
IBM Developer Kit and Runtime
Environment, Java Technology Edition,
Version 6 and higher

iKeyman User's Guide
for version 8.0
SC32-1700-03
Note

Before using this information and the product it supports, read the information in
Appendix C. A PKCS#11 Example.

This edition applies to iKeyman version 8.0 and to all subsequent releases and
modifications until otherwise indicated in new editions.

Copyright International Business Machines Corporation 2000, 2012.
US Government Users Restricted Rights -- Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.

Contents
IBM Developer Kit and Runtime Environment, Java Technology Edition, Version 6 and
higher...1
iKeyman User's Guide...1
Preface...3

Contacting software support..3
Conventions used in this book...4

Typeface conventions..4
Operating system differences..4

Using the iKeyman Program...4
Supported Key database types...5

CMS...5
Other file based types..6

PKCS#11...6
Key Generation..6
Modes of Operation...7
Secondary key databases...7
GUI Display...7

Setup..7
java.security file...7
Supported Distinguished Name (DN) attributes..9

Policy Files..9
Settings file..10
System properties...15

Starting iKeyman...15
Commands...16

GUI Commands...16
CLI Commands..17
Key Database Commands..17

Create a Key Database...18
Change the Password of an existing Key Database...19
Convert a Key Database to another format (Save As)...20
Open a Key Database...21
Delete a Key Database...21
Display the password expiry date of a CMS Key Database......................................22
Stash the password of an existing Key Database...22
List the supported Key Database types..23

Certificate command..23
Add a certificate...23
Populate a key store...24
Create a self-signed certificate...25
Delete a certificate...26
Display details of a certificate...27
Export a certificate...28
Extract a certificate..28
Import a certificate...29
List Certificates..30
List details of default certificate..30
List Signer Certificates..31
Modify a Certificate...31
Receive a Certificate..32
Set Default Certificate...33
Sign a Certificate Request...33
Rename a Certificate..34
Validate a Certificate...35

Certificate Request Commands...35
Create Certificate Request...35
Delete Certificate Request...36
Display details of a Certificate Request...37
Extract Certificate Request..37
List all Certificate Requests...38
Recreate Certificate Requests..38

Secret (Symmetric) Key Commands...39
Create Secret Key..39
Delete Secret Key..40
Display Secret Key details...40
Export Secret Keys..41

Import Secret Keys..41
List all Secret Keys..42
Rename Secret Key..42

Other commands..43
Add provider..43
Version Help..44
Help..44

Options...44
Error Codes..53
Accessibility..56
Appendix A. Differences from iKeyman 7..57
Appendix B. A Simple Example...59

The requirement...59
Considerations for the administrator...60
Step 1: Obtain a company wide Intermediate Certificate..60
Step 2: Sign all employee certificates using the ACME Intermediate..........................61
Step 3. Create the Web Server certificate..62
So do we meet the requirements?..63

Appendix C. A PKCS#11 Example...64
The requirement...65
Considerations for the administrator...65
Step 1: Configure jre's pkcs11 provider...65
Step 2: iKeyman usage..66

Appendix D. Keystore provider sample Java code..66
Appendix E. Notices..69

Trademarks..72
Index..73

Preface
This manual is intended for network or system security administrators who want to use
the iKeyman program to modify key databases.

This manual assumes the reader is familiar with general key database concepts.

Contacting software support

Before contacting IBM Software Support with a problem, refer to the IBM Software
Support site by clicking the support link at the following Web site:
http://www.ibm.com/software/support/.

If you need additional help, contact software support by using the methods described in
the IBM Software Support Guide at the following Web site:

http://www.ibm.com/software/support/

http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

 Registration and eligibility requirements for receiving support
 Telephone numbers, depending on the country in which you are located
 A list of information you should gather before contacting customer support

Conventions used in this book

This reference uses several conventions for special terms and actions and for operating
system-dependent commands and paths.

Typeface conventions

The following typeface conventions are used in this reference:

Bold
Lowercase commands or mixed case commands that are difficult to distinguish
from surrounding text, keywords, parameters, options, names of Java™ classes,
and objects are in bold.

Italic
Variables, titles of publications, and special words or phrases that are emphasized
are in italic.

Monospace
Code examples, command lines, screen output, file and directory names that are
difficult to distinguish from surrounding text, system messages, text that the user
must type, and values for arguments or command options are in monospace.

Operating system differences

This book uses the UNIX™ convention for specifying environment variables and for
directory notation. When using the Windows™ command line, replace $variable with
%variable% for environment variables and replace each forward slash (/) with a
backslash (\) in directory paths. If you are using the bash shell on a Windows system, you
can use the UNIX conventions.

Using the iKeyman Program
iKeyman is a certificate and key management application. It can be used to manage
symmetric and asymmetric keys, digital certificates and certificate requests in various
different types of key databases. It can also be used to manage the key databases
themselves. It is advised that users make backups of keystores prior to modification as
lost keys may need to be regenerated and certificates re-issued.

http://techsupport.services.ibm.com/guides/handbook.html

The application can be run in two modes, Graphic User Interface (GUI) and Command
Line (CLI). Both modes support essentially the same command set, which is discussed in
Commands.

iKeyman uses several encoding rules which are specified by aspects of certain RFCs and
standards. While it is not strictly necessary for users to have a full understanding of these
items in order to use this utility, those wishing to learn more should examine the
following resources:

Basic Encoding Rules (BER)
BER encoding is defined in the specification ITU-T Rec. X.690 (2002).

Distinguished Encoding Rules (DER)
DER encoding is defined in the specification ITU-T Rec. X.690 (2002).

PKCS#10
RFC 2986: PKCS #10: Certification Request Syntax Specification, Version 1.7,
November 2000

X.509
RFC 3280: Internet X.509 Public Key Infrastructure - Certificate and Certificate
Revocation List (CRL), obsoletes RFC 2459, April 2002.

PKCS#11
Cryptographic Token Interface Standard

PKCS#12
PKCS 12 v1.0: Personal Information Exchange Syntax, RSA Laboratories, June
24, 1999

PKCS#7

 Cryptographic Message Syntax Standard (RFC 2315),
 Used to sign and/or encrypt messages under a PKI,
 Used also for certificate dissemination (for instance as a response to a

PKCS#10 message).

Supported Key database types

iKeyman currently supports the following key database types that are implemented as
Java KeyStore Providers:

CMS

This is an IBM proprietary key database format used by IBM's GSKit library for SSL
communications. It consists of the following two files:

Key Database File
This file contains the certificates and private/public key pairs for personal
certificates. It has a .kdb extension.

Certificate Request File

This file contains the certificate requests and associated public/private key pairs.
It has the same name as the key database file with an extension of .rdb.

Other file based types

Each of the following types shares a common certificate request file format. The
certificate request database consists of an index with a .qer file extension which lists the
label of each certificate request appended by a random hex string.

For each certificate request there are also two files; one with a .bdr extension which
contains the encrypted private key of the certificate request, and one with a .crq extension
which contains the certificate request itself.

JKS
Java Key Store format - The main file has a .jks extension.

JCEKS
Java Cryptographic Extension Key Store format - A more secure extension of the
JKS format. The main file has a .jck extension.

PKCS#12
A file format used to transfer private keys and associated public key certificates.
The main file has a .p12 extension.

PKCS#12S2
This is a second version of PKCS12 type keystore. It can be read by the keytool
program in a Oracle/Sun JVM. Note that PKCS12S2 uses stronger protection
algorithms and should therefore be preferred over the PKCS12 type for key
transport.
PKCS12S2 is a cross platform keystore based on the RSA PKCS12 Personal
Information Exchange Syntax Standard. Note that PKCS12S2 does not support
the addition of trust anchors, but only private keys and their associated
certificates.

Limitation: JKS and PKCS12 support multi-password keystores, i.e. the keystore
password may be different from the private/secret key passwords. These are supported by
Java's keytool and OpenSSL but IKeyMan will generate errors for keys where the
password is different from the keystore password. To workaround you must use the
native tool to make the passwords the same. Note that where key passwords must be
separate you can use separate keystores.

PKCS#11

iKeyman is able to interface with key databases stored on smart cards via the PKCS#11
API. These key databases are basically the same as the file-based types above, however
some functions are not supported, including exporting of private keys and changing the
password of the key database.

Key Generation

All key generation occurs on the PKCS#11 device. Private keys are created as sensitive
and not extractable, which means that once the key has been created on the device, it
cannot be extracted and the key material cannot be accessed. Secret (symmetric) keys are
created as sensitive but extractable, which means the key material itself cannot be
accessed, however the keys can be exported by wrapping them with an asymmetric key.

Modes of Operation

iKeyman uses the IBM PKCS11Impl provider to access PKCS#11 key databases. This
provider can be used in two modes:

config
For this mode a configuration file needs to be created, which specifies the
information for the PKCS#11 device being accessed. Each configuration file also
contains a token label which is used by iKeyman to reference the particular
configuration. This is the preferred mode of operation for PKCS#11 devices.

direct
Key databases are accessed by specifying the module used to manage the
PKCS#11 device (.dll or .so file) and a slot number. For details on enabling this
mode, see Setup. This mode is included for backward compatibility with iKeyman
version 7.

Secondary key databases

Some tokens have limited capacity, making them unable to hold signer certificates
required to receive or import personal certificates. If a token has such a restriction, the
user may choose to open a secondary key database to hold the signer certificates. The
secondary database can be any file-based type.

GUI Display

When working with a PKCS#11 key database using the GUI, all entries on the token are
preceded by the slot-number/token label used to open the database. This makes it easy to
distinguish between entries stored on the key database, and those of the secondary key
database, if one is used.

Setup

In order to run the iKeyman application no specialized setup is required. By default some
features and functionality may however not be enabled. These are discussed below.

java.security file

The java.security file is located in the $JAVA_HOME\jre\lib\security folder of
the Java installation. This file contains (amongst other information) the installed Java

security providers; each provider is listed on a line starting with security.provider
followed by an index.

The IBMJCE provider MUST be included in the java.security provider list even if
iKeyman shall only be used to process CMS keystores. Because it uses crypto algorithms
from the IBMJCE. IBMJCEFIPS might also be present, but it is not sufficient on its own.
If the intention is for iKeyman to use FIPS algorithms in preference where available, then
IBMJCEFIPS should be listed before IBMJCE.

The following table details the entry required for each supported key database type. To
add a Provider, create a new line at the end of the list using the next index followed by
the provider class. For example, to add the CMS provider you may need to add a line like
the following:

security.provider.10=com.ibm.security.cmskeystore.CMSProvider

It takes an argument to specify whether it creates a V3 CMS keystore or
a V4 CMS keystore by default. The default is V4. V3 format may be
required in some cases for backwards compatibility. V4 format is
preferred for security reasons.

For example, this sets the keystore creation default to V3.
security.provider.10=com.ibm.security.cmskeystore.CMSProvider V3

Table 1. java.security file parameters

Key database type Security Provider

JKS com.ibm.crypto.provider.IBMJCE

JCEKS com.ibm.crypto.provider.IBMJCE

PKCS#12
PKCS#12S2

com.ibm.crypto.provider.IBMJCE

CMS com.ibm.security.cmskeystore.CMSProvider

MS-CAPI sun.security.mscapi.SunMSCAPI

PKCS#11 - config mode
com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl
followed by the location of a configuration file (see note
below)

PKCS#11 - direct more com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl

Note:
The PKCS#11 configuration file contains details used to interface with a PKCS#11 key
database. The details consist of key-value pairs listed on separate rows of the file. Consult
the PKCS11Impl Provider documentation (http://www-
01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.
60.doc/security-component/pkcs11implDocs/hardwareconfig.html) for more information.
At a minimum, name, library and slot should be specified.

