

Continue with the topic: “Configuring User Self Care.”

Configuring User Self Care
Follow the steps in this procedure to configure user self care with the Tivoli
Federated Identity Manager deployment.

Before you begin

Ensure that you have finished the prerequisite configuration tasks:
1. “Configuring a Tivoli Federated Identity Manager domain” on page 553
2. “Configuring a user registry” on page 557
3. “Configuring a response file” on page 564

About this task

Do the following tasks in order. The instructions for each task provide a link to the
next task. The list of tasks is shown here as an overview.

Procedure
1. “Showing trust chains”
2. “Configuring the Captcha demonstration” on page 567

Skip this step if you do not intend to use the Captcha demonstration.
3. “Using a response file to configure User Self Care” on page 568
4. “Configuring a point of contact server” on page 568
5. “Integrating User Self Care with WebSEAL” on page 609

Skip this step if you are using WebSphere Application Server as the point of
contact server.

Showing trust chains
You can configure Tivoli Federated Identity Manager to show the trust chains that
are created by default for User Self Care.

About this task

You can use the administrative console to view each trust chain. Trust chains
correspond to one or more User Self Care operations. When you view the trust
chains, you see the STS modules that accomplish the operation. You can then
customize the modules and chains to fit your deployment.

Note: For information about how to customize User Self Care, see the Tivoli
Federated Identity Manager Wiki:

http://www.ibm.com/developerworks/wikis/display/
tivolifederatedidentitymanager/Home

Procedure
1. Log on to the administrative console.
2. Go the Runtime Node Management panel.

566 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home
http://www.ibm.com/developerworks/wikis/display/tivolifederatedidentitymanager/Home

3. In the custom property part of the panel, select the menu entry for
STS.showUSCChains.

4. Set the value to true.
5. Save the configuration.
6. When prompted, load the configuration changes.
7. Restart WebSphere Application Server to refresh the management commands

available to wsadmin.

What to do next

Select one of the following steps:
v If you want to use the Captcha demonstration, continue with “Configuring the

Captcha demonstration.”
v If you do not want to use the Captcha demonstration, continue with “Using a

response file to configure User Self Care” on page 568.

Configuring the Captcha demonstration
You can optionally configure the Captcha demonstration as part of your User Self
Care deployment.

Before you begin

Ensure that you have finished all of the prerequisite configuration steps:
v “Configuring a Tivoli Federated Identity Manager domain” on page 553
v “Configuring a user registry” on page 557
v “Configuring a response file” on page 564
v “Showing trust chains” on page 566

Procedure
1. Host the provided image files on a web server that is accessible to your users.

Ensure that you know the location of the root URL of the images that are used
during the configuration of the Captcha STS module. The value is stored in the
DemoCaptchaImageRootURL parameter in the response file.

2. Activate the plug-in:
a. Copy the Captcha jar file to the Tivoli Federated Identity Manager plug-ins

directory. For example, copy:
FIM_install_dir/examples/demo/
captcha/com.tivoli.am.fim.demo.sts.captcha.jar

to the directory:
TFIM_install_dir/plugins

b. Using the Runtime Node Management Panel, click the Publish Plugins
icon.

c. Click Load Configuration Changes.
3. Use the Module Instances Panel to create an instance of the

DemoCaptchaSTSModule. Set the Module Instance Name to the value
usc-captcha-demo.

What to do next

Continue with “Using a response file to configure User Self Care” on page 568.

Chapter 42. Deploying User Self Care 567

Using a response file to configure User Self Care
Use the response file that you created previously to supply the necessary
properties to the configuration command for user self care.

Before you begin

Ensure that you have finished the prerequisite configuration tasks:
v “Configuring a Tivoli Federated Identity Manager domain” on page 553
v “Configuring a user registry” on page 557
v “Configuring a response file” on page 564
v “Showing trust chains” on page 566
v If you are using the Captcha demonstration, ensure that it is configured. See

“Configuring the Captcha demonstration” on page 567

Procedure
1. Obtain your configured response file.
2. Run wsadmin.

wsadmin.sh -username WebSphere_adminstrator_name -password password

3. Load the response file:
$AdminTask manageItfimUserSelfCare {-operation configure -fimDomainName
domain_name -federationName federation_name
-fileId response_file_path }

Supply these values:

domain_name
The name of the Tivoli Federated Identity Manager domain that you
created.

federation_name
The name of the Tivoli Federated Identity Manager federation that you
created.

response_file_path
The location of your User Self Care response file.

4. Reload the Tivoli Federated Identity Manager configuration.
$AdminTask reloadItfimRuntime {-fimDomainName domain_name }

Supply this value:

domain_name
The name of the Tivoli Federated Identity Manager domain that you
created.

What to do next

Continue with the topic: “Configuring a point of contact server.”

Configuring a point of contact server
You must configure a point of contact server for User Self Care.

Select the instructions for the type of point of contact server that your deployment
uses:
v “Configuring WebSphere Application Server as a point of contact server” on

page 569
v “Configuring WebSEAL as a point of contact server” on page 569

568 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Configuring WebSphere Application Server as a point of contact
server
You can configure WebSphere Application Server as the point of contact server for
User Self Care.

Procedure
1. Use wsadmin to activate the WebSphere point of contact type.

Use the wsadmin commands:
$AdminTask manageItfimPointOfContact {-operation activate
-uuid uuid4f3d17d-0106-w412-r36b-a0d5ecc604ba
-fimDomainName your_domain_name}

$AdminTask reloadItfimRuntime {-fimDomainName your_domain_name}

2. Log on to the administrative console.
3. Select Enterprise Applications > ITFIMRuntime > Security role to user/group

mapping.
4. Update the FIMUserSelfCareAnyAuthenticated application role to be

AnyAuthenticated.
5. Save the WebSphere Application Server configuration.
6. Restart WebSphere Application Server.

What to do next

Review the performance tuning guidelines in Chapter 43, “Tuning User Self Care,”
on page 617.

Configuring WebSEAL as a point of contact server
You can configure WebSEAL as the point of contact server for User Self Care.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Procedure
1. Determine the location of your tfimcfg.jar file.

This file is located in the hierarchy under the Tivoli Federated Identity Manager
installation directory. On UNIX, the path is:
/opt/IBM/FIM/tools/tamcfg/tfimcfg.jar

2. Run the tfimcfg tool.
java -jar tfimcfg.jar -action tamconfig
-cfgfile /opt/pdweb/etc/webseald-default.conf

Note: If Federal Information Processing Standards (FIPS) is enabled in your
environment, the secure socket connection factory must be specified. For
example:
java -jar /download_dir/tfimcfg.jar -action tamconfig
-cfgfile webseald-instance_name.conf -sslfactory TLS

Usage notes:
v The file paths might differ for your installation and your WebSEAL instance.

Chapter 42. Deploying User Self Care 569

v The default Tivoli Federated Identity Manager HTTP port is 9080. This port
is also the WC_defaulthost port for the WebSphere Application Server.

v Do not specify an optional Tivoli Federated Identity Manager administrator
user ID or password.

v Answer no to the question Use SSL connection to ITFIM server.
v Select uscfed from the list of Federations to configure.

What to do next

Continue with the topic: “Integrating User Self Care with WebSEAL” on page 609.

Modifying checks on user ID and password
User data can include information about the user such as user name, password,
email address, and the secret question and answer. The user data is checked and
validated in the HTML pages, mapping rule, and federated repository. The
validation of user data in the federated repository is not covered in this document.

User data is checked and validated in three places:
v In the JavaScript in the User Self Care HTML pages

In the default setup of User Self Care, the JavaScript in the HTML validates the
following user data:
– Missing required field values
– Invalid characters: [] / < > () , ; : \" = "

– The mobile number field for values other than numbers, spaces, and the
following characters: () -

See “Overview of the HTML validation function” on page 571 for more details.
v In the mapping rule

In the default setup of User Self Care, the mapping rule validates the user data
for the following details:
– Password length

- The minimum password length is seven characters
- The minimum number of alphanumeric characters in a password is four
- The minimum number of non-alphanumeric characters in a password is

one
- The maximum number of repeating characters in a password is two

– User name length
The maximum user name length is 256 characters

– User name and password must contain only letters or digits
See “Overview of the mapping file validation function” on page 571 for more
details.

v In the federated repository
The LDAP server can enforce limitations on the values of the user data. One
example is Active directory. The user name and password rules that are set in
the Account Policies can enforce the user password to be more than seven
characters.

To modify the user name or password policy, one or more of the following files
must be edited. See “Modifying the validation for user name and password” on
page 574 for more details.

570 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

HTML page Page description

enrollment.html Registration form.

changepassword.html Change password form.

forgotid.html Form that retrieves user ID by using the
registered email address.

forgotpassword.html Form that resets the password if a user
forgets the password.

secretquestion.html Page that is displayed to accept the answer
to the secret question and the new password
in the forgot password flow.

profile.html Form that updates the profile information of
the user.

Overview of the HTML validation function
The JavaScript function testInput(...) validates the user name and password in
the HTML pages.

This function is in all the HTML pages that validate the user name and password.

The following function is an example from the enrollment.html page.
function testInput(required, fieldName, fieldVal){

...
if (required && fieldVal == "") {

...
return false;

}
if (fieldVal.match(illegalChars)) {

...
return false;

}
return true;

}

The input parameters that are accepted are:
v required: This parameter accepts true or false values. If this parameter is set to

true, then the fieldName is a required field.
v fieldName: This parameter is the name of the field.
v fieldVal: This parameter is the value that is supplied by the user for the field

fieldName.

Table 144. Conditions found in the HTML validation function

Conditions Description

if (required && fieldVal == "") {
...
return false;

}

Checks for all required fields.

if (fieldVal.match(illegalChars)) {
...
return false;

}

Checks for characters that are not valid.

Overview of the mapping file validation function
The mapping rule has different variables and functions that check and validate
user data in User Self Care.

Chapter 42. Deploying User Self Care 571

Variables Value

MIN_PASSWORD_LENGTH 7

MIN_PASSWORD_ALPHA 0

MIN_PASSWORD_NON_ALPHA 0

MAX_PASSWORD_REPEAT_CHARS 2

Function Description

function validUsernameCharacter(cp) {...} Returns true only
when the character
in the user name is a
letter or number.

function validPasswordCharacter(cp) {...} Returns true only
when the character
in the password is a
letter or number.

function checkUsername(helper) {
...

if (userid.length() > MAX_USERNAME_LENGTH) {
//Checking for maximum length of username
...
return;
}

...
for (var i = 0; i < cp.length; i++) {
// only allow letters and numbers in usernames
if (validUsernameCharacter(cp[i]) == false) {
...
return;
}
}
}

Checks the user
name for length and
allowed characters. It
calls

validUsername
Character

It uses the value in
the following
variable:

MAX_USERNAME
_LENGTH

572 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

function checkPassword(helper) {
...
if (password.length() < MIN_PASSWORD_LENGTH) {
//checking for minimum password length
...
return;
}
...

for (var i = 0; i < cp.length; i++) {
if (validPasswordCharacter(cp[i]) == false) {
//checking for valid characters in the password-only
letters and numbers

...
return;

}
...

}
if (alphas < MIN_PASSWORD_ALPHA) {

//password should not have less than
MIN_PASSWORD_ALPHA alphabets
...
return;

}
if (nonalphas < MIN_PASSWORD_NON_ALPHA) {

//password should not have less than
MIN_PASSWORD_NON_ALPHA
...
return;

}
if (repeats > MAX_PASSWORD_REPEAT_CHARS) {

// password cannot have more than
MAX_PASSWORD_REPEAT_CHARS repeat //characters
...
return;

}
}

Checks for the
following password
data:

v Minimum length

v Valid characters

v Allowed number
of alphabetical
and
non-alphabetical
characters

v Maximum number
of repeat
characters

Condition Description

if (CHECK_PASSWORD[operation] == 1) {
System.out.println("USC DEBUG MAPPING:

enforcing default password policy.");
checkPassword(helper);

}

These conditions are
the entry points to
the mapping rule.

if (CHECK_USERNAME[operation] == 1) {
System.out.println("USC DEBUG MAPPING:

enforcing default username policy.");
checkUsername(helper);

}

CHECK_PASSWORD[operation]=1 By default, all the
operations are
mapped to this
condition.

Chapter 42. Deploying User Self Care 573

var CHECK_PASSWORD = {
"/usc/self/account/create/post": 1,

"/usc/self/account/recover/password/
secretquestion/post": 1,

"/usc/self/password/update/post": 1
};

You can modify this
condition by
changing the array
and adding more
conditions to handle
them.

if (CHECK_PASSWORD[operation] == 1) {
System.out.println("USC DEBUG MAPPING:

enforcing default password policy.");
checkPassword(helper);

}

Modifying the validation for user name and password
You can modify the different validation or checking of user data in User Self Care.

About this task

Modifying the enrollment.html is covered in this procedure. You must repeat the
steps for all other affected HTML files:
v enrollment.html

v forgotid.html

v forgotpassword.html

v secretquestion.html

v profile.html

Procedure
1. Edit the HTML page.

If you want to remove the required field validation for the user ID field
Modify the input to testInput(required, fieldName, fieldVal
function in
if (! testInput(true,"User ID", useridTF.value)){

return true;
}

to
if (! testInput(false,"User ID", useridTF.value)){

return true;
}

If you want to change the label on the user ID field
Modify
<label for="usc.form.userid">

User ID (required)
</label>

to
<label for="usc.form.userid">

User ID
</label>

If you do not want to enable the check for the following characters that are
not valid in user ID, email address, password, and secret question answer:

v [
v]
v /

574 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v <
v >
v (
v)
v ,
v ;
v :
v \
v "
v =
v "

Look for function testInput(required, fieldName, fieldVal) and
comment the section.
if (fieldVal.match(illegalChars)) {

var illegalCharsStr = "The following characters are not
allowed: [] \\ / < > () , ; : \" = ";

var invalidCharsFieldStr = "The following field contains
illegal characters: " + fieldName + "
 " + illegalCharsStr;

printWarning(invalidCharsFieldStr);
return false;

}

If you do not want to check the mobile number field for characters other
than numbers, spaces, () and -

Look for function doSubmit() and comment out the section.
// var mobileCleaned = mobileTF.value.replace(/[\(\)\-\]/g, ’’);
// if (isNaN(mobileCleaned)) {
// var illegalMobileCharsStr = "The mobile number can only contain
// numbers, spaces and the following characters: () - ";
// printWarning(illegalMobileCharsStr);
// return true;
// }

2. Publish pages to the Tivoli Federated Identity runtime environment.
3. Modify the mapping rule file.

a. Back up the JavaScript mapping rule file.
b. Open the JavaScript mapping rule file with a text editor.
c. Search for the following variables and edit accordingly.

v MIN_PASSWORD_LENGTH
v MIN_PASSWORD_ALPHA
v MIN_PASSWORD_NON_ALPHA
v MAX_PASSWORD_REPEAT_CHARS
v MAX_USERNAME_LENGTH

d. Edit according to the scenarios detailed in the following table.

If you want to allow more characters in the user name field other than
letters and digits

Search for validUsernameCharacter(cp) and replace the return value
Character.isLetterOrDigit(cp) appropriately.

Note: Some special characters might need to be escaped with a
backslash (\).

Chapter 42. Deploying User Self Care 575

If you want to allow any character in the user name field
Replace Character.isLetterOrDigit(cp) with true. The federated
repository that you are using must allow that special character.

If you want to have different policies for a different workflow
Change the variables CHECK_USERNAME and CHECK_PASSWORD.

For example, if you want to have a different policy setting when the
user want to change the password, do the following steps.
1) Change the value for the variable CHECK_PASSWORD.

var CHECK_PASSWORD = {
"/usc/self/account/create/post": 1,

"/usc/self/account/recover/password/secretquestion/post": 1,
"/usc/self/password/update/post": 2

};

2) Introduce a new condition.
if (CHECK_PASSWORD[operation] == 2) {

System.out.println("USC DEBUG MAPPING:
enforcing modified password policy.");

modifiedCheckPassword(helper);
}

3) Introduce the new function modifiedCheckPassword(helper).
function modifiedCheckPassword(helper) {

var password = helper.getNewPassword();
var pwdattr = ["usc.form.password.new",

"usc.form.password.new.confirm"];

if (helper.getUserRecoverableError()) {
return;

}

if (password.length() < 10) {
helper.setUserRecoverableError("Password should

be atleast 10 characters", pwdattr);
helper.setSTSOutputPageID(FORM_PAGE_IDS[operation]);
return;

}
}

4. Save the changes to the file.
5. Apply the modified mapping rule to the Trust Service Chains.

a. Log in to Integrated Solutions Console.
b. Navigate to Tivoli Federated Identity Manager > Configure Trust Service

> Trust Service Chains.
c. Select USC under Show Chain Types.

1) If you are modifying policies that are related to user name alone, modify
the following chains.
v Default Chain uscCreateAccount

v Default Chain uscDeleteAccount

v Default Chain uscForgottenId

v Default Chain uscProfileManagement- All the two chains.
2) If you are modifying policies that are related to password alone, modify

the following chains.
v Default Chain uscChangePassword

v Default Chain uscCreateAccount

v Default Chain uscDeleteAccount

v Default Chain uscForgottenPassword- All the two chains.

576 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Default Chain uscProfileManagement- All the two chains.
3) If you are modifying the policies that are related to both user name and

password, modify all the chains.
d. Select the chain mapping that you want to modify.
e. Click Properties.
f. Under Trust Service Chain Modules, select Default mapping module.
g. Click Properties.
h. Under Identity Mapping Rule for partner module chain Default Chain

uscCreateAccount, click Modify Rule.
i. Click Import File.
j. Click OK.
k. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

Note: Repeat the steps for all the chains that you want to modify.

Enabling multiple secret question
Use the multiple secret question feature to enhance the security of validating user
credentials.
v “Secret Questions in User Self Care”
v “Updating configuration settings for existing User Self Care federations” on page

578
– “About the User Self Care STS chain migration” on page 578
– Enabling salting and hashing on existing User Self Care federations
– “Migrating the User Self Care secret question answers in LDAP to a new

format” on page 579
– “Using more than one secret question in User Self Care” on page 581

v “Configuring new User Self Care federations” on page 582
v “Enabling salting and hashing on secret question values” on page 582
v “Modifying the number of secret questions used in User Self Care” on page 582

Secret Questions in User Self Care
A secret question is a question that the user must answer during enrollment. It is
typically personal information that only the user knows. In User Self Care, the
secret questions and answers verify the identity of users when they forget their
password.

Users are required to answer the secret questions correctly for their identities to be
verified. Example secret questions are:
v What is your mother's maiden name?
v What is the name of your first pet?

Every pair of question ID and answer are then concatenated and stored in a
multi-valued LDAP attribute. By default, it is the businessCategory attribute. If
you enable the salt and hash feature, the original answer is never stored in the
LDAP. This feature increases the security of storing the answers.

The secret question configuration is stored in the:
v User interface for storing secret questions in User Self Care HTMLs.
v User interface for answering secret questions in User Self Care HTMLs.

Chapter 42. Deploying User Self Care 577

v Configuration for storing and fetching secret questions to and from the LDAP in
the mapping file.

v Security Token Service (STS) modules configurations.

Note: By default, only the secret question ID is stored in the LDAP attribute. The
secret question string is stored in the User Self Care HTML files.

An identity of a user can be compromised when other people know the answer to
the secret question. You can configure User Self Care to use more than one secret
question to validate the identity of users. Multiple secret questions provide a more
secure way of validating users when they request a password reset.

Updating configuration settings for existing User Self Care
federations
After you install Tivoli Federated Identity Manager version 6.2.2, fix pack 4, you
must update the configuration for the User Self Care federations.

About the User Self Care STS chain migration:

Tivoli Federated Identity Manager version 6.2.2, fix pack 4 automatically updates
the STS chains. The migration affects all existing User Self Care federations.

The following changes are applied after you install fix pack 4:
v The STS chains are updated to accommodate multiple secret questions.
v The runtime custom property USC.SecretQuestion.SaltAndHash.Enabled is set to

false.

Chains updated Modules added Properties

uscAccountCreate USCSecretQuestionStoreSTSModule in
validate mode

v Minimum number of
secret questions that a
user is required to
answer. The default
value is 1.

v Maximum number of
secret questions that a
user can answer. The
default value is 1.

uscProfileManagement USCSecretQuestionStoreSTSModule in
validate mode

v Minimum number of
secret questions that a
user is required to
answer. The default
value is 1.

v Maximum number of
secret questions that a
user can answer. The
default value is 1.

uscForgottenPassword USCSecretQuestionSTSModule in issue
mode

Minimum required
number of secret
questions that a user must
answer correctly to
validate their identity. The
default value is 1.

578 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Enabling salting and hashing on existing User Self Care federations:

You can enhance the security of storing existing secret question answers by
encrypting them.

About this task

In cryptography, salting is a method encrypting inputs such passwords by adding
a random string to them. This makes passwords more secure. Hashing is a method
of using an algorithm to convert data to a fixed-sized value. In User Self Care you
can use these encryption methods to secret question answers. Enabling the salting
and hashing feature increases the security of storing the secret question values. To
enable the salting and hashing of existing secret question values set the runtime
custom property USC.SecretQuestion.SaltAndHash.Enabled to true in the
Integrated Solutions Console.

Migrating the User Self Care secret question answers in LDAP to a new format:

Store the secret question values in a more secure format. Use the LDAP migration
tool to migrate existing User Self Care secret question answers to a salted and
hashed format.

Before you begin

v Install Tivoli Federated Identity Manager version 6.2.2, fix pack 4
v Configure User Self Care

Note:

You do not need to update the LDAP if you are configuring User Self Care for the
first time in Tivoli Federated Identity Manager version 6.2.2, fix pack 4 onwards.

CAUTION:
The migration of secret question answers is irreversible. The hashing of the
secret question answer is one way. You must back up the original secret question
answers before doing the migration. This backup can restore the original values
if the migration is not successful. However, if you restore the secret question
entries by using the backup file, the migrated hashed values cannot be retrieved.

About this task

In cryptography, salting is a method encrypting inputs such passwords by adding
a random string to them. This makes passwords more secure. Hashing is a method
of using an algorithm to convert data to a fixed-sized value. Use this tool to salt
and hash existing secret question answers.

LDAP migration tool

The LDAP migration tool:
v Backs up the existing secret question answers to the LDAP Data Interchange

Format
v Creates an LDAP Data Interchange Format (LDIF) file for migration with the

migrated salted and hashed values. This file can be executed later to do the
LDAP migration.

v Migrates the existing LDAP secret question values directly in the LDAP

Chapter 42. Deploying User Self Care 579

The parameters for the LDAP migration tool include:
v -h: Specifies the LDAP machine hostname.
v -p: (Optional) Specifies the LDAP port number. The default port number is 389.
v -D: Specifies the bind user distinguished name (DN). For example,

cn=admin,dc=example,dc=com.
v -w: Specifies the password of the bind user.
v -baseDN: Specifies the base DN to be searched. For example dc=example,dc=com.
v -attribute: LDAP attribute used to store secret question. For example,

businessCategory.
v -newattribute: (Optional) New secret question answer. This attribute must be a

multi-valued attribute if you use multiple secret questions. If this attribute is not
specified, the destination attribute is the same as the original attribute specified
in -attribute.

v -ldif: (Optional) Writes the changes to a specified LDIF file instead of doing the
migration.

v -deleteOldEntry: (Optional) This parameter works only if -attribute and
-newattribute are specified. If this parameter is present, the old attribute that
was specified in -attribute is deleted after the migration is completed. If -ldif is
also specified, the attribute is not deleted immediately, but the LDIF file contains
the commands to delete those entries.

v -backup: (Optional) Writes a backup of the current value of attribute to the
specified LDIF file.

v -Z: (Optional) Specifies whether SSL is used to connect to LDAP.

Procedure

1. Enable salting and hashing on secret question values. See, “Enabling salting
and hashing on secret question values” on page 582.

2. Stop the Tivoli Federated Identity Manager runtime application.
a. In the Integrated Solutions Console, navigate to Applications > Application

Types > WebSphere enterprise applications

b. Select ITFIMRuntime.
c. Click Stop.

3. Open the command prompt.
4. Run the following commands for the LDAP migration tool:

Important: Use the -backup parameter to ensure that the backup copy is
created.
java -classpath <FIM_INSTALL_PATH>\tools\ldap
com.tivoli.am.fim.ldap.MigrateUSCSecretQuestion [parameters]

For example:
java -classpath itfim-ldap.jar com.tivoli.am.fim.ldap.MigrateUSCSecretQuestion
-backup /home/user1/Downloads/usc/backup.ldif -h localhost
-D cn=root,dc=example,dc=com -w mercury1 -baseDn dc=example,dc=com
-ldif /home/user1/Downloads/usc/migrate.ldif -attribute description
-newAttribute businessCategory
-deleteOldEntry

5. Start Tivoli Federated Identity Manager run time application.
a. In Integrated Solutions Console, navigate to Applications > Application

Types > WebSphere enterprise applications

b. Select ITFIMRuntime.

580 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

c. Click Start.

Results

The secret question answers are salted and hashed in the directory.

Using more than one secret question in User Self Care:

Tivoli Federated Identity Manager version 6.2.2, fix pack 4 supports multiple secret
questions. You must configure User Self Care to use this feature.

Before you begin

Tivoli Federated Identity Manager version 6.2.2, fix pack 4 supports multiple secret
questions to validate the identity of users. In previous versions User Self Care used
one secret question. See, “Modifying the number of secret questions used in User
Self Care” on page 582 to understand the difference between the old and the new
sample mapping rule.

Procedure

1. Edit the following HTML pages:
v enrollment.html

v secretquestion.html

v profile.html

Tivoli Federated Identity Manager versions 6.2.2, fix pack 4 provides sample
template pages. Merge the required information from the sample with your
existing HTML pages.

Table 145. HTML pages

Page Pages path Sample template pages

enrollment.html <FIM_INSTALL_DIR>/pages/
<LOCALE>/usc/enrollment/
enrollment.html

<FIM_INSTALL_DIR>/
pages_template/<LOCALE>/
usc/enrollment/
enrollment.html

secretquestion.html <FIM_INSTALL_DIR>/pages/
<LOCALE>/usc/password/
secretquestion.html

<FIM_INSTALL_DIR>/
pages_template/<LOCALE>/
usc/password/
secretquestion.html

profile.html <FIM_INSTALL_DIR>/pages/
<LOCALE>/usc/profile/
profile.html

<FIM_INSTALL_DIR>/
pages_template/<LOCALE>/
usc/profile/profile.html

See “Modifying the number of secret questions used in User Self Care” on page
582 to understand the difference between the old and the new sample pages.

2. Publish pages to the Tivoli Federated Identity runtime environment.
3. Merge the mapping rule. You must merge the information provided in the

sample mapping rule with your existing mapping rule. The sample mapping
rule in <FIM_INSTALL_DIR>/examples/js_mappings/usc.js.

What to do next

You must reconfigure the User Self Care federation.

Chapter 42. Deploying User Self Care 581

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/admin/task/config/fsso/publishingpages.html

Configuring new User Self Care federations
After you installTivoli Federated Identity Manager version 6.2.2, fix pack 4 you
must configure new User Self Care federations to be able to use the multiple secret
feature.

After you install the fix pack 4 existing User Self Care federations do not support
multiple secret questions. However, if you create a User Self Care federation after
you install the fix pack, that federation supports the multiple secret question
function by default. The template HTML pages can accept up to three secret
question answers.

Before you configure the new federation, replace the default HTML pages. Replace
the default HTML pages in <FIM_INSTALL_DIR>/pages with the sample template
pages in <FIM_INSTALL_DIR>/pages_template.

To configure the User Self Care federations, see IBM Tivoli Federated Identity
Manager Configuration Guide.

The salting and hashing of secret question answers are disabled by default. To
enable the salting and hashing, see “Enabling salting and hashing on secret
question values.”

Enabling salting and hashing on secret question values
To enhance the security of storing secret question values, you can enable salting
and hashing in User Self Care.

About this task

Salting is a method encrypting inputs such passwords by adding a random string
to them. This makes passwords more secure. Hashing is a method of using an
algorithm to convert data to a fixed-sized value. Enabling the salting and hashing
is optional. However, it is suggested that you enable this feature to enhance the
security of storing the secret question answers.

Procedure
1. Log in to the Integrated Solutions Console.
2. Navigate to Tivoli Federated Identity Manager > Domain Management >

Runtime Node Management > Runtime Custom Properties.
3. Change the USC.SecretQuestion.SaltAndHash.Enabled parameter to true.
4. Click OK.
5. Click Load configuration changes to the Tivoli Federated Identity Manager

runtime.

Modifying the number of secret questions used in User Self Care
User Self Care supports secret questions for user validation. You can configure
User Self Care to use more than one secret question to enhance the security of
validating users when they forget their passwords.

Before you begin

Use these instructions to change the secret questions presented to users during
enrollment and validation and if:
v You created new federations after you installed Tivoli Federated Identity

Manager version 6.2.2, fix pack 4

582 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v You have existing User Self Care federations and completed “Using more than
one secret question in User Self Care” on page 581

About this task

You can change the number of secret questions used to validate users. The changes
include modifications to the user interface, Security Token Service configurations,
and the User Self Care mapping rule.

Note: Some special characters cannot be used as LDAP attributes. Administrators
must keep enough validation in place to prevent users from entering these
characters as values for any fields in the User Self Care HTML forms.

To change the number of secret questions, you must modify the following files:

Table 146. HTML pages

HTML page Page description

enrollment.html Registration form.

secretquestion.html Page displayed to accept the answer to the
secret question and the new password in the
forgot password workflow.

profile.html Edit profile form.

Procedure
1. Understand the multiple secret question-related HTML pages.
2. Modify the multiple secret question-related HTML pages.
3. Understand the multiple secret question-related mapping rule.
4. Modify the mapping rule to implement the multiple secret question feature.
5. Apply the changes to the mapping rule for multiple secret questions.
6. Understand the multiple secret question-related STS modules.
7. Modify the multiple secret question related-STS modules.
8. “Reconfiguring the User Self Care federation” on page 593

Results
v The correct number of secret question inputs are displayed. The number of

inputs is the same as the new maximum secret question number.
v Users can register with the specified minimum and maximum number of secret

questions.
v Users can see all the questions they answered during enrollment when they do a

password recovery.
v Users can reset their passwords by answering the multiple secret questions

correctly to validate their identity.

About the User Self Care multiple secret question-related HTML pages:

You must edit HTML pages to configure the User Self Care multiple secret
question feature. It is important to understand how HTML pages work and how to
edit the pages to meet your requirements.

Chapter 42. Deploying User Self Care 583

Three sections are related to the secret question in the enrollment and secret
question HTML pages. The enrollment.html and secretquestion.html pages
contain all three sections. The profile.html page contains only the first two
sections.
v User interface input
v Validation of required fields
v Secret question option initialization

User interface input

The user interface input consists of the HTML elements select and input.
The select element provides the secret question selection capability. This
element is the only place where the secret question string is located. The
option list must be the same in both the enrollment and secret question
pages.

enrollment.html code:
<!-- Secret Question Example Field -->
<label for="usc.form.profile.secret.question0">

Please select a secret question and enter an answer. (required)
</label>

<select name="usc.form.profile.secret.question0"
id="secret_question0"
tabindex="8" >

<option value="0">Mother’s maiden name.</option>
<option value="1">Name of town where you were born.</option>
<option value="2">Name of first pet.</option>

</select>

<input style="background-color:#F8F8C8;"
type="text"
name="usc.form.profile.secret.question0.answer"
id="secret_question_answer0"
value=""
size="60"
maxlength="60"
tabindex="9" />

Example process:
1. The user submits the enrollment form.
2. The usc.form.profile.secret.question(index) and

usc.form.profile.secret.question(index) are passed as input
parameters to Tivoli Federated Identity Manager.

3. The usc.form.profile.secret.question(index).answer contains only
the index of the secret question, not the full sentence.

4. The question select and input elements are repeated with different
index according to the maximum secret question number that user can
enter.

secretquestion.html code:
<!-- Question 1 -->
<!-- Secret Question -->
<select name="usc.form.profile.secret.question0"

id="secret_question0"
disabled="disabled">

<option value="0">Mother’s maiden name.</option>
<option value="1">Name of town where you were born.</option>

584 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<option value="2">Name of first pet.</option>
</select>
<!-- Secret Question Answer Required Field -->
<input style="background-color:#F8F8C8;"

type="text"
name="usc.form.profile.secret.question0.answer"
id="secret_question_answer0"
value=""
size="60"
maxlength="60"
tabindex="1" />

<input type="hidden"
name="usc.form.profile.secret.question0.index"
id="secret_question_hidden0"
value="@USC_FORM_PROFILE_SECRET_QUESTION0@"
maxlength="2" />

<!-- End question 1 -->

The secretquestion.html file contains similar code sections to
enrollment.html but usc.form.profile.secret.question(index).index
provides additional hidden input. There are differences between these
HTML pages. The select element is disabled. The user cannot change the
value provided because usc.form.profile.secret.question(index) is
disabled. It is not passed as input parameter on the submit form. When the
user submits the enrollment form, the secret question parameters that are
passed as input parameters to Tivoli Federated Identity Manager are
usc.form.profile.secret.question(index).answer and
usc.form.profile.secret.question(index).index.

profile.html code:
<!-- Secret Question Example Field -->
<label for="usc.form.profile.secret.question0">

Secret question (Question and answer not displayed for your security.)
</label>

<select name="usc.form.profile.secret.question0"

disabled="true"
id="secret_question0">

<option value="0">Mother’s maiden name.</option>
<option value="1">Name of town where you were born.</option>
<option value="2">Name of first pet.</option>

</select>

<input style="background-color:#F8F8C8;"
type="text"
disabled="true"
name="usc.form.profile.secret.question0.answer"
id="secret_question_answer0"
value=""
size="60"
maxlength="60" />

...
Check to edit the secret question fields:
<input id="edit_secret_question"

type="checkbox"
name="control3"
onclick="enableEditing(this.checked,

document.forms[0].secret_question0,
document.forms[0].secret_question_answer0,
document.forms[0].secret_question1,
document.forms[0].secret_question_answer1,
document.forms[0].secret_question2,
document.forms[0].secret_question_answer2)" />

Chapter 42. Deploying User Self Care 585

The profile.html file contains similar code section to enrollment.html.
However, it contains a check box to enable and disable the secret
question-related inputs. The usc.form.profile.secret.question and
usc.form.profile.secret.question.answer elements are disabled initially.
If a user changes the secret question and answer, they must select the
check box to enable those inputs.

The onclick handler of the control3 check box calls enableEditing to
enable or disable the secret question inputs. The enableEditing function
takes as many parameters as needed. The first parameter is a boolean
value, and the rest of the parameters are the elements that can be enabled
or disabled. If the first parameter is true the rest of the parameters is
enabled, otherwise they are disabled.

Validation of required fields

Validation of required fields happens in the javascript doSubmit()
function. This function is called when the user triggers the submission
form. For example, when the user clicks Enroll in the enrollment.html. If
the doSubmit() function succeeds, the form is submitted to Tivoli Federated
Identity Manager. Otherwise, an error message is displayed to the user,
and the form submission is canceled. The relevant portions are the same
for both enrollment.html and secretquestions.html.
function doSubmit() {

...

var secretQuestionAnswerTF =
document.getElementById(’secret_question_answer’);

...

if (!testInput(true,"Secret Question Answer (1st entry)",
secretQuestionAnswerTF0.value.trim())){

return true;
}
if (!testInput(true,"Secret Question Answer (2nd entry)",

secretQuestionAnswerTF1.value.trim())){
return true;

}
if (!testInput(false,"Secret Question Answer (3rd entry)",

secretQuestionAnswerTF2.value.trim())){
return true;

}
...

}

The testInput function makes the secret question fields mandatory. In
enrollment.html and profile.html, the first few questions are made
mandatory and the rest are optional. The number of mandatory questions
must equal the minimum number of questions that a user must answer
during enrollment. For secretquestion.html, do not make any of the
questions mandatory so that users can choose which question they want to
answer.

For the profile.html page, the secret question inputs are validated and
submitted only when they are enabled.
function doSubmit() {

...

var secretQuestionAnswerTF0 =

586 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

document.getElementById(’secret_question_answer0’);
var secretQuestionAnswerTF1 =

document.getElementById(’secret_question_answer1’);
var secretQuestionAnswerTF2 =

document.getElementById(’secret_question_answer2’);

...

if (document.getElementById(’edit_secret_question’).checked
== true) {

if (!testInput(true,"Secret Question Answer (1st entry)",
secretQuestionAnswerTF0.value.trim())){

return true;
}
if (!testInput(true,"Secret Question Answer (2nd entry)",

secretQuestionAnswerTF1.value.trim())){
return true;

}
if (!testInput(false,"Secret Question Answer (3rd entry)",

secretQuestionAnswerTF2.value.trim())){
return true;

}
}

}

Secret question option initialization
When a submission fails because of an invalid input, the user is presented
with the previous form with pre-filled fields for them to correct. The
setSecretQuestionSelect sets the select element to the previous selected
value.

The relevant sections are the same for both enrollment.html and
secretquestions.html. Profile.html does not have this section for security
reasons.
function setSecretQuestionSelect() {

var secretQuestionValue = new Array();
secretQuestionValue[0] = "@USC_FORM_PROFILE_SECRET_QUESTION0@";
secretQuestionValue[1] = "@USC_FORM_PROFILE_SECRET_QUESTION1@";
secretQuestionValue[2] = "@USC_FORM_PROFILE_SECRET_QUESTION2@";

for (var j = 0; j < 3; j++) {
if (secretQuestionValue[j].length > 0) {

var secretQuestion =
document.getElementById(’secret_question’ + j);

for (i = 0; i < secretQuestion.options.length; i++) {
if (secretQuestion.options[i].value ==

secretQuestionValue[j]) {
secretQuestion.options[i].selected = true;
break;

}
}

}
}
return true;

}

Tivoli Federated Identity Manager replaces the
@USC_FORM_PROFILE_SECRET_QUESTION(index)@ value, which is a macro,
with the outgoing usc.form.profile.secret.question(index) parameter.
For example:
1. enrollment.html is requested for the first time.
2. The value of the outgoing parameter

usc.form.profile.secret.question(index) value is empty.

Chapter 42. Deploying User Self Care 587

3. @USC_FORM_PROFILE_SECRET_QUESTION(index) is replaced with an empty
string.

4. The user submits the enrollment form.
5. Tivoli Federated Identity Manager copies the content of the input

parameter usc.form.profile.secret.question(index). It contains the
secret question index for the outgoing
parameter usc.form.profile.secret.question(index).

6. If the enrollment fails because of wrong input, Tivoli Federated Identity
Manager displays the enrolment.html again. It adds error messages. It
also replaces @USC_FORM_PROFILE_SECRET_QUESTION(index)@ with the
value for the usc.form.profile.secret.question(index). output
parameter.

Modifying the User Self Care multiple secret question-related HTML pages:

When you change the maximum and minimum number of secret questions, update
the input sections for each of the three pages.

Before you begin

To understand the prerequisites and which HTML pages are related to multiple
secret questions see, “Modifying the number of secret questions used in User Self
Care” on page 582. Modify the multiple secret question-related HTML pages to
edit the number of secret questions presented to users during registration and
profile updates.

About this task

Edit specific sections in the HTML pages to modify the number of secret questions.

Procedure

1. Open the related HTML pages with a text editor.
2. Edit the relevant sections of the HTML pages. Repeat the number of input

sections the same number of times as the maximum number of secret questions.
3. Update the index by starting with 0.
4. Make the first few questions for enrollment.html and profile.html required

values. The number of required questions must be the same as the minimum
number of secret questions required.

5. Update the call to: enableEditing to reflect the new number of secret questions.

Example
<input id=”secret_enabled”

type="checkbox"
name="control3"
onclick="enableEditing(this.checked,

document.forms[0].secret_question0,
document.forms[0].secret_question_answer0,
document.forms[0].secret_question1,
document.forms[0].secret_question_answer1,
document.forms[0].secret_question2,
document.forms[0].secret_question_answer2);" />

What to do next

Publish pages to the Tivoli Federated Identity runtime environment

588 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/admin/task/config/fsso/publishingpages.html

The mapping rule for multiple secret questions:

The mapping rule is implemented in the User Self Care multiple secret question
feature to transform user inputs from one form to another.

Mapping rules are the rules that are applied by the Security Token Service (STS)
module Default Map Module. An example of this rule is transforming user input
to another form. In the User Self Care secret question, the mapping rule can be
used to concatenate the secret question index and answer to a single string.

The STS module Default Map Module is used in both the Default Chain
uscCreateAccount and Default Chain uscForgetPassword STS chains to parse
secret question input and output.

The default mapping rule is in <FIM_INSTALL_DIR>\examples\js_mappings\usc.js.
The mapping rules define how secret questions are stored internally. By default,
the secret question is stored in the businessCategory LDAP attribute. It is stored in
the following format:
’<secretQuestionIndex>::{SSHA2}<salt><hashedSecretQuestionAnswer>’.

In the default mapping rule file, two sections relate to secret question:

Incoming request mapping section
This section handles the incoming input parameter from the user. It
retrieves the secret question index and secret question answer from the
form input and maps it into the STS internal attribute for further
processing.

The LDAP attribute stores the secret question and answer uses the
helper.setSTSInternalSecretQuestionAttr function.
helper.setSTSInternalSecretQuestionAttr("businessCategory");

// Set maximum secret question allowed
var MAX_SECRET_QUESTIONS = 3;
var secretQuestions = java.lang.reflect.Array.newInstance(

java.lang.String, MAX_SECRET_QUESTIONS);
var secretQuestionsAnswer = java.lang.reflect.Array.newInstance(

java.lang.String, MAX_SECRET_QUESTIONS);
for (var i = 0; i < MAX_SECRET_QUESTIONS; i++) {

var secretQuestionInput = helper.getUserInputAttributeValues(
"usc.form.profile.secret.question" + i);

if (!supplied(secretQuestionInput)) {
secretQuestionInput = helper.getUserInputAttributeValues(

"usc.form.profile.secret.question" + i + ".index");
}
var secretQuestionAnswerInput = helper.getUserInputAttributeValues(

"usc.form.profile.secret.question" + i +".answer);
if (supplied(secretQuestionInput)

&& supplied(secretQuestionAnswerInput)) {
secretQuestions[i] = secretQuestionInput[0];
secretQuestionsAnswer[i] = secretQuestionAnswerInput[0];

}
}
// Set to STS internal attribute
helper.setSTSInternalAttribute(

USCCAConstants.USC_STS_INTERNAL_SECRET_QUESTIONS,
secretQuestions);

helper.setSTSInternalAttribute(
USCCAConstants.USC_STS_INTERNAL_SECRET_QUESTIONS_ANSWER,
secretQuestionsAnswer);

// Set input to normalize and sanitize STS
var normalizeSanitizeInput =

Chapter 42. Deploying User Self Care 589

java.lang.reflect.Array.newInstance(java.lang.String, 2);
normalizeSanitizeInput[0] =

USCCAConstants.USC_STS_INTERNAL_SECRET_QUESTIONS;
normalizeSanitizeInput[1] =

USCCAConstants.USC_STS_INTERNAL_SECRET_QUESTIONS_ANSWER;
helper.setSTSInternalAttribute(

USCCAConstants.USC_STS_INTERNAL_NORMALIZE_AND_SANITIZE_INPUT,
normalizeSanitizeInput);

// Set input to salt and hash STS
helper.setSTSInternalAttribute(

USCCAConstants.USC_STS_INTERNAL_SALT_AND_HASH_INPUT,
USCCAConstants.USC_STS_INTERNAL_SECRET_QUESTIONS_ANSWER);

Outgoing request mapping section
This section handles the outgoing parameter that replaces the macros in
the HTML pages before it sends the pages to the user. It retrieves the
stored secret question from the STS output USC_FORM_SECRET_QUESTION
attribute. It then sets the STS output USC_FORM_SECRET_QUESTION(Index)
attribute.
//
Get the secret question from the registry

var secretQuestionRA = helper.getSTSOutputAttributeValues(
USCCAConstants.USC_FORM_SECRET_QUESTION);

if (secretQuestionRA != null) {
for (var i = 0; i < secretQuestionRA.length; i++) {

if (secretQuestionRA[i] != null) {
helper.setSTSOutputAttribute(

"usc.form.profile.secret.question" + i,
secretQuestionRA[i]);

}
}

}

Modifying the mapping rule for User Self Care multiple secret questions:

You must modify the mapping rules if you change the maximum secret question
number.

Before you begin

To understand how the mapping rule is implemented in the User Self Care
multiple secret question feature, see “The mapping rule for multiple secret
questions” on page 589.

Procedure

1. Back up the mapping rule file.
2. Open the file.
3. Change the maximum secret question number. For example:

var MAX_SECRET_QUESTIONS = 3;

4. Save the modified file.

What to do next

Apply the changes to the mapping rule.

Applying changes to the mapping rule for multiple secret questions:

Apply the modified mapping rule to the Default map module of three STS chains
to use the multiple secret question feature.

590 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

Use the mapping rule you modified in “Modifying the mapping rule for User Self
Care multiple secret questions” on page 590.

About this task

For the mapping rule to implement the changes, it must be applied to these chains:
v Default Chain uscCreateAccount

v Default Chain uscForgottenPassword (both instances of this chain)
v Default Chain uscProfileManagement (both instances of this chain)

Procedure

1. Log in to the Integrated Solutions Console.
2. Navigate to Tivoli Federated Identity Manager > Runtime Node Management.
3. Click Runtime Custom Properties.
4. Set property STS.showUSCChains to true.
5. Click OK.
6. Logout from the Integrated Solutions Console.
7. Login to the Integrated Solutions Console.
8. Navigate to Tivoli Federated Identity Manager > Configure Trust Service >

Trust Service Chains.
9. For each of the chains do the following steps:

a. Select the check box for the corresponding chain.
b. Click Properties.
c. Click Modify Rule.
d. Click Browse to select the modified mapping rule.
e. Click Import File

f. Click OK.
g. Repeat the steps for the second Default Map Module in the chain.
h. Click Load configuration changes to the Tivoli Federated Identity

Manager runtime.

User Self Care multiple secret questions response file parameters:

Use the multiple secret questions response file parameters to configure the
response file.

There are three configurable parameters in the response file related to multiple
secret questions. They are the following:

SecretQuestionRequiredForValidationNumber
Specifies the number of secret questions a user must answer correctly to
validate their identity. During password recovery, users must provide
correct answers to the secret questions. The number of questions that they
must answer correctly is dependent on this parameter.

Note: You can also find this parameter in the response file, with a default
value of 1.

SecretQuestionMaximumNumber
Specifies the maximum number of secret questions to which a user can

Chapter 42. Deploying User Self Care 591

provide answers during enrollment. It dictates the number of secret
questions that users can provide answers to when they forget their
password or during profile update.

Note: You can also find this parameter in the response file, with a default
value of 3.

SecretQuestionMinimumNumber
Specifies the minimum number of required secret questions to which a
user must provide answers during enrollment. It dictates the number of
secret questions that users must answer when they forget their password
or during profile update.

Note: You can also find this parameter in the response file, with a default
value of 2.

Modifying the STS module configurations for multiple secret questions:

You must modify specific STS modules to utilize the multiple secret question
feature of User Self Care.

About this task

The Default USC Secret Question Store STS Module is in uscAccountCreate and
uscProfileManagement chain.

The Default USC Secret Question STS Module is in uscForgottenPassword chain.

Modify the Default USC Secret Question STS Module and Default USC Secret
Question Store STS Module in the following STS chains:
v Default Chain uscCreateAccount

v Default Chain uscForgottenPassword (both instances of this chain)
v Default Chain uscProfileManagement (both instances of this chain)

Procedure

1. Log in to the Integrated Solutions Console.
2. Navigate to Tivoli Federated Identity Manager > Runtime Node Management.
3. Click Runtime Custom Properties.
4. Set the property STS.showUSCChains to true.
5. Click OK.
6. Log out from the Integrated Solutions Console.
7. Log in to the Integrated Solutions Console.
8. Navigate to Tivoli Federated Identity Manager > Configure Trust Service >

Trust Service Chains.
9. For each of the chains do the following steps:

a. Select the check box for the corresponding chain.
v Default Chain uscCreateAccount

v Default Chain uscForgottenPassword (both instances of this chain)
v Default Chain uscProfileManagement (both instances of this chain)

b. Click Properties.

592 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

c. Under Trust Service Chain Modules, select the corresponding module and
mode. You need to modify the Default USC Secret Question STS Module
and Default USC Secret Question Store STS Module.
v The Default Chain uscCreateAccount contains the Default USC Secret

Question Store STS Module.
v The Default Chain uscForgottenPassword (both instances of this chain)

contains the Default USC Secret Question STS Module.
v The Default Chain uscProfileManagement (both instances of this chain)

contains the Default USC Secret Question Store STS Module.
d. Click Properties.
e. Modify the corresponding parameter values.

Default USC Secret Question STS Module
SecretQuestionRequiredForValidationNumber - modify the
parameter value to specify the number of secret questions a user
must answer correctly to validate their identity.

Default USC Secret Question Store STS Module

v SecretQuestionMaximumNumber - modify the parameter value
to specify the maximum number of secret questions to which a
user can provide answers to during enrollment.

v SecretQuestionMinimumNumber - modify the parameter value
to specify the minimum number of required secret questions to
which a user must provide answers during enrollment.

f. Click OK.
g. Click Load configuration changes to Tivoli Federated Identity Manager

runtime.

Reconfiguring the User Self Care federation:

Reconfigure the User Self Care federation to use a modified response file.

Procedure

1. Export the current User Self Care federation configuration to a response file by
using the following command in wsadmin:

Note: Enter the following syntax on one line.
$AdminTask manageItfimUserSelfCare {-operation createResponseFile
-fileId <filepath> -fimDomainName <domainName> -federationName <federationName>}

2. Modify the following parameters:
v SecretQuestionMinimumNumber

v SecretQuestionMaximumNumber

v SecretQuestionRequiredForValidationNumber

See “User Self Care multiple secret questions response file parameters” on page
591 for more details.

3. Modify the parameter AttributeMappingFilename to point to the modified
mapping rule you edited in “Modifying the mapping rule for User Self Care
multiple secret questions” on page 590.

4. Save the file.
5. Unconfigure the User Self Care federation. See Unconfiguring User Self Care.
6. Configure the User Self Care federation with the modified response file. See

Using a response file to configure User Self Care.

Chapter 42. Deploying User Self Care 593

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/config/task/USCUnconfiguring.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.2%2Fconfig%2Ftask%2FUSCCfgFromResponseFile.html

Custom attribute definition
Define your own custom attribute in User Self Care so that these attributes are
collected by User Self Care during enrollment.

User information that is collected during enrollment is stored in the supported
enterprise directories. It is then mapped to LDAP attributes on the user entry in a
configured enterprise directory.

The default user enrollment provides a limited number of information fields that
are mapped to LDAP attributes. You must add fields that are not included. You
can use the user profile management to add fields that can be mapped to an
existing LDAP attribute in an enterprise directory.

By default, the following fields are provided:
v User ID
v Email Address Password
v Mobile Phone Number
v Secret Question

You must do a few steps if you want to add a field like Company. The value of
the new field is saved into the mapped LDAP attribute in the configured enterprise
directory.

For more information about how you can use a non-default LDAP attribute, see
“Creating an attribute for a new custom field in User Self Care” on page 597.

Complete the following tasks to define custom attributes in User Self Care:
1. Modify the HTML file so that the new field displays in the user information

form.
2. Modify the Java script so that the new field is mapped to LDAP attribute.
3. Run the wsadmin commands so that your changes are reflected in IBM Tivoli

Federated Identity Manager.

After you complete the steps, a user can enroll.

Modifying the HTML file to define a custom attribute
Modify the enrollment.html and profile.html to define a custom attribute in User
Self Care.

About this task

You can modify the following HTML files:

Table 147. HTML files

HTML page Page description

enrollment.html Registration form.

profile.html Form that updates the profile information of
the user.

Procedure
1. Open each of the HTML files with a text editor.

594 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: If the HTML file is not in English, use a text editor that supports UTF-8
encoding. Otherwise, some letters might look wrong and saving the file might
cause unreadable content.

2. Add the following the lines between the <form...> ... </form> tags.
<label for="usc.form.profile.company"> Company </label>
<input id="company" type="text" tabindex="8" maxlength="60" size="60"
value="" name="usc.form.profile.company" style="
background-color: rgb(255, 255, 255);" />

3. Change the Company text to a custom field name. You can customize any
attribute, but you must ensure that you use the same identification values.

4. Save the modified files in the same directory as the original files.
5. Log on to the Integrated Solutions Console.
6. Select Tivoli Federated Identity Manager > Domain Management > Runtime

Node Management.
7. Click Publish.
8. Click Load configuration changes to the Tivoli Federated Identity Manager

runtime.

Results

The new field displays in the account enrollment page.

What to do next

Modify the JavaScript mapping file.

Modifying the JavaScript mapping file
Modify the JavaScript mapping file so that the new field is mapped to LDAP
attribute.

About this task

The default JavaScript mapping file is in <FIMInstallationPath>/examples/
js_mappings/usc.js. This file defines the mapping behavior. Add the new
mapping rules for the new custom field in the JavaScript file. If you use another
JavaScript file for the mapping rules, ensure that you are accessing the correct file.

