
z/OS

MVS Diagnosis: Tools and Service Aids
Version 2 Release 1

GA32-0905-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 679.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures ix

Tables xiii

Abstract for MVS Diagnosis: Tools and
Service Aids xv
Who must use this information. xv
Where to find more information xv

How to send your comments to IBM xvii
If you have a technical problem xvii

Summary of changes xix
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated February 2015 xix
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated March 2014. xix
z/OS Version 2 Release 1 summary of changes . . xix

Chapter 1. Selecting tools and service
aids 1
How do I know which tool or service aid to select? . 1
What tools and service aids are available? 2

Chapter 2. SVC dump 7
Planning data set management for SVC dumps . . . 8

Using automatically allocated dump data sets . . 8
Using pre-allocated dump data sets 13
Choosing SVC dump data sets 15
Finding automatically allocated dump data sets 16
Communication from the system 16
Specifying SYS1.DUMPxx data sets 16
Controlling SYS1.DUMPxx data sets 17

Obtaining an SVC dump 17
Issuing a macro for SVC dump 19
Operator activities 19
Making a dump data set available 21
Determining current SVC dump options and
status 22
Finding SVC dumps 22

Printing, viewing, copying, and clearing a
pre-allocated or SYS1.DUMPxx data set 24
Contents of SVC dumps 25

Customizing SVC dump contents 26
Tailoring SVC dumps 35
Analyzing summary SVC dumps 35

SUMDUMP output for SVC-Entry SDUMPX . . 37
SUMDUMP output for branch-entry SDUMPX . 37
Analyzing disabled summary dumps 38
Analyzing suspend summary dumps 38

Analyzing an SVC dump 39
Specifying the source of the dump. 39
Formatting the SVC dump header 40
Looking at the dump title 41

Displaying the incident token, time and type of
dump 42
Locating error information 43
Analyze TCB structure 46
Examining the LOGREC buffer 48
Examining the system trace 50
Looking at the registers 50
Other useful reports for SVC dump analysis . . 52
Reading the SDUMPX 4K SQA buffer 53

Chapter 3. Transaction dump 55
Planning data sets for transaction dumps 55

Planning data set management for transaction
dumps 55
Using preallocated dump data sets 56
Setting up allocation authority 56
Choices for IEATDUMP Data Sets 56

Obtaining transaction dumps 58
Printing, viewing, copying, and clearing a dump
data set. 59
Contents of transaction dumps 59

Customizing transaction dump contents 59

Chapter 4. Stand-alone dump 65
Planning for stand-alone dump. 66

Should I take a stand-alone dump to DASD or to
tape? 66
Can I use my current version of the stand-alone
dump program to dump a new version of z/OS?. 70

Creating the stand-alone dump program 70
MNOTES from the AMDSADMP macro 70
Coding the AMDSADMP macro 75
Using the AMDSADDD utility 88

Generating the stand-alone dump program 96
One-stage generation 96
Two-stage generation 103

Running the stand-alone dump program 107
Procedure A: Initialize and run stand-alone
dump 108
Procedure B: Restart stand-alone dump. . . . 112
Procedure C: ReIPL stand-alone dump 113
Procedure D: Dump the stand-alone dump
program 113
Running the stand-alone dump program in a
sysplex 113

Capturing a stand-alone dump quickly 115
Minimize the operator actions 115
Get a partial stand-alone dump 115

Copying, viewing, and printing stand-alone dump
output 116

Copying the dump to a data set 116
Viewing stand-alone dump output 118
Printing stand-alone dump output 119

Message output 119

© Copyright IBM Corp. 1988, 2015 iii

Stand-alone dump messages on the 3480, 3490,
or 3590 display 120

Analyzing stand-alone dump output 121
Collecting initial data. 121
Analyzing an enabled wait 124
Analyzing a disabled wait 128
Analyzing an enabled loop 128
Analyzing a disabled loop 129
SLIP problem data in the SLIP work area . . . 129
Problem data saved by first level interrupt
handlers 130

Chapter 5. ABEND dump 135
Synopsis of ABEND dumps 136
Obtaining ABEND dumps 137

Data set for dump. 138
Process for obtaining ABEND dumps 139

Printing and viewing dumps 141
Contents of ABEND dumps 142

Determining current ABEND dump options . . 142
Default contents of summary dumps in ABEND
dumps 146

Customizing ABEND dump contents 147
Customizing SYSABEND dump contents . . . 148
Customizing SYSMDUMP dump contents . . . 150
Customizing SYSUDUMP dump contents . . . 151

Analyzing an ABEND dump 153
Analysis Procedure 154

Chapter 6. SNAP dump 157
Obtaining SNAP dumps. 157
Customizing SNAP dump contents 160

Customizing through installation exits 160
Customizing through the SNAP or SNAPX
macro 160

Chapter 7. The dump grab bag 163
Problem data for storage overlays 163

Analyzing the damaged area 163
Common bad addresses 164

Problem data from the linkage stack. 164
Problem data for modules 165

Processing modes 165
Problem data from recovery work areas 166
Problem data for ACR 167

Pre-Processing phase data 167
Data obtained by IPCS 167

Problem data for machine checks 167

Chapter 8. System trace 169
Customizing system tracing 169

Increasing the size of the system trace table . . 169
Tracing branch instructions 170

Receiving system trace data in a dump 171
Formatting system trace data in a dump 171
Reading system trace output 171

Example of a system trace in a dump 172
Summary of system trace entry identifiers . . . 172
ACR trace entries 174
AINT trace entries. 176

ALTR trace entries. 177
BR trace entries. 178
BSG, PC, PR, PT, PTI, SSAR and SSIR trace
entries 179
CALL, CLKC, EMS, EXT, I/O, MCH, RST, and
SS trace entries 181
CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries 183
DSP, SRB, SSRB, and WAIT trace entries . . . 186
MODE and MOBR trace entries 187
PCIL trace entries 188
PCIS trace entries 190
PDMX trace entries 191
PGM, SPER and SPR2 trace entries 192
RCVY trace entries 193
SPIN trace entries 199
SSRV trace entries 204
SUSP trace entries 214
SVC, SVCE, and SVCR trace entries 215
TIME trace entries 217
USRn trace entries. 218

Chapter 9. Master trace 221
Master trace and the hardcopy log 221
Customizing master trace 221
Requesting master trace 222
Receiving master trace 222
Reading master trace data 223

Master trace output formatted in a dump . . . 223
Master trace table in storage 224

Chapter 10. The Generalized Trace
Facility (GTF) 229
GTF and IPCS 230

GTF and the GTRACE macro 230
Using IBM defaults for GTF 230

The IBM-Supplied parmlib member of GTF
trace options 230
The IBM-Supplied cataloged procedure. . . . 230

Customizing GTF 232
Defining GTF trace options 232
Setting up a cataloged procedure 232
Determining GTF's storage requirements . . . 237

Starting GTF 238
Using the START command to invoke GTF . . 239
Specifying or changing GTF trace options
through system prompting 240
Examples of starting GTF 241
Starting GTF to trace VTAM remote network
activity 244

Stopping GTF 244
GTF trace options 246

Combining GTF options 251
Examples of sample prompting sequences . . . 257

Receiving GTF traces 260
Combining, extracting, and merging GTF trace
output. 261
Merging trace output 262

Reading GTF output 262
Formatted GTF trace output 264

iv z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

||

||
||
||

Trace record identifiers 265
Example of formatted GTF trace output . . . 266

Formatted trace records for events 268
Time stamp records 268
Source index records 269
Lost event records 269
ADINT trace records 270
CCW trace records 270
CSCH and HSCH trace records 272
DSP and SDSP trace records 274
EOS, INTG, IO, IOCS, and PCI trace records 276
EXT trace records 280
FRR trace records 281
HEXFORMAT, SUBSYS, and SYSTEM trace
records 283
IOX trace records 284
LSR trace records 287
MSCH trace records 288
PCIDMX trace records 289
PCILG trace records 289
PCISTG trace records 290
PGM and PI trace records 291
RNIO trace records 293
RSCH trace records 294
SLIP trace records 295
SLIP standard trace record 295
SLIP standard/user trace record 298
SLIP user trace record 299
SLIP debug trace record 299
SRB trace records 300
SRM trace records 302
SSCH trace records 303
STAE trace records 304
SVC and SVCR trace records 305
TCW trace records. 308
USR trace records 311
Unformatted USR trace record. 312
Formatted USR trace record 312
USRF9 trace record for VSAM 313
USRFD trace record for VTAM 314
USRFE trace record for BSAM, QSAM, BPAM,
and BDAM 314
USRFF trace record for open/close/EOV
abnormal end 315
USRFF trace record for user requested work
area 315
XSCH trace record. 316
Event Identifiers (EIDs) for USR trace records 317
Format Identifiers (FIDs) for USR trace records 318

Unformatted GTF trace output 319
Control records 319
Unformatted lost event records 321
User data records 322
System data records 323
Unformatted trace records for events 324

Chapter 11. The generic tracker
facility 343
References for IBM tracked events 346

Chapter 12. Component trace 347
Planning for component tracing 348

Create CTncccxx parmlib members for some
components 349
Select the trace options for the component trace 354
Decide where to collect the trace records . . . 355

Obtaining a component trace 357
Request component tracing to address space or
data space trace buffers 357
Request writing component trace data to trace
data sets 360
Create a parmlib member 363
Request component tracing for systems in a
sysplex 365
Verifying component tracing 367
Verify that the writer is active 369

Viewing the component trace data 369
SYSAPPC component trace 371

Requesting a SYSAPPC trace 371
Formatting a SYSAPPC trace 375
Output from a SYSAPPC Trace 378
FMH-5 trace data 381

SYSAXR component trace 384
Requesting a SYSAXR trace 385
Formatting a SYSAXR trace 387
Output from a SYSAXR Variables Trace . . . 387

SYSBCPII component trace 388
Requesting a SYSBCPII trace 389
Formatting a SYSBCPII trace 390
Output from a SYSBCPII trace. 390

SYSBHI component trace 392
Requesting a SYSBHI trace 392
Formatting a SYSBHI trace 394
Output from a SYSBHI trace 394

SYSCEA component trace 396
Requesting a SYSCEA trace. 396
Formatting a SYSCEA trace. 398
Output from a SYSCEA trace 398

SYSDLF component trace 399
Requesting a SYSDLF trace 399
Formatting a SYSDLF trace 399
Output from a SYSDLF trace 399

SYSDSOM component trace 401
Requesting a SYSDSOM trace 401
Formatting a SYSDSOM trace 401
Output from a SYSDSOM trace 402

SYSGRS component trace 403
Requesting a SYSGRS trace 404
Formatting a SYSGRS trace 408
Output from a SYSGRS trace 408

SYSHZS component trace 409
Requesting a SYSHZS trace. 410
Formatting a SYSHZS trace. 412
Output from a SYSHZS trace 412

SYSIEFAL component trace 413
Requesting a SYSIEFAL trace 413
Formatting a SYSIEFAL trace 417
Output from a SYSIEFAL trace 418

SYSIOS component trace 419
Requesting a SYSIOS trace 420
Formatting a SYSIOS trace 423

Contents v

||

||
||
||

|
||
||

||
||
||
||

CTRACE COMP(SYSIOS) subcommand output 423
SYSJES component trace. 425

Requesting a SYSJES trace 426
Formatting a SYSJES trace 429
Output from a SYSJES trace 430

SYSjes2 component trace 435
Requesting a SYSjes2 trace 435
Formatting SYSjes2 sublevel trace Information 435
Output from a SYSjes2 trace 436

SYSLLA component trace 437
Requesting a SYSLLA trace 438
Formatting a SYSLLA trace 438

SYSLOGR component trace. 438
Obtaining a dump of system logger information 439
Requesting a SYSLOGR trace 441
Formatting a SYSLOGR trace 444
Output from a SYSLOGR trace 445

SYSOMVS component trace 446
Requesting a SYSOMVS trace 446
Formatting a SYSOMVS trace 449
Output from a SYSOMVS trace 451

SYSOPS component trace 458
Requesting a SYSOPS trace 458
Formatting a SYSOPS trace 461
Output from a SYSOPS trace 462

SYSRRS component trace 463
Requesting a SYSRRS trace 464
Formatting a SYSRRS trace 467
Output from a SYSRRS trace 468

SYSRSM component trace 470
Requesting a SYSRSM trace 471
Formatting a SYSRSM trace 485
Output from a SYSRSM trace 486

SYSSPI component trace. 487
Requesting a SYSSPI trace 487
Formatting a SYSSPI trace 488

SYSTTRC transaction trace 488
SYSVLF component trace 488

Requesting a SYSVLF trace 488
Formatting a SYSVLF trace 489
Output from a SYSVLF trace 489

SYSWLM component trace 492
Requesting a SYSWLM trace 492
Formatting a SYSWLM trace 493
Output from a SYSWLM trace 493

SYSXCF component trace 494
Requesting a SYSXCF trace 495
Formatting a SYSXCF trace 498
Output from a SYSXCF trace 499

SYSXES component trace 499
Requesting a SYSXES trace 502
Formatting a SYSXES trace 504
Output from a SYSXES trace 505

Chapter 13. Transaction trace 507
How transaction trace works 507
Transaction trace commands 507

The TRACE TT command 508
DISPLAY TRACE,TT 509

Using IPCS to view transaction trace output . . . 510

Chapter 14. GETMAIN, FREEMAIN,
STORAGE (GFS) trace 513
Starting and stopping GFS trace 513
Receiving GFS trace data 514
Formatted GFS trace output 514
Unformatted GFS trace output. 516

Chapter 15. Recording logrec error
records 519
Collection of software and hardware information 519
Choosing the correct logrec recording medium . . 520
Initializing and reinitializing the logrec data set 520

Initializing the logrec data set 520
Reinitializing the logrec data set 521

Defining a logrec log stream 522
Error recording contents 524

Logrec data set header record 525
Logrec data set time stamp record 525
Types of logrec error records 526

Obtaining information from the logrec data set . . 527
Using EREP 527

Obtaining records from the logrec log stream. . . 530
Using System Logger services to obtain records
from the logrec log stream 530
Using EREP to obtain records from the logrec
log stream 530

Obtaining information from the logrec recording
control buffer 535

Formatting the logrec buffer 536
Finding the logrec and WTO recording control
buffers 536
Reading the logrec recording control buffer . . 536

Interpreting software records 537
Detail edit report for a software record 537

Chapter 16. AMBLIST: Map load
modules and program objects 545
Obtaining AMBLIST output 546

Specifying the JCL statements 546
Controlling AMBLIST processing 546
Examples of running AMBLIST 551
List the contents of an object module 551
Map the CSECTs in a load module or program
object 552
Trace modifications to the executable code in a
CSECT 554
List the modules in the link pack area and the
contents of the DAT-on nucleus 556
Examples for z/OS UNIX System Services file
support 557

Reading AMBLIST output 557
Module summary 558
LISTOBJ outputs 562
LISTLOAD OUTPUT=MODLIST output . . . 570
LISTLOAD OUTPUT=XREF output 585
LISTLOAD OUTPUT=MAP 591
LISTLOAD OUTPUT=XREF output (comparison
of load module and program object version 1) . 591
LISTLOAD OUTPUT=BOTH Output 593
LISTIDR output 596

vi z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

LISTLPA output 599

Chapter 17. SPZAP: Modify data in
programs and VTOCs 601
Planning for SPZAP 601
Inspecting and modifying data 601

Inspecting and modifying a load module or
program object 602
Inspecting and modifying a data record . . . 609

Updating the System Status Index (SSI) 612
Running SPZAP 613

Using JCL and control statements to run SPZAP 614

Chapter 18. AMATERSE: Pack and
unpack a data set 635
Planning for AMATERSE 635
Invoking AMATERSE 636

Specifying the JCL statements for AMATERSE 636
Invoking AMATERSE from a problem program . . 637
Additional considerations for AMATERSE 638

Restrictions for AMATERSE 638
Allocation considerations 639
Space considerations 639

Chapter 19. AMAPDUPL: Problem
Documentation Upload Utility 641
Planning to use PDUU 642

Prerequisites and restrictions for PDUU . . . 642
JCL statements for PDUU 642

JCL examples for PDUU. 645
Return codes for PDUU 651

Chapter 20. Dump suppression. . . . 653
Using DAE to suppress dumps 653

Performing dump suppression 653
Planning for DAE dump suppression 657
Accessing the DAE data set 660
Stopping, starting, and changing DAE 662
Changing DAE processing in a Sysplex. . . . 662

Using a SLIP command to suppress dumps . . . 663
Using an ABEND macro to suppress dumps . . . 663
Using installation exit routines to suppress dumps 664
Determining why a dump was suppressed . . . 664

Chapter 21. Messages. 667
Producing messages 667
Receiving messages 667

Console 668
Receiving symptom dumps. 668

Planning message processing for diagnosis . . . 669
Controlling message location 670

Chapter 22. Hardware Instrumentation
Services 673

Appendix. Accessibility 675
Accessibility features 675
Consult assistive technologies 675
Keyboard navigation of the user interface 675
Dotted decimal syntax diagrams 675

Notices 679
Policy for unsupported hardware. 680
Minimum supported hardware 681
Trademarks 681

Index 683

Contents vii

|
||

viii z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figures

1. Default name pattern for automatically
allocated dump data set 11

2. Example: verifying dump status 12
3. Example of dump status 13
4. Example: Output from DISPLAY,DUMP

ERRDATA command 24
5. Example: JCL to print, copy, and clear an SVC

dump data set 25
6. Example: Format of IPCS VERBX SUMDUMP

command 36
7. Example: IPCS VERBX SUMDUMP command 36
8. Example: Examining storage 36
9. IPCS Default Values menu 40

10. IPCS primary option menu 41
11. IPCS MVS analysis of dump contents menu 41
12. STATUS WORKSHEET subcommand sample

output — dump title 42
13. Sample output from the STATUS SYSTEM

subcommand 43
14. IPCS Subcommand Entry menu 43
15. Search argument abstract in the STATUS

FAILDATA report 44
16. System mode information in the STATUS

FAILDATA report 44
17. Time of error information in the STATUS

FAILDATA report 45
18. Example: the SUMMARY TCBERROR report 47
19. Sample output from the VERBEXIT LOGDATA

subcommand 49
20. Example: output from the IPCS subcommand

SYSTRACE. 50
21. Sample of the STATUS REGISTERS report 51
22. Sample of the STATUS REGISTERS report run

in z/Architecture mode 52
23. SPFUSER name pattern for automatically

allocated dump data set 58
24. Example: JCL to Print, Copy, and Clear the

Dump Data Set 59
25. Format of AMDSADMP Macro Instruction 76
26. Example: Accepting All Defaults 81
27. Example: Generating an unformatted, tape

resident dump program 81
28. Example: Generating a dump program with

output to DASD 82
29. Example: Generating a dump program with

output to DASD 82
30. Sample Console output from the stand-alone

Dump Program 84
31. Example of valid specifications 87
32. Using AMDSADDD to Allocate and Initialize a

Dump Data Set 93
33. Using AMDSADDD to Allocate and Initialize

an Extended Dump Data Set 94
34. Using AMDSADDD to Clear an Existing

Dump Data Set 94

35. Using AMDSADDD to Reallocate the Dump
Data Set. 95

36. Example: Using JCL to allocate and initialize a
dump data set 95

37. Example: Using JCL to allocate and initialize
an extended format dump data set 96

38. Example: One-stage generation 96
39. Example: One-stage generation of stand-alone

dump to a DASD 98
40. Example: One-stage generation of stand-alone

dump to tape 99
41. One-stage generation JCL for a DASD

(beginning with z/OS V1R12) 101
42. Example: One-stage generation JCL (any

release) for a DASD (any release) 102
43. Example: One-stage JCL (beginning with

z/OS V1R12) for tape 103
44. Example: One-stage JCL (any release) for tape 103
45. Example: Stage-two JCL to assemble the

AMDSADMP macro 104
46. Example: Assembling multiple versions of

AMDSADMP Macro 104
47. Example: Stage-two JCL to assemble the

AMDSADMP macro 106
48. Example: Stage-two JCL to assemble the

AMDSADMP macro 106
49. Example: Stage-Two JCL to assemble the

AMDSADMP macro with overrides 107
50. Example: Using a load parm to perform a

stand-alone dump 111
51. Example: Terminating a stand-alone dump 116
52. Example: Copying stand-alone dump output

from tape to DASD 117
53. Example: Copying stand-alone dump output

from DASD to DASD 117
54. Example: Copying a stand-alone dump from

multiple DASD data sets 118
55. Example: Copying stand-alone dump output

from DASD and tape 118
56. Example: Printing an unformatted stand-alone

dump 119
57. Example: VERBEXIT SYMPTOMS output 122
58. Example: STATUS WORKSHEET output 123
59. Example: STATUS CPU REGISTERS output 124
60. Example: WHERE subcommand output 124
61. Example: IOSCHECK ACTVUCBS

Subcommand output 125
62. Example: ANALYZE subcommand output 125
63. Example: RSMDATA output 125
64. Example: ASMCHECK output 126
65. Example: SUMMARY FORMAT output

(determining ready work) 127
66. Example: SUMMARY FORMAT output

(determining TCB in normal wait) 128
67. Example: SYSTRACE output (recognizing an

enabled loop) 129

© Copyright IBM Corp. 1988, 2015 ix

68. Example: Using IEBPTPCH to print a dump 141
69. Example: Recognizing a pattern 164
70. Example: Viewing a linkage stack entry 165
71. Example: system trace in an SVC dump 172
72. Example: Finding the format for an SVC

entry 173
73. Example: Three trace entries from the

PTRACE macro 219
74. Example: TRACE STATUS output 222
75. Example: DISPLAY TRACE output 222
76. Example of master trace data in a dump

formatted by IPCS 224
77. IBM-Supplied GTFPARM parmlib member 230
78. IBM-Supplied GTF Cataloged Procedure 231
79. GTF storage requirements 238
80. Example: altering one data set 240
81. Example: Altering More Than One Data Set 240
82. Example: Starting GTF with a Cataloged

Procedure 241
83. Example: Starting GTF with internal tracking 242
84. Example: Start GTF, trace output to an

existing data set on tape 242
85. Example: Starting GTF with trace options

stored in SYS1.PARMLIB. 243
86. Example: Starting GTF without trace options

in a member 244
87. Example: Starting GTF to trace VTAM remote

network activity 244
88. Example: recognizing GTF identifier in

DISPLAY A,LIST output 245
89. Example: Starting instances of GTF 246
90. Example: DISPLAY A,LIST command output 246
91. Example: Specifying prompting trace options

SYSP and USRP. 259
92. Example: Specifying prompting trace options 260
93. Example: Consolidating GTF output from

multiple data sets 261
94. Example: Consolidating GTF output from

multiple systems 262
95. Example: Merging GTF output from multiple

systems 262
96. Example: IPCS subcommand entry panel for

GTFTRACE 267
97. Example: GTF record for SSCH events 267
98. Example: GTF records for IO interruption

events 268
99. Example: More GTF records for IO

interruption events. 268
100. Unformatted control record 320
101. Unformatted Lost Event Record 321
102. Unformatted User trace record Format 322
103. Header for Unformatted System trace record

Format. 323
104. Example: Cataloged Procedure for an External

Writer 361
105. Hierarchy of SYSAPPC Component Trace

Options 373
106. CTRACE COMP(SYSAPPC) SHORT

subcommand output 378
107. CTRACE COMP(SYSAPPC) SUMMARY

subcommand output 379

108. CTRACE COMP(SYSAPPC) FULL
subcommand output 381

109. SYSAXR variables trace record header 387
110. Example: SYSBCPII component trace records

formatted with CTRACE COMP(SYSBCPII)
SHORT subcommand 390

111. Example: SYSBCPII component trace records
formatted with CTRACE COMP(SYSBCPII)
FULL subcommand 391

112. Example: formatted IPCS output produced
from CTRACE COMP(SYSBHI) SHORT
subcommand 394

113. Example: formatted IPCS output produced
from CTRACE COMP(SYSBHI) FULL
subcommand 395

114. Example: formatted IPCS output produced
from CTRACE COMP(SYSCEA) FULL
subcommand 398

115. CTRACE COMP(SYSDLF) FULL
subcommand output 400

116. Example: DSOM component trace records
formatted with CTRACE COMP(SYSDSOM)
FULL OPTIONS((SKIPID,SHORTFORM)) . . 402

117. Example: DSOM component trace records
formatted with CTRACE COMP(SYSDSOM)
FULL 402

118. Example: DSOM component trace records
formatted with CTRACE COMP(SYSDSOM)
FULL OPTIONS((SKIPID))
DSN('dsom.trace.dsn'). 402

119. Example: SYSGRS component trace records
formatted with CTRACE COMP(SYSGRS)
SHORT 408

120. Example: SYSGRS component trace records
formatted with the CTRACE COMP(SYSGRS)
TALLY 409

121. Example: SYSHZS component trace records
formatted with the CTRACE COMP(SYSHZS)
FULL 412

122. Example: SYSIEFAL component trace records
formatted with CTRACE COMP(SYSIEFAL)
SHORT subcommand 418

123. Example: SYSIEFAL component trace records
formatted with CTRACE COMP(SYSIEFAL)
FULL subcommand 418

124. Example: Turning on tracing in a CTIJESxx
member 429

125. Example: Return to default in a CTIJESxx
member 429

126. Example: merged output from the four
SYSJES sublevel traces with the TALLY
parameter. 434

127. Example: merged output from both SYSjes2
sublevel traces with FULL parameter . . . 436

128. Example: merged output from both SYSjes2
sublevel traces with SHORT parameter . . . 436

129. Example: system logger component trace
records formatted with CTRACE
COMP(SYSLOGR) subcommand 445

130. SY1 Trace Flow: Part 1 453
131. SY1 Trace Flow: Part 2 454

x z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
||
|
|
||

132. SY2 Trace Flow: Part 1 455
133. SY2 Trace Flow: Part 2 455
134. Control block trace output 456
135. SYSOMVS component trace formatted with

CTRACE COMP(SYSOMVS) SHORT. . . . 456
136. SCCOUNT Function Displaying SYSCALL

Frequency. 457
137. SCCOUNT Function Displaying Function

Code Frequency 457
138. CTRACE COMP(SYSOMVS) FULL

OPTIONS((KERNINFO)) 457
139. Example: OPS component trace records

formatted with CTRACE COMP(SYSOPS)
SHORT subcommand 462

140. Example: OPS component trace records
formatted with CTRACE COMP(SYSOPS)
FULL subcommand 463

141. Example: CTnRRSxx member requests context
services events 467

142. Example: TRACE command requests context
services events 467

143. Example: Using the CTWRSM05 parmlib
member 472

144. Example: VLF component trace records
formatted with CTRACE COMP(SYSVLF)
FULL subcommand 490

145. Example: equesting a SYSWLM component
trace 493

146. Example: SYSWLM component trace records
formatted with CTRACE COMP(SYSWLM)
SHORT subcommand 493

147. Example: SYSWLM component trace records
formatted with CTRACE COMP(SYSWLM)
FULL subcommand 494

148. Example: CTnXESxx member requesting a
SYSXCF trace 498

149. Example: TRACE command for SYSXCF trace 498
150. Example: SYSXCF component trace records

formatted with CTRACE COMP(SYSXCF)
FULL subcommand 499

151. SYSXES SUB Trace Structure 501
152. Example: CTnXESxx member requesting a

SYSXES trace 504
153. Example: TRACE command for SYSXES trace 504
154. Example: formatted SYSXES component trace

records. 505
155. Example: DISPLAY TRACE,TT command

response 510
156. Example: IPCS CTRACE COMP(SYSTTRC)

SHORT response 510
157. Example: IPCS CTRACE COMP(SYSTTRC)

LONG response 511
158. Example of formatted GFS trace output 515
159. Logrec Error Recording Overview. 519
160. Example: Changing the space allocation 521
161. Example: Reinitializing the logrec data set 522
162. Example: Sample JCL of using IXCMIAPU 523
163. Example: Printing a detail edit report 528
164. Example: Printing an event history report 529
165. Example: Printing a detail summary report 530
166. Example: Using SUBSYS parameters 534

167. Example: Listing an object module 551
168. Example: Listing several object modules 552
169. Example: Listing several load modules or

program objects 553
170. Example: Listing several load modules or

program objects 554
171. Example: Listing IDR information for several

load modules 555
172. Example: Listing a system nucleus and the

link pack area 556
173. Example: z/OS UNIX System Services

program object 557
174. Example: z/OS UNIX System Services object

module 557
175. Example: z/OS UNIX System Services control

statement 557
176. Example: Differences in output 557
177. Example: Module summary for a load

module processed by the linkage editor . . . 558
178. Example: Module summary for a program

object processed by the binder 559
179. Example: Output for LISTOBJ with an object

module 562
180. Example: LISTOBJ output with XSD Record 563
181. Example: LISTOBJ output with GOFF Records 563
182. Example: Segment map table for LISTLOAD

OUTPUT=XREF of multiple-text class module 591
183. Example: LISTIDR output for a load module

processed by linkage editor or binder . . . 597
184. Example: LISTIDR output for a program

object processed by binder 598
185. Sample LISTLPA output 600
186. Example: Inspecting and modifying a single

CSECT load module 603
187. Example: Modifying a CSECT in a load

module 604
188. Example: Inspecting and modifying two

CSECTs 605
189. Example: Inspecting and Modifying a CSECT

in z/OS UNIX System Services 606
190. Example: Using SPZAP to modify a CSECT 607
191. Sample Assembly Listing Showing Multiple

Control Sections 609
192. Example: Inspecting and modifying a data

record 610
193. Example: Using SPZAP to modify a data

record 611
194. SSI bytes in a load module directory entry 612
195. Flag bytes in the System Status Index field 613
196. Sample assembler code for dynamic

invocation of SPZAP 618
197. Example: Using the BASE control statement 622
198. Example: Entering SPZAP control statements

through console. 624
199. Example: Using the DUMP control statement

with a class name 625
200. Sample formatted hexadecimal dump 630
201. Sample translated dump 631
202. Sample formatted hexadecimal dump for

PDSE program object module 632

Figures xi

203. Sample translated dump for PDSE data
library 633

204. Example: AMATERSE JCL 636
205. Example: AMATERSE JCL from a problem

prgram 638
206. Simple FTP connection 646
207. FTP connection using a proxy server 647
208. FTP with a proxy user ID 647
209. FTP using the FTPCMDS DD statement 648
210. FTPCMDS data set example. 648
211. FTP specifying port 2121 on TARGET_SYS 648
212. FTP forcing PASSIVE mode 649
213. FTP using a userid.NETRC data set 650
214. FTP connection with the DEBUG DD

statement 650

215. Using SYSUT2 statement for allocating an
unload data set 651

216. Using a multiple record control statement 651
217. Example: An ADYSETxx Member for a

System in a Sysplex 658
218. Example: An ADYSETxx Member with

GLOBAL 658
219. Example: DAE Data Set for Single System 659
220. Example: DAE Data Set Shared by Sysplex

Systems 659
221. Example: Symptom Dump Output 669
222. Change LPAR Security panel for active LPAR 673
223. Activation profile security panel for new

LPAR 674

xii z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
||
||

||
|
||

Tables

1. Selecting a dump 1
2. Selecting a trace 1
3. Selecting a service aid 2
4. Description of dumps 3
5. Description of traces 4
6. Description of service aids 5
7. Sample operator DUMP command members in

SYS1.SAMPLIB 20
8. Customizing SVC dump contents through the

SDATA parameter 27
9. Affects on the CSA storage captured in an SVC

dump 29
10. Customizing SVC dump contents through

summary dumps. 31
11. Customizing SVC dump contents through

operator commands 33
12. Fields in SQA bugger 53
13. Customizing transaction dump contents

through the SDATA Parameter 60
14. Customizing transaction dump contents

through operator commands 63
15. DDNAMES and defaults used by AMDSAOSG 97
16. AMDSAOSG return codes. 99
17. Directing the output of assembly 104
18. Work area pointed to by the PSAWTCOD

field 129
19. Problem data saved by the SVC FLIH for task

and SRB code 130
20. Problem data saved for a program check for

task and SRB code 131
21. Problem data saved by the I/O FLIH for task

and SRB code 132
22. Problem data saved by the external FLIH for

task and SRB code 132
23. Types of ABEND dumps 136
24. Summary: DD statements to specify for

specific ABEND dumps 137
25. Summary: dump contents by parameter 143
26. Default contents of summary dumps in

ABEND dumps 146
27. Customizing SYSABEND dump contents 148
28. Customizing SYSMDUMP dump contents 150
29. Customizing SYSUDUMP dump contents 152
30. Customizing dumps using through the SNAP

or SNAPX macro 160
31. Dumps that have TRT in their default options 171
32. References for system trace entry format

description 173
33. RCVY trace events that require reentry 193
34. Summary of dumps that contain master trace

data. 223
35. How to locate master trace table from CVT 225

36. Combining GTF options 251
37. GTF trace options and corresponding

prompting keywords 252
38. CCW defaults for selected TRACE options 254
39. Event identifiers and the types of events they

represent 257
40. Summary of trce record identifiers 265
41. Event identifiers for USR trace records 317
42. Format identifiers for USR trace records 318
43. DSP trace record offset, size, and description 325
44. Values for DSP minimal trace record 325
45. EXT comprehensive trace record offset, size,

and description 326
46. CCW error codes 330
47. Basic SVC comprehensive trace record 338
48. Summary of BCP component traces that use

the component trace service. 348
49. Determining if a component has a parmlib

member 349
50. Component trace options 351
51. Location of trace buffers for components 356
52. How to request SVC dumps for component

traces 358
53. Subcommands that format component trace

records. 370
54. Requesting SYSAPPC component trace for

APPC/MVS 371
55. CTnAPPxx parameters 371
56. Parameters allowed on TRACE CT 372
57. Parameters allowed on REPLY 372
58. Summary of the title prefixes and

APPC/MVS subcomponents 379
59. FMH-5 trace entries in the SYSAPPC

component trace 381
60. Summary of SYSLOGR component trace

request. 438
61. Example: Using EREP parameters. 534
62. Program object and load module attributes 560
63. PMR number variables for PDUU. 645
64. Return codes for z/OS Problem

Documentation Upload Utility 651
65. Summary of required symptoms 654
66. Summary of optional symptoms 654
67. VRADAE and VRANODAE keys on dump

suppression when SUPPRESS and
SUPPRESSALL keywords are specified in
ADYSETxx 656

68. Examples of when DAE parameters may
change 661

69. Summary of installation exit routines for
dump suppresion 664

70. Suppressing symptom dumps 671

© Copyright IBM Corp. 1988, 2015 xiii

|
||

xiv z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Abstract for MVS Diagnosis: Tools and Service Aids

This information covers the tools and service aids that IBM® provides for use in
diagnosing MVS™ problems.

The first chapter, Chapter 1, “Selecting tools and service aids,” on page 1, contains
a guide on how to select the appropriate tool or service aid for your purposes. It
also provides an overview of all the tools and service aids available,

Each subsequent chapter covers one of the tools or service aids. While topics vary,
the following topics are typically covered for each tool or service aid:
v Customizing and planning information
v Starting and stopping the tool or service aid
v Receiving, formatting, and reading the output from the tool or service aid.

At the beginning of each chapter, there is a short editorial style comment that is
intended to characterize the tool or service aid that is covered in the chapter.

Who must use this information
This information is for anyone who diagnoses software problems that occur on the
operating system. This person is usually a system programmer for the installation.
This information is also for application programmers who are testing their
programs.

This information assumes that the reader:
v Understands basic system concepts and the use of system services
v Codes in Assembler language, and reads Assembler and linkage editor output
v Codes JCL statements for batch jobs and cataloged procedures
v Understands the commonly used diagnostic tasks and aids, such as message

logs, dumps, and the interactive problem control system (IPCS)
v Understands how to search the problem reporting databases
v Understands the techniques for reporting problems to IBM

Where to find more information
Where necessary, this information references information in other documents, using
shortened versions of the information title. For complete titles and order numbers
of the documents for all products that are part of z/OS, see z/OS Information
Roadmap.

© Copyright IBM Corp. 1988, 2015 xv

xvi z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS MVS Diagnosis: Tools and Service Aids
GA32-0905-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2015 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
February 2015

The following changes are made for z/OS Version 2 Release 1 (V2R1) as updated
February 2015. In this revision, all technical changes for z/OS V2R1 are indicated
by a vertical line to the left of the change.

New
v The HCAS (HCSAByASID), HCNO (HCSANoOwner), and HCSY

(HCSASysOwner) options were added to the SDATA parameter. For details, see
“Customized contents using the SDATA parameter” on page 26.

Changed
v The CSA option on the SDATA parameter was updated for high virtual storage.

For details, see “Customized contents using the SDATA parameter” on page 26.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
March 2014

The following changes are made for z/OS Version 2 Release 1 (V2R1) as updated
March 2014. In this revision, all technical changes for z/OS V2R1 are indicated by
a vertical line to the left of the change.

New
v Various new and changed topics document new support for internal flash

memory exploitation. The coupling facility can now migrate objects out to
storage-class memory (SCM) when the number of objects exceeds a calculated
threshold, then it can fetch the objects back into main CF storage when
requested.

v Various new and changed topics document support for the new XCF Note Pad
Service function. The XCF Note Pad Service is a new application programming
interface that allows programs to manipulate notes in an XCF note pad. A note
pad is an abstraction layered on top of the existing coupling facility list structure
interfaces. You can use the new IXCNOTE macro to manipulate data in a
coupling facility list structure, provided the note pad abstraction meets the needs
of the application.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

© Copyright IBM Corp. 1988, 2015 xix

v z/OS Introduction and Release Guide

xx z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 1. Selecting tools and service aids

This topic introduces the tools and service aids that MVS provides for diagnosis.
For the purposes of this document, tools includes dumps and traces, while service
aids include the other facilities provided for diagnosis. For example:
v SVC dump and system trace are tools
v Logrec data set and AMBLIST are service aids.

There are major two topics:
v “How do I know which tool or service aid to select?” - This topic lists problem

types and matches them with the appropriate service aid or the appropriate tool.
Use this topic to select the tool or service aid you need for a particular problem.

v “What tools and service aids are available?” on page 2 - This topic describes
each tools and service aids, including when to use it for diagnosis. Use this topic
when you need an overview of tools and service aids available or to find the
appropriate time to use a particular tool or service aid.

How do I know which tool or service aid to select?
This topic contains tables that provide criterion for selecting a tool or service aid,
depending on the problem or need. The tables show the problem or need, the
corresponding tool or service aid, and the topic or document that covers it in
complete detail. (Most of the detailed information on tools and service aids is in
this document.) Use these tables to quickly find a tool or service aid.

Table 1 provides guidance on how to select the type of dump to use for a specific
problem.

Table 1. Selecting a dump

What is the problem or need? Type of dump to use

Testing of an authorized program or a problem program while it
is running, especially for 64-bit applications

Transaction dump (see Chapter 3, “Transaction
dump,” on page 55)

Testing of a problem program while it is running SNAP dump (see Chapter 6, “SNAP dump,” on
page 157)

Abnormal end of an authorized program or a problem program ABEND dump (see Chapter 5, “ABEND dump,”
on page 135)

System problem when the system continues processing SVC dump (see Chapter 2, “SVC dump,” on page
7)

System problem when the system stops processing or is stopped
by the operator because of slowdown or looping

Stand-alone dump (see Chapter 4, “Stand-alone
dump,” on page 65)

Table 2 provides guidance on how to select the type of trace to use for a specific
problem.

Table 2. Selecting a trace

What is the problem or need? Type of trace to use

System problem: diagnosis requires checking of component
events

Component trace (see Chapter 12, “Component
trace,” on page 347)

© Copyright IBM Corp. 1988, 2015 1

Table 2. Selecting a trace (continued)

What is the problem or need? Type of trace to use

System problem: diagnosis requires detailed checking of one or
two system events

Generalized trace facility (GTF) trace (see
Chapter 10, “The Generalized Trace Facility
(GTF),” on page 229)

System or authorized program problem: diagnosis requires the
messages related to a dump

Master trace (see Chapter 9, “Master trace,” on
page 221)

System problem: diagnosis requires checking many system
events

System trace (see Chapter 8, “System trace,” on
page 169)

System or problem program: diagnosis requires information
about allocation of virtual storage.

GETMAIN, FREEMAIN, STORAGE (GFS) trace
(see Chapter 14, “GETMAIN, FREEMAIN,
STORAGE (GFS) trace,” on page 513)

Table 3 provides guidance on how to select the service aid to use for a specific
problem.

Table 3. Selecting a service aid

What is the problem or need? Type of service aid to use

System or hardware problem: need a starting point for diagnosis
or when diagnosis requires an overview of system and hardware
events in chronological order.

Logrec data set (see Chapter 15, “Recording
logrec error records,” on page 519)

Information about the content of load modules and program
objects or problem with modules on system.

AMBLIST (see Chapter 16, “AMBLIST: Map load
modules and program objects,” on page 545)

Diagnosis requires dynamic change to a program, such as fixing
program errors, inserting a SLIP trap match, or altering a
program to start component trace.

SPZAP (see Chapter 17, “SPZAP: Modify data in
programs and VTOCs,” on page 601)

Need to pack the diagnostic materials for transmission to
another site, and create similar data sets at the receiving site.

AMATERSE (see Chapter 18, “AMATERSE: Pack
and unpack a data set,” on page 635)

Need to eliminate duplicate or unneeded dumps. DAE (see Chapter 20, “Dump suppression,” on
page 653)

Diagnosis requires a trap to catch problem data while a program
is running.

SLIP (see z/OS MVS System Commands)

Diagnosis requires formatted output of problem data, such as a
dump or trace.

IPCS (see z/OS MVS IPCS User's Guide)

What tools and service aids are available?
This topic provides an overview of the tools and service aids in more detail. The
tables that follow contain a brief description of each tool or service aid, some
reasons why you would use it, and a reference to the topic or document that
covers the tool or service aid in detail. (Most of the detailed information on tools
and service aids is in this document.) The tools and service aids are covered in
three tables; the dumps, traces, or service aids are listed in order by frequency of
use.

Table 4 on page 3 lists each type of dump and gives an overview of how they can
be used.

Selecting tools and service aids

2 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 4. Description of dumps

Type of dump Description

ABEND Dump Use an ABEND dump when ending an authorized program or a problem program
because of an uncorrectable error. These dumps show:

v The virtual storage for the program requesting the dump.

v System data associated with the program.

The system can produce three types of ABEND dumps, SYSABEND, SYSMDUMP, and
SYSUDUMP. Each one dumps different areas. Select the dump that gives the areas
needed for diagnosing your problem. The IBM supplied defaults for each dump are:

v SYSABEND dumps - The largest of the ABEND dumps, containing a summary dump
for the failing program plus many other areas useful for analyzing processing in the
failing program.

v SYSMDUMP dumps - Contains a summary dump for the failing program, plus some
system data for the failing task. SYSMDUMP dumps are the only ABEND dumps that
you can format with IPCS.

v SYSUDUMP dumps - The smallest of the ABEND dumps, containing data and areas
only about the failing program.

Reference: See Chapter 5, “ABEND dump,” on page 135 for detailed information.

Transaction Dump
(IEATDUMP)

Similar to SNAP dumps, an application can issue an IEATDUMP macro to dump virtual
storage areas of interest if the application is running. However, the result is an
unformatted dump that must be analyzed using IPCS. See Chapter 3, “Transaction
dump,” on page 55 for details.

SNAP Dump Use a SNAP dump when testing a problem program. A SNAP dump shows one or more
areas of virtual storage that a program, while running, requests the system to dump. A
series of SNAP dumps can show an area at different stages in order to picture a
program's processing, dumping one or more fields repeatedly to let the programmer
check intermediate steps in calculations. SNAP dumps are preformatted, you cannot use
IPCS to format them.

Note that a SNAP dump is written while a program runs, rather than during abnormal
end.

Reference: See Chapter 6, “SNAP dump,” on page 157 for detailed information.

Stand-Alone Dump Use a stand-alone dump when:

v The system stops processing.

v The system enters a wait state with or without a wait state code.

v The system enters an instruction loop.

v The system is processing slowly.

These dumps show central storage and some paged-out virtual storage occupied by the
system or stand-alone dump program that failed. Stand-alone dumps can be analyzed
using IPCS.

Reference: See Chapter 4, “Stand-alone dump,” on page 65 for detailed information.

Selecting tools and service aids

Chapter 1. Selecting tools and service aids 3

Table 4. Description of dumps (continued)

Type of dump Description

SVC Dumps SVC dumps can be used in two different ways:

v Most commonly, a system component requests an SVC dump when an unexpected
system error occurs, but the system can continue processing.

v An authorized program or the operator can also request an SVC dump when they
need diagnostic data to solve a problem.

SVC dumps contain a summary dump, control blocks and other system code, but the
exact areas dumped depend on whether the dump was requested by a macro, command,
or SLIP trap. SVC dumps can be analyzed using IPCS.

Reference: See Chapter 2, “SVC dump,” on page 7 for detailed information.

Table 5 lists each type of trace and gives an overview of how they can be used.

Table 5. Description of traces

Trace Description

Component Trace Use a component trace when you need trace data to report an MVS component problem
to the IBM Support Center. Component tracing shows processing within an MVS
component. Typically, you might use component tracing while recreating a problem.

The installation, with advice from the IBM Support Center, controls which events are
traced for a component.

Reference: See Chapter 12, “Component trace,” on page 347 for detailed information.

GFS Trace Use GFS trace to collect information about requests for virtual storage through the
GETMAIN, FREEMAIN, and STORAGE macro.

Reference: See Chapter 14, “GETMAIN, FREEMAIN, STORAGE (GFS) trace,” on page
513 for detailed information.

GTF Trace Use a GTF trace to show system processing through events occurring in the system over
time. The installation controls which events are traced.

GTF tracing uses more resources and processor time than a system trace. Use GTF when
you are familiar enough with the problem to pinpoint the one or two events required to
diagnose your system problem. GTF can be run to an external data set as well as a
buffer.

Reference: See Chapter 10, “The Generalized Trace Facility (GTF),” on page 229 for
detailed information.

Master Trace Use the master trace to show the messages most recently issued. Master trace is useful
because it provides a log of these messages in a dump. These can be more pertinent to
your problem than the messages accompanying the dump itself.

Reference: See Chapter 9, “Master trace,” on page 221 for detailed information.

System Trace Use system trace to see system processing through events occurring in the system over
time. System tracing is activated at initialization and, typically, runs continuously. It
records many system events, with minimal detail about each. The events traced are
predetermined, except for branch tracing.

This trace uses fewer resources and is faster than a GTF trace.

Reference: See Chapter 8, “System trace,” on page 169 for detailed information.

Table 6 on page 5 describes the service aids and how they can be used.

Selecting tools and service aids

4 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 6. Description of service aids

Service Aid Description

AMATERSE Use the AMATERSE service aid to create a compact image of diagnostic data sets. The
compact image helps to use less space while retaining materials and prepare for efficient
transmission of materials from one site to another, such as to send the materials to IBM
support.

AMBLIST Use AMBLIST when you need information about the content of load modules and
program objects or you have a problem related to the modules on your system.
AMBLIST is a program that provides lots of data about modules in the system, such as a
listing of the load modules, map of the CSECTs in a load module or program object, list
of modifications in a CSECT, map of modules in the LPA (link pack area), and a map of
the contents of the DAT-on nucleus.

Reference: See Chapter 16, “AMBLIST: Map load modules and program objects,” on page
545 for detailed information.

Common Storage
Tracking

Use common storage tracking to collect data about requests to obtain or free storage in
CSA, ECSA, SQA, and ESQA. This is useful to identify jobs or address spaces using an
excessive amount of common storage or ending without freeing storage.

Use RMF™ or the IPCS VERBEXIT VSMDATA subcommand to display common storage
tracking data.

References:

v See z/OS MVS Initialization and Tuning Guide for detailed information on requesting
common storage tracking.

v See the VSM chapter of z/OS MVS Diagnosis: Reference for information on the IPCS
VERBEXIT VSMDATA subcommand.

DAE Use dump analysis and elimination (DAE) to eliminate duplicate or unneeded dumps.
This can help save system resources and improve system performance.

Reference: See Chapter 20, “Dump suppression,” on page 653 for detailed information.

IPCS Use IPCS to format and analyze dumps, traces, and other data. IPCS produces reports
that can help in diagnosing a problem. Some dumps, such as SNAP and SYSABEND and
SYSUDUMP ABEND dumps, are preformatted, and are not formatted using IPCS.

Reference: See z/OS MVS IPCS User's Guide for detailed information.

Logrec Data Set Use the logrec data set as a starting point for problem determination. The system records
hardware errors, selected software errors, and selected system conditions in the logrec
data set. Logrec information gives you an idea of where to look for a problem, supplies
symptom data about the failure, and shows the order in which the errors occurred.

Reference: See Chapter 15, “Recording logrec error records,” on page 519 for detailed
information.

SLIP Traps Use serviceability level indication processing (SLIP) to set a trap to catch problem data.
SLIP can intercept program event recording (PER) or error events. When an event that
matches a trap occurs, SLIP performs the problem determination action that you specify:

v Requesting or suppressing a dump.

v Writing a trace or a logrec data set record.

v Giving control to a recovery routine.

v Putting the system in a wait state.

Reference: See the SLIP command in z/OS MVS System Commands for detailed
information.

Selecting tools and service aids

Chapter 1. Selecting tools and service aids 5

Table 6. Description of service aids (continued)

Service Aid Description

SPZAP Use the SPZAP service aid to dynamically update and maintain programs and data sets.
For problem determination, you can use SPZAP to:

v Fix program errors by replacing a few instructions in a load module or member of a
partitioned data set (PDS).

v Insert an incorrect instruction in a program to force an ABEND or make a SLIP trap
work.

v Alter instructions in a load module to start component trace.

v Replace data directly on a direct access device to reconstruct a volume table of
contents (VTOC) or data records that were damaged by an input/output (I/O) error or
program error.

Reference: See Chapter 17, “SPZAP: Modify data in programs and VTOCs,” on page 601
for detailed information.

Selecting tools and service aids

6 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 2. SVC dump

An SVC dump provides a representation of the virtual storage for the system when
an error occurs. Typically, a system component requests the dump from a recovery
routine when an unexpected error occurs. However, an authorized program or the
operator can also request an SVC dump when diagnostic dump data is needed to
solve a problem.

An SVC dump comes in the following types, depending on how it was requested.
Note that the type of dump requested determines its contents.
v Asynchronous SVC dump (scheduled SVC dump):

The system issues an instruction or the caller uses a combination of parameters
on the SVC dump macro invocation. SVC dump captures all of the dump data
into a set of data spaces then writes the dump data from the data spaces into a
dump data set. The system is available for another SVC dump upon completion
of the capture phase of the dump. In an asynchronous SVC dump, the summary
dump data is captured first and can be considered more useful for diagnosis.

v Synchronous SVC dump:

The requester's SVC dump macro invocation issues an instruction to obtain the
dump under the current task. The system returns control to the requester once
the dump data has been captured into a set of data spaces. SVC dump
processing then writes the dump data from the data spaces into a dump data
set. The system is available for another SVC dump upon completion of the
capture phase of the dump. In a synchronous SVC dump, the summary dump
data is captured last.

Each SVC dump also contains a summary dump, if requested. Because dumps
requested from disabled, locked, or SRB-mode routines cannot be handled by SVC
dump immediately, system activity overwrites much useful diagnostic data. The
summary dump supplies copies of selected data areas taken at the time of the
request. Specifying a summary dump also provides a means of dumping many
predefined data areas simply by specifying one option. Summary dump data is
dumped using ASID(X'aaaa') SUMDUMP records and ASID(X'aaaa')
DSPNAME(dddddddd) SUMDUMP records. The IPCS user has the option of
causing storage dumped in these records also to be mapped as ASID(X'aaaa') or
ASID(X'aaaa') DSPNAME(dddddddd) storage. Message BLS18160D is displayed
during dump initialization when TSO prompting and IPCS confirmation options
permit. If the TSO prompting and the IPCS confirmation options don't permit, the
additional mapping is performed. Selective display of ASID(X'aaaa') SUMDUMP or
ASID(X'aaaa') DSPNAME(dddddddd) SUMDUMP storage might be requested by
referring to those address spaces.

This section includes information system programmers need to know about SVC
dump and SVC dump processing:
v “Using automatically allocated dump data sets” on page 8
v “Using pre-allocated dump data sets” on page 13
v “Choosing SVC dump data sets” on page 15
v “Obtaining an SVC dump” on page 17
v “Printing, viewing, copying, and clearing a pre-allocated or SYS1.DUMPxx data

set” on page 24

© Copyright IBM Corp. 1988, 2015 7

v “Contents of SVC dumps” on page 25
v “Analyzing summary SVC dumps” on page 35
v “Analyzing an SVC dump” on page 39

See z/OS MVS Programming: Authorized Assembler Services Guide for information any
programmer needs to know about programming the SDUMP or SDUMPX macros
to obtain an SVC dump:
v Deciding when to request an SVC dump
v Understanding the types of SVC dumps that MVS produces
v Designing an application program to handle a specific type of SVC dump
v Identifying the data set to contain the dump
v Defining the contents of the dump
v Suppressing duplicate SVC dumps using dump analysis and elimination (DAE)

Planning data set management for SVC dumps
SVC dump processing stores data in dump data sets that the system allocates
automatically, as needed, or that you pre-allocate manually. IBM recommends the
use of automatically allocated dump data sets whenever possible. Only the space
required for the dump being written is allocated. The dump is written using a
system-determined block size, so write time is reduced. SMS extended attributes,
such as compression and striping, can be assigned to further reduce the amount of
space required and the time to write.

IBM recommends using extended format sequential data sets as dump data sets for
SVC Dumps. For the reasons why, see “Choosing SVC dump data sets” on page
15.

Use pre-allocated dump data sets only as a back up, in case the system is not able
to automatically allocate a data set. Otherwise, the dump can become truncated,
making error diagnosis difficult.

Using automatically allocated dump data sets
SVC dump processing supports automatic allocation of dump data sets at the time
the system writes the dump to DASD. Automatically allocated dumps will be
written using the system-determined block size. The dump data sets can be
allocated as SMS-managed or non-SMS-managed, depending on the VOLSER or
SMS classes defined on the DUMPDS ADD command. When the system captures a
dump, it allocates a data set of the correct size from the resources you specify. See
“Choosing SVC dump data sets” on page 15 for DFSMS support of extended
format sequential data sets. Using Extended Format Sequential data sets, the
maximum size of the dump can exceed the size allowed for non-SMS managed
data sets.

If automatic allocation fails, pre-allocated dump data sets are used. If no
pre-allocated SYS1.DUMPnn data sets are available, message IEA793A is issued,
and the dump remains in virtual storage. SVC Dump periodically retries both
automatic allocation and writing to a pre-allocated dump dataset until successful
or until the captured dump is deleted either by operator intervention or by the
expiration of the CHNGDUMP MSGTIME parameter governing message IEA793A.
If you set the MSGTIME value to 0, the system will not issue the message, and it
deletes the captured dump immediately.

SVC dump

8 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Naming automatically allocated dump data sets
The installation has control of the name of the data sets created by the automatic
allocation function, and you can select a name-pattern to allow for dump data set
organization according to your needs. The name is determined through an
installation-supplied pattern on the DUMPDS command. A set of symbols is
available so that you can include the following kinds of information in the names
of your automatically allocated dump data sets:
v System name
v Sysplex name
v Job name
v Local and GMT time and date
v Sequence number

You can specify a name-pattern to generate any name acceptable under normal
MVS data set name standards. The only requirement is that you include the
sequence number symbol to guarantee each automatically allocated dump data set
has a unique name.

Using automatic allocation of SVC dump data sets
You can specify the command instructions to enable or disable automatic allocation
either in the COMMNDxx parmlib member, to take effect at IPL, or from the
operator console at any time after the IPL, to dynamically modify automatic
allocation settings. The DUMPDS command provides the following flexibility:
v Activate automatic allocation of dump data sets
v Add or delete allocation resources
v Direct automatic allocation to SMS or non-SMS managed storage
v Deactivate automatic allocation of dump data sets
v Reactivate automatic allocation of dump data sets
v Change the dump data set naming convention

Set up automatic allocation with the following steps:
v Set up allocation authority
v Establish a name pattern for the data sets
v Define resources for storing the data sets
v Activate automatic allocation

After automatic allocation of these SVC dump data sets is active, allocation to a
DASD volume is done starting with the first resource allocated via the DUMPDS
ADD command. When allocation to that volume is no longer successful, the next
resource is then used.

SVC Dump data sets can be SMS-managed or non-SMS-managed. If the DUMPDS
ADD command defined SMS classes, then the allocation will first pass these classes
to the ACS routines to try to allocate the SVC dump data set as SMS-managed. If
this allocation is not successful for any reason, or if no SMS classes are defined,
then the data set allocation will use the DASD volumes that were defined on the
DUMPDS ADD command, and the SVC Dump data set will be allocated as
non-SMS-managed.

SVC Dump data sets allocated as non-SMS-managed must be single volume; they
can have multiple extents but they cannot span multiple volumes.
Non-SMS-managed DASD does not support striping. SVC Dump data sets

SVC dump

Chapter 2. SVC dump 9

allocated as SMS-managed can be multi-volume only if they are allocated as
striped data sets. Striping is an attribute that must be defined in the SMS classes.
Striping and compression, another SMS attribute, can be used to allocate datasets
that are larger than those allowed for a pre-allocated or non-SMS managed dataset.

Note: You must update automatic class selection (ACS) routines to route the
intended data set into SMS-management so that it is assigned a storage class.

Setting up allocation authority
To allocate dump data sets automatically, the DUMPSRV address space must have
authority to allocate new data sets. Do the following:
1. Associate the DUMPSRV address space with a user ID.

Use the RACF® STARTED general resource class or the RACF Started
Procedures Table, ICHRIN03, to associate DUMPSRV with a user id.

2. Authorize DUMPSRV's user ID to create new dump data sets using the
naming convention in the following topic.

With the high-level qualifier of SYS1, the data sets are considered group data
sets. You can assign CREATE group authority to the DUMPSRV user ID within
that group.

See z/OS Security Server RACF System Programmer's Guide for information about the
RACF STARTED general resource class, and the RACF Started Procedures Table.
See z/OS Security Server RACF Security Administrator's Guide for information on
using the RACF STARTED general resource class, and on controlling creation of
new data sets.

Establishing a name pattern
Establishing the name pattern for the dump data sets is accomplished by the
DUMPDS NAME= command. Names must conform to standard data set naming
conventions and are limited to 44 characters, including periods used as delimiters
between qualifiers. For a complete description, see z/OS DFSMS Using Data Sets. To
allow meaningful names for the dump data sets, several symbols are provided that
are resolved when the dump data is captured in virtual storage. For a complete list
of the symbols you can use, see the explanation of DUMPDS NAME= in z/OS MVS
System Commands.

When determining the pattern for the dump data set names, consider any
automation tools you may have at your installation that work on dump data sets.
Also, the automatic allocation function requires you to include the &SEQ. sequence
number symbol in your data set name pattern to guarantee unique data set names.
If you do not use the sequence number, the system rejects the name pattern with
message IEE855I and the previous name pattern remains in effect.

By default, the system uses one of three name patterns. The system typically uses
the normal pattern SYS1.DUMP.D&DATE..T&TIME..&SYSNAME..S&SEQ;. The
system automatically uses S&SYSNAME convention when the system name begins
with numeric and is less than 8 characters long. For example:
v SYS1.DUMP.D&YYMMDD..T&HHMMSS..S&SYSNAME..S&SEQ. or
v SYS1.DUMP.D&YYMMDD..T&HHMMSS..S&SYSNAME(2&colon.8)..S&SEQ

when the system name begins with numeric and is 8 characters long.

Figure 1 on page 11 describes the default name pattern.

SVC dump

10 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: While the default data sets begin with a high-level qualifier of SYS1, this
convention is no longer a requirement for data sets named by your installation.

Notice that the symbols are resolved into date, time, and sequence numerics, so
they are preceded by an alphabetic character to conform to MVS data set name
requirements. Also, the symbol starts with an ampersand (&) and ends with a
period (.), resulting in a name pattern that has double periods when a symbol
finishes a qualifier. One period ends the symbol, and the second serves as the
delimiter between qualifiers of the generated data set name.

Defining resources for dump data sets
If allocation is active, SVC dump data sets can be automatically allocated as soon
as resources are defined to store them. If you have not changed the name pattern,
then the system default is used. See “Establishing a name pattern” on page 10. You
can define dump data set resources using the DUMPDS ADD,VOL=volser (for
DASD volumes) and DUMPDS ADD,SMS=class (for SMS classes) commands. You
can remove resources using the DUMPDS DEL,VOL=volser and DUMPDS
DEL,SMS=class commands. Automatic allocation is directed to SMS classes in
preference to DASD volumes.

When automatic allocation is inactive, dumps are written to pre-allocated
SYS1.DUMPxx data sets. Deactivating automatic allocation does not result in the
loss of resource definitions, however. So, if automatic allocation is reactivated, all
the previous resources remain available for receiving automatically allocated dump
data sets. Similarly, removing the last allocation resource will not cause automatic
allocation to be inactive. Removing the last allocation resource effectively ‘turns off’
the function, though, just as if all the defined resources were full. In both cases the
system responds with message IEA799I and dumps are written to pre-allocated
SYS1.DUMPxx data sets if they exist. Otherwise the dump remains captured until:
v You create a place for it
v The established time limit, as indicated by the CHNGDUMP MSGTIME

parameter, expires
v The operator deletes the dump.

Activating automatic allocation
By default, automatic allocation is inactive after IPLing the system. However, you
can add to your COMMNDxx parmlib member the DUMPDS NAME= command,
any DUMPDS ADD commands, and the DUMPDS ALLOC=ACTIVE command to
activate automatic allocation during IPL.

SYS1 . DUMP . D &DATE. . T &TIME. . &SYSNAME. . S &SEQ.
─┬── │ ─┬── │ │ ──┬─── │ │ ──┬─── │ ───┬───── │ │ ──┬──
│ ┌┘ │ │ │ │ │ │ │ │ │ │ │ │
│ │ ┌─┘ │ │ │ │ │ │ │ │ │ │ │
│ │ │ ┌──┘ │ │ │ │ │ │ │ │ │ │
│ │ │ │┌───┘ │ │ │ │ │ │ │ │ │
│ │ │ ││ ┌────┘ │ │ │ │ │ │ │ │
│ │ │ ││ │ ┌─────┘ │ │ │ │ │ │ │
│ │ │ ││ │ │┌──────┘ │ │ │ │ │ │
│ │ │ ││ │ ││ ┌───────┘ │ │ │ │ │
│ │ │ ││ │ ││ │ ┌────────┘ │ │ │ │
│ │ │ ││ │ ││ │ │ ┌─────────┘ │ │ │
│ │ │ ││ │ ││ │ │ │ ┌────────────┘ │ │
│ │ │ ││ │ ││ │ │ │ │┌─────────────┘ │
│ │ │ ││ │ ││ │ │ │ ││ ┌──────────────┘
│ │ │ ││ │ ││ │ │ │ ││ │
↓ ↓ ↓ ↓↓ ↓ ↓↓ ↓ ↓ ↓ ↓↓ ↓
SYS1.DUMP.D930428.T110113.SYSTEM1.S00000

Figure 1. Default name pattern for automatically allocated dump data set

SVC dump

Chapter 2. SVC dump 11

If you have turned off automatic allocation using ALLOC=INACTIVE, reactivate it
by entering the DUMPDS ALLOC=ACTIVE operator command.

Verifying dump status
To verify dump status issue the DISPLAY DUMP,STATUS command. For example,
after IPLing SYSTEM1 specifying DUMP=NO as a system parameter, and without
requesting any dumps or specifying any DUMPDS or CHNGDUMP commands,
the output shown in Figure 2 would be expected as a result of the DISPLAY
DUMP,STATUS command:

Now assume that the following steps are performed to establish the automatic
allocation function:
1. Set up your installation data set name pattern using the DUMPDS command:

DUMPDS NAME=&SYSNAME..&JOBNAME..Y&YR4.M&MON..D&DAY.T&HR.&MIN..S&SEQ.

Note: This step is only required if you are not using the default name pattern
as shown in Figure 1 on page 11.

2. Add dump data set resources that can be used by the automatic allocation
function:
DUMPDS ADD,VOL=(SCRTH1,HSM111)
DUMPDS ADD,SMS=(DUMPDA)

3. Activate automatic dump data set allocation using the DUMPDS command:
DUMPDS ALLOC=ACTIVE

Note: These steps can be performed after IPL using the DUMPDS command from
an operator console, or early in IPL by putting the commands in the COMMNDxx
parmlib member and pointing to the member from the IEASYSxx parmlib member
using CMD=xx.

If you use COMMNDxx, you may want to specify DUMP=NO in the IEASYSxx
parmlib member to prevent dumps taken during IPL from being written to
SYS1.DUMPxx data sets.

After issuing the DUMPDS commands shown in steps 1 through 3, requesting
dump status would be as shown Figure 3 on page 13.

IEE852I 10.56.03 SYS1.DUMP STATUS
SYS1.DUMP DATA SETS AVAILABLE=000 AND FULL=000
CAPTURED DUMPS=0000, SPACE USED=00000000M, SPACE FREE=00000500M
AUTOMATIC ALLOCATION IS: INACTIVE

NO SMS CLASSES DEFINED
NO DASD VOLUMES DEFINED
NAME=SYS1.DUMP.D&DATE..T&TIME..&SYSNAME..S&SEQ.

EXAMPLE=SYS1.DUMP.D930324.T105603.SYSTEM1.S00000

Figure 2. Example: verifying dump status

SVC dump

12 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Managing automatically allocated dump data sets
Automatic allocation of dump data sets is managed through the DUMPDS
command. Placing appropriate commands into the COMMNDxx parmlib member
allows the function to be established at IPL.

The DISPLAY DUMP command can display information about the last 100 data
sets that were automatically allocated during the current IPL. Typical dump
inventory management should be done using the Sysplex Dump Directory. The
System Dump Directory provides access to all of the cataloged and added dump
data sets created across system IPLs. Details about using the User and Sysplex
Dump Directory can be found in z/OS MVS IPCS User's Guide.

The installation must manage the space allocated to dump data sets by limiting the
volumes (non-SMS) or the classes (SMS) available for automatic allocation of dump
data sets. z/OS MVS System Commands contains the syntax of the DUMPDS ADD,
DEL, and ALLOC=ACTIVE commands.

For more information about SMS, see z/OS DFSMSdfp Storage Administration.

Using pre-allocated dump data sets
Pre-allocated dump data sets should be used as a backup method to automatic
allocation. Like the automatically allocated dump data sets, pre-allocated dump
data sets will hold SVC dump information for later review and analysis, but have
size and performance limitations that automatically allocated dump data sets do
not have. This section describes how to set up pre-allocated data sets for SVC
dump, including:
v “Allocating SYS1.DUMPxx data sets with secondary extents”
v “Specifying SYS1.DUMPxx data sets” on page 16
v “Controlling SYS1.DUMPxx data sets” on page 17

Allocating SYS1.DUMPxx data sets with secondary extents
Allocate SYS1.DUMPxx data sets using the following requirements:
v Name the data set SYS1.DUMPxx, where xx is decimal 00 through 99.
v Select a device with a track size of 4160 bytes. The system writes the dump in

blocked records of 4160 bytes.
v Initialize with an end-of file (EOF) record as the first record. (If you use ISPF 3.2

to allocate SYS1.DUMPxx data sets, the EOF record will be automatically written
on the first track.)

v Allocate the data set before requesting a dump. Allocation requirements are:
– UNIT: A permanently resident volume on a direct access device.
– DISP: Catalog the data set (CATLG). Do not specify SHR.

SYSTEM1 IEE852I 12.34.18 SYS1.DUMP STATUS 886
SYS1.DUMP DATA SETS AVAILABLE=000 AND FULL=000
CAPTURED DUMPS=0000, SPACE USED=00000000M, SPACE FREE=00000500M
AUTOMATIC ALLOCATION IS: ACTIVE

AVAILABLE SMS CLASSES: DUMPDA
AVAILABLE DASD VOLUMES: SCRTH1,HSM111
NAME=&SYSNAME..&JOBNAME..Y&YR4.M&MON..D&DAY.T&HR.&MIN..S&SEQ.

EXAMPLE=SYSTEM1.#MASTER#.Y1994M01.D26T1634.S00000

Figure 3. Example of dump status

SVC dump

Chapter 2. SVC dump 13

– VOLUME: Place the data set on only one volume. Allocating the dump data
set on the same volume as the page data set could cause contention problems
during dumping, as pages for the dumped address space are read from the
page data set and written to the dump data set.

– SPACE: An installation must consider the size of the page data set that will
contain the dump data. The data set must be large enough to hold the
amount of data as defined by the MAXSPACE parameter on the
CHNGDUMP command, VIO pages, and pageable private area pages.
SVC dump processing improves service by allowing secondary extents to be
specified when large dump data sets are too large for the amount of DASD
previously allocated. An installation can protect itself against truncated
dumps by specifying secondary extents and by leaving sufficient space on
volumes to allow for the expansion of the dump data sets.
For the SPACE keyword, you can specify CONTIG to make reading and
writing the data set faster. Request enough space in the primary extent to
hold the smallest SVC dump expected. Request enough space in the
secondary extent so that the primary plus the secondary extents can hold the
largest SVC dump. The maximum size of a data set is 65,535 tracks. For a
3390 this is 4369 cylinders, and will hold about 2.8 gigabytes of data. The
actual size of the dump depends on the dump options in effect when the
system writes the dump.
Estimate the largest dump size as follows:

Bytes of SDATA options + bytes in largest region size = Result1

Result1 * number of address spaces in dump = Result2
PLPA * 20% = Result3
Bytes of requested data space storage = Result4

Result2 + Result3 + Result4 = Bytes in SVC dump

Where:
- Result1, Result2, Result3, Result 4: Intermediate results
- SDATA options: Described in “Contents of SVC dumps” on page 25
- PLPA: Pageable link pack area

For the size of the smallest dump, use the default options for the SDUMPX
macro. The difference between the largest dump and the smallest dump will be
the size of the secondary extent.

For example, to calculate the largest amount of storage required for a 3390 DASD,
assume that, from the preceding calculations, the records needed for the SVC
dump amount to 43200 kilobytes. There are 11 records per track and 15 tracks per
cylinder. To determine the number of cylinders needed to allocate a data set of this
size, do the following:
v For 43200 kilobytes of storage, you will need space for 10800 SVC dump records

(43200 / 4 kilobytes per record).
v With 11 records per track, you will require 982 (10800 / 11 records) tracks.
v Therefore, the data set would require 66 cylinders (982 / 15 tracks per cylinder)

for allocation.

Note: If you are not receiving the dump data you require, increase the size of
the dump data set. You will receive system message IEA911E.

The system writes only one dump in each SYS1.DUMPxx data set. Before the data
set can be used for another dump, clear it using the DUMPDS command with the
CLEAR keyword.

SVC dump

14 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

See z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU for
information about the default dump options of the SDUMPX macro. See z/OS MVS
System Commands for information about using the DUMPDS command.

Choosing SVC dump data sets
IBM recommends using extended format sequential data sets as dump data sets for
SVC Dumps. Extended format sequential data sets:
v Have a greater capacity than sequential data sets
v Support striping
v Support compression

Greater capacity: Some dump data sets are quite large compared with other data
sets generated by a system. An extended sequential data set can hold the largest
SVC dumps, as much as 128 gigabytes.

Support for striping: Striping spreads sections, or stripes, of a data set across
multiple volumes and uses independent paths, if available, to those volumes. The
multiple volumes and independent paths accelerate sequential reading and writing
of the data set, reducing the time during which dump I/O competes with
production I/O.

It is recommended that the number of stripes match the number of volumes you
use. This combination will yield the best performance because MVS data
management allows random access to any record as though it appeared on a single
volume. This is particularly useful during an IPCS analysis of a dump. The savings
when loading the data set are real but smaller, the result of reducing the number of
times end of volume processing comes into play.

In a striped data set, when the last volume receives a stripe, the next stripes are
placed on the first volume, the second volume, the third, and so on to the last
volume, then back to the first volume.

If you use more than six dozen stripes, the performance benefit of each additional
stripe is much less than the performance benefit of adding the earlier stripes. Keep
in mind that this is talking about the original data set definition. You can not add
stripes to an existing striped data set. You must plan ahead. The faster processing
speeds up moving dump data from relatively expensive data space storage to less
expensive DASD.

Support for compression: Compression allows dump data sets to use less DASD
space. Before using compression, consider the following:
v Compression and decompression trade off processing cycles for more efficient

use of DASD. If hardware compression is not available, the number of
processing cycles is significantly higher.

Using DSNTYPE=LARGE: In z/OS® V1R7 and later releases, sequential data sets
that use DSNTYPE=LARGE are allowable for SVC dumps when the systems that
are involved in processing a DSNTYPE=LARGE data set are migrated to V1R7
prior to their use. If analysis using an earlier release is required, use z/OS V1R7 to
transcribe the dump into a data set supported by the earlier release.

Placing dump data sets in cylinder-managed space: In z/OS V1R11 and later
releases, extended format sequential data sets can be placed in either

SVC dump

Chapter 2. SVC dump 15

track-managed space or cylinder-managed space. SVC dump fully supports
placement of dump data sets in cylinder-managed space.

Finding automatically allocated dump data sets
The AUTODSN= parameter of the DISPLAY DUMP,TITLE operator command
enables you to list up to 100 of the most recent dump data sets that were
automatically allocated during this IPL. No information is preserved about data
sets that were automatically allocated before the last 100. As an example, if you
wanted to see the titles of the last 5 automatically allocated dump data sets, you
would issue:
DISPLAY DUMP,TITLE,AUTODSN=5

For complete information on the use of the DISPLAY DUMP command, see
DISPLAY DUMP in z/OS MVS System Commands.

Communication from the system
The system communicates about automatic allocation of dump data sets using two
messages:
v IEA611I is issued when a complete or partial dump is taken to an automatically

allocated dump dataset. IEA611I is an informational message, it will not be
issued highlighted.

v IEA799I is issued once per captured dump when automatic allocation fails; it
will not be re-issued as a result of automatic allocation failing for subsequent
attempts to allocate the same dump data set unless the reason text is different.

Specifying SYS1.DUMPxx data sets
When planning SYS1.DUMPxx data sets, remember that the data sets frequently
contain sensitive data (user or installation confidential information, logon
passwords, encryption keys, etc.). Protect these data sets with RACF to limit access
to them.

The installation can specify SYS1.DUMPxx data sets in two ways:
v IBM recommends that you use the DUMPDS operator command through the

COMMNDxx parmlib member. Use the DUMPDS ADD command within the
COMMNDxx parmlib member to ensure that all interaction with the dump data
set occurs through the DUMPDS command.
For example, to specifically add data set SYS1.DUMP05, enter:

COM=’DUMPDS ADD,DSN=05’

v During system initialization, in the DUMP parameter in the IEASYSxx parmlib
member.
Specify DUMP=NO in the IEASYSxx parmlib member. Otherwise, all available
data sets will be allocated before the COMMNDxx parmlib member is processed.

The data sets are on direct access only. The maximum number of SYS1.DUMPxx
data sets an installation can have is 100. The direct access data set must be on a
permanently resident volume; that is, the data set must be allocated and cataloged.
These dump data sets cannot be shared by more than one system.

All dump data sets should not be on the same pack. A pack should contain enough
storage to allow the dump data sets to allocate secondary extent space, if needed.

For more information, see the following references:

SVC dump

16 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v See z/OS MVS Initialization and Tuning Reference for information about the
IEACMDxx and IEASYSxx parmlib member.

v See z/OS MVS System Commands for information about using the DUMPDS
command.

Controlling SYS1.DUMPxx data sets
After system initialization, use the following to change and control these data sets:
v Copy the dump from the SYS1.DUMPxx data set to another data set; then clear

the SYS1.DUMPxx data set, so that it can be sued for another dump. You can
use IPCS to format and view or print the copied dump, as described in the
following topic.

v Use the DUMPDS operator command to:
– Add more SYS1.DUMPxx data sets on direct access for SVC dumps.
– Delete SYS1.DUMPxx data sets for SVC dumps.
– Clear a SYS1.DUMPxx data set containing a dump by writing an EOF mark

as the first record. An EOF mark as the first record makes the data set
available for another dump.

A reIPL is not necessary when adding, deleting, or clearing a data set with the
DUMPDS operator command.

v Use the REPLY command to system message IEA793A to cancel a dump.
v Use a post dump exit routine to copy the dump to another data set. IEAVTSEL

is an SVC dump post dump exit name list that lists the module names of
installation exit routines to be given control when dump processing ends.

For more information, see the following references:
v See z/OS MVS Installation Exits for more information about the IEAVTSEL post

dump exit name list.
v See z/OS MVS IPCS Commands for the IPCS COPYDUMP subcommand.
v See z/OS MVS System Commands for the DUMPDS and REPLY operator

commands.

Obtaining an SVC dump
Obtain an SVC dump by:

Using a SDUMP or SDUMPX macro in an authorized program.
Entering the DUMP or SLIP operator command
Setting a SLIP in the IEASLPxx parmlib member.

When z/OS takes an SVC dump, it copies data into the DUMPSRV owned data
spaces and high virtual storage. The collection of data can introduce an unusually
heavy burden on storage resources. The virtual storage load remains until the
dump is written out to a target data set on DASD. The data set can be:

SVC dump data set that is specified on the DCB parameter of the SDUMP or
SDUMPX macro.
Pre-allocated SYS1.DUMPxx data set, or automatically allocated dump data set.

Use the DUMPDS operator command to manage the pre-allocated and
automatically allocated data sets.

When an SVC dump occurs, if normal auxiliary storage use rises above 30%, the
system might experience severe performance problems. The system might also
experience an 03C wait state, which indicates that the system ran out of available

SVC dump

Chapter 2. SVC dump 17

paging slots. You can use the MAXSPACE and AUXMGMT options on the
CHNGDUMP SET, SDUMP command to manage the burden of taking SVC dumps
on a system. Using the options might not be sufficient to eliminate the problems
that are associated with the restricted auxiliary (paging) storage.
v The MAXSPACE value restricts the virtual storage available to the DUMPSRV

address space. When you use MAXSPACE, the installation must tune for the
worst case usage of real and auxiliary storage. The following rules apply:

If the installation does not have a history that can be drawn upon, see
“Allocating SYS1.DUMPxx data sets with secondary extents” on page 13 for
help in determining a maximum data set size. Use a multiple of the data set
size to determine a MAXSPACE value. The installation must predict the size
of the largest dump that it can configure.
The paging resources for the affected systems must also be increased to
accommodate the additional load that is represented by the MAXSPACE
value. The minimum value for defining the additional auxiliary storage
capacity must be three times the MAXSPACE value. Adhering to the
MAXSPACE guideline can maintain utilization within 30%.

v When you specify the AUXMGMT=ON parameter, the installation disregards
first failure data capture (FFDC) to maintain system availability. The following
rules apply:
– No new dumps are allowed when auxiliary storage usage reaches 50%. New

dumps can be initiated after the auxiliary storage usage drops below 35%.
– Current SDUMP data capture stops when auxiliary storage usage exceeds

68%, and generates a partial dump.

For more information about setting the MAXSPACE or AUXMGMT value, see the
CHNGDUMP Command in z/OS MVS System Commands

Requesting dumps from multiple systems

In a sysplex, you probably need dumps from more than one system to collect all of
the problem data. These dumps must be requested at the same time. To request
multiple dumps, use the following procedures on any of the systems that might be
part of the problem:
v Enter a DUMP command with a REMOTE parameter.
v Issue a SDUMPX macro with a REMOTE parameter.
v Create a SLIP trap in an IEASLPxx parmlib member in the shared

SYS1.PARMLIB or in the parmlib on each system.
– Sometimes you cannot predict which system has the problem. Use a ROUTE

operator command to activate the traps on all systems with similar
configurations. Each trap must include a REMOTE parameter to dump all the
other systems that might be involved.

To help you set the requests, the commands and macro can contain the wildcard
characters * and ?. Use wildcard characters when an installation has names that
form patterns to the systems in the sysplex and to the jobs for associated work.

For example, use wildcard characters * and ? to specify job names. Use TRANS? for
the job names TRANS1, TRANS2, and TRANS3 and TRANS* for TRANS1,
TRANS12, and TRANS123.

SVC dump

18 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Issuing a macro for SVC dump
To request an SVC dump iIn an authorized program, use an SDUMP or SDUMPX
macro. The system writes the dump in a SYS1.DUMPxx data set or, if specified in
the macro, in a user-supplied data set.

For example, to dump the default contents listed in “Contents of SVC dumps” on
page 25 to a SYS1.DUMPxx data set, enter the following command:

SDUMPX

If the dump is written to a user-supplied SVC dump data set, the program
provides a data control block (DCB) for the data set, opens the DCB before issuing
the SDUMP or SDUMPX macro, and closes the DCB after the dump is written. For
a synchronous dump, the close should occur when the system returns control to
the requester. For a scheduled dump, the close should occur when the ECB is
posted or when the SRB is scheduled.

As another example, to write a synchronous dump to a data set whose DCB
address is in register 3, you would specify the following command:

SDUMPX DCB=(3)

See z/OS MVS Programming: Authorized Assembler Services Guide for information
about requesting a scheduled SVC dump and a synchronous SVC dump.

Operator activities
From a console with master authority, the operator can enter either of the
following commands:
v DUMP operator command.

The following DUMP operator command will write an SVC dump:
DUMP COMM=(MYDUMP1 5-9-88)

– To a SYS1.DUMPxx data set
– With a dump title of “MYDUMP1 5-9-88”
– With the default contents listed in “Contents of SVC dumps” on page 25
– For a job named MYJOB1
The system will respond with the message:

* 23 IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND

Ask the operator to reply:
REPLY 23,JOBNAME=MYJOB1

Note that if the operator replies REPLY 23,U to IEE094D, the system dumps the
current address space, which is the master scheduler address space. The
operator must use an ASID, JOBNAME, or TSONAME parameter in the reply to
obtain other dumps.
Use the DUMPDS command to produce a scheduled SVC dump.

v SLIP operator command with an ACTION option of STDUMP, SVCD,
SYNCSVCD, or TRDUMP.
For example, the following SLIP operator command will write an SVC dump:
– To a SYS1.DUMPxx data set
– When a program check interruption occurs in a job named MYJOB1
– With the default contents shown in “Contents of SVC dumps” on page 25

SLIP SET,ACTION=SVCD,ERRTYP=PROG,JOBNAME=MYJOB1,END

The SLIP command produces a scheduled SVC dump.

SVC dump

Chapter 2. SVC dump 19

Operator command in an IEASLPxx parmlib member
The installation can also place SLIP operator commands in IEASLPxx parmlib
members to produce an SVC dump. When a command is needed, the operator
dynamically sets the IEASLPxx member containing the needed SLIP command. The
installation can place SLIP commands that request different types of SLIP traps in
different IEASLPxx members.

See z/OS MVS System Commands for details about the DUMP and SLIP operator
commands. See z/OS MVS Initialization and Tuning Reference for information aoutt
the IEASLPxx member.

Operator command in an IEADMCxx parmlib member
IEADMCxx enables you to supply DUMP command parameters through a parmlib
member. IEADMCxx enables the operator to specify the collection of dump data by
issuing a DUMP command, indicating the name of the parmlib member and any
symbolic substitution variables.

Since z/OS Release 2, a number of sample DUMP command parmlib members are
delivered in SYS1.SAMPLIB. They may be used as a base for further modification,
to deal with installation specific requirements, such as system names, address
space names, and so on. Additionally, an attempt was made to provide substitution
variables where names can vary by installation. So, in order to take advantage of
these members, they must be modified and saved into a data set in your parmlib
concatenation.

Note: The substitution variable length may not be sufficient for the values used at
a particular site. For example, &job in IEADMCAS can only accommodate job
names that are 4 characters or less. For this example, after copying it to a parmlib
member, change &job to a longer variable which can accommodate up to eight
characters, like &thisjob.

Table 7 summarizes the sample dump commands that z/OS supplies in
SYS1.SAMPLIB.

Table 7. Sample operator DUMP command members in SYS1.SAMPLIB

Member Name Suspected
Problem Area

Areas Dumped Symbolics Used Remote
Option Used

IEADMCAR APPC APPC transaction environment, including
RRS

IEADMCAS Shared Tape Allocation Autoswitch and XCF, with
affected job

&job Y

IEADMCCA Catalog Catalog address space and associated
areas

IEADMCCN Console CONSOLE address space and its data
spaces

IEADMCCP CP/SM CICSplex SM environment on all systems
in the sysplex. This includes the CAS,
CMAS and EYU address spaces.

Y

IEADMCD2 DB2® distributed
transactions

DB2/RRS environment Y

IEADMCJ2 JES2 JES2/XCF environment on current and
specified system

&SYSTM Y

IEADMCLC Logger/CICS System Logger, RLS and CICS®

SVC dump

20 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 7. Sample operator DUMP command members in SYS1.SAMPLIB (continued)

Member Name Suspected
Problem Area

Areas Dumped Symbolics Used Remote
Option Used

IEADMCLG Logger/GRS System Logger and GRS on all systems in
the sysplex

Y

IEADMCLS General Logger
Problem

Logger, XCF, ALLOC, CATALOG, GRS,
DFHSM, and SMS along with specified
structure, on all systems in the sysplex.

&STRNAME
&STRNAME2

Y

IEADMCLX Logger/XCF System Logger and XCF on all systems in
the sysplex

Y

IEADMCRL RRS RRS and the System Logger on all
systems in the sysplex

Y

IEADMCRR RRS RRS and its data spaces

IEADMCSQ IMS™ IMS Shared Queues environment (IMS
Control region, CL/I SAS Region, DBRC
Region, and all of the CQS address spaces
connected to the shared queues

Y

IEADMCTA TCP/IP TCP/IP, along with the specified
application

&tcp &appl

IEADMCTC TCP/IP TCP/IP, along with the Comm Server
address space

&tcp

IEADMCTI TCP/IP TCP/IP and its data space &tcp

IEADMCTO TCP/IP TCP/IP and OMVS &tcp

IEADMCVC Comm Server VTAM® and TCP/IP, with the TCPIP and
VTAM data spaces

&tcp &net

IEADMCVG VTAM GR VTAM Generic Resources environment,
with its CF structure

Y

IEADMCVT Comm Server VTAM and TCP/IP (address spaces only) &tcp &net

IEADMCVV VTAM VTAM and the VIT data space &net

IEADMCWL WLM WLM on all systems in the sysplex Y

IEADMCWS Web server HTTP web server with OMVS

IEADMCWT Web server HTTP web server and TCP/IP

IEADMCXI IRLM XCF and IRLM

IEADMCX1 IRLM XCF and IRLM on all systems in the
sysplex

Y

Note:

1. When specifying parmlib members containing symbolic parameters, you must
specify the symbolic and substitution value using the SYMDEF keyword.

2. The dump command indicated by each row with a “Y” in the “Remote Option
Used” column results in a multi-system dump.

Making a dump data set available
An SVC dump is taken to an SVC dump data set, either specified on the DCB
parameter of the SDUMP or SDUMPX macro, available as SYS1.DUMPxx, or
automatically allocated. SVC dump processing issues message IEA793A when the
dump has been captured but there are no available dump data sets. When a
SYS1.DUMPxx data set is not available, the operator has the option either of

SVC dump

Chapter 2. SVC dump 21

deleting the captured dump by replying D or making another dump data set
available to SVC dump processing. To make another dump data set available, the
operator uses the DUMPDS command.

For example, you can use a DUMPDS command to make a dump data set
available to SVC dump.
v System message:

* 16 IEA793A NO SVC DUMP DATA SETS AVAILABLE FOR DUMPID=dumpid FOR JOB (*MASTER*).
* 16 IEA793A USE THE DUMPDS COMMAND OR REPLY D TO DELETE THE CAPTURED DUMP

v Operator reply:
DUMPDS ADD,DSN=02

See z/OS MVS System Commands for information about the DUMPDS command.
See z/OS MVS System Messages, Vol 6 (GOS-IEA) for information about message
IEA793A.

Determining current SVC dump options and status
An operator can determine the current dump options and the SYS1.DUMPxx data
sets that contain SVC dumps.

Dump mode and options
Use a DISPLAY DUMP operator command to get the dump mode and options in
effect for SVC dumps and SYSABEND, SYSMDUMP, and SYSUDUMP dumps. The
system displays the mode and options in message IEE857I.

For example, to determine the mode and options, enter:
DISPLAY DUMP,OPTIONS

If the options listed are not the ones desired, have the operator use a CHNGDUMP
operator command to change them.

See z/OS MVS System Commands for the DISPLAY for more information about
dump modes. See z/OS MVS System Messages, Vol 7 (IEB-IEE) for more information
about IEE857I.

Status of SYS1.DUMPxx data sets
Use a DISPLAY DUMP operator command to get the status of all defined
SYS1.DUMPxx data sets on direct access. The system displays the status in
message IEE852I or IEE856I. The message indicates the full and available data sets.

For example, to determine the status of SYS1.DUMPxx data sets, enter:
DISPLAY DUMP,STATUS

See z/OS MVS System Commands for information aout the CHNGDUMP and
DISPLAY commands. For a description of these messages, use LookAt or see MVS
System Messages.

Finding SVC dumps
An operator can search the current SYS1.DUMPxx data sets for the SVC dump for
a particular problem. To select the dump, use the title and time or use the dump
symptoms. The operator can also find a dump that has been captured in virtual
storage but has not been written to a data set.

SVC dump

22 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Title and time of SVC dump(s)
Use one of the following to get the titles and times for SVC dumps:
v A DISPLAY DUMP operator command. The system displays the titles and times

in message IEE853I.
You can use the DISPLAY command to find title and time information.
– To see the titles and times for the dumps in SYS1.DUMP08 and

SYS1.DUMP23, without displaying any automatically allocated dump data
sets, enter:

DISPLAY DUMP,TITLE,DSN=(08,23)

– To display the titles of the most recently automatically allocated dump data
set and all pre-allocated dump data sets, enter:

DISPLAY DUMP,TITLE

or:
DISPLAY DUMP,TITLE,DSN=ALL

– To display the titles of the last 5 most recently allocated dump data sets,
enter:

DISPLAY DUMP,TITLE,AUTODSN=5

– To see the dump titles for all captured dumps, enter:
DISPLAY DUMP,TITLE,DUMPID=ALL

v An IPCS SYSDSCAN command entered at a terminal by a TSO/E user. IPCS
displays the titles and times at the terminal.
For example, to use IPCS to find the dump titles and times for the dumps in
SYS1.DUMP08 and SYS1.DUMP23, enter the following IPCS command:

SYSDSCAN 08
SYSDSCAN 23

See z/OS MVS IPCS Commands for information about SYSDSCAN.

If a data set listed in either command is empty or undefined, the system issues a
message to tell why the title is not available.

Symptoms from SVC dumps
Use a DISPLAY DUMP operator command to get the symptoms from SVC dumps
in SYS1.DUMPxx data sets on direct access or from SVC dumps that have been
captured in virtual storage. The system displays the following symptoms in
message IEE854I:
v Dump title or a message telling why the title is not available
v Error id consisting of a sequence number, the processor id, the ASID for the

failing task, and the time stamp
v System abend code
v User abend code
v Reason code
v Module name
v Failing CSECT name
v Program status word (PSW) at the time of the error
v Interrupt length code in the system diagnostic work area (SDWA)
v Interrupt code in the SDWA
v Translation exception address in the SDWA
v Address of the failing program in the SDWA
v Address of the recovery routine in the SDWA

SVC dump

Chapter 2. SVC dump 23

v Registers at the time of the error saved in the SDWA

For example, you can issue DISPLAY DUMP to view various types of symptoms:
v To see symptoms from the dump in the SYS1.DUMP03 data set without

displaying any automatically allocated data sets, enter:
DISPLAY DUMP,ERRDATA,DSN=03

v To see symptoms from the most recently automatically allocated dump data set
and all pre-allocated dump data sets, enter:

DISPLAY DUMP,ERRDATA

or:
DISPLAY DUMP,ERRDATA,DSN=ALL

v To see symptoms from the last 5 most recently allocated dump data sets, enter:
DISPLAY DUMP,ERRDATA,AUTODSN=5

v To see symptoms from the captured dump identified by DUMPID=005, enter:
DISPLAY DUMP,ERRDATA,DUMPID=005

Using the DISPLAY DUMP,ERRDATA command (see Figure 4) , you can retrieve
basic information about the dump without having to format the dump or read
through the system log. Message IEE854I displays the error data information,
including the PSW at the time of the error, the system abend code and reason code,
and the module and CSECT involved.

See z/OS MVS System Commands for information about the DISPLAY operator
command.

Printing, viewing, copying, and clearing a pre-allocated or
SYS1.DUMPxx data set

SVC dumps are unformatted when created. Use IPCS to format a dump and then
view it at a terminal or print it.

After the dump has been copied to a permanent data set, use a DUMPDS operator
command to clear the data set so that the system can use the data set for another
dump. Then use IPCS to view the copy.

d d,errdata
IEE854I 13.01.25 SYS1.DUMP ERRDATA 745
SYS1.DUMP DATA SETS AVAILABLE=001 AND FULL=001
CAPTURED DUMPS=0000, SPACE USED=00000000M, SPACE FREE=00000500M

DUMP00 TITLE=ABDUMP ERROR,COMPON=ABDUMP,COMPID=5752-SCDMP,
ISSUER=IEAVTABD

DUMP TAKEN TIME=13.01.02 DATE=09/27/1996
ERRORID=SEQ00010 CPU0000 ASID0010 TIME=13.00.55
SYSTEM ABEND CODE=0C1 REASON CODE=00000001
MODULE=IGC0101C CSECT=IEAVTABD
PSW AT TIME OF ERROR=070C0000 823FE0F6 ILC=2 INT=01
TRANSLATION EXCEPTION ADDR=008E1094
ABENDING PROGRAM ADDR=******** RECOVERY ROUTINE=ADRECOV
GPR 0-3 00000000 7F6EBAE4 023FFFF6 023F2BFF
GPR 4-7 008FD088 023FEFF7 823FDFF8 7F6EC090
GPR 8-11 00000048 7F6EC938 7F6EBA68 7F6EBA68
GPR12-15 7F6EB538 7F6EB538 00000000 00000000

NO DUMP DATA AVAILABLE FOR THE FOLLOWING EMPTY SYS1.DUMP DATA SETS: 01

Figure 4. Example: Output from DISPLAY,DUMP ERRDATA command

SVC dump

24 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

You can copy a dump that was written to tape so that you can view the dump
through IPCS more efficiently.

For a pre-allocated data set or a SYS1.DUMPxx data set, the JCL shown in Figure 5
does the following:
v Uses the SVC dump in the SYS1.DUMP00 data set. The IPCSDUMP DD

statement identifies this data set.
v Copies the dump from the SYS1.DUMP00 data set to the data set identified in

the DUMPOUT DD statement. To use this example, change the DUMPOUT DD
statement to give the DSNAME for the desired location.

v Clears the SYS1.DUMP00 data set so that it can be used for a new dump.
v Deletes the IPCS dump directory in the DELETE(DDIR) statement. This

statement uses the USERID of the batch job in the directory identification.
v Allocates the dump directory through the BLSCDDIR statement. The default is

volume VSAM01. The example shows VSAM11. Override the default volume
with the desired volume.

v Formats the dump using the IPCS subcommands in LIST 0. To use this example,
replace the LIST 0 command with the desired IPCS subcommands or a CLIST.
See z/OS MVS IPCS User's Guide for CLISTs.

Contents of SVC dumps
Unlike ABEND dumps, SVC dumps do not have a parmlib member that
establishes the dump options list at system initialization. The IBM-supplied
IEACMD00 parmlib member contains a CHNGDUMP operator command that
adds the local system queue area (LSQA) and trace data (TRT) to every SVC dump
requested by an SDUMP or SDUMPX macro or a DUMP operator command, but
not for SVC dumps requested by SLIP operator commands.

The contents of areas in an SVC dump depend on the dump type:
v Scheduled SVC dump: The current task control block (TCB) and request block

(RB) in the dump are for the dump task, rather than for the failing task. For
additional address spaces in the dump, the TCB and RB are for the dump task.

v Synchronous SVC dump: The current TCB and RB in the dump are for the
failing task.

//IPCSJOB JOB
//IPCS EXEC PGM=IKJEFT01,DYNAMNBR=75,REGION=1500K
//SYSPROC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//IPCSDUMP DD DSN=SYS1.DUMP00,DISP=SHR
//DUMPOUT DD DSN=GDG.DATA.SET(+1),DISP=SHR
//SYSUDUMP DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DELETE(DDIR) PURGE CLUSTER
BLSCDDIR VOLUME(VSAM11)
IPCS NOPARM
SETDEF DD(IPCSDUMP) LIST NOCONFIRM
LIST 0
COPYDUMP INFILE(IPCSDUMP) OUTFILE(DUMPOUT) CLEAR NOPRINT NOCONFIRM
END
/*

Figure 5. Example: JCL to print, copy, and clear an SVC dump data set

SVC dump

Chapter 2. SVC dump 25

See z/OS MVS IPCS Commands for examples of IPCS output formatted from SVC
dumps.

Customizing SVC dump contents
You can customize the contents of an SVC dump to meet the needs of your
installation. For example, you might want to add areas to be dumped, reduce the
dump size, or dump Hiperspaces. In most cases, you will customize the contents
of an SVC dump or summary dump through the SDATA parameter of the SDUMP
or SDUMPX macro or through operator commands.

Reducing dump size: To obtain a smaller dump that does not have all the usual
defaults, code a NODEFAULTS option in the SDATA parameter of the SDUMP or
SDUMPX macro. With the NODEFAULTS option, the dump contains:
v Certain default system areas needed by IPCS for dump analysis
v Areas requested on the SDUMP or SDUMPX macro

Hiperspaces: SVC dumps do not include Hiperspaces. To include Hiperspace™

data in an SVC dump, you have to write a program to copy data from the
Hiperspace into address space storage that is being dumped.

Adding areas: If the dump, as requested, will not contain all the needed areas, see
one of the following for ways to add the areas:
v “Customized contents using the SDATA parameter”
v “Contents of summary dumps in SVC dumps” on page 30
v “Customizing contents through operator commands” on page 33

Customized contents using the SDATA parameter
The IBM-supplied default contents and the contents available through
customization are detailed in Table 8 on page 27. The tables show dump contents
alphabetically by the parameters that specify the areas in the dumps. Before
requesting a dump, decide what areas will be used to diagnose potential errors.
Find the areas in the tables. The symbols in columns under the dump indicate how
the area can be obtained in that dump. The symbols are:

C Available on the command that requests the dump

D IBM-supplied default contents

M Available on the macro that requests the dump

P Available in the parmlib member that controls the dump options

X Available on the CHNGDUMP operator command that changes the options
for the dump type

blank No symbol indicates that the area cannot be obtained.

Note: System operator commands and assembler macros use the parameters in the
table to specify dump contents.

The order of the symbols in the following table is not important.

SVC dump

26 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 8. Customizing SVC dump contents through the SDATA parameter
SDATA Parameter
Option

Dump Contents SVC Dump for:

SDUMPX
Macro or
DUMP

Command
with

SDATA
Parameter

DUMP
Command

without
SDATA

Parameter

SLIP
Command
ACTION=
SVCD or

SYNCSVCD

SLIP
Command
ACTION=
STDUMP

SLIP
Command
ACTION=
TRDUMP

DUMP
Command

SVCDUMPRGN
=YES

ALLNUC The DAT-on and DAT-off nucleuses M C X X C C C

ALLPSA Prefixed save area (PSA) for all
processors

D M X D X D C C C

COUPLE Data on cross-system coupling

Note: COUPLE cannot be specified
on an SDUMP macro. It can,
however, be specified on an
SDUMPX macro.

M C X C C C

CSA Common service area (CSA) (that
is, subpools 227, 228, 231, 241) and
virtual storage for 64-bit
addressable memory objects created
using one of the following services:
v IARV64

REQUEST=GETCOMMON,DUMP=LIKECSA
v IARCP64

COMMON=YES,DUMP=LIKECSA
v IARST64

COMMON=YES,TYPE=PAGEABLE

Note: When CSA is specified
without any high CSA parameters,
all the CSA storage, including high
virtual CSA, is included in the SVC
dump.

M C X D D C C C

DEFAULTS Default areas M X

GRSQ Global resource serialization control
blocks for the task being dumped:

v Global queue control blocks

v Local queue control blocks

M C X X C C C

HCAS
(HCSAByASID)

High CSA area by ASID M C X C C C

HCNO
(HCSANoOwner)

High CSA area for which the
owner has ended

M C X C C C

HCSY
(HCSASysOwner)

High CSA area that belongs to the
SYSTEM

M C X C C C

IO Input/output supervisor (IOS)
control blocks for the task being
dumped:

v EXCPD

v UCB

D

LPA Active link pack area (LPA):
module names and contents

M C X X D C C C

LSQA Local system queue area (LSQA)
allocated for the address space (that
is, subpools 203 - 205, 213 - 215, 223
- 225, 229, 230, 233 - 235, 249, 253 -
255), and virtual storage for 64-bit
addressable memory objects created
using one of the following services:
v IARV64

REQUEST=GETSTOR,DUMP=LIKELSQA
v IARCP64

COMMON=NO,DUMP=LIKELSQA
v IARST64 COMMON=NO

D M C X D X D C C C

NOALL No ALLPSA M X X C C C

NOALLPSA No ALLPSA M X X C D C D C

SVC dump

Chapter 2. SVC dump 27

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|||||||

|
|
|
|
||||||

|
|
|
|
||||||

|
|
|
|
|
|
|
|

Table 8. Customizing SVC dump contents through the SDATA parameter (continued)
SDATA Parameter
Option

Dump Contents SVC Dump for:

SDUMPX
Macro or
DUMP

Command
with

SDATA
Parameter

DUMP
Command

without
SDATA

Parameter

SLIP
Command
ACTION=
SVCD or

SYNCSVCD

SLIP
Command
ACTION=
STDUMP

SLIP
Command
ACTION=
TRDUMP

DUMP
Command

SVCDUMPRGN
=YES

NODEFAULTS
v Minimum default areas needed

for IPCS dump analysis

v Areas requested on the SDUMP
or SDUMPX macro

M

NOPSA No PSA C

NOSQA No SQA M C X X C D C D C

NOSUM No SUM M C X X C D C D C

NUC Read/write portion of the control
program nucleus (that is, only the
non-page -protected areas of the
DAT-on nucleus), including:

v CVT

v LSQA

v PSA

v SQA

M C X X D C C C

PSA Prefixed save areas (PSA) for the
processor at the time of the error or
the processor at the time of the
dump

D M C X D X D C C C

RGN Allocated pages in the private area
of each address space being
dumped, including subpools 0 -
127, 129 - 132, 203 - 205, 213 - 215,
223 - 225, 229, 230, 236, 237, 244,
249, 251 - 255, and virtual storage
for 64-bit addressable memory
objects created using one of the
following services:
v IARV64

REQUEST=GETSTOR,DUMP=LIKERGN
v IARV64

REQUEST=GETSTOR,SVCDUMPRGN=YES
v IARCP64 COMMON=NO,DUMP=LIKERGN
v IARST64 COMMON=NO

. Also, allocated eligible storage
above the 2–gigabyte address.

M C X X D C C C C

SERVERS Areas added by IEASDUMP.
SERVERS exits

M C X

SQA System queue area (SQA) allocated
(that is, subpools 226, 239, 245, 247,
248) and virtual storage for 64-bit
addressable memory objects created
using one of the following services:
v IARV64

REQUEST=GETCOMMON,DUMP=LIKESQA
v IARCP64

COMMON=YES,DUMP=LIKESQA
v IARST64 COMMON=YES,TYPE=FIXED
v IARST64 COMMON=YES,TYPE=DREF

D M C X D X D C C C

SUM Summary dump (See “Contents of
summary dumps in SVC dumps”
on page 30.)

D M C X D X D C C C

SWA Scheduler work area (SWA) (that is,
subpools 236 and 237)

M C X D X C C C

TRT System trace, generalized trace
facility (GTF) trace, and master
trace, as available

D M C X D X D C D C D C

SVC dump

28 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

Table 8. Customizing SVC dump contents through the SDATA parameter (continued)
SDATA Parameter
Option

Dump Contents SVC Dump for:

SDUMPX
Macro or
DUMP

Command
with

SDATA
Parameter

DUMP
Command

without
SDATA

Parameter

SLIP
Command
ACTION=
SVCD or

SYNCSVCD

SLIP
Command
ACTION=
STDUMP

SLIP
Command
ACTION=
TRDUMP

DUMP
Command

SVCDUMPRGN
=YES

Default system
data

Instruction address trace, if
available

D D D D D

Default system
data

Nucleus map and system control
blocks, including:

v ASCB for each address space
being dumped

v ASVT

v Authoriza- tion table for each
address space

v CVT, CVT prefix, and secondary
CVT (SCVT)

v Entry tables for each address
space

v GDA

v JSAB of each address space being
dumped

v Linkage stack

v Linkage table for each address
space

v PCCA and the PCCA vector table

v TOT

v TRVT

v UCB

D

Default system
data

DFP problem data, if DFP Release
3.1.0 or a later release is installed

D D D D D

Default system
data

Storage for the task being dumped
and program data for all of its
subtasks

D D D

Default system
data

Storage: 4 kilobytes before and 4
kilobytes after the address in the
PSW at the time of the error

D

Default system
data

SUBTASKS: Storage for the task
being dumped and program data
for all of its subtasks

D D

The following table describes how HCSAByASID, HCSANoOwner, and
HCSASysOwner affect the CSA storage that is captured in an SVC dump:

Table 9. Affects on the CSA storage captured in an SVC dump

Specified SDATA option or options CSA storage that is included in the dump

CSA All above the bar and below the bar CSA
storage

CSA, HCSAByASID, HCSANoOwner,
HCSASysOwner

All below the bar CSA storage, high virtual
CSA storage that is owned by the ASIDs that
are included in the dump, high virtual CSA
storage for which the owner has ended, and
high virtual CSA storage that belongs to the
SYSTEM.

The dump does not include high virtual
CSA storage that is owned by the ASIDs that
are excluded from the dump.

SVC dump

Chapter 2. SVC dump 29

|
|

||

||

||
|

|
|
|
|
|
|
|
|

|
|
|

Table 9. Affects on the CSA storage captured in an SVC dump (continued)

Specified SDATA option or options CSA storage that is included in the dump

HCSAByASID, HCSANoOwner,
HCSASysOwner

All high virtual CSA storage that is owned
by the ASIDs that are included in the dump,
high virtual CSA storage for which the
owner has ended, and high virtual CSA
storage that belongs to the SYSTEM

No below the bar CSA storage is included in
the dump.

(Neither CSA nor any of the HCSAxxxx
options)

None of the CSA storage is included in the
dump.

Contents of summary dumps in SVC dumps
Request a summary dump for two reasons:
1. The SUM or SUMDUMP parameters request many useful, predefined areas

with one parameter.
2. The system does not write dumps immediately for requests from disabled,

locked, or SRB-mode programs. Therefore, system activity destroys much
needed diagnostic data. When SUM or SUMDUMP is specified, the system
saves copies of selected data areas at the time of the request, then includes the
areas in the SVC dump when it is written.

Use SDUMP or SDUMPX macro parameters to request different types of summary
dumps, as follows:
v Disabled summary dump: This summary dump saves data that is subject to

rapid and frequent change before returning control to the scheduled dump
requester. Because the system is disabled for this dump, the dump includes only
data that is paged in or in DREF storage. Specify BRANCH=YES and
SUSPEND=NO on an SDUMP or SDUMPX macro to obtain a disabled summary
dump.

v Suspend summary dump: This summary dump also saves data that is subject to
rapid and frequent change before returning control to the scheduled dump
requester. This dump, however, can save pageable data. To obtain a suspend
summary dump, do the following:
– For an SDUMP or SDUMPX macro, specify BRANCH=YES and

SUSPEND=YES
– For an SDUMPX macro, specify BRANCH=NO for a scheduled dump with

SUMLSTL parameter
v Enabled summary dump: This summary dump does not contain volatile system

information. The system writes this summary dump before returning control to
the dump requester; the summary information is saved for each address space
being dumped. To obtain an enabled summary dump, do the following:
– For an SDUMP or SDUMPX macro, specify BRANCH=NO.
– For a SLIP operator command, do not specify an SDATA parameter or specify

SUM in an SDATA parameter.
– For a DUMP operator command, do not specify an SDATA parameter or

specify SUM in an SDATA parameter. Note that this dump does not contain
data that the system creates when it detects a problem; for example, this
dump would not contain a system diagnostic work area (SDWA).

SVC dump

30 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

||

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|

In Table 10, an S indicates that the area is included in the summary dump for the
dump type.

Table 10. Customizing SVC dump contents through summary dumps

Summary dump contents Disabled Suspend Enabled

Address space identifier (ASID) record for the address space of the
dump task

S

Control blocks for the failing task, including:

v For task-mode dump requesters:

– Address space control block (ASCB)

– Request blocks (RB)

– System diagnostic work areas (SDWA) pointed to by the
recovery termination management 2 work areas (RTM2WA)
associated with the task control block (TCB)

– TCB

– Extended status block (XSB)

v For service request block (SRB)-mode dump requesters:

– ASCB

– Suspended SRB save area (SSRB)

– SDWA used for dump

– XSB

S

S

Control blocks for the recovery termination manager (RTM):

v RTM2WA associated with all TCBs in the dumped address space

v RTM2WA associated with the TCB for the dump requester

S

S

Cross memory status record and, if the dump requester held a cross
memory local (CML) lock, the address of the ASCB for the address
space whose local lock is held

S S

Dump header, mapped by AMDDATA

For the AMDDATA mapping, see z/OS MVS Data Areas in z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

S S S

Functional recovery routine (FRR) stack for the current processor S

Interrupt handler save area (IHSA) for the home address space or, if
a CML is held, for the address space whose local lock is held

S S

Logical communication area (LCCA) for each active processor

In dumps requested by AR-mode callers, the LCCA includes the AR
mode control blocks

S S

Physical configuration communication area (PCCA) for each active
processor

S S

Program call link stack elements (PCLINK) stack elements:

v Pointed to by PSASEL

v Pointed to by the XSB associated with the IHSA in the dump

v Pointed to by the SSRB and XSB for the SRB-mode dump requester

v Associated with the suspended unit of work

S

S S

S

S

Prefixed save area (PSA) for each active processor S S

SVC dump

Chapter 2. SVC dump 31

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 10. Customizing SVC dump contents through summary dumps (continued)

Summary dump contents Disabled Suspend Enabled

Save areas of register contents S

SDWA associated with the failure of a system routine S

Storage: The storage ranges and ASIDs requested in parameters on
the SDUMP or SDUMPX macro

S S S

Storage: 4 kilobytes before and 4 kilobytes after:

v The address in the program status word (PSW)

v All valid unique addresses in the registers saved in the IHSA
shown in the dump

v All valid unique addresses in the registers saved in the SDWA
shown in the dump

v Instruction counter values of the external old PSW, program check
old PSW, I/O old PSW, and restart old PSW saved in the PSAs of
each active processor

S

Storage: 4 kilobytes before and 4 kilobytes after:

v All valid unique addresses in the registers saved in the SDWA
shown in the dump

v All valid unique addresses in the registers in the dump requester's
register save area

v All valid unique addresses in the PSWs in all SDWAs shown in the
dump

S

Storage: 4 kilobytes before and 4 kilobytes after:

v All valid unique addresses in the PSWs in the RTM2WAs shown in
the dump

v All valid unique addresses in the registers in the RTM2WAs shown
in the dump

S

Storage: When a PSWREGS parameter is specified on the SDUMP or
SDUMPX macro, 4 kilobytes before and 4 kilobytes after:

v The address in the PSW, if supplied in the PSWREGS parameter

v The address in the general purpose registers, if supplied in the
PSWREGS parameter

The storage dumped is from the primary and secondary address
spaces of the program issuing the SDUMP or SDUMPX macro. The
control registers, if supplied in the PSWREGS parameter, are used to
determine the primary and second address spaces.

If access registers are also provided and the PSW indicates AR ASC
mode, the access registers will also be used to locate the data.

S S S

Supervisor control blocks:

v Current linkage stack

v Primary address space number (PASN) access list

v Work unit access list

S S S

Vector Facility control blocks: Global, CPU, and local work/save area
vector tables (WSAVTG, WSAVTC, and WSAVTL) and work/save
areas pointed to by addresses in the tables

S

XSB associated with the IHSA in the dump S S

For information about control blocks listed in the above table, see z/OS MVS Data
Areas in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

SVC dump

32 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/

Customizing contents through operator commands
The dump options list for SVC dumps can be customized through a DUMP
operator command by all the ways shown in Table 11.

Note: The contents of SVC dumps requested by SLIP operator commands are
controlled only by the SLIP operator command. They are not affected by the
IEACMD00 parmlib member or the CHNGDUMP command.

Nucleus areas in dumps: Dump options control the parts of the nucleus that
appear in a dump. A diagnostician seldom needs to analyze all the nucleus. An
installation can eliminate nucleus areas from dumps. If the IBM-supplied defaults
are used:
v SVC dump for a SLIP operator command with ACTION=SVCD contains the

read/write DAT-on nucleus
v SVC dump for an SDUMP or SDUMPX macro contains the nucleus map and

certain control blocks

If no nucleus changes have been made, an installation should obtain one copy of
the DAT-off nucleus to use with all dumps. To obtain this nucleus, enter a DUMP
operator command with SDATA=ALLNUC and no other SDATA options. The
nucleus does not change from one IPL to another, so one dump can be used again
and again.

DAT, dynamic address translation, is the hardware feature that enables virtual
storage. In the DAT-on part of the nucleus, the addresses are in virtual storage; in
the DAT-off part of the nucleus, the addresses are in central storage.

Table 11. Customizing SVC dump contents through operator commands

Customization Effect Example

Use SDATA=NODEFAULTS on
SDUMP or SDUMPX macro

Change occurs: At dump request

What changes: Excludes the
following SDATA default options
currently in effect:

v ALLPSA

v SQA

v SUMDUMP

v IO

v From all CHNGDUMP operator
commands entered through the
IEACMD00 parmlib member or
through the console

Exclusion is only for the dump being
requested.

Note that certain default system areas
are not excluded; these areas are
required for IPCS dump analysis.

The CHNGDUMP operator command
can override the NODEFAULTS
option.

To minimize the amount of default
data in the dump, code in the
program:

SDUMPX SDATA=NODEFAULTS

SVC dump

Chapter 2. SVC dump 33

Table 11. Customizing SVC dump contents through operator commands (continued)

Customization Effect Example

Replacing CHNGDUMP operator
command in IEACMD00 parmlib
member

Change occurs: At system
initialization

What changes: This command
establishes the IBM-supplied dump
options for SVC dumps for SDUMP
or SDUMPX macros and DUMP
operator commands; see “Contents of
SVC dumps” on page 25 for the list.

To add the link pack area (LPA) to all
SVC dumps for SDUMP or SDUMPX
macros and DUMP operator
commands, while keeping the local
system queue area (LSQA) and trace
data, add the following command to
IEACMD00:

CHNGDUMP SET,SDUMP=(LPA)

Entering CHNGDUMP operator
command with SDUMP parameter
on a console with master authority

Change occurs: Immediately when
command is processed

What changes:

For the ADD mode: CHNGDUMP
options are added to the current SVC
dump options list and to any options
specified in the macro or operator
command that requested the dump.
The options are added to all SVC
dumps for SDUMP or SDUMPX
macros and DUMP operator
commands until another
CHNGDUMP SDUMPX operator
command is entered.

For the OVER mode: CHNGDUMP
options are added to the current SVC
dump options list. The system
ignores any options specified in the
macro or operator command that
requested the dump. The options
override all SVC dumps for SDUMP
or SDUMPX macros and DUMP
operator commands until a
CHNGDUMP SDUMP,ADD operator
command is entered.

For the DEL option: CHNGDUMP
options are deleted from the SVC
dump options list.

When more than one CHNGDUMP
operator command with SDUMPX is
entered, the effect is cumulative.

To add the LPA to all SVC dumps for
SDUMP or SDUMPX macros and
DUMP operator commands until
changed by another CHNGDUMP
SDUMP, enter:

CHNGDUMP SET,SDUMP=(LPA)

To add the CHNGDUMP SDUMPX
options list to all SVC dumps:

CHNGDUMP SET,SDUMP,ADD

To override all SVC dumps with the
CHNGDUMP SDUMPX options list:

CHNGDUMP SET,SDUMP,OVER

To remove LPA from the SDUMPX
options list:

CHNGDUMP DEL,SDUMP=(LPA)

Using an operator command
parameter.

Parameters on the DUMP operator
command specify the contents for the
dump being requested.

Change occurs: At dump request

What changes: The DUMP operator
command parameter options are
added to the dump options list, but
only for the dump being requested.

To add ALLNUC to this SVC dump,
enter:

DUMP COMM=(MYDUMP1 5-9-88)

The system issues a message:

* 23 IEE094D SPECIFY OPERAND(S)
FOR DUMP COMMAND

Enter in reply:

REPLY 23,JOBNAME=MYJOB1,
SDATA=(ALLNUC),END

SVC dump

34 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Tailoring SVC dumps
Sometimes servers retain client-related data in address spaces and dataspaces other
than the client's, which means this data will not be in the dump. For this reason,
server code can modify the contents of an SVC dump to provide additional
problem determination data by creating a tailored SVC dump exit. This feature
allows a requestor to specify a dump request without identifying related server
address, dataspaces, and storage areas, which could be unknown and dynamic in
nature.

The server code provider can create these SVC dump exits without modifying
module IEAVTSXT. The CSVDYNEX macro identifies the exit load module and
associates it with the IEASDUMP.SERVER resource. The exit is allowed to scan the
current dump request and determines if data should be added to the dump. The
data is added to the dump by identifying it in the appropriate SDMSE_OUTPUT
area. For additional details, see IEASDUMP.SERVER Dynamic Exit Processing in
z/OS MVS Programming: Authorized Assembler Services Guide.

The tailored SVC dump exits are not called in any particular order. To ensure that
the current requests are presented to an exit, the dump request is updated between
exit invocations. If an exit adds data to the dump, every exit is re-invoked until no
additional changes are made. Because of the additional processing required,
tailored SVC dump exits do not receive control by default for SDUMPX macro
requests. To cause the exit processing to take place, you must specify
SDATA=SERVERS in the SDUMPX macro.

SDATA=SERVERS is in force for all operator Dump and SLIP SVC dump requests.

Analyzing summary SVC dumps
The SUMDUMP or SUM option on the SDUMP or SDUMPX macro causes SVC
dump to capture a summary dump. Two types of information are captured in
summary dumps. First, index data for storage is captured. This index data can be
formatted using the IPCS VERBX SUMDUMP command. The second type of
information captured is the storage itself. Storage captured by summary dump
processing can be viewed using IPCS by specifying the SUMDUMP option (for
example, IPCS LIST 00003000 SUMDUMP). IBM strongly recommends that you
view the SUMDUMP output prior to investigating the usual portions of the dump.
The SUMDUMP option provides different output to SDUMPX branch entries and
SVC entries to SDUMP. For example, data included for branch entries to SDUMPX
include PSA, LCCA, and PCCA control blocks, and data recorded for SVC entries
to SDUMPX include RTM2WA control blocks. Each summary dump index record,
when formatted using the IPCS VERBX SUMDUMP command, is displayed as
“----tttt---- range-start range-end range-asid range-attributes”. The range-attributes
include a value of INCOMP, which means that some or all of the areas represented
by the specified range may not be in the dump.

Figure 6 on page 36 is an example format using the IPCS VERBX SUMDUMP
command. The summary dump is formatted by the IPCS VERBEXIT SUMDUMP
subcommand and has an index which describes what the summary contains.
Summary dumps are not created for dumps taken with the DUMP command. Only
dumps created by the SDUMP or SDUMPX macro contain summary dumps.

SVC dump

Chapter 2. SVC dump 35

Note: During SVC dump processing, the system sets some tasks in the requested
address space non-dispatchable; non-dispatchable tasks in the dump may have
been dispatchable at the time of the problem.

Figure 7 is a partial example of a summary dump using the IPCS VERBX
SUMDUMP command.

To examine the storage shown in Figure 7, invoke the IPCS LIST command, as
shown in Figure 8.

For more information about the record ID values, see the SMDLR and SMDXR
control blocks in z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

STORAGE TYPE RANGE START RANGE END ASID ATTRIBUTES
REGISTER AREA-- 0135F000 01363FFF 001E (COMMON)
REGISTER AREA-- 00000001_7F5AD000 00000001_7F5B0FFF 001E

Figure 6. Example: Format of IPCS VERBX SUMDUMP command

STORAGE TYPE RANGE START RANGE END ASID ATTRIBUTES
023BCD70 023BCD7F 001E (COMMON)

SUMLSTA RANGE -- 017E8000 017E8FFF 0001 (COMMON)
SUMLSTA RANGE -- 01F9B000 01F9CFFF 0001 (COMMON)
SUMLSTA RANGE -- 02166000 02167FFF 0001 (COMMON)
PSA ------------ 00000000 00001FFF 001E (COMMON)
PCCA ----------- 00F43008 00F4324F 001E (COMMON)
LCCA ----------- 00F82000 00F82A47 001E (COMMON)
LCCX ----------- 021C7000 021C771F 001E (COMMON)
INT HANDLER DUCT 02232FC0 02232FFF 001E (COMMON)
I.H. LINKAGE STK 02262000 0226202F 001E (COMMON)
REGISTER AREA -- 0000E000 00010FFF 001E
REGISTER AREA -- 00FC4000 00FC6FFF 001E (COMMON)
REGISTER AREA -- 00000001_7F5AD000 00000001_7F5B0FFF 001E
REGISTER AREA -- 7FFFE000 7FFFEFFF 001E

Figure 7. Example: IPCS VERBX SUMDUMP command

IPCS LIST 00FC4000. SUMDUMP LEN(256) DISPLAY

****************************** TOP OF DATA ***********************************

LIST 00FC4000 ASID(X’001E’) SUMDUMP LENGTH(X’0100’)
AREA
ASID(X’001E’) SUMDUMP ADDRESS(FC4000.) KEY(00)
00FC4000. 7F6BFFD0 7F6BFFD0 02259010 00000000 |",.}",.}........|
00FC4010. 0225D000 02259010 00000004 00000001 |..}.............|
00FC4020. 00000000 00FC3E10 00000000 00000000 |................|
00FC4030. 00000000 00000000 00000000 00800000 |................|
00FC4040. 06102000 00000000 00000000 00000000 |................|
00FC4050 LENGTH(X’10’)==>All bytes contain X’00’
00FC4060. 00000000 02247CB8 00000000 00000000 |......@.........|
00FC4070. 02258040 0000164E 00008000 00000000 |... ...+........|
00FC4080 LENGTH(X’80’)==>All bytes contain X’00’
****************************** END OF DATA ***********************************

Figure 8. Example: Examining storage

SVC dump

36 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

SUMDUMP output for SVC-Entry SDUMPX
For an SVC entry, the storage captured in a summary dump can contain
information that is not available in the remainder of the SVC dump if options such
as region, LSQA, nucleus, and LPA were not specified in the dump parameters.

For each address space dumped, a summary dump index record is written with
the ASID, plus the jobname and stepname for the last task created in the address
space. The SUMDUMP output contains RTM2 work areas for tasks in address
spaces that are dumped. Many of the fields in the RTM2WA provide valuable
debugging information.

The summary dump data is dumped in the following sequence:
1. The ASID record is dumped for the address space.
2. The SUMLIST/SUMLSTA/SUMLSTL/SUMLIST64 ranges and the PSWREGS,

parameter list and data ID, data are dumped next. These contain information
that is helpful in debugging the problem, and should be examined carefully.

3. All RTM2 work areas pointed to by all TCBs in this address space are dumped.
4. An address range table is built containing the following ranges, pointed to by

the RTM2WA:
v 4K before and after the PSW at the time of error (RTM2NXT1)
v 4K before and after each register at the time of error (RTM2EREG).
Duplicate storage is eliminated from this address range table to reduce the
amount of storage dumped.

SUMDUMP output for branch-entry SDUMPX
For branch entry to SDUMP, there are two types of summary dumps:
v Disabled summary dump - which performs the summary dump with the system

disabled for interruptions. This means that all data to be dumped must be paged
in at the time of the summary dump.

v Suspend summary dump - which is taken in two parts. The first part is similar
to the disabled summary dump and dumps some of the global system control
blocks. The second part runs with the system enabled for interruptions. This
allows data to be dumped that is currently paged out, but was going to be
modified by the recovery routine that requested SVC dump processing.

The SUMDUMP output for a branch entry to SVC dump might not match the data
that is at the same address in the remainder of the dump. The reason for this is
that SUMDUMP is taken at the entry to SVC dump while the processor is disabled
for interruptions. The system data in the remainder of the dump is often changed
because other system activity occurs before the dump is complete. The SUMDUMP
output follows a header that contains the ASID of the address space from which
the data was obtained.

The following conditions can occur that prevent SDUMPX from taking a disabled
or suspend summary dump.
v The system is not able to obtain the necessary locks to serialize the real storage

buffer (RSB).
v The system is in the process of modifying the storage queues and cannot satisfy

the request for a RSB.
v No frames are available for a RSB.
v SVC dump encounters an error while holding serialization for the RSB.

SVC dump

Chapter 2. SVC dump 37

v A critical frame shortage causes the system to steal the pages of the RSB.
v The SVC dump timer disabled interruption exit determines that SVC dump has

failed and frees the RSB.

Analyzing disabled summary dumps
For disabled summary dumps, records are dumped in the following order:
1. If a suspend summary dump was requested but could not be taken, the

system attempts to obtain a disabled summary dump. If this occurs, an error
record is written to that effect. If the system is unable to obtain a suspend
summary dump and a disabled summary dump, then no summary data is
available for the dump.

2. The XMEM ASID record is written that gives the ASID that is home, primary,
secondary, and CML (if the CML lock is held).

3. The SUMLIST/SUMLSTA/SUMLSTL/SUMLIST64 address ranges and the
PSWREGS data are dumped.

4. The PSA, PCCA, LCCA, and LCCX for each processor are dumped.
5. The current PCLINK stack (pointed to by PSASEL) is dumped (if it exists).
6. If this is a SLIP request for a dump (ACTION=SVCD), then the SLIP reg/PSW

area (pointed to by the SUMDUMP parameter list SDURGPSA) is dumped.
The following address ranges are added to the address range table:
v 4K before and after the PSW address at the time of the SLIP trap.
v 4K before and after each address in the registers at the time of the SLIP

trap.
Duplicate storage is eliminated from this address range table to reduce the
amount of data written to the dump data set.
Note that if the primary and secondary ASIDs are different, the above address
ranges are added to the table for both ASIDs.

7. The IHSA is dumped along with its associated XSB and PCLINK stack. The
PSW and register addresses from the IHSA are added to the range table. This
causes 4K of storage to be dumped around each address.

8. The caller's SDWA is dumped, if one exists. The PSW and register addresses
from the SDWA are added to the range table. This causes 4K of storage to be
dumped around each address.

9. The addresses in the address range table are dumped.
10. The super FRR stacks are dumped.
11. The global, local, and CPU work save area (WSA) vector tables are dumped.

The save areas pointed to by each of these WSA vector tables are also
dumped.

12. 4K of storage on either side of the address portion of the I/O old PSW, the
program check old PSW, the external old PSW, and the restart old PSW saved
in the PSA for all processors, are dumped.

Analyzing suspend summary dumps
For suspend summary dumps, records are dumped in the following order:
1. The ASID: the PSA, PCCA, LCCA records, the IHSA, XSB, and the PCLINK

stack, are all dumped with the system disabled in the same way they are
dumped in steps 2, 4, and 5 for the disabled summary dump.
At this point, an SRB is scheduled to the DUMPSRV address space and the
current unit of work (SDUMP's caller) is suspended by using the STOP service.

SVC dump

38 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Data dumped at this point does not have to be paged in because the system is
enabled. Cross memory functions are used to gain access to data in the caller's
address space.

2. The SUMLIST/SUMLSTA/SUMLSTL/SUMLIST64 address ranges and the
PSWREGS data are dumped.

3. The caller's ASCB is dumped.
4. The suspended unit of work (SVC dump's caller) is dumped. This is either a

TCB or an SSRB. The related PCLINK stacks are also dumped.
5. For TCB mode callers, the caller's SDWA is dumped. The PSW and register

addresses from the SDWA are added to the range table. This causes 4K of
storage to be dumped around each address. All RTM2 work areas pointed to by
this TCB and any associated SDWAs are all dumped.
For SRB mode callers, the SDWA is dumped. The PSW and register addresses
from the SDWA are added to the range table. This causes 4K of storage to be
dumped around each address. Also, the caller's register save area is added to
the range table and the storage dumped.
Duplicate storage is eliminated from the address range table to reduce the
amount of storage dumped.

6. After all the storage is saved in a virtual buffer in the DUMPSRV address
space, the caller's unit of work is reset by using the RESET service. This allows
SVC dump to complete and return to the caller. When SVC dump processing
completes in the address space to be dumped, whatever processing was taking
place in that address space when it was interrupted by SVC dump resumes.
The rest of the dump is then scheduled from the DUMPSRV address space.

Analyzing an SVC dump
This section shows you how to use IPCS to analyze an SVC dump. You would
analyze an SVC dump because of one of the following:
v Dump output from the IPCS STATUS FAILDATA subcommand did not contain

data for the abend being diagnosed.
v The problem involved multiple abends.
v The dump was taken but does not contain abend-related information.

This section contains the following topics, which, if followed in order, represent the
procedure for analyzing an SVC dump:
v “Formatting the SVC dump header” on page 40
v “Looking at the dump title” on page 41
v “Displaying the incident token, time and type of dump” on page 42
v “Locating error information” on page 43
v “Analyze TCB structure” on page 46
v “Examining the LOGREC buffer” on page 48
v “Examining the system trace” on page 50
v “Looking at the registers” on page 50
v “Other useful reports for SVC dump analysis” on page 52
v “Reading the SDUMPX 4K SQA buffer” on page 53

Specifying the source of the dump
The first step in analyzing the dump is to specify the source of the dump that IPCS
should format. In the IPCS dialog (see Figure 9 on page 40), choose option 0

SVC dump

Chapter 2. SVC dump 39

(DEFAULTS) and specify the name of the SVC dump data set on the “Source” line.

Press Enter to register the new default source name. Then, press PF3 to exit the
panel.

You can also use the SETDEF subcommand to specify the source. For the dump in
the preceding example, enter:
SETDEF DSNAME(’D46IPCS.SVC.CSVLLA.DUMP002’)

IPCS does not initialize the dump until you enter the first subcommand or IPCS
dialog option that performs formatting or analysis. At that time IPCS issues
message BLS18160D to ask you if summary dump data can be used by IPCS. The
summary dump data should always be used for an SVC dump because it is the
data captured closest to the time of the failure. If you do not allow IPCS to use
summary dump data, other data captured later for the same locations will be
displayed, if available. Such data is less likely to be representative of the actual
data at these storage locations at the time of the failure.

Formatting the SVC dump header
The SVC dump header contains the following information:
v SDWA or SLIP data
v Dump title, error identifier, and time of the dump
v Requestor of dump

This information describes the type of SVC dump and can tell you if the dump is a
CONSOLE dump or a dump caused by the SLIP command. You would analyze
these dumps differently.

Format data in the header of an SVC dump using the following IPCS
subcommands:
v LIST TITLE
v STATUS FAILDATA
v STATUS REGISTERS
v STATUS WORKSHEET

The following sections give examples of how to use these IPCS subcommands (or
IPCS dialog options, where applicable) to obtain the desired information.

------------------------- IPCS Default Values ---------------------------------
COMMAND ===> 0

You may change any of the defaults listed below.
If you change the Source default, IPCS will display the current default
Address Space for the new source and will ignore any data entered in
the Address Space field.

Source ==> DSN(’D46IPCS.SVC.CSVLLA.DUMP002’)
Address Space ==> Ignored if Source is changed.
Message Routing ==> NOPRINT TERMINAL
Message Control ==> FLAG(WARNING)
Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

Press ENTER to update defaults.
Use the END command to exit without an update.

Figure 9. IPCS Default Values menu

SVC dump

40 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Looking at the dump title
The dump title tells you the component name, component identifier and module
name. You can find the dump title using the following IPCS subcommands:
v LIST TITLE
v STATUS WORKSHEET

You can also obtain the STATUS WORKSHEET report through option 2.3 of the
IPCS dialog. First, choose option 2 (ANALYSIS) from the primary option menu, as
shown in Figure 10.

Then, choose option 3 (WORKSHEET) from the analysis of dump contents menu,
as shown in Figure 11.

IPCS displays a new panel with information similar to that in Figure 12 on page
42. The dump title is labelled at the top of the STATUS WORKSHEET report. The
dump title is “Compon=Program Manager Library-Lookaside, Compid=SC1CJ,
Issuer=CSVLLBLD.” See z/OS MVS Diagnosis: Reference for an explanation of dump
titles.

-------------------- z/OS 01.02.00 IPCS PRIMARY OPTION MENU ----------------
OPTION ===> 2

0DEFAULTS - Specify default dump and options * USERID - IPCSU1
1BROWSE - Browse dump data set * DATE - 84/06/08
2ANALYSIS - Analyze dump contents * JULIAN - 84.160
3SUBMIT - Submit problem analysis job to batch * TIME - 16:43
4COMMAND - Enter subcommand, CLIST or REXX exec * PREFIX - IPCSU1
5UTILITY - Perform utility functions * TERMINAL - 3278
6DUMPS - Manage dump inventory * PF KEYS - 24
TTUTORIAL - Learn how to use the IPCS dialog ********************
XEXIT - Terminate using log and list defaults

Enter END command to end the IPCS dialog.

Figure 10. IPCS primary option menu

-------------------- IPCS MVS ANALYSIS OF DUMP CONTENTS ---------------------
OPTION ===> 3
To display information, specify the corresponding option number.

1SYMPTOMS - Symptoms *****************
2STATUS - System environment summary * USERID - IPCSU1
3WORKSHEET - System environment worksheet * DATE - 84/06/08
4SUMMARY - Address spaces and tasks * JULIAN - 84.160
5CONTENTION - Resource contention * TIME - 16:44
6COMPONENT - MVS component data * PREFIX - IPCSU1
7TRACE - Trace formatting * TERMINAL- 3278
8STRDATA - Coupling Facility structure data * PF KEYS - 24

Enter END command to terminate MVS dump analysis.

Figure 11. IPCS MVS analysis of dump contents menu

SVC dump

Chapter 2. SVC dump 41

STATUS WORKSHEET also displays the error ID. In Figure 12, the dump ID is 001,
error ID is sequence number 00051, ASID=X'001B', and processor 0000. Use this
dump ID to match messages in SYSLOG and LOGREC records to the dump.

Displaying the incident token, time and type of dump
The IPCS subcommand STATUS SYSTEM identifies the following types if
information. The IPCS dialog does not have a menu option for STATUS SYSTEM.
Instead you must enter the subcommand.
v The time of the dump
v The program requesting the dump
v An incident token that associates one or more SVC dumps requested for a

problem on a single system or on several systems in a sysplex

Figure 13 on page 43 is an example of a STATUS SYSTEM report. For a scheduled
SVC dump, the following identifies the dump:
Program Producing Dump: SVCDUMP
Program Requesting Dump: IEAVTSDT

A dump requested by a SLIP or DUMP operator command is always a scheduled
SVC dump.

For a synchronous SVC dump, the following identifies the dump:
Program Producing Dump: SVCDUMP
Program Requesting Dump: cccccccc

Where cccccccc is one of the following:
v The name of the program running when the system detected the problem
v SVCDUMP, if the system could not determine the failing task

A SYSMDUMP ABEND dump is always a synchronous SVC dump.

IPCS OUTPUT STREAM -- LINE 0 COL
COMMAND ===> SCROLL ===
****************************** TOP OF DATA ****************************

MVS Diagnostic Worksheet

Dump Title: COMPON=PROGRAM MANAGER LIBRARY-LOOKASIDE,COMPID=SC1CJ,
ISSUER=CSVLLBLD

CPU Model 2064 Version FF Serial no. 131512 Address 01
Date: 02/15/2001 Time: 20:33:34.680912 Local

Original dump dataset: SYS1.DUMP06

Information at time of entry to SVCDUMP:

HASID 001B PASID 001B SASID 001B PSW 070C1000 8001AE5A

CML ASCB address 00000000 Trace Table Control Header address 7FFE3000
Dump ID: 001
Error ID: Seq 00019 CPU 0041 ASID X’001E’ Time 20:33:33.5

Figure 12. STATUS WORKSHEET subcommand sample output — dump title

SVC dump

42 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SYSTEM STATUS for an SVC dump contains an incident token. The request for the
dump specifies the incident token or the system requesting the dumps provides it.
The incident token consists of:
v The name of the sysplex
v The name of the system requesting the multiple dumps
v The date in Greenwich Mean Time (GMT)
v The time in GMT

Locating error information
Use the IPCS subcommand STATUS FAILDATA to locate the specific instruction
that failed and to format all the data in an SVC dump related to the software
failure. This report gives information about the CSECT involved in the failure, the
component identifier, and the PSW address at the time of the error.

Note: For SLIP dumps or CONSOLE dumps, use SUMMARY FORMAT or
VERBEXIT LOGDATA instead of STATUS FAILDATA.

Choose option 4 (COMMAND) from the IPCS primary option menu (see Figure 14)
and enter the following command. Use the PF keys to scroll up and down through
the report. The following sections describe parts of the report.

Identifying the abend and reason codes: As Figure 15 on page 44 shows, under
the heading “SEARCH ARGUMENT ABSTRACT”, you will find the abend code
and, if provided, an abend reason code.

SYSTEM STATUS:
Nucleus member name: IEANUC01
I/O configuration data:

IODF data set name: SYS0.IODF43
IODF configuration ID: CONGIG00
EDT ID: 00

Sysplex name: SYSPL1
TIME OF DAY CLOCK: B566EA85 A0750707 02/15/2001 20:33:34.680912 local
TIME OF DAY CLOCK: B567202A 89750707 02/16/2001 00:33:34.680912 GMT
Program Producing Dump: SVCDUMP
Program Requesting Dump: IEAVTSDT
Incident token: SYSPL1 S4 06/23/1993 12:43:54.697367 GMT

Figure 13. Sample output from the STATUS SYSTEM subcommand

------------------------- IPCS Subcommand Entry -------------------------------
Enter a free-form IPCS subcommand, CLIST, or REXX exec invocation below:

===> STATUS FAILDATA

Figure 14. IPCS Subcommand Entry menu

SVC dump

Chapter 2. SVC dump 43

In Figure 15, the abend code is X'FF0' with no reason code. See z/OS MVS System
Codes for a description of the abend code and reason code.

The following IPCS reports also provide the abend and reason codes:
v VERBEXIT LOGDATA
v STATUS WORKSHEET
v VERBEXIT SYMPTOMS

Finding the system mode: As Figure 16 shows, below the “SEARCH ARGUMENT
ABSTRACT“ section is information describing the system mode at the time of the
error.

The line that starts with “The error occurred...” tells you if the failure occurred in
an SRB or TCB. In the example in Figure 16, the error occurred while an SRB was
in control, which means you need to look under the heading SEARCH
ARGUMENT ABSTRACT (see Figure 15) to find the CSECT and load module
names. This is the module in which the abend occurred.

If an SRB service routine was in control, look under the heading SEARCH
ARGUMENT ABSTRACT for the CSECT and load module names. This is the
failing module.

...
SEARCH ARGUMENT ABSTRACT

PIDS/5752SC1CJ RIDS/CSVLLCRE#L RIDS/CSVLLBLD AB/S0FF0 REGS/09560 REGS/ 06026
RIDS/CSVLLBLD#R

Symptom Description
------- -----------
PIDS/5752SC1CJ Program id: 5752SC1CJ
RIDS/CSVLLCRE#L Load module name: CSVLLCRE
RIDS/CSVLLBLD Csect name: CSVLLBLD
AB/S0FF0 System abend code: 0FF0
REGS/09560 Register/PSW difference for R09: 560
REGS/06026 Register/PSW difference for R06: 026
RIDS/CSVLLBLD#R Recovery routine csect name: CSVLLBLD

...

Figure 15. Search argument abstract in the STATUS FAILDATA report

...

Home ASID: 001B Primary ASID: 001B Secondary ASID: 001B
PKM: 8000 AX: 0001 EAX: 0000

RTM was entered because a task requested ABEND via SVC 13.
The error occurred while: an SRB was in control.
No locks were held.
No super bits were set.

...

Figure 16. System mode information in the STATUS FAILDATA report

SVC dump

44 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

In output from a SUMMARY FORMAT subcommand, look for the RB for the
abending program. The RB has an RTPSW1 field that is nonzero.

In a dump requested by a SLIP operator command, use a STATUS CPU
REGISTERS subcommand to see data from the time of the problem.

If the error had occurred while a TCB was in control, you would find the failing
TCB by formatting the dump using the IPCS subcommand SUMMARY
TCBERROR. See “Analyze TCB structure” on page 46.

Identifying the failing instruction: The STATUS FAILDATA report also helps you
find the exact instruction that failed. This report provides the PSW address at the
time of the error and the failing instruction text. Note that the text on this screen is
not always the failing instruction text. Sometimes the PSW points to the place
where the dump was taken and not the place where the error occurred.

In Figure 17, the PSW at the time of the error is X'11E6A3C' and the instruction
length is 4-bytes; therefore, the failing instruction address is X'11E6A38'. The failing
instruction is 927670FB.

The failing instruction text displayed in this report is always 12 bytes, 6 bytes
before and 6 bytes after the PSW address. In this example, the failing instruction,
927670FB, is an MVI of X'76' to the location specified by register 7 + X'FB'.

Register 7 at the time of the error, shown under Registers 0-7 above, contained a
X'00000017'. The attempted move was to storage location X'112'. The first 512 bytes
of storage are hardware protected. Any software program that tries to store into
that area without authorization will receive a protection exception error and a
storage protection exception error.

See z/Architecture Principles of Operation for information about machine language
operation codes, operands, and interruption codes.

...
OTHER SERVICEABILITY INFORMATION

Recovery Routine Label: CSVLEBLD
Date Assembled: 00245
Module Level: HBB7705
Subfunction: LIBRARY-LOOKASIDE

Time of Error Information

PSW: 070C0000 811E6A3C Instruction length: 04 Interrupt code: 0004
Failing instruction text: E0009276 70FB5030 70F8D7F7

Registers 0-7
GR: 0002A017 00FBE800 00000000 00000076 00000C60 00FBE600 0002A016 00000017
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
Registers 8-15
GR: 012221A8 811E69F8 00000001 30000000 00FD82C8 811CAD90 011E69D0 011E69D0
AR: 00000000 00000000 00000000 00000000 00000000 00000000 00005F60 00000000

...

Figure 17. Time of error information in the STATUS FAILDATA report

SVC dump

Chapter 2. SVC dump 45

To find the module that abnormally terminated and the offset to the failing
instruction, use the WHERE command. WHERE can identify the module or CSECT
that the failing PSW points to.

Analyze TCB structure
If a TCB was in control at the time of the error, use the IPCS subcommand
SUMMARY TCBERROR to look at the TCB information and find the failing
component. SUMMARY TCBERROR summarizes the control blocks for the failing
address space. (To see all the fields in the control blocks, use SUMMARY
FORMAT.) Scan the completion codes (field CMP) for each TCB to find the correct
TCB. This report displays RBs from newest to oldest.

Figure 18 on page 47 is an example of SUMMARY TCBERROR output. In this
example the TCB at address 008E9A18 has a completion code of X'0C1.' The error
occurred under this TCB. Once you have identified the failing TCB, you can follow
the RB chain to the failing program.

SVC dump

46 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

In this example, the most current RB is the SVRB at address 008FD7A8. This is the
SVC dump's RB. The ESTAE's RB is the PRB at 008E9750. The ESTAE issued an
SVC 33. The RB for the recovery termination manager (RTM) is the SVRB at
008FD638. RTM issued an SVC C to attach the ESTAE. The X'0C1' abend occurred
under the SVRB at 008FD4C8. The last interrupt was a 1 at the address indicated in

...
NAME..... IEFSD060 ENTPT.... 00DA6308

PRB: 008FFED0
WLIC..... 00020006 FLCE.... 00C534A0 OPSW..... 070C2000 00DC766A
LINK..... 008FFA10

CDE: 00C534A0
NAME..... IEESB605 ENTPT.... 00DC7000

TCB: 008FF0D0
CMP...... 00000000 PKF...... 80 LMP...... FF DSP...... FF
TSFLG.... 00 STAB..... 008FD210 NDSP..... 00002000
JSCB..... 008FF4FC BITS..... 00000000 DAR...... 00
RTWA..... 00000000 FBYT1.... 00
Task non-dispatchability flags from TCBFLGS4:
Top RB is in a wait
Task non-dispatchability flags from TCBFLGS5:
Secondary non-dispatchability indicator
Task non-dispatchability flags from TCBNDSP2:
SVC Dump is executing for another task

PRB: 008E9F20
WLIC..... 00020001 FLCDE.... 00C4CA38 OPSW..... 070C1000 00DAC66E
LINK..... 018FF0D0

CDE: 00C4CA38
NAME..... IEFIIC ENTPT.... 00DA6000

TCB: 008E9A18
CMP...... 940C1000 PKF...... 80 LMP...... FF DSP...... FF
TSFLG.... 20 STAB..... 008FD180 NDSP..... 00000000
JSCB..... 008FF33C BITS..... 00000000 DAR...... 01
RTWA..... 7FFE3090 FBYT1.... 08

SVRB: 008FD7A8
WLIC..... 00020000 FLCDE.... 00000000 OPSW..... 070C1000 82569B38
LINK..... 008FD638

PRB: 008E9750
WLIC..... 00020033 FLCDE.... 14000000 OPSW..... 070C1000 80CE9AEE
LINK..... 008FD638

SVRB: 008FD638
WLIC..... 0002000C FLCDE.... 00000000 OPSW..... 070C1000 825E9768
LINK..... 008FD4C8

SVRB: 008FD4C8
WLIC..... 00020001 FLCDE.... 00000000 OPSW..... 070C0000 00C47D52
LINK..... 008FD358

SVRB: 008FD358
WLIC..... 00020053 FLCDE.... 00000000 OPSW..... 075C0000 00D64EOC
LINK..... 008FF4D8

PRB: 008FF4D8
WLIC..... 00020014 FLCDE.... 008FF3D8 OPSW..... 078D0000 00006EF2
LINK..... 008E9A18

CDE: 008FF3D8
NAME..... SMFWT ENTPT.... 00006EB0

Figure 18. Example: the SUMMARY TCBERROR report

SVC dump

Chapter 2. SVC dump 47

the old PSW field (OPSW). The next RB in the chain shows an SVC X'53'
(SMFWTM) had been issued. This is the code the X'0C1' occurred in.