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/pkcs11implDocs/hardwareconfig.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/pkcs11implDocs/hardwareconfig.html
http://www-01.ibm.com/support/knowledgecenter/SSYKE2_6.0.0/com.ibm.java.security.component.60.doc/security-component/pkcs11implDocs/hardwareconfig.html

Supported Distinguished Name (DN) attributes

Certificates include a subject name and issuer name, as defined by
X.509, to contain various name components in a structured and formatted
way. The following table lists all GSKit, and certificate management
tools, supported DN attributes that may be included when specifying a
DN for a new certificate or request. Note, that although supported,
MAIL and EMAIL should be avoided and subject alternative name email
address (SAN) should be used instead.

Attribute Name Description OID
EMAIL EmailAddress 1.2.840.113549.1.9.1
UID Userid 0.9.2342.19200300.100.1.1
CN CommonName 2.5.4.3
T Title 2.5.4.12
OU * OrganizationUnitName 2.5.4.11
DC * DomainComponent 0.9.2342.19200300.100.1.25
O OrganizationName 2.5.4.10
STREET Street 2.5.4.9
L LocalityName 2.5.4.7
ST StateOrProvinceName 2.5.4.8
POSTALCODE (PC) PostalCode 2.5.4.17
C CountryName 2.5.4.6
DNQ DNQualifier 2.5.4.46
GIVENNAME GivenName 2.5.4.42
INITIALS Initials 2.5.4.43
GENERATION Generation 2.5.4.44
* attribute allows multiple values to be specified

Policy Files

By default the JRE may be using restricted policy files. These files are located in the
directory $JAVA_HOME\jre\lib\security (local_policy.jar and
US_export_policy.jar).

Some cryptographic algorithms and key sizes may not be available if the restricted policy
files are being used. If an operation requires the unrestricted files, the error message will
indicate this.

To update the policy files:

1. Download the Unrestricted JCE Policy files for 1.4.1 (1.3.1, 1.5 and later use the
same Policy files) from:

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?
source=jcesdk

The download includes the files, local_policy.jar and
US_export_policy.jar

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

2. Copy local_policy.jar to $JAVA_HOME/jre/lib/ext
3. Copy US_export_policy.jar to $JAVA_HOME/jre/lib/ext

Settings file

iKeyman supports the use of a settings file to customize some functions of the program.
The settings file can be specified on the command line invoking the application using the
-Dkeyman.settings system property. The file name must end in ".properties" to be used
by ikeyman. The supported settings are shown in the following table.

Table 2. iKeyman settings

Setting Description
Default
Value

Accepted
Values

DEFAULT_CMS_PASSWORD
_REQUIRED

If set to false, new
CMS key databases
are created with a
default password.

true
true or
false

DEFAULT_SUBJECT
_ALTERNATIVE_NAME _SUPPORT

Whether SAN
support is enabled.
This affects the
certificate creation
and display dialogs.

false
true or
false

RESOURCE_WARNING _ENABLED

If set to true, displays
a message when the
resource bundles for
the default locale
can't be found.

false
true or
false

DEFAULT_FILE_LOCATION
The default file
location used by the
file chooser dialog.

.
any
directory

DEFAULT_CMS_FILE _LOCATION
The default file
location used for
CMS key databases.

.
any
directory

DEFAULT_KEYDB_LOCATION _CMS
Same as
DEFAULT_CMS_
FILE_LOCATION

.
any
directory

DEFAULT_JKS_FILE_LOCATION
The default file
location used for JKS
key databases.

.
any
directory

DEFAULT_PKCS12_FILE_ LOCATION

The default file
location used for
PKCS12 key
databases.

.
any
directory

Table 2. iKeyman settings

Setting Description
Default
Value

Accepted
Values

DEFAULT_JCEKS_FILE_ LOCATION

The default file
location used for
JCEKS key
databases.

.
any
directory

DEFAULT_CMS_FILE_NAME
The default file name
used for CMS key
databases.

key

any file
name
without
extension

DEFAULT_KEYDB_NAME_CMS
Same as
DEFAULT_CMS_
FILE_NAME

key

any file
name
without
extension

DEFAULT_JKS_FILE_NAME
The default file name
used for JKS key
databases.

key

any file
name
without
extension

DEFAULT_PKCS12_FILE_NAME
The default file name
used for PKCS12 key
databases.

key

any file
name
without
extension

DEFAULT_JCEKS_FILE_NAME
The default file name
used for JCEKS key
databases.

key

any file
name
without
extension

DEFAULT_CMS_FILE_NAME _EXT
The default file
extension used for
CMS key databases.

.kdb
any
extension

DEFAULT_KEYDB_NAME_EXT _CMS
Same as
DEFAULT_CMS_FI
LE _NAME_EXT

.kdb
any
extension

DEFAULT_JKS_FILE_NAME_EXT
The default file
extension used for
JKS key databases.

.jks
any
extension

DEFAULT_PKCS12_FILE_NAME _EXT

The default file
extension used for
PKCS12 key
databases.

.p12
any
extension

DEFAULT_JCEKS_FILE_NAME _EXT The default file
extension used for
JCEKS key

.jck any
extension

Table 2. iKeyman settings

Setting Description
Default
Value

Accepted
Values

databases.

USE_LAST_OPENED_LOCATION _CMS

Whether the last file
location for CMS key
databases will be
remembered.

true
true or
false

USE_LAST_OPENED_LOCATION _JKS

Whether the last file
location for JKS key
databases will be
remembered.

true
true or
false

USE_LAST_OPENED_LOCATION
_PKCS12

Whether the last file
location for PKCS12
key databases will be
remembered.

true
true or
false

USE_LAST_OPENED_LOCATION
_JCEKS

Whether the last file
location for JCEKS
key databases will be
remembered.

true
true or
false

DEFAULT_CERTREQ_NAME
The default file name
used for certificate
requests.

certreq.ar
m

any valid
file name

DEFAULT_CERTIFICATE_ NAME_ARM
The default file name
used for certificates in
base64 format.

cert.arm
any valid
file name

DEFAULT_CERTIFICATE_ NAME_DER
The default file name
used for certificates in
binary format.

cert.der
any valid
file name

DEFAULT_CRYPTOGRAPHIC
_MODULE

The default
cryptographic module
file name.

null

any valid
file name
and
location

DEFAULT_CRYPTOGRAPHIC
_TOKEN_SECONDARY _KEYDB

The default secondary
database used for
cryptographic
modules.

null

any valid
file name
and
location

DEFAULT_PASSWORD_
STASHING_STATE

The default value of
the password stashing
check box.

false
true or
false

DEFAULT_PASSWORD_
V1STASHING_STATE

The default value of
the password stashing

false true or
false

Table 2. iKeyman settings

Setting Description
Default
Value

Accepted
Values

in old format check
box.

DEFAULT_SSCERT_
BASIC_CONSTRAINTS

The default value for
the basic constraints
extension.

false
true or
false

DEFAULT_FIPS_MODE _PROCESSING

If set to true, forces
the use of the FIPS
JCE Provider. If set to
false, uses whichever
JCE Provider comes
first in the
java.security file.

false
true or
false

VIEW_HIDDEN_FILES
Whether hidden files
are displayed in the
file chooser.

false
true or
false

DEFAULT_CMS_PASSWORD
A default password
used for CMS
keystore creation.

null
any valid
password

DEFAULT_CERTIFICATE _KEYSIZE
The default value for
certificate keysize.

1024
512 or
1024 or
2048

DEFAULT_CERTIFICATE_LIST
_OPTION

The default list option
for the -cert -list
command.

all
all or
personal or
CA

DEFAULT_CERTIFICATE _DEFAULT
The default value for
the certificate default
status.

false
true or
false

DEFAULT_CERTIFICATE_TRUST
The default value for
the certificate trust
status.

true
true or
false

DEFAULT_CERTIFICATE_EXPIRE
The default certificate
expiry time (in days).

365 0 to 7300

DEFAULT_CERTIFICATE _FORMAT
The default certificate
input/output format.

ascii
ascii or
binary

DEFAULT_CERTIFICATE_COUNTRY
The default country
code for the subject
name “C=” item.

Blank or
selected
based on
locale.

E.g. “AU”,
“DE” etc.

DEFAULT_ENGLISH_ If set to true, error false true or

Table 2. iKeyman settings

Setting Description
Default
Value

Accepted
Values

ERROR_MESSAGE

messages will be
displayed in English,
no matter what the
locale.

false

SECRET_KEY_FUNCTION _ENABLED
Whether the secret
key functionality is
enabled.

true
true or
false

RENAME_CERT_FUNCTION
_ENABLED

Whether the
certificate rename
functionality is
enabled.

true
true or
false

SIGNATURE_ALGORITHM
_FUNCTION_ENABLED

Whether the signature
algorithm
specification function
is enabled.

true
true or
false

NO_DEFAULT_CERTS_
FUNCTION_ENABLED

Whether new key
databases will be
populated by default.

true
true or
false

DEFAULT_FILE_CREATE
_PERMISSION1

The default
permissions string
(format: rwxrwxrwx)
for newly created
files.

Let OS
default
decide.

format:
rwxrwxrwx

ADD_CMS_SERVICE_PROVIDER_ENA
BLED

Adds the "IBM CMS
provider" to the next
position available
provided the CMS
provider is not
already installed.

false
true or
false

1 Note for DEFAULT_FILE_CREATE_PERMISSION:

1. It only affects all newly created file (including keystore DB file, keystore stash
file, cert request db file, cert file, and cert request file) permissions which are
created by the current command. It doesn't affect existing files.

2. If this parameter is not set or set to an empty string "", then by default the OS
decides the permissions of all new files.

3. If Java version is 6 or lower, then the OS decides the permissions of all new files.
4. If this parameter is set to a value other than an empty string and Java version is 7

or higher, then:

o On Linux, the permissions of all new files are set according to the
PERMISSION string. iKeycmd/iKeyman just passes those permissions
through to the OS. It works in the same way as the "chmod" command.

o On Windows, if the PERMISSION string starts with "rw", then the current
user (the owner) permission is set as full permissions (read and write) and
all other users or groups have no access to the new files. No other file
permission setting is supported for Windows. If the PERMISSION string
does not start with "rw", it will be ignored as an error (logged to the trace)
and let OS decide the permissions.

System properties

When launching iKeyman it is possible to specify a number of Java system properties.
These properties are specified as name-value pairs prepended by -D.

For example, to run ikeyman with tracing then run:

ikeyman -Dkeyman.debug=true

Then in the directory where ikeyman was run will be the file debugTrace.log.N (N is 0, 1
…)

Every property supported by the settings file is also supported as a system property,

for example, we can run iKeyman as follows:

ikeyman - DADD_CMS_SERVICE_PROVIDER_ENABLED =true

as well as the following is supported:

keyman.settings=<settings file location>

Specifies the name and location of the settings file to use. The settings file name
must end in ".properties".

keyman.debug=true
Turns on debug mode, which displays the stack trace of exceptions when run in
CLI mode. Also enables trace logging.

keyman.logging=true
Enables trace logging.

Starting iKeyman

You can start iKeyman in either GUI or Command Line mode.

GUI

To run iKeyman in GUI mode, execute the following command:

$JAVA_HOME\jre\bin\ikeyman.exe [properties]

where [properties] can be zero or more system properties.

Command Line
To run iKeyman in CLI mode, execute the following command:
$JAVA_HOME\jre\bin\ikeycmd.exe [properties] [options]

where [properties] can be zero or more system properties, and [options] are the
command line parameters.

Commands
This chapter outlines the commands that are supported by iKeyman. It contains the
following sections:

 GUI Commands
 CLI Commands
 Key Database Commands
 Certificate command
 Certificate Request Commands
 Secret (Symmetric) Key Commands
 Other commands
 Options

Each command is described in a separate section, including available modes (GUI/CLI)
for each command and how to invoke it in the supported mode(s).

GUI Commands

All GUI commands are invoked by pressing a button or selecting a menu item.
Screenshots outlining the dialogs a user should expect to see are shown for each
command.