Procedure
1. Back up the JavaScript mapping rule file.
2. Open the JavaScript mapping rule file with a text editor.
3. Add the following lines and change the value of Company to the field name that

you want to add.
////////////////////////////////
// INCOMING REQUEST MAPPING
////////////////////////////////
var company = helper.getUserInputAttributeValues("usc.form.profile.company");
if (supplied(company)) {

// map ’company’ to ’company’ LDAP attribute
// change "company" to "organizationName" when using Tivoli Directory Server
// or as mentioned you can use some other LDAP attribute
helper.setSTSInternalRegistryInputAttribute("company", company);

}

////////////////////////////////
// OUTGOING RESPONSE MAPPING
////////////////////////////////

Chapter 42. Deploying User Self Care 595

// Get the ’company’ from the registry.
// change "company" to "organizationName" when TDS

// or as mentioned you can use some other LDAP attribute
var companyRA = helper.getSTSInternalRegistryOutputAttributeValues("company");
if (supplied(companyRA)) {

// Stick it in the output attribute
helper.setSTSOutputAttribute("usc.form.profile.company", companyRA);

}

4. Save the changes.
5. Log on to the Integrated Solutions Console.
6. Select Tivoli Federated Idenity Manager > Configure Trust Service > Trust

Service Chains.
7. Open the Properties pages for the following files:

v USC Chain for uscCreateAccount

v USC Chain for uscProfileManagement (two instances)

Note: Depending on the chain that you are modifying, you must modify
multiple chains for the mapping rule to be implemented.

8. Select the USC Chain for uscCreateAccount and USC Chain for
uscProfileManagement check boxes.

9. Complete the following steps for all three items.
v USC Chain for uscCreateAccount

v USC Chain for uscProfileManagement (two instances)
a. Click Properties.
b. Under Trust Service Chain Modules, select Default map module.
c. Click Properties.
d. Click Modify Rule.
e. Click Browse to select the modified mapping rule.
f. Click Import File.
g. Click OK.
h. Click Load configuration changes to the Tivoli Federated Identity

Manager runtime.
i. Repeat the steps for the following items:

v The chain mappings with which the policy is associated. Some policies
might affect multiple chain mappings.

v The chains with the same name.
v The default map modules in a chain.

What to do next

Run the wsadmin commands.

Running wsadmin commands to implement the custom attribute
Run the wsadmin commands so that the custom attribute is reflected in Tivoli
Federated Identity Manager User Self Care.

Procedure
1. Log in to the wsadmin console with the following commands:

Windows: <WASInstallationPath>\WebSphere\AppServer\profiles\
<profileName> \bin\wsadmin.bat\-username username \-password password

596 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Linux:/<WASInstallationPath>/WebSphere/AppServer/profiles/<profileName>
/bin/wsadmin.sh\-username username \-password password

2. In the wsadmin console, run the following $AdminTask commands.
a. $AdminTask addIdMgrPropertyToEntityTypes {-name company -dataType

string -entityTypeNames PersonAccount}

This command supports the new custom attribute for Federated
Repositories Component or Virtual Member Manager of the WebSphere
Application Server. By default, the Virtual Member Manager supports only
a few basic attributes. To use a new attribute, you must extend the internal
entity schema in the Virtual Member Manager. This command adds support
for the company LDAP attribute in Virtual Member Manager. You can
change company to any LDAP attribute.

b. $AdminTask addIdMgrPropertyToEntityTypes {-name company -dataType
string -entityTypeNames PersonAccount -isMultiValued true}

Some attributes can have multiple values. You must use attributes that have
multiple values. If the attribute must have multiple values, then supply the
isMultiValued parameter with the value true.

3. Stop the WebSphere Application Server.
4. Restart the WebSphere Application Server. Restarting the server ensures that

Virtual Member Manager settings are applied.

Results

When you click the link in the email, the user attribute is created in the configured
enterprise directory with the new attribute.

What to do next

After you restart the WebSphere Application Server, go to the enrollment page and
verify that the new field is added. After you click enroll, an email is sent to the
email address that you provided.

Creating an attribute for a new custom field in User Self Care
Create an attribute for a custom field in User Self Care that maps to an LDAP
attribute that you want to use.

Before you begin

Ensure that Tivoli Federated Identity Manager and WebSphere Application Server
are configured for the Virtual Member Manager. See the Tivoli Federated Identity
Manager Configuration Guide for more details.

About this task

Example 1
Create an attribute for a custom field such as such as badge number that
maps to an attribute such as badgeNo in LDAP.

Example 2
You want to add the IBM Tivoli Directory Server attribute ibm-ismanager.
It cannot be added to an LDAP entity by default. You must first add the
ibm-itdPerson attribute as one of the objectClasses of the LDAP entity.
Then, you can add the ibm-ismanager to an LDAP entity with a true or
false value.

Chapter 42. Deploying User Self Care 597

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.2%2Fconfig%2Fconfig.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.2%2Fconfig%2Fconfig.html

No changes are required for scenarios where you want to add a custom field that
already has an available LDAP attribute. For example, you can add the custom
field Given Name and map it to the givenName LDAP attribute in the IBM Tivoli
Directory Server.

Procedure
1. Log on to the Integrated Solutions Console.
2. Select Security > Global Security.
3. Under User account repository, click Configure.
4. Select Federated repositories.
5. Click Manage Repositories. A list of repositories is displayed. Complete the

following steps for each repository:
a. Click the name of the repository. Details of the repository are displayed.
b. Under Additional Properties, click LDAP entity types.
c. Click PersonAccount.
d. In the PersonAccount page, there is an Object classes field. An existing

value such as user exists if the repository type is Active Directory or IBM
Tivoli Directory Server.

e. In the Object classes field, append the new objectClass that defines the
attribute you want to use. For example, if you want to use the
ibm-ismanager attribute, the object class that defines it is ibm-itdPerson.
Append the ibm-ismanager attribute into the field with a semicolon. For
example, netOrgPerson;ibm-itdPerson.

f. Click OK.
g. Click Save changes to the master configuration.

6. Optional: If you configured and are using a Tivoli Access Manager adapter, do
the following steps:
a. Open the file tamVMMAdapter.properties.

<WASInstallation>\profiles\<tfimprofile>\config\itfim\
tamVMMAdapter.properties

Note: The file name might be different. The name that is shown in this
example is the name that is set during the Tivoli Access Manager adapter
configuration.

b. Add the following lines.
ldap.user-objectclass=Person;ePerson;inetOrgPerson,organizationalPerson;
customObjectClass ldap.user-self-care-objectclass=customObjectClass

7. Stop WebSphere Application Server.
8. Start WebSphere Application Server.

Results

The Virtual Member Manager creates the attribute.

User Self Care session information storage
User Self Care flows store user attributes into the session of a user. Those attributes
can then be retrieved by other modules.

An option in the User Self Care response file indicates which flows can store
information. You can configure the flows that normally send an email to store
information in the user session.

598 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

You can configure the following flows to store User Self Care information in the
user session:
v User enrollment
v Forgotten password
v Forgotten user ID

To store information in a session, configure the
FlowsWithSessionStorageAndNoEmailDelivery parameter in the response file.

This parameter is a multi-valued, string parameter and defaults to no flows. It
looks for the following values in the response file:
<void method="put">

<string>FlowsWithSessionStorageAndNoEmailDelivery</string>
<object class="java.util.ArrayList">

<void method="add">
<string>USC_ENROLLMENT</string>

</void>
<void method="add">

<string>USC_FORGOT_PASSWORD</string>
</void>
<void method="add">

<string>USC_FORGOT_ID</string>
</void>

</object>
</void>

Where:
v User enrollment is USC_ENROLLMENT

v Forgotten password is USC_FORGOT_PASSWORD

v Forgotten user ID is USC_FORGOT_ID

The information that is stored in the session is fetched from the incoming User Self
Care Security Token Service (STS) chain and placed into a map. The map
v Consists of String keys and String[] values
v Is serialized, converted to a byte[], and Base64 encoded
v Is then stored in the session of the user
v Can be retrieved in a mapping rule by using

IDMappingExtUtils.getSPSSessionData() function by using the key
usc_attributes_session_key

The map contains various attributes that are related to the user and the flow. Since
attributes are multi-valued, they are stored as an array of String objects in the map.
Each flow persists a different set of attributes.
v The user enrollment flow

Table 148. List of attributes that are stored during a user enrollment flow
Key Description

usc.flow.id The flow that is being run.

usc.form.userid The user who performs the enrollment.

usc.confirmation.code The confirmation code of the enrollment flow.

usc.validation.url The validation URL of the enrollment flow.

Note: The STSUU attributes from usc.user.input.type is also contained in the
map by using their STSUU attribute name as the key.
v The forgotten password flow

Chapter 42. Deploying User Self Care 599

Table 149. List of attributes that are stored during a forgotten password flow
Key Description

usc.flow.id The flow that is being run.

usc.user.id The user who performs the enrollment.

usc.confirmation.code The confirmation code of the enrollment flow.

usc.validation.url The validation URL of the enrollment flow.

Note: The STSUU attributes from usc.sts.internal.registry.output.type is also
contained in the map by using their STSUU attribute name as the key.
v The forgotten user ID flow

Table 150. List of attributes that are stored during a forgotten user ID flow
Key Description

usc.user.id The list of user ID associated with the forgotten account.

usc.flow.id The flow that is being run.

Note: The STSUU attributes from usc.sts.output.type is also contained in the
map by using their STSUU attribute name as the key.

The following JavaScript example shows how a mapping rule can retrieve the
stored User Self Care data from the session of the user. The attributes are accessed
by retrieving the serialized map from the session with the
getSPSSessionData(’usc_attribute_session_key’) method. This object is
deserialized into a map, and individual attributes can be accessed from the map by
using the appropriate key.

To access the SPSSessionData, you must import the
com.tivoli.am.fim.trustserver.sts.utilities package. To deserialize, you can
import the com.ibm.ws.util package. The following mapping rule is an example.
//required import statements
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.utilities);
importPackage(Packages.com.ibm.ws.util);

//
// Returns a String->String[] attribute map that was set by USC using the
// FlowsWithSessionStorageAndNoEmailDelivery parameter.
//
function getUSCAttributeMap() {

var dmapKey0 = "usc_attributes_session_key";
var attrMap = null;
var serializedAttributes = IDMappingExtUtils.getSPSSessionData(dmapKey0);
if (serializedAttributes != null) {

IDMappingExtUtils.traceString("Serialized attributes: " + serializedAttributes);
// deserialize then add to AttributeList with canned "type"
var bais = new java.io.ByteArrayInputStream((Base64.decode(serializedAttributes)));
var ois = new java.io.ObjectInputStream(bais);
attrMap = ois.readObject();

} else {
IDMappingExtUtils.traceString("No session attributes are persisted.");

}
return attrMap;

}

//
// Pull the attributes from the session stored by USC
//
var flowId = null;
var userId = null;
var confirmationCode = null;
var validationUrl = null;

// get the attribute map
var uscAttributeMap = getUSCAttributeMap();
if (uscAttributeMap != null) {

// All values are String[] and you must use index operator.
flowId = uscAttributeMap.get("usc.flow.id")[0];
userId = uscAttributeMap.get("usc.user.id")[0];
confirmationCode = uscAttributeMap.get("usc.confirmation.code")[0];

600 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

validationUrl = uscAttributeMap.get("usc.validation.url")[0];
IDMappingExtUtils.traceString("Attributes retrieved-> flowId: " + flowId + " userId: " + userId +

" confirmation code: " + confirmationCode + " validationUrl: " + validationUrl);
}

Customizing the User Self Care HTML pages
Customize the User Self Care interface by adding CSS files, background images
and by using User Self Care provided macros.

Before you begin

Administrators who configure User Self Care must have knowledge about the
following products and concepts:
v WebSphere® Application Server, including the wsadmin administration interface
v Tivoli Federated Identity Manager Secure Token Service modules and trust

chains
v Tivoli Directory Server LDAP or other supported LDAP
v Knowledge of CSS and HTML

About this task

You need a web server for example, IBM HTTP Server, to host the external files
like CSS files and image files.

You can customize the HTML pages with User Self Care macros and Cascading
Style Sheets (CSS). For more details, see:
v “User Self Care macros”
v “About User Self Care CSS” on page 606

Procedure
1. Log on to Integrated Solution Console.
2. Take one of the following actions:

v Use macros to format User Self Care. See “Formatting User Self Care HTMLs
by using macros” on page 607 for more details.

v Use CSS to format User Self Care. See “Formatting User Self Care HTMLs by
using Cascading Style Sheets” on page 609 for more details.

3. Test the changes in the HTML files.

User Self Care macros
Use the User Self Care macros to add code or values to the User Self Care HTML
pages at run time.

The macros are replaced with their values at run time when the user accesses User
Self Care. Not all macros are populated at the same time. The value of the macros
depends on the user operation and the current state of the operation.

The following information is provided:
v Which macros are available in the default setup of User Self Care.
v The operation and the state of the operation of those macros.
v The description of the macro with sample values for User Self Care. WebSphere

is the Point Of Contact server.

The template has the following replacement macros:

Chapter 42. Deploying User Self Care 601

@ACTION@
This macro is replaced with the URL to which the form data is sent on
submission. It is also the URL that is initially requested. For example, in
the enrollment form, the form action looks like:
<form action=" (ACTION)">

In page load, this action is replaced with
<form action="https://company.com:9443/sps/USCFederation/
usc/self/account/create">

This macro is applicable to all workflows.

@VALIDATION_URL@
This macro is replaced with the validation URL. Whenever the system
requires the user to send an email verification, VALIDATION_URL is
replaced with the URL to be sent in the email. At run time, the system
sends an email that contains the URL appended with a unique
confirmation code parameter.

Enroll User, Value:

Note: Enter the following syntax on one line.
https://<Host_Name>:<Port>/sps/<USC_Federation>/usc/self/
account/create/validate

Forgot user ID, Value:

Note: Enter the following syntax on one line.
https://<Host_NameName>:<Port>/sps/<USC_Federation>/usc/self/account/recover
/password/validate

@USC_SEARCH_USERID_URI@
In the Enrollment page, this macro is the URL to which the request is sent
when the user clicks user ID Available?

Enroll User, Value:
https://<Server_Name>:<Port>/sps/Federation>/usc/global/userid/search

@DETAIL@
This macro contains the message, if any, in the response.

Example

If the user tries to access the Validation URL without any validation data
in the URL, the value for DETAIL looks like:
FBTUSC0>>E

The enrollment validation data must be supplied.This macro is applicable
to all workflows.

@EXCEPTION_STACK@
This macro is replaced with the required HTML source that supports the
Captcha demonstration if it is configured.

Example

This macro is replaced with:
<label for="demo_captcha">

Please enter the verification word(s) shown below (required)
</label>

602 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<input type="hidden"
name="usc.demo.captcha.challenge.field"
id="usc.demo.captcha.challenge.field"
value="http://myserver/public/captcha_test/hello.jpg" />
<input style="background-color:#F8F8C8;"
type="text"
name="usc.demo.captcha.response.field"
id="usc.demo.captcha.response.field" />

This macro is applicable to all workflows.

@USC_STS_CAPTCHA_HTML_STRING@
This macro is replaced with the required HTML source that supports the
Captcha demonstration if it is configured.

Example

This macro is replaced with:
<label for="demo_captcha">

Please enter the verification word(s) shown below (required)
</label>

<input type="hidden"
name="usc.demo.captcha.challenge.field"
id="usc.demo.captcha.challenge.field"
value="http://myserver/public/captcha_test/hello.jpg" />
<input style="background-color:#F8F8C8;"
type="text"
name="usc.demo.captcha.response.field"
id="usc.demo.captcha.response.field" />

This macro is applicable in the enroll user workflow.

@USC_FORM_USERID@
This macro is replaced with either the user ID of the user with a valid
session or the user ID provided in the previous request.

Example

In the change password workflow, USC_FORM_USERID is replaced with the
authenticated user ID after the user authenticates.This macro is applicable
to all workflows.

@USC_USERAGENT_IPADDR@
This macro contains the IP address from where the previous request is
received.

This macro is applicable to all workflows.

@USC_USERAGENT_HOSTNAME@
This macro contains the host name from where the previous request is
received.

This macro is applicable to all workflows.

@USC_USERAGENT_TRANSPORT@
This macro contains the HTTP transport protocol that is used for the
previous request.

This macro is applicable to all workflows.

Chapter 42. Deploying User Self Care 603

@USC_USERAGENT_METHOD@
This macro is replaced with the HTML submission method that fetches this
form. The value for this macro can be GET or POST.

This macro is applicable to all workflows.

@USC_USERAGENT_URI@
This macro is replaced with the HTML submission method that fetches this
form. The value for this macro can be GET or POST.

This macro is applicable to all workflows.

@USC_USERAGENT_QUERY@
This macro is replaced with the query string in the previous request.

The following example shows the structure when the user accesses the
URL in the email for reset password:

Note: Enter the following syntax on one line.
https://<server>:<port>/sps/<USC federation>/usc/self/account/recover/
password/validate?usc.confirmation.code=<Random characters>

After you successfully reset the password, USC_USERAGENT_QUERY has the
following value:
usc.confirmation.code=<Random characters>

This macro is available during:
v User enrollment.
v User password reset.

@USC_USERAGENT_LOCALES@
This macro contains the locale of the browser from where the previous
request is received.

Example

When the request is sent from an English locale, the value for this macro
is: en_US.This macro is applicable to all workflows.

@USC_FORM_PASSWORD@
When the user changes a password, this macro is replaced with the value
provided in the previous request for the Old password field.

This macro is applicable in the change password workflow.

@USC_FORM_PASSWORD_NEW@
This macro is replaced with the value of the Password field that is
provided in the previous request.

Example

When the user fills out the password value of in the Enroll User form and
clicks Enroll, the validation page displays USC_FORM_PASSWORD_NEW_CONFIRM
with the value of the password field that is provided by the user.

This macro is available in the following workflows:
v Enroll user workflow.
v Change password workflow.
v Forgot password workflow.

604 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

@USC_FORM_PASSWORD_NEW_CONFIRM@
This macro is replaced with the value of the Confirm password field that
is provided in the previous request.

Example

When the user fills out the Confirm password value in the Enroll user
form and clicks Enroll, the validation page displays
USC_FORM_PASSWORD_NEW_CONFIRM with the value of the confirm password
field.This macro is available in the following workflows:
v Enroll user workflow.
v Change password workflow.
v Forgot password workflow.

@USC_FORM_EMAIL_ADDRESS@
This macro is replaced with the email address value provided by the user
in the previous form.

Example

When the user fills out the email address value in the Enroll User form
and clicks Enroll, the validation page displays USC_FORM_EMAIL_ADDRESS
with value of the Email address field that is provided in the previous
form.This macro is available in the following workflows:
v Enroll user workflow.
v Forgot password workflow.

This macro is available after a user answers the secret question correctly.

@USC_FORM_EMAIL_ADDRESS_CONFIRM@
This macro is replaced with the Confirm email address value that is
provided by the user in the previous form.

Example

When the user fills out the Confirm email address value in the Enroll User
form and clicks Enroll, the validation page displays
USC_FORM_EMAIL_ADDRESS_CONFIRM with the value of the Confirm email
address field that is provided in the previous form.

This macro is available in the following workflows:
v Enroll user workflow.
v Forgot password workflow.

This macro is available after a user answers the secret question correctly.

@USC_FORM_USERID_AVAILABLE@
When the user clicks Is userID Available? from the Enroll page, the
response contains USC_FORM_USERID_AVAILABLE set to true or false,
depending on whether the user ID is available.

@USC_FORM_SECRET_QUESTION@
This macro is replaced with the secret question selected by the user in the
previous request.

Example

When the user selects a secret question in the Enroll User form and clicks
Enroll, the USC_FORM_SECRET_QUESTION contains the value of the secret
question that is selected in the previous request if the form is returned
because of some error.

Chapter 42. Deploying User Self Care 605

This macro is available in the enroll user workflow.

@USC_FORM_SECRET_QUESTION_ANSWER@
This macro is replaced with the secret question answer selected by the user
in the previous request.

Example

When the user provides a secret question answer in the Enroll User form
and clicks Enroll, the USC_FORM_SECRET_QUESTION_ANSWER contains the value
of secret question answer that is provided in the previous request if the
form is returned because of some error.

This macro is available in the enroll user workflow.

About User Self Care CSS
The Cascading Style Sheet (CSS) is a style sheet language that describes the look
and format of an HTML document.

You can format the User Self Care HTML pages with a Cascading Style Sheet.
Cascading Style Sheets can:
v Improve content accessibility.
v Provide flexibility and control in the specification of presentation characteristics.
v Enable multiple pages to share formatting.
v Reduce complexity and repetition in the structural content.

You need a web server (HTTP Server) to host the CSS pages. This document
provides a sample CSS file, image file, and User Self Care HTML pages for English
only. The HTMLs are modified to use the CSS and the image files. Deploying the
HTML files modifies the behavior of English and does not affect User Self Care
pages in other languages.

606 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Examples

File Description

enrollment.html In this file, the CSS file is linked at the
beginning of the document.

<link href="../../css/usc.css"
rel="stylesheet">

In your deployment, replace
../../css/usc.css with the location of the
CSS file on the web server.

<link href="" https://company.com/
css/usc.css""
rel="stylesheet">

This entry displays the image at the top of
the HTML pages:

<div class="header">
<a href="http:

//ibm.com"
title="Powered by IBM"><img
src="@USC_HTTP_SERVER_URL@/images/
IBMlogo.png" alt="IBM"/>

</div>

At run time, you can replace this entry with:

<div class="header">
<a href="http:

//ibm.com"
title="Powered by IBM"><img
src="https://company.com/images/
IBMlogo.png" alt="IBM"/>

</div>

usc.css cssname is an HTML element name to which
the attributes are defined under {...}.

Every attribute is a key value pair. In this
definition, the HTML background color is
color code 336699. This style is applied to all
the HTMLs that reference the CSS file.

html {
; background-color:#336699;

}

cssname {
key:val;
}

The following code defines the styling for all
elements with class="container".

container{
background:#fff;
margin:0 auto <0px auto;
width:640px

}

Formatting User Self Care HTMLs by using macros
Use macros to format the User Self Care HTML pages. You can define your own
macro from the mapping rule.

Chapter 42. Deploying User Self Care 607

Procedure
1. Place the macro in the HTML. For example, place the macro in

enrollment_validation.html as a comment.
<!-- Observe the macro being replaced
@USC_FORM_PROFILE_TEST_MACRO@
-->

2. Publish the pages to theTivoli Federated Identity Manager run time
environment.

3. Define the macro in the mapping rule. The default mapping rule is at
<FIM_INSTALL>\examples\js_mappings\usc.js.
a. Add the following text at the bottom of the mapping rule.

testMacro = "Macro replaced";
helper.setSTSOutputAttribute("usc.http.profile.test.macro", testMacro);

This attribute helper.setSTSOutputAttribute sets the value Macro replaced
to the attribute usc.http.profile.test.macro which is represented in the
HTML page by @USC_FORM_PROFILE_TEST_MACRO@.

4. Apply the changes to the mapping rule.
a. Log on to the Integrated Solution Console.
b. Navigate to Tivoli Federated Identity Manager > Domain Management >

Runtime Node Management.
c. Click Runtime Custom Properties.
d. Set the property STS.showUSCChains to true.
e. Click OK.
f. Log out of the Integrated Solutions Console.
g. Log on to the Integrated Solutions Console.
h. Navigate to Tivoli Federated Identity Manager > Configure Trust Service

> Trust Service Chains.
i. Select USC Chain for uscCreateAccount.
j. Click Properties. Two entries of Default Map Module under Trust Service

Chain Modules are present.
k. Complete these steps for both chain mappings:

1) Select Default Map Module and click Properties.
2) Under Identity Mapping Rule for partner module chain, click Modify

Rule.
3) Click Browse to select the modified mapping rule.
4) Click Import File.
5) Click OK.

l. Click Load configuration changes to Tivoli Federated Identity Manager
runtime.
1) Go to https://myserver/sps/uscfed/usc/self/account/create.
2) Complete the user registration.

In the User Self Care Enrollment Validation page, the macro is replaced with
<!-- Observe the macro being replaced
Macro replaced
-->

Note: The macros that are defined in the mapping rule are replaced with
their values only when the request is received by the STS chain and when
the default mapping module contains the definition for the macro.

608 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Formatting User Self Care HTMLs by using Cascading Style
Sheets
Use Cascading Style Sheets to format the User Self Care HTML pages.

Procedure
1. Host the css and image files on an IBM HTTP Server.

a. Navigate to the IHS installation directory.
b. Open the file httpd.conf in <IHS_INSTALL_ROOT>\conf with any word

processor.
c. Determine the value of ’DocumentRoot’ from this file. This directory is the

location of your css and image documents. The default value is
<IHS_INSTALL_ROOT>\htdocs.

d. Create two folders, css and images under the DocumentRoot(htdocs) folder.
e. Place usc.css file under css folder and the image file IBMlogo.png under

the images folder.
2. Replace the default User Self Care HTMLs with the modified HTMLs.

a. Make sure that you edited all the HTML files to point to the usc.css file
and the image hosted on the web server.
...
<link href=""https://company.com/css/usc.css"" rel="stylesheet">
...
<div class="header">

</div>
...

b. Apply the same changes to the following HTML pages:
v captcha.html

v enrollment.html

v generic.html

v password.html

v profile.html

c. Back up the usc folder.
d. Replace <FIM_INSTALL>\pages\C\usc with the sample files provided in

Technote 1614886, Cascading Style Sheets for Tivoli Federated Identity Manager
User Self Care, in the Tivoli Federated Identity Manager Support Portal.

Testing the changes to the HTML files
After you publish the HTML files to the Tivoli Federated Identity Manager run
time, you can access the User Self Care HTML pages to see the changes.

Procedure
1. Go to https://myserver/sps/USCFED/usc/self/account/create.
2. Observe the modified HTML pages.

Integrating User Self Care with WebSEAL
User Self Care deployments that have a Tivoli Access Manager registry in most
cases use WebSEAL as a point of contact server. In this scenario, you must
integrate interactions between two components that accomplish the task of account
deletion and password management.

Chapter 42. Deploying User Self Care 609

http://www-947.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Federated_Identity_Manager

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.
v Account deletion

When a user deletes an account from the Tivoli Access Manager registry, as part
of a user self deployment, ensure that the current session has ended. This
restriction is required for best security practice.
Deletion of the user session includes the WebSEAL session. User Self Care, by
default, terminates the WebSEAL session when the account is deleted. However,
this termination is dependent on your prior use of the tfimcfg tool to configure
WebSEAL as point of contact server. If you have run this tool as instructed
earlier, no special configuration is required.
If you have not configured WebSEAL as a point of contact server, do so now. See
“Configuring WebSEAL as a point of contact server” on page 569

v Password management
Two password management operations are affected when WebSEAL is the point
of contact server. The operations are: Change Password and Expired Password.
Both of these integrations require that you permit unauthenticated access to the
change password page and use a modified User Self Care Change Password
form.

Integrating the change password operation with WebSEAL

When WebSEAL is the point of contact server and a user wants to change a
password, the user must provide data. There are several ways that the user can do
this task.

Two ways to provide the data are:
v The user can directly access the User Self Care Change Password URL.
v The WebSEAL change password form can redirect the user to the User Self Care

Change Password form. You can add a meta tag redirect in the WebSEAL change
password page to support this action.

Integrating the expired password operation with WebSEAL

WebSEAL as a point of contact server manages authentication, including expired
passwords. However, when User Self Care is integrated with WebSEAL, it must
manage the handling of expired passwords.

When this scenario is the case, the following steps occur:
1. WebSEAL flags the authenticated session as expired.
2. The user is presented with a modified version of the WebSEAL expired

password form.
3. The user provides input and submits the expired password form. This action

posts the password data to the User Self Care change password URI.

Note: The password data must meet certain criteria and POST to the correct
User Self Care target URL. When the user has submitted the form, User Self
Care processes the form contents and handles any errors. This processing can
include showing the User Self Care change password form to the user with
error details.

610 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

4. User Self Care handles the changing of the password.
5. The WebSEAL session is terminated.

Note: The WebSEAL session is terminated because the session entry managed
by WebSEAL is flagged as expired. Until this flag is changed, the user is
always presented with the WebSEAL change password form. The user cannot
continue, even after changing their password in User Self Care. Terminating the
session is also a preferred security practice because it requires the user to log
on with their new password, in order to continue.

6. The user is shown the User Self Care password change success page. This page
can be modified to redirect back to WebSEAL if wanted.

Configuration steps

Do each of the following steps for the operation you want to integrate with
WebSEAL:
v To integrate the change password operation with WebSEAL:

1. “Permitting unauthenticated access to the User Self Care change password
form”

2. “Modifying the user self care WebSEAL change password form” on page 612
v To integrate the expired password operation with WebSEAL:

1. “Permitting unauthenticated access to the User Self Care change password
form”

2. “Modifying the user self care WebSEAL change password form” on page 612
3. “Modifying a WebSEAL expired password form” on page 613
4. “Supporting redirection back to WebSEAL” on page 614

Permitting unauthenticated access to the User Self Care
change password form

To support WebSEAL password operation integration, unauthenticated users must
be able to access the Change Password URI through a WebSEAL junction. The
junction must be configured with SSL for privacy and confidentiality.

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Use pdadmin to permit unauthenticated access to the User Self Care change
password form located at:
WebSEAL_server/fim_junction/sps/uscfed/usc/self/password/update

Consult the Tivoli Access Manager documentation for information about the
pdadmin command.

When you change this access, you must use a modified User Self Care Change
Password form. Continue with “Modifying the user self care WebSEAL change
password form” on page 612

Chapter 42. Deploying User Self Care 611

Modifying the user self care WebSEAL change password form
The user ID must be supplied in the Change Password form when integrating User
Self Care change password operations with WebSEAL.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

About this task

Permitting unauthenticated access means that it is possible for users to access the
change password form. From a security perspective, this user action is acceptable
because the user must enter their old password on this form before they can
change it. However, you must modify to the default User Self Care form to activate
this function.

By default, User Self Care does not require users to enter their user ID on the
change password form. Instead, User Self Care gathers it from the authenticated
context. This mechanism does not work if the user does not authenticate before
requesting the form. If the user requests the form without authenticating, User Self
Care returns an error message indicating that no authenticated user identity is
available.

To avoid this error, the user ID must be supplied in the Change Password form
when integrating User Self Care change password operations with WebSEAL.

Procedure
1. Make a backup copy of FIM_install_dir/pages/C/usc/password/

changepassword.html.
2. Copy the example file changepassword.html to the User Self Care pages

repository.
v The example file is:

FIM_install_dir/examples/examples/html/usc/password/changepassword.html

v The destination location is:
FIM_install_dir/pages/C/usc/password/changepassword.html

3. Log on to the administrative console.
4. Go to the Runtime Node Management panel.
5. Click Refresh Pages.
6. Save the configuration changes.

What to do next
v If you are integrating the change password operation, you have finished the

task.
v If you are integrating the expired password operation, continue with “Modifying

a WebSEAL expired password form” on page 613.

612 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Modifying a WebSEAL expired password form
Modify the WebSEAL expired password form to ensure correct handling of
passwords with User Self Care.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

Ensure that you have finished the prerequisite tasks:
1. “Permitting unauthenticated access to the User Self Care change password

form” on page 611
2. “Modifying the user self care WebSEAL change password form” on page 612

About this task

There is more than one way to modify the form.

Procedure
1. Copy the User Self Care changepassword.html file to the WebSEAL directory

where the management pages are located. Rename it to
usc_changepassword.html.
For example:
/opt/pdweb/www-default/lib/html/C/usc_changepassword.html

2. Edit the usc_changepassword.html form, as follows:
a. Add a new hidden field:

<input type="hidden" name="usc.form.password.expired.flag" value="true" />

b. Add another new hidden field:
<input type="hidden" name="usc.form.userid" value="%USERNAME%" />

c. Remove or comment out the two lines:
<div class="hidden" id="errorDiv"> </div>
<div class="hidden" id="errorAttrDiv"> </div>

d. Replace the form ACTION macro with the URL of the User Self Care change
password target.
For example:
https://webseal.example.com/fimjct/sps/uscfed/usc/self/password/update

3. Set the file permissions and ownership of usc_changepassword.html to match
the permissions of the other WebSEAL management files.

4. Edit the WebSEAL configuration file. Go to the acnt-mgt stanza and change
passwd-expired = passwd_exp.html to passwd-expired =
usc_changepassword.html

5. Restart WebSEAL.

What to do next

Optionally, continue with “Supporting redirection back to WebSEAL” on page 614.

Chapter 42. Deploying User Self Care 613

Supporting redirection back to WebSEAL
Optionally, you can direct users back to WebSEAL after they have changed their
password.

Before you begin

The information in this section applies to Tivoli Federated Identity
Manager package users. It also applies to organizations that already have Tivoli
Access Manager for e-business in their computing environment.

About this task

In some cases, you might want to host a landing page with links to destinations
from the WebSEAL system rather than the User Self Care system.

Procedure
1. Create a password change success page in the WebSEAL docs directory.

This page is the landing page at WebSEAL. It can say: Your password has been
successfully changed, you will have to login again to access any
protected pages.

2. Modify the User Self Care page located at FIM_install_dir/pages/C/usc/
password/changepassword_success.html to add a meta-redirect tag that
redirects the client to the new WebSEAL password change success page.

Modifying a User Self Care federation
There are some limitations on how you can modify existing User Self Care
federations.
v The command line interface does not support modification of User Self Care

federations. Use the administration console to set the runtime property
STS.showUSCChains to true. View the User Self Care trust chains and modify the
trust chains and properties as needed.
As an alternative, you can configure User Self Care by repeating the initial
deployment steps. In this case, you must create and edit a new response file,
and then use the command line interface to deploy the federation.

v You cannot capture, within a response file, configuration settings that are specific
to a particular chain. For example, Attribute Mapping STS modules use a
mapping rule file. Different chains might have different mapping rules. You
cannot specify the different mapping rules when creating a response file from an
existing configuration.
Parameters that can be specific to a particular chain do not have values set in
the response file. When different chains have different mapping rules, use the
administration console to modify the chain modules to use different rules files.

Unconfiguring User Self Care
Use wsadmin to unconfigure User Self Care.

About this task

This task deletes the User Self Care trust chains and the User Self Care federation.

614 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Procedure
1. Start wsadmin.
2. Issue the command:

$AdminTask manageItfimUserSelfCare {-operation unconfigure
-fimDomainName your_domain_name -federationName uscfed}

Chapter 42. Deploying User Self Care 615

616 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 43. Tuning User Self Care

You can improve User Self Care performance by adjusting settings for several
distributed caches.

User Self Care maintains three different distributed caches:
v Account Create Cache
v Forgotten Password Cache
v Secret Question Failure Cache

The caches are shared among WebSphere Application Server cluster members to
permit a user operation to be properly handled. This sharing is required in case
different phases of the operation take place on different nodes.

User Self Care uses the WebSphere Distributed Object Cache technology for
implementation of the caches. See the WebSphere Application Server
documentation for details on this caching technology.

There are two parameter types that affect each User Self Care distributed cache:

Entry lifetimes
These parameters are set in the User Self Care response file. Cache entries are
retained until either the lifetime is hit or the user finishes the operation
requiring the cache entry. The names and settings of these cache-specific
parameters are described in the individual cache tuning descriptions later in
this set of topics.

Cache sizes
These parameters are set in the administrative console by accessing Resources
> Cache Instances > Object Cache Instances. The Cache size parameter
controls how many concurrent entries are retained in the cache. The names and
settings of these cache-specific parameters are described in the individual cache
tuning descriptions

You must size the caches adequately so users can perform operations that require a
distributed cache in the configured time period. If a cache is too small, users might
not be able to validate their accounts or recover their passwords during the
specified time period. You can specify the time period in the configuration for
lifetime of the cache entries.

For example, to give your users two minutes to finish an account recovery
validation, configure the entry lifetime for the account recovery validation cache to
be two minutes. If you expect two users per second to perform an account
recovery operation, set the account recovery validation cache to at least 240.

Determine the appropriate size using the following calculation:
120 seconds x 2 users/second = 240

The default size of the account recovery validation cache is 1000 entries. This
default would be adequate for this example. Other operations, such as account
creation, might require an increase in the cache size.

© Copyright IBM Corp. 2006, 2013 617

Depending on your expected system usage, you might increase the size of one or
more caches. This adjustment can affect your hardware requirements. Cache entries
take up memory and must be replicated between systems in the cluster.

A preferred performance tuning practice is to provide a buffer for the expected
cache size.

See the following topics:
v “Account create cache”
v “Forgotten password cache”
v “Secret question failure cache” on page 619
v “Notes about tuning caches” on page 619

Account create cache
This cache stores the data from the user inputs during the account creation and
e-mail validation process. When the user finishes the validation, the User Self Care
recovers the data from the cache to create an account in the registry.

Table 151. Account create cache parameters

Parameter Description

AccountCreateLifetime Entry lifetimes are controlled by the
AccountCreateLifetime parameter described
in the topic: Chapter 44, “Response file
parameters,” on page 621.

itfim-usc_accountcreate Cache size is controlled by the
itfim-usc_accountcreate cache size.

Unlike other operations, each account creation operation creates two cache entries.
One entry is consists only of the user ID and a key. The second entry consists of all
the data that the user enters in the account creation form.

You configure cache entry lifetimes to be 120 seconds. You expect a peak number
of users enrolling during a new application provisioning operation to be 10
each/second. You might want to size your cache as follows:
10 users/second x 2 entries/user x 120 seconds/entry = 2400 x 20% buffer ~= 3000.

Forgotten password cache
This cache stores the user ID during the Forgotten Password validation operation.

Table 152. Forgotten password cache parameters

Parameter Description

AccountRecoveryValidationLifetime Entry lifetimes are controlled by the
AccountRecoveryValidationLifetime
parameter described in the topic: Chapter 44,
“Response file parameters,” on page 621.

itfim-usc_forgottenpassword Cache size is controlled by the
itfim-usc_forgottenpassword cache size.
This entry is small, consisting of the user ID
and a key.

618 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Secret question failure cache
This cache stores the number of failed secret question answer attempts that have
been performed.

Table 153. Secret question failure cache parameters

Parameter Description

AccountRecoveryFailureLifetime Entry lifetimes are controlled by the
AccountRecoveryFailureLifetime parameter
described in the topic: Chapter 44,
“Response file parameters,” on page 621

itfim-usc_secretquestionfailures Cache size is controlled by the
itfim-usc_secretquestionfailures cache
size. This entry is consists only of a number
and a key.

Notes about tuning caches
Configuration of WebSphere Application Server operations can improve your
tuning of the caches.
v Replication

WebSphere does not automatically replicate all of the cached data between
nodes. Instead, it just replicates the keys between nodes and only retrieves the
data when requested by a particular node. If a key is requested on a particular
node system that is not found in the cache, User Self Care attempts the cache
lookup operation. The attempt provides time for WebSphere Application Server
to finish any possible replication.

v Cache flushes
Restarting WebSphere Application Server clears caches and returns them to a
clean state.

v Removal of User Self Care caches
Cache entries are retained until either the entry lifetime is hit or the user finishes
the operation requiring the cache entry.

Chapter 43. Tuning User Self Care 619

620 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 44. Response file parameters

Use the parameters described in this section to configure response files for User
Self Care.

AccountCreateLifetime
Specifies the amount of time, in seconds, that User Self Care recognizes the
account creation request as valid, and retain the request in the internal cache. If
the Create Account trust chain does not finish account creation in the specified
time, the request is discarded and account creation terminates.

This property is required.
Type: Integer
Default: 86400
Maximum: none
Minimum: 0

A setting of '0' disables account creations because entries are not retained in the
cache. Larger settings can affect memory consumption and potentially affect
performance in replicated environments due to increased data being replicated
using DynaCache across nodes.

When setting this property, also consider an appropriate size for the
itfim-usc_accountcreate cache. See: Chapter 43, “Tuning User Self Care,” on
page 617.

AccountRecoveryFailureLifetime
Specifies how long, in seconds, the program retains record of an unsuccessful
account validation attempt. When the specified time period elapses, the record
of the unsuccessful attempt is discarded, and the counter is decremented by
one.

Type: Integer
Default: 86400
Maximum: none
Minimum: 0. The value 0 means to disable locking.

When setting this property, also consider an appropriate size for the
itfim-usc_secretquestionfailures cache. This parameter is configured
separately as part of tuning User Self Care. See: Chapter 43, “Tuning User Self
Care,” on page 617.

AccountRecoveryFailureLimit
Specifies the number of times a user can attempt but fail to restore account
access before the program locks the account. If the user does not supply a
correct answer to the secret question, account access is not restored. When the
user fails to restore account access, the value of this property increments by
one. When the value equals the specified number, the program locks the
account.

Type: Integer
Default: 3
Maximum: none
Minimum: 0

© Copyright IBM Corp. 2006, 2013 621

A setting of 0 or 1 for the minimum causes the account to be locked after the
first failure.

AccountRecoveryFailureLockoutTime
Specifies how long, in seconds, the program keeps the account locked after the
user has exceeded the maximum number of unsuccessful validation attempts.
When the program has locked the account, this value specifies the amount of
time that must pass before the program unlocks the account.

Type: Integer
Default: 86400
Maximum: none
Minimum: 0. The value 0 disables locking.

AccountRecoveryLookupAttribute
Specifies a user attribute used for user ID lookup. This property specifies a
single attribute that the user enters in the Forgotten user ID form to retrieve
their user ID (identity). User Self Care uses this registry attribute as a lookup
field. User Self Care searches for an entry that contains the attribute supplied
by the user, and returns the matching user ID. The attribute value is assumed
to be an email address. An email containing all the forgotten user IDs are sent
to this address.

Type: string
Default: mail

AccountRecoveryLookupField
This field is deprecated. Do not modify.

AccountRecoveryValidationAttributes
This field is deprecated. Do not modify.

AccountRecoveryValidationLifetime
Specifies the amount of time, in seconds, that User Self Care considers the
account validation request to be valid.

During password recovery, users must finish a validation step before
recovering their password. The validation step consists of responding to a user
self care e-mail that specifies a link to access. If the user does not respond
within the time period specified by this parameter, the program invalidates the
link in the e-mail.

Type: Integer
Default: 86400
Maximum: none
Minimum: 0

A setting of 0 for the minimum disables the ability to recover an account.

When setting this property, also consider an appropriate size for the
itfim-usc_forgottenpassword cache. This parameter is configured separately
as part of tuning User Self Care. See: Chapter 43, “Tuning User Self Care,” on
page 617.

AttributeMappingFilename
Specifies the path to the location of a file that contains the transformation rules
for use with the Attribute Mapping STS Module. This file can be either a
JavaScript or XSLT file.

User Self Care ships with a default JavaScript file named usc.js:

622 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Federated_Identity_Manager_installation_dir/examples/js_mappings

This property is required.
Type: String
Default: none

Example:
/opt/IBM/FIM/examples/js_mappings/usc.js

BaseURL
Specifies a fully qualified URL for the root of the User Self Care federation.
User Self Care uses the root to construct dynamic HTML elements. The syntax
is as follows:
method//POC_server:port/FIM_junction/sps

Where:

method
Must be either http:or https:

POC_server:port
The fully qualified host name, and optional port number, of the point of
contact server.

FIM_junction
The name of the WebSEAL junction. This value is only required when
using a WebSEAL point of contact server.

This property is required.
Type: String
Default: none

Example:
https://myWebSEALserver.example.com/myTFIMjct/sps

Note: If you are using WebSEAL as a point of contact server, you likely have
not yet created a junction to the Tivoli Federated Identity Manager server. In
most cases, you create this junction at the end of the User Self Care
configuration steps. However, you must determine the name of the junction
now, so that you can set the BaseURL value in the response file now. You must
remember the junction name, for use later when running the tfimcfg
command.

CaptchaSTSModuleId
Specifies either the demonstration Captcha module, or specifies a placeholder
module that takes no action. When this value is specified, User Self Care
activates the demonstration Captcha module.

This property is required.
Type: String
Default: none

There are two valid values for this field:
v usc-captcha-demo

Use this value if you want to activate the demonstration Captcha module. If
you use this setting, you must set the other Captcha settings in this response
file. To use the Captcha demonstration, you must also configure the module.
See: “Configuring the Captcha demonstration” on page 567.

Chapter 44. User Self Care response file parameters 623

v default-usc-captcha-noop

Use this value if you want to use the placeholder module
USCNoOpsSTSModule. This module takes no action, but serves as a placeholder
for a customer-provided validation module that can be used, as an example,
for Captcha validation. The USCNoOpsSTSModule makes it easier for
customers to provide their own module without redefining the trust chains.

DemoCaptchaImageAndKeyList
This field is required if you are using the Captcha demonstration module.

The contents are fixed and must not be modified.

Note: The DemoCaptchaImageAndKeyList parameter has already been set. The
program ignores this parameter if you are not using the demonstration
Captcha module.

DemoCaptchaImageRootURL
Specifies a URL of a directory that contains the images used for the
demonstration Captcha module provided with User Self Care.

You must specify a value for this property if you want to use the Captcha
demonstration module.

Example:
https://images.example.com/captcha/demo

EnrollmentEmailSender
Specifies a fully qualified e-mail address for the account that User Self Care
uses to send a message to the user. The message validates the user enrollment.
In most cases, this address is an e-mail address that does not receive responses.

This property is required.
Type: string
Default: none

Example:
no-reply@example.com

EntitySuffix
Specifies a suffix where created users are stored in the registry. This suffix
must uniquely identify the registry that User Self Care uses for all operations.

This property is required.
Type: String
Default: o=ibm,c=us

GroupMembershipGroups
Specifies a list of groups to which to add newly enrolled users. Specifies one or
more groups that are defined in the user registry used by the Create Account
trust chain. The group names are specific to the user registry.

Type: String
Default: none

Example:

624 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<void method="add">
<string>Group1</string>
</void>
<void method="add">
<string>Group2</string>
</void>

PasswordRecoveryEmailSender
Specifies a fully qualified e-mail address for the User Self Care account that
sends a message to the user. User Self Care uses the message to validate a
password recovery operation. In most cases, this e-mail address does not
receive responses.

This property is required.
Type: string
Default: none

Example:
no-reply@example.com

ProfileManagementAttributes
Defines the set of registry attributes that are used for profile information. To
provide a working prototype, the user self care solution defines a set of
registry attributes for use with the default function. User Self Care does not
modify the schema of the target registry. For this reason, the number of profile
attributes are limited and use standard LDAP attributes that are present in
most cases.

This property is required. The list of attributes used are:
v businessCategory
v roomNumber
v mobile
v mail

The attributes are represented in the configuration file as follows:

SecretQuestionMinimumNumber
Specifies the minimum number of required secret questions that a user must
provide answers to during enrollment. Depending on the configuration, some
or all of the secret questions may be presented to the user for verification
purposes when they forget their password.

<object class="java.util.ArrayList">
<void method="add">
<string>businessCategory</string>
</void>
<void method="add">
<string>roomNumber</string>
</void>
<void method="add">

<string>mail</string>
</void>

<void method="add">
<string>mobile</string>

</void>
</object>

Figure 69. Profile management attributes in the response file

Chapter 44. User Self Care response file parameters 625

This property is optional.
Type: Integer
Default: 2
Maximum: none
Minimum: 1

SecretQuestionMaximumNumber
Specifies the maximum number of secret questions that a user can provide
answers to during enrollment. Depending on the configuration, all of the secret
questions is presented to the user for verification purposes when they forget
their password.

This property is optional.

Type: Integer

Default: 3

Maximum: none

Minimum: The maximum value depends on SecretQuestionMinimumNumber.
The maximum value should at least be the same as the value specified in the
SecretQuestionMinimumNumber parameter.

SecretQuestionRequiredForValidationNumber
Specifies the number of secret questions a user must answer correctly to
validate their identity.

During password recovery, users must provide correct answers to the secret
questions presented to them. The number of questions that they must answer
correctly is dependent on this parameter.

Example scenario:

During enrollment, a user is presented with 3 secret questions that they must
provide answers to.

An administrator configures the parameter to:
SecretQuestionRequiredForValidationNumber=2

When the user forgets their password, all 3 secret questions are presented to
them. However, since the parameter was set to
SecretQuestionRequiredForValidationNumber=2, the user only needs to answer
2 out of the 3 questions correctly. They can leave one of the fields blank. If the
user chooses to answer all the questions presented to them, they must get all
the answers correctly.

In this scenario, if a user chooses to answer 3 questions, they must provide the
correct answers for all 3 questions to be validated. The user cannot be
validated either if they only answer 1 out of the 3 questions correctly.

This property is optional.

Type: Integer

Default: 2

Maximum: none

Minimum: The maximum value depends on SecretQuestionMinimumNumber.
The maximum value should at most be the same as the value specified in the
SecretQuestionMaximumNumber parameter.

626 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

SMTPAuthenticatePassword
The password for the account specified by the SMTPAuthenticateUsername
parameter if using authentication to the SMTP server. This property is optional.

Type: string
Default: none

SMTPAuthenticateUsername
The user name that authenticates to the SMTP server. This property is optional.

Type: string
Default: none

SMTPServerName
The fully qualified host name of the Simple Mail Transport Protocol (SMTP)
server that sends e-mail for the user. This property is required.

Type: string
Default: none

Chapter 44. User Self Care response file parameters 627

628 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 7. Configuring one-time password

The topics in the Configuration section provide a step-by-step guide to configuring
one-time password.

This section describes the deployment of one-time password. First read the
overview of the one-time password feature:

“One-time password overview” on page 631

© Copyright IBM Corp. 2006, 2013 629

630 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 45. One-time password

Configure Tivoli Federated Identity Manager to use one-time password as an
authentication factor in a federated single sign-on and in an extended
authentication scenario.

One-time password overview
Tivoli Federated Identity Manager provides various authentication mechanisms in
the point of contact interface.

The point of contact server is a proxy or application server that interacts with a
user, does the authentication, and manages sessions. In a typical deployment, the
point of contact is at the edge of a protected network behind a firewall, such as in
a DMZ.

The authentication methods available in a deployment are typically determined by
the point of contact technology that is used in the environment. Points of contact
technologies usually provide simple authentication such as the use of a user name
and password.

A step-up authentication is a type of authentication where users who attempt to
access sensitive resources are required to provide a specific type of credential. They
might be challenged to authenticate and provide an extra set of credentials to
prove that they are allowed to access sensitive resources. The one-time password
authentication can be used where increased security is required.

A multi-factor authentication is a type of authentication where users are required
to provide more than one type of credential to access a protected resource.

A one-time password is a unique password that validates a login session. A
one-time password cannot be reused. These restrictions make it less vulnerable to
replay attacks and more secure than static passwords.

The one-time password authentication capability in Tivoli Federated Identity
Manager extends the existing point of contact support with the following features:
v Context-based authentication policy determination by using a mapping rule.
v Pluggable one-time password generation and validation with default

implementation.
v Pluggable one-time password delivery with email and short message service

(SMS) as default implementation.
v Pluggable one-time password store with default support for in memory cache.
v Time-based and counter-based one-time password generation that is created by

both client and server so that no delivery mechanism is required.
v Pluggable user information storage and retrieval for one-time password

generation and validation that requires user information to be available.

You can implement the use of the one-time password in the federated protocol or
extended authentication flow.

© Copyright IBM Corp. 2006, 2013 631

Federated single sign-on scenario
This flow consists of allowing multi-factor and step-up authentication
operations. This flow relies on a one-time password authentication in the
context of a single sign-on protocol.

Extended authentication scenario
This flow consists of allowing multi-factor and step-up authentication
operations. This flow relies on a one-time password authentication to
extend the authentication capabilities of existing point of contact
technologies. This flow is available outside the context of a federated single
sign-on.

One-time password configuration overview
The one-time password feature has several components. Understand what you
must configure to implement the feature to suit your requirements.

You can implement the one-time password feature in two scenarios:
v Federated single sign-on scenario
v Extended authentication scenario

Each point of contact is configured to use with a federation. Only one point of
contact can be active at a time. A single one-time password federation can be used
by multiple point of contacts.

There are two required parts that must be configured to enable the one-time
password feature:
v Configure the point of contact profile. Configuring the context-based

authentication policy might be included.
v Configure the one-time password federation that establishes the runtime web

endpoints and supporting Security Token Service (STS) modules and chains. This
configuration includes the one-time password generation, validation, and
delivery methods.

Configuring the point of contact with the one-time password support can be done
in the console. Configuring the one-time password federation component can be
done in the command-line interface only.

A Point of Contact profile configuration allows for multiple authentication
callbacks to be configured. The execution of an authentication event on Tivoli
Federated Identity Manager consists of starting the list of configured authentication
callbacks. The execution of the one-time password flows consists of starting the list
of configured authentication callbacks. Each configured callback is assigned an
authentication level. The configured authentication level represents the level of
assurance that each authentication callback provides. The required authentication
level that the policy configuration requires dictates which of the configured
callbacks are run. If an authenticated session exists when the authentication event
happens, the required authentication level determines if a particular token
provided for the authenticated session is satisfactory.

Both the federated protocol or User Self Care flow and the extended authentication
flow depends on the following parameters:
v Required authentication level dictates the level of authentication that is

required of a user to be able to access a protected resource. Authentication levels
are represented by an integer number. Each authentication callback is assigned
an authentication level.

632 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

During an authentication event the configured authentication callbacks are used.
The required authentication policy is enforced. To evaluate if an authenticated
session is satisfactory based on the policy, the Tivoli Federated Identity Manager
point of contact retrieves the authentication level of the credential. If there is no
valid or satisfactory credential exists, the callbacks are started until a satisfactory
level is achieved. An administrator must assign an authentication level to each
configured authentication callback.

v Type of authentication determines the type of authentication that is required for
a user to be able access a protected resource. There are two supported types of
authentication.