For a scheduled dump, the abnormally terminating TCB can generally be found by
scanning for a nonzero completion code. If there is no code, scan the system trace
for the abend. The trace identifies the ASID number and TCB address for each
entry. See “Examining the system trace” on page 50.

Use the STATUS or the STATUS REGS subcommand to find the data set name and
the module name of the SVC dump requester.

Examining the LOGREC buffer
Use the IPCS subcommand VERBEXIT LOGDATA to view the LOGREC buffer in a
dump. This report might repeat much of the information contained in the STATUS
FAILDATA report, but it helps to identify occasions when multiple error events
caused the software failure.

The example in Figure 19 on page 49 shows how multiple errors can appear in the
LOGREC buffer. Abend X'0D5' is the first abend and X'058' is the second. Always
check for multiple errors in the VERBEXIT LOGDATA report that are in the same
address space or a related address space and are coincident with or precede the
SVC dump.

SVC dump

48 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR
(PROGRAM INTERRUPT) REPORT DATE: 235.91

SCP: VS 2 REL 3 ERROR DATE: 126.91
MODEL: 3090 HH:MM:SS.TH
SERIAL: 272804 TIME: 13:27:59.86

JOBNAME: LSCMSTR

ERRORID: SEQ=01196 CPU=0042 ASID=000C TIME=13:27:59.6

SEARCH ARGUMENT ABSTRACT

PIDS/####SC1C5 RIDS/NUCLEUS#L RIDS/IEAVEDS0 AB/S00D5 PRCS/00000021 REGS/0F120
RIDS/IEAVEDSR#R

SYMPTOM DESCRIPTION
------- -----------
PIDS/####SC1C5 PROGRAM ID: ####SC1C5
RIDS/NUCLEUS#L LOAD MODULE NAME: NUCLEUS
RIDS/IEAVEDS0 CSECT NAME: IEAVEDS0
AB/S00D5 SYSTEM ABEND CODE: 00D5
PRCS/00000021 ABEND REASON CODE: 00000021
REGS/0F120 REGISTER/PSW DIFFERENCE FOR R0F: 120
RIDS/IEAVEDSR#R RECOVERY ROUTINE CSECT NAME: IEAVEDSR

OTHER SERVICEABILITY INFORMATION

RECOVERY ROUTINE LABEL: IEAVEDSR
DATE ASSEMBLED: 08/23/89
MODULE LEVEL: UY41669
SUBFUNCTION: DISPATCHER

TIME OF ERROR INFORMATION

PSW: 440C0000 80FEFC56 INSTRUCTION LENGTH: 04 INTERRUPT CODE: 0021PSW: 44040000 80000000 00000000 00FEFC56
INSTRUCTION LENGTH: 04 INTERRUPT CODE: 0021
FAILING INSTRUCTION TEXT: 1008B777 1008B225 000007FE
TRANSLATION EXCEPTION IDENTIFICATION: 00000041
REGISTERS 0-7
GR: 00000041 00F9A0C0 00000000 00000000 00000000 008DE188 008E8C78 00000001
REGISTERS 8-15
GR: 00F97280 0103AB6A 00FF1B08 008DE188 0000000C 000C0041 80FF6510 00FEFB36BREAKING EVENT ADDRESS: 00000000_00FF650E
AR/GR 0-1 00000000/00000000_00000041 00000000/00000000_00F9A0C0
AR/GR 2-3 00000000/00000000_00000000 00000000/00000000_00000000
AR/GR 4-5 00000000/00000000_00000000 00000000/00000000_008DE188
AR/GR 6-7 00000000/00000000_008E8C78 00000000/00000000_00000001
AR/GR 8-9 00000000/00000000_00F97280 00000000/00000000_0103AB6A
AR/GR 10-11 00000000/00000000_00FF1B08 00000000/00000000_008DE188
AR/GR 12-13 00000000/00000000_0000000C 00000000/00000000_000C0041
AR/GR 14-15 00000000/00000000_80FF6510 00000000/00000000_00FEFB36

HOME ASID: 000C PRIMARY ASID: 000C SECONDARY ASID: 000C
PKM: 8000 AX: 0001

RTM WAS ENTERED BECAUSE OF A PROGRAM CHECK INTERRUPT.
THE ERROR OCCURRED WHILE A LOCKED OR DISABLED ROUTINE WAS IN CONTROL.
NO LOCKS WERE HELD.
SUPER BITS SET: PSADISP - DISPATCHER

...
TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR

(SVC 13) REPORT DAT 235.91
SCP: VS 2 REL 3 ERROR DAT 126.91

MODEL: 3090 HH:MM:SS.TH
SERIAL: 272804 TIM 13:27:59.94

JOBNAME: LSCMSTR
ERRORID: SEQ=01197 CPU=0000 ASID=000C TIME=13:27:59.6

SEARCH ARGUMENT ABSTRACT

AB/S0058

SYMPTOM DESCRIPTION
------- -----------
AB/S0058 SYSTEM ABEND CODE: 0058

SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE

PROGRAM ID
LOAD MODULE NAME
CSECT NAME
RECOVERY ROUTINE CSECT NAME
RECOVERY ROUTINE LABEL
DATE ASSEMBLED
MODULE LEVEL
SUBFUNCTION

TIME OF ERROR INFORMATION

SVC dump

Chapter 2. SVC dump 49

|
|

|
|
|
|
|
|
|
|
|

When viewing the VERBEXIT LOGDATA report, skip the hardware records to
view the software records. Search for the first software record.

The field “ERRORID=” gives the error identifier for the software failure. The error
identifier consists of the sequence number, ASID, and time of the abend. By
matching this identifier with error identifiers from other reports, you can tell if this
is the same abend you have been analyzing or if it is a different abend. See
“Interpreting software records” on page 537 for more information.

Examining the system trace
The system trace table describes the events in the system leading up to the error.
The trace table is helpful when the PSW does not point to the failing instruction,
and to indicate what sequence of events preceded the abend.

IPCS option 2.7.4 formats the system trace. The report is long. IBM recommends
scrolling to the end of the report, then backing up to find the trace entry for the
abend. Type an M on the command line and press F8 to scroll to the bottom of the
report.

After you find the entry for the abend, start at the PSW where the dump was
taken and track the events in the table to find where the failing instruction is in the
code.

The system trace report marks important or significant entries with an asterisk. In
Figure 20 “*SVC D” in the “IDENT CD/D” column identifies the PSW where the
program took the dump. Prior to the SVC D are three PGM (program check)
entries. PGM 001 has an asterisk next to it, indicating that the program check was
unresolved. The next entry, RCVY PROG, identifies a recovery program that failed
because it issued the SVC D a few entries later. See Chapter 8, “System trace,” on
page 169 to recognize significant entries in the system trace table.

Looking at the registers
Use the IPCS subcommand STATUS REGISTERS to display the registers for the
TCBs and RBs. SUMMARY REGS gives the same information in a different format.
This report identifies the PSW, ASID and register values just as the STATUS

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3
UNIQUE-4 UNIQUE-5 UNIQUE-6

...

01 0094 00AF7D18 DSP 070C0000 81EA7000 00000000 00000000 0000800C
01 0094 00AF7D18 SVC 78 070C0000 81EA7048 00000002 00000278 00000000
01 0094 00AF7D18 SVCR 78 070C0000 81EA7048 00000000 00000278 03300D88
01 0094 00AF7D18 PGM 010 070C0000 81EA704A 00040010 03300D8C
01 0094 00AF7D18 PGM 011 070C0000 81EA704A 00040011 03300D8C
01 0094 00AF7D18 SVC 77 070C2000 81EA7088 81EA7000 00000000 00050000
01 0094 00AF7D18 SVCR 77 070C2000 81EA7088 00000000 00000000 40000000
01 0094 00AF7D18 *PGM 001 070C0000 83300FAA 00020001 03300D8C
01 0094 00AF7D18 *RCVY PROG 940C1000 00000001 00000000
02 0001 00000000 I/O 1A2 070E0000 00000000 0080000E 060246C0 0C000001
02 0054 00AD7300 SRB 070C0000 810537E0 00000054 00F3C9F8 00F3CA40
01 0054 00AF7D18 SSRV 12D 810B9CEE 00AF7D18 000C0000 00000000
01 0094 00AF7D18 SSRV 12D 810B9D0E 00AF7D18 000B0000 00000000
01 0094 00AF7D18 DSP 070C0000 810BF664 00000000 00000000 40000000
01 0094 00AF7D18 *SVC D 070C0000 810BF666 00000040 00000000 40000000
01 0054 00000000 SSRV 10F 00000000 00F83E80 00AD7300 00AC5040

Figure 20. Example: output from the IPCS subcommand SYSTRACE

SVC dump

50 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

FAILDATA report, but STATUS REGISTERS also gives the control register values.

The example output in Figure 21 shows the address in the PSW is X'0FE5CFC', the
ASID is X'1B', and the failing instruction is located in offset X'5FC' in the CSECT
IEAVESVC in the module IEANUC01 in the nucleus. You can now browse the
dump at this location and look at the specific failing instruction. You could also
use the information about the registers to find out more about the error if the
address in the PSW does not point to the failing instruction.

This report identifies the PSW, ASID and register values just as the STATUS
FAILDATA report. However, as Figure 22 on page 52 shows, STATUS REGISTERS
also gives the control register values.

CPU STATUS:

PSW=070C1000 80FE5CFC (RUNNING IN PRIMARY, KEY 0, AMODE 31, DAT ON)
DISABLED FOR PER

ASID(X’001B’) 00FE5CFC. IEANUC01.IEAVESVC+05FC IN READ ONLY NUCLEUS
ASCB27 at F3FA00, JOB(LLA), for the home ASID
ASXB27 at 9FDF00 for the home ASID. No block is dispatched
HOME ASID: 001B PRIMARY ASID: 001B SECONDARY ASID: 001B

GPR VALUES
0-3 80000000 80FF0000 009FF5A0 00FC4E88
4-7 009F8E88 009FD358 80FE5CD6 00F3FA00
8-11 00000000 80FE579C 009FD418 7FFFE2C0
12-15 7FFE0000 00006730 00FE6200 80014910

ACCESS REGISTER VALUES
0-3 7FFEA5CC 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 00005F60 8210532A

ALET TRANSLATION
AR 00 Not translatable
AR 14 Not translatable
AR 15 Not translatable

CONTROL REGISTER VALUES
0-3 5EB1EE40 00A2007F 007CCDC0 8000001B
4-7 0001001B 00C506C0 FE000000 00A2007F
8-11 00000000 00000000 00000000 00000000
12-15 0082E07B 00A2007F DF880C71 7FFE7008

Figure 21. Sample of the STATUS REGISTERS report

SVC dump

Chapter 2. SVC dump 51

Other useful reports for SVC dump analysis
To collect further SVC dump data, use any of the following commands.

IPCS subcommand Information in the report

STATUS CPU REGISTERS DATA
CONTENTION

Data about the abend, current ASID, and task.

SUMMARY FORMAT All fields in the TCBs and the current ASID.

TCBEXIT IEAVTFMT 21C.% The current FRR stack.

LPAMAP The entry points in the active LPA and PLPA.

VERBEXIT NUCMAP A map of the modules in the nucleus when the dump
was taken.

VERBEXIT SUMDUMP The data dumped by the SUMDUMP option on the
SDUMPX macro.

VERBEXIT MTRACE The master trace table.

VERBEXIT SYMPTOMS The primary and secondary symptoms if available.

Note: Use the VERBEXIT SYMPTOMS subcommand last in your SVC dump
analysis. Other subcommands can add symptoms to the dump header record. This
ensures VERBEXIT SYMPTOMS provides all symptoms available from the dump.

CPU STATUS:
PSW=070C4000 00FC5C96
(Running in AR, key 0, AMODE 24, DAT ON)
DISABLED FOR PER
ASID(X’001E’) FC5C96. STRUCTURE(Cvt)+D6 IN READ/WRITE NUCLEUS
ASID(X’001E’) FC5C96. IEANUC01.IEAVCVT+0116 IN READ/WRITE NUCLEUS
ASID(X’001E’) FC5C96. STRUCTURE(Dcb)+0152 IN READ/WRITE NUCLEUS
ASID(X’001E’) FC5C96. STRUCTURE(Dcb)+015A IN READ/WRITE NUCLEUS
ASCB30 at F90B80, JOB(ORANGE), for the home ASID
ASXB30 at 6FDE90 and TCB30D at 6E7A68 for the home ASID
HOME ASID: 001E PRIMARY ASID: 001E SECONDARY ASID: 001E

General purpose register values
0-1 00000000_00000020 00000000_84058000
2-3 00000000_00000000 00000001_00004000
4-5 00000000_01F9B9A8 00000000_01F9B9A8
6-7 00000000_00000000 00000000_01F9BE10
8-9 00000000_00000000 00000000_FFFFFFFC
10-11 00000000_00000000 00000000_00FDAC58
12-13 00000000_01560410 00000000_01F9BB08
14-15 00000000_8155E5A8 00000000_0000003C

Access register values
0-3 00000000 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 00000000 00000000

Control register values
Left halves of all registers contain zeros
0-3 5F29EE40 0374C007 008D0A40 00C0001E
4-7 0000001E 02A30780 FE000000 0374C007
8-11 00020000 00000000 00000000 00000000
12-15 0294EE43 0374C007 DF882A2F 7F5CD4B0

Figure 22. Sample of the STATUS REGISTERS report run in z/Architecture mode

SVC dump

52 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Reading the SDUMPX 4K SQA buffer
The following SVC dumps contain problem data in an SDUMPX 4K system queue
area (SQA) buffer:
v An SVC dump requested by a SLIP operator command
v Other SVC dumps, when indicated in the explanation of the dump title.
v An SVC dump requested by an SDUMP or SDUMPX macro with a

BUFFER=YES parameter

To obtain the buffer, use the following IPCS subcommand:
LIST 0 DOMAIN(SDUMPBUFFER) LENGTH(4096)

Table 12 describes the fields in the SQA buffer and should be used for diagnosis.

Table 12. Fields in SQA bugger

Offset Length Content

0 (0) 4 The characters, TYPE

4 (4) 4 RTM/SLIP processing environment indicator:

v X'00000001': RTM1

v X'00000002': RTM2

v X'00000003': MEMTERM

v X'00000004': PER

8 (8) 4 The characters, CPU

12 (C) 4 Logical processor identifier (CPUID)

16 (10) 4 The characters, REGS

20 (14) 64 General purpose registers 0 through 15 at the time of the event

84 (54) 4 The characters, PSW

88 (58) 8 The program status word (PSW) at the time of the event

96 (60) 4 The characters, PASD

100 (64) 2 The primary address space identifier (ASID) at the time of the
event

102 (66) 4 The characters, SASD

106 (6A) 2 The secondary ASID at the time of the event

108 (6C) 4 The characters, ARS

112 (70) 64 Access registers 0 through 15 at the time of the event.

176 (B0) 4 The characters, G64H

180 (B4) 64 High halves of general purpose registers 0 through 15 at the time
of the event

244 (F4) variable One of the following, as indicated by the RTM/SLIP processing
environment indicator at offset 4 of the buffer:

v The system diagnostic work area (SDWA), if offset 4 is 1 (RTM1)

v The recovery termination manager 2 (RTM2) work area
(RTM2WA), if offset 4 is 2 (RTM2)

v The address space control block (ASCB), if offset 4 is 3
(MEMTERM)

v The PER interrupt code and PER address, if offset 4 is 4 (PER)

4076 (FEC) 4 The characters, P16

4080 (FF0) 16 The 16-byte program status word (PSW) at the time of the event.

SVC dump

Chapter 2. SVC dump 53

SVC dump

54 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 3. Transaction dump

A transaction dump provides a representation of the virtual storage for an address
space when an error occurs. Typically, an application requests the dump from a
recovery routine when an unexpected error occurs. Transaction dumps are
requested as follows:
v Synchronous transaction dump:

The requester's IEATDUMP macro invocation issues an instruction to obtain the
dump under the current task. IEATDUMP returns control to the requester and is
available once the dump data has been written into a dump data set.

Each Transaction dump also contains a summary dump, if requested. The
summary dump supplies copies of selected data areas taken at the time of the
request. Specifying a summary dump also provides a means of dumping many
predefined data areas simply by specifying one option. This summary dump data
is not mixed with the Transaction dump because in most cases it is chronologically
out of step. Instead, each data area selected in the summary dump is separately
formatted and identified. IBM recommends that you request summary dump data.

This section includes information system programmers need to know about
Transaction dump and Transaction dump processing:
v “Choices for IEATDUMP Data Sets” on page 56
v “Obtaining transaction dumps” on page 58
v “Printing, viewing, copying, and clearing a dump data set” on page 59
v “Contents of transaction dumps” on page 59

See z/OS MVS Programming: Authorized Assembler Services Guide for information any
programmer needs to know about programming the IEATDUMP macro to obtain a
Transaction Dump:
v Deciding when to request a Transaction dump
v Understanding the types of Transaction Dumps that MVS produces
v Designing an application program to handle a specific type of Transaction dump
v Identifying the data set to contain the dump
v Defining the contents of the dump
v Suppressing duplicate Transaction dumps using dump analysis and elimination

(DAE)

Planning data sets for transaction dumps
Transaction dump processing stores data in dump data sets that you preallocate
manually, or that are allocated automatically, as needed. The output dump data set
has the attributes of RECFM=FB and LRECL=4160.

Planning data set management for transaction dumps
For transaction dumps, use extended format sequential data sets because they have
the following characteristics:
v Greater capacity than sequential data sets
v Striping and compression support.

© Copyright IBM Corp. 1988, 2015 55

For more information on extended format sequential data sets, see “Choosing SVC
dump data sets” on page 15.

Sequential data sets can use large format data sets (DSNTYPE=LARGE).

Extended format sequential data sets can be placed in either track-managed space
or cylinder-managed space. Transaction dump fully supports placing dump data
sets in cylinder-managed space.

Using preallocated dump data sets
To specify a pre-allocated data set, specify the DDNAME parameter that identifies
a data set. The data set must contain sufficient space in one for more extents for
the entire dump to be written. DDNAME does not have a 2GB size restriction for
the size of the dump. If the data set does not contain sufficient space, a partial
dump is returned.

Setting up allocation authority
To allocate dump data sets automatically, the caller's and/or DUMPSRV address
space must have authority to allocate new data sets. Do the following:
1. Associate the caller's and/or DUMPSRV address space with a user ID.

If you have RACF Version 2 Release 1 installed, use the STARTED general
resource class to associate the caller or DUMPSRV with a user ID. For this step,
the RACF started procedures table, ICHRIN03, must have a generic entry.
If you have an earlier version of RACF, use the RACF started procedures table,
ICHRIN03.

2. Authorize caller's or DUMPSRV user ID to create new dump data sets using
the naming convention in the following topic.

With the high-level qualifier of SYS1, the data sets are considered group data
sets. You can assign CREATE group authority to the caller's user ID within that
group.

See the following references for more information:
v z/OS Security Server RACF System Programmer's Guide for information about the

RACF started procedures table.
v z/OS Security Server RACF Security Administrator's Guide for information on using

the STARTED general resource class and on controlling creation of new data
sets.

Choices for IEATDUMP Data Sets
Transaction dump processing supports both pre-allocated and automatically
allocated dump data sets. The dump is allocated from the generic resource
SYSALLDA. IEATDUMP processes the dump data sets in the following ways:
v For pre-allocated data sets, IEATDUMP writes to the data set without first

capturing the dump into a data space. The dump can contain more than 2 GB if
the data set capacity permits.

v For automatically allocated data sets, IEATDUMP processes the dump data sets
depending on whether the dump section number symbol &DS. is used on the
end of the data set name pattern:
– If &DS. is not used on the end of the data set name pattern, IEATDUMP

captures the dump and stores it in a data space; the data set is then allocated
with the space required to contain the captured data; and the dump is written
to disk. The dump cannot exceed 2 GB.

Transaction dump

56 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

If dynamic allocation fails, message IEA820I is issued, and the dump is
deleted.

– If &DS. is used on the end of the data set name pattern, IEATDUMP does not
first capture the dump to a data space. Instead, IEATDUMP writes the dump
directly to disk. If the size limit of the date set is reached, IEATDUMP
allocates another dump with a higher value for &DS.. Each data set has an
extent size of 500 M that can be changed using ACS routines. These extents
are written to until the disk runs out of space or no more extents can be
created. At that time, a new data set in the sequence is created. Multi-data set
IEATDUMPs utilize up to 999 data sets. The maximum size depends on the
amount of space on the volumes where these data sets get allocated. Before
IPCS can process the data, you must combine all the data sets into one data
set using IPCS COPYDUMP.

Naming automatically allocated dump data sets
The application has control of the name of the data sets created by the automatic
allocation function, and you can select a name-pattern to allow for dump data set
organization according to your needs. The name is determined through an
installation-supplied pattern on the DSN(AD) keyword in the IEATDUMP macro.

Names must conform to standard MVS data set naming conventions and are
limited to 44 characters, including periods used as delimiters between qualifiers. A
set of symbols is available so that you can include the following kinds of
information in the names of your automatically allocated dump data sets:
v System name
v Sysplex name
v Job name
v Local and GMT time and date
v Dump section number

For a complete list of the symbols you can use, see the explanation of DUMPDS
NAME= in z/OS MVS System Commands.

Note:

1. The &SEQ. symbol is not supported for IEATDUMPs.
2. You can use the &DS. symbol for splitting the dump between several data sets.

When the &DS. symbol is added to the end of the DSN name pattern, the
transaction dump data can be placed into as many as 999 automatically-
allocated 500M-extent data sets. Note that you must combine all the data sets
into one data set using IPCS COPYDUMP before IPCS can process the data.

When determining the pattern for the dump data set names, consider any
automation tools you may have at your installation that work on dump data sets.

Figure 23 on page 58 describes a SPFUSER name pattern. Note that the symbols
are resolved into date and time, so they are preceded by an alphabetic character to
conform to MVS data set name requirements. Also, the symbol starts with an
ampersand (&) and ends with a period (.), resulting in a name pattern that has
double periods when a symbol finishes a qualifier. One period ends the symbol,
and the second serves as the delimiter between qualifiers of the generated data set
name.

Transaction dump

Chapter 3. Transaction dump 57

Automatically allocated dump data sets are not added to the system's sysplex
dump directory, as it is for SVC dumps.

Communication from the system
The system communicates about automatic allocation of dump data sets using
three messages:
v IEA827I is issued when a complete or partial dump multi-data set dump is

taken. IEA827I is an informational message, it will not be issued highlighted.
v IEA822I is issued when a complete or partial dump is taken. IEA822I is an

informational message, it is not issued highlighted.
v IEA820I is issued once per Transaction dump when the dump cannot be taken

or allocation fails. IEA820I is an informational message, it will not be issued
highlighted.

Obtaining transaction dumps
Obtain a Transaction dump by issuing a IEATDUMP macro in an authorized or
unauthorized program.

In a sysplex, authorized applications might need dumps from more than one
address space to collect all of the problem data. These dumps need to be requested
at the same time. To request these multiple dumps, issue a IEATDUMP macro with
a REMOTE parameter specifying the other address spaces involved in the problem.
To help you set up these requests, the parameter can contain wildcards. If the
installation gives names that form patterns to the systems in the sysplex and to
jobs for associated work, you can use wildcards, * and ?, to specify the names. For
example, use the name TRANS? for the jobnames TRANS1, TRANS2, and TRANS3
and the name TRANS* for TRANS1, TRANS12, and TRANS123.

Note: If a Transaction dump uses the REMOTE parameter to dump one or more
address spaces on a pre-release 4 system, the result will be a single SVC dump
containing the requested data, instead of one or more Transaction dumps written
to data set names specified with the DSN parameter. Issue the DISPLAY
DUMP,STATUS command to determine the name of this SVC dump.

APPL . TDUMP . D &DATE. . T &TIME. . &SYSNAME. . &JOBNAME.
─┬── │ ──┬── │ │ ──┬─── │ │ ──┬─── │ ───┬───── │ ────┬────
│ ┌─┘ │ │ │ │ │ │ │ │ │ │ │
│ │ ┌───┘ │ │ │ │ │ │ │ │ │ │
│ │ │ ┌─────┘ │ │ │ │ │ │ │ │ │
│ │ │ │┌───────┘ │ │ │ │ │ │ │ │
│ │ │ ││ ┌────────┘ │ │ │ │ │ │ │
│ │ │ ││ │ ┌───────────┘ │ │ │ │ │ │
│ │ │ ││ │ │┌─────────────┘ │ │ │ │ │
│ │ │ ││ │ ││ ┌───────────────┘ │ │ │ │
│ │ │ ││ │ ││ │ ┌─────────────────┘ │ │ │
│ │ │ ││ │ ││ │ │ ┌───────────────────┘ │ │
│ │ │ ││ │ ││ │ │ │ ┌───────────────────────┘ │
│ │ │ ││ │ ││ │ │ │ │ ┌──────────────────────────┘
│ │ │ ││ │ ││ │ │ │ │ │
│ │ │ ││ │ ││ │ │ │ │ │
↓ ↓ ↓ ↓↓ ↓ ↓↓ ↓ ↓ ↓ ↓ ↓
APPL.TDUMP.D970526.T110113.SYSTEM1.SPFUSER

Figure 23. SPFUSER name pattern for automatically allocated dump data set

Transaction dump

58 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Printing, viewing, copying, and clearing a dump data set
Transaction Dumps are unformatted when created. Use IPCS to format a dump
and then view it at a terminal or print it. For example, for a pre-allocated data set
or a dump data set, the JCL shown in Figure 24does the following:
v Uses the Transaction dump in the APPL.TDUMP00 data set. The IPCSTDMP DD

statement identifies this data set.
v Deletes the IPCS dump directory in the DELETE(DDIR) statement. This

statement uses the USERID of the batch job in the directory identification.
v Allocates the dump directory through the BLSCDDIR statement. The default is

volume VSAM01. The example shows VSAM11. Override the default volume
with the desired volume.

v Formats the dump using the IPCS subcommands in LIST 0. To use this example,
replace the LIST 0 command with the desired IPCS subcommands or a CLIST.
See z/OS MVS IPCS User's Guide for CLISTs.

Contents of transaction dumps
Transaction Dumps share parmlib member IEADMR00 to establish the dump
options list at system initialization. The IBM-supplied IEADMR00 parmlib member
specifies dump options NUC, SQA, LSQA, SWA, TRT, RGN, and SUM.

See z/OS MVS IPCS Commands for examples of IPCS output formatted from
Transaction Dumps.

Customizing transaction dump contents
You can customize the contents of a Transaction dump to meet the needs of your
installation. For example, you might want to add areas to be dumped, reduce the
dump size, or dump Hiperspaces. In most cases, you will customize the contents
of a Transaction dump through the SDATA parameter of the IEATDUMP macro.

Hiperspaces: Transaction Dumps do not include Hiperspaces. To include
Hiperspace data in a Transaction Dump, you have to write a program to copy data
from the Hiperspace into address space storage that is being dumped.

Adding areas: If the dump, as requested, will not contain all the needed areas, see
one of the following for ways to add the areas:

//IPCSJOB JOB
//IPCS EXEC PGM=IKJEFT01,DYNAMNBR=75,REGION=1500K
//SYSPROC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//IPCSTDMP DD DSN=APPL.TDUMP00,DISP=SHR
//SYSUDUMP DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
DELETE(DDIR) PURGE CLUSTER
BLSCDDIR VOLUME(VSAM11)
IPCS NOPARM
SETDEF DD(IPCSTDMP) LIST NOCONFIRM
LIST 0
END
/*

Figure 24. Example: JCL to Print, Copy, and Clear the Dump Data Set

Transaction dump

Chapter 3. Transaction dump 59

v “Customized contents using the SDATA parameter”
v “Contents of summary dumps in transaction dumps” on page 62

Customized contents using the SDATA parameter
The IBM-supplied default contents and the contents available through
customization are detailed in Table 13. The tables show dump contents
alphabetically by the parameters that specify the areas in the dumps. Before
requesting a dump, decide what areas will be used to diagnose potential errors.
Find the areas in the tables. The symbols in columns under the dump indicate how
the area can be obtained in that dump; the order of the symbols is not important.

D IBM-supplied default contents

M Available on the macro that requests the dump

P Available in the parmlib member that controls the dump options

X Available on the CHNGDUMP operator command that changes the options
for the dump type

blank No symbol indicates that the area cannot be obtained.

Note: System operator commands and assembler macros use the parameters in the
table to specify dump contents.

Table 13. Customizing transaction dump contents through the SDATA Parameter

SDATA Parameter
Option

Dump Contents Transaction dump for
IEATDUMP Macro

ALLNUC The DAT-on and DAT-off nucleuses M P X

CSA Common service area (CSA) (that is, subpools 227, 228, 231, 241)
and virtual storage for 64-bit addressable memory objects
created using one of the following services:
v IARV64 REQUEST=GETCOMMON,DUMP=LIKECSA
v IARCP64 COMMON=YES,DUMP=LIKECSA
v IARST64 COMMON=YES,TYPE=PAGEABLE

M P X

DEFS Default areas LSQA, NUC, PSA, RGN, SQA, SUM, SWA, TRT M

ALL CSA, GRSQ, LPA, NUC, RGN, SQA, SUM, SWA, TRT X

GRSQ Global resource serialization control blocks for the task being
dumped:

v Global queue control blocks

v Local queue control blocks

M P X

IO Input/output supervisor (IOS) control blocks for the task being
dumped:

v EXCPD

v UCB

D

LPA Active link pack area (LPA): module names and contents M P X

LSQA Local system queue area (LSQA) allocated for the address space
(that is, subpools 203 - 205, 213 - 215, 223 - 225, 229, 230, 233 -
235, 249, 253 - 255), and virtual storage for 64-bit addressable
memory objects created using one of the following services:
v IARV64 REQUEST=GETSTOR,DUMP=LIKELSQA
v IARCP64 COMMON=NO,DUMP=LIKELSQA
v IARST64 COMMON=NO

D M P X

Transaction dump

60 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|

|
|
|
|
|

Table 13. Customizing transaction dump contents through the SDATA Parameter (continued)

SDATA Parameter
Option

Dump Contents Transaction dump for
IEATDUMP Macro

NUC Read/write portion of the control program nucleus (that is, only
the non-page-protected areas of the DAT-on nucleus), including:

v CVT

v LSQA

v PSA

v SQA

M P X

PSA Prefixed save areas (PSA) for the processor at the time of the
error or the processor at the time of the dump

D M P

RGN Allocated pages in the private area of each address space being
dumped, including subpools 0 - 127, 129 - 132, 203 - 205, 213 -
215, 223 - 225, 229, 230, 236, 237, 244, 249, 251 - 255, and virtual
storage for 64-bit addressable memory objects created using one
of the following services:
v IARV64 REQUEST=GETSTOR,DUMP=LIKERGN
v IARV64 REQUEST=GETSTOR,SVCDUMPRGN=YES
v IARCP64 COMMON=NO,DUMP=LIKERGN
v IARST64 COMMON=NO

. Also, allocated eligible storage above the 2–gigabyte address.

M P X

SQA System queue area (SQA) allocated (that is, subpools 226, 239,
245, 247, 248) and virtual storage for 64-bit addressable memory
objects created using one of the following services:
v IARV64 REQUEST=GETCOMMON,DUMP=LIKESQA
v IARCP64 COMMON=YES,DUMP=LIKESQA
v IARST64 COMMON=YES,TYPE=FIXED
v IARST64 COMMON=YES,TYPE=DREF

D M P X

SUM Summary dump (See “Contents of summary dumps in
transaction dumps” on page 62.)

D M P X

SWA Scheduler work area (SWA) (that is, subpools 236 and 237) M P X

TRT System trace, generalized trace facility (GTF) trace, and master
trace, as available

D M P X

Default system data Instruction address trace, if available D

Default system data Nucleus map and system control blocks, including:

v ASCB for each address space being dumped

v ASVT

v Authorization table for each address space

v CVT, CVT prefix, and secondary CVT (SCVT)

v Entry tables for each address space

v GDA

v JSAB of each address space being dumped

v Linkage stack

v Linkage table for each address space

v PCCA and the PCCA vector table

v TOT

v TRVT

v UCB

D

Default system data DFP problem data, if DFP Release 3.1.0 or a later release is
installed

D

Transaction dump

Chapter 3. Transaction dump 61

|
|
|
|
|
|
|

|
|
|
|
|
|

Table 13. Customizing transaction dump contents through the SDATA Parameter (continued)

SDATA Parameter
Option

Dump Contents Transaction dump for
IEATDUMP Macro

Default system data Storage for the task being dumped and program data for all of
its subtasks

D

Default system data Storage: 4 kilobytes before and 4 kilobytes after the address in
the PSW at the time of the error

D

Contents of summary dumps in transaction dumps
When you request a summary dump, the SUM parameter requests many useful,
predefined areas with one parameter.

Summary dump does not contain volatile system information. The system writes
the summary dump before it returns control to the dump requester; the summary
information is saved for each address space that is being dumped.

The Summary Dump contains:
1. ASID record for the address space of the dump task
2. Control blocks for the recovery termination manager (RTM):

RTM2WA associated with all TCBs in the dumped address space
3. Dump header, which is mapped by AMDDATA.

For the AMDDATA mapping, see z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

4. 4 kb before and 4 kb after:
All valid unique addresses in the PSWs in the RTM2WAs shown in the
dump
All valid unique addresses in the registers in the RTM2WAs shown in the
dump

5. Supervisor control blocks:
v Current linkage stack
v Primary address space number (PASN) access list
v Work unit access list

For information about control blocks that are listed in Table 13 on page 60, see
z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

Customizing contents through operator commands
The dump options list for Transaction Dumps can be customized through a
CHNGDUMP operator command by all the ways shown in Table 14 on page 63.

Nucleus areas in dumps: Dump options control the parts of the nucleus that
appear in a dump. A diagnostician seldom needs to analyze all the nucleus. An
installation can eliminate nucleus areas from dumps. If the IBM-supplied defaults
are used, Transaction dump for an IEATDUMP macro contains the nucleus map
and certain control blocks.

Most problems can be debugged without dumping the nucleus. If a problem arises
that requires the nucleus be dumped, use the CHNGDUMP operator command to
add the NUC SDATA option to all IEATDUMPs. This also applies to other options.

Transaction dump

62 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

DAT, dynamic address translation, is the hardware feature that enables virtual
storage. In the DAT-on part of the nucleus, the addresses are in virtual storage; in
the DAT-off part of the nucleus, the addresses are in central storage.

Table 14. Customizing transaction dump contents through operator commands

Customization Effect Example

Updating IEADMR00 parmlib
member

Change occurs: At system
initialization

What changes: This parmlib member
establishes the dump options for
Transaction dumps for IEATDUMP
macros and SDATA. See “Contents of
transaction dumps” on page 59 for
the list.

To add the link pack area (LPA) to all
Transaction dumps for IEATDUMP
macros and SDATA, while keeping
the local system queue area (LSQA)
and trace data, change the line in
IEADMR00:

SDATA=(LSQA,TRT,LPA)

Adding the CHNGDUMP operator
command in IEACMD00 parmlib
member

Change occurs: At system
initialization

What changes: This command
establishes the dump options for
Transaction dumps for IEATDUMP
macros and SYSMDUMPS. See
“Contents of transaction dumps” on
page 59 for the list.

To add the link pack area (LPA) to all
Transaction dumps for IEATDUMP
macros and SYSMDUMP, while
keeping the local system queue area
(LSQA) and trace data, add the
following command to IEACMD00:

CHNGDUMP SET,SYSMDUMP=(LPA)

Entering CHNGDUMP operator
command with SYSMDUMP
parameter on a console with master
authority

Change occurs: Immediately when
command is processed

What changes:

v For the ADD mode: CHNGDUMP
options are added to the current
Transaction dump options list and
to any options specified in the
macro or operator command that
requested the dump. The options
are added to all Transaction dumps
for IEATDUMP macros and
SYSMDUMP, until another
CHNGDUMP SYSMDUMP
operator command is entered.

v For the OVER mode:
CHNGDUMP options are added to
the current Transaction dump
options list. The system ignores
any options specified in the macro
or operator command that
requested the dump. The options
override all Transaction dumps for
the IEATDUMP macro and
SYSMDUMP, until a CHNGDUMP
SYSMDUMP,ADD operator
command is entered.

v For the DEL option: CHNGDUMP
options are deleted from the
Transaction dump options list.

When more than one CHNGDUMP
operator command with IEATDUMP
is entered, the effect is cumulative.

To add the LPA to all Transaction
dumps for the IEATDUMP macro
and SYSMDUMP, until changed by
another CHNGDUMP SYSMDUMP,
enter:

CHNGDUMP SET,SYSMDUMP=(LPA)

v To add the CHNGDUMP
IEATDUMP options list to all
Transaction dumps:

CHNGDUMP SET,SYSMDUMP,ADD

v To override all Transaction dumps
with the CHNGDUMP IEATDUMP
options list:

CHNGDUMP SET,SYSMDUMP,OVER

v To remove LPA from the
IEATDUMP options list:

CHNGDUMP DEL,SYSMDUMP=(LPA)

Transaction dump

Chapter 3. Transaction dump 63

Transaction dump

64 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 4. Stand-alone dump

The stand-alone dump program (SADMP) produces a stand-alone dump of storage
that is occupied by one of the following:
v A system that failed.
v A stand-alone dump program that failed.

Either the stand-alone dump program dumped itself — a self-dump —, or the
operator loaded another stand-alone dump program to dump the failed
stand-alone dump program.

The stand-alone dump program and the stand-alone dump together form what is
known as the stand-alone dump service aid. The term stand-alone means that the
dump is performed separately from normal system operations and does not
require the system to be in a condition for normal operation.

The stand-alone dump program produces a high-speed, unformatted dump of
central storage and parts of paged-out virtual storage on a tape device or a direct
access storage device (DASD). The stand-alone dump program, which you create,
must reside on a storage device that can be used to IPL.

Produce a stand-alone dump when the failure symptom is a wait state with a wait
state code, a wait state with no processing, an instruction loop, or slow processing.

You create the stand-alone dump program that dumps the storage. Use the
AMDSADMP macro to produce the following:
v A stand-alone dump program that resides on DASD, with output directed to a

tape volume or to a DASD dump data set
v A stand-alone dump program that resides on tape, with output directed to a

tape volume or to a DASD dump data set.

A stand-alone dump supplies information that is needed to determine why the
system or the stand-alone dump program failed.

You can create different versions of the stand-alone dump program to dump
different types and amounts of storage. To create the different versions, code
several AMDSADMP macros by varying the values of keywords on the macros.

Before you begin, also consider reading the following topics:
v For a set of best practices for optimizing stand-alone dump (SADMP) data

capture, optimizing problem analysis time, and ensuring that the stand-alone
dump is successful at capturing the necessary information for use by IBM
Support, see the topic about Best practices for large stand-alone dump in z/OS
Problem Management.

v To enable your operators and the system to respond appropriately to disabled
wait states, consider activating the AutoIPL function, see the topic about Using
the automatic IPL function in z/OS MVS Planning: Operations.

This information covers the following topics, which describe how to use
stand-alone dump:
v “Planning for stand-alone dump” on page 66
v “Creating the stand-alone dump program” on page 70

© Copyright IBM Corp. 1988, 2015 65

v “Generating the stand-alone dump program” on page 96
v “Running the stand-alone dump program” on page 107
v “Running the stand-alone dump program in a sysplex” on page 113
v “Copying, viewing, and printing stand-alone dump output” on page 116
v “Message output” on page 119
v “Analyzing stand-alone dump output” on page 121

Planning for stand-alone dump
There are several decisions you need make when planning for a stand-alone dump.
You implement most of these decisions when you create the stand-alone dump
program, either when you code the AMDSADMP macro, when you assemble the
macro, or when you use the SADMP option on the IPCS Dialog. Some typical
questions follow.

Should I take a stand-alone dump to DASD or to tape?
When choosing an output device for stand-alone dump, consider the need for
operator intervention, the amount of operator intervention involved, and the
amount of time the system will be unavailable.

You can reduce the level of operator intervention during stand-alone dump
processing by dumping to DASD. With an automation package set up to IPL the
stand-alone dump program from DASD, stand-alone dump can be run from a
remote site. When you dump to tape, an operator is required to handle other
aspects of dumping, such as mounting or changing tapes, unless the tape is in an
IBM Virtual Tape Server (VTS).

The system is unavailable when a stand-alone dump is taken. The amount of time
the system is unavailable depends upon the size of the dump. See “Dumping to a
DASD data set” on page 87 for more information.

If I do dump to DASD, how much space do I need?
The maximum size of a single-volume DASD dump data set depends on the type
of data set.
v Conventional sequential data sets can span 65,535 tracks, and can hold

approximately 3 GB.
v Extended format data sets are supported by z/OS V1R6 and later releases.

Extended format sequential data sets can hold 16,777,215 blocks. The maximum
size for extended format sequential is approximately 383 GB. You cannot use
striping or compression options for extended format sequential data sets. You
must use the guaranteed free space option to require DFSMS to reserve space at
the time that the data set is created.

Note: Beginning in z/OS V1R12, SADMP supports placement of dump data sets
in cylinder-managed space. In releases prior to z/OS V1R12, stand-alone data
sets must remain in track-managed space.

v Large format data sets are supported by z/OS V1R7 and later releases. Large
format (DSNTYPE=LARGE) data sets can span 16,777,215 tracks. The maximum
size for large format data sets is 768 GB.

If you require more space than you want to allocate on a single volume, you can
define a multi-volume DASD dump data set that can span up to 32 volumes of the
same device type.

Stand-Alone dump

66 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Use the AMDSADDD REXX utility or the SADMP dump data set utility on the
IPCS dialog to allocate and initialize a single volume DASD dump data set or a
multi-volume DASD dump data set. This prepares the data set for use by the
system where initialization is performed and for other systems that have access to
the same data set using the same device numbers. For more information, see:
v “Using the AMDSADDD utility” on page 88
v SADMP option on the IPCS Dialog in z/OS MVS IPCS User's Guide

When using a multi-volume DASD dump data set, the device number of the first
volume is specified. The other volumes are located by stand-alone dump using the
information that is placed in the data set when it is initialized. All volumes are
written concurrently by stand-alone dump. The data set is rejected if stand-alone
dump is unable to access all volumes of the data set or if invalid control
information is read from the data set during initialization.

If you do not allocate enough space in your dump data set, the stand-alone dump
program prompts the operator to continue dumping to another DASD dump data
set or tape volume. You can continue dumping to any stand-alone dump
supported device, however, after a tape device is selected, it must be used to
complete the dump even though multiple volumes might be required.

IBM recommends that you allocate multiple dump data sets to perform a complete
stand-alone dump.

Can I dump to multiple dump data sets?
Stand-alone dump does allow you to dump to multiple dump data sets. By coding
the DDSPROMPT=YES keyword on the AMDSADMP macro, you can generate a
stand-alone dump program that allows run-time dump data set prompting.

When the Stand-alone dump program is initiated, message AMD001A is issued to
prompt the operator for an output device. If a DASD device is specified and
run-time dump data set prompting is active, message AMD002A is issued to
prompt the operator for a dump data set name. Providing the dump data set is
validly allocated and initialized on the output device, the stand-alone dump
program uses the dump data set name specified. If message AMD099I is issued
indicating that the dump data set is full, the operator can continue dumping to any
stand-alone dump supported DASD dump data set or tape device by replying to
message AMD001A (and possibly AMD002A) again. After the dump completes,
message AMD104I is issued to indicate the entire set of devices and/or dump data
sets that were used during the taking of the dump.

By coding DDSPROMPT=NO on the AMDSADMP macro, the stand-alone dump
program is generated without run-time dump data set prompting. In this case,
replying to message AMD001A with a DASD device causes the stand-alone dump
program to assume that the output dump data set is named SYS1.SADMP.

Note:

1. Use the AMDSADDD REXX or the IPCS SADMP dump data set utilities to
allocate and initialize the stand-alone dump data sets.

2. The stand-alone dump program must locate the dump data set on the device
that is specified. Therefore, it is imperative that the necessary data set
management steps be taken so that the stand-alone dump data sets are not
placed into a migrated state or moved to a different volume. The dump data
sets must also be exempt from any space management processing that releases
unused space.

Stand-Alone dump

Chapter 4. Stand-alone dump 67

3. You can continue a dump to any stand-alone dump supported device, however,
after a tape device is selected, it must be used to complete the dump even
though multiple tape volumes might be required.

See the following topics for more information:
v For more information on dump data set processing, see the description of the

DDSPROMPT keyword in the “Syntax of the AMDSADMP macro” on page 75.
v For more information on how to use multiple dump data sets with IPCS, see

“Copying from multiple dump data sets” on page 118.
v For more information on performing tasks associated with creating, clearing, and

reallocating SADMP data sets on DASD, see the SADMP option on the IPCS
Dialog in z/OS MVS IPCS User's Guide.

What can I name my DASD dump data sets?
A stand-alone dump dump data set can be any valid MVS data set name, however,
stand-alone dump has two requirements that are checked at both generation time
and run-time:
v The data set name must be 44 characters or less
v The data set name must contain the text 'SADMP' as either part of, or as an

entire data set qualifier

In addition, because the generation process does not perform any allocation on the
output device or dump data set name, it is imperative that you ensure that the
data set name specified on the OUTPUT= keyword matches exactly the dump data
set name allocated by the AMDSADDD REXX or IPCS SADMP data set utilities.
The following are some additional rules to follow when specifying a dump data set
name:
v The data set name specified should be fully qualified (without quotation marks)
v The alphabetic characters in the dump data set name should be specified as

capital letters

How much of the system should I dump?
The situation dictates the amount of information you need to diagnose the failure.
You can use the DUMP keyword to control the amount of storage you want
dumped. See “Using the DUMP or ADDSUMM keyword to request additional
storage or address spaces” on page 82 for more information.

When should I specify the dump tailoring options?
The most flexible way to specify the dump options for a stand-alone dump is to
specify, on the DUMP keyword of the AMDSADMP macro, those areas of storage
you normally always want dumped and additionally allow the operator who
requests the dump to specify additional options by coding the PROMPT keyword
on the AMDSADMP macro. In most cases, to simplify the dumping process, it is
best to define any installation specific dump options on the AMDSADMP macro
and not use the PROMPT keyword. See “Using the DUMP or ADDSUMM
keyword to request additional storage or address spaces” on page 82 for more
information.

What type of security does the stand-alone dump program
require?
After the stand-alone dump program is properly created on a DASD residence
volume, it resides in the SYS1.PAGEDUMP.Vvolser data set. To ensure that the
stand-alone dump program is available and processes successfully, do not delete
the data set or move it to another volume or pack. To protect the stand-alone
dump program in SYS1.PAGEDUMP.Vvolser, use a password or a security product,

Stand-Alone dump

68 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

such as RACF. If the data set is not protected, unauthorized users can read the
dump data in SYS1.PAGEDUMP.Vvolser. Also consider protecting the stand-alone
dump output dump data sets from unauthorized reading.

See z/OS Security Server RACF Security Administrator's Guide for more information
about protecting a data set.

Should I use IEBGENER or the COPYDUMP subcommand to
copy a dump to a data set?
The recommended method is IPCS COPYDUMP. IPCS COPYDUMP can run
without a dump directory being employed. Use the DEFER option when initiating
the IPCS session to tell IPCS to defer accessing a dump directory until one is
required. In z/OS V1R7 and above, IPCS COPYDUMP has the ability to merge the
records from a multi-volume SADMP and recapture the prioritized order used by
SADMP to get the most important data into the dump data sets first.

If SADMP is allowed to complete normally, IEBGENER and similar transcription
programs can produce a logically complete dump data set that IPCS can process.
However, IPCS performance, particularly IPCS dump initialization, degrades as
more volumes are added to the SADMP data set.

What is dumped when I run the stand-alone dump program?
The default dump contains all areas of central storage and some areas of virtual
storage that are not backed by central storage. The output of the stand-alone dump
program includes:
v The prefixed save areas (PSA)
v The nucleus and extended nucleus
v The system queue area (SQA) and the extended SQA
v The common service area (CSA) and the extended CSA
v Subpools 203-205, 213-215, 229, 230, 236, 237, 247, 248, and 249 for all address

spaces
v The local system queue area (LSQA) and the extended LSQA for eligible address

spaces
v The dump title provided by the operator; otherwise, the dump is untitled
v The processor STORE STATUS information for each processor
v Central storage from address 0 to the top of main storage (some blocks might be

missing because of offline storage elements)
v Virtual storage areas selected by the DUMP keyword, or selected by the operator

at runtime.
v A message log, normally consisting of all console messages issued by the dump

program, including suppressed messages. (To format and print the stand-alone
dump message log, use the VERBEXIT SADMPMSG subcommand or the
SADMPMSG option of the IPCS dialog.)

v High virtual for the TRACE address space.
v High virtual for the DUMPSRV address space.
v High virtual for the GRS address space.
v Dump records summarizing the zeroed pages in the dump
v The full generalized trace facility (GTF) address space
v Subpool 127 in the GRS address space
v Data spaces whose names begin with ISG for the GRS address space
v All of DUMPSRV's data spaces

Stand-Alone dump

Chapter 4. Stand-alone dump 69

v The full cross-system coupling facility (XCF) address space
v All of XCF's dataspaces
v XES-related dataspaces for address spaces with an XES connection

Note that this list does not imply an order of the stand-alone dump process.
During stand-alone dump processing, several different messages are issued to
indicate the progress of the dumping:
v For real dump processing, AMD005I is issued.
v For both real and virtual dump processing, AMD095I is issued every 30 seconds,

followed by message AMD056I indicating that dumping of virtual storage has
completed and AMD104I to indicate what output devices and/or dump data
sets were used by the stand-alone dump program.

Can I use my current version of the stand-alone dump
program to dump a new version of z/OS?

Always use the stand-alone dump version that is generated from the same release
of z/OS that you want to dump. IBM does not guarantee that a different level of
stand-alone dump will successfully dump anything other than the level of z/OS it
was designed for. The new version of z/OS might have changed making the
stand-alone dump program unable to locate vital information it needs to operate.

When migrating to a new version of z/OS, IBM strongly recommends that you
generate a new version of the stand-alone dump program built from the new z/OS
system data sets. See “One-stage generation” on page 96 for more information.

Creating the stand-alone dump program
The first step in creating a stand-alone dump program is selecting a tape or
DASDas the stand-alone dump IPL volume (residence volume). After you select
the residence volume, you can create the stand-alone dump program. To create the
stand-alone dump program, you:
1. Code the AMDSADMP macro. See “Coding the AMDSADMP macro” on page

75.
2. Assemble the macro, placing the stand-alone dump program onto the residence

volume in ready-to-load form. IBM recommends that you use one-stage
generation when building or creating a stand-alone dump program for the
currently executing version of MVS. Use the two-stage generation to create
multiple stand-alone dump programs and to create a new version of the
stand-alone dump program when migrating to a new version of MVS. See
“Generating the stand-alone dump program” on page 96.

MNOTES from the AMDSADMP macro
The output listing from the assembly can contain error messages, called MNOTES,
that describe errors made while coding the AMDSADMP macro. To respond to one
of these messages, check the specification of the macro and run the assembly step
again. The meaning of the severity code is as follows:

8 Assembly processing ends

4 Warning

0 Informational

Stand-Alone dump

70 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

AMDSADMP Messages, Explanations and Severity Codes

AMDSADMP: COMPACT=compact IS NOT ALLOWED. IT MUST BE YES OR NO.
COMPACT=YES HAS BEEN USED.

Explanation: The system could not recognize the value specified on the COMPACT
keyword. The stand-alone dump program will use the IDRC feature for the output tape if
IDRC is installed.

Severity Code: 0.

AMDSADMP: CONSOLE ADDRESS conad
IS INVALID. IT MUST BE A DEVICE NUMBER. 001F IS SUBSTITUTED.

Explanation: The console address operand is not a valid device number of 3 or 4
hexadecimal digits.

Severity Code: 0.

AMDSADMP: CONSOLE PARM NOT
DETECTED. DEFAULT (001F, 3278) WILL BE USED.

Explanation: Either the console parameter was not specified or it was not specified correctly
on the continuation statement. The parameter was probably not continued correctly on the
next defined statement. Continue the interrupted parameter or field beginning in any
column from 4 through 16.

See Continuing JCL Statements in z/OS MVS JCL Reference.

Severity Code: 0.

AMDSADMP: CONSOLE TYPE contp
IS INVALID. IT MUST BE A 4 DIGIT NUMBER. 3278 HAS BEEN USED.

Explanation: An incorrect console type was specified. Only 3277, 3278, 3279, or 3290 are
acceptable.

Severity Code: 0.

AMDSADMP: DEFAULT OUTPUT DEVICE T0282 WILL BE USED.

Explanation: A device number was incorrectly specified, or was not specified, on the
OUTPUT= parameter.

Severity Code: 0.

AMDSADMP: IPL=ipl IS INVALID.
FIRST CHARACTER MUST BE D OR T,
AND HAS BEEN REPLACED WITH A D.

Explanation: The IPL operand is incorrect. It is not prefixed with a 'D' or a 'T'.

Severity Code: 4.

AMDSADMP: IPL=ipl IS TOO LONG.
THE UNIT NAME WILL BE TRUNCATED.

Explanation: The unit name can be at most 8 characters long.

Severity Code: 4.

Stand-Alone dump

Chapter 4. Stand-alone dump 71

AMDSADMP Messages, Explanations and Severity Codes

AMDSADMP: IPLUNIT WAS NOT SPECIFIED OR
IPL= TYPE (D OR T) WAS SPECIFIED
INCORRECTLY. UNIT WILL BE DEFAULTED TO SYSDA.

Explanation: The IPL parameter should be specified as IPL=duuu, where ‘d’ is D for direct
access or T for tape, and ‘uuu’ is a valid unit type or device number for the SADMP IPL
volume as described by the UNIT=uuu JCL parameter.

System Programmer Response: A device number consists of 3 or 4 hexadecimal digits.

Severity Code: 0.

AMDSADMP: MSG=msg IS INVALID. IT MUST BE ALL, ACTION,
OR ALLASIDS. MSG=ALL HAS BEEN USED.

Explanation: The MSG operand is not ALL, ACTION, or ALLASIDS.

Severity Code: 0.

AMDSADMP: DDSPROMPT=ddsprompt IS NOT ALLOWED.
IT MUST BE YES OR NO.
DDSPROMPT=YES HAS BEEN USED.

Explanation: The DDSPROMPT operand is incorrect. It must be either ‘YES’ or ‘NO’.
DDSPROMPT=YES is assumed.

System Action: The SADMP program will be generated with run-time dump data set
prompting active.

Severity Code: 0.

AMDSADMP: OUTPUT=output IS INCORRECT. IT MUST BE EITHER
{T|D}UNIT OR (DUNIT,DATA SET NAME).

Explanation: The OUTPUT operand is incorrect. It must be specified in one of the following
formats:

v A ‘T’ or a ‘D’ followed by a device number

v A ‘D’ followed by a device number and a data set name pair specified within parentheses.

System Action: Generation continues, using the default for the OUTPUT operand, T0282,
regardless of the format used.

System Programmer Response: The output device must be specified as a 3-digit or 4-digit
device number. You can change the OUTPUT parameter at run time, if the default is not
what you want.

Severity Code: 4.

AMDSADMP: OUTPUT DUMP DATA SET NAME IS INCORRECT.
THE DATA SET NAME IS GREATER THAN 44 CHARACTERS.

Explanation: OUPTUT=(Dunit,ddsname) was specified, however, the data set name
(ddsname) had a length greater than 44 characters.

System Action: Generation continues, however, no default dump data set name will be
generated.

System Programmer Response: If a default dump data set name is desired, correct the
OUTPUT= specification and regenerate the SADMP program.

Severity Code: 4.

Stand-Alone dump

72 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

AMDSADMP Messages, Explanations and Severity Codes

AMDSADMP: OUTPUT DUMP DATA SET NAME IS INCORRECT.
IT MUST CONTAIN THE TEXT ‘SADMP’.

Explanation: OUPTUT=(Dunit,ddsname) was specified, however, the data set name
(ddsname) did not contain the text ‘SADMP’ as either part of, or as an entire data set
qualifier.

System Action: Generation continues, however, no default dump data set name will be
generated.

System Programmer Response: If a default dump data set name is desired, correct the
OUTPUT= specification and regenerate the SADMP program.

Severity Code: 4.

AMDSADMP: REUSEDS=reuseds IS NOT ALLOWED.
VALID SPECIFICATIONS ARE NEVER, CHOICE, OR ALWAYS.
REUSEDS=CHOICE HAS BEEN USED.

Explanation: The REUSEDS operand is not NEVER, CHOICE, or ALWAYS.

System Action: Generation continues, using the default for the REUSEDS operand,
CHOICE.

Severity Code: 0.

AMDSADMP: ULABEL=NOPURGE IS NOT
POSSIBLE FOR A TAPE RESIDENCE VOLUME.

Explanation: The ULABEL cannot be NOPURGE when the IPL device is tape. SADMP
ignores your ULABEL specification.

Severity Code: 8.

AMDSADMP: keyword IS AN OBSOLETE KEYWORD. IT IS IGNORED. SADMP
GENERATION CONTINUES.

Explanation: An obsolete keyword is specified on the AMDSADMP macro. SADMP no
longer requires the LOADPT or TYPE keywords to create a stand-alone dump program.

System Action: The system ignores the keyword and continues processing.

System Programmer Response: To eliminate this MNOTE, remove the indicated keyword
and its associated parameter from the generation JCL.

Severity Code: 0.

AMDSADMP: ALIB=alib IS NOT VALID. THE
REQUIRED SYNTAX IS ALIB=(VOLSER,UNIT).

Explanation: The system could not recognize the parameters specified on the ALIB
keyword. The correct syntax is ALIB=(volser,unit), where volser is the volume serial number
and unit is the UNIT=value of the device.

System Action: The system ignores this keyword and continues. The second step JCL might
be incorrect.

System Programmer Response: Correct the syntax specified on the AMDSADMP macro and
resubmit the JCL.

Severity Code: 8.

Stand-Alone dump

Chapter 4. Stand-alone dump 73

AMDSADMP Messages, Explanations and Severity Codes

AMDSADMP: NUCLIB=nuclib IS NOT VALID. THE REQUIRED
SYNTAX IS NUCLIB=(VOLSER,UNIT).

Explanation: The system could not recognize the parameters specified on the NUCLIB
keyword. The correct syntax is NUCLIB=(volser,unit), where volser is the volume serial
number and unit is the UNIT=value of the device.

System Action: The system ignores this keyword and continues. The second step JCL might
be incorrect.

System Programmer Response: Correct the syntax specified on the AMDSADMP macro and
resubmit the JCL.

Severity Code: 8.

AMDSADMP: MODLIB=modlib IS NOT VALID. THE
REQUIRED SYNTAX IS MODLIB=(VOLSER,UNIT).

Explanation: The system could not recognize the parameters specified on the MODLIB
keyword. The correct syntax is MODLIB=(volser,unit), where volser is the volume serial
number and unit is the UNIT=value of the device.

System Action: The system ignores this keyword and continues. The second step JCL might
be incorrect.

System Programmer Response: Correct the syntax specified on the AMDSADMP macro and
resubmit the JCL.

Severity Code: 8.

AMDSADMP: LNKLIB=lnklib IS NOT VALID. THE
REQUIRED SYNTAX IS MODLIB=(VOLSER,UNIT).

Explanation: The system could not recognize the parameters specified on the LNKLIB
keyword. The correct syntax is LNKLIB=(volser,unit), where volser is the volume serial
number and unit is the UNIT=value of the device.

System Action: The system ignores this keyword and continues. The second step JCL might
be incorrect.

System Programmer Response: Correct the syntax specified on the AMDSADMP macro and
resubmit the JCL.

Severity Code: 8.

AMDSADMP: CONSOLE TYPE contp IS INVALID. NO VALUE MAY BE
SPECIFIED FOR SYSC. IT WILL BE IGNORED.

Explanation: A console type was specified following the console name of SYSC. No console
type is allowed for this console.

System Action: The system ignores the specification.

System Programmer Response: None.

Severity Code: 0.

Stand-Alone dump

74 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

AMDSADMP Messages, Explanations and Severity Codes

AMDSADMP: CONSOLE ADDRESS SYSC MAY ONLY BE SPECIFIED FOR THE
FIRST CONSOLE. IT WILL BE IGNORED.

Explanation: The console name SYSC was not specified as the first console in the console
list. SYSC can only be specified as the first console.

System Action: The system ignores the specification.

System Programmer Response: None.

Severity Code: 0.

AMDSADMP: ONLY SYSTEM CONSOLE DEFINED. DEFAULT (001F,3278)
WILL ALSO BE USED.

Explanation: The console named SYSC was the only console that was defined. At least one
3270 console must also be defined.

System Action: The system defined a default console of (001F,3278).

System Programmer Response: None.

Severity Code: 0.

AMDSADMP: POSITIONAL value IGNORED.

Explanation: A positional value other than PROMPT appeared as the first positional
argument to the AMDSADMP macro. It was ignored.

System Programmer Response: None.

Severity Code: 0.

Coding the AMDSADMP macro
This section describes the coding of the AMDSADMP macro, including the
following topics:
v “Using the DUMP or ADDSUMM keyword to request additional storage or

address spaces” on page 82
v “Dumping to a DASD data set” on page 87

Syntax of the AMDSADMP macro
Figure 25 on page 76 shows the syntax of the AMDSADMP macro and its
parameters.

Stand-Alone dump

Chapter 4. Stand-alone dump 75

symbol
An arbitrary name you can assign to the AMDSADMP macro. stand-alone
dump uses this symbol to create a job name for use in the initialization step.

AMDSADMP
The name of the macro.

IPL={Tunit|Dunit|DSYSDA}
Indicates the device number, device type, or esoteric name of the stand-alone
dump residence volume. The first character indicates the volume type; T for
tape, D for DASD.stand-alone dump uses the unit character string as the
UNIT=value to allocate the residence volume for initialization.

A device number consists of 1 to 4 hexadecimal digits. To distinguish a device
number from a unit type, the device number must be preceded by a slash (/);
for example, you could specify IPL=D/410F. Otherwise, the dynamic allocation
of the IPL device (IPLDEV DD-statement) may fail with reason code X'021C'
(unavailable system resource).

The default is IPL=DSYSDA. When you specify IPL=T, stand-alone dump
assumes T3400. When you specify IPL=D, stand-alone dump assumes
DSYSDA.

Note:

[symbol] AMDSADMP

[,IPL={Tunit|Dunit|DSYSDA}]

[,VOLSER={volser|SADUMP}]

[,ULABEL={PURGE|NOPURGE}]

[,CONSOLE=({cnum|(cnum,ctype) [,(cnum,ctype)]...|01F,3278})]

[,SYSUT={unit|SYSDA}]

[,OUTPUT={Tunit|Dunit|(Dunit,ddsname)|T0282}]

[,DUMP=(’options’)][,PROMPT]

[,MSG={ACTION|ALLASIDS|ALL}]

[,MINASID={ALL|PHYSIN}]

[,COMPACT={YES|NO}]

[,REUSEDS={CHOICE|ALWAYS|NEVER}]

[,ALIB=(volser,unit)]

[,NUCLIB=(volser,unit)]

[,MODLIB=(volser,unit)]

[,LNKLIB=(volser,unit)]

[,DDSPROMPT={YES|NO}]

[,AMD029={YES|NO}]

[,IPLEXIST={YES|NO}]

[,ADDSUMM=(’options’)]

Figure 25. Format of AMDSADMP Macro Instruction

Stand-Alone dump

76 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

1. This device also contains a work file used during stand-alone dump
processing.

2. It is not recommended to place the IPL text of stand-alone dump on a
volume that contains page data sets. A restart of stand-alone dump (see
“Running the stand-alone dump program” on page 107) hangs during the
real dump phase in this case.

VOLSER={volser|SADUMP}
Indicates the volume serial number the system is to use to allocate the
residence volume for initialization. When you specify a tape volume, it must
be NL (no labels). VOLSER=SADUMP is the default.

ULABEL={PURGE|NOPURGE}
Indicates whether stand-alone dump deletes (PURGE) or retains (NOPURGE)
existing user labels on a DASD residence volume.When you specify
NOPURGE, the stand-alone dump program is written on cylinder 0 track 0 of
the residence volume, immediately following all user labels. If the user labels
occupy so much space that the stand-alone dump program does not fit on
track 0, the initialization program issues an error message and ends.

ULABEL=NOPURGE is the default.

CONSOLE=({cnum|(cnum,ctype)[,(cnum,ctype)]...|01F,3278})
Indicates the device numbers and device types of the stand-alone dump
consoles that stand-alone dump is to use while taking the dump. When you
specify CONSOLE=cnum, stand-alone dump assumes (cnum,3278). You can
specify from two to 21 consoles by coding:
CONSOLE=((SYSC)|(cnum,ctype),(cnum,ctype),[,(cnum,ctype)]...)

A device number consists of 3 or 4 hexadecimal digits, optionally preceded by
a slash (/). Use a slash preceding a 4-digit device number to distinguish it
from a device type.

The 3277, 3278, 3279, and 3290 device types are valid, and are interchangeable.

CONSOLE=(01F,3278) is the default.

You can specify CONSOLE=SYSC for the first console only. SYSC is a constant
representing the hardware system console.

Note: The specification of CONSOLE does not affect the availability of the
system console.

SYSUT={unit|SYSDA}
Specifies the UNIT=value of the device that stand-alone dump uses for work
files during stand-alone dump initialization. You can specify the device as a
group name (for example, SYSDA), a device type (for example, 3330), or a unit
address (for example, 131). SYSUT=SYSDA is the default.

OUTPUT={Tunit|Dunit|(Dunit,ddsname)|T0282}
Indicates the device type, number, and data set name that stand-alone dump
uses as a default value if the operator uses the EXTERNAL INTERRUPT key to
bypass console communication, or if the operator provides a null response to
message AMD001A during stand-alone dump initialization. OUTPUT=T0282 is
the default.

The device type can be specified as either a ‘T’ for tape or ‘D’ for DASD.

The device number consists of 3 or 4 hexadecimal digits, optionally preceded
by a slash (/). Use a slash preceding a 4-digit device number to distinguish it
from a device type.

Stand-Alone dump

Chapter 4. Stand-alone dump 77

If the default device is a DASD, you can also set up a default dump data set
name to use by specifying both the device and the dump data set name on the
OUTPUT= parameter. You can specify the first volume of a multi-volume
DASD data set. If you specify a default dump data set name it must:
v Have a length that is 44 characters or less.
v Contain the text ‘SADMP’ as either part of, or as an entire data set qualifier.

Note that AMDSADMP processing does not allocate the data set or check to
see that a valid MVS data set name has been provided. Therefore, you should
insure that:
v The AMDSADDD REXX is used to allocate and initialize the same data set

name specified on the OUTPUT= keyword.
v The data set name specified should be fully qualified (without quotation

marks).
v The necessary data set management steps are taken so that the stand-alone

dump data sets are not placed into a migrated state or moved to a different
volume.

v Alphabetic characters appearing in the dump data set name should be
specified as capital letters.

If the default DASD device is to be used and no dump data set name is
provided, the stand-alone dump program assumes that the default dump data
set name is SYS1.SADMP if the DDSPROMPT=NO parameter was also
specified. Otherwise, if DDSPROMPT=YES was specified, the stand-alone
dump program prompts the operator at runtime for a dump data set name to
use.

Note:

1. At run-time, only a null response to message AMD001A causes the
stand-alone dump program to use the default device and/or dump data set
name.

2. Do not place a data set that is intended to contain a stand-alone dump on a
volume that also contains a page data set that the stand-alone dump
program might need to dump. When stand-alone dump initializes a page
volume for virtual dump processing, it checks to see if the output dump
data set also exists on this volume. If it does, the stand-alone dump
program issues message AMD100I and does not retrieve any data from
page data sets on this volume. Thus, the dump might not contain all of the
data that you requested. This lack of data can impair subsequent diagnosis.

3. You cannot direct output to the stand-alone dump residence volume.

DUMP='options'
Indicates additional virtual storage that you want dumped. This storage is
described as address ranges, dataspaces, and subpools in address spaces. When
you do not specify DUMP, stand-alone dump does not dump any additional
storage unless you specify PROMPT. See “Using the DUMP or ADDSUMM
keyword to request additional storage or address spaces” on page 82 for more
information.

PROMPT
Causes stand-alone dump, at run time, to prompt the operator for additional
virtual storage to be dumped. The operator can respond with the same
information that can be specified for the DUMP keyword. When you do not
specify PROMPT, stand-alone dump does not prompt the operator to specify
additional storage. See “Using the DUMP or ADDSUMM keyword to request
additional storage or address spaces” on page 82 for more information.

Stand-Alone dump

78 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

MSG={ACTION|ALLASIDS|ALL}
Indicates the type of stand-alone dump messages that appear on the console.
When you specify ACTION, stand-alone dump writes only messages that
require operator action. When you specify ALL, stand-alone dump writes most
messages to the console. However, messages AMD010I, AMD057I, AMD076I,
AMD081I, and AMD102I appear only in the stand-alone dump message log.
When you specify ALLASIDS, the stand-alone dump program behaves as if
MSG=ALL was specified, except that message AMD010I also appears on the
console. ALL is the default.

This keyword has no effect on the stand-alone dump message log; even if you
specify MSG=ACTION, the stand-alone dump virtual dump program writes all
messages to the message log in the dump.

MINASID={ALL|PHYSIN}
Indicates the status of the address spaces that are to be included in the
minimal dump. Specify PHYSIN to dump the minimum virtual storage (LSQA
and selected system subpools) for the physically swapped-in address spaces
only. Specify ALL to dump the minimum virtual storage (LSQA and selected
system subpools) for all of the address spaces. ALL is the default. At run time,
if PHYSIN was specified, stand-alone dump writes message AMD082I to the
operator's console to warn the operator that some virtual storage might be
excluded from the dump.

COMPACT={YES|NO}
COMPACT(YES) compacts the data stored on a tape cartridge if theIDRC
hardware feature is available on your tape drive. If the IDRC feature is
available and you do not specify the COMPACT keyword, the default is YES,
so that IDRC compacts the dump data. Otherwise, the data is handled as
usual.

REUSEDS={CHOICE|ALWAYS|NEVER}
Indicates whether stand-alone dump should reuse the dump data set on the
specified output device when it determines that the data set is valid, however,
it can contain data from a previous dump. Stand-alone dump determines this
by checking to see if the first record in the data set matches the record that is
written by the AMDSADDD rexx utility. When you specify ALWAYS,
stand-alone dump issues message AMD094I and reuses the specified dump
data set. When you specify NEVER, stand-alone dump issues message
AMD093I and prompts the operator, through message AMD001A, for an
output device. When you specify CHOICE, stand-alone dump informs the
operator, with message AMD096A, that the data set is not reinitialized and
requests permission to reuse the data set. See for more information about
defining, clearing, and reallocating the dump data set.

CHOICE is the default.

ALIB=(volser,unit)
Specifies the volume serial number and UNIT=value of the volume that
contains all of the following system data sets:
v SYS1.MODGEN
v SYS1.LINKLIB
v SYS1.NUCLEUS

This parameter is valid only when you are generating the stand-alone dump
program using two-stage generation.

Note: The specification of the NUCLIB, LNKLIB, or MODLIB parameters
overrides the corresponding value specified on the ALIB parameter.

Stand-Alone dump

Chapter 4. Stand-alone dump 79

See “Using two-stage generation of stand-alone dump when migrating” on
page 105 for information on the use of this parameter.

NUCLIB=(volser,unit)
Specifies the volume serial number and UNIT=value of the volume that
contains the system data set SYS1.NUCLEUS. If you specify NUCLIB, there is
no need to specify IPLTEXT, IPITEXT, DVITEXT, DPLTEXT and PGETEXT DD
statements. Beginning with z/OS V1R12, this parameter is valid for one-stage
generation JCL. Prior to z/OS V1R12, this parameter is valid only when you
generate the stand-alone dump program using two-stage generation. See
“One-stage generation” on page 96 for information on the use of this
parameter.

MODLIB=(volser,unit)
Specifies the volume serial number and UNIT=value of the volume that
contains the system data set SYS1.MODGEN. This parameter is valid only
when you generate the stand-alone dump program using two-stage generation.
See “Using two-stage generation of stand-alone dump when migrating” on
page 105 for information on the use of this parameter.

LNKLIB=(volser,unit)
Specifies the volume serial number and UNIT=value of the volume that
contains the system data set SYS1.LINKLIB. This parameter is valid only when
you generate the stand-alone dump program using two-stage generation. See
“Using two-stage generation of stand-alone dump when migrating” on page
105 for information on the use of this parameter.

DDSPROMPT={YES|NO}
DDSPROMPT=YES allows the stand-alone dump program to prompt the
operator for an output dump data set when dumping to a DASD device. When
DDSPROMPT=YES is specified, after replying to message AMD001A with a
DASD device number, message AMD002A is also issued to prompt the
operator for a dump data set name.

DDSPROMPT=NO indicates that the stand-alone dump program should not
prompt for a dump data set name when dumping to a DASD device. When
DDSPROMPT=NO is specified, after replying to message AMD001A with a
DASD device number, the stand-alone dump program uses data set
SYS1.SADMP. DDSPROMPT=NO is the default.

Note that regardless of the DDSPROMPT= keyword value, you can always use
a default device and dump data set name by specifying the
OUTPUT=(Dunit,ddsname) keyword. The stand-alone dump program uses the
default values specified on the OUTPUT= keyword when the operator uses the
EXTERNAL INTERRUPT key to bypass console communication, or if the
operator provides a null response to message AMD001A.

AMD029={YES|NO}

If AMD029=NO is specified, SADMP does not issue AMD029D when a 3270
console screen becomes full. SADMP behaves as if the operator had replied
NO to AMD029D. This parameter is meaningless when the system console is
used, because AMD029D is never issued for the system console. AMD029 =YES
is the default.

IPLEXIST={YES|NO}

If IPLEXIST=YES is specified, SADMP includes IPLEXIST with the ICKDSF
parameters, so that ICKDSF does not prompt the operator with message
ICK21836D if there is already IPL text on the volume. IPLEXIST=NO is the
default.

Stand-Alone dump

80 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

ADDSUMM=('options')
Indicates additional address spaces that you want dumped during a summary
phase. Default summary address spaces are always dumped during a
summary phase. If you do not specify ADDSUMM, stand-alone dump dumps
only the default summary address spaces unless you specify PROMPT, in
which case you have the opportunity to dump additional address spaces at run
time. See “Using the DUMP or ADDSUMM keyword to request additional
storage or address spaces” on page 82 for more information.

Examples of Coding the AMDSADMP Macro
The following examples show how to code the AMDSADMP macro to create
various kinds of stand-alone dump programs.

Figure 26 shows the AMDSADMP macro coded without explicitly specified
parameters to generate a direct access resident dump program. The defaults are:
IPL=DSYSDA
VOLSER=SADUMP
ULABEL=NOPURGE
CONSOLE=(01F,3278)
SYSUT=SYSDA
OUTPUT=T282
MSG=ALL
MINASID=ALL
COMPACT=YES
REUSEDS=CHOICE
DDSPROMPT=NO

In Figure 27, the IPL parameter specifies tape as the residence volume, and the
VOLSER parameter identifies that tape. All other parameters are allowed to
default. The defaults are:
ULABEL=NOPURGE
CONSOLE=(01F,3278)
SYSUT=SYSDA
OUTPUT=T282
MSG=ALL
MINASID=ALL
COMPACT=YES
REUSEDS=CHOICE
DDSPROMPT=NO

In Figure 28 on page 82, the OUTPUT parameter directs the stand-alone dump
output to dump data set SYS1.SADMP on device 450, and the REUSEDS parameter
specifies that the operator be prompted about whether to reuse the dump data set.
The defaults are:

DUMP1 AMDSADMP

Figure 26. Example: Accepting All Defaults

AMDSADMP IPL=T3400,VOLSER=SATAPE

Figure 27. Example: Generating an unformatted, tape resident dump program

Stand-Alone dump

Chapter 4. Stand-alone dump 81

IPL=DSYSDA
VOLSER=SADUMP
ULABEL=NOPURGE
CONSOLE=(01F,3278)
SYSUT=SYSDA
MSG=ALL
MINASID=ALL
COMPACT=YES
DDSPROMPT=NO

In Figure 29, the OUTPUT parameter directs the stand-alone dump output to
dump data set SADMP.DDS1 on device 450. Furthermore, the DDSPROMPT=YES
keyword allows for run-time dump data set prompting. The defaults are:
IPL=DSYSDA
VOLSER=SADUMP
ULABEL=NOPURGE
CONSOLE=(01F,3278)
SYSUT=SYSDA
MSG=ALL
MINASID=ALL
COMPACT=YES
REUSEDS=CHOICE

Recommended specification during the build process is as follows:
SP(ALL) IN ASID(1,’JESXCF’)
ALSO DATASPACES OF ASID(1,’JESXCF’, ’APPC’, ’SMSVSAM’, ’CONSOLE’, ’SYSBMAS’)
ALSO PAGETABLES OF DATASPACES

If you run JES2, add:
ALSO SP(ALL) IN ASID(’JES2’)

Additional subpools and dataspaces might be needed, depending on your installed
IBM, vendor, and locally-written products and applications.

Using the DUMP or ADDSUMM keyword to request additional
storage or address spaces
You can request that stand-alone dump dump additional storage or additional
address spaces in two ways:
v Specifying DUMP options or ADDSUMM options on the AMDSADMP macro

As the following example show, specify the dump tailoring options described in
“Dump tailoring options” on page 84 within parentheses and single quotation
marks as the value of the DUMP keyword on the AMDSADMP macro.
DUMP=(’SP(5,37,18) IN ASID(’JES3’)’)
DUMP=(’RANGE(0:1000000) IN ASID(1)’)
DUMP=(’DATASPACES OF ASID(’DUMPSRV’)’)

AMDSADMP OUTPUT=D450,REUSEDS=CHOICE

Figure 28. Example: Generating a dump program with output to DASD

AMDSADMP OUTPUT=(D450,SADMP.DDS1),DDSPROMPT=YES

Figure 29. Example: Generating a dump program with output to DASD

Stand-Alone dump

82 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: Do not double the quotation marks within the DUMP options. The DUMP
options cannot exceed 255 characters in length.
You can also specify additional summary address space as the value of the
ADDSUMM keyword on the AMDSADMP macro.
ADDSUMM=('ASID('BPX*')')
ADDSUMM=(’ASID(28),ASID(’JOHNDOE’)')
ADDSUMM=('ASID('MYDB',40,46:48)')

Note: Do not double the quotation marks within the ADDSUMM options. The
ADDSUMM options cannot exceed 255 characters in length.

v Specifying additional dump options at run time

By coding the PROMPT keyword on the AMDSADMP macro, you can have
Stand-alone dump prompt the operator to dump additional storage or specify
additional address spaces to be dumped as part of summary phase. When you
code PROMPT, and the virtual storage dump program gets control, stand-alone
dump issues the AMD059D message:
AMD059D ENTER ’DUMP’ OR ’SET’ OR 'ADDSUMM' WITH OPTIONS, ’LIST’ OR ’END’.

The operator can respond with one of the following:
– DUMP followed by dump options. In this case, the ‘=’ after DUMP is

optional. See “Dump tailoring options” on page 84 for the possible dump
options.

– SET followed by the MINASID options.
– ADDSUMM followed by address space list to additionally be dumped as part

of summary phase. In this case, the ‘=’ after ADDSUMM is optional. See
“Dump tailoring options” on page 84 for the possible options.

– LIST. On the console, stand-alone dump displays the current virtual storage
areas to be dumped and address space list to be dumped during the
summary phase.

– END. Stand-alone dump stops prompting the operator for options and begins
processing.

Figure 30 on page 84 shows a sample exchange between stand-alone dump and
the operator. The operator's replies are in lowercase. Note the operator's reply to
message AMD059D using the DUMP keyword and ADDSUMM keyword.

Stand-Alone dump

Chapter 4. Stand-alone dump 83

When stand-alone dump detects an error in the reply to message AMD059D, it
repeats the incorrect line at the console, underscores the incorrect part with
asterisks, and prompts the operator for replacement text. If the dump options
exceed 255 characters, stand-alone dump marks the whole line in error.
If a system restart occurs during the virtual storage dump program, stand-alone
dump re-prompts the operator for dump options. stand-alone dump does not
use any of the dump options that the operator specified before the system
restart.

Dump tailoring options: You can specify the dump tailoring options in one or all
of the following ways:
v On the DUMP keyword of the AMDSADMP macro.
v On the ADDSUMM keyword of the AMDSADMP macro.
v By the operator in reply to message AMD059D at run time.

Following is a list of the dump tailoring options you can specify. For a complete
explanation of the options, see “Explanation of dump tailoring options” on page
85.

dump-spec-list is one or more of the following:
v range-spec-list IN ASID(address-space-list) [ALSO...]
v DATASPACES OF domain-spec-list[...]
v DSP OF domain-spec-list[...]
v PAGETABLES OF DATASPACES

range-spec-list is one or more of the following:
– SP(subpool-list)
– RANGE(address-range-list)

AMD082I WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO ’PHYSIN’.
AMD059D ENTER ’DUMP’ OR ’SET’ OR 'ADDSUMM' WITH OPTIONS, ’LIST’ OR ’END’.

dump sp(0::9) inasid(’jes2’)
AMD060I ERROR IN INPUT TEXT INDICATED BY ’*’:
DUMP SP(0::9) INASID(’JES2’)

*
AMD065A ENTER TEXT TO BE SUBSTITUTED FOR THE TEXT IN ERROR.
>
AMD060I ERROR IN INPUT TEXT INDICATED BY ’*’:
DUMP SP(0:9) INASID(’JES2’)

AMD065A ENTER TEXT TO BE SUBSTITUTED FOR THE TEXT IN ERROR.
> in asid
AMD082I WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO ’PHYSIN’.
AMD059D ENTER ’DUMP’ OR ’SET’ OR 'ADDSUMM' WITH OPTIONS, ’LIST’ OR ’END’.
> list
AMD067I CURRENT DUMP OPTIONS:
CSA ALSO LSQA, SP(203:205,213:215,229:230,236:237,247:249) IN ASID(PHYSIN)
ALSO SP(0:9) IN ASID(’JES2’)
ADDSUMM ASID(’ALLOCAS’,’ANTAS000’,’ANTMAIN’,’CATALOG’,’CONSOLE’,’DEVMAN’,
’DUMPSRV’,’GRS’,’IEFSCHAS’,’IOSAS’,’IXGLOGR’,’JESXCF’,’JES2’,’JES3’,’OMVS’,
’SMSPDSE’,’SMSPDSE1’,’SMSVSAM’,’WLM’,’SMF’,’SMFXC’,’XCFAS’)

AMD082I WARNING: THE MINASID SPECIFICATION HAS BEEN SET TO ’PHYSIN’.
AMD059D ENTER ’DUMP’ OR ’SET’ OR 'ADDSUMM' WITH OPTIONS, ’LIST’ OR ’END’.
> end

Figure 30. Sample Console output from the stand-alone Dump Program

{dump-spec-list|SET MINASID{ALL|PHYSIN}|ADDSUMM addsumm-spec-list|LIST|END}

Stand-Alone dump

84 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

– LSQA
– HIGH VIRTUAL

subpool-list is one of the following:
- subpool-number TO subpool-number [,...]
- ALL
address-range-list is one of the following:
- address TO address [,...]
- ALL

address-space-list is one of the following:
– asid TO {asid|jobname|SYSKEY|PHYSIN}[,...]
– ALL

addsumm-spec-list is the following:
v ASID (address-space-list) [, ASID(address-space-list)][,...]

address-space-list is the following:
– asid[dlm asid] | jobname[,...]

dlm is ‘TO’ or ‘:’.

Use the following guidelines when specifying values in your dump tailoring
options:
v High Virtual cannot be used by itself; specify additional keywords.
v address is a hexadecimal number from 0 to X'7FFFFFFF'
v subpool-number is a decimal number from 0 to 255
v asid is a hexadecimal number from 0 to X'FFFF'
v jobname is a valid jobname enclosed in single quotation marks. Including

wildcard characters is valid for jobnames. For a description of wildcard
characters, see the ASID('jjjj') option in the topic “Explanation of dump tailoring
options.”

v range-spec-list is a list of subpools, a list of storage ranges, or both
v domain-spec-list is a list of address spaces
v ‘TO’ and ‘:’ are synonyms
v ‘DATASPACES’ and ‘DSP’ are synonyms

Keywords, such as DATASPACES, can be truncated on the right, provided the
truncated form is not ambiguous. You can enter letters in either lower-case or
uppercase. Blanks can be inserted between numbers, keywords, and separators;
blanks cannot be inserted within numbers or keywords.

Explanation of dump tailoring options: This section provides an explanation for
each of the dump tailoring options.

RANGE(xxxxxxxx:yyyyyyyy,xxxxxxxx:yyyyyyyy...)
Specifies one or more ranges of storage that you want dumped. xxx and yyy
are hexadecimal addresses from 0 to X'7FFFFFFF'

RANGE(ALL)
Specifies dumping of all storage from 0 to X'7FFFFFFF'

SP(ddd)
Causes stand-alone dump to dump subpool ddd. ddd is a decimal integer from
0 to 255.

Stand-Alone dump

Chapter 4. Stand-alone dump 85

SP(ddd:eee)
Causes stand-alone dump to dump all subpools from ddd to eee, inclusive.

SP(ddd:eee,ddd:eee,...)
Causes stand-alone dump to dump the combination of subpools that you
specify.

SP(ALL)
Causes stand-alone dump to dump all subpools, from 0 to 255 inclusive.

LSQA
Causes stand-alone dump to dump the LSQA.

HIGH VIRTUAL
Causes stand-alone dump to dump all allocated storage above 2G.

ASID(xxxx:yyyy)
Causes stand-alone dump to dump storage for the range of address spaces
whose ASIDs begin at xxx and end at yyy, inclusive. xxx and yyy are
hexadecimal numbers from X'1' to X'FFFF'.

ASID(‘jjj’)
Causes stand-alone dump to dump storage for the address space that jobname
jjj identifies. Note that you must enclose the jobname in single quotation
marks.

You can use wildcard characters to identify multiple jobnames. The valid
wildcard characters are:

* Zero or more characters, up to the maximum length of the string. An
asterisk can start the string, end it, appear in the middle of the string,
or appear in several places in the string. A single asterisk for the
jobname indicates that all jobnames match.

? One character. One or more question marks can start the string, end it,
appear in the middle of the string, or appear in several places in the
string. A single question mark indicates all jobnames consisting of one
character.

ASID(SYSKEY)
Causes stand-alone dump to dump storage for all address spaces whose active
TCB has an associated storage key of 0 to 7.

ASID(combination)
You can combine any of the above specifications. An example of a valid
combination is ASID(2,‘IMSJOB’,SYSKEY).

ASID(PHYSIN)
Causes stand-alone dump to dump storage for physically swapped-in address
spaces.

ASID(ALL)
Causes stand-alone dump to dump storage for all address spaces. Note that
you cannot specify ASID(ALL) in combination with any of the other ASID
specifications.

DATASPACES OF ASID(qualifier)
When you specify the DATASPACES OF ASID(qualifier) keyword, stand-alone
dump dumps all data spaces owned by the specified address space. For each
requested data space, stand-alone dump:
v Dumps pages backed by central storage during the central storage dump

Stand-Alone dump

86 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Copies into central storage and dumps every page that is not a first
reference page and not backed by central storage

PAGETABLES OF DATASPACES
When you specify the PAGETABLES OF DATASPACES keyword, stand-alone dump
dumps paged-out virtual storage that contains the page tables for all data
spaces.

When stand-alone dump dumps the storage that you specify, stand-alone dump
dumps all listed subpools and address ranges in all specified address spaces for
each specification of dump options. However, stand-alone dump does not merge
your specifications across the dump options that you specify. For example, to cause
stand-alone dump to dump subpools 0 and 1 in address space A, and subpools 0
and 1 in address space B, enter:
DUMP SP(0,1) IN ASID(A,B)

To cause stand-alone dump to dump subpool 0 in address space A and subpool 1
in address space B, enter:
DUMP SP(0) IN ASID(A) ALSO SP(1) IN ASID(B)

Figure 31 shows other examples of valid specifications.

Dumping to a DASD data set
When you specify DASD on the OUTPUT parameter, you direct the output of the
stand-alone dump program to a predefined dump data set on one of the following
types of DASD:
v 3380
v 3390
v 9345

Note: The selection of the output device (DASD or tape) can be made at both
generation time and at run time. An output device specified at run time overrides
an output device specified at generation time.

When preparing to take a stand-alone dump to DASD, you must allocate and
initialize the dump data set using the AMDSADDD REXX or IPCS SADMP dump
data set utilities.

The following requirements exist for the allocation of the DASD dump data set:
v The dump data set must have the text ‘SADMP’ as either part of, or as an entire

data set qualifier.

DUMP SP(0:7,15),RANGE(0:10000000) IN ASID(SYSKEY),ASID(8)
DU (SP(0 TO 7 OR 15),SP(255)) IN AS('TCAM')
DUMP RANGE(ALL) IN ASID(1) ALSO SP(0) IN ASID(SYSKEY,8)
DU DAT OF AS(ALL)
DUMP (SP(0:127) IN ASID('GENER') ALSO SP(0) IN ASID('IMS'))
DUMP LSQA IN AS(’MYJOB’,14)
DU SP(128),LS IN ASID(C,PHYSIN)
DUMP DATASPACES OF ASID(’MYJOB??’)
DUMP DATASPACES OF ASID(’MY*’)
DUMP HIGH VIRTUAL IN ASID(C)
ADDSUMM ASID(3F),ASID('DEBBIE')
ADDSUMM ASID('MYDB*',40,46:48)
AD AS('MYJOB?'),AS(26,’REPORT’)

Figure 31. Example of valid specifications

Stand-Alone dump

Chapter 4. Stand-alone dump 87

v Do not place a data set that is intended to contain a stand-alone dump on a
volume that also contains a page data set that the stand-alone dump program
you might need to dump. When stand-alone dump initializes a page volume for
virtual dump processing, it checks to see if the output dump data set also exists
on this volume. If it does, the stand-alone dump program issues message
AMD100I and does not retrieve any data from page data sets on this volume.
Thus, the dump might not contain all of the data that you requested. This lack
of data can impair subsequent diagnosis.

v The dump data set cannot be defined on the same volume that contains the IPL
text of stand-alone dump.

Note: Because the data set does not have to be cataloged, there can be more
than one dump data set with the same name per system. Furthermore, because
the data set can be uniquely named, there can be more than one dump data set
per volume.

v IBM recommends that you define the dump data set on a volume that does not
contain any other data sets, especially volumes that contain sysplex couple data
sets. This ensures maximum capacity when needed and avoid the possibility of
other data sets being accessed by another system.

v The dump data set must be both allocated and initialized using the
AMDSADDD REXX or IPCS SADMP dump data set utilities.

v Because the stand-alone dump program must be able to locate the dump data
set on the output device being used, it is imperative that the necessary data set
management steps be taken so that the stand-alone dump data sets are not
placed into a migrated state or moved to a different volume. The dump data sets
must also be exempt from any space management processing that releases
unused space.

When the dump data set is filled, the stand-alone dump program prompts the
operator, with message AMD001A, to specify another output device. The
stand-alone dump program can continue dumping to any stand-alone dump
supported device, however, after a tape device is selected, it must be used to
complete the dump even though multiple tape volumes can be required.

Note: Dumping to multiple DASD dump data sets requires that each dump data
set used has been preformatted by the AMDSADDD REXX or IPCS SADMP dump
data set utilities.

Using the AMDSADDD utility
The REXX utility AMDSADDD resides in SYS1.SBLSCLI0. This section describes
how to use the AMDSADDD REXX utility to:
v Allocate and initialize the data set. See Figure 32 on page 93 for an example of

allocating and initializing the dump data set.
v Clear (reinitialize) the data set. See Figure 34 on page 94 for an example of

clearing the dump data set.
v Reallocate and initialize the data set. See Figure 35 on page 95 for an example of

reallocating and initializing the dump data set

The IPCS SADMP dump data set utility performs the same functions as the
AMDSADDD REXX utility. See SADMP option on the IPCS Dialog in z/OS MVS
IPCS User's Guide for more information. See z/OS MVS IPCS Customization for more
information on the migration tasks involving AMDSADDD.

Stand-Alone dump

88 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The data set allocated by the AMDSADDD REXX utility must have these
characteristics:
v The data set name (DSNAME) must:

– be 44 characters or less in length
– contain the text 'SADMP' as either part of, or as an entire data set qualifier.
For example, valid dump data set names are:
– SYS1.SADMP
– SADMP
– SYSTEMA.SADMPDDS
Invalid dump data set names are:
– SYS1.DUMP.DATASET
– SADUMP

v The block size (BLKSIZE) must be:

DASD BLKSIZE

3380, 9345
20800

3390 24960

Note: Stand-alone dump processing can use a 3390 DASD defined with a block
size of 20800; however, the allocated space is not fully utilized unless a block
size of 24960 is used. The AMDSADDD REXX utility allocates 3390 DASD
devices using a block size of 24960.

v The logical record length (LRECL) must be 4160.
v The record format (RECFM) must be FBS.
v The data set must consist of a single extent.
v The data set organization can be PS (DSORG=PS) or non-VSAM extended format

(DSORG=PS-E).
v Occupies space on 1-32 volumes.

All stand-alone dump data sets that are SMS managed must have a STORCLAS
with the GUARANTEED_SPACE attribute.

All DSORG=PS-E data sets must:
v Be SMS managed
v Have a DATACLAS that specifies no compression
v Have a STORCLAS that specifies a sustained data rate of zero (suppress

striping).

For SMS to honor the allocation request, your installation's automatic class
selection (ACS) routines must be configured to do so. For instructions on setting
up an SMS environment, see the following publications:
v z/OS DFSMS Using Data Sets

v z/OS DFSMSdfp Storage Administration

You provide the volume, dump data set name, unit, space, and catalog disposition
on the invocation of the AMDSADDD REXX utility. If multiple volumes are
specified, then a multi-volume data set is allocated and formatted. Up to 16
volumes can be specified, all having the same device type. The amount of space
specified for the data set is allocated on each volume.

Stand-Alone dump

Chapter 4. Stand-alone dump 89

Special control information is written to multi-volume data sets to allow all of the
volumes to be located when the data set is written to. This includes the device
number of the volume. The data set is not usable by stand-alone dump if the
control information is missing or invalid. If a volume of a multi-volume data set is
moved to a new device number, the data set must be re-initialized to update the
control information. The data set cannot be used by a system that has the volumes
attached at a device number different than the system which writes the control
information.

When using multi-volume data sets, it is highly recommended that they be
cataloged. This simplifies processing, as IPCS can easily be used to format and
copy the dump data in the cataloged data sets.

Note: REXX requires that the specified parameters appear in the order listed. If
you do not specify a parameter, the AMDSADDD REXX utility prompts for a
specification of that parameter.

or

AMDSADDD
The name of the REXX utility.

DEFINE|CLEAR|REALLOC
Indicates the function to be performed by the AMDSADDD REXX utility:

DEFINE
Allocates and initializes a new dump data set.

CLEAR
Initializes an existing dump data set again. After you use CLEAR, the
data set is ready for use.

REALLOC
Deletes an existing SYS1.SADMP dump data set, then reallocates and
reinitializes a new SYS1.SADMP dump data set on the same volume.
Use REALLOC, for example, to increase the size of the dump data set.
If the existing dump data set does not exist, AMDSADDD converts the
function to a DEFINE request and continue using DEFINE processing.
If the request to reallocate and reinitialize a new SYS1.SADMP dump
data set cannot be satisfied (for example, if you attempt to reallocate
SYS1.SADMP using more cylinders than are available), AMDSADDD
might delete the existing SYS1.SADMP dump data set.

Note: When specifying the REALLOC option for an existing
multi-volume data set, the same list of volumes must be specified as
when the dataset was originally allocated.

AMDSADDD {DEFINE|CLEAR|REALLOC}
volser{(data set name)}
(type[,[STORCLAS][,[DATACLAS][,[MGMTCLAS]]]]) [space]
[YES|NO] [EXTREQ|LARGE|BASIC] {EATTR(OPT|NO)}

AMDSADDD {DEFINE|CLEAR|REALLOC}
(volumelist){(data set name)}
(type[,[STORCLAS][,[DATACLAS][,[MGMTCLAS]]]]) [space]
[YES|NO] [EXTREQ|LARGE|BASIC] {EATTR(OPT|NO)}

Stand-Alone dump

90 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

volser{(data set name)}
Indicates the VOL=SER= name of the volume on which the dump data set is to
be allocated. Do not use the stand-alone dump residence volume or the
volumes containing the system paging data sets. Optionally, also defines the
dump data set name to be allocated on the volume. If data set name is
specified, it must:
v be fully qualified (without quotation marks)
v have a length of 44 characters or less
v contain the text 'SADMP' as either part of, or as an entire data set qualifier.

Note: If no data set name is specified, the AMDSADDD utility will allocate the
data set SYS1.SADMP on the specified volume.

(vollist){(data set name)}
vollist is a comma delineated list of volsers to use for the data set. A
multi-volume data set will be allocated using the list of volumes. The device
number of the first volume is used to specify the data set to stand-alone dump.

Tip: When you take a stand-alone dump to a multi-volume data set it will be
striped and take significantly less time to capture.

(type[,[STORCLAS][,[DATACLAS][,[MGMTCLAS]]]])
Type indicates the device type on which the dump data set should be
allocated. Valid DASD types are 3380, 3390, and 9345.

STORCLAS
The SMS storage class.

DATACLAS
The SMS data class.

MGMTCLAS
The SMS management class.

For additional information on these classes, see z/OS MVS JCL Reference.

space
Indicates the number of cylinders for the dump data set to be allocated. For a
multi-volume data set, this amount is allocated on each volume.

The size of your dump output depends on your storage configuration and how
much of that storage you choose to dump using the options of stand-alone
dump. To estimate how much space, in cylinders, to allocate for your dump
data set, use the number of cylinders of DASD that a typical dump to tape
consumes when it has been copied to DASD for IPCS processing. If you do not
allocate enough space, the stand-alone dump program prompts the operator,
through message AMD001A and message AMD002A (if DDSPROMPT=YES
was specified on the AMDSADMP macro), to specify a different device and/or
a different dump data set so that dumping can continue.

The space option is not required with the CLEAR parameter. The space option
is, however, required with the DEFINE and REALLOC parameters.

YES|NO
Specifies whether the system is to catalog the dump data set. If you want the
data set to be cataloged, specify YES or Y. If you do not want the data set to
be cataloged, specify NO or N. Specifying N allows you to allocate multiple
dump data sets with the same name.

The catalog option is not required with the CLEAR parameter. The catalog
option is, however, required with the DEFINE and REALLOC parameters.

Stand-Alone dump

Chapter 4. Stand-alone dump 91

EXTREQ|LARGE|BASIC
Indicates the DSNTYPE of the dump data set to be defined.

EXTREQ requests an extended format dump data set. This data set must have
the attribute DSNTYPE=EXTREQ. This attribute allows the system to place the
data set in cylinder-managed space on extended access volumes.

LARGE requests a large format dump data set, one with attribute
DSNTYPE=LARGE that the system allows to span more than 64K tracks per
volume.

BASIC indicates that a large format dump data set is not desired. BASIC can
be associated with a conventional dump data set or an extended sequential
dump data set, depending on other options. BASIC is the default.

The dsntype option is not required with CLEAR parameter. The dsntype is
optional with DEFINE and REALLOC parameters. The dsntype option with
REALLOC must match with the existing dsntype option.

EATTR(OPT|NO)
Indicates the extended attributes of a dump data set. The EATTR option is not
required with the CLEAR parameter.

OPT requests that extended attributes are optional. The system might store the
dump data set in the cylinder-managed space on extended access volumes.

NO request that extended attributes are not required. The default value is NO.

Figure 32 on page 93 shows an example of using the AMDSADDD REXX utility to
allocate and initialize the dump data set with a size of 350 cylinders and a
VOL=SER= of SAMPLE. Because no data set name is specified, AMDSADDD
allocates the dump data set SYS1.SADMP on the volume SAMPLE.

Note: Stand-alone dump does not issue error messages during the processing of
AMDSADDD. Stand-alone dump does, however, pass messages to the operator
from other sources, such as the TSO/E ALLOC command.

Stand-Alone dump

92 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 33 on page 94 shows an example of using the AMDSADDD utility to
allocate and initialize an extended format dump data set ‘SADMP.SAMPLE’ with a
size of 400 cylinders in the cylinder-managed space. This SMS managed dump
data set spans multiple volumes SADPK1 and SADPK2. In an extended address
volume environment, some systems might round up the cylinders causing the
requested amount and allocated amount to be different. In this case, a message is
displayed that indicates the requested amount of cylinders and the allocated
amount of cylinders.

------------------------- TSO COMMAND PROCESSOR -------------------
ENTER TSO COMMAND, CLIST, OR REXX EXEC BELOW:
===> exec ’sys1.sblscli0(amdsaddd)’
What function do you want?
Please enter DEFINE if you want to allocate a new dump dataset
Please enter CLEAR if you want to clear an existing dump dataset
Please enter REALLOC if you want to reallocate and clear an existing

dump dataset
Please enter QUIT if you want to leave this procedure
define
Please enter VOLSER or VOLSER(dump_dataset_name)
sample
Please enter the device type for the dump dataset
Device type choices are 3380 or 3390 or 9345
3380
(An SMS STORAGE CLASS, DATA CLASS, AND MANAGEMENT CLASS
MAY ALSO BE SPECIFIED WITH THE DEVICE TYPE)
(3380,STRCLAS,DATCLAS,MGTCLAS)
Please enter the number of cylinders
350
Do you want the dump dataset to be cataloged?
Please respond Y or N
y
Specify the DSNTYPE. Reply BASIC or LARGE
BASIC
IKJ56650I TIME-11:00:00 PM. CPU-00:00:00 SERVICE-20191 SESSION-00:09:55 JUNE
14,1994
Initializing output dump dataset with a null record:
Dump dataset has been successfully initialized

Results of the DEFINE request:

Dump Dataset Name : SYS1.SADMP
Volume : SAMPLE
Device Type : 3380
Allocated Amount : 350

Figure 32. Using AMDSADDD to Allocate and Initialize a Dump Data Set

Stand-Alone dump

Chapter 4. Stand-alone dump 93

Figure 34 shows an example of using the AMDSADDD REXX utility to clear
(reinitialize) an existing dump data set called SADMP.DDS1 on
VOL=SER=SAMPLE. In this example, the parameters are part of the invocation of
the utility; therefore, AMDSADDD does not prompt for values.

------------------------- TSO COMMAND PROCESSOR -------------------
ENTER TSO COMMAND, CLIST, OR REXX EXEC BELOW:
===> exec ’sys1.sblscli0(amdsaddd)’
What function do you want?
Please enter DEFINE if you want to allocate a new dump dataset
Please enter CLEAR if you want to clear an existing dump dataset
Please enter REALLOC if you want to reallocate and clear an existing

dump dataset
Please enter QUIT if you want to leave this procedure
define
Please enter VOLSER or VOLSER(dump_dataset_name) or (VOLLIST)
or (VOLLIST)(dump_dataset_name)
(SADPK1,SADPK2)(SADMP.SAMPLE)
Please enter the device type for the dump dataset
Device type choices are 3380 or 3390 or 9345
(An SMS STORAGE CLASS, DATA CLASS, AND MANAGEMENT CLASS
MAY ALSO BE SPECIFIED WITH THE DEVICE TYPE)
(3390,STORCLAS,DATACLAS,MGMTCLAS)
Please enter the number of cylinders (per volume)
400
Do you want the dump dataset to be cataloged?
Please respond Y or N
y
Specify the DSNTYPE. Reply BASIC or LARGE or EXTREQ
EXTREQ
Specify the extended attributes for the dump dataset. Reply OPT or NO
OPT
TIME-11:54:59 PM. CPU-00:00:00 SERVICE-58954 SESSION-00:07:25 AUGUST 1,2009

Note: Allocated space does not match requested amount
Amount allocated: 420
Amount requested: 400
Initializing output dump dataset with a null record:
Dump dataset has been successfully initialized

Results of the DEFINE request:

Dump Dataset Name : SADMP.SAMPLE
Volume : SADPK1

SADPK2
Device Type : 3390
Allocated Amount : 420 (per volume)

Figure 33. Using AMDSADDD to Allocate and Initialize an Extended Dump Data Set

------------------------- TSO COMMAND PROCESSOR ---------------------
ENTER TSO COMMAND, CLIST, OR REXX EXEC BELOW:
===> exec exec ’sys1.sblscli0(amdsaddd)’ ’clear sample(sadmp.dds1) 3380’
IKJ56650I TIME-11:00:00 PM. CPU-00:00:00 SERVICE-20191 SESSION-00:09:55 JUNE
14,1994
Initializing output dump dataset with a null record:
Dump dataset has been successfully initialized
Results of the CLEAR request:

Dump Dataset Name : SADMP.DDS1
Volume : SAMPLE
Device Type : 3380
Allocated Amount : 350

Figure 34. Using AMDSADDD to Clear an Existing Dump Data Set

Stand-Alone dump

94 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 35 shows an example of using the AMDSADDD REXX utility to allocate a
new dump data set called SYSTEM1.SADMPDDS on VOL=SER=SMS001. In this
example, the parameters are part of the invocation of the utility; therefore,
AMDSADDD does not prompt for values.

Note: In an SMS environment, it is possible to have the dump data set cataloged
on a different volume than the one specified. If the dump data set is allocated on a
different volume, AMDSADDD issues an error message and exits. In Figure 35, the
dump data set was not allocated on the specified volume causing AMDSADDD to
delete the dump data set, issue an error message and quit.

Examples of running AMDSADDD in batch mode
The following examples show how to use JCL to allocate and initialize dump data
sets.

Note: Because users cannot be prompted to enter values when invoking the
AMDSADDD REXX utility in batch mode, you must specify all parameters in the
order listed.

Figure 36 shows how to use JCL to allocate and initialize the dump data set
SYS1.SADMP.A1 on VOL=SER=ZOSSVA with a size of 2653 cylinders. The BASIC
type of data set is allocated because the dsntype parameter is not specified.

Figure 37 on page 96 shows how to use JCL to allocate and initialize an extended
format dump data set named SADMP.DS on VOL=SER=USRDS1 with a size of
2953 cylinders in the cylinder-managed space.

-----------------------TSO COMMAND PROCESSOR------------------------
===>exec exec ’sys1.sblscli0(amdsaddd)’ 'Define SMS001(SYSTEM1.SADMPDDS) 3390 100 Y LARGE'
IKJ56650I TIME-11:00:00 PM. CPU-00:00:00 SERVICE-20191 SESSION-00:09:55
JUNE 14,1994

Error: output dump dataset not allocated on specified volume SMS001
Try using a Storage Class with Guaranteed Space

Figure 35. Using AMDSADDD to Reallocate the Dump Data Set

//STEP1 EXEC PGM=IKJEFT01,REGION=64M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EXEC ’SYS1.SBLSCLI0(AMDSADDD)’ +

’DEFINE ZOSSVA(SYS1.SADMP.A1) 3390 2653 N’
/*

Figure 36. Example: Using JCL to allocate and initialize a dump data set

Stand-Alone dump

Chapter 4. Stand-alone dump 95

Generating the stand-alone dump program
After coding the AMDSADMP macro, you can generate the stand-alone dump
program. There are two ways to generate the stand-alone dump program:
v “One-stage generation”
v “Two-stage generation” on page 103

IBM recommends that you use one-stage generation to create the stand-alone
dump program because multiple tasks are performed in one-stage.

Note: You can use either two-stage or one-stage JCL when migrating to a new
version of MVS.

One-stage generation
In one-stage generation, run the AMDSAOSG program as a single job, using the
AMDSADMP macro you have coded as input data on the GENPARMS control
statement. The stand-alone dump utility program, AMDSAOSG, initializes a
stand-alone dump residence volume in one job by dynamically allocating data sets
and invoking the appropriate programs. To run the one-stage generation program,
indicate one AMDSADMP macro as a control statement for DDNAME
GENPARMS.

//SAMPLE JOB 'S3031,B707000,S=C', 'BATCH EXAMPLE', RD=R,
// MSGLEVEL=(1,1),CLASS=E,NOTIFY=&SYSUID,MSGCLASS=H
//STEP1 EXEC PGM=IKJEFT01,REGION=64M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
EXEC 'SYS1.SBLSCLI0.EXEC'
'DEFINE USRDS1(SADMP.DS)(3390,storclas) 2953 Y EXTREQ OPT'
/*

Figure 37. Example: Using JCL to allocate and initialize an extended format dump data set

//SADMPGEN JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(,PASS),
// SPACE=(4096,(2,1)),UNIT=SYSDA
//DSFSYSIN DD DSN=&DSFSYSIN,DISP=(,PASS),
// SPACE=(80,(4,1)),UNIT=SYSDA
//GENPRINT DD DSN=SADMP.LIST,DISP=OLD
//GENPARMS DD *

AMDSADMP IPL=DSYSDA,VOLSER=SPOOL2, X
CONSOLE=(1A0,3277)

END
/*
//PUTIPL EXEC PGM=ICKDSF,REGION=5M
//IPLDEV DD DISP=OLD,UNIT=SYSDA,
// VOL=(PRIVATE,RETAIN,SER=SPOOL2)
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(OLD,DELETE)
//SYSIN DD DSN=&DSFSYSIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*

Figure 38. Example: One-stage generation

Stand-Alone dump

96 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 15 contains the DDNAMES AMDSAOSG uses, and the defaults for the
DDNAMES. Additional related notes follow this table.

Table 15. DDNAMES and defaults used by AMDSAOSG

ddname Default value Use

DPLTEXT DSN=SYS1.NUCLEUS(AMDSADPL),DISP=SHR Input for AMDSABLD.

DVITEXT DSN=SYS1.NUCLEUS(AMDSADVI),DISP=SHR Input for AMDSABLD.

GENPARMS Must be preallocated. Input for AMDSAOSG, passed
to assembler.

GENPRINT SYSOUT=A Output listing from
AMDSAOSG.

IPITEXT DSN=SYS1.NUCLEUS(AMDSAIPI),DISP=SHR Input for AMDSABLD.

IPLDEV DSN=SYS1.PAGEDUMP.Vvolser,UNIT=iplunit,
VOL=(PRIVATE,SER=iplser),

Stand-alone dump program,
output from AMDSABLD.
ICKDSF uses VOL keywords to
describe the residence volume.

DISP=OLD,DCB=(BLKSIZE=12288,RECFM=U, DSORG=PS),
LABEL=(,NL)

Tape IPL volume.

DISP=(NEW,KEEP),DCB=(LRECL=4096,
BLKSIZE=4096,RECFM=F,DSORG=PS),SPACE=(4096,
(1095),,CONTIG), LABEL=EXPDT=99366

DASD IPL volume.

IPLTEXT DSN=SYS1.NUCLEUS(AMDSAIPD),DISP=SHR for DASD Input for AMDSABLD.

DSN=SYS1.NUCLEUS(AMDSAIPT),DISP=SHR for tape

PGETEXT DSN=SYS1.NUCLEUS(AMDSAPGE),DISP=SHR Input for AMDSABLD.

SYSPRINT Must not be pre-allocated Temporary listings from called
programs.

SYSPUNCH DSN=&OBJ,UNIT=SYSDA,SPACE=(80,(250,50)) Object module passed from
assembler to AMDSABLD.

SYSTERM None Assembly messages.

SYSUT1 UNIT=SYSDA,SPACE=(1700,(400,50)) Work file for assembler.

TRK0TEXT Must be preallocated. Cylinder 0, Track 0

IPL text from AMDSABLD to
ICKDSF (DASD only).

DSFSYSIN DSN=&DSFSYSIN, DISP=(,PASS), SPACE=(80,(4,1)),
UNIT=SYSDA

SYSIN input for ICKDSF

Note:

1. You must specify the GENPARMS DDNAME on the job step.
2. You cannot specify the SYSPRINT and SYSIN DD statements in the job step.
3. In GENPARMS, you specify values for UNIT= and VOLSER= on the

AMDSADMP macro statement.
4. You must specify SYSLIB TRK0TEXT and DFSSYSIN statements.
5.

The JCL shown in Figure 39 on page 98 generates a stand-alone dump from DASD
222 using a volume serial of SADMPM. The output is directed to the data set
SYS1.SADMP on a DASD 450. Stand-alone dump determines at run-time if that
device is usable. If the dump data set on device 450 is not usable, the operator will

Stand-Alone dump

Chapter 4. Stand-alone dump 97

be prompted for another data set. The operator can press enter on any of the
consoles at address 041, 042, 0A0, 3E0, or 3E1. The dump will include the default
storage ranges in those address spaces that are physically-swapped in at the time
of the dump. In addition, all storage in ASID 1 and the JES2 address spaces will be
dumped. Stand-alone dump will also dump the data spaces created by the
DUMPSRV address space.

The JCL shown in Figure 40 on page 99generates a stand-alone dump from tape
333 using a volume serial of TSADMP. The output is directed to the unlabeled
volume on tape 550. Stand-alone dump determines at runtime if that device is
usable. If the dump data set on device 550 is not usable, the operator is prompted
for another data set. The operator can press enter on any of the consoles at address
051,052, 0A0, 3E0, or 3E1. The dump includes the default storage ranges in all
address spaces at the time of the dump. In addition, the data spaces of master,
XCF and OMVS address spaces are also included in the stand-alone dump.

//OSG EXEC PGM=AMDSAOSG,REGION=5M
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(,PASS),
// SPACE=(4096,(2,1)),UNIT=SYSDA
//DSFSYSIN DD DSN=&DSFSYSIN,DISP=(,PASS),
// SPACE=(80,(4,1)),UNIT=SYSDA
//GENPARMS DD *
AMDSADMP CONSOLE=((041,3277),(042,3277),(0A0,3277), X

(3E0,3277),(3E1,3277)), X
DUMP=’SP(ALL) IN ASID(1,’JES2’) ALSO DATASPACES X
OF ASID(’DUMPSRV’)’, X
IPL=D222, X
MINASID=PHYSIN, X
OUTPUT=D450, X
REUSEDS=NEVER, X
PROMPT, X
VOLSER=SADMPM

END
/*
//PUTIPL EXEC PGM=ICKDSF,REGION=4M
//IPLDEV DD DISP=OLD,UNIT=SYSDA,
// VOL=(PRIVATE,RETAIN,SER=SADMPM)
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(OLD,DELETE)
//SYSIN DD DSN=&DSFSYSIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*

Figure 39. Example: One-stage generation of stand-alone dump to a DASD

Stand-Alone dump

98 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The output from AMDSAOSG contains a listing for the stand-alone dump common
communication table (CCT) and device and dump options (DDO) control blocks
that contain information specified at generation time. The remainder of the output
consists of messages, including message AMD064I, from both stand-alone dump
and, when the residence volume is direct access, the device utility ICKDSF.
Table 16 lists the codes AMDSAOSG returns in message AMD064I.

Table 16. AMDSAOSG return codes

Return Code Explanation

0 Residence volume initialized

4 Residence volume not initialized due to an error, or a warning was
issued during AMDSADMP assembly

8 Residence volume not initialized; GENPRINT could not be opened

See z/OS MVS System Messages, Vol 1 (ABA-AOM) for more information about
AMD064I.

Considerations when using one-stage generation
When generating the stand-alone dump program using one-stage generation, do
the following:
v Ensure that the SYSLIB DDNAME concatenates SYS1.MODGEN to

SYS1.MACLIB. Your installation should catalog the SYS1.MODGEN data set
before generating the stand-alone dump program. Otherwise, the JCL that
stand-alone dump produces will fail to create the stand-alone dump program.

v If you are generating stand-alone dump for residence on a direct access volume,
AMDSAOSG creates and loads a SYS1.PAGEDUMP.Vvolser data set containing
the stand-alone dump program and places an IPL text on the volume. If the
volume already contains a SYS1.PAGEDUMP.Vvolser data set, AMDSAOSG will
fail. While AMDSAOSG is running, the mount attribute of the volume must be
PRIVATE.

v When generating the stand-alone dump program from a Magnetic Tape
Subsystem, be aware of which tape format you use or you might not be able to
IPL the program. Specifically, IPL processing will end abnormally if you:
– Generate stand-alone dump on a 3490E Magnetic Tape Subsystem and use a

tape subsystem other than a 3490E for IPL.
– Generate stand-alone dump on a tape subsystem other than a 3490E and use

a 3490E Magnetic Tape Subsystem for the IPL.

//SADMPGEN JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//GENPARMS DD *
AMDSADMP IPL=T333,VOLSER=TSADMP, X

CONSOLE=((051,3277),(052,3277), X
(0A0,3277),(3E0,3277),(3E1,3277)), X

DUMP=’SP(ALL) IN ASID(ALL) X
ALSO DSP OF ASID(1,’XCFAS’,’OMVS’)’, X
MINASID=ALL, X
OUTPUT=(500), X
REUSEDS=NEVER, X
PROMPT X

END
/*

Figure 40. Example: One-stage generation of stand-alone dump to tape

Stand-Alone dump

Chapter 4. Stand-alone dump 99

Using one-stage generation of stand-alone dump when migrating
When migrating to a new version of MVS, generate a new version of the
stand-alone dump program. Use the new MVS system data sets to build the new
version of the stand-alone dump program. Always use a stand-alone dump version
that is generated from the same release of MVS that you want to dump. IBM does
not guarantee that a different level of stand-alone dump can successfully dump
anything other than the level of MVS it was designed for. The new version of MVS
might have changed making the stand-alone dump program unable to locate vital
information it needs to operate.

To generate a new version of the stand-alone dump program, follow the same
steps you followed for a normal one-stage generation, then add the following
steps:
v Specifying the correct SYSLIB data set to ensure the new version of the

AMDSADMP macro is in use.
v Beginning with z/OS V1R12, use the NUCLIB parameters on the AMDSADMP

macro invocation to create the correct one-stage JCL.

Use the following JCL examples for DASD when migrating to a new level of MVS:
v One-stage generation JCL (beginning with z/OS V1R12) for a DASD, see

Figure 41 on page 101.
v One-stage generation JCL (any release prior to z/OS V1R12) for a DASD, see

Figure 42 on page 102.

The JCL shown in Figure 41 on page 101 assembles the version of the
AMDSADMP macro contained in the SYSLIB data set SYS1.MACLIB, found on a
3390 DASD with volser=NEWSYS. Because the NUCLIB is specified, one-stage JCL
uses the SYS1.NUCLEUS system data sets found on the 3390 DASD with
volser=NEWSYS. The stand-alone dump is saved on DASD device 560 in the
SYS1.SADMP data set.

Stand-Alone dump

100 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 42 on page 102 shows JCL that assembles the version of the AMDSADMP
macro contained in the SYSLIB data set SYS1.MACLIB, found on a 3390 DASD
with volser=NEWSYS. It uses SYS1.NUCLEUS system data set found on 3390
DASD with volser=NEWSYS as suggested by IPLTEXT, IPITEXT, DVITEXT,
DPLTEXT and PGETEXT. The stand-alone dump is saved on DASD device 560 in
the SYS1.SADMP data set.

//ASSEMSAD JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
// DD DSN=SYS1.MODGEN,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(,PASS),
// SPACE=(4096,(2,1)),UNIT=3390
//DSFSYSIN DD DSN=&DSFSYSIN,DISP=(,PASS),
// SPACE=(80,(4,1)),UNIT=3390
//GENPRINT DD SYSOUT=*
//GENPARMS DD *
AMDSADMP IPL=DSYSDA,VOLSER=SADASD, X

DUMP=(’DATASPACES OF ASID(’XCFAS’, X
’CTTX’,’APPC’)’), X
MINASID=ALL,PROMPT,MSG=ALL, X
CONSOLE=((020,3277),(030,3277), X
(040,3277),(050,3277)), X
OUTPUT=D560, X
NUCLIB=(NEWSYS,3390) X

END
/*
//PUTIPL EXEC PGM=ICKDSF,REGION=4M
//IPLDEV DD DISP=OLD,UNIT=SYSDA,
// VOL=(PRIVATE,RETAIN,SER=SADASD)
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(OLD,DELETE)
//SYSIN DD DSN=&DSFSYSIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*

Figure 41. One-stage generation JCL for a DASD (beginning with z/OS V1R12)

Stand-Alone dump

Chapter 4. Stand-alone dump 101

Use the following JCL examples for tape when migrating to a new level of MVS:
v One-stage JCL (beginning with z/OS V1R12) for tape (Figure 43 on page 103)
v One-stage JCL (any release prior to z/OS V1R12) for tape (Figure 44 on page

103)

The JCL shown in Figure 43 on page 103 assembles the version of the
AMDSADMP macro contained in the SYSLIB data set SYS1.MACLIB, found on a
3390 DASD with volser=NEWSYS. Because NUCLIB is specified, it uses the
SYS1.NUCLEUS system data set found on 3390 DASD with volser=NEWSYS. Only
one job step is necessary because the stand-alone dump program is saved on a
tape 5B0 with a volume serial of SADMPT. The output gets directed to the data set
SYS1.SADMP.SAMPLE on DASD 450.

//ASSEMSAD JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
// DD DSN=SYS1.MODGEN,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//IPLTEXT DD DSN=SYS1.NUCLEUS(AMDSAIPD),DISP=SHR,
// VOL=SER=NEWSYS,UNIT=3390
//IPITEXT DD DSN=SYS1.NUCLEUS(AMDSAIPI),DISP=SHR,
// VOL=SER=NEWSYS,UNIT=3390
//DVITEXT DD DSN=SYS1.NUCLEUS(AMDSADVI),DISP=SHR,
// VOL=SER=NEWSYS,UNIT=3390
//DPLTEXT DD DSN=SYS1.NUCLEUS(AMDSADPL),DISP=SHR,
// VOL=SER=NEWSYS,UNIT=3390
//PGETEXT DD DSN=SYS1.NUCLEUS(AMDSAPGE),DISP=SHR,
// VOL=SER=NEWSYS,UNIT=3390
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(,PASS),
// SPACE=(4096,(2,1)),UNIT=3390
//DSFSYSIN DD DSN=&DSFSYSIN,DISP=(,PASS),
// SPACE=(80,(4,1)),UNIT=3390
//GENPRINT DD SYSOUT=*
//GENPARMS DD *
AMDSADMP IPL=DSYSDA,VOLSER=SADASD, X

DUMP=(’DATASPACES OF ASID(’XCFAS’, X
’CTTX’,’APPC’)’), X
MINASID=ALL,PROMPT,MSG=ALL X
CONSOLE=((020,3277),(030,3277), X

(040,3277),(050,3277)), X
OUTPUT=D560 X

END
/*
//PUTIPL EXEC PGM=ICKDSF,REGION=4M
//IPLDEV DD DISP=OLD,UNIT=SYSDA,
// VOL=(PRIVATE,RETAIN,SER=SADASD)
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(OLD,DELETE)
//SYSIN DD DSN=&DSFSYSIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*

Figure 42. Example: One-stage generation JCL (any release) for a DASD (any release)

Stand-Alone dump

102 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 44 shows JCL that assembles the version of the AMDSADMP macro
contained in the SYSLIB data set SYS1.MACLIB, found on a 3390 DASD with
volser=NEWSYS. It uses the SYS1.NUCLEUS system data set found on 3390 DASD
with volser=NEWSYS. Because the stand alone dump program is being saved on a
tape, only one job step is necessary. The stand alone dump program is saved on
TAPE 5B0 with volume serial of SADMPT. The output goes to the data set
SYS1.SADMP.SAMPLE on DASD 450.

Two-stage generation
In two-stage generation of the stand-alone dump program, you must perform two
tasks:
1. Assemble the AMDSADMP macro
2. Initialize the residence volume

After you code the AMDSADMP macro, you can assemble the macro. Use the JCL
shown in Figure 45 on page 104 to assemble the AMDSADMP macro. The SYSLIB
data set must contain the AMDSADMP macro.

//SADMPGEN JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,VOL=SER=NEWSYS
// DD DSN=SYS1.MODGEN,DISP=SHR,VOL=SER=NEWSYS
//GENPARMS DD *
AMDSADMP IPL=T5B0,VOLSER=SADMPT, X

OUTPUT=(D450,SYS1.SADMP.SAMPLE), X
DDSPROMPT=YES, X
NUCLIB=(NEWSYS,3390), X
CONSOLE=((3E0,3278),(3E1,3278)) X

END
/*

Figure 43. Example: One-stage JCL (beginning with z/OS V1R12) for tape

//SADMPGEN JOB MSGLEVEL=(1,1)
//OSG EXEC PGM=AMDSAOSG,REGION=5M
//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR,UNIT=3390,
// VOL=SER=NEWSYS
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,VOL=SER=NEWSYS
// DD DSN=SYS1.MODGEN,DISP=SHR,VOL=SER=NEWSYS
//IPLTEXT DD DSN=SYS1.NUCLEUS(AMDSAIPT),DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//IPITEXT DD DSN=SYS1.NUCLEUS(AMDSAIPI),DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//DVITEXT DD DSN=SYS1.NUCLEUS(AMDSADVI),DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//DPLTEXT DD DSN=SYS1.NUCLEUS(AMDSADPL),DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//PGETEXT DD DSN=SYS1.NUCLEUS(AMDSAPGE),DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//GENPARMS DD *
AMDSADMP IPL=T5B0,VOLSER=SADMPT, X

OUTPUT=(D450,SYS1.SADMP.SAMPLE), X
DDSPROMPT=YES, X
CONSOLE=((3E0,3278),(3E1,3278)) X

END
/*

Figure 44. Example: One-stage JCL (any release) for tape

Stand-Alone dump

Chapter 4. Stand-alone dump 103

The output of the assembly is a job stream that can be used to initialize the
residence volume. The output of the assembly can be directed to a DASD or tape
device by coding the SYSPUNCH DD card, as shown in Table 17.

Table 17. Directing the output of assembly

Direct assembly output SYSPUNCH DD statement

Tape //SYSPUNCH DD UNIT=tape,LABEL=(,NL),DISP=(NEW,KEEP),
// VOL=SER=volser

New direct access data set //SYSPUNCH DD UNIT=dasd,SPACE=(80,(30,10)),DSN=dsname,
// DISP=(NEW,KEEP),VOL=SER=volser

Assembling multiple versions of AMDSADMP
You can assemble multiple versions of AMDSADMP at the same time, provided
that each version specifies a different residence volume. Differentiate between
versions by coding a unique symbol at thebeginning of each macro. AMDSADMP
uses the symbol you indicate to create unique stage-two job names. The output
from a multiple assembly is a single listing and a single object deck, which can be
broken into separate jobs if desired. Use the JCL shown in Figure 46 for coding
multiple versions of AMDSADMP.

Initializing the residence volume
When you are generating stand-alone dump for residence on a direct access
volume using the stage-two JCL, a SYS1.PAGEDUMP.Vvolser data set containing

//ASSEMSAD JOB MSGLEVEL=(1,1)
//ASM EXEC PGM=ASMA90,REGION=4096K,PARM=’DECK’
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPRINT DD SYSOUT=(*,,STD),HOLD=YES
//SYSPUNCH DD DSN=D10.SYS420.STAGE3.JCL(SADMPST2),DISP=SHR
//SYSLIN DD SYSOUT=H
//SYSIN DD *

AMDSADMP MINASID=ALL,IPL=DSYSDA, X
DUMP=(’DATASPACES OF ASID(’XCFAS’,’CTTX’,’APPC’)’), X
VOLSER=XXXXXX, X
CONSOLE=((020,3277),(030,3277),(040,3277),(050,3277)), X
PROMPT,MSG=ALL, X
OUTPUT=T560

END
/*

Figure 45. Example: Stage-two JCL to assemble the AMDSADMP macro

//MULTISAD JOB MSGLEVEL=(1,1)
//ASM EXEC PGM=ASMA90,PARM=’DECK,NOOBJ’
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B
//SYSIN DD *
TAPE AMDSADMP IPL=T3400,VOLSER=SADMP1
DASD1 AMDSADMP VOLSER=SADMP2,MINASID=PHYSIN
DASD2 AMDSADMP VOLSER=SADMP3

END
/*

Figure 46. Example: Assembling multiple versions of AMDSADMP Macro

Stand-Alone dump

104 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

the stand-alone dump program is created, loaded, and IPL text is placed on the
volume. If the volume already contains a SYS1.PAGEDUMP.Vvolser data set, the
stage-two job fails. While the stage-two job is running, the mount attribute of the
volume must be PRIVATE.

Physical output from the assembly part of the initialization step is a listing for the
stand-alone dump common communication table (CCT) and devices and dump
options (DDO) control blocks that contain information specified at generation time.
The remainder of the output consists of informational, error, and action messages
from both stand-alone dump and, when the residence volume is direct access, the
device utility ICKDSF.

When generating the stand-alone dump program from a Magnetic Tape Subsystem,
be aware of which tape format you use or you might not be able to IPL the
program. Specifically, IPL processing will end abnormally if you:
v Generate stand-alone dump on a 3490E Magnetic Tape Subsystem and use a tape

subsystem other than a 3490E for the IPL.
v Generate stand-alone dump on a tape subsystem other than a 3490E and use a

3490E Magnetic Tape Subsystem for the IPL.

Using two-stage generation of stand-alone dump when migrating
When migrating to a new version of MVS, generate a new version of the
stand-alone dump program. Use the new MVS system data sets to build the new
version of the stand-alone dump program.

Always use a stand-alone dump version that is generated from the same release of
MVS that you want to dump. IBM does not guarantee that a different level of
stand-alone dump will successfully dump anything other than the level of MVS it
was designed for. The new version of MVS might have changed making the
stand-alone dump program unable to locate vital information it needs to operate.

To generate a new version of the stand-alone dump program, follow the same
steps you followed for a normal two-stage generation, then add the following
steps:
v Ensure that the new version of the AMDSADMP macro is being used by

specifying the correct SYSLIB data set.
v Use the NUCLIB, MODLIB, LNKLIB and/or ALIB parameters on the

AMDSADMP macro invocation to create the correct stage-two JCL.

The output shown in Figure 47 on page 106 assembles the version of the
AMDSADMP macro contained in the SYSLIB data set SYS1.MACLIB, found on a
3390 DASD with volser=NEWSYS. Because the ALIB parameter is specified, the
stage-two JCL will use the SYS1.NUCLEUS, SYS1.MODGEN, and SYS1.LINKLIB
system data sets, also found on the 3390 DASD with volser=NEWSYS.

Stand-Alone dump

Chapter 4. Stand-alone dump 105

Note: Using the ALIB parameter is convenient if all of the system data sets used
by the stand-alone dump program reside on the same volume. Also, note that the
same results could have been achieved by coding the NUCLIB, MODLIB, and
LNKLIB keywords separately with each specifying NEWSYS and 3390 for volser
and unit.

Figure 48 shows the output that assembles the version of the AMDSADMP macro
contained in the SYSLIB data set, SYS1.MACLIB, found on a 3390 DASD with
volser=NEWSYS. Because the MODLIB parameter is specified, the stage-two JCL
will use the SYS1.MODGEN system data set found on a 3380 DASD with
volser=SYS51A. Because the ALIB parameter is specified, the stage-two JCL will
use the SYS1.NUCLEUS and SYS1.LINKLIB system data sets found on a 3390
DASD with volser=SYS51B.

Note that the ALIB parameter has no effect on the SYS1.MODGEN system data set
because the MODLIB parameter was specified separately. The stand-alone dump
program will be generated using the cataloged system data sets if the NUCLIB,
MODLIB, LNKLIB, or ALIB parameters are not specified.

//ASSEMSAD JOB MSGLEVEL=(1,1)
//ASM EXEC PGM=ASMA90,REGION=4096K,PARM=’DECK’
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPRINT DD SYSOUT=(*,,STD),HOLD=YES
//SYSPUNCH DD DSN=D10.SYS430.STAGE3.JCL(SADMPST2),DISP=SHR
//SYSLIN DD SYSOUT=H
//SYSIN DD *

AMDSADMP MINASID=ALL,IPL=DSYSDA, X
DUMP=(’DATASPACES OF ASID(’XCFAS’,’CTTX’,’APPC’)’), X
VOLSER=SADUMP, X
CONSOLE=((020,3277),(030,3277),(040,3277),(050,3277)), X
PROMPT,MSG=ALL, X
OUTPUT=T560, X
ALIB=(NEWSYS,3390)

END
/*

Figure 47. Example: Stage-two JCL to assemble the AMDSADMP macro

//ASSEMSAD JOB MSGLEVEL=(1,1)
//ASM EXEC PGM=ASMA90,REGION=4096K,PARM=’DECK’
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,
// UNIT=3390,VOL=SER=NEWSYS
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPRINT DD SYSOUT=(*,,STD),HOLD=YES
//SYSPUNCH DD DSN=D10.SYS430.STAGE3.JCL(SADMPST2),DISP=SHR
//SYSLIN DD SYSOUT=H
//SYSIN DD *

AMDSADMP MINASID=ALL,IPL=DSYSDA, X
DUMP=(’DATASPACES OF ASID(’XCFAS’,’CTTX’,’APPC’)’), X
VOLSER=SADUMP, X
CONSOLE=((020,3277),(030,3277),(040,3277),(050,3277)), X
PROMPT,MSG=ALL, X
OUTPUT=T560, X
MODLIB=(SYS51A,3380), X
ALIB=(SYS51B,3390)

END
/*

Figure 48. Example: Stage-two JCL to assemble the AMDSADMP macro

Stand-Alone dump

106 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Using two-stage generation for overriding
When overriding to use a different systems database, IBM recommends that you
generate a new version of the stand-alone dump program. Use the new MVS
system data sets to build the new version of the stand-alone dump program.

Although the current version of the stand-alone dump program might be able to
dump a new version of MVS successfully, it is not guaranteed. MVS might have
changed such that the stand-alone dump program would not be able to locate vital
information it needs to operate.

To generate a new version of the stand-alone dump program, follow the same
steps you followed for a normal two-stage generation, then add the following
steps:
v Ensure that the new version of the AMDSADMP macro is being used by

specifying the correct SYSLIB data set.
v Use the NUCLIB, MODLIB, LNKLIB and/or ALIB parameters on the

AMDSADMP macro invocation to create the correct stage-two JCL.

The output shown in Figure 49 assembles the version of the AMDSADMP macro
contained in the SYSLIB data set SYS1.MACLIB, found on a 3390 DASD with
volser=OVRIDE. Because the ALIB parameter is specified, the stage-two JCL will
use the SYS1.NUCLEUS, SYS1.MODGEN, and SYS1.LINKLIB system data sets, also
found on the 3390 DASD with volser=OVRIDE.

Note: Using the ALIB parameter is convenient if all of the system data sets used
by the stand-alone dump program reside on the same volume. Also, note that the
same results could have been achieved by coding the NUCLIB, MODLIB, and
LNKLIB keywords separately with each specifying NEWSYS and 3390 for volser
and unit.

Running the stand-alone dump program
The operator usually takes a stand-alone dump for one of the following types of
problems:
v Disabled wait
v Enabled wait

// EXEC ASMAC,PARM.C=’DECK,NOOBJECT’
//C.SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR,UNIT=3390,VOL=SER=OVRIDE
//C.SYSPUNCH DD DSN=SMITH.TEST.CNTL(SADMP#2),DISP=OLD
//C.SYSIN DD *

AMDSADMP IPL=D3390, IPL FROM DASD X
VOLSER=SADIPL, VOL=SER=SADIPL X
OUTPUT=(D330,SYS1,SADMP), DEFAULT OUTPUT DEVICE X
MSG=ALL, ALL MESSAGES TO CONSOLE X
DUMP=(’SP(ALL) IN ASID(1) ALSO DATASPACES OF ASID(1,’JESXCF’,
’APPC’,’SMSVSAM’, ’CONSOLES’,’SYSBMAS’) ALSO PAGETABLES OF
DATASPACES X
ALSO SP(ALL) IN ASID(’JES2’)’), X
MINASID=ALL, INCLUDE SWAPPED OUT SPACES X
REUSEDS=CHOICE, PROMPT FOR DATASET REUSE X
DDSPROMPT=NO, OVERRIDE BUILD DATASETS X
ALIB=(OVRIDE,3390)

END
/*

Figure 49. Example: Stage-Two JCL to assemble the AMDSADMP macro with overrides

Stand-Alone dump

Chapter 4. Stand-alone dump 107

v Loop
v Partial system hang

When one of these problems occurs, the stand-alone dump program, residing in
the SYS1.PAGEDUMP.Vvolser data set, can be run to produce a stand-alone dump.
There are several procedures that can be used to run the stand-alone dump
program:
v “Procedure A: Initialize and run stand-alone dump”
v “Procedure B: Restart stand-alone dump” on page 112
v “Procedure C: ReIPL stand-alone dump” on page 113
v “Procedure D: Dump the stand-alone dump program” on page 113

When to use which procedure:

v Use Procedure A to initialize the stand-alone dump program and dump storage.
v If you want to run stand-alone dump again, for instance when stand-alone

dump fails, use Procedure B, Procedure C, or procedure D.
v When you want to restart stand-alone dump, try procedure B before you try

Procedure C or D.
v Procedures C and D can result in the loss of some central storage from the

output, whereas Procedure B usually does not.

Although the stand-alone dump program was created under the operating system,
it runs as a stand-alone operation.

Procedure A: Initialize and run stand-alone dump
Use the following procedure to initialize and run a stand-alone dump.
1. Ready the residence device. If it is a tape, mount the volume on a device

attached to the selected processor and ensure that the tape cartridge is
write-enabled. If it is a DASD volume, ensure that it is write-enabled.
If you mirror the SADMP IPL volume to a device in an alternate subchannel
set and have swapped so that the devices in the alternate subchannel set are
now in use, prefix the SADMP IPL device number with the subchannel set id
when you specify the SADMP IPL device. In this case, DASD SADMP output
devices should be defined in the alternate subchannel set as well.

2. If dumping a failed stand-alone dump program, in order to diagnose the
stand-alone dump failure, select the Store Status option during the IPL, or
perform a manual Store Status. Otherwise, for all other cases, do not perform
a Store Status because the machine automatically performs a Store Status
when it is necessary.

3. IPL stand-alone dump.
Stand-alone dump does not communicate with the operator console. Instead,
stand-alone dump loads an enabled wait PSW with wait reason code
X'3E0000'. The IPLing of the stand-alone dump program causes absolute
storage (X'0'-X'18' and storage beginning at X'FC0') to be overlaid with CCWs.
You should be aware of this and not consider it as a low storage overlay.

Note: Stand-alone dump uses the PSW to communicate with the operator or
system programmer.
Stand-alone dump waits for a console I/O interrupt or an external interrupt.

4. When stand-alone dump is IPLed, you can specify a load parm that alters the
operation of stand-alone dump. The format of the load parm is Saddddo.

Stand-Alone dump

108 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

S The constant S must be specified as the first character or the load parm
will be ignored.

a The a specification allows stand-alone dump to start using a console
without the operator performing any action on it. It also allows
stand-alone dump to bypass the prompts for which output device and
default dump title to use. You can specify the following values for a:

N No console communication requested. Use default dump device
and title. Execution begins with no console messages. No
prompting to the operator is allowed. If a prompt occurs, a wait
state will be loaded.

O Use the default console with the default dump device and title.
No prompting to the operator is allowed. If a prompt occurs, a
wait state will be loaded.

M Use the default console with the default dump device and title.
Additional prompts can be made to the operator if they are
needed.

C Use the default console. The operator must respond to all
prompts.

P Wait for an interrupt from the console device that is to be used. If
you do not supply the load parm, this is the default.

dddd
The dddd specification is the default console device. It must be one of the
devices specified as a console device on the AMDSADMP macro when the
stand–alone dump was generated, or the constant SYSC for the hardware
system console. If you do not specify a default console device, then the
stand–alone dump will use the first console defined on the AMDSADMP
macro when the stand–alone dump was generated.

The AMDSADMP macro allows you to specify SYSC as the first console in
the console list. If you do this without specifying a console device in the
load parm, the hardware system console will be the default console
device.

o The o field contains flags, and the second bit (bit 1) indicates that SADMP
must start an IPL of MVS at the conclusion of its processing. If bit 1 is on,
and SADMP locates an AutoIPL policy within MVS storage that specifies a
re-IPL of MVS, SADMP uses the information to initiate an IPL of MVS.
For details about AutoIPL, see topic about Using the automatic IPL
function in z/OS MVS Planning: Operations.

The valid values for the o field are '0', '4' or blank. '0' or blank leaves all
bits off. '4' sets bit 1 on. Bit 1 is intended to automate the re-IPL of MVS
when SADMP is initiated manually. IBM recommends that it be left off
otherwise.

If you do not use the load parm, select the system console or an operator
console with a device address that is in the console list that you specified at
stand-alone dump generation time (in the CONSOLE keyword of
AMDSADMP). At stand-alone dump run time, the operator can choose either
a console specified with the CONSOLE= keyword or the system console to
control stand-alone dump operation. If an operator console is chosen, press
ATTENTION or ENTER on that console. (On some consoles, you might have
to press RESET first.) This causes an interruption that informs stand-alone
dump of the console's address. Message AMD001A appears on the console.

Stand-Alone dump

Chapter 4. Stand-alone dump 109

a. Ready an output device. When you dump to devices that have both real
and virtual addresses (for example, dumping a VM system), specify the
virtual address to the stand-alone dump program. If you are dumping to
tape, ensure that the tape cartridge is write-enabled and unlabeled. If you
are dumping to DASD, ensure that the DASD data set has been initialized
using the IPCS SADMP or AMDSADDD REXX dump data set utilities.

b. Reply with the device number for the output device. Note: A DASD
output device must be in the same subchannel set as the device from
which the stand-alone dump is IPLed, and only the specification of a
4-digit device number is allowed. So, for example, if in reply to the device
number prompt, you enter 4180 and the stand-alone dump has been IPLed
from device 15660, device 4180 is assumed to be in subchannel set 1, or in
this example, 14180. If you are dumping to a DASD device and
DDSPROMPT=YES was specified on the AMDSADMP macro, message
AMD002A is issued to prompt the operator for a dump data set. IF
DDSPROMPT=NO was specified, message AMD002A is not issued and the
stand-alone dump program assumes that the dump data set name is
SYS1.SADMP.

Note:

1) Pressing ENTER in response to message AMD001A will cause the
stand-alone dump program to use the default device specified on the
OUTPUT= keyword of the AMDSADMP macro. If the default device is
a DASD device, then pressing the ENTER key in response to message
AMD001A will cause the stand-alone dump program to use both the
default device and the dump data set specified on the OUTPUT=
keyword of the AMDSADMP macro. If no dump data set name was
provided on the OUTPUT= keyword and the DDSPROMPT=YES
keyword was specified, message AMD002A is issued to prompt the
operator for a dump data set. If DDSPROMPT=NO was specified, then
the stand-alone dump program assumes that the dump data set name
is SYS1.SADMP.

2) If you reply with the device number of an attached device that is not
of the required device type, or if the device causes certain types of I/O
errors, stand-alone dump might load a disabled wait PSW. When this
occurs, use procedure B to restart stand-alone dump.

c. Stand-alone dump prompts you, with message AMD011A, for a dump
title.

In Figure 50 on page 111, the dump is initialized using a load parm with no
console prompts.

Stand-Alone dump

110 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

5. When no console is available, run stand-alone dump without a console.
a. Ready the default output device that was specified on the OUTPUT

parameter on the AMDSADMP macro. For tapes, ensure that the tape
cartridge is write-enabled. For DASD, ensure that the dump data set has
been initialized using the AMDSADDD REXX or IPCS SADMP dump data
set utilities.

b. Enter an external interruption on the processor that stand-alone dump was
IPLed from. Stand-alone dump proceeds using the default output device
and/or the default dump data set. No messages appear on any consoles;
stand-alone dump uses PSW wait reason codes to communicate to the
operator.

6. Stand-Alone dump first processes the real storage in ASID order. The message
AMD005I is issued after each phase to display the status of the dump.
a. Phase 1 dumps the Page Frame Table and its related structures in virtual

order.
b. The next three phases dump real storage associated with the minimal,

summary and swapped-in ASIDs in virtual order.
c. Phase 5 dumps the In-Use real storage in real order.

7. Stand-Alone dump processes the paged-out storage in virtual order based on
customer specifications. Message AMD108I is issued to display the status of
the virtual phase of the dump
a. Phases 6 to 8 dumps the paged-out storage of minimal, summary and

swapped-in ASIDs. At end of phase VIII, all storage associated with the
swapped-in ASIDs has been dumped.

b. Phase 9 dumps the storage of swapped-out ASIDs.
8. Stand-Alone dump proceeds to dump the available real storage in Phase 10.

The storage dumped during this phase includes the real frames that were not
dumped earlier. At the completion of this phase, message AMD104I is issued
to signal the end of the dump.

9. When stand-alone dump begins dumping real storage (Phase 1 to Phase 5 and
Phase 10) it issues message AMD005I. Message AMD095I is issued every 30
seconds to illustrate the process of the dump. Message AMD005I will be

AMD083I AMDSADMP: STAND-ALONE DUMP INITIALIZED
AMD101I OUTPUT DEVICE: 0330 SADMP1 SYS1.SADMP

SENSE ID DATA: FF 3990 E9 3390 0A BLOCKSIZE: 24,960
AMD005I DUMPING OF REAL STORAGE NOW IN PROGRESS.
AMD005I DUMPING OF PAGE FRAME TABLE COMPLETED.
AMD005I DUMPING OF REAL STORAGE FOR MINIMAL ASIDS COMPLETED.
AMD005I DUMPING OF REAL STORAGE FOR SUMMARY ASIDS COMPLETED.
AMD005I DUMPING OF REAL STORAGE FOR SWAPPED-IN ASIDS COMPLETED.
AMD005I DUMPING OF REAL STORAGE IN-USE REAL STORAGE COMPLETED.
AMD005I DUMPING OF REAL STORAGE SUSPENDED.
AMD108I DUMPING OF AUXILIARY STORAGE FOR MINIMAL ASIDS COMPLETED
AMD108I DUMPING OF AUXILIARY STORAGE FOR SUMMARY ASIDS COMPLETED
AMD108I DUMPING OF AUXILIARY STORAGE FOR SWAPPED-IN ASIDS COMPLETED
AMD108I DUMPING OF AUXILIARY STORAGE FOR SWAPPED-OUT ASIDS COMPLETED
AMD056I DUMPING OF AUXILLIARY STORAGE COMPLETED.
AMD005I DUMPING OF REAL STORAGE RESUMED.
AMD005I DUMPING OF AVAILABLE REAL STORAGE COMPLETED
AMD005I DUMPING OF REAL STORAGE COMPLETED.
AMD104I STAND-ALONE DUMP PROCESSING COMPLETED.