Most commands require the user to press a button in the Key Database Content Panel.
This panel is used to display the various different types of entries in a key database. The
different entry types can be displayed by selecting a value in the dropdown box at the top
of the panel. Selecting a different value in the list also changes the buttons displayed
along the right side of the panel.

The values in the dropdown list are:

Personal Certificates

This displays the entries in the key database that have a certificate and associated
private-public key pair. The buttons shown down the right side are referred to as
the Personal Certificates Panel in the command descriptions.

Signer Certificates
This displays the entries in the key database that have a certificate and associated
public key. The buttons shown down the right side are referred to as the Signer
Certificates Panel in the command descriptions.

Personal Certificate Requests
This displays the entries in the key database that have a certificate request and
associated private/public key pair. The buttons shown down the right side are
referred to as the Personal Certificate Requests Panel in the command
descriptions.

Secret Keys
This displays the entries in the key database that have a secret (symmetric) key.
The buttons shown down the right side are referred to as the Secret Keys Panel in
the command descriptions.

CLI Commands

CLI commands are invoked using the following basic structure:

ikeycmd object action options

where:

 options are the options associated with the specified object and task;
 action is the specific action to be taken on the object;
 object is one of the following:

-keydb
Actions acted on a key database.
-cert
Actions acted on a certificate stored within an identified key database.
-certreq
Actions acted on a certificate request stored within an identified key database.
-seckey
Actions acted on a secret (symmetric) key stored within an identified key
database.
-version
Displays version information for iKeyman.
-help
Displays help for the CLI commands.

Key Database Commands

The key database commands are associated with the -keydb object in CLI mode. The
following key database actions are supported:

 Create a Key Database
 Change the Password of an existing Key Database
 Convert a Key Database to another format (Save As)
 Open a Key Database
 Delete a Key Database
 Display the password expiry date of a CMS Key Database
 Stash the password of an existing Key Database
 List the supported Key Database types

The sections below describe how to use each of the key database commands, and what
options are available for each command.

Create a Key Database

Note:
Not available for PKCS#11.

The create command creates a new key database. During the creation process several files
may be created. If the new key database is of the CMS type, the database itself (by
default with a .kdb extension) as well as a certificate request store (by default with a .rdb
extension) is created. For other database types only the database itself is created; the
certificate request store is created when needed.

The key database is used to store all personal certificates and private keys, signer
certificates, and symmetric keys (if these are supported by the key database type). The
certificate request file stores all certificate requests and associated private keys.

Once the key database has been created it may be automatically populated with a number
of predefined trusted certificate authority (CA) certificates. By default this does not
occur, however if the setting NO_DEFAULT_CERTS_FUNCTION_ENABLED is set to
false the predefined certificates will be added to every new key database. The list of CA
certificates that are added can be determined using the list signer certificates command.
Any of these CA certificates can be removed from the key database using the delete
certificate command in this manual.

Creating a new key database in the GUI closes any currently open key database and
opens the newly created database.

Attention: It is the user's responsibility to manage and maintain the certificates in all key
databases. The user must monitor certificates for expiry and should only include those
CA certificates that they will need. They must also ensure that all predefined certificates
in iKeyman match those supplied by their respective issuer in order to ensure that they
have not been tampered with. By default no CA certificates are added to the key database

and adding these becomes a manual process in order to improve the security of the
application, as it reminds the user to only add the CA certificates that are required.
COMMAND LINE

The command is invoked as follows:

ikeycmd -keydb -create [options]

The permitted options for this command are:

 -db (required)
 -pw (optional)
 -type (optional)
 -expire (optional)
 -stash (optional)
 -populate (optional)
 -label (optional, one or some of entrust,verisign,thawte)
 -v1stash (optional)

For details of these options, see Options.

GUI

The GUI command can be invoked in either of the following ways:

 From the menu, select Key Database File then New.
 From the toolbar, click the new file icon.

A dialog prompts you to enter the file name, location and type of the new key
database that will be created. A further dialog gathers password data. For CMS
key databases, you can specify a password expiration time (deprecated: see
Appendix A. Differences from iKeyman 7) and whether or not to stash the
password to a file.

Change the Password of an existing Key Database

Note:
Not available for PKCS#11.

The change password command allows the user to change the password associated with
the specified key database. When changing the password for a key database, all key
records containing encrypted private key information have the private key data re-
encrypted. The new password is used as input to create the new encryption key used
during the encryption process.

Command Line

The command is invoked as follows:
ikeycmd -keydb -changepw [options]

The permitted options for this command are:

 -db (required)
 -new_pw (required)
 -pw or -stashed(optional)
 -type (optional)
 -expire (optional)
 -stash (optional)
 -v1stash (optional)

GUI
The command can be invoked from the menu by selecting Key Database File
then Change Password. Invoking the command displays a dialog for either CMS
key databases or other file-based key database types. The information gathered by
the forms is used to modify the password of the currently open key database.

Convert a Key Database to another format (Save As)

Note:
Not available for PKCS#11.

The convert (Save As) command creates a new key database containing the same entries
as the source database. The command allows for the new database to be of a different
type and use a different password. If the target type doesn't support certain entries in the
source database, these are ignored. The source database is not altered or deleted.

Command Line
The command is invoked as follows:
ikeycmd -keydb -convert [options]

The permitted options for this command are:

 -db (required)
 -new_format (required)
 -pw or -stashed (optional)
 -new_pw (optional)
 -target (optional)
 -old_format or -type (optional)
 -expire (optional)
 -stash (optional)
 -v1stash (optional)

GUI
The command can be invoked from the menu by selecting Key Database File
then Save As, or by selecting the Save icon from the toolbar.

Invoking the command displays the same sequence of dialogs as the create new
key database command. Rather than creating a blank key database of the
specified type, the new key database will be a copy of the currently open
database. Once the command has completed, the newly created key database is
opened.

Open a Key Database

The open command is a GUI specific operation which opens a particular key database
and allows the user to perform operations on it. As long as the key database remains open
it does not need to be manually saved when it is modified, as this happens automatically.
The iKeyman GUI can only open one key database at a time (except for a secondary
database for a PKCS11 token).

Command Line
Not applicable - the CLI runs one command at a time and therefore does not keep
key databases open.

GUI
The command can be invoked from the menu by selecting Key Database File
then Open, or by clicking the Open icon on the toolbar. A dialog prompts you to
enter the data required to open a key database. A further dialog prompts for the
password that will be used to open the key database. Additional dialogs gather
details for PKCS11Direct or PKCS11Config key databases, if selected.

Delete a Key Database

Note:
Not available for PKCS#11.

The delete key database command deletes the identified key database. When identifying
the key database you simply need to specify the file name of the key database. The
request database files are removed automatically during the process. If a stash file was
created it is not removed.

If a password is required for this key database, it is prompted for if not provided, and is
used to ensure that the user is actually allowed to delete the key database. If the password
is not correct the key database is not deleted.

Command Line
The command is invoked as follows:
ikeycmd -keydb -delete [options]

The permitted options for this command are:

 -db (required)
 -pw or -stashed (optional)
 -type (optional)

GUI
Not applicable - key databases cannot be deleted in GUI mode.

Display the password expiry date of a CMS Key Database

Notes:

1. Only applicable to CMS key databases.
2. The database password expiry function has been deprecated.

Command Line
The command is invoked as follows:
ikeycmd -keydb -expiry [options]

The permitted options for this command are:

 -db (required)
 -pw (optional)
 -type (optional)

GUI
The command can be invoked from the menu by selecting Key Database File
then Display Password Expiry. If there is no password expiry date set for the
key database, the following message is displayed:
The password doesn't expire.

If the key database does have a password expiry date, a dialog window indicates
the date and time when the password will expire.

Stash the password of an existing Key Database

Note:
Only applicable to CMS and PKCS12 key databases.

The stash password command takes an existing key databases password and stashes it to
a file. The reason that a user would want to stash a password for a key database is to
allow the password to be recovered from the file when automatic login is required. The
output of the command is a single file with the name of the key database with a ".sth"
extension.

Command Line
The command is invoked as follows:
ikeycmd -keydb -stashpw [options]

The permitted options for this command are:

 -db (required)
 -pw (optional)
 -type (optional)
 -v1stash (optional)

GUI
The command can be invoked from the menu by selecting Key Database File
then Stash Password. If the command succeeds, a confirmation message
indicates the name of the stash file that was created.

List the supported Key Database types

This command lists the database types that are currently supported by iKeyman. This
only includes file-based types (not PKCS11, MS-CAPI).

Command Line
The command is invoked as follows:
ikeycmd -keydb -list

This command takes no additional options.
GUI

Not applicable - there is no command to display the supported types in GUI
mode. The supported types can be seen in the Key database type field of the
open dialog (see Open a Key Database).

Certificate command

The certificate commands are associated with the -cert object in CLI mode. The
following certificate actions are supported:

 Add a certificate
 Populate a key store
 Create a self-signed certificate
 Delete a certificate
 Display details of a certificate
 Export a certificate
 Extract a certificate
 Import a certificate
 List Certificates
 List details of default certificate
 List Signer Certificates
 Modify a Certificate
 Receive a Certificate
 Set Default Certificate
 Sign a Certificate Request
 Rename a Certificate

The following sections go into details on how to use each of the certificate commands
and what options are available for each command.

Add a certificate

The add certificate command stores a CA certificate in the identified key database. The
CA certificate is received as a file with the data encoded in one of the following formats:

 Base64
 DER
 PKCS#7
 S/MIME

The encoding type does not need to be supplied, as it will be automatically determined.

Command Line
The command is invoked as follows:
 ikeycmd -cert -add [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required)
 -file (required)
 -label (optional)
 -pw or -stashed (optional)
 -type (optional)
 -format (optional)
 -trust (optional)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
To add a certificate:

1. Click the Add button on the Signer Certificates panel.
2. Enter the file name and location of the certificate to open and click OK.
3. A dialog displays the contents of the selected certificate source (either a

file or a key database) and allows you to choose which ones to add. The
list contains the labels of all certificates in the source. To select multiple
entries, hold down the SHIFT (for a range of entries) or CTRL key (for
multiple separated entries) while clicking the desired entries.

4. A further dialog displays the certificates selected. If required, you can
rename labels by selecting a certificate, entering a new label and clicking
Apply. Click OK to complete the import process.

Populate a key store

The populate command allows the user to add predefined CA certificates (the same ones
as the key database create command may add) to a key database. This command is only
available if NO_DEFAULT_CERTS_FUNCTION_ENABLED is set to true.

Command Line
The command is invoked as follows:
 ikeycmd -cert -populate [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (optional, one or some of entrust,verisign,thawte)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
The command can be invoked by clicking the Populate button in the Signer
Certificates Panel. A dialog allows the user to choose certificates from a list of
predefined CA certificates to be added to the currently open key database.

Create a self-signed certificate

A self-signed certificate provides a certificate that can be used for testing while waiting
for an officially signed certificate to be returned from the CA. Both a private and public
key are created during this process.

The create self-signed certificate command creates a self-signed X509 certificate in the
identified key database. A self-signed certificate has the same issuer name as its subject
name.

Command Line
The command is invoked as follows:
 ikeycmd -cert -create [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -dn (optional)
 -type (optional if -db present)
 -expire (optional: default is 365)
 -size (optional: default is 1024)
 -x509version (optional: default is 3)
 -default_cert (optional)
 -ca (optional: default is false)
 -eku (optional)
 -ku (optional)

 -sig_alg (optional: default is SHA1WithRSA)
 -san_dnsname (optional)
 -san_emailaddr (optional)
 -san_ipaddr (optional)

GUI
The command can be invoked in any of the following ways:

 by selecting Create then New Self-Signed Certificate from the menu, or
 clicking the New Self-Signed button on the toolbar, or
 clicking the New Self-Signed button on the Personal Certificates Panel.

A dialog allows the user to specify the certificate and key data for a new self-
signed certificate.

Delete a certificate

The delete command simply removes the certificate with the identified label. Once the
delete operation is complete, there is no way of recovering the certificate unless you add
the certificate back into the key database.