Hierarchical authentication type (step-up)
Executes the authentication callback with an assigned authentication
level that is equal to or higher than the required level. It is executed
until a satisfactory authentication is achieved.

Complementary authentication type (multi-factor)
Executes all the authentication callbacks that are configured until a
satisfactory authentication is achieved.

v Authentication mode dictates the type of mode where authentication callbacks
are run. There are two supported types of authentication mode.

Group authentication mode
Runs all the authentication callbacks in the same HTTP exchange.

Individual authentication mode
Runs each authentication callback that requires user interaction in a
separate HTTP exchange.

You also have the option of using your own mapping rule to determine the
required authentication policy that is based on request attributes. This technique is
called context-based authentication policy determination. You can upload a
JavaScript rule to determine the authentication level, authentication mode, and
authentication type in the generic point of contact authentication policy.

An authentication policy

v Applies a set of rules to the authentication process and to the verification of
authentication data

v Determines enforcement that is based on the request context.
v Consists of the required authentication level, mode, and type.

In the absence of context-based authentication policy determination, the
authentication policy is determined statically based on the configuration.

The authentication policy can be set in the following locations:

Authentication policy mapping rule
See Authentication policy mapping rule for more details.

Query string
See the Modifying stepuplogin.html step in “Configuring one-time password
extended authentication with WebSEAL as point of contact” on page 637.

Point of contact
See the allow.authentication.policy.request.overrides parameter in
“Creating your own one-time password point of contact” on page 642.

A default implementation of the authentication policy callback is provided. The
default implementation is configured to allow for a static policy configuration. It

Chapter 45. One-time password 633

might also rely on a customer-configured mapping rule to determine the
authentication policy from request attributes.

In the extended authentication flow, an endpoint is provided for the external point
of contact technology to start the flow. A target URL is provided in a query string
parameter. Users are redirected to this URL when the authentication event is
completed.

Any user token information of an existing authentication available on the request
and request attributes are collected. It is collected for context-based authentication
policy determination and one-time password flow processing at the Security Token
Service (STS) chain.

Tivoli Federated Identity Manager provides the following pluggable extension
points:
v One-time password provider — generates and validates the one-time password

value.
v One-time password delivery module — delivers the one-time password value.
v One-time password store module — stores the one-time password value.
v One-time password user information provider module — stores and retrieves

the user information that is required to calculate the one-time password value.
v Authentication Policy Callback — responsible for determining the required

authentication policy that is based on the request context.
v Dynamic one-time password provider determination that is based on the request

context.

634 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 46. One-time password deployment

You must configure various components, such as one-time password federation
and point of contact, to deploy one-time password authentication. One-time
password is valid for either the federated single sign-on or extended authentication
scenario.

The following list summarizes the tasks for deploying one-time password and the
order in which to do them. Before you start a task, ensure that you have finished
any prerequisite tasks.
1. Decide on the appropriate scenario for deploying one-time password

authentication. See “One-time password overview” on page 631.
2. Configure a one-time password federation. The configuration steps include

configuring a response file. Specify the configuration of the one-time password
mapping rules, one-time password provider plug-ins, and the one-time
password delivery plug-ins.
“Configuring a one-time password federation”

3. Optional step: customize a one-time password point of contact. You can create
your own point of contact profile.
“Creating your own one-time password point of contact” on page 642

4. Activate the one-time password point of contact. Use the Integrated Solutions
Console to active the one-time password point of contact.
“Activating the one-time password point of contact” on page 636

5. Depending on the scenario where you want to deploy one-time password
authentication, complete one of the following tasks:
v Customizing one-time password for a federated single sign-on scenario.
v Customizing one-time password for extended authentication scenario.

Configuring a one-time password federation
Use a response file to configure your one-time password federation. Specify the
configuration of the one-time password mapping rules, one-time password
provider plug-ins, and the one-time password delivery plug-ins.

Procedure
1. Create a response file with the wsadmin tool by entering the following

commands on one line.
v Create a response file

$AdminTask manageItfimOneTimePassword { -operation createResponseFile
-fimDomainName domainName -fileId fileId }

v Create a response file based on an existing one-time password federation:
$AdminTask manageItfimOneTimePassword { -operation createResponseFile
-fimDomainName domainName -federationName federationName -fileId fileId }

Where:
domainName is the name of your domain.
federationName is the name of the one-time password federation.
fileId is the name of the one-time password response file

© Copyright IBM Corp. 2006, 2013 635

2. Edit the parameters in the response file. See “One-time password response file”
on page 669.

Important: If you plan to use WebSEAL with OTP as your point of contact,
ensure that the federation name is otpfed.

3. Configure the one-time password federation with your response file by entering
the following commands on one line:
$AdminTask manageItfimOneTimePassword { -operation configure
-fimDomainName domainName -fileId fileId }

Where:
domainName is the name of your domain.
fileId is the name of the one-time password response file you created in 1 on
page 635

4. If your mapping rule is syntactically valid, but Tivoli Federated Identity
Manager reports that it is not, add STS.validateMappingRules and set the value
to false. The message FBTADM001I Command completed successfully is
returned.

5. Enter the following command in the wsadmin tool:
$AdminTask reloadItfimRuntime { -fimDomainName domainName }

Where:
domainName is the name of your domain.

Activating the one-time password point of contact
Use the Integrated Solutions Console to activate the one-time password point of
contact.

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select WebSEAL with OTP or create your own point of contact, see “Creating

your own one-time password point of contact” on page 642 for more details.
4. Click Make Active.
5. Click Load configuration changes to the Tivoli Federated Identity Manager

runtime.

Configuring the one-time password in a federated single sign-on flow
Configure one-time password authentication to enable single sign flow in a
federation.

Procedure
1. Complete steps 1 - 4 of the task Deploying one-time password.
2. Optional: If the federation where the one-time password feature is used was

created before Tivoli Federated Identity Manager 6.2.2, Fix Pack 4, you must
rerun tfimcfg command against that federation so that the required EAI trigger
URL is added into WebSEAL configuration file. You can reuse or re-create the
junction. See tfimcfg Reference for more details.

636 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/config/reference/tfimcfgReference.html

Verifying the one-time password federated single sign-on configuration
Verify your federated single sign-on configuration to ensure that the one-time
password implementation works correctly.

About this task

Complete the steps that are provided to verify that your one-time password
configuration in the federated single sign-on flow is configured properly.

Procedure
1. Initiate a federated single sign-on flow. Depending on the protocol you are

using for your federation, the endpoint URL to initiate the single sign-on might
be different. For example: https://idp.example.com/sps/<federationName>/
saml20/logininitial?PartnerId=sp.example.com

2. You are redirected to the identity provider login page.
3. Enter your user name and password. Depending on your configuration, you

might be asked to select the one-time password delivery method.
4. Enter the one-time password that was delivered in the delivery method that

you selected. If you authenticate successfully, you are redirected to protected
resource in the service provider.

Configuring one-time password extended authentication with
WebSEAL as point of contact

Configure WebSEAL to enable the extended authentication flow for one-time
password.

Before you begin

Deploy one-time password authentication.

About this task

The eai-auth stanza entry, which is in the [eai] stanza of the WebSEAL
configuration file, enables, and disables the external authentication interface
function. The external authentication interface can be implemented over HTTP,
HTTPS, or both.

External authentication interface is disabled by default.

Procedure
1. Edit the WebSEAL configuration file to match the Tivoli Federated Identity

Manager point of contact profile configuration. For example,
$WEBSEAL_INSTALL_DIRECTORY&/etc/webseald-default.conf.
a. For example:

[eai]
#----------------------
EXTERNAL AUTHENTICATION INTERFACE
#----------------------

Enable EAI authentication. No other EAI parameters will take effect
if this is set to ’none’.
#
One of <http, https, both, none>

Chapter 46. One-time password deployment 637

Added by FIM TAM autoconfig: Thu Apr 15 12:33:58 CDT 2010
eai-auth = https

IMPORTANT
An appropriate authentication library must be configured to handle
EAI authentication to complete this configuration. Please
refer to the "authentication mechanisms and libraries" subsection
at the end of the authentication section.

EAI HEADER NAMES

If eai-auth is not ’none’, and WebSEAL has received a trigger URL
in a request, WebSEAL will examine the corresponding server response for
the following headers. These are the headers that
will contain authentication
data used to authenticate the user.

EAI PAC header names
eai-pac-header = am-fim-eai-pac
eai-pac-svc-header = am-eai-pac-svc

EAI USER ID header names
eai-user-id-header = am-fim-eai-user-id
eai-auth-level-header = am-eai-auth-level
eai-xattrs-header = am-eai-xattrs
EAI COMMON header names
eai-redir-url-header = am-fim-eai-redir-url
RETAIN EAI SESSION
If an already-authenticated EAI client authenticates via an
EAI a second
time, the existing session and cache entry are completely replaced by
default. If retain-eai-session = yes, then the existing session and
cache entry will be retained, and the credential and relevant data will
be updated in the existing cache entry.
retain-eai-session = no
eai-redir-url-priority = yes

b. Add the EAI trigger URL. For example:
EAI TRIGGER URLS
[eai-trigger-urls]
trigger = /FIM/sps/auth*

c. Add EAI to the authentication-mechanisms stanza. For example:
[authentication-mechanisms]
#----------------------
AUTHENTICATION MECHANISMS AND LIBRARIES
#----------------------
List of supported authentication mechanisms and
their associated shared libraries
Uncomment the line and supply the full path to a library to
enable a mechanism.

Username/Password - such as Basic Authentication or Forms
#passwd-cdas = <passwd-cdas-library>
#passwd-ldap = <passwd-ldap-library>
#passwd-uraf = <uraf-authn-library>
passwd-ldap = /opt/PolicyDirector/lib/libldapauthn.so &
-cfgfile [/opt/pdweb/etc/webseald-webseald-ip.conf]
cert-ldap = /opt/PolicyDirector/lib/libcertauthn.so &
-cfgfile [/opt/pdweb/etc/webseald-webseald-ip.conf]

ext-auth-interface = /opt/pdwebrte/lib/libeaiauthn.so

Note: The location of the library file might be different in Windows for
example, C:\Program Files\Tivoli\PDWebRTE\bin\eaiauthn.dll.

d. Modify the user session ID settings. For example:

638 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

#----------------------
USER SESSION IDS
#----------------------
Enable/disable the creation and handling of user session ids.
user-session-ids = yes

Include the replica set name in the user session ID. If set to "yes"
then the user-session-id will include the replica set. If set to "no"
then WebSEAL will not include the replica set in the user-session-id,
and will assume that all user-sessions specified in
the "terminate session"
command belong to the standard junction replica set.
user-session-ids-include-replica-set = yes

e. Modify the authentication-levels stanza. For example:
[authentication-levels]
0 = unauthenticated
1 = password
2 = ext-auth-interface

f. Modify the authentication stanza. For example:
###############################
AUTHENTICATION
###############################

[ba]
#----------------------
BASIC AUTHENTICATION
#----------------------

Enable authentication using the Basic Authentication mechanism
One of <http, https, both, none>
Added by FIM TAM autoconfig: Tue Nov 27 10:47:33 SGT 2012
Enabling forms instead of BA for improved user interface
ba-auth = none

[forms]
#----------------------
FORMS
#----------------------

Enable authentication using the forms authentication mechanism
One of <http, https, both, none>
Added by FIM TAM autoconfig: Tue Nov 27 10:47:33 SGT 2012
Enabling forms instead of BA for improved user interface
forms-auth = https

2. Modify stepuplogin.html so that it redirects the authentication request to Tivoli
Federated Identity Manager extended authentication endpoint.
a. Navigate to the folder where stepuplogin.html is located. For example,

$WEBSEAL_INSTALL_DIRECTORY$/www-default/lib/html/$LOCALE$/
stepuplogin.html.

b. Insert the following code in the Javascript section of the file. For example:
authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2")
{

window.location = "https://<HOST>:<PORT>/<JUNCTION>
/sps/xauth?Target=
%HTTPS_BASE%%URL_ENCODED%[&AuthenticationLevel=<RequiredAuthenticationLevel>]
[&AuthenticationType=
HIERARCHICAL|COMPLEMENTARY][&AuthenticationMode=INDIVIDUAL|GROUP]"
}

Chapter 46. One-time password deployment 639

For example:
authnlevel="%AUTHNLEVEL%";
if (authnlevel == "2")
{

window.location = "https://idp.example.com/FIM/sps
/xauth?Target=%HTTPS_BASE%%URL_ENCODED%&AuthenticationLevel=2"
}

In this example, level 2 step-up request is forwarded to Tivoli Federated
Identity Manager.

3. Create a Tivoli Federated Identity Manager junction with the following Tivoli
Access Manager pdadmin commands:
pdadmin sec_master> server task <WEBSEAL_SERVER_NAME> create -t tcp
-h <BACKEND_SERVER_HOST_NAME> -p <BACKEND_PORT> -c all -f /FIM

For example:
pdadmin sec_master> server task default-webseald-localhost create -t tcp
-h localhost -p 9080 -c all -j -r -q /sps/cgi-bin/query_contents -f /FIM

4. Create a one-time password extended authentication unauthenticated access
control list (ACL).
a. pdadmin sec_master> acl create xauth_unauth

b. pdadmin sec_master> acl modify xauth_unauth set Group iv-admin
TcmdbsvaBRrxl

c. pdadmin sec_master> acl modify xauth_unauth set Group webseal-servers
Tgmdbsrxl

d. pdadmin sec_master> acl modify xauth_unauth set User sec_master
TcmdbsvaBRrxl

e. pdadmin sec_master> acl modify xauth_unauth set Any-other Tr

f. pdadmin sec_master> acl modify xauth_unauth set Unauthenticated Tr

g. pdadmin sec_master> acl show xauth_unauth

ACL Name: xauth_unauth
Description:
Entries:
User sec_master TcmdbsvaBRrxl
Any-other Tr
Unauthenticated Tr
Group webseal-servers Tgmdbsrxl
Group iv-admin TcmdbsvaBRrxl

5. Attach the one-time password extended authentication access control list (ACL)
to the extended authentication endpoint with the following command:
pdadmin sec_master> acl attach /WebSEAL/<WEBSEAL_INSTANCE_ROOT>
/FIM/sps/xauth xauth_unauth

For example:
pdadmin sec_master> acl attach /WebSEAL/localhost-webseald-ip
/FIM/sps/xauth xauth_unauth

6. Create a one-time password extended authentication authenticated access
control list (ACL).
a. pdadmin sec_master> acl create xauth_anyauth

b. pdadmin sec_master> acl modify xauth_anyauth set Group iv-admin
TcmdbsvaBRrxl

c. pdadmin sec_master> acl modify xauth_anyauth set Group
webseal-servers Tgmdbsrxl

640 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

d. pdadmin sec_master> acl modify xauth_anyauth set User sec_master
TcmdbsvaBRrxl

e. pdadmin sec_master> acl modify xauth_anyauth set Any-other Tr

f. pdadmin sec_master> acl modify xauth_anyauth set Unauthenticated T

g. pdadmin sec_master> acl show xauth_anyauth

ACL Name: xauth_anyauth
Description:
Entries:
User sec_master TcmdbsvaBRrxl
Any-other Tr
Unauthenticated T
Group webseal-servers Tgmdbsrxl
Group iv-admin TcmdbsvaBRrxl

7. Attach the one-time password extended authentication ACL to the
authentication endpoint with the following command:
pdadmin sec_master> acl attach /WebSEAL/<WEBSEAL_INSTANCE_ROOT>
/FIM/sps/auth xauth_anyauth

For example:
pdadmin sec_master> acl attach /WebSEAL/localhost-webseald-ip
/FIM/sps/auth xauth_anyauth

8. Restart WebSEAL with the command pdweb restart.

What to do next

Verify your extended authentication one-time password configuration.

Verifying the one-time password extended authentication configuration
Verify your extended authentication configuration to ensure that the one-time
password implementation works correctly.

About this task

Complete the steps that are provided to verify that your one-time password
configuration in the extended authentication flow is configured properly. The
commands that are provided in the steps must be used in pdadmin. For more
information about the pdadmin command-line utility, see the Tivoli information
center.

Procedure
1. Create a test user account. For example:

pdadmin> user create john cn=john,o=ibm,c=us John Doe password

2. Activate the account. For example:
pdadmin> user modify john account-valid yes

3. Create a test resource that is protected with level 2 authentication and place it
in the document root of WebSEAL. For example: /opt/pdweb/www-default/
docs/test.html.

4. Try accessing that resource through WebSEAL. For example:
https://idp.example.com/test.html. You are presented with a web form to
enter the user name and password.

5. Enter the credential that you created in step 1. The contents of the resource is
displayed.

Chapter 46. One-time password deployment 641

6. Create a Protected Object Policy (POP) with a level 2 authentication. For
example:
pdadmin> pop create level2only
pdadmin> pop modify level2only set ipauth anyothernw 2

7. Attach the POP to the protected resource that you created in step 3 on page
641. For example:
pdadmin> pop attach /WebSEAL/idp.example.com-default/test.html level2only

8. Open a new browser session and try accessing the test resource again. You are
presented with a web form where you must enter a user name and password.

9. Enter the credential for the test user. You are forwarded to the extended
authentication endpoint of Tivoli Federated Identity Manager. You are now
starting the one-time password feature. Depending on your configuration, you
might be asked to select the one-time password delivery method.

10. Enter the one-time password that was delivered in the delivery method that
you selected. If you authenticate successfully, you are redirected to back to the
test resource and you can access the contents of that resource.

Creating your own one-time password point of contact
Tivoli Federated Identity Manager version 6.2.2, fix pack 4 provides a one-time
password WebSEAL point of contact profile. However, you can create your own
point of contact.

Before you begin

You must do the following steps before you can add your point of contact server
to your environment:
v Publish any custom point of contact callback plug-ins.
v Know what type of parameters you must use, if any, and the corresponding

values to be passed to these callbacks. See “One-time password configuration
overview” on page 632.

Procedure
1. Log on to the Integrated Solutions Console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select your point of contact.

v WebSEAL with OTP

4. Click Create Like. The Point of Contact Profile wizard opens.
5. Click Next. The Profile Name panel opens.
6. Enter a name for the profile.
7. Optional: Enter a description.
8. Click Next. The Sign-in panel opens.
9. Specify the sign-in callbacks to use, the order in which these callbacks are

used, and the parameters to use with each callback.
Because you created a point of contact that is based on an existing point of
contact, the callbacks and their parameters are automatically populated.
To add or remove callbacks, click Add or Remove. The values in the Callbacks
in Use list are the ones that are used with your new point of contact.

10. Click Next. The Sign-Out panel opens.

642 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

11. Specify the sign-out callbacks to use, the order in which the callbacks are
used, and the parameters to use with each callback.
Because you created a point of contact that is based on an existing point of
contact, the callbacks and their parameters are automatically populated.
To add or remove callbacks, click Add or Remove. The values in the Callbacks
in Use list are the ones that are used with your new point of contact.

12. Click Next. The Local ID panel opens.
13. Specify the callbacks to use, the order in which the callbacks are used, and

the parameters to use with each callback.
Because you created a point of contact that is based on an existing point of
contact, the callbacks and their parameters are automatically populated.
To add or remove callbacks, click Add or Remove. The values in the Callbacks
in Use list are the ones that are used with your new point of contact.

14. Click Next. The Authentication panel opens.
15. Specify the callbacks to use, the order in which the callbacks are used, and

the parameters to use with each callback.
Because you created a point of contact that is based on an existing point of
contact, the callbacks and their parameters are automatically populated.
To add or remove callbacks, click Add or Remove. The values in the Callbacks
in Use list are the ones that are used with your new point of contact.
a. Change the default parameters for the otpAuthenticateCallback.

v authentication.level - This parameter specifies the authentication level
of the callback. The value must be an integer.

v config.federation.name- This parameter specifies the name of the
one-time password federation that is used by the callback. This one-time
password federation must exist.

16. Click Next. The Authentication Policy panel opens.
17. Specify the callbacks to use, the order in which the callbacks are used, and

the parameters to use with each callback.
Because you created a point of contact that is based on an existing point of
contact, the callbacks and their parameters are automatically populated.
To add or remove callbacks, click Add or Remove. The values in the Callbacks
in Use list are the ones that are used with your new point of contact.
a. Change the default parameters for the genericPocAuthenPolicyCallback.

v allow.authentication.policy.request.overrides - This parameter
specify whether the callback must use the authentication policy, which
includes the authentication level, authentication mode, and
authentication type that is specified in the query string instead of its
own authentication policy. The value must be a boolean. If this
parameter is not specified, the default value, which is false, is used.

v authentication.level - This parameter specifies the authentication level
of the callback. The value must be an integer. If this parameter is not
specified, the default value, which is 2, is used.

v authentication.mode - This parameter specifies the authentication mode
of the callback. The value must be either INDIVIDUAL or GROUPAL. If
this parameter is not specified, the default value, which is INDIVIDUAL,
is used.

v authentication.type - This parameter specifies the authentication type
of the callback. The value must be either COMPLEMENTARY or

Chapter 46. One-time password deployment 643

HIERARCHICAL. If this parameter is not specified, the default value,
which is COMPLEMENTARY, is used.

b. Optional: Upload the AuthenticationPolicyCallback mapping rule. See
“Authentication policy mapping rule customization” on page 663 for more
details.
To upload the mapping rule:
1) Click Add Rule.
2) Click Modify Rule.
3) Click Browse to find the file on the system.
4) Click Import File.
5) Click OK. The identity mapping rule file is applied.

18. Click Next. The summary panel is displayed.
19. Click Finish.
20. Click Load configuration changes to the Tivoli Federated Identity Manager

runtime.

What to do next

You must activate your newly-created point of contact.

HTTP request claims for authentication policy callback
Configure the authentication policy callback so that HTTP request information is
available during the mapping rule execution for the context-based authentication
policy determination.

To enable the HTTP request parameters for the context-based authentication policy,
you must configure the following parameter:

SPS.http.request.claims.enabled
When set to true, this parameter enables the Secure Protocol Service (SPS) to
include a WS-Trust claims element. The WS-Trust claims element is included
on the WS-Trust request to the Security Token Service. The claims element
contains all the HTTP request information that is received at the SPS that
causes the call to the Security Token Service. To avoid XML parsing problems,
the values from the request are XML encoded before they are included as
values to the claims element structure. The following HTTP request
information is included in the claims element:
v Cookies
v HTTP headers
v HTTP request attributes
v HTTP request parameters

Configuration example: SPS.http.request.claims.enabled=true
Default value: False
v Value type: Boolean
v Example value: True

The request cookies, headers, and parameters in an HTTP request might be
numerous and result in a large claims element. You can filter for request cookies,
headers, and parameters by using a custom property. Use the following custom
property to avoid including information that cannot not be processed by the
Authentication Policy callback:

644 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

SPS.http.request.claims.filter.spec
Use this callback parameter to specify the request cookies, headers, and
parameters to include in the claims element.

For each data type, you can choose to add all values or filter the values that
are based on the item name.

The default filter: cookies=*:headers=*

The default filter causes all cookies and headers to be included and excludes
all parameters.

The format for the filter specification syntax:

cookies=[*|cookieName1,cookieName2]:

headers=[*|header1,header2]: parameters=[*|param1,param2]

Note:

v To filter for a specific element, define the custom property with the specific
element on the data type to which it belongs. For example, if you want to
receive a cookie that is called MyCookie, specify the filter as:
cookies=MyCookie

To retrieve all cookies in the request but exclude all parameters and headers,
set the custom property to cookies=*.

v The header, cookies, and parameters can be multi-valued.
v The cookie value includes the actual cookie value, the domain, and the path

that is separated by ;. For example, a cookie named MyCookie with value of
MyValue, path of /, and domain of my.domain is formatted on the XML
document as follows:
<Cookie Name="MyCookie" Type="urn:ibm:names:ITFIM:httprequest:cookies">

<Value>MyValue; %2F; my.domain</Value>
</Cookie>

An example of using the custom property to enable all the cookies, headers,
and parameters:
cookies=*:headers=*:parameters=*

The resulting HTTPRequestClaims element:
<HTTPRequestClaims xmlns="urn:ibm:names:ITFIM:httprequest">
<Attributes>

<Attribute Name="remoteAddress"
Type="urn:ibm:names:ITFIM:httprequest:remoteAddress">
<Value>127.0.0.1</Value>
</Attribute>
<Attribute Name="remoteHost" Type="urn:ibm:names:

ITFIM:httprequest:remoteHost">
<Value>fim620</Value>

</Attribute>
<Attribute Name="protocol" Type="urn:ibm:names:ITFIM:

httprequest:protocol">
<Value>HTTP</Value>
</Attribute>
<Attribute Name="method" Type="urn:ibm:names:ITFIM:

httprequest:method">

<Value>GET</Value>
</Attribute>

Chapter 46. One-time password deployment 645

<Attribute Name="pathInfo" Type="urn:ibm:names:ITFIM:
httprequest:pathInfo">

<Value>/xauth</Value>
</Attribute>

<Attribute Name="queryString"
Type="urn:ibm:names:ITFIM:httprequest:queryString">
<Value>Target=https://idp.fim.demo.com</Value>
</Attribute>
<Attribute Name="requestURI" Type="urn:ibm:names:

ITFIM:httprequest:requestURI">
<Value>/sps/xauth</Value>

</Attribute>
<Locales>
<Locale Name="locales" Type="urn:ibm:names:

ITFIM:httprequest:locales">
<Value>en_US</Value>
<Value>en</Value>

</Locale>
</Locales>
</Attributes>
<Headers>
<Header Name="iv-creds" Type="urn:ibm:names:ITFIM:

httprequest:headers">
<Value>Version=1,
BAKs3DCCBO0MADCCBOcwggT....WgQA
</Value>

</Header>
<Header Name="keep-alive" Type="urn:ibm:names:ITFIM:

httprequest:headers">
<Value>115</Value>
</Header>
<Header Name="accept-charset" Type="urn:ibm:names:

ITFIM:httprequest:headers">

<Value>ISO-8859-1,utf-8;q=0.7,*;q=0.7</Value>
</Header>
<Header Name="accept" Type="urn:ibm:names:ITFIM:
httprequest:headers">
<Value>text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8
</Value>
</Header>

<Header Name="host" Type="urn:ibm:names:ITFIM:
httprequest:headers">
<Value>fim620:9081</Value>
</Header>
<Header Name="iv-user" Type="urn:ibm:names:

ITFIM:httprequest:headers">
<Value>Unauthenticated</Value>

</Header>
<Header Name="referer" Type="urn:ibm:names:ITFIM:

httprequest:headers">
<Value>https://saml20ip/FIM/sps/saml20ip/saml20/

login?SAMLRequest=nVNdT8IwFP0rS....d%2FmV928%3D
</Value>
</Header>
<Header Name="via" Type="urn:ibm:names:ITFIM:

httprequest:headers">

<Value>HTTP/1.1 fim620:444</Value>
</Header>

646 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<Header Name="content-type" Type="urn:ibm:names:
ITFIM:httprequest:headers">
<Value>application/x-www-form-urlencoded</Value>
</Header>

<Header Name="iv-groups" Type="urn:ibm:names:ITFIM:
httprequest:headers">
<Value />
</Header>
<Header Name="iv_server_name" Type="urn:ibm:names:

ITFIM:httprequest:headers">
<Value>webseald-sp-webseald-localhost</Value>

</Header>
<Header Name="content-length" Type="urn:ibm:names:

ITFIM:httprequest:headers">

<Value>6245</Value>
</Header>
<Header Name="accept-language" Type="urn:ibm:names:

ITFIM:httprequest:headers">
<Value>en-us,en;q=0.5</Value>
</Header>

<Header Name="connection" Type="urn:ibm:names:ITFIM:
httprequest:headers">
<Value>close</Value>
</Header>
</Headers>
<Cookies>
<Cookie Name="jsessionid" Type="urn:ibm:names:ITFIM:

httprequest:cookies">
<Value>0000ZOelYEj9RH1aQVymcofXoKc:-1</Value>
</Cookie>
<Cookie Name="iv_jct" Type="urn:ibm:names:

ITFIM:httprequest:cookies">

<Value>%2FFIM</Value>
</Cookie>
</Cookies>
<Parameters>
<Parameter Name="Target"
Type="urn:ibm:names:ITFIM:httprequest:query:param">
<Value>https://idp.fim.demo.com</Value>
</Parameter>
</Parameters>
</HTTPRequestClaims>

Note: The parameter attribute type value indicates whether the parameter was
received in the query string or as part of the request body. For query string
parameters, the type is set to urn:ibm:names:ITFIM:httprequest:query:param.
For parameters received as part of the request body, the value is set to
urn:ibm:names:ITFIM:httprequest:body:param.

In the example, the cookies, headers, and parameters are filtered according to
the specified values.

This example filters the jsessionid cookie, host header, and RelayState
parameter:
cookies=jsessionid:headers=host:parameters=Target

Note: The values that are specified for parameters are case-sensitive. The
values for cookies and headers are not case-sensitive.

Chapter 46. One-time password deployment 647

The resulting HTTPRequestClaims element:
<HTTPRequestClaims xmlns="urn:ibm:names:ITFIM:httprequest">
<Attributes>
<Attribute Name="remoteAddress"
Type="urn:ibm:names:ITFIM:httprequest:remoteAddress">

<Value>127.0.0.1</Value>
</Attribute>
<Attribute Name="remoteHost"

Type="urn:ibm:names:ITFIM:httprequest:remoteHost">
<Value>fim620</Value>
</Attribute>

<Attribute Name="protocol"
Type="urn:ibm:names:ITFIM:httprequest:protocol">
<Value>HTTP</Value>
</Attribute>
<Attribute Name="method"

Type="urn:ibm:names:ITFIM:httprequest:method">
<Value>GET</Value>

</Attribute>
<Attribute Name="pathInfo"

Type="urn:ibm:names:ITFIM:httprequest:pathInfo">
<Value>/xauth</Value>
</Attribute>
<Attribute Name="queryString"
Type="urn:ibm:names:ITFIM:httprequest:queryString">

<Value>Target=https://idp.fim.demo.com</Value>
</Attribute>
<Attribute Name="requestURI"

Type="urn:ibm:names:ITFIM:httprequest:requestURI">
<Value>/sps/xauth</Value>
</Attribute>

<Locales>
<Locale Name="locales"

Type="urn:ibm:names:ITFIM:httprequest:locales">
<Value>en_US</Value>
<Value>en</Value>
</Locale>

</Locales>
</Attributes>
<Headers>
<Header Name="host"
Type="urn:ibm:names:ITFIM:httprequest:headers">
<Value>fim620:9081</Value>

</Header>
</Headers>
<Cookies>
<Cookie Name="jsessionid"

Type="urn:ibm:names:ITFIM:httprequest:cookies">
<Value>0000sOnmzkbGcYdIcevoYRuxq0m:-1</Value>

</Cookie>
</Cookies>
<Parameters>
<Parameter Name="Target"
Type="urn:ibm:names:ITFIM:httprequest:query:param">
<Value>https://idp.fim.demo.com</Value>
</Parameter>
</Parameters>
</HTTPRequestClaims>

648 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

An example HTTPRequestClaims as shown in the STSUUSER during the execution of
the authentication policy mapping:
<stsuuser:ContextAttributes>

.......
<stsuuser:Attribute name="HTTPRequestClaims"

type="urn:ibm:names:ITFIM:httprequest">

<stsuuser:Value>
<HTTPRequestClaims xmlns="urn:ibm:names:ITFIM:httprequest">

........
</HTTPRequestClaims>

</stsuuser:Value>
</stsuuser:Attribute>

.......
</stsuuser:ContextAttributes>

One-time password resend support
The one-time password login template page provides a regenerate and a reselect
button. Clicking the regenerate button allows users to regenerate a new one-time
password if the one-time password value is lost or not received. Clicking the
reselect button allows users to reselect their preferred delivery method.

Clicking the regenerate button causes the following actions:
1. Invalidate the old one-time password,
2. Generate a new one-time password value, and
3. Use the same delivery mechanism that is used in the previous delivery attempt

to deliver the new value.

Clicking the reselect button causes the following actions:
1. Invalidate the old one-time password.
2. Regenerate the list of methods to generate, deliver, and verify the one-time

password.
3. Redisplay the one-time password method selection page. The user can then

reselect the method to generate, deliver, and verify the one-time password.

Configuring an unauthenticated one-time password flow
You can run the one-time password flow without requiring prior user
authentication.

About this task

Before Tivoli Federated Identity Manager Fix Pack 5, the one-time password that is
relied on the /sps/auth URL to move from a phase of the flow to the other. The
/sps/auth URL is also used to force authentication on environments that use the
WebSEAL point of contact. This approach made it impossible to run a one-time
password flow where the user is not authenticated before the flow is run.

With the Tivoli Federated Identity Manager Fix Pack 5, you can run the one-time
password flow without requiring prior user authentication.

The default behavior is that this feature is enabled.

Chapter 46. One-time password deployment 649

To disable this feature, set the custom property SPS.POC.use.legacy.auth.url to
true. This configuration sets Tivoli Federated Identity Manager to behave as it did
before Fix Pack 5.

This feature requires several configuration steps on WebSEAL. The tfimcfg tool is
enabled to do the necessary configuration when a single sign-on federation is
configured.

You must rerun the tool to make the necessary configuration changes.

For environments that use the extended authentication mode the following steps
must be done manually.

Procedure
1. Configure a one-time password federation.
2. Add the /sps/authservice/authentication URL to the EAI trigger URLs.

EAI TRIGGER URLS
[eai-trigger-urls]
trigger = /FIM/sps/authservice/authentication*

3. Attach the unauthenticated ACL to the /sps/authservice/authentication URL.
pdadmin sec_master> acl attach /WebSEAL/<WEBSEAL_INSTANCE_ROOT>/FIM/sps/authservice/authentication xauth_unauth

For example:
pdadmin sec_master> acl attach /WebSEAL/localhost-webseald-ip/FIM/sps/authservice/authentication xauth_unauth

Migrating one-time password files into an existing environment
Update one-time password files to use time-based and counter-based one-time
passwords. Make this migration after you upgrade to Tivoli Federated Identity
Manager, version 6.2.2, Fix pack 7, from version 6.2.2, Limited Availability (LA) 5,
or later.

About this task

Tivoli Federated Identity Manager, version 6.2.2, Fix pack 7, installation does not
overwrite one-time password pages and mapping rules when you upgrade from
LA 5, or later.

If you upgrade from Fix pack 4, one-time password files are overwritten.
Therefore, you do not need to complete this procedure to use time-based or
counter-based one-time passwords.

Procedure
1. Update HTML pages for a time-based and counter-based one-time password:

a. Browse to FIM_INSTALL_DIR/pages_template/LOCALE/otp/.
b. Locate the following HTML page samples and check if updates apply to

your environment:

650 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Updated HTML pages Updates in 6.2.2.7

login.html v @OTP_METHOD_TYPE@ macro can hide the
Regenerate button.

v If login attempt limits are enabled and
exceeded, a @OTP_LOGIN_DISABLED@ macro
that is set in the otp_verify.js mapping
rule can disable Submit when it is used
inside an HTML input tag.

delivery_selection.html Minor descriptive text change.

c. Update the file of the same name in FIM_INSTALL_DIR/pages/LOCALE/otp/ by
taking one of the following actions:
v Copy the new HTML file over the existing file if no customization was

done to the file.
v Merge changes from the new HTML file into the existing HTML file to

retain custom content.
2. Update your existing mapping rules with the information in the sample

mapping rules:
a. Browse to FIM_INSTALL_DIR/examples/js_mappings/.
b. Locate the following mapping rule files and check if updates apply to your

environment:

Updated mapping rules Updates in 6.2.2.7

otp_get_delivery_methods.js v The userInfoType attribute specifies the
User Info Provider for time-based and
counter-based passwords. If unspecified
or set to an empty string, no provider is
used.

v New counter-based, one-time password
method was added.

v New time-based, one-time password
method was added.

otp_deliver.js When the delivery method is no_delivery, a
check is done to provide no one-time
password hint.

otp_verify.js v Different classes are now imported.

v A native login attempt limit exception is
used, not one with IDMappingExtUtils.

v A user-defined @OTP_LOGIN_DISABLED@
macro can disable Submit in login.html
when the login attempt limit is exceeded.

c. Merge changes from the new mapping rules into the existing mapping rules
to retain any custom content.

Customizing one-time password
Edit the mapping rules and template pages to customize one-time password.

Customizing one-time password mapping rules
Edit the one-time password mapping rules to customize the processing of one-time
passwords.

Chapter 46. One-time password deployment 651

The sample mapping rules are in $FIM_INSTALL_DIR$/examples/js_mappings. The
following one-time password mapping rules are available:
v otp_get_delivery_methods.js - This file contains the

OTPGetDeliveryMethodsMappingRule.
v otp_generate.js- This file contains the OTPGenerateMappingRule.
v otp_deliver.js - This file contains the OTPDeliverMappingRule.
v otp_verify.js This file contains the OTPVerifyMappingRule.

You can customize the following one-time password mapping rules:
v “OTPDeliver mapping rule”
v “OTPGenerate mapping rule” on page 653
v “OTPGetDeliveryMethods mapping rule” on page 653
v “OTPVerify mapping rule” on page 655

OTPDeliver mapping rule
The OTPDeliver mapping rule is a mapping rule that is executed when Tivoli®

Federated Identity Manager delivers the one-time password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated
with the one-time password. Tivoli Federated Identity Manager uses the
one-time password hint to inform which one-time password the user must
submit. The one-time password hint is displayed in the One-Time
Password Login page. It is also sent to the user together with the one-time
password.

You can customize the way the one-time password hint is generated by
modifying the following section in the default OTPDeliver mapping rule:
var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time
password. Tivoli Federated Identity Manager sends the formatted one-time
password, instead of the actual one-time password, to the user. For
example, for one-time password hint abcd, and one-time password
12345678, you can set the formatted one-time password as abcd-12345678.
For one-time time password hint efgh, and one-time password87654321,
you can set the one-time password as efgh#8765#4321.

You can customize the way that the one-time password is generated by
modifying the following section in the sample OTPDeliver mapping rule:
var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time
password

Tivoli Federated Identity Manager uses the delivery type to determine the
one-time password Delivery plug-in that delivers the one-time password to
the user.

652 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Modify the delivery attribute of the selected method to deliver the Tivoli
Federated Identity Manager

The delivery attribute is an attribute that is associated with delivery type.
The meaning of the delivery attribute depends on the one-time password
provider plug-in for the delivery type. For example, for SMS delivery type,
the delivery attribute is the mobile number of the user. For email delivery
type, the delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

OTPGenerate mapping rule
OTPGenerate mapping rule is a mapping rule that is executed when Tivoli
Federated Identity Manager generates the one-time password for the user.

You can use the OTPGenerate mapping rule in the following configuration:

Modify the one-time password type of the selected method to generate the
one-time password

Tivoli Federated Identity Manager uses one-time password type to
determine the one-time password Provider plug-in that generates the
one-time password for the user.

Note: See the comments in the mapping rule for more details.

OTPGetDeliveryMethods mapping rule
OTPGetDeliveryMethods is a mapping rule that runs when the one-time password
response file retrieves the methods for delivering the one-time password to the
user.

This sample mapping rule sets password delivery conditions for the following
delivery methods:
v By email
v By SMS
v No delivery

Each delivery method includes the following attributes and their corresponding
value:

id Specifies a unique delivery method ID. This value replaces the
@OTP_METHOD_ID@ macro in the OTP Method Selection page. Use a unique
value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The
value must match one of the types in the
DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file.
For example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value
depends on the one-time password provider plug-in for the delivery type.
For example:
v For SMS delivery, the value is the mobile number of the user. For

example, mobileNumber.
v For email delivery, the value is the email address of the user. For

example, emailAddress.
v For no delivery, the value is an empty string.

Chapter 46. One-time password deployment 653

label Specifies the unique delivery method to the user. For time-based and
counter-based one-time password, use this attribute to specify the secret
key of the user. If label is not specified, the time-based and counter-based
one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in
the OTP Method Selection page.

otpType
Specifies the one-time password provider plug-in that generates and
verifies the password. The value must match one of the types in the
OTPTypesToOTPProviderModuleIds parameter of the OTP response file. For
example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user
information that is required to calculate the one-time password. This
parameter is only required if user information is used for calculation of the
one-time password.

To customize one-time password delivery, you can do one of the following actions:
v Create your own mapping rules that are based on the sample

OTPGetDeliveryMethods mapping rule.
v Modify the sample OTPGetDeliveryMethods mapping rule.

Sample OTPGetDeliveryMethods mapping rule
var methods = [];

if (useSMSDelivery) {
var mobileNumber = new java.lang.String("12345678");
//var mobileNumber = attributeContainer.getAttributeValueByName("tagvalue_phone");
var fomattedMobileNumber = mobileNumber;
if (mobileNumber != null && mobileNumber.length() > 4) {

formattedMobileNumber = mobileNumber.substring(0, mobileNumber.length() - 4) + "XXXX";
}
var method = {

id: "sms",
otpType: "mac_otp",
deliveryType: "sms_delivery",
deliveryAttribute: mobileNumber,
label: "SMS to: " + formattedMobileNumber,
userInfoType: ""

};
methods.push(method);

}

if (useEmailDelivery) {
var emailAddress = new java.lang.String("username@tfim.ibm.com");
//var emailAddress = attributeContainer.getAttributeValueByName("tagvalue_email");
var fomattedEmailAddress = emailAddress;
if (emailAddress != null && emailAddress.length() > 4) {

fomattedEmailAddress = "XXXX" + emailAddress.substring(4);
}
var method = {

id: "email",
otpType: "mac_otp",
deliveryType: "mail_delivery",
deliveryAttribute: emailAddress,
label: "Email to: " + fomattedEmailAddress,
userInfoType: ""

};
methods.push(method);

}

if (useTOTP) {
var method = {

id: "totp",
otpType: "totp_otp",
deliveryType: "no_delivery",
deliveryAttribute: "SECRET_KEY_GOES_HERE",
label: "Time Based OTP",

654 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

userInfoType: "file_userinfo"
};
methods.push(method);

}

if (useHOTP) {
var method = {

id: "hotp",
otpType: "hotp_otp",
deliveryType: "no_delivery",
deliveryAttribute: "SECRET_KEY_GOES_HERE",
label: "Counter Based OTP",
userInfoType: "file_userinfo"

};
methods.push(method);

}

Note: See the comments in the mapping rule for more details.

OTPVerify mapping rule
OTPVerify is a mapping rule that runs when Tivoli Federated Identity Manager
verifies the one-time password that is submitted by the user.

You can customize the sample OTPVerify mapping rule to modify the following
verification rules:

Modify the one-time password type of the user
Tivoli Federated Identity Manager uses the one-time password type to
determine the one-time Provider plug-in that verifies the one-time
submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued
that contains the authentication level of the user. You can customize the
authentication level by modifying the following section in the mapping
rule:
var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType

("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",

"urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the
one-time password login page

If a user exceeds the permitted number of times to submit a one-time
password, an error message displays. You can customize the number of
times that the user can submit the one-time password in the one-time
password login page by modifying the following section in the mapping
rule:
var retryLimit = 5;

By default, this option is set to false.

Identify the secret key of a user
When a user registers with a time-based one-time password application,
they are assigned a secret key. Store the secret key in this mapping rule for
verification of the user by modifying the following code:
var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.

To customize one-time password verification, you can do one of the following
actions:

Chapter 46. One-time password deployment 655

v Create your own verification rules that are based on the sample OTPVerify
mapping rule.

v Modify the sample OTPVerify mapping rule.

Customizing one-time password template pages
Edit the one-time password template pages to customize the look of the pages that
Tivoli Federated Identity Manager displays to the user and to customize the
content of the SMS and email that the SMSOTPDelivery and EmailOTPDelivery
sends to the users. The SMSOTPDelivery and EmailOTPDelivery are the one-time
password delivery plug-ins that are shipped with Tivoli Federated Identity
Manager.

The following one-time password template pages are available in
$FIM_INSTALL_DIR$/pages/$LOCALE$/otp:
v login.html- The one-time password template page for login.
v delivery_selection.html- The one-time password template page for delivery

selection.
v errors/allerror.html- The one-time password template page for general errors.
v errors/error_could_not_validate_otp.html- Thee one-time password template

page for one-time password validation error.
v errors/error_generating_otp.html- The one-time password template page for

generating one-time password error.
v errors/error_get_delivery_options.html- The one-time password template

page for get delivery error.
v errors/error_otp_delivery.html- The one-time password template page for

delivery error.
v errors/error_sts_invoke_failed.html- The one-time password template page

for security trust service operation error.
v delivery/sms_message.xml- The one-time password template page for SMS.
v delivery/email_message.xml- The one-time password template page for email.

After you modify the pages, you must publish the pages for the changes to take
effect. See Publishing pages to the Tivoli Federated Identity runtime environment.

One-time password template page for login
This template page is used by Tivoli Federated Identity Manager to display the
form where the user can enter the one-time password. The page is also called
One-Time Password Login page.

The template has the following replacement macros:

@ERROR_MESSAGE@
This macro is replaced with a message that indicates that the submitted
one-time password contains errors. Examples of these errors are that the
submitted one-time password is not valid and the one-time password is
submitted after it expires.

@MAPPING_RULE_DATA@
If the submitted one-time password contains an error, this macro is
replaced with the value of the STS Universal User context attribute whose
name is @MAPPING_RULE_DATA@ and type is otp.sts.macro.type. This context
attribute can be set in the “OTPVerify mapping rule” on page 655.

656 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/admin/task/config/fsso/publishingpages.html

@OTP_HINT@
This macro is replaced with one-time password hint. The one-time
password hint is a sequence of characters that is associated with the
one-time password. It is used by Tivoli Federated Identity Manager to
inform which one-time password that the user must submit.

@REGENERATE_ACTION@
This macro is replaced with the URL where the Generate button posts the
form to regenerate and deliver the new one-time password value.

@RESELECT_ACTION@
This macro is replaced with the URL where the Reselect button posts the
form to reselect the method for generating, delivering, and verifying the
one-time password value.

@OTP_METHOD_TYPE@
This macro is replaced by the type of the currently selected method for
generating, delivering, and verifying the one-time password. This type is
generated by OTPGetDeliveryMethods mapping rule and was selected by
the user.

One-time password template page for delivery selection
This template page displays the list of methods for generating, delivering, and
verifying the one-time password. It is also called One-Time Password Method
Selection page.

@OTP_METHOD_ID@
This macro is replaced by the ID of the method for generating, delivering,
and verifying the one-time password. This ID is generated by
OTPGetDeliveryMethods mapping rule.

@OTP_METHOD_LABEL@
This macro is replaced by the label of the method for generating,
delivering, and verifying the one-time password. This label is generated by
OTPGetDeliveryMethods mapping rule.

@OTP_METHOD_CHECKED@
For the first method, this macro is replaced with an HTML radio button
attribute that causes that radio button to be selected. For the remaining
methods for generating, delivering, and verifying, this macro is replaced
with an empty string.

One-time password template page for general errors
This template page is used by Tivoli Federated Identity Manager to display general
errors that happen during the one-time password flow. General errors are errors
that are not displayed in other template pages.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

Chapter 46. One-time password deployment 657

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>One-Time Password Error</title>

</head>

<body style="background-color: #ffffff">
<div>

<h2 style="color: #ff8800">An error has occurred.</h2>
<div id="infoDiv" style="background-color: #ffffff; color: #000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

One-time password template page for generating one-time
password error
This template page is used by Tivoli Federated Identity Manager to display errors
that happen when Tivoli Federated Identity Manager generates one-time password.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

Figure 70. Template for allerror.html

Figure 71. Template for error_generating_otp.html

658 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>One-Time Password Error</title>

</head>

<body style="background-color: #ffffff">
<div>

<h2 style="color:#ff8800">An error occurred while
generating the one-time password.</h2>
<div id="infoDiv" style="background-color: #ffffff; color: #000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;

border-style: solid; border-width: 1px; border-color: #000000">
<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color: #999999;

border-style: solid; border-width: 1px; border-color: #000000">
<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

One-time password template page for get delivery error
This template page is used by Tivoli Federated Identity Manager to display errors
that happen when Tivoli Federated Identity Manager retrieves the list of methods
for delivering one-time password to the user.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>One-Time Password Error</title>

</head>

<body style="background-color: #ffffff">
<div>

<h2 style="color: #ff8800">An error occurred while
obtaining the one-time password delivery options.</h2>

Figure 72. Template for error_get_delivery_options.html

Chapter 46. One-time password deployment 659

<div id="infoDiv" style="background-color: #ffffff; color: #000000">
@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

One-time password template page for delivery error
This template page is used by Tivoli Federated Identity Manager to display errors
that happen when Tivoli Federated Identity Manager delivers one-time password
to user.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>One-Time Password Error</title>

</head>

<body style="background-color:#ffffff">
<div>

<h2 style="color:#ff8800">An error occurred while
delivering the one-time password value.</h2>
<div id="infoDiv" style="background-color: #ffffff; color: #000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Error details</h4>

Figure 73. Template for error_otp_delivery.html

660 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

@DETAIL@
</div>

<div id="stackDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

One-time password template page for security trust service
operation error
This template page is used by Tivoli Federated Identity Manager to display errors
that happen when Tivoli Federated Identity Manager invokes the Security Token
Service.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>One-Time Password Error</title>

</head>

<body style="background-color: #ffffff">
<div>

<h2 style="color: #ff8800">An error occurred while
invoking the trust service to perfom a one-time password operation.</h2>
<div id="infoDiv" style="background-color: #ffffff; color: #000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">
<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">

<h4>Stack trace</h4>
@EXCEPTION_STACK@

Figure 74. Template for error_sts_invoke_failed.html

Chapter 46. One-time password deployment 661

</div>
</div>

</body>
</html>

One-time password template page for one-time password
validation error
This template page is used by Tivoli Federated Identity Manager to display errors
that happen when Tivoli Federated Identity Manager validates the one-time
password that the user submits.

The template has the following replacement macros:

@REQ_ADDR@
This macro is replaced with the URL into which the request from the user
is sent.

@TIMESTAMP@
This macro is replaced with the timestamp when the error occurred.

@DETAIL@
This macro is replaced with the error message.

@EXCEPTION_STACK@
This macro is replaced with the stack trace of the error.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>One-Time Password Error</title>

</head>

<body style="background-color:#ffffff">
<div>

<h2 style="color: #ff8800">The one-time password
value could not be validated.</h2>
<div id="infoDiv" style="background-color: #ffffff; color: #000000">

@REQ_ADDR@

@TIMESTAMP@

</div>

<div id="detailDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">

<h4>Error details</h4>
@DETAIL@

</div>

<div id="stackDiv" style="background-color: #999999;
border-style: solid; border-width: 1px; border-color: #000000">

<h4>Stack trace</h4>
@EXCEPTION_STACK@

</div>
</div>

</body>
</html>

Figure 75. Template for error_could_not_validate_otp.html

662 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

One-time password template page for Short Message Service
(SMS)
This template page is used by SMSOTPDelivery as the content of the SMS that it
sends to the user.

The template has the following replacement macro:

@OTP_STRING@
This macro is replaced with the one-time password generated by the
one-time password provider plug-in.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<Message>

<Value>
This is your one-time password @OTP_STRING@.

Thank you,
OTP Test

</Value>
</Message>
</root>

One-time password template page for email
This template page is used by EmailOTPDelivery as the content of the email that it
sends to the user.

The template has the following replacement macro:

@OTP_STRING@
This macro is replaced with the one-time password generated by the
one-time password provider.

<?xml version="1.0" encoding="UTF-8"?>
<root>
<Subject>

<Value>
One-time password

</Value>
</Subject>

<Message>
<Value>

This is your one-time password @OTP_STRING@.

Thank you,
OTP Test

</Value>
</Message>
</root>

Authentication policy mapping rule customization
The authentication policy mapping rule determines the authentication policy that is
based on the request context.

Figure 76. Template page for sms_message.xml

Figure 77. Template for email_message.xml

Chapter 46. One-time password deployment 663

An authentication policy is a set of rules that are applied to the authentication
process and to the verification of authentication data. The authentication policy
enforcement is determined based on the request context.

The authentication policy consists of the required authentication level,
authentication mode, and authentication type. Use a JavaScript mapping rule to
determine the authentication level, authentication type, and authentication mode
policy settings. See “One-time password configuration overview” on page 632 for
more details.

The sample authentication policy mapping rules are in $FIM_INSTALL_DIR$/
examples/js_mappings.

You can modify the following code in the otp_authnpolicy.js mapping rule.
// Override the authentication mode, level, and type
based on the ip address of the user
var ipAddress = stsuu.getAttributeValueByName("AZN_CRED_NETWORK_ADDRESS_STR");
if (ipAddress != null && ipAddress.indexOf("YOUR_IP_ADDRESS_PREFIX") == 0) {

var contextAttributes = stsuu.getContextAttributes();

var authModeAttr = new Attribute("AuthenticationMode",
null, "INDIVIDUAL");
contextAttributes.setAttribute(authModeAttr);

var authLevelAttr = new Attribute("AuthenticationLevel", null, "2");
contextAttributes.setAttribute(authLevelAttr);

var authTypeAttr =
new Attribute("AuthenticationType", null, "HIERARCHICAL");
contextAttributes.setAttribute(authTypeAttr);

Note: See the comments in the mapping rules for more details.
Related concepts:
“One-time password overview” on page 631
Tivoli Federated Identity Manager provides various authentication mechanisms in
the point of contact interface.