DEVICE VOLUME USED DATA SET NAME
1 0330 SADMP1 43% SYS1.SADMP

Figure 50. Example: Using a load parm to perform a stand-alone dump

Stand-Alone dump

Chapter 4. Stand-alone dump 111

issued as specific portions of real storage have been dumped, as well as upon
completion of the real dump. Stand-alone dump can end at this step.

10. When stand-alone dump is dumping virtual storage, it issues message
AMD108I as specific portions of virtual storage is dumped. Message AMD056I
is issued to signal the end of virtual phase dump.

11. If you specified PROMPT on the AMDSADMP macro, stand-alone dump
prompts you for additional storage that you want dumped by issuing message
AMD059D.

12. Stand-alone dump dumps paged-out virtual storage, the stand-alone dump
message log, and issues message AMD095I every 30 seconds to illustrate the
progress of the dump.

13. When stand-alone dump completes processing, stand-alone dump unloads the
tape, if there is one, and enters a wait reason code X'410000'.

See z/OS MVS System Codes for more information about the wait state reason codes
loaded into the PSW.

Note: Some processor models do not allow selection of a specific processor to IPL
from. Normally, the processor previously IPL'ed is selected again for this IPL.

Procedure B: Restart stand-alone dump
A system restart does not always work, either because it occurs at a point when
stand-alone dump internal resources are not serialized, or because stand-alone
dump has been too heavily damaged to function. If the restart does not work, try
procedure C (reIPL).

If a dump to a DASD data set is truncated because there is not enough space on
the data set to hold the dump, use a system restart to dump the original data to
tape. By causing a system restart, you can reinitialize and restart a failing
stand-alone dump program without losing the original data you wanted to dump.

If a permanent error occurs on the output device, the stand-alone dump program
will prompt the operator to determine if a restart of the stand-alone dump
program should be performed. If the operator indicates that a restart of the
stand-alone dump program should be performed, then the stand-alone dump
program restarts the dump using the same console and prompts the operator to
specify a different output device. Continue procedure A at step 6A; see “Procedure
A: Initialize and run stand-alone dump” on page 108.

For other types of stand-alone dump errors and wait states, it might be necessary
for the operator to perform a manual restart of the stand-alone dump program. In
this case, the operator should perform the following steps:
1. Perform a system restart on the processor that you IPLed stand-alone dump

from.
2. If the restart is successful, stand-alone dump dumps central storage. If

stand-alone dump abnormally ends while dumping central storage, try to
restart stand-alone dump. If the restart succeeds, stand-alone dump reruns the
entire dump. It will first enter wait state X'3E0000' to allow you to specify a
new console and output device. You can do this to recover from an I/O error
on the output device. Stand-alone dump recognizes any console in the console
list and starts with the same output device defaults that are used at the IPL of
stand-alone dump.

3. Continue procedure A at step 3, see “Procedure A: Initialize and run
stand-alone dump” on page 108.

Stand-Alone dump

112 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Procedure C: ReIPL stand-alone dump
When you reIPL stand-alone dump, the previous running of stand-alone dump has
already overlaid some parts of central storage and modified the page frame table.
If the virtual storage dump program was in control, a reIPL might not dump
paged-out virtual storage. The number of times that you can IPL stand-alone dump
to dump paged-out virtual storage is equal to the number of processors present.

To run procedure C, repeat procedure A. If the previous IPL of stand-alone dump
did not load a wait state and reason code of X'250000' or higher and the reIPL
succeeds, stand-alone dump usually completes processing as in procedure A. Some
storage locations might not reflect the original contents of central storage because,
during a previous IPL, stand-alone dump overlaid the contents. These locations
include the absolute PSA and possibly other PSAs.

Procedure D: Dump the stand-alone dump program
Use a new IPL of stand-alone dump to debug stand-alone dump if stand-alone
dump fails. When you use stand-alone dump to dump itself, the dump program
dumps central storage only, because a dump of central storage provides enough
information to diagnose a stand-alone dump error. Follow procedure A at step 2 on
page 108 by performing a STORE STATUS instruction. Stand-alone dump follows
procedure A steps 2 through 6, then issues message AMD088D. This message
allows the operator to stop the dump after central storage has been dumped or to
continue dumping virtual storage.

Stand-alone self-dump
When running a virtual storage dump and stand-alone dump error recovery
detects errors in stand-alone dump, stand-alone dump can take a self-dump before
proceeding. At most, stand-alone dump takes twelve self-dumps; after the twelfth
request for a self-dump, stand-alone dump stops taking self-dumps, but continues
to count the number of self-dump requests and continues to issue the AMD066I
message. After a large number of self-dump requests, stand-alone dump
terminates. Stand-alone dump places both the self-dump and the operating system
dump onto the output tape or DASD.

You can use the LIST subcommand of IPCS to print stand-alone dump self-dumps.
The format of the subcommand is as follows, where x = 001 - 012. See z/OS MVS
IPCS Commands for more information.

Running the stand-alone dump program in a sysplex
The operator usually takes a stand-alone dump in a sysplex when an MVS system
is not responding. Situations that indicate that stand-alone dump should be run
include:
v Consoles do not respond
v MVS is in a WAIT state
v An MVS system is in a “status update missing” condition and has been or is

waiting to be removed from the sysplex
v A stand-alone dump has been requested by Level 2.

There are two high-level methods for taking a stand-alone dump of an MVS
system that resides in a sysplex. Both methods emphasize the expeditious removal

LIST address COMPDATA(AMDSAxxx)

Stand-Alone dump

Chapter 4. Stand-alone dump 113

of the failing MVS system from the sysplex. If the failed MVS system is not
partitioned out of the sysplex promptly, some processing on the surviving MVS
systems might be delayed.

Method A
Use this method to take a stand-alone dump of an MVS system that resides in a
sysplex. Assume that the MVS system to be dumped is “SYSA”.
1. IPL the stand-alone dump program on SYSA (see “Running the stand-alone

dump Program”).
2. Issue VARY XCF,SYSA,OFFLINE from another active MVS system in the

sysplex if message IXC402D or IXC102A is not already present.
You do not have to wait for the stand-alone dump to complete before issuing
the VARY XCF,SYSA,OFFLINE command.

3. Reply DOWN to message IXC402D or IXC102A.

Performing steps 2 and 3 immediately after IPLing stand-alone dump will expedite
sysplex recovery actions for SYSA and allow resources held by SYSA to be cleaned
up quickly, thus enabling other systems in the sysplex to continue processing.

After you IPL the stand-alone dump, MVS cannot automatically ISOLATE system
SYSA through SFM. Message IXC402D or IXC102A issues after the VARY
XCF,SYSA,OFFLINE command or after the XCF failure detection interval expires.
You must reply DOWN to IXC402D or IXC102A before sysplex partitioning can
complete.

Note: DO NOT perform a SYSTEM RESET in response to IXC402D, IXC102A after
the IPL of stand-alone dump. The SYSTEM RESET is not needed in this case
because the IPL of stand-alone dump causes a SYSTEM RESET. After the IPL of
stand-alone dump is complete, it is safe to reply DOWN to IXC402D or IXC102A.

Method B
Use this method if there is a time delay between stopping processors, as part of the
SYSTEM RESET-NORMAL function in step one, and IPLing the stand-alone dump
program.
1. Perform the SYSTEM RESET-NORMAL function on SYSA.
2. Issue VARY XCF,SYSA,OFFLINE from another active MVS system in the

sysplex if message IXC402D or IXC102A is not present.
3. Reply DOWN to message IXC402D or IXC102A. Performing steps two and

three immediately after doing the SYSTEM RESET will expedite sysplex
recovery actions for SYSA. It allows resources that are held by SYSA to be
cleaned up quickly, and enables other systems in the sysplex to continue
processing.

4. IPL the stand-alone dump program (see “Running the stand-alone dump
program” on page 107). While this step can be done earlier, the aim of
performing steps one through three is to minimize disruption to other systems
in the sysplex.

After a SYSTEM RESET is performed, MVS cannot automatically ISOLATE system
SYSA through SFM. Message IXC402D or IXC102A is issued after the VARY
XCF,SYSA,OFFLINE command or after the XCF failure detection interval expires.
You must reply DOWN to IXC402D or IXC102A before sysplex partitioning can
complete.

Stand-Alone dump

114 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Capturing a stand-alone dump quickly
There are times when you need to process stand-alone dump information quickly
to diagnose a problem. It is important to perform the stand-alone dump process
quickly, to minimize the time the system is unavailable. Sometimes a stand-alone
dump is not captured because of the time that the dumping process takes.
Skipping the stand-alone dump, however, can prevent the diagnosis of the system
failure. Instead of skipping the stand-alone dump, it is better to spend a short time
to get as much of the stand-alone dump as is possible, as quickly as possible. The
following are two methods to save time when performing a stand-alone dump.
v Minimize the operator actions
v Get a partial stand-alone dump

Minimize the operator actions
Time spent waiting for the operator to reply to a message or mount a tape is idle
time. Minimizing the operator actions turns the idle time into data capture time. It
also simplifies the process, so that the stand-alone dump process becomes easier to
do. The following are ways to minimize the operator's actions when performing a
dump.
v Use the stand-alone dump LOAD parameter SO or SM to skip the prompt for

the console to use to avoid other responses to messages.
v Use the default device specified on the OUTPUT= keyword of the AMDSADMP

macro. If the default device is a DASD device, then pressing the ENTER key in
response to message AMD001A will cause the stand-alone dump program to use
both the default device and the dump data set specified on the OUTPUT=
keyword of the AMDSADMP macro.

v Use REUSEDS=ALWAYS on the AMDSADMP macro to indicate that stand-alone
dump should reuse the dump data set on the specified output device when it
determines that the data set is valid, however, it can contain data from a
previous dump. Or, you can always clear the dataset.

Note: Be sure you do not overwrite another dump.
v Specify DDSPROMPT=NO, then the stand-alone dump program assumes that

the dump data set name is SYS1.SADMP.
v Do not specify PROMPT on the AMDSADMP macro, unless requested by IBM.
v Use "fast" device for output

Get a partial stand-alone dump
While it is always best to get a complete stand-along dump, sometimes time
constraints will not allow this. There is no guarantee that it will be possible to
diagnose a failure from a partial stand-alone dump; however, if the choice is
between no dump at all or a partial dump, then the partial dump is the best
choice.

When taking a partial stand-alone dump:
v Let the stand-alone dump run for as long as you can. If you run out of time, you

can stop the dump cleanly.
v Stand-alone dump tries to write out the most important information first.

– Status information (PSW, registers, and so forth) for all CPUs
– Critical real storage, including common storage and trace information
– Real storage for address spaces executing at the time of the dump

Stand-Alone dump

Chapter 4. Stand-alone dump 115

– Any remaining real storage
– Paged out storage for swapped in address spaces
– Paged out storage for swapped out address spaces

v Use the EXTERNAL INTERRUPT key to terminate the dumping process. This
causes a clean stop, closing the output dataset properly.

In Figure 51, the dump was ended early using the EXTERNAL INTERRUPT key.

Copying, viewing, and printing stand-alone dump output
When stand-alone dump processing completes the dump, the output resides on a
tape volume, a DASD, or a combination of devices. The easiest way to view the
dump is to copy the dump to a DASD data set. When a stand-alone dump resides
on multiple devices and/or dump data sets, you can concatenate the dump into
one data set. After the dump is available on DASD, it can be viewed online using
IPCS.

Note: If the dump resides in a DASD dump data set, IBM recommends that you
copy the dump to another data set for IPCS processing and clear (reinitialize) the
dump data set using the AMDSADDD or IPCS SADMP dump data set utilities. For
more information, see “Using the AMDSADDD utility” on page 88 and Utility
option on the IPCS Dialog in z/OS MVS IPCS User's Guide.

Copying the dump to a data set
If you want to view the dump online, copy the dump to a data set. There are two
tools you can use to copy the dump:
v Use the IPCS COPYDUMP subcommand when the IPCS environment has been

set up on your system. This is the only option recommended if the dump was
written to a multi-volume DASD data set.

v Use the IEBGENER utility when the IPCS environment has not been set up on
your system. Many operators take a stand-alone dump so that the system
programmer can view the dump. The operator does not require IPCS on the
system because the operator will not be viewing the dump. Therefore, the
operator should use the IEBGENER utility to copy the dump to a data set
accessible by the system programmer's system.

For more information, see the following references:
v See z/OS MVS IPCS Commands for information about COPYDUMP.
v See z/OS DFSMSdfp Utilities for information about IEBGENER.

AMD083I AMDSADMP: STAND-ALONE DUMP RESTARTED
AMD094I 0330 SADMP1 SYS.SADMP

IS VALID, HOWEVER, IT MAY ALREADY CONTAIN DATA FROM A PREVIOUS DUMP.
THE INSTALLATION CHOSE TO ALWAYS REUSE THE DUMP DATA SET.

AMD101I OUTPUT DEVICE: 0330 SADMP1 SYS1.SADMP
SENSE ID DATA: FF 3990 E9 3390 0A BLOCKSIZE: 24,960

AMD005I DUMPING OF REAL STORAGE NOW IN PROGRESS.
AMD005I DUMPING OF PAGE FRAME TABLE COMPLETED.
AMD005I DUMPING OF REAL STORAGE FOR MINIMAL ASIDS COMPLETED.
AMD005I DUMPING OF REAL STORAGE FOR SUMMARY ASIDS COMPLETED.
AMD089I DUMP TERMINATED DUE TO EXTERNAL KEY
AMD066I AMDSADMP ERROR, CODE=0012, PSW=040810008101235E, COMPDATA9AMDSA002)

Figure 51. Example: Terminating a stand-alone dump

Stand-Alone dump

116 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Copying from tape
The example below shows how to use IEBGENER to copy tape output to DASD.
Two advantages of copying stand-alone dump tape output to DASD are:
v When stand-alone dump ends prematurely and does not give the stand-alone

dump output (SYSUT1) an end-of-file, the SYSUT2 data set does contain an
end-of file.(SYSUT2 is the data set to which stand-alone dump output is copied.)
This occurs even when SYSUT2 is another tape. IEBGENER might end with an
I/O error on SYSUT1; this is normal if SYSUT1 does not contain an end-of-file.

v Making SYSUT2 a direct access data set to use as input to IPCS saves IPCS
processing time.

Use the JCL shown in Figure 52 to invoke the IEBGENER utility, which will copy
the stand-alone dump output from tape to a DASD data set.

Note: Specifying AVGREC= requires SMS be running, but the data set does not have
to be SMS managed.

Copying from DASD
The example below shows how to use IEBGENER to copy DASD output to a
DASD data set. After the dump is successfully copied, use the AMDSADDD REXX
utility to clear (reinitialize) the dump data set and ready it for another stand-alone
dump. For more information, see:
v SADMP option on the IPCS Dialog in z/OS MVS IPCS User's Guide.
v “Using the AMDSADDD utility” on page 88

Use the JCL shown in Figure 53 to invoke IEBGENER, which will copy the
stand-alone dump output from a DASD data set to another DASD data set.

//SADCOPY JOB MSGLEVEL=(1,1)
//COPY EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSN=SADUMP.TAPE,UNIT=tape,
// VOL=SER=SADOUT,LABEL=(,NL),DISP=SHR,
// DCB=(RECFM=FBS,LRECL=4160,BLKSIZE=29120)
//SYSUT2 DD DSN=SADUMP.COPY,UNIT=dasd,
// VOL=SER=SADCPY,DISP=(NEW,CATLG),
// DCB=(RECFM=FBS,LRECL=4160,DSORG=PS),AVGREC=K,
// SPACE=(4160,(8,4),RLSE)

Figure 52. Example: Copying stand-alone dump output from tape to DASD

//SADCOPY JOB MSGLEVEL=(1,1)
//COPY EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY
//SYSUT1 DD DSN=SYS1.SADMP,UNIT=DASD,
// VOL=SER=SADMP1,DISP=SHR
//SYSUT2 DD DSN=SYS2.SADMP,UNIT=DASD,
// DISP=(NEW,CATLG),
// VOL=SER=SADMP2,
// DCB=(LRECL=4160,RECFM=FBS,DSORG=PS),
// SPACE=(CYL,(90,0),RLSE)

Figure 53. Example: Copying stand-alone dump output from DASD to DASD

Stand-Alone dump

Chapter 4. Stand-alone dump 117

Copying from multiple dump data sets
The stand-alone dump program allows a dump to be contained in multiple dump
data sets. Therefore, when you want to view a stand-alone dump using IPCS, it is
necessary to concatenate all of the dump data sets onto one DASD data set.

Use the JCL in Figure 54 to invoke the IPCS COPYDUMP subcommand to copy
stand-alone dump output from three DASD dump data sets to another data set.
Note that two of the dump data sets reside on the volume SADMP1, while the
third resides on the volume SADMP2.

Use the JCL shown in Figure 55 to invoke the IPCS COPYDUMP subcommand to
copy stand-alone dump output from two DASD dump data sets and two tape
volumes to a DASD data set.

Viewing stand-alone dump output
You can view the stand-alone dump output at a terminal using IPCS. Do the
following:
1. Start an IPCS session.
2. On the IPCS Primary Option Menu panel, select the SUBMIT option to copy

the dump and do initial dump analysis.

//SADCOPY JOB MSGLEVEL=(1,1)
//COPY EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//C1 DD DSN=SADMP1.DDS1,DISP=SHR,UNIT=DASD,VOL=SER=SADMP1
//C2 DD DSN=SADMP1.DDS2,DISP=SHR,UNIT=DASD,VOL=SER=SADMP1
//C3 DD DSN=SYS1.SADMP,DISP=SHR,UNIT=DASD,VOL=SER=SADMP2
//COPYTO DD DSN=SADUMP.COPY,UNIT=DASD,
// VOL=SER=SADCPY,DISP=(NEW,CATLG),
// DCB=(RECFM=FBS,LRECL=4160,DSORG=PS),
// SPACE=(4160,(8000,4000),RLSE)
//SYSTSIN DD *
IPCS NOPARM DEFER
COPYDUMP OUTFILE(COPYTO) NOCONFIRM INFILE(C1, C2, C3)
END

/*

Figure 54. Example: Copying a stand-alone dump from multiple DASD data sets

//SADCOPY JOB MSGLEVEL=(1,1)
//COPY EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//C1 DD DSN=SYS1.SADMP.MAIN.DDS1,DISP=SHR,UNIT=DASD,
// VOL=SER=SADMP1
//C2 DD DSN=SYS1.SADMP.ALTERNAT.DDS1,DISP=SHR,UNIT=DASD,
// VOL=SER=SADMP2
//C3 DD DSN=SYS1.SADMP.MAIN.DDS1,DISP=SHR,UNIT=TAPE,
// VOL=SER=SADMP3
//C4 DD DSN=SYS1.SADMP.ALTERNAT.DDS1,DISP=SHR,UNIT=TAPE,
// VOL=SER=SADMP4
//COPYTO DD DSN=SADUMP.COPY,UNIT=DASD,
// VOL=SER=SADCPY,DISP=(NEW,CATLG),
// DCB=(RECFM=FBS,LRECL=4160,DSORG=PS),
// SPACE=(2080,(1600,800),RLSE)
//SYSTSIN DD *
IPCS NOPARM
COPYDUMP OUTFILE(COPYTO) NOCONFIRM INFILE((C1,C2,C3,C4)
END

/*

Figure 55. Example: Copying stand-alone dump output from DASD and tape

Stand-Alone dump

118 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

3. Return to the IPCS Primary Option Menu panel. Select the DEFAULTS option.
4. IPCS displays the IPCS Default Values panel. Enter the name of the data set

containing the dump on the Source line.
5. Return to the IPCS Primary Option Menu panel. Select the BROWSE,

ANALYZE, or COMMAND option to view the dump.

See z/OS MVS IPCS Commands for information about the IPCS subcommands.

Printing stand-alone dump output
You can print an analysis of the stand-alone dump or the entire dump using IPCS.

To print an analysis of the dump in batch mode:
1. Start an IPCS session.
2. On the IPCS Primary Option Menu panel, select the SUBMIT option to copy

the dump and do initial dump analysis.
3. On the IPCS Dump Batch Job Option Menu panel, enter the requested

information.
4. On the next panel, enter the sysout output class. IPCS writes the dump analysis

to the specified output class.
5. The system prints the dump in the printout of the output class.

To print the full dump in batch mode:
1. Use IPCS CLIST BLSCBSAP.

See z/OS MVS IPCS User's Guide for IPCS panels and the CLIST BLSCBSAP.

The example in Figure 56 runs an IPCS CLIST that:
v Copies the stand-alone dump from the tape data set defined in an IEFRDER DD

statement to a cataloged, direct access data set named SA1DASD.
v Analyzes and formats the dump.
v Writes the formatted dump output to a data set named IPCSPRNT. A TSO/E

CLIST used for IPCS should allocate this print output data set to a sysout print
class, as follows:
ALLOCATE DDNAME(IPCSPRNT) SYSOUT(A)

After the CLIST runs, the dump remains available in the SA1DASD data set for
supplementary formatting jobs.

Message output
There are three types of message output from a stand-alone dump program, as
follows:
v MNOTES from the AMDSADMP macro
v Messages on the 3480, 3490, or 3590 display

//PRINTJOB JOB MSGLEVEL=1,REGION=800M
//IPCS EXEC IPCS,CLIST=BLSCBSAP,DUMP=SA1DASD
//IEFPROC.IEFRDER DD DSN=SA1,DISP=OLD,UNIT=3490
// VOL=SER=12345,LABEL=(1,NL)
/*

Figure 56. Example: Printing an unformatted stand-alone dump

Stand-Alone dump

Chapter 4. Stand-alone dump 119

v Messages on the system console or the operator console

For more information about messages on the system console or the operator
console, use LookAt or see MVS System Messages.

Stand-alone dump messages on the 3480, 3490, or 3590
display

When stand-alone dump output is sent to a 3480, 3490, or 3590 magnetic tape
subsystem, stand-alone dump uses the subsystem's eight-character message display
to inform and prompt the operator. The leftmost position on the message display
indicates a requested operator action. The eighth position (rightmost) gives
additional information.

In the messages listed below, alternating indicates that there are two messages
which are flashing on the display, one after the other. A blinking message is one
message that is repeated on the display.

The stand-alone dump messages that can appear on the display are:

Dvolser (alternating)

MSADMP#U
Informs the operator that a labeled tape has been rejected and a new tape must
be mounted.

MSADMP#U (blinking)
Requests that the operator mount a new tape.

RSADMP#U (blinking)
Indicates that the stand-alone dump program has finished writing to the tape.

RSADMP# (alternating)

MSADMP#U
Informs the operator that an end-of-reel condition has occurred and a new tape
must be mounted.

SADMP# (blinking)
Indicates that the tape is in use by stand-alone dump.

SADMP# (alternating)

NTRDY
Informs the operator that some type of intervention is required.

The symbols used in the messages are:

A variable indicating the actual number of cartridges mounted for
stand-alone dump. It is a decimal digit starting at 1 and increasing by 1
after each end-of-cartridge condition. When the # value exceeds 9, it is
reset to 0.

D Demount the tape and retain it for further system use, for example as a
scratch tape. Stand-alone dump does not write on the tape.

M Mount a new tape.

R Demount the tape and retain it for future stand-alone dump use.

U The new tape should not be file-protected.

volser A variable indicating the volume serial number on the existing tape label.

Stand-Alone dump

120 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Analyzing stand-alone dump output
The following sections describe how to analyze the output from a stand-alone
dump. A stand-alone dump can indicate the following types of problems:
v Enabled wait state
v Disabled wait state
v Enabled loop
v Disabled loop

Use the information in this section to determine the type of problem the system
has encountered. After the problem type is determined, see z/OS Problem
Management for further information about diagnosing the problem type.

Collecting initial data
When an operator takes a stand-alone dump, it is important to determine the
conditions of the system at the time the dump was taken. Because a stand-alone
dump can be requested for a various number of problem types, the collection of
problem data is imperative to determining the cause of the error.

The objectives for analyzing the output of a stand-alone dump are as follows:
v Gather symptom data
v Determine the state of the system
v Analyze the preceding system activity
v Find the failing module and component

Gathering external symptoms
When a stand-alone dump is taken, you must first question the operator or the
person who requested the dump. It is important to understand the external
symptoms leading up to the system problem. What was noticed before stopping
the system? The answer might give you an idea of where the problem lies.

Here are a few questions you should find an answer to before continuing:
v Was the system put into a wait state?
v Were the consoles hung or locked up?
v Were commands being accepted on the operator console without a reply?
v Was a critical job or address space hung?

Gathering IPCS symptoms
After getting a list of symptoms, use IPCS to collect further symptom data. A
primary symptom string is usually not available in a stand-alone dump; however,
IPCS can add a secondary symptom string. In Figure 57 on page 122, the
explanation of the secondary symptom string indicates an enabled wait state
condition.

Stand-Alone dump

Chapter 4. Stand-alone dump 121

Determining the system state
There are several control blocks that you can view that describe the state of the
system when the stand-alone dump was requested.

CSD Describes the number of active central processors and whether the
alternate CPU recovery (ACR) is active.

PSA Describes the current environment of a central processor, its work unit,
FRR stack, an indication of any locks held.

LCCA Contains save areas and flags of interrupt handlers.

CVT Contains pointers to other system control blocks.

Use the IPCS subcommand STATUS WORKSHEET to obtain the data that will help
you determine the state of the system. For example, in Figure 58 on page 123 look
for the following:
v The CPU bit mask, which indicates how many processors are online.
v The PSW at the time of the dump
v The PSATOLD. If the fields are zero, this indicates that an SRB is running and

the address in SMPSW indicates the save area of the dispatcher. If the fields are
nonzero, the address in PSWSV indicates the save area of the dispatcher.

v The PSAAOLD, which indicates what address space jobs are running in.

* * * * S Y M P T O M * * * *
ASR10001I The dump does not contain a primary symptom string.
Secondary Symptom String:

WS/E000 FLDS/ASMIORQR VALU/CPAGBACKUP FLDS/IOSCOD VALU/CLCLC0D45
FLDS/IOSTSA VALU/CLCLDEV02

Symptom Symptom data Explanation
--------------- ------------- -----------
WS/E000 000 Enabled wait state code
FLDS/ASMIORQR ASMIORQR Data field name
VALU/CPAGBACKUP PAGBACKUP Error related character value

Figure 57. Example: VERBEXIT SYMPTOMS output

Stand-Alone dump

122 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

You can also obtain the stored status of each central processor using the IPCS
subcommand STATUS CPU REGISTERS. Watch for these bits in the first half of the
PSW:
v Bits 6 and 7 indicate a disabled (04xxxxxx) or enabled (07xxxxxx) condition
v Bit 14 could indicate a wait (000A0000)
v Bits 16 and 17 indicate primary, secondary, access register (AR) or Home mode

Starting in V2R1, the worksheet displays 4-digit CPUIDs. There can be up to eight
CPUs on one line, if allowed. For example:

PROCESSOR RELATED DATA
|
| NAME OFFSET | CPU 0001 CPU 0003 CPU 0005 CPU 0006 CPU 0007 CPU 0008 CPU 0009 CPU 000A
| --------------------------+--
| PSW at time of dump | 00020000 00020000 04047000 00020000 00020000 00020000 00020000 00020000
| | 80000000 80000000 80000000 80000000 80000000 80000000 80000000 80000000
| | 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
| | 0000001B 0000001B 10F994EC 0000001B 0000001B 0000001B 0000001B 0000001B
| CR0 Interrupt mask | 00800002 00800002 00800002 00800002 00800002 00800002 00800002 00800002
| CR6 I/O class mask | 00 00 00 00 00 00 00 00
| ------ LCCA --------------+--

In Figure 59 on page 124, the PSW indicates an enabled wait state condition. The
program is running in primary mode with 24-bit addressing (bits 16 and 17 are 00

MVS Diagnostic Worksheet
Dump Title: SYSIEA01 DMPDSENQ 7/20/93
CPU Model 2064 Version 00 Serial no. 145667 Address 00
Date: 03/20/2001 Time: 05:41:26 Local
SYSTEM RELATED DATA

CVT SNAME (154) ESYS VERID (-18)
CUCB (64) 00FD4B68 PVTP (164) 00FE4A10 GDA (230) 01BE1168
RTMCT (23C) 00F81198 ASMVT (2C0) 00FD8030 RCEP (490) 012AA3F0

CSD Available CPU mask: C000 Alive CPU mask: C000 No. of active CPUs: 0002

PROCESSOR RELATED DATA

NAME OFFSET | CPU 00 CPU 01
--------------------------+---
PSW at time of dump | 070E0000 070C9000

| 00000000 8124EE9C
CR0 Interrupt mask | 5EB1EE40 5EB1EE40
CR6 I/O class mask | FE FE
------ LCCA --------------+---
IHR1 Recursion 208 | 00 00
SPN1/2 Spin 20C | 0000 0000
CPUS CPU WSAVT 218 | 00F4BA00 00F6F550
DSF1/2 Dispatcher 21C | 0000 0080
CRFL ACR/LK flgs 2B4 | 00000000 00000000
------ PSA ---------------+---
TOLD Curr TCB 21C | 00000000 00000000
ANEW ASCB 220 | 00FD3BC0 00F56180
AOLD Curr ASCB 224 | 00FD3280 00F56180
SUPER Super Bits 228 | 04000000 00000000
CLHT Lock Table 280 | 00FD4890 00FD4890
LOCAL Local lock 2EC | 00000000 00F0D700
CLHS Locks held 2F8 | 00000000 00000001
CSTK FRR stack 380 | 00F4D4D0 00000C00
SMPSW SRB Disp PSW 420 | 070C0000 070C0000

424 | 81142B60 82039000
PSWSV PSW Save 468 | 070E0000 070E0000

46C | 00000000 00000000
MODE Indicators 49F | 08 04

Figure 58. Example: STATUS WORKSHEET output

Stand-Alone dump

Chapter 4. Stand-alone dump 123

|
|

|
|
|
|
|
|
|
|
|
|
|

|

and the second word begins with 0).

To obtain other fields from important control blocks, use the IPCS subcommand
CBFORMAT. See z/OS MVS IPCS Commands for information about the CBFORMAT
subcommand.

You can also use the WHERE subcommand to identify particular areas in the
dump. For example, if a general purpose register contains an address, use the
WHERE subcommand to determine in what module that address resides. In
Figure 60, the WHERE subcommand indicates that the address is part of the
READONLY nucleus.

Analyzing an enabled wait
An enabled wait is also known as a dummy wait or a no work wait. An indication
of an enabled wait is a PSW of 070E0000 00000000 or 07060000 00000000 00000000
00000000 and GPRs containing all zeroes. An enabled wait occurred when the
dispatcher did not find any work to be dispatched. An enabled wait can occur
because of resource contention or system non-dispatchability, among other errors.

Reviewing outstanding I/O requests
When analyzing a stand-alone dump for an enabled wait condition, check the
status of the input/output requests. A display of the IOS control block and any
active UCBs can help determine what was happening when the system entered the
wait state.

In Figure 61 on page 125, the HOTIO field indicates that a solicited interrupt has
completed with other than DCC-3 because the last time HOT-I/O detection was
called. Note also that the IOQF and IOQL fields are identical, indicating that the
first and last request for this device is the same.

CPU(X’0000’) STATUS:
PSW=070E0000 00000000 NO WORK WAIT
ASCB1 at FD3280, JOB(*MASTER*), for the home ASID
ASXB1 at FD34F8 for the home ASID. No block is dispatched
CLTE: 01CB00E8
+0000 BLSD..... 00000000 XDS...... 00000000 XRES..... 00000000
+000C XQ....... 00FD4900 ESET..... 00FD4908 ULUT..... 00FD4910
CURRENT FRR STACK IS: SVC
PREVIOUS FRR STACK(S): NORMAL

GPR VALUES
0-3 00000000 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 00000000 00000000

ACCESS REGISTER VALUES
0-3 006FB01F 00000000 00000000 00000000
4-7 00000000 00000000 00000000 00000000
8-11 00000000 00000000 00000000 00000000
12-15 00000000 00000000 806FA03C 00000000

Figure 59. Example: STATUS CPU REGISTERS output

NOCPU ASID(X’0001’) 0124EE9C. IEANUC01.IGVSLIS1+0ADC IN READ ONLY NUCLEUS

Figure 60. Example: WHERE subcommand output

Stand-Alone dump

124 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

Analyzing for resource contention
You can obtain information related to resource contention by using the IPCS
subcommand ANALYZE. This subcommand displays contention information for
I/O, ENQs, suspend locks, allocatable devices and real storage. For example, in
Figure 62, 61 units of work are waiting to be processed. The top RB is in a wait
state.

Obtaining real storage data
Use the IPCS RSMDATA subcommand to obtain information about storage usage
and any unusual condition that have occurred prior to requesting the stand-alone
dump. In the RSMDATA output, if the percent usage field is 100%, there are no
frames left. Also, the percent of available total fixed frames should not be a high
number. If it is, there can be a program using too many resources to complete. For
example, in Figure 63, the percent of available total fixed frames is at 25%.

* * * ACTVUCBS Processing * * *
UCB AT 00F8B798: DEVICE 001; SUBCHANNEL 0001
UCBPRFIX: 00F8B768

-0030 RSTEM.... 00 RSV...... 08 MIHTI.... 40
-002D HOTIO.... 40 IOQF..... 00F7BC00 IOQL..... 00F7BC00
-0024 SIDA..... 0001 SCHNO.... 0001 PMCW1.... 2888
-001E MBI...... 0000 LPM...... 80 RSV...... 00
-001A LPUM..... 80 PIM...... 80 CHPID.... 21000000
-0014 00000000 LEVEL.... 01 IOSF1.... 00
-000E MIHCT.... 0000 LVMSK.... 00000001 LOCK..... 00000000
-0004 IOQ...... 00F7BC00

Figure 61. Example: IOSCHECK ACTVUCBS Subcommand output

CONTENTION EXCEPTION REPORT
JOBNAME=*MASTER* ASID=0001 TCB=006E8E88
JOBNAME=*MASTER* HOLDS THE FOLLOWING RESOURCE(S):

RESOURCE #0011:There are 0061 units of work waiting for this resource
NAME=MAJOR=SYSIEA01 MINOR=DMPDSENQ SCOPE=SYSTEM

STATUS FOR THIS UNIT OF WORK:
This address space is on the SRM IN queue.
Task non-dispatchability flags from TCBFLGS4:
Top RB is in a wait

Figure 62. Example: ANALYZE subcommand output

R S M S U M M A R Y R E P O R T
Tot real Below Prf real Dbl real Expanded
-------- ----- -------- -------- -------------

In configuration 33,792 4,096 33,742 - 49,152
Available for allocation 32,672 4,089 33,742 120 49,152
Allocated 32,398 3,964 33,483 113 48,594
Percent usage 99 96 99 94 98
Common fixed frames . . 3,087 317 3,087 - -
Percent of available . 9 7 9 - -

Total fixed frames . . . 8,338 907 - - -
Percent of available . 25 22 - - -

Figure 63. Example: RSMDATA output

Stand-Alone dump

Chapter 4. Stand-alone dump 125

You can also check the ASM control blocks to determine the statistics applicable to
I/O requests. The I/O requests received and completed should be the same. In
Figure 64, note that the 509577 I/O requests received have all been completed.

Determining dispatchability
By performing an address space analysis on the major system address space, you
can determine if there is any work waiting and if the address space is dispatchable.
The major address space you should analyze are:
v Master scheduler, ASID 1
v CONSOLE
v JES2/JES3
v IMS/CICS/VTAM

When you are analyzing an address space for dispatchability, keep in mind these
questions:
v Are there any suspended SRBs on the queue?

You will need to run the WEBs on ASCBSAWQ and look for WEBs that have a
WEBFLAG1 field of X'000000' to check if there are any SRBs ready to be
dispatched.

v Are there any ready TCBs indicated by ASCBTCBS and ASCBTCBL?
ASCBTCBS and ASCBTCBL contain a count of the number of TCBs containing
ready work to be dispatched. To find the TCBs for ASCBTCBL, look at the WEBs
on the ASCBLTCS and ASCBLTCB queues that belong to the home space.

v If there is ready work, is the ASCB dispatchable (ASCBDSP1)?
ASCBDSP1 is a non-dispatchability flag. For more information about what the
values of ASCBDSP1 indicate, see z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

v If there is no ready work, are the TCBs in a normal wait (TCBFLGS4,
TCBFLGS5, TCBNDSP)?
A non-zero value in any of these fields indicates that the TCB is
non-dispatchable.

In Figure 65 on page 127, ASCBDSP1 is X'04', indicating that this address space is
not eligible for CML lock requests. The ASCBSAWQ, ASCBLTCN, and ASCBTCBS
fields all contain zeroes, indicating that there is no ready work available.

ASMVT AT 00FD8030
509577 I/O REQUESTS RECEIVED, 509577 I/O REQUESTS COMPLETED BY ASM
240487 NON-SWAP WRITE I/O REQUESTS RECEIVED, 240487 NON-SWAP WRITE I/O

REQUESTS COMPLETE
PART AT 01CB5310
PAGE DATA SET 0 IS ON UNIT 15B
PAGE DATA SET 1 IS ON UNIT 15B
PAGE DATA SET 3 IS ON UNIT 14A
PAGE DATA SET 4 IS ON UNIT 150
PAGE DATA SET 5 IS ON UNIT 15B

Figure 64. Example: ASMCHECK output

Stand-Alone dump

126 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

For the mapping structure of WEBs under the IHAWEB, see z/OS MVS Data Areas
in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

If your address space analysis indicated that ready work was available to be
dispatched, look at ASCBDSP1 to determine if the address space is dispatchable. If
your address space analysis indicated that there was no ready work available to be
dispatched, look at the TCBs to determine if they are in a normal wait. In Figure 66
on page 128, for example, the TCB fields indicate that the top RB is in a wait.

ASCB: 00FD2B80
+0000 ASCB..... ASCB FWDP..... 00FC4400 BWDP..... 00000000
+000C LTCS..... 00000000 SVRB..... 00F4FBA8 SYNC..... 000727F4
+0018 IOSP..... 00000000 WQID..... 0000 SAWQ..... 00000000
+0024 ASID..... 0001 LL5...... 00 HLHI..... 01
+002A DPH...... 01FF LDA...... 7F748EB0 RSMF..... C0
+0038 CSCB..... 00000000 TSB...... 00000000
+0040 EJST..... 0000009F 94659288
+0048 EWST..... AEE06377 45A41803 JSTL..... 000141DE
+0054 ECB...... 00000000 UBET..... 00000000 TLCH..... 00000000
+0060 DUMP..... 00699D90 AFFN..... FFFF RCTF..... 01
+0067 FLG1..... 00 TMCH..... 00000000 ASXB..... 00FD2EA8
+0070 SWCT..... 47BE DSP1..... 00 FLG2..... CE
+0076 SRBS..... 0000 LLWQ..... 00000000 RCTP..... 00000000
+0080 LOCK..... 00000000 LSWQ..... 00000000 QECB..... 00000000
+008C MECB..... 00000000 OUCB..... 015178E8 OUXB..... 01517BF0
+0098 FMCT..... 0000 LEVL..... 03 FL2A..... 00
+009C XMPQ..... 00000000 IQEA..... 00000000 RTMC..... 00000000
+00A8 MCC...... 00000000 JBNI..... 00000000 JBNS..... 00FD2B18
+00B4 SRQ1..... 00 SRQ2..... 00 SRQ3..... 00
+00B7 SRQ4..... 00 VGTT..... 00CD7458 PCTT..... 1AB6F008
+00C0 SSRB..... 0000 SMCT..... 00 SRBM..... 07
+00C4 SWTL..... 00000000 SRBT..... 000015D1 E5E32000
+00D0 LTCB..... 00000000 LTCN..... 00000000 TCBS..... 00000000
+00DC LSQT..... 00000000 WPRB..... 00FD2E90 NDP...... FF
+00E5 TNDP..... FF NTSG..... FF IODP..... FF
+00E8 LOCI..... 00000000 CMLW..... 00000000 CMLC..... 00000000
+00F4 SSO1..... 000000 SSO4..... 00 ASTE..... 02900040
+00FC LTOV..... 7FFD8400 ATOV..... 7FFDCCA8 ETC...... 0007
+0106 ETCN..... 0000 LXR...... 0007 AXR...... 0000
+010C STKH..... 00FD35C0 GQEL..... 00000000 LQEL..... 00000000
+0118 GSYN..... 00000000 XTCB..... 006A3D90 CS1...... 00
+0121 CS2...... 00 GXL...... 02449430
+0128 EATT..... 0000000E DAC0D475
+0130 INTS..... AED8EC7B 0C7C0900 LL1...... 00
+0139 LL2...... 00 LL3...... 00 LL4...... 00
+013C RCMS..... 00000000 IOSC..... 0000450A PKML..... 0000
+0146 XCNT..... 01F4 NSQA..... 00000000 ASM...... 00FD3520
+0150 ASSB..... 00FD2D00 TCME..... 00000000 GQIR..... 00000000
+0168 CREQ..... 00000000 RSME..... 02219120 AVM1..... 00
+0171 AVM2..... 00 AGEN..... 0000 ARC...... 00000000
+0178 RSMA..... 02219000 DCTI..... 0066E2EE

Figure 65. Example: SUMMARY FORMAT output (determining ready work)

Stand-Alone dump

Chapter 4. Stand-alone dump 127

http://www.ibm.com/systems/z/os/zos/bkserv/

Analyzing a disabled wait
A disabled wait condition can be analyzed by checking the PSW at the time of the
error. If bits 6 and 7 are zero and bit 14 contains a 1, there is a disabled wait. The
wait state code is in byte 7, with the reason code in byte 5.

The following examples show how to determine the wait state code:
v In the following PSW, the wait state code is X'014' and the reason code is zero.

PSW=000E0000 00000014

v In another example, the wait state code is X'064' and the reason code is X'09'.
PSW=000A0000 00090064

v In z/Architecture® mode, the PSW would look like:
PSW=0002000 00000000 00000000 00090064

After you determine the wait state code from the PSW, look at the documentation
for the specific wait state code for any action you can take. See z/OS MVS System
Codes for the specific wait state code you encountered.

If you cannot find the wait state code documented, do one of the following:
v Analyze the dump to determine if it is a stand-alone dump wait state.
v Check PSASMPSW and PSAPSWSV to determine if the dispatcher loaded the

wait state PSW because of an overlay. See Chapter 7, “The dump grab bag,” on
page 163 for more information about storage overlays.

v Use the stored status registers to determine who loaded the wait state into the
PSW.

Analyzing an enabled loop
To determine if the stand-alone dump was requested because of an enabled loop,
you need to view the system trace table. Repetitive patterns in the system trace

TCB: 00FD3608
+0000 RBP...... 006FF048 PIE...... 00000000 DEB...... 00000000
+000C TIO...... 00000000 CMP...... 00000000 TRN...... 00000000
+0018 MSS...... 7F7463A0 PKF...... 00 FLGS..... 00008004 00
+0022 LMP...... FF DSP...... FF LLS...... 006FFD38
+0028 JLB...... 00000000 JPQ...... 006FF200

GENERAL PURPOSE REGISTER VALUES
0-3 00000001 000027C4 00009FBC 00000004
4-7 006FFF48 006FEFB8 00F6E900 0000005C
8-11 80001E52 00C0DCE8 006F5FF0 00FCF778
12-15 00FCF170 006FF348 80FCF1C0 806FF048
+0070 FSA...... 00000000 TCB...... 006FF6F0 TME...... 00000000
+007C JSTCB.... 00FD3608 NTC...... 00000000 OTC...... 00000000
+0088 LTC...... 006FF6F0 IQE...... 00000000 ECB...... 00000000
+0094 TSFLG.... 00 STPCT.... 00 TSLP..... 00
+0097 TSDP..... 00 RD....... 7F748F04 AE....... 7F746280
+00A0 STAB..... 00F0B860 TCT...... 00000000 USER..... 00000000
+00AC NDSP..... 00000000 MDIDS.... 00000000 JSCB..... 00C0BE84

.

.

.
+014C BDT...... 00000000 NDAXP.... 00000000 SENV..... 00000000
Task non-dispatchability flags from TCBFLGS4:
Top RB is in a wait

Figure 66. Example: SUMMARY FORMAT output (determining TCB in normal wait)

Stand-Alone dump

128 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

table indicate an enabled loop condition. An enabled loop, however, does not
normally cause a system outage. It will cause an outage in these circumstances:
v There is a non-preemptable loop in SRB mode
v There is a loop in a high priority address space that is in TCB mode

In Figure 67, the CLKC entries indicate an enabled loop, and because column three
is all zeroes, this loop is in SRB mode. The PSW addresses on the CLKCs identify
the looping program. Use the WHERE subcommand to locate the responsible
program.

Because of interrupt processing that occurs during an enabled loop, the stored
status data might not point to the module causing the loop. To determine if a first
level interrupt handler (FLIH) was active, view the PSASUPER field of the PSA. If
the PSASUPER field is non-zero, a FLIH was active at the time of the error. Using
the FLIH's save area, find the PSW and registers at the time of the error. The
address in the second half of the PSW will point to the module involved in the
loop. See “Problem data saved by first level interrupt handlers” on page 130 for
more information.

Analyzing a disabled loop
A disabled loop is not visible in the system trace output because disabled routines
do not take interrupts. Normally, a disabled loop results in a spin loop in a
multiprocessor environment. When analyzing a stand-alone dump for a disabled
loop, use the stored status data to determine the module involved in the loop.
Also, examine the in-storage logrec buffer for entries that recovery routines have
made but which were not written to the logrec data set because of a system
problem. Very often it is these records that are the key to the problem solution. See
“Obtaining information from the logrec recording control buffer” on page 535 for
more information.

SLIP problem data in the SLIP work area
In a stand-alone dump taken after a SLIP ACTION=WAIT trap matches, problem
data can be found in a work area pointed to by the PSAWTCOD field in the prefix
save area (PSA). Table 18 shows the format of this area.

Table 18. Work area pointed to by the PSAWTCOD field

Offset Length Content

0 (0) 1 RTM/SLIP processing environment indicator:

v X'01': RTM1

v X'02': RTM2

v X'03': MEMTERM

v X'04': PER

01 003E 00000000 CLKC 070C0000 8100765C 00001004 00000000
01 003E 00000000 CLKC 070C2000 81005638 00001004 00000000
01 003E 00000000 CLKC 070C0000 810056E6 00001004 00000000

01 003E 00000000 CLKC 070C0000 80FF0768 00001004 00000000

01 003E 00000000 CLKC 070C0000 80FE4E34 00001004 00000000

01 003E 00000000 CLKC 070C1000 81004BB8 00001004 00000000

Figure 67. Example: SYSTRACE output (recognizing an enabled loop)

Stand-Alone dump

Chapter 4. Stand-alone dump 129

Table 18. Work area pointed to by the PSAWTCOD field (continued)

Offset Length Content

1 (1) 2 Logical processor identifier (CPUID)

3 (3) 1 System mask, if offset 0 is 2 (RTM2)

4 (4) 4 Pointer to general purpose registers 0 through 15 at the time of the event

8 (8) 4 Pointer to the 16-byte program status word (PSW) at the time of the event

12 (C) 4 One of the following, as indicated by the RTM/SLIP processing environment indicator
at offset 0 of the work area:

v Pointer to the system diagnostic work area (SDWA), if offset 0 is 1 (RTM1)

v Pointer to the recovery termination manager 2 (RTM2) work area (RTM2WA), if offset
0 is 2 (RTM2)

v Pointer to the address space control block (ASCB) being ended, if offset 0 is 3
(MEMTERM)

v Pointer to the PER code, if offset 0 is 4 (PER)

16 (10) 4 Pointer to cross memory information (control registers 3 and 4) at the time of the event

20 (14) 4 Pointer to access registers AR0 through AR15 at the time of the event. Pointer to the
high 32 bits of the 64-bit GPRs, or 0 if not available. See Wait State 01B in the z/OS MVS
System Codes for more information.

Problem data saved by first level interrupt handlers
If processing is stopped or an error occurs in one of the first level interrupt
handlers (FLIH), you might need to determine the PSW and registers of the
interrupted program. Field PSASUPER has bits to indicate if an FLIH was in
control:
v PSAIO for the IO FLIH
v PSASVC for the SVC FLIH
v PSAEXT for the external FLIH
v PSAPI for the program interrupt FLIH

The following tables show where each FLIH saves the PSW and registers for
interrupted tasks or SRB:
v Table 19
v Table 20 on page 131
v Table 21 on page 132
v Table 22 on page 132

Table 19. Problem data saved by the SVC FLIH for task and SRB code

Code giving up control Data saved Field receiving data Control block

All SVCs, initially General purpose registers 7-9 PSAGPREG PSA

General purpose registers, if a
problem occurred

LCCASGPR LCCA

Stand-Alone dump

130 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 19. Problem data saved by the SVC FLIH for task and SRB code (continued)

Code giving up control Data saved Field receiving data Control block

All SVCs PSW RBOPSW Requestor's RB

Cross memory status XSBXMCRS XSB

PCLINK stack header XSBSTKE XSB

EAX XSBEAX XSB

Access registers 0-15 STCBARS STCB

Current linkage stack entry
pointer

STCBLSDP STCB

Type 1 and 6 SVCs General purpose registers 0-15 TCBGRS TCB

Type 2, 3, and 4 SVCs General purpose registers 0-15 RBGRSAVE SVRB

Table 20. Problem data saved for a program check for task and SRB code

Code giving up control Data saved Field receiving data Control block

Initially for non-recursive
program interruptions

General purpose registers 0-15 LCCAPGR2 LCCA

PSW LCCAPPSW LCCA

ILC/PINT LCCAPINT LCCA

TEA LCCAPVAD LCCA

TEA AR number LCCAPTR2 LCCA

Control registers 0-15 LCCAPCR2 LCCA

Access registers 0-15 LCCAPAR2 LCCA

Initially for recursive program
interruptions

General purpose registers 0-15 LCCAPGR1 LCCA

PSW LCCAPPS1 LCCA

ILC/PINT LCCAPIC1 LCCA

TEA LCCAPTE1 LCCA

TEA AR number LCCAPTR2 LCCA

Control registers 0-15 LCCAPCR1 LCCA

Access registers 0-15 LCCAPAR1 LCCA

Initially for monitor call
interruptions that occur during
page fault or segment fault
processing

General purpose registers 0-15 LCCAPGR3 LCCA

PSW LCCAPPS3 LCCA

ILC/PINT LCCAPIC3 LCCA

TEA LCCAPTE3 LCCA

TEA AR number LCCAPTR3 LCCA

Control registers 0-15 LCCAPCR3 LCCA

Access registers 0-15 LCCAPAR3 LCCA

Initially for all trace buffer full
interruptions

General purpose registers 0-15 LCCAPGR4 LCCA

For unlocked tasks for page
faults or segment faults that
require I/O; problem data is
moved from the LCCA

Registers TCB and STCB

PSW RB

Other status XSB

Stand-Alone dump

Chapter 4. Stand-alone dump 131

Table 20. Problem data saved for a program check for task and SRB code (continued)

Code giving up control Data saved Field receiving data Control block

For locked tasks for page faults
or segment faults that require
I/O; problem data is moved
from the LCCA

Registers IHSA

PSW IHSA

Other status XSB for IHSA

For SRBs for page faults or
segment faults that require
I/O; SRB is suspended, no
status is saved

Table 21. Problem data saved by the I/O FLIH for task and SRB code

Code giving up control Data saved Field receiving data Control block

Initially General purpose registers 0-15 SCFSIGR1 SCFS

Control registers 0-15 SCFSICR1 SCFS

Access registers 0-15 SCFSIAR1 SCFS

For unlocked tasks General purpose registers 0-15 TCBGRS TCB

PSW RBOPSW RB

Cross memory status XSBXMCRS XSB

EAX XSBEAX XSB

Access registers 0-15 STCBARS STCB

Current linkage stack entry
pointer

STCBLSDP STCB

For locally locked tasks General purpose registers 0-15 IHSAGPRS IHSA for locked
address space

PSW IHSACPSW IHSA for locked
address space

Access registers 0-15 IHSAARS IHSA for locked
address space

Current linkage stack entry
pointer

IHSALSDP IHSA for locked
address space

Cross memory status XSBXMCRS XSB for locked
address space

EAX XSBEAX XSB for locked
address space

For SRBs and non-preemptive
TCBs

General purpose registers 0-15 SCFSIGR1 SCF

PSW FLCIOPSW PSA

Table 22. Problem data saved by the external FLIH for task and SRB code

Code giving up control Data saved Field receiving data Control block

Initially General purpose registers 7-10 PSASLSA PSA

Stand-Alone dump

132 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 22. Problem data saved by the external FLIH for task and SRB code (continued)

Code giving up control Data saved Field receiving data Control block

For locally locked tasks General purpose registers 0-15 IHSAGPRS IHSA

PSW IHSACPSW IHSA

Access registers 0-15 IHSAARS IHSA

Current linkage stack entry
pointer

IHSALSDP IHSA

Cross memory status XSBXMCRS XSB

EAX XSBEAX XSB

Unlocked tasks General purpose registers 0-15 TCBGRS TCB

PSW RBOPSW RB

Access registers 0-15 STCBARS STCB

Current linkage stack entry
pointer

STCBLSDP STCB

Cross memory status XSBXMCRS XSB

EAX XSBEAX XSB

For SRBs and non-preemptive
TCBs

General purpose registers 0-15 SCFSXGR1 SCFS

PSW SCFSXPS1 SCFS

Control registers 0-15 SCFSXCR1 SCFS

Access registers 0-15 SCFSXAR1 SCFS

If first recursion General purpose registers 0-15 SCFSXGR1 SCFS

PSW SCFSXPS2 SCFS

Control registers 0-15 SCFSXCR2 SCFS

Access registers 0-15 SCFSXAR2 SCFS

If second recursion General purpose registers 0-15 SCFSXGR3 SCFS

PSW FLCEOPSW PSA

Control registers 0-15 SCFSXCR3 SCFS

Access registers 0-15 SCFSXAR3 SCFS

Stand-Alone dump

Chapter 4. Stand-alone dump 133

Stand-Alone dump

134 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 5. ABEND dump

An ABEND dump shows the virtual storage predominately for an unauthorized
program. Typically, a dump is requested when the program cannot continue
processing and abnormally ends. An operator can also request an ABEND dump
while ending a program or an address space.

The system can produce three types of ABEND dumps, one unformatted dump
(SYSMDUMP) and two formatted dumps (SYSABEND and SYSUDUMP). These
dumps are produced when a program cannot continue processing and a DD
statement for an ABEND dump was included in the JCL for the job step that has
ended. The data included is dependent on:
v Parameters supplied in the IEAABD00, IEADMR00, and IEADMP00 parmlib

members for SYSABENDs, SYSMDUMPs, and SYSUDUMPs, respectively.
v A determination by the system
v ABEND, CALLRTM, or SETRP macro dump options
v IEAVTABX, IEAVADFM, or IEAVADUS installation exit processing

IBM recommends the use of SYSMDUMP, the unformatted dump. Unformatted
dumping is more efficient because only the storage requested is written to the data
set, which allows the application to capture diagnostic data and be brought back
online faster. Also, pre-formatted dumps force the system to select a single set of
reports, too many for the diagnosis of many problems, and too few for others.
Unformatted dumps allow the analyst to determine, from a wide variety of reports,
what information to use and how it is presented.

Use SYSUDUMP for diagnosis of program problems that need simple problem
data. A SYSABEND dump, through the IBM supplied defaults, supplies more of
the system information related to the application program's processing than a
SYSUDUMP. The additional information may be better suited for complex problem
diagnosis.

This section covers the following topics, which describe how to use ABEND
dumps:
v “Synopsis of ABEND dumps” on page 136
v “Obtaining ABEND dumps” on page 137
v “Printing and viewing dumps” on page 141
v “Contents of ABEND dumps” on page 142
v “Customizing ABEND dump contents” on page 147
v “Analyzing an ABEND dump” on page 153

© Copyright IBM Corp. 1988, 2015 135

Synopsis of ABEND dumps
Use Table 23 as a quick reference for the three types of ABEND dumps. If you
need further information about ABEND dumps, refer to the sections following this
table.

Table 23. Types of ABEND dumps

Obtaining the dump Receiving the dump Dump contents

SYSABEND:

Assembler macro in any program:

v ABEND with DUMP

v SETRP with DUMP=YES

Assembler macro in an authorized
program:

v ABEND with DUMP

v CALLRTM with DUMP=YES

v SETRP with DUMP=YES

Operator command on a console with
master authority:

v CANCEL with DUMP

For full information, see “Obtaining
ABEND dumps” on page 137.

Formatted dump in a data set with
the ddname of SYSABEND:

v In SYSOUT; print in the output
class or browse at a terminal

v On tape or direct access: print in a
separate job or browse at a
terminal

v On a printer (Not recommended;
the printer cannot be used for
anything else for the duration of
the job step.)

For full information, see “Obtaining
ABEND dumps” on page 137.

Default contents: summary dump for
the failing task and other task data.
See “Contents of ABEND dumps” on
page 142.

Customized by all of the following:

v IEAADB00 parmlib member

v Parameter list on the requesting
ABEND, CALLRTM, or SETRP
macro

v Recovery routines invoked by the
recovery termination manager
(RTM)

v Cumulative from all CHNGDUMP
operator commands with
SYSABEND

v Installation-written routines at the
IEAVTABX, IEAVADFM, and
IEAVADUS exits

For full information about
customization, see “Customizing
ABEND dump contents” on page
147.

SYSMDUMP:

Assembler macro in any program:

v ABEND with DUMP

v SETRP with DUMP=YES

Assembler macro in an authorized
program:

v ABEND with DUMP

v CALLRTM with DUMP=YES

v SETRP with DUMP=YES

Operator command on a console with
master authority:

v CANCEL with DUMP

For full information, see “Obtaining
ABEND dumps” on page 137.

Unformatted dump in a data set with
the ddname of SYSMDUMP:

v On tape or direct access; use IPCS
to format and print/view the
dump

For full information, see “Obtaining
ABEND dumps” on page 137.

Default contents: summary dump
and system data for the failing task.
See “Contents of ABEND dumps” on
page 142.

Customized by all of the following:

v IEADMR00 parmlib member

v Parameter list on the requesting
ABEND, CALLRTM, or SETRP
macro

v Recovery routines invoked by the
recovery termination manager
(RTM)

v Cumulative from all CHNGDUMP
operator commands with
SYSMDUMP

v Installation-written routines at the
IEAVTABX exit

For full information about
customization, see “Customizing
ABEND dump contents” on page
147.

ABEND dumps

136 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 23. Types of ABEND dumps (continued)

Obtaining the dump Receiving the dump Dump contents

SYSUDUMP:

Assembler macro in any program:

v ABEND with DUMP

v SETRP with DUMP=YES

Assembler macro in an authorized
program:

v ABEND with DUMP

v CALLRTM with DUMP=YES

v SETRP with DUMP=YES

Operator command on a console with
master authority:

v CANCEL with DUMP

For full information, see “Obtaining
ABEND dumps.”

Formatted dump in a data set with
the ddname of SYSUDUMP:

v In SYSOUT; print in the output
class or browse at a terminal

v On tape or direct access; print in a
separate job or browse at a
terminal

v On a printer (Not recommended;
the printer cannot be used for
anything else for the duration of
the job step.)

For full information, see “Obtaining
ABEND dumps.”

Default contents: summary dump for
the failing task. See “Contents of
ABEND dumps” on page 142.

Customized by all of the following:

v IEADMP00 parmlib member

v Parameter list on the requesting
ABEND, CALLRTM, or SETRP
macro

v Recovery routines invoked by the
recovery termination manager
(RTM)

v Cumulative from all CHNGDUMP
operator commands with
SYSUDUMP

v Installation-written routines at the
IEAVTABX, IEAVADFM, and
IEAVADUS exits

For full information about
customization, see “Customizing
ABEND dump contents” on page
147.

Obtaining ABEND dumps
You can obtain SYSABEND, SYSUDUMP, and SYSMDUMP dumps using one
process. To obtain a specific type of ABEND dump, specify the correct DD
statement in your JCL as shown in Table 24; for more information about these
statements, see z/OS MVS JCL Reference:

Table 24. Summary: DD statements to specify for specific ABEND dumps

Dump Type DD statement

SYSABEND //SYSABEND DD ...

SYSUDUMP //SYSUDUMP DD ...

SYSMDUMP //SYSMDUMP DD ...

Provide a data set to receive the dump, then arrange to view the dump. If a data
set is not provided, the system ignores a request for an ABEND dump. When
setting up the data set, determine if it will contain privileged data. If so, protect it
with passwords or other security measures to limit access to it.

Because ABEND dumps provide information to debug application programs, the
data they have access to is limited. Authorized programs require special processing
to allow the information they can access into a dump. ABEND dump processing
issues an IEA848I message when violations occur. The primary facility for
dumping authorized data is through the SDUMPX macro, however, two security
FACILITY classes are provided that allow installations to permit ABEND dumps to
contain authorized data:

IEAABD.DUMPAUTH
For access to programs that are protected by the PROGRAM facility.

ABEND dumps

Chapter 5. ABEND dump 137

IEAABD.DMPAKEY
For programs that execute in authorized keys.

See z/OS Security Server RACF Security Administrator's Guide for additional details.
For details on the SDUMPX macro, see
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Guide.

Data set for dump
Define the data set in either:
v The JCL for the job step, for batch processing
v The logon procedure for a TSO/E userid, for foreground processing

Define the data set in a DD statement with a ddname of SYSABEND, SYSMDUMP,
or SYSUDUMP. The ddname for the data set determines how the dump can be
printed or viewed, what the dump contains, and how the dump contents can be
customized. The first two effects are discussed in the following topics.

The system writes the dump in a sequential data set using the basic sequential
access method (BSAM). The dump data set can be on any device supported by
BSAM. Note that the system provides a data control block (DCB) for the dump
data set and opens and closes the DCB.

You can also use extended format sequential data sets as dump data sets for
ABEND dumps. Extended format sequential data sets have the following features:
v Have a greater capacity than sequential data sets
v Support striping
v Support compression

Using DSNTYPE=LARGE: In z/OS V1R7 and later releases, sequential data sets
that use DSNTYPE=LARGE are allowable for ABEND dumps when the systems
that are involved in processing a DSNTYPE=LARGE data set are migrated to V1R7
prior to their use. If analysis using an earlier release is required, use z/OS V1R7 to
transcribe the dump into a data set supported by the earlier release.

Placing dump data sets in cylinder-managed space: In z/OS V1R11 and later
releases, extended format sequential data sets can be placed in either
track-managed space or cylinder-managed space. Abend dump fully supports
placement of dump data sets in cylinder-managed space.

VIO for ADDRSPC=REAL: A SYSMDUMP DD statement must specify a virtual
input/output (VIO) data set if the job or step to be dumped is running in
nonpageable virtual storage, that is, the JCL JOB or EXEC statement specifies
ADDRSPC=REAL.

Preallocate data sets for SYSMDUMP dumps
You may use any dataset name you wish for the SYSMDUMP dataset. However,
the dataset name SYS1.SYSMDPxx will be treated specially. If you use the data set
naming convention of SYS1.SYSMDPxx for a DISP=SHR data set, the system writes
only the first dump, with all subsequent dump requests receiving system message
IEA849I. The data set can be either a magnetic tape unit or a direct access storage
device (DASD) data set.

ABEND dumps

138 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

When using this naming convention, you must manage the dump data set to use
the same data set repeatedly for SYSMDUMP dumps. For subsequent dumps, you
must initialize the SYS1.SYSMDPxx data set with an end-of-file (EOF) mark as the
first record.

Naming Convention: You must use SYS1.SYSMDPxx, where xx is 00 through FF
and identifies the exact data set to be used.

Data Set Disposition: If you specify DISP=SHR with the SYS1.SYSMDPxx naming
convention, the facility that enables the system to write only the first dump
becomes active.

If you specify DISP=SHR without the SYS1.SYSMDPxx naming convention, the
system writes a new dump over the old dump when the same data set is the target
for multiple dumps. This also happens for multiple dumps within the same job if
each step does not specify FREE=CLOSE on the SYSMDUMP DD statement.

For dispositions other than DISP=SHR, the system uses the data set as if it were
any other MVS data set. If you specify DISP=MOD, the system writes the dump
following the previous dump, so that the data set contains more than one dump. If
you specify DISP=OLD, the system writes a new dump over the old dump when
the same data set is the target for multiple dumps.

Data Set Management: To minimize the loss of subsequent dumps, your
installation exit should follow these steps for the management of SYS1.SYSMDPxx
data sets:
1. Intercept system message IEA993I. The system issues this message when it

writes the dump to the SYS1.SYSMDPxx data set.
2. Copy the dump onto another data set.
3. Clear the SYS1.SYSMDPxx data set by writing an EOF mark as the first record,

making it available for the next SYSMDUMP dump to be written on the data
set.

The installation exit routine can be one of the following:
v IEAVMXIT
v The exit routine specified on the USEREXIT parameter in the MPFLSTxx parmlib

member

See z/OS MVS System Messages, Vol 6 (GOS-IEA) for a description of system
messages IEA849I and IEA993I. See z/OS MVS Installation Exits for information
about the installation exit routine.

Process for obtaining ABEND dumps

Obtain an ABEND dump by taking the following steps for each job step where you
want to code a dump:
1. Code a DD statement in the JCL for every job step where a dump would be

needed. The statement can specify one of the following:
v Direct access
v SYSOUT
v Tape
v Printer (Not recommended; printer cannot be used for anything else for

duration of job step.)

ABEND dumps

Chapter 5. ABEND dump 139

The presence of the DCB attributes enables the system-determined block size
process to select an efficient block size for the DASD selected. For more
information, see z/OS DFSMS Using Data Sets. Your installation can make
specification of these attributes unnecessary through local SMS class selection
routines.
For example, the following SYSOUT SYSABEND DD statement places the
dump in sysout output class A. In the example, output class A is a print class.
The system prints a dump written to this class when printing the class.
//SYSABEND DD SYSOUT=A

The following example places a SYSUDUMP dump on a scratch tape. In the
example, TAPE is an installation group name. DEFER specifies that the operator
is to mount the tape only when the data set is opened; thus, the operator will
not mount the tape unless it is needed for a dump. The system deletes the data
set if the job step ends normally; in this case, the data set is not needed because
no dump was written. The system keeps the data set if the step ends
abnormally; the data set contains a dump. A future job step or job can print the
dump.
//SYSUDUMP DD DSN=DUMPDS,UNIT=(TAPE,,DEFER),DISP=(,DELETE,KEEP)

2. Place the DD statement in the JCL for the job step that runs the program to be
dumped or in the logon procedure for a TSO/E user ID.
The following example shows a SYSABEND DD statement in the logon
procedure for a TSO/E user ID. A dump statement must appear in the logon
procedure in order to process a dump in the foreground. The system keeps the
data set if the job step ends abnormally.
//SYSABEND DD DSN=MYID3.DUMPS,DISP=(OLD,,KEEP)

3. If you need to diagnose a program that does not contain code for an ABEND
dump, code one of the following:
v ABEND assembler macro with a DUMP parameter in a problem program or

an authorized program
The following example shows an ABEND macro that ends a program with a
user completion code of 1024 and requests a dump:
ABEND 1024,DUMP

v SETRP assembler macro with a DUMP=YES parameter in the recovery
routine for a problem program or an authorized program
The following example shows a SETRP macro in an ESTAE recovery routine
for a problem program. The address of the system diagnostic work area
(SDWA) is in register 1, which is the default location.
SETRP DUMP=YES

v CALLRTM assembler macro with a DUMP=YES parameter in an authorized
program
The following example shows a macro in an authorized program. The
CALLRTM macro ends a program and requests a dump. Register 5 contains
the address of the task control block (TCB) for the program.
CALLRTM TYPE=ABTERM,TCB=(5),DUMP=YES

4. If you need to diagnose a program that already contains code for an ABEND
dump, and that program is already abending, skip step 5.

5. If you need to diagnose a program that already contains code for an ABEND
dump, but the program is not currently abending, ask the operator to enter a
CANCEL command with a DUMP parameter on the console with master
authority.

ABEND dumps

140 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

For example, to cancel a job and request a dump, ask the operator to use either
of the following:
CANCEL BADJOB,DUMP

CANCEL STARTING,A=1234,DUMP

To cancel a user ID and request a dump, ask the operator to use either of the
following commands:
CANCEL U=MYID3,DUMP

CANCEL U=*LOGON*,A=5678,DUMP

6. The system writes a formatted dump to the data set defined in step 1.

Printing and viewing dumps
You can print or view the different types of ABEND dumps as follows:

SYSABEND and SYSUDUMP dumps: These two dumps are formatted as they are
created. They can be:
v In a SYSOUT data set. The system can print the dump when printing the output

class. To view at a terminal, use a facility that allows the viewing of JES SPOOL
data sets.

v On a tape or direct access data set. Print the dump in a separate job or job step
or view the dump at a terminal by browsing the data set containing the dump.
A convenient way to print the dump is in a later job step that runs only if an
earlier job step abnormally ends and, thus, requests a dump. For this, use the
JCL EXEC statement COND parameter.

v Sent directly to a printer. Note this is not recommended; the printer cannot be
used for anything else while the job step is running, whether a dump is written
or not.

Figure 68 shows JCL that uses the IEBPTPCH facility to print a formatted dump
data set. In this example, a SYSABEND dump is printed. The same JCL can be
used for a SYSUDUMP. Because the system formats the dump when creating it, the
IEBPTPCH utility program can print the dump. The dump is in a data set named
DUMPDS on tape.

SYSMDUMP dumps: This dump is unformatted when created. The system can
write the dump to tape or direct access. Use IPCS to format the dump and then
view it at a terminal or print it. SYSMDUMP dumps are especially useful for
diagnosing errors because IPCS can produce specific information for specific
requests. See z/OS MVS IPCS User's Guide for more information.

...
//PRINT EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=DUMPDS,UNIT=TAPE,DISP=(OLD,DELETE)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT PREFORM=A,TYPORG=PS
/*

Figure 68. Example: Using IEBPTPCH to print a dump

ABEND dumps

Chapter 5. ABEND dump 141

Contents of ABEND dumps
You can specify the contents of an ABEND dump by specifying parameters on the
ddname in the JCL for the program. This topic discusses the IBM-supplied default
contents and contents available through customization.

All three ABEND dumps contain a summary dump, although the SYSMDUMP
summary dump contains less information than the SYSABEND and SYSUDUMP
summary dumps. The SYSUDUMP consists of only the summary dump. The
SYSABEND dump also contains task data, while the SYSMDUMP also contains
system data. The SYSMDUMP dump is a synchronous SVC dump and contains
data similar to the data in an SVC dump.

Note:

1. ABEND dumps do not include hiperspaces. To include hiperspace in an
ABEND dump, read the data from the hiperspace into address space storage
that is being dumped.

2. If some needed areas are not included by default, see “Customizing ABEND
dump contents” on page 147 for ways to add the areas.

Determining current ABEND dump options
Use a DISPLAY DUMP operator command to get the dump mode and options in
effect for SVC dumps and ABEND SYSABEND, SYSMDUMP, and SYSUDUMP
dumps. The system displays the mode and options in message IEE857I.

For example, to determine the mode and options, enter the following command:
DISPLAY DUMP,OPTIONS

If the options listed are not the ones desired, use a CHNGDUMP operator
command to change them.

See z/OS MVS System Commands for the DISPLAY and CHNGDUMP operator
commands. For a description of these messages, use LookAt or see MVS System
Messages.

Default contents of ABEND dumps
The contents of the three ABEND dumps are detailed in the following two tables.
Table 25 on page 143 shows dump contents alphabetically by the parameters that
specify the areas in the dumps. To select a dump, decide what areas will be used
to diagnose potential errors. Find the areas in the tables. The symbols in columns
under the dump indicate how the area can be obtained in that dump. The symbols
are:

D IBM-supplied default contents

M Available on the macro that requests the dump

P Available in the parmlib member that controls the dump options

X Available on the CHNGDUMP operator command that changes the options
for the dump type

ABEND dumps

142 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 25. Summary: dump contents by parameter

Parameter Dump Contents ABEND Dump to
SYSUDUMP

ABEND Dump to
SYSABEND

ABEND Dump to
SYSMDUMP

ALL All the dump options available in
a SYSMDUMP dump, except the
NOSYM and ALLNUC options

X

ALLNUC The DAT-on and DAT-off
nucleuses

P X

ALLPA All link pack areas, as follows:

v Job pack area (JPA)

v Link pack area (LPA) active for
the task being dumped

v Related Supervisor Call (SVC)
modules

M P X D M P X M

ALLPDATA All the program data areas P X P X

ALLSDATA All the system data areas P X P X P

ALLVNUC The entire virtual control program
nucleus, including:

v Prefixed save area (PSA)

v System queue area (SQA)

v Local system queue area
(LSQA)

M P X M P X M

CB Control blocks for the task being
dumped

M P X D M P X M

CSA Common service area (CSA) (that
is, subpools 227, 228, 231, 241)

P X

DM Data management control blocks
for the task being dumped:

v Data control block (DCB)

v Data extent block (DEB)

v Input/output block (IOB)

M P X D M P X M

ENQ Global resource serialization
control blocks for the task being
dumped:

v Global queue control blocks

v Local queue control blocks

P X D P X

ERR Recovery termination manager
(RTM) control blocks for the task
being dumped:

v Extended error descriptor (EED)
for RTM

v Registers from the system
diagnostic work area (SDWA)

v RTM2 work area (RTM2WA)

v Set task asynchronous exit
(STAE) control block (SCB)

M P X D M P X M

ABEND dumps

Chapter 5. ABEND dump 143

Table 25. Summary: dump contents by parameter (continued)

Parameter Dump Contents ABEND Dump to
SYSUDUMP

ABEND Dump to
SYSABEND

ABEND Dump to
SYSMDUMP

GRSQ Global resource serialization
control blocks for the task being
dumped:

v Global queue control blocks

v Local queue control blocks

P X

IO Input/output supervisor (IOS)
control blocks for the task being
dumped:

v Execute channel program debug
area (EXCPD)

v Unit control block (UCB)

M P X D M P X M

JPA Job pack area (JPA): module
names and contents

M P X M P X M

LPA Active link pack area (LPA):
module names and contents

M P X M P X M P X

LSQA Local system queue area (LSQA)
allocated for the address space
(that is, subpools 203 - 205, 213 -
215, 223 - 225, 229, 230, 233 - 235,
249, 253 - 255)

M P X D M P X D M P X

NOSYM No symptom dump (message
IEA995I)

P X P X P X

NUC Read/write portion of the control
program nucleus (that is, only
non-page-protected areas of the
DAT-on nucleus), including:

v Communication vector table
(CVT)

v Local system queue area
(LSQA)

v Prefixed save area (PSA)

v System queue area (SQA)

M P X M P X D M P X

PCDATA Program call information for the
task

M P X M P X M

PSW Program status word (PSW) when
the dump was requested

M P X D M P X M P X

Q Global resource serialization
control blocks for the task being
dumped:

v Global queue control blocks

v Local queue control blocks

M M M

ABEND dumps

144 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 25. Summary: dump contents by parameter (continued)

Parameter Dump Contents ABEND Dump to
SYSUDUMP

ABEND Dump to
SYSABEND

ABEND Dump to
SYSMDUMP

REGS Registers at entry to ABEND, that
is, when the dump was requested:

v Access registers

v Floating-point registers

v General registers

v Vector registers, vector status
register, and vector mask
register for a task that uses the
Vector Facility

M P X D M P X M

RGN Allocated pages in the private
area of each address space being
dumped, including subpools 0 -
127, 129 - 132, 203 - 205, 213 - 215,
223 - 225, 229, 230, 236, 237, 244,
249, 251 - 255

D P X

SA or SAH Save area linkage information,
program call linkage information,
and backward trace of save areas

M P X D M P X M

SPLS Storage allocated in user subpools
0 - 127, 129 - 132, 244, 251, and
252 for the task being dumped

Note that SUBPLST in the macro
parameter list for a SYSABEND or
SYSUDUMP dump overrides SPLS
in the dump options list, but only
for the dump being requested.

M P X D M P X M

SQA System queue area (SQA)
allocated (that is, subpools 226,
239, 245, 247, 248)

The control blocks for the failing
task in the SQA include:

v Address space control block
(ASCB)

v Job scheduler address space
control block (JSAB)

M P X M P X D M P X

SUBTASKS Storage for the task being dumped
and program data for all of its
subtasks

M P X M P X D M

SUM Summary dump, see “Default
contents of summary dumps in
ABEND dumps” on page 146

D M P X D M P X D M P X

SWA Scheduler work area (SWA); that
is, subpools 236 and 237

M P X M P X D M P X

TRT System trace and generalized trace
facility (GTF) trace, as available

M P X D M P X

System trace, as available D M P X

ABEND dumps

Chapter 5. ABEND dump 145

Default contents of summary dumps in ABEND dumps
If only a summary dump is requested, as in a SYSUDUMP dump that is not
customized, the summary information is together, because it forms the entire
dump. When a summary dump is combined with other dump options, the
summary dump information is scattered throughout the dump. In Table 26, an S
indicates that a summary dump is available with the dump type.

Table 26. Default contents of summary dumps in ABEND dumps

Summary Dump Contents ABEND Dump
to SYSUDUMP

ABEND Dump
to SYSABEND

ABEND Dump
to SYSMDUMP

Completion code: The system or user completion code if an
ABEND macro requested the dump and, if it exists, the
accompanying reason code

S S S

Control blocks for the failing task, including:

v ASCB (address space control block)

v CDE (contents directory entry)

v LLE (load list element)

v RB (request block)

v TCB (task control block)

v TIOT (task input/output table)

v XL (extent list)

S S

Control blocks for the recovery termination manager (RTM):

v EED (extended error descriptor) for RTM

v Registers from the system diagnostic work area (SDWA)

v RTM2WA (RTM2 work area)

v SCB (set task asynchronous exit (STAE) control block)

S S S

Dump header, mapped by the AMDDATA macro S

Dump index S S

Dump title: The job and step being dumped, the time and
date of the dump, the dump identifier, and the processor

S S S

Load module, if the PSW points to an active load module:

v Name

v Module Contents

v Offset into the load module of the failing instruction

v Module pointed to in the last PRB (program request
block)

S
S
S
S

S
S
S
S

S

PSW (program status word) at entry to ABEND, that is,
when the dump was requested. The PSW includes the
instruction length code and the interrupt code for the failing
instruction.

S S S

Registers at entry to ABEND, that is, when the dump was
requested

S S S

Save areas of register contents S S

Storage: 4 kilobytes before and 4 kilobytes after the addresses
in the PSW and the registers.

The dump shows, by ascending address, only the storage that
the user is authorized to access. Duplicate addresses are
removed.

S S S

System trace table entries for the dumped address space S S

ABEND dumps

146 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 26. Default contents of summary dumps in ABEND dumps (continued)

Summary Dump Contents ABEND Dump
to SYSUDUMP

ABEND Dump
to SYSABEND

ABEND Dump
to SYSMDUMP

TCB summary: Information from the task control blocks
(TCB) in the address space being dumped

S S

Virtual storage map: The subpools in the address space being
dumped:

v Subpool number

v Subpool key

v The owning or sharing task control block (TCB)

v The beginning address and length of each allocated area

v The beginning address and length of each free area

S S

Customizing ABEND dump contents
The ddname of the data set for the ABEND dump determines how the contents
can be customized. The system determines the contents of a particular ABEND
dump from the options list the system maintains for the type of dump. The dump
options list can be customized, cumulatively, by all the ways shown in the
following tables; thus, for example, a SYSMDUMP ABEND dump written for an
ABEND macro can be completely different from the default SYSMDUMP ABEND
dump described in this document.
v Table 27 on page 148
v Table 28 on page 150
v Table 29 on page 152

For more information about the topics described in this section, see the following
references:
v See z/OS MVS Initialization and Tuning Reference for parmlib members.
v See z/OS MVS System Commands for the CHNGDUMP operator command.
v See z/OS MVS Programming: Assembler Services Reference ABE-HSP and z/OS MVS

Programming: Assembler Services Reference IAR-XCT for the ABEND, SETRP,
SNAP, SNAPX, ESTAE, ESTAEX, and ATTACH or ATTACHX with ESTAI
macros.

v See z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO and
z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for the
SETRP and CALLRTM macros.

v See z/OS MVS Installation Exits for the IEAVTABX, IEAVADFM, and IEAVADUS
installation exits.

Recommendations for customizing ABEND dumps: How an installation
customizes dumps should depend on the usual use of each type of dump. The
IBM-supplied dump options for ABEND dumps are designed for the following
uses:
v SYSABEND dumps: For diagnosis of complex errors in any program running

under the operating system
v SYSMDUMP dumps: For diagnosis of system problems when the dump is

requested in a program
v SYSUDUMP dumps: For diagnosis of program problems needing simple

problem data

ABEND dumps

Chapter 5. ABEND dump 147

For SYSUDUMP dumps, the IBM-supplied IEADMP00 member specifies the
default contents as only a summary dump. An installation should consider using
the IEADMP00 member as supplied, because it offers a small dump for simple
problems.

Program areas in dumps: To request a meaningful dump for a particular program,
code an ABEND macro that points to a macro parameter list. Specify in the list the
data areas that are needed to diagnose the abnormally ending program but that are
not specified in the parmlib member for the dump. Two examples are:
v If the task that is ending has subtasks and they might cause an error, specify

PDATA=SUBTASKS in the macro parameter list to dump the subtasks.
v To see only the subpools used by the program, specify the subpool numbers in a

SUBPLST option for a SYSABEND dump. The SPLS option, which is a default
for SYSABEND dumps, writes all user subpools. Leaving SPLS in the dump
options may make the dump bigger than needed. Note that SUBPLST in the
macro parameter list overrides SPLS in the current dump options.

Nucleus areas in dumps: Dump options control the parts of the nucleus that
appear in a dump. A diagnostician seldom needs to analyze all of the nucleus. An
installation can eliminate nucleus areas from dumps. If the IBM-supplied defaults
are used, an SYSMDUMP ABEND dump contains the read/write DAT-on nucleus.

An installation can obtain one copy of the DAT-off nucleus to use in any problem
by entering a DUMP operator command.

The ABEND dump options that control dumping of the nucleus areas are:

Option Nucleus aArea

SDATA=NUC
Read/write DAT-on nucleus

SDATA=ALLNUC
All of the DAT-on nucleus: read/write and read-only

Customizing SYSABEND dump contents
Table 27 summarizes how to customize the contents of SYSABEND dumps.

Table 27. Customizing SYSABEND dump contents

SYSABEND Customization Effect Example

Replacing IEAABD00 parmlib
member (by using the IEBUPDTE
utility).

Change occurs: At system
initialization

What changes: IEAABD00 contains
the IBM-supplied default dump
options. Replacing IEAABD00
changes the dump options for
SYSABEND.

To add program call data and the
link pack area to all SYSABEND
dumps, while retaining the
IBM-supplied options, use IEBUPDTE
to change the IEAABD00 member to
contain:

SDATA=(LSQA,CB,ENQ,TRT,ERR,
DM,IO,SUM,PCDATA)
PDATA=(PSW,REGS,SPLS,ALLPA,
SA,LPA)

ABEND dumps

148 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 27. Customizing SYSABEND dump contents (continued)

SYSABEND Customization Effect Example

Using a macro parameter list.

The DUMPOPT or DUMPOPX
parameter on the ABEND or
CALLRTM macro points to the
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: At dump request

What changes: The macro parameter
list options are added to the dump
options list, but only for the dump
being requested.

Note that SUBPLST in the macro
parameter list overrides SPLS in the
dump options list, but only for the
dump being requested.

To add program call data and the
link pack area to this SYSABEND
dump, code in the program:

ABEND 76,DUMP,
DUMPOPT=PARMS

PARMS SNAP SDATA=PCDATA,
PDATA=LPA,MF=L

Recovery routines invoked by the
recovery termination manager:

v FRRs (function recovery routines)
for a system component

v ESTAE/ESTAI recovery routines
established by an ESTAE or
ESTAEX macro or the ESTAI
parameter of an ATTACH or
ATTACHX macro

v ARRs (associated recovery
routines)

These routines issue SETRP macros.
To customize the dump contents, the
DUMPOPT or DUMPOPX parameter
on the SETRP macro points to a
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: Just before dumping

What changes: The SETRP macro
parameter list options are added to
the dump options list, but only for
the dump being requested.

To add program call data and the
link pack area to this SYSABEND
dump, code in the recovery routine:

SETRP ,DUMP=YES,
DUMPOPT=PARMS

PARMS SNAP SDATA=PCDATA,
PDATA=LPA,MF=L

Entering CHNGDUMP operator
command with SYSABEND
parameter on a console with master
authority.

Change occurs: Immediately when
entered

What changes:

v For ADD: CHNGDUMP options
are added to the IEAABD00
options, previous CHNGDUMP
options, and all macro parameter
list options. The options remain
added until a CHNGDUMP
DEL,SYSABEND operator
command is entered.

v For OVER: CHNGDUMP options
override all other dump options.

v For DEL: All CHNGDUMP options
are deleted and the dump options
in IEAABD00 are used again.

When more than one CHNGDUMP
operator command with SYSABEND
is entered, the effect is cumulative.

To add program call data and the
link pack area to all SYSABEND
dumps until changed by
CHNGDUMP DEL,SYSABEND,
enter:

CHNGDUMP SET,ADD,SYSABEND,
SDATA=PCDATA,PDATA=LPA

To return to the IEAABD00 options,
enter:

CHNGDUMP DEL,SYSABEND

ABEND dumps

Chapter 5. ABEND dump 149

Table 27. Customizing SYSABEND dump contents (continued)

SYSABEND Customization Effect Example

Through IEAVTABX installation exit
name list.

Change occurs: Just before dumping

What changes: The routine can add
or delete options from the dump
options, but only for the current
dump.

See z/OS MVS Installation Exits.

Through IEAVADFM or IEAVADUS
installation exits. IEAVADFM is a list
of installation routines to be run.
IEAVADUS is one installation routine.

Change occurs: During dumping.
The routine runs during control block
formatting of a dump with the CB
option.

What changes: The routine can add
control blocks to the dump.

See z/OS MVS Installation Exits.

Customizing SYSMDUMP dump contents
Table 28 contains a summary of how to customize the contents of SYSMDUMP
dumps.

Table 28. Customizing SYSMDUMP dump contents

SYSMDUMP Customization Effect Example

Replacing IEADMR00 parmlib
member (by using the IEBUPDTE
utility).

Change occurs: At system
initialization

What changes: IEADMR00 contains
the IBM-supplied default dump
options. Replacing IEADMR00
changes the dump options for
SYSMDUMP.

To add the link pack area to all
SYSMDUMP dumps, while retaining
all the IBM-supplied defaults, use
IEBUPDTE to change the IEADMR00
member to contain:

SDATA=(NUC,SQA,LSQA,SWA,TRT,RGN,
SUM,LPA)

Using a macro parameter list.

The DUMPOPT or DUMPOPX
parameter on the ABEND or
CALLRTM macro points to the
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: At dump request

What changes: The macro parameter
list options are added to the dump
options list, but only for the dump
being requested.

To add the link pack area to this
SYSMDUMP dump, code in the
program:

ABEND 76,DUMP,
DUMPOPT=PARMS

PARMS SNAP PDATA=LPA,MF=L

ABEND dumps

150 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 28. Customizing SYSMDUMP dump contents (continued)

SYSMDUMP Customization Effect Example

Recovery routines invoked by the
recovery termination manager:

v FRRs (function recovery routines)
for a system component

v ESTAE/ESTAI recovery routines
established by an ESTAE or
ESTAEX macro or the ESTAI
parameter of an ATTACH or
ATTACHX macro

v ARRs (associated recovery
routines)

These routines issue SETRP macros.
To customize the dump contents, the
DUMPOPT or DUMPOPX parameter
on the SETRP macro points to a
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: Just before dumping

What changes: The SETRP macro
parameter list options are added to
the dump options list, but only for
the dump being requested.

To add the link pack area to this
SYSMDUMP dump, code in the
recovery routine:

SETRP ,DUMP=YES,
DUMPOPT=PARMS

PARMS SNAP PDATA=LPA,MF=L

Entering CHNGDUMP operator
command with SYSMDUMP
parameter on a console with master
authority.

Change occurs: Immediately when
entered

What changes:

v For ADD: CHNGDUMP options
are added to the IEADMR00
options, previous CHNGDUMP
options, and macro parameter list
options. The options remain added
until a CHNGDUMP
DEL,SYSMDUMP operator
command is entered.

v For OVER: CHNGDUMP options
override all other dump options.

v For DEL: All CHNGDUMP options
are deleted and the dump options
in IEADMR00 are used again.

When more than one CHNGDUMP
operator command with SYSMDUMP
is entered, the effect is cumulative.

To add the link pack area to all
SYSMDUMP dumps until changed
by CHNGDUMP DEL,SYSMDUMP,
enter:

CHNGDUMP SET,ADD,SYSMDUMP=(LPA)

To return to the IEADMR00 options,
enter:

CHNGDUMP DEL,SYSMDUMP

Through IEAVTABX installation exit
name list.

Change occurs: Just before dumping

What changes: The routine can add
or delete options from the dump
options, but only for the current
dump.

See z/OS MVS Installation Exits.

Customizing SYSUDUMP dump contents
Table 29 on page 152 contains a summary of how to customize the contents of
SYSUDUMP dumps.

ABEND dumps

Chapter 5. ABEND dump 151

Table 29. Customizing SYSUDUMP dump contents

SYSUDUMP Customization Effect Example

Replacing IEADMP00 parmlib
member (by using the IEBUPDTE
utility).

Change occurs: At system
initialization

What changes: IEADMP00 contains
the IBM-supplied default dump
options. Replacing IEADMP00
changes the dump options for
SYSUDUMP.

To add program call data and user
subpool storage to all SYSUDUMP
dumps, while retaining the summary
dump, use IEBUPDTE to change the
IEADMP00 member to contain:

SDATA=(SUM,PCDATA)
PDATA=SPLS

Using a macro parameter list.

The DUMPOPT or DUMPOPX
parameter on the ABEND or
CALLRTM macro points to the
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: At dump request

What changes: The macro parameter
list options are added to the dump
options list, but only for the dump
being requested.

Note that SUBPLST in the macro
parameter list overrides SPLS in the
dump options list, but only for the
dump being requested.

To add program call data and user
subpool storage to this SYSUDUMP
dump, code in the program:

ABEND 76,DUMP,
DUMPOPT=PARMS

PARMS SNAP SDATA=PCDATA,
PDATA=SPLS,MF=L

Recovery routines invoked by the
recovery termination manager:

v FRRs (function recovery routines)
for a system component

v ESTAE/ESTAI recovery routines
established by an ESTAE or
ESTAEX macro or the ESTAI
parameter of an ATTACH or
ATTACHX macro

v ARRs (associated recovery
routines)

Theseroutines issue SETRP macros.
To customize the dump contents, the
DUMPOPT or DUMPOPX parameter
on the SETRP macro points to a
parameter list. The list is usually
created by a list-form SNAP or
SNAPX macro.

Change occurs: Just before dumping

What changes: The SETRP macro
parameter list options are added to
the dump options list, but only for
the dump being requested.

To add program call data and user
subpool storage to this SYSUDUMP
dump, code in the recovery routine:

SETRP ,DUMP=YES,
DUMPOPT=PARMS

PARMS SNAP SDATA=PCDATA,
PDATA=SPLS,MF=L

ABEND dumps

152 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 29. Customizing SYSUDUMP dump contents (continued)

SYSUDUMP Customization Effect Example

Entering CHNGDUMP operator
command with SYSUDUMP
parameter on a console with master
authority.

Change occurs: Immediately when
entered

What changes:

v For ADD: CHNGDUMP options
are added to the IEADMP00
options, previous CHNGDUMP
options, and all macro parameter
list options. The options remain
added until a CHNGDUMP
DEL,SYSUDUMP operator
command is entered.

v For OVER: CHNGDUMP options
override all other dump options.

v For DEL: All CHNGDUMP options
are deleted and the dump options
in IEADMP00 are used again.

When more than one CHNGDUMP
operator command with SYSUDUMP
is entered, the effect is cumulative.

To add program call data and user
subpool storage to all SYSUDUMP
dumps until changed by
CHNGDUMP DEL,SYSUDUMP,
enter:

CHNGDUMP SET,ADD,SYSUDUMP,
SDATA=PCDATA,PDATA=SPLS

To return to the IEADMP00 options,
enter:

CHNGDUMP DEL,SYSUDUMP

Through IEAVTABX installation exit
name list.

Change occurs: Just before dumping

What changes: The routine can add
or delete options from the dump
options, but only for the current
dump.

See z/OS MVS Installation Exits.

Through IEAVADFM or IEAVADUS
installation exits. IEAVADFM is a list
of installation routines to be run and
IEAVADUS is one installation routine.

Change occurs: During dumping.
The routine runs during control block
formatting of a dump with the CB
option.

What changes: The routine can add
control blocks to the dump.

See z/OS MVS Installation Exits.

Analyzing an ABEND dump

Note: A SYSMDUMP ABEND dump is always a synchronous SVC dump. To
analyze a SYSMDUMP, see “Analyzing an SVC dump” on page 39.

ABEND dumps written to SYSABEND and SYSUDUMP data sets are useful for
analyzing problems in a program running under the operating system. This
program can be called any of the following:
v Installation-provided program
v An application program
v A non-authorized program
v A problem program
v A program in the private area

ABEND dumps are written for problems detected in two ways:
v Software-detected problem, such as:

– A nonzero return code from a called module

ABEND dumps

Chapter 5. ABEND dump 153

– A program check, abend code X'0Cx', that a recovery routine changes to
another abend code

– An erroneous control block queue
– Not valid input to a system service

v Hardware-detected problem, which is a program check, abend code X'0Cx', that
a recovery routine does not change to another abend code

Analysis Procedure
To analyze a SYSABEND or SYSUDUMP, take the following steps:
1. Collect and analyze logrec error records.

Check all logrec error records related to the abended task. Determine if any
records show an earlier system problem; if so, continue diagnosis with that
problem. Because of recovery and percolation, a SYSABEND or SYSUDUMP
dump can be the end result of an earlier system problem.

2. Collect and analyze messages about the problem. Use time stamps to select
messages related to the problem:
v The job log
v The system log (SYSLOG) or operations log (OPERLOG)
Check the messages for earlier dumps written while the abended task was
running. Determine if these earlier dumps indicate an earlier system problem;
if so, continue diagnosis with that problem.

3. Analyze the dump, as described in the following steps.

Note: After the problem and before the dump, recovery tried to reconstruct
erroneous control block chains before ending the task. If the problem proves
to be in a system component, a SYSABEND or SYSUDUMP dump cannot be
used to isolate it because of the recovery actions; these dumps are useful only
for problems in the private area.

4. Obtain the abend code, reason code, job name, step name, and program
status word (PSW) from the dump title at the beginning of the dump.
If the completion code is USER=dddd, an application program issued an
ABEND macro to request the dump and to specify the completion code.
If the completion code is SYSTEM=hhh, a system component ended the
application program and a recovery routine in the program requested the
dump. The application program probably caused the abend.
Reference See z/OS MVS System Codes for an explanation of the abend code.

5. Analyze the RTM2WA, as follows:
v In the TCB summary, find the task control block (TCB) for the failing task.

This TCB has the abend code as its completion code in the CMP field. In
the TCB summary, obtain the address of the recovery termination manager
2 (RTM2) work area (RTM2WA) for the TCB.

v In the RTM2WA summary, obtain the registers at the time of the error and
the name and address of the abending program.

v If the RTM2WA summary does not give the abending program name and
address, probably an SVC instruction abnormally ended.

v If the RTM2WA summary gives a previous RTM2WA for recursion, the
abend for this dump occurred while an ESTAE or other recovery routine
was processing another, original abend. In recursive abends, more than one
RTM2WA may be created. Use the previous RTM2WA to diagnose the
original problem.

ABEND dumps

154 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

For information about the RTM2WA, SDWA, and TCB data areas, see z/OS
MVS Data Areas in z/OS Internet library (http://www.ibm.com/systems/z/
os/zos/bkserv/).

6. Analyze the dump for the program name. Obtain the program name from the
RTM2WA summary. If the name field is zero, do the following:
v Find the control blocks for the task being dumped.
v The last request blocks are SVRBs. In the WLIC field in an SVRB, find the

following SVC interruption codes:
– X'33' for a SNAP SVC interruption
– X'0C' for a SYNCH SVC interruption

v The program request block (PRB) for the abending program immediately
precedes these SVRBs.

v When the dump contains more than one CDE, determine the first and last
address for each CDE. The entry point address is the first address. Add the
length to the entry point address to obtain the last address. Compare these
addresses to the address in the right half of the PSW in the dump header;
the PSW address falls between the first and last addresses of the correct
CDE.
Note that the leftmost digit in the PSW address denotes addressing mode
and is not part of the address.

v In that CDE, the NAME field gives the program name.
7. Locate the failing program module in the hexadecimal dump.
8. Find the instruction that caused the abend.

The PSW in the dump header is from the time of the error. Obtain the address
in the right half of the PSW. The leftmost digit denotes addressing mode and
is not part of the address.
For most problems, subtract the instruction length in the ILC field of the
dump header from the PSW address to obtain the address of the failing
instruction. Do not subtract the instruction length in the following cases; the
failing instruction is at the PSW address.
v Page translation exception.
v Segment translation exception.
v Vector operation interruption.
v Other interruptions for which the processing of the instruction identified by

the old PSW is nullified. See z/Architecture Principles of Operation for the
interruption action.

v If access registers were being used at the time of the error, so that the access
list entry token (ALET) may be incorrect.

Subtract the failing instruction address from the failing module address. Use
this offset to find the matching instruction in the abending program's
assembler listing.

9. For an abend from an SVC or system I/O routine, find the last program
instruction.

If the abend occurred in a system component running on behalf of the
dumped program, find the last instruction that ran in the program, as follows:
v For an abend from an SVC routine, look in the last PRB in the control

blocks for the task being dumped. The right half of the PSW in the RTPSW1
field contains the address of the instruction following the SVC instruction.

ABEND dumps

Chapter 5. ABEND dump 155

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v For an abend from a system I/O routine, look in the save area trace. This
trace gives the address of the I/O routine branched to. The return address
in that save area is the last instruction that ran in the failing program.

10. For an abend from an SVC or system I/O routine, determine the cause of
the abend, using the following:
v For an abend from an SVC, look in the system trace table for SVC entries

matching the SVRBs in the control blocks for the task being dumped.
v For an abend from an I/O routine, look in the system trace table for I/O

entries issued from addresses in the failing program. The addresses are in
the PSW ADDRESS column.

If SVC entries match the dumped blocks or the I/O entries were issued from
the failing program, the system trace table was not overlaid between the
problem and the dump.
In this case, start with the most recent entries at the end of the trace. Back up
to the last SVC entry with the TCB address of the abending task. Go toward
the end of the trace, looking for indications of the problem. See Chapter 8,
“System trace,” on page 169 for more information.

11. For a program interrupt, determine the cause of the abend, using the
registers at the time of the error in the RTM2WA and in the SVRB following
the PRB for the abending program.
Also, look at the formatted save area trace for input to the failing module.

12. For an abend in a cross memory environment, do the following to analyze
the dump.
Many services are requested by use of the Program Call (PC) instruction,
rather than by SVCs or SRBs. When an abend is issued by the PC routine, the
OPSW field in the RB contains the instruction address of the PC routine that
issued the abend. The SVRB contains the registers of the PC routine.
Do the following to look for the registers and PSW at the time the PC
instruction was issued:
v For a stacking PC, find the registers in the linkage stack. Any entries on the

linkage stack are before the RBs in the dump.
v For a basic PC, find the registers in the PCLINK stack. Any entries on the

PCLINK stack are after the RBs in the dump.
For a stacking PC, find the linkage stack entry that corresponds to the
RB/XSB for the program. The LSED field of the linkage stack entry and the
XSBLSCP field in the corresponding XSB have the same value. From the
linkage stack entry, obtain the registers and the PSW at the time the stacking
PC was issued. The address in the PSW points to the instruction following the
PC instruction in the abending program.
For a basic PC, determine the caller from the PCLINK stack. To locate the
PCLINK stack element (STKE):
v The STKEs appear in the dump following all of the RBs. If the dump

contains more than one STKE, the pointer to the STKE for the PC involved
in the problem is in the XSBSTKE field of the XSB associated with the RB
for the abending program.

v The RBXSB field in the RB points to the XSB.
v The XSBSEL field in the XSB points to the current STKE.
In the STKE, the STKERET field contains the return address of the caller of the
PCLINK service.
For information about the STKE and XSB data areas, see z/OS MVS Data Areas
in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

ABEND dumps

156 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/

Chapter 6. SNAP dump

This topic (SNAP Dump) contains programming interface information.

A SNAP dump shows virtual storage areas that a program, while running, requests
the system to dump. A SNAP dump, therefore, is written while a program runs,
rather than during abnormal end. The program can ask for a dump of as little as a
one byte field to as much as all of the storage assigned to the current job step. The
program can also ask for some system data in the dump.

A SNAP dump is especially useful when testing a program. A program can dump
one or more fields repeatedly to let the programmer check intermediate steps in
calculations. For example, if a program being developed produces incorrect results,
requests for SNAP dumps can be added to the program to dump individual
variables. The first time that incorrect storage is encountered should narrow down
the section of code causing the error.

Obtaining SNAP dumps
Provide a data set to receive the dump, then arrange to print the dump. The SNAP
or SNAPX macros in a program can place their dumps in the same or different
data sets; the DCB parameter in each SNAP or SNAPX macro indicates the data
set.

When setting up a dump data set, determine if the data set will contain privileged
data. If so, protect it with passwords or other security measures to limit access to
it.

You can use extended format sequential data sets as dump data sets for SNAP
dumps. Extended format sequential data sets have the following features:
v Have a greater capacity than sequential data sets
v Support striping
v Support compression

Using DSNTYPE=LARGE: In z/OS V1R7 and later releases, sequential data sets
that use DSNTYPE=LARGE are allowable for ABEND dumps when the systems
that are involved in processing a DSNTYPE=LARGE data set are migrated to V1R7
prior to their use. If analysis using an earlier release is required, use z/OS V1R7 to
transcribe the dump into a data set supported by the earlier release.

Placing dump data sets in cylinder-managed space: In z/OS V1R11 and later
releases, extended format sequential data sets can be placed in either
track-managed space or cylinder-managed space. SNAP dump fully supports
placement of dump data sets in cylinder-managed space.

Obtain a SNAP dump by taking the following steps:
1. Code a DD statement in the JCL for the job step that runs the problem program

to be dumped with a ddname other than SYSUDUMP, SYSABEND,
SYSMDUMP, or another restricted ddname. The statement can specify that the
output of the SNAP dump should be written to one of the following:
v Direct access.

© Copyright IBM Corp. 1988, 2015 157

v Printer. Note that a printer is not recommended, except when running under
z/VM®, because the printer cannot be used for anything else while the job
step is running, whether a dump is written or not. Under z/VM you can use
a virtual printer. This allows you to see or print the partial output on a real
printer while the program is running while only using a small amount of
system resources.

v SYSOUT. SNAP dumps usually use SYSOUT.
v Tape.
Example: SYSOUT DD Statement for SNAP Dump: The following example
places a SNAP dump in sysout output class A. In the example, output class A
is a print class. When the system prints the output class, the system will print
any dumps written to the class.
//SNAP1 DD SYSOUT=A

Example: Tape DD Statement for SNAP Dump: The following example places
a SNAP dump on a tape. In the example, TAPE is a group name established by
the installation.
//SNAP2 DD DSN=DUMPDS,UNIT=TAPE,DISP=(,KEEP,KEEP)

The system keeps the data set when the job step ends, whether normally or
abnormally. In either case, SNAP dumps are taken throughout processing,
regardless of the way the step ends.
Example: Direct Access DD Statement for SNAP Dump: The following
example places a SNAP dump on direct access, for example, the 3350 direct
access storage.
//SNAP3 DD DSN=SNAPSHOT,UNIT=3350,DISP=(,KEEP,KEEP),
// VOLUME=SER=12345,SPACE=(1680,(160,80))

The system writes the dump in a sequential data set using the basic sequential
access method (BSAM). The dump data set can be on any device supported by
BSAM.

2. In the problem program:
a. Specify a data control block (DCB) for the data set to receive the dump. For

a standard dump, which has 120 characters per line, the DCB must specify:
v BLKSIZE=882 or 1632
v DSORG=PS
v LRECL=125
v MACRF=(W)
v RECFM=VBA
For a high-density dump, which has 204 characters per line and will be
printed on an APA 3800 printer, the DCB must specify:
v BLKSIZE=1470 or 2724
v DSORG=PS
v LRECL=209
v MACRF=(W)
v RECFM=VBA

b. Code an OPEN macro to open the DCB.
Before you issue the SNAP or SNAPX macro, you must open the DCB that
you designate on the DCB parameter, and ensure that the DCB is not closed
until the macro returns control. To open the DCB, issue the DCB macro with
the following parameters, and issue an OPEN macro for the data set:

DSORG=PS,RECFM=VBA,MACRF=(W),BLKSIZE=nnn,LRECL=xxx,
and DDNAME=any name but SYSABEND, SYSMDUMP or SYSUDUMP

SNAP dumps

158 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

If the system loader processes the program, the program must close the
DCB after the last SNAP or SNAPX macro is issued.

c. Code a SNAP or SNAPX assembler macro to request the dump.
Example: Coding the SNAP Macro: In the following example, the SNAP
macro requests a dump of a storage area, with the DCB address in register
3, a dump identifier of 245, the storage area's starting address in register 4,
and the ending address in register 5:

SNAP DCB=(3),ID=245,STORAGE=((4),(5))

Repeat this macro in the program as many times as wanted, changing the
dump identifier for a unique dump. The system writes all the dumps that
specify the same DCB to the same data set.
Example: Two SNAP Dump Requests in a Program: The following
example shows a problem program that requests two SNAP dumps. Both
SNAP macros in the example specify the same data control block (DCB) to
place both dumps in the same data set. Each dump has a different
identifier: PIC3 for the first dump, PIC4 for the second. Both dumps show
the same areas: the control blocks. Thus, the programmer can see these
areas at two points in the program's processing.
SNAPDCB DCB BLKSIZE=882,DSORG=PS,LRECL=125,MACRF=(W),RECFM=VBA

.

.

.
OPEN SNAPDCB,OUTPUT
LA 3,SNAPDCB
SNAP DCB=(3),ID=PIC3,SDATA=CB
.
.
.
SNAP DCB=(3),ID=PIC4,SDATA=CB
CLOSE SNAPDCB

d. Close the DCB with a CLOSE assembler macro.
For more information, see the following references:
v See z/OS DFSMS Macro Instructions for Data Sets for coding the DCB, OPEN,

and CLOSE macros.
v See z/OS MVS Programming: Assembler Services Reference ABE-HSP and z/OS

MVS Programming: Assembler Services Reference IAR-XCT for required
parameters on the DCB macro and for coding the SNAP or SNAPX macro.

3. Print or view the data set. The output of the SNAP or SNAPX macro is a
standard EBCDIC data set with ANSII characters in column one. This data set
can be edited.

The dumps are formatted as they are created. Printing depends on the location of
the dump when it is created:

Location
Printing

SYSOUT
The system prints the dump(s) when printing the output class.

On a tape or direct access data set
Print the dump(s) in a separate job or job step.

Printer
The system prints the dump(s) as they are created.

To view SNAP dumps at a terminal, browse the data set containing the dump.

SNAP dumps

Chapter 6. SNAP dump 159

Example: Printing a SNAP Dump The following JCL prints a SNAP dump.
Because the system formats the dump when creating it, the IEBPTPCH utility
program can print the dump. The dump is in the SNAPSHOT data set.

.

.

.
//PRINT EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=SNAPSHOT,UNIT=3350,DISP=(OLD,DELETE),
// VOLUME=SER=12345
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TYPORG=PS
/*

Customizing SNAP dump contents
You can customize the contents of SNAP dumps in one of the following ways:
v Through installation exits.
v Through parameters on the SDUMP or SDUMPX macro.

Customizing through installation exits
An installation can customize the contents of SNAP dumps through the
IEAVADFM or IEAVADUS installation exits. IEAVADFM is a list of installation
routines to be run and IEAVADUS is one installation routine. The installation exit
routine runs during control block formatting of a dump when the CB option is
specified on the SNAP or SNAPX macro. The routine can format control blocks
and send them to the data set for the dump. See z/OS MVS Installation Exits for
more information.

Customizing through the SNAP or SNAPX macro
The parameters on the SNAP or SNAPX macro determine the dump contents. The
macro can specify any or all of the areas listed in Table 30.

Note that the parameters cannot request that a Hiperspace be included in the
dump. To include Hiperspace data in a SNAP dump, read the data from the
Hiperspace into address space storage that is being dumped. See z/OS MVS
Programming: Extended Addressability Guide for more information about
manipulating data in Hiperspace storage.

Table 30. Customizing dumps using through the SNAP or SNAPX macro

Parameter Dump Contents

ALLPA All link pack areas, as follows:

v Job pack area (JPA)

v Link pack area (LPA) active for the task being dumped

v Related supervisor call (SVC) modules

ALLVNUC The entire virtual control program nucleus

CB Control blocks for the task being dumped

DM Data management control blocks for the task being dumped:

v Data control block (DCB)

v Data extent block (DEB)

v Input/output block (IOB)

SNAP dumps

160 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 30. Customizing dumps using through the SNAP or SNAPX macro (continued)

Parameter Dump Contents

ERR Recovery termination manager (RTM) control blocks for the task being dumped:

v Extended error descriptor (EED) for RTM

v Registers from the system diagnostic work area (SDWA)

v RTM2 work area (RTM2WA)

v Set task asynchronous exit (STAE) control block (SCB)

IO Input/output supervisor (IOS) control blocks for the task being dumped:

v Execute channel program debug area (EXCPD)

v Unit control block (UCB)

JPA Job pack area (JPA): module names and contents

LPA Link pack area (LPA) active for the task being dumped: module names and contents

LSQA Local system queue area (LSQA) allocated for the address space (that is, subpools 203 - 205, 213 -
215, 223 - 225, 229, 230, 233 - 235, 249, 253 - 255)

NUC Read/write portion of the control program nucleus (that is, only non-page-protected areas of the
DAT-on nucleus), including:

v Communication vector table (CVT)

v Local system queue area (LSQA)

v Prefixed save area (PSA)

v System queue area (SQA)

PCDATA Program call information for the task

PSW Program status word (PSW) when the dump is requested

Q Global resource serialization control blocks for the task being dumped:

v Global queue control blocks

v Local queue control blocks

REGS Registers when the dump is requested:

v Access registers

v Floating-point registers

v General registers

v Vector registers, vector status register, and vector mask register for a task that uses the Vector
Facility

SA or SAH Save area linkage information, program call linkage information, and backward trace of save areas

SPLS Storage allocated in user subpools 0 - 127, 129 -132, 244, 251, and 252 for the task being dumped

SQA System queue area (SQA) allocated (that is, subpools 226, 239, 245, 247, 248)

SUBTASKS Storage for the task being dumped and program data for all of its subtasks

SWA Scheduler work area (SWA) (that is, subpools 236 and 237)

TRT System trace and generalized trace facility (GTF) trace, as available

— One or more data spaces identified on the SNAPX macro

— One or more storage areas, identified by beginning and ending addresses on the SNAP or SNAPX
macro

— One or more subpools, identified by subpool number on the SNAP or SNAPX macro

SNAP dumps

Chapter 6. SNAP dump 161

SNAP dumps

162 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 7. The dump grab bag

A dump contains information about an error that can help you identify a problem
type. Using interactive problem control system (IPCS), the information about the
error is formatted to provide a quick and effective method of retrieval.

The hints that follow apply to processing all kinds of dumps: SVC dumps,
stand-alone dumps, and SYSMDUMP dumps. This section covers the following
topics:
v “Problem data for storage overlays”
v “Problem data from the linkage stack” on page 164
v “Problem data for modules” on page 165
v “Problem data from recovery work areas” on page 166
v “Problem data for ACR” on page 167
v “Problem data for machine checks” on page 167.

Problem data for storage overlays
Always be aware of the possibility of a storage overlay when analyzing a dump.
System problems in MVS are often caused by storage overlays that destroy data,
control blocks, or executable code. The results of such an overlay vary. For
example:
v The system detects an error and issues an abend code, yet the error can be

isolated to an address space. Isolating the error is important in discovering
whether the overlay is in global or local storage.

v Referencing the data or instructions can cause an immediate error such as a
specification exception (abend X'0C4') or operation code exception (abend
X'0C1').

v The bad data is used to reference a second location, which then causes another
error.

When you recognize that the contents of a storage location are not valid and
subsequently recognize the bit pattern as a certain control block or piece of data,
you generally can identify the erroneous process/component and start a detailed
analysis.

Analyzing the damaged area
Once you determine that storage is bad or overlaid, try to identify the culprit.
First, determine the extent of the bad data. Look for EBCDIC data or module
addresses in storage to identify the owner. Any type of pattern in storage can
indicate an error and identify the program that is using the damaged storage. Look
at the data on both sides of the obviously bad areas. See if the length of the bad
area is familiar; that is, can you relate the length to a known control block length,
data size, MVC length? If so, check various offsets to determine their contents and,
if you recognize some, try to determine the exact control block. In Figure 69 on
page 164, for example, storage from CSA shows a pattern of allocated blocks.

© Copyright IBM Corp. 1988, 2015 163

Even if you do not recognize the pattern, take one more step. Can you determine
the offset from some base that would have to be used in order to create the bit
pattern? If so, the fact that there is a certain bit pattern at a certain offset can be
helpful.

For example, a BALR register value (X'40D21C58') at an offset X'C' can indicate
that a program is using this storage for a register save area (perhaps caused by a
bad register 13). Another field in the same overlaid area might trigger recognition.

Repetition of a pattern can indicate a bad process. If you can recognize the bad
data you might be able to relate that data to the component or module that is
causing the error. This provides a starting point for further analysis.

Common bad addresses
The following are commonly known as bad addresses. If you recognize these in the
code you are diagnosing, focus your problem source identification on these areas:
v X'000C0000', X'040C0000', or X'070C0000', and one of these addresses plus some

offset. These are generally the result of some code using 0 as the base register
for a control block and subsequently loading a pointer from 0 plus an offset,
thereby picking up the first half of a PSW in the PSA.
Look for storage overlays in code pointed to by an old PSW. These overlays
result when 0 plus an offset cause the second half of a PSW to be used as a
pointer.

v X'C00', X'D00', X'D20', X'D28', X'D40', and other pointers to fields in the normal
functional recovery routine (FRR) stack. Routines often lose the contents of a
register during a SETFRR macro expansion and incorrectly use the address of
the 24-byte work area returned from the expansion.

v Register save areas. Storage might be overlaid by code doing a store multiple
(STM) instruction with a bad register save area address. In this case, the registers
saved are often useful in determining the component or module at fault.

Problem data from the linkage stack
The linkage stack is used to identify a program that requested a system service, if
the service was entered by a branch instruction.

For example, to see the linkage stack entry that is associated with address space
identifier (ASID) X'1A', use the IPCS subcommand:

00CFD000 00000000 00000000 E5C7E3E3 080000F1 |VGTT...
00CFD010 00000020 00000000 0000E3D8 00000000 |TQ...
00CFD020 00BE3D30 00000000 E5C7E3E3 080000F1 |VGTT...
00CFD030 00000020 00CFD008 0000E260 00000000 |}...S-...
00CFD040 00CA6A60 00000000 17000080 E5E2C90F | ...-........VSI
00CFD050 00CFE018 00CFD0B8 C8E2D4D3 4BD4C3C4 | ..\...}.HSML.MC
00CFD060 E24BC4C1 E3C14040 40404040 40404040 | S.DATA
00CFD070 TO 00CFD07F (X’00000010’ bytes)--All bytes contain X’40’, C’ ’
00CFD080 40404040 000E0042 00000000 00000000 |
00CFD090 00000000 00000000 00000000 17CA0000 |
00CFD0A0 1FFE0000 C2C3E3F3 D3C90001 00000000 |BCT3LI.....
00CFD0B0 00000000 40080000 E2E8E2F1 4BE4C3C1 |SYS1.UC
00CFD0C0 E34BC5D5 E5F2F600 00000168 00CFD0C8 | T.ENV26.......}
00CFD0D0 F1000000 00CFD230 00CFD22C 13C9C4C1 | 1.....K...K..ID
00CFD0E0 C8C5C240 00100150 00CFD244 00000160 | HEB ...&;.K....

Figure 69. Example: Recognizing a pattern

Dump grab bag

164 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SUMMARY FORMAT ASID(X’1a’)

The resulting dump for the linkage stack associated with the address space (see
Figure 70) shows one entry, as follows:

BAKR STATE ENTRY
A Branch and Stack (BAKR) instruction caused this entry.

SASN..1A and PASN..1A
At the time of the BAKR, the program was not in cross memory mode. When
the branching program is not in cross memory mode, secondary address space
number (SASN) and primary address space (PASN) are identical. If the
program had been in cross memory mode, SASN and PASN would not have
been identical.

PSW..070C0000 80FD7618
The return address of the branch caused by the BAKR is FD7618. This address
is in the right half of the program status word (PSW).

Many system services are called through branches. For branch entry services, use
register 14 to identify the calling program. Look for the problem in the calling
program. See z/OS MVS Programming: Extended Addressability Guide for more
information about the linkage stack.

Problem data for modules
For a module, the system saves and restores status from different locations,
depending on the processing mode of the module when it lost control. Use the
IPCS STATUS CPU subcommand to find out the mode of the module that had
been currently running for each processor. Use the saved status as problem data
for diagnosis.

Processing modes
The processing modes follow. Code always runs in one or more of these modes.
For example, code running in task or service request block (SRB) mode can also be
either locally locked or physically disabled.

LINKAGE STACK ENTRY 01 LSED: 7F7490B0
LSE: 7F749010

GENERAL PURPOSE REGISTER VALUES
00-03.... 7FFEB410 04504DF4 04532000 04541FFF
04-07.... 04504CE4 81150380 00000028 04504B50
08-11.... 04503A75 04502A76 04501A77 04504630
12-15.... 84500A78 00000000 80FD7618 8450FAF8
ACCESS REGISTER VALUES
00-03.... 00000000 00000000 00000000 00000000
04-07.... 00000000 00000000 00000000 00000000
08-11.... 00000000 00000000 00000000 00000000
12-15.... 00000000 00000000 00000000 00000000

1S/A ON AQFT PER SYSTEM HUNG 22:30 08/30/88 24 09:42:48 10/14/88

PKM..8000 SASN..001A EAX..0000 PASN..001A PSW..070C0000 80FD7618
TARG... 8450FB12 MSTA... 0451E300 00000000
TYPE... 84
BAKR STATE ENTRY
RFS... 0F38 NES... 0000

Figure 70. Example: Viewing a linkage stack entry

Dump grab bag

Chapter 7. The dump grab bag 165

v Task mode is the most common processing mode. All programs given control by
ATTACH, ATTACHX, LINK, LINKX, XCTL, and XCTLX macros run in task
mode.

v SRB mode is code that runs from one of the service request block (SRB) queues.
v Physically disabled mode is reserved for high-priority system code that

manipulates critical system queues and data areas. This mode is usually
combined with supervisor state and key 0 in the PSW. The combination ensures
that the routine can complete its function before losing control. The mode is
restricted to just a few modules in the system, for example, interrupt handlers,
the dispatcher, and programs that are holding a global spin lock.

v Locked mode is for code that runs in the system while holding a lock.
v Cross memory mode. Cross memory mode is defined by:

– Primary address space: Address space identifier (ASID) in control register 3
– Secondary address space: ASID in control register 4
– Home address space: Address of the address space control block (ASCB) in

the PSAAOLD field
– PSW S-bit (bit 16 of the PSW): Indicator of current addressability:

- S-bit=0 - To the primary address space
- S-bit=1 - To the secondary address space
When primary addressability and secondary addressability are to the home
address space and the S-bit=0, the work is not in cross memory mode.

v Access register (AR) mode, where a program can use the full set of assembler
instructions (except MVCP and MVCS) to manipulate data in another address
space or in a data space. Unlike cross memory, access registers allow full access
to data in many address spaces or data spaces.

Problem data from recovery work areas
You can use the recovery work area (RWA) to find the failing module. In most
cases, you would use the TCB and RB structure to find the failing module instead
of the RWA. Use the RWA in the following situations:
v When an SVC dump is requested in a SLIP trap. In this dump, the current status

at the time of the problem is in the recovery save areas or in the SDUMP SQA
4K buffer. See “Reading the SDUMPX 4K SQA buffer” on page 53 for more
information.

v When the problem is in the recovery process itself.
v When a stand-alone dump is written because of a suspected loop.

The recovery work areas are:
v Logrec records
v Logrec buffer in the system: obtained by a VERBEXIT LOGDATA subcommand
v System diagnostic work area (SDWA), including the variable recording area

(VRA) formatted in logrec records and in the logrec buffer.
v Functional recovery routine (FRR) stacks: described in the next topic.
v Recovery termination manager (RTM) data areas, including the RTM2 work area

(RTM2WA): formatted by a SUMMARY FORMAT subcommand or obtained in a
formatted ABEND or SNAP dump by the ERR option.

The RTM2WA and SDWA blocks contain registers, PSW, and other time of problem
information. Use these blocks in diagnosis when they are associated with a task
control block (TCB).

Dump grab bag

166 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

See Chapter 15, “Recording logrec error records,” on page 519 for more
information. For information about the control blocks, see z/OS MVS Data Areas in
z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/). For
details about the IPCS commands, see z/OS MVS IPCS Commands.

Problem data for ACR
When alternate CPU recovery (ACR) is active at the time of the dump, the search
argument in IPCS STATUS WORKSHEET output contains the symptom:

FLDS/CSDACR

Pre-Processing phase data
If ACR is active, problem data for the pre-processing phase are:
v The CSDCPUAL field of the common system data (CSD) indicates which

processor failed and which is still running
v A system trace table entry with ACR in the IDENT column indicates that ACR

began and identifies the failing processor
v Use the CSD online mask to determine which CPU's LCCA to examine. Use the

IPCS subcommand CBFORMAT to examine the failing CPU's LCCA.
v The WSACACR in the CPU work save area vector table (WSAVTC) for both

processors' logical configuration communication areas (LCCA) points to a copy
of the PSAs and FRR stacks for both processors.

v The LCCADCPU in both processors points to the LCCA of the failing processor
and the LCCARCPU points to the LCCA of the running processor

Note that a dump shows the PSA of the failed processor when the running
processor initiated ACR. The normal FRR stack, pointers to other FRR stacks, locks,
PSA super bits, and other data reflect the processor at the time of the failure.

Post-Processing phase data
ACR issues message IEA858E when it completes and resets the CSDACR flag to
X'00'.

Data obtained by IPCS
Use the following IPCS subcommand to see all the LCCAs and the CSD:

STATUS CPU DATA WORKSHEET

For more information about control blocks, see z/OS MVS Data Areas in z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/). For
information about the IPCS commands, see z/OS MVS IPCS Commands.

Problem data for machine checks
The hardware uses a machine check interruption to tell the control program that it
has detected a hardware malfunction. Machine checks vary considerably in their
impact on software processing:
v Soft errors: Some machine checks notify software that the processor detected

and corrected a hardware problem that required no software recovery action.
v Hard errors: Other hardware problems detected by a processor require

software-initiated action for damage repair. Hard errors also require software
recovery to verify the integrity of the process that experienced the failure.

Dump grab bag

Chapter 7. The dump grab bag 167

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

The machine check interrupt code (MCIC) in the PSA FLCMCIC field describes the
error causing the interrupt. An MCIC can have more than one bit on to indicate
more than one failing condition.

For a machine check, the system writes a logrec error record. The error record
contains the MCIC, except when:
v The LRBMTCKS bit in field LRBMTERM of the logrec buffer (LRB) is ON to

indicate that the machine check old PSW and the MCIC are both zero.
v The LRBMTINV bit in field LRBMTERM is ON to indicate that the machine

check old PSW is nonzero but the MCIC is zero.

Hard errors cause FRR and ESTAE processing.

See z/Architecture Principles of Operation for a complete description of the MCIC.

Dump grab bag

168 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 8. System trace

System trace provides an ongoing record of hardware events and software events
that occurs during system initialization and operation. The system activates system
tracing at initialization, which runs continuously, unless your installation has
changed the IBM-supplied system tracing. After system initialization, you can use
the TRACE operator command on a console with master authority to customize
system tracing.

System trace writes trace data in system trace tables in the trace address space.
System trace maintains a trace table for each processor.

Because system trace usually runs all the time, it is useful for problem
determination. While system trace and the generalized trace facility (GTF) lists
many of the same system events, system trace also lists events occurring during
system initialization, before GTF tracing can be started. System trace also traces
branches and cross-memory instructions, which GTF cannot do.

The following topics explain system trace in detail:
v “Customizing system tracing”
v “Receiving system trace data in a dump” on page 171
v “Formatting system trace data in a dump” on page 171
v “Reading system trace output” on page 171.

Customizing system tracing
The system starts system tracing during system initialization and the trace runs
continually. There are, however, a few things you can do to alter system tracing:
v “Increasing the size of the system trace table.”
v “Tracing branch instructions” on page 170.

Increasing the size of the system trace table
System trace tables reside in fixed storage on each processor. The default trace
table size is 1 MB per processor, but you can change it using the TRACE ST
command. You might, however, want to increase the size of the system trace table
from the default1 MB when:
v You find that the system trace does not contain tracing from a long enough time

period.
v You want to trace branch instructions (using the BR=ON option on the TRACE

ST command when you start tracing).

Do the following to increase the size of the trace table:
v Enter the TRACE ST command to change the size of the system trace table. For

example, to restart system tracing and increase the size of the trace table from
the default 1 megabyte per processor to 2 megabytes per processor:
TRACE ST,2M

v Enter the TRACE ST command with the BUFSIZE (or BUFSIZ) parameter to
change the total size of the system trace table allocated. For example, in a system

© Copyright IBM Corp. 1988, 2015 169

that has 10 processors, to restart system tracing and increase the size of the trace
table from the default of 10 megabytes (1 megabytes per processor) to 20
megabytes (2 megabytes per processor):
TRACE ST,BUFSIZ=20M

Remember: Choose a reasonable value for the system trace storage after
considering the available central storage and the actual storage required for system
trace. Increasing the system trace storage to a large value amount may cause
shortage of pageable storage in the system.

Tracing branch instructions
System tracing allows you the option of tracing branch instructions, such as BALR,
BASR, BASSM and BAKR, along with other system events. The mode tracing
option is separate from branch tracing.

Attention: Branch tracing ON can affect your system performance and use very
large amounts of storage. Do not use branch tracing as the default for system
tracing on your system. Only use it for short periods of time to solve a specific
problem. The default system tracing does not include branch instructions.

IBM provides two health checks, SYSTRACE_BRANCH and SYSTRACE_MODE, to
help identify when branch tracing may be affecting your system performance. For
example, if branch tracing has been set on for a long time, you will receive
message IEAH801E. For more information, see System trace checks
(IBMSYSTRACE) in IBM Health Checker for z/OS User's Guide . For information
about related messages, see z/OS MVS System Messages, Vol 6 (GOS-IEA).

When you want to trace branch instructions such as BALR, BASR, BASSM and
BAKR, do the following:
v Restart system tracing with branch tracing using the TRACE command from a

console with master authority:
TRACE ST,BR=ON

Because tracing branch instructions tends to significantly increase the number of
trace entries being generated, you can increase the size of the trace tables when
you turn tracing on.
– To increase the size of the trace tables for each processor from the default 1

MB to 2 MB, issue:
TRACE ST,2M,BR=ON

– To increase the size of total storage for trace buffers (that is, the sum of the
storage set aside for trace table entries on all the installed processors) to 2
megabytes:
TRACE ST,BUFSIZ=2M,BR=ON

For more information, see the following documentation:
v z/Architecture Principles of Operation describes the branch instruction trace entries

and the mode trace entries that MVS combines with them (and are generated by
the hardware). MVS enables or disables the production of these unformatted
entries by manipulating control register bits by the instruction. The trace table
entries that are not 'branch (or mode)' entries that are generated by MVS
software through the TRACE or TRACG instructions. See the Tracing topic for
information.

v For a description of the TTE from mapping macro IHATTE, see z/OS MVS Data
Areas in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

System trace

170 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Receiving system trace data in a dump
System trace writes trace data in system trace tables in the trace address space.
System trace maintains a trace table for each processor. Obtain the trace data in a
dump that included option SDATA=TRT. Table 31 shows the dumps that have TRT
in their default options and how to request trace data for dumps that do not
include the data by default.

System trace data that are requested by RTM and ABDUMPs will only receive the
most current 64K of data for each CPU when the number of concurrent snapshots
could affect system availability. This is referred to as a mini-trace table snapshot.
For more information about working with system trace tables, see the SYSTRACE
section in z/OS MVS IPCS Commands.

Table 31. Dumps that have TRT in their default options

Dump How to obtain trace data

ABEND dump to SYSABEND Default

ABEND dump to SYSMDUMP Default

ABEND dump to SYSUDUMP Default

SNAP dump Request SDATA=TRT

Stand-alone dump Default

SVC dump for SDUMP or SDUMPX macro Default

SVC dump for DUMP operator command Default

SVC dump for SLIP operator command with ACTION=SVCD,
ACTION=STDUMP, ACTION=SYNCSVCD, or
ACTION=TRDUMP

Default

Any dump customized to exclude trace data Request SDATA=TRT

Formatting system trace data in a dump
v For formatted dumps, system trace formats the system trace data and the system

prints it directly.
v For unformatted dumps, use the IPCS SYSTRACE subcommand to format and

print or view the trace data in the dump.

Reading system trace output
The following topics describe system trace table entries (TTE) as they appear in a
dump formatted with the IPCS SYSTRACE subcommand.
v “Example of a system trace in a dump” on page 172
v “Summary of system trace entry identifiers” on page 172 shows a table of the

system trace identifiers for each system trace entry in a dump and shows where
you can find the format of the entry in this section. If you are looking for a
particular entry start with this table, because many of the entries are similar and
are grouped together.

v “ACR trace entries” on page 174 through “USRn trace entries” on page 218
shows the format for each type of trace entry. For the detailed format of TTEs,
see z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

System trace

Chapter 8. System trace 171

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Example of a system trace in a dump
Figure 71 shows system trace entries. IPCS formatted the entries from an example
SVC dump. Note that system trace data in an ABEND dump has the same format.
The subcommand issued from the IPCS Subcommand Entry panel was:
SYSTRACE TIME(LOCAL)

The oldest trace entries appear first in the trace; the newest entries are at the end.
An asterisk (*) before an identifier indicates an unusual condition; see the format of
the entry for an explanation.

Summary of system trace entry identifiers
This topic summarizes all the system trace entries by identifier. Because many trace
entries are similar, they are described together. Use Table 32 on page 173 to locate
the format for a particular entry.

--- SYSTEM TRACE TABLE --
-- ------------------ --
-- ------------------ --
PR ASID WU-ADDR- IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-LOCAL CP

UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE DATE-02/20/2012
1C-000A 006D9E88 SSCH 03B92 00 03 237DC020 02380448 53C2A041 6D83A8E8 15:54:49.794644583 48

3B4D
1C-000A 006D9E88 SSCH 03B4D 00 03 02475020 0237DD90 53C2A001 6D83A868 15:54:49.986753500 46
1C-000A 006D9E88 SSCH 03A3D 00 03 03A239B0 02374EE0 53C2A001 6D83AD68 15:54:50.010469553 30
1C-000A 20D8B900 SRB 00000000_016206A8 0000000A 02069F40 02069F6C 00 000A 000A 15:54:50.012521911 30

07040000 80000000 006D9E88 20
1C-000A 20D8B900 PC ... 0 07464E4A 00318 Resume SRB
1C-000A 20D8B900 SSRV 119 8745F3C8 207DD318 8005216B 20792828 Resume 15:54:50.012538814 30

00000000
1C-000A 20D8B900 PR ... 0 07464E4A 01408F44 000A
1C-000A 006D9E88 SSCH 03A3D 00 03 02411568 02374EE0 53C2A001 6D83AC68 15:54:50.013370673 30
1C-000A 006D9E88 SSCH 03AAE 00 03 031A38B0 02378AA8 53C2A001 6D83A7E8 15:54:50.014232347 30

3A3D
1C-000A 006D9E88 SSCH 03AAE 00 03 237DC020 02378AA8 53C2A001 6D83ACE8 15:54:50.015341827 2B

3A3D
1C-000A 21061E00 SRB 00000000_016206A8 0000000A 20DFCF78 20DFCFA4 00 000A 000A 15:54:50.058874719 32

07040000 80000000 006D9E88 20
1C-000A 031AC800 SRB 00000000_016206A8 0000000A 20DFCF78 20DFCFA4 00 000A 000A 15:54:50.059031815 32

07040000 80000000 006D9E88 20
23-000A 006D9E88 SSCH 03A3D 00 03 03A23020 02374EE0 53C2A001 6B28FCE8 16:25:35.116331493 4C
22-000A 006D9E88 SSCH 03B6D 00 03 03A23020 0237F310 53C2A001 6FA1DBE8 16:25:35.135359104 15
22-000A 20700980 SRB 00000000_016206A8 0000000A 20DFCF78 20DFCFA4 00 000A 000A 16:25:35.149944230 15

47040000 80000000 006D9E88 20
22-000A 20700980 PC ... 0 07464E4A 00318 Resume SRB
22-000A 20700980 SSRV 119 8745F3C8 03A87AA8 80076F4A 2293FEE8 Resume 16:25:35.149963318 15

00000000
22-000A 20700980 PR ... 0 07464E4A 01408F44 000A
1D-000A 21451D80 SRB 00000000_016206A8 0000000A 20DFCF78 20DFCFA4 00 000A 000A 16:25:35.200529334 27

47040000 80000000 006D9E88 20
1D-000A 21451D80 PC ... 0 07464E4A 00318 Resume SRB
1D-000A 21451D80 SSRV 119 8745F3C8 206ECAD0 800E713F 21A941F8 Resume 16:25:35.200544172 27

00000000
1D-000A 21451D80 PR ... 0 07464E4A 01408F44 000A
1D-000A 03A35100 SRB 00000000_01223632 0000000A 02D1614C 82D16120 FF 000A 000A 16:25:35.247026387 15

47040000 80000000 006D47E8 00
1D-000A 03A35100 SSRV 129 81223776 02D1613C 00000000 00000000 Post 16:25:35.247027125 15

00000000
1D-000A 006D47E8 DSP 00000000_01407008 00000000 00000080 02D1613C 00000000 00000000 000A 000A 16:25:35.247030291 15

47040000 80000000
1D-000A 006D47E8 SSRV 78 81407106 0000F503 00000080 02D16120 Freemain 16:25:35.247036644 15

000A0000
1D-000A 006D47E8 SVCR 2F 00000000_290F8C3A 00000000 91000000 290F9598 16:25:35.247037242 15

47540000 80000000 15
1D-000A 006D47E8 SVC 2F 00000000_290F8C3A 00000000 91000000 290F9598 STimer Set 16:25:35.247039829 15

47540000 80000000 15

Figure 71. Example: system trace in an SVC dump

System trace

172 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

For example, in the trace entry shown in Figure 72, the system trace identifier is
SVC. Look up SVC in Table 32 to find where the SVC trace entry format is
described. In this case, the SVC trace entry is described in “SVC, SVCE, and SVCR
trace entries” on page 215.

Table 32. References for system trace entry format description

Identifier
(IDENT)

Description For format, see:

ACR Alternate CPU recovery “ACR trace entries” on page 174

AINT Adapter interruption “AINT trace entries” on page 176

ALTR Alteration of trace option “ALTR trace entries” on page 177

BR Branch through a BAKR, BALR, BASR, or
BASSM instruction

“BR trace entries” on page 178

BSG Branch on subspace group “BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries”
on page 179

CALL External call external interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

CLKC Clock comparator external interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

CSCH Clear subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

DSP Task dispatch “DSP, SRB, SSRB, and WAIT trace entries” on page
186

EMS Emergency signal external interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

EXT General external interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

HSCH Halt subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

I/O Input/output interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

MCH Machine check interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

MOBR Change of addressing mode along with a
change of instruction address

“MODE and MOBR trace entries” on page 187

MODE Change of addressing mode “MODE and MOBR trace entries” on page 187

MSCH Modify subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

PC Program Call control instruction “BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries”
on page 179

PCIL PCI load instruction “PCIL trace entries” on page 188

PCIS PCI store instruction “PCIS trace entries” on page 190

PDMX PCIE adapter interruption de-multiplexing
event

“PDMX trace entries” on page 191

PGM Program interruption “PGM, SPER and SPR2 trace entries” on page 192

01 000C 00AFF090 SVC 1 070C2000 00EB19CC 00000000 00000001 00C13340

Figure 72. Example: Finding the format for an SVC entry

System trace

Chapter 8. System trace 173

|||

|||

|||

||
|
|

Table 32. References for system trace entry format description (continued)

Identifier
(IDENT)

Description For format, see:

PR Program Return control instruction “BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries”
on page 179

PT Program Transfer control instruction “BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries”
on page 179

RCVY Recovery event “RCVY trace entries” on page 193

RSCH Resume subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

RST Restart interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

SIGA Signal adapter operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

SPER SLIP program event recording “PGM, SPER and SPR2 trace entries” on page 192

SPIN Starting, middle, or stopping of a system spin. “SPIN trace entries” on page 199

SPR2 SLIP program event recording, when STDATA
is specified

“PGM, SPER and SPR2 trace entries” on page 192

SRB Initial service request block dispatch “DSP, SRB, SSRB, and WAIT trace entries” on page
186

SS Service signal external interruption “CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS
trace entries” on page 181

SSAR Set Secondary Address Space Number control
instruction

“BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries”
on page 179

SSCH Start subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

SSRB Suspended service request block dispatch “DSP, SRB, SSRB, and WAIT trace entries” on page
186

SSRV System service entered by a Program Call (PC)
instruction or a branch

“SSRV trace entries” on page 204

SUSP Lock suspension “SUSP trace entries” on page 214

SVC Supervisor call interruption “SVC, SVCE, and SVCR trace entries” on page 215

SVCE SVC error “SVC, SVCE, and SVCR trace entries” on page 215

SVCR SVC return “SVC, SVCE, and SVCR trace entries” on page 215

TIME Timer services “TIME trace entries” on page 217

USRn User event “USRn trace entries” on page 218

WAIT Wait task dispatch “DSP, SRB, SSRB, and WAIT trace entries” on page
186

XSCH Cancel subchannel operation “CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and
XSCH trace entries” on page 183

?EXPL The SYSTRACE subcommand cannot identify
the system trace entry

N/A

ACR trace entries
An ACR trace entry represents failure of a processor and subsequent entry into the
alternate CPU recovery component.

System trace

174 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

PR pr: Identifier of the processor that produced the TTE.

ASID
fail: Home address space identifier (ASID) of the failing processor

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

ACR Alternate CPU recovery.

CD/D
cpu: The failing processor address from the PSACPUPA field of the PSA

PSW----- ADDRESS-
Blank

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v flg-crex: LCCACREX field of the logical configuration communication area
(LCCA) for the failing processor.

v psacstk-: PSACSTK field from the prefix save area (PSA) from the failing
processor.

v psaeepsw: PSAEEPSW field in the PSA. Bytes 1 and 2 contain the failing
processor's address. Bytes 3 and 4 contain the external interruption code.

v psamodew: PSAMODEW field in the PSA
v psasuper: PSASUPER field in the PSA

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA
from the failing processor.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA from the failing processor.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA from the failing processor.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr fail tcb-addr *ACR cpu psaeepsw flg-crex psacstk- psaclhs- psalocal timestamp------- CP
psasuper psamodew psaclhse-

System trace

Chapter 8. System trace 175

entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

AINT trace entries
An AINT trace entry represents an adapter interruption.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

AINT Adapter interruption.

CD/D
aism: The adapter interruption source mask.

PSW----- ADDRESS-
i/o-old-pswaddr / i/o-old-pswcntl: I/O old PSW.

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v isc: Interruption subclass.
v desc: Description of the adapter types represented by the adapter

interruption source mask (IQP, PCIE, Crypto).

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr AINT aism i/o-old-pswaddr isc psaclhs- psalocal timestamp------- CP
i/o-old-pswcntl desc desc desc psaclhse-

System trace

176 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|

|

|
|

||

|
|

|
|
|

|
|

||

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

||
|

entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

ALTR trace entries
An ALTR trace entry represents alteration of the system trace options. Alter the
options with a TRACE ST operator command.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block WEB).

IDENT
The TTE identifier, as follows:

ALTR Alteration of the trace option. An asterisk (*) always appears before
ALTR to indicate an unusual condition.

CD/D
Blank

PSW----- ADDRESS-
Blank

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v tobtropt: Trace options in control register 12 format, from the TOBTROPT
field of the system trace option block (TOB)

v gpr0----: General register 0
v gpr1----: General register 1
v pol-: The number of processor with tracing active or suspended, from the

TOBTRPOL field of the TOB
v buf-: The number of trace buffers per processor, from the TOBTRBUF field

of the TOB

PSACLHS-
Blank

PSALOCAL
Blank

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr home tcb-addr *ALTR tobtropt gpr0---- gpr1---- pasd sasd timestamp------- CP
pol-buf-

System trace

Chapter 8. System trace 177

|
|

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

BR trace entries
A BR trace entry represents processing of a Branch and Link (BALR), Branch and
Save (BASR), Branch and Save and Set Mode (BASSM), or Branch and Stack
(BAKR) instruction, when the R₂ field in the instruction is not zero. These branches
are traced only when a TRACE operator command requests branch tracing by
BR=ON.

PR pr: Identifier of the processor that produced the TTE.

ASID
last: Last home address space identifier (ASID) in the trace buffer.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

BR Branch instruction

CD/D
Blank

PSW----- ADDRESS-
UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6
PSACLHS-
PSALOCAL
PASD
SASD
TIMESTAMP-RECORD
CP address-: Successful branch address, repeated for consecutive branches on the

BR entry. Addresses appear in the following formats:

Addressing mode and location Appearance

24-bit address xxxxxx

31-bit address xxxxxxxx

64-bit address with zeros in high order bits 00_xxxxxxxx

64-bit address with non-zero high order bits xxxxxxxx_xxxxxxxx

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr last tcb-addr BR address- address- address- address- address- address- etc.

System trace

178 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries
These trace entries represent processing of a cross memory instruction:
v A BSG trace entry represents a Branch on Subspace group (BSG) control

instruction
v A PC trace entry represents a Program Call (PC) control instruction
v A PR trace entry represents a Program Return (PR) control instruction
v A PT trace entry represents a Program Transfer (PT) control instruction
v A PTI trace entry represents a Program Transfer with Instance (PTI) control

instruction
v An SSAR trace entry represents a Set Second Address Space Number (SSAR)

control instruction
v An SSIR trace entry represents a Set Secondary Address Space Number with

Instance (SSAIR) control instruction

PR pr: Identifier of the processor that produced the TTE.

ASID
last: Last home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

PC Program Call control instruction

PR Program Return control instruction

PT Program Transfer control instruction

PTI Program Transfer with Instance (PTI) control instruction

SSAR Set Secondary Address Space Number control instruction

SSIR Set Secondary Address Space Number with Instance (SSAIR) control
instruction

BSG Branch on Subspace Group control instruction

CD/D
Blank

PSW----- ADDRESS-

v alet: ALET word during BSG execution

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr last tcb-addr PC pkey-flg pc-addr- pc#-----

pr last tcb-addr PR psw-key- pr-addr- pr-faddr pasd

pr last tcb-addr PT psw-key- pt-addr- pt-asid-

pr last tcb-addr PTI psw-key- pt-addr- pt-asid-

pr last tcb-addr SSAR newsasid sasd

pr last tcb-addr SSSR newsasid sasd

pr last tcb-addr BSG alet bsg-addr

System trace

Chapter 8. System trace 179

v newsasid: New SASID from the SSAR instruction
v return--: Caller's return address
v psw-key-: Program status word (PSW) key
v pkey-flag: Program status word (PSW) key and flags. The flag value is

either blank or a hexadecimal value of 1-3:
– 0 - PSW bit 31 was replaced by a zero and PSW bit 31 was a zero before

being replaced.
– 1 - PSW bit 31 was replaced by a one and PSW bit 31 was a zero before

being replaced.
– 2 - PSW bit 31 was replaced by a zero and PSW bit 31 was a one before

being replaced.
– 3 - PSW bit 31 was replaced by a one and PSW bit 31 was a one before

being replaced.
v pc-addr-: Return address from the PC instruction
v pr-addr-: New instruction address as updated by the PR instruction
v pt-addr-: New instruction address as updated by the PT instruction
v bsg-addr: New instruction address as updated by the BSG instruction

Addresses appear in the following formats:

Addressing mode and location Appearance

24-bit address xxxxxx

31-bit address xxxxxxxx

64-bit address with zeros in high order bits 00_xxxxxxxx

64-bit address with non-zero high order bits xxxxxxxx_xxxxxxxx

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v pc#-----: PC number from the PC instruction
v pr-faddr: Address of the location following the PR instruction
v pt-asid-: New ASID specified on the PT instruction

PSACLHS-
This field will contain descriptive text for some PC trace entries. The
descriptive text will not appear in SNAP, SYSUDUMP, or SYSABEND output.

PSALOCAL
This field will contain descriptive text for some PC trace entries. The
descriptive text will not appear in SNAP, SYSUDUMP, or SYSABEND output.

PASD
pasd: Primary ASID (PASID) at trace entry. This field will contain descriptive
text for some PC trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

SASD
sasd: Secondary ASID (SASID) at trace entry. This field will contain descriptive
text for some PC trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

TIMESTAMP-RECORD
Blank

CP Blank

System trace

180 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS trace entries
The following trace entries represent an interruption:
v Five of the entries represent external interruptions:

– A CALL trace entry is for an external call
– A CLKC trace entry is for a clock comparator
– An EMS trace entry is for an emergency signal
– An EXT trace entry is for a general external interruption
– An SS trace entry is for a service signal

v An I/O trace entry is for an I/O interruption
v An MCH trace entry is for a machine check
v An RST trace entry is for a restart

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

WU-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block WEB).

IDENT
The TTE identifier, as follows:

CALL External call external interruption

CLCK Clock comparator external interruption

EMS Emergency signal external interruption

EXT General external interruption. An asterisk before EXT indicates that the
interrupt is a malfunction alert (MFA) or is the result of pressing the
External Interrupt key.

I/O I/O interruption. An asterisk before I/O indicates that one of the
following bits in IRBFLAGS field of the interrupt request block (IRB) is
ON. The IRBFLAGS field is in the UNIQUE-1 column of the I/O entry.