Command Line
The command is invoked as follows:
 ikeycmd -cert -delete [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
The command can be invoked in any of the following ways (the buttons
mentioned are only enabled if an entry in the list is selected):

 For personal certificates, click the Delete button on the Personal
Certificates Panel.

 For signer certificates, click the Delete button on the Signer Certificates
Panel.

A dialog confirms that you wish to delete the selected entry from the key
database. Click Yes to delete it.

Display details of a certificate

The display certificate details command displays the different details associated with the
identified certificate. The details displayed include (but not limited to):

 The label of the certificate.
 The size of the key associated with the certificate.
 The X509 version that the certificate was created.
 The serial number for the certificate.
 The issuer and subject distinguished names.
 The certificate's validity period.
 The fingerprint of the certificate (Both SHA1 and SHA256 fingerprints are

displayed)
 The signature of the algorithm used during creation of the certificate.
 Certificate extensions.,
 An indication of the certificate's trust status.

If more details for the certificate are required use the -showOID option in the CLI, and
the View Details button in the GUI. These options display a more detailed listing of the
certificate details.

Command Line
The command is invoked as follows:
 ikeycmd -cert -details [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -showOID (optional)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
The command can be invoked in one of the following ways (the buttons
mentioned are only enabled if an entry in the list is selected):

 For personal certificates, click the View/Edit button in the Personal
Certificates Panel.

 For signer certificates, click the View/Edit button in the Signer
Certificates Panel.

 For either certificate type, double click the certificate in the list.

Invoking the command displays a dialog showing details of the certificate. Click
View Details for additional information.

Export a certificate

The export command exports a single certificate specified by its label from one key
database to another. During this process no key generation occurs. On successful
completion the identified certificate will be in both the source and destination key
databases.

Command Line
The command is invoked as follows:
 ikeycmd -cert -export [options]

The permitted options for this command are:

 -db (required)
 -label (required)
 -target (required)
 -pw or -stashed (optional)
 -target_pw or -target_stashed (optional)
 -target_type (optional)
 -type (optional)
 -encryption (optional)

GUI
To invoke the command from the menu, click the Export/Import button in the
Personal Certificates Panel (the Export/Import button replaces the Import
button when an entry in the list is selected).

Extract a certificate

The extract certificate command extracts the certificate data from the key database and
places it into a file. If the file does not exist it will be created. If it does exist, it will be
overwritten. The data will be saved in either Base-64 or binary DER encoding.

Command Line
The command is invoked as follows:
 ikeycmd -cert -extract [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -target (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

 -format (optional: default is ascii)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
The command can be invoked in one of the following ways:

 For personal certificates, click the Extract Certificate button in the
Personal Certificates Panel.

 For signer certificates, click the Extract button in the Signer Certificates
Panel.

Note:
these buttons are only enabled if an entry in the list is selected.
A dialog allows you to choose the data type, file name and location of the
certificate.

Import a certificate

The import command imports certificates from one key database to another. The target
key database may be either a file-based key database, or a PKCS#11 one. During this
process no key generation occurs. On successful completion the identified certificates
will be in both the source and destination key databases.

Command Line
The command is invoked as follows:
 ikeycmd -cert -import [options]

The permitted options for this command are:

 -db or -file (required)
 -target or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -pw or -stashed (optional)
 -pw (second password) (optional if -crypto present)
 -target_pw or -target_stashed (optional if -target present)
 -type (optional if -db present)
 -label (optional)
 -target_type (optional if -target present)
 -new_label (optional if -label present)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI

The command can be invoked by clicking the Import button in the Personal
Certificates Panel. Select the key file type, file name and location to import a
certificate from another key database.
Note:
the Import button appears as Import/Export if an entry in the list has been
selected. From the Import/Export dialog, you can select the Import Key radio
button and then enter details as described above.

List Certificates

The list certificate command lists certificates stored within the identified key database.
By default all certificates are displayed, however the <list filter> parameter can
be used to display a subset of the certificates. The expiry parameter can also be used to
filter the certificates being displayed.

Command Line
The command is invoked as follows:
 ikeycmd -cert -list [options]

The permitted options for this command are:

 <list filter> (optional: default is all)
 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -expiry (optional)
 -label (optional)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
Not applicable - refer to Open a Key Database. When a key database is opened,
all items are shown in the various lists. See GUI Commands for details of viewing
the various lists.

List details of default certificate

Note:
Only applicable to CMS.

This command selects the default certificate (if there is one) and displays the same details
as the display details command. If there is no default certificate, a message indicating
this is displayed.

Command Line

The command is invoked as follows:
 ikeycmd -cert -getdefault [options]

The permitted options for this command are:

 -db (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
Not applicable - the default certificate in a CMS key database (if there is one) is
indicated by an asterisk (*) next to the alias in the Personal Certificates list. For
details of viewing the default certificate, see Display details of a certificate.

List Signer Certificates

The list signers command displays a list of the CA certificates that are included in
iKeyman and can be added with the populate command. The certificates are displayed in
a tree format, grouped by their issuer.

Command Line
The command is invoked as follows:
 ikeycmd -cert -listsigners

This command takes no additional options.
GUI

Not applicable - refer to Populate a key store. The available signers are listed in
the selection dialog.

Modify a Certificate

Note:
Only applicable to CMS key databases.

The modify certificate command allows a CA certificate's trust status to be enabled or
disabled. When a CA certificate's trust status is enabled, then that CA certificate is
permitted to be involved in a certificate chain validation. If the CA certificate's trust
status is disabled then it cannot be used to validate any certificates.

For example, if certificate "ABC" is signed by the CA certificate "VeriSign CA" and
"VeriSign CA" is not marked as trusted, the validation of "ABC" will fail.

You are able to have any number of trusted CA certificates in the single key database.

Command Line
The command is invoked as follows:
 ikeycmd -cert -modify [options]

The permitted options for this command are:

 -db (required)
 -label (required)
 -pw or -stashed (optional)
 -type (optional)
 -trust (optional: default value is determined by settings in the settings file)

GUI

This command is invoked via the certificate details dialog of a signer certificate in
a CMS key database (see Display details of a certificate). For CMS key databases,
the details dialog for signer certificates has an additional option: to modify the
trust of a signer certificate, select the Set the certificate as a trusted root
checkbox and click OK.

Receive a Certificate

The receive certificate command stores a certificate received from a CA that was
requested to sign a certificate request. The certificate being received can be in any of the
following formats:

 Base64
 DER
 PKCS#7
 S/MIME

The type does not need to be specified, as it will be automatically determined. Specifying
a type has no effect and is only included for backward compatibility.

While receiving the certificate, the certificate is matched to its corresponding certificate
request. This certificate request is removed from the key database as it is no longer
needed.

If the certificate request is required after receiving the certificate, you will need to use the
recreate certificate request command that can be found in chapter four of this manual.

This command can also be used in a certificate renewal operation. Rather than replacing
the corresponding certificate request, there will be a certificate which is replaced.

Command Line
The command is invoked as follows:
 ikeycmd -cert -receive [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -file (required)

 -pw or -stashed (optional)
 -type (optional if -db present)
 -format (required)
 -default_cert (optional)

GUI
The command can be invoked by clicking the Receive button on the Personal
Certificates Panel.

Set Default Certificate

Note:
Only applicable to CMS key databases.

The set default certificate command sets a certificate to be used as the default certificate
for the identified key database. During this command the current default certificate, if
there is one, has its default setting removed. The new certificate is then set as the default
certificate. There can only ever be one default certificate in a key database.

Command Line
The command is invoked as follows:
 ikeycmd -cert -setdefault [options]

The permitted options for this command are:

 -db (required)
 -label (required)
 -pw (optional)
 -type (optional)

GUI
This command is invoked via the certificate details dialog of a personal certificate
in a CMS key database (see Display details of a certificate). For CMS key
databases, the details dialog for personal certificates has an additional option: to
modify the default status of a signer certificate, select the Set the certificate as
the default checkbox and click OK.

Sign a Certificate Request

The sign certificate command allows the signing of a certificate request by an existing
certificate stored within a key database. The command accepts a certificate request in its
file format and a label of a certificate stored within the key database that contains the
private key to be used during the signing process.

Command Line
The command is invoked as follows:
 ikeycmd -cert -sign [options]

The permitted options for this command are:

 -db (required)
 -label (required)
 -file (required)
 -pw or -stashed (optional)
 -type (optional)
 -expire (optional: default is 365)
 -format (optional: default is ascii)
 -target (optional: default is cert.arm)
 -eku (optional)
 -ku (optional)
 -sernum (optional)

GUI
This function is not available in the GUI.

Rename a Certificate

The rename command renames a certificate entry in the key database and leaves it
otherwise unchanged. The new label must not already exist in the key database.

Command Line
The command is invoked as follows:
 ikeycmd -cert -rename [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -label (required)
 -new_label (required)

GUI
The command can be invoked in one of the following ways:

 For personal certificates, click the Rename button in the Personal
Certificates Panel.

 For signer certificates, click the Rename button in the Signer Certificates
Panel.

Note:
these buttons are only enabled if an entry in the list is selected.
A dialog prompts you to enter the new label.

Validate a Certificate

The validate command validates the certificate path or certificate chain. Note: SSL
validation of the certificate may give different results depending on environment. e.g.
access to CRL distribution points.

Command Line
The command is invoked as follows:
 ikeycmd -cert -validate [options]

The permitted options for this command are:

 -db (required)
 -pw or -stashed (optional)
 -label (required)

GUI
The command can be invoked by clicking the Validate button on the Personal
Certificates Panel.

Certificate Request Commands

The certificate request commands are associated with the -certreq object in CLI mode.
The following certificate request actions are supported:

 Create Certificate Request
 Delete Certificate Request
 Display details of a Certificate Request
 Extract Certificate Request
 List all Certificate Requests
 Recreate Certificate Requests

The following sections detail how to use each of the certificate request commands, and
what options are available for each command.

Create Certificate Request

The create certificate request command creates a new private-public key pair using the
specified algorithm and a PKCS10 certificate request in the specified key database. The
certificate request is stored in the certificate request database of the specified key
database and is also extracted to a file that can be used to send the certificate request to a
CA for signing. This file doesn't contain any private key material; this is only stored in
the certificate request database.

Command Line
The command is invoked as follows:

ikeycmd -certreq -create [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -file (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -dn (optional)
 -size (optional: default is 1024)
 -eku (optional)
 -ku (optional)
 -sig_alg (optional: default is SHA1WithRSA)
 -san_dnsname (optional)
 -san_emailaddr (optional)
 -san_ipaddr (optional)

GUI
The command can be invoked in one of the following ways:

 From the menu. select Create then New Certificate Request.
 From the toolbar, click the New Certificate Request icon.
 In the Personal Certificate Requests panel, click the New button.

A dialog prompts you to specify the certificate request and key data for the new
certificate request.

Delete Certificate Request

The delete certificate request removes the certificate request from the identified key
database. This means that the entry in the certificate request database associated with the
certificate request is deleted. The key/certificate request cannot be recovered after this
operation.

Command Line
The command is invoked as follows:
ikeycmd -certreq -delete [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI

The command can be invoked by clicking the Delete button on the Personal
Certificate Request panel.
Note:
this button is only enabled when a certificate request is selected in the list.

Display details of a Certificate Request

The list certificate request details command lists the identified certificate requests details.
These details include:

 The label of the certificate request.
 The size of the key associated with the certificate request.
 The subject distinguished name.
 The fingerprint of the certificate.
 The signature of the algorithm used during creation of the certificate.

For a more detailed listing of the certificate requests details use the -showOID option in
the command (for the CLI) or press the View Details button (for the GUI).

Command Line
The command is invoked as follows:
ikeycmd -certreq -details [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -showOID (optional)

GUI
The command can be invoked by clicking the View button in the Personal
Certificate Request Panel, or by double-clicking the certificate request entry in the
list.
Note:
the View button is only enabled when a certificate request is selected in the list.
A dialog displays details of the certificate request.