Creating user-defined macros
The one-time password method selection page and one-time password login page
contain macros that you can use for various purposes.

About this task

In addition to these macros, you can define your own macros. Defining your own
macros is a two-step process.

Procedure
1. Specify the name and the value of the macros in the one-time password

mapping rules.
a. To define a macro in OTP mapping rule, add an attribute into STS Universal

User context attribute.
b. Use otp.sts.macro.type as the type of the attribute.
c. Use the name of the macro as the name of the attribute.
d. Use the value of the macro as the value of the attribute.
The value of the macro must be a string. The following is an example of
JavaScript code.

664 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

var contextUserMacro = new Attribute("@OTP_MAPPING_RULE_DATA@",
"otp.sts.macro.type", "Data from OTP mapping rule");
stsuu.getContextAttributesAttributeContainer().setAttribute(contextUserMacro);

In this example, the name of the macro is @OTP_MAPPING_RULE_DATA@, and the
value of the macro is Data from OTP mapping rule.

2. Add the name of the macros in the one-time password Method Selection page
and one-time password Login pages.
a. To display macros in the one-time password Method Selection page, define

them in OTPGetDeliveryMethods mapping rule.
b. To display macros in the one-time password Login page, define them in

OTPGenerate mapping rule, OTPDeliver mapping rule, or OTPVerify
mapping rule, depending on the operation that causes the one-time
password Login page to be displayed.
If the one-time password Login page is displayed after a one-time password
is generated and delivered, the macros that are defined in OTPGenerate and
OTPDeliver mapping rule are used. If the one-time password Login page is
displayed after the one-time password provider plug-in determines that the
submitted one-time password is incorrect, the macros that are defined in
OTPVerify mapping rule are used.

manageItfimOneTimePassword
Use the manageItfimOneTimePassword command to list, view, configure, modify,
and unconfigure one-time password federations.

Purpose

The manageItfimOneTimePassword command does the following operations:
v Listing all one-time password federations
v Viewing a one-time password federation
v Configuring a one-time password federation
v Modifying a one-time password federation
v Unconfiguring a one-time password federation
v Creating a one-time password response file

Syntax
$AdminTask manageItfimOneTimePassword {-operation operation
-fimDomainName domainName [optional_parameters]}

Parameters

The operation parameter and fimDomainName parameters are required. The
following are optional parameters:

-federationName federationName

-fileId fileId

-humanReadable humanReadable

The use of these parameters depend on the operation.

The following parameters are available for use with the
manageItfimOneTimePassword command:

Chapter 46. One-time password deployment 665

-operation operation
Specifies the operation that you want to do. Table 1 lists the operations that are
supported by this command.

Table 154. Values for the -operation parameter

Value Description and requirements

list Lists all one-time password federations.

view Displays the details of a one-time password
federation. When you use this operator, you
must also use the following parameters:

federationName federationName
The name of the one-time password
federation that you want to view.

humanReadable humanReadable
The parameter that produces a
human-readable display of the
one-time password federation.

configure Configures a one-time password federation.
When you use this operator, you must also
use the following parameter:

fileId fileId
The file name of the response file
that is based on which the new
one-time password federation is
configured.

The name of the newly configured one-time
password federation is specified in the
response file by using the property FedName.

unconfigure Unconfigures a one-time password
federation. When you use this operator, you
must also use the following parameter:

federationName federationName
The name of the one-time password
federation that you want to
unconfigure.

666 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 154. Values for the -operation parameter (continued)

Value Description and requirements

modify Modifies a one-time password federation.
When you use this operator, you must also
use the following parameters:

federationName federationName
The name of the one-time password
federation that you want to modify.

fileId fileId
The name of the one-time password
response file that is based on which
the one-time password federation is
modified.

To modify a one-time password federation,
follow these steps:

1. Create a response file that is based on
the one-time password federation that
you want to modify.

2. Open the one-time password response
file with a text editor.

3. Modify the parameters that you want to
change.

4. Save and close the file.

5. Run the modify operation by specifying
the file name of the response file in the
fileId parameter.

If you want to modify the name of the
one-time password federation, use the
parameter FedName in the one-time password
response file.

Chapter 46. One-time password deployment 667

Table 154. Values for the -operation parameter (continued)

Value Description and requirements

createResponseFile Creates a one-time password response file.

You can create a sample response file or
create a response file that is based on an
existing one-time password federation.

Creating a sample response file
When you use this operator, you
must also use the following
parameter:

fileId fileId

The name of the one-time password
response file.

Creating a response file that is based on an
existing one-time password federation

When you use this operator, you
must also use the following
parameters:

v federationName federationName

The name of the one-time
password federation that is based
on which the one-time password
response file is created.

v fileId fileId

The name of the one-time
password response file.

-fimDomainName fimDomainName
Specifies the name of the domain where the operation is executed. The domain
must exist.

-federationName federationName
Specifies the name of the one-time password federation. The federation must
exist.

-fileId fileId
Specifies the name of the one-time password response file.

-humanReadable humanReadable
Specifies whether a human-readable display of the one-time password
federation is shown.

Examples

The following examples show the correct syntax for several of the tasks for this
command:

List all existing one-time password federations:
$AdminTask manageItfimOneTimePassword {-operation list
-fimDomainName otpdomain}

View a human-readable display of the details of a one-time password
federation:

$AdminTask manageItfimOneTimePassword {-operation view
-fimDomainName otpdomain -federationName otpfed}

668 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

View a machine-friendly display of the details of a one-time password
federation:

$AdminTask manageItfimOneTimePassword {-operation view
-fimDomainName otpdomain -federationName otpfed -humanReadable false}

Configure a one-time password federation
$AdminTask manageItfimOneTimePassword {-operation configure
-fimDomainName otpdomain
-fileId /home/user/otp_response.xml}

Modify a one-time password federation:
$AdminTask manageItfimOneTimePassword {-operation modify
-fimDomainName otpdomain
-federationName otpfed -fileId /home/user/otp_response.xml}

Unconfigure a one-time password federation:
$AdminTask manageItfimOneTimePassword {-operation unconfigure
-fimDomainName otpdomain -federationName otpfed}

Create a sample response file:
$AdminTask manageItfimOneTimePassword {-operation createResponseFile
-fimDomainName otpdomain
-fileId /home/user/otp_response.xml}

Create a response file that is based on an existing one-time password
federation:

$AdminTask manageItfimOneTimePassword {-operation createResponseFile
-fimDomainName otpdomain
-federationName otpfed -fileId /home/user/otp_response.xml}

One-time password response file
Create a one-time password response file with the manageItfimOneTimePassword
command to configure a new one-time password federation or modify an existing
one-time password federation. Edit it with the appropriate values for your
environment.

The one-time password response file is an XML file that is used by the
manageItfimOneTimePassword command for configuring and modifying one-time
password federations. You can use the same command to create a sample one-time
password response file or a one-time password response file that is based on an
existing one-time password federation. If you create a sample one-time password
response file, the values of the parameters in the response file are populated with
sample values. If you create a one-time password response file that is based on an
existing one-time password federation, the values of the parameters in the
response file are populated with the values used in that one-time password
federation. See “manageItfimOneTimePassword” on page 665 for more details.

Sample one-time password response file
Create a sample one-time password response file with the following
command:
$AdminTask manageItfimOneTimePassword {-operation createResponseFile
-fimDomainName otpDomain -fileId /home/user/otp.response}

Existing one-time password federation
Create a response file that is based on an existing one-time password
federation with the following command:
$AdminTask manageItfimOneTimePassword {-operation createResponseFile
-fimDomainName otpDomain -federationName otpFederation
-fileId /home/user/otp.response}

Examples of the response file are in the following directories:

Chapter 46. One-time password deployment 669

AIX, Linux or Solaris:
/opt/IBM/FIM/examples/responsefiles

Windows:
C:\Program Files\IBM\FIM\examples\responsefiles

Parameters

You must specify the parameters in the one-time response file before it can be used
by the manageItfimOneTimePassword command. The following information lists all
the parameters in the one-time password response file.

FedName

The name of the one-time password federation if the one-time password
response file is used for configuring one-time password federation.

The new name of the one-time password federation if the one-time
password response file is used for modifying an existing one-time
password federation.

The name of the one-time password federation must contain alphanumeric
characters only and must not be used by another one-time password
federation.

Required: Yes

Example: otpfed

OTPGetDelivery
MethodsMappingRule

The XML escaped content of the OTPGetDeliveryMethods mapping rule.

You must specify this parameter or OTPGetDelivery
MethodsMappingRuleFileName. If both parameters are specified, this
parameter is used.

See “OTPGetDeliveryMethods mapping rule” on page 653 for more details.

Required:
Yes, when the parameter OTPGetDelivery
MethodsMappingRuleFileName is not specified.
No, when the parameter OTPGetDelivery
MethodsMappingRuleFileName is specified.

Example:
See $FIM_INSTALL_DIR$/examples/js_mappings/
otp_get_delivery_methods.js.

OTPGetDelivery
MethodsMapping
RuleFileName

The name of the file that contains the OTPGetDelivery
Methods mapping rule.

You must specify this parameter or OTPGetDelivery
MethodsMappingRule. If both parameters are specified, this parameter is not
used.

See “OTPGetDeliveryMethods mapping rule” on page 653 for more details.

670 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Required: Yes, when the parameter OTPGetDelivery
MethodsMappingRule is not specified.
No, when the parameter OTPGetDelivery
MethodsMappingRule is specified.

Example: /home/user/otp_get_delivery_methods.js

OTPGetDelivery
MethodsMapping
RuleType

The type of the OTPGetDelivery
Methods mapping rule.

The type must be JAVASCRIPT or XSLT.

See “OTPGetDeliveryMethods mapping rule” on page 653 for more details.

Required: Yes

Example: JAVASCRIPT

OTPGenerate
MappingRule

The XML escaped content of the OTPGenerate mapping rule.

You must either specify this parameter or OTPGenerateMapping
RuleFileName. If both parameters are specified, this parameter is used.

See “OTPGenerate mapping rule” on page 653 for more details.

Required:
Yes, when the parameter OTPGenerateMapping
RuleFileName is not specified.
No, when the parameter OTPGenerateMapping
RuleFileName is specified.

Example:
See $FIM_INSTALL_DIR$/examples/js_mappings/otp_generate.js.

OTPGenerate
MappingRuleFileName

The name of the file that contains the OTPGenerate mapping rule.

You must either specify this parameter or the parameter OTPGenerate
MappingRule. If both parameters are specified, this parameter is not used.

See “OTPGenerate mapping rule” on page 653 for more details.

Required: Yes, when the parameter OTPGenerate
MappingRule is not specified.
No, when the parameter OTPGenerate
MappingRule is specified.

Example: /home/user/otp_generate.js

OTPGenerate
MappingRuleType

The type of the OTPGenerate mapping rule.

The type must be JAVASCRIPT or XSLT.

See “OTPGenerate mapping rule” on page 653 for more details.

Required: Yes

Chapter 46. One-time password deployment 671

Example: JAVASCRIPT

OTPDeliverMappingRule

The XML escaped content of the OTPDeliver mapping rule.

You must either specify this parameter or the parameter OTPDeliver
MappingRuleFileName. If both parameters are specified, this parameter is
used.

See “OTPDeliver mapping rule” on page 652 for more details.

Required: Yes, when the parameter OTPDeliver
MappingRuleFileName is not specified.
No, when the parameter OTPDeliver
MappingRuleFileName is specified.

Example:
See $FIM_INSTALL_DIR$/examples/js_mappings/otp_deliver.js.

OTPDeliver
MappingRuleFileName

The name of the file that contains the OTPDeliver mapping rule.

You must either specify this parameter or the parameter OTPDeliver
MappingRule. If both parameters are specified, this parameter is not used.

See “OTPDeliver mapping rule” on page 652 for more details.

Required: Yes, when the parameter OTPDeliver
MappingRule is not specified.
No, when if the parameter OTPDeliver
MappingRule is specified.

Example: /home/user/otp_deliver.js

OTPDeliver
MappingRuleType

The type of the OTPDeliver mapping rule.

The type must be JAVASCRIPT or XSLT.

See “OTPDeliver mapping rule” on page 652 for more details.

Required: Yes

Example: JAVASCRIPT

OTPVerifyMappingRule

The XML escaped content of the OTPVerify mapping rule.

You must either specify this parameter or the parameter OTPVerify
MappingRuleFileName. If both parameters are specified, this parameter is
used.

See “OTPVerify mapping rule” on page 655 for more details.

Required: Yes, when the parameter OTPVerify
MappingRuleFileName is not specified.
No, when the parameter OTPVerify
MappingRuleFileName is specified.

Example:
See $FIM_INSTALL_DIR$/examples/js_mappings/otp_verify.js.

672 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

OTPVerifyMapping
RuleFileName

The name of the file that contains the OTPVerify mapping rule.

You must either specify this parameter or the parameter OTPVerify
MappingRule. If both parameters are specified, this parameter is not used.

See “OTPVerify mapping rule” on page 655 for more details.

Required: Yes, when the parameter OTPVerify
MappingRule is not specified.
No, when the parameter OTPVerify
MappingRule is specified.

Example: /home/user/otp_verify.js

OTPVerifyMapping
RuleType

The type of the OTPVerify mapping rule.

The type must be JAVASCRIPT or XSLT.

See “OTPVerify mapping rule” on page 655 for more details.

Required: Yes

Example: JAVASCRIPT

OTPTypesTo
OTPProviderModuleIds

The list of mappings from one-time password type to one-time password
provider module IDs.

Each mapping specifies the one-time password provider plug-in that
generates and verifies the one-time password for users with the specified
one-time password type.

Each user can be associated with one-time password type. The one-time
password provider module ID is an extension ID of the one-time password
provider plug-in.

Required: No

Example: See
OTPTypesToOTPProviderModuleIds.

DeliveryTypesTo
OTPDeliveryModuleIds

The list of mappings from delivery type to one-time password delivery
module IDs.

Each mapping specifies the one-time password delivery plug-in that
delivers the one-time password for users with the specified delivery type.

Each user might be associated with delivery type. The one-time password
delivery module ID is an extension ID of the one-time password delivery
plug-in.

Required: No

Example: See
DeliveryTypesToOTPDeliveryModuleIds.

Chapter 46. One-time password deployment 673

OTPProvider
ModuleConfigs

The list of mappings from one-time password type or one-time password
provider module IDs to configurations.

The one-time password type or the one-time password provider module ID
must correspond to a one-time password type or a one-time password
provider module ID that is specified in the property OTPTypesTo
OTPProviderModuleIds. Each configuration is a mapping from parameter
name to parameter values.

Each mapping specifies the configuration of the specified one-time
password provider module.

Required: No

Example: See OTPProviderModuleConfigs.

OTPDelivery
ModuleConfigs

The list of mappings from delivery type or one-time password delivery
module IDs to configurations.

The delivery type or the one-time password delivery module ID must
correspond to a delivery type or a one-time password delivery module ID
that is specified in the property OTPTypesTo
OTPDeliveryModuleIds. Each configuration is a mapping from parameter
name to parameter values.

Each mapping specifies the configuration of the specified one-time
password delivery module.

Required: No

Example: See OTPDeliveryModuleConfigs.

Sensitive Parameters

Some of the configurations of the one-time password provider module and the
one-time password delivery module might be sensitive.

An example is the SMTPPassword configuration of the EmailOTPDelivery one-time
password delivery module. You can declare these configurations as sensitive by
annotating the parameter name with @Sensitive.

Tivoli Federated Identity Manager obfuscates all configurations that are declared as
sensitive before it stores them in the Tivoli Federated Identity Manager
configuration files.

When you view a one-time password federation, the sensitive configurations are
displayed in obfuscated form. When you create a one-time response file that is
based on an existing one-time password federation, the sensitive configurations are
populated in obfuscated form.

For an example of a sensitive configuration, see OTPDeliveryModuleConfigs.

Examples
v

674 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

OTPTypesToOTPProviderModuleIds parameter
The following example shows the value of the parameter
OTPTypesToOTPProviderModuleIds:
<object class="java.util.HashMap">

<void method="put">
<string>mac_otp</string>
<string>MobileAuthCodeOTPModule</string>

</void>
</object>

This example contains only one mapping. It shows a mapping from
one-time password type mac_otp to one-time password provider module
ID MobileAuthCodeOTPModule.

v

DeliveryTypesToOTPDeliveryModuleIds parameter
The following example shows the value of the parameter
DeliveryTypesToOTPDeliveryModuleIds:
<object class="java.util.HashMap">

<void method="put">
<string>sms_delivery</string>
<string>SMSOTPDelivery</string>

</void>
<void method="put">

<string>mail_delivery</string>
<string>EmailOTPDelivery</string>

</void>
</object>

This example contains two mappings.
– The first mapping is a mapping from delivery type sms_delivery to

one-time password delivery module ID SMSOTPDelivery.
– The second mapping is a mapping from delivery type mail_delivery

to one-time password delivery module ID EmailOTPDelivery.
v

OTPProviderModuleConfigs parameter
The following example shows the value of the parameter
OTPProviderModuleConfigs:
<object class="java.util.HashMap">

<void method="put">
<string>mac_otp</string>
<object class="java.util.HashMap">

<void method="put">
<string>StoreEntryFactoryHashAlgorithm</string>
<object class="java.util.ArrayList">

<void method="add">
<string>SHA-256</string>

</void>
</object>

</void>
<void method="put">

<string>GeneratorCharacterSet</string>
<object class="java.util.ArrayList">

<void method="add">
<string>0123456789</string>

</void>
</object>

Chapter 46. One-time password deployment 675

</void>
</object>

</void>
</object>

This example contains one mapping. This is a mapping from one-time
password type mac_otp to its configuration. The configuration contains
two parameters. The first parameter name is
StoreEntryFactoryHashAlgorithm, which has only one parameter value
SHA-256. The second parameter is GeneratorCharacterSet, which has
only one parameter value 0123456789.

v

OTPDeliveryModuleConfigs parameter
The following example shows the value of the parameter
OTPDeliveryModuleConfigs:
<object class="java.util.HashMap">

<void method="put">
<string>mail_delivery</string>
<object class="java.util.HashMap">

<void method="put">
<string>@Sensitive SMTPPassword</string>
<object class="java.util.ArrayList">

<void method="add">
<string>password</string>

</void>
</object>

</void>
</object>

</void>
<void method="put">

<string>sms_delivery</string>
<object class="java.util.HashMap">

<void method="put">
<string>HTTPParameters</string>
<object class="java.util.ArrayList">

<void method="add">
<string>From=+15127828860</string>

</void>
<void method="add">

<string>To=$DEST_NO$</string>
</void>
<void method="add">

<string>Message=MSG</string>
</void>

</object>
</void>

</object>
</void>

</object>

This example contains 2 mappings.
– The first mapping is a mapping from delivery type mail_delivery to

its configuration. The configuration contains only one parameter. This
parameter name is SMTPPassword, which has only one parameter value
password. This parameter is a sensitive parameter, since it is annotated
with @Sensitive.

– The second mapping is a mapping from delivery type sms_delivery
to its configuration. The configuration contains only one parameter.
This parameter name is HTTPParameters, which has 3 parameter
values From=+15127828860, To=$DEST_NO$, and Message=MSG.

676 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

manageItfimPointOfContact
Use the manageItfimPointOfContact command to manage a custom point of
contact profile for a specific domain.

Purpose

The manageItfimPointOfContact command can perform the following operations
on a point of contact profile when used with the appropriate parameters:
v list
v listCallbacks
v create (by using a response file)
v create the response file
v view
v activate

Syntax

The command syntax is as follows:
$AdminTask manageItfimPointOfContact {-operation operator

-fimDomainName name [options]}

Where the -operation parameter and its value operator and -fimDomainName and its
value name are required. Optional parameters:

-uuid ID
-signInCallbackIds callback1,callback2
-signOutCallbackIds callback1,callback2
-locaIdCallbackIds callback1,callback2
-authenticationCallbackIds callback1,callback2
-authenticationPolicyCallbackIds callback1,callback2
-fileId output_file | input_file

The use of these parameters depends on the operator you chose to use.

Parameters

The following parameters are available for use with the
manageItfimPointOfContact command:

-operation operator
Required parameter. The value that is used with this parameter specifies the
operation to perform on the domain. Valid values are listed in the following
table.

Table 155. Values for the manageItfimPointOfContact -operation parameter

Value Description and requirements

view View the properties of a point of contact profile and its callbacks. When you use this
operator, you must also use the following parameters:

uuid ID
Unique identifier of the existing point of contact profile. You can determine
the uuid of existing point of contact profiles by running the list operation,
described previously.

Chapter 46. One-time password deployment 677

Table 155. Values for the manageItfimPointOfContact -operation parameter (continued)

Value Description and requirements

activate Activate a specific point of contact profile. When you use this operator, you must also
use the following parameters:

uuid ID
Unique identifier of the existing point of contact profile. You can determine
the uuid of existing point of contact profiles by running the list operation,
described previously.

Note: If you are activating a WebSphere profile, the following default properties are
used:

SOAP Port=9444

Authorization type=Allow Authenticated users to access SOAP endpoints

Authentication type=Basic

If your environment requires different settings, you must pass in a text file that
contains the appropriate settings.

delete Delete a specific custom point of contact profile.
Note: You cannot delete a default point of contact profile. You can delete only the
point of contacts that you created. The default points of contact profiles are set to Read
Only to prevent accidental deletion. When you use this operator, you must also use
the following parameters:

uuid ID
Unique identifier of the existing point of contact profile. You can determine
the uuid of existing point of contact profiles by running the list operation,
described previously.

list List all of the existing point of contact profiles for a specific domain.

listCallbacks List the enabled callbacks in a domain.

678 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 155. Values for the manageItfimPointOfContact -operation parameter (continued)

Value Description and requirements

createResponseFile Create a response file that you want to use to create a point of contact profile. You can
create a response file for a new point of contact profile. You can also create a response
file that is based on an existing point of contact profile.

New point of contact profile: When you use this operator to create response file for a
new point of contact, you must also specify the following parameters:

signInCallbackIds callback1,callback2

signOutCallbackIds callback1,callback2

localIdCallbackIds callback1,callback2

authenticationCallbackIds callback1,callback2

authenticationPolicyCallbackIdscallback1,callback2

fileId output_file
Specify the file name and path for the response file that is created by this
command.

Based on existing point of contact profile: When you use this operator to create a
response file that is based on an existing point of contact profile, you must also specify
the following parameters:

uuid ID
Unique identifier of the existing point of contact profile. You can determine
the uuid of existing point of contact profiles by running the list operation,
described previously.

fileId output_file
Specify the file name and path for the response file that is created by this
command.

After you create a response file, open it with a text editor. Review the attributes that
are defined in the file. Make changes as required by your environment, and then save
and close the file.

For information about the content of the response file, see “Point of contact response
file” on page 681.

create Create a point of contact profile using a response file. When you use this operator, you
must also use the following parameters:

fileId input_name
This parameter specifies the name and path of the response file that you are
using as input. You can create the response file using the createResponseFile
operator.

-fimDomainName name
Required parameter. The value that is used with this parameter is the name of
the domain on which the operation is performed. The name can be a string
with characters of any type.

-uuid ID
An identifier string that uniquely identifies the resource you want to operate
on.

-signInCallbackIds callback
A comma-separated list of callbacks that are used by the point of contact for
sign-in actions.

Chapter 46. One-time password deployment 679

-signOutCallbackIds callback
A comma-separated list of callbacks that are used by the point of contact for
sign-out actions.

-localIdCallbackIds callback
A comma-separated list of callbacks that are used by the point of contact for
the local ID.

-authenticationCallbackIds callback
A comma-separated list of callbacks that are used by the point of contact for
authentication.

-authenticationPolicyCallbackIds callback
A comma-separated list of callbacks that are used by the point of contact for
determining authentication policy.

-fileId output_file | input_file
This parameter is required if you are creating a response file or creating a
point of contact profile. The value that is used with this parameter is the file
name and path of a response file that is read from (input file) or written to
(output file). The path and file name must be valid for the operating system
used.

Examples

The following examples show the correct syntax for several of the tasks that can be
performed with this command:

View point of contact details:
$AdminTask manageItfimPointOfContact {-operation view

-fimDomainName domain1
-uuid uuid8f3d17a-0107-w712-q35b-b0c5ecc605ba}

Activate a point of contact:
$AdminTask manageItfimPointOfContact {-operation activate

-fimDomainName domain1
-uuid uuid8f3d17a-0107-w712-q35b-b0c5ecc605ba}

Delete a custom point of contact profile:
$AdminTask manageItfimPointOfContact {-operation delete

-fimDomainName domain1
-uuid uuid3e8de4e8-0119-1a2d-9443-c4944d126cc1}

List all the point of contact profiles that are defined in a domain:
$AdminTask manageItfimPointOfContact {-operation list

-fimDomainName domain1}

List all the callbacks that are enabled in the domain:
$AdminTask manageItfimPointOfContact {-operation listCallbacks

-fimDomainName domain1}

Create a response file to create a point of contact profile:
$AdminTask manageItfimPointOfContact {-operation createResponseFile

-fimDomainName domain1
-signInCallbackIds genericPocSignInCallback,wasPocSignInCallback
-signOutCallbackIds genericPocSignOutCallback
-localIdCallbackIds genericPocLocalIdentityCallback
-authenticationCallbackIds genericPocAuthenticateCallback
-authenticationPolicyCallbackIds genericPocAuthnPolicyCallback
-fileId c:\home\files\temp\empty.xml}

Note: The file that is specified here is the name of the response file that
you are creating with the command. Use this file as input for creating a

680 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

point of contact profile. After you create this file, open it with a text editor
and define the attributes in it so that they are correct for your
environment.

Create a response file that is based on an existing point of contact profile:
$AdminTask manageItfimPointOfContact {-operation createResponseFile

-fimDomainName domain1
-uuid uuid8f3d17a-0107-w712-q35b-b0c5ecc605ba
-fileId c:\home\files\temp\empty.xml}

Note: The file that is specified here is the name of the response file that
you are creating with the command. Use this file as input for creating a
point of contact profile or modifying point of contact properties. After you
create this file, open it with a text editor and ensure that the attributes
defined in the file are correct for your environment.

Create a point of contact profile:

Note: The file that is specified here is the response file and is used as
input. Open the response file with a text editor before running this
command. Ensure that the attributes that are defined in the file are correct
for your environment.
$AdminTask manageItfimPointOfContact {-operation create

-fimDomainName domain1
-fileId c:\home\files\temp\empty.xml}

Point of contact response file
You must create a response file before you can create a point of contact profile
with the manageItfimPointOfContact command. Then, edit the response file so that
it contains the appropriate values for your environment.

You can create a response file when you create a partner by running the following
command:

New point of contact profile
$AdminTask manageItfimPointOfContact {-operation createResponseFile

-fimDomainName name
-uuid ID
-fileId filename}

Existing point of contact profile

Create a response file for creating a point of contact that is based on an existing
point of contact by running the following command:
$AdminTask manageItfimPointOfContact {-operation createResponseFile

-fimDomainName name
-signInCallbackIds callback,callback
-signOutCallbackIds callback
-localIdCallbackIds callback
-authenticationCallbackIds callback
-authenticationPolicyCallbackIds callback
-fileId filename}

A response file is created after either of these commands are run. The content of
the file differs depending on the properties that are specified in the command or in
the existing point of contact.

Note: You must follow these steps to ensure that any custom properties that are
used by your callbacks are included:

Chapter 46. One-time password deployment 681

1. Open the response file with a text editor.
2. Review the attributes that are defined in the file.
3. Specify the type of federation that you want to create.
4. Save and close the file.

Examples of the response file are in the following directories:

AIX, Linux, or Solaris
/opt/IBM/FIM/examples/responsefiles

Windows
C:\Program Files\IBM\FIM\examples\responsefiles

Parameters

The following descriptions show the types of parameters that are used in the
response files. However, the actual parameters that are used in your XML response
file depend on your environment and the callbacks you are using. For an example
of a response file, see “Examples” on page 683.

Table 156. Parameters used in point of contact response files

Parameter Value Description

profileName= name Name of the point of contact profile.

Description= text Description of the profile.

signIn.INDEX= callbackID One or more callback IDs that are used for
signing in. The INDEX represents the order in
which this callback is invoked in the signing
chain.

It starts at 1. The callback ID identifies the
callback module that is invoked.

CALLBACKID.PROPERTYNAME= value Specifies a callback module and indicates that a
property is used with it.

signOut.INDEX= callbackID,callbackID, One or more callback IDs that are used for
signing out. The INDEX represents the order in
which this callback is invoked in the signing
chain.

It starts at 1. The callback ID identifies the
callback module that is invoked.

CALLBACKID.PROPERTYNAME= value Specifies a callback module and indicates that a
property is used with it.

localId.INDEX= callbackID,callbackID, One or more callback IDs that are used for the
local Id. The INDEX represents the order in
which this callback is invoked in the signing
chain.

It starts at 1. The callback ID identifies the
callback module that is invoked.

CALLBACKID.PROPERTYNAME= value Specifies a callback module and indicates that a
property is used with it.

682 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 156. Parameters used in point of contact response files (continued)

Parameter Value Description

authentication.INDEX= callbackID,callbackID, One or more callback IDs that are used for the
authentication. The INDEX represents the order
in which this callback is invoked in the
authenticate chain.

It starts at 1. The callback ID identifies the
callback module that is invoked.

CALLBACKID.PROPERTYNAME= value Specifies a callback module and indicates that a
property is used with it.

authnpolicy.INDEX= callbackID,callbackID, One or more callback IDs that are used for the
determination of the authentication policy. The
INDEX represents the order in which this
callback is invoked in the authentication policy
determination chain.

It starts at 1. The callback ID identifies the
callback module that is invoked.

CALLBACKID.PROPERTYNAME= value Specifies a callback module and indicates that a
property is used with it.

Note: If the callback property name ends with MappingRuleFileName, the contents
of the file is uploaded as a mapping rule. The property name of the config item is
the text after the MappingRuleFileName suffix. For example, to create a property
named authentication.policy.map.rule, the property on the response file must be
named CALLBACKID.authentication.policy.map.ruleMappingRuleFileName.

Examples

Command example: The following example shows how to use the create command
and specify the response file:
$AdminTask manageItfimPointOfContact {-operation create -fimDomainName domain1

-fileId c:\home\files\temp\POCprops.xml}

Response file example: The following example describes a response file that can be
used with the activate operation.

As you review the example, know that a point of contact profile has a hierarchy in
which there are the following callback types:
0 or 4 callback types

each callback type has 1 or more ordered callbacks
each callback has 0 or more arbitrary properties

For example:
signIn.INDEX=CALLBACKID

CALLBACKID.PROPERTYNAME1=value
CALLBACKID.PROPERTYNAME2=value

Note: INDEX is a number that represents the order of the callback ID for that
particular type (signIn in the example). Then, the callback ID can have properties
added to it by prefixing the property name with the callback ID. The
command-line interface decomposes the response and adds the properties to the
callback and assign them to the correct type in the provided order. The response
file does not look as a key=value pair in the XML but it is effectively the same.

Chapter 46. One-time password deployment 683

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.5.0" class="java.beans.XMLDecoder">
<object class="java.util.HashMap">
<void method="put">
<string>signIn.1</string>
<object class="java.util.ArrayList">
<void method="add">
<string>wasPocSignInCallback</string>
</void>
</object>
</void>
<void method="put">

<string>authnpolicy.1</string>
<object class="java.util.ArrayList">
<void method="add">
<string>genericPocAuthnPolicyCallback</string>
</void>
</object>
</void>
<void method="put">
<string>wasPocAuthenticateCallback.authentication.macros</string>
<object class="java.util.ArrayList">
<void method="add">
<string>%FEDID%</string>
</void>
<void method="add">
<string>%FEDNAME%</string>
</void>
<void method="add">
<string>%PARTNERID%</string>
</void>
<void method="add">
<string>%ACSURL%</string>
</void>
<void method="add">
<string>%SSOREQUEST%</string>
</void>
<void method="add">
<string>%TARGET%</string>
</void>
</object>
</void>
<void method="put">
<string>profileName</string>
<object class="java.util.ArrayList">
<void method="add">
<string>testwaspoc</string>
</void>
</object>
</void>
<void method="put">
<string>profileDescription</string>
<object class="java.util.ArrayList">
<void method="add">
<string>WebSphere Point of Contact Profile</string>
</void>
</object>
</void>
<void method="put">
<string>localId.1</string>
<object class="java.util.ArrayList">
<void method="add">
<string>wasPocLocalIdentityCallback</string>
</void>
</object>
</void>
<void method="put">

684 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

<string>signOut.1</string>
<object class="java.util.ArrayList">
<void method="add">
<string>wasPocSignOutCallback</string>
</void>
</object>
</void>
<void method="put">
<string>authentication.1</string>
<object class="java.util.ArrayList">
<void method="add">
<string>wasPocAuthenticateCallback</string>
</void>
</object>
</void>
</object>
</java>

One-time password provider plug-in reference
The one-time password provider plug-in generates and validates one-time
passwords. Configure the one-time password provider plug-in so that it can be
used by Tivoli Federated Identity Manager.

Tivoli Federated Identity Manager provides three one-time password provider
plug-ins:
v “MobileAuthCodeOTPModule”
v “TOTPModule” on page 687
v “HOTPModule ” on page 689

The MobileAuthCodeOTPModule generates one-time password by randomly drawing
one character at a time from the configured character set until the configured
number of characters are drawn. The MobileAuthCodeOTPModule also stores the
generated one-time password in the configured one-time password store plug-in.
The one-time password is salted and hashed before it is stored in the configured
one-time password store plug-in.

The TOTPModule generates one-time password by using a specified algorithm with a
time-based one-time password application. Passwords are not communicated or
stored, but are verified as a match between server and client as they are
regenerated at regular intervals.

The HOTPModule generates one-time password by using a specified algorithm with a
counter-based one-time password application. Passwords are not communicated or
stored, but are verified as incremental matches between server and client.

MobileAuthCodeOTPModule

The following lists all the configurations of MobileAuthCodeOTPModule. All the
configurations are optional.

StoreModuleId
The extension ID of the one-time password store plug-in that stores the
one-time password.

The default StoreModuleId, which is OTPProviderDynaCacheOTPStore, is
used when this configuration is not specified, or when it refers to a
non-existing one-time password store plug-in.

Required: No

Chapter 46. One-time password deployment 685

Multi-value: No

Example: OTPProviderDynaCacheOTPStore

StoreEntryLifetime
The lifetime of the one-time password that is stored in the one-time
password store plug-in. The lifetime is in seconds.

The default StoreEntryLifetime, which is 300, is used when this
configuration is not specified, or when it is less than zero.

Required: No

Multi-value: No

Example: 300

GeneratorCharacterSet
The character set from which the characters in the one-time password are
generated.

The default GeneratorCharacterSet, which is 0123456789, is used when this
configuration is not specified, or when it is empty.

Required: No

Multi-value: No

Example: 0123456789

GeneratorLength
The length of the characters in the one-time password.

The default GeneratorLength, which is 8, is used when this configuration is
not specified, or when it is less than one.

Required: No

Multi-value: No

Example: 8

StoreEntryFactoryHashAlgorithm
The hash algorithm that is used for hashing the one-time password before
it is stored in the one-time password store plug-in.

The default StoreEntryFactoryHashAlgorithm, which is SHA-256, is used
when this configuration is not specified, or when it is not supported by the
underlying Java Cryptography Architecture API.

For the list of supported hash algorithms, refer to Appendix A of the Java
Cryptography Architecture(JCA) API Specification & Reference.

Required: No

Multi-value: No

Example: SHA-256

StoreEntryFactorySaltLength
The length of the randomly generated salt that is used for hashing the
one-time password before it is stored in the one-time password store
plug-in.

The default StoreEntryFactorySaltLength, which is 5, is used when this
configuration is not specified, or when it is less than one.

Required: No

686 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html

Multi-value: No

Example: 5

TOTPModule

The following list describes all the configurations of TOTPModule.

OTPLength
The length of the generated one-time passwords, which can be between 6
to 9 characters or numbers.

The default OTPLength, which is 6, is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: 6

OTPTimeSkewIntervals
The skew intervals of the algorithm. The skew intervals consider any
possible synchronization delay between the server and the client that
generates the one-time password. For example, a skew interval of 2 means
a one-time password in up to two intervals in the past, or two in the
future are valid. For example, if it is interval 563, and intervals are 30
seconds, then one-time passwords for intervals 561-565 are computed and
checked against within a range of 2.5 minutes.

The default OTPTimeSkewIntervals, which is 1, is used when this
configuration is not specified.

Required: No

Multi-value: No

Example: 1

OTPGenerationAlgorithm
The algorithm that is used to generate the one-time password. Valid
options include the following algorithms: HmacSHA1, HmacSHA256, or
HmacSHA512

Note: Not all algorithms are supported by all Java levels. For example,
Java 1.4 supports only HmacSHA1. For a list of supported hash algorithms
for your Java version, refer to Appendix A of the Java Cryptography
Architecture (JCA) API Specification & Reference for Java 1.4, or Java
Cryptography Architecture (JCA) API Specification & Reference for Java
1.5.

The default OTPGenerationAlgorithm, which is HmacSHA1, is used when this
configuration is not specified.

Required: No

Multi-value: No

Example: HmacSHA1

OTPGenerationIntervalSeconds
The number of seconds an interval lasts. This number determines how
long a one-time password is active before the next one-time password
generates.

Chapter 46. One-time password deployment 687

http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc.50%2Fsecguides%2FJceDocs%2FCryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc.50%2Fsecguides%2FJceDocs%2FCryptoSpec.html

The default OTPGenerationIntervalSeconds, which is 30, is used when this
configuration is not specified.

Required: No

Multi-value: No

Example: 30

OneTimeUseEnforcementEnabled
Whether to cache one-time passwords if they are used to successfully log
in. If set to true, then the reuse of a one-time password is prevented while
it is in cache.

The default OneTimeUseEnforcementEnabled, which is true, is used when
this configuration is not specified.

Required: No

Multi-value: No

Example: true

OneTimeUseEnforcementStore
The object cache to use for caching successful one-time passwords. This
storage goes unused if OneTimeEnforcementEnabled is set to false.

The default OneTimeUseEnforcementStore, which is
OTPProviderDynaCacheOTPStore, is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: OTPProviderDynaCacheOTPStore

OTPSecretKeyAttributeName
The attribute name that retrieves the user secret key for one-time password
value generation. Any unique string value that identifies the attribute is
valid.

The default otp.hmac.secret.key is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: otp.hmac.secret.key

OTPSecretKeyAttributeNamespace
The attribute namespace that retrieves the user secret key for one-time
password value generation. Any string value that identifies the source of
the attribute is valid. Null values are not valid.

The default urn:ibm:security:otp:hmac is used when this configuration is
not specified.

Required: No

Multi-value: No

Example: urn:ibm:security:otp:hmac

688 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

HOTPModule

The following list describes all the configurations of HOTPModule.

OTPLength
The length of the generated one-time passwords, which can be between 6
to 9 characters or numbers.

The default OTPLength, which is 6, is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: 6

OTPGenerationAlgorithm
The algorithm that is used to generate the one-time password. Valid
options include the following algorithms: HmacSHA1, HmacSHA256, or
HmacSHA512

Note: Not all algorithms are supported by all Java levels. For example,
Java 1.4 supports only HmacSHA1. For a list of supported hash algorithms
for your Java version, refer to Appendix A of the Java Cryptography
Architecture (JCA) API Specification & Reference for Java 1.4, or Java
Cryptography Architecture (JCA) API Specification & Reference for Java
1.5.

The default OTPGenerationAlgorithm, which is HmacSHA1, is used when this
configuration is not specified.

Required: No

Multi-value: No

Example: HmacSHA1

MaxCounterLookahead
The number of times to increment the counter to see whether the one-time
password is valid before stopping. Any non-negative number is valid.

The default MaxCounterLookahead, which is 25, is used when this
configuration is not specified.

Required: No

Multi-value: No

Example: 25

OTPSecretKeyAttributeName
The attribute name that retrieves the user secret key for one-time password
value generation. Any unique string value that identifies the attribute is
valid.

The default otp.hmac.secret.key is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: otp.hmac.secret.key

Chapter 46. One-time password deployment 689

http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v1r4m2/topic/com.ibm.java.security.component.doc.142/secguides/jceDocs/CryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc.50%2Fsecguides%2FJceDocs%2FCryptoSpec.html
http://publib.boulder.ibm.com/infocenter/javasdk/v5r0/index.jsp?topic=%2Fcom.ibm.java.security.component.doc.50%2Fsecguides%2FJceDocs%2FCryptoSpec.html

OTPSecretKeyAttributeNamespace
The attribute namespace that retrieves the user secret key for one-time
password value generation. Any string value that identifies the source of
the attribute is valid. Null values are not valid.

The default urn:ibm:security:otp:hmac is used when this configuration is
not specified.

Required: No

Multi-value: No

Example: urn:ibm:security:otp:hmac

OTPCounterAttributeName
The attribute name that stores and retrieves the counter value for one-time
password value generation. Any unique string value that identifies the
attribute is valid.

The default otp.hmac.counter is used when this configuration is not
specified.

Required: No

Multi-value: No

Example: otp.hmac.counter

OTPCounterAttributeNamespace
The attribute namespace that stores and retrieves the counter value for
one-time password value generation. Any string value that identifies the
source of the attribute is valid. Null values are not valid.

The default urn:ibm:security:otp:hmac is used when this configuration is
not specified.

Required: No

Multi-value: No

Example: urn:ibm:security:otp:hmac
Related reference:
“One-time password response file” on page 669
Create a one-time password response file with the manageItfimOneTimePassword
command to configure a new one-time password federation or modify an existing
one-time password federation. Edit it with the appropriate values for your
environment.
“One-time password delivery plug-in reference”
The one-time password delivery plug-in is a plug-in that delivers one-time
passwords to users. Configure the one-time password delivery plug-in so that it
can be used by Tivoli Federated Identity Manager.

One-time password delivery plug-in reference
The one-time password delivery plug-in is a plug-in that delivers one-time
passwords to users. Configure the one-time password delivery plug-in so that it
can be used by Tivoli Federated Identity Manager.

Tivoli Federated Identity Manager provides the following one-time password
delivery plug-ins:
v SMSOTPDelivery

v EmailOTPDelivery

690 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v NoOTPDelivery

The SMSOTPDelivery plug-in delivers the one-time password by using the Short
Message Service or SMS. The SMSOTPDelivery first sends the phone number of the
user and the one-time password in an HTTP POST request, whose content type is
application/x-www-form-urlencoded, to the configured SMS Gateway. The SMS
Gateway then sends the one-time password to the user through SMS. Tivoli
Federated Identity Manager is not shipped with any SMS Gateway. You must
configure your own SMS Gateway.

The EmailOTPDelivery plug-in delivers the one-time password by using email. The
EmailOTPDelivery sends the email address of the user and the one-time password
in a message, whose MIME type is text/plain, to the configured SMTP Server. The
SMTP Server then sends the one-time password to the user by email. Tivoli
Federated Identity Manager is not shipped with any SMTP Server. You must
configure your own SMTP Server.

The NoOTPDelivery plug-in specifies that there is no delivery of a password. Use
the NoOTPDelivery plug-in with time-based one-time password applications where
password communication and storage is not necessary.

You must configure the SMSOTPDelivery and EmailOTPDelivery plug-ins before they
can be used by Tivoli Federated Identity Manager. Configuration of
SMSOTPDelivery and EmailOTPDelivery includes the following parameters:

SMSOTPDelivery parameters

ConnectionURL
The URL of the SMS Gateway where the phone number of the user and
the one-time password is sent.

Required: True

Multi-value: No

Example: https://smsgateway.tfim.example.com/

HTTPParameters
The list of name and value pairs that is included in the body of the HTTP
POST request to the SMS Gateway. In each pair, the name and the value
must be separated by equal sign.

Tivoli Federated Identity Manager provides two macros, $DEST_NO$ and
MSG, that are replaced by the phone number of the user and the content
of the SMS. These two macros can be used only as value in the name and
value pair.

Required: True

Multi-value: Yes

Example:
v From=+0123456789

v To= $DEST_NO$

v Body= MSG

HTTPSTruststore
The Tivoli Federated Identity Manager keystore that validates the SMS
Gateway SSL certificate.

Chapter 46. One-time password deployment 691

This configuration must be specified only when SMSOTPDelivery
communicates with the SMS Gateway by using HTTPS.

Required: False

Multi-value: No

Example: DefaultTrustedStore

BasicAuthUserName
The user name that is used in HTTP Basic authentication.

SMSOTPDelivery does not perform the HTTP basic authentication if this
configuration is not specified.

Required: False

Multi-value: No

Example: username

BasicAuthPassword
The password that is used in HTTP basic authentication.

SMSOTPDelivery does not perform HTTP Basic authentication if this
configuration is not specified.

Required: False

Multi-value: No

Example: password

ClientAuthKey
The Tivoli Federated Identity Manager certificate that is used as client
certificate in SSL Client authentication. The certificate is a keystore and
alias pair. The keystore and alias must be separated by underscore.

SMSOTPDelivery does not perform SSL Client authentication if this
configuration is not specified.

Required: False

Multi-value: No

Example: DefaultKeystore_testkey

SuccessHTTPReturnCode
The response code from the SMS Gateway that is an acknowledge
ment from the SMS Gateway that the request is successfully processed.

The default SuccessHTTP
ReturnCode, which is 200, is used when this configuration is not specified.

Note: The SuccessHTTP
ReturnCode match must be successful before the SuccessHTTP
ResponseBody
RegexPattern matching is done.

Required: False

Multi-value: No

Example: 200

SuccessHTTPResponseBodyRegexPattern
This parameter defines the Java regular-expression pattern that matches the

692 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

HTTP response body that is returned by the SMS Gateway. When the
match is successful, Tivoli Federated Identity Manager determines that the
SMS delivery is successful.

The default value is empty.

The default behavior is that the HTTP response body is not going to be
matched against any Java regular-expression and the success or failure
decision is going to be based on the SuccessHTTP
ReturnCode value only.

Note: If the HTTP response from the SMS Gateway does not contain a
body, the SuccessHTTP
ResponseBody
RegexPattern matching is not performed.

Required: False

Multi-value: No

Example:
v When the body of all responses by the SMS Gateway contains either

Success or Failure followed by no newline character, the sample
SuccessHTTP
Response
BodyRegex
Pattern value is
Success

v When the body of all responses by the SMS Gateway contains the
following text:
MGDID=TTTT
TTTTTTTTT
RESPONSE
CODE=NNN
SMS=TTTTTTT
TTTTTTTT
TTTTTTT
DATE=NNNNNNNN

where each line ends with the \n character without any preceding \r
character, and the RESPONSECODE is defined such that a three-digit
number from 0 to 199 indicates success, the sample SuccessHTTP
ResponseBody
RegexPattern value is
(?s).*
RESPONSE
CODE=(\d{1,2}
|[0-1]{1}
\d{2})\n.*

EmailOTPDelivery plug-in configuration

SMTPHostname
The host name of the SMTP Server.

Required: True

Multi-value: No

Example: smtpserver.tfim.example.com

Chapter 46. One-time password deployment 693

SMTPUsername
The user name that is used in SMTP authentication.

Required: False

Multi-value: No

Example: username

SMTPPassword
The password that is used in SMTP authentication.

Required: False

Multi-value: No

Example: password

SenderEmail
The email address that is used as the sender of the email that is sent to the
user.

Required: True

Multi-value: No

Example: otp_emailer@example.com

One-time password user information provider plug-in
reference

The one-time password user information provider plug-in retrieves values from a
database for those one-time password algorithms that require user information.

You can configure Tivoli Federated Identity Manager to retrieve these values from
a relational or file-based database. See the following topics for database setup
information:
v “Setting up DB2 for one-time password user information storage” on page 696
v “Setting up solidDB for one-time password user information storage” on page

697

Tivoli Federated Identity Manager is shipped with the following plug-ins:

JDBCUserInfoModule
Provides the user information from a JDBC-based database.

FileUserInfoModule
Provides the user information from a file-based database. This plug-in is
supported only on stand-alone, or nonclustered, environments.

JDBC user information provider

The following configuration settings are for JDBCUserInfoModule. All settings are
optional.

DBDataSource
The JNDI name for the data source that corresponds to the user
information database. Specify a defined data source in the WebSphere
Application Server environment.

The default value is jdbc/fim.

Required: No

694 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Multi-value: No

Example: jdbc/fim

DBLoggingEnabled
A Boolean value to enable finer-grained tracing on the database connection.
Specify true or false.

The default value is false.

Required: No

Multi-value: No

Example: false

File user information provider

The following configuration settings are for FileUserInfoModule. All settings are
optional.

FileDBFileName
The file name of the user information file database. Specify any unique and
valid file name. The user under which the application server is running
must have write access to this file. If the file does not exist, the product
creates it.

The default value is fileUserInfo.properties.

Required: No

Multi-value: No

Example: fileUserInfo.properties

FileDBRootDirectory
The root directory where the user information file is stored. Specify any
valid directory that the user, under which the application server is running,
has write access.

The default value is the Tivoli Federated Identity Manager configuration
repository /etc directory:WAS_ROOT/profiles/WAS_PROFILE/config/itfim/
FIM_DOMAIN/etc

Required: No

Multi-value: No

Example: /opt/IBM/WebSphere/AppServer/profiles/ip/config/itfim/
fimipdomain/etc

FileDBKeyTokensDelimeter
The character to separate the different values that comprise the database
entry key. Specify any character that is not in the attribute name, attribute
namespace, or attribute data type values.

The default value is %.

Required: No

Multi-value: No

Example: %

Chapter 46. One-time password deployment 695

Related reference:
“One-time password response file” on page 669
Create a one-time password response file with the manageItfimOneTimePassword
command to configure a new one-time password federation or modify an existing
one-time password federation. Edit it with the appropriate values for your
environment.
“One-time password delivery plug-in reference” on page 690
The one-time password delivery plug-in is a plug-in that delivers one-time
passwords to users. Configure the one-time password delivery plug-in so that it
can be used by Tivoli Federated Identity Manager.

Setting up DB2 for one-time password user information storage
You can set up DB2® as your user information database for one-time password
calculation.

Before you begin
v Review the DB2 requirements for user information provider support. See

Additional software.
v Install the DB2 database.

Procedure
1. In WebSphere Application Server, create and configure a JNDI context that is

named jdbc/fim. See the WebSphere Application Server Information Center.
Search for configuring a data source.

2. Set custom schema properties by completing the following steps:
a. In the administrative console, click Resources > JDBC > Data sources.
b. Click the name of the data source that was created in step 1 to open the

Configuration page.
c. Click Custom properties.
d. Click currentSchema.
e. In the Value field, type FIM_DB.
f. Click OK.
g. Click Save directly to the master configuration.

3. Run the .sql file to create the database schema for one-time password user
information.

Linux or UNIX operating systems
The .sql file to create the database for DB2 is in the
FIM_HOME/dbscripts/db2/ directory. For example, the directory is
/opt/IBM/FIM/dbscripts/db2/.
a. Edit the create_schema.sql file, and replace &DBUSER and $DBPASSWD

with the database user name and password.
b. Run the create_schema.sql file by using the db2 command. For

example:
db2 -tvf /opt/IBM/FIM/dbscripts/db2/create_schema.sql

Windows operating systems
The .sql file to create the database for DB2 is in the
FIM_HOME\dbscripts\ db2\ directory. For example, the directory is
C:\Program Files\IBM\FIM\dbscripts\db2\.
a. Edit the create_schema.sql file, and replace &DBUSER and $DBPASSWD

with the database user name and password.

696 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

b. Run the create_schema.sql file by using the db2 command. For
example:
db2 -tvf C:\Progra~1\IBM\FIM\dbscripts\db2\create_schema.sql

4. Using the data source that was created in step 1 on page 696 and the
administrative console, test the connection to the database.

Setting up solidDB for one-time password user information
storage
You can set up solidDB® as your user information database for one-time password
calculation.

Before you begin
v Review the solidDB requirements for user information provider support. See

Additional software.
v Install the solidDB database.

Procedure
1. In WebSphere Application Server, create and configure a JNDI context that is

named jdbc/fim.See the WebSphere Application Server Information Center.
Search for configuring a data source.

2. Set custom schema properties by completing the following steps:
a. In the administrative console, click Resources > JDBC > Data sources.
b. Click the name of the data source that was created in step 1 to open the

Configuration page.
c. Click Custom properties.
d. Click currentSchema.
e. In the Value field, type FIM_DB.
f. Click OK.
g. Click Save directly to the master configuration.

3. Create a solidDB database with the solidDB tools. Set the database catalog and
user name to FIM_DB. Enter the following command one line:
SOLID_BIN_DIRECTORY/solid -UFIM_DB -PDBPASSWORD -CFIM_DB -xexit

-xdisableallmessageboxes -xhide -CWORKING_DIRECTORY

where:

SOLID_BIN_DIRECTORY
Specifies the solidDB database installation bin directory.

DBPASSWORD
Specifies the database password.

WORKING_DIRECTORY
Specifies the working directory where the solidDB .ini file and license
file are located.

The following is an example command for Linux that specifies the solidDB
evaluation license:
/opt/solidDB/soliddb-7.0/bin/solid -UFIM_DB -Ppassword -CFIM_DB -xexit
-xdisableallmessageboxes -xhide -C/opt/solidDB/soliddb-7.0/eval_kit/standalone

See the solidDB documentation for more details.
4. Start the solidDB database with the following command:

SOLID_BIN_DIRECTORY/solid -UFIM_DB -PDBPASSWORD -CFIM_DB
-xdisableallmessageboxes -xhide -CWORKING_DIRECTORY

Chapter 46. One-time password deployment 697

The following is an example command for Linux that specifies the solidDB
evaluation license:
/opt/solidDB/soliddb-7.0/bin/solid -UFIM_DB -Ppassword -CFIM_DB
-xdisableallmessageboxes -xhide -C/opt/solidDB/soliddb-7.0/eval_kit/standalone

See the solidDB documentation for more details.
5. Run the .sql file to create the database schema for one-time password user

information.