PR ASID WU-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr CALL ext-old- psw----- psaeepsw pccarph psaclhs- psalocal pasd sasd timestamp------- 06
psaclhse-

pr home tcb-addr CLKC ext-old- pswaddr-- psaeepsw tge-tcb- tge-asid psaclhs- psalocal pasd sasd timestamp------- 06
ext-old- pswctrl-- psaclhse-

pr home tcb-addr EMS ext-old- pswaddr-- psaeepsw pccaemsi pccaemsp psaclhs- psalocal pasd sasd timestamp------- 06
ext-old- pswctrl-- pccaemse

pr home tcb-addr EXT code ext-old- pswaddr-- psaeepsw psaclhs- psalocal pasd sasd timestamp------- 06
ext-old- pswctrl-- psaclhse-

pr home tcb-addr I/O dev i/o-old- pswaddr-- flg-ctl- ccw-addr dvch-cnt psaclhs- psalocal pasd sasd timestamp------- 06
dev i/o-old- pswctrl-- ucb-addr ext-stat psaclhse-

pr home tcb-addr *MCH mch-old- pswaddr-- machine- chk-code psasuper psaclhs- psalocal pasd sasd timestamp------- 06
mch-old- pswctrl-- psaclhse-

pr home tcb-addr *RST rst-old- pswaddr-- gpr15--- gpr0---- gpr1---- psaclhs- psalocal pasd sasd timestamp------- 06
rst-old- pswctrl-- psasuper psamodew

pr home tcb-addr SS ext-old- pswaddr-- psaeepsw psaeparm msf-bcmd psaclhs- psalocal pasd sasd timestamp------- 06
ext-old- pswctrl-- flg-brsp mssfasid mssfatcb psaclhse-

System trace

Chapter 8. System trace 181

v IRBN for path not operational
v IRBSALRT for alert status

MCH Machine check interruption.

RST Restart interruption.

SS Service signal external interruption

CD/D

v code: External interruption code
v dev: Device number associated with the I/O or, for a co-processor device, the

I/O co-processor identifier, for example, ADM

PSW----- ADDRESS-
The z/Architecture 128-bit PSW address appears on two lines:
v pswaddr: Two words, containing the 64-bit address portion of the PSW
v pswctrl: Two words, containing the 64-bit “control” portion of the PSW

The PSW represents different data, depending on the type of interrupt that was
traced:
v ext-old- pswaddr / ext-old- pswctrl: External old program status word

(PSW)
v i/o-old- pswaddr / i/o-old- pswctrl: I/O old PSW
v mch-old- pswaddr / mch-old- pswctrl: Machine check old PSW
v rst-old- pswaddr / rst-old- pswctrl: Restart old PSW

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v ccw-addr: Address of the channel command word (CCW) for the I/O
v -cnt: Residual count
v dvch: Device status and subchannel status
v ext-stat: Extended status word
v flg-brsp: Maintenance and service support facility (MSSF) hardware flags

and MSSF response code
v flg-ctl-: IRBFLAGS field in the IRB and the subchannel control bytes
v gpr15--- gpr0---- gpr1----: General registers 15, 0, and 1
v machine- chk-code: Machine check interruption code from the FLCMCIC

filed in the prefix save area (PSA)
v msf-bcmd: Service processor command word
v mssfasid: Service processor address space ID
v mssfatch: Service processor TCB address
v pccaemse: PCCAEMSE field from the physical configuration communication

area (PCCA)
v pccaemsi: PCCAEMSI field from the PCCA
v pccaemsp: PCCAEMSP field from the PCCA
v pccarph-: PCCARPB field from the PCCA
v psaeepsw: PSAEEPSW field in the PSA. For CALL and EMS, bytes 1 and 2

contain the issuing processor's address. For all entries, bytes 3 and 4 contain
the external interruption code.

v psaeparm: PSAEPARM field in the PSA, containing the MSSF buffer address
v psamodew: PSAMODEW field in the PSA

System trace

182 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v psasuper: PSASUPER field in the PSA
v tge-asid: ASID of the associated timer queue element (TQE)
v tge-tcb-: Address in the TCB for the associated TQE, or the TQE address

for a system TQE
v ucb-addr: Unit control block (UCB) address

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and XSCH trace
entries

These trace entries represent an input/output operation:
v A CSCH trace entry represents a clear subchannel operation
v An HSCH trace entry represents a halt subchannel operation
v An MSCH trace entry represents a modify subchannel operation
v An RSCH trace entry represents a resume subchannel operation
v An SSCH trace entry represents a start subchannel operation
v An SIGA trace entry represents a signal adapter operation
v An XSCH trace entry represents a cancel subchannel operation

System trace

Chapter 8. System trace 183

PR pr: Identifier of the processor that produced the TTE.

ASID
asid: Address space identifier (ASID) related to the I/O.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block WEB).

IDENT
The TTE identifier, as follows:

CSCH Clear subchannel operation

HSCH Halt subchannel operation

MSCH
Modify subchannel operation

RSCH Resume subchannel operation

SSCH Start subchannel operation

XSCH Cancel subchannel operation

SIGA Signal adapter operation

An asterisk before RSCH, SSCH, or SIGA indicates that the condition code
associated with the I/O was not 0.

CD/D

v dev: One of the following:
– The device number associated with the I/O, which will include the

subchannel set identifier when appropriate.
– ADMF, if the IOSADMF macro was transferring data

PSW----- ADDRESS-

v cc: Condition code in bits 2 and 3 associated with the I/O
v di: Driver identifier associated with the I/O
v fc: Function code associated with the I/O
v iosbaddr: I/O supervisor block (IOSB) address associated with the I/O
v qib-addr: Queue identification block (QIB) address associated with the I/O

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v asc-iosb: IOSB address for the associated SSCH request for the I/O

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr asid tcb-addr CSCH dev cc di iosbaddr ucb-addr ioq-addr asc-iosb timestamp------- CP

pr asid tcb-addr HSCH dev cc di iosbaddr ucb-addr ioq-addr asc-iosb timestamp------- CP

pr asid tcb-addr MSCH dev cc iosbaddr ucb-addr f1f2pmom mbi-t2lb timestamp------- CP

pr asid tcb-addr RSCH dev cc di iosbaddr ucb-addr timestamp------- CP

pr asid tcb-addr SSCH dev cc di iosbaddr ucb-addr orb-wrd2 orb-wrd3 timestamp------- CP
orb-wrd4 cap-addr bdev

pr asid tcb-addr XSCH dev cc di iosbaddr ucb-addr ioq-addr bdev timestamp------- CP

pr asid tcb-addr SIGA dev cc fc qib-addr subsysid q-mask-1 q-mask-2 time stamp------- CP
ucb-addr

System trace

184 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v bdev: The base device number if the I/O is associated with an alias device.
v cap-addr: Captured unit control block (UCB) address associated with the

SSCH I/O. This field is blank if a below 16 megabyte UCB or actual above
16 megabyte UCB address was used for the start subchannel (SSCH)
operation. The address of the actual above 16 megabyte UCB is in the
ucb-addr field.

v f1f2pmom: From the subchannel information block (SCHIB) associated with
the I/O, as follows:

f1 SCHFLG1 flag field

f2 SCHFLG2 flag field

pm SCHLPM field

om SCHPOM field
v ioq-addr: I/O queue (IOQ) address associated with the I/O
v mbi-t2lb:

mbi- SCHMBI field from the SCHIB

t2 IOSOPT2 field from the IOSB

lb IOSFLB field from the IOSB
v orb-wrd2: Word 2 of the operation request block (ORB) associated with the

I/O
v orb-wrd3: Word 3 of the operation request block (ORB) associated with the

I/O
v orb-wrd4: Word 4 of the operation request block (ORB) associated with the

I/O
v q-mask-1: Read or write queue mask associated with the I/O
v q-mask-2: Read queue mask associated with the I/O
v subsysid: Subsystem ID associated with the I/O
v ucb-addr: Unit control block (UCB) address associated with the I/O

PSACLHS-
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

PSALOCAL
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

PASD
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

SASD
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

System trace

Chapter 8. System trace 185

CP The CP column contains 2 hex digits of the processor model-dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

DSP, SRB, SSRB, and WAIT trace entries
These trace entries represent the dispatch of a unit of work:
v A DSP trace entry represents dispatch of a task
v An SRB trace entry represents the initial dispatch of a service request
v An SSRB trace entry represents dispatch of a suspended service request
v A WAIT trace entry represents dispatch of the wait task

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

WU-ADDR
wu-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

DSP Task dispatch

SRB Initial service request dispatch

SSRB Suspended service request dispatch

WAIT Wait task dispatch

CD/D
Blank

PSW----- ADDRESS-
The z/Architecture 128-bit PSW address appears on two lines:
v pswaddr: Two words, containing the 64-bit address portion of the PSW
v pswctrl: Two words, containing the 64-bit “control” portion of the PSW

The PSW represents different data, depending on the type of work that was
dispatched:
v dsp-new- pswaddr / dsp-new- pswctrl: Program status word (PSW) to be

dispatched
v srb-new- pswaddr / srb-new- pswctrl: PSW to receive control on the SRB

dispatch

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr home wu-addr DSP dsp-new- pswaddr- psamodew gpr0---- gpr1---- psaclhs- psalocal pasd sasd timestamp------- 02
dsp-new- pswctrl-

pr home wu-addr SRB srb-new- pswaddr- safnasid gpr0---- gpr1---- srbhlhi- pasd sasd timestamp------- 02
srb-new- pswctrl- purgetcb flg-srb-

pr home wu-addr SSRB ssrb-new- pswaddr- safnasid gpr1---- psaclhs4 psalocal pasd sasd timestamp------- 02
ssrb-new- pswctrl- purgetcb

pr home wu-addr WAIT timestamp------- 02

System trace

186 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v ssrb-new pswaddr / ssrb-new pswctrl: PSW to receive control on the SSRB
redispatch

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v gpr0----: General register 0
v gpr1----: General register 1
v psamodew: PSAMODEW field in the PSA
v safnasid: LCCASAFN field in the logical configuration communication area

(LCCA) and the related ASID
v flg-srb: SRBFLGS field from the SRB
v purgetcb: TCB (located in address space of the scheduler of the SRB or

SSRB) that gets control if the SRB or SSRB abends and percolates

PSACLHS-

v psaclhs-: String for the current lock held, from the PSACLHS field of the
PSA.

v psaclhs4: PSACLHS4 field of the PSA
v srbhlhi-: SRBHLHI field in the SRB

This field will contain descriptive text for some SVC, SSRV, and PC trace
entries. The descriptive text will not appear in SNAP, SYSUDUMP, or
SYSABEND output.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA. This field will contain descriptive text for some SVC, SSRV, and PC
trace entries. The descriptive text will not appear in SNAP, SYSUDUMP, or
SYSABEND output.

PASD
pasd: Primary ASID (PASID) at trace entry. This field will contain descriptive
text for some SVC, SSRV, and PC trace entries. The descriptive text will not
appear in SNAP, SYSUDUMP, or SYSABEND output.

SASD
sasd: Secondary ASID (SASID) at trace entry. This field will contain descriptive
text for some SVC, SSRV, and PC trace entries. The descriptive text will not
appear in SNAP, SYSUDUMP, or SYSABEND output.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

MODE and MOBR trace entries
These trace entries represent a change of addressing mode:
v A MODE trace entry represents a change into or out of 64-bit addressing mode
v A MOBR trace entry represents a change into or out of 64-bit addressing mode

along with a change of instruction address

System trace

Chapter 8. System trace 187

PR pr: Identifier of the processor that produced the TTE.

ASID
last: Last home address space identifier (ASID) in the trace buffer.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

MODE
Addressing mode change instruction

MOBR
Addressing mode change combined with a branch instruction

CD/D
Blank

PSW-----
target: Target addressing mode.

24 OR 31
Target addressing mode is either 24-bit or 31-bit.

64 Target addressing mode is either 64-bit.

ADDRESS-
UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6
PSACLHS-
PSALOCAL
PASD
SASD
TIMESTAMP-RECORD
CP address-: Target address. Addresses appear in the following formats:

Addressing mode and location Appearance

24-bit address xxxxxx

31-bit address xxxxxxxx

64-bit address with zeros in high-order bits 00_xxxxxxxx

64-bit address with nonzero high-order bits xxxxxxxx_xxxxxxxx

PCIL trace entries
A PCIL trace represents a PCI load instruction.

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr last tcb-addr MODE target address- address- address- address- address- etc.

pr last tcb-addr MOBR target address- address- address- address- address- etc.

System trace

188 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

PCIL PCI load instruction.

CD/D
pfid: The PCIE function identifier for the PCIE device.

PSW----- ADDRESS-

v cc: Condition code from the PCI load instruction.
v reqaddr: Address of the program that requested the PCI load instruction to

be issued.

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v traceid: Program defined trace identifier that can be used to determine why
the PCI load instruction is being issued.

v operand1_operand1: First operand on the PCI load instruction.
v operand2_operand2: Second operand on the PCI load instruction.
v operand3_operand3: Third operand on the PCI load instruction.

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr PCIL pfid cc reqaddr- traceid operand1_operand1 psaclhs- psalocal timestamp------- CP
operand2_operand2 psaclhse-
operand3_operand3

System trace

Chapter 8. System trace 189

|
|
|
|
|
|

||

|
|

|
|
|

|
|

||

|
|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

||
|

entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

PCIS trace entries
A PCIS trace represents a PCI store instruction.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

PCIS PCI store instruction.

CD/D
pfid: The PCIE function identifier for the PCIE device.

PSW----- ADDRESS-

v cc: Condition code from the PCI store instruction.
v reqaddr: Address of the program that requested the PCI store instruction to

be issued.

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v traceid: Program defined trace identifier that can be used to determine why
the PCI store instruction is being issued.

v operand1_operand1: First operand on the PCI store instruction.
v operand2_operand2: Second operand on the PCI store instruction.
v operand3_operand3: Third operand on the PCI store instruction.

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr PCIS pfid cc reqaddr- traceid operand1_operand1 psaclhs- psalocal timestamp------- CP
operand2_operand2 psaclhse-
operand3_operand3

System trace

190 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|

|
|

|

|
|

||

|
|

|
|
|

|
|

||

|
|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|
|
|

|
|

|
|

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

PDMX trace entries
A PDMX trace represents a PCIE adapter interruption de-multiplexing event.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task for
which the TTE was produced.

IDENT
The TTE identifier, as follows:

PDMX
PCIE adapter interruption de-multiplexing event.

CD/D
pfid: PCIE function identifier for the PCIE device.

PSW----- ADDRESS-
pdmxaddr: Address of the program that is performing the de-multiplexing.

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v devtype: PCIE device type.
v cback@: Callback routine address.
v cbparm1: First word of callback routine parameters.
v cbparm2: Second word of callback routine parameters.

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr PDMX pfid pdmxaddr devtype cback@ cbparm1 psaclhs- psalocal timestamp------- CP
cbparm2 psaclhse-

System trace

Chapter 8. System trace 191

|
|
|
|
|

|
|
|
|

||
|
|
|

|

|
|

||

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

|

|

|

|
|

|
|
|

|
|
|

|
|

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

PGM, SPER and SPR2 trace entries
These trace entries represent a program event:
v A PGM trace entry is for a program interrupt
v An SPER trace entry is for a PER event requested in a SLIP trap
v An SPR2 trace entry is for a PER event requested in a SLIP trap, when the

STDATA keyword is specified on the trap

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

PGM Program interruption. An asterisk (*) before PGM indicates an unusual
condition. PGM trace entries for program interrupts that may be
resolved are not flagged. If the program interrupt is not resolved, then
a subsequent RCVY trace entry is created and flagged with an asterisk.

SPER SLIP program event recording

CD/D

v code for PGM entry: Program interruption code
v code for SPER entry: PER number

PSW----- ADDRESS-
The z/Architecture 128-bit old PSW appears on two lines:
v pswaddr: Two words, containing the 64-bit address portion of the PSW
v pswctrl: Two words, containing the 64-bit “control” portion of the PSW

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr PGM code pgm-old- pswaddr- ilc-code tea----- psaclhs- psalocal pasd sasd timestamp------- CP
pgm-old- pswctrl- tea----- psaclhse-

pr home tcb-addr SPER code pgm-old- pswaddr- ilc-code trap---- psaclhs- psalocal pasd sasd timestamp------- CP
pgm-old- pswctrl- per-addH per-addL psaclhse-

pr home tcb-addr SPR2 code pgm-old- pswaddr- var1 var2 var3 psaclhs- psalocal pasd sasd timestamp------- CP
pgm-old- pswctrl- var4 var5 spc-exc

System trace

192 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|
|
|
|

||
|
|
|

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v ilc-code: Instruction length code and interruption code.
v per-addH: high-order bits of the SLIP/PER status address.
v per-addL: low-order bits of the SLIP/PER status address.
v tea-----: Translation exception address. In the high-order bit, 0 indicates

primary and 1 indicates secondary.
v trap----: SLIP/PER trap identifier in the form ID=xxxx.
v var1, var2, var3, var4, var5: Each contains one word of variable data as

specified by the STDATA keyword.
v spc-exc: The message SpaceExc if more than five words of variable data are

requested in the STDATA keyword.

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

RCVY trace entries
A RCVY trace entry represents entry into a recovery routine following an error or
interruption. Several types of recovery events require reentry in a new
environment or address space. Table 33 summarizes when an RCVY trace event
requires reentry. RCVY also writes records to the system trace table for ESTAE type
recovery exits and when the ESTAE type recovery exit requests retry.

Table 33. RCVY trace events that require reentry

Trace Entry for
Recovery Event

Reentry Trace Entry for Reentry

RCVY ABT Required only if the task to be ended resides in
an address space other than the current home
address space

RCVY ITRM Always required RCVY ITRR, if the unit of work ending is
locally locked or has an EUT FRR established

RCVY MEM Always required RCVY MEMR

System trace

Chapter 8. System trace 193

Table 33. RCVY trace events that require reentry (continued)

Trace Entry for
Recovery Event

Reentry Trace Entry for Reentry

RCVY ABTR

RCVY RCML Always required RCVY RCMR

RCVY STRM Always required RCVY STRR, if the unit of work ending is in
SRB mode, is locally locked, or has an EUT
FRR established

System trace

194 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

PR pr: Identifier of the processor that produced the TTE.

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr *RCVY ABRT trk----- psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY ABT return-- comp---- reas---- rc------ psaclhs- psalocal pasd sasd timestamp------- CP
asid---- tcb----- psaclhse-

pr home tcb-addr *RCVY ABTR comp---- reas---- rc------ psaclhs- psalocal pasd sasd timestamp------- CP
asid---- tcb----- psaclhse-

pr home tcb-addr *RCVY DAT comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY FRR frr-new- psw----- comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
fpw----- psaclhse-

pr home tcb-addr *RCVY ITRM return-- comp---- reas---- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY ITRR comp---- reas---- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY MCH comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY MEM return-- comp---- reas---- rc------ psaclhs- psalocal pasd sasd timestamp------- CP
asid---- psaclhse-

pr home tcb-addr *RCVY MEMR comp---- reas---- psaclhs- psalocal pasd sasd timestamp------- CP
asid---- psaclhse-

pr home tcb-addr *RCVY PERC comp---- reas---- psaclhs- psalocal pasd sasd timestamp------- CP
fpw----- psaclhse-

pr home tcb-addr *RCVY PROG comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY RCML return-- comp---- reas---- asid---- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY RCMR comp---- reas---- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY RESM retry--- pswaddr- comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
retry--- pswctrl- cpu----- fpw----- psaclhse-

pr home tcb-addr *RCVY RSRT comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY RTRY retry--- pswaddr- comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp-------
retry--- pswctrl- fpw----- psaclhse-

pr home tcb-addr *RCVY SABN comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr *RCVY SPRC comp---- reas---- psasuper psaclhs- psalocal pasd sasd timestamp------- CP
asid---- tcb----- fpw----- psaclhse-

pr home tcb-addr *RCVY SRBT return-- comp---- reas---- rc------ psaclhs- psalocal pasd sasd timestamp------- CP
srbidtoken------------------------- psaclhse-

pr home tcb-addr *RCVY STRM return-- comp---- reas---- tcb----- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY STRR comp---- reas---- tcb---- psaclhs- psalocal pasd sasd timestamp------- CP
pppp---- pppp---- psaclhse-

pr home tcb-addr *RCVY ESTA exit--- sdwa---- parm64-- parm---- psaclhs- psalocal pasd sasd timestamp------- CP
alet---- scb----- psaclhse

pr home tcb-addr *RCVY ESTR retry-- retry-- exit---- scb----- psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse

pr home tcb-addr *RCVY SKFE exit--- scb----- psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse

System trace

Chapter 8. System trace 195

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

RCVY Recovery event. An asterisk (*) always appears before RCVY to
indicate an unusual condition.

CD/D
Type of recovery event, as follows:
v ABRT: Abort processing for an unrecoverable error during any recovery

termination management (RTM) processing
v ABT: Request for abnormal end of a task by a CALLRTM TYPE=ABTERM

macro, with a system or user completion code
v ABTR: Rescheduling of a CALLRTM TYPE=ABTERM request for end of a

task, when the task is not in the home address space
v DAT: RTM1 entered for a dynamic address translation (DAT) error
v ESTA: RTM has set up this ESTAE type recovery exit to receive control. Note

that when a RCVY ESTA record follows another RCVY ESTA record without
an intervening RCVY ESTR record, this implies that the first recovery exit
either abended or percolated

v ESTR: Retry was requested by this ESTAE type recovery exit. The exit and
scb fields in this record can be used to help match it to its corresponding
RCVY ESTA record.

v FRR: RTM1 processing to invoke a function recovery routine (FRR)
v ITRM: The system requested RTM1 to end an interrupted task
v ITRR: ITRM reentry, to process a request to end an interrupted task
v MCH: RTM1 entered for a machine check interruption
v MEM: Request for abnormal memory end by a CALLRTM TYPE=MEMTERM

macro, with a completion code
v MEMR: Processing for an abnormal memory end following a MEM event
v PERC: Percolation from RTM1 to RTM2 to continue recovery processing
v PROG: RTM1 was entered for a program check interruption
v RCML: RTM1 was entered to perform special end processing for a task in a

failing address space. The failing address space held the local lock of another
address space.

v RCMR: RCML reentry, to process an abnormal end by a resource manager
v RESM: Resume from an FRR after a RESTART request following an RSRT

entry
v RSRT: RTM entered for a RESTART request from the operator
v RTRY: Retry from an FRR
v SABN: The system requested RTM1 to end abnormally the current unit of

work
v SKFE: RTM has bypassed giving control to a FESTAE recovery exit because

its address is zero. This situation can happen because of a timing window in
FESTAE processing, in which case it is not a concern

v SPRC: Final percolation from service request block (SRB) recovery

System trace

196 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v SRBT: Request for abnormal termination of a pre-emptable SRB by a
CALLRTM TYPE=SRBTERM macro, with a system or user completion code

v STRM: The system requested RTM1 to end abnormally a suspended task
v STRR: STRM reentry, to process the abnormal end of a suspended task

PSW----- ADDRESS-
For the RESM and RTRY entries, this field contains the z/Architecture 128-bit
old PSW, which appears on two lines:
v pswaddr: Two words, containing the 64-bit address portion of the PSW
v pswctrl: Two words, containing the 64-bit “control” portion of the PSW
v exit---: Address of an ESTAE type recovery exit. This is always zero for

RCVY SKFE entries.
v retry-- retry-- : Retry address requested by an ESTAE type recovery exit.

When retry is to CVTBSM0F, contains the contents of 64-bit GPR15 at the
time of the retry request instead of the address of CVTBSM0F.

The frr-new- psw----- field contains the new program status word (PSW) to
give control to the FRR. For all other types of recovery events, the return--
field contains the caller's return address.

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v alet----: Contains the ALET of the parameter area for ESTAE type recovery
exits with an ALET qualified parameter area pointer. Otherwise, it contains
zero.

v asid----: Target ASID for end processing.
– In a SPRC entry, the ASID is for the task that will be abnormally ended

by SRB-to-task percolation. If this field and the

tcb----- field are zero, then no SRB-to-task percolation is performed.
v exit----: Contains the ESTAE type recovery exit address
v comp----: System or user completion code
v cpu-----: Target processor for a restart error indicated on a request for an

FRR resume, after an operator RESTART request
v fpw-----: FRR processing word, in the following format:

rsxxxxxp xxxxxxxx ssssssss eeeeeeee

r Bit 0 = 1 means a resource manager entry to the FRR

s Bit 1 = 1 means the FRR was skipped

p Bit 7 = 0 means a not serialized SRB-to-task percolation

Bit 7 = 1 means a serialized SRB-to-task percolation

ssssssss
The stack index, which is an index of the FRR stack. The index
means the following:
– 0 Normal stack
– 1 SVC I/O dispatcher super stack
– 2 Machine check super stack
– 3 PC FLIH super stack
– 4 External FLIH super stack 1
– 5 External FLIH super stack 2
– 6 External FLIH super stack 3

System trace

Chapter 8. System trace 197

|
|

– 7 Restart super stack
– 8 ACR super stack
– 9 RTM super stack

eeeeeeee
The entry index, which is an index of the FRR entry on the stack.
The index ranges from 0 through 16. If the current stack is a super
stack, an index of 0 indicates a super FRR.

v parm----: Contains the 31-bit parameter address, or the lower 32 bits of the
64-bit parameter address, which is provided to the ESTAE type recovery exit
when it gains control.

v parm64--: Contains the upper 32 bits of the 64-bit parameter address when
the ESTAE type recovery exit was established in AMODE 64

v pppp---- pppp----: PSW of the interrupted unit of work.
– The instruction in the PSW may not be the cause of the failure. For

example, an interruption can occur because a time limit expired, so that
the interrupted instruction is not at fault.

v psasuper: PSASUPER field in the prefix save area (PSA)
v rc------: Return code from CALLRTM
v reas----: Reason code accompanying the completion code appearing in the

entry. If not provided, NONE.
v srbidtoken: Uniquely identifies the preemptable SRB, provided via the

IEAMSCHD macro and consisting of four unique words on the second line
for the RCVY SRBT trace entry only.

v tasn----: Target ASID for RCML reentry
v tcb-----: Target task control block (TCB) for end processing

– In a SPRC entry, the TCB is for the task that will be abnormally ended by
SRB-to-task percolation. If this field and the asid---- field are zero, then
no SRB-to-task percolation is performed.

– In a STRM or STRR entry, a TCB address of zero indicates that the
request was for ending of a suspended SRB.

v trk-----: RTM1 error tracking area
v scb-----: Contains the address of the STAE control block that represents this

ESTAE type recovery exit. Note that for ARR and IEAARR recovery routines,
RTM creates a 'pseudo-SCB'. Thus the same SCB address can be seen for
multiple ARR or IEAARR recovery exits

v sdwa----: Contains the address of the system diagnostic work area that is
provided to the ESTAE type recovery exit. If no SDWA is available to the
exit, the field contains 0000000C

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

System trace

198 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

SPIN trace entries
A SPIN trace entry represents the starting (at least one second in), the middle
(when special processing is done), or the stopping of a system spin attempting to
obtain a resource. The spinning module will identify the resource within the trace
entry.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

SPIN System spin.

CD/D
The CD/D field indicates the spinning module, using the last two or three

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr SPIN SRC/{S|P} return-- spin-dur holder-- rstrscid psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr SPIN ACO/{S|P} return-- spin-dur holder-- infncode psaclhs- psalocal pasd sasd timestamp------- CP
ascb-add inp-parm psaclhse-

pr home tcb-addr SPIN BBR/{S|P} return-- spin-dur cpu-spin infncode psaclhs- psalocal pasd sasd timestamp------- CP
reg1---- psaclhse-

pr home tcb-addr SPIN INT/{S|P} return-- spin-dur cpu-spin psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

pr home tcb-addr SPIN LKX/{S|P} return-- spin-dur lockword lock-add psaclhs- psalocal pasd sasd timestamp------- CP
pllhsom- plclhsp- lock-ent psaclhse-

pr home tcb-addr SPIN RI/{S|M|P} return-- spin-dur cpu-spin req-code psaclhs- psalocal pasd sasd timestamp------- CP
rcv-addr pccaaddr psaclhse-

pr home tcb-addr SPIN SGP/{S|P} return-- spin-dur cpu-spin para-reg psaclhs- psalocal pasd sasd timestamp------- CP
sigpcode sigpstat psaclhse-

pr home tcb-addr SPIN SPN/{S|P} return-- spin-dur cpu-spin reg0--- psaclhs- psalocal pasd sasd timestamp------- CP
reg1---- reg3---- psaclhse-

pr home tcb-addr SPIN MTC/{S|P} return-- spin-dur phycpu-- asid---- psaclhs- psalocal pasd sasd timestamp------- CP
psaclhse-

System trace

Chapter 8. System trace 199

characters of its module name, followed by a forward slash (/) and S (start), M
(middle), or P (stop). For more information about each spinning module, see
“Spinning modules.”

PSW----- ADDRESS-
return--: Caller's return address

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

For more information about each spinning module, see “Spinning modules.”

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

Spinning modules
The following section summarize information about the spinning modules.

BLWRESRC:

v CD/D

SRC/S The start spin entry of the BLWRESRC module.

SRC/P The stop spin entry of the BLWRESRC module.
v UNIQUE-1

spin-dur
Spin duration so far (bytes 3, 4, 5, and 6 of time since the start of spin).

v UNIQUE-2

holder--
CPU that is a current holder.

v UNIQUE-3

rstrscid
The restart resource ID of the caller (input parameter 1).

IEAVEAC0:

v CD/D

System trace

200 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

AC0/S The start spin entry of the IEAVEAC0 module.

AC0/P The stop spin entry of the IEAVEAC0 module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3,4,5, and 6 of time since the start of
spin).

v UNIQUE-2

holder--
CPU that is a current holder.

v UNIQUE-3

infncode
The input function code.

v UNIQUE-4

ascb-add
Current_ASCB

v UNIQUE-5

inp-parm
input_parm

IEAVEBBR:

v CD/D

BBR/S The start spin entry of the IEAVEBBR module.

BBR/P The stop spin entry of the IEAVEBBR module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3,4,5, and 6 of time since the start of
spin).

v UNIQUE-2

cpu-spin
The CPU address being spun for.

v UNIQUE-3

infncode
The input function code.

v UNIQUE-4

reg1----
input reg 1: when applicable, the ASID in bits 16-31.

IEAVEINT:

v CD/D

INT/S The start spin entry of the IEAVEINT module.

INT/P The stop spin entry of the IEAVEINT module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3,4,5, and 6 of time since the start of
spin).

System trace

Chapter 8. System trace 201

v UNIQUE-2

cpu-spin
The CPU address being spun for.

IEAVELKX:

v CD/D

LKX/S The start spin entry of the IEAVELKX module.

LKX/P The stop spin entry of the IEAVELKX module.
v UNIQUE-1

spin-dur
Spin duration so far (bytes 3, 4, 5, and 6 of time since the start of spin).

v UNIQUE-2

lockword
The lock word that contains the CPU address being spun for.

v UNIQUE-3

lock-add
Input reg 11 (lockword address).

v UNIQUE-4

pllhsom-
Lock held obtained mask (PLLHSOM, via input reg 12).

v UNIQUE-5

plclhsp-
Lock held string pointer (PLCLHSP, via input reg 12).

v UNIQUE-6

lock-ent
Input reg 13. The lock routine entry point address.

IEAVERI:

v CD/D

RI/S The start spin entry of the IEAVERI module.

RI/M The middle spin entry of the IEAVERI module.

RI/P The stop spin entry of the IEAVERI module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3,4,5, and 6 of time since the start of
spin).

v UNIQUE-2

cpu-spin
The CPU address being spun for.

v UNIQUE-3

req-code
input register 0. Request code and, when appropriate, ASID.

v UNIQUE-4

rcv-addr
Input reg 12. Receiving routine's entry point address.

System trace

202 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v UNIQUE-5

pccaaddr
Input reg 1. PCCA address of the receiving CPU. If this identifies the
same CPU as Unique 2, Unique 2 value can be used.

IEAVESGP:

v CD/D

SGP/S The start spin entry of the IEAVESGP module.

SGP/P The stop spin entry of the IEAVESGP module.
v UNIQUE-1

spin-dur
Spin duration so far (bytes 3, 4, 5, and 6 of time since the start of spin).

v UNIQUE-2

cpu-spin
The CPU address being spun for.

v UNIQUE-3

para-reg
Input reg 1. Parameter register for status and prefix order codes.

v UNIQUE-4

sigpcode
Input reg 2. The SIGP order code.

v UNIQUE-5

sigpstat
The status returned from the last SIGP

IEAVESPN:

v CD/D

SPN/S The start spin entry of the IEAVESPN module.

SPN/P The stop spin entry of the IEAVESPN module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3, 4, 5, and 6 of time since the start of
spin).

v UNIQUE-2

cpu-spin
The CPU address being spun for.

v UNIQUE-3

reg0----
Input reg 0.

v UNIQUE-4

reg1----
Input reg 1.

v UNIQUE-5

reg3----
Input reg 3.

System trace

Chapter 8. System trace 203

IEAVTMTC:

v CD/D

MTC/S The start spin entry of the IEAVTMTC module.

MTC/P The stop spin entry of the IEAVTMTC module.
v UNIQUE-1

spin-dur
The spin duration so far (bytes 3,4,5, and 6 of time since the start of
spin).

v UNIQUE-2

phycpu--
The physical CPU number of some CPU that is still running with the
terminating ASCB for "S" and 0 for "P". If an ACR condition is
encountered, value can also be 0 for "S".

v UNIQUE-3

asid----
The ASID that is the target of CALLRTM TYPE=MEMTERM.

SSRV trace entries
An SSRV trace entry represents entry to a system service. The service can be
entered by a PC instruction or a branch.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

SSRV Request for a system service

CD/D
ssid: One of the following SSRV entry identifiers:

ssid (hexadecimal) Macro for SSRV Request Component

0001 WAIT Task management

0002 POST Task management

0004 GETMAIN Virtual storage management

0005 FREEMAIN Virtual storage management

000A GETMAIN, FREEMAIN Virtual storage management

005F SYSEVENT System resource manager

0078 GETMAIN, FREEMAIN Virtual storage management

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr home tcb-addr SSRV ssid return-- data---- data---- data---- psaclhs- psalocal pasd sasd timestamp------- 06

System trace

204 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

ssid (hexadecimal) Macro for SSRV Request Component

007A SPI, SPIINT Service processor interface

0100 ETCON PC/AUTH

0101 ETCRE PC/AUTH

0102 ATSET PC/AUTH

0103 AXSET PC/AUTH

0104 AXEXT PC/AUTH

0105 AXFRE PC/AUTH

0106 AXRES PC/AUTH

0107 ETDES PC/AUTH

0108 ETDIS PC/AUTH

0109 LXFRE PC/AUTH

010A LXRES PC/AUTH

010E SUSPEND Supervisor control

010F RESUME Supervisor control

0110 SCHEDULE Supervisor control

0111 SCHEDULE Supervisor control

0112 SCHEDULE Supervisor control

0113 DSGNL Supervisor control

0114 RISGNL Supervisor control

0115 RPSGNL Supervisor control

0116 SCHEDULE Supervisor Control

0117 SCHEDULE Supervisor Control

0118 SUSPEND Supervisor Control

0119 RESUME Supervisor Control

011A RESUME Supervisor Control

011B RESUME Supervisor Control

011C SCHEDULE Supervisor Control

011D IEAMSCHD Supervisor Control

011E Pause (IEAVPSE / IEAVPSE2
/ IEA4PSE / IEA4PSE2)

Supervisor Control

011F Release (IEAVRLS / IEAVRLS2
/ IEA4RLS / IEA4RLS2)

Supervisor Control

0120 Timer DIE Supervisor Control

0128 WAIT Task management

0129 POST Task management

012A POST Task management

012B POST Task management

012C ASCBCHAP Task management

012D STATUS Task management

012E STATUS Task management

0132 STORAGE OBTAIN Virtual storage management

System trace

Chapter 8. System trace 205

|
|

|
|

ssid (hexadecimal) Macro for SSRV Request Component

0133 STORAGE RELEASE Virtual storage management

0146 SPI, SPIINT Service processor interface

014B IARV64 Real storage management

014C ISGENQ Global resource serialization

014D ENQ/RESERVE Global resource serialization

014E DEQ Global resource serialization

014F SYSCALL UNIX System Services

1050 CF CPU command or internal
request

Reconfiguration

PSW----- ADDRESS-
return--:
v For PC/AUTH, supervisor control, and task management: Caller's return

address if the service was entered by a branch; 0 if the service was entered
by a PC instruction

v For virtual storage management: For SSRV 132 (Storage Obtain) and SSRV
133 (Storage Release), it is the ALET. For other VSM SSRVs (004, 005, 00A,
078), it is the caller's return address.

v For z/OS UNIX System Services: the syscall code.
v For real storage management: Bytes as follows:

0 Request type identifier:

01 GETSTOR

02 GETSHARED

03 DETACH

04 PAGEFIX

05 PAGEUNFIX

06 PAGEOUT

07 DISCARDDATA

08 PAGEIN

09 PROTECT

0A SHAREMEMOBJ

0B CHANGEACCESS

0C UNPROTECT

0D CHANGEGUARD

0F GETCOMMON

11 PCIEFIX

12 PCIEUNFIX

1 GETSTOR GETSHARED Request flags:

1... COND=YES request

.1.. FPROT=NO request

..1. CONTROL=AUTH request (only applies to GETSTOR)

...1 SVCDUMPRGN=NO request (only applies to GETSTOR)

System trace

206 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

0 Request type identifier:

.... 1... CHANGEACCESS = GLOBAL request (only applies to
GETSHARED)

.... .1.. GUARDLOC=HIGH request (only applies to GETSTOR)

1 DETACH Request flags:

1... COND=YES request

.1.. MATCH=USERTOKEN request

..1. AFFINITY=SYSTEM request

...1 OWNER=NO request

1 SHAREMEMOBJ Request flags:

1... COND=YES request

.1.. SVCDUMPRGN=NO request

1 CHANGEGUARD Request flags:

1... COND=YES request

.1.. TOGUARD request

..1. FROMGUARD request

1 PAGEFIX Request flags:

1... LONG=NO request

1 DISCARDDATA Request flags

1... CLEAR=NO request

.1.. KEEPREAL=NO request

1 CHANGEACCESS Request flags

1... READONLY request

.1.. SHAREDWRITE request

..1. HIDDEN request

1 GETCOMMON Request flags

1... COND=YES request

.1.. FPROT=NO request

1 PCIEFIX Request flags:

1... LONG=NO request

2 Keys Used flag

1... KEY specified

.1.. USERTOKEN specified

..1. TTOKEN specified

...1 CONVERTSTART specified

.... 1... GUARDSIZE64 request

.... .1.. CONVERTSIZE64 request

.... ..1. MOTKN specified

3 Miscellaneous Byte

v Storage Key for GETSTOR, GETSHARED, and GETCOMMON requests

v Number of ranges in range list for range list requests

v 0 for all other requests

System trace

Chapter 8. System trace 207

v For CONFIGURE CPU: Bytes as follows:

Bytes 0 and 1 Target CPU ID

Byte 2 Internal flags

Byte 3 Bits 0-3 Reserved

Bits 4-7 Direction and source

Value Meaning

0 Online or Offline at MSI time

1 Online Operator request

2 Offline Operator request

3 Online WLM request

4 Offline WLM request

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

data----: Data. The unique trace data for each event is obtained from data
areas. The areas for PC/AUTH, supervisor control, and task management are
in the z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).
v For an SSRV request to the PC/AUTH component: the PCTRC data area
v For an SSRV request to supervisor control: the SPTRC data area
v For an SSRV request to task management: the TMTRC data area
v For an SSRV request to virtual storage management, the data is:

– Under UNIQUE-1: Information input to the VSM STORAGE (OBTAIN
and RELEASE) service: Bytes as follows:

0 Flags:

X... RESERVED

.1.. CALLRKY=YES was specified

..1. AR 15 is in use

..0. AR 15 is not in use

...1 LOC=(nnn,64) was specified. Storage can be backed
above the bar

.... 1... CHECKZERO=YES was specified

.... 0... CHECKZERO=NO was specified explicitly, or by default

.... .1.. TCBADDR was specified on STORAGE OBTAIN or
RELEASE

.... ..00 OWNER=HOME was specified explicitly, or by default

.... ..01 OWNER=PRIMARY was specified

.... ..10 OWNER=SECONDARY was specified

.... ..11 OWNER=SYSTEM was specified

1 Storage key (bits 0 through 3). Ignore when CALLRKY=YES is flagged in
byte 0.

2 Subpool number

3 Request flags:

System trace

208 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

0 Flags:

1... ALET operand specified

.1.. Storage can be backed anywhere

..00 Storage must have callers residency

..01 Storage must have a 24-bit address

..10 The request is for an explicit address

..11 Storage can have a 24- or 31-bit address

.... 1... Maximum and minimum request

.... .1.. Storage must be on a page boundary

.... ..1. Unconditional request

.... ...0 OBTAIN request

.... ...1 RELEASE request

– Under UNIQUE-2:
- In an SSRV trace entry for a VSM STORAGE OBTAIN or GETMAIN,

one of the following:
v The length of the storage successfully obtained
v The maximum storage requested, if the storage was not obtained

- In an SSRV trace entry for a VSM STORAGE RELEASE or FREEMAIN:
v the length of the storage to be released, or zero if a subpool release

was requested.
– Under UNIQUE-3:

- In an SSRV trace entry for a VSM STORAGE OBTAIN or GETMAIN,
one of the following:
v The address of the storage successfully obtained, if you specified

address; otherwise, zero.
v The minimum storage requested, if the storage was not obtained

- In an SSRV trace entry for a VSM STORAGE RELEASE or FREEMAIN:
v The address of the storage to be released.

– Under UNIQUE-4:
- Left 2 bytes under UNIQUE-4: ASID of the target address space
- Next byte under UNIQUE-4: Reserved
- Right byte under UNIQUE-4:

If the GETMAIN/FREEMAIN/STORAGE OBTAIN/STORAGE
RELEASE is unconditional, an abend will be issued and the SSRV trace
entry 3rd byte of UNIQUE-4 will contain X'FF'. If the
GETMAIN/FREEMAIN/STORAGE OBTAIN/STORAGE RELEASE is
conditional, no abend will be issued and the SSRV trace entry 3rd byte
of UNIQUE4 will contain the actual return code from the storage
service.

v For an SSRV request to real storage management (SSID 14B), the IARV64
data is:
– Under UNIQUE-1

- Return Code/Abend Code (4 bytes)
– Under UNIQUE-2

- Reason Code (4 bytes)

System trace

Chapter 8. System trace 209

– Under UNIQUE-3
- ALET specified on the IARV64 request (4 bytes)

– Additional UNIQUE fields depending on the IARV64 service that follows:
- GETSTOR/GETSHARED/GETCOMMON

v Origin address of the memory object - 8 bytes
v Size of the memory object - 8 bytes
v User token - 8 bytes

- DETACH
v Memory object start address (for MATCH=SINGLE requests) zeroes

(for MATCH=USERTOKEN requests) - 8 bytes
v User token - 8 bytes

- PAGEFIX, PAGEUNFIX, PAGEOUT, PAGEIN, DISCARDDATA,
CHANGEACCESS, PROTECT, UNPROTECT, PCIEFIX, PCIEUNFIX
v Address of rangelist - 8 bytes
v VSA from 1st range list entry - 8 bytes
v Number of blocks from 1st range list entry - 8 bytes

- CHANGEGUARD
v Memory object start (if ConvertStart was not specified), or convert

start address (if ConvertStart was specified) - 8 bytes
v Number of segments to be converted - 8 bytes

- SHAREMEMOBJ
v Range list address - 8 bytes
v VSA from 1st range list entry - 8 bytes
v User token - 8 bytes

v In an SSRV trace entry for global resource serialization with SSID (14C), the
ISGENQ data is:
– Under UNIQUE-1:

- Return address (4 bytes)
– Under UNIQUE-2:

- Two bytes of flags as follows:

1 Flags:

01.. REQUEST=OBTAIN

10.. REQUEST=CHANGE

11.. REQUEST=RELEASE

..1. COND=YES

...0 0... SCOPE=STEP

...1 0... SCOPE=SYSTEM

...1 1... SCOPE=SYSTEMS

.... .1.. CONTROL=SHARED

.... .0.. CONTROL=EXCLUSIVE

.... ..1. RESERVEVOLUME=YES

.... ...1 SYNCHRES=YES

2 Flags:

1... SYNCHRES=NO

System trace

210 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

1 Flags:

.1.. An exit changed the request

..1. WAITTYPE=ECB

...1 CONTENTIONACT=Fail

.... 1... RESLIST=YES

.... .1.. RNLs Changed Scope

.... ..1. TEST=YES

.... ...1 RNL=NO

Note: If the last bit of byte one and the first bit of byte two are both
off, the system default for SYNCHRES is used.
ISGENQ reason code (2 bytes): If a list request was provided, this field
will provide the reason code for the particular list entry in error. If
more than one entry is in error, it will provide the highest reason code.

– Under UNIQUE-3:
- Primary ASID (2 bytes)
- The last 2 bytes may represent

v X'FFFF' if an incomplete trace entry. An incomplete entry may be the
result of a program check or an error was detected. The entry will be
populated only with data we know we can trust. Therefore, some
flags may only be partially filled in. To avoid confusion, having a
X'FFFF' as a device number and having the reserve request bit off
will inform the user the entry is incomplete. (2 bytes)

v X'0000' if not a reserve request (2 bytes)
v Device number if a reserve request (2 bytes)

– Under UNIQUE-4
- First 4 bytes of the QNAME (4 bytes). For a list request, this represents

the first QNAME in the request.
– Under UNIQUE-5

- Last 4 bytes of the QNAME (4 bytes). For a list request, this represents
the first QNAME in the request.

v In an SSRV trace entry for global resource serialization with SSID (14D) the
ENQ and SSID (14E) the DEQ, the information is:
– Under UNIQUE-1:

- Return address (4 bytes)
– Under UNIQUE-2:

- Refer to the PEL mapping for explanation of PELLAST and PELXFLG1.
See z/OS MVS Data Areas in z/OS Internet library (http://
www.ibm.com/systems/z/os/zos/bkserv/).

- 3 bytes of flags.
- Byte 1 is:

1 Flags:

0... Exclusive request

.0.. STEP

.1.. SYSTEM

System trace

Chapter 8. System trace 211

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

1 Flags:

.0.. SYSTEM w/UCB

.0.. 1... SYSTEMS w/UCB

.1.. 0... SYSTEMS

..1. 0... An exit changed the request

...1 1... RNLs changed scope

.... .000 RET=NONE

.... .001 RET=HAVE

.... ..010 RET=CHNG

.... .011 RET=USE

.... .100 RET=ECB

.... .101 RESERVED

.... .110 RESERVED

.... .111 RET=TEST

v Byte 2 represents PELLAST
– Bit 4 is ignored.

v Byte 3 represents PELXFLG1
– Bit 8 is ignored.

- ENQ return code (SSID14D) (1 byte) or DEQ return code (SSID 14E) (1
byte)
v If a list request was provided, this field will provide the Return Code

for the particular list entry in error. If more than one entry is in error,
it will provide the highest Return Code.

v If ABEND, this field is in the form X'Fn' where n signifies the first
hex digit of the ABEND code. For example, a ‘X'F7' signifies a X'738'
ABEND and X'F4' signifies a X'438' ABEND.

– Under UNIQUE-3:
- Primary ASID (2 bytes)
- The last 2 bytes may represent

v X'FFFF' if an incomplete trace entry. An incomplete entry may be the
result of a program check or an error was detected. The entry will be
populated only with data we know we can trust. Therefore, some
flags may only be partially filled in. To avoid confusion, having a
X'FFFF' as a device number and having the reserve request bit off
will inform the user the entry is incomplete. (2 bytes)

v X'0000' if not a reserve request (2 bytes)
v Device number if a reserve request (2 bytes)

– Under UNIQUE-4
- First 4 bytes of the QNAME (4 bytes). For a list request, this represents

the first QNAME in the request.
– Under UNIQUE-5

- Last 4 bytes of the QNAME (4 bytes). For a list request, this represents
the first QNAME in the request.

v For an SSRV request to UNIX system services, the data is:
– Under UNIQUE-1

System trace

212 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The address of the PPRT control block
– Under UNIQUE-2:

For an 8 byte parameter of an AMODE 64 caller, the low four bytes of the
first parameter, otherwise the first four bytes of the first parameter, if
available. Zero, if parameter not available.

– Under UNIQUE-3
For an 8 byte parameter of an AMODE 64 caller, the low four bytes of the
second parameter, otherwise the first four bytes of the second parameter,
if available. Zero, if parameter not available.

– Under UNIQUE-4
For an 8 byte parameter of an AMODE 64 caller, the low four bytes of the
third parameter, otherwise the first four bytes of the third parameter, if
available. Zero, if parameter not available.

v In an SSRV trace entry for CONFIGURE CPU with SSID (1050), the
information is:
– Under UNIQUE-1

Contents of an internal return code field.
– Under UNIQUE-2

Shows which 8-byte block of CSD_CPU_ALIVE.
– Under UNIQUE-4 through UNIQUE-5

The 8-byte contents of CSD_CPU_ALIVE mask at the 8-byte block offset
in UNIQUE-2 as updated by the CF CPU command.

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.
This field will contain descriptive text for some SSRV trace entries. The
descriptive text will not appear in SNAP, SYSUDUMP, or SYSABEND output.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA. This field will contain descriptive text for some SSRV trace entries.
The descriptive text will not appear in SNAP, SYSUDUMP, or SYSABEND
output.

PASD
pasd: Primary ASID (PASID) at trace entry. This field will contain descriptive
text for some SSRV trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

SASD
sasd: Secondary ASID (SASID) at trace entry. This field will contain descriptive
text for some SSRV trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

System trace

Chapter 8. System trace 213

SUSP trace entries
An SUSP trace entry represents a request for a suspend type lock when the
requestor had to be suspended because the lock was not available.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task.

IDENT
The TTE identifier, as follows:

SUSP Lock suspension

CD/D
Blank

PSW----- ADDRESS-
return--: Caller's return address

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v rb-addr-: Address of the suspended request block (RB)
v rel-addr: Address associated with the type of lock suspension:

– 0: For LOCL lock
– ASCB address: For CML lock
– Lockword address: For CEDQ, CLAT, CMS, and CSMF locks

v ssrbaddr: Address of the suspended service request block (SSRB)
v suspndid: Identifier of the lock suspension type: CEDQ, CLAT, CML, CMS,

CSMF, or LOCL

PSACLHS-
psaclhs-: String for the current lock held, from the PSACLHS field of the PSA.

PSACLHSE-
psaclhse-: Extended string for the current lock held, from the PSACLHSE field
of the PSA.

PSALOCAL
psalocal: Locally locked address space indicator, from the PSALOCAL field of
the PSA.

PASD
Blank

SASD
Blank

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE-

pr home tcb-addr SUSP return-- rb-addr- suspndid rel-addr psaclhs- psalocal timestamp------- 02
ssrbaddr psaclhse-

System trace

214 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

SVC, SVCE, and SVCR trace entries
These trace entries represent a supervisor event:
v An SVC trace entry is for processing of a Supervisor Call (SVC) instruction
v An SVCE trace entry is for an error during processing of an SVC instruction
v An SVCR trace entry is for return from SVC instruction processing

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows. An asterisk before SVC, SVCE, or SVCR
indicates that the SVC is for an abend (SVC D) and the abend is not for a
normal end of task, that is, bit X'08' in the leftmost byte of register 1 (in the
UNIQUE-3 column) is not on.

SVC Supervisor call (SVC) interruption

SVCE SVC error

SVCR SVC return

CD/D
code:
v For SVC and SVCE, and for SVCR when not X'FFxx': SVC number.
v For SVCR when X'FF00': completion of the system-initiated processing

involved with ATTACH, LINK, SYNCH, or XCTL processing before the
target routine getting control.

v For SVCR when X'FF01': initial system-initiated processing involved with
XCTL processing prior to the target routine getting control.

PSW----- ADDRESS-
The z/Architecture 128-bit old PSW, which appears on two lines:

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr home tcb-addr SVC code svc-old- pswaddr- gpr15--- gpr0---- gpr1---- timestamp------- 02
svc-old- pswctrl-

pr home tcb-addr SVCE code svc-old- pswaddr- gpr15--- gpr0---- gpr1---- psaclhs- psalocal pasd sasd timestamp------- 02
svc-old- pswctrl- env-data psaclhse-

pr home tcb-addr SVCR code ret-new- pswaddr- gpr15--- gpr0---- gpr1---- timestamp------- 02
ret-new- pswctrl-

System trace

Chapter 8. System trace 215

v pswaddr: Two words, containing the 64-bit address portion of the PSW
v pswctrl: Two words, containing the 64-bit “control” portion of the PSW

The contents of this field varies, depending on the type of supervisor event
and the value of code:
v ret-new- pswaddr / ret-new- pswctrl:

– For SVC and SVCE, and for SVCR when code is not X'FFxx': Program
status word (PSW) to receive control when the SVC is dispatched again.

– For SVCR when code is X'FF00': PSW of the target routine that will get
control as a result of ATTACH, LINK, SYNCH, or XCTL processing.

– For SVCR when X'FF01': PSW of a system routine that will get control as
a result of initial system processing involved with XCTL.

v svc-old- pswaddr / svc-old- pswctrl: SVC old PSW

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

gpr15--- gpr0---- gpr1----: General registers 15, 0, and 1

env-data: Characteristics of failing environment. One of the following values:
v 00000004 - issuer of SVC was in SRB mode
v 00000008 - issuer of SVC was locked
v 0000000C - issuer of SVC was disabled
v 00000010 - issuer of SVC was in cross memory mode
v 00000014 - issuer of SVC was in EUT FRR mode
v 00000018 - issuer of SVC was in AR mode

PSACLHS-
psaclhs-: For SVCE, string for the current lock held, from the PSACLHS field
of the PSA. This field will contain descriptive text for some SVC trace entries.
The descriptive text will not appear in SNAP, SYSUDUMP, or SYSABEND
output.

PSACLHSE-
psaclhse-: For SVCE, extended string for the current lock held, from the
PSACLHSE field of the PSA.

PSALOCAL
psalocal: For SVCE, locally locked address space indicator, from the
PSALOCAL field of the PSA. This field will contain descriptive text for some
SVC trace entries. The descriptive text will not appear in SNAP, SYSUDUMP,
or SYSABEND output.

PASD
pasd: Primary ASID (PASID) at trace entry. This field will contain descriptive
text for some SVC trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

SASD
sasd: Secondary ASID (SASID) at trace entry. This field will contain descriptive
text for some SVC trace entries. The descriptive text will not appear in SNAP,
SYSUDUMP, or SYSABEND output.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent

System trace

216 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

TIME trace entries
A TIME trace entry represents a dynamic time-of-day (TOD) clock adjustment by
the timer services component.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

TIME Timer service

CD/D
code: Contains a value of 1, indicating that word1 and word2 contain the
amount of time that the system advances the time-of-day (TOD) clock when
the TOD clock and the External Time Reference (ETR) get out of
synchronization.

PSW----- ADDRESS-
return: Return address of the program that issued the PTRACE macro

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

word1, word2: For a code value of 1, the amount of time that the system
advances the TOD clock when the TOD clock and the ETR get out of synch.

PSACLHS-
Blank

PSACLHSE-
Blank

PSALOCAL
Blank

PASD
pasd: Primary ASID (PASID) at trace entry.

SASD
sasd: Secondary ASID (SASID) at trace entry.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6 PSACLHSE TIMESTAMP-RECORD CP

pr home tcb-addr TIME CODE word1--- word2--- data---- pasd sasd timestamp------- CP
data---- data---- data----

System trace

Chapter 8. System trace 217

information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

USRn trace entries
A USRn trace entry represents processing of a PTRACE macro in an authorized
program. The trace entry contains data from the macro.

PR pr: Identifier of the processor that produced the TTE.

ASID
home: Home address space identifier (ASID) associated with the TTE.

TCB-ADDR
tcb-addr: Address of the task control block (TCB) for the current task or the
work element block (WEB).

IDENT
The TTE identifier, as follows:

USRn User event. n is a number from X'0' to X'F'.

CD/D
Blank

PSW----- ADDRESS-
return: Return address of the program that issued the PTRACE macro

UNIQUE-1/UNIQUE-2/UNIQUE-3
UNIQUE-4/UNIQUE-5/UNIQUE-6

v data----: User-defined data from the PTRACE macro
v idc-: PTRACE identification count
v rbc: Relative byte count

PSACLHS-
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

PSALOCAL
This field contains descriptive text for some SVC, SSRV, and PC trace entries.
The descriptive text will not appear in SNAP/SYSUDUMP/SYSABEND
output.

PASD
pasd: Primary ASID (PASID) at trace entry. This field contains descriptive text
for some SVC, SSRV, and PC trace entries. The descriptive text will not appear
in SNAP/SYSUDUMP/SYSABEND output.

SASD
sasd: Secondary ASID (SASID) at trace entry. This field contains descriptive

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

pr home tcb-addr USRn return-- data---- data---- data---- pasd sasd timestamp------- CP
data---- data---- data----

pr home tcb-addr USRn return-- idc- rbc data---- data---- pasd sasd timestamp------- CP
data---- data---- data----

System trace

218 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

text for some SVC, SSRV, and PC trace entries. The descriptive text will not
appear in SNAP/SYSUDUMP/SYSABEND output.

TIMESTAMP-RECORD
timestamp-------: Time-of-day (TOD) clock value when system trace created
the trace entry. The value is in the same format as the time stamp on the logrec
data set records.

CP The CP column contains 2 hex digits of the processor model dependent
information, which is intended to identify the physical CP that made the trace
entry. CP is only provided when formatting SYSTRACE under IPCS. CP is not
provided for SYSUDUMP, SYSABEND, or SNAP.

Multiple trace entries for a user event
A single user event appears in more than one trace entry if the PTRACE macro
requests recording of more than 5 fullwords of trace data. For example, the
following PTRACE macro requests recording of 11 fullwords of trace data:
PTRACE TYPE=USER3,REGS=(2,12),SAVEAREA=STANDARD

For this macro, system trace places three entries in the trace table. The entries
contain the following:
v The first entry contains the 5 fullwords of trace data in registers 2 through 6.
v The second entry contains the 5 fullwords of trace data in registers 7 through 11.
v The third entry contains the fullword of trace data in register 12.

If the program issuing the PTRACE macro is interrupted, the three trace entries
may not be consecutive in the trace table. The multiple entries contain continuation
information as the data for UNIQUE-1. The format of the continuation information
is as follows:

nnnn
The PTRACE identification count. This is a hexadecimal number assigned by
PTRACE to all entries for one macro processing.

hhh
The byte offset, in hexadecimal, of the next byte of trace data, which is under
UNIQUE-2. For the first entry, the offset is X'000'. For the second entry, the
offset is X'014'. For the third entry, the offset is X'028'.

For example, Figure 73 shows three trace entries from the preceding PTRACE
macro.

nnnn hhh

PR ASID TCB-ADDR IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3 PSACLHS- PSALOCAL PASD SASD TIMESTAMP-RECORD CP
UNIQUE-4 UNIQUE-5 UNIQUE-6

01 000C 00AFF090 USR3 81A007B6 003D 000 00000001 00000002 000C 000C 9DAA507461CB3E02 CP
00000003 00000004 00000005

01 000C 00AFF090 USR3 81A007B6 003D 014 00000006 00000007 000C 000C 9DAA507461CB3E02 CP
00000008 00000009 0000000A

01 000C 00AFF090 USR3 81A007B6 003D 028 0000000B 000C 000C 9DAA507461CB3E02 CP

Figure 73. Example: Three trace entries from the PTRACE macro

System trace

Chapter 8. System trace 219

220 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 9. Master trace

Master trace maintains a table of all recently issued system messages. This creates
a log of external system activity; the other traces log internal system activity.
Master trace is activated automatically at system initialization, but you can turn it
on or off using the TRACE command.

Master trace can help you diagnose a problem by providing a log of the most
recently issued system messages. For example, master trace output in a dump
contains system messages that may be more pertinent to your problem than the
usual component messages issued with a dump.

The following sections contain more information about how to request, customize,
and use the master trace.

Master trace and the hardcopy log
Master trace lists the same messages that the system saves automatically and
permanently in the hardcopy log, but the entries are maintained in a wraparound
table, which means that master trace overwrites old entries when the table is full.
You can use master trace data in a dump as a substitute for the hardcopy log when
the dump contains the required messages. If the master trace table wraps and
overwrites the messages related to your problem before you can request a dump,
the dump will not contain useful messages.

Consider the following conditions:
v The master trace table wraps at 9 p.m.
v The system issues messages related to a problem between 9:10 and 9:20 p.m.
v The system issues an SVC dump at 9:30 p.m.

In this example, the messages pertinent to the problem will be in the master trace
data in the dump, since the problem occurred between the time the trace table
wrapped and the time the dump was issued.

To print the system-managed data set containing the hardcopy log, use the JESDS
parameter of the OUTPUT JCL statement.

Customizing master trace
At initialization, the master scheduler sets up a master trace table of 24 kilobytes.
A 24-kilobyte table holds about 336 messages, assuming an average length of 40
characters. You can change the size of the master trace table or specify that no
trace table be used by changing the parameters in the SCHEDxx parmlib member.

You can also change the size of the table using the TRACE command. For example,
to change the trace table size to 36 kilobytes, enter:
TRACE MT,36K

See z/OS MVS Initialization and Tuning Reference for more information about the
SCHEDxx member.

© Copyright IBM Corp. 1988, 2015 221

Requesting master trace
Start, change, or stop master tracing by entering a TRACE operator command from
a console with master authority. For example, to start the master tracing:
TRACE MT

To stop master tracing:
TRACE MT,OFF

You can also use the TRACE command to obtain the current status of the master
trace. The system displays the status in message IEE839I. For example, to ask for
the status of the trace, enter:

TRACE STATUS

In the output shown in Figure 74, master tracing is active with a trace table of 140
kilobytes, as indicated by MT=(ON,140K).

If you want to check the current status of system, master, and component tracing,
use the DISPLAY TRACE command. The system displays the status in message
IEE843I. For example, to ask for the status of the three traces, enter:

DISPLAY TRACE

In Figure 75, master tracing is active with a master trace table of 140 kilobytes, as
indicated by MT=(ON,140K).

See z/OS MVS System Commands for details about the TRACE and DISPLAY
operator commands. See z/OS MVS System Messages, Vol 7 (IEB-IEE) for
information about IEE839I and IEE843I messages.

Receiving master trace
Master trace writes trace data in the master trace table, which resides in the master
scheduler address space (ASID 1). You can obtain master trace data in a
stand-alone, SVC, or unformatted dump, if the dump options list includes TRT to
request trace data. Format the master trace data by specifying the IPCS VERBEXIT

TRACE STATUS
IEE839I ST=(ON,0500K,01000K) AS=ON BR=OFF EX=ON MT=(ON,140K)

ISSUE DISPLAY TRACE CMD FOR SYSTEM AND COMPONENT TRACE STATUS

Figure 74. Example: TRACE STATUS output

DISPLAY TRACE
IEE843I 15.17.14 TRACE DISPLAY 564

SYSTEM STATUS INFORMATION
ST=(ON,0500K,01500K) AS=ON BR=OFF EX=ON MT=(ON,140K)
COMPONENT MODE COMPONENT MODE COMPONENT MODE COMPONENT MODE
--
SYSGRS ON SYSSPI OFF SYSSMS OFF SYSDLF MIN
SYSOPS ON SYSXCF ON SYSLLA MIN SYSXES ON
SYSAPPC ON SYSRSM ON SYSAOM OFF SYSVLF MIN
CTTX MIN

Figure 75. Example: DISPLAY TRACE output

Master trace

222 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

MTRACE subcommand or using the IPCS Trace Processing selection panel.
Table 34 shows the dumps that contain master trace data.

Table 34. Summary of dumps that contain master trace data

Dump Master trace data in the dump?

Stand-alone dump Default

SVC dump for SDUMP or SDUMPX macro Default

SVC dump for DUMP operator command Default

SVC dump for SLIP operator command with
ACTION=SVCD, ACTION=STDUMP,
ACTION=SYNCSVCD, or ACTION=TRDUMP

Default

Any unformatted dump customized to exclude trace
data

Yes, Request SDATA=TRT

ABEND dump to SYSABEND Not available

ABEND dump to SYSMDUMP Not available

ABEND dump to SYSUDUMP Not available

SNAP dump Not available

See z/OS MVS IPCS Commands for information about the VERBEXIT MTRACE
subcommand. See z/OS MVS IPCS User's Guidefor information about the panel.

Reading master trace data
The following topics in this section show the format of master trace entries:
v “Master trace output formatted in a dump”
v “Master trace table in storage” on page 224

Master trace output formatted in a dump
The entries in the master trace table are listed in first-in, first-out (FIFO) order,
which resembles a hardcopy log. The messages might not be in chronological order
because presumably the messages were not put in the master trace table in the
order the messages were issued.

Figure 76 on page 224 shows an example of master trace data in a dump that is
formatted by IPCS. The subcommand that is issued on the IPCS Subcommand
Entry panel:
VERBEXIT MTRACE

Master trace

Chapter 9. Master trace 223

The meaning of the highlighted text in the preceding example is as follows:

TAG
A halfword that contains the identity of the caller. TAG can be:

Tag Caller

000 Reserved

001 WTO SVC

002 Master scheduler

003 Trace command

Current identifiers are defined in the macro, IEZMTPRM, which maps the
parameter list.

IMM DATA
A fullword of immediate data, consisting of the 32 bits defined by the caller.
The significance of the immediate data is defined by the caller.

MESSAGE DATA
The message. If a problem occurs during processing, the line that follows the
message indicates the problem.

Master trace table in storage
This topic describes master trace data as it is recorded in the master trace table in
the master scheduler address space. You can use this information to write your
own formatting or analysis routines for master trace information. Master trace
places entries in FIFO order. Thus, a current entry is in front of the older entries.
When the table is full, master trace wraps, and resumes recording entries at the
end of the table.

*** MASTER TRACE TABLE ***

TAG IMM DATA |------------------------ MESSAGE DATA ------------------>|

0001 00000013 N C040000 SCOTT01 03147 21:24:22.76 00000000 $HASP468 JES2 INIT DECK PROCESSED
0001 00000013 NC0000000 SCOTT01 03147 21:24:22.77 INTERNAL 00000290 REPLY 0002,N1 AUTH=(NET=YES),NAME=SCOTT01
0001 00000013 W C040000 SCOTT01 03147 21:24:22.76 00000000 *0002 $HASP469 REPLY PARAMETER STATEMENT, CANCEL, OR END
0001 00000009 NRC040000 SCOTT01 03147 21:24:22.77 INTERNAL 00000090 IEE600I REPLY TO 0002 IS;N1 AUTH=(NET=YES),NAME=SCOTT01
0001 00000013 N C040000 SCOTT01 03147 21:24:22.77 00000290 $HASP466 CONSOLE STMT 126 N1 AUTH=(NET=YES),

NAME=SCOTT01
0001 00000013 N C040000 SCOTT01 03147 21:24:22.77 00000090 $HASP826 NODE(1) NAME=SCOTT01,AUTH=(DEVICE=YES,

JOB=YES,
0001 00000013 N C040000 SCOTT01 03147 21:24:22.77 00000090 $HASP826 NET=YES,SYSTEM=YES),TRANSMIT=BOTH,
0001 00000013 N C040000 SCOTT01 03147 21:24:22.77 00000090 $HASP826 RECEIVE=BOTH,HOLD=NONE,PENCRYPT=NO,
0001 00000013 N C040000 SCOTT01 03147 21:24:22.78 00000090 $HASP826 ENDNODE=NO,REST=0,SENTREST=ACCEPT,
0001 00000013 N C040000 SCOTT01 03147 21:24:22.78 00000090 $HASP826 COMPACT=0,LINE=0,LOGMODE=,LOGON=0,
0001 00000013 N C040000 SCOTT01 03147 21:24:22.78 00000090 $HASP826 PASSWORD=(VERIFY=(NOTSET),

SEND=(NOTSET)),
0001 00000013 N C040000 SCOTT01 03147 21:24:22.78 00000090 $HASP826 PATHMGR=YES,PRIVATE=NO,SUBNET=,

TRACE=NO
0001 00000013 NC0000000 SCOTT01 03147 21:24:22.78 INTERNAL 00000290 REPLY 0003,END
0001 00000013 W C040000 SCOTT01 03147 21:24:22.78 00000000 *0003 $HASP469 REPLY PARAMETER STATEMENT, CANCEL, OR END
0001 00000009 NRC040000 SCOTT01 03147 21:24:22.78 INTERNAL 00000090 IEE600I REPLY TO 0003 IS;END
0001 00000013 N C040000 SCOTT01 03147 21:24:22.78 00000290 $HASP466 CONSOLE STMT 127 END
0001 00000013 N 0000000 SCOTT01 03147 21:24:22.79 00000290 IEF196I IEF285I CONSOLE.OSV142.PARMLIB

KEPT
0001 00000013 N 0000000 SCOTT01 03147 21:24:22.79 00000290 IEF196I IEF285I VOL SER NOS= D72666.
0001 00000013 N 0000000 SCOTT01 03147 21:24:22.79 00000290 IEF196I IEF285I SYS1.PARMLIB

KEPT
0001 00000013 N 0000000 SCOTT01 03147 21:24:22.79 00000290 IEF196I IEF285I VOL SER NOS= D72666.

Figure 76. Example of master trace data in a dump formatted by IPCS

Master trace

224 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note that the messages may not be in chronological order because the messages
may not be put in the master trace table in the order in which they are issued.

You can locate the master trace table from the communication vector table (CVT),
as shown in Table 35.

Table 35. How to locate master trace table from CVT

At the location: In field: Find the following address:

CVT+X'94' CVTMSER IEEBASEA (master scheduler resident data area)

IEEBASEA+ X'8C' BAMTTBL Start of the master trace table

The unformatted master trace table in the master scheduler address space contains
a header and, for each message logged in the table, an entry. The following two
topics show the fields in the header and an entry. The master trace table header
and entries are mapped by the MTT mappings in the IEEZB806 macro, which can
be found in z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

Header in the master trace table

TABLE ID CURRENT START END

SUBPOOL LENGTH WRAP TIME

WRAP POINT RESERVED1 DATA LENGTH RESERVED2...

TABLE ID
A fullword field containing MTT. MTT is an eye-catcher to mark the beginning
of the master trace table.

CURRENT
A fullword field containing the address of the current (most recently stored)
entry.

START
A fullword field containing the address of the first byte of the trace area.

END
A fullword field containing the address of the first byte beyond the end of the
trace area.

SUBPOOL
A one-byte field containing the number of the subpool in which this table
resides.

LENGTH
A three-byte field containing the length, in bytes, of the table header and the
area containing the entries. This length is the default table size or the size
specified on the TRACE command.

WRAP TIME
A double word field containing a time, either when the table was initialized or
when the last table wrap occurred. The time is in the XXHH:MM:SS.T form:

XX Possible values can be IT or WT.

IT Indicates the time that the table was initialized.

WT Indicates the time the table last wrapped.

HH hours

Master trace

Chapter 9. Master trace 225

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

MM minutes

SS seconds

T tenths of a second

WRAP POINT
A fullword field containing the address of the first byte of the last entry stored
before the most recent table wrap.

Note: This address is initialized to zero and remains zero until the first table
wrap.

RESERVED1
A fullword reserved field.

DATA LENGTH
A fullword field containing the length, in bytes, of the data area part of the
table.

RESERVED2
A 21-word field.

Entry in the master trace table

FLAGS TAG IMM DATA LEN CALLER-PASSED
DATA

Entry header
10-byte header for the entry.

FLAGS
A halfword that contains the flags that are set by the caller in the parameter
list that is passed to master trace.

TAG
A halfword that contains the identity of the caller. TAG can be:

Tag Caller

0000 Reserved

0001 WTO SVC

0002 Master scheduler

0003 Trace command

Current identifiers are defined in the macro, IEZMTPRM, which maps the
parameter list.

IMM DATA
A fullword that contains 32 bits defined by the caller. Master trace stores these
bits in the table without checking them for validity. The significance of
IMMEDIATE DATA is defined by the caller; likely values are a counter, a
control block address, or flags describing the passed data.

LEN
A halfword that contains the length of the caller-passed data.

CALLER-PASSED DATA
A variable-length field that contains the data that is provided by the caller.

Master trace

226 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The master trace table entries vary in length. If the caller specifies the length of the
caller-passed data as zero, the entry in the master trace table consists of only the
10-byte header.

Master trace

Chapter 9. Master trace 227

228 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 10. The Generalized Trace Facility (GTF)

The generalized trace facility (GTF) is a service aid you can use to record and
diagnose system and program problems. GTF is part of the MVS system product,
and you must explicitly activate it by entering a START GTF command.

Use GTF to record a variety of system events and program events on all of the
processors in your installation. If you use the IBM-supplied defaults, GTF lists
many of the events that system trace lists, showing minimal data about them.
However, because GTF uses more resources and processor time than system trace,
IBM recommends that you use GTF when you experience a problem, selecting one
or two events that you think might point to the source of your problem. This will
give you detailed information that can help you diagnose the problem. You can
trace combinations of events, specific incidences of one type of event, or
user-defined program events that the GTRACE macro generates. For example, you
can trace:
v Channel programs and associated data for start and resume subchannel

operations, in combination with I/O interruptions
v I/O interruptions on one particular device
v System recovery routine operations

The events that GTF traces are specified as options in a parmlib member. You can
use the IBM supplied parmlib member or provide your own. Details of GTF
operation, which include storage that is needed, where output goes, and recovery
for GTF are defined in a cataloged procedure in SYS1.PROCLIB.

GTF can trace system and program events both above and below 16 megabytes.
For each event it traces, GTF produces trace records as its output. You can have
GTF direct this output to one of the following places:
v A trace table in virtual storage.
v A data set on a tape or direct access storage device (DASD).

Choose a trace table for your GTF output when maintaining good system
performance is very important to your installation. The trace table cannot contain
as much GTF trace data as a data set, but will not impact performance as much as
a data set because there is no I/O overhead.

Choose a data set or sets when you want to collect more data than will fit in a
trace table. Writing trace data to a data set does involve I/O overhead, so choosing
this option will impact system performance more than a trace table.

GTF can use only one table in virtual storage, but can use up to 16 data sets. If
you specify more than one data set, all of them must reside on devices of the same
class, tape, or DASD.

Other components, such as OPEN/CLOSE/EOV and VSAM have special GTF
support. See z/OS DFSMSdfp Diagnosis for complete details.

© Copyright IBM Corp. 1988, 2015 229

GTF and IPCS
You can use IPCS to merge, format, display, and print GTF output. ee z/OS MVS
IPCS User's Guide and z/OS MVS IPCS Commands for information about the
COPYTRC, GTFTRACE, and MERGE subcommands, and the trace processing
option of the IPCS dialog.

GTF and the GTRACE macro
You can use GTF in combination with the GTRACE macro, provided you activate
GTF with TRACE=USR. Then, your programs can issue GTRACE macros to
generate trace records, which GTF can store in the trace table. ee z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG for information about
coding the GTRACE macro.

GTF and system trace
You can use GTF in combination with system trace. System trace records
predetermined system events, and provides minimal details about each event.
Supplement system trace information by selecting specific GTF options to provide
more detailed information about system and user events. For further information
about system trace, see Chapter 8, “System trace,” on page 169.

Using IBM defaults for GTF
IBM supplies both a SYS1.PARMLIB (also called parmlib) member that contains
predefined GTF trace options and a cataloged procedure for GTF, should you want
to use IBM's defaults for GTF operation. You can override some of the default
options by specifying certain parameters on the START command that activates
GTF.

The IBM-Supplied parmlib member of GTF trace options
IBM supplies the GTFPARM parmlib member, which contains the GTF trace
options shown in Figure 77

Briefly, the following options request GTF traces. For more details about these trace
options, see “GTF trace options” on page 246.

SYSM Selected system events

USR User data that the GTRACE macro passes to GTF

TRC Trace events associated with GTF

DSP Dispatchable units of work

PCI Program-controlled I/O interruptions

SRM Trace data associated with the system resource manager (SRM)

The IBM-Supplied cataloged procedure
IBM supplies the GTF cataloged procedure, which resides in SYS1.PROCLIB. The
cataloged procedure defines GTF operation, output location, recovery facilities,
trace output data sets, and the parmlib member that contains GTF options and
defaults. Figure 78 on page 231 illustrates the content of the IBM supplied

TRACE=SYSM,USR,TRC,DSP,PCI,SRM

Figure 77. IBM-Supplied GTFPARM parmlib member

Generalized Trace Facility

230 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

cataloged procedure.

The statements in this cataloged procedure are:

PROC
Defines the GTF cataloged procedure.

EXEC

PGM=AHLGTF
Calls for the system to run program AHLGTF.

PARM='MODE=EXT,DEBUG=NO,TIME=YES',
The parameters selected specify that GTF direct trace data to a data set on
tape or DASD, attempt recovery if it encounters an error, and give every
trace record a time stamp. See the explanation for the EXEC statement
under “Setting up a cataloged procedure” on page 232 for detailed
information.

TIME=1440
The amount of time, in seconds, that GTF will remain active.

REGION=2880K
Specifies the maximum size of the storage that GTF requires.

IEFRDER DD
Defines the trace output data set, according to the following defaults:
v The trace output data set has the name SYS1.TRACE
v The data set resides on a DASD that is large enough for the data set to

contain 20 physical blocks. After completely filling the 20 physical blocks,
GTF will overlay previously written records with new trace records, starting
at the beginning of the output data set.

Restrictions to interactions with installation SMS routines:

v A DSNTYPE=LARGE data set can only be used if the trace is both written
and processed on an V1R7 system or a later release.

v A VSAM linear data set with either an extended format or conventional
format with a control interval size (CISIZE) of 32K can be substituted.

v Neither extended sequential nor VSAM data sets, other than linear data sets
with the required CISIZE, should be used.

SYSLIB DD
Defines the IBM-supplied GTFPARM parmlib member that contains GTF trace
options and their default values. Multiple instances of GTF can be active at the
same time. Each instance of GTF requires a unique trace dataset. The default
trace dataset in the cataloged procedure can be overridden by specifying a
different data set on the START command, or by setting up a cataloged
procedure for each instance of GTF to be activated.

//GTFNEW PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,PARM=’MODE=EXT,DEBUG=NO,TIME=YES’,
// TIME=1440,REGION=2880K
//IEFRDER DD DSNAME=SYS1.TRACE,UNIT=SYSDA,SPACE=(TRK,20),
// DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR

Figure 78. IBM-Supplied GTF Cataloged Procedure

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 231

Customizing GTF
You can customize GTF to the needs of your installation by either overriding IBM's
defaults through the START GTF command, or providing your own parmlib
member and cataloged procedure for GTF. Customize GTF in one of the following
ways:
v Predefine the GTF trace options in a parmlib or data set member. See “Defining

GTF trace options.”
v Set up a cataloged procedure. See “Setting up a cataloged procedure.”
v Override the defaults in the IBM supplied GTF cataloged procedure using the

START command. See “Using the START command to invoke GTF” on page 239.
v Determine how much storage GTF needs for the trace options you choose. See

“Determining GTF's storage requirements” on page 237.
v Specify trace options directly through the console after entering the START

command. See “Specifying or changing GTF trace options through system
prompting” on page 240.

Defining GTF trace options
If you supply your own parmlib member or data set containing GTF trace options,
you can select any of the options listed in “GTF trace options” on page 246. Each
instance of GTF can be activated with the same or different set of options.

The member containing predefined trace options does not have to reside in the
parmlib member. GTF will accept any data set specified in the SYSLIB DD
statement of the cataloged procedure, or in the START command, as long as that
data set's attributes are compatible with those of SYS1.PARMLIB.

Setting up a cataloged procedure
Set up your own GTF cataloged procedure when you want to control details of
GTF operation such as:
v Amount of storage needed for tracing
v Recovery for GTF
v Number and type of trace output data sets.

If you choose to supply your own cataloged procedure, include the following
statements:

PROC
Defines your cataloged procedure.

EXEC

PGM=AHLGTF
Calls for the system to run program AHLGTF.

PARM='parm, parm...'
Options specified on the PARM parameter specify where GTF writes trace
data and the amount of storage needed for GTF to collect and save trace
data in various dump types. parm can be any of the following:

MODE={INT|EXT|DEFER}
SADMP={nnnnnnK|nnnnnnM|40K}
SDUMP={nnnnnnK|nnnnnnM|40K}
NOPROMPT
ABDUMP={nnnnnnK|nnnnnnM|0K}

Generalized Trace Facility

232 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

BLOK={nnnnn|nnnnnK|nnnnnM|40K}
SIZE = {nnnnnnK|nnnnnnM|1024K}
TIME=YES
DEBUG={YES|NO}

MODE={INT|EXT|DEFER}
Defines where GTF writes the trace data. MODE=INT directs data to a
trace table in virtual storage, and MODE=EXT directs data to a data set
on tape or DASD.

If MODE=INT, each instance of GTF will direct the trace data to a
separate trace table in virtual storage, and will ignore any DD
statements that define GTF output data sets. Choose this option when
it is very important to you to maintain good system performance while
GTF runs. The trace table cannot contain as much GTF trace data as a
data set, but will not impact performance as much as a data set
because there is no I/O overhead.

If MODE=EXT or MODE=DEFER, each instance of GTF directs the
output to a separate trace data set defined by GTFOUTxx or IEFRDER
DD statements. MODE=EXT is the default value. Choose MODE=EXT
or MODE=DEFER when you want to collect more data than will fit in
a trace table. Writing trace data to a data set does involve I/O
overhead, so choosing one of these options will impact system
performance more than MODE=INT.

MODE=DEFER will place the trace data in the GTF address space until
you enter the STOP GTF command. Every instance of GTF runs in its
own address space. During GTF end processing, each instance of GTF
will transfer the data from its address space to the output data set.

The amount of data transferred for MODE=EXT or MODE=DEFER is
one of the following:
v The default amount
v The amount specified on the SADMP|SA keyword

When the trace output data set is full, GTF continues as follows:
v Direct access: GTF resumes recording at the beginning of the data

set, when the primary allocation is full. Thus, GTF writes over
earlier trace data.

v Tape: GTF writes an end-of-file record. The tape is rewound and
unloaded, then a new volume is mounted on the tape unit. If GTF
has only one tape data set and only one unit for the data set, GTF
does not write trace records while the tape is unavailable, thus
losing trace data.
GTF can write to multiple tape units in two ways:
– Multiple GTFOUTxx DD statements can specify tape data sets.

When GTF fills one data set, it changes to the next data set.
– The IEFRDER DD statement can specify two tape units; in this

case, GTF resumes writing the current trace data on the other
unit, while rewinding and unloading the full volume.

SADMP|SA=nnnnnnK|nnnnM|40K}

Specifies the amount of storage needed to save GTF trace data for
stand-alone dumps. Specify the amount of storage in terms of either
kilobytes (K) or megabytes (M). The minimum amount is 40K, and the

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 233

maximum is 2048M minus 400K, or 2096752K. GTF rounds up the
amount to the block size boundaries for DASD data sets, or 32K
boundaries for tape data sets or internal mode. The default value for
this parameter is 40K (rounded up to the correct boundary).

SDUMP|SD={nnnnnnK|nnnnM|40K}
Specifies the amount of storage needed to save GTF trace data for SVC
dumps. Specify the amount of storage in terms of either kilobytes (K)
or megabytes (M). The minimum amount is zero, and the maximum
cannot exceed the maximum amount of storage defined by the SADMP
parameter. GTF rounds up the amount to the block size boundaries for
DASD data sets, or 32K boundaries for tape data sets or internal mode.
The default value for this parameter is 40K (rounded up to the correct
boundary).

NOPROMPT|NP
If specified, indicates that you will not be prompted to specify trace
options. Message AHL125A and AHL100A will not be issued. Use this
parameter when you have a parmlib member set up with the desired
GTF options and you want to avoid multiple replies in a sysplex
environment.

ABDUMP|AB={nnnnnnK|nnnnM|0K}
Specifies the amount of GTF trace data to be formatted in an ABEND
or SNAP dump. Specify the amount of trace data in terms of either
kilobytes (K) or megabytes (M). The minimum amount is zero, and the
maximum cannot exceed the maximum amount of storage defined by
the SADMP parameter. GTF rounds up the amount to the block size
boundaries for DASD data sets, or 64K boundaries for tape data sets or
internal mode. The default value for this parameter is 0K, which means
that no GTF data will appear in ABEND or SNAP dumps.

For ABEND or SNAP dumps. GTF formats only those records that are
directly associated with the failing address space. GTF does not format
the channel program trace data associated with the failing address
space.

BLOK={nnnnn|nnnnnK|nnnnnM|40K}
Specifies the amount of virtual storage (E)CSA that GTF will use to
collect trace data. Specify this storage amount in 4096-byte pages
(nnnnn), or in bytes (nnnnnK or nnnnnM). The maximum amount is
99999; the default is 40K. If the amount is less than 40K, GTF will use
the default.

SIZE={nnnnnK|nnnnnM|1024K}
Specifies the size of the buffers. Specify this amount in bytes (nnnnnK
or nnnnnM). The range for the size keyword is 1M to 2046M. The
maximum amount is 2046M; the default is 1024K. If the amount is less
than 1024K, GTF will use the default.

TIME=YES

Specifies that every GTF trace record have a time stamp, as well as the
block time stamp associated with every block of data. The time stamp
is the eight-byte time of day (TOD) clock value at the local time in
which GTF puts the record into the trace table. GTF does not accept
TIME=NO; all output records will have time stamps. Local time is
calculated using a time zone offset that GTF establishes at the time that
the trace starts. If the system time zone offset is changed during
tracing, e.g. in response to daylight saving time going into effect, local

Generalized Trace Facility

234 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

times formatted by GTF will not correspond with system times
afterward.
When you use IPCS to format and print the trace records, a time stamp
record follows each trace record. You can use these time stamp records
to calculate the elapsed time between trace entries. The time stamp
record is described in “Time stamp records” on page 268.

DEBUG={YES|NO}
Specifies whether GTF should attempt recovery after it encounters an
error. If DEBUG=YES, GTF will not attempt any recovery. Instead, GTF
will issue an error message and end after encountering any error, so
that the contents of the trace table immediately prior to the error
remain intact.

If DEBUG=NO, which is the default, GTF does the following:
v For errors in GTF processing, GTF continues processing after doing

one or more of the following:
– Flagging the trace record or trace record field associated with the

error
– Issuing a message to the console to inform that an error occurred
– Suppressing the error or function in which the error occurred.

v For errors that do not occur in GTF itself, GTF ends abnormally. If
GTF stops processing, that will not cause any other task to also stop.

TIME=nnnn
Specifies unlimited processor time for GTF.

REGION=nnnnK
Specifies the maximum size of the storage that GTF requires. Specify any value
from 832K to 2880K. See “Determining GTF's storage requirements” on page
237 for information about determining the value for REGION.

IEFRDER DD or GTFOUTxx DD
Defines the trace output data set or data sets. This statement is required only if
you do one of the following:
v Specify MODE=EXT or MODE=DEFER
v Use the default MODE=EXT

IEFRDER DD can be used, but does not have to be used, for one trace output
data set. Additional data sets must be defined on GTFOUTxx DD statements,
where xx is one or two characters that are valid in DDNAMES. The trace
output data set or data sets must be unique and cannot be shared across active
instances of GTF. See “Guidelines for defining GTF trace output data sets in a
cataloged procedure” on page 236 for guidance on how to define output data
sets for GTF.

SYSLIB DD
Optionally include a SYSLIB DD statement to define the IBM-supplied
member, or the installation-supplied member, that contains GTF trace options.
If the member exists, GTF will use the options in that member. If the member
does not exist, GTF will issue an error message and stop.

If you code a procedure that does not contain a SYSLIB DD statement, GTF
issues message AHL100A to prompt for options after the START GTF
command. In response, you can supply the desired trace options through the
console. See “Specifying or changing GTF trace options through system
prompting” on page 240 for examples of specifying options through the
console.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 235

Guidelines for defining GTF trace output data sets in a cataloged
procedure
The trace output data sets must be specific to each instance of GTF and can be
defined in the cataloged procedure. Each instance of GTF to be started must have a
separate cataloged procedure, or if the same cataloged procedure is used, then a
different trace data set must be supplied with the START command

Use the following guidelines for specifying trace output data sets on the IEFRDER
DD or GTFOUTxx DD statements:
v You can define up to 16 output data sets for GTF to use. If you define more than

16 data sets, GTF will accept the first 16 and ignore the rest.
v If GTF cannot open all of the data sets, it issues a message that identifies those

that are unopened, and continues processing with those that are open.
v Do not specify the RLSE option while using the SPACE parameter because the

output data sets are opened and closed more than once while GTF runs.

Note: If the GTF trace output resides on a SMS managed volume you should
ensure the SMS management class does not allow partial release.

v Do not request secondary extents for trace data sets. GTF will only use the first
extent.
To obtain the maximum degree of control over the number of trace entries for
which space is allocated, specify space allocation in blocks, using a block length
that matches the BLKSIZE of your trace data set. Do not specify any secondary
space. Use the CONTIG option to request contiguous blocks. For example, if
your BLKSIZE is 8192, code the SPACE keyword as follows:
SPACE=(8192,(500,0),,CONTIG)

v All data sets must be in the same device class: either DASD or tape, but not
both. If you mix device classes, GTF will ignore the tapes and use only DASD.
However, the data sets can have different device types; for example, you can
mix 3380 and 3390 device types.

v DSNTYPE=LARGE data sets are treated like conventional data sets except they
can occupy more than 64K tracks per volume.

v VSAM linear data sets are treated like conventional data sets. The use of a data
set is rejected if it does not comply to the 32K control interval size requirement.
The VSAM extended addressing option is accepted.
When WRAP processing is requested, the primary space request is consulted
and only control intervals contained within that space are used. Unlike
non-VSAM data sets used for WRAP processing, the primary space does not
have to be satisfied using a single extent. A data set must be empty or have been
defined with the REUSE attribute. If neither of the two conditions exists, GTF
rejects the use of the data set.
When WRAP processing is not requested, control intervals are filled until GTF is
stopped or the data set is full.

Note: GTF and CTRACE accept a single VSAM linear data set as output.
VSAM's support for striping can increase data rate without the complexity
associated with the use of distinct data sets.

v GTF and CTRACE support placement of NOWRAP traces in cylinder-managed
space. WRAP traces placed in VSAM linear data sets can reside in
cylinder-managed space too. WRAP traces in non-VSAM data sets cannot be
placed in large format data sets, extended format data sets, or cylinder-managed
space.

Generalized Trace Facility

236 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v To ensure the most efficient GTF processing, do not specify any particular block
size for the output data set or data sets in either:
– The cataloged procedure for GTF
– The JCL, TSO/E commands, or interactive system productivity

facility/program development facility (ISPF/PDF) panels that you might use
to preallocate the data set or data sets

The system computes an optimal block size when it opens each data set.
EXCEPTION: If you want GTF to use an unlabeled tape as the output data set,
you must specify the logical record length and block size when you allocate that
data set.

v If you define more than one data set, you should ensure that the number of
paths to the data sets equals the number of data sets.

v You can specify the number of channel programs for each output data set using
the NCP parameter on each DD statement. The NCP value determines the rate
at which GTF transfers data to the output data sets. For example, if you want to
transfer data to your data sets at a rate of 25 buffers per second and you have 5
data sets, you will need to specify an NCP value of 5. GTF then transfers data to
the 5 data sets at a rate of 5 buffers per second per data set for a total rate of 25
buffers per second.
The maximum value for NCP is 255. If you do not specify a value for NCP, or if
you specify a value less than four, GTF will use the following default values:
– For tape: four
– For DASD: the number of output blocks per track, multiplied by four.

v If, when you enter the START command, you override any of the DD statements
for multiple output data sets, you must use symbolic parameters in those DD
statements. See “Using the START command to invoke GTF” on page 239 for
more information.

Determining GTF's storage requirements
The storage that GTF requires depends on the trace options you choose. After you
have decided which options you want GTF to use, use Figure 79 on page 238 to
determine the amount of storage you should specify in the REGION parameter of
either your cataloged procedure's EXEC statement or the START GTF command.
There are several types of storage to calculate:
v Extended pageable link pack area (EPLPA)
v System queue area (SQA)
v Extended common service area (ECSA)
v Region storage

Use the formulas in Figure 79 on page 238 to calculate the amount of storage
needed for each storage type. Then add them all together to arrive at the final
figure to specify on the REGION parameter. For information about the options
mentioned in the figure, see “GTF trace options” on page 246.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 237

Starting GTF
Multiple instances of GTF can be active in a system at the same time. When you
activate GTF, each instance operates as a system task, in its own address space.
The only way to activate GTF is to enter a START GTF command from a console
with master authority. Using this command, select either IBM's procedure or your
cataloged procedure for GTF. The cataloged procedure defines GTF operation; you
can accept the defaults that the procedure establishes, or change the defaults by
specifying certain parameters on the START GTF command.

Extended Pageable Link Pack Area System Queue Area

Extended Common Service Area (CSA)

Region Storage

ESQA = N

Fix = Opt + Prmpt + 8K SQA = 16500 + REG + SAVE + CBLOC

Fix: Fixed storage in pageable EPLPA while GTF
is active.

Opt: Sum of storage required for each GTF option
specified. See the table below to calculate OPT.

Prmpt: Optional additional 1.5K if any prompting

SQA: System Queue Area storage requirement.

REG: 232 bytes per processor are required for
register save areas, regardiess of whether
or not GTF is active.

SAVE: 1352 bytes per processor are required

N: Approximately 4500 times the number of
blocks specified on the BLOCK = keyword
parameter of the GTF START command.

The default is 45056 bytes.

SUBPOOL:

REGION:

GTF uses a default of 1031 kilobytes
of storage for true data.

GTF requires a minimum of an 800K
virtual region to run.

Notes:

1. When you specify more than one event from a line, the
size requirement is the same as if you specified only
one option. For example, DSP and PI require 2.5K.

2. For the maximum storage requirement round up the
storage requirement for each option you specified
to the nearest 4K boundary.

3. For the minimum storage requirement, round up the
'FIX' value to the nearest 4K boundary.

Notes:

1. When you specify PCI and either CCW or CCWP,
GTF requires the following additional SQA
storage:

16 + 1600 * (value of PCITAB in bytes)

2. When you specify either CCW or CCWP, GTF
uses 4096 additional bytes of the SQA for each
processor.

3. When you specify USRP, GTF uses 4096
additional bytes ofthe SQA for each processor.

Example:
1) Options = PIP, DSP, SLIP

Fix = 10.5 + 1.5 + 8 = 20K minimum or
= 12 + 1.5 + 8 = 21.5 = 24K maximum

2) Options = SYSM, SRM USR, TRC
Fix = 8.5 + 0 + 8K = 16.5 = 20K minimum or

= 12 + 0 + 8K = 20K maximum

options specified.

8K: 8K required for services.

for save/work areas when GTF is active.

CBLOC: 1700-2200 bytes are needed for control
blocks when GTF is active.

Option Size Required

SYSM 4K

SYS, SYSP

PI, DSP, PIP

EXT

18K

2.5K

2K

SVC, SVCP

SRM, RR, RNIO

SLIP

USR, USRP

PCI, TRC

CCW, CCWP

No Requirement

9.3K

10K

3K

8K

1.5K

SYS with DSP and/or SRM
and/or RNIO 7K

IO, IOP, SIO, SIOP, SSCH,
SSCHP 6K

Figure 79. GTF storage requirements

Generalized Trace Facility

238 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Because GTF sends messages to a console with master authority, enter the
command only on a console that is eligible to be a console with master authority.
Otherwise, you cannot view the messages from GTF that verify trace options and
other operating information.

Each instance of GTF can be assigned a unique identifier that is specified on the
START GTF command after the GTF keyword. This will allow you to recognize
and control specific instances of GTF. If a unique identifier is not specified, the
operating system assigns the default, which is the device number of the device
where the trace data set resides. See the example in the topic “Starting GTF with
trace output to an existing data set on tape” on page 242 for an instance of GTF
with the default identifier.

Using the START command to invoke GTF
The START command, without any parameters other than the IBM-supplied
procedure name and an identifier, uses the defaults of the cataloged procedure. If
that source JCL contains a DD statement for the data set member of predefined
trace options, GTF will issue a message that lists those options, and will allow you
to override them. Otherwise, GTF will prompt you to specify trace options directly
through the console. See “Specifying or changing GTF trace options through
system prompting” on page 240 for more information.

To invoke GTF, enter the following START command. For information about the
command and parameters you can use to change the GTF cataloged procedure, see
z/OS MVS System Commands.
{START|S}{GTF|membername}[.identifier]

Guidelines for overriding JCL statements in the GTF cataloged
procedure
You can override the parameters of only one output data set using the
keyword=option parameter on the START command. If you have defined more
than one output data set, and you used IEFRDER as the DDNAME for one of the
DD statements, the keywords specified on the START command will override the
attributes of the data set that IEFRDER defines. If you want to alter the attributes
of another data set, or more than one data set, you must:
v Use symbolic parameters in the JCL DD statements for those attributes you want

to change. You cannot use DD statement keywords as symbolic parameters; for
example, you cannot code UNIT=&UNIT;

v Assign values to the symbolic parameters in the EXEC or PROC statements in
the cataloged procedure.

v Specify keywords in the START command to override the symbolic parameter
values specified on the EXEC or PROC statements.

Examples of overriding the JCL statements in the GTF cataloged
procedure
The following shows examples of setting up a cataloged procedure when you want
to override JCL statements in the procedure using the keyword=option parameter
on the START command. Note that the DD statement parameters in both of the
following procedures are for example only; the needs of your installation might
require you to provide DD parameters in addition to, or other than, DSNAME,
UNIT, and DISP.

If you want to alter just one data set using the START command, your cataloged
procedure could look like Figure 80 on page 240.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 239

Enter START GTFABC,,,UNIT=TAPE, to alter only the data set that IEFRDER
defines.

If you want to alter the attributes of more than one data set with the START
command, use the JCL statements in Figure 80 in your cataloged procedure.

Enter START GTFABC,,,DEVICE=TAPE, to override the default value of the UNIT
parameter for each output data set in your cataloged procedure.

See z/OS MVS JCL Reference for more information about using symbolic parameters
in JCL statements.

Specifying or changing GTF trace options through system
prompting

After you enter the START command, GTF issues message AHL100A or AHL125A
which allows you to specify or change trace options. If the cataloged procedure or
START command did not contain a member of predefined options, GTF issues
message AHL100A, which allows you to enter trace options. If the procedure or
command did include a member of predefined options, GTF identifies those
options by issuing the console messages AHL121I and AHL103I. Then you can
accept the options, or reject and specify new options.

GTF allows overlapping of trace options when multiple instances are active. This
sequence of messages appears as:
AHL121I TRACE OPTION INPUT INDICATED FROM MEMBER memname OF PDS dsname
AHL103I TRACE OPTIONS SELECTED -
keywd=(value),...,keywd=(value)
keywd,keywd,...,keywd
AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

Note: If you specify NOPROMPT or NP on the START GTF command, the system
will not issue message AHL125A to request the respecification of trace options or
the continuation of initialization.

//GTFABC PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,REGION=2880K,TIME=1440,
// PARM=(’MODE=EXT,DEBUG=NO’)
//IEFRDER DD DSNAME=SYS1.GTFTRC,UNIT=SYSDA,
// SPACE=(4096,20),DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR
//GTFOUT1 DD DSNAME=SYS1.TRACE1,UNIT=SYSDA,DISP=(NEW,KEEP)
//GTFOUT2 DD DSNAME=SYS1.TRACE2,UNIT=SYSDA,DISP=(NEW,KEEP)
//GTFOUT3 DD DSNAME=SYS1.TRACE3,UNIT=SYSDA,DISP=(NEW,KEEP)

Figure 80. Example: altering one data set

//GTFABC PROC MEMBER=GTFPARM,NAME1=’SYS1.TRACE1’,
// NAME2=’SYS1.TRACE2’,NAME3=’SYS1.TRACE3’,
//IEFPROC EXEC PGM=AHLGTF,REGION=2880K,TIME=1440,
// DEVICE=’SYSDA’,DSPS=’OLD’
// PARM=(’MODE=EXT,DEBUG=NO’)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR
//GTFOUT1 DD DSNAME=&NAME1,UNIT=&DEVICE,DISP=&DSPS;
//GTFOUT2 DD DSNAME=&NAME2,UNIT=&DEVICE,DISP=&DSPS;
//GTFOUT3 DD DSNAME=&NAME3,UNIT=&DEVICE,DISP=&DSPS;

Figure 81. Example: Altering More Than One Data Set

Generalized Trace Facility

240 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

If you choose to reject any options in the member, you are rejecting all of the
options specified in that member. Respecifying trace options does not modify the
options in the data set member.

The format of the response is:
TRACE=trace option[,trace option]...

The trace options determine the amount of storage GTF requires. See “Determining
GTF's storage requirements” on page 237.

GTF will accept the trace options listed under “GTF trace options” on page 246.

Examples of starting GTF
In this topic you will find the following examples:
v “Starting GTF with a cataloged procedure and parmlib member”
v “Starting GTF with internal tracking”
v “Starting GTF with trace output to an existing data set on tape” on page 242
v “Starting GTF with trace options stored in SYS1.PARMLIB” on page 242
v “Starting GTF without trace options in a member” on page 243
v “Starting GTF to trace VTAM remote network activity” on page 244

Starting GTF with a cataloged procedure and parmlib member
Figure 82 shows GTF started with a cataloged procedure that indicates the
GTFPARM parmlib member. The trace options are specified in the parmlib member
record. In this example, message AHL103I displays the options specified in the
GTFPARM member: TRACE=SYSM, DSP, PCI, SRM, TRC, USR. This example
shows the messages and the reply generated by the initial START command, and
the GTFPARM specifications that are in effect. This instance of GTF can be
recognized by the EXAMPLE 1 identifier.

Starting GTF with internal tracking
Figure 83 on page 242 shows GTF, with identifier EXAMPLE2, started with
MODE=INT. The trace data is maintained in virtual storage and is not recorded on
an external device. In this example, you can override the trace options given in the
supplied parmlib member:

START GTF.EXAMPLE1

AHL121I TRACE OPTION INPUT INDICATED FROM MEMBER GTFPARM OF PDS SYS1.PARMLIB

AHL103I TRACE OPTIONS SELECTED--SYSM,USR,TRC,DSP,PCI,SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 00,U

AHL031I GTF INITIALIZATION COMPLETE

Figure 82. Example: Starting GTF with a Cataloged Procedure

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 241

Starting GTF with trace output to an existing data set on tape
Figure 84 shows how the START command is used to direct GTF trace output to an
existing data set on tape rather than to an existing data set on a DASD. The device
type and volume serial number are supplied. The disposition and name of the
trace data set are changed from DISP=(NEW,KEEP) and DSNAME=SYS1.TRACE to
DISP=(OLD,KEEP) and DSNAME=TPOUTPUT. The specified tape has a volume
serial of TRCTAP and resides on a 3400 tape drive. Note that the GTFPARM
parmlib member is used to specify the trace options.

Here the GTF keyword is not followed by a unique identifer and defaults to
volume serial number.

Starting GTF with trace options stored in SYS1.PARMLIB
Figure 85 on page 243 shows how to store trace options in a member of
SYS1.PARMLIB. This can save you time when starting GTF. First store one or more
combinations of trace options as members in SYS1.PARMLIB, and include a
SYSLIB DD statement in the cataloged procedure. When you start GTF, GTF will
then retrieve the trace options from SYS1.PARMLIB, instead of prompting you to
supply them through the console. GTF displays the trace options for you, and then
issues message AHL125A, to which you can reply U to accept the parmlib options.

This example shows the job control statements and utility JCL statements needed
to add trace options to SYS1.PARMLIB using IEBUPDTE.

START GTF.EXAMPLE2,,,(MODE=INT),DSN=NULLFILE

AHL121I TRACE OPTION INPUT INDICATED FROM MEMBER memname OF PDS dsname

AHL103I TRACE OPTIONS SELECTED - SYSM,USR,TRC,DSP,PCI,SRM

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 00,TRACE=IO,SSCH,SVC,DSP

AHL103I TRACE OPTIONS SELECTED -- DSP,SVC,IO,SSCH

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 01,U

AHL031I GTF INITIALIZATION COMPLETE

Figure 83. Example: Starting GTF with internal tracking

START GTF,3400,TRCTAP,(MODE=EXT),DISP=OLD,DSNAME=TPOUTPUT

AHL103I TRACE OPTIONS SELECTED--SYSM,DSP,PCI,SRM,TRC,USR

00 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 00,U

AHL031I GTF INITIALIZATION COMPLETE

Figure 84. Example: Start GTF, trace output to an existing data set on tape

Generalized Trace Facility

242 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

A sample SYSLIB DD statement to be included in a GTF cataloged procedure
might look like this:
//SYSLIB DD DSN=SYS1.PARMLIB(GTFA),DISP=SHR

The new member name can also be specified on the START command while using
the IBM-supplied GTF procedure, as in the following example:
S GTF,,,(MODE=EXT,TIME=YES),MEMBER=GTFB

For more information see the following references:
v See z/OS DFSMSdfp Utilities for descriptions of the statements.
v See z/OS MVS JCL Reference for descriptions of the statements.
v See z/OS MVS Initialization and Tuning Reference for further information about

SYS1.PARMLIB.

Starting GTF without trace options in a member
Figure 86 on page 244 shows an installation-written procedure where there is no
predefined member with trace options specified. The procedure contains no
SYSLIB DD statement. When GTF is started with a procedure containing no
SYSLIB DD statement, message AHL100A is issued to prompt for GTF trace
options.

In this example, an installation-written cataloged procedure, USRPROC, is invoked
to start GTF in external mode to a direct access data set, ABCTRC, on device 250.
The trace options selected result in trace data being gathered for:
v All SVC and IO interruptions
v All SSCH operations
v All matching SLIP traps with a tracing action specified or SLIP traps in DEBUG

mode
v All dispatcher events
v All issuers of the GTRACE macro will have their user data recorded in the trace

buffers.

The trace data is written into the data set ABCTRC. (Note that when the end of the
primary extent is reached, writing continues at the beginning.)

//GTFPARM JOB MSGLEVEL=(1,)
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=SYS1.PARMLIB,DISP=SHR
//SYSIN DD DATA
./ ADD NAME=GTFA,LIST=ALL,SOURCE=0
TRACE=SYSP,USR
SVC=(1,2,3,4,10),IO=(D34,D0C),SSCH=ED8,PI=15
./ ADD NAME=GTFB,LIST=ALL,SOURCE=0
TRACE=IO,SSCH,TRC
./ ADD NAME=GTFC,LIST=ALL,SOURCE=0
TRACE=SYS,PCI
/*

Figure 85. Example: Starting GTF with trace options stored in SYS1.PARMLIB

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 243

Starting GTF to trace VTAM remote network activity
GTF can trace VTAM activity only if VTAM is started with the GTF option. See
z/OS V2R1.0 Communications Server: SNA Operation for details. In Figure 87, GTF
options are not stored in parmlib; the the trace options are entered at the console.
Three GTF options are required to record all VTAM traces:
v RNIO must be specified so that the VTAM I/O trace can function for an NCP or

a remote device attached to the NCP.
v IO or IOP must be specified so that the VTAM I/O trace can function for a local

device.
v USR or USRP must be specified so that the VTAM buffer and the NCP line

traces can function.

You must enter the START GTF command before a trace can be activated from
VTAM.

Stopping GTF
You can enter the STOP command at any time during GTF processing. The amount
of time you let GTF runs depends on your installation and the problem you are
trying to capture, but a common time is between 15 and 30 minutes.

If you are running GTF to gather information related to a problem for which a
SLIP trap has been defined, you can instruct SLIP to stop all instances of GTF

START USRPROC,250,333005,(MODE=EXT),DSN=ABCTRC

00 AHL100A SPECIFY TRACE OPTIONS

REPLY 00,TRACE=SVC,SSCH,IO,DSP,SLIP,USR

AHL103I TRACE OPTIONS SELECTED--USR,DSP,SVC,IO,SLIP,SSCH

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 01,U

AHL031I GTF INITIALIZATION COMPLETE

Figure 86. Example: Starting GTF without trace options in a member

START MYPROC.EXAMPLE8,,,(MODE=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

REPLY 00,TRACE=RNIO,IO,USRP

AHL103I TRACE OPTIONS SELECTED--IO,USRP,RNIO

01 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 01,USR=(FF0,FF1),END

AHL031I GTF INITIALIZATION COMPLETE

Figure 87. Example: Starting GTF to trace VTAM remote network activity

Generalized Trace Facility

244 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

when the trap conditions are satisfied. For additional information, see the SLIP
Command documentation in z/OS MVS System Commands.

To stop GTF processing, enter the STOP command. The STOP command must
include either the GTF identifier specified in the START command, or the device
number of the GTF trace data set if you specified MODE=EXT or MODE=DEFER
to direct output to a data set. If you have not specified the GTF identifier in the
START command, then those instances of GTF will have the same identifier: the
volume serial number.

If you are not sure of the identifier or the device number of the trace data set,
enter the following command:
DISPLAY A,LIST

Figure 88 shows the output produced by the DISPLAY A,LIST command. In this
example, the identifier for GTF is EVENT1.

You must enter the STOP command at a console with master authority. The general
format of the STOP command is as follows:

For example, to stop GTF for the identifier EVENT1 (as shown in Figure 88), enter
the command:
STOP EVENT1

When the STOP command takes effect, the system issues message AHL006I. If the
system does not issue message AHL006I, then GTF tracing continues, remaining
active until a STOP command takes effect or the next initial program load (IPL).
When this happens, you will not be able to restart GTF tracing. In this case, you
can use the FORCE ARM command to stop GTF.

If there were several functions started with the same identifier on the START
command, using the same identifier on the STOP command will stop all those
functions.

If the volume serial number is used on the STOP command, all instances of GTF
with trace data directed to a data set on that volume serial are stopped. This is
independent of the identifier assigned to each instance of GTF.

For example, if three instances of GTF are active with the identifiers EX1, EX2, and
EX3 directing trace data to different data sets to the same volume with volume
serial number 1020, then the following command will stop all the 3 instances of
GTF.
STOP 1020

IEE114I 14.51.49 1996.181 ACTIVITY FRAME LAST F E SYS=SY1
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00000 00003 00000 00016 00000 00000/00000 00000
LLA LLA LLA NSW S VLF VLF VLF NSW S
JES2 JES2 IEFPROC NSW S
GTF EVENT1 IEFPROC NSW S

Figure 88. Example: recognizing GTF identifier in DISPLAY A,LIST output

{STOP|P} identifier

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 245

See z/OS MVS System Commands for more information about the STOP and FORCE
ARM commands.

You can also use an identifier to stop GTF. In this example, the following
command starts GTF tracing with the identifier EXAMPLE and with trace data
maintained in the GTF address space. The DSN keyword is entered to prevent
allocation of an external trace data set as specified in the cataloged procedure.

START GTF.EXAMPLE,,,(MODE=INT),DSN=NULLFILE

To stop GTF tracing, you would issue the following command:
STOP EXAMPLE

In some instances, you may need to display the active jobs before stopping GTF.
The example shown in Figure 89 starts GTF tracing with trace data recorded on an
external device, data set GTF.TEST01. Another instance of GTF with an identifier
EX1 is started with trace data directed to another data set on the same volume.
Note that you do not have to specify MODE=EXT, because it is the default.

Because it is not apparent which is the GTF recording device, you have to display
active jobs with the DISPLAY A,LIST command before stopping GTF. In Figure 90,
the device number for GTF is 0227.

If you only want to stop only the second instance of GTF, issue the following
command:
STOP EX1

If you want to stop both instances, issue the following command:
STOP 227

GTF trace options
This topic describes the GTF options you can specify through either system
prompting in response to the START GTF command or in a predefined parmlib or
data set member. However, GTF will not use certain combinations of options; see
Table 36 on page 251 for a list of those combinations.

Some GTF trace options also require keywords. If you specify options requiring
keywords in the member or data set containing the predefined options, it must
also contain the associated keywords. These are explained in “Prompting
keywords” on page 252.

S GTF,,,DSNAME=GTF.TEST01,VOLUME=SER=IPCS01,DISP=OLD
S GTF.EX1,DSNAME=GTF.TEST02,VOLUME=SER=IPCS01

Figure 89. Example: Starting instances of GTF

IEE114I 09.33.45 1996.183 ACTIVITY 951
JOBS M/S TS USERS SYSAS INITS ACTIVE/MAX VTAM OAS
00001 00006 00001 00015 00002 00001/00300 00000
LLA LLA LLA NSW S VLF VLF VLF NSW S
VTAM VTAM VTAM NSW S JES2 JES2 IEFPROC NSW S
TCAS TCAS TSO OWT S SDJSST1B STEP1 OWT J
GTF 0227 IEFPROC NSW SGTF EX1 IEFPROC NSW S

Figure 90. Example: DISPLAY A,LIST command output

Generalized Trace Facility

246 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

ASIDP
Requests that GTF tracing be limited to a subset of address spaces. ASIDP
requests GTF prompting for one to five address space identifiers (ASID) in
which you want GTF tracing to occur. ASIDP works only with a GTF option
that generates tracing, such as SVC or IO. For information about responding to
GTF prompts, see “Prompting keywords” on page 252.

CCW
Requests tracing of channel programs and associated data for I/O events.
CCW is valid only if the other trace options include SSCH, SSCHP, IO, or IOP.
See Table 36 on page 251.

CCWP
Requests tracing of channel programs and associated data for I/O events, and
requests GTF prompting for the following information:
v Tracing channel command words (CCW) or device command words (DCW)

for start subchannel (SSCH) operations or I/O interruptions or both
v Maximum number of CCWs or device command words (DCW) for each

event
v Maximum number of bytes of data for each CCW or DCW
v Optional input/output supervisor block (IOSB), input/output block

extension (IOBE, zHPF channel programs only), and error recovery
procedure work area (EWA) tracing

v Size of the program controlled interrupt (PCI) table

For information about responding to GTF prompts, see “Prompting keywords”
on page 252.

CCWP is valid only if the other trace options include SSCH, SSCHP, IO, or
IOP. See Table 36 on page 251.

CSCH
Requests recording for all clear subchannel operations. See Table 36 on page
251 for more information on combining this option with other GTF options.

DSP
Requests recording for all dispatchable units of work: service request block
(SRB), local supervisor routine (LSR), task control block (TCB) and Supervisor
Call (SVC) prolog dispatch events. If you specify both the SYSM and DSP trace
options, GTF records minimal trace data for DSP. Otherwise, GTF records
comprehensive trace data for DSP.

EXT
Requests comprehensive recording for all external interruptions. See Table 36
on page 251 for more information on combining this option with other GTF
options.

HSCH
Requests recording for all halt subchannel operations. See Table 36 on page 251
for more information on combining this option with other GTF options.

IO
Requests recording of all non-program-controlled I/O interruptions. Unless
you also specify the PCI trace option, GTF does not record program-controlled
interruptions. See Table 36 on page 251 for more information on combining this
option with other GTF options.

IOX
Requests recording of all non-program-controlled I/O interruptions providing
a summary of a complete channel program for the I/O interruption in an I/O

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 247

summary trace record. Unless you also specify the PCI trace option, GTF does
not record program-controlled interruptions.

IOP
Requests GTF prompting for specific device numbers for which you want GTF
to record non-program-controlled I/O interruptions. Unless you specify the
PCI trace option, GTF does not record program-controlled interruptions. See
Table 36 on page 251 for more information on combining this option with other
GTF options. For information about responding to GTF prompts, see
“Prompting keywords” on page 252.

IOXP
Requests GTF prompting for specific device numbers for which you want GTF
to record non-program-controlled I/O interruptions providing a summary of a
complete channel program for the I/O interruption in an I/O summary trace
record. Unless you specify the PCI trace option, GTF does not record
program-controlled interruptions. For more information on responding to GTF
prompts, see “Prompting keywords” on page 252.

If an installation chooses to specify either IO or IOP in addition to IOX or
IOXP, they will receive IOX records for DASD and tape devices and IO records
for all other devices.

JOBNAMEP
Requests that GTF tracing be limited to a subset of jobs. JOBNAMEP requests
GTF prompting for one through five job names for which you want GTF
tracing to occur.

These job names can be generic, as well as specific, job names. If you want to
specify generic job names, use * or % in the job name.

The asterisk is a placeholder for one or more valid job name characters, or
indicates no characters. For example, if you enter JOBNAMEP=I*MS*, GTF will
process trace data for address spaces with job names IABMS01, IAMS, IMS,
IMSA, IMS00012, and so on. However, if you enter JOBNAMEP=*MASTER*,
that job name represents only the master address space.

The percent symbol is a vplaceholder for a single valid job name character. For
example, if you enter JOBNAMEP=I%MS%%, GTF will process trace data for
address spaces with job names IAMS01 and IXMSBC, but not job names
IMS001 or I999MS. The combination %* is a placeholder for at least one
character.

JOBNAMEP works only with a GTF option that generates tracing, such as SVC
or IO. For information on responding to GTF prompts, see “Prompting
keywords” on page 252.

MSCH
Requests recording for all modify subchannel operations. See Table 36 on page
251 for more information on combining this option with other GTF options.

PCI
Requests recording of intermediate status interruptions in the same format as
other I/O trace records that GTF creates. Specifically, PCI causes GTF to record
program-controlled I/O interruptions, initial status request interruptions,
resume subchannel operation instruction, and suspend channel program
interruptions. When you select specific devices as a result of prompting for
I/O events (IOP trace option), GTF records intermediate status interruptions
for only those devices. PCI is valid only when the other trace options include
IO, IOP, SYS, SYSM, or SYSP.

Generalized Trace Facility

248 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

PCIE
Requests tracing of PCI load and store instructions, adapter interrupts, and
PCIE de-multiplexing requests.

PFIDP
Requests that GTF tracing of PCIE-related events be limited to a subset of the
PCIE function identifiers (PFIDs). PFIDP requests GTF prompting for 1 to 256
PFIDs or PFID ranges in which you want GTF tracing to occur. PFIDP is only
valid when the PCIE trace option is specified. For information on responding
to GTF prompts, see “Prompting keywords” on page 252.

PI
Requests comprehensive recording for all program interruptions (0-255). See
Table 36 on page 251 for more information on combining this option with other
GTF options.

PIP
Requests GTF prompting for those interruption codes for which you want GTF
to record program interruptions. For information about responding to GTF
prompts, see “Prompting keywords” on page 252. See Table 36 on page 251 for
more information on combining this option with other GTF options.

RNIO
Requests recording of all Virtual Telecommunications Access Method (VTAM)
network activity. If you specify both the SYSM and RNIO trace options, GTF
will record minimal trace data for RNIO. Otherwise, GTF records
comprehensive trace data for RNIO.

RR
Requests comprehensive recording of data associated with all invocations of
recovery routines (such as STAE and ESTAE routines). GTF creates a trace
record describing the activity of the recovery routine when control passes from
the recovery routine back to the recovery termination manager (RTM). See
Table 36 on page 251 for more information on combining this option with other
GTF options.

{SIO|SIOP}
If you specify the SIO or SIOP trace option, GTF processes that request as a
request for SSCH or SSCHP. GTF issues message AHL138I to indicate this
substitution. Subsequent messages refer to the original SIO or SIOP trace
option.

Note: The SIO keyword is provided only for compatibility; it is recommended
that you use the SSCH keyword instead. The SIOP option is provided only for
compatibility; it is recommended that you use the SSCHP option instead.

SLIP
Requests that a trace entry be made each time:
v A match occurs for a SLIP trap with ACTION=TRACE
v A SLIP trap with the SLIP DEBUG option is checked

The amount of data and the type of SLIP trace record to be built is specified on
the SLIP command.

SRM
Requests recording of trace data each time the system resource manager (SRM)
is invoked. If you specify both the SYSM and SRM trace options, GTF records
minimal trace data for SRM. Otherwise, GTF records comprehensive trace data
for SRM.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 249

|
|
|

|
|
|
|
|
|

SSCH
Requests recording for start subchannel and resume subchannel operations. See
Table 36 on page 251 for more information on combining this option with other
GTF options.

SSCHP
Requests GTF prompting for the specific device numbers for which you want
GTF to record start subchannel and resume subchannel operations. For
information about responding to GTF prompts, see “Prompting keywords” on
page 252. See Table 36 on page 251 for more information on combining this
option with other GTF options.

SVC
Requests comprehensive recording for all SVC interruptions. See Table 36 on
page 251 for more information on combining this option with other GTF
options.

SVCP
Requests GTF prompting for those SVC numbers for which you want data
recorded. For information about responding to GTF prompts, see “Prompting
keywords” on page 252. See Table 36 on page 251 for more information on
combining this option with other GTF options.

SYS
Requests recording of comprehensive trace data for all of the following:
v Clear subchannel operations
v External interruptions
v Halt subchannel operations
v I/O interruptions
v Modify subchannel operations
v Program interruptions
v Recovery routines
v Start subchannel and resume channel operations
v SVC interruptions.

Because specifying SYS automatically causes GTF to trace all of these events,
GTF will ignore the following trace options if you specify them in any form:
CSCH, HSCH, MSCH, SSCH, EXT, IO, PI, RR, SVC. See Table 36 on page 251
for more information on combining this option with other GTF options.

SYSM
Requests recording of minimal trace data for the same events as SYS.

Because specifying SYSM automatically causes GTF to trace all of these events,
GTF will ignore the following trace options if if you specify them in any form:
CSCH, HSCH, MSCH, SSCH, EXT, IO, PI, RR, SVC.

If if you specify DSP, RNIO, or SRM in addition to SYSM, GTF produces
minimal, rather than comprehensive, trace data for those events.

SYSP
Requests recording for the same events as the SYS option, but causes GTF to
prompt for selection of specific SVC, IO, SSCH, and PI events that you want
recorded. For information about responding to GTF prompts, see “Prompting
keywords” on page 252.

Because specifying SYSP automatically causes GTF to trace all of these events,
GTF will ignore the following trace options if you specify them in any form:

Generalized Trace Facility

250 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CSCH, HSCH, MSCH, SSCH, EXT, IO, PI, RR, SVC. See Table 36 for more
information on combining this option with other GTF options.

TRC
Requests recording of those trace events that are associated with GTF itself.
Unless you request TRC, GTF will not trace these events. TRC works only with
a GTF option that generates tracing, such as SVC or IO.

USR
Requests recording of all data that the GTRACE macro passes to GTF. You
must specify USR or USRP to trace data from the GTRACE macro. Use USRP
for specific events. If USR is used instead of USRP, the trace data set might be
full of unwanted records. When you code the GTRACE macro but do not
specify USR or USRP, GTF ignores the GTRACE macro. See Table 36 for more
information on combining this option with other GTF options.

Reference

See z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about coding the GTRACE macro.

USRP
Requests GTF prompting for specific event identifiers (EID) of the data that the
GTRACE macro passes to GTF. The EIDs represent user, program product, or
IBM subsystem and component events. See Table 39 on page 257 for a list of
EID values.

See Table 36 for more information on combining this option with other GTF
options. For information about responding to GTF prompts, see “Prompting
keywords” on page 252.

XSCH
Requests recording all cancel subchannel operations.

See Table 36 for more information on combining this option with other GTF
options. For information about responding to GTF prompts, see Table 37 on
page 252.

Combining GTF options
Table 36 shows those TRACE options that GTF will not use in combination. If two
or more options from the same row are specified, GTF uses the option that has the
lower column number and ignores the other options. For example, if you specify
both SYSP and PI (see row D), GTF uses SYSP (column 2) and ignores PI (column
5).

Table 36. Combining GTF options

Row
Columns

1 2 3 4 5

A SYSM SYSP SYS SSCHP SSCH

B SYSM SYSP SYS IOP, IOXP IO, IOX

C SYSM SYSP SYS SVCP SVC

D SYSM SYSP SYS PIP PI

E SYSM SYSP SYS EXT

F SYSM SYSP SYS RR

G SYSM SYSP SYS CSCH

H SYSM SYSP SYS HSCH

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 251

Table 36. Combining GTF options (continued)

Row
Columns

1 2 3 4 5

I SYSM SYSP SYS MSCH

J SYSM SYSP SYS XSCH

K CCWP CCW

L USRP USR

If an installation chooses to specify either IO or IOP in addition to IOX or IOXP,
they will receive IOX records for DASD and tape devices and IO records for all
other devices.

Prompting keywords
When you specify any of the trace options listed in Table 37, GTF prompts for
specific values by issuing message AHL101A:
AHL101A SPECIFY TRACE EVENT KEYWORDS - keyword=,...,keyword=

The keywords issued in the message correspond to the trace options specified.
Enter only the trace event keywords appearing in the message text. The trace
options and their corresponding keywords are:

Table 37. GTF trace options and corresponding prompting keywords

Trace Option Prompting Keyword Number of Prompting Values Allowed

ASIDP ASID= 5

CCWP CCW= N/A

IOP, IOXP, SYSP IO=SSCH= Unlimited

IOP, IOXP, SSCHP, SYSP IO=SSCH= Unlimited

JOBNAMEP JOBNAME= 5

PFIDP PFID= 256

PIP, SYSP PI= 50

SSCHP, SIOP, SYSP SIO= Unlimited

SSCHP, SIOP, SYSP SSCH= Unlimited

SVCP, SYSP SVC= 50

USRP USR= 50

Note:

1. The SIO keyword is provided only for compatibility; it is recommended that you use
the SSCH keyword instead. The SIOP option is provided only for compatibility; it is
recommended that you use the SSCHP option instead.

2. Tracing a PAV base device number will cause all PAV aliases associated with that base
device number to also be traced. If I/O tracing is needed to locate issues related to PAV
alias device numbers when they are not associated with a PAV base device number,
specify the device numbers of the PAV alias devices explicitly.

Guidelines for specifying values for prompting keywords: Use the following
guidelines when replying to message AHL101A for prompting keywords:
v If you do not specify a reply for each of the keywords displayed in message

AHL101A, GTF records all the events for that trace option, which increases the

Generalized Trace Facility

252 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|||

amount of storage that GTF requires. IBM recommends that you specify values
for each keyword displayed, selecting the values that will help you debug your
problem.

v You can only enter values for keywords displayed in message AHL101A.
v GTF limits the number of specific values that you can supply through

prompting, see Table 37 on page 252 for the maximum number of values
allowed for each keyword. If you specify more than the maximum values, GTF
issues a message to which you reply by respecifying values for all appropriate
keywords.

v Keep in mind that prompting increases the amount of storage that GTF requires,
because storage requirements depend on the trace options you specify. See
“Determining GTF's storage requirements” on page 237 for further information.

v Within a given reply, each keyword that you specify must be complete. If you
need more values for a keyword than will fit into one reply, repeat the keyword
in the next reply, and code the additional values for that keyword. The following
are examples of correct replies:
REPLY 01 IO=(191-193),SVC=(1,2,3,4,5)
REPLY 01 SVC=(6,7,8,9,10)

The maximum number of values that GTF allows for a keyword does not
change, regardless of whether you enter one or more replies to specify all the
values for the keyword.

v After supplying all keywords and values, you must enter the END keyword,
which signifies that the event definition is complete. If the system does not find
the END keyword in a reply, the system issues message AHL102A to prompt for
additional event keywords and values. When the system finds the END
keyword, the system issues message AHL103I to list all of the trace options that
are in effect.

For sample prompting sequences, see “Examples of sample prompting sequences”
on page 257.

Use the following keywords when GTF prompts for values by issuing message
AHL101A:

ASID=(asid1[,asidn]...[,asid5])

Specifies one through five identifiers for address spaces in which you want
GTF tracing to occur. The values ‘asid1’ through ‘asid5’ are hexadecimal
numbers from X'0001' to the maximum number of entries in the address space
vector table (ASVT). If you specify ASIDP, but do not specify ASID= before
replying END, GTF traces all address space identifiers.
If the number of values for ASIDP requires more than one line, and a
particular ASID value is incorrect, GTF allows you to respecify the correct
value without having to reenter all ASIDs.
If you specify both ASIDP and JOBNAMEP, GTF will trace address spaces that
ASIDP did not identify, if some of the jobs that JOBNAMEP identifies run in
other address spaces.

CCW=([S|I|SI][,CCWN=nnnnn][,DATA=nnnnn][,IOSB][,PCITAB=n])

Specifies different options for tracing channel programs. If you specify CCW=
more than once, GTF uses the last specification of CCW=.
If you specify CCWP, but do not specify a value for keyword CCW=, GTF's
default CCW tracing depends on what other trace options were specified. The
following table shows the defaults for CCW tracing depending on other trace
options specified:

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 253

Table 38. CCW defaults for selected TRACE options

Other Trace Options Selected CCW Subparameter Defaults

SSCH or SSCHP S

IO or IOP or IOX or IOXP I

SSCH or SSCHP or IO or IOP or IOX or IOXP SI

PCI PCITAB=1

SSCH or SSCHP or IO or IOP or IOX or IOXP CCWN=50

SSCH or SSCHP or IO or IOP or IOX or IOXP DATA=20

Examples:
TRACE=IO,CCWP CCW defaults to: CCW=(I,CCWN=50,DATA=20)
TRACE=IOP,SSCH,PCI,CCWP CCW defaults to: CCW=(SI,CCWN=50,DATA=20,PCITAB=1)

If you specify an option more than once in one line, GTF uses the last
specification of that option. An exception is that GTF uses the first specification
of S, I, or SI. If a line contains an error, GTF prompts you to respecify the
value.

S|I|SI
Specifies the type of I/O event for which you want channel programs
traced. If you specify more than one option, GTF uses the first option.

S Specifies GTF tracing of channel programs for start subchannel and
resume subchannel operations. CCW=S works only with the SSCH or
SSCHP trace options.

I Specifies GTF tracing of channel programs for I/O interruptions,
including program-controlled interruptions if you specify PCI as a
trace option. CCW=I works only with the IO or IOP trace options.

SI Specifies GTF tracing of channel programs for start subchannel and
resume subchannel operations and I/O interruptions. CCW=SI works
only with either SSCH or SSCHP and either IO or IOP as trace options.

CCWN=nnnnn
Specifies the maximum number of CCWs or DCWs traced for each event.
The value nnnnn is any decimal number from 1 to 32767. The default is 50.

DATA=nnnnn
Specifies the maximum number of bytes of data traced for each CCW or
DCWs. The value nnnnn is any decimal number from 0 to 32767. The
default is 20.

GTF traces nnnnn bytes of data for each CCW on the data chain. GTF
traces nnnnn bytes of data for each word in an indirect data addressing
word (IDAW) list, a modified indirect addressing word (MIDAW) list, or a
transport indirect addressing word (TIDAW) list.

For start subchannel or resume subchannel operations, GTF does not trace
data for read, read backwards, or sense commands in the channel
programs. If no data is being transferred, regardless of the type of I/O
operation, GTF does not trace data for read, read backwards, or sense
commands.

When the data count in the CCW or DCW is equal to or less than nnnnn,
GTF traces all data in the data buffer. When the data count in the CCW or
DCW is greater than nnnnn, GTF traces data only from the beginning and

Generalized Trace Facility

254 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

end of the data buffer. If you examine the traced data, you can tell whether
the channel completely filled the buffer on a read operation.

GTF uses a different CCW or DCW tracing method for a data transfer that
is in progress when an I/O interruption occurs. Instead of using the data
count in the CCW or DCW, GTF tracing depends on the transmitted data
count. The transmitted data count is the difference between the data count
in the CCW or DCW and the residual count in the subchannel status word
(SCSW), for non-zHPF channel programs and the transport status block
(TSB), for zHPF channel programs.
v When the residual count is greater than the data count in the CCW or

DCW, then GTF traces all of the data in the CCW or DCW.
v When the transmitted data count is less than or equal to nnnnn, GTF

traces all of the transmitted data.
v When the transmitted data count is greater than nnnnn, GTF traces data

only from the beginning and end of the transmitted data.

IOSB
Specifies tracing of the input/output supervisor block (IOSB), the
input/output block extension (IOBE), for zHPF channel programs, and, if
available, the error recovery procedure work area (EWA), for all CCW
events. If you do not specify IOSB, then GTF performs IOSB and EWA
tracing only if GTF encounters an exceptional condition when tracing a
channel program.

PCITAB=n
Specifies a decimal number of 100-entry increments for GTF to allocate in
an internal program-controlled interruption (PCI) table. The value of n is
an integer from 1 to 9. The default is 1 (100 entries).

The PCI table keeps track of the channel programs that use PCI. One entry
in the PCI table contains information about a program-controlled
interruption in one channel program. An entry in the PCI table includes a
CCW address and an IOSB address.

IO=(DEVCLASS=xxxx,DEVCLASS=xxxx,devnum1 [,devnumn...,devnum])
Specifies devices for which you want I/O interruptions traced. Devices are
specified by entering a device number or a device class.

The device number must be specified in hexadecimal and is not the same as
the subchannel number. If you specify any combination of IO= and SSCH=,
and IO=SSCH=, the combined number of device numbers for all prompting
keywords is unlimited. Specify device numbers individually, or as a range of
device numbers with a dash (-) or colon (:) separating the lowest and highest
number in the range. For example, to trace I/O interruptions for device
numbers 193 through 198, you specify IO=(193-198).

The device class must be specified with the DEVCLASS= keyword parameter,
which provides the ability to trace all devices in the specified device class. The
allowable keyword parameters are:

TAPE (magnetic tape devices)
COMM (communications)
DASD (direct access storage device)
DISP (display)
UREC (unit/record)
CTC (channel to channel)

If you specify IOP, IOXP, or SYSP and does not specify IO= in the response to
the prompting messages, GTF processing proceeds as if you specified IO, IOX
or SYS event keywords respectively.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 255

For the following examples, the I/O device numbers and associated device
types listed below are used:

I/O Device Number
Device Type

230 3390 DASD

450 3490 Tape Drive

575 3480 Tape Drive

663 3380 DASD

020 3274 Communications Controller

In this example, the resulting trace includes information for all DASD devices and
one 3490 tape drive at address 450.

IO=(DEVCLASS=DASD,450)

In the following example, the resulting trace includes information for all DASD
and TAPE devices and the communications controller at address 020.

IO=(DEVCLASS=DASD,DEVCLASS=TAPE,020)

In this example, the resulting trace includes information for the devices at
addresses 450, 575, and 663.

IO=(450-663)

IO=SSCH=(DEVCLASS=xxxx,DEVCLASS=xxxx,devnum1[,devnumm....
[,devnum])

Specifies devices for which you want both I/O interruptions and start
subchannel operations traced. See the IO= prompting keyword for a
description of how to specify devices to be traced.

JOBNAME=(jobname1[,jobnamen]...[,jobname5])

Specifies one through five job names for which you want GTF tracing to occur.
The values job1 through job5 must be valid job names.
These job names can be generic, as well as specific, job names. If you want to
specify generic job names, you must use * or % in the job name.
The asterisk is a placeholder for one or more valid job name characters, or
indicates no characters. For example, if the you enter JOBNAMEP=I*MS*, GTF
will process trace data for address spaces with job names IABMS01, IAMS,
IMS, IMSA, IMS00012, and so on. However, if you code
JOBNAMEP=*MASTER*, that job name represents only the master address
space.
The percent symbol is a placeholder for a single valid job name character. For
example, if you code JOBNAMEP=I%MS%%, GTF will process trace data for
address spaces with job names IAMS01 and IXMSBC, but not job names
IMS001 or I999MS. The combination %* is a placeholder for at least one
character.
If you specify JOBNAMEP, but do not specify JOBNAME before replying END,
GTF traces all job names.
If the number of values for JOBNAMEP requires more than one line, and a
particular job name value is incorrect, GTF allows you to respecify the correct
value without having to reenter all job names.
If you specify both ASIDP and JOBNAMEP, GTF will trace jobs that
JOBNAMEP did not identify, if some of the address spaces that ASIDP
identifies contain jobs that JOBNAMEP did not identify.

Generalized Trace Facility

256 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

PFID=(pfid1[,pfidn]...[,pfid256])
Specifies 1 to 256 PFIDs or PFID ranges for which you want GTF tracing to
occur. The values are hexadecimal numbers from 0 to FFFFFFFF. Leading
zeroes are allowed. For example: 1, 01, and 00000001 are all accepted. If a PFID
range is specified, the first number in the range must be lower than the second
number in the range.

Duplicate PFID values are ignored. Overlapping PFID ranges are accepted
without issuing an error message.

If you specify PFIDP, but do not specify PFID= before replying END, GTF
traces all PFIDs. If the number of values for PFIDP requires more than one
line, and a particular PFID value is incorrect, GTF allows you to re-specify the
correct value without having to reenter all PFIDs.

PI=(code0[,coden]...[,code50])

Specifies 1 through 50 program interruption codes, in decimal notation, that
you want traced. If you specify PIP or SYSP, and do not specify PI= in
response to this prompting message, GTF traces all program interruptions.

SSCH=(DEVCLASS=xxxx,DEVCLASS=xxxx,devnum1[,devnumn....,
devnum])

Specifies devices for which you want start subchannel operations traced. See
the IO= “Prompting keywords” on page 252 for a description of how to specify
devices to be traced.

SVC=(svcnum1[,svcnumn]...[,svcnum50])

Specifies 1 through 50 SVC numbers, in decimal notation, that you want
traced. If you specify SVCP or SYSP, and do not specify SVC= in response to
the prompting message, GTF traces all SVC numbers. Both SVC entry and exit
are be recorded.

USR=(event1[,eventn]...[,event50])

Specifies 1 through 50 user event identifiers (EIDs) for which you want user
data traced. The values for USR are three-digit hexadecimal numbers, as
follows:

Table 39. Event identifiers and the types of events they represent

Identifier (Hex) Type of Event

000-3FF User

400-5FF Reserved for program products

600-FFF Reserved for IBM subsystems and components

If you specify USRP and do not specify USR= in response to the prompting
message, all instances of GTRACE issued with TEST=YES will return with an
indication that tracing is not active.

Examples of sample prompting sequences
This example shows how to store prompting keywords in a SYS1.PARMLIB
member.

If you start GTF with options requiring prompting keywords stored in
SYS1.PARMLIB, these prompting keywords must also appear in the parmlib
member. If prompting keywords are used in the parmlib member without the
replies included, GTF will not obtain the replies from the console. GTF will use the
options without the prompting (for example, SVCP becomes SVC). A SYSLIB DD

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 257

|
|
|
|
|
|

|
|

|
|
|
|

statement in your cataloged procedure causes GTF to read the prompting
keywords from the specified parmlib member. The second and subsequent logical
records in the member should contain only the prompting keywords.

GTF uses either the END keyword, or end-of-file on the member as the indicator
that there is no more prompting input from parmlib. If the number of events for
one keyword require more than one record, respecify the keyword in a subsequent
prompting record with the additional events, as follows:
Record #1 TRACE=IOP,SVCP,SSCH

Record #2 IO=(D34,D0C),SVC=(1,2,3)

Record #3 SVC=(4,5,6,7,8,9,10),END

Do not respecify the keyword through the system console at this point, because
GTF will then override all of the options and keywords in the parmlib member.

When GTF finishes reading the options and prompting keywords in the parmlib
member, it displays the options through message AHL103I:
AHL103I TRACE OPTIONS SELECTED--IOP,SVCP,SSCH
AHL103I IO=(D34,D0C),SVC=(1,2,3,4,5,6,7,8,9,10)

This message may be a multiple-line message, depending on the number of
options you select. If the set of devices specified for IO= and SSCH= are identical,
message AHL103I will show them as if specified by use of IO=SSCH.

After GTF displays all of the options specified, you then have the opportunity to
accept the parmlib options, or completely change the options by respecifying them
through the console by replying to the following message:
AHL125A RESPECIFY TRACE OPTIONS OR REPLY U.

In Figure 91 on page 259, you started GTF in external mode to the data set defined
in the cataloged procedure. You selected two trace options in reply 00:
v SYSP requests that GTF trace specific system event types.
v USRP requests that GTF trace specific user entries that the GTRACE macro

generates.

Message AHL101A instructed you to specify values for the SVC, IO, SSCH, PI, and
USR keywords. In reply 01 to message AHL101A, you selected:
v Five SVCs
v Two devices for non-program-controlled I/O interruptions
v One device for SSCH operations
v Three user event identifiers.

GTF does not record any other SVC, IO, and SSCH events. Because you did not
specify any program interruption codes for PI=, GTF would trace all program
interruptions.

Generalized Trace Facility

258 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

In Figure 92 on page 260 you started GTF in external mode, using the trace options
defined in the data set specified in the cataloged procedure. You are prompted for
the information as follows:
v Message AHL100A prompts for trace options.
v In reply 00, you selected six trace options: SSCHP, IOP, PCI, CCWP, SVC, and

JOBNAMEP.
v Message AHL101A prompts to specify values for the IO, SSCH, CCW and

JOBNAME prompting keywords.
v In reply 01, you select one device for tracing both IO and SSCH events and limit

GTF tracing to one job.
v In reply 02, you specify five options for CCW tracing.

The final result of these specifications is that GTF traces CCWs for both start
subchannel operations and I/O interruptions at device 580 for the job
BACKWARD, and all SVCs in BACKWARD's address space. GTF would allocate
200 entries in the PCI table, and trace up to 100 CCWs or DCWs, up to 40 bytes of
data for each CCW or DCW, and the IOSB, IOBE, and EWA.

START MYPROC.EXAMPLE7,,,(MODE=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

REPLY 00,TRACE=SYSP,USRP

01 AHL101A SPECIFY TRACE EVENT KEYWORDS--IO=,SSCH=,SVC=,PI=,USR=

01 AHL101A SPECIFY TRACE EVENT KEYWORDS--IO=SSCH=

REPLY 01,SVC=(1,2,3,4,10),IO=(191,192),USR=(10,07A,AB)

02 AHL102A CONTINUE TRACE DEFINITION OR REPLY END

REPLY 02,SSCH=282,END

AHL103I TRACE OPTIONS SELECTED--SYSP,PI,IO=(191,192),SSCH=(282)

AHL103I SVC=(1,2,3,4,10),USR=(010,07A,0AB)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 03,U

Figure 91. Example: Specifying prompting trace options SYSP and USRP

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 259

Receiving GTF traces
GTF writes trace data in GTF trace tables in the GTF address space in storage. GTF
trace data in storage are printed or viewed as part of a dump, if the dump options
list includes TRT to request trace data. The following table shows the dumps that
have TRT in their default options. For unformatted dumps that are printed or
viewed through IPCS, format the trace data by specifying the IPCS GTFTRACE
subcommand or using the IPCS Trace Processing selection panel.

To format and print GTF trace data in a GTFOUTxx or IEFRDER data set, specify
the IPCS GTFTRACE subcommand or use the IPCS Trace Processing selection
panel.

If the GTF data was created for VTAM diagnosis, you can use the ACF/TAP
program to format the VTAM data.

Dump How to obtain trace data

ABEND dump to SYSABEND Default

ABEND dump to SYSMDUMP Not available

ABEND dump to SYSUDUMP Request SDATA=TRT

SNAP dump Request SDATA=TRT

Stand-alone dump Default

SVC dump for SDUMP or SDUMPX macro Default

SVC dump for DUMP operator command Default

SVC dump for SLIP operator command with
ACTION=SVCD, ACTION=STDUMP,
ACTION=SYNCSVCD, or ACTION=TRDUMP

Default

Any dump customized to exclude trace data Request SDATA=TRT

START USRPROC,,,(MOD=EXT)

00 AHL100A SPECIFY TRACE OPTIONS

REPLY 00, TRACE=SSCHP,IOP,PCI,CCWP,SVC,JOBNAMEP

01 AHL101A SPECIFY TRACE EVENT KEYWORDS
--IO=,SSCH=,CCW=,JOBNAME=,IO=SSCH=

REPLY 01,JOBNAME=(BACKWARD),IO=SSCH=580

02 AHL102A CONTINUE TRACE DEFINITION OR REPLY END

REPLY 02,CCW=(CCWN=100,DATA=40,PCITAB=2,IOSB,SI),END

AHL103I TRACE OPTIONS SELECTED--PCI,SVC,IO=SSCH=(580)

AHL103I CCW=(SI,IOSB,CCWN=100,DATA=40,PCITAB=2)

AHL103I JOBNAME=(BACKWARD)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 03,U

Figure 92. Example: Specifying prompting trace options

Generalized Trace Facility

260 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

For more information, see the following references:
v See z/OS MVS IPCS Commands for the GTFTRACE subcommand.
v See z/OS MVS IPCS User's Guide for the panel interface.

Combining, extracting, and merging GTF trace output
GTF trace data can be combined with other data or extracted from dumps and
data sets using two IPCS subcommands: COPYTRC and MERGE.

Use consolidated or merged trace output to show the chronology of events around
the time of an error. Specify start and stop times for the merge to see events
beginning a little before the error occurred and ending a little after. On the
CTRACE and GTFTRACE subcommands, specify the jobs and address space
identifiers (ASID) involved, so that the merged output contains only pertinent trace
records.

Merging is most useful when several components are running traces; the system
can also be running a GTF trace. Each component puts its trace records into its
own buffers independently. GTF is independent from all of the component traces.
You can merge these separate records into one chronological sequence to make
diagnosis easier.

See z/OS MVS IPCS Commands for more information about COPYTRC and
MERGE.

Combining and extracting GTF output
Use the IPCS COPYTRC subcommand to do one or more of the following:
v Consolidate GTF trace data into one data set from:

– Multiple GTF data sets
– Multiple GTF data sets, dumps, or both
– More than one system

v Extract GTF trace data from SVC dumps and stand-alone dumps
v Extract from merged data the GTF trace data for a specified list of systems

If you have GTF set up to write data for one system to multiple data sets, you can
use the IPCS COPYTRC subcommand to consolidate the data into one data set.
You should do this before you consolidate GTF data from multiple systems with
the MERGE or COPYTRC subcommands.

Figure 93 shows an example of a GTF cataloged procedure with 3 data sets defined
for GTF data from system SYS01.

//GTFABC PROC MEMBER=GTFPARM
//IEFPROC EXEC PGM=AHLGTF,REGION=2880K,TIME=1440,
// PARM=(’MODE=EXT,DEBUG=NO’)
//IEFRDER DD DSNAME=SYS1.GTFTRC,UNIT=SYSDA,
// SPACE=(4096,20),DISP=(NEW,KEEP)
//SYSLIB DD DSN=SYS1.PARMLIB(&MEMBER),DISP=SHR
//GTFOUT1 DD DSNAME=SYS01.DSN1,UNIT=&DEVICE,DISP=&DSPS;
//GTFOUT2 DD DSNAME=SYS01.DSN2,UNIT=&DEVICE,DISP=&DSPS;
//GTFOUT3 DD DSNAME=SYS01.DSN3,UNIT=&DEVICE,DISP=&DSPS;

Figure 93. Example: Consolidating GTF output from multiple data sets

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 261

From IPCS, issue the following command to consolidate the data from the data sets
defined in the cataloged procedure into one data set, GTF.SYS01:
COPYTRC TYPE(GTF)

INDATASET(SYS01.DSN1,SYS01.DSN2,SYS01.DSN3)
OUTDATASET(GTF.SYS01)

In Figure 94, the COPYTRC subcommand is used to consolidate data from 3
systems, in data sets GTF.SYS01, GTF.SYS02, and GTF.SYS03, into one output data
set, GTF.ALLSYS.