Extract Certificate Request

The extract certificate request command extracts an existing certificate request stored in
the specified key database to the identified file in base64 or binary format. The certificate
request will still exist within the key database so you are able to extract it as many times
as needed. The file that is extracted is the file that is dispatched to a CA for signing.

Command Line
The command is invoked as follows:
ikeycmd -certreq -extract [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -target (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -format (optional)

GUI
The command can be invoked by clicking the Extract button in the Personal
Certificate Requests panel.
Note:
the Extract button is only enabled when an entry in the list is selected.

List all Certificate Requests

The list certificate request command lists all of the certificate request labels stored within
the identified key database.

Command Line
The command is invoked as follows:
ikeycmd -certreq -list [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
Not applicable - refer instead to Open a Key Database. When a key database is
opened, all items are displayed in the various lists. See the GUI Commands
section for details of viewing the various lists.

Recreate Certificate Requests

The recreate certificate request command recreates a certificate request from an existing
certificate stored within the specified key database. The recreation of a certificate may be
required to allow a certificate to be signed by another CA in case there was a problem
with the CA that originally signed it.

Command Line
The command is invoked as follows:
ikeycmd -certreq -recreate [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -target (required)
 -pw or -stashed (optional)
 -eku (optional)
 -ku (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the Recreate Request button in the
Personal Certificates panel. A dialog prompts you to choose the target file for the
recreate certificate request operation.

Secret (Symmetric) Key Commands

Note:
Only applicable to JCEKS and PKCS#11.

The secret key commands are associated with the -seckey object in CLI mode. The
following secret key actions are supported:

 Create Secret Key
 Delete Secret Key
 Display Secret Key details
 Export Secret Keys
 Import Secret Keys
 List all Secret Keys
 Rename Secret Key

The following sections go into detail on how to use each of the secret key commands and
what options are available for each command.

Create Secret Key

The create secret key command creates one or more symmetric keys and adds these to the
key database. The command allows the user to specify what symmetric encryption
algorithm to create the key(s) for, as well as the desired key size.

Command Line
The command is invoked as follows:

ikeycmd -seckey -create [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label or -labelrange (required)
 -keyalg (required)
 -keysize (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the New button in the Secret Key
panel. A dialog prompts you to specify the data for a new secret key(s).

Delete Secret Key

The delete secret key command removes a symmetric key entry from a key database. The
key cannot be recovered after deleting it.

Command Line
The command is invoked as follows:
ikeycmd -seckey -delete [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label or -labelrange (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the Delete button in the Secret Key
panel.
Note:
the Delete button is only enabled if an entry is selected in the list.

Display Secret Key details

The details command displays the details of a symmetric key. The following details are
displayed:

 Symmetric key label
 Algorithm OID
 Key Size

Command Line
The command is invoked as follows:
ikeycmd -seckey -details [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the View button in the Secret Key
panel, or by double-clicking a secret key in the list.

Export Secret Keys

The export command encrypts one or more symmetric keys in a key database and outputs
these to a file. The symmetric keys are encrypted using one of the public keys in the key
database, so a public key must be chosen using the -keyalias option.

The command can be used to back up symmetric keys to another key database. The keys
are encrypted before being output to a file so that they remain confidential. The key
database that the symmetric keys will be imported to must contain the private key
corresponding to the public key that the export command uses for encryption.

Command Line
The command is invoked as follows:
ikeycmd -seckey -export [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label or -labelrange (required)
 -keyalias (required)
 -file (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the Export button in the Secret Key
panel. A dialog prompts you to choose the target file for the export secret key
operation. A further dialog prompts you to choose the encryption or decryption
key for the secret key export or import operation.

Import Secret Keys

The import command is used to add symmetric keys from a file into a key database. The
file, which is produced using the export command, contains encrypted symmetric keys.
The target key database of the import command must contain the private key
corresponding to the public key that was used to encrypt the symmetric keys.

Command Line
The command is invoked as follows:
ikeycmd -seckey -import [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label or -labelrange (required)
 -keyalias (required)
 -file (required)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
The command can be invoked by clicking the Import button in the Secret Key
panel. A dialog prompts you to specify the source file for the import secret key
operation.

List all Secret Keys

The list command displays the labels of all symmetric keys in the specified key database.

Command Line
The command is invoked as follows:
ikeycmd -seckey -list [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -pw or -stashed (optional)
 -type (optional if -db present)

GUI
Not applicable - refer instead to Open a Key Database. When a key database is
opened, all items are displayed in the various lists. See the GUI Commands
section for details of viewing the various lists.

Rename Secret Key

The rename command changes the label of a symmetric key entry in a key database. The
entry is otherwise unaffected.

Command Line
The command is invoked as follows:
ikeycmd -seckey -rename [options]

The permitted options for this command are:

 -db or -crypto (required)
 -relativeSlotNumber or -tokenlabel (required if -crypto present)
 -label (required)
 -new_label (required)
 -pw or -stashed (optional)
 -type (optional if -db present)
 -secondaryDB (optional if -crypto present)
 -secondaryDBpw (optional if -secondaryDB present)
 -secondaryDBType (optional if -secondaryDB present)

GUI
The command can be invoked by clicking the Rename button in the Secret Key
panel. A dialog prompts you to specify the new label.

Other commands

Add provider

The add provider command can be used to temporarily add a Java Security Provider,
which may contain required signature algorithms or key database types. Generally, all
required providers should be added to the java.security file so that they do not need to be
manually added each time the program is run (see java.security file).

A Provider is added by specifying the Java class name containing the Provider. Adding
Providers that require parameters in their initialization is supported. In this case, the
Provider name and parameters need to be entered. If the parameters contain spaces, they
must be enclosed in double quotes. For example, to add the PKCS11Impl provider with
a configuration file ("c:\example_directory\example.conf"), the following
entry should be made in the add provider dialog:

com.ibm.crypto.pkcs11impl.provider.IBMPKCS11Impl
"c:\example_directory\example.conf"

As the CLI can only execute one command at a time, this command does not apply to it.
There are 2 ways to affect the Providers being used for the CLI - One is by modifying
the java.security file and the other is using the iKeyman settings option
"ADD_CMS_SERVICE_PROVIDER_ENABLED=true". Please refer to Table 2.
iKeyman settings..

Command Line
Not applicable.

GUI
The command can be invoked in either of the following ways:

 Select Key Database File from the menu, then click the New Provider
icon.

 Click the New Provider icon on the toolbar.

A dialog displays the currently installed Providers and prompts you to enter the
class of the new Java Security Provider.

Version Help

The version command displays version information associated with the currently installed
iKeyman program. It displays the following data:

 iKeyman version (major.minor.build)
 CMS Provider version (major.minor) or "No CMS Provider" if the provider is

not installed
 Java version (product version)
 Copyright notice

Command Line
The command is invoked as follows:
 ikeycmd -version

This command takes no additional parameters.
GUI

The command can be invoked from the menu by clicking Help then About. A
dialog displaying the iKeyman version information is displayed.

Help

The help command displays a list of all <object> and <action> pairs that are
available. The output is the same as running the command line without any parameters.

To get help on a specific command, enter the <object> and <action> for that
command without any parameters.

Command Line
The command is invoked as follows:
 ikeycmd -help

This command takes no additional parameters.
GUI

There is no comparable feature in GUI mode, although most controls and fields
have tool tips available to explain their functions.

Options

The following is a list of all options the iKeyman CLI supports. For each option the
following details are specified:

Option
The command line tag used for the option.

Parameters
The number of parameters this option takes. Some options can be used in different
ways and therefore have multiple values in the Parameters column.

Commands
The commands the option applies to. If the option is used in different ways for
different commands, this cell is split into multiple rows with the associated use
next to the commands.

Use
How the option is used for the commands indicated in the Commands column

Accepted Values
The values that are accepted for the option.

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-ca 1
-cert

-create

If true, adds the Basic
Constraints extension to
the certificate being
created. The extension is
marked as critical with a
path length of
2147483647.

true or false

-crypto 0 or 1 -cert
-add
-create
-delete
-details
-extract
-import
-list
-populate
-receive
-rename

-certreq
-create
-delete
-details
-extract
-list

-recreate

This option can be used
in one of the following
ways:

 Used to specify
the file name of
the cryptographic
token library.

 A switch
indicating that this
is a token
operation using
the default library
indicated in the
settings file.

 Indicates that a
PKCS#11 token is
accessed using the
configuration

Any valid library file
name

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-seckey
method with the
label specified by
the -tokenlabel
parameter.

-db 1

-keydb
all except
-list

-cert
all except
-listsigners

-certreq
all

-seckey
all

The name of the primary
key database used in the
command.

Any valid file name.

-default_cert 1
-cert

-create
-receive

Whether to set a
particular certificate as
the default certificate
(only applicable to CMS
key databases).

yes or no

-dn 1

-cert
-create

-certreq
-create

The distinguished name
of the entity being
created.

Comma-delimited string
of DN components.

-encryption 1
-cert

-export

Obsolete: Included for
backward compatibility.

Setting this value has no
effect.Whether to use
strong or weak
encryption.

strong or weak

-expire 1

-keydb
-changepw
-convert
-create

Deprecated (see
Appendix A. Differences
from iKeyman 7)
The database password
expiry (in days). 0 to 7300

-cert
-create
-sign

The certificate expiry (in
days).

-expiry 0 or 1 -cert
-list

Expiry of a certificate.
Filters the certificates

Any positive integer.

Table 3. options

Option
Para-
meters Commands Use Accepted Values

being listed by their
expiration date and
displays the validity
ranges of the certificates.
If a value is provided,
lists all certificates that
will be expired <value>
days from now (a value
of 0 will list the currently
expired certificates). If
the value is omitted, all
certificates are listed.

-file 1

-cert
-add
-receive

The file to retrieve one or
more certificates from.

Any valid file name.

-cert
-import

The key database file to
import certificates from.
Must be a PKCS12 file.

-cert
-sign

The file containing the
certificate request to be
signed.

-certreq
-create

The file to which the
certificate request will be
written.

-seckey
-import
-export

The file to import/export
secret keys to/from.

-format 1

-cert
-add
-extract
-receive
-sign

-certreq
-extract

The input/output format
of the
certificate/certificate
request file. The option is
ignored for input format
as the type is
automatically determined
in those cases.

binary or ascii

-keyalg 1
-seckey

-create

The name of the
algorithm of the
symmetric key(s) to be
created.

Any supported
symmetric key algorithm
(currently AES, DES,
DESede).

-keyalias 1 -seckey
-export

Alias of the public/private
key to use for

Any public/private key
alias in the key database.

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-import
encryption/decryption of
the secret key(s).

-keysize 1
-seckey

-create
The size of the symmetric
key(s) to be created.

A valid key size for the
specified algorithm

-label 1

-cert
-add
-create
-delete
-details
-export
-extract
-modify
-setdefault

-certreq
-create
-delete
-details
-extract
-recreate

-seckey
-create
-delete
-details

The label of the key
database entry to perform
the command on.

A valid label, or a valid
list of labels (if
applicable).

-cert
-populate

A comma-delimited list
of labels to add to the key
database. The labels must
match those returned by
the -cert -listsigners
command.

-seckey
-export

A comma-delimited list
of secret keys to export to
a file.

-cert
-import

The label of the entry to
import. Imports all if
omitted.

-cert
-sign

The label of the private
key item in the key
database to sign the
certificate request with.

-labelrange 1 -seckey
-create

The label range of the
keys to be created.

A valid range consists of
a prefix consisting of

Table 3. options

Option
Para-
meters Commands Use Accepted Values

letters, followed by a
range of hexadecimal
values. The hexadecimal
range must be separated
by a hyphen (-) and the
first value must be less
than the second.