Linux or UNIX operating systems
The .sql file to create the database schema for solidDB is in the
FIM_HOME/dbscripts/soliddb/ directory. For example, on Linux, it is
/opt/IBM/FIM/dbscripts/soliddb/.

Run the create_schema.sql file by using the solsql command.
solsql "NETWORK_NAME" FIM_DB DBPASSWORD

/opt/IBM/FIM/dbscripts/soliddb/create_schema.sql

where:

NETWORK_NAME
Specifies the network name of a solidDB server to which you
are connecting.

DBPASSWORD
Specifies the database password.

For example:
solsql "tcpip 1964" FIM_DB password

/opt/IBM/FIM/dbscripts/soliddb/create_schema.sql

Windows operating systems
The .sql file to create the database schema is in the C:\Program
Files\IBM\FIM\dbscripts\soliddb\ directory.

Run the create_schema.sql file by using the solsql command.
solsql "NETWORK_NAME" FIM_DB DBPASSWORD

C:\Progra~1\IBM\FIM\dbscripts\soliddb\create_schema.sql

where:

NETWORK_NAME
Specifies the network name of a solidDB server to which you
are connecting.

DBPASSWORD
Specifies the database password.

For example:
solsql.exe "tcpip 1964" FIM_DB password

C:\Progra~1\IBM\FIM\dbscripts\soliddb\create_schema.sql

6. Using the data source that was created in step 1 on page 697 and the
administrative console, test the connection to the database.

698 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 47. Tuning the one-time password

Improve the performance of the one-time password system by tuning the
OTPProviderDynaCacheOTPStore component.

The OTPProviderDynaCacheOTPStore is the one-time password store plug-in. It uses
WebSphere Application Server object cache as its underlying storage.

The following one-time password modules use this store plug-in:
v MobileAuthCodeOTPModule: Stores one-time passwords in the store.
v TOTPModule: Uses the store for one time use enforcement.

You can tune OTPProviderDynaCacheOTPStore by using two approaches:

Tune the WebSphere Application Server object cache
The WebSphere Application Server object cache that is used by
OTPProviderDynaCacheOTPStore is itfim-otp. You can tune this object cache
by changing the size of the cache or enabling disk offload.

See the WebSphere Application Server documentation for more details.

Tune how OTPProviderDynaCacheOTPStore uses the WebSphere Application Server
object cache

The OTPProviderDynaCacheOTPStore retrieves the one-time password from
the WebSphere Application Server object cache by polling. If the one-time
password is not available, the OTPProviderDynaCacheOTPStore waits for a
certain amount time before it tries to retrieve the one-time password again.
This cycle continues until the one-time password is available. If the
one-time password is still not available after a certain amount of time,
OTPProviderDynaCacheOTPStore times out.

You can configure the amount of time that the
OTPProviderDynaCacheOTPStore waits before trying to retrieve the one-time
password again by setting the runtime custom property
DistributedMap.GetRetryDelay.

You can configure the number of additional tries before the
OTPProviderDynaCacheOTPStore timeouts by setting the runtime custom
property DistributedMap.GetRetryLimit.

See General properties for more details.

© Copyright IBM Corp. 2006, 2013 699

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/config/reference/CustomPropsGeneral.html

700 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 8. Customization

The topics in the Customization section explain how to
customize components and functions of Tivoli Federated Identity Manager to
better suit your environment.

Chapter 48, “Customizing runtime properties,” on page 703
Chapter 50, “Customizing single sign-on event pages,” on page 723
Chapter 51, “Developing a custom point of contact server,” on page 741
Chapter 52, “Customizing signature X.509 certificate settings,” on page 747
Chapter 53, “Running WebSphere Application Server with Java 2,” on page 749

© Copyright IBM Corp. 2006, 2013 701

702 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 48. Customizing runtime properties

Custom properties can be used to tailor the runtime service of the Tivoli Federated
Identity Manager to meet specific needs.

The use of custom properties is an advanced task. Familiarize yourself with Tivoli
Federated Identity Manager architecture and services to understand how to use the
custom properties. See the Tivoli Federated Identity Manager information center
for more information.

Creating a custom property
You can customize the domain configuration by defining a custom property.

About this task

The syntax for custom properties is:
property_name = property_value

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Domain Management > Runtime

Node Management. The Runtime Node Management panel opens.
3. Click Runtime Custom Properties. The Runtime Custom Properties panel

opens.
4. Select the scope of the custom property, either cell or node, from the Scope list.

A list of properties at the scope you selected opens.
5. Click Create. A list item is added to the list of properties with the name of new

key and a value of new value.
6. Select the placeholder property.
7. Enter a string in the Name field. Do not insert the space character in this field.
8. Enter a string in the Value field. Spaces are allowed in this field.
9. Click OK to apply the changes that you have made and exit from the panel.

Deleting a custom property
You can remove a custom property based on its scope.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Domain Management > Runtime

Node Management. The Runtime Node Management panel opens.
3. Click Runtime Custom Properties. The Runtime Custom Properties panel

opens.
4. Select the scope of the custom property, either cell or node, from the Scope list.

A list of properties at the scope you selected opens.
5. Select a name and value pair.
6. Click Delete. The panel refreshes and the name and value pair is removed from

the list of custom properties.

© Copyright IBM Corp. 2006, 2013 703

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp

7. Choose one of the following actions:
v Click Apply to apply the changes that you have made without exiting from

the panel.
v Click OK to apply the changes that you have made and exit from the panel.

Custom properties reference
You can set values for a number of custom properties. This reference section
describes each of the custom properties.
v “General properties”
v “Custom properties for single sign-on protocol service” on page 705
v “Custom properties for the trust service” on page 707
v “Custom properties for OAuth 2.0” on page 709
v “Custom properties for SAML 1.0” on page 709
v “Custom properties for SAML 1.1” on page 709
v “Custom properties for the key service” on page 710
v “Custom properties for a SOAP client” on page 711
v “Custom properties for SAML 2.0” on page 712
v “Custom properties for the console” on page 714
v “Custom property for OpenID” on page 715
v “Custom property for transport security protocol” on page 715
v “Custom properties for LTPA tokens” on page 716

To add the custom properties to your domain configuration, see “Creating a
custom property” on page 703.

General properties
DistributedMap.GetRetryLimit

When specified, and when the value is greater than 0, the wrapper will query
the distributed map the configured number of times before returning that the
data is not in the map.
v Value type: Integer
v Example value: 2

DistributedMap.GetRetryDelay
When the retry limit is higher than 1, this value sets the time to wait in
milliseconds between retries. The default is 2000, or 2 seconds.
v Value type: Integer
v Example value: 2000

componentName.statisticsEnabled
When specified as True, statistics tracking function for a specific component is
enabled and the data collected and can be retrieved using the mechanisms
presented by the component. When set to false, statistics are not tracked.
Typically, this property is set to true for components that need to be timed or
counted.
v Value type: Boolean
v Example value: False

704 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Custom properties for single sign-on protocol service
Use the single sign-on custom properties to suit your deployment requirements.

requireSoapActionForSoap
This parameter controls the single sign-on protocol service behavior when it
receives a request through the browser POST method and it needs to
determine if it is a SOAPRequest or a BrowserRequest. Use of this parameter
enables the service to handle non-compliant SOAP clients that do not send the
required SOAPAction header on SOAP requests.

Default value: true
v Value type: boolean
v Example value: true

requireContentTypeForSoap
This parameter controls whether or not a SOAPRequest must contain a
content-type of either text/xml or application/soap+xml. This parameter
enables the single sign-on protocol service to handle non-compliant SOAP
clients.

Note: When this parameter, and requestSoapActionForSoap are both false, all
posts will be interpreted as SOAPRequests.

Default value: true
v Value type: boolean
v Example value: True

POC.allowsCredRefresh
When set to true, this parameter causes the LocalLogoutAction to be skipped
on the service provider during single sign-on and federation. Instead, the
credentials are refreshed. Set this parameter to true for the Web Plug-ins.
Otherwise, set it to false.

Default value: true
v Value type: boolean
v Example value: True

SPS.PageFactory.HtmlEscapedTokens
A comma-separated list of tokens that must be HTML-escaped when being
rendered in pages sent to the browser. Typically, this property includes any
macros in the SPS.PageFactory.Exception2Macro runtime custom property (if
used). This property is an important security consideration for preventing
cross-site scripting vulnerabilities.
v Value type: string
v Example value: @TOKEN_A@, @TARGET@

SPS.PageFactory.Exception2Macro
This runtime custom property is a comma-separated list of classname:macro
pairs. Classname is the full name of an exception class. Macro is the
replacement macro to which the class maps. The macro must start and end
with “@” as shown in the example values.
v Value type: string
v Example values: com.demo.MyException: @MYEXCEPTION@,

com.tivoli.am.fim.trustserver.sts.STSException: @STSEXCEPTION@

SPS.POC.Default.Header.Names.Enabled
When specified, this property enables the use of default header names for the

Chapter 48. Customizing runtime properties 705

point of contact header values. If false, the only headers that will be read or
written will have to be part of the sps.xml configuration file.
v Value type: boolean
v Example value: false

POC.WebSeal.SignOutInfoDelegate.UserSessionIdHeaderName
This value overrides the default tagvalue_user_session_id.
v Value type: String
v Example value: tagvalue_user_session_id

SOAP.AuthType
The authentication type to be used when accessing the SOAP endpoint. The
value can either be ba indicating basic authentication, or cert indicating client
certificate-based authentication.
v Value type: String
v Example value: ba

TFIM.SOAP.Port
This parameter is a comma-separated list of port numbers.
v Value type: String
v Example value: 9443, 9445

SPS.WebSealPoc.ContextPoolSize
Specifies the number of PDContext objects available in the pool. This value
reflects the number of clients that need to be authorized when using single
sign-on.

You might need to increase the value based on the logout load of the system.
When a large number of logouts occur at the same time, the Tivoli Federated
Identity Manager runtime might run out of PDContext objects and logouts
might start to fail. Because each PDContext object uses system resources, such
as memory and file descriptors, care should be taken to select a value. The
value must be greater than 0.
Default value: 5
v Value type: integer
v Example value: 5

SPS.WebSealPoc.DisablePDSignout
When set to true, this parameter disables the sign-out functionality of the
single sign-on protocol service WebSEAL Point of Contact client. When the
sign-out operation is invoked, it logs that no sign-out occurs and returns
successfully. When this parameter is enabled, the single sign-on protocol
service does not require the Tivoli Access Manager Java runtime (PDJRTE) to
be configured.

Default value: false
v Value type: boolean
v Example value: true

SPS.WebSealPoc.Force.PdAdmin.Task
When set to true, this value forces the WebSeal Point of Contact callback to
always use pdadmin server tasks to logout the user.
v Value type: boolean
v Example value: false

706 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

SPS.WebSealPoc.ContextPoolInitAttempts
This value represents the amount times that the PDContext objects
initialization will be tried. The default is 1 and the value needs to be greater
then 0.
v Value type: integer
v Example value: 1

SPS.WebSealPoc.ContextPoolInitTimeout
This value represents the maximum amount of time to be used during
PDContext objects initialization. After the time has expired, the initialization
will stop. The default is 10000 and the value needs to be greater then 0. The
amount is on milliseconds.
v Value type: integer
v Example value: 10000

Custom properties for the trust service
Use the trust service custom properties to suit your deployment requirements

username.disable.password.validation
When set to true, this parameter causes the UsernameTokenSTSModule to skip
password validation.

The default is false.
v Value type: Boolean
v Example value: true

username.jaas.provider.hostname
Specifies a name for the local host if WebSphere was not configured with the
value of localhost for the host name.

The default is localhost.
v Value type: String
v Example value: localhost

username.jaas.provider.port
Specifies the port configured for the local WebSphere NameServer service.

The default is 2809.
v Value type: Integer
v Example value: 2809

pdjrte.context.min.pool.size
Specifies the minimum size of the Authorization context pool. This parameter
is used by the UsernameTokenSTSModule. Set this parameter only if a
performance evaluation requires it to be set.
v Value type: Integer
v Example value: 5

pdjrte.context.max.pool.size
Specifies the maximum size of the Authorization context pool. This parameter
is used by the UsernameTokenSTSModule. Set this parameter only if a
performance evaluation requires it to be set.
v Value type: Integer
v Example value: 50

ivcred.allow.groupUpdate
If set to true, attempts to modify the credential by adding groups.

Chapter 48. Customizing runtime properties 707

Note: Do not use this parameter under any circumstances.
v Value type: Boolean
v Example value: false

ivcred.insert.CRLF76
When set to true, the base64 encoded IVCred generated by the Security Token
Service module STSTokenIVCred is split into multiple lines. If this custom
property is set to false, the base64 encoded IVCred generated by the Security
Token Service module STSTokenIVCred is not split into multiple lines.

Default value: True
v Value type: Boolean
v Example value: False

saml.use.rst.lifetime
Directs the SAML modules to use the lifetime of the RequestSecurityToken
element to derive the lifetime of the issued SAML assertion. When set to false,
does not use the RequestSecurityToken lifetime.

Default value: false
v Value type: Boolean
v Example value: false

passticket.disable.uppercase.principal
Uses the local RACF® handler to direct the PassTicket Module not to transform
all the principal name to uppercase before attempting to generate a PassTicket.
When set to false, always raises the principal to uppercase for the local RACF
handler.

Default value: false
v Value type: Boolean
v Example value: false

sts.use.issuer.saml20.sso
Directs the SAML 2.0 module to use the Issuer value, instead of the NameID
NameQualifier value to look up an alias during a single sign-on operation.

Default value: false
v Value type: Boolean
v Example value: false

username.wss.namespace.override
If not specified, the default is the WSS 1.1 token profile namespace. The key
for this property can be used as a prefix to set the scope of the property to a
specific STS Chain; for example, username.wss.namespace.override.uuid1234.
v Value type: String
v Example value: <a_URI_namespace>

STS.validateMappingRules
Specifies whether the mapping rule is validated when it is imported through
the console or the command-line interface. If the STS.validateMappingRules
parameter is specified, and the value is equal to the string false, ignoring the
case, then the mapping rule is not validated. Otherwise, the mapping rule is
validated.
v Value type: Boolean
v Example value: false

708 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

authorizationsts.initial.num.context
Specifies the initial amount of context objects to be created at startup. This
parameter controls the number of connections created and maintained by the
pool.
v Value type: Integer
v Example value: 5

authorizationsts.max.num.context
Specifies the maximum amount of context objects to be created throughout.
This parameter controls the number of connections created and maintained by
the pool.
v Value type: Integer
v Example value: 10

Custom properties for OAuth 2.0
Use the OAuth 2.0 custom properties to suit your deployment requirements.

OAuth20.DoNotSendXFrameOptionsHeader
This parameter directs the OAuth 2.0 endpoints to not include the
X-Frames-Options: SAMEORIGIN header in any responses to the OAuth client
or the resource owner, in particular the consent for authorization page. This
setting is turned off by default. Use this setting only when the authorization
server and the OAuth client have a strong trust relationship.

By default, the OAuth20.DoNotSendXFrameOptionsHeader option does not
exist. To use this setting, create the parameter, and set the value to true.
v Value type: Boolean
v Example value: True

Custom properties for SAML 1.0
Use the SAML 1.0 custom properties to suit your deployment requirements.

saml.use.legacy.clockskew.default
Tivoli Federated Identity Manager, by default, uses the local clock of the run
time when validating SAML assertion timestamps. Set this parameter to true if
you want to add a 60 second clock skew between the server and the SAML
assertion timestamp.

Default value: False
v Value type: Boolean
v Example value: False

Custom properties for SAML 1.1
Use the SAML 1.1 custom properties to suit your deployment requirements.

SAML.AllowDebugMessages
When specified as true, and a SAML artifact resolution failure occurs, the
SystemOut.log and SystemErr.log contains an informational message. In
addition, the message contains extra debug information about the request that
contained the failed artifact and provides a reason for the event.

Note: This message is only available in English.

Default value: False
v Value type: Boolean

Chapter 48. Customizing runtime properties 709

v Example value: SAML.AllowDebugMessage=true

saml.use.legacy.clockskew.default
Tivoli Federated Identity Manager by default adds a clock skew of 60 seconds
when validating the SAML assertion timestamps. To disable the 60 second
default, add the custom property: saml.use.legacy.clockskew.default =
false

Default value: True
v Value type: Boolean
v Example value: True

Custom properties for the key service
Use custom properties for the key service to suit your requirements.

kessjksservice.include.keyinfo.x509.certificate.data
Includes a base64 encoded certificate in the KeyInfo element of the signature.
When this element is true, either by default or by explicit use of this property,
then the other KESS runtime properties are ignored. When not specified, the
default is true.
v Value type: boolean
v Example value: true

kessjksservice.include.keyinfo.x509.subject.key.identifier
Includes the subject key identifier in the KeyInfo element of the signature
when the given certificate supports it. This can be used in addition to
issuer.details and subject.name. When not specified, the default is false.
v Value type: boolean
v Example value: true

kessjksservice.include.keyinfo.x509.issuer.details
Adds X509 issuer details to the KeyInfo element of the signature. This can be
used in addition to subject.key.identifier and subject.name. When not specified,
the default is false.
v Value type: boolean
v Example value: true

kessjksservice.include.keyinfo.x509.subject.name
Adds the X509 subject distinguished name (DN) to the KeyInfo element of the
signature. This can be used in addition to subject.key.identifier and
issuer.details. When not specified, the default is false.
v Value type: boolean
v Example value: true

kessjksservice.exclude.inclusive.namespace.prefixes
A comma-separated list of prefix names. When set, the prefixes in the list are
not added to the InclusiveNamespaces list that is in the Signature Element.
v Value type: string
v Example value: ds

kessjksservice.supportedalgorithms.signature
This custom runtime property is a list of signature algorithm URI separated by
commas. The default value is the full set of signature algorithms supported by
IBM Tivoli Federated Identity Manager.

710 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

You can modify this custom runtime property to include untested algorithms
that your system supports, but are not supported by IBM. Be careful when
modifying this property to avoid a signature failure.

Default value: http://www.w3.org/2000/09/xmldsig#rsa-sha1,http://
www.w3.org/2000/09/xmldsig#dsa-sha1,http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256
v Value type: string
v Example value: http://www.w3.org/2000/09/xmldsig#rsa-sha1,http://

www.w3.org/2000/09/xmldsig#dsa-sha1,http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256

kessjksservice.supportedalgorithms.messagedigest
This custom runtime property is a list of digest algorithm URIs separated by
commas. The default value is the full set of digest algorithms supported by
IBM Tivoli Federated Identity Manager.

You can modify this custom runtime property to include untested algorithms
that your system supports, but are not supported by IBM. Be careful when
modifying this property to avoid a signature failure.

Default value: http://www.w3.org/2000/09/xmldsig#sha1,http://
www.w3.org/2001/04/xmlenc#sha256,http://www.w3.org/2001/04/
xmlenc#sha512
v Value type: string
v Example value: http://www.w3.org/2000/09/xmldsig#sha1,http://

www.w3.org/2001/04/xmlenc#sha256,http://www.w3.org/2001/04/
xmlenc#sha512

key.selection.criteria
This custom runtime property allows you to configure the order of certificates
or keys. Use these values for the custom property:

only.alias
Alias only: The selected key only, without Auto rollover. If the key is
invalid, the software indicates failure. Configure the property to use
the value

shortest.lifetime
Shortest lifetime: For signing, a valid key with the shortest available
lifetime. For validation, key lifetime availability runs from shortest to
longest.

longest.lifetime
Longest Lifetime: For signing, a valid key with the longest available
lifetime. For validation, key lifetime availability runs from longest to
shortest.

v Value type: string
v Example value: only.alias

Custom properties for a SOAP client
Use the SOAP custom properties to suit your deployment requirements.

com.tivoli.am.fim.soap.client.jsse.provider
The Java Secure Socket Extension (JSSE) provider name that should be used
instead of IBMJSSE for SOAP client socket connections.
v Value type: String
v Example value: IBMJSSE

Chapter 48. Customizing runtime properties 711

com.tivoli.am.fim.soap.client.jce.provider
The Java Cryptography Extension (JCE) provider name that should be used
instead of IBMJCE for SOAP client keystores.
v Value type: String
v Example value: IBMJCE

com.tivoli.am.fim.soap.client.trust.provider
The Java Trust Manager provider algorithm name that should be used instead
of IbmX509 for SOAP client Trust Managers.
v Value type: String
v Example value: IbmX509

Custom properties for SAML 2.0
Use the SAML 2.0 custom properties to suit your deployment requirements.

SAML.Assertion.IncludeNSPrefixList.DS
When specified as true, ds is included into the PrefixList attribute of the
InclusiveNamespaces in the SAML assertion.

Default value: False
v Value type: Boolean
v Example value: True

SAML20.LogoutRequest.NotOnOrAfter.Enabled
When specified as true, the NotOnOrAfter attribute will be included on
LogoutRequest messages from the identity provider to the service provider.

Default value: True
v Value type: Boolean
v Example value: True

SAML20.LogoutRequest.NotOnOrAfter.Lifetime
Specifies the time in seconds used to set the NotOnOrAfter attribute on a
logout request.

Default value: 120
v Value type: Integer
v Example value: 300

saml.use.legacy.clockskew.default
Tivoli Federated Identity Manager by default adds a clock skew of 60 seconds
when validating the SAML assertion timestamps. To disable the 60 second
default, add the custom property: saml.use.legacy.clockskew.default =
false

Default value: True
v Value type: Boolean
v Example value: True

SAML20.IDP.UnsolicitedSSO.RelayState.URLEncoding
When specified as true, the RelayState in an unsolicited authentication
response is URL encoded by the identity provider before it is sent to the
service provider. This configuration applies to a response that is sent using
HTTP POST binding and HTTP ARTIFACT binding with the HTTP POST artifact
delivery method.

The URL encoding can be controlled in three levels:

712 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Global level
Controls the URL encoding for all federations and partners.

Configuration example: SAML20.IDP.UnsolicitedSSO.RelayState.

URLEncoding = true

Federation level
Controls the URL encoding for a specific federation and all its partners.

Configuration example: SAML20.IDP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID> = true

Example for SAML20.IDP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID>:

SAML20.IDP.UnsolicitedSSO.RelayState.URLEncoding_

https://idp/sps/fed/saml20 = true

Partner level
Controls the URL encoding for a specific federation and a specific
partner.

Configuration example: SAML20.IDP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID>_<PARTNERID>= true

Example for SAML20.IDP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID>_<PARTNERID>:

SAML20.IDP.UnsolicitedSSO.RelayState.URLEncoding_https://idp/
sps/fed/saml20_https://sp/sps/fed/saml20 = true

Default value: True
v Value type: Boolean
v Example value: False

<FEDERATION> represents the Provider ID of the federation and <PARTNER>
represents the Provider ID of the partner. You can obtain the Provider ID of the
federation from the Federation Properties page in the Console while the
Provider ID of the partner can be obtained from the Partner Properties page in
the Console.
You can use the three levels of control concurrently. Tivoli Federated Identity
Manager implements concurrent use by checking the RelayState settings to
decide what action to take in the following order:
1. Partner level setting
2. Federation level setting
3. Global level setting

SAML20.SP.UnsolicitedSSO.RelayState.URLEncoding
When specified as true, the RelayState in an unsolicited authentication
response is URL decoded by the service provider after it is received from the
identity provider.

The URL encoding can be controlled in three levels:

Global level
Controls the URL encoding for all federations and partners.

Configuration example:

SAML20.SP.UnsolicitedSSO.RelayState.URLEncoding = true

Chapter 48. Customizing runtime properties 713

Federation level
Controls the URL encoding for a specific federation and all its partners.

Configuration example: SAML20.SP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID> = true

Example for SAML20.SP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID>:

SAML20.SP.UnsolicitedSSO.RelayState.URLEncoding_https://sp/sps/
fed/saml20 = true

Partner level
Controls the URL encoding for a specific federation and a specific
partner.

Configuration example: SAML20.SP.UnsolicitedSSO.RelayState.

URLEncoding_<FEDERATIONID>_<PARTNERID>= true

Example for SAML20.SP.UnsolicitedSSO.RelayState.URLEncoding_

<FEDERATIONID>_<PARTNERID>:

SAML20.SP.UnsolicitedSSO.RelayState.URLEncoding_https://sp/sps/
fed/saml20_https://idp/sps/fed/saml20 = true

Default value: True
v Value type: Boolean
v Example value: False

<FEDERATION> represents the Provider ID of the federation and <PARTNER>
represents the Provider ID of the partner. You can obtain the Provider ID of the
federation from the Federation Properties page in the console while the
Provider ID of the partner can be obtained from the Partner Properties page in
the console.
You can use the three levels of control concurrently. Tivoli Federated Identity
Manager implements concurrent use by checking the RelayState settings to
decide what action to take in the following order:
1. Partner level setting
2. Federation level setting
3. Global level setting

Custom properties for the console
STS.showSSOChains

This parameter controls if the console allows an administrator to manage or
modify chains that were generated automatically for single sign-on
transactions. Setting this value to false does not disable the custom property.
You must remove the key and value pair from the custom properties table.
v Value type: boolean
v Example value: true

STS.showUSCChains
This parameter controls if the console allows an administrator to manage or
modify chains that were generated automatically for User Self Care federations.
Setting this value to false does not disable the custom property. You must
remove the key and value pair from the custom properties table.
v Value type: boolean

714 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Example value: true

STS.showAQChains
This parameter controls if the console allows an administrator to manage or
modify chains that were generated automatically for SAML 2 federations that
enable the Attribute Query service. Setting this value to false does not disable
the custom property. You must remove the key and value pair from the custom
properties table.
v Value type: boolean
v Example value: true

Custom property for OpenID
Use the OpenID custom properties to suit your deployment requirements.

OpenID.TrustedSitesManagerModuleID
A plugin module ID for a module that implements the
com.tivoli.am.fim.protocols.openid_trusted_sites_manager extension point.
There are two examples which implement this extension:
v TrustedSitesManagerCookieImpl
v TrustedSitesManagerMemoryImpl

When the parameter is not specified, the default is
TrustedSitesManagerCookieImpl.
v Type: String
v Example value: TrustedSitesManagerCookieImpl

OPENID.DiscoveredInformationExpirationSeconds
Specifies the number of seconds for which discovered information for any
OpenID user-supplied identifier is cached. If this value is less than or equal to
zero, the data is not cached at all (default). This parameter controls a cache for
discovered information. Use this parameter only when the same OP identifier
logon is frequently used by a majority of the users of the system. For example,
in an intranet deployment.

OPENID.SkipClaimedIdDiscovery
Controls whether verification is done on claimed identifiers when an
OP-identifier logon is performed. This parameter is only set to true in an
environment which uses trusted OP with the relying party. Otherwise, a
security exposure exists. This parameter is typically used in an intranet
environment.
v Type: Boolean
v Example value: False (default)

Custom property for transport security protocol

Specifying the transport security protocol for HTTPS
connections

The IBM Tivoli Federated Identity Manager creates SSL_TLS as the default secure
protocol for HTTPS connections. To change or override the default protocol, specify
the following runtime custom property in thefim.appservers.properties file:

com.tivoli.am.fim.soap.client.ssl.protocol= PROTOCOL

PROTOCOL corresponds to one of the protocols supported by the Java Secure
Socket Extension used by the underlying WebSphere Application Server.

Chapter 48. Customizing runtime properties 715

Examples:

v SSL_TLS

v SSL

v SSLv2

v SSLv3

v TLS

v TLSv1

Note: The protocol examples might not necessarily be supported.

Custom properties for LTPA tokens

Specifying custom Tivoli Federated Identity Manager runtime
properties that force compatible QName generation

WebSphere Application Server versions 6.0.2 and 6.1 do not distinguish between
LTPA v1 and LTPA v2 tokens in Web Services. Only one BinarySecurityToken
ValueType is supported for LTPA tokens, and the QName of the value type is:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2#LTPA

When the Tivoli Federated Identity Manager STS issues an LTPA v2 token, the
token is created with the following QName. This QName is correct, but it is not
supported by WebSphere Application Server versions 6.0.2 and 6.1:

http://www.ibm.com/websphere/appserver/tokentype#LTPAv2

This APAR provides custom Tivoli Federated Identity Manager runtime properties
that force compatible QName generation if needed. To enable compatibility mode,
set either or both of the following custom runtime properties:

ltpa.enable.compat.mode.[chainid_uuid]=true ltpa.enable.compat.mode=true

where chainid_uuid is the value of the Chain UUID. For example:

ltpa.enable.compat.mode.[uuideb42e428-011b-1ebc-a0cb-9e6c4b35c1c7]=true

To determine the value of Chain UUID, select Trust Service Chains > Select
Action > Show Chain ID in column in table from the administration console. This
action selection causes a new column to appear in the table that displays the
unique Chain ID.

716 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 49. Customizing an authentication login form for
single sign-on

Customize an authentication login form by adding parameters to a WebSphere or
WebSEAL point of contact server profile.

When a user requests access to a single sign-on federation, the identity provider
initiates single sign-on by authenticating the user. To authenticate the user, the
identity provider uses a point of contact server to display a forms-based login
page.

When an identity provider participates in multiple federations or hosts multiple
partners in one federation, the administrator can customize the default login form.

As administrator, you can customize:
v The login page based on the contents of the requests sent by the service

providers.
v The look and feel of the login form.
v The type of authentication required.
v The login pages for WebSEAL and WebSphere point of contact servers.

To customize the login page, use the Tivoli Federated Identity Manager
administration console to configure a new point of contact server profile. In the
new profile, add a parameter to the authentication callback, and specify one or
more values for the parameter.

Tivoli Federated Identity Manager provides some parameters which are always
available and consistent across all federation types and some which are specific to
the type of federation.

The protocols which support protocol-specific parameters are:
v SAML 1.x
v SAML 2
v OpenID

The set of defined values are described in “Supported macros for customizing an
authentication login form.”

Task overview:
1. Review the supported values for your protocol type, and identify the ones you

want to use. See “Supported macros for customizing an authentication login
form.”

2. Create a new point of contact server profile. See “Configuring a point of contact
server to support customization of login pages” on page 720.

Supported macros for customizing an authentication login form
This topic describes the set of macros for customizing an authentication login form.

© Copyright IBM Corp. 2006, 2013 717

Tivoli Federated Identity Manager supplies contextual authentication parameters in
customizing login forms. When using WebSEAL as the point of contact server,
these are query-string parameters to the login page. For WebSphere, they are in the
WASReqURL cookie when the login page is loaded. The parameters are macros in
the configuration of the authentication callback for the point of contact server
profile.

Note: When you use the WebSphere point of contact, the value of the query string
parameter needs to be URL decoded twice.

Supported macros are:
v Protocol independent macros
v SAML protocol macros
v OpenID protocol macros
v OAuth protocol macros

Note: If the value of authentication.macros is longer than the permitted length of
query string parameter, the WASReqURL cookie will not be present in the identity
provider.

Protocol independent macros for customizing an authentication
login form

The following macros are protocol independent and can be used regardless of the
federation type used.

Table 157. Supported Protocol independent macros

Macro Query-String Parameter name Description

%FEDID% FedId Specifies a unique identifier (UUID) used
internally by Tivoli Federated Identity
Manager to identify the federation.

%FEDNAME% FedName Specifies the user-assigned name of the
federation.

SAML protocol supported macros for customizing an
authentication login form

The following macros are supported for SAML protocol. Macros are supported for
both SAML 1.x and SAML 2.0, except as indicated.

Table 158. Supported SAML protocol macros

Macro Query-String Parameter name Description and value

%PARTNERID% PartnerId Represents the SSO partner that the user uses
to sign in.

SAML value: The value is the ProviderID of
the partner.

%TARGET% Target Represents the target URL at the partner, if
known.

SAML value: The value is the value of the
target parameter.

718 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 158. Supported SAML protocol macros (continued)

Macro Query-String Parameter name Description and value

%SPRELAYSTATE% SPRelayState Supported for SAML 2.0 only.

Represents RelayState data in accompanying
the SSO request, if applicable.

SAML value: The RelayState data that
accompanies the SAML AuthnRequest.

%ACSURL% AssertionConsumerURL Represents the assertion consumer service URL
of the partner, if applicable.

SAML value: The value is the Partner ACS
URL.

%AUTHNCONTEXT% AuthnContext Supported for SAML 2.0 only

Represents the AuthnContext in request (if
applicable).

SAML value: The value is a base-64 encoded
string representing the XML from the
RequestedAuthnContext in the SAML
AuthnRequest (if present).

%SSOREQUEST% SSORequest Supported for SAML 2.0 only

Represents the entire SSO request (if
applicable).

SAML value: The value is a base-64 encoded
string representing the XML from the entire
SAML AuthnRequest.

%FORCEAUTHN% ForceAuthn Supported for SAML 2.0 only

The value true or false.

SAML value: If the ForceAuthn flag is set in
the SAML 2 SSO request causing the user to
re-authenticate, the value is true. Otherwise
the value is false.

OpenID supported macros for customizing an authentication
login form

The following macros are supported for the OpenID protocol.

Table 159. Supported OpenID protocol macros
Macro Query-String Parameter name Description and value

%PARTNERID% PartnerId Represents the SSO partner that the user uses to
sign in.

OpenID value: The value of the openid.trustroot
parameter.

%TARGET% Target Represents the target URL at the partner, if known.

OpenID value: The value of the openid.return_to
parameter.

%SSOREQUEST% SSORequest Represents the entire SSO request (if applicable).

OpenID value: The checkid_setup request as a
base64-encoded version of the url-encoded SSO
request.

Chapter 49. Customizing an authentication login form for single sign-on 719

Table 159. Supported OpenID protocol macros (continued)
Macro Query-String Parameter name Description and value

%UNSATISFIEDPAPEPOLICIES% UnsatisfiedPapePolicies Represents a list of strings which represent PAPE
policies. These strings are returned as "not yet
satisfied" by the identity provider mapping rule in
an OpenID identity provider federation.

OpenID value: PAPE policies returned in the
ContextAttributes Attribute
openid.pape.to_be_satisfied_auth_policies

%FORCEAUTHN% ForceAuthn Specifies if authentication on the identity provider is
forced. The values are true or false.

OpenID value: The value is true if one of these
criteria is satisfied:

v the PAPE max_auth_age was zero (meaning
forced to authenticate again)

v the IDP mapping rule on the OpenID identity
provider is forcing authentication due to
unsatisfied PAPE policies

v the authentication time returned by the IDP
mapping rule does not satisfy the (non-zero)
max_auth_age requested by the RP

Otherwise, the value is false.

OAuth protocol supported macros for customizing an
authentication login form

The following table indicates how an OAuth federation populates the
authentication macros.

Table 160. Supported OAuth protocol macros
Macro Query-String Parameter name Description and value

%PARTNERID% PartnerId The OAuth unique client identifier.

%TARGET% Target OAuth client redirection URI.

%SSOREQUEST% SSORequest A base-64 encoded string representing the query and
body parameters from the OAuth request.

Configuring a point of contact server to support customization of login
pages

This topic describes how to a configure custom point of contact server to support
customization of a login page.

Before you begin

Ensure that you:
v Understand how customized login pages are supported. See Chapter 49,

“Customizing an authentication login form for single sign-on,” on page 717.
v Know which macros to specify for the authentication callback parameter. See

“Supported macros for customizing an authentication login form” on page 717.

Note: You do not need to create and publish a custom Point of Contact callback
plug-in before specifying authentication macros. Support for authentication macros
is provided by default. When you run the configuration wizard, you can ignore the
message that states that you must publish a plug-in before using the wizard.

About this task

The following procedure describes how to add a custom point of contact server
that is like a point of contact server already defined in your environment in order

720 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

to modify the information shown in a login page.

Procedure
1. Log on to the administration console.
2. Click Tivoli Federated Identity Manager > Domain Management > Point of

Contact.
3. Select the existing point of contact server that you want to base your new

point of contact server on. You must select a profile for either WebSEAL or
WebSphere.

4. Click Create Like to open the Welcome Panel of the Point of Contact Profile
wizard.

5. Click Next to open the Profile Name panel. It shows information from the
profile on which you are basing your new point of contact server.

6. Enter a name for the profile.
7. (Optional) Enter a description.
8. Click Next. The Sign in panel opens.
9. Accept the default entries for the sign-in callbacks, the parameters for each

callback, and the order in which they are used.
10. Click Next.
11. Accept the default entries for the Sign out panel.
12. Click Next.
13. Accept the default entries for the Local ID panel.
14. Click Next.
15. Click Add Parameters in the Callback Parameters section on the

Authentication panel.
16. Enter authentication.macros at Name.
17. Enter the macros you want to use at Values. To specify multiple values and

separate the macros, place a backslash (\) and a comma between values. For
example: %FEDID%\,%FEDNAME%\,%PARTNERID%

18. Click Next to display the Summary panel. It lists all the callbacks and
parameters you specified in the preceding steps.

19. Click Finish to complete the setup or click Back to return to the previous
panels and revise your selections.

20. Click Current Domain portlet.
21. Click Load configuration changes to the Tivoli Federated Identity Manager

runtime.

What to do next

“Activating a point of contact server” on page 746

Pass SAML request element to the point of contact server
Use a callback parameter to pass specific SAML request elements to the point of
contact server. Pass specific SAML request elements in addition to other macros.

In a typical single sign-on event, attributes are passed as query string parameters
in the redirect URL. This feature uses a callback parameter in addition to existing
supported macros. For more information about customizing an authentication login
form, see Customizing an authentication login form for single sign-on.

Chapter 49. Customizing an authentication login form for single sign-on 721

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=%2Fcom.ibm.tivoli.fim.doc_6.2.2%2Fconfig%2Fconcept%2FCustomizingAuthnLoginForm.html

Passing specific attributes from a SAML request requires the
extended.authentication.macros parameter. Its value is a set of key-value pairs
that are separated by a slash (\). For each pair, the key and the value are separated
by the = character.

Important: Do not put a white space before and after the \ and = characters.

Each pair represents an attribute that is passed to the point of contact. Each
attribute is passed to the point of contact as a query string parameter.

The key of a pair consists of two parts:
v The first part is the protocol name where the pair is applicable.
v The second part is the name of the query string parameter.

A period (.) separates the two parts. The value of a pair is the protocol-specific
method for selecting the attribute.

The following example is the Backus-Naur Form (BNF) format of the callback
parameter extended.authentication.macros:
<callback-parameter-value> ::= <key-value-pairs>
<key-value-pairs> ::= <key-value-pair> | <key-value-pair> "\," <key-value-pairs>
<key-value-pair> ::= <key> "=" <value>
<key> ::= <protocol-name> "." <query-string-parameter-name>

<protocol-name> ::= name of the protocol where the pair is applicable
<query-string-parameter-name> ::= name of the query string parameter
<value> ::= method for selecting the attribute/element

Note: Currently, only SAML 2.0 protocol is supported. The protocol name is
SAML20. The method for selecting the attribute is an XPath path expression.
Currently, only the canonical form XPath 1.0 is supported.

The following example for the callback parameter shows a sample value of the
parameter:

extended.authentication.macros
Value:
SAML20.AssertionConsumerServiceURL=/samlp:AuthnRequest/@AssertionConsumerServiceURL\,
SAML20.AuthnRequestAttributes=/samlp:AuthnRequest/@*\,
SAML20.Issuer=/samlp:AuthnRequest/saml:Issuer\,
SAML20.AuthnRequestElements=/samlp:AuthnRequest/*

Each attribute is passed to the point of contact as a query string parameter. The
value of the second part of the key of a pair is the query string parameter name.
The value of a pair selects the attribute that is passed to the point of contact.

If a single attribute is selected, the canonical form of this attribute is BASE-64
encoded. The result is used as the query string parameter value. If multiple
attributes are selected, the string representation of each attribute is BASE-64
encoded. The encoded strings are concatenated with a comma (,) as the separator.
The result is the query string parameter value. Only the canonical form XML-C14
that is specified in the World Wide Web Consortium is supported.

Both the query string parameter name and the query string parameter value are
URL encoded before they are appended into the redirect URL.

722 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

http://www.w3.org/TR/xml-c14n

Chapter 50. Customizing single sign-on event pages

Tivoli Federated Identity Manager generates files that are displayed in response to
events that occur during single sign-on requests. The response displayed might be
a form (such as when login information is required) or an error or information
statement about a condition that occurred while the request was processed.

You have the option of customizing the event pages, as follows:
v Modifying their appearance or content.
v Specifying which geographic or language locale to use when the pages are

displayed.

Before continuing with the customization, you should have a thorough
understanding of how event pages are generated and displayed. See “Generation
of event pages.”

Generation of event pages
Event pages are displayed in response to events that occur during single sign-on
requests. They usually contain a form (such as a prompt for user name and
password information) or text (such as an informational or error message).

Event pages are dynamic pages that are generated by Tivoli Federated Identity
Manager using the following information:

Template files
XML or HTML files that are provided with Tivoli Federated Identity
Manager and contain elements, such as fields, text, or graphics, and
sometimes macros that are replaced with information that is specific to the
request or to provide a response to the request.

Page identifiers
Event information that corresponds to one or more template files. Each
page identifier corresponds to a specific event condition, such as a specific
error or a condition in which a message or a form must be displayed. To
create an event page, page identifiers are mapped to one or more template
files. The mapping function allows multiple page identifiers to point to the
same template file.

Message catalogs
Text that is used to replace macros in the template files.

When a request is received, the appropriate response page is generated as follows:
1. Processing of the request occurs and a response to an event is required.
2. Template files and page identifiers are read from the file system.
3. Macros in the template files are replaced with values that are appropriate for

the response that is needed.
4. An appropriate event page is generated.
5. The generated event page is displayed.

For information about the relationship between page identifiers and template files,
see “Page identifiers and template files” on page 724.

© Copyright IBM Corp. 2006, 2013 723

Page identifiers and template files
A page identifier specifies an event and each event corresponds to one or more
template files. Some page identifiers are specific to the specification (such as SAML
1.x) and some are general.

To modify the text, graphics, or other elements of the page that is shown for an
event, follow the succeeding tasks:
1. Modify the template file or copy a template file.
2. Use the copy as the basis for a new file.
3. Map the event to that new file.

General page identifiers and their template files

Table 161. General page identifiers and their template files

Page identifier (Event) Description Template file

/proper/errors/noprotdet Shows when protocol is unknown /proper/errors/noprotdet.html

/proper/errors/missing_component Shows when protocol is unknown /proper/errors/
missingcomponent.html

/proper/errors/protocol_error Shows when a protocol module
throws an exception

/proper/errors/protocol_error.html

/proper/errors/need_authentication Shows when the initial URL
information is not found on the user
session.

/proper/errors/
need_authentication.html

/proper/errors/access_denied Shows when access is denied. /proper/errors/access_denied.html

/proper/errors/missing-initial-
url.html

Shows when the initial URL
information is not found on the user
session.

/proper/errors/allerror.html

/proper/errors/unauth-access-to-
waspoc-delegate.html

Shows when the WebSphere point of
contact delegate protocol has been
accessed without appropriate
authentication.

/proper/errors/allerror.html

/proper/login/formlogin.html Shows when using form-based
authentication.

Attention: Do not change the action
value and parameter names for the
form POST. They must remain
unchanged for the form to function
properly.

/proper/login/formlogin.html

/proper/login/formloginerror.html Shows when an error occurs using
the formlogin.html file. See
“Customizing the login form” on
page 98.

/proper/login/formloginerror.html

/proper/genericpoc/
login_success.html

Shows when the generic point of
contact implementation performs a
successful login without a target
URL.

/proper/login/login_success.html

/proper/waspoc/login_success.html Shows when the WebSphere point of
contact implementation performs a
successful login without a target
URL.

/proper/login/login_success.html

724 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 161. General page identifiers and their template files (continued)

Page identifier (Event) Description Template file

/proper/waspoc/login_failure.html Shows when an error occurs during
login using the WebSphere point of
contact implementation.

/proper/login/login_failure.html

SAML 1.x page identifiers and their template files

Table 162. SAML 1.x page identifiers and their template files

Page identifier (Event) Description Template file

/saml/invalid_request.html Shows when a request is not valid. /saml/allerror.html

/saml/unknown_sp.html Shows when an unknown service
provider is encountered.

/saml/allerror.html

/saml/unknown_ip.html Shows when an unknown identity
provider is encountered.

/saml/allerror.html

/saml/invalid_ip_request.html Shows when an identity provider
provides an invalid request.

/saml/allerror.html

/saml/unauth_user.html Shows when the running user has
not authenticated.

/saml/allerror.html

/saml/cannot_exchange_for_sp.html Shows when there is an error
encountered during the token
exchange.

/saml/allerror.html

/saml/no_ip_post_page.html Shows when the identity provider
does not have a POST page.

/saml/allerror.html

/saml/no_return_token.html Shows when there is no return token. /saml/allerror.html

/saml/ip_post_to_sp.html Shows the POST HTML form when
the identity provider posts the SAML
response to the service provider.

/saml/allerror.html

/saml/invalid_response.html Shows when an invalid response
message is encountered.

/saml/allerror.html

/saml/ip_response_invalid.html Shows when identity provider
response is invalid.

/saml/allerror.html

/saml/
cannot_exchange_for_resource.html

Shows when there is an error
encountered during the token
exchange.

/saml/allerror.html

/saml/missing_context_attribute.html Shows when the required context
attribute is not represented.

/saml/allerror.html

/saml/
missing_config_parameter.html

Shows when a required SPS
configuration item is missing.

/saml/allerror.html

/saml/
could_not_retrieve_assertion.html

Shows when the service provider
cannot get the assertion from the
Response or from the SOAP back
channel.

/saml/allerror.html

/saml/
could_not_perform_local_auth.html

Shows when an error is encountered
when the EAI header is returned.

/saml/allerror.html

/saml/
could_not_create_signed_request.html

Shows when a signed SAML
assertion request cannot be
generated.

/saml/allerror.html

Chapter 50. Customizing single sign-on event pages 725

Table 162. SAML 1.x page identifiers and their template files (continued)

Page identifier (Event) Description Template file

/saml/sp_missing_target.html Shows at the service provider if the
initial request to the WAYF endpoint
does not contain a TARGET
parameter.

/saml/allerror.html

/saml/
error_parsing_soap_response.html

Shows when there is an error
encountered when the service
provider attempts to retrieve the
Assertion from the SOAP endpoint of
the identity provider.

/liberty/
error_parsing_soap_response.html

/saml/unknown_ip_wayf.html Shows when the "where you are
from" cookie contains an identity
provider ID that is not configured on
the federation.

/saml/allerror.html

SAML 2.0 page identifiers and their template files

Table 163. SAML 2.0 page identifiers and their template files

Page identifier Description Template files

/saml20/error_building_msg.html Shows for errors building SAML 2
messages.

/saml20/error_building_msg.html

/saml20/
error_missing_config_param.html

Shows when an invalid configuration
parameter is detected at runtime.

/saml20/
error_missing_config_param.html

/saml20/error_sending_msg.html Shows for errors sending SAML 2
messages.

/saml20/error_sending_msg.html

/saml20/error_validating_msg.html Shows for errors validating SAML 2
messages.

/saml20/error_validating_msg.html

/saml20/error_validating_art.html Shows for errors validating SAML 2
artifacts.

/saml20/error_validating_art.html

/saml20/invalid_msg.html Shows for errors validating SAML 2
messages.

/saml20/invalid_msg.html

/saml20/invalid_art.html Shows for errors validating SAML 2
artifacts.

/saml20/invalid_art.html

/saml20/authn_failed.html Shows when a SAML 2
authentication fails.

/saml20/authn_failed.html

/saml20/logout_failed.html Shows for logout failures. /saml20/logout_failed.html

/saml20/art_exchange_failed.html Shows when exchange of a SAML
artifact for a response fails.

/saml20/art_exchange_failed.html

/saml20/nimgmt_update_failed.html Shows for name identifier
management update failure.

/saml20/nimgmt_update_failed.html

/saml20/
nimgmt_terminate_failed.html

Shows for name identifier
management terminate failure.

/saml20/
nimgmt_terminate_failed.html

/saml20/
error_validating_msg_signature.html

Shows for errors validating SAML 2
message signatures.

/saml20/
error_validating_msg_signature.html

/saml20/error_decrypting_msg.html Shows for errors decrypting SAML 2
messages.

/saml20/error_decrypting_msg.html

/saml20/error_parsing_msg.html Shows for errors parsing SAML 2
messages.

/saml20/error_parsing_msg.html

726 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 163. SAML 2.0 page identifiers and their template files (continued)

Page identifier Description Template files

/saml20/error_parsing_art.html Shows for errors parsing SAML 2
artifacts.

/saml20/error_parsing_art.html

/saml20/invalid_init_msg.html Shows for errors validating SAML 2
messages.

/saml20/invalid_init_msg.html

/saml20/
error_validating_init_msg.html

Shows for errors validating SAML 2
messages.

/saml20/
error_validating_init_msg.html

/saml20/logout_success.html Shows for successful logouts. /saml20/logout_success.html

/saml20/logout_partial_success.html Shows for partial logout completion. /saml20/logout_partial_success.html

/saml20/
nimgmt_terminate_success.html

Shows for name identifier
management terminate success.

/saml20/
nimgmt_terminate_success.html

/saml20/
nimgmt_update_success.html

Shows for name identifier
management update success.

/saml20/
nimgmt_update_success.html

/saml20/consent_to_federate.html Shows and prompts a user for
consent to federate.

/saml20/consent_to_federate.html

/saml20/saml_post_artifact.html Shows for sending SAML 2.0 artifacts
for POST profiles.

/saml20/saml_post_artifact.html

/saml20/saml_post_request.html Shows for sending SAML 2.0 requests
for POST profiles.

/saml20/saml_post_request.html

/saml20/saml_post_response.html Shows for sending SAML 2.0
responses for POST profiles.

/saml20/saml_post_response.html

/saml/
could_not_create_signed_request.html

Shows when a signed SAML
assertion request cannot be
generated.

/saml/allerror.html

/saml/sp_missing_target.html Used at the service provider if the
initial request to the WAYF endpoint
does not contain a TARGET
parameter.

/saml/allerror.html

Liberty page identifiers

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

Table 164. Liberty page identifiers

Page identifier Description

/liberty/error_parsing_soap_response.html Reports that SOAP response cannot be
parsed.

/liberty/fed-terminate-success.html Displayed when termination is successful.

/liberty/lib-cant-modify-alias.html Displayed when alias modification fails.

/liberty/lib-fed-consent.html Sent to ask user for consent to federate.

/liberty/lib-fed-post-request.html Form used for POSTing an authentication
request.

/liberty/lib-fed-post.html Form used for POSTing a response.

/liberty/lib-internal-error-page.html Sent for an error if nothing else can be sent.

/liberty/lib-ipi-consent.html Asks user to consent to perform IP
introduction to the service providers.

Chapter 50. Customizing single sign-on event pages 727

Table 164. Liberty page identifiers (continued)

Page identifier Description

/liberty/lib-ipi-post.html Reports IP introduction success.

/liberty/lib-login-failed-page.html Not currently used.

/liberty/lib-logout-failed-page.html Sent to user by the IP when logout failed for
any reason.

/liberty/lib-logout-page.html Sent to user to report all session
terminations after a logout.

/liberty/lib-logout-success-page.html Sent to user by the IP to report a successful
logout.

/liberty/logoutFailure.gif Image to indicate logout failure if the HTTP
GET single logout technique is being used.

/liberty/logoutSuccess.gif Image to indicate logout success if the HTTP
GET single logout technique is being used.

/liberty/lib-message-timestamp-failure.html Sent if the issue time is outside tolerance.

/liberty/lib-no-fed-exists.html Sent when no federation exists.

/liberty/lib-no-liberty-assertion.html Reports no assertion found in response.

/liberty/lib-no-local-login.html Reports failure of local login.

/liberty/lib-no-service-available.html Reports no assertion or alias service exists.

/liberty/lib-register-name-identifier-
success.html

Reports successful registration of a name
identifier.

/liberty/lib-request-id-not-matching-
resp.html

Reports that a response does not correlate to
any known request.

/liberty/lib-sig-validation-failure.html Not currently used.

/liberty/lib-version-mismatch.html Not currently used.

/pages/itfim/wayf/wayf-html.html HTML WAYF response.

WS-Federation page identifiers

Table 165. WS-Federation page identifiers

Page identifier Description

/wsfederation/
cannot_exchange_for_resource.html

Reports that IP WS-Trust request failed on
the service provider.

/wsfederation/cannot_exchange_for_sp.html Reports that IP cannot exchange a token for
the service provider.

/wsfederation/cannot_local_auth.html Used when the service provider cannot
validate a token.

/wsfederation/invalid_ip_response.html Reports that the service provider cannot
understand an IP response.

/wsfederation/invalid_request.html Not a WS-Federation request.

/wsfederation/invalid_sp_request.html Shows when a request is not valid.

/wsfederation/ip_post_to_sp.html Used by WS-Federation for sending
information from the IP to the service
provider.

/wsfederation/no_ip_post_page.html Shows when the identity provider does not
have a post page.

728 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 165. WS-Federation page identifiers (continued)

Page identifier Description

/wsfederation/no_return_token.html Reports that IP cannot find a token to return
to the service provider.