Note that just one data set per system was used on the COPYTRC command. For
best results, if you have more than one data set for a system, you should first
consolidate those using a separate instance of the COPYTRC command.

To format the output data set for GTF data, issue the following IPCS subcommand:
GTFTRACE DSNAME(ALLSYS)

Merging trace output
Use the IPCS MERGE subcommand to merge multiple traces into one
chronological sequence. The traces can be all of the following:
v Component traces from the same dump on direct access storage (DASD)
v Component traces from different dumps on DASD
v GTF trace records from a dump or data set and on tape or DASD

In Figure 95, the MERGE subcommand is used to consolidate and format data from
3 systems, in data sets GTF.SYS04, GTF.SYS05, and GTF.SYS06, into one
chronological sequence in output data set, GTF.SYSALL.

Reading GTF output
This topic shows the format of the trace records that GTF creates. When you select
your tracing options carefully, GTF provides detailed information about the system
and user events where your problem lies, making it easier to diagnose.

This section contains the following topics:
v “Formatted GTF trace output” on page 264 which has information about trace

records formatted by the IPCS GTFTRACE subcommand.
v “Unformatted GTF trace output” on page 319 which has information about

unformatted trace records.

COPYTRC TYPE(GTF)
INDATASET(GTF.SYS01,GTF.SYS02,GTF.SYS03)
OUTDATASET(GTF.ALLSYS)

Figure 94. Example: Consolidating GTF output from multiple systems

MERGE
GTFTRACE DSNAME(GTF.SYS04)
GTFTRACE DSNAME(GTF.SYS05)
GTFTRACE DSNAME(GTF.SYS06)
MERGEEND

Figure 95. Example: Merging GTF output from multiple systems

Generalized Trace Facility

262 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

“Trace options” lists the GTF trace options and the trace records they generate in
GTF trace output. Use this list to correlate the options you selected with their
associated trace records. Some trace options in the table do not have trace records
associated with them:
v ASIDP - Specifies that GTF trace only events from the select address spaces.
v JOBNAMEP - Specifies that GTF trace only events in selected jobs.
v END - Specifies the end of prompting keyword values specified.
v TRC - Specifies that GTF tracing includes the GTF address space.

Trace options

Trace Options
Trace Record Identifier

ASIDP
N/A

CCW CCW, TCW

CCWP
CCW, TCW

CSCH CSCH

DSP DSP, LSR, SDSP, SRB

END N/A

EXT EXT

HSCH HSCH

IO EOS, INTG, IO, IOCS

IOX IOX

IOP EOS, INTG, IO, IOCS

IOXP IOXP

JOBNAMEP
N/A

MSCH
MSCH

PCI PCI

PCIE PCILG, PCISTG, ADINT, PCIDMX

PFIDP N/A

PI PGM, PI

PIP PGM, PI

RNIO RNIO

RR FRR, STAE

SIO RSCH, SSCH

SIOP RSCH, SSCH

SLIP SLIP

SRM SRM

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 263

||

||

SSCH RSCH, SSCH

SSCHP
RSCH, SSCH

SVC SVC

SVCP SVC

SYS CSCH, EOS, EXT, FRR, HSCH, INTG, IO, IOCS, MSCH, PGM, PI, SSCH,
STAE, SVC

SYSM CSCH, EOS, EXT, FRR, HSCH, INTG, IO, IOCS, MSCH, PGM, PI, SSCH,
STAE, SVC

SYSP CSCH, EOS, EXT, FRR, HSCH, INTG, IO, IOCS, MSCH, PGM, PI, SSCH,
STAE, SVC

TRC N/A

USR USR

USRP USR

XSCH XSCH

Formatted GTF trace output
This topic describes GTF trace output records formatted by the IPCS GTFTRACE
subcommand. In each formatted record, the length of each field is indicated by the
number of characters. The characters indicate the type of data in the field, as
follows:

c Character

d Decimal

h Hexadecimal

x Variable information

y Variable information

The CCW trace record format uses additional letters to distinguish parts of fields.

A trace record can contain indicators to denote unusual conditions that occurred
while GTF was tracing the event for the record. The indicators are:

N/A Not applicable. The field does not apply in this record. In a 2-byte field,
not applicable appears as N/.

U/A Unavailable. GTF could not gather the information. In a 2-byte field,
unavailable appears as U/.

PPPPPPPP Unavailable because of a page fault encountered while GTF was gathering
the data (SVC only).

SSSSSSSS Unavailable because of security considerations (SVC only).
******** Unavailable because of an error that occurred while GTF was gathering

the data or due to the data being paged out.
X'EEEE' Unavailable because of a severe error that occurred while GTF was

gathering the data. This value appears in the first 2 data bytes of the trace
record. The contents of the trace record are unpredictable.

Generalized Trace Facility

264 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Trace record identifiers
Each trace record has an identifier to indicate the type of record. Table 40 lists the
identifiers alphabetically and gives the page that shows the format for the record.

Table 40. Summary of trce record identifiers

Trace Record
Identifier

GTF Trace Record Parameter in SYS1.PARMLIB
Member or Operator Reply

For format, see:

**** Time stamp “Time stamp records” on page 268

**** Lost event “Lost event records” on page 269

ADINT Adapter interruption PCIE “ADINT trace records” on page 270

CCW Non-zHPF channel
program

CCW “CCW trace records” on page 270

CSCH Clear subchannel
operation

CSCH, SYS, SYSM, SYSP “CSCH and HSCH trace records” on
page 272

DSP Task dispatch DSP “DSP and SDSP trace records” on page
274

EOS End-of-sense
interruption

IO, IOP, SYS, SYSM, SYSP “EOS, INTG, IO, IOCS, and PCI trace
records” on page 276

EXT General external
interruption

EXT, SYS, SYSM, SYSP “EXT trace records” on page 280

FRR Functional recovery
routine return

RR, SYS, SYSM, SYSP “FRR trace records” on page 281

HEXFORMAT Unformatted trace event “HEXFORMAT, SUBSYS, and SYSTEM
trace records” on page 283

HSCH Halt subchannel
operation

HSCH, SYS, SYSM, SYSP “CSCH and HSCH trace records” on
page 272

INTG Interrogate
input/output
interruption

IO, IOP, SYS, SYSM, SYSP “EOS, INTG, IO, IOCS, and PCI trace
records” on page 276

IO Input/output
interruption

IO, IOP, SYS, SYSM, SYSP “EOS, INTG, IO, IOCS, and PCI trace
records” on page 276

IOCS Input/output
interruption with
concurrent sense

IO, IOP, SYS, SYSM, SYSP “EOS, INTG, IO, IOCS, and PCI trace
records” on page 276

IOX Input/output
interruption summary
record format

IOX, IOXP, SYS, SYSM, SYSP “IOX trace records” on page 284

LSR Local supervisor routine
dispatch

DSP “LSR trace records” on page 287

MSCH Modify subchannel
operation

MSCH, SYS, SYSM, SYSP “MSCH trace records” on page 288

PCI Program-controlled
input/output
interruption

PCI “EOS, INTG, IO, IOCS, and PCI trace
records” on page 276

PCIDMX PCIE de-multiplexing
event

PCIE “PCIDMX trace records” on page 289

PCILG PCI load instruction PCIE “PCILG trace records” on page 289

PCISTG PCI store instruction PCIE “PCISTG trace records” on page 290

PGM Program interruption PI, PIP, SYS, SYSM, SYSP “PGM and PI trace records” on page
291

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 265

||||

||
|
||

||||

||||

Table 40. Summary of trce record identifiers (continued)

Trace Record
Identifier

GTF Trace Record Parameter in SYS1.PARMLIB
Member or Operator Reply

For format, see:

PI Program interruption PI, PIP, SYS, SYSM, SYSP “PGM and PI trace records” on page
291

RNIO VTAM remote network
input/output event

RNIO “RNIO trace records” on page 293

RSCH Resume subchannel SSCH, SSCHP “RSCH trace records” on page 294

SDSP Task re-dispatch DSP “DSP and SDSP trace records” on page
274

SLIP SLIP program event
interruption

SLIP “SLIP trace records” on page 295

SRB Service request block
routine dispatch or
re-dispatch

DSP “SRB trace records” on page 300

SRM System resources
manager return

SRM “SRM trace records” on page 302

SSCH Start subchannel
operation

SSCH, SSCHP, SYS, SYSM, SYSP “SSCH trace records” on page 303

STAE STAE or ESTAE
recovery routine return

RR, SYS, SYSM, SYSP “STAE trace records” on page 304

SUBSYS Unformatted trace event “HEXFORMAT, SUBSYS, and SYSTEM
trace records” on page 283

SVC Supervisor call
interruption

SVC, SVCP, SYS, SYSM, SYSP “SVC and SVCR trace records” on
page 305

SVCR Supervisor call exit SVC, SVCP, SYS, SYSM, SYSP “SVC and SVCR trace records” on
page 305

SYSTEM Unformatted trace event “HEXFORMAT, SUBSYS, and SYSTEM
trace records” on page 283

TCW zHPF channel program CCW “TCW trace records” on page 308

USR User event USR, USRP “USR trace records” on page 311

XSCH Cancel subchannel
operation

XSCH, SYS, SYSM, SYSP “XSCH trace record” on page 316

Example of formatted GTF trace output
This section contains screen images that show GTF records. IPCS produced the
screens from an example dump. These records are in comprehensive format and
are time stamped.

The GTFTRACE subcommand was issued on the IPCS Subcommand Entry panel
shown in Figure 96 on page 267.

Generalized Trace Facility

266 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 97 shows records for the start subchannel operation (SSCH) event.

The screen images in Figure 98 on page 268 and Figure 98 on page 268 show
records for two input/output (IO) interruption events. The last two rows in the
I/O statistics section will only appear for zHPF I/O events.

IPCS OUTPUT STREAM -- LINE 0 COLS 1 78
COMMAND ===> SCROLL ===> CSR

****************************** TOP OF DATA ***********************************

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
SSCH=ALL IO=ALL CCW=SI
SVC=ALL PI=ALL
EXT RNIO SRM RR DSP SLIP
**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
Minimum tracing for IO, SSCH, SVC, PI, EXT, and FRR events
All GTRACE events requested
All events associated with the execution should be traced
All DISPATCHER events traced
PCI events are to be traced
System resource manager events traced

**** GTF TRACING ENVIRONMENT ****
Release: SP7.8.0 FMID: HBB7780 System name: FIRST
CPU Model: 2097 Version: FF Serial no. 170067

SVC CODE.... 002 ASCB.... 00FB8100 CPU..... 0000
PSW..... 07041000 80000002 00000000 0557C0D0
TCB..... 006F0BF8 R15..... 00FDCAEA R0...... 00000000
R1...... 806F2BE0

GMT-01/09/2011 00:21:13.668101 LOC-01/08/2011 19:21:13.668101
SVCR CODE.... 002 ASCB.... 00FB8100 CPU..... 0000

PSW..... 07041000 80000002 00000000 0557C0D0
TCB..... 006F0BF8 R15..... 813BCF7C R0...... 813BCF7C
R1...... 02514607

GMT-01/09/2011 00:21:13.668143 LOC-01/08/2011 19:21:13.668143

Figure 96. Example: IPCS subcommand entry panel for GTFTRACE

IPCS OUTPUT STREAM -- LINE 0 COLS 1 78
COMMAND ===> SCROLL ===> CSR
SRB ASCB.... 00FC1500 CPU..... 0000

PSW..... 07040000 80000000 00000022 0217E07C
R15..... 8217E050 SRB..... I
TYPE.... INITIAL DISPATCH OF SRB

GMT-01/09/2011 00:39:44.155668 LOC-01/08/2011 19:39:44.155668
DSP ASCB.... 00FC1500 CPU..... 0000

PSW..... 07040000 80000078 00000000 013AB828
TCB..... 006FF148 R15..... 813AB828 R0...... 006E1BC0
R1...... 0217E050

GMT-01/09/2011 00:39:44.155742 LOC-01/08/2011 19:39:44.155742
SSCH.... 00982 ASCB.... 00FB8880 CPUID... 0000 JOBN.... JES2

RST..... 0FC27620 VST..... 02626620 DSID.... 006DCFEC
CC...... 00 SEEKA... 00000000 15000D07
GPMSK... 00 OPT..... 00 FMSK.... 00
DVRID... 02 IOSLVL.. 01 UCBLVL.. 01
UCBWGT.. 00 BASE.... 00982
ORB..... 00F1D4E0 13C2D081 0F1FDC68 0000FE00 00000000

00000000 00000000 00000000
GMT-01/09/2011 00:21:32.948888 LOC-01/08/2011 19:21:32.948888

Figure 97. Example: GTF record for SSCH events

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 267

Formatted trace records for events
The following sections describe different types of formatted trace records.

Time stamp records
Time stamp records mark the time an event occurred.

IO...... 00982 ASCB.... 00FB8880 CPUID... 0000 JOBN.... JES2
PSW..... 07041000 80000000 00000000 05722F66
IRB..... 10C04007 0FC27360 0C000000 00800002 00000000
TCB..... 006FF368 SENSE... N/A FLA..... 40
OPT..... 00 DVRID... 02 IOSLVL.. 01
UCBLVL.. 01 UCBWGT.. 00 BASE.... 00982

I/O Statistics:
Connect. 00000000 Pending. 01BE0000 Discon.. 01A80000
CUQ..... 00000000 DAO..... 00000000 Devbsy.. 00000000
ICMR.... 00000000 StartCt. 00000000 SamplCt. 0BEF0000
ZTotdev. D7C20000 ZDefer.. 01310000 ZCUQ.... 00000000
ZDevBsy. 00000000 ZDAO.... 00000000
IntrDly. hhhhhhhh

GMT-01/09/2011 00:21:32.944548 LOC-01/08/2011 19:21:32.944548

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
SSCH=ALL IO=ALL CCW=SI
SVC=ALL PI=ALL
EXT RNIO SRM RR DSP SLIP
**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
IO filtering requested
CCW trace prompting
IO CCW records
SSCH CCW records
All records timestamped
SSCH prompting
*** DATE/TIME: GMT-01/09/11 21:14:10 LOC-01/09/11 21:14:10.009827

Figure 98. Example: GTF records for IO interruption events

GMT-01/09/11 21:14:10.009803 LOC-01/09/11 21:14:10.009803
PCI..... 0000 ASCB.... 00000000 CPUID... 0000 JOBN....

PSW..... 00000000 00000000 00000000 00000000
IRB..... 00000000 00000000 00000000 00000000 00000000
TCB..... 00000000 SENSE... 0000 FLA..... 00
OPT..... 00 DVRID... 00 IOSLVL.. 00
UCBLVL.. 00 UCBWGT.. 00 BASE.... 00000

GMT-01/09/11 21:14:10.009955 LOC-01/09/11 21:14:10.009955
EOS..... 10000 ASCB.... 00000000 CPUID... 8861 JOBN....

PSW..... 00000000 00000000 00000000 00000000
IRB..... 00000000 00000000 00000000 00000000 00000000
TCB..... 00000000 SENSE... 0000 FLA..... 00
OPT..... 00 DVRID... 00 IOSLVL.. 00
UCBLVL.. 00 UCBWGT.. 00 BASE.... 00000

GMT-01/09/11 21:14:10.078486 LOC-01/09/11 21:14:10.078486
CSCH.... 10000 ASCB.... 00000000 CPUID... 0000 JOBN....

DEV..... 0000 SFLS.... 0000 SID..... 00000000
CC...... 00 DVRID... 00 ARDID... 00
IOSLVL.. 00 UCBLVL.. 00 UCBWGT.. 00
BASE.... 00000

GMT-01/09/11 21:14:10.099752 LOC-01/09/11 21:14:10.099752
HSCH.... 10000 ASCB.... 00000000 CPUID... 8861 JOBN....

DEV..... 0000 SFLS.... 0000 SID..... 00000000
CC...... 00 DVRID... 00 ARDID... 00
IOSLVL.. 00 UCBLVL.. 00 UCBWGT.. 00
BASE.... 00000

GMT-01/09/11 21:14:10.119803 LOC-01/09/11 21:14:10.119803
****************************** END OF DATA ***********************************

Figure 99. Example: More GTF records for IO interruption events

Generalized Trace Facility

268 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Record Format After Each Trace Record

GMT-mm/dd/yy hh:mm:ss
Month/day/year and Greenwich mean time given in hour:minute:second
format.

LOC-mm/dd/yy hh:mm:ss.dddddd
Month/day/year and local time given in hour:minute:second.microsecond
format. Local time is calculated using a time zone offset established when
tracing starts.

Source index records
Source index records are added when GTF trace records are consolidate using the
IPCS COPYTRC subcommand. The records identify the system that produced the
GTF trace record.

Record Format After Each Trace Record, if the GTF trace records are consolidated
with the IPCS COPYTRC subcommand:

The source index record indicates that the GTF trace record was produced by the
system with identifier 01. Identifiers include the system name and the trace options
in effect for that system. The identifiers are listed at the top of the IPCS report.

Lost event records
A lost event record indicates that GTF lost the trace records for one or more events
because of an error or overflow of the trace buffer.

Record Format When GTF Trace Buffer is Lost due to Error

hh.mm.ss.dddddd
The time of day (hour.minute.second.microsecond) when GTF placed the first
trace record in the buffer.

The size of the GTF trace buffer is:
v Equal to the blocksize used by GTF when writing the trace data, if GTF is

writing the trace records to a data set on a direct access storage device (DASD).
The system displays the blocksize in message AHL906I. If the records are to be
written to a data set, the system issues message AHL906I after starting GTF.

v 32,760 bytes, if GTF is writing the trace records to a data set on tape.
v 32,768 bytes, if GTF is writing the trace records only into internal trace buffers.

Record Format for Number of Trace Events Lost due to Errors or Trace Buffer
Overflow

GMT-mm/dd/yy hh:mm:ss:dddddd LOC-mm/dd/yy hh:mm:ss.dddddd

SOURCE INDEX: 01

**** ONE TRACE BUFFER LOST TIME hh.mm.ss.dddddd

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 269

dddddddddd
The number of lost events

mm/dd/yyyy
The date (in month/day/year format) when GTF placed the first trace record
in the current trace buffer.

hh.mm.ss.dddddd
The time of day (hour.minute.second.microsecond) when GTF placed the first
trace record in the current trace buffer.

ADINT trace records
ADINT records represent adapter interruptions.

ASCB hhhhhhhh
Address of the ASCB for the address space that was active when the adapter
interruption occurred on this CPU.

CPUID hhhh
Address of the processor on which the adapter interruption occurred.

JOBN cccccccc
Name of the job associated with the address space that was active when the
adapter interruption occurred on this CPU.

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Program status word (PSW) stored when the interruption occurred.

ISC hh
Interruption subclass.

AISM hh
Adapter source identification mask.

CCW trace records
A CCW record represents the processing of a non-zHPF channel program. CCW
trace records appear following EOS, IO, IOCS PCI, RSCH, or SSCH trace records;
they do not appear alone. Any of the formats can appear in any combination in
one CCW trace record.

****** LOST EVENTS NUM ddddddddddddd LOCAL TIME mm/dd/yyyy hh.mm.ss.nnnnnn ***

ADINT... ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ISC..... hh AISM.... hh

Generalized Trace Facility

270 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

FORMAT d ccc
Format (d) and type of trace event (ccc): EOS, IO, IOCS, PCI, RSCH, or SSCH.
Format is either zero or 1.

DEV shhhh
DEV snnnn

Device number from the UCBCHAN field of the UCB. This number is qualified
with the subchannel identifier (UCBSID).

ASCB hhhhhhhh
Same as the ASCB field in the IO, IOCS, SSCH, RSCH, PCI, or EOS base
record.

CPU hhhh
Same as the CPU ID field in the IO, IOCS, SSCH, RSCH, PCI, or EOS base
record.

JOBN cccccccc
Same as the job named (JOBN) field in the IO, IOCS, SSCH, RSCH, PCI, or
EOS base record.

Fhhhhhhh
Fullword address of the CCW. If the high order bit of the address is on, this is
the real address of the CCW, otherwise this is the virtual address of the
address of the CCW.

---CCW--
Is the CCW command. The command is either a format 0 or format 1 CCW.
v Format 0 CCW is in the format ooaaaaaa ffuubbbb
v Format 1 CCW is in the format ooffbbbb aaaaaaaa

oo op code.

aaaaaa Real address of data associated with the CCW. If indirect address
words (IDAWs) are present, this is the address of the IDAW list.

aaaaaaaa
Fullword real address of data associated with the CCW. If IDAWs
are present, this is the address of the IDAW list.

CCW CHAIN FORMAT d ccc DEV..... hhhh
ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
Fhhhhhhh ---CCW-- ---CCW-- dddddddd dddddddd | cccccccc |
Fhhhhhhh ---CCW-- ---CCW-- dddddddd dddddddd | cccccccc |
Fhhhhhhh ---CCW-- ---CCW-- dddddddd dddddddd | cccccccc |

dddddddd dddddddd | cccccccc |
dddddddd dddddddd | cccccccc |
dddddddd dddddddd | cccccccc |
dddddddd dddddddd | cccccccc |
dddddddd dddddddd | cccccccc |
.
--Back half of split data--
.
dddddddd dddddddd | cccccccc |
dddddddd dddddddd | cccccccc |

Fhhhhhhh ---CCW-- ---CCW-- dddddddd dddddddd | cccccccc |
IDAW hhhhhhhh_hhhhhhhh hhhh hhhhhhhh hhhhhhhh | cccccccc |

hhhhhhhh hhhhhhhh | cccccccc |
MIDAW hhhhhhhh hhhhhhhh hhhh hhhhhhhh hhhhhhhh | cccccccc |

hhhhhhhh_hhhhhhhh hhhhhhhh hhhhhhhh | cccccccc |
IOSB hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
EWAx hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 271

ff CCW flags; if this flag is1.. , then this indicates that an IDAW
list is present. If this flag is1., then a suspend of the channel
program was requested. If this flag is1 , then a modified
indirect addressing word list is present.

uu Not used by hardware; could contain a nonzero character.

bbbb Byte count.

dddddddd dddddddd | cccccccc |
Information transferred by the CCW. If there is not a series of dashes in this
field, then all transferred data is displayed in four byte sections.

--Back half of split data--
Indicates there were more bytes of information transferred than were specified
on the START command. The default value is 20 bytes, but you can specify the
number of bytes to be shown. The specified value is halved; for an odd
number, the larger section is shown first. The first section of data displayed
comes from the beginning of the buffer from which the data was transferred.
The last section comes from the end of the buffer.

IDAW hhhhhhhh or hhhhhhhh_hhhhhhhh hhhh
Contents of the IDAW, a fullword real address for 31–bit IDAWs or a
doubleword real address for 64–bit IDAWs, followed by a halfword specifying
the length of the data at that address. The data at the address follows the
halfword length. The hhhhhhhh_hhhhhhhh version of this parameter specifies
64–bit.

MIDAW hhhhhhhh hhhhhhhh hhhh hhhhhhhh_hhhhhhhh
The modified indirect addressing word (MIDAW), which is 16 bytes, formatted
in the GTF trace with the first 8 bytes on the first line containing the flags and
data length and the second line containing the 64 bit data address. The length
of the data is replicated after the first 8 bytes of MIDAW data to make it easier
to read and maintain consistency with the IDAW format. The data at the
address follows the halfword length. The data for a MIDAW is not formatted if
the skip indicator is on.

IOSB hhhhhhhh
Fullword virtual address of the IOSB followed by the contents of the IOSB. The
fullword at offset X'34' of the IOSB points to an error recover procedure work
area (EWA), or is zero. The EWA is traced and documented directly below the
IOSB and is formatted in the same manner as the IOSB.

EWAx hhhhhhhh
Fullword virtual address of the error recovery procedure work area, followed
by the contents of EWA.

CSCH and HSCH trace records
CSCH and HSCH records represent a clear subchannel operation and a halt
subchannel operation.

Record Formats

Generalized Trace Facility

272 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CSCH shhhh
HSCH shhhh

Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

ASCB hhhhhhhh
Address of the ASCB for the address space that started the I/O operation.

CPUID hhhh
Address of the processor on which the I/O operation started

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the task that requested the I/O
operation

N/A No job is associated with the requested I/O

DEV hhhh
Device number from the UCBCHAN field of the UCB.

SFLS hhhh
Start flags from the UCBSFLS field of the UCB.

SID hhhhhhhh
Subchannel ID from the UCBSID field of the UCB.

CC hh
CSCH or HSCH condition code in bits 2 - 3.

DVRID hh
Driver ID value from the IOSDVRID field of the IOSB.

ARDID hh
One of the following:

hh Associated request driver ID from the IOSDVRID field of the IOSB

U/ Unavailable because the IOQ was unavailable

IOSLVL hh
Function level to provide serialization of I/O requests. This value comes from
the IOSLEVEL field of the IOSB.

UCBLVL hh
UCB level value from the UCBLEVEL field of the UCB.

UCBWGT hh
Flags from the UCBWGT field of the UCB.

CSCH.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
DEV..... hhhh SFLS.... hhhh SID..... hhhhhhhh
CC...... hh DVRID... hh ARDID... hh
IOSLVL.. hh UCBLVL.. hh
UCBWGT.. hh BASE.... shhhh

HSCH.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
DEV..... hhhh SFLS.... hhhh SID..... hhhhhhhh
CC...... hh DVRID... hh ARDID... hh
IOSLVL.. hh UCBLVL.. hh
UCBWGT.. hh BASE.... shhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 273

BASE shhhh
Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

DSP and SDSP trace records
A DSP record represents dispatching of a task. An SDSP record represents
re-dispatching of a task after an SVC interruption. SDSP interruptions also build
SVC exit records with label SDSP. When both DSP and SVC options are in effect,
the SVCR format of trace record is produced by IPCS.

If the trace data contains an SVC exit record, the label that appears in the
formatted output will depend on the options selected during IPCS.
1. If the SVC option is selected in the IPCS dialog, the SVC exit record and the

SVC number will appear with the label SVCR.
2. If only the DSP option is chosen in the IPCS dialog, the formatted output

record will remain unchanged; DSP and SDSP labels will appear in the
formatted output and no SVC number is present.

3. If both DSP and SVC options are active in IPCS, the SVCR along with SVC
number will appear.

It can be concluded, if SVC is one of the options selected during IPCS formatting,
all SVC exit records will appear with label SVCR along with SVC number.

Minimal Trace Record Formats

Comprehensive Trace Record Formats

ASCB hhhhhhhh
Address of address space control block.

CPU hhhh
Address of processor on which the task is dispatched.

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

DSP ASCB.... hhhhhhhh CPU..... hhhh PSW..... hhhhhhhh hhhhhhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

SDSP ASCB.... hhhhhhhh CPU..... hhhh PSW..... hhhhhhhh hhhhhhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

DSP ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
DSP-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh MODN.... yyyyyyyy R15..... hhhhhhhh
R0...... hhhhhhhh R1...... hhhhhhhh

SDSP ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
DSP-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh MODN.... yyyyyyyy R15..... hhhhhhhh
R0...... hhhhhhhh R1...... hhhhhhhh

Generalized Trace Facility

274 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

DSP-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Program status word under which the task is dispatched.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the task being dispatched

N/A The record is for a system or started task

PPPPPPPP
A page fault occurred

An internal error occurred

TCB hhhhhhhh
Address of the task control block.

R15 hhhhhhhh
R0 hhhhhhhh
R1 hhhhhhhh

Data that will appear in general registers 15, 0, and 1 when the task is
dispatched.

MODN cccccccc
cccccccc is one of the following:

mod_name
The name of a module that will receive control when the task is
dispatched.

WAITTCB
Indicates that the system wait task is about to be dispatched.

SVC–T2
Indicates that a type 2 SVC routine that resides in the nucleus is about to
be dispatched.

SVC–RES
Indicates that a type 3 SVC routine or the first load module of a type 4
SVC routine is about to be dispatched. The routine is located in the
pageable link pack area (PLPA).

SVC–cccc
Indicates that the second or subsequent load module of a type 4 SVC
routine is about to be dispatched. The module is located in the fixed or
pageable link pack area (LPA). The last four characters of the module name
are cccc.

IRB*
Indicates that an asynchronous routine with an associated interruption
request block (IRB) is about to be dispatched. No module name is
available.

*ccccccc
Indicates that error fetch is in the process of loading an error recovery
module. The last seven characters of the module name are ccccccc.

PPPPPPPP
A page fault occurred

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 275

An internal error occurred

EOS, INTG, IO, IOCS, and PCI trace records
EOS records represent an end of sense interruption, INTG records represent an
input/output (I/O) interruption that is used to signal the completion of a zHPF
interrogate request, IO records represent an I/O interruption, IOCS records
represent an I/O interruption that also contains concurrent sense information, for
devices that support the concurrent sense facility, and PCI records a
program-controlled interruption.

EOS..... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
IRB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh SENSE... hhhh FLA..... hh
OPT..... hh DVRID... hh IOSLVL.. hh
UCBLVL.. hh UCBWGT.. hh BASE.... shhhh

I/O Statistics:
Connect. hhhhhhhh Pending. hhhhhhhh Discon.. hhhhhhhh
CUQ..... hhhhhhhh DAO..... hhhhhhhh Devbsy.. hhhhhhhh
ICMR.... hhhhhhhh StartCt. hhhhhhhh SamplCt. hhhhhhhh
ZTotdev. hhhhhhhh ZDefer.. hhhhhhhh ZCUQ.... hhhhhhhh
ZDevBsy. hhhhhhhh ZDAO.... hhhhhhhh
IntrDly. hhhhhhhh

INTG.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
IRB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh SENSE... hhhh FLA..... hh
OPT..... hh DVRID... hh IOSLVL.. hh
UCBLVL.. hh UCBWGT.. hh BASE.... shhhh

IO...... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
IRB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh SENSE... hhhh FLA..... hh
OPT..... hh DVRID... hh IOSLVL.. hh
UCBLVL.. hh UCBWGT.. hh BASE.... shhhh

I/O Statistics:
Connect. hhhhhhhh Pending. hhhhhhhh Discon.. hhhhhhhh
CUQ..... hhhhhhhh DAO..... hhhhhhhh Devbsy.. hhhhhhhh
ICMR.... hhhhhhhh StartCt. hhhhhhhh SamplCt. hhhhhhhh
ZTotdev. hhhhhhhh ZDefer.. hhhhhhhh ZCUQ.... hhhhhhhh
ZDevBsy. hhhhhhhh ZDAO.... hhhhhhhh
IntrDly. hhhhhhhh

Generalized Trace Facility

276 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

EOS shhhh
INTG shhhh
IO shhhh
IOCS shhhh
PCI hhhh

The device number from the UCBCHAN field of the unit control block (UCB),
which includes the subchannel set identifier when appropriate.

ASCB {hhhhhhhh|U/A}
One of the following:

hhhhhhhh
Address of the address space control block (ASCB) for the address
space that started the I/O operation.

U/A Unavailable because the I/O supervisor block (IOSB) control block is
unavailable.

CPU hhhh
Address of the processor on which the interruption occurred.

JOBN {cccccccc|N/A|U/A}
One of the following:

cccccccc
Name of the job associated with the task that requested the I/O
operation.

N/A Not applicable.

U/A Unavailable because the IOSB control block is unavailable.

IOCS.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
IRB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh SENSE... hhhh FLA..... hh
OPT..... hh DVRID... hh IOSLVL.. hh
UCBLVL.. hh UCBWGT.. hh BASE.... shhhh

I/O Statistics:
Connect. hhhhhhhh Pending. hhhhhhhh Discon.. hhhhhhhh
CUQ..... hhhhhhhh DAO..... hhhhhhhh Devbsy.. hhhhhhhh
ICMR.... hhhhhhhh StartCt. hhhhhhhh SamplCt. hhhhhhhh
ZTotdev. hhhhhhhh ZDefer.. hhhhhhhh ZCUQ.... hhhhhhhh
ZDevBsy. hhhhhhhh ZDAO.... hhhhhhhh
IntrDly. hhhhhhhh

PCI..... hhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
IRB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh SENSE... hhhh FLA..... hh
OPT..... hh DVRID... hh IOSLVL.. hh
UCBLVL.. hh UCBWGT.. hh BASE.... shhhh

I/O Statistics:
Connect. hhhhhhhh Pending. hhhhhhhh Discon.. hhhhhhhh
CUQ..... hhhhhhhh DAO..... hhhhhhhh Devbsy.. hhhhhhhh
ICMR.... hhhhhhhh StartCt. hhhhhhhh SamplCt. hhhhhhhh
ZTotdev. hhhhhhhh ZDefer.. hhhhhhhh ZCUQ.... hhhhhhhh
ZDevBsy. hhhhhhhh ZDAO.... hhhhhhhh
IntrDly. hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 277

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Program status word (PSW) stored when the interruption occurred.

IRB (see explanation)
For the EOS, IO, and PCI trace records, this field contains the first five words,
in hexadecimal, of the interruption response block (IRB) operand of the Test
Subchannel (TSCH) instruction.

For the IOCS trace record, this field contains the first 16 words, in
hexadecimal, of the interruption response block operand of the TSCH
instruction. (Note that this IRB is not the interruption request block indicated
as **IRB*** in a DSP trace record.)

TCB {hhhhhhhh|N/A|U/A}
One of the following:

hhhhhhhh
Address of the TCB for the task that requested the I/O operation.

N/A Not applicable.

U/A Unavailable because the IOSB control block is unavailable.

SENSE {hhhh|N/A|U/A}
One of the following:

hhhh First 2 sense bytes from the IOSSNS field of the IOSB.

N/A Not applicable.

U/A Unavailable because the IOSB control block is unavailable.

FLA {hh|U/A}
One of the following:

hh Flag byte from the IOSFLA field of the IOSB.

U/A Unavailable because the IOSB control block is unavailable.

OPT {hh|U/A}
One of the following:

hh IOSB options byte from the IOSOPT field of the IOSB.

U/A Unavailable because the IOSB control block is unavailable.

DVRID {hh|U/A}
One of the following:

hh Driver identifier from the IOSDVRID field of the IOSB.

U/A Unavailable because the IOSB control block is unavailable.

IOSLVL {hh|U/A}
One of the following:

hh Function level to provide serialization of I/O requests. This value
comes from the IOSLEVEL field of the IOSB.

U/A Unavailable because the IOSB control block is unavailable.

UCBLVL hh
UCB level value from the UCBLEVEL field of the UCB.

UCBWGT hh
Flags from the UCBWGT field of the UCB.

Generalized Trace Facility

278 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

BASE shhhh
Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

Connect hhhhhhhh
The device connect time for this I/O request in units of 0.5 microseconds.

Pending hhhhhhhh
The function pending time for this I/O request in units of 0.5 microseconds.

Discon hhhhhhhh
The device disconnect time for this I/O request in units of 0.5 microseconds.

CUQ hhhhhhhh
The control unit queueing time for this I/O request in units of 0.5
microseconds.

DAO hhhhhhhh
The device active only time for this I/O request in units of 0.5 microseconds.

Devbsy hhhhhhhh
The device busy time for this I/O request in units of 0.5 microseconds.

ICMR hhhhhhhh
The initial command response time for this I/O request in units of 0.5
microseconds.

StartCt hhhhhhhh
The number of SSCH/RSCH instructions that were issued for the device while
GTF trace was active.

SamplCt hhhhhhhh
The number of SSCH/RSCH instructions for which data was collected for the
device.

ZTotdev hhhhhhhh
The total device time for this I/O request in units of 1 microseconds. This
information is reported only for zHPF I/O requests when it is provided by the
device.

ZDefer hhhhhhhh
The control unit defer time for this I/O request in units of 1 microseconds.
This information is reported only for zHPF I/O requests when it is provided
by the device.

ZCUQ hhhhhhhh
The control unit queue time for this I/O request in units of 1 microseconds.
This information is reported only for zHPF I/O requests when it is provided
by the device.

ZDevBsy hhhhhhhh
The device busy time for this I/O request in units of 1 microseconds. This
information is reported only for zHPF I/O requests when it is provided by the
device.

ZDAO hhhhhhhh
The device active only time for this I/O request in units of 1 microseconds.
This information is reported only for zHPF I/O requests when it is provided
by the device.

IntrDly hhhhhhhh
The total interrupt delay time for all I/O requests in units of 128 microseconds.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 279

EXT trace records
An EXT record represents a general external interruption.

Minimal Trace Record Format

Comprehensive Trace Record Format

EXT CODE hhhh
EXT hhhh

External interruption code.

ASCB hhhhhhhh
Address of ASCB for the address space that was current when the interruption
occurred.

CPU hhhh
Address of the processor on which the interruption occurred.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the interrupted task

N/A The record is for a system or started task

PPPPPPPP
A page fault occurred

An internal error occurred

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
OLD-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Program status word stored when the interruption occurred.

TCB hhhhhhhh
One of the following:

hhhhhhhh
Address of the TCB for the interrupted task

N/A Not applicable, as in the case of an interrupted SRB routine

INT-TCB hhhhhhhh

EXT CODE.... hhhh ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh ccc-TCB. hhhhhhhh

EXT..... hhhh ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh TQE FIELDS: FLAGS... hhhh
EXTADDR. hhhhhhhh TCB..... hhhhhhhh

EXT..... hhhh ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh TQE FIELDS: FLAGS... hhhh
EXTADDR. hhhhhhhh ASCB.... hhhhhhhh TCB..... hhhhhhhh

EXT..... hhhh ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh PARM.... hhhhhhhh SIG-CPU. hhhh

Generalized Trace Facility

280 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

TQE-TCB hhhhhhhh
Address of the TCB. This interruption is indicated by interruption codes 12hh.

TQE FIELDS
Indicates a clock comparator or CPU timer interruption. These interruptions
are indicated by interruption codes X'1004' or X'1005'. The following fields
contain information from the timer queue element (TQE):

FLAGS hhhh
The flags from the TQEFLGS field.

EXTADDR hhhhhhhh
The first four hexadecimal digits are the contents of the TQEFLGS field;
the last four hexadecimal digits are the contents of the TQEEXIT field.

ASCB hhhhhhhh
One of the following:

hhhhhhhh
Contents of the TQEASCB field.

PPPPPPPP
A page fault occurred

An internal error occurred

The TQEASCB field is present only for a clock comparator interruption.
TQEASCB contains the address of the ASCB for the address space in which
the timer exit routine will be run.

TCB hhhhhhhh
One of the following:

hhhhhhhh
Contents of the TQETCB field.

N/A The record is for a system or started task

PPPPPPPP
A page fault occurred

An internal error occurred

TQETCB contains the address of the TCB for the task under which the
timer exit routine will run.

PARM hhhhhhhh
Signal passed on a signal processor interruption, which is indicated by
interruption codes 12hh.

SIG-CPU hhhh
Address of the processor on which a signal processor interruption occurred.

FRR trace records
An FRR record represents the return to the recovery termination manager (RTM)
from a functional recovery routine (FRR). All fields, except the processor address,
are gathered from the system diagnostic word area (SDWA) that was passed to the
FRR.

Minimal Trace Record Format

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 281

Comprehensive Trace Record Format

ASCB hhhhhhhh
One of the following:

hhhhhhhh
Address of the ASCB for the address space in which the error
occurred.

PPPPPPPP
A page fault occurred

An internal error occurred

CPU hhhh
Address of the processor associated with the error.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the error

N/A The record is for a system or started task

PPPPPPPP
A page fault occurred

An internal error occurred

NAME cccccccc
Name of the FRR routine.

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
One of the following:

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Program status word at the time of the error

PPPPPPPP
A page fault occurred

An internal error occurred

CC hhhhhhhh
ABCC hhhhhhhh

One of the following:

FRR ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
CC...... hhhhhhhh FLG1.... hhhhhhhh FLG2.... hhhhhhhh
RETRY... hhhhhhhh

FRR ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
NAME.... cccccccc
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ABCC.... hhhhhhhh ERRT.... hhhhhhhh FLG..... hhhhhh
RC...... hh RTRY.... hhhhhhhh

Generalized Trace Facility

282 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

hhhhhhhh
The first three digits are the system completion code and the last three
digits are the user completion code

U/A Unavailable because the system diagnostic work area (SDWA) was
unavailable

An internal error occurred

FLG1 hhhhhhhh
FLG hhhhhh
ERRT hhhhhhhh

Error-type flags from the SDWAFLGS field of SDWA.

FLG2 hhhhhh
Additional flags from the SDWAMCHD and SDWAACF2 fields of SDWA. The
flags are contained in the two low-order bytes of this printed field; the high
order byte is meaningless.

RC hh
Return code

RETRY hhhhhhhh
RTRY hhhhhhhh

One of the following:

hhhhhhhh
Retry address supplied by the FRR

N/A Not applicable, indicating an FRR return code other than 4

PPPPPPPP
A page fault occurred

An internal error occurred

RTCA hhhhhhhh
Indicates if the recovery routine was a STAE or ESTAE.

HEXFORMAT, SUBSYS, and SYSTEM trace records
HEXFORMAT, SUBSYS, and SYSTEM records represent events for which GTF
could not format the records.

HEXFORMAT
Indicates an event signalled by a GTRACE macro. The macro specified no
formatting routine (FID=00).

SUBSYS
Indicates an event signalled by a GTRACE macro. The macro specified a
formatting routine (FID=hh) that could not be found.

SYSTEM
Indicates a system event. The trace record could not be formatted for one of
the following reasons:

HEXFORMAT AID hh FID hh EID hh hhhhhhhh hhhhhhh ...

SUBSYS AID hh FID hh EID hh hhhhhhhh hhhhhhh ...

SYSTEM AID hh FID hh EID hh hhhhhhhh hhhhhhh ...

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 283

v If EEEE hex appears in bytes 0-1 or 8-9 of the recorded data, an
unrecoverable error occurred in a GTF data-gathering routine. Message
AHL118I is written on the console, identifying the module that caused the
error and the action taken. (The message indicates that GTF will no longer
trace this type of event. No more records for this type of event will appear
in the trace output.)

v If EEEE hex does not appear in bytes 0-1 or 8-9 of the recorded data, the
record could not be formatted because the GTF formatting routine could not
be found.

AID hh
Application identifier, which should always be AID FF.

FID hh
Format identifier of the routine (AMDUSRhh or AMDSYShh) that was to
format this record.

EID hh
Event identifier, which uniquely identifies the event that produced the record.

hhhhhhhh hhhhhhhh ...
Recorded data (256 bytes maximum).

IOX trace records
IOX records represent an input/output (I/O) interruption for a completed channel
program and a summary of a complete channel program for the I/O operation.

IOX shhhh
IOX identifies the beginning of an IOX record where hhhh is the device
number and s is the subchannel set identifier.

ASCB {hhhhhhhh|U/A}
One of the following:

hhhhhhhh
Address of the address space control block (ACSB) for the address
space that started the I/O operation.

U/A Unavailable because the I/O supervisor block (IOSB) control block is
unavailable.

IOX....shhhh ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
DEVN.... hhhh SID..... hhhh DRID.... hh
TVSN.... hh ECNO.... hhhh DVCLS... hh
DSTAT... hh AERRC... hh FLAG0... hh
VOLSER.. cccccc UCBTYP.. hhhhhhhh
DSNAME.. cccc.cccccc.cccccc.ccccc
NSSCH... hhhhhhhh DSSCH... hhhhhhhh SDCON... hhhhhhhh
SRPEN... hhhhhhhh SDISC... hhhhhhhh SCUQU... hhhhhhhh
IODTS... hhhhhhhh hhhhhhhh
AONLY... hhhhhhhh DVBSY... hhhhhhhh ICMR.... hhhhhhhh

CCW SECTION SQNO.... hh FGS1.... hh FGS2.... hh
RCNT.... hh BLKR.... hhhh BLKW.... hhhh
BTRD.... hhhhhhhh BTWR.... hhhhhhhh DCHN.... hhhh
CCHN.... hhhh DEGA.... hh DEGE.... hh
DEEE.... hhhh SEEKLOCC hh CCHHR... hh
LROP.... hh LRSECT.. hh LREXOP.. hh
LREXPM.. hhhh

Generalized Trace Facility

284 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CPU hhhh
Address of the processor on which the interruption occurred.

JOBN {cccccccc|N/A|U/A}
One of the following:

cccccccc
Name of the job associated with the task that requested the I/O
operation.

N/A Not applicable.

U/A Unavailable because the IOSB control block is unavailable.

DEVN shhhh
Device number with the subchannel set identifier when appropriate.

SID hhhh
System ID

DRID hh
Driver ID from IOSB

TVSN hh
Trace version

ECNO hhhh
Record count

DVCLS hh
Device class

DSTAT hh
Device status

AERRC hh
Error codes found during CCW analysis. See “CCW error codes” on page 330
for a description.

FLAG0 hh
Flag byte

VOLSER ccccccc
Volume Serial

UCBTYP hhhhhhhh
UCB type

DSNAME cccc.cccccc.cccccc.ccccc
44-byte data set name

NSSCH hhhhhhhh
Number of SSCH instructions.

DSSCH hhhhhhhh
Number of SSCH instructions for which data was collected.

SDCON hhhhhhhh
Summation of device connect times.

SRPEN hhhhhhhh
Summation of function pending times.

SDISC hhhhhhhh
Summation of device disconnect times.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 285

SCUQU hhhhhhhh
Summation of control unit queuing times

IODTS hhhhhhhh
Time stamp from IOD

AONLY hhhhhhhh
Summation of device active only times

DVBSY hhhhhhhh
Summation of device busy times

ICMR hhhhhhhh
Summation of initial command response times

SQNO hh
Orientation Sequence Number

FGS1 hh
Flag byte 1

FGS2 hh
Flag byte 2

RCNT hh
Count of erase

BLKR hhhh
Number of blocks read

BLKW hhhh
Number of block written

BTRD hhhhhhhh
Number of bytes read

BTWR hhhhhhhh
Number of bytes written

DCHN hhhh
Number of data chain CCWs

CCHN hhhh
Number of COM chain CCWs

DEGA hh
Definition of exterior global attribute

DEGE hh
Definition of exterior global attribute extended

DEEE hhhhhhh
Definition of exterior end of extend CCH

SEEKLOCC hh
The command code that performed the seek or locate record operation.

CCHHR hhhhhhhh
CCHHR seek or search address

LROP hh
The locate record operation code.

LRSECT hh
The locate record sector number.

Generalized Trace Facility

286 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

LREXOP hh
The locate record extended operation code.

LREXPM hhhh
The locate record extended parameters.

LSR trace records
An LSR record represents dispatching of a local supervisor routine in an address
space.

Minimal Trace Record Format

Comprehensive Trace Record Format

ASCB hhhhhhhh
Address of the address space control block.

CPU hhhh
Address of the processor on which the routine will be dispatched.

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LSR-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Program status word under which the routine receives control.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the routine being dispatched

N/A Not applicable

PPPPPPPP
A page fault occurred

An internal error occurred

TCB hhhhhhhh
One of the following:

hhhhhhhh
Address of the task control block associated with this routine (if the
routine is run as part of a task)

N/A Not applicable

R15 hhhhhhhh
R0 hhhhhhhh
R1 hhhhhhhh

One of the following:

LSR ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

LSR ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
LSR-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 287

hhhhhhhh
Data that will appear in general registers 15, 0, and 1 when the local
supervisor routine is dispatched

PPPPPPPP
A page fault occurred

An internal error occurred

MSCH trace records
An MSCH record represents a modify subchannel operation.

MSCH shhhh
Device number from the UCBCHAN field of the UCB with subchannel set
identifier when appropriate.

ASCB hhhhhhhh
Address of the ASCB for the address space that started the modify subchannel
operation.

CPU hhhh
Address of the processor on which the modify subchannel started.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the task that requested the modify
subchannel operation

N/A Not applicable

SID hhhhhhhh
Subchannel ID from the UCBSID field of the UCB.

CC hh
MSCH condition code in bits 2 and 3.

OPT hh
IOSB option bytes from the IOSOPT field of the IOSB.

OPT2 hh
IOSB option bytes from the IOSOPT field of the IOSB.

IOSLVL hh
Function level to provide serialization of I/O requests. This value comes from
the IOSLEVEL field of the IOSB.

SCHIB1 hhhhhhhh ... hhhhhhhh
First 7 words of the subchannel information block. Input from the caller of
modify subchannel instruction. SCHIB address from the IOSSCHIB field of the
IOSB.

MSCH.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
SID..... hhhhhhhh CC...... hh OPT..... hh
OPT2.... hh IOSLVL.. hh SCHIB1.. hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh UCBLVL.. hh SCHIB2.. hhhhhhhh
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh
hhhhhhhh UCBWGT.. hh BASE.... shhhh

Generalized Trace Facility

288 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

UCBLVL hh
UCB level value from the UCBLEVEL field of the UCB.

SCHIB2 hhhhhhhh ... hhhhhhhh
First 7 words of the subchannel information block resulting from the modify
subchannel instruction.

UCBWGT hh
Flags from the UCBWGT field of the UCB.

BASE shhhh
Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

PCIDMX trace records
PCIDMX records represent a PCIE de-multiplexing request.

PCIDMX hhhhhhhh
PCIE function identifier (PFID) for PCIE device/function.

ASCB hhhhhhhh
Address of the ASCB for the address space that was active when the
de-multiplexing event occurred.

CPUID hhhh
Address of the processor on which the de-multiplexing operation occurred.

JOBN cccccccc
Name of the job associated with the address space that was active when the
de-multiplexinng event occurred.

DEVTYPE hhhhhhhh
PCIE device type.

DMXAD hhhhhhhh
Address of the program that is performing the de-multiplexing.

CALLBK@ hhhhhhhh
Address of the callback routine.

PARMS hhhhhhhh hhhhhhhh
First 8 bytes of the callback parameters.

PCILG trace records
A PCILG record represents a PCI load instruction.

PCILG hhhhhhhh
PCIE function identifier (PFID) for PCIE device/function.

PCIDMX.. hhhhhhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
DEVTYPE. hhhhhhhh DMXAD... hhhhhhhh CALLBK@. hhhhhhhh
PARMS... hhhhhhhh hhhhhhhh

PCILG... hhhhhhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
TCB..... hhhhhhhh CC...... hh REQAD... hhhhhhhh
TRCID... hhhhhhhh
DATA.... hhhhhhhh hhhhhhhh HANDLE.. hhhhhhhh
STATUS.. hh PCIAS... hh LENGTH.. hh
OFFSET.. hhhhhhhh hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 289

|
|
|

|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

ASCB hhhhhhhh
Address of the ASCB for the address space that issued the PCI load
instruction.

CPUID hhhh
Address of the processor on which the PCI load instruction was issued.

JOBN cccccccc
Name of the job associated with the address space that issued the PCI load
operation.

TCB hhhhhhhh
Address of task control block or zero if not running under a task.

CC hh
Condition code from the PCI load instruction.

REQAD hhhhhhhh
Address of the program that requested the PCI load instruction to be issued.

TRCID hhhhhhhh
Program defined trace identifier that can be used to determine why the PCI
load instruction is being issued.

DATA hhhhhhhh hhhhhhhh
The data that was loaded.

HANDLE hhhhhhhh
PCIE function hardware handle.

STATUS hh
Error status information.

PCIAS hh
PCIE address space associated with the request.

LENGTH hh
Length of the data that was loaded.

OFFSET hhhhhhhh hhhhhhhh
Offset of the data within the PCIE address space that was loaded.

PCISTG trace records
A PCISTG record represents a PCI store instruction.

PCILG hhhhhhhh
PCIE function identifier (PFID) for PCIE device/function.

ASCB hhhhhhhh
Address of the ASCB for the address space that issued the PCI store
instruction.

CPUID hhhh
Address of the processor on which the PCI store instruction was issued.

PCISTG... hhhhhhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
TCB..... hhhhhhhh CC...... hh REQAD... hhhhhhhh
TRCID... hhhhhhhh
DATA.... hhhhhhhh hhhhhhhh HANDLE.. hhhhhhhh
STATUS.. hh PCIAS... hh LENGTH.. hh
OFFSET.. hhhhhhhh hhhhhhhh

Generalized Trace Facility

290 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|

|
|
|

|
|

JOBN cccccccc
Name of the job associated with the address space that issued the PCI store
operation.

TCB hhhhhhhh
Address of task control block or zero if not running under a task.

CC hh
Condition code from the PCI store instruction.

REQAD hhhhhhhh
Address of the program that requested the PCI store instruction to be issued.

TRCID hhhhhhhh
Program defined trace identifier that can be used to determine why the PCI
store instruction is being issued.

DATA hhhhhhhh hhhhhhhh
The data that was stored.

HANDLE hhhhhhhh
PCIE function hardware handle.

STATUS hh
Error status information.

PCIAS hh
PCIE address space associated with the request.

LENGTH hh
Length of the data that was stored.

OFFSET hhhhhhhh hhhhhhhh
Offset of the data within the PCIE address space that was stored.

PGM and PI trace records
PGM and PI records represent program interruptions.

Minimal Trace Record Format

Comprehensive Trace Record Format

PI CODE hhh
PGM hhh

Program interruption code, in decimal.

PI CODE.... hhh ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh VPH..... hhhhhhhh VPA..... hhhhhhhh
R15..... hhhhhhhh R1...... hhhhhhhh

PGM..... hhh ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh VPH..... hhhhhhhh VPA..... hhhhhhhh
MODN.... cccccccc
R0...... hhhhhhhh R1...... hhhhhhhh R2...... hhhhhhhh
R3...... hhhhhhhh R4...... hhhhhhhh R5...... hhhhhhhh
R6...... hhhhhhhh R7...... hhhhhhhh R8...... hhhhhhhh
R9...... hhhhhhhh R10..... hhhhhhhh R11..... hhhhhhhh
R12..... hhhhhhhh R13..... hhhhhhhh R14..... hhhhhhhh
R15..... hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 291

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

ASCB hhhhhhhh
Address of ASCB for the address space in which the interruption occurred.

CPU hhhh
Address of the processor on which the interruption occurred.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the interruption

N/A Not applicable

PPPPPPPP
A page fault occurred

An internal error occurred

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
OLD-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Program status word stored when the interruption occurred.

TCB hhhhhhhh
One of the following:

hhhhhhhh
Address of the TCB for the interrupted task

N/A Not applicable as in the case of an interrupted SRB routine

VPH hhhhhhhh
VPA hhhhhhhh

Virtual page address high half, in the case of a 64–bit translation exception
address (TEA) value greater than X'FFFFFFFF' is stored. Virtual page address,
in the case of a translation process exception resulting from a reference to the
page. This area is meaningless for other types of program interruptions.

MODN cccccccc
cccccccc is one of the following:

mod_name
The name of a module that will receive control when the task is
dispatched.

WAITTCB
Indicates that the system wait task was interrupted.

SVC-T2
Indicates that a type 2 SVC routine resident in the nucleus was interrupted.

SVC-RES
Indicates that a type 2 SVC routine or the first load module of a type 4
SVC routine was interrupted. The routine is located in the pageable link
pack area (PLPA).

SVC-ccc
Indicates that the second or subsequent load module of a type 4 SVC
routine was interrupted. The module is located in the fixed or pageable
link pack area (LPA). The last four characters of the load module name are
cccc.

Generalized Trace Facility

292 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

IRB*
Indicates that an asynchronous routine with an associated interrupt request
block was interrupted. No module name is available.

*ccccccc
Indicates that an error recovery module was in control. The last seven
characters of the module name are ccccccc.

An internal error occurred

Rdd hhhhhhhh
Contents of general registers when the interruption occurred.

RNIO trace records
An RNIO record represents a VTAM remote network input/output event. For trace
information, see z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and
Procedures.

Minimal Trace Record Format

Comprehensive Trace Record Format

ASCB hhhhhhhh
Address of the ASCB for the address space of the application associated with
the event.

CPU hhhh
Address of the processor that ran the I/O instruction.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the IO event

N/A Not applicable

PPPPPPPP
A page fault occurred

An internal error occurred

IN hhhhhhhh ... hhhhhhhh
OUT hhhhhhhh ... hhhhhhhh

IN indicates that the I/O is from NCP to VTAM; OUT indicates that the
direction of the I/O is from VTAM to NCP. The hexadecimal data is:

RNIO ASCB.... hhhhhhhh CPU..... hhhh R0...... hhhhhhhh

RNIO ASCB.... hhhhhhhh CPU..... hhhh JOB..... cccccccc
IN...... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
R0...... hhhhhhhh

RNIO ASCB.... hhhhhhhh CPU..... hhhh JOB..... cccccccc
OUT..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
R0...... hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 293

v For IN events: the transmission header, the response header, and the
response unit.

v For OUT events: the transmission header, the request header, and the request
unit.

R0 hhhhhhhh
Contents of general register 1 when the event occurred.

RSCH trace records
An RSCH record represents a resume subchannel operation.

RSCH shhhh
Device number from the UCBCHAN field of the UCB with subchannel set
identifier when appropriate.

ASCB hhhhhhhh
Address of the ASCB for the address space that started the I/O operation.

CPU hhhh
Address of the processor on which the I/O operation resumed.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the I/O operation

N/A Not applicable

RST hhhhhhhh
Address of the channel program. This value comes from the contents of the
IOSRST field of the IOSB.

VST hhhhhhhh
Virtual address of the channel program. This value comes from the contents of
the IOSVST field of the IOSB.

DSID hhhhhhhh
Request identifier used by purge. Contents of the IOSDID field of the IOSB
(address of the DEB or another control block used by purge).

CC hh
RSCH condition code in bits 2 and 3.

SEEKA hhhhhhhh hhhhhhhh
Dynamic seek address from the IOSEEKA field of the IOSB.

GPMSK hh
Guaranteed device path mask for GDP requests from the IOSEEKA field of the
IOSB.

OPT hh
IOSB options byte from the IOSOPT field of the IOSB.

RSCH.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
RST..... hhhhhhhh VST..... hhhhhhhh DSID.... hhhhhhhh
CC...... hh SEEKA... hhhhhhhh hhhhhhhh
GPMSK... hh OPT..... hh FMSK.... hh
DVRID... hh IOSLVL.. hh UCBLVL.. hh
UCBWGT.. hh BASE.... shhhh

Generalized Trace Facility

294 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

FMSK hh
Mode set/file mask from the IOSFMSK field of the IOSB.

DVRID hh
Driver ID from the IOSDVRID field of the IOSB.

IOSLVL hh
Function level to provide serialization of I/O requests. This value comes from
the IOSLEVEL field of the IOSB.

UCBLVL hh
UCB level value from the UCBLEVEL field of the UCB.

UCBWGT hh
Flags from the UCBWGT field of the UCB.

BASE shhhh
Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

SLIP trace records
A SLIP record represents a SLIP program event interruption. GTF writes four types
of SLIP records:
v SLIP standard trace record
v SLIP stand/user trace record
v SLIP user trace record
v SLIP debug trace record

SLIP standard trace record
A SLIP standard (STD) trace record represents a slip trap match when the SLIP
command specifies ACTION=TRACE or ACTION=TRDUMP.

ASCB hhhhhhhh
The address of the ASCB for the current address space.

CPU hhhh
The processor identifier (ID).

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the SLIP trap

N/A Not applicable

SLIP STD ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
TID..... cccc ASID.... hhhh JSP..... cccccccc
TCB..... hhhhhhhh MFLG.... hhhh EFLG.... hhhh
SFLG.... hh DAUN.... hhhh MODN.... cccccccc
OFFS.... hhhhhhhh IADR.... hhhhhhhh hhhhhhhh
INS..... hhhhhhhh hhhh
EXSIAD.. hhhhhhhh hhhhhhhh EXSINS.. hhhhhhhh hhhh
BRNGH... hhhhhhhh BRNGA... hhhhhhhh BRNGD... hhhhhhhh
OPSW.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ILC/PIC. hhhhhhhh PERC.... hh TYP..... hh
PKM..... hhhh SASID... hhhh AX...... hhhh
PASID... hhhh ASC..... c
SA-SPACE ccccccccc cccc DATX.... hh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 295

|

TID cccc
The trap ID.

ASID hhhh
The identifier of the current address space.

JSP cccccccc
One of the following:

cccccccc
Job step program name

N/A Not applicable

U/A Unavailable

TCB hhhhhhhh
One of the following:

hhhhhhhh
TCB address

N/A Not applicable

MFLG hhhh
System mode indicators that indicate the status of the system. The indicators
correspond to the SLWACW field in the SLWA. For a description of the SLWA,
see z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

EFLG hhhh
Error bytes that indicate the error status of the system. These bytes correspond
to SDWAERRA in the SDWA. For a description of the SDWA, see z/OS MVS
Data Areas in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

SFLD hh
SLIP status flags.

DAUN hhhhhhhh
A counter representing the number of times data was unavailable for the
DATA keyword test.

The following fields apply to PER interruptions only. For other than PER
interruptions, these fields are not applicable and contain: N/A, N/, or N.

MODN cccccccc
One of the following:

cccccccc
Load module name in which the interruption occurred

N/A Not applicable

U/A Unavailable

OFFS hhhhhhhh
One of the following:

hhhhhhhh
Offset into the load module containing the instruction that caused the
interruption

N/A Not applicable

U/A Unavailable

Generalized Trace Facility

296 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

IADR hhhhhhhh hhhhhhhh
Address of the instruction that caused the interruption.

INS hhhhhhhh hhhh
Instruction content: the instruction that caused the PER interruption.

EXSIAD hhhhhhhh hhhhhhhh
One of the following:

hhhhhhhh hhhhhhhh
Target instruction address if the INS field is an Execute instruction

N/A Not applicable

U/A Unavailable

EXSINS hhhhhhhhhh hhhh
One of the following:

hhhhhhhh hhhh
Target instruction content if an INS field is an Execute instruction: 6
bytes of data beginning at the target instruction address

N/A Not applicable

U/A Unavailable

BRNGH hhhhhhhh
BRNGA hhhhhhhh

One of the following:

hhhhhhhh
The beginning range virtual address if the SLIP command specified
SA. BRNGH identifies the high 4 bytes. BRNGA identifies the low 4
bytes.

N/A Not applicable

BRNGD hhhhhhhh
One of the following:

hhhhhhhh
Four bytes of storage starting at the beginning range virtual address if
SA was specified

N/A Not applicable

U/A Unavailable

OPSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
The program old PSW.

ILC/PIC hhhhhhhh
The instruction length code and program interruption code.

PERC hh
The PER interruption code.

TYP hh
The PER trap mode.

PKM hhhh
The PSW key mask.

SASID hhhh
The identifier of the secondary address space.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 297

AX hhhh
The authorization index.

PASID hhhh
The identifier of the primary address space.

ASC c
The PSW ASC mode indicator:

c Meaning

0 Primary addressing mode

1 Access register addressing mode

2 Secondary addressing mode

3 Home addressing mode

SA-SPACE ccccccccccccc
Storage alteration space identifier, as follows:
v The ASID, for an address space
v The owning ASID and the data space name, for a data space

DATX hh
The DATA filter mismatch count due to an event that occurred in transactional
execution mode.

SLIP standard/user trace record
The SLIP standard/user trace record represents a slip trap match when the SLIP
command specifies ACTION=TRACE or ACTION=TRDUMP and
TRDATA=parameters.

ASCB hhhhhhhh . . . DATX hh
These fields are the same as the fields in the SLIP standard trace record.

SLIP S+U ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
TID..... cccc ASID.... hhhh JSP..... cccccccc
TCB..... hhhhhhhh MFLG.... hhhh EFLG.... hhhh
SFLG.... hh DAUN.... hhhh MODN.... cccccccc
OFFS.... hhhhhhhh IADR.... hhhhhhhh hhhhhhhh
INS..... hhhhhhhh hhhh EXSIAD.. hhhhhhhh hhhhhhhh
EXSINS.. hhhhhhhh BRNGH... hhhhhhhh BRNGA... hhhhhhhh
BRNGD... hhhhhhhh
OPSW.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ILC/PIC. hhhhhhhh PERC.... hh TYP..... hh
PKM..... hhhh SASID... hhhh AX...... hhhh
PASID... hhhh ASC..... c SA-SPACE ccccccccc cccc
DATX.... hh
GENERAL PURPOSE REGISTER VALUES
0-3..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
4-7..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
8-11.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
12-15... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
GPR HIGH HALF VALUES
0-3..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
4-7..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
8-11.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
12-15... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ACCESS REGISTER VALUES
0-3..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
4-7..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
8-11.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
12-15... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Generalized Trace Facility

298 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|
|

|

GENERAL PURPOSE REGISTER VALUES
GPR HIGH HALF VALUES
ACCESS REGISTER VALUES

Contents of the general purpose registers and access registers at the time of the
error or interruption, if REGS is specified in TRDATA on the SLIP command.
The GPR high half values will only be traced in z/Architecture mode.

SLIP user trace record
The SLIP user record represents a SLIP trap match when the SLIP command
specifies ACTION=TRACE or ACTION=TRDUMP and TRDATA=parameters.

CPU hhhh
Processor ID.

EXT hhhh
Extension number.

CNTLN hh
Continuation length.

hhhh
Length for the single range in the SLIP command. If hhhh is zero, either the
range was not available or the range was not valid, so that GTF did not collect
data for the range. GTF would consider the range not valid if, for example, the
ending range address precedes the beginning range address.

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh | cccccccccccccccc |
User-defined data fields that are specified by TRDATA on the SLIP command.
The length and data fields may be repeated.

For a SLIP command, the trace contains as many user records and user
continuation records as needed to trace the data ranges specified in the TRDATA
parameter on the SLIP command. The header in each record contains the processor
ID and the extension number. When a record is filled enough so that the next data
range cannot fit, GTF writes the partially filled record to the GTF trace table. GTF
builds another record; its extension number is increased by one and the
continuation length is set to zero.

When the length of data from a range is greater than 249 bytes, the excess data is
put in user continuation records. After writing the SLIP USR record, GTF builds a
user continuation record. GTF increases the extension number by one and sets the
continuation length to the number of bytes of data to be put in the continuation
record. If more than 251 bytes of data are left, GTF copies 248 bytes into the record
and places it in the GTF trace table. GTF builds user continuation records until all
the data from a range is traced.

SLIP debug trace record
The SLIP debug record represents a SLIP trap match when the SLIP command
specifies DEBUG.

SLIP USR CPU..... hhhh EXT..... hhhh CNTLN... hh
hhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh | cccccccccccccccc |

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 299

ASCB hhhhhhhh . . . DATX hh
These fields are the same as the fields in the SLIP standard trace record. The
high order bit in the SFLG field is set to 1 to indicate a debug record.

hh00
Two bytes of debug-produced data. The first byte indicates which keyword
failed, the second byte contains zeros.

Byte 1 (decimal)
Keyword That Failed

...1 DATA test failed

3 ASID

4 JOBNAME

5 JSPGM

6 PVTMOD

7 LPAMOD

8 ADDRESS

9 MODE

..10 ERRTYP

13 RANGE

14 DATA

20 ASIDSA

22 REASON CODE

23 NUCMOD

24 PSWASC

26 DSSA

SRB trace records
An SRB record represents dispatching of an asynchronous routine represented by a
service request block (SRB).

Minimal Trace Record Format

SLIP S+U ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
TID..... cccc ASID.... hhhh JSP..... cccccccc
TCB..... hhhhhhhh MFLG.... hhhh EFLG.... hhhh
SFLG.... hh DAUN.... hhhh MODN.... cccccccc
OFFS.... hhhhhhhh IADR.... hhhhhhhh hhhhhhhh
INS..... hhhhhhhh hhhh
EXSIAD.. hhhhhhhh hhhhhhhh EXSINS.. hhhhhhhh
BRNGH... hhhhhhhh BRNGA... hhhhhhhh BRNGD... hhhhhhhh
OPSW.... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ILC/PIC. hhhhhhhh PERC.... hh TYP..... hh
PKM..... hhhh SASID... hhhh AX...... hhhh
PASID... hhhh ASC..... h SA-SPACE hhh
hh00 DATX.... hh

Generalized Trace Facility

300 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

Comprehensive Trace Record Format

ASCB hhhhhhhh
Address of the ASCB for the address space in which the SRB routine is
dispatched. This may or may not be the address space in which the SRB was
created.

CPU hhh
Address of the processor on which the SRB routine is dispatched.

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
SRB-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Program status word under which the SRB routine receives control.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the SRB being dispatched

N/A Not applicable, as in the case of a global SRB, which is indicated in the
TYPE field

An internal error occurred

SRB hhhhhhhh
One of the following:

hhhhhhhh
Address of the service request block (SRB)

An internal error occurred

R15 hhhhhhhh
R1hhhhhhhh

One of the following:

hhhhhhhh
Data that will appear in general registers 15 and 1 when the SRB
routine is dispatched

An internal error occurred

PARM hhhhhhhh
One of the following:

hhhhhhhh
Four-byte parameter or the address of a parameter field to be passed to
the SRB routine

SRB ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
R15..... hhhhhhhh SRB..... hhhhhhhh R1...... hhhhhhhh
TYPE.... ccccccccccccccccccccccccccc

SRB ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
SRB-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
SRB..... hhhhhhhh

TYPE.... ccccccccccccccccccccccccccc

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 301

N/A Not applicable, as in the case of a suspended SRB, which is indicated
in the TYPE field

TYPE ccccccccccccccccccccccccccc
Indicates the type of SRB routine, as follows:

SUSPENDED
Denotes an SRB routine that was dispatched earlier and was subsequently
interrupted (for example, by I/O operations or by a request for a lock).
The routine is about to be re-dispatched.

INITIAL DISPATCH OF SRB
Denotes an SRB routine selected from the service priority list that is about
to be dispatched for the first time.

REDISPATCH OF SUSPENDED SRB
Denotes an SRB routine that was dispatched earlier and was subsequently
interrupted (for example, by I/O operations or by a request for a lock).
The routine is about to be re-dispatched.

SRM trace records
An SRM record represents an entry to the system resources manager (SRM).

Minimal Trace Record Format

Comprehensive Trace Record Format

ASCB hhhhhhhh
One of the following:

hhhhhhhh
Address of the ASCB for the address space that was current when SRM
was entered

An internal error occurred

CPU hhhh
Address of the processor used by the system resources manager.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with the entry to SRM

N/A Not applicable

An internal error occurred

R15 hhhhhhhh
R0 hhhhhhhh

SRM ASCB.... hhhhhhhh CPU..... hhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

SRM ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
R15..... hhhhhhhh R0...... hhhhhhhh R1...... hhhhhhhh

Generalized Trace Facility

302 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

R1 hhhhhhhh
Data that was contained in general registers 15, 0, and 1 when the system
resources manager passed control to GTF. The data includes the SYSEVENT
code in the low-order byte of register 0.

SSCH trace records
An SSCH record represents a start subchannel operation.

SSCH shhhh
Device number from the UCBCHAN field of the UCB with subchannel set
identifier when appropriate.

ASCB hhhhhhhh
Address of the ASCB for the address space that started the I/O operation.

CPU hhhh
Address of the processor on which the I/O operation started.

JOBN cccccccc
One of the following:

cccccccc
Name of the job associated with I/O operation

N/A Not applicable

RST hhhhhhhh
Address of the channel program. This value comes from the contents of the
IOSRST field of the IOSB.

VST hhhhhhhh
Virtual address of the channel program. This value comes from the contents of
the IOSVST field of the IOSB.

DSID hhhhhhhh
Request identifier used by purge. This identifier is in the IOSDID field of the
IOSB and is the address of the DEB or another control block used by PURGE.

CC hh
SSCH condition code in bits 2 and 3.

SEEKA hhhhhhhh hhhhhhhh
Dynamic seek address from the IOSEEKA field of the IOSB.

GPMSK hh
Guaranteed device path mask for GDP requests from the IOSGPMSK field of
the IOSB.

OPT hh
IOSB options byte from the IOSOPT field of the IOSB.

FMSK hh
Mode Set/File mask from the IOSFMSK field of the IOSB.

SSCH.... shhhh ASCB.... hhhhhhhh CPUID... hhhh JOBN.... cccccccc
RST..... hhhhhhhh VST..... hhhhhhhh DSID.... hhhhhhhh
CC...... hh SEEKA... hhhhhhhh hhhhhhhh
GPMSK... hh OPT..... hh FMSK.... hh
DVRID... hh IOSLVL.. hh UCBLVL.. hh
UCBWGT.. hh BASE.... shhhh
ORB..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 303

DVRID hh
Driver ID from the IOSDVRID field of the IOSB.

IOSLVL hh
Function level to provide serialization of I/O requests. This value comes from
the IOSLEVEL field of the IOSB.

UCBLVL hh
UCB level value from the UCBLEVEL field of the UCB.

UCBWGT hh
Flags from the UCBWGT field of the UCB.

BASE shhhh
Device number from the UCBCHAN field of the UCB, which includes the
subchannel set identifier when appropriate.

ORB hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
hhhhhhhh

Contents of the operation request block (ORB).

STAE trace records
A STAE record represents return to the recovery termination manager (RTM) from
a STAE or ESTAE routine.

Minimal Trace Record Format

Comprehensive Trace Record Format

ASCB hhhhhhhh
Address of the ASCB for the address space involved in the recovery.

CPU hhhh
Address of the processor.

JOBN cccccccc
One of the following:

cccccccc
Name of the job involved in the recovery

N/A Not applicable

An internal error occurred

ESTN cccccccc
One of the following:

cccccccc
ESTAE routine name

STAE PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh CC...... hhhhhhhh
RF...... hhhhhhhh TYCA.... hhhhhhhh hhhhhhhh

STAE ASCB.... hhhhhhhh CPU..... hhhh JOBN.... cccccccc
ESTN.... cccccccc
ERR-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ABCC.... hhhhhhhh ERRT.... hhhhhhhh FLG..... hhhhhh
RC...... hh RTRY.... hhhhhhhh RTCA.... hhhhhhhh

Generalized Trace Facility

304 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

U/A Unavailable because the routine did not supply a name

An internal error occurred

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ERR-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

One of the following:

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Program status word at the time of the error

U/A Unavailable because the system diagnostic work area (SDWA) was
unavailable

An internal error occurred

CC hhhhhhhh
ABCC hhhhhhhh

One of the following:

hhhhhhhh
The first four digits are the system completion code and the last four
digits are the user completion code

U/A Unavailable because the system diagnostic work area (SDWA) was
unavailable

An internal error occurred

TYCA hhhhhhhh hhhhhhhh
Retry address (see RTRY hhhhhhhh following) and an indication of whether
the routine was a STAE or ESTAE (see RTCA hhhhhhhh following).

RF hhhhhhhh
FLG hhhhhh
ERRT hhhhhhhh

Error flags from the SDWAFLGS field of the SDWA.

RC hh
Return code

RTRY hhhhhhhh
One of the following:

hhhhhhhh
The address supplied by the FRR

N/A Not applicable, indicating an FRR return code other than 4

PPPPPPPP
A page fault occurred

An internal error occurred

RTCA hhhhhhhh
Indicates if the recovery routine was a STAE or ESTAE.

SVC and SVCR trace records
An SVC record represents a supervisor call (SVC) interruption. An SVCR record
represents an exit from a supervisor call. SDSP interruptions also build SVC exit

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 305

records with label SDSP. When both DSP and SVC options are in effect, the SVCR
format of trace record is produced by IPCS.

If the trace data contains an SVC exit record, the label that appears in the
formatted output will depend on the options selected during IPCS.
1. If the SVC option is selected in the IPCS dialog, the SVC exit record and the

SVC number will appear with the label SVCR.
2. If only the DSP option is chosen in the IPCS dialog, the formatted output

record will remain unchanged; DSP and SDSP labels will appear in the
formatted output and no SVC number will be present.

3. If both DSP and SVC options are active in IPCS, the SVCR along with SVC
number will appear.

It can be concluded, if SVC is one of the options selected during IPCS formatting,
all SVC exit records will appear with label SVCR along with SVC number.

The format of an SVC and SVCR trace record depends on the SVC interruption
being traced. For a break down of the information that GTF collects for each SVC,
see the SVC Summary chapter of z/OS MVS Diagnosis: Reference. The formats shown
are typical.

Minimal Trace Record Format

Comprehensive Trace Record Format

SVC CODE hhh
SVC hhh

v For SVC, and for SVCR when not X'FFxx': SVC interruption code, which is
also called the SVC number.

v For SVCR when X'FF00': completion of the system-initiated processing
involved with ATTACH, LINK, XCTL or SYNCH processing prior to the
target routine getting control.

v For SVCR when X'FF01': initial system-initiated processing involved with
XCTL processing prior to the target routine getting control.

ASCB hhhhhhhh
Address of the ASCB for the address space in which the interruption occurred.

SVC CODE.... hhh ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

SVCR CODE.... hhh ASCB.... hhhhhhhh CPU..... hhhh
PSW..... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh R15..... hhhhhhhh R0...... hhhhhhhh
R1...... hhhhhhhh

SVC..... hhh ASCB.... hhhhhhhh CPU..... hhhh JOBNAME. cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh MODN.... yyyyyyyy R15..... hhhhhhhh
R0..... hhhhhhhh R1..... hhhhhhhh

SVCR..... hhh ASCB.... hhhhhhhh CPU..... hhhh JOBNAME. cccccccc
OLD-PSW. hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
TCB..... hhhhhhhh MODN.... yyyyyyyy R15..... hhhhhhhh
R0..... hhhhhhhh R1..... hhhhhhhh

Generalized Trace Facility

306 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CPU hhhh
Address of the processor on which the interruption occurred.

JOBNAME cccccccc
One of the following:

cccccccc
Name of the job associated with SVC interruption

SSSSSSSS
Unavailable; GTF cannot provide data for the SVC due to security
considerations.

An internal error occurred

PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
OLD-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
DSP-PSW hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

Program status word stored when the interruption occurred.
v For SVC, and for SVCR when SVC Code is not X'FFxx': Program status word

stored when the interruption occurred.
v For SVCR when SVC Code is X'FF00': PSW of the target routine that will get

control as a result of ATTACH, LINK, XCTL or SYNCH processing.
v For SVCR when SVC Code is X'FF01': PSW of a system routine that will get

control as a result of initial processing involved with XCTL.

TCB hhhhhhhh
Address of the TCB for the interrupted task, that is, the task that issued the
SVC instruction.

R15 hhhhhhhh
R0 hhhhhhhh
R1 hhhhhhhh

Data in general registers 15, 0, and 1 when the SVC instruction ran.

MODN cccccccc
cccccccc is one of the following:

mod_name
The name of a module that will receive control when the task is
dispatched.

SVC–T2
Indicates a type 2 SVC routine resident in the nucleus.

SVC–RES
Indicates a type 3 SVC routine or the first load module of a type 4 SVC
routine. The routine is located in the pageable link pack area (PLPA).

SVC cccc
Indicates the second or subsequent load module of a type 4 SVC routine.
The routine is located in the fixed or pageable link pack area (LPA). The
last four characters of the load module name are cccc.

IRB**
Indicates an asynchronous routine with an associated interruption request
block. No module name is available.

*cccccc
Indicates an error recovery module. The last seven characters of the load
module name are cccccc.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 307

PPPPPPPP
A page fault occurred

An internal error occurred

DDNAM cccccc
Name of the DD statement associated with the SVC, if applicable.

additional fields
Vary with the SVC number. These fields are described for the SVC in the
z/OS MVS Diagnosis: Reference

TCW trace records
A TCW record represents the processing of a zHPF channel program. TCW trace
records appear following INTG, IOCS, IO, SSCH, and XSCH trace records; they do
not appear alone.

FORMAT d cccc TCW CHAIN DEV..... hhhhh
ASCB.... hhhhhhhh CPU..... hhhh JOBN.... hhhhhh

TCW at rrrrrrrr (vvvvvvvv)
Format........... hh Flag1............ hh
Flag2............ hh Flag3............ hh
TCCBL/R/W........ hh
Output Address... rrrrrrrr rrrrrrrr
Input Address.... rrrrrrrr rrrrrrrr
TSB Address...... rrrrrrrr rrrrrrrr
TCCB Address..... rrrrrrrr rrrrrrrr
Output Count..... hhhhhhhh Input Count...... hhhhhhhh
Interrogate TCW.. rrrrrrrr

tsbtype TSB at rrrrrrrr_rrrrrrrr
Length.......... hh Flags........... hh
DCW Offset...... hhhh Count........... hhhhhhhh
TotalDevTime.... hhhhhhhh DeferTime....... hhhhhhhh
CUQueueTime..... hhhhhhhh DevBusyTime..... hhhhhhhh
DevActOnlyTime.. hhhhhhhh
Sense Data...... hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

TCCB TIDAW at rrrrrrrr_rrrrrrrr
Flags... hh Count... hhhhhhhh Addr... rrrrrrrr rrrrrrrr

TCA Header at rrrrrrrr_rrrrrrrr
Format.......... hh TCALen......... hh
Serv Act Code... hhhh Priority....... hh

DCW at rrrrrrrr_rrrrrrrr
Command.. hh Flags.. hh CD Count.. hh Count.. hhhhhhhh

Generalized Trace Facility

308 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

FORMAT d cccc
Format (d) and type of trace event (cccc): INTG, IO, IOCS, SSCH, or XSCH.
Format is zero.

DEV hhhhh
The device number qualified with the subchannel set identifier.

DCW Control Data at rrrrrrrr_rrrrrrrr
dddddddd dddddddd dddddddd dddddddd | |
dddddddd dddddddd dddddddd dddddddd | |

Data TIDAW at rrrrrrrr_rrrrrrrr
Flags... hh Count... hhhhhhhh Addr... rrrrrrrr rrrrrrrr

Data at rrrrrrrr_rrrrrrrr
dddddddd dddddddd dddddddd dddddddd | |
dddddddd dddddddd dddddddd dddddddd | |
**** ’0020’X CONSECUTIVE BYTES ARE ’00’X
*** Back half of split data ***
dddddddd dddddddd dddddddd dddddddd | |
dddddddd dddddddd dddddddd dddddddd | |

TCA Trailer at rrrrrrrr_rrrrrrrr
Transport Count... hhhhhhhh

= or =
TCA Trailer at rrrrrrrr_rrrrrrrr
Write Count... hhhhhhhh Read Count... hhhhhhhh

TCAX TIDAW at rrrrrrrr_rrrrrrrr
Flags... hh Count... hhhhhhhh Addr... rrrrrrrr_rrrrrrrr

DCW (TCAX) at rrrrrrrr_rrrrrrrr
Command.. hh Flags.. hh CD Count.. hh Count.. hhhhhhhh

DCW Control Data (TCAX) at rrrrrrrr_rrrrrrrr
dddddddd dddddddd dddddddd dddddddd | |
dddddddd dddddddd dddddddd dddddddd | |

IOSB at vvvvvvvv
formatted iosb data

IOBE at vvvvvvvv
formatted iobe data

EWA at vvvvvvvv
formatted ewa data

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 309

ASCB hhhhhhhh
Same as the ASCB field in the INTG, IO, IOCS, SSCH, or XSCH base record.

CPU hhhh
Same as the CPU ID field in the INTG, IO, IOCS, SSCH, or XSCH base record.

JOBN cccccccc
Same as the job named (JOBN) field in the INTG, IO, IOCS, SSCH, or XSCH
base record.

TCW at rrrrrrrr (vvvvvvvv)
The Transport Control Word (TCW) at real address rrrrrrrr and virtual address
vvvvvvvv. The formatted TCW follows. Fields designated as "rrrrrrrr" or
"rrrrrrrr_rrrrrrrr" are real addresses.

tsbtype TSB at rrrrrrrr_rrrrrrrr
The Transport Status Block (TSB) at real address rrrrrrrr_rrrrrrrr. The formatted
TSB follows. The TSB is only formatted for I/O interruptions (trace events
INTG, IO, and IOCS).

tsbtype
Describes the type of TSB. It can be one of the following:
v I/O status - This is a TSB for an I/O completion.
v Interrogate - This is a TSB for the completion of an interrogate operation.
v Program Check - This is a TSB for an I/O completion with status

indicating a device detected program check.
v Unknown - The TSB type is not recognized. In this case, the TSB is

formatted as hexadecimal data.

TCCB TIDAW at rrrrrrrr_rrrrrrrr
A Transport Indirect Address Word (TIDAW) for the Transport Command
Control Block (TCCB) at real address rrrrrrrr_rrrrrrrr. The formatted TIDAW
follows.

TCA Header at rrrrrrrr_rrrrrrrr
The Transport Control Area Header (TCAH) at real address rrrrrrrr_rrrrrrrr.
The formatted TCAH follows.

DCW at rrrrrrrr_rrrrrrrr
A Device Command Word (DCW) at real address rrrrrrrr_rrrrrrrr. The
formatted DCW follows.

DCW Control Data at rrrrrrrr_rrrrrrrr
The control data (command parameters) for the preceding DCW at
rrrrrrrr_rrrrrrrr. The control data is formatted as hexadecimal data.

Data TIDAW at rrrrrrrr_rrrrrrrr
A Transport Indirect Address Word (TIDAW) for the input or output data
buffers at real address rrrrrrrr_rrrrrrrr. The formatted TIDAW follows.

Data at rrrrrrrr_rrrrrrrr
Data transferred by the preceding DCW at real address rrrrrrrr_rrrrrrrr.

dddddddd dddddddd dddddddd dddddddd
Data transferred by the DCW. If there is not a series of dashes in this
field, then all transferred data are displayed in four byte sections.

*** Back half of split data ***
Indicates there were more bytes of information transferred than were
specified on the START command. The default value is 20 bytes, but
you can specify the number of bytes to be shown. The specified value

Generalized Trace Facility

310 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

is halved; for an odd number, the larger section is shown first. The first
section of data displayed comes from the beginning of the buffer from
which the data was transferred. The last section comes from the end of
the buffer.

TCA Trailer at rrrrrrrr_rrrrrrrr
The Transport Control Area Trailer (TCAT) at real address rrrrrrrr_rrrrrrrr. The
formatted TCAT follows.

Transport Count hhhhhhhh
Fullword count of total data transferred.

Write Count hhhhhhhh
Fullword count of total write data transferred.

Read Count hhhhhhhh
Fullword count of total read data transferred.

TCAX TIDAW at rrrrrrrr_rrrrrrrr
A Transport Indirect Address Word (TIDAW) for the Transport Control Area
Extension (TCAX) at real address rrrrrrrr_rrrrrrrr. The formated TIDAW
follows.

DCW (TCAX) at rrrrrrrrr_rrrrrrrr
A Device Command Word (DCW) in the Transport Control Area Extension
(TCAX) at real address rrrrrrrrr_rrrrrrrr. The formatted DCW follows.

DCW Control Data (TCAX) at rrrrrrrrr_rrrrrrrr
The control data (command parameters) for the preceding DCW in the TCAX
at rrrrrrrr_rrrrrrrr. The control data is formatted as hexadecimal data.

IOSB vvvvvvvv
Fullword virtual address of the IOSB followed by the formatted contents of the
IOSB.

IOBE vvvvvvvv
Fullword virtual address of the IOBE followed by the formatted contents of the
IOBE.

EWA vvvvvvvv
Fullword virtual address of the error recovery procedure work area (EWA),
followed by the formatted contents of EWA.

USR trace records
The USR record represents processing of a GTRACE macro. A user-supplied
formatting routine (AMDUSRhh) formats the record. If a routine is not supplied,
GTF prints the record without formatting.

This topic shows the unformatted and formatted records, then shows the following
examples of USR records created by GTRACE macros in IBM-components:
v USRF9 trace records for VSAM
v USRFE trace records for BSAM, QSAM, BPAM, and BDAM
v USRFF trace records for open, close, and end-of-volume (EOV)

The USRFD trace records for VTAM are described in z/OS Communications Server:
SNA Diagnosis Vol 1, Techniques and Procedures.

USR records contain the following information useful for identifying the user
program, MVS component, or IBM product producing the record and the routine
you can use to format the record:

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 311

v Event identifiers (EIDs) identify the event that produced the record. See “Event
Identifiers (EIDs) for USR trace records” on page 317 for a list of the EIDs and
associated products for USR trace records. Because each EID for USR records
start with an E, unformatted USR records show just the last three numbers of
the EID after the E.

v Format identifiers (FIDs) identify the routine that the system used to format the
USR trace record. See “Format Identifiers (FIDs) for USR trace records” on page
318 for a list of the FIDs and associated routines.

Unformatted USR trace record
An unformatted user trace record represents processing of a GTRACE macro when
a formatting routine is not supplied.

AID hh
Application identifier, which should always be AID FF.

FID hhhh
Format identifier of the routine (AMDUSRhh) that was to format this record.
See “Format Identifiers (FIDs) for USR trace records” on page 318 for a list of
the FIDs and associated formatting routines for user trace records.

EID hhhh
Event identifier, which identifies the event that produced the record. See
“Event Identifiers (EIDs) for USR trace records” on page 317 for a list of the
EIDs and associated products for USR trace records.

hhhhhhhh hhhhhhhh
Recorded data (268 bytes maximum). The data are as follows:
v Bytes 0-3: ASCB address
v Bytes 4-11: jobname
v Bytes 12-256: user data

Formatted USR trace record
A formatted user trace record represents processing of a GTRACE macro when an
AMDUSRhh formatting routine is supplied.

USRhh
Identifies the user-supplied formatting routine (AMDUSRhh). The following
USR records are generated and formatted by system components, and are
described in the following topics:
v USRF9 Trace Records for VSAM
v USRFD Trace Records for VTAM
v USRFE Trace Records for BSAM, QSAM, BPAM, and BDAM
v USRFF Trace Records for Open/Close/EOV

hhh
Last three numbers of the event identifier (EID) specified in the GTRACE

USR AID hh FID hhhh EID hhhh hhhhhhhh hhhhhhhh

USRhh hhh ASCB hhhhhhhh JOBN cccccccc
xxxx ...

Generalized Trace Facility

312 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

macro. See “Event Identifiers (EIDs) for USR trace records” on page 317 for a
list of the EIDs and associated products for USR trace records.

ASCB hhhhhhhh
Address of the ASCB for the address space that created the record.

JOBN cccccc
Name of the job associated with the address space.

xxxx ...
User-formatted trace data.

USRF9 trace record for VSAM
The USRF9 trace record represents opening or closing of a VSAM data set.

USRF9
Identifies VSAM's trace-record formatting routine (AMDUSRF9).

FF5
Last three numbers of the event identifier (EID) specified in the GTRACE
macro. See “Event Identifiers (EIDs) for USR trace records” on page 317 for a
list of the EIDs and associated products for USR trace records.

ASCB hhhhhhhh
Address of the ASCB for the address space in which the event occurred.

JOBN cccccc
JOB NAME cccccc

Name of the job.

STEP NAME cccccc
Name of the job step during which the event occurred.

TIOT ENT hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
Data set entry from the task I/O table (TIOT).

ACB hhhhhhhh ...
Contents of the data set's access method control block (ACB).

AMBL hhhhhhhh ...
Contents of the AMB list (AMBL).

USRF9 FF5 ASCB hhhhhhhh JOBN cccccc
JOB NAME cccccc STEP NAME cccccc
TIOT ENT hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

ACB hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

AMBL hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

AMB hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

AMDSB hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

AMB hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

AMDSB hhhhhhhh hhhhhhhh hhhhhhhh...
hhhhhhhh hhhhhhhh hhhhhhhh...

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 313

AMB hhhhhhhh ...
Contents of the access method block (AMB). The first AMB is for data, the
second for the index.

AMDSB hhhhhhhh ...
Contents of the access method statistics block (AMDSB). The first AMDSB is
for data, the second for the index.

USRFD trace record for VTAM
See z/OS Communications Server: SNA Diagnosis Vol 1, Techniques and Procedures for
samples of the USRFD trace records.

USRFE trace record for BSAM, QSAM, BPAM, and BDAM
The USRFE trace record represents abnormal termination of an access method
routine for basic sequential access method (BSAM), queued sequential access
method (QSAM), basic partitioned access method (BPAM), or basic direct access
method (BDAM).

USRFE
Identifies the trace-record formatting routine (AMDUSRFE).

hhh
Last three numbers of the event identifier (EID) specified in the GTRACE
macro. See “Event Identifiers (EIDs) for USR trace records” on page 317 for a
list of the EIDs and associated products for USR trace records. The event
identifier (EID) corresponds to the system completion code as follows:

EID Code
FF3 002
FF4 008
FF6 112
FF7 215
FF8 119
FF9 235
FFA 239
FFB 145
FFC 251
FFD 451
FFE 169

ASCB hhhhhhhh
Address of the ASCB for the address space in which the abnormal termination
occurred.

JOBN cccccc
Name of the job associated with the address space.

BSAM/QSAM/BPAM/DBAM TRACE RECORD
Record identification provided by the AMDUSRFE formatting routine.

USRFE hhh ASCB hhhhhhhh JOBN cccccc

BSAM/QSAM/BPAM/BDAM TRACE RECORD DDNAME cccccc ABEND CODE hh

cccc...[AT LOCATION hhhhhhhh]
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ...
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ...

Generalized Trace Facility

314 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

DDNAME cccccc
Name of the DD statement for the data set being processed.

ABEND CODE hhh
System completion code for the abnormal termination of the task.

RETURN CODE hh
Return code from the module that detected the error condition.

TIME=dd.dd.dd
Time (hour.minute.second) when the GTRACE macro was processed or blank,
if the time is not available.

ccc...[AT LOCATION hhhhhhhh]
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh ...

Data area name, or name and address, followed by the data area contents.

USRFF trace record for open/close/EOV abnormal end
This USRFF trace record represents an abnormal end during open, close, or
end-of-volume (EOV).

USRFF
Identifies the Open/Close/EOV trace record formatting routine (IMDUSRFF).

FFF
Last three numbers of the event identifier (EID) specified in the GTRACE
macro. See “Event Identifiers (EIDs) for USR trace records” on page 317 for a
list of the EIDs and associated products for USR trace records.

xxxx ...
Unformatted RRCBSA's (recovery routine control block save areas).

USRFF trace record for user requested work area
This USRFF trace record represents a user request for a work area trace.

USRFF
Identifies the Open/Close/EOV trace record formatting routine (IMDUSRFF).

FFF
Last three numbers of the event identifier (EID) specified in the GTRACE
macro. See “Event Identifiers (EIDs) for USR trace records” on page 317 for a
list of the EIDs and associated products for user trace records.

DCB
Data control block.

USRFF FFF ASCB hhhhhhhh JOBN cccccc
xxxx ...

USRFF FFF ASCB hhhhhhhh JOBN cccccc
DCB xxxx ...
WKAREA1 xxxx ...
WKAREA2 xxxx ...
WKAREA3 xxxx ...
WKAREA4 xxxx ...
WKAREA5 xxxx ...
WTG TBL xxxx ...

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 315

WKAREA1
Volume labels, file labels, DSCBs or message area. See z/OS DFSMS Using
Magnetic Tapes.

WKAREA2
Job file control block.

WKAREA3
Internal control blocks for Open/Close/EOV. These blocks are the data control
block (DCB), data extent block (DEB), and the input/output block (IOB).

WKAREA4
WKAREA5

Where-to-go-table used in transferring control among CSECTs of
Open/Close/EOV.

XSCH trace record
An XSCH record represents a cancel subchannel operation. For zHPF I/O
operations, a cancel subchannel can be used to initiate an interrogate operation to
query the status of the I/O operation at the device.

XSCH sdddd
Device number with the subchannel set identifier that the XSCH was issued
for.

ASCB aaaaaaaa
Address of the ASCB.

CPU cccc
Address of the processor.

JOBN jjjjjjjj
Name of the job associated with I/O operation.

SID ssssssss
Subchannel ID from the UCBSID field of the UCB

CC cc
The condition code of the XSCH request.

DVRID dd
The IOSB driver ID field (IOSDVRID) of the request that is attempting to be
cancelled.

IOSLVL ll
Function level to provide serialization of I/O requests. This value comes from
the IOSLEVEL field of the IOSB.

UCBLVL ll
UCB level value from the UCBLEVEL field of the UCB.

UCBWGT ww
Flags from the UCBWGT field of the UCB.

BASE sbbbb
The base device number and subchannel set id if the device is a PAV.

XSCH.... ddddd ASCB.... aaaaaaaa CPUID... cccc JOBN.... jjjjjjjj
SID..... ssssssss CC...... cc DVRID... dd
IOSLVL.. ll UCBLVL.. ll UCBWGT.. ww
BASE.... sbbbb INTTCW.. aaaaaaaa

Generalized Trace Facility

316 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

INTTCW
The virtual address of the interrogate TCW, if the XSCH was used to initiate an
interrogate operation, or zero.

Event Identifiers (EIDs) for USR trace records
The event identifier (EID) in GTF trace records is a 2-byte hexadecimal number
that identifies the event producing the record. You can use it to identify the
product that produced the record. Table 41 shows the full 2-byte EID, but because
EIDs for USR records start with an E, often unformatted USR records show just the
last three numbers of the EID after the E. If you have a three number EID, such as
FF5, look for EFF5 in the table.

Table 41. Event identifiers for USR trace records

EID (hex) Symbolic Name Issued by

E000-E3FF GTF user program

E400-E5F0 Reserved for IBM use

E5F1 PVM

E5F2-E5F3 Reserved for IBM use

E5F4-E5F5 NetView® System Monitor

E5F6-EF43 Reserved for IBM use

EF44-EF45 RACF

EF1D-EF1F MVS Job Management - Dynamic Allocation (SVC 99)

EF46-EF47 Reserved for IBM use

EF48 IOS

EF49 BDT

EF4F OSAM

EF50-EF52 Reserved for IBM use

EF53 OSI

EF54-EF5D FSI

EF5E Reserved for IBM use

EF5F DB2

EF60 JES3

EF61 VSAM Buffer Manager

EF62 Dynamic output SVC installation exit

EF63 Converter/Interpreter installation exit

EF64 APPC/VM VTAM Support (AVS)

EF65 GETMAIN FREEMAIN STORAGE trace (MVS)

EF66-EF6A VTAM

EF6C CICS

EFAA VTAM VM/SNA Console Services (VSCS)

EFAB DFSMS Media Manger

EFAC-EFAE Reserved for IBM use

EFAF-EFE0 IMDGPD01-
IMDGPD50

IBM

EFE1 ISTVIEID VTAM

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 317

Table 41. Event identifiers for USR trace records (continued)

EID (hex) Symbolic Name Issued by

EFE2 ISTTHEID VTAM

EFE3 ISTTREID VTAM

EFE4 ISTTDEID VTAM

EFE5-EFEE JES2

EFEF ISTTPEID VTAM

EFEF ISTTPEID VTAM

EFF0 ISTRPEID VTAM

EFF1 ISTCLEID VTAM

EFF2 ISTLNEID VTAM

EFF3 IGGSP002 SAM/PAM/DAM

EFF4 IGGSP008 SAM/PAM/DAM

EFF5 IDAAM01 VSAM

EFF6 IGGSP112 SAM/PAM/DAM

EFF7 IGGSP215 SAM/PAM/DAM

EFF8 IGGSP119 SAM/PAM/DAM

EFF9 IGGSP235 SAM/PAM/DAM

EFFA IGGSP239 SAM/PAM/DAM

EFFB IGGSP145 SAM/PAM/DAM

EFFC IGGSP251 SAM/PAM/DAM

EFFC IGGSP451 SAM/PAM/DAM

EFFE IGGSP169 SAM/PAM/DAM

EFFF IHLMDMA1 OPEN/CLOSE/EOV

Format Identifiers (FIDs) for USR trace records
As Table 42 shows, the format identifier (FID) in GTF trace records is a one-byte
hexadecimal number that is used to determine the name of the GTFTRACE
module you can use to format USR records. See z/OS MVS IPCS Customization for
information about the GTFTRACE formatting appendage for formatting USR trace
records.

Table 42. Format identifiers for USR trace records

FID (hex) EID Issued by Optional format module

00 E000-EFE4 User/component CSECT AHLFFILT in AHLFINIT

01-50 E000-E3FF User IMDUSR or AMDUSR (01-50)

57 EF44-EF45 RACF AMDUSR57

81 VMSI IMDUSR81 or AMDUSR81

84 VMSI/VTAM IMDUSR84 or AMDUSR84

DC PVM IMDUSRDC or AMDUSRDC

E2-E3 PSF/MVS IMDUSRE2-IMDUSER3 or
AMDUSRE2-AMDUSER3

E6 OSI IMDUSRE6 or AMDUSRE6

E8 FSI IMDUSRE8 or AMDUSRE8

Generalized Trace Facility

318 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 42. Format identifiers for USR trace records (continued)

FID (hex) EID Issued by Optional format module

E9 DB2/VSAM IMDUSRE9 or AMDUSRE9

EB APPC/VM VTAM
Support (AVS)

IMDUSREB or AMDUSREB

EC VTAM IMDUSREC or AMDUSREC

F5 VTAM/VSCS IMDUSRF5 or AMDUSR5

F9 EFF5 VSAM IMDUSRF9 or AMDUSRF9

FA EFAB DFSMS Media
Manager

IMDUSRFA or AMDUSRFA

FD EFEF-EFF2 VTAM IMDUSRFD or AMDUSRFD

FE EFF3-EFF4,
EFF6-EFFE

SAM/PAM/DAM IMDUSRFE or AMDUSRFE

Unformatted GTF trace output
This topic describes GTF output records that are not formatted by IPCS or other
routines. You can use this information to write your own formatting or analysis
routines.

Note: When GTF cannot obtain the data normally placed in fields of the following
records, it signals this by placing one of the following values in the field
v C'U/A'. Blanks are added on the right to fill out the field.
v C'*'. Asterisks are replicated to fill out the field.

There are several types of output records:
v Control records, see “Control records.”
v Lost data records, see “Unformatted lost event records” on page 321.
v User data record, see “User data records” on page 322.
v System data records, see “System data records” on page 323.

The lost data, user data and system data records all contain optional fields, which
are fields that only appear under certain conditions. The conditions are covered in
the explanation for the fields. Make sure that your formatting or analysis routine
takes these variable fields into account.

This section also describes the GTF system data records for individual events. See
“CCW trace record” on page 324 through “SVC minimal trace record” on page 340.

Control records
GTF creates a control record at the start of each block of trace output. The control
record can be followed by lost data, user data, and system data records. If this
trace output was merged from multiple systems using the IPCS COPYTRC
subcommand, then the control record reflects the combined GTF options in effect
from all the systems. See z/OS MVS IPCS Commands for more information about
the COPYTRC subcommand. Figure 100 on page 320 shows the format of a control
record.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 319

The fields in the control record contain the following information:

length
Total length of the record, in bytes.

res
Two bytes of zeroes. Reserved for IBM use.

AID
Application identifier, which is always zero for control records.

FID
Format identifier of the routine that will format the record, which is always
X'01' for a control record.

time zone
Value showing the difference between local time and Greenwich mean time
(GMT) in binary units of 1.048576 seconds when tracing began.

time stamp
Time stamp showing the eight-byte Greenwich mean time (GMT) when the
control record was created.

options
An eight-byte field containing the following: The first five bytes identify the
GTF options in effect for a block of trace output. See mapping macro
AHLZGTO in z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

The remaining 3 bytes contain the following important flags, in bit ranges 0-7:

GTWCFSID - Byte 6, Bit 6
1, if the individual trace records have SIDs (system identifiers) indicating
that the GTF trace data from multiple systems was merged using the IPCS
COPYTRC command. In this case, there is multiple source descriptors, one
for each system. The source descriptors are ranged in order by system
identifier (SID). Use the value in the SID field as an array index to locate
the source descriptor for a particular system.

The source descriptor information is identical in all control records within
a single trace data set.

0, if the trace records have no SIDs.

GTWCFNEW - Byte 6, Bit 7
1.

Source descriptors
One or more arrays of information about the origins of the records in this
block of trace data, such as the release level of the system issuing the trace
data and the GTF options in effect. If GTF trace data was merged from
multiple systems, there are multiple source descriptors, one for each system.
Use the value in the SID field as an array index to locate the source descriptor
for a particular system.

┌──────┬─────┬─────┬─────┬─────────┬──────────┬───────┐
│length│ res │ AID │ FID │time zone│time stamp│options│ ... source descriptors ...
└──┬───┴──┬──┴──┬──┴──┬──┴────┬────┴────┬─────┴───┬───┘

2 2 1 1 4 8 8
bytes bytes byte byte bytes bytes bytes

Figure 100. Unformatted control record

Generalized Trace Facility

320 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

See mapping macro AHLZGTS in z/OS MVS Data Areas in z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/), and check the
format of the source descriptor information.

Unformatted lost event records
A lost event record indicates that GTF lost the trace records for one or more events
because of an error or overflow of the trace buffer. Figure 101 shows the format of
a lost event record.

The fields in the lost event record contain the following information:

length
Total length of the record, in bytes.

res
Two bytes of zeroes. Reserved for IBM use.

AID
Application identifier, which is always zero for lost event records.

FID
Format identifier. The value of FID is one of the following:
v X'02', if some trace records are missing because of an error or an overflow of

the trace buffer.
v X'03', if an entire block of trace records is missing because of an error or an

overflow of the trace buffer.

time zone
Value showing the difference between local time and Greenwich mean time
(GMT) in binary units of 1.048576 seconds when tracing began.

time stamp
Time stamp showing the eight-byte Greenwich mean time (GMT) when the
control record was created.

count
If the FID is X'02', indicating that some trace records are missing, this field
contains the number of trace events that are lost.

If the FID is X'03', indicating that an entire block of trace data is missing, this
field contains zeros.

SID
The system identifier of the system where this trace record was created. This
2-byte field only exists when GTF trace data from multiple systems was
merged using the IPCS COPYTRC command. When present, the SID is an
array index you can use to locate the source descriptor information for a
particular system. For example, if the SID value for a record is 3, the source
descriptor information for the system issuing the record is the third source
descriptor in the control record.

┌──────┬─────┬─────┬─────┬─────────┬──────────┬─────┬──────────┐
│length│ res │ AID │ FID │time zone│time stamp│count│ SID │
└──┬───┴──┬──┴──┬──┴──┬──┴────┬────┴────┬─────┴──┬──┴────┬─────┘

2 2 1 1 4 8 4 2
bytes bytes byte byte bytes bytes bytes bytes

(optional)

Figure 101. Unformatted Lost Event Record

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 321

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

To check to see whether trace data for a block of output comes from multiple
systems, look in the control record for the options field and see if the
GTWCFSID bit is set on. See “Control records” on page 319 for the options
field.

User data records
This topic describes the format of user trace records requested using the GTRACE
macro.

If the application using GTRACE specifies more than 256 bytes of data, the user
records may be split. If a user trace record is a split record, the AID will contain a
value of X'F0', X'F1', or X'F2'. Split records contain the optional sequence and total
length fields.

The records have the general format shown in Figure 102.

The fields in the record contain the following information:

length
Total length of the record, in bytes.

res
Two bytes of zeros. Reserved for IBM use.

AID
Application identifier, which is one of the following:
v X'FF'-- Non-split record
v X'F0'-- The first record of a series of split records
v X'F1'-- A middle record in a series of split records
v X'F3'-- The last record in a series of split records

FID
Format identifier of the routine that will format the trace record. See “Format
Identifiers (FIDs) for USR trace records” on page 318 for a list of FIDs and
associated formatting routines.

time stamp
Time stamp showing the eight-byte Greenwich mean time (GMT) when the
record was created.

EID
Event identifier, which identifies the event that produced the trace record. See
“Event Identifiers (EIDs) for USR trace records” on page 317 for a list of the
EIDs and associated products for user trace records.

SID
System identifier, which identifies the system where the record was produced.
This 2-byte field only exists in the following cases:
v GTF trace data from multiple systems was merged using the IPCS

COPYTRC command.

┌──────┬─────┬─────┬─────┬──────────┬─────┬──────────┬──────────┬────────────┬─────┬────────┐
│length│ res │ AID │ FID │time stamp│ EID │ SID │ sequence │total length│ ASCB│job name│ ... data ...
└──┬───┴──┬──┴──┬──┴──┬──┴────┬─────┴──┬──┴────┬─────┴────┬─────┴─────┬──────┴──┬──┴───┬────┘

2 2 1 1 8 2 2 2 4 4 8
bytes bytes byte byte bytes bytes bytes bytes bytes bytes bytes

(optional) (optional) (optional)

Figure 102. Unformatted User trace record Format

Generalized Trace Facility

322 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v The record is a split one. If the trace data containing this split record was
not merged from multiple systems, the SID field for the split record contains
zeros.

You can use the SID from merged trace data as an array index to locate the
source descriptor information for a particular system. For example, if the SID
value for a record is 3, the source descriptor information for the system issuing
the record is the third source descriptor in the control record.

To check to see whether trace data for a block of output comes from multiple
systems, look in the control record for the options field and see if the
GTWCFSID bit is set on. See “Control records” on page 319 for the options
field.

sequence
Sequence number, in hexadecimal, of this split record. This field only exists for
split records.

total length
Total length of the split trace data. This field only exists for split records.

ASCB
The address of the address space control block (ASCB) for the address space
where the GTRACE macro was issued.

jobname
The name of the job associated with the task where the GTRACE macro was
issued.

data
Contains the trace data gathered for the requested event. The length of this
field varies according to the event being traced. The number of bytes of data in
the data field for user records is equal to the number of bytes specified on the
GTRACE macro.

System data records
GTF creates trace records for each system event you select when requesting GTF
tracing. The header portion of system data records for events is shown in
Figure 103. Individual event record formats The format of individual system data
records are shown in “Unformatted trace records for events” on page 324 in
alphabetical order. Note that this section does not include all system events.

The fields in the record contain the following information:

length
Total length of the record, in bytes.

res
Two bytes of zeros. Reserved for IBM use.

AID
Application identifier, which is always X'FF' for system data records.

┌──────┬─────┬─────┬─────┬──────────┬─────┬──────────┐
│length│ res │ AID │ FID │time stamp│ EID │ SID │ ... data ...
└──┬───┴──┬──┴──┬──┴──┬──┴────┬─────┴──┬──┴────┬─────┘

2 2 1 1 8 2 2
bytes bytes byte byte bytes bytes bytes

(optional)

Figure 103. Header for Unformatted System trace record Format

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 323

FID
Format identifier of the routine that will format the trace record.

time stamp
Time stamp showing the eight-byte Greenwich mean time (GMT) when the
record was created.

EID
Event identifier, which identifies the event that produced the trace record.

SID
System identifier, which identifies the system where the record was produced.
The SID field contains zeros when the record is a split record. This 2-byte field
is only created when GTF trace data from multiple systems was merged using
the IPCS COPYTRC command. When present, the SID is an array index you
can use to locate the source descriptor information for a particular system. For
example, if the SID value for a record is 3, the source descriptor information
for the system issuing the record is the third source descriptor in the control
record.

To check to see whether trace data for a block of output comes from multiple
systems, look in the control record for the options field and see if the
GTWCFSID bit is set on. See “Control records” on page 319 for the options
field.

data
Trace data gathered for the requested event. The length of this field varies
according to the event being traced. The data portions for individual system
trace records are shown starting on “Unformatted trace records for events.”

Unformatted trace records for events
This topic presents the records for a selection of system events in alphabetical
order. It shows the unformatted layout of the data for individual event records. See
“System data records” on page 323 to see the header section for the records. Note
that not all system events are included in this topic. Fields in a trace record may
contain the following special indicators:

N/A Not applicable. The field does not apply in this record. In a 2-byte field,
not applicable appears as N/.

U/A Unavailable. GTF could not gather the information. In a 2-byte field,
unavailable appears as U/.

The offsets for all the data records are relative and do not reflect the actual number
of bytes into the record for each field. The offsets begin at the start of the data
portion of the each record because the header section varies in length, depending
on whether the optional SID field is present.

ADINT trace record
For a complete mapping of the adapter interruption trace record, see the AHLPCIE
(PCIE trace record formats) data area in z/OS MVS Data Areas in z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

CCW trace record
For a complete mapping of the AHLMCWRC data area, see z/OS MVS Data Areas
in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Generalized Trace Facility

324 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

DSP comprehensive trace record
GTF builds a DSP record when an entry is made to the dispatcher to dispatch a
unit of work and TRACE=DSP is the GTF option in effect.

The FID for the DSP comprehensive trace record is X'00'. The EID is one of the
following:
v X'0001' - indicates SRB dispatching.
v X'0002' - indicates LSR dispatching.
v X'0003' - indicates TCB dispatching.
v X'0004' - indicates exit prolog dispatching.

Table 43. DSP trace record offset, size, and description

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 16 Resume PSW for new task.

30 (1E) 4 New TCB (for LSR and TCB, SRB for SRB).

For TCB only:

34 (22) 8 CDE name.

For SRB only:

34 (22) 4 Parm address.

38 (26) 1 For SRB only, SRB routine type indicator.

S for a suspended SRB that is about to be
re-dispatched.

I for an SRB that is about to be dispatched for the first
(initial) time.

DSP minimal trace record
GTF builds a DSP minimal record when an entry is made to the dispatcher to
dispatch a unit of work and both TRACE=SYSM,DSP are the GTF options in effect.

The FID for the DSP minimal trace record is X’03’. The EID is one of the following
values:
v X’0001’ - indicates SRB dispatching.
v X’0002’ - indicates LSR dispatching.
v X’0003’ - indicates TCB dispatching.
v X’0004’ - indicates exit prolog dispatching.

Table 44. Values for DSP minimal trace record

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 16 Resume PSW for work unit that is being dispatched.

22 (16) 4 Current TCB or N/A (for TCB and LSR only).

26 (1A) 4 Register 15.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 325

Table 44. Values for DSP minimal trace record (continued)

Offset Size Description

30 (1E) 4 Register 0 or SRB.

34 (22) 4 Register 1.

38 (26) 1 For SRB only. The SRB routine type indicator.

S for a suspended SRB that is about to be
redispatched.

I for an SRB that is about to be dispatched for the
first (initial) time.

EXT comprehensive trace record
GTF builds a EXT comprehensive record when an external interruption occurs and
either TRACE=SYS or TRACE=EXT are the GTF options in effect.

The FID for the EXT comprehensive trace record is X'02'. The EID is X'6201'.
interruption.

Table 45. EXT comprehensive trace record offset, size, and description

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 16 External old PSW.

30 (1E) 4 Old TCB.

For SIGP interrupt:

34 (22) 4 PARMFIELD.

38 (26) 2 CPUID.

For clock comparator interrupt:

34 (22) 2 Reserved for IBM use.

36 (24) 4 TQE exit.

40 (28) 4 TQE ASCB.

For CPU timer interrupt:

34 (22) 2 Reserved for IBM use.

36 (24) 4 TQE exit.

EXT minimal trace record
GTF builds an EXT minimal record when an external interruption occurs and
TRACE=SYSM is the GTF option in effect.

The FID for the EXT minimal trace record is X'03'. An EID of X'6201' indicates an
external interruption.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 16 External old PSW.

Generalized Trace Facility

326 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Offset Size Description

22 (16) 4 TCB of interrupted task or N/A.

26 (1A) 4 NTQE TCB or INT CPU or N/A.

I/O summary trace record
GTF builds an I/O summary record when an I/O interruption occurs and
TRACE=IOX or TRACE=IOXP is a GTF option in effect. To trace PCI I/O
interruptions, TRACE=PCI must also be in effect.

The FID for the I/O summary record is X'08'. The EID is one of the following:
v X'2100' - indicates a PCI I/O interruption
v X'5107' - indicates an EOS I/O interruption
v X'5202' - indicates an I/O interruption with a valid UCB
v X'5203' - indicates a IOCS I/O interruption. It indicates an I/O interruption that

also contains concurrent sense information, for devices that support the
concurrent sense facility.

The I/O summary record will always contain a header section, followed by a
section header and a common section. The section header describes the type and
length of the following section and an indicator if this is the last section of the
record.

A typical I/O summary record for a dasd device would have a header section, a
common section, a data set section, a CMB section and, probably, one or more
CCW sections. If an I/O summary record has to be extended the following
extension records would consist of a header section with the header record number
greater than 1, a common section and one or more CCW sections.

Header section:

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 2 Device number.

16 (10) 4 System ID.

20 (14) 1 Driver ID.

21 (15) 1 Trace version.

22 (16) 2 Record count.

Section header:

Offset Size Description

0 (0) 1 Section type:

v FL1'0': Common section

v FL1'1': CMB section

v FL1'3': CCW Orientation section

v FL1'4': Data set section

1 (1) 1 Flag identifiers.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 327

Offset Size Description

1... Last section of this record.

2 (2) 2 Section length.

Common section:

Offset Size Description

0 (0) 1 Device class.

1 (1) 1 Device status.

2 (2) 1 Error codes: indicate errors found during CCW analysis.
See “CCW error codes” on page 330 for a description.

3 (3) 1 Flag byte.

1... Last trace recordof this I/O event.

.1.. Reserve (conditional or unconditional).

..1. Release.

...1 At least one search CCW.

4 (4) 6 Volume serial.

10 (A) 4 Device type.

Data set section:

Offset Size Description

0 (0) 1 Data set type.

1 (1) 1 Name length.

2 (2) 44 Data set name.

CMB Section:

Offset Size Description

0 (0) 2 Number of SSCH instructions.

2 (2) 2 Number of SSCH instructions for which data was
collected.

4 (4) 4 Sum of device connect times.

8 (4) 4 Sum of SSCH request pending times.

12 (C) 4 Sum of subchannel disconnect times.

16 (10) 4 Sum of control unit queueing times.

20 (14) 8 Time stamp for the start of this I/O request.

28 (1C) 4 Device active only time.

32 (20) 4 Number of SSCH instructions

36 (24) 4 Number of SSCH instructions for which data was
collected

40 (28) 4 Sum of device busy times

44 (2C) 4 Sum of initial command response times

Generalized Trace Facility

328 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CCW orientation section:

Offset Size Description

0 (0) 1 Orientation sequence number.

1 (1) 1 Flag byte 1.

1... At least one SILI bit on.

.1.. At least one suspend bit on.

..1. At least one PCI.

...1 At least one skip bit on.

.... 1... Read record zero or read home address.

.... .1.. Reserved.

.... ..1. Read multiple CKD or track.

.... ...1 At least one erase CCW.

2 (2) 1 Flag byte 2.

1... End of file read or written.

.1.. At least one format write.

..1. This record is for an FCX (zHPF) channel program

3 (3) 1 Count of erase, read MCKD.

4 (4) 2 Number of blocks read.

6 (6) 2 Number of blocks written.

8 (8) 4 Number of bytes read.

12 (C) 4 Number of bytes written.

16 (10) 2 Number of data chain CCWs.

18 (12) 2 Number of COM chain CCWs.

20 (14) 1 External global attribute.

11.. '11' (only allowed value).

..1. CKD conversion mode.

...1 Subsystem operation mode.

.... ..1. Cache fast write.

.... ...1 Inhibit DASD fast write.

21 (15) 1 External global attribute extended.

22 (16) 4 External end of extent CCH.

26 (1A) 1 Seek/locate code.

27 (1B) 5 CCHHR (search ID equal).

32 (20) 1 Operation code from locate parameter.

33 (21) 1 Sector number from parameter.

34 (22) 1 Extended operation code.

35 (23) 2 Extended parameters.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 329

CCW error codes:

Table 46. CCW error codes

Error code (Hex) Error Code Name Description

03 IONOCCW Bad CCW

04 IOINSPAC Insufficient space in table

05 IOX4K Target crosses 4K boundary

06 IOLASTCC Last CCW not trace

07 IOSRCHCD Search CCW with data chain

08 IOINSCNT Insufficient count

09 IOCPUNAV Channel program unavailable

0A IORCKD8 Read CKD with count <8

0B IONOIDAW No IDAW where needed

0C IOCSWINV Invalid CSW

0D IOTICBAD Invalid TIC address

0E IOEBIDA IDAL across page bound

0F IOEBIDAL IDAL not aligned on correct boundary

10 IOMIDNOQ MIDAW not aligned on correct boundary

11 IOMIDZCT MIDAW contains a zero count

12 IOMIDPBD MIDAW crosses a page boundary (ignored if
the skip bit is on)

13 IOMIDIDA Both the IDAW and MIDAW bits are on

14 IONOTCW Failure accessing TCW

15 IONOTCAH Failure accessing TCA header

16 IONOTSB Failure accessing TSB

17 IONOTIDA Failure accessing TIDAW

18 IONODCW Failure accessing DCW

19 IOINCMDL TCW command length in error

1A IOCmdParmInvalid Command dependent parameters contain
invalid information

I/O trace record
GTF builds an I/O record when an I/O interruption occurs and TRACE=SYSM,
TRACE=SYS, TRACE=IO, or TRACE=IOP are the GTF options in effect. To trace
PCI I/O interruptions, TRACE=PCI must also be in effect.

The FID for the I/O trace record is X'07'. The EID is one of the following:
v X'2100' - indicates a PCI I/O interruption.
v X'5101' - indicates an EOS I/O interruption.
v X'5200' - indicates an I/O interruption with a valid UCB.
v X'5201' - indicates a IOCS I/O interruption. It indicates an I/O interruption that

also contains concurrent sense information, for devices that support the
concurrent sense facility.

Offset Size Description

0 (0) 4 ASCB.

Generalized Trace Facility

330 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Offset Size Description

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 2 Device number.

16 (10) 16 I/O old PSW.

32 (20) 20 IRB words 0-4.

52 (34) 4 TCB.

56 (38) 2 Sense bytes.

58 (3A) 1 IOSB Flag (IOSFLA).

59 (3B) 1 IOSB Option (IOSOPT).

60 (3C) 1 IOS Driver ID.

61 (3D) 1 IOS level.

62 (3E) 1 UCB level.

63 (3F) 1 Flags (UCBGWT).

64 (40) 2 Base device number.

66 (42) 44 IRB words 5–15 (for EID X'5201' only).

PCIDMX trace record
For a complete mapping of the PCIE de-multiplexing trace record, see the
AHLPCIE (PCIE trace record formats) data area in z/OS MVS Data Areas in z/OS
Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

PCILG trace record
For a complete mapping of the PCILG trace record, see the AHLPCIE (PCIE trace
record formats) data area in z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

PCISTG trace record
For a complete mapping of the PCISTG trace record, see the AHLPCIE (PCIE trace
record formats) data area in z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

PI comprehensive trace record
GTF builds a PI comprehensive record when a program interruption occurs and
either TRACE=PI or TRACE=SYS are the GTF options in effect.

The FID for the PI comprehensive trace record is X'00'. The EID is one of the
following:
v X'6101' - indicates a program interruption with codes 1-17, 19, and 128.
v X'6200' - indicates a program interruption with code 18.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 16 Program old PSW.

30 (1E) 4 INT TCB.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 331

|
|
|
|

|
|
|
|

|
|
|
|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Offset Size Description

34 (22) 4 Virtual page address low half.

38 (26) 8 RB or CDE name.

46 (2E) 64 Reserved for IBM use.

110 (6E) 4 Virtual page address high half.

PI minimal trace record
GTF builds a PI minimal record when a program interruption occurs and
TRACE=SYSM is the GTF option in effect.

The FID for the PI minimal trace record is X'03'. The EID is one of the following:
v X'6101' - indicates a program interruption with codes 1-17, 19, and 128.
v X'6200' - indicates a program interruption with code 18.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 16 Program old PSW.

22 (16) 4 Old TCB.

26 (1A) 4 Virtual page address low half.

30 (1E) 4 Register 15.

34 (22) 4 Register 1.

38 (26) 4 Virtual page address high half.

RR comprehensive trace record
GTF builds an RR comprehensive record when a recovery routine is invoked and
TRACE=SYS or TRACE=RR are the GTF options in effect.

The FID for the RR comprehensive trace record is X'04'. The EID is one of the
following:
v X'4002' - indicates STAE/ESTAE invocation.
v X'4003' - indicates FRR invocation.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 8 Name of recovery routine or U/A.

22 (16) 16 PSW current when error occurred.

38 (26) 4 Completion code.

42 (2A) 8 Reserved for IBM use.

50 (32) 4 Retry address or N/A.

54 (36) 4 Address of SDWA (STAE/ESTAE only).

Generalized Trace Facility

332 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

RR minimal trace record
GTF builds an RR minimal record when a recovery routine is invoked and
TRACE=SYS is the GTF option in effect.

The FID for the RR minimal trace record is X'03'. The EID is one of the following:
v X'4002' - indicates STAE/ESTAE invocation.
v X'4003' - indicates FRR invocation.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 16 Error PSW.

22 (16) 4 Completion code.

26 (1A) 4 Reserved for IBM use.

30 (1E) 3 Reserved for IBM use.

33 (21) 1 Return code from recovery routine (STAE/ESTAE only).

34 (22) 4 Retry address or N/A. Note: If no return code at offset
33, begin retry address at offset 33.

38 (26) 4 Address of SDWA (STAE/ESTAE only). Note: If retry
address begins at offset 33, SDWA address begins at offset
37.

SLIP trace records
GTF builds a SLIP trace record when TRACE=SLIP is the GTF option in effect and:
v A SLIP trap has matched and either TRACE or TRDUMP has been specified on

the SLIP command.
v A SLIP trap is in DEBUG mode (specified on the SLIP command) and is

inspected by the SLIP processor as a result of any SLIP event.

The SLIP trace records are:
v SLIP Standard Trace Record
v SLIP Standard/User Trace Record
v SLIP User Trace Record
v SLIP DEBUG Trace Record

SLIP standard trace record: The FID for the SLIP standard trace record is X'04'.
The EID is X'4004'.

A field will contain asterisks if an error occurred when attempting to obtain data
or the data is unavailable because it is paged out.

Offset Size Description

0 (0) 4 ASCB address.

4 (4) 2 CPUID. (Note: When SLIP is entered from RTM2, the
CPUID recorded may be different from the CPUID when
RTM2 was running.)

6 (6) 8 Jobname from current address space (or N/A).

14 (E) 4 SLIP trap ID.

18 (12) 2 ASID of current address space.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 333

Offset Size Description

20 (14) 8 Job step program name (or U/A or N/A).

28 (1C) 4 TCB address (or N/A).

32 (20) 1 System mode indicators, byte 1:

1... Supervisor control mode.

.1.. Disabled for I/O and external interrupts.

..1. Global spin lock held.

...1 Global suspend lock held.

.... 1... Local lock held.

.... .1 Type 1 SVC in control.

.... ..1. SRB mode.

.... ...1 TCB mode.

33 (21) 1 System mode indicators, byte 2:

1... Recovery routine in control (always zero if a PER
interrupt).

.1.. Problem program state.

..1. Supervisor state.

...1 System key.

.... 1... Problem program key.

.... .1.. Any global lock held.

.... ..1. Any lock held.

36 (24) 1 Error byte 1 (or zeros if a PER interrupt):

1... Program check interrupt.

.1.. Restart interrupt.

..1. SVC error.

...1 Abend; task issued SVC 13.

.... 1... Paging I/O error.

.... .1.. Dynamic address translation error.

.... ..1. Software error caused by machine check.

.... ...1 Abnormal address space termination.

35 (23) 1 Error byte 2 (or zeros if a PER interrupt):

1... Memterm.

36 (24) 1 SLIP flags:

1... DEBUG record.

.1.. Registers collected.

37 (25) 2 Data unavailable counter (or zeros if DATA was not
specified for the trap).

The following fields apply only to PER interrupts otherwise set to N/A (or N for
one-byte fields).

Generalized Trace Facility

334 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Offset Size Description

39 (27) 8 Load module name in which the interrupt occurred (or
U/A or N/A).

47 (2F) 4 Offset in load module (or U/A or N/A).

51 (33) 8 Address of the instruction that caused the PER interrupt.

59 (3D) 6 Instruction content (six bytes of data beginning at the
address of the instruction that caused the PER interrupt).

65 (41) 8 Target instruction address if EXECUTE instruction (or
N/A or U/A).

73 (49) 6 Target instruction content if EXECUTE instruction (six
bytes of data beginning at the target instruction address),
or (N/A or U/A).

79 (4F) 4 Beginning range virtual address if SA (storage-alteration)
specified on SLIP command (or N/A).

83 (53) 4 Four bytes of storage starting at beginning range virtual
address if SA specified (or N/A or U/A).

87 (57) 16 Program old PSW.

103 (67) 4 Program interrupt code (PIC) and instruction length code.

107 (6B) 1 PER interrupt code:

1.. Successful-branch event (SB).

.1.. Instruction-fetch event (IF).

..1. Storage-alteration event (SA).

108 (6C) 1 PER trap mode:

1... Successful-branch monitoring (SB).

.1.. Instruction-fetch monitoring (IF).

..1. Storage-alteration monitoring (SA).

...x Reserved.

.... 1... PER trap.

.... .1.. Recovery specified.

.... ..1. Message flag.

.... ...1 Message flag.

109 (6D) 2 Key mask.

111 (6F) 2 SASID.

113 (71) 2 Authorization index.

115 (73) 2 PASID.

117 (75) 1 PSW ASC mode indicator

v F0: primary addressing mode

v F1: access register addressing mode

v F2: secondary addressing mode

v F3 home addressing mode

118 (76) 13 Storage Alteration Space Identifier

v For an address space: contains the ASID

v For a data space: contains the owning ASID and the
dataspace name

131 (83) 4 High-half of begin range

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 335

Offset Size Description

135 (87) 1 Transactional execution DATA filter mismatch count

SLIP standard + user trace record: The FID for the SLIP Standard + User trace
record is X'04'. The EID is X'4005'.

Offset Size Description

0 (0) 136

through 135 Fields are identical to the SLIP standard record.

136 (88) 2 Length of user-defined data.

138 (8A) variable User-defined data (specified through the TRDATA
parameter on the SLIP command).

SLIP user trace record: The FID for the SLIP user trace record is X'04'. The EID is
X'4006'.

Offset Size Description

0 (0) 2 CPUID.

2 (2) 2 Extension number.

4 (4) 1 Continuation length.

5 (5) 2 Length of the user defined data.

7 (7) variable User-defined data (specified through the TRDATA
parameter on the SLIP command).

Note:

1. If the SLIP user requests registers to be placed in the SLIP user record, they are
the first field in the record.

2. A length field of zero indicates that the user-defined data was not available (for
example, the data is paged out).

3. The TRDATA parameter on the SLIP command specifies one or more data
ranges. The number of records needed to trace these ranges depends on the
size of the ranges specified. The trace contains a standard plus (+) user record
from the next range or a user record followed by as many user records and
user continuation records as needed to trace the ranges specified. The header
for each record contains the CPUID and extension number to help correlate the
output (extension numbers apply only to user and user continuation records).
When a record is partially filled and the data from the next range will not fit in
the remaining space; the partially filled record is written to the trace data set.
Another user record is built, the extension number is increased by one, and the
continuation length is set to zero. The data length and data is then copied into
this record.
When the length of the data from a range is greater than 249 bytes, the excess
data is put in user continuation records in the following manner. The data
length and first 248 bytes are put in a user record. After writing that record a
user continuation record is built. The extension number is increased by one and
the continuation length is set to the number of bytes of data to be put in this
record. If more than 251 bytes of data are left, 248 bytes are copied into record,
and it is written. User continuation records are built until all the data in from
that range is traced.

Generalized Trace Facility

336 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

SLIP DEBUG trace record: The FID for the SLIP DEBUG trace record is X'04'. The
EID is X'4005'.

Offset Size Description

0 (0) 136

through 135 Fields are identical to the SLIP standard record.

136 (88) 1 DEBUG byte; indication of which keyword failed:

v Decimal 2 indicates COMP keyword

v Decimal 3 indicates ASID keyword

v Decimal 4 indicates JOBNAME keyword

v Decimal 5 indicates JSPGM keyword

v Decimal 6 indicates PVTMOD keyword

v Decimal 7 indicates LPAMOD keyword

v Decimal 8 indicates ADDRESS keyword

v Decimal 9 indicates MODE keyword

v Decimal 10 indicates ERRTYP keyword

v Decimal 13 indicates RANGE keyword

v Decimal 14 indicates DATA keyword

v Decimal 20 indicates ASIDSA keyword

v Decimal 22 indicates REASON CODE keyword

v Decimal 23 indicates NUCMOD keyword

v Decimal 24 indicates PSWASC keyword

v Decimal 26 indicates DSSA keyword

137 (89) 1 Reserved.

Note: The high-order bit in the SLIP flags (SFLG) field (at offset X'34') is set on to
indicate a DEBUG record.

SRM comprehensive trace record
GTF builds an SRM comprehensive record when system resource manager is
invoked and TRACE=SYS or TRACE=SRM are the trace options in effect.

The FID for the SRM trace record is X'04'. The EID is X'4001'.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname

14 (E) 4 Register 15.

18 (12) 4 Register 0.

22 (16) 4 Register 1.

SRM minimal trace record
GTF builds an SRM minimal record when system resource manager is invoked and
TRACE=SYSM is the GTF option in effect.

The FID for the SRM minimal trace record is X'03'. The EID is X'4001'.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 337

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 4 Register 15.

10 (A) 4 Register 0.

14 (E) 4 Register 1.

SSCH trace record
GTF builds an SSCH record when an SSCH event occurs and TRACE=SYSM,
TRACE=SYS, TRACE=SYSP, TRACE=SSCH or TRACE=SSCHP are the GTF options
in effect.

The FID for the SSCH trace record is X'00'. The EID is X'5105'.

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Jobname.

14 (E) 2 Device number.

16 (10) 4 Real address of channel program.

20 (14) 4 Virtual address of channel program.

24 (18) 4 Reserved for IBM use.

28 (1C) 1 Condition code.

29 (1D) 12 Reserved for IBM use.

41 (29) 8 Dynamic seek address.

49 (31) 1 Reserved for IBM use.

50 (32) 1 Reserved for IBM use.

51 (33) 1 Reserved for IBM use.

52 (34) 1 Reserved for IBM use.

53 (35) 1 Reserved for IBM use.

54 (36) 1 Reserved for IBM use.

SVC comprehensive trace records
GTF builds SVC comprehensive records when an SVC interruption occurs and
either the TRACE=SYS or TRACE=SVC GTF option is in effect. All SVC records
contain the basic data described below; however, many SVC numbers invoke
additional data recording, described following the basic data.

The FID for the SVC comprehensive trace record is X'010'. The EID is X'1000'.

Table 47. Basic SVC comprehensive trace record

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 8 Job name.

Generalized Trace Facility

338 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 47. Basic SVC comprehensive trace record (continued)

Offset Size Description

14 (E) 16 SVC old PSW. The seventh and eighth bytes contain the
SVC number.

30 (1E) 4 Old TCB.

34 (22) 8 CDE name.

42 (2A) 4 Register 15.

46 (2E) 4 Register 0.

50 (32) 4 Register 1.

GTF builds only a basic comprehensive trace record for the following SVCs:

Name Number Name Number

EXIT 3 TEST 97

GETMAIN/
FREEMAIN

10 SUBMIT 100

TIME 11 QTIP 101

SYNCH 12 XLATE 103

MGCR 34 TOPCTL 104

WTL 36 IMBLIB 105

TTROUTER 38 REQUEST 106

CIRB 43 MODESET 107

TTIMER 46 None 109

TTOPEN 49 DSTATUS 110

NOP 50 JECS 111

OLTEP 59 RELEASE 112

TSAV 61 SIR 113

CHATR 72 BLKPAGE 115

(IFBSTAT) 76 None 116

STATUS 79 None 117

SMFWTM 83 DSSPATCH 118

(IGC084) 84 TESTAUTH 119

SWAP 85 GETMAIN/FREEMAIN 120

EMSERV 89 None 121

VOLSTAT 91 LINK, LOAD, XCTL 122

TPUT/TGET 93 PURGEDQ 123

TSO terminal control 94 TPIO 124

SYSEVENT 95

Basic SVC comprehensive trace record with parameter list information: For
detailed information about data gathered for the following SVCs, see z/OS MVS
Diagnosis: Reference.

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 339

Name Number Name Number

EXCP 0 STIMER 47

WAIT/WAITR 1 DEQ 48

POST 2 SNAP 51

GETMAIN 4 RESTART 52

FREEMAIN 5 RELEX 53

LINK 6 DISABLE 54

XCTL 7 EOV 55

LOAD 8 ENQ/RESERVE 56

DELETE 9 FREEDBUF 57

ABEND 13 RELBUF/REQBUF 58

SPIE 14 STAE 60

ERREXCP 15 DETACH 62

PURGE 16 CHKPT 63

RESTORE 17 RDJFCB 64

BLDL/FIND 18 BTAMTEST 66

OPEN 19 BSP 69

CLOSE 20 GSERV 70

STOW 21 ASGNBFR/BUFINQ/
RLSEBFR

71

OPEN TYPE = J 22 SPAR 73

CLOSE TYPE = T 23 DAR 74

DEVTYPE 24 DQUEUE 75

TRKBAL 25 LSPACE 78

CATLG 26 GJP 80

OBTAIN 27 SETPRT 81

SCRATCH 29 ATLAS 86

RENAME 30 DOM 87

FEOB 31 MOD88 88

ALLOC 32 TCBEXCP 92

WTO/WROR 35 PROTECT 98

SEGLD/SEGWT 37 Dynamic allocation 99

LABEL 39 EXCPVR 114

EXTRACT 40

IDENTIFY 41

ATTACH 42

CHAP 44

OVLYBRCH 45

SVC minimal trace record
GTF builds an SVC minimal record when an SVC interruption occurs and
TRACE=SYSM is the GTF option in effect. The FID for the SVC minimal trace
record is X'010'. The EID is X'1000'.

Generalized Trace Facility

340 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Offset Size Description

0 (0) 4 ASCB.

4 (4) 2 CPUID.

6 (6) 16 SVC old PSW. The seventh and eighth bytes contain
the SVC number.

22 (16) 4 Old TCB.

26 (1A) 4 Register 15.

30 (1E) 4 Register 0.

34 (22) 4 Register 1.

TCW trace record
For a complete mapping of the AHLFCXG (FCX/zHPF channel program) data
area, see z/OS MVS Data Areas in z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

Generalized Trace Facility

Chapter 10. The Generalized Trace Facility (GTF) 341

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

342 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 11. The generic tracker facility

The intended purpose of generic tracker is to be a migration aid and to help assess
exploitation of old and new function. For example, you can assess use of interfaces
you intend to make obsolete, and assess exploitation of old and new function in
general. For functions that are already obsolete in a new release, you can use
generic tracker to assess their use on previous releases.

The generic tracker Facility is a tracking facility that provides theses services.
v A callable tracking service that users can instrument code with:

– The caller passes an event address and other related information to the
service.

– The service attempts to resolve the event address to a program name and
store it with the other information for later analysis.

v Provides a callable “query” service that extracts previously stored track records
and tracking facility information.

v Provides operator commands to display and maintain tracking facility
information and configuration details.

v Supports parmlib members for easy reuse of tracking facility configuration
statements.

v Provides more tools to aid in the use of the tracking facility and the information
it stores.

The generic tracker Facility replaces the Console Tracking Facility, which was
available in releases before z/OS V2R1. The Console Tracking Facility operator
commands are available only in releases before z/OSV2R1. Macro CNZTRKR
continues to be supported, but the recommendation is to use macro GTZTRACK
instead. Any information CNZTRKR collects is stored in the new tracking facility.
Do not continue touse service CNZTRKR. When possible, replace existing
CNZTRKR invocations with GTZTRACK invocations.

The generic tracker consists of the following parts:
v A system parameter named GTZ - see z/OS MVS Initialization and Tuning Guide.
v Support for GTZPRMxx parmlib members. See z/OS MVS Initialization and

Tuning Guide

– Shipped with GTZPRM00, which includes an exclusion list.
v Operator commands. See z/OS MVS System Commands

– SET GTZ – add GTZPRMxx members
– SETGTZ – control the tracking facility
– DISPLAY GTZ – report tracking facility information.

v Callable macro services. See z/OS MVS Programming: Assembler Services Reference
ABE-HSP

– GTZTRACK – track an event
- Associated mapping macro GTZZTRK

– GTZQUERY – report tracking facility information
- Associated mapping macros for Assembler (GTZZQRY) and METAL-C

(GTZHQRY)
v Utility programs

© Copyright IBM Corp. 1988, 2015 343

|

|

|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|

– GTZPRINT – report tracking facility information
- Associated mapping macro GTZZPRT

– GTZCNIDT – create GTZPRMxx from CNIDTRxx
- Associated mapping macro GTZZCNI

v Samples – see SYS1.SAMPLIB
– GTZCNIDJ – start utility program GTZCNIDT
– GTZPRNTJ – start utility program GTZPRINT
– GTZSHCK – a sample health to report tracked events
– GTZSHCKJ – build health check GTZSHCK.

The generic tracker is a system address space that starts automatically during the
IPL of the system. A restart is not required or recommended unless it is explicitly
requested, for example to apply service. The source of the IBM supplied started
procedure GTZ can be modified to configure the MEMLIMIT, which determines
how much information the tracking facility can store.

Actual tracking (that is, recording track events) is disabled by default. When
tracking is disabled, invocations of GTZTRACK are allowed, but ignored by the
system. Use the SETGTZ TRACKING=ON operator command to enable tracking.

Before you enable tracking and allow the tracking facility to store data and report
it back to the users, consider protecting the DISPLAY GTZ and SETGTZ operator
commands. As mentioned in z/OS MVS System Commands, these GTZ commands
can be protected by RACF resource profiles for the OPERCMDS class. The security
administrator can for example take the following steps to give a user profile access
to the MVS.SETGTZ.GTZ resource:
1. Ensure that the OPERCMDS class is active:

SETROPTS CLASSACT(OPERCMDS) RACLIST(OPERCMDS)

2. Create the MVS.SETGTZ.GTZ resource profile and require explicit access to be
given:
RDEFINE OPERCMDS MVS.SETGTZ.GTZ UACC(NONE)

3. Grant individual access to the resource:
PERMIT MVS.SETGTZ.GTZ CLASS(OPERCMDS) ID(user) ACCESS(UPDATE)

4. Refresh the OPERCMDS class to activate the changes:
SETROPTS RACLIST(OPERCMDS) REFRESH

All SETGTZ operator commands can be used in GTZPRMxx parmlib members. For
example, you can put a TRACKING=ON statement into a GTZPRMxx parmlib
member.

System parameter GTZ can be set to one or more suffixes, which identify the
GTZPRMxx parmlib members that the tracking facility must process at startup. See
the description of system parameter GTZ in z/OS MVS Initialization and Tuning
Reference. It contains requirements and details on how to grant the tracking facility
permission to access the parmlib members at start-up. If you do not specify system
parameter GTZ, or specify PARM='GTZPRM=*NONE' in procedure GTZ, the
tracking facility will start without reading any parmlib members initially.

You can add more GTZPRMxx parmlib members later with the operator command
SET GTZ.

344 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

|

|

|

|

|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|
|

You can use the SETGTZ CLEAR operator command to remove configuration data
previously added via GTZPRMxx members and to remove previously recorded
track data.

To prevent certain “known” track events from recording any data, you can add
EXCLUDE statements. The tracking facility will ignore any future track data that
matches such EXCLUDE filters and it will remove any matching previously
recorded track data. Typically EXCLUDE statements are provided in GTZPRMxx
parmlib members and can be specified via the SETGTZ EXCLUDE operator
command as well.

A standard list of EXCLUDE statements for known track events is shipped in
parmlib member GTZPRM00. You can download it from the z/OS Downloads
website, http://www.ibm.com/systems/z/os/zos/downloads/. It is
recommended that you use the GTZPRMxx parmlib member as is and enable it by
default by adding the 00 suffix to the system parameter GTZ in IEASYSxx using
GTZ=(00,<your suffixes>). Keeping GTZPRM00 separate allows for easier updates
when z/OS releases a new GTZPRM00 version. More GTZPRMxx parmlib
members would then have any additional EXCLUDEs and for example a
TRACKING=ON, if wanted.

If you used the Console Tracking Facility and its CNIDTRxx parmlib members for
exclusion lists before, you can use the GTZCNIDT utility program to create
GTZPRMxx parmlib members from existing CNIDTRxx parmlib members. The
sample JCL GTZCNIDJ explains how to start GTZCNIDT.

A unique tracked event is identified by the following fields, which are referenced
by the EXCLUDE filters. The tracking facility increments an associated occurrence
count if a GTZTRACK call results in an identical set of unique fields:
v The program name and program offset as resolved from the passed in event

address.
v The name of the “owner” and “source” of the track event.
v The event description text.
v The (binary) event data.
v Job names and ASIDs associated with the track event.
v The authorization state that is associated with the track event.

For events that are difficult to track, where the program name cannot be
determined by the system from the passed in event address, you can define
DEBUG filters using the SETGTZ DEBUG operator command or in a GTZPRMxx
parmlib member. The DEBUG statement allows for example to trigger a
non-percolating ABEND, code E77, with custom reason codes, that you can define
SLIP traps for to collect dumps

You can use the DISPLAY GTZ operator command to display:
v General status and statistics for the tracking facility – DISPLAY GTZ[,STATUS].
v All or a subset of the track data that is currently stored in the tracking facility –

DISPLAY GTZ,TRACKDATA[(filters)].
v All the EXCLUDE statements – DISPLAY GTZ,EXCLUDE.
v All the DEBUG statements – DISPLAY GTZ,DEBUG.

Chapter 11. The generic tracker facility 345

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|

|

|

|

|
|
|
|
|
|

|

|

|
|

|

|

http://www.ibm.com/systems/z/os/zos/downloads/

Using the utility program GTZPRINT, you can collect information in a data set
instead of reading it on the console or in the system LOG. The sample JCL
GTZPRNTJ explains how to use GTZPRINT.

Here are some typical scenarios
v Use GTZPRINT to preserve tracking information for later analysis. This helps

when you must submit the information to IBM, or an independent software
vendor (ISV) product to have them analyze the output or diagnose problems.

v Use DISPLAY GTZ for quick interactive access. Certain command line and
output length limits might apply.

v Use callable macro service GTZQUERY when you want to access tracking facility
information from a program. For example, for a custom reporting tool or for a
health check for the IBM Health Checker for z/OS. See the sample health check
GTZSHCK shipped in SAMPLIB. This can be built with the sample JCL
GTZSHCKJ. While local health checks run authorized, other uses of GTZQUERY
require the calling user ID to have access to the GTZ.<sysname>.QUERY RACF
profile that is used similar to how the GTZ operator commands are protected.

References for IBM tracked events
v Event description starting with SMS-

– See the “EAV migration assistance tracker” section in z/OS DFSMSdfp
Advanced Services.

v Event description 'IEFALC 01: <step name> <DD name>’
– See message IEF384I “WARNING: VOLUME NOT RETRIEVED FROM

catalog”.

346 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

Chapter 12. Component trace

The component trace service provides a way for MVS components to collect
problem data about events. Each component that uses the component trace service
has set up its trace in a way that provides the unique data needed for the
component. A component trace provides data about events that occur in the
component. The trace data is used by the IBM Support Center, which uses the
trace data to:
v Diagnose problems in the component
v See how the component is running.