<list filter> 0
-cert

-list

This parameter is
different to all others, in
that it is not preceded by
a hyphen (-). If specified,
it must appear
immediately after -cert
-list. It is used to filter
which certificates are
displayed.

all
Displays all
certificates.

personal
Displays all
personal
certificates
(private key
entries).

ca
Displays all CA
(Certificate
Authority)
certificates.

-new_format 1
-keydb

-convert
The key database format
being converted to.

A valid file-based key
database type.

-new_label 1

-cert
-rename
-seckey
-rename

The new label to assign to
the key database entry
being renamed.

Any string.

-new_pw 1
-keydb

-changepw
-convert

The new password used
to protect the key
database.

Any valid password.

-old_format 1
-keydb

-convert
The key database format
being converted from.

A valid file-based key
database type.

-pfx 0
-cert

-import

A switch indicating
whether the import file is
a pfx file. This switch is
unnecessary if the file
extension of the file is
.pfx.

N/A.

-pw 1 -keydb
all except
-list

The password used to
access the key database.
The -cert -import

The correct password.

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-cert
all except
-listsigners

-certreq
all

-seckey
all

command can have two
-pw options specified;
one for the primary
database, and one for the
target cryptographic
token. In this case, the
first password applies to
the primary database, and
the second applies to the
cryptographic token.

-relativeSlot
Number

1
same as
-crypto

The slot number of the
token being accessed.

A valid slot number.

-san_dnsname 1

-cert
-create

-certreq
-create

The SAN DNS name(s)
for the entry being
created.

A comma- or space-
delimited list of DNS
names.

-
san_emailaddr

1

-cert
-create

-certreq
-create

The SAN email
address(es) for the entry
being created.

A comma- or space-
delimited list of email
addresses.

-san_ipaddr 1

-cert
-create

-certreq
-create

The SAN IP address(es)
for the entry being
created.

A comma- or space-
delimited list of IP
addresses.

-secondaryDB 1

-cert
-rename
-add
-delete
-details
-extract
-import
-list
-populate

The name of the
secondary key database
for the cryptographic
token operation.

A valid file name of a
key database.

-
secondaryDB
pw

1
same as
-secondaryDB

The password used to
access the secondary key
database.

The correct password to
access the secondary key
database.

-
secondaryDB
Type

1
same as
-secondaryDB

The type of the secondary
key database.

A valid file-based key
database type.

-sernum 1 -cert
-sign

The serial number for the
certificate created in the

A positive integer.

Table 3. options

Option
Para-
meters Commands Use Accepted Values

signing operation.

-showOID 0

-cert
-display

-certreq
-display

The switch is used to
control the way an entry
is displayed. If it is
provided, the full details
of the entry are displayed;
if it is omitted, a
summary is displayed.

N/A.

-sig_alg 1

-cert
-create

-certreq
-create

The asymmetric signature
algorithm used for the
creation of the entry's key
pair.

Any supported
asymmetric signature
algorithm. Currently:

 SHA1WithRSA
 SHA256WithRS

A
 SHA384WithRS

A
 SHA512WithRS

A
 MD2WithRSA
 MD5WithRSA

 SHA1WithDSA

-size 1

-cert
-create

-certreq
-create

The signature algorithm
key size used for the
creation of the entry's key
pair.

Any supported key size
for the specified
algorithm

-stash 0

-keydb
-changepw
-convert
-create

Whether to create a stash
file containing the
keystore password. The
stash file has the same
name as the keystore, but
with a ".sth" extension
(Currently only supported
for CMS and PKCS12
key databases).

N/A

-v1stash 0 -keydb
-changepw
-convert
-create
-stashpw

Generates an old format
stash file (not
recommended). Must be
used with -stash
parameter for commands
-changepw, -convert and

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-create. Note that if a
stash file already exists
for the keystore, and it is
in a newer format than
v1, then this parameter
will be ignored i.e. you
cannot back level a newer
format stash file.

-target 1

-keydb
-convert

The target key database
to convert to.

Any valid file name

-cert
-export
-import

The target key database
for the certificates to be
imported/exported.

-cert
-extract
-sign

-certreq
-extract
-recreate

The target
certificate/certificate
request file.

-target_pw 1
-cert

-export
-import

The password used to
access the target key
database.

The correct password for
the target key database.

-target_type 1
-cert

-export
-import

The type of the target key
database.

Any supported file-based
key database type.

-tokenlabel 1
same as
-crypto

The label of the token
being accessed.

A valid token label.

-trust 1
-cert

-add
-modify

Whether to trust the
certificate being
added/modified.

enabled or disabled

-type 1

-keydb
all except
-list

-cert
all except
-listsigners

-certreq
all

-seckey
all

The type of the primary
key database.

Any supported file-based
key database type

-x509Version 1 -cert The X.509 version of the 1 or 2 or 3

Table 3. options

Option
Para-
meters Commands Use Accepted Values

-create certificate being created.

Error Codes
The following table of error codes can be returned by iKeyCmd.

Table 4. iKeyCmd error codes

Name Return codes

OK 0

BLANK_PKCS12_CREATION 1

BLANK_PKCS12_STORE 2

CANNOT_CONVERT_PKCS11 3

CANNOT_INSTANTIATE_OBJECT 4

CANNOT_MODIFY_PERSONAL_CERT_TRUST 5

CERT_REQUEST_FILE_CORRUPTED 6

CERTIFICATE_CREATE_ERROR 7

CERTIFICATE_ENCODING_ERROR 8

CERTIFICATE_ERROR 9

CERTIFICATE_LOAD_ERROR 10

CERTIFICATE_PARSING_ERROR 11

CERTIFICATE_REQUEST_DECODING 12

CERTIFICATE_REQUEST_FILE_NOT_FOUND 13

CERTIFICATE_STORE_ERROR 14

CLASS_NOT_FOUND 15

CORRUPT_CERTIFICATE 16

DATABASE_LOCKED 17

DATABASE_PASSWORD_EXPIRED 18

DELETION_FAILED 19

DER_ENCODING_ERROR 20

ENTRY_EXISTS_FOR_KEY 21

ENTRY_EXISTS_FOR_LABEL 22

ENTRY_LOAD_ERROR 23

FILE_DELETION_FAILED 24

INPUT_FILE_NOT_FOUND 25

Table 4. iKeyCmd error codes

Name Return codes

INPUT_STREAM_CLOSE 26

INVALID_ACTION 27

INVALID_ALGORITHM_PARAMETER 28

INVALID_ALGORITHM_PARAMETERS 29

INVALID_ALIAS_RANGE_FORMAT 30

INVALID_CERTIFICATE_FILE 31

INVALID_CERTIFICATE_VERSION 32

DATABASE_TYPE 33

INVALID_DATABASE_TYPE_FOR_PARAMETER 34

INVALID_DN 35

INVALID_KEY_FOR_SIGNING 36

INVALID_KEY_SIZE 37

INVALID_KEY_SIZE_FOR_ALGORITHM 38

INVALID_KEY_TYPE_FOR_KEYSTORE 39

INVALID_LIST_FILTER 40

INVALID_NUMBER_FORMAT 41

INVALID_OBJECT 42

INVALID_OPTIONAL_PARAMETER 43

INVALID_OUTPUT_MODE 44

INVALID_PARAMETER_FOR_COMMAND 45

INVALID_PASSWORD 46

INVALID_PFX_OPTION 47

INVALID_PIN 48

INVALID_REQUEST_FILE 49

INVALID_SAN 50

INVALID_SAN_IN_CERT 51

INVALID_SIGNATURE_ALGORITHM 52

INVALID_SIGNING_KEY_TYPE 53

INVALID_SLOT_NUMBER 54

INVALID_TYPE_FOR_ACTION 55

INVALID_VALUE_FOR_PARAMETER 56

IO_ERROR 57

IO_ERROR_MSG 58

KEY_DECRYPTION_ERROR 59

Table 4. iKeyCmd error codes

Name Return codes

KEY_ENCRYPTION_ERROR 60

KEY_FILE_NOT_FOUND 61

KEY_STORE_ENTRY_SET_ERROR 62

KEY_STORE_INSTANTIATION_ERROR 63

KEY_STORE_LOAD_ERROR 64

KEY_STORE_TYPE_NOT_FOUND 65

KEYSTORE_CLOSE_ERROR 66

MISSING_ACTION 67

MISSING_VALUE_FOR_PARAMETER 68

NO_CA_CERT_FOR_LABEL 69

NO_CERTIFICATE_FOR_LABEL 70

NO_CRYPTO_MODULE_SPECIFIED 71

NO_DEFAULT_CERTIFICATE 72

NO_DN_OR_SAN 73

NO_ENTRY_FOR_KEY 74

NO_ENTRY_FOR_LABEL 75

NO_JCE_PROVIDER 76

NO_KEY_FOR_LABEL 77

NO_OPTIONS_SPECIFIED 78

NO_READ_PERMISSION 79

NO_REQUEST_FOR_CERTIFICATE 80

NO_REQUEST_FOR_LABEL 81

NO_SUCH_ALGORITHM 82

NO_WRITE_PERMISSION 83

NOT_A_PROVIDER 84

OUTPUT_FILE_CREATION_ERROR 85

OUTPUT_FILE_EXISTS 86

OUTPUT_STREAM_CLOSE_ERROR 87

OUTPUT_STREAM_WRITE_ERROR 88

PASSWORD_CANNOT_BE_NULL 89

PKCS11_ERROR 90

PKCS11_EXCEPTION 91

PKCS7_PARSING_ERROR 92

PRIVATE_KEY_DECRYPTION_ERROR 93

Table 4. iKeyCmd error codes

Name Return codes

PRIVATE_KEY_ENCODING_ERROR 94

PRIVATE_KEY_ENCRYPTION_ERROR 95

PROVIDER_ALREADY_INSTALLED 96

PUBLIC_KEY_COPY_ERROR 97

RDB_PASSWORD_CHANGE_ERROR 98

REQUEST_SIGNING_ERROR 99

REQUIRED_DN_NOT_SPECIFIED 100

REQUIRED_VALUE_NOT_SPECIFIED 101

RESTRICTED_POLICY_FILES 102

SAN_ENCODING_ERROR 103

SAN_SUPPORT_NOT_ENABLED 104

SIGNATURE_ERROR 105

SOURCE_DB_IS_EMPTY 106

TOO_MANY_CHOICES_SELECTED 107

TOO_MANY_PARAMETERS_FOR_TAG 108

TOO_MANY_VALUES_FOR_TAG 109

UNKNOWN_PARAMETER 110

UNRECOVERABLE_ENTRY 111

UNRECOVERABLE_KEY 112

Accessibility
iKeyman contains several accessibility features and functions which allow individuals
with disabilities to use the application. The IBM Accessibility Center and Sun
Microsystems' Accessibility Group have combined efforts to design and build next-
generation accessibility into the Java application. iKeyman is one of the products that
currently comply with the accessibility support initiative. Features include the following:

Accessibility support for usability
Users are able to operate iKeyman with the keyboard only, using the following
accessibility options:
[Tab]
Key to move focus forward.
[Shift]+[Tab]
Keys to move focus backward.
[Space]
Key to trigger action.

[up arrow]
Key to move selectable item(s) up.
[down arrow]
Key to move selectable item(s) down
Mnemonics
All controls possess mnemonics which allow the user to access a field directly
using the keyboard. The mnemonic character of each control is underlined and the
control can be accessed by pressing [Alt]+[Mnemonic Character].

Accessibility support for visual effect
The following accessibility options are available:

 Modify the platform setting for colors and fonts. For example, on the
Windows platform, modify the system color and font settings in Display
properties on the Control Panel.

 Enable accessibility support. Select View then Windows Look and Feel.
The appearance of an iKeyman display will adopt the current system color
and fonts.

Appendix A. Differences from iKeyman 7
The following features differentiate iKeyman version 8 from version 7:

Architecture
iKeyman 7 used JNI to use GSKit DLLs for access to .KDB keystore data.
iKeyman8 uses a Java CMS provider to access .kdb keystores and does not use
any JNI to GSKit for this.