/wsfederation/signout_cleanup_failed.html Not currently used.

/wsfederation/
signout_cleanup_failed_no_auth.html

Used when WS-Federation signout failed
because the user was not authenticated.

/wsfederation/signout_cleanup_to_sp.html Used by WS-Federation signout to trigger
signouts on service providers.

/wsfederation/signout_successful.html Used when WS-Federation signout is
successful.

/wsfederation/sp_ip_returned_fault.html Reports that fault returned by IP to the
service provider.

/wsfederation/unauth_user.html Reports that user not authenticated on this
IP.

/wsfederation/unknown_ip_wayf.html Reports that the service provider cannot
determine the IP.

/wsfederation/unknown_sp.html Reports that the service provider is
unknown to the IP.

Low-level independent page identifiers

Table 166. Independent page identifiers

Page identifier Description

/proper/errors/cannot_process Used for unspecified internal errors.

/proper/errors/missing_component Shows when protocol is unknown.

/proper/errors/noprotdet Shows when protocol is unknown.

/proper/errors/not_started Used when the SPS is not running, which
usually indicates a configuration error of
some type.

/proper/errors/protocol_error Shows when a protocol module throws an
exception.

/pages/itfim/wayf/error-no-ips.html Reports that no identity providers exist, so
WAYF processing cannot be done.

/pages/itfim/wayf/error-missing-
template.html

Used when no WAYF template page can be
found.

/pages/itfim/wayf/error-invalid-
template.html

Used when the WAYF page is invalid.

/pages/itfim/wayf/wayf-html.html Shows when a federation has more than one
identity provider and the ITFIM_WAYF_IDP
query-string parameter or the WAYF cookie
is not present.

Location of template files

The template files are stored in the succeeding directory by default:

AIX
/usr/IBM/FIM/pages/locale/

Chapter 50. Customizing single sign-on event pages 729

Linux or Solaris
/opt/IBM/FIM/pages/locale/

Windows
C:\Program Files\IBM\FIM\pages\locale\

The locale subdirectory is specific to the geographic or language locales of the
template files. The default locale directory is named C and all files are in English. If
a language pack was installed, additional locales are available.

The template files are published from their default subdirectories into WebSphere
Application Server directories. See “Publishing updates” on page 735.

Attention: If you must modify the template files, modify them on the Tivoli
Federated Identity Manager server. Do not modify them in the WebSphere
Application Server directories.

Content of template files

HTML template files can contain macros that are replaced with context-specific
information that is retrieved when the response page is built and returned. If your
template file contains, for example, the macro @EXCEPTION_MSG@, an exception
message is included in the response page.

The presence of a macro in a template file does not guarantee that the macro
contains an actual value when the response page is built. A value for the macro
must be defined when the page is built in order for the macro to return a value.

When customizing an HTML template file, use only those macros defined in the
template file. If you add new macros to the template file, values for the added
macros will not be returned when the final response page is generated.

Macros use the succeeding format:

@MACRO@

Where MACRO represents the name of the macro; for example, @EXCEPTION_MSG@

The succeeding macros are used in the template files.

Table 167. Macros used in the template files

Substitution macro Brief Description

@ACTION@ The action is the URL where the form that contains the
POST response is sent. Used in an HTML POST response
sent by an identity provider to a browser for a single
sign-on protocol service request.

@CAUSE@ Information regarding the cause of the error.

@DETAIL@ Additional information about an error or exception that
has occurred as part of request processing. Because
additional text is not always available, even if the
@DETAIL@ macros is used in an HTML template file,
there is no guarantee that the macros can provide
additional text about the exception.

@EXCEPTION_MSG@ Text message that describes an exception that has
occurred in request processing.

730 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Table 167. Macros used in the template files (continued)

Substitution macro Brief Description

@EXCEPTION_STACK@ Full exception stack of an exception that has occurred in
request processing.

@FEDERATION_DISPLAY@ The name of the current federation, that is, the one
currently in use.

@FEDERATION_ID@ The unique identifier of the current federation.

@PARTNER_ID@ Federation single sign-on protocol of a federation partner.

@REQ_ADDR@ Internet Protocol (IP) address of the endpoint that
requested a federation action.

@RESPONSE@ Used in an HTML POST response from an identity
provider, substituted for with the SAML response.

@SAMLSTATUS@ Collection of SAML status values received during the
single sign-on action processing.

@SOAP_ENDPOINT@ The SOAP endpoint URL that is used to retrieve the
assertion using a SAML artifact.

@TARGET@ Used to provide the service provider target in an HTML
POST response sent by an identity provider) to a browser
for a single sign-on protocol service request.

@TIMESTAMP@ A value for the current time.

@TOKEN:form_action@ The URL where the form that contains the POST message
is sent during a POST binding.

@TOKEN:IPDisplayName@ The identity provider unique name.

@TOKEN:IPProviderID@ The identity provider unique identifier.

@TOKEN:PartnerID@ The partner unique identifier.

@TOKEN:RelayState@ The SAML protocol RelayState value.

@TOKEN:SamlMessage@ The base64 encoded SAML message that is sent on a
form.

@TOKEN:SPDisplayName@ The service provider unique name.

@TOKEN:SPProviderID@ The service provider unique identifier.

@TOKEN:UserName@ The authenticated user name that submitted the single
sign-on action.

@WAYF_FEDERATION_DISPLAY_NAME@ Name that shows for the current federation, as presented
in the console. Used on a page presenting a WAYF
(Where Are You From) challenge and requesting that a
user selects an identity provider.

@WAYF_FEDERATION_ID@ Identifier of the current federation in the configuration
file. Used on a page presenting a WAYF challenge and
requesting that a user selects an identity provider.

@WAYF_FORM@ Identifier information for the WAYF HTML form that is
presented to a user to acquire identity provider
information in an SPS action where the identity provider
for the requestor has not yet been determined (it is not
yet in the cookie presented).

@WAYF_FORM_ACTION@ Endpoint of the single sign-on protocol service; this is the
originally requested address (URL). Used on a page
presenting a WAYF challenge and requesting that a user
selects an identity provider.

Chapter 50. Customizing single sign-on event pages 731

Table 167. Macros used in the template files (continued)

Substitution macro Brief Description

@WAYF_FORM_METHOD@ HTTP method used on a request that has resulted in a
WAYF on a page that is prompting for identity provider
information. The method can be either GET, POST or
HEAD.

@WAYF_FORM_PARAM_ID@ Identifier of the form parameter for the current identity
provider, is typically the configured cookie name. Used
on a page that is presenting a WAYF challenge and
requesting that a user selects an identity provider.

@WAYF_HIDDEN_NAME@ Name of one of the initial parameters to a request that
results in a WAYF and is used on a page that is
prompting for identity provider information.

@WAYF_HIDDEN_VALUE@ Value of one of the initial parameters to a request that
results in a WAYF, and is used on a page that is
prompting for identity provider information.

@WAYF_IP_DISPLAY_NAME@ The configured display name of the current identity
provider on a page presenting a WAYF challenge.

@WAYF_IP_ID@ Configuration ID of the current identity provider on a
page presenting a WAYF challenge.

Template page for the WAYF page
The Where Are You From (WAYF) page is used at the service provider. The WAYF
page enables users to select their identity provider if there is more than one
configured in the federation.

When a user arrives at a service provider, a WAYF identifier can be delivered
through a cookie or query-string parameter with the request. The entity ID of the
identity provider is stored as the value of the cookie or query-string parameter. If
the WAYF identifier cookie or query-string parameter is not present, the WAYF
page opens.

An example URL that includes the query string parameter for WAYF:
https://sp.host.com/FIM/sps/samlfed/saml20/
logininitial?RequestBinding=HTTPRedirect&ResponseBinding
=HTTPPost&ITFIM_WAYF_IDP=https://idp.host.com/FIM/sps/samlfed/saml20

This example is for a SAML 2.0 single sign-on URL. The query string parameter
name is ITFIM_WAYF_IDP. The value of the identity provider ID is
https://idp.host.com/FIM/sps/samlfed/saml20.

The WAYF page requires the user to indicate where they came from. If the user is
not logged on to their identity provider, they are asked to log on. Depending on
the attributes passed, the service provider can grant or deny access to the service.

The template pages are stored in the following directory by default:

<FIM_Install_Dir>/pages/<locale>/pages/itfim/wayf

See, “Low-level independent page identifiers” on page 729 for more information
about WAYF template pages.

732 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Administrators can use this page without modifications, but in some cases might
want to modify the HTML style to match their specific deployment environment.

This template file provides several replacement macros:

@WAYF_FORM_ACTION@
This macro is replaced with the endpoint of the original request. This
macro does not belong within a repeatable section.

@WAYF_FORM_METHOD@
This macro is replaced with the HTTP method of the original request. This
macro does not belong within a repeatable section.

@WAYF_FORM_PARAM_ID@
This macro is replaced with ID used by the action for the identity provider.
This macro is repeated once for each identity provider.

@WAYF_IP_ID@
This macro is replaced with the unique ID of the identity provider. This
macro is repeated once for each identity provider.

@WAYF_IP_DISPLAY_NAME@
This macro is replaced with the configured display name of the identity
provider. This macro is repeated once for each identity provider.

@WAYF_HIDDEN_NAME@
This macro is replaced with the name of the hidden parameter. This macro
is repeated once for each original request parameter and is hidden.

@WAYF_HIDDEN_VALUE@
This macro is replaced with the value of the hidden parameter. This macro
is repeated once for each original request parameter and is hidden.

Chapter 50. Customizing single sign-on event pages 733

Modifying or creating the template files
To customize the appearance of the event pages, you can modify the template files
or create new template files.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<!--
html wayf template that presents the choice as radio buttons.
-->
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<title>Where are you from</title>

</head>
<body style="background-color:#ffffff">

<div>
<!--
Insert the federation ids here just so we can show some tokens
[RPT federations]

@WAYF_FEDERATION_ID@
@WAYF_FEDERATION_DISPLAY_NAME@

[ERPT federations]
-->
<form id="wayfForm" name="wayfForm"

action="@WAYF_FORM_ACTION@" method="@WAYF_FORM_METHOD@">
<div>

<table>

[RPT ips]
<tr>

<td>
<input type="radio" id="@WAYF_FORM_PARAM_ID@"

name="@WAYF_FORM_PARAM_ID@"
value="@WAYF_IP_ID@"/>@WAYF_IP_DISPLAY_NAME@

</td>
</tr>

[ERPT ips]

</table>
<!-- the hidden inputs must be present -->

[RPT hidden]
<input type="hidden" name="@WAYF_HIDDEN_NAME@"

id="@WAYF_HIDDEN_NAME@"
value="@WAYF_HIDDEN_VALUE@"/ >

[ERPT hidden]

</div>
<input type="submit" name="submit" value="Submit" />

</form>
</div>

</body>
</html>

Figure 78. Template page wayf-html.html

734 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Before you begin

Before continuing with this procedure, be sure that you are familiar with how
event pages are generated. See “Generation of event pages” on page 723.

About this task

Attention: Modify the template files in the directory on the Tivoli Federated
Identity Manager server (as described below). When all of your changes are
complete, publish them to the WebSphere Application Server configuration
repository directory. Do not edit these files in the configuration repository.

Procedure
1. Decide which event pages you want to modify. See the list of events and their

corresponding template files at “Page identifiers and template files” on page
724.

2. Stop the WebSphere Application Server where the runtime component is
installed. Use the stopServer command. See the WebSphere Information Center
if you need help.

3. Locate the template file that corresponds to the event page you want to modify
or make a copy of an existing template file and use it create a new file.
The template files are located in a geographic-specific or language-specific
locale subdirectory for the file. The default locale subdirectory is named C and
all files are in English. If a language pack was installed, additional locales are
available. You can also create your own locales, as described in “Creating a
page locale” on page 736.
The default directory for the template files is as follows:

AIX
/usr/IBM/FIM/pages/locale/

Linux or Solaris
/opt/IBM/FIM/pages/locale/

Windows
C:\Program Files\IBM\FIM\pages\locale\

4. Use a text editor to modify or create new files.
5. Save the files to the appropriate location, such as the same directory where you

edited them or from which you copied them.

What to do next

When you have completed this step, continue with publishing the files to the
configuration repository as described in “Publishing updates.”

Publishing updates
When all updates and additions have been made to the template files, you must
publish the files to the configuration repository so they will be displayed.

Procedure
1. Log on to the management console.
2. Select Tivoli Federated Identity Manager > Domain Management > Event

Pages.
3. Locate the event or events that you want to map to the new or updated pages.

Chapter 50. Customizing single sign-on event pages 735

4. In the HTML Page Displayed field for each event you are modifying, type the
path and file name for the file you want to use for that event.

5. Click Apply. A warning message is displayed that explains you must publish
the updated files to the configuration repository.

6. Click Publish Pages to publish the changes right away.
Otherwise, click Close and later, when you are ready to publish click Domain
Management > Runtime Node Management and on the Runtime Node
Management panel, click the Publish pages button.

Creating a page locale
The template files that are used to generate event pages are located in a
geographic-specific or language specific locale subdirectory for the file. The default
locale subdirectory is named C and all files are in English. Additional locales and
corresponding languages are also available. In addition, you can create your own
locale.

Before you begin

Before continuing with this procedure, be sure that you are familiar with how
event pages are generated. See “Generation of event pages” on page 723.

Procedure
1. Log on to the management console.
2. Select Tivoli Federated Identity Manager > Domain Management > Event

Pages. The Event Pages panel opens.
3. Click the Page Locale tab to open the Page Locale panel.
4. Click Create. A placeholder list item is added to the list of page locales with

the Page Locale name of locale and a Page Root Directory of page_root.
5. Enter a locale abbreviation to replace locale.
6. Enter a name for the directory of the locale in place of page_root.
7. Click Apply or OK. A warning message is displayed that explains you must

publish the updated files to the configuration repository.
8. Click Publish to publish the changes right away.

Otherwise, click Close and later, when you are ready to publish click Domain
Management > Runtime Node Management and on the Runtime Node
Management panel, click the Publish pages button.

Deleting a page locale
You can delete any page locales other than the default C page locale, which was
installed when Tivoli Federated Identity Manager was installed.

About this task

Deleting a page locale removes it from the environment and prevents the pages in
that locale from being displayed.

Procedure
1. Log on to the management console.
2. Select Tivoli Federated Identity Manager > Domain Management > Event

Pages. The event page opens.

736 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

3. Click the Page Locale tab to open the Page Locale panel.
4. In the Select field, select the button next to the page locale you want to

remove. For descriptions of the locales, refer to the online help.
5. Click Delete and then click Apply to apply your changes and remain in the

Page Locale portlet, or click OK to apply your changes and exit from the
portlet.

Customizing multiple-use physical page templates
In certain circumstances, you must customize physical page templates that are
referred to by multiple page identifiers.

About this task

Note: Liberty protocol is being deprecated in the Tivoli Federated Identity
Manager 6.2.2 release.

There are some physical page templates that are referred to by multiple page
identifiers in sps.xml.

For example, <sps:PageIdentifierMapping name="/liberty/
error_parsing_soap_response.html" location="/liberty/
error_parsing_soap_response.html" /> and <sps:PageIdentifierMapping
name="/saml/error_parsing_soap_response.html" location="/liberty/
error_parsing_soap_response.html" />

If the SAML response must differ from the Liberty response, edit the pages as
specified in this procedure:

Procedure
1. For each locale affected, copy the Liberty page into the SAML directory.
2. Edit the two pages as desired.
3. Edit the second PageIdentifierMapping in the preceding example to read

<sps:PageIdentifierMapping name="/saml/error_parsing_soap_response.html"
location="/saml/error_parsing_soap_response.html" />

4. Publish these changes as described in “Publishing updates” on page 735.

Customizing the Consent to Federate Page for SAML 2.0
A consent to federate page is an HTML form which prompts a user to give consent in
joining a federation. You can customize the consent to federate page to specify what
information it requests from a user.

Before you begin

Determine what values you want to use for the consent to federate page.

About this task

When a user accesses a federation, they agree to join the federation. The HTML
form consent_to_federate.html prompts for this consent. You can customize what
the form requests by adding consent values. These values indicate how a user
agrees to join a federation and if service providers are notified of the consent.
Identity providers receive the consent values in the SAML 2.0 response.

Chapter 50. Customizing single sign-on event pages 737

The following values determine how a user joins a federation:

1 A user agrees to join a federation without notifying the service provider.

0 A user refuses to join a federation.

A URI value
A URI can indicate whether the user agrees to join a federation and if you
want to notify the service provider about the user consent. The following
table lists and describes the supported URI values.

Table 168. Supported consent values for SAML 2.0 response

Consent value URI Description

Unspecified urn:oasis:names:tc:
SAML:2.0:consent: unspecified

The consent of the user is not
specified.

Obtained urn:oasis:names:tc:
SAML:2.0:consent: obtained

Specifies that user consent is acquired
by the issuer of the message.

Prior urn:oasis:names:tc:
SAML:2.0:consent: prior

Specifies that user consent is acquired
by the issuer of the message before
the action which initiated the
message.

Implicit urn:oasis:names:tc:
SAML:2.0:consent: current-implicit

Specifies that user consent is
implicitly acquired by the issuer of
the message when the message was
initiated.

Explicit urn:oasis:names:tc:
SAML:2.0:consent: current-explicit

Specifies that the user consent is
explicitly acquired by the issuer of
the message at the instance that the
message was sent.

Unavailable urn:oasis:names:tc:
SAML:2.0:consent: unavailable

Specifies that the issuer of the
message was not able to get consent
from the user.

Inapplicable urn:oasis:names:tc:
SAML:2.0:consent: inapplicable

Specifies that the issuer of the
message does not need to get or
report the user consent.

Follow the steps in this procedure to customize the consent to federate page.

Important: Modify the template files on the Tivoli Federated Identity Manager
server. When all of your changes are complete, you can publish them on the
WebSphere Application Server configuration repository directory. Do not edit these
files in the configuration repository.

Procedure
1. Use the stopServer command to stop the WebSphere Application Server where

Tivoli Federated Identity Manager is installed. For more information, see the
WebSphere Information Center.

2. Use a text editor to access consent_to_federate.html.
The template files are in a geographic-specific or language-specific subdirectory.
All files are in English. If you installed a language pack, additional locales are
available. The default directory depends on the operating system.

AIX /usr/IBM/FIM/pages/locale/saml20/

Linux or Solaris
/opt/IBM/FIM/pages/locale/saml20/

738 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Windows
C:\Program Files\IBM\FIM\pages\locale\saml20\

3. Add the appropriate consent values for your federation. See About this task for
a complete list of values.

4. Save the files to the appropriate location. This location might be same directory
where you edited them.

5. Restart the WebSphere Application Server.

Example

The following example shows an added URI with a consent value Obtained:
<input type="radio" checked name="Consent"
value="urn:urn:oasis:names:tc:SAML:2.0:consent:obtained"/>
Consent Obtained.br/>

In this example, the user consent is acquired by the issuer of the message.

What to do next

Publish the files to the configuration repository. See “Publishing updates” on page
735.

Chapter 50. Customizing single sign-on event pages 739

740 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 51. Developing a custom point of contact server

The point of contact server in your Tivoli Federated Identity Manager environment
is the first entity to process a request for access to a resource. You can choose one
of the provided options for a point of contact server or you can create a custom
point of contact server.

About this task

A custom point of contact server is made up of several customized callback
modules that define sign in, sign out, local ID, and authentication.

A custom point of contact server might be appropriate in your environment if you
want to integrate an existing authentication or Web access management application
with Tivoli Federated Identity Manager.

For example, a custom point of contact server would be useful in the following
scenarios:
v If you have an existing single sign-on cookie token that is used throughout your

existing enterprise, you could implement a custom point of contact server that
uses a SignIn callback that sets that custom single sign-on domain cookie that
conforms to your existing single sign-on strategy.

v If you have an existing Web access management product that exposes a custom
API for asserting a user identity to the environment or retrieving the current
user for the request.
You could implement a point of contact server that uses a local identity callback
(to retrieve the user for the transaction) or implement a custom point of contact
server that uses a SignIn callback to assert the user identity to the environment,
or implement a point of contact server that uses both types of callbacks.

Developing a custom point of contact server requires programming experience
with developing callback modules and knowledge of Tivoli Federated Identity
Manager programming concepts. See the developerWorks links in the information
center at http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html.

When you have completed the development work, integrate the solution with your
Tivoli Federated Identity Manager environment as specified in this procedure:

Procedure
1. Publish the callback plug-ins to the Tivoli Federated Identity Manager runtime

module. See “Publishing callback plug-ins” on page 742.
2. Gather the parameter information that you will need for configuring each of

the callback modules.
3. Create a new point of contact server profile. You have the option of creating a

new profile or using an existing profile as the basis for your new point of
contact server profile. See either of the following topics:
v “Creating a new point of contact server” on page 742
v “Creating a point of contact server like an existing server” on page 744

4. Activate the point of contact server. See “Activating a point of contact server”
on page 746.

© Copyright IBM Corp. 2006, 2013 741

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.tivoli.fim.doc_6.2.2/ic/ic-homepage.html

Publishing callback plug-ins
If you have developed the modules for a custom point of contact server, you must
publish the plug-ins for those modules so that you can use them in your Tivoli
Federated Identity Manager environment.

Before you begin

Before continuing with this task, ensure that you have developed the appropriate
callback modules for your custom point of contact server. For more information,
see Chapter 51, “Developing a custom point of contact server,” on page 741.

Procedure
1. Copy the callback plug-ins to the /plugins directory where you installed Tivoli

Federated Identity Manager. For example, on Windows, the directory is
/opt/IBM/FIM/plugins.

2. Log on to the console.
3. Click Tivoli Federated Identity Manager > Manage Configuration > Runtime

Node Management. The Runtime Node Management panel opens.
4. Click Publish Plug-ins.

What to do next

After publishing the plug-ins, you can continue with creating the point of contact
profile.

Creating a new point of contact server
Tivoli Federated Identity Manager provides several options for a point of contact
server depending on your role in the federation. In addition, you have the option
of developing your own point of contact server. If you have developed your own,
you must add it to your environment using the console.

Before you begin

Before you can add the custom point of contact server to your environment, you
must:
v Publish any custom point of contact callback plug-ins to the runtime node. See

“Publishing callback plug-ins.”
v Know what type of parameters will be used, if any, and the corresponding

values that need to be passed to these callbacks.

About this task

The following procedure describes how to add a custom point of contact server
that is unlike any point of contact server already defined in your environment. If
you are adding a custom point of contact server that is similar to another point of
contact server, use the procedure in “Creating a point of contact server like an
existing server” on page 744.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.

742 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

3. Click Create. The Welcome panel of the Point of Contact Profile wizard opens.
4. Ensure that you have completed the prerequisite steps.
5. Click Next. The Profile Name panel opens.
6. Type a name for the profile of your custom point of contact server and

optionally a description.
7. Click Next. The Sign In panel opens.
8. In the Sign In panel, specify the sign-in callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
a. Select a callback in the Available Callbacks list. Click Add to add it to the

Callbacks in Use list. Repeat this step to add all the callbacks that you
need for the point of contact server.

b. Click the Add Parameters button. A callback parameters section is shown
for each callback that is in the Callbacks in Use list. Parameter fields with
the default values of new key and new value are shown.

c. Add parameters for each callback by changing the default name and value
settings to the name and value of the parameters you want to add. To add
more parameters, click the Create button. When you click Create, another
parameter field with the default values is added to the parameter list.

d. Repeat the preceding steps until all parameters have been added to all the
callbacks.

9. Click Next. The Sign Out panel opens.
10. In the Sign Out panel, specify the sign-out callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
a. Select a callback in the Available Callbacks list. Click Add to add it to the

Callbacks in Use list. Repeat this step to add all the callbacks that you
need for the point of contact server.

b. Click the Add Parameters button. A callback parameters section is shown
for each callback that is in the Callbacks in Use list. Parameter fields with
the default values of new key and new value are shown.

c. Add parameters for each callback by changing the default name and value
settings to the name and value of the parameters you want to add. To add
more parameters, click the Create button. When you click Create, another
parameter field with the default values is added to the parameter list.

d. Repeat the preceding steps until all parameters have been added to all the
callbacks.

11. Click Next. The Local ID panel opens.
12. In the Local ID panel, specify the local ID callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
a. Select a callback in the Available Callbacks list. Click Add to add it to the

Callbacks in Use list. Repeat this step to add all the callbacks that you
need for the point of contact server.

b. Click the Add Parameters button. A callback parameters section is shown
for each callback that is in the Callbacks in Use list. Parameter fields with
the default values of new key and new value are shown.

c. Add parameters for each callback by changing the default name and value
settings to the name and value of the parameters you want to add. To add
more parameters, click the Create button. When you click Create, another
parameter field with the default values is added to the parameter list.

d. Repeat the preceding steps until all parameters have been added to all the
callbacks.

Chapter 51. Developing a custom point of contact server 743

13. Click Next. The Authentication panel opens.
14. In the Authentication panel, specify the sign-out callbacks to use, the order in

which the callbacks are used, and the parameters to use with each callback.
a. Select a callback in the Available Callbacks list. Click Add to add it to the

Callbacks in Use list. Repeat this step to add all the callbacks that you
need for the point of contact server.

b. Click the Add Parameters button. A callback parameters section is shown
for each callback that is in the Callbacks in Use list. Parameter fields with
the default values of new key and new value are shown.

c. Add parameters for each callback by changing the default name and value
settings to the name and value of the parameters you want to add. To add
more parameters, click the Create button. When you click Create, another
parameter field with the default values is added to the parameter list.

d. Repeat the preceding steps until all parameters have been added to all the
callbacks.

15. Click Next. The Summary panel opens. It lists all the callbacks and parameters
you specified in the preceding steps.

16. Click Finish to complete the setup or click Back to return to previous panels
and revise your selections.

What to do next

To make this point of contact server active, continue with the instructions in
“Activating a point of contact server” on page 746.

Creating a point of contact server like an existing server
Tivoli Federated Identity Manager provides several options for a point of contact
server depending on your role in the federation. In addition, you have the option
of developing your own point of contact server and basing it on an existing server.
If you have developed your own, you must add it to your environment using the
console.

Before you begin

Before you can add the custom point of contact server to your environment, you
must:
v Publish any custom point of contact callback plug-ins to the runtime node. See

“Publishing callback plug-ins” on page 742.
v Know what type of parameters will be used, if any, and the corresponding

values to be passed to these callbacks.

About this task

The following procedure describes how to add a custom point of contact server
that is like a point of contact server already defined in your environment. If you
are adding a custom point of contact server that is not similar to an existing point
of contact server, use the procedure in “Creating a new point of contact server” on
page 742.

Procedure
1. Log on to the console.

744 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of
Contact.

3. Select the existing point of contact server which is the basis of your new point
of contact server.

4. Click Create Like. The Welcome panel of the Point of Contact Profile wizard
opens.

5. Ensure that you have completed the prerequisite steps.
6. Click Next. The Profile Name panel and the information from the profile that

you selected are shown.
7. Type a name for the profile of your custom point of contact server and

optionally a description.
8. Click Next. The Sign In panel opens.
9. In the Sign In panel, specify the sign-in callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
Because you selected a profile for this point of contact server, the callbacks
and parameters for that profile will be shown as the ones in use.
To add or remove callbacks, use the Add and Remove buttons. The callbacks
in the Callbacks in Use list are the ones that will be used with your new point
of contact server.

10. Click Next. The Sign Out panel opens.
11. In the Sign Out panel, specify the sign-in callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
Because you selected a profile for this point of contact server, the callbacks
and parameters for that profile will be shown as the ones in use.
To add or remove callbacks, use the Add and Remove buttons. The callbacks
in the Callbacks in Use list are the ones that will be used with your new point
of contact server.

12. Click Next. The Local ID panel opens.
13. In the Local ID panel, specify the sign-in callbacks to use, the order in which

the callbacks are used, and the parameters to use with each callback.
Because you selected a profile for this point of contact server, the callbacks
and parameters for that profile will be shown as the ones in use.
To add or remove callbacks, use the Add and Remove buttons. The callbacks
in the Callbacks in Use list are the ones that will be used with your new point
of contact server.

14. Click Next. The Authentication panel opens.
15. In the Authentication panel, specify the sign-in callbacks to use, the order in

which the callbacks are used, and the parameters to use with each callback.
Because you selected a profile for this point of contact server, the callbacks
and parameters for that profile will be shown as the ones in use.
To add or remove callbacks, use the Add and Remove buttons. The callbacks
in the Callbacks in Use list are the ones that will be used with your new point
of contact server.

16. Click Next. The Summary panel opens. It lists all the callbacks and parameters
you specified in the preceding steps.

17. Click Finish to complete the setup or click Back to return to previous panels
and revise your selections.

Chapter 51. Developing a custom point of contact server 745

What to do next

To make this point of contact server active, continue with the instructions in
“Activating a point of contact server.”

Activating a point of contact server
To use a point of contact server as the active server in your environment, you must
activate it.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Manage Configuration > Point of

Contact.
3. Select the point of contact server that you want to activate.
4. Click Make Active. The point of contact server you selected is activated and

used as the point of contact server in your environment.

746 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 52. Customizing signature X.509 certificate settings

When you sign messages or assertions, the X.509 certificate (public key) is included
with your signature as a base64-encoded X.509 certificate. However, you can
specify whether this data should be excluded and whether additional data should
be included with your signatures.

Before you begin

Before using this procedure, you must have configured your federation. In
addition, if you are an identity provider in a SAML 1.x federation, your assertion
signature settings are configured when you add your service provider partners. To
modify the settings for your assertion signature, you must have already configured
a service provider partner.

Procedure
1. Log on to the console.
2. Click Tivoli Federated Identity Manager > Configure Federated Single

Sign-on > Federations.
Or, if you are an identity provider to modify your SAML 1.x assertion signature
settings, click Tivoli Federated Identity Manager > Configure Federated
Single Sign-on > Partners. The Federations panel shows a list of configured
federations.

3. Select a federation. The Partners panel shows a list of configured partners.
4. Select a partner.
5. Click Properties.
6. Select the properties to modify. The properties are described in the online help.
7. When you have finished modifying properties, click OK to close the Properties

panel.

© Copyright IBM Corp. 2006, 2013 747

748 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Chapter 53. Running WebSphere Application Server with Java
2

If you are running Java 2 security on the WebSphere Application Server where
Tivoli Federated Identity Manager is installed, you must modify the java.policy to
grant permission to the Tivoli Federated Identity Manager directories that are in
the temp subdirectory of your WebSphere profile.

Procedure
1. Locate the java.policy directory and open it in a text editor. The default

locations of the file are:

AIX
/usr/IBM/WebSphere/AppServer/java/jre/lib/security/java.policy

Linux or Solaris
/opt/IBM/WebSphere/AppServer/java/jre/lib/security/java.policy

Windows
C:\Program Files\IBM\WebSphere\AppServer

2. Add the following lines to java.policy:
grant codeBase "file:${server.root}/temp/node_name/server_name/

ITFIMManagementService/-" {permission java.security.AllPermission;
};
grant codeBase "file:${server.root}/temp/node_name/server_name/

ITFIMRuntime/-" {permission java.security.AllPermission;
};

node_name is the name of the node such as IBM-FCFB36CC28ENode05
server_name is the name of the server such as server1

3. Save and close the java.policy file.
4. Restart WebSphere Application Server.

© Copyright IBM Corp. 2006, 2013 749

750 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Part 9. Appendixes

© Copyright IBM Corp. 2006, 2013 751

752 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Appendix A. tfimcfg reference

Use the tfimcfg command to configure WebSEAL or the Web Gateway Appliance
as a point of contact server or configure LDAP settings for the alias service.

tfimcfg usage
TFIM Autoconfiguration Tool Version 6.2.2.3 [XXXXXXa]

Usage: java -jar tfimcfg.jar [-action <mode>] [options]
The tfimcfg tool has several modes of operation. Each mode uses different
command line options.

Configuring and unconfiguring WebSEAL servers:
-action tamconfig: configures a WebSEAL server. This mode is the default.
Options:

-cfgfile <file>: WebSEAL configuration file.
This option is required.

-rspfile <file>: response file for non-interactive configuration.
Default: interactive configuration

-record: generate response file without making changes to WebSEAL configuration.
-sslfactory: specify the secure socket connection factory to use,

either TLS or SSL.
When the TFIM environment is enabled for

FIPS the only supported
factory type is TLS.

If the parameter is not specified the factory default is SSL.

-action tamunconfig: unconfigures a WebSEAL server.
Options:

-cfgfile <file>: WebSEAL configuration file.
This option is required.

-rspfile <file>: response file for non-interactive unconfiguration.
Default: interactive configuration

Configuring and unconfiguring LDAP servers:
-action ldapconfig: configures an LDAP server.
Options:

-rspfile <file>: response file to control the configuration. The
response file should be based on the sample ldapconfig.properties
file. This option is required.

-action ldapunconfig: unconfigures an LDAP server.
Options:

-rspfile <file>: response file to control the configuration. The
response file should be based on the sample ldapconfig.properties
file. This option is required.

Configuring and unconfiguring Web Gateway Appliance servers:
-action wgaconfig: configures a Web Gateway Appliance server.
Options:

-cfgurl <url>: Web Gateway Appliance configuration URL.
This option is required.

-rspfile <file>: response file for non-interactive configuration.
Default: interactive configuration

-record: generate response file without
making changes to Web Gateway Appliance configuration.

-sslfactory: specify the secure socket connection factory to use,
either TLS or SSL.

When the TFIM environment is enabled for FIPS
the only supported factory type is TLS.

If the parameter is not specified the factory default is SSL.

-action wgaunconfig: unconfigures a Web Gateway Appliance server.
Options:

© Copyright IBM Corp. 2006, 2013 753

-cfgfile <file>: Web Gateway Appliance configuration URL.
This option is required.

-rspfile <file>: response file for non-interactive unconfiguration.
Default: interactive configuration

The log files for the tfimcfg.jar tool are written to the system temporary
directory. The system temporary file directory is specified by the system property
java.io.tmpdir.

Configuring WebSEAL or Web Gateway Appliance as point of contact
with the tfimcfg tool

Use the tfimcfg tool to configure WebSEAL or Web Gateway Appliance as point of
contact.

Before you begin

Make sure that your WebSEAL server is listening for connections on the
appropriate IP addresses and port numbers. You can control the IP address and
port number by using the WebSEAL configuration file or the Web Gateway
Appliance administration console. The IP address is controlled by the [server]
network-interface configuration option, and the port numbers are controlled by the
[server] https-port and [server] http-port options.

To use the tfimcfg tool, you must meet the following conditions:
v Obtain an IBM® JRE that is supported by the version of PDJrte installed.
v For WebSEAL only: Use PDJrte to configure the IBM JRE in full mode.

For IBM Security Access Manager WebSEAL, version 7.0 or later, you must also
meet the following conditions:
v Obtain an IBM JRE, version 6.0, Update 10 or later.
v Configure the com.ibm.security.cmskeystore.CMSProvider in the java.security file,

which is in $JAVA_HOME/lib/security, of the IBM JRE.
v Ensure that the ikeycmd tool in the $JAVA_HOME/bin is on the path.

When you configure WebSEAL as a Tivoli Federated Identity Manager point of
contact, you must run the tfimcfg.jar tool on the same computer where the
WebSEAL instance is configured.

When you configure a Web Gateway Appliance reverse proxy instance as a Tivoli
Federated Identity Manager point of contact, you can run the tfimcfg.jar tool on
the same computer where Tivoli Federated Identity Manager is installed.

About this task

The tfimcfg tool uses the host name and port number of your WebSEAL server to
determine which federation URLs must be configured on your server. The tfimcfg
tool tries to determine the host name that is used by your WebSEAL server that is
based on several factors:
v The [server] web-host-name WebSEAL configuration setting
v The [server] network-interface WebSEAL configuration setting
v The local hostname of your system
v Host name and IP address resolution

754 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: The tfimcfg tool might not be able to accurately determine the host name
that is used by clients to contact your WebSEAL server, particularly in complex
network environments. In any case, the tfimcfg tool prompts you to confirm the
host name that is used by the WebSEAL server. Enter the correct WebSEAL server
name. See “Running the tfimcfg tool” on page 756 for more details.

Depending on the configuration options you select, the tool completes some or all
of the following steps:
v Update the WebSEAL key database with the SSL certificate used by the Tivoli

Federated Identity Manager server.
v Save a backup of your WebSEAL configuration file.
v Save information in the WebSEAL configuration file necessary to unconfigure

this federation from the WebSEAL server later.
v Attach ACLs to grant and restrict access to federation URLs.
v Create a WebSEAL junction to the Tivoli Federated Identity Manager server.
v Configure WebSEAL EAS for Risk-Based Access or OAuth Policy Enforcement

Point.
v Configure WebSEAL to send HTTP-Tag-Value pairs to the junction.
v Enable EAI authentication for any endpoints that are used for login, logout, or

SOAP.
v Enable BA authentication if you requested BA authentication for your SOAP

endpoints.
v Enable certificate authentication if you requested certificate authentication for

your SOAP endpoints.
v Disable BA authentication and enable forms authentication if you fulfill the

following conditions:
– It is the first time your WebSEAL server is configured for Tivoli Federated

Identity Manager.
– You did not select BA authentication for SOAP endpoints.

v Delete any ACLs that are and are no longer used.
v Restart your WebSEAL server.
v Save a response file so you can repeat the configuration later.
v Record a log file of all the configuration changes made to your WebSEAL server.

Tivoli Federated Identity Manager provides a tfimcfg.jar file that is used to
modify the WebSEAL configuration when you use WebSEAL as a Tivoli Federated
Identity Manager point of contact.

Procedure
1. Set up a JAVA_HOME environment variable for the JRE: For example:

export JAVA_HOME=/opt/ibm/java-x86_64-60/jre, or
export JAVA_HOME=/opt/IBM/WebSphere/AppServer/java/jre

2. Add $JAVA_HOME/bin to the path export PATH=$JAVA_HOME/bin:$PATH.
3. From the command line, type:

v For WebSEAL server:
java -jar tfimcfg.jar -action tamconfig -cfgfile WebSEAL_filename
/opt/pdweb/etc/webseald-default.conf

v For Web Gateway Appliance server:
java -jar tfimcfg.jar -action wgaconfig -cfgurl Web_Gateway_Appliance_URL

Appendix A. tfimcfg reference 755

Results

After the tfimcfg tool completes the basic Tivoli Federated Identity Manager
configuration steps on your WebSEAL server, you can customize the WebSEAL
configuration.

If you are using multiple WebSEAL replicas for high availability or performance,
you can repeat the configuration by using the response file that is generated by the
tfimcfg tool. To repeat the configuration, copy the response file to the other
WebSEAL server machines, invoke the tfimcfg tool against a different Web
Gateway Appliance or select a different Web Gateway Appliance Reverse Proxy
instance, and run the configuration:
java -jar tfimcfg.jar -rspfile <path-to-response-file> \
-cfgfile <path-to-webseal-config-file>

or
java -jar tfimcfg.jar -action wgaconfig -rspfile <path-to-response-file> \
-cfgurl Web_Gateway_Appliance_URL

You must run the tfimcfg tool once for each federation you are configuring on the
WebSEAL server. Changes to federation URLs or profiles might require that you
rerun the tfimcfg tool. Do not rerun tfimcfg tool when you add more partners to
a federation. When you configure multiple federations on a single WebSEAL
server, the configuration options are necessary for one federation but might not be
suitable for other federations. For example, Identity Provider and Service Provider
federations have different requirements.

Running the tfimcfg tool
Use the tfimcfg tool to configure a WebSEAL instance.

Before you begin

The JRE must be configured with the Tivoli Access Manager 6.0 run time for Java.
Ensure that the JRE in the current path is the correct one. For example:
local:/ # which java
/opt/IBMJava2-142/jre/bin/java

About this task

The following assumptions are made about the environment where the tool is
being run:
v The example uses an IBM Tivoli Federated Identity Manager 6.1.0 environment,

but the process must be nearly identical on subsequent releases of the IBM Tivoli
Federated Identity Manager product.

v IBM HTTP Server is configured with the WebSphere web server plug-in to
forward requests to a WebSphere server with an IBM Tivoli Federated Identity
Manager Identity Provider configured. The IHS server is configured with a host
name of ihs.myidp.com and is listening on port 80.

v The contact point for the Identity Provider is a WebSEAL server with an instance
name of the Identity Provider.

v The contact point for the Identity Provider is not the same as the SOAP
endpoint, so a different WebSEAL instance handles the SOAP endpoint URL
traffic.

756 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v The IBM Tivoli Federated Identity Manager product is installed in the directory
/opt/IBM/FIMidp.

v The JVM (IBM Java 2 1.4.2) is installed.
v Tivoli Access Manager is installed and configured, with administrator

sec_master and password of passw0rd.

Procedure
1. Start the utility with the WebSEAL Identity Provider instance configuration file

and with the command –action tamconfig.
You must specify the configuration file for the WebSEAL instance to be
configured.
local:/opt/IBM/FIMidp/tools/tamcfg # java -jar
./tfimcfg.jar –action tamconfig –cfgfile
/opt/pdweb/etc/webseald-idp.conf

2. Enter the Tivoli Access Manager administrator user ID and password. Since the
Tivoli Access Manager administrator user is the default sec_master in this
example, press Enter without specifying the value.
TAM administrator user-id [sec_master]: <enter>
TAM administrator password: passw0rd
Creating TAM administration context...
TAM administration context created successfully.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1

3. Enter 1 to continue the processing. The tool prompts for the list of URLs that
matches the service endpoint URLs defined for the federation in Tivoli
Federated Identity Manager. These URLs are the contact points provided by the
WebSEAL server instance. Since the tool correctly identified the WebSEAL host
name from the WebSEAL configuration data, press Enter without specifying the
value.
WebSEAL hostname [www.myidp.com]: <enter>
WebSEAL URLs:
http://www.myidp.com/
https://www.myidp.com/

4. Enter the host name and port of the WebSphere Application Server where the
IBM Tivoli Federated Identity Manager runtime application is installed and
running. WebSphere Application Server must be active when the tfimcfg tool is
run. In this example, SSL is not used to communicate with the WebSphere
Application Server.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
ITFIM hostname []: ihs.myidp.com
ITFIM HTTP port: 80
Use SSL connection to ITFIM server (y/n): n
Testing connection to
http://ihs.myidp.com:80/Info/InfoServiceXML.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1

5. Select the federation to be configured. In this example, there is only one SAML
1.1 federation, saml11Fed, which is created.
Federation to configure:
1. saml11Fed
2. Cancel
Enter your choice [1]: 1

6. Enter 1 to continue with the configuration.
<p>The following endpoints will be configured on this WebSEAL</p><p>server:
</p><p>https://www.myidp.com/FIM/sps/saml11Fed/saml11/login</
p><p>Press 1 for Next, 2 for Previous,
3 to Repeat, C to Cancel: 1</p>

Appendix A. tfimcfg reference 757

7. Enter 1 to accept the value. The tool displays the URL that is chosen for all
authenticated users access because it is recognized as the Intersite Transfer
Service endpoint. This endpoint is the URL that generates a token and transfer
the user identity to another site.
<p>URLs allowing all authenticated users access:</p><p>
https://www.myidp.com/FIM/sps/saml11Fed/saml11/login</
p><p>Press 1 for Next, 2 for Previous,
3 to Repeat, C to Cancel: 1</p>

8. Enter 1 to continue to this summary page:
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1

Planned configuration steps:
A backup of the WebSEAL configuration will be saved as
/opt/pdweb/etc/webseald-idp.conf.2006-03-02-17-08-49.
A junction to the FIM server will be created at /FIM.
ACLs denying access to all users will be attached to:
/WebSEAL/www.myidp.com-idp/FIM
ACLs allowing access to all authenticated users will be
attached to:
/WebSEAL/www.myidp.com-idp/FIM/sps/saml11Fed/saml11/login
/WebSEAL/www.myidp.com-idp/FIM/fimivt
HTTP-Tag-Value header insertion will be configured for the
attributes:
ssn=ssn
name=name
email=email
user_session_id=user_session_id

9. Enter 1 to continue the configuration changes.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
Beginning configuration...
Configuration backup:/opt/pdweb/etc/webseald-idp.conf.2006-03-
02-17-15-54
Attaching ACLs.
Creating ACL itfim_saml11Fed_nobody.
Creating ACL itfim_saml11Fed_anyauth.
Creating junction /FIM.
Created junction at /FIM
Editing configuration file...
Restarting the WebSEAL server...
Configuration complete.

Results

The tool creates a response file for the repeated application for this configuration
step to other WebSEAL servers. Finally, it suggests some possible next steps.

Configuring the SOAP traffic with the tfimcfg tool
Use the tfimcfg tool to configure the WebSEAL server that handles the SOAP
traffic.

About this task

In this example, the Identity Provider is using transport security to restrict access
to its SOAP endpoint, which is a dedicated WebSEAL instance that is configured as
idpsoap. This method allows client-side certificate authentication to be mandatory
for this WebSEAL instance without affecting the rest of the Tivoli Federated
Identity Manager environment.

The Identity Provider SOAP endpoint or Artifact Resolution Service requires that
the client must authenticate by using a certificate that specifies that the user is a

758 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

member of the Tivoli Access Manager group soapusers.

Procedure
1. Start the Tivoli Federated Identity Manager Configuration Utility for Tivoli

Access Manager.
/opt/IBM/FIMidp/tools/tamcfg # java -jar ./tfimcfg.jar -action
tamconfig -cfgfile /opt/pdweb/etc/webseald-idpsoap.conf

2. Enter the Tivoli Access Manager administrator data and WebSEAL host name.
TAM administrator user-id [sec_master]: <enter>
TAM administrator password: passw0rd
Creating TAM administration context...
TAM administration context created successfully.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
WebSEAL hostname [soap.myidp.com]: <enter>
WebSEAL URLs:
https://soap.myidp.com/

3. Enter the IBM Tivoli Federated Identity Manager host name.
The host name is the WebSphere Application Server where Tivoli Federated
Identity Manager is running. Specify the federation that is being configured.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
ITFIM hostname []: ihs.myidp.com
ITFIM HTTP port: 80
Use SSL connection to ITFIM server (y/n): n
Testing connection to
http://ihs.myidp.com:80/Info/InfoServiceXML.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
Federation to configure:
1. saml11Fed
2. Cancel
Enter your choice [1]: 1
The following endpoints will be configured on this WebSEAL
server:
https://soap.myidp.com/FIM/sps/saml11Fed/saml11/soap

For example, saml11Fed. The tool then indicates the list of URLs that are
identified as related to the federation. This list is the list of service endpoint
URLs that are recognized as related to this WebSEAL instance.

4. Enter 1 to select Certificate authentication.
5. Enter soapusers. Because the matched endpoint is Artifact Resolution Service,

the tool requests the type of authentication that must be configured for
authenticated SOAP clients. This Identity Provider is configured with a policy
that only clients with valid certificates whose users are members of Tivoli
Access Manager group soapusers are allowed to access Tivoli Federated
Identity Manager SOAP endpoint.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1
Access type for endpoint URL
https://soap.myidp.com/FIM/sps/saml11Fed/saml11/soap:
1. Certificate authentication
2. User-id/password authentication
3. Unauthenticated access
Enter your choice [1]: 1
Group for SOAP access: soapusers
URLs used for authenticated SOAP clients:
https://soap.myidp.com/FIM/sps/saml11Fed/saml11/soap
Authentication type: certificate
Access group: soapusers

6. Enter n to the request for IVT configuration.

Appendix A. tfimcfg reference 759

Because IVT configuration is already done for the Identity Provider during
configuration of www.myidp.com, or the WebSEAL instance Identity Provider, it is
not required again.
The summary shows the following details.
v A backup copy of the WebSEAL configuration file is created.
v A junction that is called /FIM is created between WebSEAL and the host or

port that contacts the Tivoli Federated Identity Manager run time. The name
/FIM is taken from the URL of the relevant service endpoint.

v A deny all ACL is attached to /FIM. This security policy ensures that any
access that is not explicitly allowed is denied.

v A allow group soapusers only ACL is attached to the Artifact Resolution
Service endpoint.
Press 1 for Next, 2 for Previous, 3 to Repeat, C to Cancel: 1

Planned configuration steps:
A backup of the WebSEAL configuration will be saved as
/opt/pdweb/etc/webseald-idpsoap.conf.2006-03-02-19-52-54.
A junction to the FIM server will be created at /FIM.
ACLs denying access to all users will be attached to:
/WebSEAL/soap.myidp.com-idpsoap/FIM
ACLs allowing access to the group soapusers will be attached to:
/WebSEAL/soap.myidp.com-idpsoap/FIM/sps/saml11Fed/saml11/soap
Certificate authentication will be enabled.
HTTP-Tag-Value header insertion will be configured for the
attributes:
user_session_id=user_session_id

7. Enter 1 to continue the configuration changes and the following information is
displayed:
Configuration backup:/opt/pdweb/etc/websealdidpsoap.
conf.2006-03-02-19-52-54
Attaching ACLs.
Creating ACL itfim_saml11Fed_soapusers.
Creating junction /FIM.
Created junction at /FIM
Editing configuration file...
Restarting the WebSEAL server...
Configuration complete.

Setting up a soapusers group and certificate
Set up a client-side certificate that identifies the user as a member of a Security
Access Manager group. Set up the client so that this group is allowed access
according to Tivoli Access Manager policy.

About this task

This task provides instructions for setting up both the Tivoli Access Manager user
and group and the certificate for the client side authentication. With the SOAP over
HTTP bindings, the Identity Provider authenticates the soap client with any
following options:
v Basic authentication
v Client-side certificate

Procedure
1. Create an entry for the suffix for the user and group in LDAP.

v The suffix o=ibm, c=us is used, so you must create an appropriate LDIF file.
v The LDIF file and the idsldapupdate command to create the suffix.

760 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v The LDAP administrator is cn=root with password passw0rd.
v The LDAP server is Tivoli Directory Server.
cat ibmorg.ldif
dn: o=ibm,c=us
changetype: add
objectclass: organization
o: ibm
idsldapmodify -D cn=root -w passw0rd –f /studentfiles/files/ibmOrg.ldif

2. Create a Tivoli Access Manager user spsoapuser and group soapusers.
pdadmin -a sec_master -p passw0rd <<SOAPUSER
user create spsoapuser cn=spsoapuser,o=ibm,c=us spsoapuser mssoap passw0rd
user modify spsoapuser account-valid yes
group create soapusers cn=soapusers,o=ibm,c=us soapusers
group modify soapusers add spsoapuser
SOAPUSER

3. Create or obtain a certificate for use by a Service Provider for client
authentication to the SOAP endpoint. The public key of the service provider
must be imported to the appropriate keystore by using the IBM Tivoli
Federated Identity Manager key service.
The iKeyman tool that is shipped with Tivoli Access Manager and WebSphere
can be used to create a self-signed certificate.
The certificate must specify that the subject DN is the Tivoli Access Manager
user that is created or cn=spsoapuser, o=ibm, c=us in the example.

4. Configure the new WebSEAL instance with a .kdb file that validates a client
certificate that is used by the Service Provider.

tfimcfg limitation with Sun Java 1.4.2.4
Certain versions of Sun Java are incompatible with tfimcfg.

The incompatibility causes the following error:
HPDAZ0602E Corrupted file: Insufficient information to contact Policy Server

The problem occurs because the Sun JRE is unable to read the keystores generated
by the Tivoli Access Manager PDJrteCfg. When this error occurs, you must either
use an IBM JVM, or apply the latest JRE patches from Sun. If the problem persists
after applying the patches from Sun, use an IBM JVM for the configuration.

tfimcfg LDAP properties reference
The tfimcfg utility reads a properties file to obtain the values to use when
configuring an LDAP user registry. The properties file contains values that you can
modify.

ldap.hostname
The LDAP server host name. Default: localhost

ldap.port
The LDAP port number. Default: 389

The default value is for non-SSL communication. When you have configured
the LDAP server to communicate using SSL, the default port is 636.

ldap.suffix.add
Boolean value that specifies whether tfimcfg adds suffixes to the LDAP server
as needed. Supports IBM Tivoli Directory Server Versions 6.1, 6.0 and 5.2 only.

Default:

Appendix A. tfimcfg reference 761

ldap.suffix.add=true

ldap.suffix.user.configuration
ldap.organization.configuration

Boolean values that specify whether tfimcfg creates LDAP containers to store
Tivoli Federated Identity Manager users and groups. The Tivoli Federated
Identity Manager users and groups are:
v Tivoli Federated Identity Manager server users and groups
v Tivoli Federated Identity Manager Installation Verification Tool (IVT) users

and groups

When you do not need those users and groups, or you already have LDAP
containers that to use for those users and groups, set these values to false.

When ldap.organization.configuration is true, tfimcfg creates the
dc=example,dc=com LDAP objects.

Default:
ldap.suffix.user.configuration=true
ldap.organization.configuration=true

ldap.suffix.alias.configuration
Boolean value that specifies whether tfimcfg creates an LDAP suffix to store
single sign-on aliases. The default alias is cn=itfim.
ldap.suffix.alias.configuration=true

ldap.suffix.tam.configuration
Boolean value that specifies whether tfimcfg creates the secAuthority=Default
suffix for Tivoli Access Manager.
v When you have already configured Tivoli Access Manager set this value to

false.
v When Tivoli Access Manager is not using this LDAP server, set this value to

false.
ldap.suffix.tam.configuration=true

Note: If the secAuthority=Default suffix exists, the tfimcfg program ignores the
value of the ldap.suffix.tam.configuration property.

ldap.fim.configuration
Boolean value that specifies whether tfimcfg configures LDAP for the Tivoli
Federated Identity Manager alias service.