You will typically use component trace while recreating a problem.

Usage of System Resources: Some component traces use minimal system resources,
especially while tracing a small number of events. These minimal traces often run
anytime the component is running. Other traces use significant system resources,
especially when many kinds of events are traced. These large traces are usually
requested only when the IBM Support Center asks for them.

Run concurrent traces: You can run more than one component trace at a time; you
can run component traces:
v Concurrently for several components on one system.
v Concurrently for one or more components on some or all of the systems in a

sysplex.
v Concurrently for one component on a system. Multiple concurrent traces for a

component are sublevel traces.
v Concurrently for several components on some or all of the systems in a sysplex

and with sublevel traces.

The following topics describe tasks for component traces:
v “Planning for component tracing” on page 348 tells you about the tasks needed

to plan component tracing.
v “Obtaining a component trace” on page 357 tells you how to request a specific

component trace that is needed to diagnose a problem. The tasks depend on
where you plan to put trace output and if you are running traces on multiple
systems in a sysplex; therefore, requesting traces is presented in three topics:
– “Request component tracing to address space or data space trace buffers” on

page 357
– “Request writing component trace data to trace data sets” on page 360
– “Request component tracing for systems in a sysplex” on page 365

v “Verifying component tracing” on page 367 tells how an operator can check that
a requested trace is running and that a component trace writer is running.

v “Viewing the component trace data” on page 369 tells you how to format the
trace output.

This topic uses tables to show the similarities and differences in the individual
traces from different components. Table 48 on page 348 summarizes each BCP
component trace that uses the component trace service.

© Copyright IBM Corp. 1988, 2015 347

Table 48. Summary of BCP component traces that use the component trace service

Component Reference

Advanced Program-to-Program Communication/MVS (APPC/MVS) “SYSAPPC component trace” on page 371

Base control program internal interface (BCPii) “SYSBCPII component trace” on page 388

Basic HyperSwap® socket support “SYSBHI component trace” on page 392

Common Event Adapter (CEA) “SYSCEA component trace” on page 396

Cross-system coupling facility (XCF) “SYSXCF component trace” on page 494

Cross-system extended services (XES) “SYSXES component trace” on page 499

Data lookaside facility (DLF) of VLF “SYSDLF component trace” on page 399

Distributed function of SOMobjects® “SYSDSOM component trace” on page 401

Global resource serialization “SYSGRS component trace” on page 403

Allocation Component “SYSIEFAL component trace” on page 413

IOS Component Trace “SYSIOS component trace” on page 419

JES common coupling services “SYSJES component trace” on page 425

JES2 rolling trace table “SYSjes2 component trace” on page 435

Library lookaside (LLA) of contents supervision “SYSLLA component trace” on page 437

z/OS UNIX System Services (z/OS UNIX) “SYSOMVS component trace” on page 446

Operations services (OPS) “Requesting a SYSOPS trace” on page 458

Resource recovery services (RRS) “SYSRRS component trace” on page 463

Real storage manager (RSM) “SYSRSM component trace” on page 470

Service processor interface (SPI) “SYSSPI component trace” on page 487

System logger “SYSLOGR component trace” on page 438

System REXX “SYSAXR component trace” on page 384

Transaction trace (TTRC) “SYSTTRC transaction trace” on page 488

Virtual lookaside facility (VLF) “SYSVLF component trace” on page 488

Workload manager (WLM) “SYSWLM component trace” on page 492

A program product or application, if authorized, can also use the component trace
service to provide an application trace. See the documentation for the program
product or application for information about its trace.
v See z/OS MVS Initialization and Tuning Reference for the CTncccxx parmlib

member.
v See z/OS MVS System Commands for the TRACE CT command.
v See z/OS MVS IPCS Commands for the COPYDUMP, COPYTRC, CTRACE,

GTFTRACE, and MERGE subcommands.
v For a description of these messages, use LookAt or see MVS System Messages.
v See z/OS MVS Programming: Authorized Assembler Services Guide for information

on creating an application trace.

Planning for component tracing
Planning for component tracing consists of the following tasks, which are
performed by the system programmer:
v “Create CTncccxx parmlib members for some components” on page 349:

– “Specify buffers” on page 351

Component Trace

348 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

v “Select the trace options for the component trace” on page 354
v “Decide where to collect the trace records” on page 355

Create CTncccxx parmlib members for some components
Table 49 shows if a component has a parmlib member, if the member is a default
member needed at system or component initialization, and if the component has
default tracing. Some components run default tracing at all times when the
component is running; default tracing is usually minimal and covers only
unexpected events. Other components run traces only when requested.

When preparing your production SYS1.PARMLIB system library, do the following:
1. Make sure the parmlib contains all default members identified in the table. If

parmlib does not contain the default members at initialization, the system
issues messages.
Make sure that the IBM-supplied CTIITT00 member is in the parmlib.
PARM=CTIITT00 can be specified on a TRACE CT command for a component
trace that does not have a parmlib member; CTIITT00 prevents the system from
prompting for a REPLY after the TRACE CT command. In a sysplex, CTIITT00
is useful to prevent each system from requesting a reply.

2. Decide if each default member meets the needs of your installation. If it does
not, customize it.

3. Decide if the buffer size specified in the default members meets the needs of
your installation. Some component traces do not allow buffer size change after
initialization. Change the buffer size, if needed.

Most components can run only one component trace at a time; some components
can run concurrent traces, called sublevel traces. Each sublevel trace is identified
by its sublevel trace name. For some components, you need to identify the
component's CTncccxx member in another parmlib member; the components with
this requirement have the other parmlib member listed in the default member
column in Table 49.

For example, for XCF specify CTIXCF00 on the CTRACE parameter in the
COUPLExx parmlib member.
COUPLE SYSPLEX(...

CTRACE(CTIXCF00)
...

Table 49. Determining if a component has a parmlib member

Trace Parmlib member Default member Default tracing beginning
at initialization

Sublevel
traces

SYSAPPC CTnAPPxx (see
“CTnAPPxx parmlib
member” on page 371)

No No; cannot turn trace ON
or OFF in CTnAPPxx

No

SYSAXR CTIAXRnn (see
“CTIAXRnn parmlib
member” on page 385).

CTIAXR00 Yes No

SYSBCPII CTIHWI00 CTIHWI00 Yes; minimal diagnostic
tracing is always in
effect. The presence of a
valid CTIHW100 parmlib at
BCPii startup can modify
these default trace options.

No

Component Trace

Chapter 12. Component trace 349

|
|
|
|
|
|

Table 49. Determining if a component has a parmlib member (continued)

Trace Parmlib member Default member Default tracing beginning
at initialization

Sublevel
traces

SYSBHI CTIBHIxx CTIBHI00 Yes; minimal; unexpected
events

No

SYSCEA CTICEAnn (see
“CTICEAnn parmlib
member” on page 396)

CTICEA00 Yes No

SYSDLF None N/A Yes; always on when DLF
is running

No

SYSDSOM None N/A No Yes

SYSGRS CTnGRSxx (see
“CTnGRSxx parmlib
member” on page 404).

CTIGRS00, which is
specified in GRSCNF00
member

Yes, if global resource
serialization is active;
CONTROL and MONITOR
options

No

SYSIEFAL CTIIEFxx (see “CTIIEFxx
parmlib member” on page
413)

CTIIEFAL Yes No

SYSIOS CTnIOSxx (see “CTnIOSxx
parmlib member” on page
420)

No Yes; minimal; unexpected
events

No

SYSJES CTnJESxx (see “CTnJESxx
parmlib member” on page
427)

CTIJES01, CTIJES02,
CTIJES03, CTIJES04

You should also receive
and rename members
IXZCTION and IXZCTIOF
supplied in SYS1.SAMPLIB
to CTIJESON and
CTIJESOF.

Yes; full tracing for
sublevels XCFEVT and
FLOW; minimal tracing of
unexpected events for
sublevels USRXIT and
MSGTRC

Yes

SYSjes2 None N/A Yes; always on when JES2
is running

Yes

SYSLLA None N/A Yes; always on when LLA
is running

No

SYSLOGR CTnLOGxx (see
“CTnLOGxx parmlib
member” on page 442).

CTILOG00, which can be
specified in IXGCNFxx
member.

Yes; activated during
system logger (IXGLOGR)
address space initialization

No

SYSOMVS CTnBPXxx (see “CTnBPXxx
parmlib member” on page
446)

CTIBPX00, which must be
specified in BPXPRM00
member

Yes; minimal; unexpected
events

No

SYSOPS CTnOPSxx (see “CTnOPSxx
parmlib member” on page
458)

CTIOPS00, which must be
specified in CONSOLxx
member

Yes; minimal; unexpected
events

No

SYSRRS CTnRRSxx (see “CTnRRSxx
parmlib member” on page
464)

None, but member
ATRCTRRS supplied in
SYS1.SAMPLIB can be
used. See SET-UP and
ACTIVATION instructions
in the ATRCTRRS sample.

Yes; minimal; unexpected
events

No

SYSRSM CTnRSMxx (see
“CTnRSMxx parmlib
member” on page 471)

No No No

SYSSPI None N/A No No

Component Trace

350 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|
|

Table 49. Determining if a component has a parmlib member (continued)

Trace Parmlib member Default member Default tracing beginning
at initialization

Sublevel
traces

SYSTTRC N/A N/A No No

SYSVLF None N/A Yes; minimal; unexpected
events

No

SYSWLM None N/A Yes; minimal; unexpected
events

No

SYSXCF CTnXCFxx (see “CTnXCFxx
parmlib member” on page
495)

CTIXCF00, which can be
specified in COUPLE00
member

Yes; minimal; unexpected
events

No

SYSXES CTnXESxx (see “CTnXESxx
parmlib member” on page
502)

CTIXES00, which can be
specified in COUPLE00
member

Yes; minimal; unexpected
events

Yes

Specify buffers
Each component determines the buffer size and how it is specified. Depending on
the component, you may or may not be able to change the buffer size. You may be
able to change the size only at system or component initialization, or when the
trace is started, or at any time, including while the trace is running. Table 50 shows
how the buffers specifications.

The buffer size determines whether you get all the records needed for diagnosis;
when the buffer is full, the system wraps the buffer, overwriting the oldest records.
To change the size of the buffer, specify an nnnnK or nnnnM parameter on the
TRACE CT operator command or a BUFSIZE parameter in the parmlib member.

Usually you should increase the size of the trace buffer when you increase the
amount of tracing. However, if you plan to place a component's trace records in a
trace data set, you can probably leave the buffer at its original size. Many
component traces do not allow you to change the buffer size after initialization; the
table indicates those component traces. If you increase the amount of tracing for
one of these traces, specify use of a trace data set, if the component supports its
use.

Table 50. Component trace options

Trace Default size and
size range

Size set by Change size after IPL Buffer location

SYSAPPC 512KB

64KB - 32MB

CTnAPPxx member or
REPLY for TRACE CT
command

Yes, while a trace is
running

Data space. A TRACE
CT,OFF command
requests a dump,
which includes the
trace buffers

SYSAXR 2MB

1MB - 2GB

CTIAXRnn parmlib
member or REPLY to
TRACE CT command

Yes, when restarting a
trace after stopping it

AXR private; AXR
trace dataspace

Component Trace

Chapter 12. Component trace 351

Table 50. Component trace options (continued)

Trace Default size and
size range

Size set by Change size after IPL Buffer location

SYSBCPII 4M

4M

MVS system No Data space. A SLIP or
DUMP command can
always be issued to
capture the trace
buffers for the BCPii
address space.
(Specify
ASID=(BCPii's
ASID),DSPNAME=
('HWIBCPII'.*)) In
addition, if CTrace for
SYSBCPII is ON, a
Trace CT,OFF
command requests a
dump, which
includes the trace
buffers.

SYSBHI 4MB

4MB - 64MB

CTIBHIxx parmlib
member or REPLY to
TRACE CT command

Yes, while trace is
running

64-bit Common
Service Area (ECSA)

SYSCEA 2MB

1MB - 2GB

CTICEAnn parmlib
member or REPLY to
TRACE CT command

Yes, when restarting a
trace after stopping it

CEA private; CEA
trace dataspace

SYSDLF N/A MVS system No Data space. In the
REPLY for the DUMP
command, specify
DSPNAME=
('DLF'.CCOFGSDO)

SYSDSOM N/A MVS system No Private address space

SYSGRS 16M

128KB - 2047MB
(System rounds size
up to nearest 64KB
boundary.)

CTnGRSxx member Yes. In the GRS address
space above the bar
which means it will
not constrain GRS
virtual storage.
Options such as
FLOW, REQUEST,
and MONITOR
produce a large
number of entries in
a short period of
time. When dumping
by SDUMP, specify
ASID=GRS's asid and
SDATA=(RGN,NUC).
The RGN is needed
for blocks that
address the ctrace
buffer. Note that
SDATA=GRSQ does
not collect GRS
CTRACE.

SYSIEFAL 4M

256KB - 8MB

CTIIEFxx member Yes. In the component
address space

Component Trace

352 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|

|
|
|

|
|
|
|

Table 50. Component trace options (continued)

Trace Default size and
size range

Size set by Change size after IPL Buffer location

SYSIOS 324KB

324KB-1.5MB

CTnIOSxx member or
REPLY for TRACE CT
command

Yes Extended system
queue area (ESQA).
Note: Full buffers are
copied to an IOS data
space to allow for
more data capture.
For information about
specifying an IOS
data space size at
IPL, see “OPTIONS
parameter” on page
421.

SYSJES N/A MVS system No In the component
address space

SYSjes2 N/A JES2 No In the component
address space

SYSLLA N/A MVS system No In the component
address space

SYSLOGR 2MB

2MB - 2047MB

MVS system,
CTnLOGxx member, or
REPLY for TRACE CT
command.

Yes Data space. In the
REPLY for the DUMP
command, specify
DSPNAME=
('IXLOGR'.*). See
“Obtaining a dump
of system logger
information” on page
439.

SYSOMVS 4MB

16KB - 64MB

CTxBPXxx member or
REPLY for TRACE CT
command

Yes, when initializing
z/OS UNIX.

Data space. In the
REPLY for the DUMP
command, specify
DSPNAME=
(asid.SYSZBPX2)
where asid is the
ASID for z/OS UNIX.

SYSOPS 2M

64KB - 16MB

CTnOPSxx member or
REPLY for TRACE CT
command

Yes, when restarting a
trace after stopping it

Console address
space (private).

SYSRRS 1MB

1MB - 2045MB

CTxRRSxx member or
REPLY for TRACE CT
command

Yes, when restarting a
trace after stopping it

Data space and
component address
space. In the REPLY
for the DUMP
command, specify
DSPNAME=('RRS'
.ATRTRACE) and
SDATA=RGN.

Component Trace

Chapter 12. Component trace 353

Table 50. Component trace options (continued)

Trace Default size and
size range

Size set by Change size after IPL Buffer location

SYSRSM 3 buffers of 132
pages

2 - 7 page-fixed
primary buffers,
4 - 262,144
pages per buffer
1 - 2047 MB for
secondary buffers

CTnRSMxx member or
REPLY for TRACE CT
command

Yes, when starting a
trace

Common service area
(LIKECSA) or, if
specified in
CTnRSMxx, high
virtual private storage
of the RASP address
space.

SYSSPI 64KB MVS system Yes, when starting a
trace

In the component
address space

SYSTTRC 1 MB

16K - 999K

1MB - 32MB

MVS system Yes Data space owned by
the system trace
address space

SYSVLF N/A MVS system No Data space. Enter
DISPLAY J,VLF to
identify the VLF data
spaces. In the REPLY
for the DUMP
command, specify
DSPNAME=
('VLF'.Dclsname,
'VLF'.Cclsname),
where clsname is a
VLF class name.

SYSWLM 64KB

64KB - 16M

MVS system Yes, when starting a
trace

Extended common
service area (ECSA)

SYSXCF 4MB

16KB - 16MB
(System rounds size
up to a multiple of
72 bytes.)

CTnXCFxx member No Extended local
system queue area
(ELSQA) of the XCF
address space

SYSXES 336KB

16KB - 16MB

CTnXESxx member or
REPLY for TRACE CT
command

Yes, while a trace is
running.

Data space. In the
REPLY for the DUMP
command, specify
SDATA=XESDATA
and DSPNAME=
(asid.IXLCTCAD)
where asid is the
ASID for address
space XCFAS

Select the trace options for the component trace
If the IBM Support Center requests a trace, the Center might specify the options, if
the component trace uses an OPTIONS parameter in its parmlib member or REPLY
for the TRACE CT command. The options are:

Component Trace

354 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Trace Trace Request OPTIONS parameter.

SYSAPPC See “OPTIONS parameter” on page 372

SYSAXR See “OPTIONS parameter” on page 386

SYSBCPII See “OPTIONS parameter” on page 390

SYSBHI See “OPTIONS parameter” on page 394

SYSCEA See “OPTIONS parameter” on page 397

SYSDLF None

SYSDSOM None

SYSGRS See “OPTIONS parameter” on page 405

SYSIEFAL See “OPTIONS parameter” on page 415

SYSIOS See “OPTIONS parameter” on page 421

SYSJES None

SYSjes2 None

SYSLLA None

SYSLOGR See “OPTIONS parameter” on page 443

SYSOMVS See “OPTIONS parameter” on page 448

SYSOPS See “OPTIONS parameter” on page 459

SYSRRS See “OPTIONS parameter” on page 465

SYSRSM See “OPTIONS parameter” on page 473

SYSTTRC None

SYSSPI None

SYSVLF None

SYSWLM None

SYSXCF See “OPTIONS parameter” on page 496

SYSXES See “OPTIONS parameter” on page 503

You must specify all options you would like to have in effect when you start a
trace. Options specified for a previous trace of the same component do not
continue to be in effect when the trace is started again.

If the component has default tracing started at initialization by a parmlib member
without an OPTIONS parameter, you can return to the default by doing one of the
following:
v Stopping the tracing with a TRACE CT,OFF command.
v Specifying OPTIONS() in the REPLY for the TRACE CT command or in the

CTncccxx member.

For XCF, the IBM Support Center identifies the options needed to diagnose a
particular problem as both of the following:
SERIAL
STATUS

Decide where to collect the trace records
As Table 51 on page 356 shows, depending on the component, the potential
locations of the trace data are:
v In address-space buffers, which are obtained in a dump

Component Trace

Chapter 12. Component trace 355

|

v In data-space buffers, which are obtained in a dump
v In a trace data set or sets, if supported by the component trace

Table 51. Location of trace buffers for components

Component Address-Space
Buffer

Data-Space Buffer Trace Data Set

SYSAPPC No Yes No

SYSAXR Yes Yes Yes

SYSBCPII No Yes No

SYSBHI Yes No Yes

SYSCEA Yes Yes Yes

SYSDLF Yes Yes No

SYSDSOM Yes No Yes

SYSGRS Yes No Yes

SYSIEFAL Yes No Yes

SYSIOS Yes Yes Yes

SYSJES Yes No Yes

SYSjes2 Yes No No

SYSLLA Yes No No

SYSLOGR Yes Yes Yes

SYSOMV No Yes Yes

SYSOPS Yes No Yes

SYSRRS Yes Yes Yes

SYSRSM Yes Yes Yes

SYSTTRC No Yes No

SYSSPI Yes No No

SYSVLF Yes Yes No

SYSWLM Yes No Yes

SYSXCF Yes No Yes

SYSXES No Yes Yes

If the trace records of the trace you want to run can be placed in more than one
location, you need to select the location. For a component that supports trace data
sets, you should choose trace data sets for the following reasons:
v Because you expect a large number of trace records
v To avoid interrupting processing with a dump of the trace data
v To keep the buffer size from limiting the amount of trace data
v To avoid increasing the buffer size

Depending on the component, you might also want to dump the address-space
trace buffers and data-space trace buffers.

Note: You may need to consider the amount of auxiliary storage required to back
data space buffers. In general, most components which use data space buffers
establish a small default value less than 500 kilobytes of virtual storage. Some
components allow you to specify values up to 2 gigabytes. The SYSIOS component

Component Trace

356 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

trace uses a default of 512 megabytes for data space buffers. You should consider
SYSIOS and other component data space buffers to ensure that the potential
cumulative effect of all CTRACE data space buffers for your system can be
accomodated by the local page data sets that you have allocated. For more
information on auxiliary storage, refer to z/OS MVS Initialization and Tuning Guide.

Obtaining a component trace
To obtain a specific component trace, use one of the following procedures:
v “Request component tracing to address space or data space trace buffers”
v “Request writing component trace data to trace data sets” on page 360
v “Request component tracing for systems in a sysplex” on page 365

Request component tracing to address space or data space
trace buffers

This topic describes how to obtain component trace records in dumps. The trace
records are in address-space or data-space trace buffers. The topic contains
information about how to:
v “Prepare for a specific component trace to trace buffers”
v “Perform component tracing to trace buffers” on page 359.

Prepare for a specific component trace to trace buffers
The system programmer performs the tasks.

1. Select How the Operator Is to Request the Trace: For most component traces,
the request is made by:
v A TRACE CT operator command without a PARM parameter, followed by a

reply containing the options
v A TRACE CT operator command with a PARM parameter that specifies a

CTncccxx parmlib member containing the options

If you do not use a parmlib member, tell the operator the options.

2. Create a parmlib member, if used: If you use a parmlib member, create the
member and place it on SYS1.PARMLIB. Use a parmlib member if the options are
complicated and you have access to the SYS1.PARMLIB data set, or if a parmlib
member is required by the component, or if you had already set up a parmlib
member with the needed options. Use a REPLY for simple options. See “Create
CTncccxx parmlib members for some components” on page 349. For XCF, for
example, you can create CTWXCF03 to specify the options.
TRACEOPTS

ON
OPTIONS(’SERIAL’,’STATUS’)

3. Determine the dump to be used to obtain the trace records: Table 52 on page 358
shows how to request SVC dumps for the component traces. Possible ways of
requesting SVC dumps are:
v By a DUMP operator command
v By a SLIP trap
v By the component

For the following failures, use another type of dump:

Component Trace

Chapter 12. Component trace 357

v Failure of an application program or program product: The program requests a
SYSMDUMP dump.

v The system waits, hangs, or enters a loop: The operator requests a stand-alone
dump.

Table 52. How to request SVC dumps for component traces

Trace Request of SVC Dump

SYSAPPC By the component when the operator stops SYSAPPC tracing
with a TRACE CT,OFF command

SYSAXR By DUMP or SLIP command

SYSBCPII By DUMP or SLIP command, or by the component, if Ctrace is
ON for SYSBCPII and a TRACE CT,OFF command is issued.

SYSBHI By DUMP or SLIP command if the Basic HyperSwap
Management address space or one of the BHIHSRV address
spaces are to be included in the dump.

SYSCEA By DUMP or SLIP command

SYSDLF By DUMP or SLIP command

SYSDSOM By DUMP or SLIP command

SYSGRS By DUMP or SLIP command

SYSIEFAL By DUMP or SLIP command

SYSIOS By DUMP or SLIP command, or by the component

v In the REPLY for the DUMP command, specify the IOS
address space to be dumped

SYSJES By the component

SYSjes2 By DUMP or SLIP command or component

SYSLLA By the component

SYSLOGR By DUMP or SLIP command

SYSOMVS By DUMP or SLIP command

SYSOPS By DUMP or SLIP command

SYSRRS By DUMP or SLIP command

SYSRSM v By DUMP or SLIP command

v Through the DMPREC option on the CTnRSMxx parmlib
member or on the REPLY for the TRACE CT command when
RSM enters recovery processing (default)

v Through the DMPOFF option of CTnRSMxx or the TRACE
CT reply when SYSRSM tracing is turned off

SYSTTRC Automatically dumped by the Tailored SVC Dump Exits
function

SYSSPI By the component

SYSVLF By DUMP or SLIP command or when SYSVLF full tracing is
turned off

SYSWLM By DUMP or SLIP command

SYSXCF By DUMP or SLIP command

SYSXES By DUMP or SLIP command

4. Make Sure the component trace Buffers Will Be Dumped: The location of the
address-space and data-space buffers depends on the component being traced. See

Component Trace

358 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|

the table in “Specify buffers” on page 351 for the location of the buffers. When the
component being traced requests an SVC dump, the dump will contain the
address-space and/or data-space trace buffers.

Perform component tracing to trace buffers
The operator performs the tasks. Note that these tasks are for a specific component
trace, rather than for a trace started by the system at initialization.

1. Start the component trace: The operator enters a TRACE operator command on
the console with MVS master authority. The operator replies with the options that
you specified.

In the following example, the TRACE CT command does not specify a parmlib
member.
trace ct,on,comp=sysxcf
* 21 ITT006A
r 21,options=(serial,status),end

This next example requests the same trace using parmlib member CTWXCF03.
When TRACE CT specifies a parmlib member, the system does not issue message
ITT006A.
trace ct,on,comp=sysxcf,parm=ctwxcf03

2. Verify that the Trace Is Running: See “Verifying component tracing” on page
367.

3. Obtain the Dump Containing the component trace Records: The operator obtains
the dump that contains the component trace records: an SVC dump, a stand-alone
dump, or a dump requested by the component when a problem occurs or when
the operator stops the tracing.

This example shows a DUMP operator command entered on the console with MVS
master authority. The system issues message IEE094D in response to the DUMP
command. If you requested, the operator enters dump options in the reply to
IEE094D. SDATA options are needed to obtain the trace buffers An address space
identifier (ASID) should be specified for the XCF address space; in the example,
XCF is in address space 6.
dump comm=(dump for xcf component trace)
* 32 IEE094D ...
r 32,sdata=(couple,sqa,lsqa),asid=6,end
.
.
.
IEA911E ...

The system identifies the data set containing the dump in message IEA911E. If an
installation exit moves the dump, the operator should look for a message
identifying the data set containing the moved dump and tell you the name of the
dump and the data set containing it.

If desired, the operator can request more than one dump while a component trace
is running.

4. Stop the component trace: The operator enters a TRACE CT,OFF command on
the console with MVS master authority. For some component traces, the command
requests a dump, which contains the trace records.

Component Trace

Chapter 12. Component trace 359

The following example shows how to specify the TRACE CT,OFF command.
trace ct,off,comp=sysxcf

Request writing component trace data to trace data sets
The following topics describe only the component traces that can write to trace
data sets. You can also change the trace data sets that are in use without stopping
the trace. See “Change trace data sets” on page 364.

Prepare for a specific component trace to trace data sets
The system programmer performs the following tasks:

1. Determine the dispatching priority required for the external writer started task,
the server address space for the component's trace:

While component trace runs under the master scheduler address space, you need
to verify that the priority of the external writer is at least equal to, and preferably
greater than the priority of the component being traced. For example, if you are
tracing COMP(SYSXES) for JOBNAME(IRLMA), the dispatching priority of the
external writer should be equal to or greater than that assigned to IRLMA. See
z/OS MVS Initialization and Tuning Guide for more information on setting priorities.

2. Select How the Operator Is to Request the Trace:

For most component traces, the request can be made by:
v A TRACE CT operator command without a PARM parameter, followed by a

reply containing the options
v A TRACE CT operator command with a PARM parameter that specifies a

CTncccxx parmlib member containing the options

If you do not use a parmlib member, tell the operator the options.

3. Create Source JCL for the External Writer:

Create source JCL to invoke an external writer, which will send the component
trace output to one or more trace data sets. Add a procedure to the SYS1.PROCLIB
system library or a job as a member of the data set in the IEFJOBS or IEFPDSI
concatenation.

An external writer is not specific for a component but can be used by any
application. So you can use the same source JCL again for other tracing later, if
needed.

Concurrent traces for different components must use separate source JCL to place
their traces in separate data sets.

Because the writer source JCL specifies data sets, use a different set of source JCL
for each system in a sysplex. Several systems cannot share the same data set;
attempting to share the same data set will lead to contention problems. If your
sysplex uses a common SYS1.PROCLIB, you need to specify a unique writer
procedure for each system or use a unique job as the source JCL, when tracing the
same component on several systems.

The procedure shown in Figure 104 on page 361 places trace data on two DASD
data sets. The procedure is placed in member WTRD2 of SYS1.PROCLIB.

Component Trace

360 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Rules for the Source JCL for an External Writer:

v The name specified on the TRACE CT command or CTncccxx parmlib member
is the member name of the source JCL; in the preceding example, WTRD2. The
name is 1 to 7 alphanumeric or national characters, with the first character
alphabetic or national. National characters are represented by the following
hexadecimal codes (in other languages, the codes represent different characters):

Code U.S. English EBCDIC Character

X'5B' $

X'7B' #

X'7C' @
v The procedure must invoke the external writer program ITTTRCWR. Code the

REGION= keyword on the EXEC statement to specify the maximum storage size
required by the external writer.

v The source JCL can specify up to 16 trace data sets. The DD statements have
ddnames of TRCOUTxx, where xx is 01 through 16.

v The trace data sets must be sequential data sets. You can use extended format
sequential data sets as dump data sets for trace output. Extended format
sequential data sets have the following features:
– Have a greater capacity than sequential data sets
– Support striping
– Support compression

v To help you manage the trace data sets, establish a naming convention so that
the data set name indicates the component trace, the date, and so on.

v All of the data sets must be on DASD or tape. Do not mix device classes, such
as tape and DASD.
Within a device class, IBM recommends that you do not mix several types of
devices, such as 3380 and 3390. In a mix of device types, the system would use
the smallest block size for all the data sets.

v Do not specify the following DCB parameters:
– BLKSIZE. The system uses the optimal block size, which is 4096 or larger.
– RECFM. The system uses VB.
– LRECL. The system uses BLKSIZE minus 4.

v Do not specify DISP=SHR.
v Do not concatenate trace data sets.
v Use a separate member for each component's trace, even though you can connect

more than one trace to the same member.
v Use the same member for all the sublevel traces for a component. This approach

reduces the number of data sets you must manage.
v Use a separate member for each system's component trace, when a component

trace runs in two or more of the systems of a sysplex. If the component traces

//WTDASD2 PROC
//IEFPROC EXEC PGM=ITTTRCWR,REGION=32M
//TRCOUT01 DD DSNAME=SYS1.CTRACE1,VOL=SER=TRACE6,UNIT=DASD,
// SPACE=(CYL,10),DISP=(NEW,KEEP),DSORG=PS
//TRCOUT02 DD DSNAME=SYS1.CTRACE2,VOL=SER=TRACE7,UNIT=DASD,
// SPACE=(CYL,10),DISP=(NEW,KEEP),DSORG=PS

Figure 104. Example: Cataloged Procedure for an External Writer

Component Trace

Chapter 12. Component trace 361

specify the same cataloged procedure in a shared SYS1.PROCLIB, they will use
the same data set or group of data sets; in this case, contention might develop
for the data set or sets.

v System security may require that you have RACF SYSHIGH authority to access
the trace data sets.

z/OS V1R7 supports the following types of external media:
v DSNTYPE=LARGE data sets
v VSAM linear data sets

GTF and CTRACE accept a single VSAM linear data set as output. VSAM's
support for striping can increase data rate without the complexity associated
with the use of distinct data sets.

For the details of the external data sets guidelines, see “Guidelines for defining
GTF trace output data sets in a cataloged procedure” on page 236.

Wrapping DASD Trace Data Sets: If the WTRSTART parameter on the CTncccxx
parmlib member or TRACE CT operator command specifies:
v WRAP or omits the parameter: When the system reaches the end of the data set

or group of data sets, it writes over the oldest data at the start of the data set or
first data set.
The system also uses only the primary extent or extents for the data set or sets.
To obtain the maximum degree of control over the number of trace entries for
which space will be allocated, specify space allocation in units of the BLKSIZE of
your trace data set, no secondary space, and use the option for contiguous
allocation. For example, if your BLKSIZE is 8192, code the SPACE keyword as
follows:
SPACE=(8192,(500,0),,CONTIG)

v NOWRAP: When the data set or sets are full, the system stops writing trace
records to the data set or sets. The system continues writing trace records in the
address-space buffers.
The system also uses the primary and secondary extents of the data set or sets.

Note: Wrapping is not supported for Extended Format Sequential data sets, which
are treated as NOWRAP even if WRAP is specified.

Tape Data Sets: CTRACE writes an end-of-file record. The tape is rewound and
unloaded, then a new volume is mounted on the tape unit. If CTRACE has only
one tape data set and only one unit for the data set, CTRACE does not write trace
records while the tape is unavailable, thus losing trace data. CTRACE can write to
multiple tape units in the way that multiple TRCOUTxx DD statements can specify
tape data sets. When CTRACE fills one data set, it changes to the next data set.

Note: GTF and CTRACE support placement of NOWRAP traces in
cylinder-managed space. WRAP traces placed in VSAM linear data sets can reside
in cylinder-managed space too. WRAP traces in non-VSAM data sets cannot be
placed in large format data sets, extended format data sets, or cylinder-managed
space.

Multiple Trace Data Sets: Use multiple data sets to capture all the trace records,
even during spikes of activity. For a SYSRSM trace, which typically produces large
numbers of trace records, use multiple data sets to keep from losing records.
Multiple trace data sets using different DASD devices can improve performance.
To view the trace records in chronological sequence, the system programmer can:

Component Trace

362 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Combine the trace records into one data set, using an IPCS COPYTRC
subcommand, then use the CTRACE subcommand to format the records from
the data set.

v Use an IPCS MERGE subcommand to format the records from multiple data
sets.

The system places component trace records into each trace data set in sequence.
For example, for three data sets, the system places:
v Record 1 into data set 1
v Record 2 into data set 2
v Record 3 into data set 3
v Record 4 into data set 1
v Record 5 into data set 2
v And so on

Lost Trace Data: Ctrace will give an indication in the next successfully written
record of any trace data that did not reach the output medium. If no further
records are written, the following message is displayed when the external writer is
stopped:
ITT120I SOME CTRACE DATA HAS BEEN LOST.
LAST nnn BUFFERS NOT WRITTEN.

Create a parmlib member
If you use a parmlib member, create the member and place it on SYS1.PARMLIB.
Use a parmlib member if the options are complicated and you have access to the
SYS1.PARMLIB data set, or if a parmlib member is required by the component, or
if you had already set up a parmlib member with the needed options. Use a
REPLY for simple options. See “Create CTncccxx parmlib members for some
components” on page 349 for more information.Example: CTWXCF04 parmlib
member For XCF, create CTWXCF04. Notice the two statements for the writer; the
WTRSTART statement starts the writer and the WTR statement connects the writer
to the component.
TRACEOPTS

WTRSTART(WTDASD2)
ON
WTR(WTDASD2)
OPTIONS(’SERIAL’,’STATUS’)

Perform component tracing to trace data sets
The operator performs the tasks. Note that these tasks are for a specific component
trace, rather than for a trace started by the system at initialization.

1. Start the Writer and component trace: The operator enters TRACE operator
commands on the console with MVS master authority and replies with the options
specified by the system programmer.

Example: TRACE CT command not specifying a parmlib member: The second
TRACE CT command starts the SYSXCF trace; the trace options were selected in a
previous example. Notice the two writer operands; the WTRSTART operand starts
the writer and the WTR operand connects the writer to the component.
trace ct,wtrstart=wtdasd2
trace ct,on,comp=sysxcf
* 44 ITT006A
r 44,wtr=wtdasd2,options=(serial,status),end

Component Trace

Chapter 12. Component trace 363

Example: TRACE CT command specifying a parmlib member: This example
requests the same trace using parmlib member CTWXCF04.
trace ct,on,comp=sysxcf,parm=ctwxcf04

2. Verify that the Trace and the Writer Are Running: See “Verifying component
tracing” on page 367.

3. Stop the component trace: The operator enters a TRACE CT command on the
console with MVS master authority.

Example 1: TRACE CT,OFF Command
trace ct,off,comp=sysxcf
* 56 ITT006A
r 56,end

Example 2: TRACE CT Command to Disconnect the Writer: To stop sending trace
records to the trace data set, but keep the trace running, the operator can enter the
following when the trace is currently running.
trace ct,on,comp=sysxcf
* 56 ITT006A
r 56,wtr=disconnect,end

The operator should stop the external writer.

4. Stop the External Writer: The operator enters a TRACE CT command on the
console with MVS master authority.

Example: TRACE CT,WTRSTOP Command:
trace ct,wtrstop=wtdasd2

Change trace data sets
If you are running a component trace to a trace data set or sets, you can determine
if you have the needed records without stopping the trace. Ask the operator to do
the following:
1. Enter a TRACE CT,WTRSTART command for a different set of source JCL for

each external writer to trace data sets.
2. Enter a TRACE CT command that starts the trace with the different source JCL

for the writer.

The new source JCL sends the trace records to the new data set or sets. You may
lose a few trace records.

You can view the previous data set or sets to check the trace records collected, then
continue or stop the trace, as needed.

Example: Changing the Trace Data Sets: The original commands were:
trace ct,wtrstart=wtdasd2
trace ct,on,comp=sysxcf
* 67 ITT006A ...
r 67 wtr=wtdasd2,options(serial,status),end

The commands to change the trace data sets are:
trace ct,wtrstart=wtdasd4
trace ct,on,comp=sysxcf
* 67 ITT006A ...
r 67 wtr=wtdasd4,options(serial,status),end

Component Trace

364 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Request component tracing for systems in a sysplex
The following topics describe one way to obtain traces for a component on more
than one system in a sysplex. The approach is to obtain a trace in the dump of
each system and merge the traces from the dumps, using an IPCS MERGE
subcommand. To be useful for diagnosis, the traces must cover the same time
period and end at the same time.

You can also trace to data sets, if each system uses a unique source JCL for each
external writer, so that the trace for each system goes to its own data set. If your
installation has a shared SYS1.PROCLIB system library, use a unique parmlib
member for each system; each unique parmlib member must specify a unique set
of source JCL. If the source JCL is shared, all systems will write trace records on
one data set, possibly causing contention problems.

Prepare for specific component traces on systems in a sysplex
The system programmer performs the tasks.

1. Create a Parmlib Member to Start the Traces: Create a parmlib member to start
the traces of the component. Place the member in the shared SYS1.PARMLIB for
the sysplex or in the parmlib for each system to be traced. If a parmlib member is
used for each system, give it the same name so that one TRACE CT command can
start all the component traces on the systems. See “Create CTncccxx parmlib
members for some components” on page 349.

Example: CTWXCF33 to Start XCF Trace: For XCF, create CTWXCF33 to start the
trace.
TRACEOPTS

ON
OPTIONS(’SERIAL’,’STATUS’)

The directions for the task assume that a parmlib member can be used. If the
component to be traced does not have a parmlib member, the operator can start it
with a TRACE CT command in a ROUTE command. The operator has to enter a
reply for each system. (The ROUTE command can be used only on MVS systems
with JES2.)

2. Make Sure the component trace Buffers Will Be Dumped: The location of the
address-space and data-space trace buffers depends on the component being
traced. For XCF, the extended local system queue area (ELSQA) of the XCF address
space contains the XCF component trace buffers. For XES, IXLCTCAD, a data
space associated with the XCF address space, contains the XES component trace
buffers.

Example: Obtaining XCF and XES Trace Buffers:

v For XCF, the operator should specify SQA and LSQA on the REPLY for the
DUMP command.

v For XES, the operator should specify SDATA=(XESDATA) and
DSPNAME=(asid.IXLCTCAD) on the REPLY for the DUMP command, where
asid&osq;&csq; is XCFAS or 6.

Perform component tracing on the systems in the sysplex
The operator performs the tasks. Note that these tasks are for a specific component
trace, rather than for a trace started by the system at initialization.

Component Trace

Chapter 12. Component trace 365

1. Start the component traces: On a console with MVS master authority on one
system in the sysplex, the operator enters a ROUTE command containing a TRACE
CT command. (The ROUTE command can be used only on MVS systems with
JES2.)

The command specifies a parmlib member with the same name in each system
being traced. Note that, if parmlib members are not specified, all systems issue
message ITT006A to prompt for options. If the component to be traced does not
have a parmlib member, specify the IBM-supplied CTIITT00 member to avoid the
prompts.

Example 1: Command to start traces in all systems: The command starts the trace
in all systems in the sysplex.
route *all,trace ct,on,comp=sysxcf,parm=ctwxcf33

Example 2: Command to start traces in some systems: The command starts the
trace in a subset of systems. Both commands specify the CTWXCF33 parmlib
member on each system being traced.
route subs2,trace ct,on,comp=sysxcf,parm=ctwxcf33

Example 3: Command for a component without a parmlib member: The
following command turns on tracing for a SYSVLF trace in the systems of a
sysplex, without prompts for replies to the TRACE command. The SYSVLF
component trace has no parmlib member.
route *all,trace ct,on,comp=sysvlf,parm=ctiitt00

2. Verify that the traces Are running: See “Verifying component tracing” on page
367.

3. Obtain the dumps containing the component trace records: The operator
requests an SVC dump for each system being traced.

Example: DUMP command for systems in a sysplex: The example shows the
DUMP operator command entered on a console with MVS master authority on one
system in the sysplex. The reply requests dumps on all of the systems named in
the pattern of S*. The example assumes that the systems being traced have the
following names: S1, S2, S3, and S4; any other systems in the sysplex have names
that do not fit the pattern, such as B1 or T2.
dump comm=(dump for xcf component trace)
* 32 IEE094D ...
r 32,remote=(syslist=(s*)),end
.
.
.
IEA911E ...

The system identifies the data set containing the dump in message IEA911E. If an
exit moves a dump, the operator should look for a message identifying the data set
containing the moved dump and tell you the name of the dump and the data set
containing it.

4. Stop the component traces: On a console with MVS master authority on one
system in the sysplex, the operator enters a ROUTE command containing a TRACE
CT,OFF command to stop the traces. (The ROUTE command can be used only on
MVS systems with JES2.)

Component Trace

366 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Example 1: Command to stop traces in all systems: The command stops the traces
in all systems in the sysplex.
route *all,trace ct,off,comp=sysxcf

Example 2: Command to Stop Traces in Some Systems: The command stops the
traces in a subset of systems in the sysplex.
route subs2,trace ct,off,comp=sysxcf

Verifying component tracing
The operator should do the following tasks after starting a component trace to
make sure that it started successfully. How the task is done depends on whether
the component trace has sublevels and whether an external writer is used.

Verify tracing for component traces without sublevels
The operator should do one of the following:
v Identify all current tracing by entering the following DISPLAY TRACE command

on the console with MVS master authority. The response, in message IEE843I,
gives the status in short form of all current component traces.
display trace
IEE843I ...

v Identify current tracing and the options for the traces by entering one of the
following DISPLAY TRACE commands on the console with MVS master
authority. The first command requests the status for all current component
traces; the second command requests it for one component trace, such as XCF.
The response, in message IEE843I, gives full information about the status.
display trace,comp=all
IEE843I ...

display trace,comp=sysxcf
IEE843I ...

Verify tracing for component traces with sublevels
The commands for verification depend on the component trace.

To verify a SYSJES component trace, the operator enters the following command to
verify a SYSJES trace; the system will show the 4 sublevel traces.
display trace,comp=sysjes,sublevel,n=4

When a SYSXES component trace has multiple sublevel traces, a DISPLAY
command shows only one sublevel. To verify a SYSXES component trace, the
operator needs to enter multiple DISPLAY commands to see the multiple sublevels.

A SYSXES component trace has structures, address spaces, and connections. The
following examples show the DISPLAY (D) command entered by the operator and
the type of information that the system returns.
1. To see how the SYSXES component trace is set up.

D TRACE,COMP=SYSXES

IEE843I 15.24.40 TRACE DISPLAY 213
SYSTEM STATUS INFORMATION

ST=(ON,0064K,00128K) AS=ON BR=OFF EX=ON MT=(ON,024K)
COMPONENT MODE BUFFER HEAD SUBS
--
SYSXES ON 0168K HEAD 2

Component Trace

Chapter 12. Component trace 367

ASIDS *NOT SUPPORTED*
JOBNAMES *NOT SUPPORTED*
OPTIONS LOCKMGR
WRITER *NONE*

2. To display the structure level trace for each structure and the number of
subtraces available.
D TRACE,COMP=SYSXES,SUB=(LT01),N=99

IEE843I 15.25.00 TRACE DISPLAY 216
SYSTEM STATUS INFORMATION

ST=(ON,0064K,00128K) AS=ON BR=OFF EX=ON MT=(ON,024K)
TRACENAME
=========
SYSXES

MODE BUFFER HEAD SUBS
=====================
ON 0168K HEAD 2

ASIDS *NOT SUPPORTED*
JOBNAMES *NOT SUPPORTED*
OPTIONS LOCKMGR
WRITER *NONE*

SUBTRACE MODE BUFFER HEAD SUBS
--

LT01 HEAD 1
LIKEHEAD

GLOBAL

LIKEHEAD

3. To display the address space level trace for each structure. (The ASID specified
is the asid in hex of the address space of the connector.)
D TRACE,COMP=SYSXES,SUB=(LT01.ASID(19)),N=99

IEE843I 15.25.39 TRACE DISPLAY 221
SYSTEM STATUS INFORMATION

ST=(ON,0064K,00128K) AS=ON BR=OFF EX=ON MT=(ON,024K)
TRACENAME
=========
SYSXES.LT01

MODE BUFFER HEAD SUBS
=====================
ON 0168K HEAD 1

LIKEHEAD
ASIDS *NOT SUPPORTED*
JOBNAMES *NOT SUPPORTED*
OPTIONS LOCKMGR
WRITER *NONE*

SUBTRACE MODE BUFFER HEAD SUBS
--
ASID(0019) HEAD 8

LIKEHEAD

4. To display the external writer and the buffer size and options associated with
the connection.
D TRACE,COMP=SYSXES,SUB=(LT01.ASID(19).A1),N=99

IEE843I 15.25.56 TRACE DISPLAY 224
SYSTEM STATUS INFORMATION

ST=(ON,0064K,00128K) AS=ON BR=OFF EX=ON MT=(ON,024K)
TRACENAME
=========
SYSXES.LT01.ASID(0019)

MODE BUFFER HEAD SUBS
=====================
ON 0168K HEAD 8

Component Trace

368 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

LIKEHEAD
ASIDS *NOT SUPPORTED*
JOBNAMES *NOT SUPPORTED*
OPTIONS LOCKMGR
WRITER *NONE*

SUBTRACE MODE BUFFER HEAD SUBS
--
A1 ON 0100K

ASIDS *NOT SUPPORTED*
JOBNAMES *NOT SUPPORTED*
OPTIONS CONNECT,RECOVERY
WRITER *NONE*

Verify that the writer is active
If an external writer is being used, the operator should verify that the writer is
active for the trace by entering one of the following DISPLAY TRACE commands
on the console with MVS master authority. The first command requests writer
status for all current component traces; the second command requests it for one
writer by specifying the membername of the source JCL for the writer, such as
WTDASD2. The response is in message IEE843I.
display trace,wtr=all
IEE843I ...

display trace,wtr=wtdasd2
IEE843I ...

The operator should verify that the source JCL for the writer in this display is the
same as the source JCL for the writer that was started for the trace. If the
membernames do not match, the component trace data is lost. The operator should
stop the writer job identified in the display and the component trace; then start the
correct writer source JCL and start the trace again.

Viewing the component trace data
During diagnosis, the system programmer performs the tasks, using IPCS. See z/OS
MVS IPCS Commands for the COPYDUMP, COPYTRC, CTRACE, GTFTRACE, and
MERGE subcommands.

1. If your trace is in a dump in a SYS1.DUMPxx data set, enter a COPYDUMP
subcommand to move the dump to another data set. Use option 5.3 of the IPCS
dialog to select the COPYDUMP subcommand.

2. For all traces on trace data sets, use a COPYTRC subcommand to reorder
component trace records that are out of chronological sequence. Use option 5.3 of
the IPCS dialog to select the COPYTRC subcommand.

3. If your trace is on multiple data sets, do one of the following to view the trace
records in one chronological sequence, which is needed to understand what was
happening when the problem occurred. The input data sets can be component
trace data sets, SVC dumps, and stand-alone dumps.
v Use the COPYTRC subcommand to combine the records on several data sets

into a chronological sequence on one data set. Use this data set as input to the
CTRACE subcommand, which formats the trace records. Use option 5.3 of the
IPCS dialog to select the COPYTRC subcommand.

v Use a MERGE subcommand to format trace records from one or more input data
sets. MERGE lets you combine and format the following:
– Component traces

Component Trace

Chapter 12. Component trace 369

– GTF traces
– Sublevel traces from one component on one trace data set
– Sublevel traces from one component on separate trace data sets
For sublevel traces, MERGE groups together the trace records for each sublevel.
Use option 2.7 of the IPCS dialog to select the MERGE subcommand. MERGE
allows you to issue individual CTRACE or GTFTRACE subcommands for each
input data set.

4. Use the subcommands in Table 53 when formatting the component trace records.
See z/OS MVS IPCS Commands for the SHORT, SUMMARY, FULL, and TALLY
report type keywords and other keywords for the CTRACE subcommand.

Table 53. Subcommands that format component trace records

Trace IPCS subcommand CTRACE OPTIONS parameter

SYSAPPC CTRACE COMP(SYSAPPC) See “Formatting a SYSAPPC trace” on page
375

SYSAXR CTRACE COMP(SYSAXR) See “Formatting a SYSAXR trace” on page
387

SYSBCPII CTRACE COMP(SYSBCPII) See “SYSBCPII component trace” on page 388

SYSBHI CTRACE COMP(SYSBHI) See “SYSBHI component trace” on page 392

SYSCEA CTRACE COMP(SYSCEA) See “Formatting a SYSCEA trace” on page
398

SYSDLF CTRACE COMP(SYSDLF) None

SYSDSOM CTRACE COMP(SYSDSOM) See “SYSDSOM component trace” on page
401

SYSGRS CTRACE COMP(SYSGRS) None

SYSHZS CTRACE COMP(SYSHZS) See “SYSHZS component trace” on page 409

SYSIEFAL CTRACE COMP(SYSIEFAL) None

SYSIOS CTRACE COMP(SYSIOS) See “Formatting a SYSIOS trace” on page 423

SYSJES CTRACE COMP(SYSJES) See “Formatting a SYSJES trace” on page 429

SYSjes2 CTRACE COMP(SYSjes2) None

SYSLLA CTRACE COMP(SYSLLA) None

SYSLOGR CTRACE COMP(SYSLOGR) See “Formatting a SYSLOGR trace” on page
444

SYSOMVS CTRACE COMP(SYSOMVS) See “Formatting a SYSOMVS trace” on page
449

SYSOPS CTRACE COMP(SYSOPS) See “Formatting a SYSOPS trace” on page
461

SYSRRS CTRACE COMP(SYSRRS) See “Formatting a SYSRRS trace” on page 467

SYSRSM CTRACE COMP(SYSRSM) None

SYSSPI CTRACE COMP(SYSSPI) None

SYSTTRC CTRACE COMP(SYSTTRC) None

SYSVLF CTRACE COMP(SYSVLF) None

SYSWLM CTRACE COMP(SYSWLM) None

SYSXCF CTRACE COMP(SYSXCF) See “Formatting a SYSXCF trace” on page
498

SYSXES CTRACE COMP(SYSXES) See “Formatting a SYSXES trace” on page 504

Component Trace

370 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

If some of the output in a combined or merged trace data set is for a GTF trace,
use a GTFTRACE subcommand to format the GTF records and a CTRACE
subcommand to format the component trace records. See Chapter 10, “The
Generalized Trace Facility (GTF),” on page 229 for GTF tracing.

This example shows the CTRACE subcommand for a SYSXCF component trace,
when the SERIAL and STATUS options are requested in the OPTIONS parameter.
ctrace comp(sysxcf) options((serial,status))

SYSAPPC component trace
Table 54 summarizes information for requesting a SYSAPPC component trace for
APPC/MVS.

Table 54. Requesting SYSAPPC component trace for APPC/MVS

Information For SYSAPPC:

Parmlib member CTnAPPxx; there is no default member

Default tracing No; cannot turn trace ON or OFF in CTnAPPxx

Trace request OPTIONS
parameter

In CTnAPPxx or REPLY for TRACE command

Buffer v Default: 32 MB

v Range: 64 KB - 256 MB

v Size set by: CTnAPPxx member or REPLY for TRACE
command

v Change size after IPL: Yes, while a trace is running

v Location: In data space. A TRACE CT,OFF command
requests a dump, which includes the trace buffers.

Trace records location Dataspace buffer

Request of SVC dump By the component when the operator stops SYSAPPC
tracing with a TRACE CT,OFF command

Trace formatting by IPCS CTRACE COMP(SYSAPPC)

Trace format OPTIONS
parameter

NO

Requesting a SYSAPPC trace
Specify options for requesting a SYSAPPC component trace on a CTnAPPxx
parmlib member or on the reply for a TRACE CT command.

CTnAPPxx parmlib member
You can specify the parameters listed in Table 55 on a CTnAPPxx parmlib member.

Table 55. CTnAPPxx parameters

Parameters Allowed on CTnAPPxx?

ON or OFF No

ASID Yes

JOBNAME Yes

BUFSIZE Yes

Component Trace

Chapter 12. Component trace 371

Table 55. CTnAPPxx parameters (continued)

Parameters Allowed on CTnAPPxx?

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR No

WTRSTART or WTRSTOP No

TRACE and REPLY commands
Table 56 and Table 57 summarize the parameters you can specify on TRACE CT
commands and a REPLY.

Table 56. Parameters allowed on TRACE CT

Parameters Allowed on TRACE CT for Trace?

ON, nnnnK, nnM, or OFF One is required

COMP Required

SUB No

PARM Yes

Table 57. Parameters allowed on REPLY

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR No

Automatic Dump: The component requests an SVC dump when the operator stops
the trace.

OPTIONS parameter
APPC trace request options are hierarchical. Figure 105 on page 373 shows the
hierarchy of SYSAPPC trace options. Each option traces its own events, plus all the
events of the options below it. For example, if you specify the SCHEDULE trace
option, the system also traces ENQWORK, DEQWORK, and ASMANAGE events.

Component Trace

372 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SYSAPPC tracing always includes all exception (error) events. If no trace options
are specified, the trace output includes only the exception events.

If you do not know where the errors are occurring, use the GLOBAL trace option
to catch the full range of APPC/MVS events. GLOBAL can slow performance, but
you will catch the error in one re-create.

The values for the OPTIONS parameter for the CTnAPPxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

ASMANAGE
Traces events related to the creation and deletion of the APPC/MVS
transaction scheduler's subordinate address space. ASMANAGE is a subset of
SCHEDULE events.

BADFMH5
Traces events related to incorrect FMH-5s. BADFMH5 is a subset of FMH-5
events.

CONVCLUP
Traces events related to conversation cleanup. CONVCLUP is a subset of
GLOBAL events.

DEQWORK
Traces the process of removing work requests from an APPC/MVS scheduler
queue. DEQWORK is a subset of SCHEDULE events.

ENQWORK
Traces the process of adding work requests to an APPC/MVS scheduler queue.
ENQWORK is a subset of SCHEDULE events.

FMH5
Traces FMH-5 events. FMH5 is a subset of INBOUND events.

┌────────────────────────┬──────────────┐
│ │ │

┌───┴──┐ ┌──┴────┐ ┌──┴───┐
│GLOBAL│ │USERID │ │NODUMP│
└───┬──┘ └───────┘ └──────┘

│
┌─────┴────────────────┐
│ │

┌───┴────┐ │
│GLOBALQK│ │
└────────┘ │

│
┌────────────────────────┬────────┴───────────┬─────────┬───────────┬──────────┐
│ │ │ │ │ │

┌───┴───┐ ┌───┴────┐ ┌──┴──┐ ┌───┴────┐ ┌───┴───┐ ┌───┴──┐
│INBOUND│ │SCHEDULE│ │VERBS│ │CONVCLUP│ │TRANSCH│ │SERVER│
└───┬───┘ └───┬────┘ └──┬──┘ └────────┘ └───────┘ └──────┘

│ │ │
┌────┴────┐ ┌─────────┼─────────┐ │
│ │ │ │ │ │

┌───┴───┐ ┌───┴──┐ ┌───┴───┐ ┌───┴───┐ ┌───┴────┐ ┌──┴──┐
│ FMH5 │ │ FMH7 │ │ENQWORK│ │DEQWORK│ │ASMANAGE│ │ PBI │
└───┬───┘ └──────┘ └───────┘ └───────┘ └────────┘ └─────┘

│
┌───┴───┐
│BADFMH5│
└───────┘

Figure 105. Hierarchy of SYSAPPC Component Trace Options. Hierarchy of SYSAPPC Component Trace Options

Component Trace

Chapter 12. Component trace 373

FMH7
Traces FMH-7 events. FMH7 is a subset of INBOUND events.

GLOBAL
Traces the full range of APPC/MVS events.

GLOBALQK
Traces a subset of important GLOBAL trace events.

INBOUND
Traces inbound transaction processor (TP) requests. INBOUND is a subset of
GLOBAL events.

NODUMP
Specifies no dumping when the operator stops the SYSAPPC component trace.
Otherwise, component trace requests an SVC dump with the trace data when
the operator stops tracing with a TRACE CT,OFF command.

IBM does not recommend the NODUMP option because the option makes
obtaining the trace buffers difficult. The operator would have to identify the
data space containing the buffers and specify it in a SLIP command or the
reply for a DUMP command.

PBI
Traces events related to protocol boundary. PBI is a subset of VERBS events.

RR Traces events related to the participation of APPC/MVS in resource recovery
for protected conversations. RR is a subset of VERBS events.

SERVER
Traces events related to the APPC/MVS servers. SERVER is a subset of
GLOBAL events.

SCHEDULE
Traces events related to the APPC/MVS transaction scheduler. SCHEDULE is a
subset of GLOBAL events.

TRANSCH
Traces events related to APPC/MVS transaction scheduler interface support.
TRANSCH is a subset of GLOBAL events.

USERID=(userid,userid)
Traces events for only the specified userid or userids. Specify the TSO/E userid
of the person reporting a problem with an APPC/MVS application. Specify
from 1 through 9 userids.

VERBS
Traces events related to outbound TPs or LU services. VERBS is a subset of
GLOBAL events.

Examples of requesting SYSAPPC traces
This section contains examples of how to request SYSAPPC traces.
v Example 1: CTnAPPxx Member

The member requests SERVER and VERBS options for the address space or
spaces for the TSO/E userid JOHNDOE.
TRACEOPTS

OPTIONS(’SERVER’,’VERBS’,’USERID=(JOHNDOE)’)

v Example 2: TRACE command specifying a parmlib member
The example specifies that options are to be obtained from the parmlib member
CTWAPP03.
trace ct,on,comp=sysappc,parm=ctwapp03

Component Trace

374 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Example 3: TRACE Command with Options Specified in a REPLY
The example requests the same trace as Example 2, but specifies all options in
the REPLY.
trace ct,on,comp=sysappc
* 15 ITT006A ...
reply 15,options=(server,verbs,userid=(johndoe)),end

v Example 4: TRACE Command Requesting GLOBAL Options
The example requests GLOBAL options for all address spaces using APPC/MVS.
trace ct,on,comp=sysappc
* 14 ITT006A ...
reply 14,options=(global),end

Formatting a SYSAPPC trace
Format the trace with an IPCS CTRACE COMP(SYSAPPC) subcommand. Its
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the options to narrow down the records displayed so that you can
more easily locate any errors. If the CTRACE subcommand specifies no options,
IPCS displays all the trace records.

The options follow. The first option is either FILTER or CORRELATE, which are
mutually exclusive; the first option controls how the other options select the
records.

FILTER
The FILTER option selects the trace records that match only one of the
specified options. The options that are valid with the FILTER option are:
v AQTOKEN
v CONVCOR
v CONVID
v FUNCID
v INSTNUM
v LUNAME
v LUWID
v NETNAME
v SEQNUM
v SESSID
v TPIDPRI
v TPIDSEC
v URID
v USERID

The formats of the OPTION parameter with FILTER are:

CORRELATE
The CORRELATE option selects the trace records that match a specified option
and, for an unspecified option, uses the option's default values. The

OPTION((FILTER,option))
OPTION((FILTER,option,option, ... ,option))

Component Trace

Chapter 12. Component trace 375

DEFAULTS keyword defines how default values are found for the unspecified
options. The options that are valid with the CORRELATE option are:
v AQTOKEN
v CONVCOR
v CONVID
v DEFAULTS
v INSTNUM
v LUNAME
v LUWID
v NETNAME
v SEQNUM
v SESSID
v TPIDPRI
v TPIDSEC
v URID

The formats of the OPTION parameter with CORRELATE are:

AQTOKEN(allocate-queue-token)
Use with either the FILTER or CORRELATE option to specify an allocate queue
token. The allocate-queue-token is an 8-byte hexadecimal string.

CONVCOR(conversation-correlator)
Use with either the FILTER or CORRELATE option to specify a conversation
correlation. The conversation-correlator is an 8-byte hexadecimal string.

CONVID(conversation-id)
Use with either the FILTER or CORRELATE option to specify a conversation
identifier. The conversation-id is a 4-byte hexadecimal string.

||DEFAULTS(NONEANYEXACT)
Use only with the CORRELATE option to specify the values to be used for
matching unspecified options.

NONE
Tells component trace to format only the trace records that match one or
more of the specified options. NONE is the default.

ANY
Tells component trace to format:
v Trace records matching one or more of the specified options.
v Related trace records that match default values established for the

unspecified options. Component trace derives the defaults from the
values for unspecified options found in the first records that match any
of the specified options.

EXACT
Tells component trace to format:
v Trace records matching one or more of the specified options.

OPTION((CORRELATE,option))
OPTION((CORRELATE,option,option, ... ,option))

Component Trace

376 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Related trace records matching default values established for the
unspecified options. Component trace derives the defaults from the
values for unspecified options found in the first records that match all of
the specified options.

FUNCID(function-id)
Use only with the FILTER option to specify the APPC/MVS subcomponent
trace records to format. Specify one function-id:

01 Recovery

02 Verb services

03 FMH-5 manager

04 Conversation manager

05 System data file manager (SDFM)

06 VTAM exits

07 LU manager

08 State machine

09 Test enablement

10 APPC/MVS scheduler (ASCH)

11 Transaction scheduler interface

12 Allocate queue services

INSTNUM(instance-number)
Use with either the FILTER or CORRELATE option to specify the instance
number for a logical unit of work. The instance-number is a 6-byte hexadecimal
string.

LUNAME(local-luname)
Use with either the FILTER or CORRELATE option to specify the LU name for
the local logical unit of work. The local-luname is an 8-byte EBCDIC character
string.

LUWID(logical-unit-of-work-id)
Use either the FILTER or CORRELATE option to specify a logical unit of work
identifier, which represents the processing a program performs from one sync
point to the next. To specify the logical-unit-of-work-id, enter the hexadecimal
string as it appears in the CTRACE report, without including blank spaces.

NETNAME(network-name)
Use with either the FILTER or CORRELATE option to specify the network
name for a logical unit of work. The network-name is an 8-byte EBCDIC
character string, which is the same as the network-ID portion of a
network-qualified LU name.

SEQNUM(sequence-number)
Use with either the FILTER or CORRELATE option to specify the sequence
number for a logical unit of work. The sequence-number is a 2-byte hexadecimal
string.

SESSID(session-id)
Use with either the FILTER or CORRELATE option to specify the session
identifier. The session-id is an 8-byte hexadecimal string.

Component Trace

Chapter 12. Component trace 377

TPIDPRI(tp-id)
Use with either the FILTER or CORRELATE option to specify the primary TP
identifier. The tp-id is an 8-byte hexadecimal string.

TPIDSEC(tp-id)
Use with either the FILTER or CORRELATE option to specify the secondary TP
identifier, which is used for multi-trans TPs. The tp-id is an 8-byte hexadecimal
string.

URID(unit-of-recovery-id)
Use with either the FILTER or CORRELATE option to specify a unit of
recovery identifier, which represents part of a TP's processing for a protected
conversation. The unit-of-recovery-id is a 32-byte hexadecimal string.

USERID(userid)
Use only with the FILTER option to specify a userid as a filter. The userid is an
8-byte EBCDIC character string.

Examples of subcommands to format a SYSAPPC trace
v Example 1: CTRACE subcommand to view all trace entries

To view all the SYSAPPC trace records, enter:
CTRACE COMP(SYSAPPC)

v Example 2: CTRACE Subcommand to view exception entries
To format abnormal SYSAPPC events, such as abends or VTAM return codes,
enter:
CTRACE COMP(SYSAPPC) EXCEPTION

v Example 3: CTRACE subcommand for subcomponent
To format all the records for one APPC/MVS subcomponent, enter the following
subcommand. Use this subcommand to locate an error if you have narrowed the
problem down to one subcomponent.
CTRACE COMP(SYSAPPC) OPTIONS((FILTER,FUNCID(nn)))

v Example 4: CTRACE subcommand to view a userid's entries
To format all the records for userid JOHNDOE, who is experiencing problems,
enter the following subcommand. If you specified the USERID option when
requesting the trace, this formatting option is redundant.
CTRACE COMP(SYSAPPC) OPTIONS((FILTER,USERID(JOHNDOE)))

Output from a SYSAPPC Trace
The following topics contain examples of different types of output produced by a
SYSAPPC trace.

CTRACE COMP(SYSAPPC) SHORT subcommand output
The SHORT parameter shows one line of output for each trace record. Figure 106
shows an example of SYSAPPC component trace output formatted with the
SHORT parameter.

The fields in each SHORT report line are:

VEFMH5XT 00004101 155705.182844 VEFMH-5 RECEIVED
VEFMH5ER 00000101 155705.367233 VEFMH-5 IN TPEND

Figure 106. CTRACE COMP(SYSAPPC) SHORT subcommand output

Component Trace

378 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Mnemonic
For example, VEFMH5XT.

Entry ID
The identifier for the trace record. For example, 00004101.

Time
The time in hh:mm:ss.tttttt format. For example, 15:57:05.182844.

Title
The title of the record. For example, VE:FMH-5 RECEIVED. Each title begins
with a prefix that indicates the APPC/MVS subcomponent that wrote the trace
record. For example, VE, which represents the VTAM exits subcomponent.
Table 58 relates the title prefixes to their APPC/MVS subcomponents.

Table 58. Summary of the title prefixes and APPC/MVS subcomponents

Prefix Subcomponent

AMI Verb services
ASCH APPC/MVS scheduler (ASCH)
CM Conversation manager
ERROR Recovery
FMH5 FMH-5 manager
LUM LU manager
PC Protected conversations
SDFM MVS system data file manager (SDFM)
SF Allocate queue services
SM State machine
TE Test enablement
TSI Transaction scheduler interface
VC Verb services
VE VTAM exits
VS Verb services

CTRACE COMP(SYSAPPC) SUMMARY subcommand output
The SUMMARY parameter gives the line in the SHORT report and most fields in
each trace record. An example of SYSAPPC component trace output formatted
with the SUMMARY parameter follows in Figure 107.

The fields in the SUMMARY report, after the first line, follow. See the SHORT
report for the first line.

FUNCID
An identifier of the APPC/MVS subcomponent that wrote the trace record. See
the FUNCID option for the identifiers.

SY1 PCESC 00007802 13:07:29.491950 PC:ENTRY STATE CHECK EXIT
FUNCID... 02
USERID... IBMUSER JOBNAME.. APPC
ASIDHOME. 001C ASIDPRI.. 001C
TPIDPRI.. 00000000 TPIDSEC.. 00000000
SESSID... E723ED63 AAB04BDF CONVID... 01000014
CONVCOR.. 063313F8 0000000D AQTOKEN.. 00000000
LUWID.... 10E4E2C9 C2D4E9F0 4BE9F0C3 F0C1D7F0 F36FDB2A C0220700 01
NETNAME.. USIBMZ0 LUNAME... Z0C0AP03
INSTNUM.. 6FDB2AC0 2207 SEQNUM... 0001

URID..... AD355FDB 7EEFB000 00000007 01010000

Figure 107. CTRACE COMP(SYSAPPC) SUMMARY subcommand output

Component Trace

Chapter 12. Component trace 379

USERID
The system was processing work for this userid when the trace record event
occurred.

JOBNAME
The name of the job that the system was processing when the trace record
event occurred.

ASIDHOME
The address space identifier (ASID) of the primary address space the system
was processing when the trace record event occurred.

TPIDPRI
_The TP identifier of a primary TP. (Multitrans TPs have a primary and a
secondary TP.)

TPIDSEC
_The TP identifier for a secondary TP. (Multitrans TPs have a primary and a
secondary TP.)

SESSID
The identifier for a session.

CONVID
The identifier for a conversation.

AQTOKEN
The identifier for an allocate queue.

LUWID
The identifier for a logical unit of work. The following fields refer to the logical
unit of work: If the LUWID is either all zeros or not valid,* the fields contain
asterisks ().

NETNAME
The network name for the logical unit of work.

LUNAME
The name of the local LU.

INSTNUM
The instance number for the logical unit of work.

SEQNUM
The sequence number for the logical unit of work.

URID
The identifier for a unit of recovery.

CTRACE COMP(SYSAPPC) FULL subcommand output
The FULL parameter gives all the data in the trace records. It contains the line in
the SHORT report, the fields in the SUMMARY report, and KEY and ADDR fields.
An example of SYSAPPC component trace output formatted with the FULL
parameter follows in Figure 108 on page 381.

Component Trace

380 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

See the SHORT report and the SUMMARY report for the fields in the report. IBM
might need the KEY and ADDR fields for diagnosis.

FMH-5 trace data
FMH-5 trace records contain information useful for tracking TP flow and
diagnosing the following types of problems:
v Persistent verification problems
v Password maintenance problems
v APPC/MVS security problems

To obtain FMH-5 data, request the SYSAPPC component trace with an FMH5,
INBOUND, or GLOBAL option. To isolate the FMH-5 records in the trace output,
enter the following IPCS subcommand:
CTRACE COMP(SYSAPPC) OPTIONS((FILTER,FUNCID(03))) FULL

Table 59 gives the mnemonic and title for each FMH-5 trace record and explains
the record. Most of the trace records have FMH-5 itself formatted in KEY field
X'0012'.

For the format of the FMH-5, see:
v z/OS Communications Server: SNA Programmer's LU 6.2 Guide

v z/OS Communications Server: SNA Programmer's LU 6.2 Reference.

Table 59. FMH-5 trace entries in the SYSAPPC component trace

Mnemonic Title Description/Action

FMH5BDSC FMH5:BAD SECURITY COMBINATION APPC/MVS found an incorrect security option or
security subfields or both. Contact the IBM Support
Center.

SY1 PCESC 00007802 13:07:29.491950 PC:ENTRY STATE CHECK EXIT
FUNCID... 02
USERID... IBMUSER JOBNAME.. APPC
ASIDHOME. 001C ASIDPRI.. 001C
TPIDPRI.. 00000000 TPIDSEC.. 00000000
SESSID... E723ED63 AAB04BDF CONVID... 01000014
CONVCOR.. 063313F8 0000000D AQTOKEN.. 00000000
LUWID.... 10E4E2C9 C2D4E9F0 4BE9F0C3 F0C1D7F0 F36FDB2A C0220700 01
NETNAME.. USIBMZ0 LUNAME... Z0C0AP03
INSTNUM.. 6FDB2AC0 2207 SEQNUM... 0001

URID..... AD355FDB 7EEFB000 00000007 01010000
KEY...... 0015 ADDR..... 066F26DA

E4E2C9C2 D4E9F04B E9F0C3F0 C1D7F0F3 | USIBMZ0.Z0C0AP03 |
KEY...... 001A ADDR..... 066F26EB

E4E2C9C2 D4E9F04B E9F0C3F0 C1D7F0F4 | USIBMZ0.Z0C0AP04 |
KEY...... 0039 ADDR..... 066F26A8

E3D9C1D5 D7C1D940 | TRANPAR |
KEY...... 0054 ADDR..... 064162E4

00000000 | |
KEY...... 00A1 ADDR..... 066F2640

00000000 | |
KEY...... 00A3 ADDR..... 055683D4

00000000 | |
KEY...... 00A3 ADDR..... 066F263C

00000000 | |
KEY...... 00A2 ADDR..... 066F263A

00 | . |

Figure 108. CTRACE COMP(SYSAPPC) FULL subcommand output

Component Trace

Chapter 12. Component trace 381

Table 59. FMH-5 trace entries in the SYSAPPC component trace (continued)

Mnemonic Title Description/Action

FMH5ERCV FMH5:FMH-5 RECEIVE FAILURE An FMH-5 was not successfully received by the local
MVS LU. Contact the IBM Support Center.

FMH5INCD FMH5:FMH-5 COMMAND IS NOT
VALID

APPC/MVS detected an incorrect FMH-5 command.
Contact the IBM Support Center.

FMH5LUNA FMH5:LU IS NOT ACTIVE An LU is not active. See the LUNAME field in the trace
output. Enter a DISPLAY APPC command to find the
status of this LU.

FMH5NOTP FMH5:TP NAME IS NOT RECOGNIZED The TP name was not specified correctly in the FMH-5.

FMH5NSCH FMH5:NOT SERVED AND NO
SCHEDULER

The TP cannot be scheduled because no scheduler is
associated with the LU.

FMH5PFST FMH5:FMH-5 PROFILE IS NOT VALID The FMH-5 profile is incorrect; it is greater than 8
characters.

FMH5PIP FMH5:PIP DATA PRESENT IN FMH-5 APPC/MVS found profile initialization parameters
(PIP) data in the FMH-5; PIP data is not valid in FMH-5
for APPC/MVS.

FMH5PWCC FMH5:PW CONV CLEANUP FAILED Internal error. Contact the IBM Support Center.

FMH5PWDE FMH5:PW DEALLOCATE FAILED Internal error. Contact the IBM Support Center.

FMH5PWDF FMH5:PW DEQUE REQUEST FAILED An attempt to attach the SIGNON/Change password
TP failed. Contact the IBM Support Center.

FMH5PWQF FMH5:PW QUEUE REQUEST FAILED Internal error. Contact the IBM Support Center.

FMH5PWRF FMH5:QW RACF REQUEST REJECTED Internal error. Contact the IBM Support Center.

FMH5PWR1

FMH5PWR2

FMH5:PW RECEIVE DATA FAILED 1

FMH5:PW RECEIVE DATA FAILED 2

The __SIGNON/Change password TP attempted to
perform a ReceiveandWait call for a GDS variable. See
the following KEY fields:

v KEY X'007E' contains the status received__ value
returned to the SIGNON/Change password TP by
ReceiveandWait.

v KEY X'007F' contains the data received value__
returned to the SIGNON/Change password TP by
ReceiveandWait.

v KEY X'003F' contains the return code from__
ReceiveandWait.

Make sure that your GDS variable was sent correctly. If
you cannot resolve the problem, contact the IBM
Support Center.

FMH5PWSD FMH5:PW SEND DATA FAILED A SIGNON/Change password TP SendData call failed.
Verify that your TP has a valid conversation established
with the SIGNON/Change password TP. If you cannot
resolve the problem, contact the IBM Support Center.

Component Trace

382 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 59. FMH-5 trace entries in the SYSAPPC component trace (continued)

Mnemonic Title Description/Action

FMH5PWSF FMH5:PW SEND MESSAGE FAILED A persistent verification signoff flow to the partner LU
failed. The __SIGNEDONTO list in the partner LU may
not be in sync with the local __SIGNEDONFROM list.
See the following KEY fields:

v KEY X'0026' contains the TCB address.

v KEY X'001A' contains the name of the partner LU.

v Key X'002F' contains the userid of the user whose
SIGNOFF failed.

If you cannot resolve the problem, contact the IBM
Support Center.

FMH5PWSM FMH5:PW SEND MESSAGE APPC/MVS could not attach the X'30F0F5F2' expired
password notification program to notify a partner
system user that the user's password expired. See the
following KEY fields:

v KEY X'0026' contains the TCB address.

v KEY X'001A' contains the name of the partner LU.

v KEY X'002F' contains the USERID of the user whose
attach request failed.

If you cannot resolve the problem, contact the IBM
Support Center.

FMH5PWSR FMH5:PW SIF RESERVE FAILURE Internal error. Contact the IBM Support Center.

FMH5PWST FMH5:FMH-5 PASSWORD IS NOT
VALID

The FMH-5 password is incorrect; it is greater than 8
characters.

FMH5QMFL FMH5:FMFP QUEUE MANAGER
FAILURE

Internal error. Contact the IBM Support Center

FMH5RECV FMH5:FMH-5 SUCCESSFULLY
RECEIVED

An FMH-5 was successfully received by the local MVS
LU.

FMH5RFRJ FMH5:RACF REQUEST REJECTED The system received a bad return code from one of the
RACF services. See KEY X'0053' for a code identifying
the RACF service that failed. The code can be one of the
following:

1 RACROUTE REQUEST=VERIFY

2 RACROUTE REQUEST=SIGNON
TYPE=SIGNIN

3 RACROUTE REQUEST=SIGNON
TYPE=QSIGNON

4 RACROUTE REQUEST=SIGNON
TYPE=SIGNOFF

See the following KEY fields:

v KEY X'0054' contains the return code for the RACF
service request.

v KEY X'0055' contains the reason code for the RACF
service request.

v KEY X'0021' contains the security authorization
facility (SAF) return code for the service.

FMH5SERF FMH5:APPC/MVS SERVICE FAILURE APPC/MVS internal failure. Contact the IBM Support
Center.

Component Trace

Chapter 12. Component trace 383

Table 59. FMH-5 trace entries in the SYSAPPC component trace (continued)

Mnemonic Title Description/Action

FMH5SFAL FMH5:SEND MESSAGE FAILED Persistent verification signoff flow to the partner LU
failed. Make sure you have valid sessions established.
See the following KEY fields:

v KEY X'0026' contains the TCB address.

v KEY X'001A' contains the name of the partner LU.

FMH5SOFF FMH5:SIGNOFF FLOW Persistent verification signoff flow to the partner LU
completed. See the following KEY fields:

v KEY X'0026' contains the TCB address.

v KEY X'001A' contains the name of the partner LU.

FMH5SVFC FMH5:ACCEPTED BY SRVR FACILITIES APPC/MVS placed the inbound request on an allocate
queue to await later processing by an APPC/MVS
server.

FMH5TEST FMH5:FMH5 ACCEPTED FOR TESTING An FMH-5 is accepted for testing.

FMH5TPAD FMH5:TP PROFILE ACCESS DENIED TP profile access denied. Request=AUTH failed.

FMH5TPNA FMH5:TP PROFILE IS NOT ACTIVE The TP profile is not active. Get the TP name from the
FMH-5 formatted at KEY X'0012' in this trace record.
Then use the SDFM utility to look at the TP profile.

FMH5TPRQ FMH5:TP PROFILE IS REQUIRED The system found no TP profile for the requested TP.
The scheduler associated with the TP requires a TP
profile. The error is probably due to an SDFM problem.
Look for trace records with a prefix of SDFM.

FMH5UIST FMH5:FMH-5 USERID IS NOT VALID The FMH-5 user ID is incorrect; it is greater than 8
characters.

FMH5VALD FMH5:FMH5 SUCCESSFULLY
VALIDATED

An FMH-5 has been successfully validated.

FMH5XLNF FMH5:EXCHANGE LOG NAME
FAILED

APPC/MVS rejected the protected conversation because
required log-name exchange processing did not occur.

QMANFAIL FMH5:FMAX QUEUE MANAGER
FAILURE

Internal error. Contact the IBM Support Center.

RESVFAIL FMH5:SIF RESERVE FAILURE Internal error. Contact the IBM Support Center.

SYSAXR component trace

The following summarizes information for requesting a SYSAXR component trace
for System REXX component.

Information For SYSAXR:

Parmlib member CTIAXRnn. Default member: CTIAXR00

Default tracing Yes; error; error events

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

384 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Information For SYSAXR:

Trace request OPTIONS
parameter

In CTIAXRxx and REPLY for TRACE command

Buffer v Default: 2MB

v Range: 1MB - 2GB

v Size set by: CTIAXRnn parmlib member or REPLY to
TRACE CT command

v Change size after IPL: Yes, when restarting a trace after
stopping it

v Location: System REXX trace data space.

Trace records location Address-space buffer; System REXX trace data space; trace
data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSAXR)

Trace format OPTIONS
parameter

Yes

Requesting a SYSAXR trace
Specify options for requesting a SYSAXR component trace in a CTIAXRxx parmlib
member or on the reply for a TRACE CT command. Changing SYSAXR trace
options after AXR has started requires stopping and restarting the trace.

CTIAXRnn parmlib member
The following table indicates the parameters you can specify in a CTIAXRnn
parmlib member.

Parameters Allowed on CTIAXRnn?

ON or OFF No

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

MOD No

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

Note: The buffer size can be changed after IPL. To become effective the System
REXX address space (AXR) must be restarted. Specify the new buffer size in the
BUFSIZE parameter in the CTIAXRnn member being used.

The IBM supplied CTIAXR00 parmlib member initializes error tracing as soon as
the System REXX address space starts. The contents of CTIAXR00 are:

Component Trace

Chapter 12. Component trace 385

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, OFF or nnnnM One is required

nnnnK or nnnnM No

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter in the CTIAXRxx parmlib member and
reply for a TRACE command are:

ALL
Trace everything.

AXRCMD
Trace Command function package events.

AXRMLWTO
Trace multiline WTO function package events.

AXRWTO
Trace WTO function package events.

AXRWAIT
Trace wait function package events.

AXRINFO
Trace information function package events.

GETRXLIB
Trace AXREXX REQUEST=GETREXXLIB events.

CANCEL
Trace AXREXX REQUEST=CANCEL events.

TRACEOPTS
ON
OPTIONS(’ERROR’)
BUFSIZE(2M)

Component Trace

386 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

COMMAND
Trace System REXX command events.

ERROR
Trace error events.

EXEC
Traces only events that occur under the specified exec name.

REXXARGS
Trace all events associated with REXX arguments.

REXXVARS
Trace all events associated with REXX variables.

RXCLIENT
Trace events that occur under the invoker of AXREXX.

RXSERVER
Trace all server events.

Formatting a SYSAXR trace
Format the trace with an IPCS CTRACE COMP(SYSAXR) subcommand.

Output from a SYSAXR Variables Trace
Each trace record has a header associated with it, as Figure 109 shows. This header
is consistent among ALL trace records, although not all fields are filled in (for
example, there is no TracePrefixReqToken for command processing).

Note: This is NOT an interface and should only be used for diagnostic purposes.

The following shows the formatted IPCS output produced from the CTRACE
COMP(SYSAXR) subcommand after running a REXX exec invoked using the
AXREXX programming interface with the CTRACE REXXVARS option enabled.
SY1 REXXVARS 04130D06 20:40:59.969289 REXX VAR NAME

00330032 C1E7D9D4 C1C9D540 C1E7D9D4 |AXRMAIN AXRM |
C1C9D540 006EAE88 C8C1D9D9 C9E2E540 | AIN .>.hHARRISV |
00320000 00005000 00000001 BF8C7970 |&.......`. |
95690DB8 00000001 D4E8E5C1 D94BF1 | n.......MYVAR.1 |

The 1st 4 bytes following the header contains the index of the variable in the
variable list (AXRArgLst). The remainder of the trace entry contains the value of
the variable name.

DSECT
TracePrefixType DS OD
TracePrefixASID DS H Primary ASID when trace record cut
TracePrefixAXREXXInvokersASID DS H Primary ASID when AXREXX invoked
TracePrefixJobname DS D Jobname when trace record cut
TracePrefixAXREXXInvokersJobname DS D Jobname when AXREXX was invoked
TracePrefixTcb@ DS A TCB Address when AXREXX was invoked
TracePrefixExecName DS D REXX exec name
TracePrefixAXREXXInvokersHomeAsid DS A Home ASID when AXREXX was invoked

DS CL2 Reserved
TracePrefixReqToken DS 4F Trace request token type

Figure 109. SYSAXR variables trace record header

Component Trace

Chapter 12. Component trace 387

SY1 REXXVARS 04130D02 20:40:59.969292 REXX VAR BEFORE EXEC

00330032 C1E7D9D4 C1C9D540 C1E7D9D4 |AXRMAIN AXRM |
C1C9D540 006EAE88 C8C1D9D9 C9E2E540 | AIN .>.hHARRISV |
00320000 00005000 00000001 BF8C7970 |&.......`. |
95690DB8 00000001 0000000B 40404040 | n........... |
40404040 4040F1 | 1 |

The 1st 4 bytes following the header contains the index of the variable in the
variable list (AXRArgLst). The next 4 bytes contain the length of the value. The
remainder contains the value of the variable on input to the exec.
SY1 REXXVARS 04140D04 22:01:15.525516 REXX VAR AFTER EXEC

00150032 C1E7D9D4 C1C9D540 C1E7D9D4 |AXRMAIN AXRM |
C1C9D540 006EAE88 C8C1D9D9 C9E2E540 | AIN .>.hHARRISV |
00320000 00005000 00000000 BF8C8B61 |&......../ |
09A8845A 00000001 00000003 F1F0F1 | .yd!........101 |

The 1st 4 bytes following the header contains the index of the variable in the
variable list (AXRArgLst). The next 4 bytes should contain the length of the output.
The next set of bytes should contain the output variable. If the result was truncated
it will contain the truncated result.

The input/output variable contained 1 on entry to the exec and its final value
when the exec completed was 101.

SYSBCPII component trace

The following table summarizes information for requesting a SYSBCPII component
trace for base control program internal interface (BCPii).

Information For SYSBCPII:

Parmlib member CTIHWI00

Default and only member: CTIHWI00. If no valid
CTIHWI00 member exists, minimal tracing is activated at
BPCPii address space initialization.

Default tracing Minimal tracing is always in effect for SYSBCPII. If no valid
CTIHWI00 member exists, if CTrace is turned OFF, or if
CTrace is ON with no format OPTIONS specified, minimal
tracing occurs.

Trace request OPTIONS
parameter

In CTIHWI00 and REPLY for TRACE command

Buffer v Size: 4M

v Size set by: BCPii address space

v Change size after IPL: No

v Location: In the component data space

Trace records location Data space buffer

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

388 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

|
|
|
|

Information For SYSBCPII:

Request of SVC dump By DUMP or SLIP command, or by the component if trace
is ON for SYSBCPII and a TRACE CT,OFF command is
issued.

Trace formatting by IPCS CTRACE COMP(SYSBCPII)

Trace format OPTIONS
parameter

MIN, ALL

Requesting a SYSBCPII trace
Specify options for requesting a SYSBCPII component trace in a CTIHWI00
parmlib member or on a reply to a TRACE CT ,ON command.

You can change options for SYSBCPII tracing while the trace is running.

CTIHWI00 parmlib member
The following table indicates the parameters you can specify on a CTIHWI00
parmlib member.

Parameters Allowed on CTIHWI00?

ON or OFF Yes

OPTIONS Yes

You cannot change the SYSBCPII component trace buffer size of 4M.

The IBM-supplied CTIHWI00 parmlib member initializes minimal error tracing as
soon as the HWIBCPII address space starts.

The contents of CTIHWI00 are:
TRACEOPTS ON OPTIONS('MIN')

It is suggested that you use these default settings in the CTIHWI00 parmlib
member, unless the IBM Support Center requests different tracing options for
BCPii. If the CTIHWI00 parmlib member cannot be found during BCPii
initialization, or if it is in error, minimal tracing will be activated.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON or OFF One is required

COMP Required

SUB No

PARM Yes

Parameters Allowed on REPLY for trace?

OPTIONS Yes

You can change options while a SYSBCPII trace is running.

Component Trace

Chapter 12. Component trace 389

|
|
|

|
|

OPTIONS parameter
The values for the OPTIONS parameter for the CTIHWI00 parmlib member and
reply for a TRACE command, in an alphabetical order, are:

ALL
Traces events listed for all the options, including module flow and tracing for
every request in both success and failure paths.

MIN
Traces events related to BCPii component recovery, abnormal conditions, and
other non-mainline paths.

Examples of requesting SYSBCPII traces
v The CTIHWI00 member requests ALL options.

TRACEOPTS
ON
OPTIONS(’ALL’)

v The TRACE command specifying a Parmlib Member
trace ct,on,comp=sysbcpii,parm=ctihwi00

v The TRACE command with Options Specified in a REPLY
trace ct,on,comp=sysbcpii
* 8 ITT006A ...
reply 8,options=(all),end

v The TRACE command to Stop Tracing
trace ct,off,comp=sysbcpii

Formatting a SYSBCPII trace
Format the trace with an IPCS CTRACE COMP(SYSBCPII) subcommand.

Output from a SYSBCPII trace
Figure 110 is an example of SYSBCPII component trace records formatted with the
CTRACE COMP(SYSBCPII) SHORT subcommand:

COMPONENT TRACE SHORT FORMAT
COMP(SYSBCPII)
**** 07/25/2008

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 Message 10012130 13:50:09.359769 HWIPHCPI About to call HWIPHRES
SY1 Request 100321C0 13:50:09.359963 HWIPHRES HSDB created

SY1 State 10002007 13:50:09.361439 HWIPHARI Appl Extension located
SY1 Request 1000200E 13:50:09.368871 HWIPHARI Session Elem defined

SY1 Request 10002011 13:50:09.369177 HWIPHARI Request Elem created

SY1 Request 10002005 13:50:09.369328 HWIPHARI Request Elem queued

SY1 Request 10052220 13:50:09.374042 HWIPHSPI EDB Mds_MU created

SY1 State 10072351 13:50:09.427487 HWIPHMNX Appl Extension located

SY1 Request 10072352 13:50:09.427678 HWIPHMNX MDS_MU Req received

Figure 110. Example: SYSBCPII component trace records formatted with CTRACE
COMP(SYSBCPII) SHORT subcommand

Component Trace

390 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CTRACE COMP(SYSBCPII) FULL subcommand output
Figure 111 is an example of SYSBCPII component trace records formatted with the
CTRACE COMP(SYSBCPII) FULL subcommand.

COMPONENT TRACE FULL FORMAT
COMP(SYSBCPII)
**** 07/25/2008

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 Message 10012130 13:50:09.359769 HWIPHCPI About to call HWIPHRES

ASIDHOME. 0018 ASIDPRI.. 0018
JOBNAME.. HWIBCPII TCBADDR.. 005DFA48

KEY...... 0004 LEN...... 0026 COUNT.... 0001

BCPii About to pass HSDB to HWIPHRES.

SY1 Request 100321C0 13:50:09.359963 HWIPHRES HSDB created

ASIDHOME. 0018 ASIDPRI.. 0018
JOBNAME.. HWIBCPII TCBADDR.. 005DFA48

KEY...... 0005 LEN...... 003C COUNT.... 0001

C8E2C4C2 080100B4 7ED57A54 00000001 | HSDB....=N:..... |
40000000 00000000 00000000 C8E6C9E2 |HWIS |
C5D9E540 00000000 00000000 5C404040 | ERV* |
40404040 5C404040 40404040 | * |

SY1 State 10002007 13:50:09.361439 HWIPHARI Appl Extension located

ASIDHOME. 0018 ASIDPRI.. 0018
JOBNAME.. HWIBCPII TCBADDR.. 005DFA48

KEY...... 0005 LEN...... 0060 COUNT.... 0001

C8E6C1E7 01100060 00F9000F 00000000 | HWAX...-.9...... |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 C8E6C9E2 |HWIS |
C5D9E540 00000000 00000000 0000001C | ERV |
7F548228 00000000 00000000 00000000 | ".b............. |

SY1 Request 1000200E 13:50:09.368871 HWIPHARI Session Elem defined

ASIDHOME. 0018 ASIDPRI.. 0018
JOBNAME.. HWIBCPII TCBADDR.. 005DFA48

KEY...... 0005 LEN...... 0080 COUNT.... 0001

C8E2C540 01100080 C2BE9BC7 013E74E4 | HSEB..G...U |
00000000 00000000 7ED54FA0 00000018 |=N|..... |
00FB2A00 005DFA48 00000060 00000001 |).....-.... |
0000000D 005DFA48 E4E2C9C2 D4E2C340 |)..USIBMSC |
E2C3E9D7 F9F0F140 00000000 00000000 | SCZP901 |
00000000 00000000 00000000 00000000 | |
C8E6C9F0 F0F0F0F1 00000000 00C80000 | HWI00001.....H.. |

Figure 111. Example: SYSBCPII component trace records formatted with CTRACE
COMP(SYSBCPII) FULL subcommand

Component Trace

Chapter 12. Component trace 391

SYSBHI component trace

Basic HyperSwap socket support component trace is described by the following
attributes:
v Trace buffers reside in 64-bit common ECSA. Size is controlled by the TRACE

CT operator command.
v Minimal and unexpected event tracing is activated during Basic HyperSwap

management address space initialization.
v Component trace buffers externalized through:

– DUMP or SLIP operator command when the Basic HyperSwap management
address space or a BHIHSRV address space is requested to be dumped.

– SVC dumps issued by Basic HyperSwap management address space or the
BHIHSRV address space.

– MVS component trace (CTRACE) external writer.
v Trace options revert to minimal event and exception tracing when the operator

turns the trace off.

The following summarizes information for requesting a SYSBHI component trace
for Basic HyperSwap.

Information For SYSBHI:

Parmlib member CTIBHIxx; Default member: CTIBHI00 (IBM provides
a sample in SYS1.SAMPLIB)

Default tracing Yes; error; error events

Trace request OPTIONS parameter In CTIBHIxx and REPLY for TRACE command

Buffer v Default: 4MB

v Range: 4MB - 64MB

v Size set by: CTIBHIxx parmlib member or REPLY
to TRACE CT command

v Change size after IPL: Yes

v Location: 64-bit Common Storage Area (ECSA)

Trace records location Address-space buffer; trace data sets

Request of SVC dump By DUMP or SLIP command when dumping the
HyperSwap Management address space or one of the
BHIHSRV address spaces

Trace formatting by IPCS CTRACE COMP(SYSBHI)

Trace format OPTIONS parameter Yes

Requesting a SYSBHI trace
Specify options for requesting a SYSBHI component trace in a CTIBHIxx parmlib
member or on the reply for a TRACE CT command

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

392 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|||

||
|

||

||

||

|

|
|

|

|

||

||
|
|

||

||
|

|

|
|

CTIBHIxx parmlib member
The following table indicates the parameters you can specify in a CTIBHIxx
parmlib member.

Parameters Allowed on CTICEAnn?

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE Yes

OPTIONS Yes

MOD No

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

The IBM supplied CTIBHI00 parmlib member in SYS1.SAMPLIB can be used as a
starting point for defining BHI CTRACE options. The contents of CTIBHI00 are:

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, OFF or nnnnM One is required

nnnnK or nnnnM No

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID No

JOBNAME No

OPTIONS Yes

WTR Yes

TRACEOPTS
ON
BUFSIZE(4M)
OPTIONS(’MINIMUM’)

Component Trace

Chapter 12. Component trace 393

|
|
|
|

|
|
|

|||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
||

|
|
|

|||

||

||

||

||
|

|||

||
|

|||

||

||

||

||
|

OPTIONS parameter
The values for the OPTIONS parameter in the CTIBHIxx parmlib member and
reply for a TRACE command are:

ALL
Trace everything.

FLOW
Trace the flow of all requests through their processing.

INITTERM
Trace the initialization and termination process of the BHIHSRV address spaces
and tasks.

MINIMUM
Trace errors and unusual events.

Formatting a SYSBHI trace
Format the trace with an IPCS CTRACE COMP(SYSBHI) subcommand.

Output from a SYSBHI trace
Figure 112 shows an example of the formatted IPCS output produced from the
CTRACE COMP(SYSBHI) SHORT subcommand.

Figure 113 on page 395 shows an example of the formatted IPCS output produced
from the CTRACE COMP(SYSBHI) FULL subcommand.

COMPONENT TRACE SHORT FORMAT
COMP(SYSBHI)
**** 12/20/2012

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 InitMsg 00000001 19:20:28.105817 CTrace Initialized

SY1 TskStrtd 00000002 19:20:28.105858 Task has been started

SY1 BPXRslt 0000002B 19:20:28.106110 BPX Service Results

SY1 BPXRslt 0000002B 19:20:28.107162 BPX Service Results

SY1 RACFRslt 00000035 19:20:56.880588 Racf Results

SY1 LognRejt 00000036 19:20:56.880589 Logon Rejection

SY1 BPXRslt 0000002B 19:20:56.880626 BPX Service Results

Figure 112. Example: formatted IPCS output produced from CTRACE COMP(SYSBHI)
SHORT subcommand

Component Trace

394 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|

COMPONENT TRACE FULL FORMAT
COMP(SYSBHI)
**** 12/20/2012

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 InitMsg 00000001 19:20:28.105817 CTrace Initialized

ASID..... 0025 IssueMod. IOSHMSTR TCB...... 005D6048
HSAITIdx. 00000000
MiscEbcd. CTrace Initialization Complete

SY1 TskStrtd 00000002 19:20:28.105858 Task has been started

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000

SY1 BPXRslt 0000002B 19:20:28.106110 BPX Service Results

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000
BPXServ.. BPX1QDB - Querying DUB Status
RetValue. 00000008
RetCode.. 00000000
RsnCode.. 00000000

SY1 BPXRslt 0000002B 19:20:28.107162 BPX Service Results

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000
BPXServ.. BPX1ENV - Reg USS Shutdown Exit
RetValue. 00000000
RetCode.. 00000000
RsnCode.. 00000000

SY1 RACFRslt 00000035 19:20:56.880588 Racf Results

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000
MiscEbcd. Req=Verify Envir=Create
RetCode.. 00000008
RetCode.. 00000008
RsnCode.. 00000000

SY1 LognRejt 00000036 19:20:56.880589 Logon Rejection

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000

--- TOH Start ---
Acronym.. TOH Version.. 01 Size..... 00000038
Function Code: 000000C8 (Logon Request)
User Token
D4A8E396 92859540 40404040 40404040 | MyToken |
BuffSize. 00000000 Buff_Off. 0000
Return Code: 00000390 (SAF or RACF not available or error)
Reason Code: 05080800

RACROUTE Function : Req=Verify Envir=Create
RACROUTE Return Code: 08
RACF Return Code : 08 RACF Reason Code: 00

--- TOH End ---
SY1 BPXRslt 0000002B 19:20:56.880626 BPX Service Results

ASID..... 0025 IssueMod. IOSHMSRT TCB...... 005D6048
HSAITIdx. 00000000
BPXServ.. BPX1SND - Reject Logon
RetValue. 00000038
RetCode.. 00000000
RsnCode.. 00000000
SockTokn. 23B00000

Figure 113. Example: formatted IPCS output produced from CTRACE COMP(SYSBHI) FULL
subcommand

Component Trace

Chapter 12. Component trace 395

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

SYSCEA component trace

The following summarizes information for requesting a SYSCEA component trace
for common event adapter component.

Information For SYSCEA:

Parmlib member CTICEAnn; default member: CTICEA00

Default tracing Yes; error; error events

Trace request OPTIONS parameter In CTICEAxx and REPLY for TRACE command

Buffer v Default: 2MB

v Range: 1MB - 2GB

v Size set by: CTICEAnn parmlib member or REPLY
to TRACE CT command

v Change size after IPL: Yes, when restarting a trace
after stopping it

v Location: common event adapter trace data space.

Trace records location Address-space buffer; common event adapter trace
data space; trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSCEA)

Trace format OPTIONS parameter Yes

Requesting a SYSCEA trace
Specify options for requesting a SYSCEA component trace in a CTICEAxx parmlib
member or on the reply for a TRACE CT command. Changing SYSCEA trace
options after CEA has started requires stopping and restarting the trace.

CTICEAnn parmlib member
The following table indicates the parameters you can specify in a CTICEAnn
parmlib member.

Parameters Allowed on CTICEAnn?

ON or OFF No

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

MOD No

SUB No

PRESET No

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

396 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|

|
|

|||

||

||

||

||

|

|
|

|
|

|

||
|

||

||

||
|

|

|
|
|

|
|
|

|||

||

||

||

||

||

||

||

||

Parameters Allowed on CTICEAnn?

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

Note: The buffer size can be changed after IPL. To become effective, the common
event adapter address space (CEA) must be restarted. Specify the new buffer size
in the BUFSIZE parameter in the CTICEAnn member being used.

The IBM supplied CTICEA00 parmlib member initializes error tracing as soon as
the common event adapter address space starts. The contents of CTICEA00 are:

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, OFF or nnnnM One is required

nnnnK or nnnnM No

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter in the CTICEAxx parmlib member and
reply for a TRACE command are:

ALL
Trace everything.

CNTLFLOW
Trace CNTLFLOW events.

EVNTFLOW
Trace EVNTFLOW events.

TRACEOPTS
ON
BUFSIZE(2M)
OPTIONS(’ERROR’)

Component Trace

Chapter 12. Component trace 397

||

||

||

||
|

|
|
|

|
|
||

|
|
|

|||

||

||

||

||
|

|||

||
|

|||

||

||

||

||
|

|
|
|

|
|

|
|

|
|

JOBSFLOW
Trace JOBSFLOW events.

PDWBFLOW
Trace PDWBFLOW events.

ERROR
Trace error events.

Formatting a SYSCEA trace
Format the trace with an IPCS CTRACE COMP(SYSCEA) subcommand.

Output from a SYSCEA trace
Figure 114 shows an example of the formatted IPCS output produced from the
CTRACE COMP(SYSCEA) FULL subcommand.

COMPONENT TRACE FULL FORMAT
COMP(SYSCEA)
**** 06/09/2008

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 ALL 05030001 11:37:11.181208 CEA CTRACE DEBUG INFO

FFF0003E 7F47A000 00000000 00000000 | .0.."........... |
00000000 00000000 00000000 00028000 | |
00000000 00000000 7F74ACA0 01000000 |"....... |
00000000 00000000 00000000 0000 | |

SY1 CNTLFLOW 04010001 11:37:11.181208 CEAS SERVER

00160000 C3C5C140 40404040 008E2E88 |CEA ...h |
C3C5C1E2 6DC9D5C9 E3C9C1D3 C9E9C5C4 | CEAS_INITIALIZED |
C3C5C1E2 6DC9D5C9 E3C9C1D3 C9E9C5C4 | CEAS_INITIALIZED |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 | |

SY1 PDWBFLOW 04400001 11:38:01.616152 ICIN--COMPONENT ID TABLE LOAD

00160000 C3C5C140 40404040 008E2E88 |CEA ...h |
00000001 00000000 | |

SY1 CNTLFLOW 04010001 11:38:01.616156 CEAS SERVER

00160000 C3C5C140 40404040 008E2E88 |CEA ...h |
E4E2E26D C9E26DE4 D7404040 40404040 | USS_IS_UP |
00000000 00000000 00000133 00000000 | |
00000000 00000000 00000000 | |

SY1 PDWBFLOW 044F0001 11:45:26.522624 PDWB--DONE WITH GETINCIDENT

00160000 D4C5C7C1 F3404040 008FF1D8 |MEGA3 ..1Q |
00000000 00000000 00000000 00000000 | |

Figure 114. Example: formatted IPCS output produced from CTRACE COMP(SYSCEA) FULL
subcommand

Component Trace

398 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|
|

|
|

|

|

|

|
|
||

SYSDLF component trace

The following summarizes information for requesting a SYSDLF component trace
for the data lookaside facility (DLF).

Information For SYSDLF:

Parmlib member None

Default tracing Yes; always on when DLF is running

Trace request OPTIONS parameter None

Buffer v Default: N/A

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: Data space. In the REPLY for the DUMP
command, specify DSPNAME=('DLF'.CCOFGSDO)

Trace records location Address-space buffer, data-space buffer

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSDLF)

Trace format OPTIONS parameter None

Requesting a SYSDLF trace
The trace runs whenever DLF is in control. No actions are needed to request it.

Formatting a SYSDLF trace
Format the trace with an IPCS CTRACE COMP(SYSDLF) subcommand. The
subcommand has no OPTIONS values.

Output from a SYSDLF trace
Figure 115 on page 400 is an example of DLF component trace records formatted
with a CTRACE COMP(SYSDLF) FULL subcommand. It shows formatted
exception records from the trace buffers.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 399

|
|

|

|
|

|||

||

||

||

||

|

|

|

|
|

||

||

||

||
|

|

|

|

|
|

|

|
|
|
|

The fields in the report are:

COFRCVRY
The name or identifier of the trace record.

00000000
The identifier in hexadecimal.

15:47:40.397545
The time stamp indicating when the record was placed in the trace table.

HASID... 000E
The home address space identifier.

SASID... 000E
The secondary address space identifier.

CPUID... FF170067 30900000
The identifier of the processor that placed the record in the trace table.

CALLER
The address of the routine that issued a DLF service request.

MODNAME COFMCON2
The name of the module that was running.

ABEND... 840C1000
The abend that occurred and caused DLF to enter recovery.

REASON.. 00000001
The reason code associated with the abend.

EPTABLE. CON2 EST2
Information used for diagnosis by IBM.

RETCODE. 0000002C
The return code that was issued by the module that is exiting.

RSNCODE. 0000C200
The reason code that was issued by the module that is exiting.

FTPRTS.. C0000000
Information used for diagnosis by IBM.

DATA.... 00000000
Information used for diagnosis by IBM.

DLF COMPONENT TRACE FULL FORMAT

COFRCVRY 00000000 15:47:40.397545 DLF RECOVERY ENTRY
HASID... 000E SASID... 000E CPUID... FF170067 30900000
MODNAME. COFMCON2 ABEND... 840C1000 REASON.. 00000001
EPTABLE. CON2 EST2

COFRCVRY 00000001 15:47:40.397625 DLF RECOVERY EXIT
HASID... 000E SASID... 000E CPUID... FF170067 30900000
MODNAME. COFMCON2 ABEND... 840C1000 REASON.. 00000001
RETCODE. 0000002C RSNCODE. 0000C200 FTPRTS.. C0000000 DATA.... 00000000

Figure 115. CTRACE COMP(SYSDLF) FULL subcommand output

Component Trace

400 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

SYSDSOM component trace

The following summarizes information for requesting a SYSDSOM component
trace for distributed SOMobjects (DSOM).

Information For SYSDSOM:

Parmlib member None

Default tracing No

Trace request OPTIONS parameter In REPLY for TRACE command

Buffer v Default: N/A

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: Address space

Trace records location Address-space buffer

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSDSOM)

Trace format OPTIONS parameter Yes

Requesting a SYSDSOM trace
Request the trace by specifying any non-zero value on the SOMDTRACELEVEL
DSOM environment variable.

Formatting a SYSDSOM trace
Format the trace with an IPCS CTRACE COMP(SYSDSOM) subcommand. The
subcommand has the following OPTIONS values:

SKIPID
Omits the jobname, ASID, and thread identifier from the output.

LONGFORM
Tells the system to display detailed output. In the output, each trace function
might have multiple trace elements, each on a separate line. If you do not
specify LONGFORM, the default is SHORTFORM. Do not specify both
LONGFORM and SHORTFORM on the OPTIONS parameter.

SHORTFORM
Tells the system to display abbreviated output. In the output, each trace
function is on one line. SHORTFORM is the default value. Do not specify both
LONGFORM and SHORTFORM on the OPTIONS parameter.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 401

|
|

|

|
|

|||

||

||

||

||

|

|

|

|

||

||

||

||
|

|

|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|

Output from a SYSDSOM trace
The output shown in Figure 116 is an example of DSOM component trace records
formatted with a CTRACE COMP(SYSDSOM) FULL
OPTIONS((SKIPID,SHORTFORM)) subcommand. It shows formatted exception
records from the trace buffers.

Figure 117 is an example of DSOM component trace records formatted with a
CTRACE COMP(SYSDSOM) FULL subcommand. It shows formatted exception
records from the trace buffers.

The output shown in Figure 118 is an example of DSOM component trace records
formatted with a CTRACE COMP(SYSDSOM) FULL OPTIONS((SKIPID))
DSN('dsom.trace.dsn') subcommand. It shows formatted exception records from the
trace buffers.

DSOM COMPONENT TRACE FULL FORMAT

KESYS522 METRETRN 00000004 21:31:34.864277 Return from method
Entry to method: ImplRepository::somInit

Figure 116. Example: DSOM component trace records formatted with CTRACE
COMP(SYSDSOM) FULL OPTIONS((SKIPID,SHORTFORM))

COMPONENT TRACE FULL FORMAT
SYSNAME(KESYS522)
COMP(SYSDSOM)
**** 09/29/1995
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
KESYS522 GETBUFF 00000001 21:31:30.198289 Get new trace buffer

JOBNAME. KREPROC ASID.... 0029 THREADID 04233100 00000000
Buffer address: 7F672508

KESYS522 METDEBUG 00000004 21:31:39.410681 Method debug
JOBNAME. KREPROC ASID.... 0029 THREADID 04233100 00000000
Entry to method: SOMOA::somInit

KESYS522 METRETRN 00000005 21:31:40.000019 Return from method
JOBNAME. KREPROC ASID.... 0029 THREADID 04233100 00000000
Exiting method: SOMOA::somInit, RC(hex)=00000000, RSN=00000000

Figure 117. Example: DSOM component trace records formatted with CTRACE
COMP(SYSDSOM) FULL

COMPONENT TRACE FULL FORMAT
SYSNAME(KESYS522)
COMP(SYSDSOM)
OPTIONS((SKIPID))
**** 09/29/1995
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
KESYS522 GETBUFF 00000001 21:31:30.198289 Get new trace buffer

Buffer address: 7F672508
KESYS522 METDEBUG 00000004 21:31:39.410681 Method debug

Entry to method: SOMOA::somInit
KESYS522 METRETRN 00000005 21:31:40.000019 Return from method

Exiting method: SOMOA::somInit, RC(hex)=00000000, RSN=00000000

Figure 118. Example: DSOM component trace records formatted with CTRACE
COMP(SYSDSOM) FULL OPTIONS((SKIPID)) DSN('dsom.trace.dsn')

Component Trace

402 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

The fields in the report are:

KESYS522
The name of the system.

METDEBUG
The name of the trace event.

00000004
The decimal identifier of the trace event.

21:31:39.410681
The time stamp indicating when the record was placed in the trace table.

ASID
The ASID of the job listed in the JOBNAME field.

JOBNAME. KREPROC
The job name.

THREADID 04233100 00000000
The POSIX thread identifier.

Entry to method
The entry to the somInit method in class SOMOA.

Exiting Method
The exit from the somInit method in class SOMOA.

SYSGRS component trace

The following summarizes information for requesting a SYSGRS component trace
for global resource serialization.

Information For SYSGRS:

Parmlib member CTnGRSxx; default member: CTIGRS00 specified in
GRSCNF00 member

Default tracing Yes, if global resource serialization ring is active;
CONTROL and MONITOR options

Default tracing Yes, if global resource serialization star is active;
CONTROL1, CONTROL2, SIGNAL0 and MONITOR
options

Trace request OPTIONS parameter In CTnGRSxx and REPLY for TRACE command

Buffer v Default: 16MB

v Range: 128KB - 2047MB (System rounds size up to
nearest 64KB boundary.)

v Size set by: CTnGRSxx member

v Change size after IPL: Yes, when restarting a trace
after stopping it

v Location: In the GRS address space above the bar.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 403

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|||

||
|

||
|

||
|
|

||

||

|
|

|

|
|

|

Information For SYSGRS:

Trace records location Address-space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS “SYSGRS component trace” on page 403

Trace format OPTIONS parameter FLOW, CONTROL, MONITOR, REQUEST, SIGNAL,
and RSA. See “OPTIONS parameter” on page 405 for
details on sub-options.

Requesting a SYSGRS trace
Specify options for requesting a SYSGRS component trace on a CTnGRSxx parmlib
member or on the reply for a TRACE CT command.

You can change options for SYSGRS tracing while the trace is running.

CTnGRSxx parmlib member
The following table indicates the parameters you can specify on a CTnGRSxx
parmlib member.

Parameters Allowed on CTnGRSxx?

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM-supplied GRSCNF00 parmlib member specifies CTIGRS00 as the default.

IBM-supplied CTIGRS00 parmlib member:
v Specifies that GRS tracing is begun at IPL
v The parmlib member contains:

TRACEOPTS OFF
This parameter turns off all SYSGRS tracing options except for the
minimum options (MINOPS).

v See the “Specify buffers” on page 351 section for information about the buffer
size default and possible sizes.

IBM recommends that you use the CTIGRS00 parmlib member, unless the IBM
Support Center requests different tracing for global resource serialization.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Component Trace

404 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

||

||

||

||

||
|
|
|

|

|
|

|

|
|
|

|||

||

||

||

||

||

||

||

||

||

||
|

|

|

|

|

|
|
|

|
|

|
|

|
|
|

Parameters Allowed on TRACE CT for trace?

ON, nnnnK, nnnnM, or OFF One is required. The buffer size can be
changed only when the trace is OFF or the

trace is ON.

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID No

JOBNAME No

OPTIONS Yes

WTR Yes

You can change options while a SYSGRS trace is running. However, to change the
buffer size, you have to stop the trace and restart it with the new buffer size.

OPTIONS parameter
The values for the OPTIONS parameter for the CTnGRSxx parmlib member and
reply for a TRACE command are listed below. The sub-options on the CONTROL,
REQUEST, MONITOR, SIGNAL and FLOW, allow you to refine the set of events
traced for the major option. When you select the major option, all events
pertaining to that option are traced. However, you can select one or more of the
sub-options instead of the major option and thus limit the trace to only those
events included in the sub-options specified. A major option, such as MONITOR,
and all of its sub-options (in this case MONITOR0, MONITOR1, and MONITOR2
through MONITORF) is referred to as an option group. In alphabetical order the
values for the OPTIONS parameter are:

CONTROL
Traces unusual events and events related to the establishment, modification, or
termination of the control structure needed for processing such as:
v Dynamic RNL changes
v Error events
v XCF services used when setting up for processing

When you specify CONTROL, all of the following sub-options are traced.

CONTROL0
Traces dynamic RNL changes only.

CONTROL1
Traces events related to the establishment of or termination of membership
in the global resource serialization group connection to the global resource
serialization coupling facility structures.

CONTROL2
Traces global resource serialization recovery processing only.

Component Trace

Chapter 12. Component trace 405

|||

||
|
|

||

||

||
|

|||

||
|

|||

||

||

||

||
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|

|

|
|

|
|
|
|

|
|

CONTROL3
Traces global resource serialization resource manager events for abnormal
task and ASID termination only.

CONTROL4-CONTROLE
Reserved for IBM use.

CONTROLF
Traces all other unusual events not included in sub-options CONTROL0
through CONTROL3.

FLOW
Traces the flow of control from one entry point to another.

FLOW0
Traces GRS Star system server processing only.

FLOW1
Traces GQSCAN processing only.

FLOW2
Traces cross-system communications processing only.

FLOW3
Traces command processing only.

FLOW4
Traces storage manager services only.

FLOW5
Traces coupling facility processing only.

FLOW6
Traces initialization processing only.

FLOW7
Traces contention monitor processing only.

FLOW8
Traces general ENQ/DEQ processing only.

FLOW9
Traces entry to GQSCAN/ISGQUERY only.

FLOWA
Traces GRS Latch Manager processing only.

FLOWB-FLOWD
Reserved for IBM use.

FLOWE
Activates extended tracing for the GRS Storage Manager. Do not turn on
this option without direction from IBM Service.

FLOWF
Reserved for IBM use.

Monitor
Traces events for selected global resource serialization invocations of
monitoring and communication services provided by other components.

MONITOR0
Traces use of XES services.

MONITOR1
Traces use of XCF services.

Component Trace

406 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

MONITOR2-MONITORF
Reserved for IBM use.

REQUEST
Traces events for global ENQ, DEQ, GQSCAN, and RESERVE macro requests,
and GRS command processing.

REQUEST0
Traces ENQ/RESERVE requests only.

REQUEST1
Traces DEQ requests only.

REQUEST2
Traces GQSCAN only.

REQUEST3
Traces IXLLOCK only.

REQUEST4
Traces command processing only.

REQUEST5
Traces lock structure (ISGLOCK) rebuild processing only.

REQUEST6-REQUESTF
Reserved for IBM use.

RSA
Traces events for RSA control information.

SIGNAL
Traces events for selected global resource serialization invocations of
cross-system coupling facility (XCF) signalling service processing.

SIGNAL0
Traces migration signals only.

SIGNAL1
Traces GQSCAN signals only.

SIGNAL2
Traces ENQ/DEQ signals, including RNL change signals only.

SIGNAL3
Traces contention monitor signals only.

SIGNAL4-SIGNALF
Reserved for IBM use.

Examples of requesting SYSGRS traces
v Example 1: CTnGRSxx member

The member requests CONTROL, MONITOR, and RSA options and doubles the
default buffer size.
TRACEOPTS

ON
OPTIONS(’CONTROL’,’MONITOR’,’RSA’)
BUFSIZE(32M)

v Example 2: TRACE command
The example requests a trace of CONTROL, MONITOR, and REQUEST trace
events.

Component Trace

Chapter 12. Component trace 407

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|
|

trace ct,on,comp=sysgrs
* 17 ITT006A ...
reply 17,options=(control,monitor,request),end

Formatting a SYSGRS trace
Format the trace with an IPCS CTRACE COMP(SYSGRS) subcommand. It is
possible to use the OPTIONS subcommand for COMP (SYSGRS) with values of
FLOW, CONTROL, REQUEST, MONITOR, SIGNAL, and RSA for filtering.

Output from a SYSGRS trace
Figure 119 is an example of SYSGRS component trace records formatted with the
CTRACE COMP(SYSGRS) SHORT subcommand.

Figure 120 on page 409 is an example of SYSGRS component trace records
formatted with the CTRACE COMP(SYSGRS) TALLY subcommand.

SYSGRS COMPONENT TRACE SHORT FORMAT

GRPXCNTL 00000030 13:05:59.858746 GROUP EXIT IN CONTROL
DISRUPT 0000000E 13:05:59.858780 RING DISRUPTION TRIGGERED
MAINRF1 0000000B 13:05:59.860196 MAIN RING FAILURE
CEXBCI1 0000000C 13:05:59.860324 CONTROL EXITED FROM ISGBCI
SETUS 00000035 13:06:00.031243 CALL TO XCF SETUS SERVICE
GRPXCNTL 00000030 13:06:00.141669 GROUP EXIT IN CONTROL
STAXIN 00000033 13:06:00.160559 STATUS EXIT IN CONTROL
.
.
.

Figure 119. Example: SYSGRS component trace records formatted with CTRACE
COMP(SYSGRS) SHORT

Component Trace

408 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|

|

|
|
|

|

|
|
|

|
|
|

SYSHZS component trace

The following summarizes information for requesting a SYSHZS component trace
for IBM Health Checker for z/OS.

Information For SYSHZS:

Parmlib member CTIHZS00

Default tracing Yes

Trace request OPTIONS parameter In CTIHZS00 and REPLY for TRACE command

Buffer v Default: 4MB

v Range: 16KB - 4MB (System rounds size up to
nearest 64KB boundary.)

v Size set by: CTIHZS00 member

v Change size after IPL: Yes, when restarting a trace

v Location: In the IBM Health Checker for z/OS
address space

Trace records location Address-space buffer

COMPONENT TRACE TALLY REPORT
COMP(SYSGRS)

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)

FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- --------------------------------
00000001 0 RSAIN1 RSA has no CMD area no QWB data
00000002 0 RSAIN2 RSA has QWB data but no CMD area
00000003 0 RSAIN3 RSA has CMD area but no QWB data
00000004 0 RSAIN4 RSA has CMD area and QWB data
00000005 0 RSAOUT1 RSA has no CMD area no QWB data
00000006 898 2,037,854 RSAOUT2 RSA has QWB data but no CMD area
00000007 0 RSAOUT3 RSA has CMD area but no QWB data
00000008 8 149,924,356 RSAOUT4 RSA has CMD area and QWB data
00000009 5 328,792,726 INVBBE1 ISGBBE - QMERGE
0000000A 0 INVBBE2 ISGBBE - not QMERGE
0000000B 4 490,847,959 MAINRF1 Main Ring Failure
0000000C 13 149,346,135 CEXBCI1 Control Exited from ISGBCI
0000000D 0 CLNQSCD Cleanup after Quiesced from ring
. . .
. . .
. . .

00000058 0 UEVENT8 Recovery during write
00000059 0 UEVENT9 Recovery during read
0000005A 0 UEVENTA Remote discarded message

Total trace entries: 1,120

Figure 120. Example: SYSGRS component trace records formatted with the CTRACE
COMP(SYSGRS) TALLY

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 409

|

|
|

|

|
|

|||

||

||

||

||

|
|

|

|

|
|

||

Information For SYSHZS:

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSHZS) - see “Output from a
SYSHZS trace” on page 412

Trace format OPTIONS parameter None

Requesting a SYSHZS trace
Specify options for requesting a SYSHZS component trace on a CTIHZS00 parmlib
member or on the reply for a TRACE CT command.

You can change options for SYSHZS tracing while the trace is running.

CTIHZS00 parmlib member
The following table indicates the parameters you can specify on a CTIHZS00
parmlib member.

Parameters Allowed on CTIHZS00

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM supplies the CTIHZS00 parmlib member, which specifies the IBM Health
Checker for z/OS tracing begun at IPL. The contents of CTIHZS00 are:
This parameter turns off all SYSHZS tracing options.

If additional SYSHZS tracing options are turned on, additional buffer space might
be required.

The default trace buffer size is 4MB.

IBM recommends that you use the CTIHZS00 parmlib member, unless the IBM
Support Center requests different tracing for IBM Health Checker for z/OS.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON, nnnnK, nnnnM, or OFF One is required

TRACEOPTS
OFF

Component Trace

410 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

||

||

||
|

||
|

|

|
|

|

|
|
|

|||

||

||

||

||

||

||

||

||

||

||
|

|
|
||

|
|

|

|
|

|
|
|

|||

||

Parameters Allowed on TRACE CT for trace?

COMP Required

SUB No

PARM No

Parameters Allowed on TRACE CT for writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID No

JOBNAME No

OPTIONS Yes

WTR Yes

You can change options while a SYSHZS trace is running. However, to change the
buffer size, you have to stop the trace and restart it with the new buffer size.

OPTIONS parameter
The values for the OPTIONS parameter for the CTnHZSxx parmlib member and
reply for a TRACE command are listed below:

CHECKS
Traces unusual events and events related to IBM Health Checker for z/OS
checks.

COMMANDS
Traces information about the F hzsproc command, the HZSPRMxx parmlib
member and the HZSCHECK macro.

STORAGE
Traces information about storage used by the IBM Health Checker for z/OS
address space.

LOGGER
Traces information about the IBM Health Checker for z/OS log stream.

MISC
Traces miscellaneous information.

ALL
Traces all events for IBM Health Checker for z/OS. ALL is the default.

Examples of requesting SYSHZS traces
v Example 1: CTIHZS00 member

The member requests ALL IBM Health Checker for z/OS component tracing:
TRACEOPTS

ON
OPTIONS(’ALL’)
BUFSIZE(4M)

v Example 2: TRACE command
The example requests a trace of ALL trace events.
trace ct,on,comp=syshzs
* 17 ITT006A ...
reply 17,options=(all),end

Component Trace

Chapter 12. Component trace 411

||

||

||

||
|

|||

||
|

|||

||

||

||

||
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

|

|

|
|
|

Formatting a SYSHZS trace
Format the trace with an IPCS CTRACE COMP(SYSHZS) FULL subcommand.

Output from a SYSHZS trace
Figure 121 is an example of SYSHZS component trace records formatted with the
CTRACE COMP(SYSHZS) FULL subcommand.

B7VB0038 CHECKS 00000001 21:23:37.960765

ASID..0028 ModID..0201 TCB..004E3B58 Stack..7F11A000
Event..Candidat Function..N/A
Owner..IBMRSM
Name...RSM_MEMLIMIT
PQEAddr..7FFD4000 Result..00000000 Diag..00000000 00000000

B7VB0038 STORAGE 00000003 21:23:37.960793 GET/FREE

ASID..0028 ModID..0105 TCB..004E3B58 Stack..7F11A000
Oper..Get Type..PQE CModID..0201 Area@..7FFD5000

IPCS OUTPUT STREAM ----------------------------------- FOUND: LINE 5367 COL 12
Command ===> SCROLL ===> CSR
B7VB0038 STORAGE 00000003 21:24:09.757964 GET/FREE

ASID..0028 ModID..0105 TCB..004E3B58 Stack..7EEDA000
Oper..Get Type..CMDI CModID..0116 Area@..7FFE0000

B7VB0038 COMMANDS 00000002 21:24:09.757966

ASID..0028 ModID..0116 TCB..004E3B58 Stack..7EEDA000
Command..Display
Keywords..00000100 00000010 00000000 00000000
Owner..................
Name...................................
PolStmt..N/A

B7VB0038 STORAGE 00000003 21:24:09.762583 GET/FREE

ASID..0028 ModID..0105 TCB..004E38C8 Stack..7F13E000
Oper..Free Type..CMDI CModID..0703 Area@..7FFE0000

B7VB0038 STORAGE 00000003 21:28:25.209146 GET/FREE

ASID..0028 ModID..0105 TCB..004E3B58 Stack..7EEDA000
Oper..Get Type..CMDI CModID..0116 Area@..7FFE0000

B7VB0038 COMMANDS 00000002 21:28:25.209148

ASID..0028 ModID..0116 TCB..004E3B58 Stack..7EEDA000
Command..Display
Keywords..00040100 00000000 00000000 00000000
Owner..................
Name...................................
PolStmt..N/A

B7VB0038 MISC 00000004 21:28:41.204631

ASID..0028 ModID..0304 TCB..004E38C8 Stack..7F13E000
+0000 D9C5C3E5 C8E9E2E3 D2C4C9E2 840E0000 | RECVHZSTKDISd... |
+0010 00000028

Figure 121. Example: SYSHZS component trace records formatted with the CTRACE
COMP(SYSHZS) FULL

Component Trace

412 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

|

|
|
||

SYSIEFAL component trace

The following summarizes information for requesting a SYSIEFAL component trace
for Allocation.

Information For SYSIEFAL:

Parmlib member CTIIEFxx; default member: CTIIEFAL

Default tracing Yes; FLOW0, FLOW1, FLOW6, FLOWF, DATA,
CONTROL0, CONTROL1, CONTROL6, CONTROLF,
SERIAL1, and SERIALF options

Trace request OPTIONS parameter In CTIIEFxx or REPLY for TRACE command

Buffer v Default: 8M

v Range: 256KB - 64MB

v Size set by: CTIIEFxx member

v Change size after IPL: Yes

v Location: In the component address space

Trace records location Address-space buffer

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSIEFAL)

Trace format OPTIONS parameter Yes; FLOW, CONTROL, SERIAL, DATA, MISC, and
ERROR

Requesting a SYSIEFAL trace
Specify options for requesting a SYSIEFAL component trace on a CTIIEFxx parmlib
member or on the reply for a TRACE CT command.

You can change options for SYSIEFAL tracing while the trace is running.

CTIIEFxx parmlib member
The following table indicates the parameters you can specify on a CTIIEFxx
parmlib member.

Parameters Allowed on CTIIEFxx?

ON or OFF Yes

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 413

|
|

|

|
|

|||

||

||
|
|

|
|

Parameters Allowed on CTIIEFxx?

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM supplies the CTIIEFAL parmlib member, which specifies the Allocation tracing
begun at IPL. The contents of CTIIEFAL are:

TRACEOPTS
ON

OPTIONS(
’FLOW0’
,’FLOW1’
,’FLOW6’
,’FLOWF’
,’SERIAL1’
,’SERIALF’
,’DATA’
,’CONTROL0’
,’CONTROL1’
,’CONTROL6’
,’CONTROLF’
)

BUFSIZE(8M)

If additional SYSIEFAL tracing options are turned on, additional buffer space may
be required.

The default trace buffer size is 8M.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON, nnnnK, nnnnM, or OFF One is required

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

You can change options while a SYSIEFAL trace is running. However, to change
the buffer size immediately, you have to stop the trace and restart it with the new

Component Trace

414 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

|

buffer size. If the trace is not stopped and restarted, the buffer size will be changed
when the current set of buffers has filled up and a new set is acquired.

OPTIONS parameter
The values for the OPTIONS parameter for the CTIIEFxx parmlib member and
reply for a TRACE command are listed. The suboptions on the CONTROL, DATA,
FLOW, and SERIAL, allow you to refine the set of events traced for the major
option. When you select the major option, all events pertaining to that option are
traced. However, you can select one or more of the suboptions instead of the major
option and thus limit the trace to only those events included in the suboptions
specified. A major option, such as DATA, and all of its suboptions (in this case
DATA0, DATA1, and so forth) is referred to as an option group. In alphabetical
order the values for the OPTIONS parameter are:

CONTROL
Traces the control within a module.

CONTROL0
Traces common allocation processing only.

CONTROL1
Traces allocation services 1 processing only.

CONTROL2
Traces unallocation processing only.

CONTROL3
Traces volume mount and verify processing only.

CONTROL4
Traces assign/unassign processing only.

CONTROL5
Traces allocation services 2 processing only.

CONTROL6
Traces allocation device management processing only.

CONTROL7
Traces Dynamic Allocation processing only.

CONTROL8
Reserved for IBM use.

CONTROL9
Traces JFCB Houskeeping processing only.

CONTROLA
Traces TCTIOT management processing only.

CONTROLB-CONTROLE
Reserved for IBM use.

CONTROLF
Traces unexpected or unusual control within a module.

DATA
Traces when data is processed or changed.

DATA0
Traces when an ATSP device type array is being processed only.

DATA1
Traces when an ATSP device array is being processed only.

Component Trace

Chapter 12. Component trace 415

|
|

DATA2
Traces when an IGDE is going through XCF messaging only.

DATA3
Traces when an IGDE goes through a state change only.

DATA4
Traces UCB changes only.

DATA5
Traces ENQ changes for DDR SWAP processing only.

DATA6
Traces device management data only.

DATA7
Traces Dynamic Allocation processing only.

DATA8
Traces when an allocation occurs only.

DATA9
Traces JFCB Housekeeping data only.

DATAA
Traces TCTIOT management data only.

DATAB-DATAE
Reserved for IBM use.

DATAF
Traces when data is unexpected or unusual.

FLOW
Traces the flow of control from one entry point to another.

FLOW0
Traces common allocation processing only.

FLOW1
Traces allocation services 1 processing only.

FLOW2
Traces unallocation processing only.

FLOW3
Traces volume mount and verify processing only.

FLOW4
Traces assign/unassign processing only.

FLOW5
Traces allocation services 2 processing only.

FLOW6
Traces device management data only.

FLOW7
Traces Dynamic Allocation processing only.

FLOW8
Reserved for IBM use.

FLOW9
Traces JFCB Housekeeping processing only.

Component Trace

416 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

FLOWA
Traces TCTIOT management processing only.

FLOWB-FLOWE
Reserved for IBM use.

FLOWF
Traces unexpected or unusual flow from one entry point to another.

SERIAL
Traces serialization events.

SERIAL0
Traces locking (SETLOCK) serialization events only.

SERIAL1
Traces ENQ/DEQ serialization events only.

SERIAL2
Traces latch manager serialization events only.

SERIAL3
Traces compare and swap serialization events only.

SERIAL4
Traces SYSDSN ENQ/DEQ serialization events only.

SERIAL5–SERIALE
Reserved for IBM use.

SERIALF
Traces unexpected or unusual serialization events.

Examples of requesting SYSIEFAL traces
v Example 1: CTIIEFxx member

The member requests FLOW and DATA options and requests a buffer size of 8
megabytes.
TRACEOPTS

ON
OPTIONS(’FLOW’,’DATA’)
BUFSIZE(8M)

v Example 2: TRACE command
The example requests a trace of DATA1 and CONTROL1 trace events.
trace ct,on,comp=sysiefal
* 17 ITT006A ...
reply 17,options=(data1,control1),end

Formatting a SYSIEFAL trace
Format the trace with an IPCS CTRACE COMP(SYSIEFAL) subcommand. You can
filter trace records for COMP (SYSIEFAL) by using the OPTIONS subcommand.
Specify one or more of the following values on the OPTIONS subcommand:
v FLOW
v DATA
v CONTROL
v SERIAL
v ERROR
v MISC

Events in the ERROR and MISC trace groups are always recorded, and are always
displayed regardless of what filters are requested.

Component Trace

Chapter 12. Component trace 417

|
|

|
|
|
|
|
|
|
|
|

|
|

Output from a SYSIEFAL trace
Figure 122is an example of SYSIEFAL component trace records formatted with the
CTRACE COMP(SYSIEFAL) SHORT subcommand.

Figure 123 is an example of SYSIEFAL component trace records formatted with the
CTRACE COMP(SYSIEFAL) FULL subcommand.

COMPONENT TRACE SHORT FORMAT
COMP(SYSIEFAL)
**** 09/13/2001

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
N67 FLOW0 00000100 15:40:34.104633 Common Allocation Flow
N67 CONTROL0 00000200 15:40:34.104639 Common Allocation Control
N67 CONTROL0 00000200 15:40:34.104693 Common Allocation Control
N67 CONTROL0 00000200 15:40:34.104852 Common Allocation Control
N67 FLOW0 00000100 15:40:34.104859 Common Allocation Flow
N67 FLOW0 00000100 15:40:34.106631 Common Allocation Flow
N67 FLOW0 00000100 15:40:34.125582 Common Allocation Flow
.
.
.

Figure 122. Example: SYSIEFAL component trace records formatted with CTRACE
COMP(SYSIEFAL) SHORT subcommand

COMPONENT TRACE FULL FORMAT
COMP(SYSIEFAL)
**** 09/13/2001

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
N67 FLOW0 00000100 15:40:47.306228 Common Allocation Flow

ASID..007A TCB..008E1980 MODNAME..IEFAB492 JOBNAME..T015067

EBCDIC Data...
ENTR

N67 FLOW0 00000100 15:40:47.306231 Common Allocation Flow

ASID..007A TCB..008E1980 MODNAME..IEFAB492 JOBNAME..T015067

EBCDIC Data...
EXIT
Hex Data...
00000000 | |

.

.

.

Figure 123. Example: SYSIEFAL component trace records formatted with CTRACE
COMP(SYSIEFAL) FULL subcommand

Component Trace

418 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SYSIOS component trace

IOS component trace is described by the following attributes:
v Trace buffers reside in common ESQA Subpool 248. Size is controlled by the

TRACE CT operator command. As the buffers become full they are copied to a
private IOS data space. For information on specifying an IOS data space size, see
“OPTIONS parameter” on page 421.

v Minimal and unexpected event tracing is activated during IOS NIP processing.
v Component trace buffers externalized through:

– DUMP or SLIP operator command when the IOS address space is requested
to be dumped.

– SVC dumps issued by IOS, dynamic device reconfiguration (DDR), or execute
channel program (EXCP) component recovery.

– MVS component trace (CTRACE) external writer
v Trace options revert to minimal event and exception tracing when the operator

turns the trace off.

The following summarizes information for requesting a SYSIOS component trace
for IOS:

Information For SYSIOS:

Parmlib member CTnIOSxx specified in the IECIOSxx member through
the CTRACE(CTnIOSxx) statement. Default member:
None

Default tracing Yes, activated during IOS NIP processing.

Trace request OPTIONS parameter In CTnIOSxx or REPLY for TRACE command

Buffer v Default: 324KB

v Range: 324KB - 1.5M

v Size set by: CTnIOSxx member or REPLY for
TRACE command

v Change size after IPL: Yes, when component trace
(CTRACE) is active

v Location: Common ESQA subpool 248 and SYSIOS
private IOS data space.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 419

Information For SYSIOS:

Trace records location Common ESQA subpool 248 and SYSIOS private IOS
data space and trace data set.

By DUMP or SLIP command when the IOS address
space is requested to be dumped. In the REPLY for
the DUMP command, specify the IOS address space
to be dumped.

By SLIP command.

By the component during SVC dumps issued by IOS,
DDR, or EXCP component recovery.

Trace formatting by IPCS CTRACE COMP(SYSIOS)

Trace format OPTIONS parameter No

The areas of IOS traced as part of minimal and unexpected event tracing include:
v Dynamic Configuration Changes
v Parallel Access Volume (PAV) Processing
v Dynamic Channel Path Management (DCM) Processing
v Unconditional Reserve (U/R) Recovery Processing
v Channel Subsystem Call (CHSC) Processing
v Channel Report Word (CRW) Processing
v Missing Interrupt Handler (MIH) Recovery Processing
v Control Unit Initiated Reconfiguration (C.U.I.R.) Request Processing
v Dynamic Pathing Support (DPS) Validation
v Dynamic Device Reconfiguration (DDR) Processing
v Self-Description Processing
v PCIE Initialization and Exceptional Conditions Processing

Note: Additional areas are traced when OPTIONS are set for IOS component trace.
See “OPTIONS parameter” on page 421.

Requesting a SYSIOS trace
No actions are required to request a SYSIOS trace. Minimal and unexpected event
tracing is activated during IOS NIP processing and is always active. In addition to
this tracing, the user can request a SYSIOS trace using specific options by doing
the following:
v Using a CTnIOSxx SYS1.PARMLIB member during NIP processing by specifying

the CTRACE(CTnIOSxx) statement in the IECIOSxx SYS1.PARMLIB member.
v Using a CTnIOSxx SYS1.PARMLIB member after NIP by issuing the TRACE

system command.
v Using the TRACE system command and specifying the options in response to

the prompts that CTRACE provides.

CTnIOSxx parmlib member
The following table indicates the parameters you can specify in a CTnIOSxx
parmlib member.

Parameters Allowed on CTnIOSxx?

ON or OFF One is required

Component Trace

420 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

Parameters Allowed on CTnIOSxx?

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

If additional SYSIOS tracing options are turned on, additional buffer space might
be required.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON or OFF One is required

nnnnK, nnnnM Yes

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

The WTR and WTRSTART parameters can be used in a parmlib member specified
on the TRACE CT command. The parameters cannot be specified in a parmlib
member that is read at IPL because the external writer is not available when the
IOS component is defined.

OPTIONS parameter
The values for the OPTIONS parameter for the CTnIOSxx parmlib member and
reply for a TRACE command are listed below.

DCM
Traces events relating to Dynamic Channel Path Management.

Component Trace

Chapter 12. Component trace 421

Note: When DCM is active and this option is set, large amounts of trace data
will be recorded. Users may wish to consider using an external writer when
this option is set.

Traces the results of the cancel subchannel (XSCH) instruction.

EXTEND
Traces all functions that are attached in the IOS address space.

Note: Some functions attached in the IOS address space are traced during
minimum or unexpected event tracing.

Traces the results of the cancel subchannel (XSCH) instruction.

STORAGE
Traces events related to IOS or EXCP storage management. When the
STORAGE option is specified, the NOFILTER option or ASID/JOBNAME
keywords must also be set.

CAPTURE
Traces the capturing and uncapturing of UCBs. When the CAPTURE option is
specified, the NOFILTER option or ASID/JOBNAME keywords must also be
set.

NOFILTER
Allows the STORAGE option to be set without requiring ASID or JOBNAME
filtering.

DS=nnnn
Allows the user to tailor the IOS Trace Data Space where nnnn is the data
space size in megabytes.

Note:

1. nnnn must be a valid decimal digit within the range of 1-1024.
2. This option can only be specified once at IPL time and cannot be modified

using the TRACE CT command.
3. The default size for the IOS Trace Data Space is 512M. This can require

additional auxiliary storage on systems with a small amount of available
auxiliary storage. Please refer to “Decide where to collect the trace records”
on page 355 for information about auxiliary storage for CTRACE data space
buffers. Since some options such as STORAGE and DCM will cause more
CTRACE entries to be recorded, the IOS Trace Data Set may fill up more
rapidly than if none of these options is specified. Users who do not have
enough auxiliary storage capacity to handle a full data space may choose to
use the DS=nnnn option to set up a smaller IOS Trace Data Space. Similarly,
users who do have enough auxiliary storage capacity to handle a full data
space may choose to use the DS=nnnn option to set up a larger IOS Trace
Data Space. Doing this will prevent potentially valuable debug information
from being lost due to wrapping. Note that the number of records
contained in a trace data set are highly variable and dependent upon trace
settings and system usage.

4. If the DS=nnnn option is specified more than once, the request is rejected
and the following message is issued:
IOS622I IOS COMPONENT TRACE OPTION xxxxxxxx IS NOT VALID -

THE TRACE DATA SPACE SIZE HAS ALREADY BEEN SET
FOR THIS IPL

5. If the size specified is not valid, then the request is rejected, the default IOS
Trace Data Space size is used, and the following message is issued:

Component Trace

422 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

IOS622I IOS COMPONENT TRACE OPTION xxxxxxxx IS NOT VALID -
THE REQUESTED SIZE FOR THE TRACE DATA SPACE IS
INCORRECT

HPAV
Traces events relating to HyperPAV bind and unbind activity. This option may
cause large amounts of trace data to be recorded. It should be utilized as a
debug tool when needed and not enabled for normal operations.

PCIE
Traces events related to PCIE activity.

Examples of Requesting SYSIOS traces
v Example 1: CTnIOSxx SYS1.PARMLIB member

This SYS1.PARMLIB member sets the STORAGE option using JOBNAME
filtering for JOB001 and sets the buffer size to 600K.
TRACEOPTS

ON
BUFSIZE(600K)
OPTIONS(STORAGE)
JOBNAME(JOB001)

Formatting a SYSIOS trace
IPCS CTRACE formatting services can be used to format the contents of the
CTRACE trace entries. Format the trace with the following IPCS subcommand:
IPCS CTRACE COMP(SYSIOS) SUMMARY|FULL|SHORT|TALLY

SUMMARY
Shows the trace entry header and the formatted data for each trace entry.

FULL Shows the trace entry header and the unformatted (hex) data for each trace
entry.

SHORT
Shows the trace entry header for each trace entry.

TALLY
Shows each trace entry and how many times they were traced.

The subcommand has no options.

CTRACE COMP(SYSIOS) subcommand output
The following is an example of SYSIOS component trace records formatted with
the CTRACE COMP(SYSIOS) SUMMARY option.

Example: SYSIOS component trace records formatted with
CTRACE COMP(SYSIOS) SUMMARY option
CTRACE COMP(SYSIOS) SUMMARY
**** 03/28/1996
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

S530 MIH 00080001 19:42:42.220726 MIH Recovery Halt/Clear Block

Trace Record Function: MIH
MIH condition detected: Start Pending

Record ID: IOSDMHCB.MHCBSHIB Length: 0034

+0000 00F168E8 289B0180 F00000F0 0027FFF0 | .1.Y....0..0...0 |

Component Trace

Chapter 12. Component trace 423

|
|

+0010 3868B8E8 FFFFFFFF 00000000 00804400 | ...Y............ |
+0020 3885DA88 00000000 00000000 | .e.h............ |
+0030 00000000 | |

Record ID: IOSDMHCB.MHCBUCB Length: 0080

+0000 00000940 20200000 01E13480 00000000 | |
+0010 00000000 00FCC8B4 00F16890 00000000 |H..1...... |
+0020 00040040 00FC3800 00FC3100 0001001F | |
+0030 28980027 F00080F0 3868B8E8 FFFFFFFF | .q..0..0...Y.... |
+0040 01000040 00000001 00000041 00FC3800 | |
+0050 0088FF84 01800800 00F16968 00F1F8F0 | .h.d.....1...180 |
+0060 80062024 00F168C0 00010100 F1F8F0D7 |1.{....180P |
+0070 C1D21000 00000000 00000000 | AK.............. |

Record ID: IOSDMHCB.MHCBTMJB Length: 0018

+0000 ACA29DF9 49B6E706 F0F0F0F0 F1F5F0F0 | .s.9..X.00001500 |
+0010 5CD4C1E2 E3C5D95C | *MASTER* |

Record ID: IOSDMHCB.MHCBADDL Length: 0008

+0000 BCBC2010 01000040 | |

S530 U/R 000C0001 19:42:52.885939 Unconditional Reserve Sense

Device: 0180 Channel Path: 38
U/R Sense issued by: Missing Interrupt Handler
U/R Sense completion code: 52

S530 U/R 000C0002 19:43:13.927140 Unconditional Reserve I/O

Device: 0180
Recovery I/O issued: Reset Allegiance
Return code from IOSRRRSV: 04

Record ID: IOSDRESV.RESS Length: 0044

+0000 D9C5E2E2 05000052 00800000 00000000 | RESS............ |
+0010 00000000 00000000 | |
+0020 00000000 00000000 | |
+0030 00000000 F0000000 80000500 00010760 |0..........- |
+0040 4000C000 | .{. |

S530 U/R 000C0002 17:40:50.336526 Unconditional Reserve I/O

Device: 0160 Channel Path: 65
Recovery I/O issued: Sense Path Group ID
Return code from IOSRRRSV: 00

Record ID: IOSDICCW.SNID Length: 000C

+0000 C0000111 13214381 AC9EB2D4 | {......a...M |
S530 U/R 000C0002 22:51:49.169701 Unconditional Reserve I/O

Device: 0180 Channel Path: 0B
Recovery I/O issued: Reset Allegiance
Return code from IOSRRRSV: 00

Record ID: IOSDICCW.RSTA Length: 0020

+0000 80000000 00000000 00000000 | |
+0010 00000000 00000000 | |

Component Trace

424 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

S530 U/R 000C0002 19:43:39.951626 Unconditional Reserve I/O

Device: 0180 Channel Path: 38
Recovery I/O issued: Unconditional Reserve with release
Return code from IOSRRRSV: 00

SYSJES component trace

The following summarizes information for requesting a SYSJES component trace
for the JES common coupling services component, also known as JES XCF.

Information For SYSJES:

Parmlib member CTnJESxx. Default members: CTIJES01, CTIJES02,
CTIJES03, CTIJES04

Default tracing Yes; detailed tracing for sublevel FLOW; minimal
tracing of unexpected events for sublevels MSGTRC,
USRXIT, XCFEVT

Trace request OPTIONS parameter None

Buffer v Default: N/A

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: In the component address space

Trace records location Address-space buffer, trace data set

Request of SVC dump By the component

Trace formatting by IPCS CTRACE COMP(SYSJES)

Trace format OPTIONS parameter Yes

Note: To get a complete dump for JES XCF, request also the JES and JES XCF
address spaces and data spaces, plus SDATA options RGN, SQA, and CSA.

SYSJES tracing is started during initialization. SYSJES contains 4 sublevel traces,
which run concurrently. Each sublevel must be started individually. The sublevels
are:
v MSGTRC, message tracing: MSGTRC records message data sent by the

IXZXIXSM service. The default tracing for this sublevel is minimal tracing of
unexpected events only. You can optionally start and stop detailed MSGTRC
tracing. Use the data from this sublevel in conjunction with USRXIT trace data
to get information about message data modified by installation exits IXZXIT01
or IXZXIT02.

v USRXIT, installation exit tracing: USRXIT records the exit parameter list
(SPELL) passed to and returned from installation exits IXZXIT01, IXZXIT02, and
IXZXIT03 processing. The default tracing for this sublevel is minimal tracing of
unexpected events only. You can optionally start and stop detailed USRXIT

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 425

tracing. Use the data from this sublevel in conjunction with MSGTRC trace data
to get information about message processing through installation exits IXZXIT01,
IXZXIT02, and IXZXIT03.

v FLOW, module footprint tracing: FLOW records messages and events as they
flow through the JES common coupling services component. By default, FLOW
is always active and produces detailed tracing.