Provider name change

iKeyman7

 provider class: com.ibm.spi.IBMCMSProvider
 keystore class: com.ibm.spi.CMSKeyStoreSpi
 provider name: IBMCMS
 keystore name: CMS

iKeyman 8

 provider class: com.ibm.security.cmskeystore.CMSProvider
 keystore class: com.ibm.security.cmskeystore.CMSKeyStoreSpi
 provider name: IBMCMSProvider
 keystore name: IBMCMSKS, and CMSKS

In particular the keystore name change will impact on applications that were
written for the ikeyman 7 keystore. Changing "CMS" to "CMSKS" should resolve

this in the application. For example, KeyStore ks =
KeyStore.getInstance("CMSKS");

Key Database creation
In iKeyman 7, new key databases are automatically populated with a set of pre-
defined CA certificates. In iKeyman 8, this is not automatically done. For more
information, see Create a Key Database.

Password Expiry Functionality
Password expiry for CMS key databases is still supported in iKeyman 8 for
backward compatibility, but the feature has been deprecated. Using this feature is
not recommended, as it may be removed in future versions of iKeyman

No MS-CAPI support
iKeyman 7 provides access to the Microsoft Certificate store via MS-CAPI. This
feature is currently not available in iKeyman 8.

PKCS#11 functionality
PKCS#11 access is now exclusively done through the IBMPKCS11Impl
Provider, as opposed to the IBMPKCS11 Provider and native methods that
existed in iKeyman 7. For more information, see PKCS#11

Certificate Validation
In iKeyman 7, certificates are validated before being added to a CMS keystore.
The validation includes ensuring that all necessary intermediate and root
certificates used to validate the certificate are present and that these have not
expired. This validation has been removed from iKeyman 8 to make the various
keystore types more consistent.

PKCS#12 Import
When importing a PKCS#12 file, iKeyman 7 generates an error if any of the
certificates in the source file are already present in the target keystore. In
iKeyman 8 these duplicates are ignored and not imported.

Changed command usage strings
Some command usage strings in iKeyman 7 don't clearly identify which
parameters are optional and required. iKeyman 8 has an improved command
usage structure that clearly identifies which parameters are supported.

Certificate request signing
Certificate requests in iKeyman 7 may only be signed by a certificate if the
resultant certificate's validity period falls entirely within the validity of the signer
certificate. This requirement has been removed in iKeyman 8.

Certificate creation
When creating a self-signed certificate in iKeyman 7, a common name (CN) value
must always be specified. iKeyman 8 only requires any subject alternative name
(SAN) or distinguished name (DN) element to be specified. If no DN is supplied,
the SAN extension is marked as critical.

Secondary database for PKCS#11
iKeyman 7 only allows CMS keystores to be used as secondary databases for
PKCS#11 operations. iKeyman 8 allows all file-based keystore types to be used.

Improved error messages

iKeyman 7 often generates unhelpful and generic error messages when an error
occurs. This area has been improved in iKeyman 8 with more detailed error
messages and a full stack trace for every error.

Converting a keystore
iKeyman 7 doesn't include certificate requests when converting from one database
type to another. This limitation has been fixed in iKeyman 8.

Multiple OUs
iKeyman 7 doesn't display multiple OUs in the short CLI display or in the details
view of the GUI. iKeyman 8 shows all OUs.

Signature Algorithm
The signature algorithm used when creating self-signed certificates or certificate
requests is no longer specified in the settings file. It is now selected in the creation
dialogs or passed as a command line parameter.

Signing certificate requests
iKeyman 7 only allows certificate requests to be signed by CMS keystores. In
iKeyman 8 all file-based keystore types can be used for this operation.

Appendix B. A Simple Example
The example below offers an example scenario for a company setting up a Web site for
its employees to access business sensitive information. It is assumed that the web server
chosen by the company uses GSKit as its SSL provider. The example does not cover all
issues for such a scenario but instead concentrates on what an administrator would
typically need to do to set up a CMS keystore in such an environment.

The requirement

The ACME Company wishes to set up a Web site for its employees to access certain
sensitive business information across a wide geographical area. Some employees are
more senior than others and therefore will be allowed access to more resources on the
server than the more junior employees. It is expected that employees can be assured they
are connecting to their company Web site and not some fraudulent site pretending to be
their company site. Employees use a customized web browser that can read CMS key
databases to access certificates contained in them.

The CEO of ACME has asked the system administrator to implement this system in a
manner that is secure and cost conscious.

Considerations for the administrator

The administrator makes some decisions based on the requirements:

 As the employees are located at different geographical locations a secure channel
for the web traffic must be used. The administrator decides that this should be
SSL.

 As employees will have different levels of access to web content the administrator
decides that the server will operate in client authentication mode where each
connecting client must present a valid certificate in order to gain access.
Information from this presented certificate will be used to limit access to
authorized areas of the web server only (this is outside the scope of this scenario)

 As cost is an issue the administrator decides that it is too costly to have every
employee certificate signed by a CA. The administrator decides to make use of a
company wide intermediate certificate that will then be used to sign all employee
certificates.

 Employees must be able to validate the server's certificate thereby proving the
authenticity of the web server.

 The administrator notes that it is bad practice to use a certificate for more than
one purpose so decides that another certificate must be produced and signed by
the CA. This certificate will be the server certificate used for the Web site. Using
the Intermediate Certificate for this purpose would be poor practice.

Step 1: Obtain a company wide Intermediate Certificate

The administrator needs to create a certificate that can be used to sign each employee's
certificate. This intermediate certificate itself may be publicly published so it needs to be
signed by a trusted CA. To achieve this, the administrator performs the following actions:

1. The administrator creates a new CMS keystore using the "Create a Key Database"
command:

ikeycmd -keydb -create -db acme.kdb -pw offs64b -expire 365

2. The administrator notices that the new keystore, while containing a number of CA
certificates, does not contain the certificate of the CA which he would like to use
to sign his Intermediate Certificate. He obtains the CA certificate (this is usually
done by visiting a well know site that publishes these) and adds it to his CMS
keystore via the "Add a Certificate" command:

3. ikeycmd -cert -add -db acme.kdb -pw offs64b -label OurCA
 -file CACert.arm -format ascii

4. The administrator then creates a new certificate request to be sent to the CA that
he has chosen to sign our Intermediate Certificate using the "Create a Certificate
Request" command:

5. ikeycmd -certreq -create -db acme.kdb -pw offs64b -label
6. OurIntermediate -dn "CN=acme.com,O=acme,C=US" -file

 certreq.arm -sig_alg sha1

7. The administrator takes the request file (certreq.arm in this case) and sends it
to the CA for signing. Sometime later the signed certificate is returned by the CA.

The administrator then receives the certificate into the CMS keystore using the
"Receive a Certificate" command:

 ikeycmd -cert -receive -file signedCert.arm -db acme.kdb -pw
offs64b

8. Make the new certificate the default one. This means that it will be used by
default to sign other certificate request if no other certificate label is given. The
administrator makes it the default certificate using the following command:

ikeycmd -cert -setdefault -db acme.kdb -pw offs64b -label
OurIntermediate

Step 2: Sign all employee certificates using the ACME
Intermediate

The administrator now has a CMS keystore containing ACME's intermediate certificate
and the CA certificate that signed that intermediate certificate. The administrator now
needs to use ACME's intermediate certificate to sign all the employee certificates. To
achieve this, the administrator performs the following actions:

1. The administrator asks each employee to obtain the CA certificate and add it to
their respective CMS keystores. Note that employees may first need to create their
own CMS keystore in the same manner as the administrator did in item 1 of step
1. The employee adds the CA certificate using the "Add a Certificate" command:

2. ikeycmd -cert -add -db Dave.kdb -pw Davepwd -label OurCA
 -file CACert.arm -format ascii

3. The administrator extracts the Intermediate Certificate (note that this does not
extract the private key of the certificate) using the "Extract a Certificate"
command:

4. ikeycmd -cert -extract -db acme.kdb -pw offs64b -label acmeCert
 -target acmeCert.arm

5. The administrator sends the ACME intermediate certificate to each employee
asking them to add it to their keystore. Employees do this via the "Add a
Certificate" command:

6. ikeycmd -cert -add -db Dave.kdb -pw Davepwd -label acmeCert
 -file acmeCert.arm -format ascii

7. The administrator asks each employee to create a certificate request putting their
employee email address in the CN field. The employees use the "Create a
Certificate Request" command:

8. ikeycmd -certreq -create -db Dave.kdb -pw Davepwd -label myCert
9. -dn "CN=dave@acme.com,O=acme,C=US" -file DavesCertReq.arm

 -sig_alg sha1

10. Upon receipt of each employee's certificate request the administrator signs it and
returns the signed certificate to the employee. The administrator uses the "Sign a
Certificate" command to achieve this:

11. ikeycmd -cert -sign -db acme.kdb -pw offs64b -label acmeCert
12. -target DavesCertReq.arm -expire 365 -file

DavesSignedCert.arm
 -sig_alg sha1

13. As each employee obtains their signed certificate they receive it into their CMS
keystore. Employees use the "Receive a Certificate" command:

ikeycmd -cert -receive -file DavesSignedCert.arm -db Dave.kdb
-pw Davepwd

14. Make the new certificate the default one. This means that it will be the certificate
sent to the web server when it requests one via SSL for client authentication
purposes. The employee makes it the default certificate using the following
command:

ikeycmd -cert -setdefault -db Dave.kdb -pw Davepwd -label myCert

Step 3. Create the Web Server certificate

At this stage the administrator has a CMS database containing the CA certificate and the
ACME Intermediate certificate (with its corresponding private key). The administrator
puts this CMS keystore in a safe place using it only to sign new employee certificates.

Each employee has a CMS keystore containing the CA certificate, the ACME
Intermediate Certificate (minus the corresponding private key), and their own certificate
that has been signed by the ACME Intermediate Certificate.

The remaining task for the administrator is to create a CMS keystore with a certificate to
be used by the web server. Although the administrator could have used the ACME
Intermediate Certificate for this purpose as stated previously it is considered bad practice
to use a certificate for more than one purpose. The intermediate certificate is already
being used to sign the employees' certificates. To create a keystore and server certificate
the administrator performs the following actions:

1. The administrator creates a new CMS keystore using the "Create a Key Database"
command:

ikeycmd -keydb -create -db acmeWebServer.kdb -pw ejed43dA -expire
365

2. The administrator adds the CA certificate to the keystore using the "Add a
Certificate command:

3. ikeycmd -cert -add -db acmeWebServer.kdb -pw ejed43dA -label
OurCA -file

 CACert.arm -format ascii

4. The administrator creates a new certificate request to be sent to the CA that he has
chosen to sign our web server certificate using the "Create a Certificate Request"
command:

5. ikeycmd -certreq -create -db acmeWebServer.kdb -pw ejed43dA
-label

6. OurServerCert -dn "CN=web.acme.com,O=acme,C=US" -file
 serverCertReq.arm -sig_alg sha1

7. The administrator takes the request file (serverCertReq.arm in this case)
and sends it to the CA for signing. Sometime later the signed certificate is
returned by the CA. The administrator then receives the certificate into the CMS
keystore using the "Receive a Certificate command:

8. ikeycmd -cert -receive -file signedServerCert.arm -db
 acmeWebServer.kdb -pw ejed43dA

9. Make the new certificate the default one. This means that when a client connects
to the web server the server will offer this certificate to the client. The
administrator makes it the default certificate using the following command:

10. ikeycmd -cert -setdefault -db acmeWebServer.kdb -pw ejed43dA
 -label OurServerCert

11. The administrator now has a CMS keystore with a server certificate ready for use
by the Web server application.

So do we meet the requirements?

Looking at each requirement in turn:

 As the employees are located at different geographical locations a secure channel
for the web traffic must be used. The administrator decides that this should be
SSL.