Default value: true.

ldap.ivt.sp.configuration
Boolean value that specifies whether tfimcfg creates users and groups for the
service provider in the Installation Verification Tool (IVT) application.

Default value: true.

ldap.ivt.ip.configuration
Boolean value that specifies whether tfimcfg creates users and groups for the
identity provider in the Installation Verification Tool (IVT) application.

Default value: true.

ldap.modify.acls
Boolean value that specifies whether tfimcfg attaches appropriate ACLs (access
control lists) to the LDAP server. These ACLs grant read and write access to
the Tivoli Federated Identity Manager administrative users created by tfimcfg.

762 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Note: tfimcfg attaches ACLs for IBM LDAP and Sun ONE servers. For other
LDAP servers, you must attach the ACLs manually.

When the value is set to false, you must attach the ACLs manually.

Default value: true.

ldap.admin.dn
The DN used by the LDAP administrator to issue bind requests.

Default: cn=root

ldap.admin.password
The password for the LDAP administrator.

Default: passw0rd

ldap.security.enabled
Boolean value that specifies whether communication with the LDAP server
must use SSL.

Default: false.

ldap.security.trusted.jks.filename
The name of the Java keystore that contains the signer of the LDAP-presented
SSL certificate that LDAP presents during trusted communications.

ldap.suffix.user.dn
ldap.suffix.user.name
ldap.suffix.user.attributes
ldap.suffix.user.objectclasses

When you want tfimcfg.jar to create LDAP containers for your users, you can
set these values to control the Distinguished Names (DNs) that are used.

Defaults:
ldap.suffix.user.dn=dc=com
ldap.suffix.user.name=com
ldap.suffix.user.attributes=dc
ldap.suffix.user.objectclasses=domain

ldap.suffix.alias.dn
Distinguished Name (DN) to use for storing single sign-on alias. This value of
this property must begin with cn=. Modify this value when you do not want to
use the default DN.

Default:
ldap.suffix.alias.dn=cn=itfim

ldap.organization.dn
ldap.organization.name
ldap.organization.attributes
ldap.organization.objectclasses

When you want tfimcfg.jar to create LDAP containers for your groups, you can
set these values to control the Distinguished Names (DNs) that are used.

Defaults:
ldap.organization.dn=dc=example,dc=com
ldap.organization.name=example
ldap.organization.attributes=dc
ldap.organization.objectclasses=domain

ldap.user.container.dn
ldap.group.container.dn

The distinguished names to use for the containers for users and groups.

Appendix A. tfimcfg reference 763

Defaults:
ldap.user.container.dn=cn=users,dc=example,dc=com
ldap.group.container.dn=cn=groups,dc=example,dc=com

ldap.fim.server.bind.dn
ldap.fim.server.bind.shortname
ldap.fim.server.bind.password

The distinguished name, short name, and password that the Tivoli Federated
Identity Manager server (application) uses to bind to the LDAP server.

Default:
ldap.fim.server.bind.dn=uid=fimserver,cn=users,dc=example,dc=com
ldap.fim.server.bind.shortname=fimserver
ldap.fim.server.bind.password=passw0rd

ldap.fim.admin.group.dn
ldap.fim.admin.group.shortname

The distinguished name and short name for the Integrated Solutions Console
administration group.

Default:
ldap.fim.admin.group.dn=cn=fimadmins,cn=groups,dc=example,dc=com
ldap.fim.admin.group.shortname=fimadmins

ldap.user.objectclasses
ldap.group.objectclasses
ldap.user.shortname.attributes

The values for LDAP containers for user objectclass, group objectclass, and
user shortname attributes.

Default:
ldap.user.objectclasses=person,organizationalPerson,inetOrgPerson
ldap.group.objectclasses=groupOfUniqueNames
ldap.user.shortname.attributes=cn,sn,uid

Default ldapconfig.properties file
The ldapconfig.properties file is distributed as part of the runtime and
management service component. Some of the properties have default values.

764 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Sample output from tfimcfg configuration of LDAP
The following section shows a sample output from the running of tfimcfg.

ldap.hostname=localhost
ldap.port=389

If true, new suffixes will be added to the LDAP server as needed.
Only supported for IDS 5.2 and 6.0
ldap.suffix.add=true

If true, data for the LDAP user suffix (dc=com, by default) will be
created.
ldap.suffix.user.configuration=true

If true, data for the SSO alias suffix (cn=itfim, by default) will be
created.
ldap.suffix.alias.configuration=true

If true, create the secAuthority=Default suffix for TAM
ldap.suffix.tam.configuration=true
ldap.fim.configuration=true
ldap.ivt.sp.configuration=true
ldap.ivt.ip.configuration=true
ldap.organization.configuration=true
ldap.modify.acls=true

ldap.admin.dn=cn=root
ldap.admin.password=passw0rd

ldap.security.enabled=false
ldap.security.trusted.jks.filename=

ldap.suffix.user.dn=dc=com
ldap.suffix.user.name=com
ldap.suffix.user.attributes=dc
ldap.suffix.user.objectclasses=domain

DN to use for storing SSO aliases. This must begin with cn=
ldap.suffix.alias.dn=cn=itfim

ldap.organization.dn=dc=example,dc=com
ldap.organization.name=example
ldap.organization.attributes=dc
ldap.organization.objectclasses=domain

ldap.user.container.dn=cn=users,dc=example,dc=com
ldap.group.container.dn=cn=groups,dc=example,dc=com

ldap.fim.server.bind.dn=uid=fimserver,cn=users,dc=example,dc=com
ldap.fim.server.bind.shortname=fimserver
ldap.fim.server.bind.password=passw0rd

ldap.fim.admin.group.dn=cn=fimadmins,cn=groups,dc=example,dc=com
ldap.fim.admin.group.shortname=fimadmins

ldap.user.objectclasses=person,organizationalPerson,inetOrgPerson
ldap.group.objectclasses=groupOfUniqueNames
ldap.user.shortname.attributes=cn,sn,uid

Figure 79. Default values for ldapconfig.properties

Appendix A. tfimcfg reference 765

The command for running tfimcfg to configure LDAP entries for the alias service
is:
java -jar tfimcfg.jar -action ldapconfig -rspfile /tmp/ldapconfig.properties

The following figure is an output from running the command on an identity
provider. The example uses an ldapconfig.properties file that has the default
values.

Configuring LDAP server.
LDAP server vendor: International Business Machines (IBM),

version 6.0.
Adding LDAP suffix secAuthority=Default.
Reloading IBM Directory Server configuration.
Adding LDAP suffix dc=com.
Reloading IBM Directory Server configuration.
Creating LDAP object dc=com.
Adding LDAP suffix cn=itfim-cmd.
Reloading IBM Directory Server configuration.
Creating LDAP object cn=itfim-cmd.
Creating LDAP object dc=example,dc=com.
Creating LDAP object cn=users,dc=example,dc=com.
Creating LDAP object cn=groups,dc=example,dc=com.
Creating LDAP object uid=fimserver,cn=users,dc=example,dc=com.
Creating LDAP object cn=fimadmins,cn=groups,dc=example,dc=com.
Adding user uid=fimserver,cn=users,dc=example,dc=com to group

cn=fimadmins,cn=groups,dc=example,dc=com.
Creating LDAP object o=identityprovider,dc=com.
Creating LDAP object cn=MEemployee,o=identityprovider,dc=com.
Creating LDAP object cn=MEmanager,o=identityprovider,dc=com.
Creating LDAP object cn=MEexecutive,o=identityprovider,dc=com.
Creating LDAP object cn=elain,o=identityprovider,dc=com.
Creating LDAP object cn=mary,o=identityprovider,dc=com.
Creating LDAP object cn=chris,o=identityprovider,dc=com.
Updating IBM LDAP ACLs for suffix CN=ITFIM-CMD.
Updating IBM LDAP ACLs for suffix SECAUTHORITY=DEFAULT.
Updating IBM LDAP ACLs for suffix DC=COM.
Done updating LDAP server configuration.

Figure 80. Sample output from tfimcfg.jar

766 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Appendix B. URLs for initiating SAML single sign-on actions

The SAML specifications provide limited or no guidance about the endpoints or
methods that users must use to initiate single sign-on actions. However, in a Tivoli
Federated Identity Manager environment, URLs are defined that user can use to
initiate single sign-on actions.

The following reference is useful for architects or application developers who are
implementing the user interaction components of their federation.

Note: These URLs are not used for partner-to-partner communication. For more
information, see Chapter 16, “SAML endpoints and URLs,” on page 173.

SAML 1.x initial URL
The intersite transfer service URL is where the sign-on request process begins in a
SAML 1.x federation. The URL for initiating a single sign-on request has the
following syntax:

Syntax
https://identity_provider_hostname:port_number/sps/

federation_name/samlxx/login?TARGET=
service_provider_id/target_application_location
[optional query strings]

Elements

https or http
The URI scheme. https for resources that are protected by secure sockets
layer (SSL). http for resources that are not protected by SSL.

identity_provider_hostname
The host name of the point of contact server of the identity provider.

port_number
The port number of the intersite transfer service endpoint. The default
value is 9443.

sps The designation for the Tivoli Federated Identity Manager Server. This
element cannot be changed.

federation_name
The name you assign to the federation when you create it.

samlxx
The designation of the SAML protocol you choose to use in your
federation. The values can be one of the following:
v saml (for SAML 1.0)
v saml11 (for SAML 1.1)

login This element indicates what type of endpoint is using the port. login is
used for the intersite transfer service.

Use the TARGET query string. You have the option of using either, both, or
neither of the optional query strings (SP_PROVIDER) and (PROTOCOL), see the
following examples:

© Copyright IBM Corp. 2006, 2013 767

TARGET
The URL of the target application that a user can log on to using single
sign-on.

SP_PROVIDER_ID
The value of query string specifies the provider ID of the service provider
that is the target of the single sign-on request. This query string is optional
but might be necessary. The use of this query string removes any
ambiguity about which service provider is the target of the single sign-on
request.

Without this query string, the service provider is determined by matching
the URI://hostname[:port] of the URL in the TARGET query string to the
URI://hostname[:port] of the provider ID for the service provider partner
that is configured for the federation. This parameter is used with requests
that are initiated at the identity provider.

PROTOCOL
The value of this parameter specifies the type of single sign-on profile
(browser artifact or browser POST) that can be used for the single sign-on
request. The syntax of the extension is PROTOCOL=[BA|POST], with BA
indicating Browser Artifact and POST indicating Browser POST. The query
string overrides local identity provider configuration.

The use of the extension is optional. When the extension is not present, the
profile choice is determined by the configuration file settings. To use this
extension, you must enable the IBM PROTOCOL extension setting during
the configuration steps for creating a SAML 1.x federation on an identity
provider.

These query strings can be used individually or in combination. For example, the
URL used to initiate single sign-on, when the SP_PROVIDER_ID is used but the
PROTOCOL extension is not, has the following syntax:
https://intersite_transfer_service_URL?SP_PROVIDER_ID=

provider_ID_of_service_provider&TARGET=target_application_URL

With the SP_PROVIDER_ID and the PROTOCOL extension, the URL has the
following syntax:
https://intersite_transfer_service_URL?SP_PROVIDER_ID=

provider_ID_of_service_provider&TARGET=target_application_URL
&PROTOCOL=[BA|POST]

Examples

Single sign-on URL, without the optional parameters:
The following example shows the single sign-on URL for an identity
provider using a federation named ipfed, the SAML 1.1 protocol, a service
provider with a provider ID of https://sp.example.com:9443, and an
application called snoop:
https://idp.example.com:9443/sps/ipfed/saml11/login?TARGET=

https://sp.example.com:9443/snoop/

Single sign-on URL, when SP_PROVIDER_ID and PROTOCOL extension are
used:

The following example shows a URL that is used to initiate single sign-on
when the IBM PROTOCOL extension is used. In this example, even if the
identity provider is configured to use a POST profile for the service
provider named sp, the following use of the PROTOCOL extension would
force the identity provider to use the browser artifact profile:

768 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

https://idp.example.com:9443/sps/ipfed/saml11/login?SP_PROVIDER_ID=
https://sp.example.com:9443/sps/spfed/saml11&TARGET=
https://sp.example.com:9443/
snoop&PROTOCOL=BA

Single sign-on URL, when SP_PROVIDER_ID is used but the PROTOCOL
extension is not used:

The following example shows a URL that is used to initiate single sign-on
when the SP_PROVIDER_ID is used but the IBM PROTOCOL extension is
not used:
https://idp.example.com:9443/sps/ipfed/saml11/login?SP_PROVIDER_ID=

https://sp.example.com:9443/sps/spfed/saml11&TARGET=
https://sp.example.com:9443/snoop

SAML 2.0 profile initial URLs
In the Tivoli Federated Identity Manager environment, specially formed URLs can
be used for user-initiated single sign-on actions. These URLs incorporate the single
sign-on action to take, the binding to be used for the action, and the location
where the action takes place. These URLs are called profile initial URLs.

The SAML 2.0 specification defines the endpoints that are to be used for
partner-to-partner communications. But, the specification does not define the way
in which users can initiate a single sign-on action with those endpoints.

Architects and application developers, who design and implement the interaction
of their users with the single sign-on process, must understand profile initial URLs
and incorporate them into their web applications.

The following sections describe the format of the SAML 2.0 profile initial URLs
that are supported in a Tivoli Federated Identity Manager environment.

Assertion consumer service initial URL (service provider)
In a SAML 2.0 federation, the assertion consumer service URL can be initiated at
the identity provider server site or the service provider site. This topic describes
the syntax for initiating single sign-on at the service provider.

Syntax for initiating single sign-on at the service provider
https://provider_hostname:port_number/sps/
federation_name/saml20/logininitial?
RequestBinding=RequestBindingType&
ResponseBinding=ResponseBindingType&
NameIdFormat=NameIDFormatType&
IsPassive=[true|false]&
ForceAuthn=[true|false]&
AllowCreate=[true|false]&
AuthnContextClassRef = ClassReference&
AuthnContextDeclRef = DeclarationReference&
AuthnContextComparison = [exact| minimum | maximum |better]&
Target=target_application_location

Elements

https or http
The URI scheme. https for resources that are protected by secure sockets
layer (SSL). http for resources that are not protected by SSL.

provider_hostname
The host name of the provider point of contact server.

Appendix B. URLs for initiating SAML single sign-on actions 769

port_number
The port number of the intersite transfer service endpoint. The default
value is 9443.

sps The designation for the Tivoli Federated Identity Manager Server. This
element cannot be changed.

federation_name
The name you assign to the federation when you create it.

saml20
The designation of SAML 2.0.

logininitial
This element indicates what type of endpoint is using the port. logininital
is used to initiate the single sign-on service.

The following query strings must also be used in the URL:

RequestBinding
The binding that is used to send the request. The valid values when
initiating single sign-on at the service provider are:
v HTTPPost
v HTTPArtifact
v HTTPRedirect

ResponseBinding
The binding that is used by the responder to return the response. The valid
values when initiating single sign-on at the service provider are:
v HTTPPost
v HTTPArtifact

Target The URL of the application that a user can log on to using single sign-on.

NameIdFormat
The name ID format that is to be used for name identifiers. Valid values
are:
v Transient (anonymous)
v Persistent
v Encrypted (for encrypted name IDs)
v Email

Persistent is the default setting. If the NameIdFormat attribute is not
included, a persistent name ID is used.

AllowCreate
Indicates if new persistent account linkage is performed on the request.
The default value is true.

Note: To use this parameter, the NameIdFormat must be set to Persistent.

ForceAuthn
Specifies whether the identity provider authenticates the user. A value of
true means that the user must be authenticated. The default value is false.

Note:

770 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v Depending on the federation configuration, the more restrictive setting is
implemented. For example, if you set the federation configuration to
force a user to authenticate, setting the ForceAuthn element to false is
not implemented.

v If you plan to use WebSEAL cookie management with SAML 2.0
ForceAuthn, ensure that the list of managed cookies does not include the
WebSphere session cookie. See “Configuring WebSEAL to manage
cookies” on page 532.

IsPassive
Indicates if the identity provider must take control of the user agent if set
to true. The identity provider is not permitted to request the user to
provide login credentials.

The default value is false.

Note: Depending on the federation configuration, the more restrictive
setting is implemented. For example, if you set the federation configuration
to prevent the identity provider from taking control of the user agent,
setting the IsPassive element to false is not implemented.

AuthnContextClassRef
Specifies one or more string values which identify authentication context
class URI references.

Note: Use either AuthnContextClassRef or AuthnContextDeclRef. If both
are supplied, AuthnContextClassRef is used.

AuthnContextDeclRef
Specifies one or more string values which identify authentication context
declaration URI references.

Note: Use either AuthnContextClassRef or AuthnContextDeclRef. If both
are supplied, AuthnContextClassRef is used.

AuthnContextComparison
Specifies the type of comparison used to determine the requested context
classes or declarations. The comparison type must be one of the following
variables:
v exact
v minimum
v maximum
v better

The default value is exact.

AttributeConsumerSvcIndex
Specifies the index of the set of attributes to return. This attribute does not
correspond to any configuration. Administrators can use
AttributeConsumerSvcIndex to select which user identity attributes to
include in the user token during the identity mapping phase.

This attribute is supported on both the Identity Provider and Service
Provider.

AssertionConsumerSvcIndex
Specifies the index of the Assertion Consumer Service URL where the
Identity Provider sends the response. The value must correspond to the
endpoint in the Service Provider metadata.

Appendix B. URLs for initiating SAML single sign-on actions 771

This attribute is supported on both the Identity Provider and Service
Provider.

Note: In case ResponseBinding and AssertionConsumerSvcIndex are
specified, the latter takes precedence.

Example

Single sign-on URL when initiated at service provider:
The following example shows the single sign-on URL when initiated at a
service provider. The name of the federation is spfed, and uses the SAML
2.0 protocol, HTTPPost as the request binding and response binding, and a
target application at https://sp.example.com:9443/banking:
https://sp.example.com:9443/sps/
spfed/saml20/logininitial?
RequestBinding=HTTPPost&
ResponseBinding=HTTPPost&
NameIdFormat=persistent&
IsPassive=true&
ForceAuthn=true&
AllowCreate=true&
RequestedAuthnContextComparison=minimum&
AuthnContextClassRef=classref1&
AttributeConsumerSvcIndex=1&
Target=https://sp.example.com:9443/banking

Single sign-on service initial URL (identity provider)
In a SAML 2.0 federation, the single sign-on service URL can be initiated at the
identity provider server site or the service provider site. This topic describes the
syntax for initiating the service at the identity provider.

Syntax for initiating single sign-on at the identity provider
https://provider_hostname:port_number/sps/
federation_name/saml20/logininitial?RequestBinding=RequestBindingType&
PartnerId=target_partner_provider_ID
&NameIdFormat=NameIDFormatType&AllowCreate=[true|false]
&Target=target_application_location

Elements

https or http
The URI scheme. Use https for resources that are protected by secure
sockets layer (SSL). Use http for resources that are not protected by SSL.

provider_hostname
The point of contact server host name of the provider.

port_number
The port number of the inter-site transfer service endpoint. The default
value is 9443.

sps The designation for the Tivoli Federated Identity Manager Server. This
element cannot be changed.

federation_name
The name you assign to the federation when you create it.

saml20
The designation of SAML 2.0.

772 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

logininitial
This element indicates what type of endpoint is using the port. logininital
is used to initiate the single sign-on service.

Target This element is URL-encoded and set as the value of the RelayState
parameter in the unsolicited response delivered by the identity provider to
the service provider. A Tivoli Federated Identity Manager Service Provider
interprets this value as the URL of the application that a user can log on to
using single sign-on.

The URL must also contain the following query strings:

RequestBinding
The binding that is used to send the response to the service provider. The
valid values when initiating single sign-on at the identity provider are:
v HTTPPost
v HTTPArtifact

PartnerId
The provider ID of the target partner.

NameIdFormat
The name ID format that is to be used for name identifiers. Valid values
are:
v Transient (anonymous)
v Persistent
v Encrypted (for encrypted name IDs)
v Email

Persistent is the default setting. If the NameIdFormat attribute is not
included, a persistent name ID is used.

AllowCreate
Indicates whether to do a new persistent account linkage upon request.
The default value is False.

Note: You must set NameIdFormat to Persistent to use this parameter.

AttributeConsumerSvcIndex
Specifies the index of the set of attributes to return. This attribute does not
correspond to any configuration. Administrators can use
AttributeConsumerSvcIndex to select which user identity attributes to
include in the user token during the identity mapping phase.

This attribute is supported on both the Identity Provider and Service
Provider.

AssertionConsumerSvcIndex
Specifies the index of the Assertion Consumer Service URL where the
Identity Provider sends the response. The value must correspond to the
endpoint in the Service Provider metadata.

This attribute is supported on both the Identity Provider and Service
Provider.

Note: In case ResponseBinding and AssertionConsumerSvcIndex are
specified, the latter takes precedence.

Appendix B. URLs for initiating SAML single sign-on actions 773

Example

Single sign-on URL when initiated at identity provider:
The following example shows the single sign-on URL when initiated at an
identity provider, using the SAML 2.0 protocol. AssertionConsumerSvcIndex
refers to the index of the ACS URL to send the response.
AttributeConsumerServiceIndex refers to the index or set of attributes to
return.
https://ip/FIM/sps/
saml20/saml20/logininitial?
RequestBinding=HTTPArtifact&
NameIdFormat=persistent&
AllowCreate=true&
AssertionConsumerSvcIndex=0&
AttributeConsumerSvcIndex=1&
PartnerId=https://sp/FIM/sps/saml20/saml20&
Target=https://sp.example.com:9443/banking

Single logout service initial URL
In a SAML 2.0 federation , the single logout service URL is used by a partner to
contact the Single logout profile. The URL to initiate the service has the following
syntax:

Syntax
https://provider_hostname:port_number/sps/

federation_name/saml20/sloinitial
..?RequestBinding=RequestBindingType

Elements

https or http
The URI scheme. https for resources that are protected by secure sockets
layer (SSL). http for resources that are not protected by SSL.

provider_hostname
The host name of the point of contact server for the service or identity
provider.

port_number
The port number of the artifact resolution service endpoint. The default
value is 9444.

sps The designation for the Tivoli Federated Identity Manager server. This
element cannot be changed.

federation_name
The name you assign to the federation when you create it.

saml20
The designation that SAML 2.0 is used in your federation.

sloinitial
This element indicates what type of endpoint is using the port. sloinitialis
used to initiate the single logout service

The following query must also be included:

RequestBinding
The binding that is used to send the request. The valid values are:
v HTTPPost
v HTTPRedirect

774 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

v HTTPArtifact
v HTTPSOAP

Examples

Single logout URL when initiated at service provider:
The following example shows the single logout URL when initiated at a
service provider in a federation named spfed, using the SAML 2.0 protocol,
HTTPRedirect as the request binding:
https://sp.example.com:9443/sps/spfed/saml20/sloinitial?

RequestBinding=HTTPRedirect

Single logout URL when initiated at identity provider:
The following example shows the single logout URL when initiated at an
identity provider in a federation named ipfed, using the SAML 2.0
protocol, HTTPArtifact as the request binding:
https://idp.example.com:9444/sps/ipfed/saml20/sloinitial?

RequestBinding=HTTPArtifact

Name identifier management service initial URL
In a SAML 2.0 federation, the name identifier management service URL is used by
a partner to contact the Name Identifier Management service.

Syntax

The URL to initiate the service has the following syntax:
https://provider_hostname:port_number/sps/

federation_name/mnidsinitial?RequestBinding=RequestBindingType
&PartnerId=target_partner_provider_ID&NameIdTerminate=[True|False]

Elements

https or http
The URI scheme. https for resources that are protected by secure sockets
layer (SSL). http for resources that are not protected by SSL.

provider_hostname
The host name of the point of contact server for the service or identity
provider.

port_number
The port number of the artifact resolution service endpoint. The default
value is 9444.

sps The designation for the Tivoli Federated Identity Manager server. This
element cannot be changed.

federation_name
The name you assign to the federation when you create it.

saml20
The designation that SAML 2.0 is used in the federation.

mnidsinitial
This element indicates what type of endpoint is using the port.
mnidsinitial is used to initiate the name identifier.

The following query strings must also be included:

Appendix B. URLs for initiating SAML single sign-on actions 775

RequestBinding
The binding that is used to send the request to the partner. The valid
values when initiating single sign-on at the identity provider are:
v HTTPPost
v HTTPArtifact
v HTTPRedirect
v HTTPSOAP

PartnerId
The provider ID of the target partner.

NameIdTerminate
A value that indicates if the name ID management flow must terminate the
name ID mapping. Valid values are:

True Ends the account linkage.

False Indicates that the name ID flow updates the name identifiers
(aliases). False is the default, if no value is explicitly specified.

Examples

Name identifier initiated at the identity provider:
The following example shows the name identifier URL initiated at an
identity provider in a federation named ipfed, using the SAML 2.0
protocol and HTTP SOAP as the request binding:
https://idp.example.com:9444/sps/ipfed/saml20/mnidsinitial?

RequestBinding=HTTPSOAP&PartnerId=https://saml20sp:444/sps/
saml20/saml20&NameIdTerminate=true

Name identifier initiated at the service provider:
The following example shows the name identifier URL initiated at a service
provider in a federation named spfed, using the SAML 2.0 protocol and
HTTP Artifact as the request binding:
https://sp.example.com:9444/sps/spfed/saml20/mnidsinitial?

RequestBinding=HTTPArtifact&PartnerId=https://saml20ip/FIM/sps/
saml20/saml20&NameIdTerminate=true

776 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Appendix C. Using the command-line interface to configure
Tivoli Federated Identity Manager SHA256 support

Learn how to configure the required parameters from the response file to support
SHA256 in Tivoli Federated Identity Manager.

Procedure
1. Click Integrated Solutions Console > Tivoli Federated Identity Manager to do

the following tasks:
a. Create SAML 2.0 identity provider and service provider federations. See

“Creating your role in the federation” on page 214.
b. Export metadata file.
c. Add partners. Ensure that you select a signing key and a signature

algorithm. See Table 169 for more information on the SHA256 attributes.

Table 169. SAML 2.0 SHA256 Parameter Configuration Matrix

SAML 2.0 SHA256 Attributes Values
Applicable
to? Remarks

SigningKeyIdentifier Yes IP and SP Signs outgoing SAML messages and SAML
assertion.

If the AssertionSigningKeyIdentifier is
specified, the AssertionSigningKeyIdentifier
signs the SAML assertion instead.

The attribute is configurable in the
management console and federation response
file.

AssertionSigningKeyIdentifier For example:

DefaultKeyStore_ dsatestkey

IP only Signs outgoing SAML assertion.

The attribute is configurable only in
federation response file.

SignatureAlgorithm http://www.w3.org/2000/09/
xmldsig#dsa-sha1

http://www.w3.org/2000/09/
xmldsig#rsa-sha1

http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256

IP and SP Signs outgoing SAML messages and SAML
assertion.

If the AssertionSignatureAlgorithm is
specified, the AssertionSignatureAlgorithm
signs the SAML assertion.

The SignatureAlgorithm value must match
the key type specified for the
SigningKeyIdentifier.

If the AssertionSigningKeyIdentifier is
specified and the
AssertionSignatureAlgorithm is not specified,
the SignatureAlgorithm value must match the
key type specified for the
AssertionSigningKeyIdentifier.

The attribute is configurable in the
management console and partner response
file.

© Copyright IBM Corp. 2006, 2013 777

Table 169. SAML 2.0 SHA256 Parameter Configuration Matrix (continued)

SAML 2.0 SHA256 Attributes Values
Applicable
to? Remarks

DigestAlgorithm http://www.w3.org/2000/09/
xmldsig#sha1

http://www.w3.org/2001/04/
xmlenc#sha256

http://www.w3.org/2001/04/
xmlenc#sha512

IP and SP Generates SAML messages and SAML
assertion digest values. If the
AssertionDigestAlgorithm is specified, the
AssertionDigestAlgorithm hashes the SAML
assertion digest. If not specified, the
DigestAlgorithm becomes:

v SHA1, when the SignatureAlgorithm is
DSA-SHA1 or RSA-SHA1

v SHA256, when the SignatureAlgorithm is
RSA-SHA256.

The attribute is configurable only in partner
response file.

AssertionSignatureAlgorithm http://www.w3.org/2000/09/
xmldsig#dsa-sha1

http://www.w3.org/2000/09/
xmldsig#rsa-sha1

http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256

IP only Signs outgoing SAML assertion.

The value must match the
AssertionSigningKeyIdentifier key type.

The SignatureAlgorithm signs the SAML
assertion if the AssertionSignatureAlgorithm
is not specified.

The attribute is configurable only in partner
response file.

AssertionDigestAlgorithm http://www.w3.org/2000/09/
xmldsig#dsa-sha1

http://www.w3.org/2000/09/
xmldsig#rsa-sha1

http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256

IP only Signs outgoing SAML assertion. The value
must match the
AssertionSigningKeyIdentifier key type. The
SignatureAlgorithm signs the SAML assertion
if the AssertionSignatureAlgorithm is not
specified.

The attribute is configurable only in partner
response file.

AssertionValidateKeyIdentifier For example:

DefaultTrustedKeyStore_IP-
validationkey

SP only The key service provider uses to validate
SAML Assertion from the identity provider.

The AssertionValidateKeyIdentifier must be
identical to the public key of the identity
provider when signing a SAML assertion.

The attribute is configurable only in partner
response file.

2. From the command-line interface, generate the response files of the identity
provider and the service provider federation and the partners that you have
added. Use the following commands:

Identity provider federation response file:
wsadmin>$AdminTask manageItfimFederation
{-operation createResponseFile -fimDomainName <fimdomain>
-federationName <IP_fedname> -fileId output_file}

Service provider federation response file:
wsadmin>$AdminTask manageItfimFederation
{-operation createResponseFile -fimDomainName <fimdomain>
-federationName <SP_fedname> -fileId output_file}

Identity provider partner response file:
wsadmin>$AdminTask manageItfimPartner
{-operation createResponseFile -fimDomainName <fimdomain>
-federationName <IP_fedname> -partnerName <Partner_name>
-fileId output_file}

778 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Service provider partner response file:
wsadmin>$AdminTask manageItfimPartner
{-operation createResponseFile -fimDomainName <fimdomain>
-federationName <SP_fedname> -partnerName <Partner_name>
-fileId output_file}

3. Edit the SAML 2.0 SHA256 attributes in the identity provider, service provider
federation, and partner response files according to the available data in
Table 170.

Table 170. Identity Provider and Service Provider SHA256 Federation and Partner Response File Parameters

SAML 2.0 SHA256 Parameter Identity Provider Service Provider

Federation

SigningKeyIdentifier <void method="put">
<string>SigningKeyIdentifier
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>DefaultKeyStore_<dsakey>
</string>
</void>
</object>

</void>

<void method="put">
<string>SigningKeyIdentifier
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>DefaultKeyStore_<rsakey>
</string>

</void>
</object>

</void>

AssertionSigningKeyIdentifier <void method="put">
<string>AssertionSigningKeyIdentifier
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>DefaultKeyStore_<rsakey>
</string>
</void>
</object>

</void>

N/A

Partner

AssertionValidateKeyIdentifier N/A <void method="put">
<string>AssertionValidateKeyIdentifier
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>DefaultTrustedKeyStore_
<IP_publickey>
</string>

</void>
</object>

</void>

SignatureAlgorithm <void method="put">
<string>SignatureAlgorithm
</string>
<object class="java.util.ArrayList">

<void method="add">
<string>http://www.w3. org/2000/09/
xmldsig#dsa-sha1
</string>
</void>
</object>

</void>

<void method="put">
<string>SignatureAlgorithm
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256

</string>
</void>

</object>
</void>

DigestAlgorithm <void method="put">
<string>DigestAlgorithm
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>http://www.w3. org/2000/09/
xmldsig#sha1
</string>
</void>
</object>

</void>

<void method="put">
<string>DigestAlgorithm
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>http://www.w3.org/2001/04/
xmlenc#sha512

</string>
</void>

</object>
</void>

Appendix C. Using the command-line interface to configure Tivoli Federated Identity Manager SHA256 support 779

Table 170. Identity Provider and Service Provider SHA256 Federation and Partner Response File
Parameters (continued)

SAML 2.0 SHA256 Parameter Identity Provider Service Provider

AssertionSignatureAlgorithm <void method="put">
<string>AssertionSignatureAlgorithm
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>http://www.w3. org/2001/04/
xmldsig-more#rsa-sha256
</string>
</void>
</object>

</void>

<void method="put">
<string>AssertionSignatureAlgorithm
</string>
<object class="java.util.ArrayList"/>

</void>

AssertionDigestAlgorithm <void method="put">
<string>AssertionDigestAlgorithm
</string>
<object class="java.util.ArrayList">
<void method="add">
<string>http://www.w3.org/2001/04/
xmlenc#sha512
</string>
</void>
</object>

</void>

<void method="put">
<string>AssertionDigestAlgorithm
</string>
<object class="java.util.ArraList"/>

</void>

4. Update the properties of the identity provider and the service provider
federations using the modified federation response file.

For the identity provider:
wsadmin>$AdminTask manageItfimFederation
{-operation modify -fimDomainName <fimdomain>
-federationName <IP_fedname>
-fileId <Path_to_IP_federation_response_file>}

For the service provider:
wsadmin>$AdminTask manageItfimFederation
{-operation modify -fimDomainName <fimdomain>
-federationName <SP_fedname>
-fileId <Path_to_SP_federation_response_file>}

5. Update the properties of the identity provider and the service provider partner
using the modified partner response file.

For the identity provider:
wsadmin>$AdminTask manageItfimPartner
{-operation modify -fimDomainName <fimdomain>
-federationName <IP_fedname>
-partnerName <IP_partner_name>
-fileId <Path_to_IP_partner_response_file>}

For the service provider:
wsadmin>$AdminTask manageItfimPartner
{-operation modify -fimDomainName <fimdomain>
-federationName <SP_fedname>
-partnerName <SP_partner_name>
-fileId <Path_to_SP_partner_response_file>}

6. Enable the identity provider and the service provider partners.

For the identity provider:
wsadmin>$AdminTask manageItfimPartner
{-operation enable -fimDomainName <fimdomain>
-federationName <IP_fedname>
-partnerName <IP_partner_name>}

780 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

For the service provider:
wsadmin>$AdminTask manageItfimPartner
{-operation enable -fimDomainName <fimdomain>
-federationName <SP_fedname>
-partnerName <SP_partner_name>}

7. Perform single sign-on, or single log-off.

Appendix C. Using the command-line interface to configure Tivoli Federated Identity Manager SHA256 support 781

782 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Appendix D. Disabling logging to enhance performance

When using Tivoli Federated Identity Manager with Tivoli Access Manager, you
can improve the performance on a service provider by disabling logging for
theTivoli Access Manager policy server.

To reduce usage of the central processor unit (CPU), complete the following steps:
1. Back up the policy director directory. For example, on Linux or UNIX:

/opt/IBM/WebSphere/AppServer/java/jre/PolicyDirector

2. Open the following file in a text editor:
/opt/IBM/WebSphere/AppServer/java/jre/PolicyDirector/PDJLog.properties

3. Disable message logging by setting the following parameter to false:
baseGroup.PDJMessageLogger.isLogging=false

© Copyright IBM Corp. 2006, 2013 783

784 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2006, 2013 785

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

786 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information; at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Notices 787

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

788 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Glossary

access token
In the context of OAuth, a string that
represents authorization provided to the
OAuth client. The string represents scopes
and durations of access. It is granted by
the resource owner and enforced by the
OAuth or Authorization server.

alias service
The Tivoli Federated Identity Manager
component that manages aliases, or name
identifiers, that are passed between secure
domains.

artifact
In the context of the SAML protocol, a
structured data object that points to a
SAML protocol message.

artifact resolution service
In the context of the SAML protocol, the
endpoint in a federation where artifacts
are exchanged for assertions.

assertion
In the context of the SAML protocol, data
that contains authentication or attribute
information or both types of information
in a message.

assertion consumer service
In the context of the SAML protocol, the
endpoint in a federation that receives
assertions or artifacts as part of a single
sign-on request or response.

authorization code
In the context of OAuth, a code that the
Authorization server generates when the
resource owner authorizes a request.

authorization grant
In the context of OAuth, a grant that
represents the resource owner
authorization to access its protected
resources. OAuth clients use an
authorization grant to obtain an access
token. There are four authorization grant
types: authorization code, implicit,
resource owner password credentials, and
client credentials.

authorization server
A server that processes authorization and
authentications.

binding
In the context of SAML, the
communication method used to transport
the messages.

browser artifact
A profile (that is, a set of rules) in the
SAML standard that specifies that an
artifact is exchanged to establish and use
a trusted session between two partners in
a federation. Contrast with browser POST.

browser POST
A profile (that is, a set of rules) in the
SAML standard that specifies the use of a
self-posting form to establish and use a
trusted session between two partners in a
federation. Contrast with browser artifact.

certificate
In computer security, a digital document
that binds a public key to the identity of
the certificate owner. This digital
document enables the certificate owner to
be authenticated. A certificate is issued by
a certificate authority and is digitally
signed by that authority.

client A software program or computer that
requests services from a server.

domain
A deployment of the Tivoli Federated
Identity Manager runtime component on
WebSphere Application Server.

endpoint
The ultimate recipient of an operation.

federation
A relationship in which entities, such as
differing businesses, agree to use the
same technical standard (such as SAML
or Liberty). This technical standard
enables each partner in the relationship to
access resources and data of the other. See
also identity provider and service
provider.

identity mapping
The process of modifying an identity that
is valid in an input context to an identity
that is valid in an output context.

© Copyright IBM Corp. 2006, 2013 789

identity provider
A partner in a federation that has
responsibility for authenticating the
identity of a user.

intersite transfer service
In the context of the SAML protocol, the
endpoint in a federation to which a single
sign-on request is sent.

keystore
In security, a file or a hardware
cryptographic card where identities and
private keys are stored, for authentication
and encryption purposes. Some keystores
also contain trusted, or public, keys.

Metadata
Data that describes a particular piece of
information, such as settings for a
configuration.

OAuth client
A third-party application that wants
access to the private resources of the
resource owner. The OAuth client can
make protected resource requests on
behalf of the resource owner once the
resource owner grants it authorization.

OAuth server
Also known as the Authorization server
in OAuth 2.0. The server that gives
OAuth clients scoped access to a
protected resource on behalf of the
resource owner. An authorization server
can also be the resource server.

partner
In data communications, the remote
application program or the remote
computer.

point of contact server
In the context of a federation, a proxy or
application server that is the first entity to
process a request for access to a resource.

private key
In secure communication, an algorithmic
pattern used to encrypt messages that
only the corresponding public key can
decrypt. The private key is also used to
decrypt messages that were encrypted by
the corresponding public key. The private
key is kept on the user system and is
protected by a password.

profile
In the context of the SAML specification,

a combination of protocols, assertions,
and bindings that are used together to
create a federation and enable federated
single sign-on.

protocol
In the context of the SAML specification,
a type of request message and response
message that is used for obtaining
authentication data and for managing
identities.

public key
In secure communication, an algorithmic
pattern used to decrypt messages that
were encrypted by the corresponding
private key. A public key is also used to
encrypt messages that can be decrypted
only by the corresponding private key.
Users broadcast their public keys to
everyone with whom they must exchange
encrypted messages.

refresh token
In the context of OAuth, a string that is
used to obtain a new access token when
the current access token expires.

resource owner
In the context of OAuth, a type of user
capable of authorizing access to a
protected resource.

resource server
The server that hosts the protected
resources. It can accept and respond to
protected resource requests using access
tokens. The resource server might be the
same server as the authorization server.

response file
A file containing predefined values such
as parameters and values used to control
the actions of a component in a
predetermined manner.

request
An item that initiates a workflow and the
various activities of a workflow.

SAML See security assertion markup language.

security assertion markup language
A set of specifications written by the
OASIS consortium to describe the secure
handling of XML-based request and
response messages that contain
authorization or authentication
information.

790 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

service provider
A partner in a federation that provides
services to the user.

Simple and Protected GSS API Negotiation
Mechanism (SPNEGO)

An authentication mechanism that
provides single sign-on capability in
Microsoft Windows environments.

single sign-on
An authentication process in which a user
can access more than one system or
application by entering a single user ID
and password.

SOAP A lightweight, XML-based protocol for
exchanging information in a
decentralized, distributed environment.
SOAP can be used to query and return
information and start services across the
Internet.

SOAP back channel
Communications that take place directly
between two SOAP endpoints.

SPNEGO
Simple and Protected GSS API
Negotiation Mechanism

stanza A group of lines in a file that together
have a common function or define a part
of the system. Stanzas are separated by
blank lines or colons, and each stanza has
a name.

syntax The rules for the construction of a
command or statement.

token A particular message or bit pattern that
signifies permission or temporary control
to transmit over a network. In the context
of SAML, token is used interchangeably
with assertion.

trust service
The Tivoli Federated Identity Manager
component that manages security tokens
that are passed between security domains.
The trust service is also referred to as the
Security Token Service.

Web service
A self-contained, self-describing modular
application that can be published,
discovered, and invoked over a network
using standard network protocols.
Typically, XML is used to tag the data,
and SOAP is used to transfer the data. A
WSDL is used for describing the services

available, and UDDI is used for listing
what services are available.

Web service security management
The Tivoli Federated Identity Manager
component that is used to establish and
manage federation relationships for web
service applications running on
WebSphere Application Server that use
WS-Security tokens.

Glossary 791

792 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Index

Special characters
[tfim-cluster:cluster] stanza 524
[tfimsso:<jct-id>] stanza 524
@USERDATA 299

A
access control lists (ACL) 529
access token OAuth 367
accessibility xviii
Account Create cache

description 618
lifetime 618
parameters 618
performance tuning 617

account deletion 545
account linkage

alias unknown handling 167
consumer trust chains 327
Liberty federation termination

notification 451
Active Directory

constrained delegation
configuration 507

integrated authentication 505
server configuration 563

adapters Tivoli Access Manager 558
Add Partner wizard 195
administration console

federation as an attribute authority
creation 192

identity provider partner
creation 195

service provider partner creation 195
administrators user registry

identity provider 97
service provider 113

algorithms supported 353
alias service

Active Directory 134, 462
configuration 476
database set up 131
description 167
ID Generator 313
Information Card 287
Keystore 140, 477
LDAP

configuration 135
Host search order 140, 478
settings 141

Liberty 461
Lotus Domino 134, 462
populating 13
SSL Enabled 140, 477
Sun ONE Directory server 476

alias service database
JDBC configuration 132
LDAP

configuration 134
suffix creation 138

alias service database (continued)
Oracle configuration 142
set up 131
settings modification 134

Apache server configuration 124
application roles

examples 90
user mapping 90
WebSphere Application Server

deployment 90
application server

separate server 121
WebSphere configuration 121

application target configuration 128
apply-tam-native-policy stanza entry

oauth stanza 435
artifact resolution service

description SAML 1.x 175
description SAML 2.0 177
URL 175, 177

assertion consumer service
LTPA cookie, using with 111
SAML 1.x

description 176
URL 176

SAML 2.0
description 178
URL 178

URL initial 769
assertions

SAML 1.x 166
SAML 2.0 167
security options 39

associate message mode 313
attribute authority federation

partner 194
Attribute Exchange Extension

description 335
example 335
fetch requests parameters 335
fetch response parameters 335
OpenID 335

attribute query
configuration 191
direct mode 189
federation response file

parameters 197
migration 189
On-behalf mode 189
partner response file parameters

SAML 2.02 198
request partner 189, 197
SAML 2.02 189
STS module 189

attributes
identity provider, request from 334
LTPA token filtering 111
registry 546
secret question 546
Tivoli Directory Integrator

mapping 151

authentication
client 377
client requirements configuriation 76
endpoints 318
forms-based

configuration 96
description 93

login form 717, 718
modes 322
options 93
server, set up on 71
SPNEGO

configuring 99
enabling 104
using 94
Windows integration 505

token 37
Windows desktop 94
Windows integrated 505

authentication policy
custom

one-time password 644
mapping rule 664

authentication policy mapping rule
one-time password 664

authorization code OAuth 367
authorization grant OAuth 367
azn-decision-info stanza 426
aznapi-configuration stanza

resource-manager-provided-adi
entry 427

aznapi-external-authzn-services
stanza 425

aznapi-external-authzn-services stanza
policy-trigger entry 425

B
bad-gateway-rsp-file stanza entry

oauth stanza 434
bad-request-rsp-file stanza entry

oauth stanza 433
bind DN password 101
bindings

HTTP artifact 167
HTTP POST 167
HTTP redirect 167
SAML 1.x 166
SAML 2.0 167
SOAP 167

browser
artifact 450
cookies enablement 129
POST 450
POST profile 166

C
cache instances 31
cache-size configuration parameter 430

© Copyright IBM Corp. 2006, 2013 793

caches
Account Create 617, 618
Forgotten Password 617, 618
performance tuning, WebSphere

Application Server 619
Secret Question Failure 617, 619
User Self Care 617, 618, 619

callback plug-ins publication 742
Captcha

demonstration 550
demonstration configuration 567
example 550
module 545
operation 545

CardID 299
certifcations 44
certificates

CA
receiving from 60
requesting from 56

client
See client certificates

default
deleting 75
using 56

keystore 58
Liberty message security 454
management overview 43
metadata

exporting to 64
importing from 61

obtaining 55
partner

exporting to 64
importing from 61
obtaining from 60
providing to 63

planning 49, 52
request creation 72
revocation checking 66
self-signed creation 56
server receiving from 80
signing 43
storage overview 43
supported types 55
utility, import using 58
validation 43

check_authentication message mode 313
checkid_immediate authentication

mode 322
checkid_immediate message mode 313
checkid_immediate request

parameters 364
template page returned 364
what it does 364

checkid_setup authentication ode 322
checkid_setup message mode 313
checklist

message security 52
partner guidance 216

claims, Information Card
definition 276
example 276
limitations 302
Microsoft supported 276
templates 276
types 302

client authentication
basic access configuration 77
certificate configuration 78, 80
configuring without 76
Liberty configuration 473
OAuth 2.0 token endpoint 377
options 76
overview 42
types 377

client certificate
client authentication, use in 80
Liberty configuration 473
management overview 43
obtaining 81

client enhanced profile 167
client-side configuration with Java system

properties 161
client-side SSL

See SSL, client-side
clients

OAuth 367
clocks, synchronizing 248
cluster-name stanza entry

oauth stanza 435
clusters

high availability verification 521
IBM HTTP Server 533
SSL communication 533
WebSEAL 533
WebSphere Application Server 533

com.tivoli.pd.rgy.util.RgyConfig
utility 558

commands
manageItfimOneTimePassword 665
manageItfimPointOfContact 677

communication properties Liberty 454
configuration

Active Directory for SPNEGO 99
alias service database 131
client authentication 76
client certificate 80
federation overview 199
federation role 214
forms-based authentication 96
login method 129
LTPA cookie 111
partner

adding 245
obtaining from 218

plug-in
copying file for 127
creating file for 125

properties, providing 247
service provider overview 119
SPNEGO

authentication 99, 104
browsers for use with 107
overview 99
user registry 99
WebSphere security for 102
Windows Desktop for 102

TAI
attributes 105
configuring 105
custom attributes 107

target application 128

configuration (continued)
user registry

identity provider 97
service provider 113
target application 121

WebSphere Application Server
security 88

consent to authenticate template
parameters 354
what it does 354

Consent to Federate Page
customization 737
description 737

console custom properties 714
constrained delegation

configuration 507
Kerberos

overview 501
WebSEAL junctions 502

module 519
consumer

configuration worksheet 344
description 37
federations 323
trust chains 327

conventions
typeface xix

cookies
enablement 129
LTPA configuration 111
WebSEAL management 531

counter-based 650
CRC (certificate revocation checking)

enabling 66
settings required 67
WebSphere enablement 66, 67
XML security operations 68

cryptography policy, updating 65, 286
custom mapping module

creation 162
instance 163
type addition 163

custom point of contact server
activation 746
creation

custom 741
like existing 744
new 742

custom properties
creating 703
deleting 703
general 704
key service 710
SAML 2.0 712
servlet filter 423
sign-on 705
SOAP client 711
TAI 423
trust service 707

D
databases

name identifier 141
Oracle 142

DB2
user information setup 696

794 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

decryption key
point of contact server 287
properties 307

default-fed-id option 430
default-mode parameter 431
delivery plug-in

reference 690
deployment overview 503
digital signature options 454
Direct mode attribute query 189
direct user authentication 37
directory names, notation xx
domain

activating 28
active 23, 554
cluster name 28
configuration

properties 27
worksheet 26

creation 23, 27, 554
custom properties 703
definition 23, 31, 554
deployment 27
fully qualified name 23, 554
management service endpoint

properties 23, 554
number allowed 23, 554
properties custimization 703
replication

consumer of 31
name of 31

server name 28
TAM configuration 28
Tivoli Federated Identity

Manager 554
WebSphere 31

dynamic cache service 31
dynamic endpoint access plug-in 331

E
EAS configuration data sample 428
education

See Tivoli technical training
encryption

messages 39
requirements 39
technology 65, 286

endpoints
authentication 318
description 173
Liberty

register name identifier 451
single logout 452

login 323
OAuth

definitions 368
URLs 368

OpenID 353
protecting 72
SAML 173
SAML 1.x ports

artifact 175
intersite 175
POC 174

SAML 2.0 overview 177

endpoints (continued)
SAML 2.0 ports

artifact 178
assertion 178
logout 180
name identifier 180
POC 177
sign-on 179

SAML1.x ports assertion 176
single sign-on federations 318
site management 318
SOAP authentication

export 469
import 471
OAuth 2.0 379

SSL key identifiers 304
enrollment operations

initial request 542
validations 542

entries
apply-tam-native-policy

oauth stanza 435
azn-decision-info

azn-decision-info stanza 426
bad-gateway-rsp-file

oauth stanza 434
bad-request-rsp-file

oauth stanza 433
cluster-name

oauth stanza 435
policy-trigger

aznapi-external-authzn-services
stanza 425

realm-name
oauth stanza 432

resource-manager-provided-adi
aznapi-configuration stanza 427

trace-component
oauth stanza 435

unauthorized-rsp-file
oauth stanza 433

environment variables, notation xx
error messages

OAuth EAS HTTP 387
WebSeal configuration 531

error pages Information Card 277
event pages

content 730
customization overview 723
macros

description 730
overview 730

overview 723
page identifiers 724
template files

creating 735
description 724
template files 729

extended authentication
verification 641

F
fed-id-param parameter 431
federated single sign-on prerequisite 27
federation

account linkage 451

federation (continued)
applications supported 35
attribute authority

administration console
creation 192

command-line interface
creation 193

federation partner 194
attribute query

configuration for SAML 2.0 191
request partner creation 197
response file parameters 197

consumer 323
decryption key properties 307
definition 35
fedfirststeps directory 3
IBM Business Partner 35
identification 304, 307, 309, 310
identity architecture 35
identity mapping

properties 307
rules 183

identity provider
description 275, 318
Liberty configuration 463
mapping 310
properties 304
WS-Federation configuration 487

Infocard
configuration 297
global partner settings 310

Information Card 271, 275, 298
information gathering 199, 387
Liberty

configuration tasks 463
termination notification 451
token modules 455

message decryption 287
number of 35
OAuth 1.0

endpoint definitions 368
naming 368
URIs 368

OAuth 2.0
endpoint definitions 368
naming 368
URIs 368

OAuth configuration 399
one-time password

configuration 635
OpenID 338

See OpenID federation
OpenID PAPE 337
overview 199
partner

adding 245
configuring 218
creating 293
obtaining 218

properties
exporting 247, 469, 490
modifying 248
providing 247
viewing 248

Provider ID 430
relying party properties 280, 307, 309
role, creating your 214

Index 795

federation (continued)
SAML federations

See SAML federations
SAML, WebSEAL point of contact

server configuration 215
service provider Liberty

configuration 465
single sign-on federation

See single sign-on federation
single sign-on properties 304, 307
SOAP connection 87
SSL Endpoint key identifier 304
template customization 3
User Self Care

modification 614
unconfigure 614

WS-Federation
See WS-Federation

Federation First Steps tool
identity provider configuration 6
launch 5
overview 5
risk-based access 6
SAML 2.0 federation creation 6
uses for 1

fedfirststeps directory 3
fetch requests parameters for Attribute

Exchange Extension 335
fetch response parameters for Attribute

Exchange Extension 335
First Steps plug-in

Google Apps 9
Microsoft Office 365 11
Salesforce 17
Workday 18

Forgotten Password cache
description 618
parameters 618
performance tuning 617

Forgotten Password process 544
forms-based authentication

configuring 96
overview 93

G
generic error page template

parameters 362
what it does 362

Google Apps
First Steps plug-in 9
single sign-on 10
single sign-on configuration 9
user provisioning 10

H
Hash ID Generator 313
HTTP

artifact 167
POST binding 167
redirect binding 167
request types, User Self Care 549
request URLs, User Self Care 547
responses, User Self Care 549

HTTP proxy server 91

HTTPS connections
transport security protocol 715

I
IBM Business Partner 35
IBM HTTP Server

basic configuration 91
client authentication configuration 91
cluster SSL communication 533
configuration 124
federation configuration 87
LDAP authentication 91
point of contact 87
SOAP connection 91
SSL port for SOAP backchannel 87