Note: IBM recommends that this trace always remain active to record diagnostic
data such as errors, system state changes, and processing events.

v XCFEVT, system event (SYSEVENT) tracing: XCFEVT records SYSEVENT data
processed by the JES common coupling services component. By default, XCFEVT
always produces minimal tracing.

Tracing for SYSJES can run all 4 sublevels concurrently. USRXIT and MSGTRC
trace only error events by default; you can turn on detailed tracing for these two
sublevels.

Requesting a SYSJES trace
IBM recommends the following when requesting SYSJES TRACING:
v Start and stop the four sublevels for a system all at once in one parmlib member.

Request SYSJES component tracing in a CTnJESxx parmlib member which you
specify on a TRACE CT command.
IBM provides two parmlib members, IXZCTION and IXZCTIOF, in
SYS1.SAMPLIB as examples of how to start and stop SYSJES sublevels. Copy the
members into parmlib, and rename them CTIJESON and CTIJESOF. The
CTIJESON parmlib member starts all the sublevels and connects them to the
external writer. The CTIJESOF parmlib member stops tracing in all sublevels and
disconnects them from the external writer.

v Use the external writer for gathering trace records, because SYSJES tracing
produces a large volume of data. Create source JCL for the external writer, using
the following guidelines:
– Code all TRCOUTnn DD statements with a SPACE parameter of at least 10

cylinders to accommodate the volume of SYSJES trace data.
– For traces larger than 10 cylinders, specify a unique volser for each

TRCOUTnn statements if you need to reduce I/O contention on one volume.
– The data set name defined in the TRCOUT01 DD statement must be unique

on each system.
– Use the IPCS COPYTRC command to merge records from multiple

TRCOUTnn DD statements into one data set. See z/OS MVS IPCS Commands
for information.

Example: Cataloged procedure for SYSJES

The following example shows an external writer procedure, IXZCTW, that sends SYSJES trace output to trace data
sets.

//CTWDASD PROC
//IEFPROC EXEC PGM=ITTTRCWR
//SYSPRINT DD SYSOUT=A
//TRCOUT01 DD DSN=SYS1.JESXCF1,VOL=SER=TRACE6,UNIT=DASD,
// SPACE=(CYL,10),DISP=(NEW,KEEP),DSORG=PS
//TRCOUT02 DD DSN=SYS1.JESXCF2,VOL=SER=TRACE7,UNIT=DASD,
// SPACE=(CYL,10),DISP=(NEW,KEEP),DSORG=PS

Component Trace

426 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v If you are tracing in a sysplex environment, the data set names on TRCOUTnn
DD statements must be unique throughout the sysplex. An ENQUEUE error
results if the data set names are not unique.

CTnJESxx parmlib member
The following table indicates the parameters you can specify on a CTnJESxx
parmlib member.

Parameters Allowed on CTnJESxx?

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE No

OPTIONS No

SUB Yes

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON or OFF One is required

nnnnK or nnnnM No

COMP Required

SUB Yes

PARM Yes

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID No

JOBNAME No

OPTIONS No

WTR Yes

Examples of requesting SYSJES traces
v Example 1: Start SYSJES tracing with the CTIJESON member

The following example shows the CTIJESON parmlib member supplied in
SYS1.SAMPLIB to start tracing for one system:
TRACEOPTS
WTRSTART(IXZCTW) WRAP
SUB(MSGTRC)

Component Trace

Chapter 12. Component trace 427

ON
WTR(IXZCTW)
SUB(USRXIT)
ON
WTR(IXZCTW)
SUB(FLOW)
ON
WTR(IXZCTW)
SUB(XCFEVT)
ON
WTR(IXZCTW)

v Example 2: Stop SYSJES tracing with the CTIJESOF member
The following example shows the CTIJESOF parmlib member supplied in
SYS1.SAMPLIB to stop tracing for one system:
TRACEOPTS
SUB(MSGTRC)
OFF
SUB(USRXIT)
OFF
SUB(FLOW)
OFF
SUB(XCFEVT)
OFF

Stop tracing with the following command:
TRACE CT,OFF,COMP=SYSJES,PARM=CTIJESOF

Then specify the following command to stop the external writer (assuming
IXZCTW is the membername of the source JCL for the external writer):
TRACE CT,WTRSTOP=IXZCTW

Requesting a SYSJES trace for problems during initialization
Use this procedure only when requested to by the IBM Support Center. The
procedure requests SYSJES tracing for JES XCF problems occurring during JES
subsystem initialization. The procedure consists of using the default parmlib
members CTIJES01, CTIJES02, and CTIJES04 to request tracing of these SYSJES
sublevels. Note that parmlib member CTIJES03 contains module footprint tracing
that is active, by default, on your system. Therefore, you do not need to take any
action to modify this trace.

Activating all four traces can negatively impact system performance because of the
heavy volume of trace data produced. For that reason, you should only use this
procedure when requested by IBM, and you should not leave this full tracing on.
The identical parmlib members are supplied with tracing set off, since you should
only run with full tracing at IBM's request. The default contents of parmlib
members CTIJES01, CTIJES02, and CTIJES04 is:
TRACEOPTS
OFF

The default contents of parmlib members CTIJES03 is:
TRACEOPTS
ON

IBM recommends that you keep this tracing sublevel on at all times.

1. Modify the CTIJES01, CTIJES02, and CTIJES04 parmlib members to turn tracing
on: In parmlib members CTIJES01, CTIJES02, and CTIJES04, alter the parmlib
members to return sublevel tracing on and connect the sublevel to the external
writer. The parmlib members are supplied with tracing off and no connection to
the writer.

Component Trace

428 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

When you initialize the JES subsystem with the modified parmlib members, full
tracing for JES XCF starts automatically.

Figure 124 is an example of the CTIJESxx parmlib member after having been
modified for gathering trace data during JES subsystem initialization at the
direction of the IBM Support Center. The member turns tracing on for the sublevel
and connects the sublevel to the external writer.

2. Create a CTIJESOF parmlib member to stop SYSJES tracing: Use the CTIJESOF
parmlib member to stop the full SYSJES tracing turned on during initialization and
to disconnect them from the external writer.

3. Stop SYSJES tracing after initialization tracing is complete: Enter a TRACE CT
operator command referencing the CTIJESOF parmlib member on the console with
master authority as follows:
TRACE CT,OFF,COMP=SYSJES,PARM=CTIJESOF

4. Remodify the CTIJES01, CTIJES02, and CTIJES04 parmlib members to return to
default Tracing: In parmlib members CTIJES01, CTIJES02, and CTIJES04, alter the
parmlib member to return sublevel tracing to off.

Figure 125 shows the CTIJES01, CTIJES02,and CTIJES04 parmlib members after
having been returned to their original contents, with tracing set off.

Formatting a SYSJES trace
Format the trace with an IPCS CTRACE COMP(SYSJES) subcommand. To format
SYSJES tracing, you must:
v Enter the CTRACE command for SYSJES once for each of the four sublevels you

wish to format. See “Format SYSJES sublevel information.”
v Specify SYSJES options on the OPTIONS parameter. See “OPTIONS parameter

for formatting a SYSJES trace” on page 430.
v Merge the output from the different sublevels requested. See “Merging SYSJES

information from sublevels” on page 430.

For SYSJES traces, use the IPCS MERGE subcommand to display traces that are not
likehead in timestamp order.

Format SYSJES sublevel information
You must enter the CTRACE command separately for each SYSJES sublevel you
wish to format. For example, to request formatting of SYSJES trace data for
sublevels MSGTRC and USRXIT, you would enter the following two commands:

TRACEOPTS
WTRSTART(IXZCTW)
ON
WTR(IXZCTW)

Figure 124. Example: Turning on tracing in a CTIJESxx member

TRACEOPTS
OFF

Figure 125. Example: Return to default in a CTIJESxx member

Component Trace

Chapter 12. Component trace 429

CTRACE COMP(SYSJES) SUB((USRXIT)) FULL
CTRACE COMP(SYSJES) SUB((MSGTRC)) FULL

These examples would yield tracing without any options requested.

OPTIONS parameter for formatting a SYSJES trace
IBM might request that you enter options for SYSJES tracing. You can specify
options for SYSJES tracing on the OPTIONS parameter of the CTRACE command.
The options include:
v Options valid for all sublevels:

– MSGTOKEN=msgtoken

– REQTOKEN=reqtoken

– MSGBUF=msgbuf

– CTCR=ctcr

v Options valid for the FLOW sublevel only:
– MODID=id

– MODFLOW
– MSGFLOW

v Options valid for the MSGTRC sublevel only:
– SEND
– RECEIVE

v Options valid for the USRXIT sublevel only:
– EXIT1
– EXIT3
– EXIT2

Merging SYSJES information from sublevels
Because SYSJES can run four sublevel traces simultaneously, you will need to
merge the data for a complete chronological picture of SYSJES trace data. For
example, to merge JESXCF trace data, from all four sublevels, enter the following
command:
MERGE
CTRACE COMP(SYSJES) SUB((USRXIT)) FULL
CTRACE COMP(SYSJES) SUB((MSGTRC)) FULL
CTRACE COMP(SYSJES) SUB((XCFEVT)) FULL
CTRACE COMP(SYSJES) SUB((FLOW)) FULL
MERGEEND

You can write an IPCS CLIST to issue the CTRACE command for the four
sublevels and merge the output automatically. See z/OS MVS IPCS Customization
for information on writing a CLIST.

Output from a SYSJES trace
“Example: merged output from four SYSJES sublevel traces with FULL parameter”
is an example of merged output from the four SYSJES sublevel traces with the
FULL parameter specified.

Example: merged output from four SYSJES sublevel traces with
FULL parameter

********** MERGED TRACES ***********
01. CTRACE comp(sysjes) sub((flow)) full
02. CTRACE comp(sysjes) sub((usrxit)) full

Component Trace

430 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

03. CTRACE comp(sysjes) sub((msgtrc)) full
04. CTRACE comp(sysjes) sub((xcfevt)) full

COMPONENT TRACE FULL FORMAT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((FLOW))

COMPONENT TRACE FULL FORMAT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((USRXIT))

COMPONENT TRACE FULL FORMAT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((MSGTRC))

COMPONENT TRACE FULL FORMAT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((XCFEVT))

**** 10/25/93
MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

04. XCFEVT 00000030 16:53:54.876999 XCF event message buffer
HOMEASID 0013 JOBNAME. JESXCF HOMETCB@ 007EA6F8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
MSGBUF@. 20000014 ALET.... 0101001B REQTOKEN 00000001 20000014
MSGTOKEN 00000001 20000014
+0000 E8C9E7C5 D5400100 00000001 00000001 | YIXEN |
+0010 E2E8E2E9 D1C5E2F3 E2E8E2C5 E5C5D5E3 | SYSZJES3SYSEVENT |
+0020 40404040 40404040 E2E8E2C5 E5C5D5E3 | SYSEVENT |
+0030 40404040 40404040 E2E8E2E9 D1C5E2F3 | SYSZJES3 |
+0040 E2E8E2C5 E5C5D5E3 40404040 40404040 | SYSEVENT |
+0050 E2E8E2C5 E5C5D5E3 40404040 40404040 | SYSEVENT |
+0060 10001000 80000108 01140000 00000000 | |
+0070 00000000 A849C5A7 AE08EC01 00000000 |y.Ex........ |
+0080 00000000 00000000 00000000 00000000 | |

.

.

.
**** 10/25/93

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

02. PREXIT3 00000007 16:53:55.303610 SPELL prior to Exit 3 processing
HOMEASID 0017 JOBNAME. JES3 HOMETCB@ 007FD2B8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
XPLBUF@. 03368000
+0000 E95BE7D7 D3400101 C9E7E9E7 C9E3F0F3 | Z$XPL ..IXZXIT03 |
+0010 40404040 40404040 40000000 80000000 | |
+0020 00000000 00000000 00000000 00000000 | |
+0030 00000054 00000038 E2E8E2E9 D1C5E2F3 |SYSZJES3 |
+0040 E2E8F140 40404040 40404040 40404040 | SY1 |
+0050 00000000 | |

02. POSTXIT3 00000008 16:53:55.306462 SPELL after Exit 3 processing
HOMEASID 0017 JOBNAME. JES3 HOMETCB@ 007FD2B8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
XPLBUF@. 03368000
+0000 E95BE7D7 D3400101 C9E7E9E7 C9E3F0F3 | Z$XPL ..IXZXIT03 |
+0010 40404040 40404040 40000000 80000000 | |
+0020 00000000 00000000 00000000 00000000 | |
+0030 00000054 00000038 E2E8E2E9 D1C5E2F3 |SYSZJES3 |

Component Trace

Chapter 12. Component trace 431

+0040 E2E8F140 40404040 40404040 40404040 | SY1 |
+0050 00000000 | |

**** 10/25/93
MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

03. INDATA 00000011 16:55:17.318441 input message data
HOMEASID 0017 JOBNAME. JES3 HOMETCB@ 007FD2B8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
MSGBUF@. 1FFFF814 ALET.... 0102001B REQTOKEN 00000001 1FFFF814
MSGTOKEN 00000001 1FFFF814
+0000 E8C9E7C5 D5400100 00000001 00000001 | YIXEN |
+0010 E2E8E2E9 D1C5E2F3 E2E8F240 40404040 | SYSZJES3SY2 |
+0020 40404040 40404040 E2E8E2D1 C5E24040 | SYSJES |
+0030 C3D6D5E2 C5D9E540 E2E8E2E9 D1C5E2F3 | CONSERV SYSZJES3 |
+0040 E2E8F140 40404040 40404040 40404040 | SY1 |
+0050 E2E8E2D1 C5E24040 C3D6D5E2 C5D9E540 | SYSJES CONSERV |
+0060 20001000 20000100 01148000 00000000 | |
+0070 00000000 A849C5F6 19827F03 00000000 |y.E6.b"..... |
+0080 00000000 007FD2B8 00FC1D00 00000000 |"K......... |
+0090 00000214 00000000 00000000 00000001 | |
+00A0 1FFFF814 00000000 00000000 00000000 | ..8............. |

.

.

.
02. EXIT1ERR 00000003 16:55:17.474658 SPELL error Exit 1 processing

HOMEASID 0017 JOBNAME. JES3 HOMETCB@ 007FD2B8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
XPLBUF@. 1FFFF414
MSGBUF@. 1FFFF814 ALET.... 0102001B REQTOKEN 00000001 1FFFF814
MSGTOKEN 00000001 1FFFF814
+0000 E95BE7D7 D3400100 C9E7E9E7 C9E3F0F1 | Z$XPL ..IXZXIT01 |
+0010 40404040 40404040 40000000 20000000 | |
+0020 00000000 00000000 00000000 00000000 | |
+0030 000001A0 00000038 E2E8E2E9 D1C5E2F3 |SYSZJES3 |
+0040 E2E8F240 40404040 40404040 40404040 | SY2 |
+0050 E2E8E2D1 C5E24040 C3D6D5E2 C5D9E540 | SYSJES CONSERV |
+0060 E2E8E2E9 D1C5E2F3 E2E8F140 40404040 | SYSZJES3SY1 |
+0070 40404040 40404040 E2E8E2D1 C5E24040 | SYSJES |
+0080 C3D6D5E2 C5D9E540 00000100 1FFFF4B4 | CONSERV4. |
+0090 00000000 00000000 0000E300 00000000 |T..... |
+00A0 E3C8C9E2 40C9E240 C1D540C1 E2E8D5C3 | THIS IS AN ASYNC |
+00B0 C8C1C3D2 40D4C5E2 E2C1C7C5 40404040 | HACK MESSAGE |
+00C0 40404040 40404040 40404040 40404040 | |
+00D0 40404040 40404040 40404040 40404040 | |
+00E0 40404040 40404040 40404040 40404040 | |
+00F0 40404040 40404040 40404040 40404040 | |
+0100 40404040 40404040 40404040 40404040 | |
+0110 40404040 40404040 40404040 40404040 | |
+0120 40404040 40404040 40404040 40404040 | |
+0130 40404040 40404040 40404040 40404040 | |
+0140 40404040 40404040 40404040 40404040 | |
+0150 40404040 40404040 40404040 40404040 | |
+0160 40404040 40404040 40404040 40404040 | |
+0170 40404040 40404040 40404040 40404040 | |
+0180 40404040 40404040 40404040 40404040 | |
+0190 40404040 40404040 40404040 40404040 | |

03. SEND 00000010 16:55:17.568558 message queued to be sent
HOMEASID 0013 JOBNAME. JESXCF HOMETCB@ 007EA6F8
CPUID... FF170945 30900000 CTCR@... 03062460 MEMBER.. SY1

SYSNAME. SY1
MSGBUF@. 1FFFF814 ALET.... 0102001B REQTOKEN 00000001 1FFFF814
MSGTOKEN 00000001 1FFFF814
+0000 E8C9E7C5 D5400100 00000001 00000001 | YIXEN |
+0010 E2E8E2E9 D1C5E2F3 E2E8F240 40404040 | SYSZJES3SY2 |
+0020 40404040 40404040 E2E8E2D1 C5E24040 | SYSJES |

Component Trace

432 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

+0030 C3D6D5E2 C5D9E540 E2E8E2E9 D1C5E2F3 | CONSERV SYSZJES3 |
+0040 E2E8F140 40404040 40404040 40404040 | SY1 |
+0050 E2E8E2D1 C5E24040 C3D6D5E2 C5D9E540 | SYSJES CONSERV |

.

.

.

Figure 126 on page 434 is an example of merged output from the four SYSJES
sublevel traces with the TALLY parameter specified. Use the TALLY report to look
at event identifiers in the trace output.

Component Trace

Chapter 12. Component trace 433

COMPONENT TRACE TALLY REPORT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((FLOW))

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)
FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- --------------------------------
00000020 29 6,902,004 MSGFLOW module flow for this message
00000021 114 1,755,686 MODFLOW module flow
0000002E 3 2,631,973 MSGERR module error flow
0000002F 7 27,207,632 MODERR module error flow
Total trace entries: 153

COMPONENT TRACE TALLY REPORT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((MSGTRC))

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)
FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- --------------------------------
00000010 13 17,076,718 SEND message queued to be sent
00000011 17 12,821,783 INDATA input message data
00000012 0 SENDBUF buffer sent by XCF
00000013 0 SENDQERR Sendq queueing error
00000014 0 SBUFERR Send error from XCF
00000018 13 17,061,037 RECEIVE msg dequeued from receive
00000019 10 30,944,882 OUTDATA output message data
0000001A 26 8,192,076 RECVBUF buffer received from XCF
0000001B 0 RBUFERR Receive error from XCF
0000001C 0 RECVQERR Receiveq queueing error
Total trace entries: 79

COMPONENT TRACE TALLY REPORT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((XCFEVT))

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)
FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- --------------------------------
00000030 27 35,794,857 XCFEVT XCF event message buffer
00000031 0 XCFERR XCF event message error
Total trace entries: 27

COMPONENT TRACE TALLY REPORT
SYSNAME(SY1)
COMP(SYSJES) SUBNAME((USRXIT))

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)
FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- --------------------------------
00000001 1 PREXIT1 SPELL prior to Exit 1 processing
00000002 0 POSTXIT1 SPELL after Exit 1 processing
00000003 1 EXIT1ERR SPELL error Exit 1 processing
00000004 1 PREXIT2 SPELL prior to Exit 2 processing
00000005 0 POSTXIT2 SPELL after Exit 2 processing
00000006 1 EXIT2ERR SPELL error Exit 2 processing
00000007 14 60,329,405 PREXIT3 SPELL prior to Exit 3 processing
00000008 14 60,374,425 POSTXIT3 SPELL after Exit 3 processing
00000009 0 EXIT3ERR SPELL error Exit 3 processing
Total trace entries: 32

Figure 126. Example: merged output from the four SYSJES sublevel traces with the TALLY
parameter

Component Trace

434 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SYSjes2 component trace

The following summarizes information for requesting a SYSjes2 component trace
for the JES2 subsystem. For ease of explanation here, this component trace is
referred to as SYSjes2 although you might need to replace jes2 with the name you
assigned to your JES2 subsystem (primary or secondary). For example, to obtain
trace information for JESA, a name you might have used to name your secondary
JES2 in a poly-JES environment, use SYSJESA as the component name.

Information For SYSjes2:

Parmlib member n/a

Default tracing Yes; full tracing for sublevels JQE and JOE

Trace request OPTIONS parameter None

Buffer v Default: N/A

v Range: N/A

v Size set by: JES2

v Change size after IPL: No

v Location: In the component address space

Trace records location Address-space buffer

Request of SVC dump By the component, or DUMP or SLIP

Trace formatting by IPCS CTRACE COMP(SYSjes2)

Trace format OPTIONS parameter Yes

SYSjes2 tracing is started automatically during initialization. SYSjes2 contains 2
sublevel traces, which run continuously and concurrently. The sublevels are:
v JQE service tracing: JQE records all job queue service calls (to include: $QADD,

$QPUT, $QREM, $QMOD, $QJIX, $GETJLOK, $QRBDCHK, $QBUSY,
$GETLOKW, $FREJLOK, and $FRELOKW).

v JOE service tracing: JOE records all job output element service calls (to include:
$#ADD, $#PUT, $#REM, $#MOD, $#RBDCHK, $#BUSY, $#GET, and $#CAN).

Requesting a SYSjes2 trace
You need not take any action to request a SYSjes2 trace. The trace is active
whenever your JES2 subsystem is in control.

Formatting SYSjes2 sublevel trace Information
You must enter the CTRACE command separately for each SYSJES sublevel you
wish to format. For example, to request formatting of SYSJES trace data for
sublevels JQE and JOE, you would enter the following two commands:
CTRACE COMP(SYSjes2) SUB((JQE)) FULL
CTRACE COMP(SYSjes2) SUB((JOE)) FULL

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 435

Merging SYSjes2 information from sublevels
Because SYSjes2 runs two sublevel traces simultaneously, you will need to merge
the data for a complete chronological picture of SYSjes2 trace data. To merge
SYSjes2 trace data, enter the following command string:
MERGE
CTRACE COMP(SYSjes2) SUB((JQE)) FULL
CTRACE COMP(SYSjes2) SUB((JOE)) FULL
MERGEEND

You can write an IPCS CLIST to issue the CTRACE command for both sublevels
and merge the output automatically. See z/OS MVS IPCS Customization for
information on writing a CLIST.

Output from a SYSjes2 trace
The output from the SYSjes2 trace contains a maximum of 500 trace entries
presented in a wrapping (or rolling) trace format. That is, once the trace table is
filled with 500 entries, the next entries (501, 502, 503,...) overwrite entries 1, 2, 3...
in a continuous wrapping manner.

Figure 127 is an example of merged output from both SYSjes2 sublevel traces with
the FULL parameter specified.

Figure 128 is an example of merged output from both SYSjes2 sublevel traces with
the SHORT parameter specified:

The following is an example of merged output from both SYSjes2 sublevel traces
with the FULL parameter specified. Use mapping macro, $ROTT (rolling trace
table), to map the fields presented in this trace.

********** MERGED TRACES ***********
01. CTRACE comp(sysjes2) sub((jqe)) full
02. CTRACE comp(sysjes2) sub((joe)) full

Figure 127. Example: merged output from both SYSjes2 sublevel traces with FULL parameter

***********************short format screen ********************

COMPONENT TRACE SHORT FORMAT
COMP(SYSjes2) SUBNAME((JQE))
**** 07/11/94

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

MVS1 JQE 00000200 14:33:35.162400 $QADD

MVS1 JQE 00000204 14:33:35.162404 $QJIX (ALLOC new number)

MVS1 JQE 00000200 14:33:36.174242 $QADD

--

Figure 128. Example: merged output from both SYSjes2 sublevel traces with SHORT
parameter

Component Trace

436 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The following is an example of merged output from both SYSjes2 sublevel traces
with the TALLY parameter specified:

SYSLLA component trace

********************full format screen ******************************

IPCS OUTPUT STREAM -- Line 0 Co
****************************** TOP OF DATA ***************************

COMPONENT TRACE FULL FORMAT
COMP(SYSjes2) SUBNAME((JQE))
**** 07/11/94

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

MVS1 JQE 00000200 14:33:35.162400 $QADD

03B06C20 00000000 00000064 FF200100 | ..%............. |
00000000 0000 | |

MVS1 JQE 00000204 14:33:35.162404 $QJIX (ALLOC new number

03B06C20 00000001 00000064 20200100 | ..%............. |
04000000 0000 | |

MVS1 JQE 00000200 14:33:36.174242 $QADD

--

**************************tally format screen *************************
COMPONENT TRACE TALLY REPORT
COMP(SYSjes2) SUBNAME((JQE))

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)

FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- -------- ------------ -------- ---------------------------
00000200 12 96,278,898 JQE $QADD
00000201 0 JQE $QPUT
00000202 0 JQE $QREM
00000203 30 36,473,953 JQE $QMOD
00000204 12 96,278,898 JQE $QJIX (ALLOC new number)
00000205 0 JQE $QJIX (SWAP job numbers)
00000206 5 273,117,249 JQE $GETJLOK
00000207 5 274,068,170 JQE $FREJLOK
.
.
.
Total trace entries: 89
****************************** END OF DATA ***************************

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 437

The following summarizes information for requesting a SYSLLA component trace
for library lookaside (LLA) of contents supervision.

Information For SYSLLA:

Parmlib member None

Default tracing Yes; always on when LLA is running

Trace request OPTIONS parameter None

Buffer v Default: N/A

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: In the component address space

Trace records location Address-space buffer

Request of SVC dump By the component

Trace formatting by IPCS CTRACE COMP(SYSLLA)

Trace format OPTIONS parameter None

Requesting a SYSLLA trace
The trace runs whenever LLA is in control. No actions are needed to request it.

Formatting a SYSLLA trace
Format the trace with an IPCS CTRACE COMP(SYSLLA) subcommand. The
subcommand has no OPTIONS values.

SYSLOGR component trace

Table 60 summarizes information for requesting a SYSLOGR component trace for
the system logger component. SYSLOGR tracing is started during initialization.

Table 60. Summary of SYSLOGR component trace request

Information For SYSLOGR:

Parmlib member CTnLOGxx

Default member: CTILOG00, is required and
provided as a component trace option in GRSCNFxx
parmlib member.

1. IXGCNFxx member CTRACE field specified at
IPL or SET IXGCNF command

2. SETLOGR CTRACE command

3. TRACE command.

Parmlib default tracing options CONNECT, LOGSTRM, DATASET, SERIAL, MISC,
LOCBUFF, RECOVERY

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

438 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

Table 60. Summary of SYSLOGR component trace request (continued)

Information For SYSLOGR:

Default tracing Yes; activated during System Logger (IXGLOGR)
address space initialization

Trace request OPTIONS parameter In CTnLOGxx and REPLY for TRACE command

Buffer v Parmlib default: 16MB

v Default: 2MB

v Range: 2MB - 2047MB

v Size set by: CTnLOGxx parmlib member or REPLY
for TRACE CT command.

v Change size after IPL: Yes

v Location: system logger trace data space

Trace records location Address-space buffer; system logger trace data space,
trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSLOGR)

Trace format OPTIONS parameter Yes

Obtaining a dump of system logger information
Use the following examples to obtain the appropriate diagnostic information for
system logger. The amount of information requested in the dumps may be very
large. You may need to set your MAXSPACE on the CHNGDUMP setting to 999
mb before obtaining the logger dumps.
CD SET,SDUMP,MAXSPACE=999M

For structure dumps, verify that the coupling facility has dump space defined by
issuing the following command:
D CF,CFNAME=xxxx

Note: There are several sample Logger dump parmlib members that can be used
as models for automating the procedures listed below. The samples parmlib
members are shipped in 'SYS1.SAMPLIB(IEADMCLx)'. Refer to the IEADMCLx
members for more information, or see Table 7 on page 20.
1. For all types of logstreams, always include the following:

a. The IXGLOGR (Logger) asid and the data spaces associated with the
IXGLOGR asid through the DSPNAME parm. These will be dumped using
the JOBNAME= parm.

b. The trace data space SYSLOGR0, will be included in the dump if
DSNAME=('IXGLOGR'.*) is specified in the reply for the dump command.

Note: If you are running OS/390® Release 2 or lower, Logger will not have
a SYSLOGR* data space for tracing, in which case the
DSPNAME=('IXGLOGR'.*) option can be omitted.
DUMP COMM=(dump system logger with component trace)
* rr IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
rr,JOBNAME=(IXGLOGR),CONT
ss,DSPNAME=(’IXGLOGR’.SYSLOGR*),CONT
tt,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,SUM,

TRT,CSA,GRSQ,XESDATA),END

2. When using CF list structure based log streams, include the following

Component Trace

Chapter 12. Component trace 439

a. The XCF asid and trace data spaces. These will be dumped using the
JOBNAME= parm and DSPNAME parm.

b. The XES STRUCTURE data. This is dumped using the STRLIST= parameter
and by specifying the structure name. structure_name is the affected
STRUCTURE name.

Note: Be sure to allocate adequate DUMPSPACE() as defined in your CF
definition in the CFRM policy. If you do not allocate adequate space, all or
part of the STRUCTURE will NOT be dumped.

c. In the case of “loss of data” or “block not found”, dumping the OFFLOAD
data sets using IDCAMS is a good idea.

DUMP COMM=(dump system logger with xes and structure data)
* rr IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
rr,JOBNAME=(IXGLOGR,XCFAS),CONT
ss,DSPNAME=(’XCFAS’.*,’IXGLOGR’.SYSLOGR*),CONT
tt,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,SUM,

TRT,CSA,GRSQ,XESDATA),CONT
uu,STRLIST=(STRNAME=structure_name,LOCKENTRIES,ACC=NOLIM,

(LISTNUM=ALL,ADJUNCT=DIRECTIO,ENTRYDATA=UNSERIALIZE)),END

3. When system logger dumps are needed on multiple systems in the sysplex,
include the REMOTE parameter.
DUMP COMM=(dumps for system logger around the sysplex)
* rr IEE094D SPECIFY OPERAND(S) FOR DUMP COMMAND
rr,JOBNAME=(IXGLOGR,XCFAS),CONT
ss,DSPNAME=(’XCFAS’.*,’IXGLOGR’.SYSLOGR*),CONT
tt,SDATA=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,SUM,

TRT,CSA,GRSQ,XESDATA),CONT
uu,STRLIST=(STRNAME=structure_name,LOCKENTRIES,ACC=NOLIM,

(LISTNUM=ALL,ADJUNCT=DIRECTIO,ENTRYDATA=UNSERIALIZE)),CONT
vv,REMOTE=(SYSLIST=*)’XCFAS’,’IXGLOGR’),DSPNAME,SDATA),END

4. Other diagnostic considerations
The CTILOG00 buffer size is 16MB. It is strongly recommended that this value
not be lowered. See the CTnLOGxx member, described in Table 60 on page 438.
Remember that much of the data that system logger uses is persistent across an
IPL. That means that if this data is corrupted and adversely affects system
logger, an IPL will not correct the problem. In the case of a persistent system
logger failure, you can FORCE the IXGLOGR address space. Prior to doing this
you should bring down all of the applications connected. Then issue the
FORCE command (FORCE IXGLOGR,ARM) and restart system logger using the
supplied procedure in SYS1.PROCLIB (IXGLOGRS). (S IXGLOGRS)
If FORCE IXGLOGR,ARM does not resolve the situation, an IPL is not likely to
either. This is the time to take a dump if one was not already taken by system
logger.

Note:

a. A CICS dump will not dump the IXGLOGR address space. Connect to a
new (non-corrupted) LOGSTREAM. This will result in a LOSS OF DATA for
some applications such as CICS, forcing them to INITIAL START. However,
this may be the only way to get the application restarted. Connecting to a
new logstream (of a different name) will allow the corrupted data to remain
in the structure for diagnostic review later.

b. In preparation for connecting to this new LOGSTREAM, you may want to
define an unused LOGSTREAM to each STRUCTURE during setup.

If running CICS, always run with the following SLIP:

Component Trace

440 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SLIP SET,COMP=1C5,REASON=804,
STRLIST=(STRNAME=strname1,LOCKE,ACC=NOLIM,
(LNUM=ALL,EDATA=SER,ADJ=CAP)),
JL=(XCFAS,IXGLOGR),DN=("XCFAS".*,"IXGLOGR".*),
SD=(COUPLE,ALLNUC,LPA,LSQA,PSA,RGN,SQA,TRT,CSA,GRSQ,

XESDATA,SUM),
SUMLIST=(13R?-7FFF,13R?+7FFF),END

Note: You might add a JOBNAME=DFH* to limit SLIP to CICS. A RSN804 is a
“block not found”, which is always bad for CICS but not necessarily so for
other applications. Setting this SLIP will cause system logger to dump on all
RSN804s in CICS.

5. Frequent stumbling blocks
a. OFFLOAD data sets must be VSAM SHAREOPTIONS(3,3) unless you are in

a MONOPLEX.
b. After OW33261, system logger recommends for performance reasons using

24K CI size for OFFLOAD data sets. Staging data sets must remain at 4K CI
size. Code your ACS routines appropriately.

c. Size of XES structures. “Bigger is not always better.” Follow exploiting
application recommendations.

d. Allow for OFFLOAD directory extents. Reference “Format Utility for
Couple Data Sets” in z/OS MVS Setting Up a Sysplex.

e. System logger uses HSM services to recall (ARCHRCAL) and to delete
(ARCHDEL) offload data sets. HSM contention or a wait for a WTOR such
as ARC0055A can hang all of the log streams that require the system logger
allocation task.

Requesting a SYSLOGR trace
Specify options for requesting a SYSLOGR component trace in a CTnLOGxx
parmlib member or on the reply for a TRACE CT command.

Also, refer to the following as alternatives for specifying the CTnLOGxx parmlib
member to be used:
v IXGCNFxx SYS1.PARMLIB member (see IXGCNFXX SYS1.PARMLIB member).
v SET IXGCNF=xx command.
v SETLOGR CTRACE command.

Specify options for requesting a SYSLOGR component trace in a CTnLOGxx
parmlib member or on the reply for a TRACE CT command.

You can change the options and the trace data space buffer size for SYSLOG trace
while the trace is running. However, if the SYSLOGR trace has not been connected
to an external writer and you are reducing the size of the trace data space buffer,
you must dump the contents of the buffer (see “Obtaining a dump of system
logger information” on page 439) before reducing the buffer size if this data is
important for debugging. Trace data in the trace data space is discarded when the
buffer size is reduced.

Note that if the trace is being turned off (either through a TRACE CT,OFF
command or a CTnLOGxx parmlib member) and if the SYSLOGR trace is not
connected to an external writer, the trace data must be dumped before turning the
trace off to avoid loss of data.

Component Trace

Chapter 12. Component trace 441

CTnLOGxx parmlib member
The following table indicates the parameters you can specify in a CTnLOGxx
parmlib member.

Parameters Allowed on CTnLOGxx?

ON or OFF Yes

ASID Yes

JOBNAME No

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM supplies the CTILOG00 parmlib member, which specifies the System Logger
tracing activated at initialization. The contents of CTILOG00 as of V1.4 with
OA07611 applied are:
TRACEOPTS ON

BUFSIZE(16M)
OPTIONS(’CONNECT,LOGSTRM,DATASET,SERIAL,MISC,LOCBUFF,RECOVERY’)

These parameters turn on the default system logger tracing to ensure that specific
trace options are included and to establish a default trace buffer of 16MB. These
trace options are activated at System Logger initialization.

If the PARMLIB trace options specify OFF or when the operator turns the trace off,
logger uses minimal tracing which consists only of unexpected events (i.e.
COMPERR trace entries).

Example of CTnLOGxx parmlib member: The statements in the following
CTnLOGxx parmlib member example specify a 24MB trace buffer. All system
logger trace records will be included in the trace output:
TRACEOPTS

ON
BUFSIZE(24M)
OPTIONS(’ALL’)

The statements in the following CTxLOGxx example specify a 32MB trace buffer,
with tracing of logstream functional request processing for logstreams
SYSPLEX.OPERLOG in ASID 09. In addition, an external writer, EXTWTR, will be
started, and SYSLOGR will be connected to the external writer:
TRACEOPTS

WTRSTART(EXTWTR)
ON
BUFSIZE(32M)
ASID(09)
WTR(EXTWTR)
OPTIONS(’LOGSTRM’,’STRMNAME=(SYSPLEX.OPERLOG)’)

Component Trace

442 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|

|
|
|

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for trace?

ON, nnnnM, or OFF Yes

COMP Required

SUB No

PARM Yes

OPTIONS Yes, allowed only on REPLY

If you reduce the size of the trace data space buffer and the SYSLOG trace has not
been connected to an external writer, you must dump the contents of the buffer
(see “Obtaining a dump of system logger information” on page 439) before
reducing the buffer size if this data is important for debugging. Trace data in the
trace data space buffer is discarded when the buffer size is reduced.

If the trace is being turned off (either through a TRACE CT,OFF command or a
CTnLOGxx parmlib member) and the trace is not connected to an external writer,
the trace data must be dumped before turning the trace off to avoid loss of data.

Parameters Allowed on REPLY for trace?

ASID Yes

JOBNAME No

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter for the CTnLOGxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

Option Default Subparameters

ALL No No

CONNECT Yes No

DATASET Yes No

INVENTRY No No

LOCBUFF Yes No

LOGSTRM Yes No

MISC Yes No

RECOVERY Yes No

SERIAL Yes No

STRMNAME No Logstream

STORAGE No No

ALL
Traces all system logger events.

Component Trace

Chapter 12. Component trace 443

|

ASID
Traces events for only the specified address space identifiers (ASID).

COMPERR
Traces internal system logger errors or unexpected events. This option is not
specifiable and is always traced, as it is considered the minimal tracing.

CONNECT
Traces list structure connections, disconnections, rebuild and event exit
processing.

DATASET
Traces log stream data set allocation and management.

INVENTRY
Traces log stream and structure definition and deletion processing as well as all
LOGR CDS accesses. Do not specify this option unless requested by the IBM
Support Center as this generate a large amount of records and may cause the
buffer to wrap frequently.

LOCBUFF
Traces system logger local buffer management.

LOGSTRM
Traces log stream functional request processing.

MISC
Traces system logger internal miscellaneous services.

RECOVERY
Traces system logger component recovery, detecting abnormal conditions
during processing.

SERIAL
Traces system logger serialization services.

STORAGE
Traces system logger storage management. Do not specify this option unless
requested by the IBM Support Center as this will generate a large amount of
records and may cause the buffer to wrap frequently.

STRMNAME
Traces events for only the specified log streams. If you specify STRMNAME,
the specified log streams filter the CONNECT, LOGSTRM, INVENTRY, and
DATA SET options. The STRMNAME parameter must be specified
STRMNAME=(strmname1). If you specify more than one log stream,
STRMNAME must be specified STRMNAME=(strmname1,strmname2). A
maximum of eight log stream names can be specified.

Note that the system does not verify the log stream names specified.

Formatting a SYSLOGR trace
Format the trace with an IPCS CTRACE COMP(SYSLOGR) subcommand. IBM
might request that you enter options for SYSLOGR formatting. You can specify
options for SYSLOG0R tracing on the OPTIONS parameter of the CTRACE
command. The options include:

COMPERR
Displays internal system logger component errors.

Component Trace

444 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|

CONNECT
Displays list structure connections, disconnections, rebuild and event exit
processing.

DATASET
Displays log stream data set allocation and management.

INVENTRY
Displays log stream and structure definition and deletion processing as well as
LOGR policy processing.

LOCBUFF
Displays system logger local buffer management.

LOGSTRM
Displays log stream functional request processing.

MISC
Displays system logger internal miscellaneous services.

RECOVERY
Displays system logger component recovery, detecting abnormal conditions
during processing.

RQE(request_address)
Specify an 8-byte hexadecimal RQE address. Displays the specified RQE
control block.

SERIAL
Displays system logger serialization services.

STACK(request_address)
Specify an 8-byte hexadecimal stack address. Displays the stack at the specified
address.

STORAGE
Displays system logger storage management.

Output from a SYSLOGR trace
Figure 129is an example of system logger component trace records formatted with
the CTRACE COMP(SYSLOGR) subcommand:

COMPONENT TRACE FULL FORMAT
COMP(SYSLOGR)
**** 09/12/1994

CONNECT 03190001 13:03:28.955894 System Logger Services
C9E7C3E2 C9C7F0F3 40404040 40404040 | IXCSIG03 |
E2D3C3E3 C5E2E3F1 0100 | SLCTEST1.. |

RECOVERY 07040001 13:03:58.055519 System Logger Services
C9E7C7C3 F4D9C6C3 840C1000 00000001 | IXGC4RFCd....... |
03171D80 0000 | |

RECOVERY 07040001 13:09:55.907719 System Logger Services
C9E7C7C3 F4D9C6C3 840C1000 00000001 | IXGC4RFCd....... |
031700A0 0000 | |

COMPERR 01070007 13:30:58.322696 System Logger Services
E2E8E2F0 F0F0F0F1 C9E7C7D3 D6C7D94B | SYS00001IXGLOGR. |
E2C3D6E3 E3F34BC1 F0F0F0F0 F0F0F140 | SCOTT3.A0000001 |
40404040 40404040 40404040 40404040 | |
40404040 0000 | .. |

Figure 129. Example: system logger component trace records formatted with CTRACE
COMP(SYSLOGR) subcommand

Component Trace

Chapter 12. Component trace 445

|

SYSOMVS component trace

The following summarizes information for requesting a SYSOMVS component
trace for z/OS UNIX.

Information For SYSOMVS:

Parmlib member CTnBPXxx. Default member: CTIBPX00 specified in
BPXPRM00 member

Default tracing Yes; minimal; unexpected events

Trace request OPTIONS parameter In CTnBPXxx and REPLY for TRACE command

Buffer v Default: 4MB.

v Range: 4MB - 64MB.

v Size set by: CTnBPXxx member.

v Location: Data space. In the REPLY for the DUMP
command, specify DSPNAME=(asid.SYSZBPX2)
where asid is the ASID for z/OS UNIX.

Trace records location Data space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSOMVS)

Trace format OPTIONS parameter Yes

Requesting a SYSOMVS trace
Specify options for requesting a SYSOMVS component trace on a CTnBPXxx
parmlib member or on the reply for a TRACE CT command.

You can change options for SYSOMVS tracing while the trace is running.

CTnBPXxx parmlib member
The following table indicates the parameters you can specify on a CTnBPXxx
parmlib member.

Parameters Allowed on CTnBPXxx?

ON or OFF Yes

ASID Yes

JOBNAME Yes – see note

BUFSIZE Yes – see note

OPTIONS Yes

SUB No

PRESET No

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

446 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on CTnBPXxx?

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

Note:

v Specify the new buffer size in the BUFSIZE parameter on the CTnBPXxx member being
used.

v The JOBNAME= parameter can be used for the SYSOMVS Ctrace to trace data just for
jobs that run with the specific user ID(s) specified in the JOBNAME list. This filtering is
based on the user ID of a job, not its jobname.

v The OMVS kernel is traced with jobname OMVS.

IBM supplies the CTIBPX00 parmlib member, which specifies the z/OS UNIX
tracing begun at ipl. The contents of CTIBPX00 are:

TRACEOPTS
ON
BUFSIZE(128K)

The parameters turn on the minimal SYSOMVS tracing. These parameters request
the unexpected or important z/OS UNIX System Services events. The trace buffer
size is 128KB. This member activates the minimal trace at ipl. In the IBM-supplied
BPXPRM00 parmlib member, the CTRACE parameter specifies CTIBPX00 as the
default.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON or OFF One is required

nnnnK or nnnnM No

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

You can change options while a SYSOMVS trace is running.

Component Trace

Chapter 12. Component trace 447

OPTIONS parameter
The values for the OPTIONS parameter for the CTnBPXxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

ALL
Traces all events.

CBTR(cbid,offset,length)
Traces a field or fields of a control block to be traced. The contents of the trace
will be included in the trace record for all SYSCALL trace records.
v cbid specifies the name of any of the supported z/OS UNIX control blocks in

1–4 characters.
v offset specifies the offset of the desired field in the control block in range

X'0'-X'FFFF').
v length specifies the length of the data, in bytes, to be traced in the control

block. length is an integer hexadecimal value with a range of X'1'-X'8'.

CHARS
Traces character special events.

DEVPTY
Traces pseudoterminal events.

DEVRTY
Traces outboard communication server (OCS) remote terminal events.

FILE
Traces file system events. In a shared file system configuration, selecting the
FILE option also activates the XCF option.

IPC
Traces interprocess communication activity for shared memory, message
queues and semaphores.

LOCK
Traces locking services events.

PIPE
Traces pipe events.

PROCESS
Traces process events.

PTRACE
Traces PTRACE events.

SIGNAL
Traces signaling events.

STORAGE
Traces storage management events.

SYSCALL
Traces callable service layer events.

XCF
Traces file sharing events when using a shared file system configuration.

Examples of requesting SYSOMVS traces
v Example 1: CTnBPXxx member

The member requests DEVPTY, FILE, and SIGNAL options.

Component Trace

448 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

TRACEOPTS
ON
OPTIONS(’DEVPTY’,’FILE’,’SIGNAL’)

v Example 2: TRACE command
The example requests a trace of DEVPTY and FILE trace events.
TRACE CT,ON,COMP=SYSOMVS
* 18 ITT006A ...
REPLY 18,OPTIONS(DEVPTY,FILE),END

v Example 3: TRACE command
The example requests a trace of four bytes at offset zero of control block PPRP.
TRACE CT,ON,COMP=SYSOMVS
* 18 ITT006A ...
REPLY 18,OPTIONS(=(CBTR(PPRP,0,4))),END

Formatting a SYSOMVS trace
Format the trace with an IPCS CTRACE COMP(SYSOMVS) subcommand. The
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the options to narrow down the records displayed so that you can
more easily locate any errors. If the CTRACE subcommand specifies no options,
IPCS displays all the trace records.

ALL
Formats all events.

CHARS
Formats character special events.

DEVPTY
Formats pseudoterminal events.

DEVRTY
Formats OCS remote terminal events.

EXCEPTION
Formats exceptional events, such as recovery records or error records.

FILE
Formats file system events.

IPC
Formats events for shared memory, message queues and semaphores.

KERNINFO
Formats the output to include a header for each record that includes
descriptive information regarding the system call, process ID, and the module
that requests the trace.

LOCK
Formats locking services events.

PIPE
Formats pipe events.

PROCESS
Formats process events.

PTRACE
Formats PTRACE events.

SCCOUNTS
Counts the number of syscalls that occur in the trace. Also counts the number

Component Trace

Chapter 12. Component trace 449

of function codes that occur in a trace. The outputs are displayed in tables.
Formatting is suppressed. The function codes refer to the types of messages
that are crossing between systems in a sysplexed environment. In a
non-sysplex dump, the functions code table will be empty. You could run an
application while collecting CTRACE data, and then use this option to
determine the frequency of syscalls and function codes being made by the
application.

SEARCH
Starting at the specified offset, searches trace entries for a specific value and
displays the matches. A CLIST called BPXMSCER is provided to allow the
search to be performed against specific entity ids that will identify syscall exits
that have failed.

SIGNAL
Formats signaling events.

STORAGE
Formats storage management events.

SYSCALL
Formats callable service layer events.

SYSID(nnn)
Formats sysplex system events. When this is requested by the user, only those
trace records that contain a sysplex system id will be formatted and displayed.
(nnn) is the sysplex number or name of the system in the sysplex whose
records will be displayed. See “Example of CTRACE DISPLAY PARAMETERS
panel” for an example of a CTRACE DISPLAY PARAMETERS panel and the
SYSID option on that panel.

XCF
Formats XCF events.

Example of CTRACE DISPLAY PARAMETERS panel
The CTRACE DISPLAY PARAMETERS panel has the following format. When
SYSID is specified, only those trace records that contain a sysplex system ID will
be formatted and displayed. If SYSID is not specified, data from all the systems
will be displayed.

Component Trace

450 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Examples of subcommands to format a SYSOMVS trace
v Example 1: CTRACE subcommand requesting SEARCH option

The example requests the SEARCH option to search every CTRACE entry,
starting at the offset specified by offset, for the value specified by value.
CTRACE COMP(SYSOMVS) FULL OPTIONS((SEARCH(x’offset’,x’value’))

v Example 2: CTRACE subcommand requesting SCCOUNTS option
The example requests the SCCOUNTS option to count the number of syscalls
from within the trace.
CTRACE COMP(SYSOMVS) FULL OPTIONS((SCCOUNTS))

Output from a SYSOMVS trace
“SYSOMVS component trace formatted with CTRACE COMP(SYSOMVS) FULL” is
an example of SYSOMVS component trace records formatted with the CTRACE
COMP(SYSOMVS) FULL subcommand.

SYSOMVS component trace formatted with CTRACE
COMP(SYSOMVS) FULL
COMPONENT TRACE FULL FORMAT
COMP(SYSOMVS)
**** 05/25/1999

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY1 XCF 0D890407 18:14:14.551107 XCF BUFFER I/O TRACE

ASID..0025 USERID....WELLIE1 STACK@....2566DF18
TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 E2C5D5C4 80180101 02000001 000A0002 | SEND............ |
+0010 B2DBC852 285F5AC7 7BA70500 403E3000 | ..H..¬!G#x.. ... |
+0020 01FF0006 00008178 C6000000 |a.F... |

SY1 XCF 0D6F0401 18:14:14.551325 NXMSO-->XCF MESSAGE OUT

ASID..0025 USERID....WELLIE1 STACK@....2566DF18
TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 E2E8D5C3 80A001D3 0A010014 01170BD4 | SYNC...L.......M |

--------- CTRACE DISPLAY PARAMETERS --------- Enter option
COMMAND ===>

System ===> (System name or blank
Component ===> SYSOMVS (Component name (required)
Subnames ===>

GMT/LOCAL ===> G (G or L, GMT is default)
Start/time ===> (mm/dd/yy,hh:mm:ss:dddddd or
Stop time ===> mm/dd/yy,hh.mm:ss.dddddd)
Limit ===> 0 Exception ===>
Report type ===> SHORT (SHort, SUmmary, Full, Tally)
User exit ===> (Exit program name)
Override source ===>
Options ===> SYSID(1)

To enter/verify required values, type any character
Entry IDs ===> Jobnames ===> ASIDs ===> OPTIONS ===> SUBS===>

CTRACE COMP(SYSOMVS) SHORT OPTIONS((SYSID(1)))

ENTER = update CTRACE definition. END/PF3 = return to previous panel.
S = start CTRACE. R = reset all fields.

Component Trace

Chapter 12. Component trace 451

+0010 0013C000 02000001 000A0002 00004C4B | ..{...........<. |
+0020 7BA70500 000080E0 00000000 00000000 | #x.....\........ |
+0030 0D6F0000 00030025 009E04A0 0000000B | .?.............. |
+0040 00000000 2538E980 01000000 |Z..... |

SY1 XCF 0D690402 18:14:14.554457 NXMSG-->XCF MESSAGE SRB EXIT

ASID..000E USERID....OMVS STACK@....25385F28
TCB...00000000 EUID......00000000 SYSCALL...00000000
+0000 D9C5E2D7 B4600101 009D6C68 00000080 | RESP.-....%..... |
+0010 00030000 0A010014 01170BD4 0013402C |M.. . |
+0020 02000001 000A0002 00000118 01FF0006 | |
+0030 00300098 24C02910 00008000 00000000 | ...q.{.......... |
+0040 00000000 00000000 00000000 | |

SY1 XCF 0D6F0401 18:14:14.554513 NXMSO-->XCF MESSAGE OUT

ASID..0025 USERID....WELLIE1 STACK@....2566DF18
TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 C6D9C5C5 10000100 00000000 00000000 | FREE............ |
+0010 00000000 00000000 00000000 00000000 | |
+0020 00000000 00000000 00000000 00000000 | |
+0030 0D6F0000 00000000 00000000 00000000 | .?.............. |
+0040 00000000 2538E980 00000000 |Z..... |

SY2 XCF 0D690402 18:14:14.553698 NXMSG-->XCF MESSAGE SRB EXIT

ASID..000E USERID....OMVS STACK@....25389F28
TCB...00000000 EUID......00000000 SYSCALL...00000000
+0000 D9C5C3E5 D4600201 009E04A0 002580E0 | RECVM-.........\ |
+0010 00030000 0A010014 01170BD4 0013C000 |M..{. |
+0020 01000001 000A0001 00008178 01FF0006 |a..... |
+0030 40060098 80000009 00000000 00000000 | ..q............ |
+0040 00000000 00000000 4F4F4F4F ||||| |

SY2 XCF 0D6D0403 18:14:14.553715 NXWRK-->XCF WORKER TASK TR.

ASID..0025 USERID....OMVS STACK@....25CF0000
TCB...009E04A0 EUID......0000000B
FCODE.0003 SYSNAME...SY1
+0000 E6D6D9D2 3000022C 009D6C68 0A010014 | WORK......%..... |
+0010 01170BD4 0013C02C 01000001 000A0001 | ...M..{......... |
+0020 01FF0006 40060098 000080E0 009E04A0 |q...\.... |
+0030 00250003 00000000 00000000 00000000 | |
+0040 00000000 | |

SY2 XCF 0D890407 18:14:14.553881 XCF BUFFER I/O TRACE

ASID..0025 USERID....OMVS STACK@....25CF0000
TCB...009E04A0 EUID......0000000B
FCODE.0003 SYSNAME...SY1
+0000 E2C5D5C4 80180101 01000001 000A0001 | SEND............ |
+0010 B2DBC852 29114142 7F636AD8 401FB000 | ..H....."..Q ... |
+0020 01FF0006 00000118 C6000000 |F... |

SY2 XCF 0D6F0401 18:14:14.554039 NXMSO-->XCF MESSAGE OUT

ASID..0025 USERID....OMVS STACK@....25CF0000
TCB...009E04A0 EUID......0000000B
FCODE.0003 SYSNAME...SY1
+0000 D9C5E2D7 202002D3 0A010014 01170BD4 | RESP...L.......M |
+0010 0013402C 01000001 000A0001 00002BBC | |
+0020 7F636AD8 00000080 00000000 00000000 | "..Q............ |
+0030 0D6F0000 00030000 009D6C68 00000000 | .?........%..... |
+0040 253A4088 00000000 00000000 | .. h........ |

SY1 trace flow
Figure 130 on page 453 and Figure 131 on page 454 contain the SY1 trace
information found in “SYSOMVS component trace formatted with CTRACE
COMP(SYSOMVS) FULL” on page 451.

Component Trace

452 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 130 describes the CTRACE entries generated by the BPXNXMSO processing
on the client side. The ASID / TCB highlighted describe the client making the
request.

The most important information is the Unique Request-ID (as noted with an
asterisk (*)). This is used to track a request from the client to through the server,
and back again.

Two separate trace entries are provided. One states that a message has been
entered into a block of messages, and the other states that the block has been
written. The buffer address (as noted with an @) is used to cross reference these
two trace entries.

Figure 131 on page 454 describes the response arriving on the client system. First,
the XCF SRB (BPXNXMSG) processes the incoming response to cause the client
task to be activated. And then, the target task (no longer remapped) wakes up,
and, in this example, explicitly frees the resources that were allocated to it as part
of the XCF message processing.

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY1 XCF 0D890407 18:14:14.551107 NXFST-->WRITE XCF BUFFER

#ASID..0025 USERID....WELLIE1 STACK@....2566DF18
#TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 E2C5D5C4 80180101 02000001 000A0002 | SEND............ |
+0010 B2DBC852 285F5AC7 @7BA70500 403E3000 | ..H..¬!G#x.. ... |
+0020 01FF0006 00008178 C6000000 |a.F... |

SY1 XCF 0D6F0401 18:14:14.551325 NXMSO-->XCF MESSAGE OUT

#ASID..0025 USERID....WELLIE1 STACK@....2566DF18
#TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 E2E8D5C3 80A001D3 !0A010014 *01170BD4 | SYNC...L.......M |
+0010 $0013C000 02000001 000A0002 00004C4B | ..{...........<. |
+0020 @7BA70500 000080E0 00000000 00000000 | #x.....\........ |
+0030 0D6F0000 00030025 009E04A0 0000000B | .?.............. |
+0040 00000000 2538E980 01000000 |Z..... |

- ASID / TCB of requester @ - Buffer address containing request
$ - Block #, Index into NXRQ ! - HFS function being requested
* - Unique Request-ID = System number w/ 3byte seq#

Figure 130. SY1 Trace Flow: Part 1

Component Trace

Chapter 12. Component trace 453

SY2 trace flow
Figure 132 on page 455 and Figure 133 on page 455 contain the SY2 trace
information found in “SYSOMVS component trace formatted with CTRACE
COMP(SYSOMVS) FULL” on page 451.

Figure 132 on page 455 describes the server side XCF SRB processing by first
queuing the request (BPXNXMSG), and then having a worker task pick up that
piece of work for subsequent processing (BPXNXWRK).

As noted with an *, the Request-ID is used to cross reference the individual trace
entries.

When a SYSNAME field is included in a trace entry, the ASID / TCB information
actually describes the client side requester information. The SYSNAME field
describes the originating system. The highlighted field with an & is the TCB
address of the worker task resident in the server system.

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY1 XCF 0D690402 18:14:14.554457 NXMSG-->XCF MESSAGE SRB EXIT

ASID..000E USERID....OMVS STACK@....25385F28
TCB...00000000 EUID......00000000 SYSCALL...00000000
+0000 D9C5E2D7 B4600101 009D6C68 00000080 | RESP.-....%..... |
+0010 00030000 !0A010014 *01170BD4 $0013402C |M.. . |
+0020 02000001 000A0002 00000118 01FF0006 | |
+0030 00300098 24C02910 00008000 00000000 | ...q.{.......... |
+0040 00000000 00000000 00000000 | |

SY1 XCF 0D6F0401 18:14:14.554513 NXMSO-->XCF MESSAGE OUT

#ASID..0025 USERID....WELLIE1 STACK@....2566DF18
#TCB...009E04A0 EUID......0000000B SYSCALL...00000036
+0000 C6D9C5C5 10000100 00000000 00000000 | FREE............ |
+0010 00000000 00000000 00000000 00000000 | |
+0020 00000000 00000000 00000000 00000000 | |
+0030 0D6F0000 00000000 00000000 00000000 | .?.............. |
+0040 00000000 2538E980 00000000 |Z..... |

- ASID / TCB of requester
$ - Block #, Index into NXRQ ! - HFS function being requested
* - Unique Request-ID

Figure 131. SY1 Trace Flow: Part 2

Component Trace

454 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 133 describes the response arriving on the client system. First the XCF SRB
(BPXNXMSG) processes the incoming response to cause the client task to be
activated. And then the target task (no longer remapped) wakes up, and in this
case explicitly frees the resources that were allocated to it as part of the XCF
message processing.

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY2 XCF 0D690402 18:14:14.553698 NXMSG-->XCF MESSAGE SRB EXIT

ASID..000E USERID....OMVS STACK@....25389F28
TCB...00000000 EUID......00000000 SYSCALL...00000000
+0000 D9C5C3E5 D4600201 009E04A0 002580E0 | RECVM-.........\ |
+0010 00030000 !0A010014 *01170BD4 $0013C000 |M..{. |
+0020 01000001 000A0001 00008178 01FF0006 |a..... |
+0030 40060098 80000009 00000000 00000000 | ..q............ |
+0040 00000000 00000000 4F4F4F4F ||||| |

SY2 XCF 0D6D0403 18:14:14.553715 NXWRK-->XCF WORKER TASK TRACE

#ASID..0025 USERID....OMVS STACK@....25CF0000
#TCB...009E04A0 EUID......0000000B
FCODE.0003 SYSNAME...SY1
+0000 E6D6D9D2 3000022C &009D6C68 !0A010014 | WORK......%..... |
+0010 *01170BD4 $0013C02C 01000001 000A0001 | ...M..{......... |
+0020 01FF0006 40060098 000080E0 009E04A0 |q...\.... |
+0030 00250003 00000000 00000000 00000000 | |
+0040 00000000 | |

- ASID / TCB of requester & - Real OMVS resident worker TCB
$ - Block #, Index into NXRQ ! - HFS function being requested
* - Unique Request-ID % - Indicates ASID/TCB remapped to requester

Figure 132. SY2 Trace Flow: Part 1

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY2 XCF 0D890407 18:14:14.553881 XCF BUFFER I/O TRACE

#ASID..0025 USERID....OMVS STACK@....25CF0000
#TCB...009E04A0 EUID......0000000B
FCODE.0003 %SYSNAME...SY1
+0000 E2C5D5C4 80180101 01000001 000A0001 | SEND............ |
+0010 B2DBC852 29114142 @7F636AD8 401FB000 | ..H....."..Q ... |
+0020 01FF0006 00000118 C6000000 |F... |

SY2 XCF 0D6F0401 18:14:14.554039 NXMSO-->XCF MESSAGE OUT

#ASID..0025 USERID....OMVS STACK@....25CF0000
#TCB...009E04A0 EUID......0000000B
FCODE.0003 %SYSNAME...SY1
+0000 D9C5E2D7 202002D3 !0A010014 *01170BD4 | RESP...L.......M |
+0010 $0013402C 01000001 000A0001 00002BBC | |
+0020 @7F636AD8 00000080 00000000 00000000 | "..Q............ |
+0030 0D6F0000 00030000 009D6C68 00000000 | .?........%..... |
+0040 253A4088 00000000 00000000 | .. h........ |

- ASID / TCB of requester @ - Buffer address containing request
$ - Block #, Index into NXRQ ! - HFS function being requested
* - Unique Request-ID % - Indicates ASID/TCB remapped to requester

Figure 133. SY2 Trace Flow: Part 2

Component Trace

Chapter 12. Component trace 455

Control block trace
Figure 134 is an example of SYSOMVS component trace records requested with
OPTIONS(CBTR(PPRP,0,4)) to trace a four byte field at offset zero in the PPRP
control block. The trace data was then formatted with the CTRACE
COMP(SYSOMVS) subcommand:

Figure 135 is an example of SYSOMVS component trace records formatted with the
CTRACE COMP(SYSOMVS) SHORT subcommand.

The output from a SYSOMVS trace using the SCCOUNTS option has 2 formats,
shown in Figure 136 on page 457 and Figure 137 on page 457.

SY1 SYSCALL 0F080001 20:06:58.662146 STANDARD SYSCALL ENTRY TRACE

ASID..0020 USERID....IBMUSER STACK@....25D58010
TCB...008BF088 EUID......00000000 SYSCALL...00000019
+0000 00000019 00000000 D1C3E2C5 8C0000F4 |JCSE...4 |
+0010 0000000C 00000000 80D1AE06 25D596F4 |J...No4 |
+0020 25D596E4 00000085 00000000 7F5FF0A8 | .NoU...e...."¬0y |
+0030 00000006 2501BB50 00D1AFA4 7F5FF0E8 |&.J.u"¬0Y |
+0040 7F5FF0CC 7F5FF0D0 FF5FF0D4 | "¬0."¬0}.¬0M |
+0050 D7D7D9D7 00000004 D7D7D9D7 00000000 PPRP.........PPRP

SY1 SYSCALL 0F080002 20:06:58.662171 STANDARD SYSCALL EXIT TRACE

ASID..0020 USERID....IBMUSER STACK@....25D58010
TCB...008BF088 EUID......00000000 SYSCALL...00000019
+0000 00000019 00000000 D1C3E2C5 8C000000 |JCSE.... |
+0010 0000000A 00000000 00000000 00000002 | |
+0020 00000002 D7D7D9D7 00000004 D7D7D9D7 PPRP..........PPRP

00000000

Figure 134. Control block trace output

COMPONENT TRACE SHORT FORMAT
COMP(SYSOMVS)
**** 06/17/92

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

SYSCALL 0F080002 22:02:42.314264 STANDARD SYSCALL EXIT TRACE
SYSCALL 0F080001 22:02:42.821156 STANDARD SYSCALL ENTRY TRACE
PROCESS 0B080007 22:02:42.821219 PROCESS LATCH OBTAIN
PROCESS 0B08000A 22:02:42.821256 PROCESS LATCH-ON THE WAY OUT
FILE 05700103 22:02:42.821324 TRACE CALL TO VN_RDWR
CHARS 05A90503 22:02:42.821398 TRACE CHARSPEC CALL TO DEVICE DR
PROCESS 0B080008 22:02:42.821452 PROCESS LATCH RELEASE REQUEST
PROCESS 0B08000A 22:02:42.821472 PROCESS LATCH-ON THE WAY OUT
DEVPTY 0223E005 22:02:42.821530 MASTER READ BEGIN
DEVPTY 0223E008 22:02:42.821566 MASTER READ END
PROCESS 0B080007 22:02:42.822182 PROCESS LATCH OBTAIN
PROCESS 0B08000A 22:02:42.822206 PROCESS LATCH-ON THE WAY OUT
CHARS 05A90603 22:02:42.822253 TRACE DEVICE DRIVER READ RETURN
FILE 05700203 22:02:42.822506 TRACE RETURN FROM VN_RDWR

Figure 135. SYSOMVS component trace formatted with CTRACE COMP(SYSOMVS)
SHORT

Component Trace

456 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 136 is sorted by frequency, with the highest values appearing at the top of
the list. SYSCALL# is the hexadecimal number of the syscall. FREQUENCY/SEC is
the number of times the syscall has been invoked within the interval.

Figure 137 is sorted by frequency, with the highest values appearing at the top of
the list. FuncCode is the hexadecimal number of the function code. Functions/Sec
is the number of times the function code has been invoked within the interval.

The output from a SYSOMVS trace using the KERNINFO option is shown in
Figure 138. The syscall function name (FCN) and the process ID (PID) are shown
on the first line of the trace entry.

SYSCALL# SYSCALL NAME COUNT FREQUENCY/SEC
-------- ------------ ----- -------------

F BPX1CHO 5000 nnn
2F BPX1STA 150 nnn

Figure 136. SCCOUNT Function Displaying SYSCALL Frequency

FuncCode FuncCode Name Count Functions/Sec
-------- ------------ ----- -------------
00001001 MntCatchup 76 0.0593
00001010 GetPathName 60 0.0468
00000012 UnQuiesce 38 0.0296

Figure 137. SCCOUNT Function Displaying Function Code Frequency

FCN...open SYSCALL...BPX1OPN PID...00010006 MODULE...BPXJCPC
SY1 SYSCALL 0F080001 17:34:03.106875 STANDARD SYSCALL ENTRY TRACE

ASID..0020 USERID....MEGA STACK@....26E09068
TCB...008C1470 EUID......00000000 PID.......00010006

+0000 00000026 00000000 D1C3E2C5 8C000048 |JCSE.... |
+0010 8002000E 00000000 863CED16 02290200 |f....... |
+0020 60000000 269D8CA0 00000000 25B36828 | -............... |
+0030 00000007 00000010 61A39497 614BA288 |/tmp/.sh |
+0040 6D8889A2 A39699A8 00000000 0000048B | _history........ |
+0050 00000180 FFFFFFFF 0000006F 5B4C0002 |?$<.. |
+0060 00000000 00000000 00000000 00000000 | |
+0070 00000000 00000000 00000000 00000000 | |
+0080 00000000 00000000 00000000 | |
FCN...open SYSCALL...BPX1OPN PID...00010006 MODULE...BPXJCPC

SY1 SYSCALL 0F080002 17:34:03.106876 STANDARD SYSCALL EXIT TRACE

ASID..0020 USERID....MEGA STACK@....26E09068
TCB...008C1470 EUID......00000000 PID.......00010006

+0000 00000026 00000000 D1C3E2C5 8C000000 |JCSE.... |
+0010 8002000B 00000000 FFFFFFFF 0000006F |? |
+0020 5B4C0002

Figure 138. CTRACE COMP(SYSOMVS) FULL OPTIONS((KERNINFO))

Component Trace

Chapter 12. Component trace 457

SYSOPS component trace

The following summarizes information for requesting a SYSOPS component trace
for the operations services component (OPS).

Information For SYSOPS:

Parmlib member CTnOPSxx. Default member: CTIOPS00 specified in
CONSOLxx member

Default tracing Yes; minimal; unexpected events

Trace request OPTIONS parameter In CTnOPSxx or REPLY for TRACE command

Buffer v Default: 2MB

v Range: 64KB - 16MB

v Size set by: CTnOPSxx member or REPLY for
TRACE CT command

v Change size after IPL: Yes, when restarting a trace
after stopping it

v Location: Console address space (private)

Trace records location Address-space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSOPS)

Trace format OPTIONS parameter Yes

Note: To get a complete dump for OPS, request also the NUC, CSA, and SQA.

Requesting a SYSOPS trace
Specify options for requesting a SYSOPS component trace in a CTnOPSxx parmlib
member or in the reply for a TRACE CT command.

CTnOPSxx parmlib member
The following table indicates the parameters you can specify on a CTnOPSxx
parmlib member.

Parameters Allowed on CTnOPSxx?

ON or OFF Yes

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

458 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on CTnOPSxx?

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM supplies the CTIOPS00 parmlib member, which defines the component trace
to the system and establishes a trace buffer of 2M. The contents of CTIOPS00 are:

TRACEOPTS
ON
BUFSIZE(2M)

IBM does not supply a sample CONSOL00 parmlib member. Create a CONSOLxx
parmlib member and specify CON=xx in the IEASYSxx parmlib member. Specify
CTIOPS00 as the default on the CTRACE parameter of the INIT statement of
CONSOLxx.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, nnnnK, nnnnM, or OFF One is required. The buffer size can be
changed only when the trace is OFF or the

trace is ON.

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter for the CTnOPSxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

COMMAND
Traces events related to command processing.

CONSDATA
Traces events related to console state changes.

LOGGING
Traces events related to Operlog and Syslog processing.

Component Trace

Chapter 12. Component trace 459

|
|

MCACHE
Traces events related to the message cache.

MESSAGES
This option includes the WTO, MSGDLVRY, MCACHE and LOGGING options.

MSG=msgid
Traces processing of a specific message. It REQUIRES either one of the
following OPTIONS: MESSAGES, WTO, MSGDLVRY, MCACHE or LOGGING.
msgid is 1-10 alphanumeric characters in length indicating the message id that
will be traced.

MSGDLVRY
Traces events for WQE processing, MCS console message queueing, and
extended MCS console message processing.

RECOVERY
Traces recovery events.

SERIALIZ
Traces latch serialization events.

SYSPLEX
Traces events for XCF signalling, sysplex serialization services, sysplex
clean-up processing, and the manipulation of various queues.

WTO
Traces the effects of MPFLSTxx, the user exits, and the SSI on message content
and attributes.

These additional options increase the number of trace records the system collects
and can slow system performance. Each time you change the trace options, you
must respecify any options you want to keep in effect from the last trace.

Note: Before you use the MESSAGES, WTO, MSGDLVRY, MCACHE or LOGGING
options, you should do the following:
v Increase the buffer size
v Start and connect the external writer.

This is especially important if you are starting tracing at IPL This might not be
necessary if you are tracing a message ID since you would only be cutting records
for the particular message.

Examples of requesting SYSOPS traces
v Example 1: Activating trace options while system is running

Create parmlib member CTIOPS01, specifying the following parameters. Assume
that procedure OPSWTR is in SYS1.PROCLIB.

TRACEOPTS
WTRSTART(OPSWTR)
ON
WTR(OPSWTR)
OPTIONS(’MESSAGES’,’MSG=IEE136I’)
ASID(1,2,3)
JOBNAME(PAYROLL)
BUFSIZE(2M)

v Example 2: Specifying trace options on a REPLY command
The example requests the same trace as Example 1, but specifies all options on
the REPLY.

Component Trace

460 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

trace ct,wtrstart=opswtr
trace ct,2m,comp=sysops

When the system prompts you for the trace options, enter the following
command, replacing id with the reply identifier:
reply 27,wtr=opswtr,options=(messages,msg=IEE136I),asid=(1,2,3),
jobname=(payroll),end

v Example 3: CTnOPSxx member used at IPL
The member requests the SYSPLEX option, doubles the default buffer size, and
limits the tracing to ASID 1 and JOBNAME JOB1.

TRACEOPTS
ON
OPTIONS(’SYSPLEX’)
BUFSIZE(4M)
ASID(1)
JOBNAME(JOB1)

Formatting a SYSOPS trace
Format the trace with an IPCS CTRACE COMP(SYSOPS) subcommand. The
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the options to narrow down the records displayed so that you can
more easily locate any errors. If the CTRACE subcommand specifies no options,
IPCS displays all the trace records. The options for formatting a SYSOPS trace are:

COMMAND
Traces events related to command processing.

CONSDATA
Traces events related to console state changes.

LOGGING
Traces events related to Operlog and Syslog processing.

MCACHE
Traces events related to the message cache.

MESSAGES
This option includes the WTO, MSGDLVRY, MCACHE and LOGGING options.

MSG=msgid
Traces processing of a specific message. It REQUIRES either one of the
following OPTIONS: MESSAGES, WTO, MSGDLVRY. MCACHE or LOGGING.
msgid is 1-10 alphanumeric characters in length indicating the message id that
will be traced.

MSGDLVRY
Traces events for WQE processing, MCS console message queueing, and
extended MCS console message processing.

RECOVERY
Traces recovery events.

SERIALIZ
Traces latch serialization events.

SYSPLEX
Traces events for XCF signalling, sysplex serialization services, sysplex
clean-up processing, and the manipulation of various queues.

Component Trace

Chapter 12. Component trace 461

WTO
Traces the effects of MPFLSTxx, the user exits, and the SSI on message content
and attributes.

Output from a SYSOPS trace
Figure 139 is an example of OPS component trace records formatted with the
CTRACE COMP(SYSOPS) SHORT subcommand.

Figure 140 on page 463 is an example of OPS component trace records formatted
with the CTRACE COMP(SYSOPS) FULL subcommand.

COMPONENT TRACE SHORT FORMAT
COMP(SYSOPS)
**** 05/20/93

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

INITMSG 00000001 14:41:06.918883 Message prior to MPF processing
POSTMPF 00000002 14:41:06.919198 Message after MPF processing
POSTEXIT 00000003 14:41:06.919595 Post Message Exit
POSTSSI 00000004 14:41:06.920118 Post Subsystem Interface
INITMSG 00000001 14:41:06.930088 Message prior to MPF processing
POSTMPF 00000002 14:41:06.930405 Message after MPF processing
POSTEXIT 00000003 14:41:06.930803 Post Message Exit
POSTSSI 00000004 14:41:06.931267 Post Subsystem Interface
INITMSG 00000001 14:41:06.931637 Message prior to MPF processing
POSTMPF 00000002 14:41:06.931934 Message after MPF processing

Figure 139. Example: OPS component trace records formatted with CTRACE
COMP(SYSOPS) SHORT subcommand

Component Trace

462 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SYSRRS component trace

The following summarizes information for requesting a SYSRRS component trace
for RRS.

Information For SYSRRS:

Parmlib member CTnRRSxx. No default member

Default tracing Yes; minimal; unexpected events; general UR services

Trace request OPTIONS parameter In CTnRRSxx and REPLY for TRACE command

COMPONENT TRACE FULL FORMAT
COMP(SYSOPS)
**** 05/20/93

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

INITMSG 00000001 14:41:06.918883 Message prior to MPF processing
TR_GROUP WTO Write to Operator Services
HOMEASID 0001 HOMEJOBN *MASTER*
REQSASID 0001 REQSJOBN UNKNOWN
CPU_ADDR 0001
KEY..... 0001

+0000 LKP...... 00000000 TXTLN.... 005F RTCT..... 0000
+000A USE...... 0000 PAD...... 40 TS....... 10.41.06
+00D1 TS2...... .91 PAD1..... 40 JOBNM....
+001E PAD2..... 40 TXT...... ITT038I ALL OF THE TRANSACTIONS REQU
+0044 ESTED VIA THE TRACE CT COMMAND WERE
+009E TXTL..... 40 PAD3..... 00 XA....... 01
+00A1 ASID..... 0001 AVAIL.... 50 TCB...... 008D57C0
+00A8 SYSID.... 03 SEQN..... 00049D MCSF1.... C0
+00AD MCSF2.... 10 MSGT1.... 00 ROUT1.... 00
+00B1 ROUT2.... 00 CHAR1.... 00 FLG3..... 00
+00B4 UCMID.... 0A FLG1..... 04 RPYID.... 0000
+00B8 DC1...... 08 DC2...... 00 RSV26.... 0000
+00BC JSTCB.... 008D57C0 VRSN..... 05 MFLG1.... 00
+00C2 MCSE1.... 42 MCSE2.... 00 SYSNM.... SYS2
+00CC DATE..... 93140 RFB1..... 00 RFB2..... 00
+00D6 RFB3..... 00 SUPB..... 90 ML1...... 00
+00D9 ML2...... 00 LENG..... 0160 DSQN..... 00000000
+00E0 ERC1..... 00 ERC2..... 00 ERC3..... 00
+00E3 ERC4..... 00 ERC5..... 00 ERC6..... 00
+00E6 ERC7..... 00 ERC8..... 00 ERC9..... 00
+00E9 ERC10.... 00 ERC11.... 00 ERC12.... 00
+00EC ERC13.... 00 ERC14.... 00 ERC15.... 00
+00EF ERC16.... 00 KEY...... 40404040 40404040
+00F8 TOKN..... 00000000 CNID..... 0000000A OJBID.... 40404040
.
.
.

Figure 140. Example: OPS component trace records formatted with CTRACE
COMP(SYSOPS) FULL subcommand

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 463

Information For SYSRRS:

Buffer v Default: 1MB

v Range: 1MB - 2045MB

v Size set by: CTnRRSxx member or REPLY for
TRACE CT command

v Change size after IPL: Yes, when restarting a trace
after stopping it

v Location: Data space and component address
space. In the REPLY for the DUMP command,
specify DSPNAME=('RRS'.ATRTRACE) and
SDATA=RGN.

Trace records location Data space buffer, trace data set, trace buffers in the
RRS address space

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSRRS)

Trace format OPTIONS parameter Yes

Requesting a SYSRRS trace
Specify options for requesting a SYSRRS component trace on a CTnRRSxx parmlib
member or on the reply for a TRACE CT command.

To change options or the buffer size, you have to stop the trace and restart it with
the new options, buffer size, or both.

CTnRRSxx parmlib member
The following table indicates the parameters you can specify on a CTnRRSxx
parmlib member.

Parameters Allowed on CTnRRSxx?

ON or OFF Yes

ASID Yes

JOBNAME Yes

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

A CTnRRSxx parmlib member is optional. If not specified, the SYSRRS component
trace runs a minimal trace beginning when the RRS component is started and
ending when the component is stopped.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on a TRACE CT
command and a REPLY.

Component Trace

464 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on TRACE CT for Trace?

ON, nnnnK, nnnnM, or OFF One is required

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes

OPTIONS Yes

WTR Yes

OPTIONS parameter
The OPTIONS parameter for the CTnRRSxx parmlib member or reply for a TRACE
command contains keyword subparameters. These subparameters allow you to
control the information that RRS component trace collects. The first subparameter,
EVENTS, specifies the events to be traced; the other subparameters act as filters to
screen the events with up to three checks. An event must pass all checks for
component trace to generate a trace record. The order for the checks is:
1. That the event is specified.
2. That the event matches, in an OR check, one of the following filters:

v The address space ID (ASID) in the REPLY command or CTnRRSxx
TRACEOPTS statement

v The job name (JOBNAME) in the REPLY command or CTnRRSxx
TRACEOPTS statement

v The user ID (USERID) in the OPTIONS parameter
v The logical work unit ID (LUWID) in the OPTIONS parameter

3. That the event matches a resource manager name (RMNAME) in the OPTIONS
parameter.

Note: In the REPLY to the TRACE CT command, separate the options by one or
more blanks.

EVENTS(event[,event]...)
Indicates the events to be traced. An EVENTS parameter is required if any
other options are specified. The events, in alphabetical order, are:

ALL
Traces all events. Component trace ignores other events, if specified.

OPTIONS=([EVENTS(event[,event]...)]
[USERID(userid[,userid]...)]
[RMNAME(rmname[,rmname]...)]
[LUWID((luwid)[,(luwid)]...)])
[EID((eid)[,(eid)]...)

Component Trace

Chapter 12. Component trace 465

CONTEXT
Traces calls to context services.

EXITS
Traces events related to running the RRS exit routines provided by the
resource managers.

FLOW
Traces entry into and exit from RRS entry points.

LOGGING
Traces events related to logging data by RRS.

RESTART
Traces events related to RRS initialization and restart.

RRSAPI
Traces events related to the application programming interface, which
consists of calls to the Application_Commit_UR service and the
Application_Backout_UR service.

STATECHG
Traces events involving changes in the state of units of recovery (URs).

URSERVS
Traces general events related to services for a UR (traced by default).

USERID(userid[,userid]...)
Specifies 1 to 16 user IDs as filters for specified events. The system traces only
events relating to the user IDs.

RMNAME(rmname[,rmname]...)
Specifies 1 to 16 resource manager names as filters for specified events. For
trace events sensitive to the resource manager name, the system traces only
events relating to the resource managers.

LUWID((luwid)[,(luwid)]...)
Specifies 1 to 16 logical unit of work identifiers (LUWIDs) as filters for
specified events. The system traces only events relating to the LUWIDs. Each
luwid consists of:
netid.luname[,instnum][,seqnum]

Component trace ignores leading and trailing blanks.

netid.luname
Specifies the network ID and the local logical unit name. These portions of
the LUWID are required.

You can use an asterisk (*) as a wildcard character as:
v The last character in the netid, the luname, or both
v The only character in the either the netid or the luname, but not as the

only character in both

instnum
Specifies the instance number as a 1 - 12 hexadecimal integer. You can omit
leading zeros.

seqnum
Specifies the sequence number as a 1 - 4 hexadecimal integer. You can omit
leading zeros.

Examples of LUWIDs are:

Component Trace

466 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

(A.B,5,1)
(A.B,5)
(A.B,,1)
(A.B)
(A.*,5,1)
(A*.B*)

EID((eid)[,(eid)]...)
Specifies 1 to 16 Enterprise identifiers (EIDs) as filters for specified events. The
system traces only events relating to the EIDs. Each eid consists of:
[tid][,gtid]

You can omit leading zeros. Component trace ignores leading and trailing
blanks.

tid
Specifies the 4-byte hexadecimal transaction identifier (TID).

gtid
Specifies the 8-40 byte hexadecimal global transaction identifier (GTID).

You can obtain the EID for a UR by using the RRS ISPF panels to browse the
RRS log streams. The Retrieve_Work_Identifier service can also return an EID.

Examples of EIDs are:
(1,C)
(,C)
(1)

Examples of requesting SYSRRS traces
In Figure 141, the member requests context services events filtered by the user ID
JONES and requests a 1024KB buffer.

Figure 142 is an example of using the TRACE command to request the same trace
shown in Figure 141.

Formatting a SYSRRS trace
Format the trace with an IPCS CTRACE COMP(SYSRRS) subcommand. Its
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the formatting options to narrow down the records displayed so
that you can more easily locate any errors. If you specify no options on the
CTRACE subcommand, IPCS displays all the trace records.

TRACEOPTS
ON
OPTIONS(’EVENTS(CONTEXT) USERID(JONES)’)
BUFSIZE(1024K)

Figure 141. Example: CTnRRSxx member requests context services events

trace ct,off,comp=sysrrs
trace ct,1024K,comp=sysrrs
* 17 ITT006A ...
reply 17,options=(’events(context) userid(jones)’),end

Figure 142. Example: TRACE command requests context services events

Component Trace

Chapter 12. Component trace 467

You can specify one or more OPTIONS subparameters. If you specify no OPTIONS
subparameters, all trace records are formatted. A trace record must match all
specified OPTIONS subparameters to be formatted.

LUWID(luwid)
Specifies one of the logical unit of work identifiers (LUWIDs) specified when
the trace was generated.

EID(eid)
Specifies one of the Enterprise identifiers (EIDs) specified when the trace was
generated. Specify eid as:
v tid

v tid,gtid

Or, if you omitted tid when you specified the identifier: *,gtid

RMNAME(rmname)
Specifies one of the resource manager names specified when the trace was
generated.

URID(urid)
Specifies a UR identifier. The URID is a 16-byte character string returned to the
resource manager by one of the following callable services:
Change_Interest_Type, Express_UR_Interest, Retain_Interest,
Retrieve_UR_Interest, or Retrieve_UR_Data. The URID is saved in the resource
manager log; you can obtain it through an RRS panel.

USERID(userid)
Specifies one of the user IDs specified when the trace was generated. Note that
USERID does not filter out trace records in which the user ID is blank.

The following is an example of how to specify an IPCS CTRACE OPTIONS
parameter:
OPTIONS=((RMNAME(datamgr),USERID(jjones)))

Output from a SYSRRS trace
Fields that do not contain printable characters are filled with asterisks (*). The
value is shown in hexadecimal on a separate line.

Note: RRS provides the same report for the SUMMARY and FULL parameters on
the CTRACE subcommand.

“CTRACE COMP(SYSRRS) SHORT subcommand output” on page 469 is an
example of SYSRRS component trace records formatted with the CTRACE
COMP(SYSRRS) SHORT subcommand.

OPTIONS=((option[,option]...))

option is one of the following:

LUWID(luwid)
EID(eid)
RMNAME(rmname)
URID(urid)
USERID(userid)

Component Trace

468 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CTRACE COMP(SYSRRS) SHORT subcommand output
COMPONENT TRACE SHORT FORMAT
COMP(SYSRRS)
**** 01/20/1997

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 COMPERR 00000000 07:53:43.615114 Resource Recovery Services
SY1 FLOW 0801FFFE 07:53:43.615114 ATRB1PCT EXIT
SY1 FLOW 0801FFFF 07:53:43.619823 ATRB1PCT ENTRY
SY1 FLOW 0201FFFF 07:53:43.619867 ATRU1EIN ENTRY
SY1 CONTEXT 02010002 07:53:43.620027 CTXMEINT call
SY1 URSERVS 02010001 07:53:43.620699 ATREINT invoked
SY1 FLOW 0201FFFE 07:53:43.620887 ATRU1EIN EXIT
.
.
.

“CTRACE COMP(SYSRRS) SUMMARY or FULL output” is an example of SYSRRS
component trace records formatted with the CTRACE COMP(SYSRRS) SUMMARY
or FULL subcommands.

CTRACE COMP(SYSRRS) SUMMARY or FULL output
COMPONENT TRACE FULL FORMAT
COMP(SYSRRS)
**** 01/20/1997

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------

SY1 COMPERR 00000000 07:53:43.615114 Resource Recovery Services
FFF0003E 7EF6D000 0001FE6E 00000000 | .0..=6}....>.... |
000A0000 00000000 00020000 | |
0101001F 00000000 7F04D000 01000000 |".}..... |
00000000 00000000 0000 | |

SY1 FLOW 0801FFFE 07:53:43.615114 ATRB1PCT EXIT
HASID.... 00AA HJOBNAME. APPL1AS
SASID.... 00A3 SJOBNAME. RMAS1
USERID... * RMNAME...
URID..... AE18AB4E 7ED2CF90 0000012B 01010000
TID...... 000000000000 GTID..... 00000000

00000000 00000000 00000000
LUWID.... 00000000 00000000 00000000 0000

NETNAME.. ******** LUNAME... ********
INSTNUM.. ****** SEQNUM... **

SY1 FLOW 0801FFFF 07:53:43.619823 ATRB1PCT ENTRY
HASID.... 00AA HJOBNAME. APPL1AS
SASID.... 00A3 SJOBNAME. RMAS1
USERID... * RMNAME...
URID..... AE18AB4E 7ED2CF90 0000012B 01010000
TID...... 000000000000 GTID..... 00000000

00000000 00000000 00000000
LUWID.... 00000000 00000000 00000000 0000

NETNAME.. ******** LUNAME... ********
INSTNUM.. ****** SEQNUM... **

SY1 FLOW 0201FFFF 07:53:43.619867 ATRU1EIN ENTRY
HASID.... 00AA HJOBNAME. APPL1AS
SASID.... 00A3 SJOBNAME. RMAS1
USERID... * RMNAME...
URID..... AE18AB4E 7ED2CF90 0000012B 01010000
TID...... 000000000000 GTID..... 00000000

00000000 00000000 00000000
LUWID.... 00000000 00000000 00000000 0000

NETNAME.. ******** LUNAME... ********

Component Trace

Chapter 12. Component trace 469

INSTNUM.. ****** SEQNUM... **
.
.
.

“CTRACE COMP(SYSRRS) TALLY output” is an example of SYSRRS component
trace records formatted with the CTRACE COMP(SYSRRS) TALLY subcommands.

CTRACE COMP(SYSRRS) TALLY output
COMPONENT TRACE TALLY REPORT
COMP(SYSRRS)

TRACE ENTRY COUNTS AND AVERAGE INTERVALS (IN MICROSECONDS)

FMTID COUNT INTERVAL MNEMONIC DESCRIBE
-------- ----------- ------------ -------- --------------------------------
00000000 7 23,774,056 COMPERR Resource Recovery Services
02010001 46 2,398,672 URSERVS ATREINT invoked
02010002 46 2,398,670 CONTEXT CTXMEINT call
02018001 6 18,803,430 STATECHG UR State Change
02018008 3 47,008,505 STATECHG UR being created
0201FFFE 46 2,398,673 FLOW ATRU1EIN EXIT
0201FFFF 46 2,398,670 FLOW ATRU1EIN ENTRY
02030001 0 URSERVS ATRDINT invoked
02038009 0 STATECHG UR being destroyed
0203FFFE 0 FLOW ATRU1DIN EXIT
0203FFFF 0 FLOW ATRU1DIN ENTRY
02050001 0 URSERVS ATRPDUE invoked
0205FFFE 0 FLOW ATRU1PDU EXIT
0205FFFF 0 FLOW ATRU1PDU ENTRY
.
.
.

SYSRSM component trace

The following summarizes information for requesting a SYSRSM component trace
for the real storage manager (RSM).

Information For SYSRSM:

Parmlib member CTnRSMxx. No default member

Default tracing No.

Trace request OPTIONS parameter In CTnRSMxx or REPLY for TRACE command

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

470 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Information For SYSRSM:

Buffer v Default: 3 buffers of 32 pages

v 2 -7 page-fixed primary buffers, 4 - 262,144 pages
per buffer

1 - 2047 MB for secondary buffers

v Size set by: CTnRSMxx member or REPLY for
TRACE CT command

v Change size after IPL: Yes, when starting a trace

v Common service area (LIKECSA) and, if specified
in CTnRSMxx, high virtual private storage of the
RASP address space.

Trace records location In the trace data set, trace buffers in high common
memory, and the RASP address space.

Request of SVC dump v By DUMP or SLIP command

v Through the DMPREC option on the CTnRSMxx
parmlib member or on the REPLY for the TRACE
CT command when RSM enters recovery
processing (default)

v Through the DMPOFF option of CTnRSMxx or the
TRACE CT reply when SYSRSM tracing is turned
off

Trace formatting by IPCS CTRACE COMP(SYSRSM)

Trace format OPTIONS parameter None

Requesting a SYSRSM trace
Specify options for requesting a SYSRSM component trace in a CTnRSMxx parmlib
member or in the reply for a TRACE CT command.

CTnRSMxx parmlib member
The following table indicates the parameters you can specify on a CTnRSMxx
parmlib member.

Parameters Allowed on CTnRSMxx?

ON or OFF Yes

ASID Yes

JOBNAME Yes. To trace all batch jobs, specify ‘INIT’ in
the list of job names.

BUFSIZE Yes

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

IBM provides two sample CTIRSMxx parmlib members in SYS1.PARMLIB. These
are not default members.

Component Trace

Chapter 12. Component trace 471

v CTIRSM01: Shows how to request tracing of all RSM functions and events using
the options DMPOFF, NOCOMASID, and NODMPREC.

v CTIRSMSP: Shows how to request address space, job name filtering, and trace
request options to limit the tracing.

RSM trace data in high virtual private storage: RSM supports collecting trace data
into high private memory. This storage is used as a secondary buffer data, which is
first collected into buffers in fixed high common storage, and later moves out into
high private memory. Having a secondary buffer is another way, besides trace data
sets, to handle a large number of RSM trace records. Note that the paging activity
for the secondary buffer can appear in the RSM trace records.

If you suspect that your system has a paging problem, collect the RSM trace
records in page-fixed primary buffers to keep from losing records while paging. A
record can be lost as the system reuses a full secondary buffer

For RSM, use BUFF in the CTnRSMxx OPTIONS parameter to specify the number
of page-fixed buffers and their page sizes. In Figure 143, the statements in
CTWRSM05 specify four page-fixed buffers that are 64 pages and a secondary
buffer in high private memory of 640 KB.

For RSM, the BUFSIZE parameter in the CTnRSMxx parmlib member specifies the
total size of the high virtual private buffers located in the RASP address space. The
space in the buffer is divided evenly between the amount of installed processors.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, nnnnK, nnnnM, or OFF One is required. nnnnK and nnnnM specify
the size of the buffer iin the RASP address

space (high virtual private).

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID Yes

JOBNAME Yes. To trace all batch jobs, specify ‘INIT’ in
the list of job names.

TRACEOPTS
ON
BUFSIZE(640K)
OPTIONS(’BUFF(4,64)’)

Figure 143. Example: Using the CTWRSM05 parmlib member

Component Trace

472 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on REPLY for Trace?

OPTIONS Yes

WTR Yes

Automatic Dump: The component requests an SVC dump when the operator stops
the trace or when RSM enters recovery processing. To prevent these automatic
dumps when the trace is written to a trace data set or when the operator is to
request the dump, specify NODMPREC and NODMPOFF in the OPTIONS
parameter in the TRACE CT command or the CTnRSMxx parmlib member.

OPTIONS parameter
The values for the OPTIONS parameter for the CTnRSMxx parmlib member and
reply for a TRACE command follow.

If you turn on the SYSRSM trace without specifying any filters or options, the
component trace records every RSM function and event in all address spaces and
jobs. This trace collects an enormous amount of data and degrades system
performance. Use the SYSRSM filters and options to limit the amount of data
recorded by the component trace. Specify tracing of specific address spaces, jobs,
RSM events, and RSM functions.

The RSM trace options are divided into three groups:
v Special trace options
v RSM function trace options
v RSM event trace options

Special trace options: These options set the size of the fixed RSM trace buffers, tell
the trace to record common area activity, and tell the system when to dump the
trace data. The options are:

BUFF=(x,y)
Specifies the number and size of the SYSRSM trace buffers, which reside in
fixed high virtual common service area (LIKECSA) storage:

x The number of buffers, from 2 to 7. The default is 3.

y The number of pages per buffer, from 4 to 262,144. The default is 32.

The storage for each buffer is distributed between the installed processors in
the system. For that reason, it is recommended to increase the buffer size on
systems with a large amount of processors. The more buffers that are specified,
the more often the SRB, which empties out the fixed buffers, is called (if there
is a high virtual private buffer or an external writer). The larger the buffer, the
greater the burst of events it can contain without losing any trace entries.

For example, if you specify BUFF=(5,10), the component trace uses five fixed
trace buffers. Each buffer contains 10 pages. The total amount of fixed storage
used is 200 kilobytes.

Note: When choosing the amount of fixed storage to use for trace buffers,
consider the amount of central storage available.

COMASID
Traces activity in the common area page. This is the default.

NOCOMASID
Prevents tracing of activity in the common area page.

Component Trace

Chapter 12. Component trace 473

DMPREC
Includes trace data in the SVC dump requested when RSM enters recovery
processing. The SYSRSM trace is suspended while the dump is in progress.
The dump contains the most recent trace data recorded prior to the problem.
With this dump option, which is a default:
v The trace tables are not dumped when RSM enters recovery processing.
v Tracing continues on other processors during recovery processing.

NODMPREC
Prevents trace data from being dumped if RSM enters recovery processing.

DMPOFF
Causes trace data to be dumped when tracing for RSM is turned off with a
TRACE CT,OFF,COMP=SYSRSM command or with an OFF parameter in a
CTnRSMxx parmlib member.

NODMPOFF
Prevents writing of a dump when the TRACE operator command is entered to
stop the trace. This is the default.

Function Trace Options: Function trace options identify the RSM functions and
services to be traced. The options are:

ALLOC2G
Traces events for allocating 2G pages.

ASPCREAT
Traces events for the address space create function.

BLOCKMGR
Traces RSM SCM block manager events.

COPYSRVG
Traces RSM copy services group. The group options, which can be specified
separately, are:

COPYSERV
Traces copy services.

COPYSRVH
Traces high virtual copy service.

DFSTEAL
Traces events for the double frame steal function.

DIV
Traces all events in the data-in-virtual services group. The group options,
which can be specified separately, are:

DIVACCUN
Trace the DIV ACCESS and DIV UNACCESS services.

DIVMAP
Traces the data-in-virtual MAP service.

DIVMAPLV
Traces the data-in-virtual MAP service (with LOCVIEW=MAP on previous
ACCESS).

DIVRES
Traces the data-in-virtual RESET service.

Component Trace

474 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

DIVRESLV
Traces the data-in-virtual RESET service (with LOCVIEW=MAP on
previous ACCESS).

DIVRTR
Traces the data-in-virtual services router.

DIVSAVE
Traces the data-in-virtual SAVE service.

DIVSLIST
Traces the data-in-virtual SAVELIST service.

DIVUNMAP
Traces the data-in-virtual UNMAP service.

DSPCONV
Traces events in the data space convert interface function.

DSPLIMIT
Traces events in the data space limit interface function.

DATASPAC
Traces all events in the data space and hiperspace group. The group options,
which can be specified separately, are:

DSPSERV
Traces all events in the data space services group. The group options,
which can be specified separately, are:

DSPCREAT
Traces events in the DSPSERV CREATE service.

DSPDELET
Traces events in the DSPSERV DELETE service.

DSPDRFOF
Traces events in DSPSERV define DREF off.

DSPDRFON
Traces events in DSPSERV define DREF on.

DSPEXTEN
Traces events in the DSPSERV EXTEND service.

DSPLOAD
Traces events in the DSPSERV LOAD service.

DSPIOOF
Traces events in the DSPSERV IOOFF service.

DSPIOON
Traces events in the DSPSERV IOON service.

DSPOUT
Traces events in the DSPSERV OUT service.

DSPREL
Traces events in the DSPSERV RELEASE service.

DSPSRTR
Traces events in the DSPSERV router service.

DSPSRTRD
Traces events in the DSPSERV disabled RTR service.

Component Trace

Chapter 12. Component trace 475

HSPSERV
Traces all events in the hiperspace services group. The group options,
which can be specified separately, are:

HSPCACHE
Traces events in the HSPSERV cache services.

HSPSCROL
Traces events in the HSPSERV scroll services.

DUMPSERV
Traces the dumping function.

FAULTS
Traces all events in the fault services group. The group options, which can be
specified separately, are:

FLTASP
Traces all events in the address space faults group. The group options,
which can be specified separately, are:

FLTADPAG
Traces disabled address space page faults.

FLTAEPAG
Traces enabled address space page faults.

FLTAESEG
Traces enabled address space segment faults.

FLTAHPAG
Traces address space page faults for address above the 2 gigabytes bar.

FLTAHSEG
Traces address space segment faults for address above the 2 gigabytes
bar.

FLTAREGN
Traces address space region faults.

FLTATYPE
Traces address space type faults.

FLTDSP
Traces all events on the data space faults group. The group options, which
can be specified separately, are:

FLTDEN
Traces enabled data space faults.

FLTDDIS
Traces disabled data space faults.

FLTEPROT
Traces protection faults.

FREEFRAM
Traces the free frame function.

GEN
Traces all events in the general function group. The group options, which can
be specified separately, are:

GENDEFER
Traces general defers.

Component Trace

476 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

GENIOCMP
Trace general I/O completion.

GENTERM
Traces general abends.

GLRUSTL
Traces the global LRU Steal function.

IARVSERV
Traces all IARVSERV requests. The Virtual Services group options, which can
be specified separately, are:

VSCHGACC
Traces IARVSERV CHANGEACCESS requests.

VSROUTR
Traces IARVSERV service router.

VSSHARE
Traces IARVSERV SHARE requests.

VSSHSEG
Traces IARVSERV SHARESEG requests.

VSUNSHAR
Traces IARVSERV UNSHARE requests.

IARV64
Traces all IARV64 requests. The High Virtual services group options, which can
be specified separately are:

V6CHACC
Traces IARV64 CHANGEACCESS requests.

V6CHGURD
Traces IARV64 CHANGEGUARD requests.

V6COUNT
IARV64 COUNTPAGES requests.

V6DETACH
Traces IARV64 DETACH requests.

V6DISCAR
Traces IARV64 DISCARDDATA requests.

V6GETCOM
Traces IARV64 GETCOMMON requests.

V6GETSHR
Traces IARV64 GETSHARED requests.

V6GETSTR
Traces IARV64 GETSTOR requests.

V6LIST
Traces IARV64 LIST requests.

V6PAGFIX
Traces IARV64 PAGEFIX requests.

V6PAGIN
Traces IARV64 PAGEIN requests.

Component Trace

Chapter 12. Component trace 477

V6PAGOUT
TracesIARV64 PAGEOUT requests.

V6PAGUNF
Traces IARV64 PAGEUNFIX requests.

V6PROTEC
Traces IARV64 PROTECT/UNPROTECT requests.

V6ROUTR
Traces IARV64 service router.

V6SHMOMB
Traces IARV64 SHAREMEMOBJ requests.

LPGALLOC
Traces the Large Page Frame Allocation function.

MACHCHK
Traces the machine check function.

PGSER
Traces all events in the paging services group. The group options, which can
be specified separately, are:

PGANY
Traces events in the page anywhere service.

PGFIX
Traces events in the page fix service.

PGFREE
Traces events in the page free service.

PGLOAD
Traces events in the page load service.

PGOUT
Traces events in the page out service.

PGPROT
Traces events in the page protect service.

PGREL
Traces events in the page release service.

PGSRTR
Traces events in the paging service routers.

PGUNPROT
Traces events in the page unprotect service.

QFSTEAL
Traces events for the quad frame steal function.

RECONFIG
Traces the reconfiguration function.

RPBPMGMT
Traces the RSM cell pool management function.

RSMPIN
Traces the RSMPIN services.

Component Trace

478 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SUBSPACE
Traces all events in the subspace group. The group options, which can be
specified separately, are:

SSPCONV
Traces the subspace conversion services.

IARSUBSP
Traces the subspace services group. The group options, which can be
specified separately, are:

SSPIDENT
Traces the IARSUBSP IDENTIFY service.

SSPCREAT
Traces the IARSUBSP CREATE service.

SSPASSIG
Traces the IARSUBSP ASSIGN service.

SSPUNAS
Traces the IARSUBSP UNASSIGN service.

SSPDELET
Traces the IARSUBSP DELETE service.

SSPSHARE
Traces the IARSUBSP SHARE service.

SSPUNID
Traces the IARSUBSP UNIDENTIFY service.

SSPSRTR
Traces the IARSUBSP router.

SWAP
Traces all events in the swap services group. The group options, which can be
specified separately, are:

REALSWAP
Traces events during in-real swap processing.

SWAPIN
Traces events in the swap-in service.

SWAPOUT
Traces events in the swap-out service.

TRACE*
Traces the trace function. This function is always traced.

UIC
Traces the unreferenced interval count function.

UMCPU
Traces the free CPU related frames function.

VIO
Traces the virtual I/O function.

VR Traces the V=R allocation function.

VSM
Traces all events in the VSM services group. The group options, which can be
specified separately are:

Component Trace

Chapter 12. Component trace 479

VSMFRMN
Traces events in the FREEMAIN service.

VSMGTMN
Traces events in the GETMAIN service.

WAITSER
Traces RSM Wait function.

XCHUP
Traces the exchange up function.

XMPOST
Traces the cross memory posting function.

Event Trace Options: Event trace options identify the events for RSM to collect
trace data. The options are:

ESTOR
Traces all events in the expanded storage management group. The group
options, which can be specified separately, are:

ESGET
Traces get expanded storage.

ESENQ
Traces enqueue expanded storage.

ESDEQ
Traces dequeue expanded storage.

ESFREE
Traces free expanded storage.

FUNCREQ
Traces the function request event.

PAGEREQ
Traces all events in the page request group. The group options, which can be
specified separately, are:

PAGEA2R
Traces requests to move a page from auxiliary to central storage.

PAGEDEF
Traces requests to move a page to central storage was deferred for lack of a
frame

PAGEIPTE
Traces requests to invalidate a page table entry.

PAGEP2R
Traces requests to move a page from permanent to central storage.

PAGEREL
Traces requests related to I/O in-progress or related to a defer event.

PAGER2A
Traces requests to move a page from central storage to auxiliary storage.

PAGER2P
Traces requests to move a page from central storage to permanent storage.

PAGER2R
Traces requests to move a page from central storage to central storage.

Component Trace

480 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

PGEVENTS
Traces all events in the page fix/free group. The group options, which can be
specified separately, are:

FIX
Traces a page being fixed.

FREE
Traces a page being freed.

REGIONGR
Traces all events in the region table group. The group options, which can be
specified separately, are:

CREG1ST
Traces the creation of a region 1st table.

CREG2ND
Traces the creation of a region 2nd table.

CREG3RD
Traces the creation of a region 3rd table.

RSTOR
Traces all events in the frame management group. The group options, which
can be specified separately, are:

HVFGRP
Traces events for frame management of high virtual frames. The group
options, which can be specified separately, are:

HVFRDEQ
Traces when a frame is dequeued from the high virtual frame queue.

HVFRENQ
Traces when a frame is enqueued onto the high virtual frame queue.

HVPGTDEQ
Traces when a frame is dequeued from the high virtual page table
frame queue.

HVPGTENQ
Traces when a frame is enqueued onto the high virtual page table
frame queue.

RSDEQ
Traces all events in the dequeue frame group. The group options, which
can be specified separately, are:

RSDDEFER
Traces when a frame is dequeued from the deferred FREEMAIN frame
queue or the orphan frame queue.

RSDFIX
Traces when a frame is dequeued from the fixed frame queue or the
local quad frame queue.

RSDGDFER
Traces when a frame is dequeued from the general defer frame queue.

RSDPAG
Traces when a frame is dequeued from the pageable frame queue.

Component Trace

Chapter 12. Component trace 481

RSDSBUF
Traces when a frame is dequeued from the central storage buffer frame
queue.

RSDSQA
Traces when a frame is dequeued from the SQA frame queue.

RSDVRW
Traces when a frame is dequeued from the V=R waiting frame queue.

RSENQ
Traces all events in the enqueue frame group. The group options, which
can be specified separately, are:

RSEDEFER
Traces when a frame is enqueued onto the deferred or orphan frame
queue.

RSEFIX
Traces when a frame is enqueued onto to the fixed frame queue or the
local quad frame queue.

RSEPAG
Traces when a frame is enqueued onto to the pageable frame queue.

RSESBUF
Traces when a frame is enqueued onto to the central storage buffer
frame queue.

RSEGDFER
Traces when a frame is enqueued on the general defer frame queue.

RSESQA
Traces when a frame is enqueued onto to the SQA frame queue.

RSEVRW
Traces when a frame is enqueued onto to the V=R waiting frame
queue.

RSFREE
Traces all events in the free frame group. The group options, which can be
specified separately, are:

FREE2G
Traces when a 2G frame group is freed.

PLFREE
Traces when a pageable large (1 MB) frame is freed.

PSFREE
Traces when a single pageable large (1 MB) frame is freed.

QFFREE
Traces when a quad group is freed.

QHFREE
Traces when a quad holding frame is freed.

QSFREE
Traces when a single quad frame is freed.

RSFDBL
Traces when a double frame is freed.

Component Trace

482 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

RSFSNG
Traces when a single frame is freed.

RSGET
Traces all events in the get frame group. The group options, which can be
specified separately, are:

GET2G
Traces when a 2G frame group is gotten.

LSGET
Traces when a single large frame is gotten.

PLGET
Traces when a pageable large frame (1 MB) group is obtained.

PSGET
Traces when a single pageable large (1 MB) frame group is obtained.

QFGET
Traces when a quad group is gotten.

QHGET
Traces when a quad holding frame is gotten.

QSGET
Traces when a single quad frame is gotten.

RSGDBL
Traces when a double frame is gotten.

RSGSNG
Traces when a single frame is gotten.

SCMBLKMG
Traces SCM Block Manager events. The group options, which can be specified
separately, are:

SCMEVACA
Traces SCM Evacuation Add to Table.

SCMFREE
Traces the SCM Block Manager Free Block.

SCMICHNG
Traces SCM Block Manager Increment Change.

SCMOBT
Traces the SCM Block Manager Obtain Block.

SCMOFLIN
Traces SCM Block Manager Offline Event.

SCMTRANS
Traces SCM Transfer Block ID Event

SCMSTART
Start of SCM Evacuation

SCMEND
End of SCM Evacuation

SCMSTASP
Start SCM Evacuation Address Space

Component Trace

Chapter 12. Component trace 483

SCMENDAS
End SCM Evacuation Address Space

SCMSTDSP
Start SCM Evacuation Data Space

SCMENDSP
End SCM Evacuation Data Space

SCMPOOLG
Get a blockid from a pool

SCMPOOLF
Free a blockid to a pool

SCMEVACR
Evacuate SCM from stg range

SCMDFGST
Start SCM Defragmentation

SCMADDIN
Add SCM increment

SCMADDEX
Add SCM extent

SHRDATA
Traces all events in the IARVSERV services group. The group options, which
can be specified separately, are:

GRPCREAT
Traces the creation of new sharing groups.

GRPDEL
Traces the deletion of existing sharing groups.

GRPPART
Traces the partitioning of existing sharing groups.

VIEWADD
Traces the addition of views to sharing groups.

VIEWCHG
Traces the changing of storage attributes of the view.

VIEWDEL
Traces the deletion of views from sharing groups.

VIEWMOVE
Traces the move of existing views from one sharing group to another.

SHRINT
Traces High Virtual Shared Interest events. The group options, which can be
specified separately, are:

SHRADD
Traces adding shared interest.

SHRDEL
Traces removing shared interest.

STORMOD
Traces all events in the storage state modification group. The group options,
which can be specified separately, are:

Component Trace

484 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CLONEPAG
Traces the page table entry copied to a subspace.

CLONESEG
Traces the segment table entry copied to a subspace.

TRACEB
Traces the trace buffer event. This event is always traced.

WORKUNIT
Traces all events in the net event trace group. The group options, which can be
specified separately, are:

ENABLE
Traces requests to enable a unit of work.

SUSPEND
Traces requests to suspend a unit of work.

RESUME
Traces requests to resume a unit of work.

XEPLINK
Traces all events in the external entry point linkage group. The group options,
which can be specified separately, are:

XEPENTRY
Traces entry to the entry point.

XEPEXIT
Traces exit from the entry point.

Examples of requesting SYSRSM traces
v Example 1: CTnRSMxx member

The member requests tracing of the FAULTS services group, the PGANY service,
and the VIO function, but only for address spaces X'11' and X'41' and for job
PGM1.
TRACEOPTS

ON
ASID(11,41)
JOBNAME(PGM1)
OPTIONS(’FAULTS’,’PGANY’,’VIO’)

v Example 2: TRACE command
The example specifies that options are to be obtained from the parmlib member
CTWRSM17.
trace ct,on,comp=sysrsm,parm=ctwrsm17

v Example 3: TRACE command
The example requests the same trace as Example 2, but specifies all options in
the REPLY.
trace ct,on,comp=sysrsm
* 78 ITT006A ...
reply 78,options=(faults,pgany,vio),asid=(11,41),jobname=(pgm1),end

Formatting a SYSRSM trace
Format the trace with an IPCS CTRACE COMP(SYSRSM) subcommand. The
subcommand has no OPTIONS values.

Component Trace

Chapter 12. Component trace 485

Output from a SYSRSM trace
“Example: RSM component trace records formatted with CTRACE
COMP(SYSRSM) FULL subcommand” is an example of RSM component trace
records formatted with the CTRACE COMP(SYSRSM) FULL subcommand.

Example: RSM component trace records formatted with CTRACE
COMP(SYSRSM) FULL subcommand
XEPENTRY 00000001 18:18:06.441411 External Entry Point Entry

FUNC1... PGFIX Page Fix
JOBN1... ASNB ASID1... 000D PLOCKS.. 80000001 CPU..... 0000
JOBN2... ASNB ASID2... 000D RLOCKS.. 80000000
KEY..... 0036 ADDR.... 015FF008 ALET.... 00000000
7D00
KEY..... 002C ADDR.... 005FEF80 ALET.... 00000000
00000000 005EF000 005EFFFF 00F00200 00FF8DD8 00F8BD00 00F8BC98
005EFFC3 005EF02C 00F8BD50 005EF02C 00F8BE00 00F8BC00 005FEF78
00FF91DA 81082798

FIX 00000003 18:18:06.441921 Page Being Fixed
FUNC1... PGFIX Page Fix
JOBN1... ASNB ASID1... 000D PLOCKS.. 88004001 CPU..... 0000
JOBN2... ASNB ASID2... 000D RLOCKS.. 88004000
KEY..... 0036 ADDR.... 015FF008 ALET.... 00000000
7D003500
KEY..... 005D ADDR.... 005EF000 ALET.... 00000000
KEY..... 0001 ADDR.... 011F8220 ALET.... 00000000
0151182C 012D2E60 81C00000 03000001 0000000D 005EF000 00000000 00000000

XEPENTRY 00000001 18:18:06.461716 External Entry Point Entry
FUNC1... PGFREE Page Free
JOBN1... ASNB ASID1... 000D PLOCKS.. 80000001 CPU..... 0000
JOBN2... ASNB ASID2... 000D RLOCKS.. 80000000
KEY..... 0036 ADDR.... 015FF008 ALET.... 00000000
8100
KEY..... 002C ADDR.... 005FEF80 ALET.... 00000000
005F5EC0 00F8BC08 00000000 00F00200 00FF8DD8 00FF6896 00F8DB00
00000008 00F8BF2C 00FF7B60 00000C60 00F8BE00 00F8Bc00 005FEF78
00FF96A4 810801B8

FREE 00000004 18:18:06.461766 Page Being Freed
FUNC1... PGFREE Page Free
JOBN1... ASNB ASID1... 000D PLOCKS.. 88004001 CPU..... 0000
JOBN2... ASNB ASID2... 000D RLOCKS.. 88004000
KEY..... 0036 ADDR.... 015FF008 ALET.... 00000000
8100
KEY..... 005D ADDR.... 005F5000 ALET.... 00000000
KEY..... 0001 ADDR.... 01210660 ALET.... 00000000
011F9CA0 01242560 81C00000 03000000 0000000D 005F5000 00000000 00000000

FREE 00000004 18:18:06.461805 Page Being Freed
FUNC1... PGFREE Page Free
JOBN1... ASNB ASID1... 000D PLOCKS.. 88004001 CPU..... 0000
JOBN2... ASNB ASID2... 000D RLOCKS.. 88004000
KEY..... 0036 ADDR.... 015FF008 ALET.... 00000000
8100
KEY..... 005D ADDR.... 005EF000 ALET.... 00000000
KEY..... 0001 ADDR.... 011F8220 ALET.... 00000000
0151182C 012D2E60 81C00000 03000000 0000000D 005EF000 00000000 00000000

The fields that you may need in the report are:

FUNC1
The function in control at the time the trace event was recorded.

JOBN1
The job name identifying the address space that contains the unit of work
requesting the RSM service.

Component Trace

486 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

JOBN2
The job name that matched a name in the job name list provided with the
TRACE operator command.

ASID1
The ASID identifying the address space that contains the unit of work
requesting the RSM service.

ASID2
The ASID that matched an identifier in the ASID list provided with the TRACE
operator command.

CPU
The central processor identifier for the processor the trace is running on.

SYSSPI component trace

The following summarizes information for requesting a SYSSPI component trace
for the service processor interface (SPI).

Information For SYSSPI:

Parmlib member None

Default tracing No

Trace request OPTIONS parameter None

Buffer v Default: 64KB

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: In the component area

Trace records location Address-space buffer

Request of SVC dump By the component

Trace formatting by IPCS CTRACE COMP(SYSSPI)

Trace format OPTIONS parameter None

Requesting a SYSSPI trace
Request a SYSSPI trace at the direction of the IBM Support Center. Do the
following:
1. Start the trace with the command:

TRACE CT,ON,COMP=SYSSPI

2. After the interval specified by IBM, stop the trace with the command:
TRACE CT,OFF,COMP=SYSSPI

When the buffer fills up, the component requests an SVC dump, which includes
the contents of the buffer. Optionally, the operator could enter a DUMP command.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 487

Formatting a SYSSPI trace
1. Use SPZAP to change a module. IBM supplies the change.
2. Format the trace with an IPCS CTRACE COMP(SYSSPI) subcommand. The

subcommand has no options values.

SYSTTRC transaction trace
Transaction trace does not participate in component trace-controlled processing. It
is a standalone tracing facility. Do not use trace CT commands for transaction
trace. Do not attempt to add a component trace parmlib member for transaction
trace. For information on transaction trace, see Chapter 13, “Transaction trace,” on
page 507.

SYSVLF component trace

The following summarizes information for requesting a SYSVLF component trace
for the virtual lookaside facility (VLF).

Information For SYSVLF:

Parmlib member None

Default tracing Yes; minimal; unexpected events

Trace request OPTIONS parameter None

Buffer v Default: N/A

v Range: N/A

v Size set by: MVS system

v Change size after IPL: No

v Location: Data space. Enter DISPLAY J,VLF to
identify the VLF data spaces. In the REPLY for the
DUMP command, specify
DSPNAME=('VLF'.Dclsname,'VLF'.Cclsname),
where clsname is a VLF class name.

Trace records location Address-space buffer, data-space buffer

Request of SVC dump By DUMP or SLIP command or when SYSVLF full
tracing is turned off

Trace formatting by IPCS CTRACE COMP(SYSVLF)

Trace format OPTIONS parameter None

Requesting a SYSVLF trace
A minimal trace runs whenever VLF is in control. No actions are needed to request
the minimal trace.

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

488 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

To record more than the minimal trace, request full tracing with the TRACE
operator command. Note that full tracing can slow system performance. The
following table indicates the parameters you can specify on a TRACE CT
command. In response to the command, the system does not prompt the operator
for a reply.

Parameters Allowed on TRACE CT for trace?

ON or OFF One is required

nnnnK or nnnnM No

COMP Required

SUB No

PARM No

When you turn the full tracing off, the system writes a dump containing the trace
records, then resumes minimal tracing.

Examples of requesting and stopping SYSVLF full traces
v Example 1: Requesting a SYSVLF full trace

The command requests a full trace.
TRACE CT,ON,COMP=SYSVLF

v Example 2: Stopping a SYSVLF full trace
The command turns off full tracing. In response, the system writes a dump and
resumes minimal SYSVLF tracing.
TRACE CT,OFF,COMP=SYSVLF

v Example 3: Command for SYSVLF tracing in a sysplex
The following command turns on tracing for a SYSVLF trace in the systems of a
sysplex. Because SYSVLF has no parmlib member, the CTIITT00 member is used
to prevent prompts.
route *all,trace ct,on,comp=sysvlf,parm=ctiitt00

Formatting a SYSVLF trace
Format the trace with an IPCS CTRACE COMP(SYSVLF) subcommand. The
subcommand has no OPTIONS values.

Output from a SYSVLF trace
Figure 144 on page 490 is an example of VLF component trace records formatted
with the CTRACE COMP(SYSVLF) FULL subcommand. It shows formatted
exception records from the trace buffers.

Component Trace

Chapter 12. Component trace 489

The following explains fields in the report. Additional fields that are not shown in
the example can be in a report. These additional fields are explained below in the
Other Fields section.

COFRCVRY
The name or identifier of the trace record.

00000000
The identifier in hexadecimal

16:03:02.181262
The time stamp indicating when the record was placed in the trace table

HASID... 000E
The home address space identifier

SASID... 000E
The secondary address space identifier

CPUID... FF170284 30900000
The identifier of the processor that placed the record in the trace table

CALLER
The address of the routine that issued a VLF service request, such as DEFINE,
CREATE, NOTIFY, PURGE, etc..

MODNAME. COFMPURG
The name of the module that was running

ABEND... 840C4000
The abend that occurred and caused VLF to enter recovery is 0C4

REASON.. 00000011
The reason code associated with the abend

EPTABLE. PURG ESTA
Information used for diagnosis by IBM

RETCODE. 00000000
The return code that was issued by the module that is exiting

RSNCODE. 00000000
The reason code that was issued by the module that is exiting

FTPRTS.. 80300000
Information used for diagnosis by IBM

VLF COMPONENT TRACE FULL FORMAT
**** 01/27/90
COFRCVRY 00000000 16:03:02.181262 VLF RECOVERY ENTRY
HASID... 000E SASID... 000E CPUID... FF170284 30900000
MODNAME. COFMPURG ABEND... 840C4000 REASON.. 00000011
EPTABLE. PURG ESTA

COFRCVRY 00000001 16:03:02.181324 VLF RECOVERY EXIT
HASID... 000E SASID... 000E CPUID... FF170284 30900000
MODNAME. COFMPURG ABEND... 840C4000 REASON.. 00000011
RETCODE. 00000000 RSNCODE. 00000000 FTPRTS.. 80300000 DATA.... 00000000

.

.

.

Figure 144. Example: VLF component trace records formatted with CTRACE
COMP(SYSVLF) FULL subcommand

Component Trace

490 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

DATA.... 00000000
Information used for diagnosis by IBM

Other Fields: Fields that are not shown in the example CTRACE output but that
may appear in a report are:

CINDX
The concatenation index of the major name for which an object has been
created or retrieved

CLASS... NPDS3
The name of a VLF class

DDNAME
The DDNAME of the concatenated data set list

FUNC=xxxx
Indication of the function for which a NOTIFY occurred

FUNCCODE
The hexadecimal value of the NOTIFY function code when it cannot be
interpreted

MAJOR
The major name

MINADDR
Address of a field containing a minor name

MINALET
Access list entry token (ALET) associated with the address used to locate the
minor name

MINOR
The minor name

OBJSIZE
The total size, in bytes, of the object returned by a COFRETRI macro

PARMS
Hexadecimal dump of the COFNOTIF macro parameter list

TLSTADDR
Address of a target list for a COFRETRI macro

TLSTALET
Access list entry token (ALET) of a target list for a COFRETRI macro

TLSTSIZE
The length, in bytes, of the target list

UTOKEN
User token returned by a COFIDENT macro and required as input for
COFREMOV, COFCREAT, and COFRETRI macros

VOLSER
The volume serial

Component Trace

Chapter 12. Component trace 491

SYSWLM component trace

The following summarizes information for requesting a SYSWLM component trace
for the workload manager (WLM).

Information For SYSWLM:

Parmlib member None

Default tracing Yes; minimal; unexpected events

Trace request OPTIONS parameter None

Buffer v Default: 64KB

v Range: 64KB - 16M

v Size set by: MVS system

v Change size after IPL: Yes, when starting a trace

v Location: Extended common service area (ECSA)

Trace records location Address-space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSWLM)

Trace format OPTIONS parameter None

Requesting a SYSWLM trace
Request a SYSWLM component trace by a TRACE CT command.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON, nnnnK, OFF One is required. nnnnK specifies the size of
the buffer.

COMP Required

SUB No

PARM No

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID No

JOBNAME No

Before using this component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

492 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on REPLY for Trace?

OPTIONS No

WTR Yes

Examples of requesting SYSWLM traces
Figure 145 shows an example of how to request a SYSWLM component trace.

Formatting a SYSWLM trace
Format the trace with an IPCS CTRACE COMP(SYSWLM) subcommand. The
subcommand has no OPTIONS values.

Output from a SYSWLM trace
Figure 146 is an example of SYSWLM component trace records formatted with the
CTRACE COMP(SYSWLM) SHORT subcommand.

Figure 147 on page 494 shows an example of SYSWLM component trace records
formatted with the CTRACE COMP(SYSWLM) FULL subcommand.

trace ct,on,comp=syswlm
* 17 ITT006A ...
reply 17,end

Figure 145. Example: equesting a SYSWLM component trace

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

WLMEPEXT 00005004 14:07:42.807618 Entry Point Exited
WLMEPENT 00005003 14:07:46.335563 Entry Point Entered
WLMEPEXT 00005004 14:07:46.336376 Entry Point Exited
WLMEPENX 00005005 14:07:46.336540 Entry Point Entered Exception
WLMEPENT 00005003 14:07:46.336557 Entry Point Entered
WLMEPENT 00005003 14:07:46.337909 Entry Point Entered
SMSYNMEM 00000921 14:07:46.512018 SM Synch XCF Member
WLMEPEXT 00005004 14:07:46.512360 Entry Point Exited
WLMEPENT 00005003 14:07:46.512374 Entry Point Entered
SMSYNMEM 00000921 14:07:46.594486 SM Synch XCF Member

Figure 146. Example: SYSWLM component trace records formatted with CTRACE
COMP(SYSWLM) SHORT subcommand

Component Trace

Chapter 12. Component trace 493

The following explains fields in the report.

FUNCID
The module table entry for the module that wrote the trace record.

CPU
The CPU that the module was running on.

HOMEASID
ASID from PSAAOLD.

REQASID
ASID that was explicitly coded on trace invocation.

HJOBNAME
JOBNAME of home address space.

RJOBNAME
JOBNAME that was explicitly coded on trace invocation.

KEY
Identifies the type of data that follows. The data is formatted in both HEX and
EBCDIC.

SYSXCF component trace

The following summarizes information for requesting a SYSXCF component trace
for the cross-system coupling facility (XCF).

Information For SYSXCF:

Parmlib member CTnXCFxx. Default member: CTIXCF00 specified in
COUPLE00 member

Default tracing Yes; minimal; unexpected events

Trace request OPTIONS parameter In CTnXCFxx or REPLY for TRACE command

SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY1 WLMEPENT 00005003 14:52:23.449339 Entry Point Entered

FUNCID... 0409 CPU...... 0001
HOMEASID. 000B HJOBNAME. WLM
REQASID.. 0000 RJOBNAME. UNKNOWN
KEY...... 5018 RUCA_EPIDS IWMDMPRP

04098000
KEY...... 501E PARM1

00000084
KEY...... 501F PARM2

00000040
KEY...... 5020 PARM3

00000000

Figure 147. Example: SYSWLM component trace records formatted with CTRACE
COMP(SYSWLM) FULL subcommand

Before Using This component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

494 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Information For SYSXCF:

Buffer v Default:

4MB

v Range: 16KB - 16MB (System rounds size up to a
multiple of 72 bytes.)

v Size set by: CTnXCFxx member

v Change size after IPL: No

v Location: Extended local system queue area
(ELSQA) of XCFAS

Trace records location Address-space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSXCF)

Trace format OPTIONS parameter Yes

Requesting a SYSXCF trace
Specify options for requesting a SYSXCF component trace on a CTnXCFxx parmlib
member or on the reply for a TRACE CT command.

If you specify additional tracing options while the system is running, place the
trace records in a trace data set or sets, because the trace buffer size specified at
initialization cannot be changed while the system is running. Specify NOWRAP to
keep from losing trace records.

Note: NOWRAP prevents trace records written to the data set or sets from being
overwritten. Once the data set or sets are filled, no more records are written to
them. The system still writes trace records to the address-space buffers. The system
wraps the address-space buffers, so that trace records may be lost. Be sure to
allocate enough space on the data set or sets to hold all the records needed for
diagnosis.

CTnXCFxx parmlib member
The following table indicates the parameters you can specify on a CTnXCFxx
parmlib member.

Parameters Allowed on CTnXCFxx?

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE Yes, at IPL or when reinitializing XCF

OPTIONS Yes

SUB No

PRESET No

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

Component Trace

Chapter 12. Component trace 495

Note: You can change the buffer size only at IPL or when reinitializing XCF.
Specify the new buffer size in the BUFSIZE parameter on the CTnXCFxx member
being used.

IBM supplies a CTIXCF00 parmlib member, which specifies that component tracing
for XCF be initialized with the component default buffer size and minimal
component tracing active. The content of CTIXCF00 is:
TRACEOPTS ON

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Parameters Allowed on TRACE CT for Trace?

ON or OFF One is required

nnnnK or nnnnM No

COMP Required

SUB No

PARM Yes

Parameters Allowed on TRACE CT for Write?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for Trace?

ASID No

JOBNAME No

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter for the CTnXCFxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

ARM
Traces events for automatic restart management services.

CFRM
Traces events for coupling facility resource management services.

GROUP
Traces events for group services, such as XCF groups joining or disassociating
from XCF services.

GRPNAME=(groupname[,groupname]...)
Reduces tracing to events for only the specified XCF groups. If GRPNAME is
specified, the GROUP, SERIAL, SIGNAL, and STATUS options are filtered by
the specified XCF group or groups; the STORAGE option is not filtered by
GRPNAME. You can specify up to 8 XCF groups.

MODID=(modid [,modid]...)
Reduces tracing of all events to only the specified XCF module IDs. You can
specify up to eight XCF Module IDs. Use XCF Module ID tracing only when
requested by IBM Support.

Component Trace

496 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

NOTEPAD
Traces events for XCF note pad services processing.

NPNAME=(npname[,npname]...)
Reduces tracing of NOTEPAD events related to XCF note pad services
processing to only the specified note pad names or note pad names that match
the specified note pad name patterns. If NPNAME is specified, the NOTEPAD
option trace events are filtered by the specified note pad names. You can
specify up to four note pad names or note pad name patterns. To be valid,
each npname must meet the following conditions:
v A note pad name can consist of two to four sections separated by periods.
v If a section is not specified, it is defaulted to all blanks.
v The first and the second sections must not be blank.
v Each section, if specified, must be left-justified with no trailing blanks.
v Each section can contain up to eight upper case alphanumeric (A-Z,0-9),

national (@,#,$), or underscore (_) characters.
v Any section can contain the asterisk (*) wild card character, which is used to

match zero (0) or more characters (for example, OWN*.*).

SERIAL
Traces events for serialization services.

SERVER
Traces events for client/server services processing.

SFM
Traces events for sysplex failure management services.

SIGNAL
Traces events for signalling services processing.

STATUS
Traces events for XCF monitoring services and sysplex partitioning services.

STORAGE
Traces events for storage management services.

SRVNAME=(servername [,servername]...)
Reduces tracing of SERVER events related to XCF client/server processing to
only the specified server names or server names that match the specified
server name patterns. If SRVNAME is specified, the SERVER option trace
events are filtered by the specified server names. You can specify up to 4
server names/server name patterns. To be valid, the server name must meet
the following conditions:
v Server names consist of one to four 8 byte sections separated by a period.
v If a section is not specified, it is defaulted to all blanks.
v Each section can contain any alphanumeric (A-Z,a-z,0-9), national (@,#,$), or

underscore (_) character.
v Any section but the first can be entirely blank.
v Any section can contain the asterisk (*) wild card character which is used to

match zero (0) or more characters (for example, SYS*.*)
v The server name can be enclosed within single quotes to preserve case

sensitivity (for example, 'sysxcf.*')

Examples of requesting SYSXCF traces
In Figure 148 on page 498, the CTnXCFxx member requests STORAGE and
SIGNAL options. To minimize lost trace data, the member also starts external

Component Trace

Chapter 12. Component trace 497

writer WTRDASD1 with the NOWRAP option specified and connects the trace to
the writer.

The example shown in Figure 149 uses the TRACE command to request the same
type of trace that is shown in Figure 148.

Formatting a SYSXCF trace
Format the trace with an IPCS CTRACE COMP(SYSXCF) subcommand. The
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the options to narrow down the records displayed so that you can
more easily locate any errors. If the CTRACE subcommand specifies no options,
IPCS displays all the trace records.

The options are:

ARM
Formats trace records for automatic restart management services.

CFRM
Formats trace records for coupling facility resource management services.

CLUSTER
Formats trace records for XCF z/OS cluster manageable resource services.

GROUP
Formats trace records for XCF group services, such as groups joining or
disassociating from XCF services.

NOTEPAD
Formats trace records for XCF Note Pad Services.

SERIAL
Formats trace records for serialization services.

SERVER -
Formats trace records for XCF client/server services.

SFM
Formats trace records for sysplex failure management services.

SIGNAL
Formats trace records for signalling services processing.

TRACEOPTS
WTRSTART(WTDASD1) NOWRAP
ON
WTR(WTDASD1)
OPTIONS(’STORAGE’,’SIGNAL’)

Figure 148. Example: CTnXESxx member requesting a SYSXCF trace

trace ct,wrtstart=wtdasd1
trace ct,on,comp=sysxcf
* 62 ITT006A ...
r 62,wtr=wtdasd1,options=(storage,signal),end

Figure 149. Example: TRACE command for SYSXCF trace

Component Trace

498 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

STATUS
Formats trace records for XCF monitoring services and sysplex partitioning
services.

STORAGE
Formats trace records for storage management services.

THREAD=(thread, [,thread]...)
Formats trace records filtered by one or more specific trace threads. The XCF
component trace thread filter option provides the capability to limit the
presentation of trace entries to specified trace threads. XCF uses trace threads
to correlate processing of units of work between the subcomponents of the
XCF component. You can enter trace threads entered in hexadecimal notation
using x'tttttttt' or tttttttt notation (for example, x’01001768’ or 01001768) with
or without the leading x and surrounding quotes (').

Output from a SYSXCF trace
Figure 150 shows an example of SYSXCF component trace records formatted with
the CTRACE COMP(SYSXCF) FULL subcommand.

SYSXES component trace

The following summarizes information for requesting a SYSXES component trace
for cross-system extended services (XES).

Information For SYSXES:

Parmlib member CTnXESxx; default member: CTIXES00 specified in
COUPLE00 member

Default tracing Yes; minimal; unexpected events

COMPONENT TRACE FULL FORMAT
COMP(SYSXCF)

**** 01/10/2012
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- -------------
SY1 STORAGE 0F030001 18:00:56.717138 Element class defined
00FFF002 00000004 00000000 00000000 | ..0............. |
00000000 00000000 00000000 00000000 | |
00000000 00000000 00000000 00000000 | |
00000000 0000 | |
SY1 SIGNAL 08560000 18:00:56.730065 Entry to Tranport Classes Group
00FFF002 08018000 8B801F4C C9D5C9E3 | ..0........<INIT |
40404040 00000000 00000000 00000000 | |
40000000 7EBCDB00 00000000 00000000 | ...=........... |
00000000 0000 | |
.
.
.

Figure 150. Example: SYSXCF component trace records formatted with CTRACE
COMP(SYSXCF) FULL subcommand

Before Using This component trace

This topic assumes you have read:

v “Planning for component tracing” on page 348

v “Obtaining a component trace” on page 357

v “Viewing the component trace data” on page 369

Component Trace

Chapter 12. Component trace 499

Information For SYSXES:

Trace request OPTIONS parameter In CTnXESxx or REPLY for TRACE command

Buffer v Default:

– 336KB for connector-related SUB trace buffers.
There are multiple instances of these trace
buffers in use on the system

– 16M for the GLOBAL SUB trace buffer

v Range:

– 16KB - 16MB for connector-related SUB trace
buffers

– The size for the GLOBAL SUB trace buffer
cannot be changed.

v Size set by: CTnXESxx member or TRACE CT
command

v Change size after IPL: Yes

v Location: Data space. In the REPLY for the DUMP
command, specify SDATA=XESDATA and
DSPNAME=(asid.IXLCTCAD) where asid is the
ASID for address space XCFAS

Trace records location Data-space buffer, trace data set

Request of SVC dump By DUMP or SLIP command

Trace formatting by IPCS CTRACE COMP(SYSXES)

Trace format OPTIONS parameter Yes

SYSXES supports sublevel tracing. Tracing options are inherited through a
hierarchy of trace levels. If you set trace options without specifying a sublevel, the
options apply at the highest level, or head, of the hierarchy. A sublevel inherits its
trace options from the next higher level, unless options are specified explicitly for
the sublevel. If you set trace options for a sublevel, the options are inherited by
any sublevels lower in the hierarchy. Figure 151 on page 501 shows the hierarchical
structure of SYSXES traces.

Component Trace

500 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Two classes of sublevel traces inherit the head trace options:
v The global sublevel trace has its own trace buffer and controls tracing that is not

related to any particular connection. Request GLOBAL tracing by specifying
SUB=(GLOBAL).

v Connection sublevels control tracing for a particular connection. Each connection
has its own trace buffer. Connection sublevels are filtered hierarchically based
on:
1. Structure name (STRNAME) of the coupling facility structure to which the

system is connected
2. Address space identifier (ASID) of the address space from which the

connection was made
3. Connection name (CONNAME) of the particular connector for which tracing

is requested

Therefore, options specified for a particular structure name are inherited only by
address spaces connected to that structure. Options specified for a particular
address space are inherited only by connections that are connected through that
address space.
Specify SUB=(strname), SUB=(strname.asid), or SUB=(strname.asid.conname),
depending on the degree of specificity you need. Do not specify conname
without specifying asid. Also, do not specify asid without specifying strname.
When specifying a structure name or connector name on the SUB option, if the
name contains special characters, it must be in quotation marks. If it is in
quotation marks, upper and lower case characters are not the same. Therefore

┌─────────────────┐
│SYSXES head │

┌─────────┤ options ├─────────┐
│ └─────────────────┘ │
↓ ↓

┌────────────────┐ ┌──────────────────────┐
│ │ │ │
│ GLOBAL │ ┌──────┤ STRUCTURE │
│ sublevel │ │ │ sublevel │
│ │ │ │ │
└────────────────┘ │ └────────────┬─────────┘

| │ │
| ↓ ↓
| ┌─────────┐ ┌──────────────────────┐
| │ │ │ │
| │ ADDRESS │ │ ADDRESS SPACE │
| │ SPACE │ │ sublevel ├──────────┐
| │ │ │ │ │
| └────┬────┘ └───────────┬──────────┘ │
| │ │ │
| ↓ ↓ ↓
| ┌───────────┐ ┌────────────────────┐ ┌───────────┐
| │ │ │ │ │ │
| │ Connector │ │ Connection │ │ Connector │
| │ │ │ sublevel │ │ │
| │ │ │ │ │ │
| └───────────┘ └────────────────────┘ └───────────┘
| |
| |
| |

Non-connection Connection
tracing tracing

Figure 151. SYSXES SUB Trace Structure

Component Trace

Chapter 12. Component trace 501

the case information is important and must identically match the name used by
the system. Once the name is enclosed in quotation marks it becomes case
sensitive.

Requesting a SYSXES trace
Specify options for requesting a SYSXES component trace on a CTnXESxx parmlib
member or on the reply for a TRACE CT command.

CTnXESxx parmlib member
The following table indicates the parameters you can specify on a CTnXESxx
parmlib member.

Parameters Allowed on CTnXESxx?

ON or OFF Yes

ASID No

JOBNAME No

BUFSIZE Yes

OPTIONS Yes

SUB Yes, but only for a sublevel trace

PRESET Yes, but only for a sublevel trace

LIKEHEAD No

WTR Yes

WTRSTART or WTRSTOP Yes

Setting buffer size: To select a size for your trace buffers, consider the following:
v The trace buffers can be smaller if you are using an external writer, because

buffer wrapping is not a concern.
v When re-creating a problem, you might first want to make the buffer size larger.
v SYSXES has one trace buffer of the specified size per connector, plus one for the

global trace. The amount of storage used can be significant if the system is going
to have many connectors. Furthermore, the trace buffers are allocated from a
single common area data space (CADS). If the entire CADS is used up,
subsequent connections will not be traced because buffer space is not available.
When the BUFSIZE parameter is not specified, SYSXES will allocate a buffer at
the specified size per connector.

v The SYSXES trace buffers are in disabled reference (DREF) data space storage, so
storage constraints may limit buffer size.

Changing buffer size: To change the size of your trace buffers while a trace is
running, either issue a TRACE CT command or activate a different CTnXESxx
parmlib member. You can use these methods to change SUB levels in the hierarchy
so that different SUB traces can have different sized buffers. The SYSXES GLOBAL
sub buffer size is set by the system to 16MB. You cannot override this default
value.

TRACE and REPLY commands
The following tables indicate the parameters you can specify on TRACE CT
commands and a REPLY.

Component Trace

502 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Parameters Allowed on TRACE CT for Trace?

ON or OFF One is required

nnnnK or nnnnM Yes

COMP Required

SUB Yes

PARM Yes

Parameters Allowed on TRACE CT for Writer?

WTRSTART or WTRSTOP One is required, if a writer is being used

Parameters Allowed on REPLY for trace?

ASID No

JOBNAME No

OPTIONS Yes

WTR Yes

OPTIONS parameter
The values for the OPTIONS parameter for the CTnXESxx parmlib member and
reply for a TRACE command, in alphabetical order, are:

ALL
Traces events listed for all of the options.

CONFIG
Traces changes in the state of connectivity to the coupling facility, such as
addition or removal of paths.

CONNECT
Traces events for system and subsystem components that connect to or
disconnect from XES resources and for exit processing.

HWLAYER
Traces events for the XES services that handle communications with the
coupling facility.

LOCKMGR
Traces events related to global management of resources and to global
management-related exits.

RECOVERY
Traces events within the modules that handle XES resource access failures, for
both resource allocation and mainline command processing. This option
provides more details than is provided by default.

REQUEST
Traces events related to requests to access data through XES mainline services.

SIGNAL
Traces events related to XES internal signalling.

STORAGE
Traces events related to management of XES control blocks.

Component Trace

Chapter 12. Component trace 503

Examples of requesting SYSXES traces
In Figure 152, the CTnXESxx member requests a trace of HWLAYER, LOCKMGR,
CONNECT, and REQUEST trace events and a buffer size of 100KB.

The example shown in Figure 153 requests a trace of CONNECT, CONFIG, and
STORAGE trace events for connection CON3 in ASID 5 for structure STR3.

Formatting a SYSXES trace
Format the trace with an IPCS CTRACE COMP(SYSXES) subcommand. The
OPTIONS parameter specifies the options that select trace records to be formatted.
Your formatting options depend to a great extent on the tracing options you
requested. Use the options to narrow down the records displayed so that you can
more easily locate any errors. If the CTRACE subcommand specifies no options,
IPCS displays all the trace records.

ALL
Formats all trace records.

CONFIG
Formats changes in the state of connectivity to the coupling facility.

CONNECT
Formats events for system and subsystem components that connect to or
disconnect from XES resources and for exit processing.

HWLAYER
Formats events for the XES services that handle communications with the
coupling facility.

LOCKMGR
Formats events related to global management of resources and to global
management-related exits.

RECOVERY
Formats events within the modules that handle XES resource access failures.

REQUEST
Formats events related to requests to access data through XES mainline
services.

SIGNAL
Formats events related to XES internal signalling.

STORAGE
Formats events related to management of XES control blocks.

TRACEOPTS
ON
OPTIONS(’HWLAYER’,’LOCKMGR’,’CONNECT’,’REQUEST’)
BUFSIZE(100K)

Figure 152. Example: CTnXESxx member requesting a SYSXES trace

trace ct,on,comp=sysxes,sub=(str3.asid(5).con3)
* 17 ITT006A ...
reply 17,options=(connect,config,storage),end

Figure 153. Example: TRACE command for SYSXES trace

Component Trace

504 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

In the CTRACE subcommand, the SUB((subname.subname.subname)) parameter
specifies the sublevel traces. A subname is:
v GLOBAL for an event not related to a particular connection.
v strname.asid.conname for an event related to the specified connector. The

subname for a connection-related sublevel can contain up to three parts:
– strname for the structure
– asid for the address space identifier (ASID)
– conname for the connection name, if asid is also specified

Any sublevel specification is valid for the QUERY option; for example:
v SUB(STR3)
v SUB(STR3.ASID(5))

Only the GLOBAL and fully qualified connection sublevel specifiers are valid with
a COMP parameter; for example:
v SUB(GLOBAL)
v SUB(STR3.ASID(5).CON3)

Output from a SYSXES trace
Figure 154 is an example of SYSXES component trace records formatted with the
following subcommand:
CTRACE COMP(SYSXES) SUB((GLOBAL)) SHORT OPTIONS((CONNECT,HWLAYER))

COMPONENT TRACE SHORT FORMAT
COMP(SYSXES) SUBNAME((GLOBAL))
**** 10/20/93

MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
-------- -------- --------------- -----------

HWLAYER 090C0002 20:47:22.096016 EXIT FROM IXLMLTAM
HWLAYER 07140001 20:47:22.096296 ENTRY TO IXLERTRR
HWLAYER 07140002 20:47:22.096429 EXIT FROM IXLERTRR
CONNECT 08190001 20:47:30.171676 CONNECTOR DIE ROUTINE
HWLAYER 090C0001 20:47:30.171718 ENTRY TO IXLMLTAM
HWLAYER 09030001 20:47:30.171758 ENTRY TO IXLMLXRB
HWLAYER 09080001 20:47:30.171779 ENTRY TO IXLM2SR START IMMED RE
HWLAYER 09080003 20:47:30.171804 ISSUING A SMSG COMMAND
CONNECT 08110001 20:47:30.172316 MAINLINE TIMER EXIT ENTERED
CONNECT 08110004 20:47:30.172476 MAINLINE TIMER EXITED
HWLAYER 09080004 20:47:30.180754 COMPLETION OF A SMSG COMMAND

Figure 154. Example: formatted SYSXES component trace records

Component Trace

Chapter 12. Component trace 505

506 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 13. Transaction trace

Transaction trace provides a consolidated trace of key events for the execution path
of application or transaction type work units running in a multi-system application
environment. By tracing the path of a work unit running in a single system, or
(more importantly) across systems in a sysplex environment, that is being
processed by multi-system transaction servers, subsystem interfaces, and resource
managers, transaction trace enables a system programmer to debug problems in
those environments.

The essential task of transaction trace is to aggregate data showing the flow of
work between components in the sysplex that combine to service a transaction.
Transaction trace traces events such as component entry, exit, exceptions and major
events such as COMMIT, and ROLLBACK. Do not use transaction trace as a
component tracing facility.

How transaction trace works
Transaction trace (TTrace) is attached as a daughter task in the system trace
address space, after master scheduler initialization completes. Once initialization
has completed, and the first transaction trace command is entered with a filter that
specifies the attributes of the work unit(s) to be traced, transaction trace is
activated. Additional information, such as the use of an external writer, is also
allowable for transaction trace processing.

Once transaction trace is activated, WLM Classify invokes a filter exit to determine
whether the current work unit is traced. The work unit's attributes are compared
with the command filter attributes to determine if tracing should occur. If tracing is
required, a non-zero token is built and returned to the Classify caller. If no tracing
is performed for that work unit, set the transaction trace token to zero. The caller
(CICS or IMS, for example) propagates the token in a manner similar to the
propagation of the service class token.

Next, transaction trace macros:
v determine if tracing can be performed (ITZQUERY)
v initiate the writing of a transaction trace record (ITZEVENT).