For a web server to make use of SSL it must have a server side certificate to offer
to clients during the SSL handshake. The certificate labelled OurServerCert" in
the keystore acmeWebServer.kdb may be used for this purpose.

 As employees will have different levels of access to web content the administrator
decides that the server will operate in client authentication mode where each
connecting client must present a valid certificate in order to gain access.
Information from this presented certificate will be used to limit access to
authorized areas of the web server only (this is outside the scope of this scenario)

Each employee has their own certificate to offer to the server when it requests one
during the SSL handshake. The server can first validate the client certificate as it
has the signer chain, that is, the client certificate is signed by the ACME

Intermediate Certificate, and the ACME intermediate certificate is in turn signed
by the CA certificate. The server keystore (acmeWebServer.kdb) has both of
these. Once the client certificate has been validated the application can inspect the
CN of the certificate and extract the employee email address from it. The
application can then use the employee email address to determine the level of
access allowed for the connection.

 As cost is an issue the administrator decides that it so too costly to have every
employee certificate signed by a CA. The administrator decides to make use of a
company wide intermediate certificate that will then be used to sign all employee
certificates.

The administrator only incurred the expense of two CA signing operations. One
for the Intermediate Certificate and one for the signer certificate.

 Employees must be able to validate the server's certificate thereby proving the
authenticity of the web server.

When the client application receives (as part of the SSL handshake) the server
certificate it can verify the validity of that certificate as it has the CA certificate
that signed it.

 The administrator notes that it is bad practice to use a certificate for more than
one purpose so decides that another certificate must be produced and signed by
the CA. This certificate will be the server certificate used for the Web site. Using
the Intermediate Certificate for this purpose would be poor practice.

Two certificate have been created. OurServerCert for use of the ACME web
server, and OurIntermediate for the administrator to use to sign employee
certificates.

Appendix C. A PKCS#11 Example
The following example offers an example scenario for setting up and using a PKCS#11
HSM or smartcard device on a Windows platform. It is the same for Linux except the
filenames are platform specific, e.g. use ‘/' not ‘\' or ‘\\' for directory separators, and .so
rather than .dll for the pkcs11 library.

The requirement

The user wants to set up an HSM for key/certificate storage and usage with GSKit.

Considerations for the administrator

The administrator makes some decisions based on the requirements:

 Selection of HSM device. For this example we will use the Eracom/Safenet
"Orange" (SW emulation).

 Setup or management of the HSM device. Each HSM will come with its own
vendors instructions on the correct setup and secure operation of the device.

Step 1: Configure jre's pkcs11 provider

The administrator needs to set up the jre so that the PKCS11 provider is configured for
the selected HSM:

1. Edit jre/lib/security/java.security. Include this line in the list of
providers:

2. security.provider.n=com.ibm.crypto.pkcs11impl.provider.IBMPKCS11I
mpl
c:\\p11_eracom.cfg

where ‘n' is the next available provider number.

3. Create or edit the file c:\p11_eracom.cfg to contain the following lines:
4. library = C:\Program Files\Eracom\ProtectToolkit C

SDK\bin\cryptoki.dll
5. name = xxx
6. tokenlabel = xxx
7. attributes(*,CKO_PRIVATE_KEY,*) = {
8. CKA_PRIVATE = true
9. CKA_TOKEN = true

}

where ‘xxx' is the token label to use.

Note:
The CKO_PRIVATE_KEY attributes are not always necessary on every pkcs11
provider. However some providers do need them and they cause no problem for providers
that do not.

Step 2: iKeyman usage

1. In iKeyman, open the pkcs11 device by selecting "PKCS11config" from the
keystore type dialog. If only "PKCS11direct" appears, then the configuration of
the previous steps has failed or the DLL has not loaded correctly.

2. Keys pr certificates will be listed with as <tok label>:<name> where <tok label>
will be the "name" from the configuration file. GSKit will match names using this
convention where <tok label> will be the pkcs11 token label. These must match
in the configuration file to make the names appear the same in iKeyman 8 as they
appear in GSKit.

Appendix D. Keystore provider sample
Java code

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.security.KeyStore;
import java.security.KeyStoreException;
import java.security.NoSuchAlgorithmException;
import java.security.Security;
import java.security.cert.Certificate;
import java.security.cert.CertificateException;
import java.util.Enumeration;

public class Ksdump {
 public static void main(String[] args) {
 if (args.length < 2 || args.length > 3) {
 System.out.println("Wrong arguments!!\n\nUsage: ksdump
<Keystore Name>
 <Password> <(Optional) Keystore Provider>");
 System.exit(-1);
 }

 // First arg is the keystore file name.
 String keyStoreFileName = args[0];

 // The second is the password
 String keyStorePassword = args[1];
 String provider = "";

 // The third is the provider, if provided in the command line
 if (args.length == 3) {
 provider = args[2];
 }

 KeyStore keyStoreRef = null;

 // If provided a provider
 if (!provider.equals("")) {
 keyStoreRef =
processWithSpecifiedProvider(keyStoreFileName, keyStorePassword,
 provider);
 } else {
 // Otherwise, try all available providers one bye one
 keyStoreRef = processWithProviderList(keyStoreFileName,
keyStorePassword);
 }

 // Print all certificates
 listAllCertificates(keyStoreFileName, keyStoreRef);
 }

 private static KeyStore processWithProviderList(String
keyStoreFileName,
 String keyStorePassword) {
 String[] providerNames = getProviderNames();
 String provider = "";
 KeyStore keyStoreRef = null;

 /*
 * Due to the reason that sometimes .p12 keystores have a .kdb
suffix,
 * and in the case that the user cannot / doesn't specify the
exact
 * provider in the command line, so we are looping through each
possible
 * keystore type.
 */
 for (String possibleProvider : providerNames) {
 try {
 keyStoreRef = processKeyStoreFile(keyStoreFileName,
keyStorePassword,
 possibleProvider);
 } catch (Exception e) {
 // Invalid KeyStore Format
 continue;
 }

 // Found a proper provider
 provider = possibleProvider;
 break;
 }

 // If no proper provider has been found, then exit
 if (provider.equals("")) {
 System.out.println("Sorry! We cannot process the keystore
file you
 provided: " + keyStoreFileName
 + " - no provider found!");
 System.exit(-10);
 }
 return keyStoreRef;
 }

 private static KeyStore processWithSpecifiedProvider(String
keyStoreFileName,
 String keyStorePassword,
 String provider) {
 KeyStore keyStoreRef = null;
 try {
 keyStoreRef = processKeyStoreFile(keyStoreFileName,
keyStorePassword, provider);
 } catch (KeyStoreException e) {
 System.out.println("Sorry! There is no KeyStoreSpi
implementation found
 for the keystore: "
 + keyStoreFileName + "! Please reinstall the
provider!");
 System.exit(-3);

 } catch (IOException e) {
 // an I/O or format problem with the keystore data or
password issue
 System.out.println("Sorry! You may have given a wrong
password or a wrong
 provider for the keystore: "
 + keyStoreFileName + "!");
 System.exit(-4);
 } catch (Exception e) {
 System.out.println("Sorry! We cannot process the keystore:
" + keyStoreFileName
 + " the file might be damaged!");
 e.printStackTrace();
 System.exit(-5);
 }
 return keyStoreRef;
 }

 private static KeyStore processKeyStoreFile(String
keyStoreFileName,
 String keyStorePassword,
 String possibleProvider) throws KeyStoreException,
IOException,
 NoSuchAlgorithmException, CertificateException {
 // process the keystore with the provider
 KeyStore keyStoreRef = KeyStore.getInstance(possibleProvider);
 InputStream in = null;
 try {
 in = new FileInputStream(keyStoreFileName);
 keyStoreRef.load(in, keyStorePassword.toCharArray());
 } catch (FileNotFoundException e1) {
 System.out.println("Sorry! We cannot find the keystore
file you provided:
 " + keyStoreFileName + "!");
 System.exit(-2);
 } finally {
 in.close();
 }
 return keyStoreRef;
 }

 private static String[] getProviderNames() {
 String providers[] =
Security.getAlgorithms("KeyStore").toArray(new String[0]);
 return providers;
 }

 private static void listAllCertificates(String keyStoreFileName,
KeyStore keyStoreRef) {
 try {
 // Obtain all aliases
 Enumeration<String> allAliases = keyStoreRef.aliases();

 // List all certificates in the keystore
 System.out.println("All certificates in the keystore " +
keyStoreFileName + ":");
 int index = 0;

 while (allAliases.hasMoreElements()) {
 String alias = allAliases.nextElement();
 System.out.println("#" + index++ + " - " + alias);

 // Display information of the certificate
 Certificate cert = keyStoreRef.getCertificate(alias);
 System.out.println(" Type: " + cert.getType()
);
 System.out.println(" Algorithm: " +
cert.getPublicKey().getAlgorithm());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

}

Appendix E. Notices
This information was developed for products and services offered in the U.S.A. IBM®
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program, or
service is not intended to state or imply that only that IBM product, program, or service
may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described
in this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The materials
at those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material available for it
are provided by IBM under terms of the IBM Customer Agreement, IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.

Furthermore, some measurement may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or
any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to
change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM‘s application
programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include
a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, AIX®, DB2®, IBMLink, Informix®, OS/2, OS/390®, OS/400®, ,
and TME are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment,
Inc., in the United States, other countries, or both and is used under license therefrom.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government Commerce.

ITIL is a registered trademark, and a registered community trademark of the Office of
Government Commerce, and is registered in the U.S. Patent and Trademark Office.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks of
others.

Index

	IBM Developer Kit and Runtime Environment, Java Technology Edition, Version 6 and higher
	iKeyman User's Guide
	Preface
	Contacting software support
	Conventions used in this book
	Typeface conventions
	Operating system differences

	Using the iKeyman Program
	Supported Key database types
	CMS
	Other file based types

	PKCS#11
	Key Generation
	Modes of Operation
	Secondary key databases
	GUI Display

	Setup
	java.security file
	Supported Distinguished Name (DN) attributes
	Policy Files
	Settings file
	System properties

	Starting iKeyman

	Commands
	GUI Commands
	CLI Commands
	Key Database Commands
	Create a Key Database
	Change the Password of an existing Key Database
	Convert a Key Database to another format (Save As)
	Open a Key Database
	Delete a Key Database
	Display the password expiry date of a CMS Key Database
	Stash the password of an existing Key Database
	List the supported Key Database types

	Certificate command
	Add a certificate
	Populate a key store
	Create a self-signed certificate
	Delete a certificate
	Display details of a certificate
	Export a certificate
	Extract a certificate
	Import a certificate
	List Certificates
	List details of default certificate
	List Signer Certificates
	Modify a Certificate
	Receive a Certificate
	Set Default Certificate
	Sign a Certificate Request
	Rename a Certificate
	Validate a Certificate

	Certificate Request Commands
	Create Certificate Request
	Delete Certificate Request
	Display details of a Certificate Request
	Extract Certificate Request
	List all Certificate Requests
	Recreate Certificate Requests

	Secret (Symmetric) Key Commands
	Create Secret Key
	Delete Secret Key
	Display Secret Key details
	Export Secret Keys
	Import Secret Keys
	List all Secret Keys
	Rename Secret Key

	Other commands
	Add provider
	Version Help
	Help

	Options

	Error Codes
	Accessibility
	Appendix A. Differences from iKeyman 7
	Appendix B. A Simple Example
	The requirement
	Considerations for the administrator
	Step 1: Obtain a company wide Intermediate Certificate
	Step 2: Sign all employee certificates using the ACME Intermediate
	Step 3. Create the Web Server certificate
	So do we meet the requirements?

	Appendix C. A PKCS#11 Example
	The requirement
	Considerations for the administrator
	Step 1: Configure jre's pkcs11 provider
	Step 2: iKeyman usage

	Appendix D. Keystore provider sample Java code
	Appendix E. Notices
	Trademarks

	Index