IBM HTTP Web server 29
IBM PROTOCOL extension 166
IbmPKIX trust manager

configuring 66, 67
enabling 68

identity
architecture in the federation 35
integrity 35

identity mapping 456
custom module

adding 163
creating 162
instance addition 163

Information Card 288
properties 307, 309
relying party 288
role in federation 143, 144
SAML 1.x token, local user 183, 184
SAML 2.0 token, local user 185, 187
SAML federation rules overview 183
strategy 349
STS universal user contents 145, 146
Tivoli Directory Integrator 151
WS-Federation 481
XSL language, use of 149

identity provider
configuration worksheet 289, 338
definition of 37, 313, 449, 479
discovery profile 167
discovery service description 181
environments 93
federation first steps tool

configuration 6
federations

configuration 275
description 318
properties 304
relying party partners

properties 310
forms-based authentication 96
identity mapping Information

card 288
Information Card overview 272
Liberty

communication properties 454
introduction 453
register name identifier 451

OpenID PAPE implementation 337
options 83
persona attributes 299
profiles 450

identity provider (continued)
properties for mapping relying party

partners 310
request attributes from 334
SAML 1.x worksheet 201
SAML 2.0 worksheet 209
SPNEGO user registry 99
trust chains 320
user registry, configuring 97

identity provider partner
administration console, creating

with 195
attribute authority federation 194
command-line interface creation 196
relying party federations

properties 309
SAML 1.x worksheet 224
SAML 2.0 worksheet 237

identity selector
Information Card federation 271
plug-in 278

IHS
See IBM HTTP Server

IIS server configuration 124
ikeyman utility 91
indirect post template page 363
indirect user authentication 37
infocard_template XML file replacement

macros 301
Information Card

alias service requirements 287
browser requirements 281
claims 302

definition 276
example 276
Microsoft supported 276
templates 276

decryption key 287
dependency verfication 297
deploying successfully 287
documentation 271
error pages 277
features 272
federation

configuration 297
description 275
planning 271
process 271

global partner settings 310
identity mapping 288
identity provider overview 272
identity selector plug-in 278
limitations 272, 302
managed

See managed cards
protocol 271
relying party

description 278
federations 280
login format example 278
naming convention 280
point of contact server 278
user access 278

replacement macros 301
template 301
time synchronization

requirements 287

796 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Information Card (continued)
WebSEAL point of contact server

configuration 298
website enablement 281
WebSphere requirements 286

instance Kerberos constrained delegation
module 519

intersite transfer service
description 174
single sign-on URL 767
URL 174

J
Java

system properties, client-side
SSL 161

tfimcfg command limitations 761
Java2, use of 749
JDBC database

configuring manually 132
use with alias service 131

JSSE client-side SSL configuration 159

K
Kerberos

[tfimsso:<jct-id>] stanza 524
access control lists (ACL) 529
constrained delegation

configuration 507
module instance 519
overview 501
trust chain 519
WebSEAL junctions 502

delegation
module instance 513
trust chain 513

junction
configuration worksheet 528
regular 529
scenario configuration 513
SSL configuration

deployment 533
virtual host 529
WebSEAL 523

module instance worksheet 517
trust chain configuration

worksheet 517
trust chain planning 513
WebSEAL

junction configuration 524, 529
junction debugging 531

key selection criteria 45
key service

custom properties 710
description 43
requirements 49

keys creation overview 44
keystores

creation 44, 51
default 44

removing 66
WebSphere Application Server 44

description 43
importing 51

keystores (continued)
Liberty message security 454
password 44, 50
planning 49
requirements 49

L
landing pages, WebSEAL 614
LDAP

alias service
configuration 134, 135
database for 131
settings 141

IBM HTTP Server client
worksheet 91

ldapconfig.properties file 764
properties 135
suffix 138
tfimcfg command 761, 766

ldapconfig.properties file 135, 764
Liberty 456

communication properties 454
endpoints 451
federation termination

notification 451
identity mapping 456
identity provider 453
message security 454
metadata file 473
name identifier 461
register name identifier 451
single logout endpoints 452
single logout profile 452
single sign-on profiles 450
token mapping 456, 457, 460
token modules 455

Liberty federation
configuration tasks 463
planning 449
property exporting 469
WebSEAL point of contact server 467

Liberty federation partner
configuration, exporting 470
metadata, obtaining from 470
SOAP

authentication import 471
endpoint authentication 469

local user identity mapping
example 183, 186
from 183, 185
to 184, 187

logging disable 783
login

configuring for application 129
endpoint 323
failure troubleshooting 562
OpenID 325
pages configuration 352

login form
Attribute Exchange extension 335
customizing (overview) 723
end user, providing to 352
location 98

login pages
customization 720

login pages (continued)
Information Card website

enablement 281
point of contact server 720
WebSEAL 717, 718, 720
WebSphere Application Server 717,

718, 720
LTPA

attributes filtering 111
configuration 47
cookie configuration 111
token custom properties 716

LTPA keys
disabling generation of 122
exporting 115
password 115, 122

M
macros

customization 718
templates 730

managed cards
HTML templates 272
issuing 272
protected endpoint download 272
required information, issuing 272

managed partner worksheet 293
manageItfimOneTimePassword

usage 665
manageItfimPointOfContact

usage 677
management console 27
mapping module 327
mapping rules

custom
one-time password 652

OTPDeliver 652
OTPGenerate 653
OTPGetDeliveryMethods 653
OTPVerify 655
sample files 151
task list 149

message security
checklist 52
level 39
Liberty 454
planning 52
setting up 49

messages
decryption 39, 287
encryption 39
modes for authentication 313
security 39

metadata
certificates

exporting to 64
using to provide 63

file creation 247
partner

importing from 245
obtaining from 218
providing to 247

Microsoft Active Directory
Server

See Active Directory Server
SPNEGO configuration 99

Index 797

Microsoft Active Directory (continued)
SPNEGO use with 94

Microsoft CardSpace 281
Microsoft Office 365

First Steps plug-in 11
single sign-on 15
test single sign-on 16
UPN 11
user provisioning 16
UUID 11

Microsoft Windows integrated
authentication 505

mode-param parameter 432
module

instances creation 163
types creation 163

multiple language encoding
WebSphere Application Server 89

N
name identifier

database
setting up 131, 141
settings, modifying 134

Liberty alias service 461
management profile 167
management service

description 180
initial URL 775

naming convention 280
notation

environment variables xx
path names xx
typeface xx

O
OASIS Security specifications 165
OAuth

default-fed-id option 430
endpoints 368
federation configuration 399
Provider ID 430

OAuth 1.0
access token 367
authorization

code 367
grant 367

client 367
endpoint

definitions 368
URLs 368

overview 370
partner

addition 402
registration overview 380

planning overview 367
protected resource 367
resource owner 367
resource server 367
server 367
service provider

federation configuration 399
partner worksheet 391
worksheet 388

OAuth 1.0 (continued)
servlet filter configuration 404
specifications 367
state management 380
TAI configuration 403
template page types 436, 438, 441,

442
trusted clients management 385
two-legged OAuth

enabling 400
flow 372
overview 371

WebSEAL point of contact server,
configuring 400

OAuth 2.0
about 373
access token 367
authorization

grant 367
authorization code 367
client 367
concept 373
custom properties 709
endpoint

definitions 368
URLs 368

overview 373
partner 402
planning overview 367
protected resource 367
resource owner 367
resource server 367
server 367
service provider partner

worksheet 396
service provider worksheet 393
servlet filter 404
SOAP endpoint authentication

settings 379
specifications 367
TAI configuration 403
template page types 436, 442, 446
token endpoint client

authentication 377
trusted clients management 385
workflow 373

OAuth EAS
authorization responsibilities 385
configuration data example 428
data

authorization 386
configuration parameters 386
resource information 386

description 385
HTTP error responses 387
plug-in 385
Tivoli Federated Identity Manager

communication 385
WebSEAL configuration 409

OAuth EAS configuration for WebSEAL
WebSEAL OAuth EAS configuration

versions supported 407
OAuth External Authorization Service

See OAuth EAS
oauth stanza 428

apply-tam-native-policy entry 435
bad-gateway-rsp-file entry 434

oauth stanza (continued)
bad-request-rsp-file entry 433
cluster-name entry 435
realm-name entry 432
trace-component entry 435
unauthorized-rsp-file entry 433

OAuth STS interface 411
oauth-eas stanza example 428
oauth-pop 409
OBJECT syntax 281
On-behalf mode attribute query 189
one-time password 650

authentication policy mapping
rule 664

configuration
overview 632

configuration overview 636
custom 651
delivery method 653
manage 665
overview 631
user information provider

plug-in 694
online

publications xvii
terminology xvii

OpenID 335
advertising server template page

types 353
authentication 313
authentication login form

custom macros 718
single sign-on 717

authentication modes 322
checkid_immediate request 364
consent to authenticate 354
consumer role 323
custom properties 715
endpoints 353
generic error page template 362
ID URLs 313
identity provider federations 318
indirect post template 363
login 325
message modes 313
parameters 337
performance improvement 350
planning overview 313
providers 322
realms supported 322
server protocols 344
session types 353
Simple Registration Extension 334
trust service chain 320
trusted site management 359
URLs 353
user attribute data, handling large

amounts 320
WebSEAL cookie management 337

OpenID federation
configuration 338, 349
dependencies verification 349
WebSEAL point of contact server

configuration 351
Websphere point of contact server

configuration 352
wizard 349

798 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

OpenID Provider Authentication Policy
Extension (PAPE)

description 337
identity provider

implementation 337
relying party implementation 337

Oracle alias service database
configuration 142

OTPDeliver
usage 652

OTPGenerate
usage 653

OTPGetDeliveryMethods
usage 653

OTPVerify
usage 655

P
page identifiers

general 724
SAML 1.x 725
SAML 2.0 726

page locale
creating 736
deleting 736

PAPE
See OpenID Provider Authentication

Policy Extension (PAPE)
parameters

Account Create cache 618
cache-size 430
default-mode 431
fed-id-param 431
Forgotten Password cache 618
mode-param 432
OpenID PAPE implementation 337
response files, User Self Care 621
Secret question failure cache 619

partner
adding 245
attribute query request, creating 197
certificates

exporting 64
providing to 63

configuration 247
guidance

providing to 216
requesting from 216

Liberty
adding 473
importing configuration 473

managed worksheet 293
message security 39
obtaining configuration from 218
WS-Federation 490, 492

password
Active directory 104
authentication

configuration 77
use in 42

Kerberos principal 100
keystores

changing for 50
Federated Identity Manager 44
WebSphere Application Serve 44

LTPA key 115, 122

password (continued)
truststores

Federated Identity Manage 44
WebSphere Application Server 44

password form WebSEAL, expired
modification 613

password management
expiration 542
management, WebSEALUser Self

Care 612
operations 542
User Self Care 610, 611
user-initiated change 542
WebSEAL redirection 614

path names, notation xx
PEM, support 55
performance improvement 350, 783
performance tuning

one-time password 699
persona index

description 299
specifying 299

physical page templates for multiple
identifiers 737

PKCS#12
encryption, updating 65, 286
support 55

plug-in
configuration

copying 127
creating 125
verifying 127

Dynamic endpoint access 331
LTPA key configuration 125
overview 117
processing 117

point of contact
token endpoint 377
Web Gateway Appliance 754
WebSEAL 754
WebSphere 377

point of contact server
configuration 84
custom

activating 741, 746
creating 742
creating like existing 744
one-time password 642

decryption key 287
definition of 83
login pages 352, 720
one-time password

activation 636
manage 677
response file 681

options 83, 84
identity provider 93
service provider 108, 119

service provider configuration 119
WebSEAL

configuration 215, 298, 351, 467,
488, 569

Identity URL 313
OAuth configuration 400

WebSphere
configuration 87, 216, 299, 402,

469, 489, 569

point of contact server (continued)
WebSphere (continued)

configuration, Open ID
federation 352

configuration, service
provider 111

Identity URL 313
policies

static connection 331
user agent 331

policy enforcement point 409
policy-trigger stanza entry 425
ports

SAML 1.x
artifact resolution 175
assertion consumer 176
intersite transfer 175
point of contact 174

SAML 2.0
artifact resolution 178
assertion consumer 178
logout 180
name identifier 180
point of contact 177
sign-on 179

SSL 87
prerequisites

federated single sign-on 27
software 503

private key 39
Private Personal Identifier

Generator 313
profiles

browser
artifact 166, 450
POST 166, 450

enhanced client 167
identity provider discovery 167
initial URLs description 173, 769
Liberty

federation termination
notification 451

identity provider 453
single logout 452
single sign-on 450

management of 543
management request, initial 543
name identifier management 167
SAML 1.x 166
SAML 2.0 167
single logout 167
update 543
Web single sign-on 167
WS-Federation single sign-on 480

properties
console custom 714
custom reference 704
decryption key 307
domain configuration 27
domain management service

endpoint 23, 554
identity mapping 309
Liberty communication

properties 454
LTPA tokens 716
OAuth 2.0 custom 709
OpenID custom 715

Index 799

properties (continued)
relying party federations 309
relying party partners for identity

provider federations 310
runtime for Tivoli Federated Identity

Manager 716
SAML 1.1

custom 709
SAML token module

configuration 491
signature validation key 309
single sign-on

federations 304
relying party 307

STS.showUSCChains 614
Tivoli Access Manager 23, 554
token 309, 310
transport security protocol

custom 715
WebSphere Application Server

global security 23, 554
WS-Federation

exchange with partner 491
single sign-on 480
token 481

protected resource OAuth 367
PROTOCOL parameter 768
protocols

SAML 1.x 166
SAML 2.0 167
support for 165

provider ID 430
provider plug-in

reference 685
proxy server for Tivoli Federated Identity

Manager 91
public key 39
publications

accessing online xvii
list of for this product xvii

Q
QName generation 716

R
realm URL 323
realm-name stanza entry oauth

stanza 432
registry attributes 546
relying party

configuration worksheet 291
description 278
discovery process 322
federations 280
identity mapping 288
Information Card 37, 278
login format example 278
OpenID PAPE implementation 337
point of contact server 278
properties 307
self entities 280
service provider 278
trust chain 288
user access 278

relying party (continued)
user, hiding identity of 313

replication domain
See domain, replication

requirements
browsers, Information Card 281
encryption 39
Information Card 287
Information Card alias service 287
validation 39
WebSphere Version 6.1 286

resource owner OAuth 367
resource server OAuth 367
resource-manager-provided-adi stanza

entry 427
responder service

SAML 1.x 175
SAML 2.0 177

response files
attribute query partner

parameters 198
definition 565
one-time password 669
User Self Care

configuration 565, 568
parameters 565, 621

response pages publishing updates 735
returned for server error template

page 365
risk-based access

configuration 6
runtime component

cluster configuration
dynamic cache replication 31
session manager replication 31

cluster, configuring into a 29
default server mapping 29
Web server, mapping to a 29
WebSphere deployment 23, 554

runtime properties
custom

creation 703
key service 710
SAML 2.0 712
sign-on 705
SOAP client 711
trust service 707

deleting 703
general 704
overview 703

S
Salesforce

First Steps plug-in 17
single sign-on configuration 17
test single sign-on 18

SAML
authentication login form custom

macros 718
endpoints 173
partner requirements 165
token module configuration 491

SAML 1.x
assertions 166
authentication login form for single

sign-on 717

SAML 1.x (continued)
binding 166
custom properties 709
description of 166
endpoints 174
local user mapping 183, 184
managed cards 272
page identifiers 725
profiles 166
protocol 166
URL for initiating SSO 767
worksheets

identity provider 201
identity provider partner 224
service provider 199
service provider partner 219

SAML 2.0
assertions 167
attribute authority command line

creation 193
attribute query

definition 189
partner response file

parameters 198
SAML 2-0 configuration 191

bindings 167
Consent to Federate Page

customization 737
custom properties for client 712
description of 167
federation as an attribute

authority 192, 197
federation creation 6
local user mapping 185, 187
page identifiers 726
partner response file 196
profiles 167
protocols 167
responses 737
token, mapping to 456
URL for initiating SSO 769, 772
worksheets

identity provider 209
identity provider partner 237
service provider 204
service provider partner 230

SAML 2.x
authentication login form for single

sign-on 717
SAML federations

description of 165
exporting properties 490
identity mapping rules 183
overview 165
WebSEAL point of contact server

configuration 215
SAML token

example mapping 484, 485
mapping from 485
mapping to 482

Secret Question
attribute 546
definition 546
implementation tip 546
profile management, showing 546
selection during enrollment 546
user identify validation 546

800 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

Secret Question Failure cache
description 619
parameters 619
performance tuning 617

Secure Socket Layer
See SSL

security
assertions, options for 39
client authentication 42
encryption overview 39
message-level 39
messages, options for 39
server authentication 40
signing overview 39
token module 455
transport-level 40
validation overview 39

security keyskeys
certificates 39
implementing 39
SAML standards 39

security token service 27
example of 27
prerequisite 27
request 14
two-legged OAuth

flow 372
self-signed certificates

creating 56
description 56

server certificate
associating with configuration 74
extracting 75
Liberty configuration 473
receiving 73, 80
SSL, use in enabling 72

servers
Active Directory

See Active Directory Server
authentication overview 40
IBM HTTP

See IBM HTTP Server
logging, disabling 783
OAuth 367
point of contact server 87, 215, 216,

299, 344, 351, 352, 402, 467, 469, 488,
489

policy 783
Tivoli Directory Integrator 152, 153
WebSEAL point of contact

configuration 569
WebSphere point of contact

configuration 569
service provider

adding
existing domain and federation 8

configuration overview 119
consumer 37
definition of 37, 449, 479
environments 108
Federation First Steps tool

configuration 9
Liberty communication

properties 454
Liberty register name identifier 451
options 84
relying party 37

service provider (continued)
role 278
SAML 1.x worksheet 199
SAML 2.0 worksheet 204
user registry configuration 113

service provider partner
administration console, creating

with 195
attribute authority federation 194
command-line interface creation 196
SAML 1.x worksheet 219
SAML 2.0 worksheet 230

servlet filter
custom properties 423
OAuth 1.0 configuration 404
OAuth 2.0 configuration 404

SHA256
parameters 777
support for 777

signature validation key properties 309
Simple Registration Extension,

OpenID 334
single logout

Liberty 452
profile 167
service

description 179
URL 774

URL 774
single sign-on

Google Apps 10
Microsoft Office 365 15
Microsoft Office 365 configuration

test 16
Salesforce 17
Salesforce configuration test 18
Workday 19
Workday configuration test 18

single sign-on configuration
one-time password

verification 637
single sign-on federation

authentication endoints 318
configuration

overview 33
tasks, overview of 35

definition 35
endpoints 318
login authentication form 717
standards 35
WS planning 479

single sign-on profiles
Liberty 450
WS-Federation 480

single sign-on properties
federation 304
relying party 307
WS-Federation 480

single sign-on service
description 179
initial URL (IDP) 772
URL 179

single sign-on URL
reference 767
SAML 1.x 767
SAML 2.0 772
SAML 2.0 (SP) 769

site management endpoints 318
SOAP

authentication 76, 80
backchannel 87, 469
binding 167
client custom properties 711
connection, federation configuration

update for 87
endpoint

authentication settings 379
identity provider 175
Liberty partner export

authentication information 469
SAML 2.0 177
service provider 176

single sign-on custom properties 705
software components 537
software prerequisites 503
solution diagram 537
SP_PROVIDER_ID 768
specifications OAuth 367
SPNEGO

Active Directory, configuring for 99
browser configuration 107
configuration 99
domain configuration 102
enablement 104
overview 94
TAI

attributes 105, 107
configuration 105

WebSphere configuration 102
Windows authentication 505

SSL
certificate

associating 74
creating request 72
deleting 75
extracting 75
receiving 73

client-side 161
client-side JSSE configuration 159
endpoint key identifier 304
IBM HTTP Server

cluster communication 533
deployment 87

Kerberos junctions deployment
configuration 533

mutually authenticated 155
overview 40
point of contact serve, renabling

on 72
port for SOAP backchannel 87
server certificates 43
setup overview 71
Tivoli Directory Integrator

Client configuration 158
Server configuration 155
trust module configuration 155

transport level security 40
user registry 98, 114, 121
WebSEAL cluster communication 533
WebSphere Application Server cluster

communication 533
stanzas

[azn-decision-info] 407
[aznapi-external-authzn-services] 407

Index 801

stanzas (continued)
azn-decision-info 426
aznapi-configuration 427
aznapi-external-authzn-services 425
oauth 428
special characters

[azn-decision-info] 407
[aznapi-external-authzn-

services] 407
state management OAuth 1.0 380
static connection policy 331
STS chains 539
STS universal user

contents 145
schema file 146

STS.showUSCChains property 614
STSUniversalUser 151
synchronizing clocks 248

T
TAI

attributes 105
custom attributes 107
custom properties 423
enabling 105
OAuth 1.0 configuration 403
OAuth 2.0 configuration 403

target application
configuring user registry 121
hosting on WebSphere 121
server options 119

template
federation customization 3
multiple-use physical page 737
OpenID indirect post 363
returned for server error 365

template files
content 730
creating 735
general 724
location 729
modifying 735
SAML 1.x 725
SAML 2.0 726

template pages
advertising an OpenID server 353
checkid_immediate request 364
consent to authenticate 354
consent to authorize 438, 442
custom

one-time password 656
denied consent 441
error 442, 446
examples

advertising an OpenID server 353
consent to authenticate 354, 364
denied consent 441
errors OAuth 1.0 442
errors OAuth 2.0 446
OpenID error 362
response OAuth 1.0 441
response OAuth 2.0 446
trusted clients management 436
trusted site management 359

generic page error 362

template pages (continued)
one-time password

delivery error 660
delivery selection 657
email 663
general errors 657
generating one-time password

error 658
get delivery error 659
login 656
resend button 649
SMS 663
STS error 661
validation error 662

response 441, 446
trusted clients management 436
trusted site management 359

terminology xvii
test-encryptionkey

using in test environment 56
test-validationkey

using in test environment 56
testkey

using in test environment 56
tfimcfg

Web Gateway Appliance 754
WebSEAL 754

tfimcfg command
LDAP properties 761
LDAP sample output 766
limitations 761

tfimcfg tool 409
tfimcfg utility 135
tfimcfg.jar

reference 753
tfimcfg.jar file location 569
time-based 650
Tivoli Access Manager

adapter configuration 558
environment properties 23, 554
tfimcfg command limitations 761

Tivoli Access Manager adapter
login failures, WebSphere Application

Server 562
WebSphere Application Server custom

registry configuration 561
WebSphere Application Server

Federated Repository
configuration 558

Tivoli Access Manager credential
example mapping 460, 483
mapping from 456, 482
mapping to 485

Tivoli Directory Integrator
client SSL configuration 158
client SSL configuration scenario 158
client-side SSL configuration 161
identity mapping 151
trust module configuration 155
trust module configuration

scenario 155
Tivoli Directory Integrator Server

configuring 152, 153
mutually authenticated SSL 155
solutions directory 153
trust module 152
version 153

Tivoli Directory Integrator Server
(continued)

worksheet 152
Tivoli Directory Server

configuration 557
Tivoli Federated Identity Manager

cluster high availability
verification 521

configuration 521
console

See management console
constrained delegation

configuration 507
domain configuration 554
HTTPS connections transport security

protocol 715
Information Card

relying party 278
website enablement 281

Kerberos constrained delegation
overview 501
WebSEAL junctions 502

OAuth EAS communication 385
password, expired modification 613
proxy server 91
QNamegeneration 716
relying party 278
relying party federations 280
runtime properties 716
tfimcfg command 761
trust chain verification 521
User Self Care configuration

overview 566
Web services security management

configuration 497
WebSEAL installation

verification 523
WebSphere module mappings

verification 521
WS-Federation planning 479

Tivoli technical training xviii
token

processing 148
properties 309, 310, 481

trace-component stanza entry
oauth stanza 435

training, Tivoli technical xviii
transport security

overview 40
protocol

custom properties 715
HTTPS connections 715

setting up 71
transports supported 353
troubleshooting

login failures, WebSphere Application
Server 562

trust association interceptor
custom properties 423
OAuth 1.0 configuration 403
OAuth 2.0 configuration 403

trust chains
configuration planning 513
consumer 327
description 327
enrollment 542
identity provider 320

802 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

trust chains (continued)
Kerberos 513
Kerberos constrained delegation

module 519
process 320
role in token processing 148
Tivoli Federated Identity

Manager 521
User ID existence check 541
User Self Care default 566

trust root URL 323
trust service

function 144
role in token processing 148

trusted clients management
overview 385
template pages 436

trusted site management template
parameters 359
what it does 359

truststores
description 43
planning 49

typeface conventions xix

U
unauthenticated access, User Self

care 611
unauthorized-rsp-file stanza entry

oauth stanza 433
UPN

overview 11
URLs

assertion consumer service
initiating 769

intersite transfer service sign-on 767
name identifier management service

initiating 775
OpenID 353
partner communication 173
profiles 173
realm 323
root 344
single logout service initiating 774
single sign-on service initiating

(IDP) 772
trust for federation 344
trust root 323
user access 173

URLs reuse, avoiding reuse, avoiding
example 313
Identity with a WebSEAL point of

contact 313
Identity with a WebSphere point of

contact 313
OpenID ID 313

user account deletion 610
user agent policy 331
user attribute data, handling large

amounts 320
user authentication

direct 37
indirect 37

user ID
existence check 541
forgot, what to do 544

user information provider plug-in
DB2 setup 696
reference 694
solidDB set up 697

user registry
administrative users

IP adding 97
SP, adding 113

application server setup 120
configuration 557
form authentication configuration 97
identity provider environment

setup 96
service provider

configuration 113
environment setup 112

SPNEGO configuration 99
SSL configuration 98, 114, 121
target application configuration 121
User Self Care deployment 553
users

identity provider, adding 97
service provider, adding 113
target application, adding 121

WebSphere Application Server
user registry configuration 114,

123
user registry for embedded 97

User Self Care
account deletion 610
caches 617, 618, 619
Captcha

demonstration 550, 567
example 550
operation 545

configuration overview 566
CSS 606
custom attribute

defining 594, 595
implementing 596
new attribute 597

customization 539
customizing 601
definition 539
deployment 553
federation

configuring 582
re-configuring 593

federation deletion 614, 617
federation modification 614
formatting

CSS 609
macros 608

HTML file 594
HTTP request types

responses 549
validation 549

HTTP requests URLs 547
JavaScript 595
macros 601
modifying checks

about 570
password 574
user ID 574

multiple secret question 577, 581
about 577, 584
applying changes 591

User Self Care (continued)
multiple secret question (continued)

mapping rule 589, 590
modifying 582, 588
response file 591
STS module 592

operations 537, 539
overview 537
password management

operations 542
redirection to WebSEAL 614
unauthenticated access 611
WebSEAL 610, 612

performance tuning 617
request-response exchange 539
response file

configuration 565
configuration with 568
parameters 565, 621

salting and hashing 577
federations 579
secret questions 582

secret question answers
migration 579

STS chain migration 577, 578
STS chains 539
technology overview 539
testing 609
trust chain

default showing 566
deletion 614

user ID existence check 541
user registry 553
user registry configuration 557
validation

HTML 571
mapping rule 572

WebSEAL integration 610
WsAdmin commands 596

Username ID Generator 313
users

application roles, mapping to 90
Tivoli Directory Integrator

mapping 151
users, adding to the user registry

identity provider 97
service provider 113
target application 121

UUID
overview 11

V
validation

description 39
requirements 39
security 39

variables, notation for xx

W
wasservice command example 507
WAYF page

description 732
template 732
URL example 732

Index 803

Web server
attribute mapping 118
configuration

procedure 119
server to host the application 124

configuration file
copying 127
creating 125

LTPA key configuration 125
options 119
plug-in, using with 117

Web Services Security Management
configuration 497
domain creation and deployment 27
prerequisite 27

Web single sign-on profile 167
WebSEAL

[tfim-cluster:cluster] stanza 524
access control lists (ACL) 529
client communication 531
cluster SSL communication 533
configuration 523

error messages 531
notes 531

cookie management 337, 531
installation verfication 523
junction communication 531
Kerberos

[tfimsso:<jct-id>] stanza 524
constrained delegation 502
junction configuration 529
junction configuration

planning 524
junction debugging 531
junctions 523

landing pages 614
login pages 352, 717, 718, 720
password form expired

modification 613
point of contact configuration 569
point of contact server

configuration 215, 351, 467, 488
identity URL 313
Information Card federation

configuration 298
point of contact token endpoint 377
tfimcfg command

limitations 761
sample output 766

User Self Care
integration 610
password management 612
password management,

redirection 614
WebSEAL OAuth EAS configuration

general information 407
manual steps 407
tfimcfg tool steps 409
versions supported 409

WebSEAL requests
standard authorization 407

website enablement, Information
Card 281

WebSphere Application Server
application roles 90
cache performance tuning 619

WebSphere Application Server (continued)
client-side SSL configuration with

JSSE 159
cluster

name 23, 554
replication enablement 31
runtime mapping 29
SSL communication 533
workload balancing 29

configuration confirmation 88
constrained delegation

configuration 507
embedded enablement 67
global security properties 23, 554
IBH HTTP Web server plug-in 29
identity provider environment 93
Information Card support 286
JSSE 159
login

failures 562
pages 717, 718, 720

module mappings verification 521
multiple language encoding 89
name 23, 554
point of contact

configuration 569
IBM HTTP Server 87
identity URL 313
server configuration 87, 111, 216,

299, 402, 489
token endpoint 377

point of contact server
configuration 352, 469

requirements Version 6.1 286
runtime configuration 29, 31
security settings 88
SPNEGO

authentication 102
configuration 99

Tivoli Access Manager adapter custom
registry 561

user registry
configuring 97, 114, 123

WebSphere Federated Repository
configuration 563
Tivoli Access Manager adapter

configuration 558
Where Are You From (WAYF) page

See WAYF page
wimconfig.xml settings example 562
Workday

First Steps plug-in 18
single sign-on 19
test single sign-on 19

workload balancing across cluster 29
worksheets

consumer configuration 344
domain configuration 26
identity provider configuration 289
Identity Provider Configuration 338
Kerberos

junction configuration 528
module instance 517
trust chain configuration 517

managed partner 293
message security 52

worksheets (continued)
OAuth 1.0

service provider 388
service provider partner 391

OAuth 2.0
service provider 393
service provider partner 396

relying party configuration 291
SAML 1.x

identity provider 201
identity provider partner 224
IDP 201
IDP partner 224
service provider 199
service provider partner 219
SP 199
SP partner 219

SAML 2.0
identity provider 209
identity provider partner 237
IDP 209
IDP partner 237
service provider 204
service provider partner 230
SP partner 230
SP worksheet 204

Tivoli Directory Integrator trust
module 152

WS-Federation
data 491
identity mapping 481
partner configuration

information 490
Passive Profile 479
properties exchanged with

partner 491
single sign-on

configuration 487
planning 479
profiles 480
properties 480

token
module configuration

properties 491
properties 481

X
X.509 39, 221, 747
XML signing and encryption 68
XRI

identifiers 344
proxies 344

XSL language 149

Y
Yadis protocol 344

804 IBM® Tivoli® Federated Identity Manager Version 6.2.2.7: Configuration Guide

����

Printed in USA

GC27-2719-02

	Contents
	Figures
	Tables
	About this publication
	Intended audience
	Access to publications and terminology
	Accessibility
	Tivoli technical training
	Support information
	Statement of Good Security Practices
	Conventions used in this book
	Typeface conventions
	Operating system-dependent variables and paths

	Part 1. Federation First Steps tool setup and use
	Chapter 1. Customizing federation templates
	Customizing a federation template
	Modifying the federation template in the fedfirststeps directory
	Modifying the federation template in a different directory

	Using the customized federation template

	Chapter 2. Federation First Steps tool
	Launching the Federation First Steps tool
	Identity provider side configuration
	Creating a generic SAML 2.0 federation with a new or existing domain
	Configuring risk-based access with the Federation First Steps tool
	Adding a service provider with the Federation First Steps tool

	Service provider side configuration
	First Steps plug-in for Google Apps
	Configuring Google Apps single sign-on settings
	Provisioning users to Google Apps
	Testing the single sign-on to Google Apps

	First Steps plug-in for Microsoft Office 365
	Overview on the UPN and immutableID strategy for Microsoft Office 365
	Configuring Microsoft Office 365 single sign-on settings
	Provisioning users to Microsoft Office 365
	Testing the single sign-on to Microsoft Office 365

	First Steps plug-in for Salesforce
	Configuring Salesforce single sign-on settings
	Testing the single sign-on to Salesforce

	First Steps plug-in for Workday
	Configuring Workday single sign-on settings
	Testing the single sign-on to Workday

	Part 2. Configuration of a domain
	Chapter 3. Domain configuration
	Worksheet for domain configuration
	Creating and deploying a new domain
	Mapping the runtime to a Web server
	Enabling replication in a WebSphere cluster

	Part 3. Configuration of a single sign-on federation
	Chapter 4. Overview of configuration tasks for federated single sign-on
	Chapter 5. Identity provider and service provider roles
	Chapter 6. Using keys and certificates to secure communications
	Message-level security
	Transport-level security
	Storage and management of keys and certificates
	Creation of keystores, keys, and certificates
	Key selection criteria

	Chapter 7. Configuring LTPA and its keys
	Chapter 8. Setting up message security
	Preparing the keystores
	Changing a keystore password
	Creating a keystore
	Importing a keystore

	Planning message-level security
	Obtaining your keys and certificates
	Using the default key as your signing and decryption key
	Creating self-signed certificates
	Requesting CA-signed certificates

	Adding your certificates to your keystore
	Importing a certificate
	Receiving a signed certificate from a CA

	Obtaining a certificate from your partner
	Importing certificates from your partner's metadata file
	Importing a certificate from your partner

	Providing certificates to your partner
	Exporting certificates to a metadata file
	Exporting a certificate

	Updating the cryptography policy
	Removing default keystores
	Enabling certificate revocation checking
	Enabling WebSphere for certificate revocation checking
	Enabling CRC on embedded WebSphere Application Server
	Enabling CRC on existing WebSphere Application Server

	Enabling the IbmPKIX trust manager for SSL connection
	Enabling the IbmPKIX trust manager for XML messages signing, validation, encryption, and decryption

	Chapter 9. Setting up transport security
	Enabling SSL on the WebSphere Application Server
	Creating a certificate request
	Receiving a signed certificate issued by a certificate authority
	Associating a certificate with your SSL configuration
	Deleting the default certificate
	Extracting a certificate to share with your partner

	Configuring client authentication requirements
	Configuring access with no authentication
	Configuring basic authentication access
	Configuring access with client certificate authentication

	Configuring your client certificates
	Retrieving the server certificate from your partner
	Obtaining your client certificate

	Chapter 10. Selecting a point of contact server
	Chapter 11. Configuring WebSphere as point of contact server
	Using IBM HTTP Server with WebSphere as point of contact
	Confirming WebSphere Application Server security properties
	Enabling multiple language encoding on WebSphere Application Server
	Mapping application roles to users
	Configuring IHS for client worksheet
	Setting up an outbound HTTP proxy server
	WebSphere as point of contact for identity providers
	Configuring form-based authentication
	Selecting and installing the user registry
	Configuring the user registry
	Configuring user registry for embeddedWebSphere
	Configuring an SSL connection to the user registry
	Customizing the login form

	Configuring SPNEGO authentication
	Configuring Active Directory for use with SPNEGO
	Configuring the Windows domain and user logins
	Configuring WebSphere for use with SPNEGO
	Enabling and configuring SPNEGO authentication
	Configuring the Trust Association Interceptor
	Configuring browsers for use with SPNEGO

	WebSphere point of contact server for a service provider
	Configuring a WebSphere Application Server point of contact server (service provider)
	Configuring the LTPA cookie
	Defining attributes for the LTPA token
	Selecting and installing a user registry
	Configuring the user registry
	Configuring WebSphere to use the user registry
	Exporting LTPA key from the point of contact server

	Chapter 12. Configuring a Web server plug-in
	Configuring service provider components
	Configuring your Web server
	Selecting and installing a user registry
	Configuring the user registry for the target application
	Configuring an SSL connection to the user registry
	Configuring a separate WebSphere Application Server to host applications
	Importing the LTPA key to the WebSphere Application Server
	Disabling the automatic generation of an LTPA key
	Configuring WebSphere to use the user registry

	Configuring an IIS, IHS, or Apache server to host the application
	Copying the LTPA key to the Web server
	Creating the plug-in configuration file
	Copying the plug-in configuration to the server
	Verifying plug-in configuration on Apache or IBM HTTP Server

	Configuring the target application
	Configuring the login for your application
	Instructing users to enable cookies

	Chapter 13. Setting up the alias service database
	Configuring a JDBC alias service database
	Modifying alias service settings

	Configuring an LDAP alias service database
	Using tfimcfg to configure LDAP for the alias service
	Creating an LDAP suffix
	Planning configuration of the alias service properties
	Modifying alias service settings for LDAP

	Configuring Oracle alias service database

	Chapter 14. Planning the mapping of user identities
	Identity mapping overview
	Use of XSL language for creating mapping rules files
	Tivoli Directory Integrator identity mapping module
	Configuring the Tivoli Directory Integrator trust module
	Configuring the Tivoli Directory Integrator Server
	Configuring SSL for Tivoli Directory Integrator trust module
	Configuring SSL for the Tivoli Directory Integrator Server
	Configuring SSL for the Tivoli Directory Integrator client
	Configuring client-side SSL using WebSphere JSSE
	Configuring client-side SSL using Java system properties

	Creating a custom mapping module
	Adding a custom mapping module
	Adding an instance of a custom mapping module

	Chapter 15. SAML federations overview
	SAML 1.x
	SAML 2.0

	Chapter 16. SAML endpoints and URLs
	SAML 1.x endpoints and URLs
	SAML 2.0 endpoints and URLs

	Chapter 17. Sample identity mapping rules for SAML federations
	Mapping a local user identity to a SAML 1.x token
	Mapping a SAML 1.x token to a local user identity
	Mapping a local identity to a SAML 2.0 token using an alias
	Mapping a SAML 2.0 token to a local identity

	Chapter 18. SAML 2.0 Attribute query
	Configuring attribute query
	Creating a federation as an attribute authority
	Using the administration console to create a federation as an attribute authority
	Using the command line interface to create a federation as an attribute authority

	Creating an identity provider partner or service provider partner for an attribute authority federation
	Using the administration console to create a service provider or identity provider partner
	Using a command-line interface to create a service provider or identity provider partner

	Creating an attribute query request partner
	SAML 2.0 attribute query federation response file parameters
	SAML 2.0 attribute query partner response file parameters

	Chapter 19. Establishing a SAML federation
	Gathering your federation configuration information
	SAML 1.x service provider worksheet
	SAML 1.x identity provider worksheet
	SAML 2.0 service provider worksheet
	SAML 2.0 identity provider worksheet

	Creating your role in the federation
	Configuring a WebSEAL point of contact server for the SAML federation
	Configuring WebSphere as a point of contact server
	Providing guidance to your partner
	Obtaining federation configuration data from your partner
	SAML 1.x service provider partner worksheet
	SAML 1.x identity provider partner worksheet
	SAML 2.0 service provider partner worksheet
	SAML 2.0 identity provider partner worksheet

	Adding your partner
	Providing federation properties to your partner
	Exporting federation properties
	Viewing federation properties

	Synchronizing system clocks in the federation

	Chapter 20. Configuring a SAML federation using CLI
	Configuring a SAML 1.x Identity Provider federation using CLI
	Configuring a SAML 1.x Service Provider federation using CLI
	Importing a SAML 1.x Service Provider into the SAML identity provider federation
	Importing a SAML 1.x Identity Provider into the SAML Service Provider federation
	Configuring a SAML 2.0 Identity Provider federation using CLI
	Configuring a SAML 2.0 service provider federation using CLI
	Importing a SAML 2.0 Service Provider into the SAML Identity Provider federation
	Importing a SAML 2.0 Identity Provider into the SAML service provider federation

	Chapter 21. Planning an Information Card federation
	Overview of the Information Card identity provider
	Issuing of managed cards
	Identity provider federations
	Information Card claims
	Information Card error pages

	Overview of the Information Card relying party
	User access to a relying party
	Relying party federations

	Website enablement for Information Card
	Configuration requirements for Information Card
	Requirement for WebSphere Version 6.1
	Updating the cryptography policy for Information Card
	Information Card requirement for alias service
	Decryption key from point of contact server
	Information Card time synchronization requirements

	Identity mapping for Information Card
	Identity provider configuration worksheet
	Relying party configuration worksheet
	Managed partner worksheet

	Chapter 22. Configuring an Information Card federation
	Verifying Information Card dependencies
	Configuring an Infocard federation
	Configuring WebSEAL as a point of contact server for an Information Card federation
	Configuring WebSphere as a point of contact server
	Specifying a persona index

	Chapter 23. Information Card reference
	Replacement macros in the infocard_template XML file
	Information Card claims
	Federation properties for identity providers
	Federation properties for relying party
	Properties for identity provider partners for relying party federations
	Properties for relying party partners for identity provider federations

	Chapter 24. OpenID planning overview
	OpenID ID URLs
	Identity provider federations
	Identity provider trust chains
	Relying Party Discovery
	Authentication modes
	Consumer federations
	OpenID login
	Consumer trust chains
	User agent policy
	OpenID Extensions
	OpenID Simple Registration Extension
	OpenID Attribute Exchange Extension
	OpenID Provider Authentication Policy Extension

	Identity provider configuration worksheet
	Consumer configuration worksheet

	Chapter 25. Configuring OpenID
	Verifying OpenID dependencies
	Configuring an OpenID federation
	Configuring performance improvement for OpenID
	Configuring a WebSEAL point of contact server for an Open ID federation
	Configuring WebSphere as a point of contact server
	Configuring login pages

	Chapter 26. OpenID reference
	Supported algorithms and transports
	Template page for advertising an OpenID server
	Template page for consent to authenticate
	Template HTML page for trusted site management
	Template page for OpenID error
	Template page for OpenID 2.0 indirect post
	Template page returned for checkid_immediate
	Template page returned for server error

	Chapter 27. OAuth planning overview
	OAuth Concepts
	OAuth endpoints
	OAuth 1.0 workflow
	About two-legged OAuth
	Security Token Service interface for two-legged OAuth flow

	OAuth 2.0 workflow
	Client authentication considerations at the OAuth 2.0 token endpoint
	Configuring the SOAP endpoint authentication settings

	Client registration
	State management
	Trusted clients management
	OAuth EAS overview
	OAuth data
	Error responses

	Federation and partner configuration information
	OAuth 1.0 service provider worksheet
	OAuth 1.0 service provider partner worksheet
	OAuth 2.0 service provider worksheet
	OAuth 2.0 service provider partner worksheet

	Chapter 28. Configuring an OAuth federation
	Configuring an OAuth service provider federation
	Enabling two-legged OAuth validation
	Configuring a WebSEAL point of contact server for the OAuth federation
	Configuring WebSphere as a point of contact server
	Adding a partner to an OAuth federation
	Configuring the WebSphere OAuth Trust Association Interceptor
	Configuring the WebSphere OAuth Servlet Filter
	WebSEAL OAuth EAS configuration
	Configuring the WebSEAL OAuth EAS manually
	Configuring the WebSEAL OAuth EAS with the tfimcfg tool

	Chapter 29. OAuth reference
	OAuth STS Interface for Authorization Enforcement Points
	OAuth Trust Association Interceptor and Servlet Filter custom properties
	OAuth EAS stanza reference
	[aznapi-external-authzn-services] stanza
	policy-trigger

	[azn-decision-info] stanza
	azn-decision-info

	[aznapi-configuration] stanza
	resource-manager-provided-adi

	[oauth-eas] stanza
	Sample EAS configuration data
	cache-size
	default-fed-id
	fed-id-param
	default-mode
	mode-param
	realm-name
	bad-request-rsp-file
	unauthorized-rsp-file
	bad-gateway-rsp-file
	trace-component
	apply-tam-native-policy
	cluster-name

	OAuth 1.0 and OAuth 2.0 template pages for trusted clients management
	OAuth 1.0 template page for consent to authorize
	OAuth 1.0 template page for response
	OAuth 1.0 template page for denied consent
	OAuth 1.0 template page for errors
	OAuth 2.0 template page for consent to authorize
	OAuth 2.0 template page for response
	OAuth 2.0 template page for errors

	Chapter 30. Planning a Liberty federation
	Identity provider and service provider roles
	Liberty single sign-on profiles
	Liberty register name identifier
	Liberty federation termination notification
	Liberty single logout
	Liberty identity provider introduction
	Liberty message security
	Liberty communication properties
	Liberty token modules
	Liberty identity mapping
	Mapping a Tivoli Access Manager credential to a Liberty or SAML 2 token
	Mapping a Liberty or SAML 2 token to a Tivoli Access Manager credential

	Liberty alias service

	Chapter 31. Configuring a Liberty federation
	Creating a Liberty identity provider
	Creating a Liberty service provider
	Configuring a WebSEAL point of contact server for the Liberty federation
	Configuring WebSphere as a point of contact server
	Exporting Liberty federation properties
	Exporting SOAP endpoint authentication information to a Liberty federation partner
	Obtaining metadata from a Liberty federation partner
	Importing SOAP endpoint authentication information from a Liberty federation partner
	Adding a partner to a Liberty federation
	Configuring the alias service for Liberty
	Creating an LDAP suffix for the alias service
	Configuring LDAP server settings

	Chapter 32. Planning a WS-Federation single sign-on federation
	Identity provider and service provider roles
	WS-Federation single sign-on profiles
	WS-Federation single sign-on properties
	WS-Federation token properties
	WS-Federation identity mapping
	Mapping a Tivoli Access Manager credential to a SAML 1 token
	Mapping a SAML 1 token to a Tivoli Access Manager credential

	Chapter 33. Configuring a WS-Federation single sign-on federation
	Creating a WS-Federation single sign-on federation
	Configuring WebSEAL as the point of contact server
	Configuring WebSphere as a point of contact server
	Exporting WS-Federation properties
	Obtaining configuration information from a WS-Federation partner
	WS-Federation properties to exchange with your partner
	Adding a partner to your WS-Federation single sign-on federation

	Part 4. Web services security management configuration
	Chapter 34. Web services security management configuration
	Part 5. Configuring security token service
	Chapter 35. Kerberos constrained delegation overview
	Overview of Kerberos constrained delegation with WebSEAL junctions
	Deployment overview

	Chapter 36. Enabling integrated Windows authentication
	Chapter 37. Configuring Active Directory and WebSphere for constrained delegation
	Chapter 38. Tivoli Federated Identity Manager configuration for a Kerberos junction scenario
	Planning configuration of the trust chain
	Worksheet for trust chain configuration
	Creating a Kerberos constrained delegation module instance
	Creating a trust chain for Kerberos constrained delegation
	Tivoli Federated Identity Manager configuration notes

	Chapter 39. WebSEAL configuration
	Verifying a WebSEAL installation
	Planning WebSEAL Kerberos junction configuration
	Kerberos junction configuration worksheet
	Configuring a WebSEAL Kerberos junction
	WebSEAL configuration notes

	Chapter 40. SSL configuration task for a Kerberos junctions deployment
	Part 6. Configuring User Self Care
	Chapter 41. Understanding User Self Care
	Effectively customizing User Self Care
	Understanding User Self Care operations
	User ID existence check operation
	Enrollment operation
	Password management operations
	Profile management operations
	Forgotten user ID operation
	Forgotten Password operation
	Account deletion operation
	Captcha operation
	Registry attributes operations
	Secret question operation

	User Self Care URLs
	User Self Care HTTP requests
	User Self Care HTTP responses

	Captcha demonstration

	Chapter 42. Deploying User Self Care
	Configuring a Tivoli Federated Identity Manager domain
	Domain configuration
	Configuring a user registry
	Configuring a Tivoli Directory Server
	Configuring a Tivoli Access Manager adapter for WebSphere Federated Repository
	Configuring a Tivoli Access Manager adapter
	Configuring the adapter as a WebSphere Application Server custom registry
	Troubleshooting WebSphere Application Server login failures

	Configuring an Active Directory server

	Configuring a response file
	Configuring User Self Care
	Showing trust chains
	Configuring the Captcha demonstration
	Using a response file to configure User Self Care
	Configuring a point of contact server
	Configuring WebSphere Application Server as a point of contact server
	Configuring WebSEAL as a point of contact server

	Modifying checks on user ID and password
	Overview of the HTML validation function
	Overview of the mapping file validation function
	Modifying the validation for user name and password

	Enabling multiple secret question
	Secret Questions in User Self Care
	Updating configuration settings for existing User Self Care federations
	Configuring new User Self Care federations
	Enabling salting and hashing on secret question values
	Modifying the number of secret questions used in User Self Care

	Custom attribute definition
	Modifying the HTML file to define a custom attribute
	Modifying the JavaScript mapping file
	Running wsadmin commands to implement the custom attribute

	Creating an attribute for a new custom field in User Self Care
	User Self Care session information storage
	Customizing the User Self Care HTML pages
	User Self Care macros
	About User Self Care CSS
	Formatting User Self Care HTMLs by using macros
	Formatting User Self Care HTMLs by using Cascading Style Sheets
	Testing the changes to the HTML files

	Integrating User Self Care with WebSEAL
	Permitting unauthenticated access to the User Self Care change password form
	Modifying the user self care WebSEAL change password form
	Modifying a WebSEAL expired password form
	Supporting redirection back to WebSEAL

	Modifying a User Self Care federation
	Unconfiguring User Self Care

	Chapter 43. Tuning User Self Care
	Account create cache
	Forgotten password cache
	Secret question failure cache
	Notes about tuning caches

	Chapter 44. Response file parameters
	Part 7. Configuring one-time password
	Chapter 45. One-time password
	One-time password overview
	One-time password configuration overview

	Chapter 46. One-time password deployment
	Configuring a one-time password federation
	Activating the one-time password point of contact
	Configuring the one-time password in a federated single sign-on flow
	Verifying the one-time password federated single sign-on configuration
	Configuring one-time password extended authentication with WebSEAL as point of contact
	Verifying the one-time password extended authentication configuration
	Creating your own one-time password point of contact
	HTTP request claims for authentication policy callback

	One-time password resend support
	Configuring an unauthenticated one-time password flow
	Migrating one-time password files into an existing environment
	Customizing one-time password
	Customizing one-time password mapping rules
	OTPDeliver mapping rule
	OTPGenerate mapping rule
	OTPGetDeliveryMethods mapping rule
	OTPVerify mapping rule

	Customizing one-time password template pages
	One-time password template page for login
	One-time password template page for delivery selection
	One-time password template page for general errors
	One-time password template page for generating one-time password error
	One-time password template page for get delivery error
	One-time password template page for delivery error
	One-time password template page for security trust service operation error
	One-time password template page for one-time password validation error
	One-time password template page for Short Message Service (SMS)
	One-time password template page for email

	Authentication policy mapping rule customization
	Creating user-defined macros
	manageItfimOneTimePassword
	One-time password response file
	manageItfimPointOfContact
	Point of contact response file
	One-time password provider plug-in reference
	One-time password delivery plug-in reference
	One-time password user information provider plug-in reference
	Setting up DB2 for one-time password user information storage
	Setting up solidDB for one-time password user information storage

	Chapter 47. Tuning the one-time password
	Part 8. Customization
	Chapter 48. Customizing runtime properties
	Creating a custom property
	Deleting a custom property
	Custom properties reference
	General properties
	Custom properties for single sign-on protocol service
	Custom properties for the trust service
	Custom properties for OAuth 2.0
	Custom properties for SAML 1.0
	Custom properties for SAML 1.1
	Custom properties for the key service
	Custom properties for a SOAP client
	Custom properties for SAML 2.0
	Custom properties for the console
	Custom property for OpenID
	Custom property for transport security protocol
	Custom properties for LTPA tokens

	Chapter 49. Customizing an authentication login form for single sign-on
	Supported macros for customizing an authentication login form
	Configuring a point of contact server to support customization of login pages
	Pass SAML request element to the point of contact server

	Chapter 50. Customizing single sign-on event pages
	Generation of event pages
	Page identifiers and template files
	Template page for the WAYF page
	Modifying or creating the template files
	Publishing updates
	Creating a page locale
	Deleting a page locale
	Customizing multiple-use physical page templates
	Customizing the Consent to Federate Page for SAML 2.0

	Chapter 51. Developing a custom point of contact server
	Publishing callback plug-ins
	Creating a new point of contact server
	Creating a point of contact server like an existing server
	Activating a point of contact server

	Chapter 52. Customizing signature X.509 certificate settings
	Chapter 53. Running WebSphere Application Server with Java 2
	Part 9. Appendixes
	Appendix A. tfimcfg reference
	Configuring WebSEAL or Web Gateway Appliance as point of contact with the tfimcfg tool
	Running the tfimcfg tool
	Configuring the SOAP traffic with the tfimcfg tool
	Setting up a soapusers group and certificate

	tfimcfg limitation with Sun Java 1.4.2.4
	tfimcfg LDAP properties reference
	Default ldapconfig.properties file
	Sample output from tfimcfg configuration of LDAP

	Appendix B. URLs for initiating SAML single sign-on actions
	SAML 1.x initial URL
	SAML 2.0 profile initial URLs
	Assertion consumer service initial URL (service provider)
	Single sign-on service initial URL (identity provider)
	Single logout service initial URL
	Name identifier management service initial URL

	Appendix C. Using the command-line interface to configure Tivoli Federated Identity Manager SHA256 support
	Appendix D. Disabling logging to enhance performance
	Notices
	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