Transaction trace writes trace data in a transaction trace data space in the trace
address space. When an external writer is defined, the record is also written to the
external writer. Use interactive problem control system (IPCS) to view the
transaction trace records.

Transaction trace commands
Use the following commands with transaction trace. For information about using
the TRACE or DISPLAY TRACE commands with transaction trace, see z/OS MVS
System Commands.
v TRACE TT
v DISPLAY TRACE,TT

© Copyright IBM Corp. 1988, 2015 507

The TRACE TT command
Transaction trace uses the MVS TRACE command with the TT keyword to:
v Start transaction trace.
v Add additional trace filter sets.
v Remove an active trace filter set.
v Stop transaction trace.
v Start a CTRACE external writer.
v Stop a CTRACE external writer.
v Change the transaction trace buffer size.
v Specify a level indicator.
v Specify whether or not latent transactions is traced.

Starting transaction trace
Transaction trace is started when a TRACE TT command is issued with filter
information. Following is an example of defining a transaction trace filter set with
a user ID of TESTERP1 and transaction name of TRAN1.
trace tt,user=testerp1,tran=tran1
ITZ002I ’BUFSIZ’ IS SET TO 0001M
ITZ001I TRANSACTION TRACE IS NOW ACTIVE WITH FILTER SET 01

When multiple filter keywords are specified, as in the preceding example, a 'logical
AND' is used to determine if the transaction should be traced or not traced.

Adding additional trace filter sets
Up to five transaction trace filter sets can be concurrently active. They are activated
when the TRACE TT command is issued with filter information. The command in
the following example defines an additional transaction trace filter set with a user
ID of DONNA*. The use of an asterisk (*) in the last character position indicates a
wildcard is being defined. When determining if a transaction trace token is to be
created, any user ID with a prefix of DONNA will result in a match.
trace tt,user=donna*
ITZ001I TRANSACTION TRACE IS NOW ACTIVE WITH FILTER SET 02

If multiple filter sets are specified a 'logical OR' is used among the filter sets to
determine if the transaction should be traced or not traced.

Removing an active trace filter set
A transaction trace filter set is removed when the OFF=x keyword is used. For
example, the following command indicates that the transaction trace filter set 02
has been turned off.
trace tt,off=2
ITZ016I TRANSACTION TRACE FILTER SET TURNED OFF

Stopping transaction trace
Use the OFF=ALL keyword to stop transaction trace. For example:
trace tt,off=all
ITZ007I TRANSACTION TRACE IS NO LONGER ACTIVE.
A DUMP COMMAND MAY BE ISSUED TO DUMP THE TRANSACTION TRACE
DATA SPACE.

Use the DUMP command to dump the transaction trace data space. For example:
DUMP COMM=(TTrace for TRAN=ATM1)

R x,DSPNAME=’TRACE’.SYSTTRC

Transaction trace

508 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Starting a CTRACE external writer
Transaction trace supports the use of an external writer for processing transaction
trace records. An external writer is specified on the initial command that activates
transaction trace or is specified standalone while transaction trace is active. For
example:
trace tt,wtr=abcdefg

Component trace messages are issued in response to this command.

Stopping a CTRACE external writer
Transaction trace external writer processing can be stopped with the use of the
WTR=OFF keyword. For example:
trace tt,wtr=off

Component trace messages are issued in response to this command.

Changing the data space size
The transaction trace TTRACE TT command allows a change in the transaction
trace data space size. The data space is from 16K to 999K or 1M to 32M. For
example:
trace tt,bufsiz=2m
ITZ002I ’BUFSIZ’ IS SET TO 0002M

Specifying a level indicator
The transaction trace TTRACE TT command allows definition of a level indicator
for each filter set.
v 1 pertains to component entry, exit, exceptions, and major events.
v 2 pertains to detail, controlled by component external; the default is 2
trace tt,bufsiz=2m,user=testerp1,tran=tran1,lvl=01
ITZ002I ’BUFSIZ’ IS SET TO 0002M
ITZ001I TRANSACTION TRACE IS NOW ACTIVE WITH FILTER SET 01

Tracing latent transactions
Use the transaction trace TTRACE TT command to specify whether or not latent
transactions are traced. The default is to trace latent processing. Consider the
following when deciding what to specify:
v The transaction is currently active in the system.
v The transaction is marked for tracing.
v The filter set used to mark the transaction eligible for tracing is no longer active.
trace tt,latent=no
ITZ002I ’LATENT’ IS SET TO NO

DISPLAY TRACE,TT
Use the TT keyword on the DISPLAY TRACE command to determine the status of
transaction trace. Do not use the component trace display command to inquire on
the status of transaction trace. In addition to displaying information specified on
the TRACE TT command, the DISPLAY TRACE,TT response also displays a list of
the systems participating in transaction trace sysplex processing. Figure 155 on
page 510 is an example of a DISPLAY TRACE,TT command response.

Transaction trace

Chapter 13. Transaction trace 509

Using IPCS to view transaction trace output
Use the IPCS subcommand CTRACE COMP(SYSTTRC) to view transaction trace
records. To obtain a sysplex TTrace stream, use the IPCS MERGE subcommand to
format TTrace records from multiple input data sets. Any generalized trace facility
(GTF) records imbedded in the TTrace records are processed without having to
specify additional keywords to the above command. Figure 156 is an example of a
short IPCS CTRACE COMP(SYSTTRC) SHORT command response.

Figure 157 on page 511 is an example of a IPCS CTRACE COMP(SYSTTRC) LONG
command response.

IEE843I 14.47.19 TRACE DISPLAY
SYSTEM STATUS INFORMATION
ST=(ON,0064K,00064K) AS=ON BR=OFF EX=ON
MT=(ON,024K)
--
TRANSACTION TRACE STATUS: ON

BUFSIZ= 0002M WRITER= *NONE* LATENT= YES
01: TRAN= TRAN1 USER= TESTERP1

LVL = 001
02: USER=DONNA* LVL = 002
SYSTEMS PARTICIPATING IN TT: SYS1 SYS2 SYS3

Figure 155. Example: DISPLAY TRACE,TT command response

ctrace comp(systtrc) short
COMPONENT TRACE SHORT FORMAT
COMP(SYSTTRC)
**** 09/23/1999
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- ----------

SY1 TTCMD 00000002 14:17:20.833847 TRACE TT Command

SY1 TTCMD 00000002 14:18:11.611755 TRACE TT Command

SY1 EVENT 00000003 14:31:55.813125 TRACE EVENT

SY1 EVENT 00000003 14:31:55.899216 TRACE EVENT

SY1 EVENTU 00000005 14:31:56.378480 TRACE EVENT with User
Data

SY1 EVENTG 00000004 14:31:56.818367 TRACE EVENT with GTF
Data

Figure 156. Example: IPCS CTRACE COMP(SYSTTRC) SHORT response

Transaction trace

510 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

ctrace comp(systtrc) full
COMPONENT TRACE FULL FORMAT
COMP(SYSTTRC)
**** 09/23/1999
SYSNAME MNEMONIC ENTRY ID TIME STAMP DESCRIPTION
------- -------- -------- --------------- ----------
SY1 TTCMD 00000002 14:17:20.833847 TRACE TT Command
CMDID.....0501
COMMAND...TRACE TT,BUFSIZ=2M,USER=TESTERP1,TRAN=TRAN1,
LVL=01

SY1 TTCMD 00000002 14:18:11.611755 TRACE TT Command
CMDID.....0402
COMMAND...TRACE TT,USER=DONNA*

SY1 EVENT 00000003 14:31:55.813125 TRACE EVENT

COMPONENT..COMP EVENTDESC..TTVAPIEA008 CMDID.....0501
FUNCTION...TEST_ITZEVENT_WITH_FUNCTIONNAME. TCB...007ED9C8
ASID..0022
TRACETOKEN..SY1 B2E447A3 F32E4048 05010100 00000000

SY1 EVENT 00000003 14:31:55.899216 TRACE EVENT

COMPONENT..COMP EVENTDESC..TTVAPIEA009 CMDID.....0000
FUNCTION................................... TCB...007ED7A8
ASID..0022
TRACETOKEN.. 40404040 40404040 40404040 40404040
LATENT workunit traced.

SY1 EVENTU 00000005 14:31:56.378480 TRACE EVENT with User
Data

COMPONENT..COMP EVENTDESC..TTVAPIEA003 CMDID.....0501
FUNCTION................................... TCB...007ED148
ASID..0022
TRACETOKEN..SY1 B2E447A3 F5D056C1 0105FF00 00000000
+0000 E3C8C9E2 40C9E240 E3E340C4 C1E3C140 │ THIS IS TT DATA │
+0010 C6D6D940 C140E3D9 C1D5E2C1 C3E3C9D6 │ FOR A TRANSACTIO │
+0020 D540E3D9 C1C3C540 D9C5C3D6 D9C44BE3 │ N TRACE RECORD.T │
+0030 C8C9E240 C9E240E3 E340C4C1 E3C140C6 │ HIS IS TT DATA F │
+0040 D6D940C1 40E3D9C1 D5E2C1C3 E3C9D6D5 │ OR A TRANSACTION │
+0050 40E3D9C1 C3C540D9 C5C3D6D9 C44B │ TRACE RECORD. │

SY1 EVENTG 00000004 14:31:56.818367 TRACE EVENT with GTF
Data

COMPONENT..COMP EVENTDESC..TTVAPIEA004 CMDID.....0402
FUNCTION................................... TCB...007ED368
ASID..0022
TRACETOKEN..SY1 B2E447A3 F566F584 03030300 00000000
HEXFORMAT AID FF FID 00 EID E000
+0000 E3C8C9E2 40C9E240 C7E3C640 C4C1E3C1 │ THIS IS GTF DATA │
+0010 40C6D6D9 40C140E3 D9C1D5E2 C1C3E3C9 │ FOR A TRANSACTI │
+0020 D6D540E3 D9C1C3C5 40D9C5C3 D6D9C44B │ ON TRACE RECORD. │
+0030 E3C8C9E2 40C9E240 C7E3C640 C4C1E3C1 │ THIS IS GTF DATA │
+0040 40C6D6D9 40C140E3 D9C1D5E2 C1C3E3C9 │ FOR A TRANSACTI │
+0050 D6D540E3 D9C1C3C5 40D9C5C3 D6D9C44B │ ON TRACE RECORD. │

Figure 157. Example: IPCS CTRACE COMP(SYSTTRC) LONG response

Chapter 13. Transaction trace 511

512 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 14. GETMAIN, FREEMAIN, STORAGE (GFS) trace

GFS trace is a diagnostic tool that collects information about the use of the
GETMAIN, FREEMAIN, or STORAGE macro. You can use GFS trace to analyze the
allocation of virtual storage and identify users of large amounts of virtual storage.
You must use the generalized trace facility (GTF) to get the GFS trace data output.

The following topics describe GFS trace:
v “Starting and stopping GFS trace”
v “Receiving GFS trace data” on page 514
v “Formatted GFS trace output” on page 514
v “Unformatted GFS trace output” on page 516

Starting and stopping GFS trace
The following procedure explains how to request a GFS trace.
1. In the DIAGxx parmlib member, set the VSM TRACE GETFREE parameter to

ON and define the GFS trace control data.
Example: DIAGxx parmlib member for starting GFS tracing: The following
DIAGxx parmlib member starts GFS trace and limits the trace output to
requests to obtain or release virtual storage that is 24 bytes long and resides in
address spaces 3, 5, 6, 7, 8 and 9:

VSM TRACE GETFREE (ON)
ASID (3, 5-9)
LENGTH (24)
DATA (ALL)

You will need another DIAGxx parmlib member defined to stop GFS tracing.
See 5 on page 514.

2. Ask the operator to enter the SET DIAG=xx command to activate GFS trace
using the definitions in the DIAGxx parmlib member.

3. Start a GTF trace (ask the operator to enter a START membername command on
the operator console). membername is the name of the member that contains the
source JCL (either a cataloged procedure or a job). Tell the operator to specify a
user event identifier X'F65' to trace GTF user trace records.
Example: Starting a GTF trace for GFS data: In the following example, the
operator starts GTF tracing with cataloged procedure GTFPROC to get GFS
data in the GTF trace output. The contents of cataloged procedure GTFPROC
are as follows:
//GTF PROC MEMBER=GTFPROC
//* Starts GTF
//IEFPROC EXEC PGM=AHLGTF,REGION=32M,
// PARM=’MODE=EXT,DEBUG=NO,TIME=YES,BLOK=40K,SD=0K,SA=40K’
//IEFRDER DD DSN=D31POOL.PJREDGTF.TRACE,
// DISP=SHR,UNIT=3380,VOL=SER=CTDSD1

The operator then replies to messages AHL100A with the USRP option. When
message AHL101A prompts the operator for the keywords for option USRP, the
operator replies with USR=(F65) to get the GFS user trace records in the GTF
trace output.
START GTFPROC

00 AHL100A SPECIFY TRACE OPTIONS

© Copyright IBM Corp. 1988, 2015 513

REPLY 00,TRACE=USRP

01 AHL101A SPECIFY TRACE EVENT KEYWORDS--USR=

REPLY 01,USR=(F65)

02 AHL102A CONTINUE TRACE DEFINITION OR REPLY END

REPLY 02 END

AHL103I TRACE OPTIONS SELECTED--USR=(F65)

03 AHL125A RESPECIFY TRACE OPTIONS OR REPLY U

REPLY 03,U

4. To stop the GTF trace, ask the operator to enter a STOP procname command on
the operator console.

5. To stop GFS trace, create a DIAGxx parmlib member with VSM TRACE
GETFREE(OFF) and have the operator enter a SET DIAG=xx command.
Example: DIAGxx parmlib member for stopping GFS tracing: The following
DIAGxx parmlib member stops GFS trace:

VSM TRACE GETFREE (OFF)

For additional information, see the following references:
v See z/OS MVS Initialization and Tuning Reference for the syntax of the DIAGxx

parmlib member.
v See z/OS MVS System Commands for the syntax of the SET and START

commands.
v See Chapter 10, “The Generalized Trace Facility (GTF),” on page 229 for

information about how to specify GTF EIDs.

Receiving GFS trace data
GTF places the GFS trace data in a user trace record with event identifier X'F65'. To
obtain GFS trace data, do one of the following:
v When GTF writes trace data in a data set, format and print the trace data with

the IPCS GTFTRACE subcommand.
v When GTF writes trace data only in the GTF address space, use a dump to see

the data. Request the GTF trace data in the dump through the SDATA=TRT
dump option.

v Issue the IPCS GTFTRACE subcommand to format and see the trace in an
unformatted dump.

See z/OS MVS IPCS Commands for the GTFTRACE subcommand.

Formatted GFS trace output
Figure 158 on page 515 shows an example of formatted GFS trace output.

GETMAIN, FREEMAIN, STORAGE trace

514 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The GETMAIN / FREEMAIN / STORAGE trace produces a second type of record
with a slightly different format. Following is an example of this record type:
USRDA F65 ASCB 00F4C280 JOBN IYCSCTS6

Releasing Subpool=230 Key=1 Asid=003E TCB=008B11E0
Storage address=7F653E00 Length=512 X’200’

READY
IPCS NOPARM

IPCS
DROPD DA(’D10JHM1.VSMNEW.GTF’)

BLS18206I All records for 1 dump dropped
IPCS

SETD NOCONFIRM
IPCS

GTFTRACE DA(’D10JHM1.VSMNEW.GTF’) USR(F65)
IKJ56650I TIME-03:42:20 PM. CPU-00:00:01 SERVICE-52291 SESSION-00:00:20 JANUARY 22,1998
BLS18122I Initialization in progress for DSNAME(’D10JHM1.VSMNEW.GTF’)
IKJ56650I TIME-03:42:21 PM. CPU-00:00:01 SERVICE-54062 SESSION-00:00:20 JANUARY 22,1998

**** GTFTRACE DISPLAY OPTIONS IN EFFECT ****
USR=SEL

**** GTF DATA COLLECTION OPTIONS IN EFFECT: ****
USRP option

**** GTF TRACING ENVIRONMENT ****
Release: SP6.0.6 FMID: HBB6606 System name: CMN
CPU Model: 9672 Version: FF Serial no. 270067

USRDA F65 ASCB 00FA0800 JOBN GTFJM2
Getmain SVC(120) Cond=Yes
Loc=(Below,Below) Bndry=Dblwd
Return address=849CA064 Asid=001A Jobname=GTFJM2
Subpool=229 Key=0 Asid=001A Jobname=GTFJM2 TCB=008DCA70 Retcode=0
Storage address=008D6768 Length=10392 X’2898’
GPR Values

0-3 00002898 00000000 7FFFC918 0B601E88
4-7 01FE3240 008FF830 849CA000 00FA0800
8-11 00000000 00000DE8 049CBFFE 849CA000
12-15 049CAFFF 0B601A9C 00FE9500 0000E510

GMT-01/06/1998 21:15:43.111628 LOC-01/06/1998 21:15:43.111628
.
.
.

USRDA F65 ASCB 00FA0800 JOBN GTFJM2
Freemain SVC(120) Cond=No
Return address=8B2D608A Asid=001A Jobname=GTFJM2
Subpool=230 Key=0 Asid=001A Jobname=GTFJM2 TCB=008DCA70 Retcode=0
Storage address=7F73DFF8 Length=8 X’8’
GPR Values

0-3 00000000 7F73DFF8 008D82D8 008D7BC0
4-7 008D8958 008D6B08 008D85C8 0B335000
8-11 00000002 00000000 7F73DFF8 008D862C
12-15 8B2D6044 008D8C98 849D242A 0000E603

GMT-01/06/1998 21:15:43.111984 LOC-01/06/1998 21:15:43.111984

IPCS
SETD CONFIRM

IPCS
END

READY
END

Figure 158. Example of formatted GFS trace output

GETMAIN, FREEMAIN, STORAGE trace

Chapter 14. GETMAIN, FREEMAIN, STORAGE (GFS) trace 515

This type of record is unique because it does not trace a return address. It writes
whenever an individual area of storage is FREEMAINed as part of a subpool
FREEMAIN request. There may be many of these records in a row. The last record
of the sequence is followed by a record that indicates a subpool FREEMAIN
request. This record includes the return address of the issuer of the subpool
FREEMAIN.

Unformatted GFS trace output
“Layout of the GFS trace output” shows unformatted GFS trace output as it would
appear in the trace data set where GTF puts the output. You can use this
information to write your own formatting or analysis routines.

Layout of the GFS trace output
Unformatted GFS Trace Output

Part 1 - This part is in every GFS trace entry.

Offset Length Description

0 1 Flags
X’80’ - Common storage
X’40’ - Caller’s registers are traced
X’20’ - This is a subpool release range entry
X’10’ - Copy of VSWKOWNINFO

1 1 Actual subpool after translation

2 2 ASID which owns the storage

4 4 Address of storage area

8 4 Actual length of storage area

C 4 Address of TCB

10 1 Copy of VSWKSKEY

11 1 Copy of VSWKRC

12 1 Modification level number X’01’ - HBB6606

X’02’ - HBB7703
X’03’ - HBB7730

13 1 Reserved

14 2 Offset of Part 2

16 2 Offset of Part 3

Part 2 - This part is in every GRS trace entry except for subpool

release range entries.

Offset Length Description

0 4 Caller’s return address

4 4 Minimum length for a variable request

8 4 Maximum length for a variable request

C 8 Name of job which owns the storage

14 8 Name of job which contained the program which

GETMAIN, FREEMAIN, STORAGE trace

516 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

requested the storage

1C 2 ASID which contained the program which
requested the storage

1E 1 Copy of VSWKESPL

1F 1 Copy of VSWKSVC

20 1 Copy of VSWKRFLG

21 1 Copy of VSWKPFLG

22 1 Copy of VSWKFLGS

23 1 Copy of VSWKRFLG2

24 4 Copy of VswkRetAddrHigh

28 4 Copy of VswkAR15Value

2C 4 Copy of VswkAR1Value

Part 3 - This part is in the GFS trace record if the caller’s registers are traced.
Offset Length Description

0 X’40’ Caller’s registers 0-15

Note: The IGVVSMWK macro contains field names beginning with VSWK. For
more information, see z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/).

GETMAIN, FREEMAIN, STORAGE trace

Chapter 14. GETMAIN, FREEMAIN, STORAGE (GFS) trace 517

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

GETMAIN, FREEMAIN, STORAGE trace

518 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 15. Recording logrec error records

When an error occurs, the system records information about the error in the logrec
data set or the logrec log stream. The information provides you with a history of
all hardware failures, selected software errors, and selected system conditions. Use
the Environmental Record, Editing, and Printing program (EREP):
v To print reports about the system records
v To determine the history of the system
v To learn about a particular error

Collection of software and hardware information
Use the records in the logrec data set or the logrec log stream as additional
information when a dump is produced. The information in the records will point
you in the right direction while supplying you with symptom data about the
failure. Figure 159 shows the error processing for a logrec data set, named
SYS1.LOGREC, which is the default name for the logrec data set.

You can set your system up to record errors on either a logrec data set or in a
logrec log stream. This topic tells you what you need to know about each medium
before deciding how to collect error records. To use the logrec data set or a logrec
log stream, you need to know how to initialize each of them, how to record system
events on each of them, how to collect the data when it is available, and how to
interpret the output through EREP.

This topic describes each of these tasks:
v “Choosing the correct logrec recording medium” on page 520
v “Initializing and reinitializing the logrec data set” on page 520
v “Defining a logrec log stream” on page 522
v “Error recording contents” on page 524

SYS1.LOGREC
Data Set

Header Record

Time Stamp

Record Types

• ANR
• CRW
• DDR
• EOD
• IOS recovery
• IPL
• MCH
• MDR
• MIH
• OBR
• SLH
• Software

EREP retrieves
and formats
information from
SYS1.LOGREC

System recording routines
build and write records
onto SYS1.LOGREC

IFCDIP00 initializes
SYS1.LOGREC by
creating header and
time stamp records

Record
Reports

Statistical
Reports

Record
Summary
Reports

Accumulation
Data Set

Figure 159. Logrec Error Recording Overview

© Copyright IBM Corp. 1988, 2015 519

v “Obtaining information from the logrec data set” on page 527
v “Obtaining records from the logrec log stream” on page 530
v “Obtaining information from the logrec recording control buffer” on page 535
v “Interpreting software records” on page 537

Choosing the correct logrec recording medium
You can choose where the system will record logrec error records. When a system
is not in a sysplex, an installation can use a logrec data set, associated with an
individual system, to record error records. An installation can choose to continue
this type of recording by initializing the logrec data set before IPLing the system
that will use it.

In a sysplex, however, because each system requires its own logrec data set, you
might need to look at each logrec data set when an error occurs.

To eliminate the problem of having to manage up to 32 logrec data sets, an
installation can choose to define one coupling facility logrec log stream. Using a
coupling facility logrec log stream eliminates the following:
v Running IFCDIP00 to initialize multiple logrec data sets
v Handling full or emergency data set conditions
v Scheduling the daily offload of logrec data sets
v Concatenating multiple history data sets
v Archiving logrec records

For more information, see the following references:
v See “Initializing and reinitializing the logrec data set” if you want to initialize a

logrec data set for your system.
v See “Defining a logrec log stream” on page 522 if you want to define a logrec

log stream for your installation.

Initializing and reinitializing the logrec data set
You must initialize the logrec data set before IPLing the system that will use it. You
reinitialize the logrec data set when an uncorrectable error occurs. You clear the
logrec data set when it is full or near full.

To initialize or reinitialize the logrec data set, use the service aid program
IFCDIP00. To clear a full logrec data set, use EREP. IFCDIP00 creates a header
record and a time stamp record for the logrec data set.

Attention: The logrec data set is an unmovable data set. If you attempt to move
it after IPL using a program, such as a defragmentation program, your system will
experience difficulty both reading from and writing to the data set.

Initializing the logrec data set
If the logrec data set does not exist, you must first allocate it and then initialize it.
(Whenever you allocate or reallocate the logrec data set, the newly allocated data
set will not be used until you initialize it and IPL the system on which it is to be
used.)

Figure 160 on page 521 is an example of a job that scratches and uncatalogs an
existing logrec data set and allocates, catalogs, and initializes a new one. (If you do

Recording logrec error records

520 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

not currently have a logrec data set, start with the second step of the job.) Use the
JCL statements below to do the following:
v Rename the logrec data set. For example, rename SYS1.LOGREC to

SYS1.LOGREC.OLD.
v Allocate and initialize a new logrec data set with new space specifications using

IFCDIP00.

Note: If you run the JCL in Figure 160 and an error occurs after the logrec data set
has been scratched but before it has been reallocated, you will be unable to IPL
your system using this logrec data set. To solve this problem, do one of the
following:
v Use the DFSMSdss stand-alone restore program to restore your old logrec data

set.
v Run the reallocate job on the data set while running under another system.

See z/OS DFSMSdss Storage Administration for information about the DFSMSdss
stand-alone restore program.

Reinitializing the logrec data set
You need to reinitialize the logrec data set either when the data set is full or when
an uncorrectable error occurs.

If the data set is full, use EREP to record the data in a history data set and
reinitialize logrec.

In the case of an error, invoke IFCDIP00 with JCL statements to reinitialize your
existing logrec data set. IFCDIP00 resets the logrec data set header record field to
indicate that the entire data set can be used and clears the time stamp record to
hexadecimal zeros.

For information on using EREP, see the EREP User's Guide.

//KATHYLR JOB (9999),’CREATE NEW LOGREC DS’,CLASS=A,MSGCLASS=X,
// MSGLEVEL=(1,1),NOTIFY=KATHY
//*--
//* RENAME THE CURRENT LOGREC DATASET
//* UNCATLG SYS1.LOGREC SO THE NEW LOGREC CAN BE ALLOCATED ON
//* ANOTHER VOLUME, IF DESIRED
//*--
//RENAME EXEC PGM=IEHPROGM
//M43RES DD VOL=SER=M43RES,UNIT=3390,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

RENAME DSNAME=SYS1.LOGREC,VOL=3390=M43RES, X
NEWNAME=SYS1.LOGREC.OLD

UNCATLG DSNAME=SYS1.LOGREC
/*
//*--
//* CREATE THE NEW LOGREC DATASET AND INITIALIZE IT
//*--
//IFCDIP00 EXEC PGM=IFCDIP00,COND=(0,LT)
//SERERDS DD DSN=SYS1.LOGREC,DISP=(,CATLG),
// VOL=SER=M43RES,UNIT=SYSDA,SPACE=(CYL,3,,CONTIG)
/*

//

Figure 160. Example: Changing the space allocation

Recording logrec error records

Chapter 15. Recording logrec error records 521

Figure 161 is an example of using the IFCDIP00 service aid to reinitialize the logrec
data set. It use the following JCL statements:
v The JOB statement initiates the job; the job name INSERLOG has no significance.
v The EXEC statement specifies the program name (PGM=IFCDIP00).
v The SERERDS DD statement specifies the reinitialized logrec data set (in this

case SYS1.LOGREC), which must be on a permanently mounted volume
(VOL=SER=111111 in this example); the DDNAME must be SERERDS.

Defining a logrec log stream
Before defining a logrec log stream, note that IBM recommends that you IPL with a
logrec data set initialized by IFCDIP00. If you do not IPL with a data set, you
cannot change the logrec recording medium from LOGSTREAM to DATASET
using the SETLOGRC command.

To use the logrec log stream, you must first prepare your installation to use system
logger functions. IBM recommends that you use a coupling facility log stream for
LOGREC so that you can merge data from multiple systems in a sysplex.

To obtain logrec records for a single system sysplex, you can also use a DASD-only
log stream, which is single system in scope. Note that this is not recommended for
a multi-system sysplex, because you can only have one logrec log stream per
sysplex. This means that if you make your logrec log stream DASD-only, only one
system will be able to access it. See the system logger chapter of z/OS MVS Setting
Up a Sysplex for information on DASD-only log streams.

See z/OS MVS Setting Up a Sysplex for more information.

The following steps describe how to use a coupling facility logrec log stream in
place of a logrec data set:
1. Define a log stream named SYSPLEX.LOGREC.ALLRECS using the system

logger log stream definition utility, IXCMIAPU.
IFBLSJCL (see Figure 162 on page 523) is available in SYS1.SAMPLIB as an
example of using the administrative data utility, IXCMIAPU, to define the
coupling facility logrec log stream to a sysplex.

//INSERLOG JOB
//STEP1 EXEC PGM=IFCDIP00
//SERERDS DD DSNAME=SYS1.LOGREC,UNIT=3380,
// VOL=SER=111111,DISP=(OLD,KEEP)

Figure 161. Example: Reinitializing the logrec data set

Recording logrec error records

522 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: MAXBUFSIZE must be at least 4068 because logrec writes records in one
page blocks. Specify SMS storage group, storage, data and management classes
such that when one data set is full, another is allocated. Allocate as much space
as is allocated for all the logrec data sets on the systems in the sysplex before
migrating to a logrec log stream.
The most effective way to manage all logrec records is to specify the automatic
migration of log data sets to HSM. This automatic migration eliminates the
need to create and maintain archival history data sets, with one exception. If
the log stream data set directory is full, you can, using SUBSYS-options2 of the
LOGR subsystem, copy data from a log stream to a history data set and then
delete the copied data from the log stream.

2. Either specify LOGREC=LOGSTREAM in the IEASYSxx parmlib member or,
after IPLing with LOGREC=dsname, use the SETLOGRC command to change
the logrec recording medium to a logrec log stream. In general, any records
written to any logrec data sets before changing to a logrec log stream must be
read by a separate EREP job. However, the MERGE option can be used to
combine logrec output from the logstream with a logrec data set in a single
EREP job. If you IPL the system with LOGREC=LOGSTREAM, you cannot use
the SETLOGRC command to change the logrec recording medium to a logrec
data set.

3. Change the EREP job stream as follows:

//IFBLSJCL JOB
//* Member Name: IFBLSJCL *
//* Descriptive Name: *
//* Sample JCL to provide an example of using the System Logger *
//* utility to define the Logrec log stream to a sysplex. *
//* Function: *
//* This JCL sample provides an example of running the System *
//* Logger utility (IXCMIAPU) to define the Logrec log stream *
//* in the logger inventory. *
//* *
//* Note that the MAXBUFSIZE parameter must have at least 4068 *
//* specified, or Logrec will not be able to write to the Log *
//* stream. *
//* *
//* The Logrec log stream name must be specified as *
//* SYSPLEX.LOGREC.ALLRECS. *
//* *
//* Suggested Modifications: *
//* Provide the specifications that are relevant for your *
//* installation on the SYSIN DATA TYPE(LOGR) definition. *
//* For example, the following parameters define the log stream *
//* data set attributes: *
//* *
//* LS_DATACLAS(data class) - Name of data class *
//* LS_MGMTCLAS(management class) - Name of management class *
//* LS_STORCLAS(storage class) - Name of storage class *
//* *
//* Distribution Library: ASAMPLIB *
//* *
//DEFINE EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DATA TYPE (LOGR)

DEFINE STRUCTURE NAME(LOGRECSTRUCTURE)
LOGSNUM(1)
AVGBUFSIZE(4068)
MAXBUFSIZE(4068)

DEFINE LOGSTREAM NAME(SYSPLEX.LOGREC.ALLRECS)
STRUCTNAME(LOGRECSTRUCTURE)

/*

Figure 162. Example: Sample JCL of using IXCMIAPU

Recording logrec error records

Chapter 15. Recording logrec error records 523

v Change the SERLOG DD DSN=SYS1.LOGREC statement associated with a
logrec data set to an ACCIN DD DSN=SYSPLEX.LOGREC.ALLRECS
statement, with corresponding SUBSYS parameters, to associate EREP with
the logrec log stream. The SUBSYS parameters are described in “Obtaining
records from the logrec log stream” on page 530.

v Identify the input as a history data set. Leave the output to a history data set
as currently recommended, because all subsequent steps should already use
the history data set as input.

Note: Using a logrec log stream as input for multiple steps is not
recommended because each subsequent step processes more records than the
prior, causing numbers and data in successive reports not to match.

v Subsequent EREP report steps that normally process history data sets no
longer need to concatenate one history data set per system.

For more information, see the following documentation:
v See z/OS MVS Setting Up a Sysplex for information about preparing an

installation to use system logger functions.
v See EREP User's Guide for more information about running an EREP job to

obtain a history data set.
v See z/OS MVS System Commands for more information about the SETLOGRC

command.
v See z/OS MVS Initialization and Tuning Reference for more information about the

IEASYSxx parmlib member.

Error recording contents
The system creates records for every hardware or software failure and system
condition that occurs and stores these records in the logrec data set or the logrec
log stream. The records can contain two types of data that document failures and
system conditions:
v Error statistics, which include the number of times that channels, machine

models, and I/O devices have failed
v Environmental data, which include time and circumstances for each failure or

system condition

Note: A programmer can also build symptom records using the SYMRBLD macro
and have those records written into the logrec data set or the logrec log stream
using the SYMREC macro.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for information
about the macros.

Each record is recorded in hexadecimal format as an undefined length record. Each
record provides:
v Relevant system information at the time of the failure
v Device hardware status at the time of the failure
v Results of any device/control unit recovery attempt
v Results of any software system recovery attempt
v Statistical data

Recording logrec error records

524 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

When taken as a whole, these records create a history of the system, which begins
early in system initialization and ends when the system stops. These records
contain:
v Full Abend History: The system writes a logrec record for every abend,

regardless of whether the dump is requested or suppressed. The logrec data set
or the logrec log stream contains a full record of abnormal ends.

v System Initialization Errors: The system writes errors during system
initialization, before other diagnostic services are completely functioning.

v Lost Record Counts: The system writes a logrec record to summarize lost error
records. Sometimes hardware-detected or software-detected errors occur close
together. When errors are too close together, the system cannot write an
individual record for each error; instead, the system counts the errors and writes
a summary record.

These sections describe what is in the logrec data set:
v “Logrec data set header record”
v “Logrec data set time stamp record”

This section describes what is in the logrec data set or the logrec log stream:
v “Types of logrec error records” on page 526

See z/OS MVS Diagnosis: Reference for the format of the header record, time stamp
record, and logrec error records.

Logrec data set header record
IFCDIP00 creates a header record on the logrec data set. The logrec data set header
record includes:
v Information that the system recording routines can use to determine where to

write new record entries onto the logrec data set
v Information that EREP can use to find existing record entries on the logrec data

set. This information is valuable when you run an EREP report to find a
particular error.

v Information that the system recording routines can use to issue a warning
message when the logrec data set is 90% full.

Note: The logrec log stream does not have a header record generated.

Logrec data set time stamp record
IFCDIP00 creates a time stamp record on the logrec data set in the first record
space following the header record. The time stamp record provides current date
and time information for the IPL record. This allows you to measure the
approximate time interval, recorded in the IPL records, between the ending and
reinitialization of the operating system.

At preset time intervals, the system obtains the current date and time and writes
this information on the time stamp record, overlaying the previous date and time.

During a subsequent initialization of the system, the system obtains the date and
time from the time stamp record and adds it to the IPL record.

If IFCDIP00 is used to reinitialize the logrec data set, the information in the time
stamp record is overlaid with hexadecimal zeros until the system writes the current
date and time.

Recording logrec error records

Chapter 15. Recording logrec error records 525

Note: The logrec log stream does not have a time stamp record generated.

Types of logrec error records
When the logrec data set or the logrec log stream is initialized, the system begins
recording events. The system records the following types of error records,
containing device-dependent or incident-dependent information:
v Asynchronous notification records (ANR):

– External timer reference (ETR) records for information related to Sysplex
Timer incidents.

– Direct access storage device (DASD)-service information message (SIM)
records for information concerning servicing needs.

– Link maintenance information (LMI) records for information for a particular
link incident.

v Channel report word (CRW) records for:
– Channel path error
– Subchannel error
– Configuration alert error
– Monitoring facility error

v Dynamic device reconfiguration (DDR) records for:
– Operator and system swaps between direct access and magnetic tape devices
– Operator swaps on unit record devices

v End-of-day (EOD) records for information related to end-of-day and system
ending conditions whenever the RDE option has been included in the system.

v Input/output supervisor (IOS) records for information related to IOS recovery
actions.
– Dynamic pathing services validation (DPSV) records for recovery actions.

v Initial program load (IPL) records for information related to system
initializations whenever the RDE option has been included in the system.

v Machine check handler (MCH) records for:
– Central processor failure
– Storage failure
– Storage key failure
– Timer failure

v Miscellaneous data (MDR) records for:
– Buffer overflow and device failures on buffered log devices
– Demounts on DASD with buffered logs
– Demounts by the DFSMSdss program between DASD having buffered logs

and removable disk packs
– Device failures on teleprocessing devices connected to an IBM communication

controller
– Statistical recording by EREP on DASD with buffered logs

v Missing interruption handler (MIH) records for:
– Missing I/O interruptions
– Specified time intervals
– Recovery actions required
– Recovery actions performed

v Outboard (OBR) records for:

Recording logrec error records

526 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

– Counter overflow statistics and device failures on devices supported by the
teleprocessing access methods

– End-of-day (EOD) requests
– Paging I/O errors
– Permanent channel and I/O device failures
– Statistic counter overflow
– Temporary or intermittent I/O device failures
– Demounts on IBM magnetic tape drives
– Devices that have their own diagnostic buffers
– Statistical recording by EREP on DASD with buffered logs

v Subchannel logout handler (SLH) records for channel errors.
v Software records, including:

– Machine checks (hardware-detected hardware errors, such as software
recovery attempts for hard machine failures)

– Program checks (hardware-detected software errors)
– Restart errors (operator-detected errors)
– Lost record errors (count of the records that did not fit in the buffer to be

written to the logrec data set)
– Software-detected errors, such as:

- Abnormal ends, which are also called abends; reported in software records
or erroneous supervisor call (SVC) instructions. These are known as
SDWA-type software records.

- Errors that are not abnormal ends; reported in symptom records.
- Errors generated by application programs or system components; reported

in symptom records.

As you can see, the system records a comprehensive list of error records that can
help you when you need to diagnose a system failure.

Obtaining information from the logrec data set
You can obtain the information recorded in the logrec data set using EREP, which
formats error records. EREP can perform the following functions:
v Create an accumulation data set from the logrec data set
v Clear the logrec data set
v Copy an input accumulation data set to an output accumulation data set
v Merge data from an accumulation data set and the logrec data set
v Print a detailed description of selected hardware and software error records
v Summarize and print statistics for device failures

EREP places the information from the logrec data set into reports. Using JCL, you
determine the type of report you want EREP to produce.

Using EREP
EREP presents information from the logrec software error records in five reports.

Detail Edit Report for an Abend
The system obtains most of the information for an abend logrec error record
from the system diagnostic work area (SDWA). The report contents are:

Recording logrec error records

Chapter 15. Recording logrec error records 527

v Record header: report type (SOFTWARE RECORD), system, job name, error
identifier (ERRORID), date, and time

v Search argument abstract
v Serviceability information
v Time of error information
v Status information from the request block
v Recovery environment
v Recovery routine action
v Hexadecimal dump of the SDWA, including the variable recording area

(VRA)

Figure 163 shows how to generate detail edits and summaries of all software
and operational records:

Detail edit report for a symptom record
The system obtains most of the information for a non-abend logrec error record
from the symptom record identified in the SYMREC macro. A programmer can
build the symptom record using the SYMRBLD macro. The report contents are:
v Record reader: report type (SYMPTOM RECORD), system, date, and time
v Search argument abstract
v System environment
v Component information
v Primary and secondary symptom strings
v Free-format component information
v Hexadecimal dump of the symptom record

System summary report
The report summarizes errors for each of your installation's principle parts, or
subsystems: processors, channels, subchannels, storage, operating system
control programs, and I/O subsystems. The report contents are:
v Record header: report type (SYSTEM SUMMARY), system, date, time
v Total errors and errors for each processor for the following types of errors:

– IPL
– Machine check
– Program error
– End of day

v Identifications for processors in the report

//STEP7 EXEC PGM=IFCEREP1,PARM=’CARD’
//ACCIN DD DSN=EHISTORY,DISP=SHR
//DIRECTWK DD UNIT=SYSDA,
// SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD *
PRINT=PS
TYPE=SIE
HIST
ACC=N
ENDPARM

Figure 163. Example: Printing a detail edit report

Recording logrec error records

528 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Event history report
The report shows the error history: the frequency, order, and pattern of errors.
The report contents are:
v Record header: report type (EVENT HISTORY)
v Abstracts for abend and non-abend logrec error records in chronological

order
v Totals of the types of logrec error records for the system and for each

processor

The JCL shown in Figure 164 defines a two-step job. The first step prints an
event history report for all logrec data set records. The second step formats
each software, IPL, and EOD record individually. The event history report is
printed as a result of the EVENT=Y parameter on the EXEC statement of the
first step. It can be a very useful tool to the problem solver because it prints
the records in the same sequence they were recorded and therefore shows an
interaction between hardware error records and software error records.

Detail summary report
The report summarizes information about data in logrec error records. The
report contents are:
v Record header: report type being summarized
v Summary information and counts

The example in Figure 165 on page 530 shows how to generate detail
summaries of all I/O errors.

//EREP JOB MSGLEVEL=1
//EREPA EXEC PGM=IFCEREP1,PARM=’EVENT=Y,ACC=N’,
// REGION=256K
//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR
//TOURIST DD SYSOUT=A
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
//EREPB EXEC PGM=IFCEREP1,PARM=’TYPE=SIE,PRINT=PS,ACC=N’,
// REGION=256K
//SERLOG DD DSN=SYS1.LOGREC,DISP=SHR
//TOURIST DD SYSOUT=A
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DUMMY
/*

Figure 164. Example: Printing an event history report

Recording logrec error records

Chapter 15. Recording logrec error records 529

Obtaining records from the logrec log stream
You can access records in the logrec log stream by either:
v Writing a program using IXGCONN and IXGBRWSE services, see “Using

System Logger services to obtain records from the logrec log stream.”
v Using EREP. see “Using EREP to obtain records from the logrec log stream.”

Using System Logger services to obtain records from the
logrec log stream

You can obtain records from the logrec log stream by writing a program that uses
the IXGCONN and IXGBRWSE system logger services to return log data. The data
returned by the IXGBRWSE service for the logrec log stream is mapped by the
IFBLOGLB data area. (See z/OS MVS Programming: Assembler Services Guide for
information on using system logger services.)

Note that the logrec log stream output from the IXGBRWSE service contains an
individual log stream record. However, the log stream record actually contains a
group of records. The logrec log stream record is mapped by the IFBLOGLB
mapping macro. Fr information on the IFBLOGLB mapping macro, see z/OS MVS
Data Areas in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

Using EREP to obtain records from the logrec log stream
You can use EREP to access the records in the logrec log stream for each system.
The log stream subsystem allows existing programs to access error records from a
log stream in the same way records were accessed from a logrec data set. See z/OS
MVS Programming: Assembler Services Guide for information about using and
starting the log stream subsystem.

JCL for the LOGR Subsystem
Use the SUBSYS parameter to call the log stream subsystem (LOGR) to access log
stream data.

//STEP6 EXEC PGM=IFCEREP1,PARM=’CARD’
//ACCIN DD DSN=EHISTORY,DISP=(OLD,PASS)
//DIRECTWK DD UNIT=SYSDA,
// SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSIN DD DSN=EREP.PARMS(STEP6),
// DISP=(OLD,PASS)
// DD DSN=EREP.CONTROLS,
// DISP=(OLD,PASS)
PRINT=SU
TYPE=DOTH
DEV=(N34XX,N3704,N3705,N3720,N3725,N3745)
HIST
ACC=N
ENDPARM

Figure 165. Example: Printing a detail summary report

Recording logrec error records

530 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Note: Quotation marks around keywords are required when parentheses, commas,
equal signs, or blank characters are used within the SUBSYS keyword.

Other DD keywords are validated, if specified, but are ignored in the LOGR
subsystem processing.

DSNAME=log.stream.name
Specifies the name of the log stream to read. The name can be 1 to 26
characters in a data-set-name format.

SUBSYS=(LOGR[,exit_routine_name][,'SUBSYS-options1'][,'SUBSYS-options2'])
Specifies that processing of this DD is to be handled by the LOGR subsystem.
The exit_routine_name is the second positional parameter and specifies the
name of the exit routine to receive control from the LOGR subsystem.
v Specify or use the default value to IXGSEXIT to use the log stream

subsystem exit routine.
v Specify IFBSEXIT to access records from the logrec log stream. See

SUBSYS-options2 for logrec-specific paramters.
v Specify IFASEXIT to access records from SMF log streams. See

SUBSYS-options2 for SMF-specific parameters.

SUBSYS-options1
Specifies options that are meaningful to all exit routines. See the
documentation for a specific log stream exit for exceptions to these common
options. The keywords are:

FROM=starting_time
Indicates the starting time of the first log stream block to be processed
based on the log stream view that the VIEW keyword specifies. The first
block is the one with a time stamp later than or equal to the specified time.

OLDEST
Indicates the first block read is the oldest block on the log stream.
OLDEST is the default.

yyyy/ddd
Specifies the start date. If the date is omitted, the current date is
assumed. yyyy is a 4-digit year number and ddd is a 3-digit day
number from 001 through 366 (366 is valid only on leap years). For
example, code February 20, 2000 as 2000/051, and code December 31,
1996 as 1996/366.

hh:mm[:ss]
Specifies the start time. If the time is omitted, the first block written
after midnight is used. hh is a 2–digit hour number from 00 to 23, mm
is a two digit minute number from 00 to 59, and ss is a 2–digit second
number from 00 to 59. The seconds field and associated : delimiter can
be omitted if it is not required by the log stream owner.

The FROM keyword is mutually exclusive with the DURATION keyword.

//ddname DD DSNAME=log.stream.name,
// SUBSYS=(LOGR[,exit_routine_name][,’SUBSYS-options1’][,’SUBSYS-options2’])

where:SUBSYS-options1:
[FROM={({[yyyy/ddd][,hh:mm[:ss]]}) | OLDEST}]
[TO={({[yyyy/ddd][,hh:mm[:ss]]}) | YOUNGEST}]
[,DURATION=(nnnn,HOURS)]
[,VIEW={ACTIVE|ALL|INACTIVE}]
[,GMT|LOCAL] SUBSYS-options2:
defined by the log stream owner

Recording logrec error records

Chapter 15. Recording logrec error records 531

TO=ending_time
Indicates the ending time of the last log stream block to be processed
based on the log stream view that the VIEW keyword specifies. The last
block is the one with a time stamp earlier than or equal to the specified
time.

YOUNGEST
Indicates the last block read will be the youngest block on the log
stream at the time the allocation for the DD occurs. YOUNGEST is the
default.

yyyy/ddd
Specifies the end date. If the date is omitted, the current date is
assumed. yyyy is a 4-digit year number and ddd is a 3-digit day
number from 001 through 366 (366 is valid only on leap years). For
example, code March 7, 2001 as 2001/066, and code November 12, 2000
as 2000/317.

hh:mm[:ss]
Specifies the end time. If the time is omitted, the last block written
before midnight will be used. If the end date is the same as the current
day, then the youngest block on the log stream at the time the
allocation for the DD occurs will be used. hh is a 2–digit hour number
from 00 to 23, mm is a two digit minute number from 00 to 59, and ss
is a 2–digit second number from 00 to 59. The seconds field and
associated: delimiter can be omitted if it is not required by the log
stream owner.

The TO keyword is mutually exclusive with the DURATION keyword.

Note: If the value specified for the FROM keyword is greater than the
value specified for the TO keyword, the system ends the jobstep with a
JCL error.

DURATION=(nnnn,HOURS)
Specifies which blocks are to be processed. Each n is a numeric from 0 to 9.
Specifying (nnnn,HOURS) requests the blocks for the last nnnn hours up to
the youngest block that is to be processed based on the log stream view
that the VIEW keyword specifies. The last nnnn hours are calculated from
the current time of the allocation for the DD.

The first block is the one with a time stamp greater than or equal to the
calculated start time. The last block read is the youngest block on the log
stream at the time the allocation for the DD occurs.

The DURATION keyword is mutually exclusive with the TO and the
FROM keywords.

VIEW=ACTIVE|ALL|INACTIVE
Specifies the view or portion of log data to be used to obtain records from
the log stream. System logger maintains two kinds of log stream data in a
log stream: an active portion and an inactive portion. The active portion of
the log stream is the log data that the log stream owner has not logically
deleted through an IXGDELET request. The inactive portion of the log
stream is the log data that the log stream owner has logically deleted but
that has not yet been physically deleted from the log stream because the
retention period (RETPD) specified for the log stream has not yet expired.

Recording logrec error records

532 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The VIEW option designates the portion(s) of the log stream to be used to
obtain log data from the log stream, in addition to applying the other
parameters.

Because the other parameters also apply, the combination of the FROM,
TO, or DURATION parameters and the VIEW parameter might mean that
the log stream subsystem exit returns no log data or only a portion of the
intended log data. For example, if FROM=starting_time and
VIEW=INACTIVE are both specified, and the starting_time is later
(younger) than the log data in the inactive portion of the log stream, then
there is no log data to meet the access criteria. In the same way, if
TO=ending_time and VIEW=ACTIVE are both specified, and the
ending_time is earlier (older) than the log data in the active portion of the
log stream, then there is no log data to meet the access criteria.

ACTIVE
The view of the log stream is to include only active log data, in
addition to applying the other log stream access parameters. ACTIVE
is the default.

ALL
The view of the log stream is to include both active and inactive log
data, in addition to applying the other log stream access parameters.

INACTIVE
The view of the log stream is to include only the inactive log data, in
addition to applying the other log stream access parameters.

GMT|LOCAL
Specifies whether the time is local time (based on the time zone offset at
the time the log was written) or GMT time. GMT is the default.

Additional parameters for system logger

Along with the general parameters that can be specified for a log stream
subsystem data set, system logger provides additional parameters in the
SUBSYS-options2 specifications. The following values can be coded for a logrec log
stream:

SUBSYS-options2
Specifies unique exit routine options. Refer to information provided by the
specific log stream owner concerning these parameters.

LASTRUN
Indicates that the starting point of the records to be read from the logrec
log stream will be from the last record read by a previous use of an
application that used LASTRUN. The end point of the records will be to
the youngest block in the logrec log stream.

LASTRUN is mutually exclusive with the FROM, TO and DURATION
keywords in SUBSYS-options1 and with DELETE from SUBSYS-options2.

DELETE
Indicates that log stream records are to be deleted from the logrec log
stream. The log stream itself is not deleted and remains available for use.

If the logrec log stream has been opened in the job step, all records up to
but not including the last complete block read by the program will be
deleted from the logrec log stream.

Recording logrec error records

Chapter 15. Recording logrec error records 533

If the logrec log stream has not been opened in the job step, all records
prior to the time indicated on the TO keyword will not be deleted from the
logrec log stream.

DELETE is mutually exclusive with the FROM and DURATION keywords
in SUBSYS-options1 and the LASTRUN and SYSTEM keywords from
SUBSYS-options2.

DEVICESTATS
Requests that the device statistics kept on the system where this job is
running are to be recorded in the logrec log stream before any records are
read.

SYSTEM=system name
Indicates that only records originating from the specified system name are to
be returned to the application reading the logrec log stream. The system
name value should match the name specified in the SYSNAME parameter
of the IEASYSxx parmlib member. SYSTEM= is mutually exclusive with
the DELETE keyword from SUBSYS-options2.

Time of day considerations for logrec

When using the SUBSYS DD statement for LOGR, handle the time of day filtering
carefully. The SUBSYS parameter does not accept a stop time of 24:00, but the
EREP parameters do accept 24:00 as a stop time. If it is necessary to write JCL and
EREP control statements, you might have to request filtering through both the
SUBSYS DD statement and the EREP parameters:
v SUBSYS parameters use blocks of records, and filtering of these blocks is done

using time stamps assigned after each logical record enclosed in a block has
been assigned its own time stamp.
Figure 166 shows how to select logrec log stream records that were produced
between 05:00 on June 1st, 1997, and the end of that day.

v EREP parameters use logrec logical records. When you use the TIME parameter
with EREP, you are specifying a range of hours and minutes of interest on each
day selected.
Table 61 shows how to correctly select logrec records that were produced
between 05:00 on June 1st, 1997, and the end of that day.

Table 61. Example: Using EREP parameters

Correct coding example Incorrect coding example

DATE=(97152-97152),TIME=(0500-2400) DATE=(97152-97153),TIME=(0500-0000)

Creating a history data set for log data

Use the JCL in “Example: Creating a history data set” on page 535 to create a
history data set from log data recorded on the logrec log stream. In this example,
DEVICESTATS requests device statistics and the records are to be recorded in the
log stream. Records are read from the last block that was processed on the

//ACCIN DD DSN=SYSPLEX.LOGREC.ALLRECS,DISP=SHR,
// DCB=(RECFM=VB,BLKSIZE=4000),
// SUBSYS=(LOGR,IFBSEXIT,
// ’FROM=(1997/152,05:00),TO=(1997/153,23:59),GMT’)

Figure 166. Example: Using SUBSYS parameters

Recording logrec error records

534 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

previous submission of a "LASTRUN" EREP job up to the youngest block in the
log stream. The first time a job with the "LASTRUN" option is run, the records are
read from the oldest block in the log stream.

Example: Creating a history data set
//EREPDALY EXEC PGM=IFCEREP1,PARM=(’HIST,ACC=Y,SYSUM’)
//ACCIN DD DSN=SYSPLEX.LOGREC.ALLRECS,
// SUBSYS=(LOGR,IFBSEXIT,,’DEVICESTATS,LASTRUN’),
// DCB=(RECFM=VB,BLKSIZE=4000)
//ACCDEV DD DSN=EREP.HISTORY,
// DISP=(NEW,CATLG),
// DCB=(RECFM=VB,BLKSIZE=4000),
// UNIT=SYSDA,SPACE=(CYL,(25,5))
//SERLOG DD DUMMY
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,15,,CONTIG)
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//EREPPT DD SYSOUT=A,DCB=BLKSIZE=133
//SYSABEND DD SYSOUT=A
//SYSIN DD DUMMY
/*

Producing an event history from logrec

Use the JCL shown in “Example: Producing an event history” to produce an event
history report from records on the logrec log stream. By not specifying the FROM
or TO keywords, the default is FROM=OLDEST and TO=YOUNGEST, indicating
processing should include records from the beginning of the log stream to the end
of the log stream. By specifying a print data set, EREPPT, the report can be
browsed online for an overview of significant activity. When reading records by
date and time, you can provide both EREP and SUBSYS parameters. EREP selects
records from those passed to it from the SUBSYS parameters.

Example: Producing an event history
//EREPNOW EXEC PGM=IFCEREP1,REGION=4M,
// PARM=’CARD’
//ACCIN DD DSN=SYSPLEX.LOGREC.ALLRECS,
// DISP=SHR,
// SUBSYS=(LOGR,IFBSEXIT,,)
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//EREPPT DD DSN=EREP.EVENT,DISP=(NEW,CATLG),
// DCB=BLKSIZE=133,
// UNIT=SYSDA,SPACE=(CYL,(25,5))
//TOURIST DD SYSOUT=A,DCB=BLKSIZE=133
//SYSABEND DD SYSOUT=A
//SYSIN DD *

EVENT
HIST
ACC=N
TYPE=ACDEHIMOSX
ENDPARM

/*

Obtaining information from the logrec recording control buffer
When the system writes a dump, the dump includes the records in the logrec
buffer in storage; the buffer records have been either written to the logrec data set
or are queued to be written to the logrec data set.

When you begin to diagnose a dump for a system problem, you can use IPCS to
view the system records in the logrec recording control buffer.

Recording logrec error records

Chapter 15. Recording logrec error records 535

The logrec recording control buffer is one of the most important areas to be used
when analyzing problems in MVS. This buffer serves as the interim storage
location for hardware and software error records that are queued to be written to
the logrec data set. The buffer is significant because of the error history it contains.
Also, any records in the buffer that have not reached the logrec data set are almost
certainly related to the problem you are trying to solve.

Formatting the logrec buffer
To format the logrec buffer, use the IPCS subcommand VERBEXIT LOGDATA. The
entries that are still in the buffer will be formatted in the same way as entries that
are printed in the EREP detail edit report.

Finding the logrec and WTO recording control buffers
There are two recording control buffers (RCB) in the SQA. The system uses one
buffer for logrec messages, and the other for WTO messages. The CVT+X'16C'
(CVTRBCB) points to the recording buffers control block (RBCB). The RBCB
contains the following information about the two recording control blocks (which
are also referred to as RCBs or buffers):

For the logrec RCB:

v RBCB+X'10' (RBCBLRCB) points to the logrec buffer.
v RBCB+X'14' (RBCBLLEN) contains the length of the logrec buffer.

For the WTO RCB:

v RBCB+X'18' (RBCBWRCB) points to the WTO buffer.
v RBCB+X'1C' (RBCBWLEN) contains the length of the WTO buffer.

The logrec and WTO recording control buffers reside in fetch-protected SQA.
Entries in these buffers have time stamps (8-byte TOD clock values) that allow you
to look at a dump and create a chronological list of the logrec events and WTO
messages.

Reading the logrec recording control buffer
The logrec recording control buffer is a “wrap-table” similar to the system trace
table. The entries are variable in size. The latest entries are the most significant
especially if they have not yet been written to the logrec data set. Knowing the
areas of the system that have encountered errors and the actions of their associated
recovery routines, information obtained from the logrec data set and from the
logrec recording control buffer helps provide an overall understanding of the
environment you are about to investigate.

Note: The SDWA in the logrec buffer is a compressed SDWA in which the
recordable extensions start directly after the used portion of the SDWAVRA. The
SDWAURAL field contains the length of the SDWAVRA.

You can find the oldest entry in the buffer by locating the end of the unused or
free area, obtained from RCBFREE+RCBFLNG. (If this sum brings you to a point
beyond the end of the buffer, subtract RCBTLNG from the sum.) You can also read
the buffer backwards by using the entry length at the end of each entry. The latest
entry appears directly before the free or unused area of the buffer.

For details about the format of the RCB, see z/OS MVS Data Areas in z/OS Internet
library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Recording logrec error records

536 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Interpreting software records
There are two types of software records that are recorded in the logrec data set or
the logrec log stream:
v Software record

The system generates these records, providing information from the system
diagnostic work area (SDWA) that describes problems detected because of an
abend or a program check. See “Detail edit report for a software record” for
more information.

v Symptom record

Either a user's application program or the system can issue the SYMREC macro
to request the creation of a symptom record. Generally, the symptom record
describes problems not accompanied by an abend, but there are exceptions. See
“Detail edit report for a symptom record” on page 543 for more information.

Use the search argument you obtain from the detail edit reports for either a
software record or a symptom record to search for a known problem. If you do not
conduct the search yourself, contact the IBM Support Center. The result of the
search will be one of the following:
v The PTF that corrects the problem.

Apply the PTF that corrects the error.
v The APAR, and possibly the related APAR, that describes the problem. In some

cases, a temporary fix (either ZAP or update) or a procedure might circumvent
the problem.
Apply the temporary fix if it is available; otherwise, follow the circumvention
procedure.

v A description of why the problem might have occurred, which often describes a
frequent misuse of a product that causes the error record. This type of problem
is referred to as a user error.
When an error occurs because of the misuse of a product other than MVS, use
the procedures documented for that product to determine how best to debug the
problem.

For any case other than the three listed above, including the case where the service
link database does not contain a record matching the search criteria, contact the
IBM Support Center to report the problem.

Detail edit report for a software record
The detail edit report for a software record shows the complete contents of an error
record for an abnormal end, including the system diagnostic work area (SDWA).
The report is produced by EREP and, through the VERBEXIT LOGDATA
subcommand, under IPCS.

Use the detail edit report for a software record to determine the cause of an abend,
and the recovery action that the system or application has either taken or not
taken. This report enables you to locate where an error occurred, similar to the
analysis of an SVC dump. Once you locate the error, you can develop a search
argument to obtain a fix for the problem.

For more information, refer to the following documentation:
v See EREP User's Guide for information about producing a detail edit report for

an SDWA-type record.

Recording logrec error records

Chapter 15. Recording logrec error records 537

v See z/OS MVS IPCS Commands for information about the VERBEXIT LOGDATA
subcommand.

The example output shown in “Example: One record with SDWARC4 and 64-bit
information” is from one record with SDWARC4 and 64-bit information. This
record also has information in the VRA, which is formatted.

Example: One record with SDWARC4 and 64-bit information
TYPE: SOFTWARE RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR

(SVC 13) REPORT DATE: 343.04
FORMATTED BY: IEAVTFDE HBB7703 ERROR DATE: 336.04

MODEL: 2084 HH:MM:SS.TH
SERIAL: 11778D TIME: 17:43:44.72

JOBNAME: PIDA1028 SYSTEM NAME: J50
ERRORID: SEQ=00757 CPU=0056 ASID=0097 TIME=17:43:44.7

SEARCH ARGUMENT ABSTRACT

PIDS/5752SCLDR RIDS/IEWLDR00#L RIDS/IEWLUNF0 AB/S0378 PRCS/00000014
RIDS/IEWLRECV#R

SYMPTOM DESCRIPTION
------- -----------
PIDS/5752SCLDR PROGRAM ID: 5752SCLDR
RIDS/IEWLDR00#L LOAD MODULE NAME: IEWLDR00
RIDS/IEWLUNF0 CSECT NAME: IEWLUNF0
AB/S0378 SYSTEM ABEND CODE: 0378
PRCS/00000014 ABEND REASON CODE: 00000014
RIDS/IEWLRECV#R RECOVERY ROUTINE CSECT NAME: IEWLRECV

OTHER SERVICEABILITY INFORMATION

SUBFUNCTION: LSLOADER

SERVICEABILITY INFORMATION NOT PROVIDED BY THE RECOVERY ROUTINE

RECOVERY ROUTINE LABEL
DATE ASSEMBLED
MODULE LEVEL

TIME OF ERROR INFORMATION

PSW: 07041000 80000000 00000000 012F902E
INSTRUCTION LENGTH: 02 INTERRUPT CODE: 000D
FAILING INSTRUCTION TEXT: 00181610 0A0D18CE 18FB180C

BREAKING EVENT ADDRESS: 00000000_00000000
AR/GR 0-1 00000000/00000000_84000000 00000000/00000000_84378000
AR/GR 2-3 00000000/00000000_00000020 00000000/00000000_0000FC03
AR/GR 4-5 00000000/00000001_008FD098 00000000/00000000_00FD5750
AR/GR 6-7 01FF000C/00000000_00000003 01FF000C/00000001_00F52C00
AR/GR 8-9 00000000/00000001_7F33F4A8 00000000/00000001_00001748
AR/GR 10-11 00000000/00000001_2C417000 01FF000C/00000001_7F36EC88
AR/GR 12-13 00000000/00000000_8651F240 00000000/00000001_7F33F0E8
AR/GR 14-15 00000000/00000000_8651FF54 00000000/00000000_00000014

HOME ASID: 0097 PRIMARY ASID: 0097 SECONDARY ASID: 0097
PKM: 00C0 AX: 0000 EAX: 0000

RTM WAS ENTERED BECAUSE AN SVC WAS ISSUED IN AN IMPROPER MODE.
THE ERROR OCCURRED WHILE: A TYPE 1 SVC WAS IN CONTROL

A LOCKED OR DISABLED ROUTINE WAS IN CONTROL
LOCKS HELD: LOCAL/CML
NO SUPER BITS WERE SET.

Recording logrec error records

538 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

RECOVERY ENVIRONMENT

RECOVERY ROUTINE TYPE: FUNCTIONAL RECOVERY ROUTINE (FRR)
PSW AT ENTRY TO FRR: 070C0000 86502368
FRR PARAMETER AREA ON ENTRY TO FRR:
+00 7F33F4A8 00000000 00000000 00000000 00000000 00000000

RECOVERY ROUTINE ACTION

THE RECOVERY ROUTINE RETRIED TO ADDRESS 0651FFA2.
THE REQUESTED SVC DUMP WAS SUCCESSFULLY STARTED.
NO LOCKS WERE REQUESTED TO BE FREED.
THE SDWA WAS REQUESTED TO BE FREED BEFORE RETRY.
THE REGISTER VALUES TO BE USED FOR RETRY:
REGISTERS 0-7
GR: 008FDD00 00000000 7FFFC100 00000000 008FD098 7FFFC150 7FFFBF48 00F52C00
AR: 00000000 00000000 00000000 00000000 00000000 00000000 01FF000C 01FF000C
REGISTERS 8-15
GR: 7F33F4A8 06520100 00FD5750 00000001 8651F240 7F33F0E8 7F33F638 00000000
AR: 00000000 00000000 00000000 01FF000C 00000000 00000000 00000000 00000000

HEXADECIMAL DUMP

HEADER
+000 40831820 00000000 0004336F 17434472 | C.........?....|
+010 0011778D 20848000 |.....D.. |

JOBNAME
+000 D7C9C4C1 F1F0F2F8 |PIDA1028 |

SDWA BASE
+000 00000C00 04378000 00000000 00000000 |................|
+010 00000000 00000000 84000000 84378000 |........D...D...|
+020 00000020 0000FC03 008FD098 00FD5750 |..........}Q...&|
+030 00000003 00F52C00 7F33F4A8 00001748 |.....5..".4Y....|
+040 2C417000 7F36EC88 8651F240 7F33F0E8 |...."..HF.2 ".0Y|

.

.

.
+180 00000000 00000000 00000000 0009BD27 |................|
+190 00FFA0B0 |.... |

VARIABLE RECORDING AREA (SDWAVRA)

+000 KEY: 37 LENGTH: 06
+002 C4C4D5C1 D4C5 |DDNAME |

+008 KEY: 39 LENGTH: 08
+00A 6060C8C6 E2606060 |--HFS--- |

.

.

.
+0AA 0003 |.. |

+0AC KEY: 53 LENGTH: 00

+0AE KEY: FF LENGTH: 00

SDWA FIRST RECORDABLE EXTENSION (SDWARC1)
+000 E2C3D3C4 D9D3E2D3 D6C1C4C5 D9404040 |SCLDRLSLOADER |
+010 40404040 40404040 40404040 00000000 ||
+020 00000000 00000000 00000000 00000014 |................|
+030 00000000 00000000 F5F7F5F2 01000001 |........5752....|

.

.

.
+1B0 00000000 00000000 00000000 00000000 |................|

Recording logrec error records

Chapter 15. Recording logrec error records 539

+1C0 D1F5F040 40404040 |J50 |

SDWA SECOND RECORDABLE EXTENSION (SDWARC2)
+000 00000000 00000000 00000000 00000000 |................|

SDWA THIRD RECORDABLE EXTENSION (SDWARC3)
+000 00000000 00000000 00000000 00000000 |................|
+010 00000000 00000000 00000000 00000000 |................|

SDWA FOURTH RECORDABLE EXTENSION (SDWARC4)
+000 00000000 84000000 00000000 84378000 |....D.......D...|
+010 00000000 00000020 00000000 0000FC03 |................|
+020 00000001 008FD098 00000000 00FD5750 |......}Q.......&|
+030 00000000 00000003 00000001 00F52C00 |.............5..|

.

.

.
+150 00000000 00000000 07041000 80000000 |................|
+160 00000000 012F902E |........ |

SDWA FIFTH RECORDABLE EXTENSION (SDWARC5)
+000 00000000 00000000 00000000 00000000 |................|
+010 00000000 00000000 00000000 00000000 |................|
+020 00000000 00000000 00000000 00000000 |................|
+030 00000000 00000000 00000000 00000000 |................|

.

.

.
+090 00000000 00000000 00000000 00000000 |................|

ERRORID
+000 02F50056 00970009 BD27 |.5...P.... |

TYPE: SOFTWARE RECORD
Indicates that the detail edit report is for an SDWA-type record.

REPORT DATE
Indicates the date on which the EREP report was created.

ERROR DATE
Indicates the date on which the error occurred.

TIME
Indicates the time, as local, at which the error occurred.

JOBNAME
If the jobname is NONE-FRR, the error being recorded occurred in system or
subsystem code covered by a functional recovery routine (FRR).

SYSTEM NAME
Indicates the name of the system where the SDWA-type record was created.

ERRORID
Allows you to coordinate diagnostic information from logrec, the console log
(SYSLOG), and system dumps. The ERRORID is a concatenation of the
following:

SEQ A unique number assigned to each error. The sequence number
indicates the order of the errors, but the records might not be listed in
order. It is important to scan all entries and examine the sequence
numbers to understand which error occurred first.

You might find the same sequence number used in more than one
entry when several recovery routines, as a result of percolation, get
control and request recording for the same error; however, the error
time stamp will be different.

Recording logrec error records

540 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|
|
|
|

CPU The internal identification number of the central processor that the
failing process was running on at the time the error occurred. Use
information from the system trace table about this CPU to learn more
about the error.

ASID The address space identifier (ASID) of the current, or home, address
space at the time the error occurred.

TIME Indicates the time of the error.

PIDS/... RIDS/... AB/... PRCS/...
Use this symptom string to do a structured search of any IBM database.

PROGRAM ID
The program ID (PID) indicates the product and the component where the
error occurred. For IBM products, see the tables in z/OS MVS Diagnosis:
Reference that list the products and components. For non-IBM products, see the
appropriate vendor-supplied documentation.

LOAD MODULE NAME
Indicates the load module in control at the time of the error.

CSECT NAME
Supplied by the recovery routine that obtained control for the error. See the
PSW for more information.

SYSTEM ABEND CODE
Indicates what system or user completion code was issued by the system,
application, or component. See z/OS MVS System Codes for information about
system abend codes. See the appropriate product documentation for user
abend codes.

ABEND REASON CODE
Indicates the reason code, when available, associated with a system or user
abend code.

RECOVERY ROUTINE CSECT NAME
Indicates the recovery routine that was given control to handle the error
condition.

PSW
Indicates the program status word (PSW) at the time of the error.

If the software record is an SVC 13, the address in the second half of the PSW
indicates the address of the module that detected the error. You need to find
the caller of that module. The caller's address will reside either in register 14,
or, if register 14 points to module IEAVEEXP, use the STATUS section of the
software record to determine the caller. In the STATUS section, the interrupt
code will indicate the last SVC that was issued.

If the software record is a program interrupt, the address in the second half of
the PSW usually points to the failing module.

FAILING INSTRUCTION TEXT
Contains 12 bytes of the instruction stream at the time of the error, including
the actual instruction that caused the abend. Starting at the end of the sixth
byte, subtract the instruction length to indicate the failing instruction. In the
preceding example, the failing instruction is X'0A0D'.

THE ERROR OCCURRED WHILE . . .
Provides information about the system environment at the time of error,
indicating what type of routine was in control, whether locks were held, and
whether supervisor FRRs were set at the time of the error.

Recording logrec error records

Chapter 15. Recording logrec error records 541

STATUS
The PSW and registers that follow come from the request block (RB) associated
with the ESTAE recovery routine that obtained control for the error. Using the
information indicated will enable you to determine the program that was
running at the time of the error. This information included in the STATUS
section does not appear when an FRR handles recovery.

RECOVERY ROUTINE ACTION
Describes the recovery action performed or requested to be performed by the
recovery routine. In the preceding example, an SVC dump was not requested.
There are times, however, when the recovery routine will request an SVC
dump. If SVC DUMP SUCCESSFULLY STARTED appears in this section, the
error identifier (ERROR ID) appears in the SVC dump and in message IEA911E
as it appears in the logrec error record.

HEXADECIMAL DUMP
Provides an unformatted hexadecimal dump of the SDWA control block.
Depending on an indicator in the SDWA, which is set by the recovery routine
generating the record, the SDWA is displayed in hexadecimal; EBCDIC text; or
key, length, and data format.

VARIABLE RECORDING AREA (SDWAVRA)
Provides component-specific information. Using the information in the
PROGRAM ID field, determine the component. For IBM products, see z/OS
MVS Diagnosis: Reference for diagnostic information related to system
components.

The SDWAVRA can optionally be mapped in a key-length-data format.
Recovery routines use the SDWAVRA to construct messages and provide data
that often contains valuable debugging information. Some MVS recovery
routines use the key-length-data format to provide standardized diagnostic
information for software incidents. This formatted information allows you to
screen duplicate errors.

Constants for the key field have been defined to describe data, such as: return
and/or reason codes, parameter lists, registers, and control block information.
For example, a key of X'10' indicates a recovery routine parameter area. The
SDWAVRAM bit (in the fixed portion of the SDWA) indicates that the
SDWAVRA has been mapped in the key-length-data format as described by the
IHAVRA mapping macro.

For the format of the SDWA, including a description of the keys, see z/OS MVS
Data Areas in z/OS Internet library (http://www.ibm.com/systems/z/os/zos/
bkserv/).

SDWA RECORDABLE EXTENSIONS
In addition to the SDWA standard area and the SDWAVRA, the SDWA
recordable extensions also contain valuable debugging information, as follows:
v SDWARC1 (recording extension 1) contains additional component service

data (such as the component ID, the component name, the address of the
TCB representing the task that incurred the failure, the control registers,
original completion code and reason code, linkage stack pointer, and
translation exception access register number).

v SDWARC2 (recording extension 2) contains additional I/O machine check
data (such as the machine check interruption code).

v SDWARC3 (recording extension 3) contains locking information (such as the
locks to be freed, and the addresses of lockwords).

Recording logrec error records

542 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Note: The SDWA that is in the logrec buffer is a compressed SDWA in which
the recordable extensions start directly after the used portion of the
SDWAVRA. The SDWAURAL field contains the length of the SDWAVRA.

Detail edit report for a symptom record
The SYMREC macro updates a symptom record with system environment
information and then logs the symptom record in the logrec data set or logrec log
stream. The system or application, using the SYMREC macro, creates a symptom
record. The ADSR mapping macro maps the symptom record, and the symptom
record contains diagnostic information determined by the application.

As an application or a system component detects errors during processing, it stores
diagnostic information into the symptom record and issues the SYMREC macro to
log the record. The diagnostic information consists of a description of a
programming failure and a description of the environment in which the failure
occurred.

See z/OS MVS Programming: Assembler Services Reference IAR-XCT for information
about the SYMREC macro. See z/OS MVS Data Areas in z/OS Internet library
(http://www.ibm.com/systems/z/os/zos/bkserv/) for information about the
ADSR data area.

Report output: The example in “Example: Detail edit report for a symptom
record” contains output from one record created by the system. Following the
example is a list of the fields that are most important for diagnosis; only the
highlighted fields are discussed.

Example: Detail edit report for a symptom record
TYPE: SYMPTOM RECORD REPORT: SOFTWARE EDIT REPORT DAY.YEAR

REPORT DATE: 176.92
SCP: VS 2 REL 3 ERROR DATE: 175.92

MODEL: 9021 HH:MM:SS.TH
SERIAL: 031347 TIME: 10:41:14.37

SEARCH ARGUMENT ABSTRACT:

PIDS/5752SC1CM AB/S080A PRCS/00000010 RIDS/IEAVTRSR
RIDS/IGC0101C#L FLDS/SR#ORIGIN VALU/CIEAVTRSR PCSS/FAILING

SYSTEM ENVIRONMENT:

CPU MODEL: 9021 DATE: 175 92
CPU SERIAL: 031347 TIME: 10:41:14.37
SYSTEM: CPUR BCP: MVS

RELEASE LEVEL OF SERVICE ROUTINE: JBB4422
SYSTEM DATA AT ARCHITECTURE LEVEL: 10
COMPONENT DATA AT ARCHITECTURE LEVEL: 10

SYSTEM DATA: 00000000 00000000 |........|

COMPONENT INFORMATION:

COMPONENT ID: 5752SC1CM
COMPONENT RELEASE LEVEL: D10
DESCRIPTION OF FUNCTION: RTM2 RECURSION ERROR RECORDING

PRIMARY SYMPTOM STRING:

PIDS/5752SC1CM AB/S080A PRCS/00000010 RIDS/IEAVTRSR
RIDS/IGC0101C#L FLDS/SR#ORIGIN VALU/CIEAVTRSR PCSS/FAILING
PCSS/CSECT PCSS/UNKNOWN FLDS/RTM2SCTC FLDS/FROM#PRWA
VALU/H00040000

SYMPTOM SYMPTOM DATA EXPLANATION
--------------- ------------- -----------
PIDS/5752SC1CM 5752SC1CM COMPONENT IDENTIFIER
AB/S080A 080A ABEND CODE - SYSTEM

Recording logrec error records

Chapter 15. Recording logrec error records 543

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

PRCS/00000010 00000010 RETURN CODE
RIDS/IEAVTRSR IEAVTRSR ROUTINE IDENTIFIER
RIDS/IGC0101C#L IGC0101C#L ROUTINE IDENTIFIER
FLDS/SR#ORIGIN SR#ORIGIN DATA FIELD NAME
VALU/CIEAVTRSR IEAVTRSR ERROR RELATED CHARACTER VALUE
PCSS/FAILING FAILING SOFTWARE STATEMENT
PCSS/CSECT CSECT SOFTWARE STATEMENT
PCSS/UNKNOWN UNKNOWN SOFTWARE STATEMENT
FLDS/RTM2SCTC RTM2SCTC DATA FIELD NAME
FLDS/FROM#PRWA FROM#PRWA DATA FIELD NAME
VALU/H00040000 00040000 ERROR RELATED HEXADECIMAL VALUESECONDARY SYMPTOM STRING:

FLDS/RTM2SCTR VALU/H00040000 FLDS/RTM2SCTX VALU/H00040000

SYMPTOM SYMPTOM DATA EXPLANATION
--------------- ------------- -----------
FLDS/RTM2SCTR RTM2SCTR DATA FIELD NAME
VALU/H00040000 00040000 ERROR RELATED HEXADECIMAL VALUE
FLDS/RTM2SCTX RTM2SCTX DATA FIELD NAME
VALU/H00040000 00040000 ERROR RELATED HEXADECIMAL VALUE

FREE FORMAT COMPONENT INFORMATION:

KEY = FF00 LENGTH = 00048 (0030)

+000 C5D9D9D6 D940C4C5 E3C5C3E3 C5C440C2 |ERROR DETECTED B|
+010 E840D9E3 D4F240D9 C5C3E4D9 E2C9E5C5 |Y RTM2 RECURSIVE|

.

.

.
HEX DUMP OF RECORD:

HEADER

+000 4C831800 00000000 0092175F 10411437 |<C.......K.|
+010 A6031347 90210000 |W....... |

SYMPTOM RECORD

+000 E2D9F9F0 F2F1F0F3 F1F3F4F7 00000000 |SR9021031347....|
+010 A5E2A254 A5ED4104 40404040 40404040 |VSS.V... |
+020 4040C3D7 E4D94040 4040F5F7 F5F2D1C2 | CPUR 5752JB|

.

.

.

TYPE: SYMPTOM RECORD
Indicates that the detail edit report is for a symptom record.

SEARCH ARGUMENT ABSTRACT
Provides information you can use to create a search argument. If enough
information exists in this field, you can search the IBM service link problem
reporting database to determine if there is a PTF to correct the error.

The information that follows the search argument abstract in a symptom record
depends on the options specified on the SYMREC macro either by a user
program or by a system component. In the report output listed above, the
system recorded a recursive error. The information contained in a symptom
record is variable. To obtain an interpretation, contact the IBM Support Center
for the product or for the component that built the record.

Customizing symptom record location: You can control the location of logrec
symptom records from non-authorized programs. Use the ASREXIT installation
exit just before writing the logrec record to control:
v If a program can write symptom records
v The location of the symptom record: the logrec data set, job log, both, or neither

See z/OS MVS Installation Exits for information about ASREXIT.

Recording logrec error records

544 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 16. AMBLIST: Map load modules and program objects

AMBLIST provides the following problem data:
v Formatted listing of an object module
v Map of the control sections (CSECTs) in a load module or program object
v List of modifications to the code in a CSECT
v Map of all modules in the link pack areas (LPA)
v Map of the contents of the DAT-on nucleus. The map no longer represents the

IPL version and message AMB129I will be issued.

These formatted listings can help you diagnose problems related to modules as
they currently exist on your system. AMBLIST is a batch job that runs in problem
state.

The following topics describe AMBLIST:
v “Obtaining AMBLIST output” on page 546
v “Reading AMBLIST output” on page 557

Long name support: AMBLIST will process external names (labels and references)
up to 32767 bytes long. Names exceeding 16 bytes in length will be abbreviated in
the formatted part of the listings and an abbreviation-to-long name equivalence
table will be printed at the end of the listing. AMBLIST functions that provide long
names support are: LISTLOAD, LISTIDR, and LISTOBJ (XSD and GOFF only).

Note:

1. Any load module to be formatted and printed by AMBLIST must have the
same format as those created by the linkage editor or by the program
management binder.

2. Any program object to be formatted and printed by AMBLIST must have the
same format as those created by the program management binder.

3. A program object format 2 or greater having the non-editable attribute cannot
be listed by AMBLIST.

See “LISTLOAD OUTPUT=XREF output (comparison of load module and program
object version 1)” on page 591 for a comparison of the formatted output of a load
module and a program object.

AMBLIST supports all data sets allocated in the extended addressing space (EAS)
of an extended address volume (EAV).

AMBLIST supports the following dynamic allocation (DYNALLOC or SVC 99)
options for all data sets: S99TIOEX(XTIOT), S99ACUCB (NOCAPTURE), and
S99DSABA (DSAB above the line).

© Copyright IBM Corp. 1988, 2015 545

Obtaining AMBLIST output
To obtain AMBLIST output, you must code JCL or use the UNIX System Services
amblist command. The amblist command is described in the z/OS UNIX System
Services Command Reference.

This section describes these topics:
v “Specifying the JCL statements”
v “Controlling AMBLIST processing”
v “Examples of running AMBLIST” on page 551
v “Examples for z/OS UNIX System Services file support” on page 557

Specifying the JCL statements
Generally, the minimum partition or region for running AMBLIST is 64 kilobytes
for all functions except LISTLPA, which requires 100 kilobytes. However, for large
load modules, IBM recommends a minimum region size of 200 kilobytes. For
program objects, IBM recommends a minimum region size of 12 megabytes.

AMBLIST requires the following JCL statements:

JOB
Initiates the job.

EXEC PGM=AMBLIST
Calls for the processing of AMBLIST.

SYSPRINT DD
Defines the message data set.

Anyname DD
Defines an input data set. This statement may define a z/OS UNIX System
Services file. If so, the complete path name, including the file name, must be
specified. For an object module in a z/OS UNIX System Services file,
PATHOPTS=(ORDONLY) must be specified. This statement cannot define a
concatenated data set.

SYSIN DD
Defines the data set (in the input stream) that contains AMBLIST control
statements.

Controlling AMBLIST processing
You control AMBLIST processing by supplying one or more control statements in
the input stream. Code the control statement that applies to the data you want to
obtain according to the following rules:
v Leave column 1 blank, unless you want to supply an optional symbolic name. A

symbolic name is analogous to the label name in a program. The maximum
length of a symbolic name is eight characters. A symbolic name must end with
one or more blanks.

v If a complete control statement will not fit on a single line, end the first line
with a comma or a non-blank character in column 72 and continue on the next
line. Begin all continuation statements in columns 2 - 16. Do not split parameters
between two lines. The only exceptions are the MEMBER parameters, which you
can split at any internal comma.

AMBLIST

546 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

LISTLOAD control statement
Use the LISTLOAD control statement to obtain a listing of load module or
program objects. The listed data can help you verify why certain link-edit errors
might have occurred.

OUTPUT={MODLIST|XREF|BOTH|MAP}
OUTPUT=MODLIST requests a formatted listing of the text and control
information of a load module or program object.

OUTPUT=XREF requests a module map and cross-reference listing for the load
module or program object.

OUTPUT=BOTH requests both a formatted listing of the load module or
program object and its map and cross-references.

OUTPUT=MAP requests a numerical map for the load module or program
object.

If this parameter is omitted, OUTPUT=BOTH will be assumed.

TITLE=('title',position)
Specifies a title, from one to 40 characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user
control.) The position subparameter specifies whether or not the title is
indented; if TITLE=('title',1) is specified, or if the position parameter is omitted,
the title will be printed flush left, that is, starting in the first column. If you
want the title indented from the margin, use the position parameter to specify
the number of characters to leave blank before the title. If you specify a
position greater than 80, the indentation from the margin defaults to 1.

DDN=ddname
Identifies the DD statement that defines the data set containing the input object
module. If the DDN= parameter is omitted, AMBLIST will assume SYSLIB as
the default ddname.

MEMBER={member|(member1,membern...)}
Identifies the input load module or program object by member name or alias
name. To specify more than one load module or program object, enclose the
list of names in parentheses and separate the names with commas. If you omit
the MEMBER= parameter, AMBLIST will print all modules in the data set.

Note:

LISTLOAD

[OUTPUT={MODLIST|XREF|BOTH|MAP}]

[,TITLE=(’title’,position)]

[,DDN=ddname]

[,MEMBER={member|(member1,membern...)}]

[,RELOC=hhhhhhhh]

[,ADATA={YES|NO}]

[,IMPEXP={DUMP|SYMBOLS}]

[,SECTION1={YES|NO}]

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 547

1. If you specify MEMBER=IEANUCxx, where xx is the suffix of the member
used during the current IPL, AMBLIST will list the DAT-ON nucleus.

2. AMBLIST will accept member names up to 63 bytes in length. For aliases
longer than 63 bytes, their primary member names must be entered instead.

3. If the DD name associated with this operation is allocated to a z/OS UNIX
System Services directory, there must also be a MEMBER parameter
specifying the file or files in that directory.

RELOC=hhhhhhhh
Specifies a relocation or base address in hexadecimal of up to eight characters.
When the relocation address is added to each relative map and cross-reference
address, it gives the absolute central storage address for each item on the
output listing. If you omit the RELOC parameter, no relocation is performed.

ADATA={YES|NO}
ADATA=YES on LISTLOAD OUTPUT=MODLIST or OUTPUT=BOTH requests
a formatted listing of all ADATA classes, if they exist, in the program object to
be displayed in the traditional dump format, 32 bytes per line, with
hexadecimal representation on the left and EBCDIC on the right, in addition to
the output listing with the specified output parameter.

OUTPUT=NO on LISTLOAD OUTPUT=MODLIST or OUTPUT=BOTH
requests a normal formatted listings with the specified output parameter, and
ADATA suppressed.

If this parameter is omitted, ADATA=NO will be assumed.

IMPEXP={DUMP|SYMBOLS}
IMPEXP=SYMBOLS indicates that section IEWBCIE text is displayed as a
symbolically formatted IMPORT/EXPORT section of the output.

IMPEXP=DUMP indicates that section IEWBCIE text is displayed in the
traditional dump format (as described under the ADATA parameter).

SECTION1={YES| NO}
SECTION1=YES requests that the module level section information be
displayed.

SECTION1=NO requests that the module level section information not be
displayed.

LISTOBJ control statement
Use the LISTOBJ control statement to obtain listings of selected object modules.
LISTOBJ supports traditional object modules as well as object modules in XOBJ or
GOFF format.

TITLE=('title',position)
Specifies a title, from one to 40 characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user
control.) The position parameter specifies whether or not the title is indented;
if TITLE=('title',1) is specified, or if the position parameter is omitted, the title

LISTOBJ

[TITLE=(’title’,position)]

[,DDN=ddname]

[,MEMBER={member|(member1,membern...)}]

AMBLIST

548 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

will be printed flush left, that is, starting in the first column. If you want the
title indented from the margin, use the position parameter to specify the
number of characters to leave blank before the title. If you specify a position
greater than 80, the indentation from the margin defaults to 1.

DDN=ddname
Identifies the DD statement that defines the data set containing the input
module. If the DDN parameter is omitted, AMBLIST will assume SYSLIB as
the default ddname.

MEMBER={member|(member1[,membern]...)}
Identifies the input object module by member name or alias name. To specify
more than one object module, enclose the list of names in parentheses and
separate the names with commas.

Note:

1. You must include the MEMBER parameter if the input object modules exist
as members in a partitioned data set (PDS or PDSE). If you do not include
the MEMBER parameter, AMBLIST will assume that the input data set is
organized sequentially and that it contains a single, continuous object
module.

2. AMBLIST will accept member names up to 63 bytes in length. For aliases
longer than 63 bytes, their primary member names must be entered instead.

3. If the DD name associated with this operation is allocated to a z/OS UNIX
System Services directory, there must also be a MEMBER parameter
specifying the file or files in that directory.
Example: Processing a pathname: In this example, AMBLIST processes the
pathname /path/to/dir/longmembername.
//SYSLIB DD PATH=’/path/to/dir’
//SYSIN DD *
LISTOBJ MEMBER=longmembername
/*

LISTIDR control statement
Use the LISTIDR control statement to obtain listings of selected CSECT
identification records (IDR). AMBLIST also supports the LISTIDR control statement
for program objects in z/OS UNIX System Services files.

OUTPUT={IDENT|ALL}
Specifies whether AMBLIST must print all CSECT identification records or only
those containing SPZAP data and user data. If you specify OUTPUT=ALL, all
IDRs associated with the module will be printed. If you specify
OUTPUT=IDENT, AMBLIST will print only those IDRs that contain SPZAP
data or user-supplied data. If you omit this parameter, AMBLIST will assume a
default of OUTPUT=ALL. Do not specify OUTPUT if you specify the MODLIB
parameter.

LISTIDR

[OUTPUT={IDENT|ALL}]

[,TITLE=(’title’,position)]

[,DDN=ddname]

[,MEMBER={member|(member1,membern...)}]

[,MODLIB]

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 549

TITLE=('title',position)
Specifies a title, from one to 40 characters long, to be printed below the
heading line on each page of output. (The heading line identifies the page
number and the type of listing being printed, and is not subject to user
control.) The position parameter specifies whether or not the title is indented;
if TITLE=('title',1) is specified, or if the position parameter is omitted, the title
is printed flush left, that is, starting in the first column. If you want the title
indented from the margin, use the position parameter to specify the number of
characters that are left blank before the title. If a position greater than 80 is
specified, the indentation from the margin defaults to 1.

DDN=ddname
Identifies the DD statement that defines the data set containing the input
module. If you omit the DDN parameter, AMBLIST will assume SYSLIB as the
default ddname.

Note: If the DD name associated with this operation is allocated to a z/OS
UNIX System Services directory, there must also be a MEMBER parameter
specifying the file or files in that directory.

MEMBER={member|(member1,membern...)}
Identifies the input load module or program object by member name or alias
name. To specify more than one load module or program object, enclose the
list of names in parentheses and separate the names with commas. If you omit
the MEMBER parameter, AMBLIST will print all modules in the data set. Do
not specify MEMBER if you specify the MODLIB parameter.

Note: AMBLIST will accept member names up to 63 bytes in length. For
aliases longer than 63 bytes, their primary member names must be entered
instead.

MODLIB
Prevents AMBLIST from printing the module summary. AMBLIST prints the
IDRs that contain SPZAP data or user-supplied data. No page ejects occur
between modules. When you specify MODLIB, the OUTPUT or MEMBER
parameters are not valid parameters.

LISTLPA control statement
Use the LISTLPA control statement to obtain listings of selected modules in the
fixed link pack area (LPA).

LISTLPA
Lists the modules in the fixed link pack area, the modified link pack area, and
the pageable link pack area (PLPA). This listing is a map that includes modules
residing in the extended sections of each link pack area (LPA). If you do not
specify any parameters on the LISTLPA control statement, then AMBLIST maps
modules from all three LPAs.

The LISTLPA control statement does not support dynamic LPA. If the dynamic
LPA support is used to update LPA, those changes will not be reflected in the
AMBLIST LISTLPA output. The LISTLPA control statement will not be
enhanced to support new operating system functions. The recommended
replacement is the LPAMAP subcommand of IPCS. See z/OS MVS IPCS
Commands for details about this command.

LISTLPA [FLPA][,MLPA][,PLPA]

AMBLIST

550 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

FLPA
Requests mapping of the modules in the fixed link pack area.

MLPA
Requests mapping of the modules in the modified link pack area.

PLPA
Requests mapping of the modules in the pageable link pack area.

Examples of running AMBLIST
Using the control statements as input into the JCL for the job, you can invoke
AMBLIST to provide output. The following examples of AMBLIST include the
control statement needed to produce the output and sample JCL for each function.

List the contents of an object module
You can use AMBLIST to format three types of object module:
1. OBJ (traditional object module)
2. XOBJ (extended object module, based on OBJ)
3. GOFF (Generalized Object File Format).

You can list the following information from an object module:
v the head record (HDR) - which may contain information about the character set

and expected operating environment (GOFF only)
v external symbol dictionary entries (ESD or XSD)
v relocation dictionary entries (RLD)
v the text of the program - the instructions and data, as output by the language

translator (TXT)
v translator identification record (IDRL) - which contains the compiler ID and

compile date
v ADATA records (GOFF only)
v LEN records (GOFF only)
v and the END record.

To list object module contents, invoke AMBLIST with the LISTOBJ control
statement. For sample outputs, see “LISTOBJ outputs” on page 562.

In Figure 167, AMBLIST is used to format and list an object module included in the
input stream.

OBJMOD DD Statement
Defines the input data set, which follows immediately. In this case, the input
data set is an object module.

//LSTOBJDK JOB MSGLEVEL=(1,1)
// EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//OBJMOD DD *

object module
/*
//SYSIN DD *

LISTOBJ DDN=OBJMOD,
TITLE=(’OBJECT MODULE LISTING FOR MYJOB’,25)

/*

Figure 167. Example: Listing an object module

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 551

SYSIN DD Statement
Defines the data set containing AMBLIST control statements, which follows
immediately.

LISTOBJ Control Statement
Instructs AMBLIST to format the data set defined by the OBJMOD DD
statement. It also specifies a title for each page of output, to be indented 25
characters from the left margin.

In Figure 168, AMBLIST is used to list all object modules contained in the data set
named OBJMOD, and three specific object modules from another data set called
OBJMODS.

Note: If you are using AMBLIST to list program objects, IBM recommends that
you specify REGION=12M or higher.

OBJLIB and OBJSDS DD Statements
Define input data sets that contain object modules.

SYSIN DD Statement
Defines the data set in the input stream containing AMBLIST control
statements.

LISTOBJ Control Statement #1
Instructs AMBLIST to format the data set defined by the OBJSDS DD
statement, treating it as a single member. It also specifies a title for each page
of output, to be indented 20 characters from the left margin.

LISTOBJ Control Statement #2
Instructs AMBLIST to format three members of the partitioned data set (PDS or
PDSE) defined by the OBJLIB DD statement. It also specifies a title for each
page of output, to be indented 20 characters from the left margin.

Map the CSECTs in a load module or program object
You can list the organization of CSECTs within the load module or program object,
the overlay structure (if any), and the cross-references for each CSECT. To map
CSECTs, invoke AMBLIST with the LISTLOAD control statement.

For sample output, see “LISTLOAD OUTPUT=MODLIST output” on page 570,
“Alphabetical cross-reference” on page 590, and “LISTLOAD OUTPUT=XREF
output (comparison of load module and program object version 1)” on page 591.

In Figure 169 on page 553, AMBLIST is used to produce formatted listings of
several load modules or program objects.

//OBJLIST JOB MSGLEVEL=(1,1)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//OBJLIB DD DSN=OBJMODS,DISP=SHR
//OBJSDS DD DSN=OBJMOD,DISP=SHR
//SYSIN DD *

LISTOBJ DDN=OBJSDS,
TITLE=(’OBJECT MODULE LISTING OF OBJSDS’,20)

LISTOBJ DDN=OBJLIB,MEMBER=(OBJ1,OBJ2,OBJ3),
TITLE=(’OBJECT MODULE LISTING OF OBJ1 OBJ2 OBJ3’,20)

/*

Figure 168. Example: Listing several object modules

AMBLIST

552 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: If you are using AMBLIST to format program objects, IBM recommends that
you specify REGION=2M or higher.

SYSLIB DD Statement
Defines an input data set, SYS1.LINKLIB, that contains load modules or
program objects to be formatted.

LOADLIB DD Statement
Defines a second input data set.

SYSIN DD Statement
Defines the data set (in the input stream) containing the AMBLIST control
statements.

LISTLOAD Control Statement #1
Instructs AMBLIST to format the control and text records including the
external symbol dictionary and relocation dictionary records of the load
module or program object TESTMOD in the data set defined by the LOADLIB
DD statement. It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTLOAD Control Statement #2
Instructs AMBLIST to produce a module map and cross-reference listing of the
load modules or program objects MOD1, MOD2, and MOD3 in the data set
defined by the LOADLIB DD statement. It also specifies a title for each page of
output, to be indented 20 characters from the left margin.

LISTLOAD Control Statement #3
Instructs AMBLIST to produce a formatted listing of the load module or
program object and its map and cross-reference listing. Because no DDN=
parameter is included, the input data set is assumed to be the one defined by
the SYSLIB DD statement. Because no MEMBER parameter is specified, all
load modules in the data set will be processed. This control statement also
specifies a title for each page of output, to be indented 20 characters from the
left margin.

Figure 170 on page 554 shows how to use AMBLIST to verify three modules.
Assume that an unsuccessful attempt has been made to link-edit an object module
with two load modules or program objects to produce one large load module or
program object.

//LOADLIST JOB MSGLEVEL=(1,1)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=SHR
//LOADLIB DD DSNAME=LOADMOD,DISP=SHR
//SYSIN DD *

LISTLOAD OUTPUT=MODLIST,DDN=LOADLIB,
MEMBER=TESTMOD,
TITLE=(’LOAD MODULE LISTING OF TESTMOD’,20)

LISTLOAD OUTPUT=XREF,DDN=LOADLIB,
MEMBER=(MOD1,MOD2,MOD3),
TITLE=(’XREF LISTINGS OF MOD1 MOD2 AND MOD3’,20)

LISTLOAD TITLE=(’XREF&LD MOD LSTNG-ALL MOD IN LINKLIB’,20)
/*

Figure 169. Example: Listing several load modules or program objects

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 553

OBJMOD DD Statement
Defines an input load module or program object data set.

LOADMOD1 and LOADMOD2 DD Statements
Define input load module or program object data sets.

SYSIN DD Statement
Defines the data set containing AMBLIST control statements.

LISTOBJ Control Statement
Instructs AMBLIST to format the data set defined by the OBJMOD DD
statement. It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTLOAD Control Statement #1
Instructs AMBLIST to format all records associated with the data set defined
by the LOADMOD1 DD statement. It also specifies a title for each page of
output, to be indented 25 characters from the left margin.

LISTIDR Control Statement #1
Instructs AMBLIST to list all CSECT identification records associated with the
data set defined by the LOADMOD1 DD statement. It also specifies a title for
each page of output, to be indented 25 characters from the left margin.

LISTLOAD Control Statement #2
Instructs AMBLIST to format all records associated with the data set defined
by the LOADMOD2 DD statement. It also specifies a title for each page of
output, to be indented 25 characters from the left margin.

LISTIDR Control Statement #2
Instructs AMBLIST to list all CSECT identification records associated with the
data set defined by the LOADMOD2 DD statement. It also specifies a title for
each page of output to be indented 25 characters from the left margin.

Trace modifications to the executable code in a CSECT
You can list the information in a load module or program object's CSECT
identification records (IDRs). An IDR provides the following information:
v The version and modification level of the language translator and the date that

each CSECT was translated. (Translation data is available only for CSECTs that
were produced by a translator that supports IDR generation.)

>
//LSTLDOBJ JOB MSGLEVEL=(1,1)
// EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//OBJMOD DD DSN=MYMOD,DISP=SHR
//LOADMOD1 DD DSN=YOURMOD,DISP=SHR
//LOADMOD2 DD DSN=HISMOD,DISP=SHR
//SYSIN DD *

LISTOBJ DDN=OBJMOD,
TITLE=(’OBJECT LISTING FOR MYMOD’,20)

LISTLOAD DDN=LOADMOD1,OUTPUT=BOTH,
TITLE=(’LISTING FOR YOURMOD’,25)

LISTIDR DDN=LOADMOD1,OUTPUT=ALL,
TITLE=(’IDRS FOR YOURMOD’,25)

LISTLOAD DDN=LOADMOD2,OUTPUT=BOTH,
TITLE=(’LISTING FOR HSMOD’,25)

LISTIDR DDN=LOADMOD2,OUTPUT=ALL,
TITLE=(’IDRS FOR HISMOD’,25)

Figure 170. Example: Listing several load modules or program objects

AMBLIST

554 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v The version and modification level of the linkage editor or binder that built the
load module or program object and gives the date the load module or program
object was created.

v Modifications to the load module or program object, by date, that might have
been done using SPZAP.

An IDR might also contain optional user-supplied data.

To trace modifications, invoke AMBLIST with the LISTIDR control statement. For
sample output, see “LISTIDR output” on page 596.

In Figure 171, AMBLIST is used to list the CSECT identification records in several
load modules or program objects.

SYSLIB DD Statement
Defines an input data set, SYS1.LINKLIB, that contains load modules or
program objects to be processed.

LOADLIB DD Statement
Defines a second input data set.

SYSIN DD Statement
Defines the data set (in the input stream) containing the AMBLIST control
statements.

LISTIDR Control Statement #1
Instructs AMBLIST to list all CSECT identification records for all modules in
SYS1.LINKLIB (this is the default data set since no DDN parameter was
included). It also specifies a title for each page of output, to be indented 20
characters from the left margin.

LISTIDR control statement #2
Instructs AMBLIST to list CSECT identification records that contain SPZAP or
user-supplied data for the load module or program object named TESTMOD.
TESTMOD is a member of the data set defined by the LOADLIB DD
statement. This control statement also specifies a title for each page of output,
to be indented 20 characters from the left margin.

LISTIDR control statement #3
Instructs AMBLIST to list all CSECT identification records for of the load
modules or program objects MOD1, MOD2, and MOD3. These are members in
the data set defined by the LOADLIB DD statement. This control statement
also specifies a title for each page of output, to be indented 20 characters from
the left margin.

//IDRLIST JOB MSGLEVEL=(1,1)
//LISTSTEP EXEC PGM=AMBLIST,REGION=64K
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//LOADLIB DD DSN=LOADMODS,DISP=SHR
//SYSIN DD *

LISTIDR TITLE=(’IDR LISTINGS OF ALL MODS IN LINKLIB’,20)
LISTIDR OUTPUT=IDENT,DDN=LOADLIB,MEMBER=TESTMOD

TITLE=(’LISTING OF MODIFICATIONS TO TESTMOD’,20)
LISTIDR OUTPUT=ALL,DDN=LOADLIB,MEMBER=(MOD1,MOD2,MOD3),

TITLE=(’IDR LISTINGS OF MOD1 MOD2 MOD3’,20)
LISTIDR DDN=LOADLIB,MODLIB

/*

Figure 171. Example: Listing IDR information for several load modules

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 555

LISTIDR control statement #4
Instructs AMBLIST to list CSECT identification records that contain SPZAP or
user-supplied data for the LOADLIB data set. The module summary print out
is suppressed.

List the modules in the link pack area and the contents of the
DAT-on nucleus

You can list all modules in the fixed link pack area, the modified link pack area,
and the pageable link pack area.

To map link pack area modules, invoke AMBLIST with the LISTLPA control
statement. For sample output, see “LISTLPA output” on page 599.

You can also produce a map and cross-reference listing of a nucleus.

To map the contents of the DAT-on nucleus, invoke AMBLIST with the LISTLOAD
MEMBER=IEANUCxx control statement.

Figure 172 shows how to use the LISTLOAD and LISTLPA control statements to
list a system nucleus and map the fixed link pack area, the modified link pack
area, and the pageable link pack area. Note that in this example the data set
containing the nucleus is named SYS1.NUCLEUS, and the nucleus occupies the
member named IEANUC01. The map no longer represents the IPL version of the
nucleus and message AMB129I will be issued. Use IPCS to format the NUCMAP.
For information on using IPCS, see z/OS MVS IPCS User's Guide and z/OS MVS
IPCS Commands.

SYSLIB DD Statement
Defines the input data set, which in this case contains the nucleus.

SYSIN DD Statement
Defines the data set containing AMBLIST control statements, which follows
immediately.

LISTLOAD control statement
Instructs AMBLIST to format the control and text records including the
external symbol dictionary and relocation dictionary records of the load
module IEANUC01 in the data set defined by the SYSLIB DD statement. It also
specifies a title for each page of output, to be indented 25 characters from the
left margin.

LISTLPA control statement
Instructs AMBLIST to map the fixed link pack area (FLPA), the modified link
pack area (MLPA), and the pageable link pack area (PLPA).

//LISTNUC JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMBLIST,REGION=100K
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=SYS1.NUCLEUS,DISP=SHR,UNIT=3330,
// VOL=SER=nnnnn
//SYSIN DD *

LISTLOAD DDN=SYSLIB,MEMBER=IEANUC01,
TITLE=(’LISTING FOR NUCLEUS IEANUC01’,25)

LISTLPA
/*

Figure 172. Example: Listing a system nucleus and the link pack area

AMBLIST

556 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Examples for z/OS UNIX System Services file support
AMBLIST will support formatted listings of program objects and object modules in
z/OS UNIX System Services files.

To obtain a formatted listing of a program object in a z/OS UNIX System Services
file, specify the complete pathname in a DD statement and code the control
statement. Use the JCL example shown in Figure 173 as a guide.

To obtain a formatted listing of an object module in a z/OS UNIX System Services
file, specify the complete pathname in a DD statement and code the control
statement. Use the JCL example shown in Figure 174 as a guide.

AMBLIST will support the LISTIDR control statement for program objects in z/OS
UNIX System Services files. Use the JCL example shown in Figure 175 as a guide.

For z/OS UNIX System Services files, MEMBER NAME is the file name and
LIBRARY is the directory name. If the pathname is too long to fit in the space
reserved on the line, it will be truncated on the left and preceded by two periods
and a space (".. "). In Figure 176, the library name is truncated while the member
name is not.

Reading AMBLIST output
AMBLIST produces a separate listing for each control statement that you specify.

//LIST EXEC PGM=AMBLIST
//HFS1 DD PATH=’/u/USER1/outmod’
// PATHDISP=(KEEP,KEEP)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
LISTLOAD DDN=HFS1,OUTPUT=MODLIST

Figure 173. Example: z/OS UNIX System Services program object

/LIST EXEC PGM=AMBLIST
//HFS1 DD PATH=’/u/USER1/myobject.o’,PATHDISP=(KEEP,KEEP),
// PATHOPTS=(ORDONLY)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
LISTOBJ DDN=HFS1

Figure 174. Example: z/OS UNIX System Services object module

//LIST EXEC PGM=AMBLIST
//HFS1 DD PATH=’/u/USER1/outmod’
// PATHDISP=(KEEP,KEEP)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
LISTIDR DDN=HFS1

Figure 175. Example: z/OS UNIX System Services control statement

MEMBER NAME: 012345678901234567890123456789012345678901234567890123456789abc MAIN ENTRY POINT: 00000000
LIBRARY: .. 345678901234567890123456789012345678901234567890123456789abc/ AMODE OF MAIN ENTRY POINT: 31

Figure 176. Example: Differences in output

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 557

v The first page of each listing always shows the control statement as it was
entered.

v The second page of the listing is a module summary, unless you requested
LISTOBJ, LISTLPA, or MODLIB with LISTIDR; in that case, no module summary
will be produced, and the second page of the listing will be the beginning of the
formatted output.
The module summary gives the member name (with aliases), the entry point
and its addressing mode, alias entry points and their addressing modes, the
attributes assigned to the module by the linkage editor or program management
binder, the system status index information (SSI), the APF code, an residence
mode for the module being formatted. For program objects, the PMAR and
PMARL are displayed in hexadecimal for diagnostic information. Figure 177 and
Figure 178 on page 559 show samples of module summary processed by the
linkage editor and the binder.

v The third page of the listing (or, for LISTOBJ, LISTLPA, or MODLIB with
LISTIDR the second page) is the beginning of the formatted output itself.

Module summary
Figure 177 is sample of a module summary for a load module that was processed
by the linkage editor.

Figure 178 on page 559 is sample of a module summary for a program object
processed by the binder.

LISTLOAD DDN=DD1,MEMBER=TESTPR

�A� ***** M O D U L E S U M M A R Y *****
MEMBER NAME: TESTPR MAIN ENTRY POINT: 00000000
LIBRARY: DD1 AMODE OF MAIN ENTRY POINT: ANY
NO ALIASES **

--

�B� **** ATTRIBUTES OF MODULE *
** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 EP-ZERO 11 RLD
12 EDIT 13 NO-SYMS 14 F-LEVEL 15 NOT-REFR

--

�C� MODULE SSI: NONE
APFCODE: 00000000
RMODE: 24
LONGPARM: NO

�D� *****LOAD MODULE PROCESSED EITHER BY VS LINKAGE EDITOR OR BINDER

Figure 177. Example: Module summary for a load module processed by the linkage editor

AMBLIST

558 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The following describes Figure 177 on page 558 and Figure 178.

�A� Entry Names. For the member, the library (ddname) and member name are
displayed, along with the primary entry point offset and AMODE. The
MEMBER NAME field contains the primary name.

For each alias or alternate entry point, AMBLIST shows the alias name,
entry point offset and AMODE. If no aliases are present, AMBLIST prints
NO ALIASES. If the input name is an alias, then its name is printed in the
alias section preceded by two asterisks.

The constants ALT PRIMARY will be added to the right of the amode of
the alias name which was a long primary name in which the binder had
converted to an alias.

�B� Attributes of the Module. The attributes of the module are represented by
bits. Each bit is set either ON or OFF. In the listing, AMBLIST interprets
the bit settings and shows a descriptive value in the STATUS column. For
example, in Figure 177 on page 558 and Figure 178, bit 0 is interpreted as
NOT-RENT. This means the module is not reentrant. For a description of
all the STATUS values, see Table 62 on page 560.

�C� Other Attributes. The remaining module attributes are displayed following
the table. This includes the system status index (SSI) field, the APF
(authorized program facility) code, the RMODE (residence mode) for the

LISTLOAD DDN=DD1,MEMBER=#THIS#ISA#LONG#NAME#BPBF6190

�A� ***** M O D U L E S U M M A R Y *****
MEMBER NAME: B#Z49$EA MAIN ENTRY POINT: 00000000
LIBRARY: MYLIB AMODE OF MAIN ENTRY POINT: 31

** ALIASES ** ENTRY POINT AMODE
A1 00000000 31
A2 00000000 31
A3 00000000 31
A4 00000000 31
THIS#ISA-BF6190 00000000 31 ALT PRIMARY

--
�B� **** ATTRIBUTES OF MODULE ***

** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **
0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 RESERVED 11 RLD
12 EDIT 13 NO-SYMS 14 RESERVED 15 NOT-REFR
16 RESERVED 17 <16M 18 NOT-PL 19 NO-SSI
20 APF 21 PGM OBJ 22 NOT-SIGN 23 RESERVED
24 ALTP 25 RESERVED 26 RESERVED 27 RMODE24
28 RESERVED 29 RESERVED 30 RESERVED 31 RESERVED
32 NON-MIGR 33 NO-PRIME 34 NO-PACK 35 RESERVED
36 RESERVED 37 RESERVED 38 RESERVED 39 RESERVED

--

�C�
MODULE SSI: NONE
APFCODE: 00000000
RMODE: ANY
PO FORMAT: 3
OS COMPAT LEVEL: z/OSV1R3
XPLINK: YES

�D� *****PROGRAM OBJECT PROCESSED BY BINDER

�E�
***THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS (PMAR AND PMARL)
PMAR 001E0308 02C00412 00000000 02900000 00B80000 00B80000 00000000 0000
PMARL 00629040 00000000 00050000 02780000 10000000 0B540000 40F40000 00740000

01400000 00240000 011C0000 00050000 01B40001 00000000 10000000 00000000
00002001 072F0144 340FD7D4 F6E3C5E2 E3403000 00010000 00180000 20000000
0178

Figure 178. Example: Module summary for a program object processed by the binder

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 559

entire module, the PO format (loader data level), the OS compat level
(binder data format), and XPLINK. If attribute bit 19 is the OFF state,
NONE will be displayed in place of SSI. SSI is usually set through the
SETSSI control statement in the binder or SPZAP programs.

Note: For an OS Compat Level less than z/OS V1R3, no Compat level will
be printed.

PO format and XPLINK are applicable only for program objects. PO format
is the version of the program object. XPLINK indicates whether any
routines use XPLINK linkage conventions. Compat level designates the
lowest OS release at which the release's binder could rebind this object.
Note that the level at which the module can be executed is determined by
the PO format.

�D� Linking Program. The last line in the module summary identifies the
linking program (VS linkage editor or binder) that created the module. For
example:
*****PROGRAM OBJECT PROCESSED BY BINDER

This is applicable to a program object.
****LOAD MODULE PROCESSED EITHER BY VS LINKAGE EDITOR OR BINDER

The load module is either created by the linkage editor and processed by
the binder, or created by the binder and processed by the linkage editor.

�E� PMAR and PMARL. For program objects, the PMAR and PMARL are
displayed in hexadecimal for diagnostic purposes, preceded by:
*** THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS
(PMAR AND PMARL)

Table 62 summarizes the attributes of program objects and load modules. The first
column shows the bit position. Columns 2 and 3 show the displayed constant and
its meaning for the OFF condition. Columns 4 and 5 show the displayed constant
and meaning for the ON condition.

Table 62. Program object and load module attributes

Bit
Position

OFF Value Meaning ON Value Meaning

00 NOT-RENT Module is not reentrant. RENT Module is reentrant.

01 NOT-REUS Module is not reusable. REUS Module is reusable.

02 NOT-OVLY Module is not in overlay format. OVLY Module is in overlay format.

03 NOT-TEST Test option was not specified
during binding.

TEST Test option was specified during
binding.

04 NOT-OL Program can be invoked through
all CSV macros.

ONLY-LOAD Program can be loaded only
through LOAD macro.

05 BLOCK Module consists of a single,
contiguous block of text. This bit
is always off for program objects.

SCTR Module can be scatter loaded
(MVS nucleus only).

06 NON-EXEC Module is marked not executable. EXEC Module is marked executable.

07 MULTI-RCD Module contains multiple text
records. This bit is always off for
program objects.

1-TXT Module contains no RLD items
and only one block of text.

AMBLIST

560 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 62. Program object and load module attributes (continued)

Bit
Position

OFF Value Meaning ON Value Meaning

08 DC Module is processable by all levels
of linkage editor.

NOT-DC Module is processable only by
F-level linkage editor and above.
This bit is always on for program
objects.

09 NOT-ZERO Origin of first text block greater
than zero.

ZERO-ORG Origin of first text block is zero.
This bit is always on for program
objects.

10 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

11 RLD Module contains RLD items. NO-RLD Module contains no RLD items.

12 EDIT Module can be reprocessed by
binder.

NOT-EDIT Module cannot be reprocessed by
binder.

13 NO-SYMS Module contains no SYM records. SYMS Module contains SYM records.

14 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

15 NOT-REFR Module is not refreshable. REFR Module is refreshable.

16 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

Note: The following bits are shown only for program objects.

17 <16M Module text size is less than 16
megabytes.

>16M Module text size is greater than or
equal to 16 megabytes.

18 NOT-PL Page alignment is not required for
loaded text.

P-ALIGN Page alignment is required for
loaded text.

19 NO-SSI System status index is not present. SSI System status index is present.

20 NOT-APF There is not an APF section in the
directory. (APFCODE is not
present.)

APF There is an APF section in the
directory. (APFCODE is present.)

21 NOT-PO This is a load module. PGM OBJ This is a program object. Always
on for program object.

22 NOT-SIGN Module is not digitally signed. SIGN Module is digitally signed.

23 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

24 ALTP Alternate primary name. NOT-ALTP Not an alternate primary name.

25 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

26 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

27 RMODE24 Module must be loaded below 16
megabytes.

RMODEANY Module can be loaded anywhere
below 2 gigabytes.

28 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

29 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

30 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

31 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

32 NON-MIGR Program object cannot be
converted directly to PDS load
module format.

MIGRATE Program object can be converted
to PDS load module format.

33 PRIME FETCHOPT PRIME option. NO-PRIME FETCHOPT NOPRIME option.

34 PACK FETCHOPT PACK option. NO-PACK FETCHOPT NOPACK option.

35 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 561

Table 62. Program object and load module attributes (continued)

Bit
Position

OFF Value Meaning ON Value Meaning

36 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

37 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

38 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

39 RESERVED Reserved for IBM use. RESERVED Reserved for IBM use.

LISTOBJ outputs
Figure 179 shows sample output for LISTOBJ with an object module.

The record formats for OBJ and XOBJ records are identical except that XOBJ
modules contain XSD records rather than ESD records. Except for XSD records,
AMBLIST formats the records in the object module one record at a time. XSD
records support names up to 32767 characters. These names may be continued
onto multiple records, but such a continued record will appear as a single XSD
record in the AMBLIST output. If the name is longer than 16 characters, a
16–character abbreviated name is printed with the XSD record. An abbreviation
table which maps abbreviated names to be true names is printed at the end of the
listing.

OBJECT MODULE LISTING PAGE 0001

ESD RECORD: 00000001
ESDID TYPE NAME ADDR R/R/A ID/LTH
00001 SD(00) MODULE00 000000 02 0026E0
00002 ER(02) MODULE01 000000 40 404040
00003 ER(02) MODULE02 000000 40 404040

ESD RECORD: 00000002
ESDID TYPE NAME ADDR R/R/A ID/LTH
00004 ER(02) MODULE03 000000 40 404040
00005 SD(00) MODULE04 0026E0 06 0004B4
00006 ER(02) MODULE05 000000 40 404040

ESD RECORD: 00000003
ESDID TYPE NAME ADDR R/R/A ID/LTH
00007 ER(02) MODULE06 000000 40 404040
00008 ER(02) MODULE07 000000 40 404040
00009 ER(02) MODULE08 000000 40 404040

ESD RECORD: 00000004
ESDID TYPE NAME ADDR R/R/A ID/LTH
00010 ER(02) MODULE09 000000 40 404040
00011 ER(02) MODULE10 000000 40 404040

TXT: 00000005
ADDR=000000 ESDID=00001 TEXT: A7F4000D 15D4D6C4 E4D3C5F0 F040F1F1 F2F1F3C8 C2C2F7F7 F9F090EC D00CC0C0 000010A5 0D8041F0

00005800 C00C1891 58F093E0 0DEF18FD

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR 00000000
00001 00001 0D 002168 00001 00001 0D 0021D4 00001 00001 0D 0021D8
00001 00001 0D 00228C 00001 00001 0D 002290 00001 00001 0D 0022A0
00001 00001 0D 0022B0 00001 00001 0C 00268C 00005 00001 0C 0022AC
00006 00001 0C 00229C

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR 00000000
00007 00001 0C 002294 00008 00001 0C 0022A4 00009 00001 0C 0022A8
00010 00001 0C 002298 00011 00001 0C 002288 00002 00005 0D 002A97
00002 00005 0D 002B0A 00002 00005 0C 002B46

RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR 00000000
00003 00005 0C 002B69 00004 00005 0C 002B8F

END RECORD: 2569623400 010611213

Figure 179. Example: Output for LISTOBJ with an object module

AMBLIST

562 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

See the description of ESD data items in z/OS MVS Program Management: Advanced
Facilities for a description of the format of OBJ and XOBJ record formats.

Figure 180 shows sample output for LISTOBJ with an XSD record.

Figure 181 shows sample output for LISTOBJ with a GOFF records.

OBJECT MODULE LISTING MEMBER= CALLEDA PAGE 0001
LIST OF CALLEDA

XSD RECORD: 00000001
ESDID TYPE NAME ADDR R/R/A ID/LTH
0001 SD(00) CAN_BE_ABBRV_16B 000000 06 0000BC

TXT: 00000002
ADDR=000000 ESDID= 0001 TEXT: 90ECD00C 0DC050D0 C07241E0 C06E50E0 D00818DE 1B115010 C0660700 4510C048 80000070 00000003

02250000 C3C1D3D3 C5C4C140 C1C2D6E4
TXT: 00000004
ADDR=000038 ESDID= 0001 TEXT: E340E3D6 40D9C5E3 E4D9D540 E3D640C3 C1D3D3C5 D9
TXT: 00000005
ADDR=00004E ESDID= 0001 TEXT: 0A234100 00014110 C0660A01 1BFF58D0 D00458E0 D00C980C D0140B0E 00000000 0000E7E7
RLD RECORD: R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR R PTR P PTR FLAGS ADDR 00000006

0001 0001 0D 000020 0001 0001 0C 000024
END RECORD: 1566896201 020191248 00000007

Figure 180. Example: LISTOBJ output with XSD Record

***** G E N E R A L I Z E D O B J E C T F I L E F O R M A T ***** PAGE 1

OBJECT MODULE LISTING

RECORD TYPE: HDR SEQUENCE: 1
--- CHARACTER SET -- LANGUAGE HDR MODULE
ID NAME PRODUCT VERSION PROPERTIES

> 00000 00000

RECORD TYPE: ESD SEQUENCE: 2
ESD OWNER/ ITEM ITEM NAME ---------------- ATTRIBUTES -----------------

ESDID TYPE PARENT OFFSET LENGTH SP/S BA AMD RMD REUS AL TXT ORD STR BINDER SIGNATURE

>000001 SD N/A N/A N/A N/A N/A N/A N/A N/S N/A N/A N/A N/A N/A N/A
NAME(CSECT)

>000002 ED 000001 0 1C 01-N/A C N/A N/S N/A 03 B-U N/A N/A L,A,C N/A
NAME(B_TEXT)

>000004 ED 000001 0 0 01-N/A C N/A N/S N/A 00 F-U N/A N/A C N/A
NAME(B_IDRL)

>000003 LD 000002 0 N/A 01-N/S N/A ANY N/A N/A N/A N-U N/A S N/A 00000000
NAME(CSECT)

RECORD TYPE: TEXT SEQUENCE: 6
-- RESIDENT -- TRUE TEXT ENCODED
ESDID OFFSET LENGTH ENCODING LENGTH ------------------------------ T E X T ------------------------------

>000002 00000000 00000000 0000 0000000C 58C07010 58C07014 41C07018

>000002 00000010 00000000 0000 0000000C 00000001 00000004 0000001F

RECORD TYPE: RLD SEQUENCE: 8
R-PTR P-PTR OFFSET TYPE LEN ATTRIB R-PTR P-PTR OFFSET TYPE LEN ATTRIB R-PTR P-PTR OFFSET TYPE LEN ATTRIB
>000002 000002 000010 00+ 004 000002 000002 000014 00+ 004 000002 000002 000018 00+ 004

RECORD TYPE: IDRL SEQUENCE: 9
ESDID |---- IDR DATA ----| |---- IDR DATA ----| |---- IDR DATA ----| |---- IDR DATA ----|

>000004 |569623400.010295104|

RECORD TYPE: END SEQUENCE: 10
RECORD --ENTRY POINT--
COUNT ESDID OFFSET

>000000 N/S N/S

Figure 181. Example: LISTOBJ output with GOFF Records

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 563

Description of LISTOBJ output for GOFF
The GOFF object listing is similar in function and content to the LISTOBJ format
for traditional object modules. The output is formatted one logical record at a time.
A logical record represents the concatenation of the first physical record (which
contains the record type) and all continuation records. If a name in a record is
longer than 16 characters, a 16-character abbreviated name is printed. The true
name can be found from the abbreviated name to long name table, which is
printed at the end of the listing. The start of a logical record is highlighted by a
dingbat (“>”) in the first position.

A record group consists of one or more records of the same type and is preceded
by a two- or three-line record header. The first line of each record header consists
of the record type and the sequence number of the first record in the group.
Following a page break, the record group header will be repeated, even though the
record type may not have changed.

Although the GOFF format currently defines only six record types, the TXT record
type is subdivided into three different text types:
v TEXT, containing the instructions and data of the program
v IDRL, containing IDR information from the compiler or assembler
v ADATA, containing additional data associated with the object module

Altogether there are eight different display formats.

Report Description: The keyed sections of this description correspond to the
equivalent keys highlighting the page header and the eight record formats in
“Example: LISTOBJ format for GOFF.” Note that some of the flags and lengths in
the GOFF format are of a structural nature and do not represent the data content
of the module. To save space, those elements have been omitted from the listing.
For the same reason, unsupported data elements are not shown. A list of omitted
elements is provided for each record type and the reason for omission is coded in
parens following the field name. Code values are S (structural or syntactic data)
and U (unsupported element). PTV for all record types is not formatted.

Example: LISTOBJ format for GOFF
1 LISTOBJ MEMBER=HELLOW,TITLE=(’MY PROGRAM IN GOFF FORMAT’)
1 ***** G E N E R A L I Z E D O B J E C T F I L E F O R M A T ***** PAGE 1
MY PROGRAM IN GOFF FORMAT
OBJECT MODULE LISTING MEMBER= HELLOW

0RECORD TYPE: HDR SEQUENCE: 1
0 --- CHARACTER SET -- LANGUAGE HDR MODULE

ID NAME PRODUCT VERSION PROPERTIES

0> 00000 00000

0RECORD TYPE: ESD SEQUENCE: 2
ESD OWNER/ ITEM ITEM NAME --------------------------- ATTRIBUTES ---------------------------

ESDID TYPE PARENT OFFSET LEN/ADA SP/S BA AMD RMD REUS AL TXT ORD STR BINDER_FLAGS LNK SIGNATURE

0>000001 SD 000000 N/A N/A N/A N/A N/S N/A RENT N/A N/A N/A N/A N/A N/A N/A
NAME()

>000002 ED 000001 0 28 01-N/A C ANY 31 N/A 03 B-D N/A N/A L,A N/A N/A
NAME(C_EXTNATTR)

>000003 ED 000001 0 B8 01-N/A C ANY 31 N/A 03 B-I N/A N/A L,R,A N/A N/A
NAME(C_CODE)

>000004 LD 000003 0 000006 01-L N/A ANY N/A N/A N/A N-I N/A S N X 00000000
NAME()

AMBLIST

564 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

>000005 ED 000001 0 0 03-N/A M ANY 31 N/A 03 B-D N/A N/A L,A,D N/A N/A
NAME(C_WSA)

>000006 PR 000005 000000 000018 03-L N/A N/S N/A N/A 03 U-D N/A S N S N/A
0 SORT KEY: 00000000 (HEX)

NAME()

>000007 LD 000003 50 000006 01-L N/A ANY N/A N/A N/A N-I N/A S N X 00000000
0 EXTENDED ATTRIBUTES: ESDID = 000002, OFFSET= 0

NAME(main)

>000008 ER 000001 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A S N/S S 00000000
NAME(CEESG003)

>000009 ER 000001 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A S N/S S 00000000
NAME(CBCSG003)

>000010 SD 000000 N/A N/A N/A N/A N/S N/A RENT N/A N/A N/A N/A N/A N/A N/A
NAME(CEESTART)

>000011 ED 000010 0 7C 01-N/A C ANY 31 N/A 03 B-I N/A N/A L,R,A N/A N/A
NAME(C_CODE)

>000012 LD 000011 0 000000 01-L N/A ANY N/A N/A N/A N-I N/A S N/S S 00000000
NAME(CEESTART)

>000013 ER 000010 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A W N/S S 00000000
NAME(CEEMAIN)

>000014 ER 000010 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A W N/S S 00000000
NAME(CEEFMAIN)

>000015 ER 000010 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A S N/S S 00000000
1 ***** G E N E R A L I Z E D O B J E C T F I L E F O R M A T ***** PAGE 2
MY PROGRAM IN GOFF FORMAT

NAME(CEEBETBL)

>000016 ER 000010 N/A N/A 01-L N N/S N/A N/A N/A N-D N/A S N/S S 00000000
NAME(CEEBLLST)

>000017 ER 000010 N/A N/A 01-L N N/S N/A N/A N/A N-I N/A S N/S S 00000000
NAME(CEEROOTD)

>000018 ER 000001 N/A N/A 01-L N N/S N/A N/A N/A N-I N/A S N/S S 00000000
NAME(CEESTART)

>000019 ED 000001 0 0 03-N/A M ANY 31 N/A 03 B-D N/A N/A L,A N/A N/A
NAME(C_@@PPA2)

>000020 PR 000019 000000 000008 03-L N/A N/S N/A N/A 00 U-D N/A S N S N/A
0 SORT KEY: 00000000 (HEX)

NAME()

>000021 ER 000001 N/A N/A 01-X N N/S N/A N/A N/A N-I N/A S G,N X 00000000
0 EXTENDED ATTRIBUTES: ESDID = 000002, OFFSET= 14

NAME(__ls__7os-amFPCc)

>000022 ED 000001 0 0 03-N/A M ANY 31 N/A 03 B-D N/A N/A L,A,D N/A N/A
NAME(C_WSA)

>000023 PR 000022 000000 000000 03-X N/A N/S N/A N/A 03 U-D N/A S N S N/A
0 SORT KEY: 00000000 (HEX)

NAME(cout)

>000024 SD 000000 N/A N/A N/A N/A N/S N/A N/S N/A N/A N/A N/A N/A N/A N/A
NAME(CEEMAIN)

>000025 ED 000024 0 10 01-N/A C ANY 31 N/A 03 B-D N/A N/A L,A N/A N/A
NAME(C_DATA)

>000026 LD 000025 0 000000 01-L N/A ANY N/A N/A N/A N-D N/A S N/S S 00000000
NAME(CEEMAIN)

>000027 ER 000001 N/A N/A 01-L N N/S N/A N/A N/A N-I N/A S N/S S 00000000
NAME(EDCINPL)

>000028 ER 000001 N/A N/A 01-L N N/S N/A N/A N/A N-I N/A S N X 00000000
NAME(main)

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 565

>000029 ED 000001 0 1B0 01-N/A C ANY 31 N/A 03 B-D N/A N/A A N/A N/A
NAME(C_COPTIONS)

>000030 ED 000001 0 22 01-N/A C ANY 31 N/A 03 F-U N/A N/A N/A N/A
NAME(B_IDRL)

0RECORD TYPE: TEXT SEQUENCE: 32
-- RESIDENT -- TRUE TEXT ENCODED
ESDID OFFSET LENGTH ENCODING LENGTH ------------------------------ T E X T ------------------------------

0>000002 00000000 00000000 0000 00000028 00000014 00010001 00010010 00040000 01000000 00000014 00010001 00010010
00040000 01000000

>000003 00000000 00000000 0000 000000A0 41F0F050 07FF0700 00000000 F2F0F0F0 F0F1F3F1 F0F8F4F6 F1F6F0F2 F0F9F0F0
1 ***** G E N E R A L I Z E D O B J E C T F I L E F O R M A T ***** PAGE 3
MY PROGRAM IN GOFF FORMAT

02CE07F8 00000080 00000201 00000502 00000038 01000000 00049481 89950000
00C300C5 00C500F1 FFFFFFE0 00000050 905C47B4 A74AFFB0 0D8047F0 80205860
48045810 600C1826 98566010 0D764700 00044130 000047F0 802447F0 8004987C
480C4140 405007F7 FFFFFFB8 01000000 00C300C5 00C500F3 FFFFFFF6 00000000

>000003 000000A0 00000000 0000 00000018 03012204 FFFFFF60 00000000 FFFFFF6C FFFFFFB0 01000000

>000006 00000000 00000000 0000 00000018 C8859393 9640E696 99938400 00000000 00000000 00000000

>000011 00000000 00000000 0000 0000007C 47000000 47000002 90ECD00C 053047F0 30180014 CE030209 0000002C C3C5C5E2
E3C1D9E3 000058F0 306A050F 00000000 00000000 00000000 00000000 00000000
FFFE004C 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000012 00000000 00000000 00000000 00000000 00000000 00000000

>000020 00000000 00000000 0000 00000008 00000000 000000A0

>000025 00000000 00000000 0000 00000010 02000001 00000000 00000000 00000000

>000029 00000000 00000000 0000 000001B0 C1C7C7D9 C3D6D7E8 4DD5D6D6 E5C5D9D3 C1D75D40 C1D5E2C9 C1D3C9C1 E240C1D9
C3C84DF2 5D40C1D9 C7D7C1D9 E2C540D5 D6C3D6D4 D7D9C5E2 E240D5D6 C3D6D5E5
D3C9E340 D5D6C3E2 C5C3E340 C3E5C6E3 40C4D3D3 4DD5D6C3 C1D3D3C2 C1C3D2C1
D5E85D40 C5E7C5C3 D6D7E240 D5D6C5E7 D7D6D9E3 C1D3D340 C6D3D6C1 E34DC8C5
E76B40C6 D6D3C46B 40D5D6C1 C6D75D40 C7D6C6C6 40D5D6C7 D6D5E4D4 C2C5D940
D5D6C9C7 D5C5D9D9 D5D640D5 D6C9D5C9 E3C1E4E3 D640D5D6 C9D7C140 D3C1D5C7
D3E5D34D C5E7E3C5 D5C4C5C4 5D40D5D6 D3C9C2C1 D5E2C940 D5D6D3D6 C3C1D3C5
40D3D6D5 C7D5C1D4 C540D5D6 D6D7E3C9 D4C9E9C5 40D7D3C9 E2E34DC8 D6E2E35D
40D9C5C4 C9D940D5 D6D9D6C3 D6D5E2E3 40D5D6D9 D6E2E3D9 C9D5C740 D9D6E4D5
C44DE95D 40D5D6E2 C5D9E5C9 C3C540D5 D6E2D6D4 40E2D6D4 C5C9D5C9 E340D5D6
E2D6D4C7 E240E2D7 C9D3D34D F1F2F85D 40E2E3C1 D9E340E2 E3D9C9C3 E340D5D6
E2E3D9C9 C3E36DC9 D5C4E4C3 E3C9D6D5 40E3C1D9 C7C5E34D D3C56B40 D6E2E5F2
D9F95D40 D5D6E3C5 E2E34DC8 D6D6D25D 40E3E4D5 C54DF35D 40E7D7D3 C9D5D240
C3D6D4D7 C9D3C5C4 6DD6D56D D4E5E2FF

0RECORD TYPE: IDRL SEQUENCE: 40
0 ESDID |---------- IDR DATA ---------| |---------- IDR DATA ---------|

0>000030 |5647A01...02092000031084616000

0RECORD TYPE: RLD SEQUENCE: 41
R-PTR P-PTR OFFSET TYPE LEN ATTRIB R-PTR P-PTR OFFSET TYPE LEN ATTRIB R-PTR P-PTR OFFSET TYPE LEN ATTRIB

0>000012 000011 000018 0000 004 000012 000011 000060 0000 004 000015 000011 000074 0001 004

>000013 000011 00002C 0001 004 000014 000011 000068 0001 004 000016 000011 00006C 0001 004

>000017 000011 000078 0001 004 000018 000003 0000A4 0000 004 000004 000003 0000A4 0002 004

>000004 000020 000004 0000 004 000021 000006 000014 0001 004 000021 000006 000010 7001 004

>000023 000006 00000C 0000 004 000028 000025 000004 0001 004 000027 000025 000008 0001 004

>000028 000025 00000C 7001 004

0RECORD TYPE: END SEQUENCE: 42
RECORD --ENTRY POINT--
COUNT AMODE ESDID OFFSET

1 ***** G E N E R A L I Z E D O B J E C T F I L E F O R M A T ***** PAGE 4
MY PROGRAM IN GOFF FORMAT
0>000042 ANY 000011 00000000

1 ** LONG NAME TABLE LISTING OF MEMBERMHELLOW ** ** PAGE 1
MY PROGRAM IN GOFF FORMAT
0ABBREVIATION LONG NAME

AMBLIST

566 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

0
0__ls__7os-amFPCc := __ls__7ostreamFPCc
0 ** END OF LONG NAME TABLE LISTING OF MEMBER HELLOW **

Display elements in “Example: LISTOBJ format for GOFF” on page 564 are
described as follows. The numbers enclosed in braces following the field heading
are the location (byte.bit) in the GOFF record where the data element can be found.
v �1� Page Header

– The page header is printed at the top of each page.
– The second line contains an optional user title.

v �2� HDR Record
This is the first record in each GOFF module. The only data elements printed are
the character set identifier and name and the language product (compiler or
assembler) which produced the module.
Data elements formatted:
– CCSID
– Character Set Name
– Language Product Identifier
Data elements not formatted:
– Target Hardware Environment (U)
– Target Operating System Environment (U)

v �3� ESD Record
The ESD describes each external name defined or referenced in the module.
Unlike the traditional object module, which provides for up to three names per
record, the GOFF format contains only one name per record.
Data elements formatted:
– Line 1

- ESDID. The identifier for the name being defined or referenced.
- ESD TYPE. Symbol Type (SD, ED, LD, PR, ER)
- OWNER/PARENT. The ESDID of the owning or referenced record type in

the ESD hierarchy.
- ITEM OFFSET. The offset, in bytes, of the start of this named entity from

the start of the higher level entity.
- ITEM LENGTH/ADA. For ED- or PR-type ESD records, the length (in

bytes) of the entity being defined. If the length field is -1, the true length
will be in a LEN-type GOFF record. For LD records, the ESDID of the
associated data.

- NAME SP/S. Name space (00-99) and binding scope (S (local or section),M
(module), L (library), or X (import/export)).

- BA. Binding algorithm (C=Catenate, M=Merge)
- AMD. AMODE (N/S, 24, 31, 64, ANY, MIN)
- RMD. RMODE (N/S, 24, 31, 64)
- REUS. Reusability or tasking behavior. (N/S, NONE, REUS, RENT, REFR)
- AL. Alignment. Print as decimal value n, where alignment boundary is

2**n. Range: 0-31.
- TXT. Text type. Displayed in format x-y where

v x is text record style (B (Byte oriented = 0), F (Fixed = 1), or V (Variable
= 2)).

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 567

v y is Executable (U (Unspecified= 0), D (Data=1), I (Instructions=2), or
digits 3-7).

- STR. Binding strength. (S (Strong=0), W (Weak=1)).
- BINDER_FLAGS. Binder attributes is a string consisting of zero or more of

the following characters. The ESD types to which the attribute is applicable
are listed in parenthesis.
v L. Initial or deferred load (ED)
v M. Movable (ED)
v R. Read-only (ED)
v A. Addressable. Text may contain adcons. (ED)
v C. Common (ED
v I. Symbol defines or references a descriptor. (LD, ER, PR)
v G. Mangled name (LD, PR, ER)
v N. Name may be renamed. (LD, PR, ER)
v D. Deferred load (ED)
v V. Removable (ED)

- LNK. Linkage Type (S (standard, non-XPLINK), X (XPLINK))
- SIGNATURE. Any eight-byte string, printed in hexadecimal.

– Sort Key. (Priority) Optional Field. PR only.
– Extended Attributes Optional Field. Defines text location containing

additional attributes for this ESD.
– Symbol name. The first line begins with NAME, followed immediately by the

name (up to 16 bytes). Names longer than 16 bytes will be abbreviated and
displayed here, and an abbreviation-to-long name equivalence table will be
listed at the end of the listing. A closing parenthesis will immediately follow
the last byte. A name consisting of a single blank character will be displayed
as "NAME()".

Data elements not formatted:
– Extended Attribute ESDID (U)
– Extended Attribute Data Offset (U)
– Alias or Alternate Symbol ID (U)
– Name Length (S)

v �4� TEXT Record
TEXT records are a subset of the TXT record type. They contain the instructions
and data of the program. TEXT is displayed in hexadecimal format.
Data elements formatted:
– Line 1

- ESDID. Identifies the element or part to which the text belongs.
- OFFSET. The offset within the element or part where the text is to begin.
- TRUE LENGTH. The expanded length of the text once the encoding rules

(if any) have been applied.
- TEXT ENCODING. The technique for encoding or decoding the text.

Current® values are 0 and 1.
- ENCODED LENGTH. The unexpanded length of the text appearing in this

record.
- TEXT. The text, displayed as it appears in the record. The length of the text

to be displayed appears in the ENCODED LENGTH field. Text is displayed
in hexadecimal format, 32 bytes per line.

AMBLIST

568 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

– Lines 2-n
All text beyond byte 31 is displayed on continuation lines. All bytes beyond
the last text byte must be set to blank characters.

Data elements not formatted:
– Data Length (S)

v �5� IDRL Record
The IDRL provides identification information for the language translator which
produced the GOFF. It is a subset of the TXT record type, identified as
structured record data. In format 1, the IDRL records will be displayed in
19-byte segments, four per line. In format 3, IDRL records will be displayed in
30-byte segments to support four-digit year values and time stamps, two per
line.

v �6� RLD Record
The relocation dictionary is a directory of address constants and other data areas
which must be modified during binding and loading. Multiple such data areas
or adcons can be described in a single RLD record. Relocation directory items
begin at {8.0} in the RLD record and vary in length according to the presence or
absence of various pointers and offsets in the item.
Directory items are formatted three per line. Each item consists of up to five
fields. Flags in the first byte of each directory item indicate which fields are
present in the item. As a result, except for the flag bytes in positions 1-8, offsets
are not fixed within the directory item as it appears in the GOFF file.
Data elements formatted:
– R-PTR. The ESDID of the target element, the value which will be used in

relocating the address constant.
– P-PTR. The ESDID of the element containing the adcon or data area to be

modified.
– OFFSET. The offset within the element described by the P-PTR at which the

adcon or data area is located.
– TYPE. This describes the type of adcon and implies the operation to be

performed on it. Bytes 1 and 2 must be printed in hexadecimal.
– LEN. Length of the adcon or data area. Range: 2-255.
– ATTRIB.

- H - the high order bit of the target field should be set from the target
AMODE.

- S - RLD is part of a conditional sequential RLD chain and the following
RLD is also part of the chain.

Data elements not formatted:
– Total data length (S)
– Flag bytes 0 (except for 0.7) and 5 (S)
– Extended Attributes ESDID and offset (U)

v �7� END Record
The END record is the last record in the module. It contains a count of the
records in the module and an optional entry point nomination, the latter
specified by name or by class and offset.
Data elements formatted:
– Line 1

- RECORD COUNT. Count of the logical records in the module, including the
HDR and END records.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 569

- AMODE. Amode to be used for the entry point specified on this END
record.

- ENTRY POINT ESDID. The identifier of the element containing the entry
point.

- ENTRY POINT OFFSET. The offset of the entry point within the element
identified by ESDID.

– Lines 2 contain the symbol name, if specified. The display format is identical
to that on the ESD record type.

LISTLOAD OUTPUT=MODLIST output
“Example: Output for LISTLOAD OUTPUT=MODLIST,ADATA=YES for a program
object” is an example of the output produced by LISTLOAD
OUTPUT=MODLIST,ADATA=YES for a program object.

Example: Output for LISTLOAD OUTPUT=MODLIST,ADATA=YES
for a program object

LISTLOAD MEMBER=ADATA3,OUTPUT=MODLIST,ADATA=YES
***** M O D U L E S U M M A R Y *****

MEMBER NAME: ADATA3 MAIN ENTRY POINT: 00000368
LIBRARY: SYSLIB AMODE OF MAIN ENTRY POINT: ANY

NO ALIASES **
--

**** ATTRIBUTES OF MODULE ****
** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 RESERVED 11 RLD
12 EDIT 13 NO-SYMS 14 RESERVED 15 NOT-REFR
16 RESERVED 17 <16M 18 NOT-PL 19 NO-SSI
20 APF 21 PGM OBJ 22 NOT-SIGN 23 RESERVED
24 NOT-ALTP 25 RESERVED 26 RESERVED 27 RMODE24
28 RESERVED 29 RESERVED 30 RESERVED 31 RESERVED
32 NON-MIGR 33 NO-PRIME 34 NO-PACK 35 RESERVED
36 RESERVED 37 RESERVED 38 RESERVED 39 RESERVED

--
MODULE SSI: NONE
APFCODE: 00000000
RMODE: 24
PO FORMAT: 3
XPLINK: NO

*****PROGRAM OBJECT PROCESSED BY BINDER
***THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS (PMAR AND PMARL)
PMAR 001E0309 02C00C03 00000000 05A40000 03680000 03680000 00000000 0000
PMARL 00628000 00000000 000A0000 10180000 10000000 27AC0000 74980000 00E00000

01400000 00240000 011C0000 000A0000 02200002 00000000 05300000 00180000
20002011 017F0131 240FC1C4 C1E3C1F3 40403000 00010000 005C0000 30000000
0410

LISTING OF PROGRAM OBJECT ADATA3 PAGE 1

THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695PMB01 AT LEVEL 01.12 ON 01/17/2011 AT 13:12:40
--
MODULE SECTION: $SUMMARY
USABILITY: UNSPECIFIED AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== ESDs =====
C_WSA(ED)

CLASS: C_WSA LENGTH: 5C (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA DEFER FILL: 0 (HEX)

C_@@DLLI(ED)
CLASS: C_@@DLLI LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA LOAD FILL: 0 (HEX)

C_@@PPA2(ED)
CLASS: C_@@PPA2 LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA LOAD READ-ONLY 0 (HEX)

B_PRV(ED)
CLASS: B_PRV LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 2 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: 24
TEXT NOLOAD FILL: UNSPEC

$PRIV000010(PD)
CLASS: C_@@DLLI LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: GENERATED,STRONG

$PRIV000011(PD)
CLASS: C_@@PPA2 LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: GENERATED,STRONG

AMBLIST

570 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

$PRIV000012(PD)
CLASS: C_WSA LENGTH: 10 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD PRIORITY: 0 (HEX) SCOPE: SECTION
ATTRIBUTES: GENERATED,STRONG

__ls__7os-amFPCc(PD)
CLASS: C_WSA LENGTH: 20 (HEX) CLASS OFFSET: 10 (HEX)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: GENERATED,STRONG,INDIRECT,MANGLED

endl__FR7-stream(PD)
CLASS: C_WSA LENGTH: 20 (HEX) CLASS OFFSET: 30 (HEX)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: GENERATED,STRONG,INDIRECT,MANGLED

HELLOW1#S(PD)
CLASS: C_WSA LENGTH: C (HEX) CLASS OFFSET: 50 (HEX)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: GENERATED,STRONG

Q1(PD)
CLASS: B_PRV LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 2 ALIGNMENT: FULL WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: WEAK

LISTING OF PROGRAM OBJECT ADATA3 PAGE 2

MODULE SECTION: $SUMMARY
===== RLDs ===== CLASS: C_WSA
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000008 00000018 BR UNRES 0004 1 (+)__ls__7os-amFPCc __ls__7os-amFPCc
0000000C 0000001C N-BR RES 0004 3 (+)__ls__7os-amFPCc __ls__7os-amFPCc
00000010 00000020 BR UNRES 0004 1 (+)CEETGTFN __ls__7os-amFPCc
00000018 00000028 BR RES 0004 1 (+)CEESTART __ls__7os-amFPCc
0000001C 0000002C SEGM RES 0004 0 (+)C_WSA __ls__7os-amFPCc
00000008 00000038 BR UNRES 0004 1 (+)endl__FR7-stream endl__FR7-stream
0000000C 0000003C N-BR RES 0004 3 (+)endl__FR7-stream endl__FR7-stream
00000010 00000040 BR UNRES 0004 1 (+)CEETGTFN endl__FR7-stream
00000018 00000048 BR RES 0004 1 (+)CEESTART endl__FR7-stream
0000001C 0000004C SEGM RES 0004 0 (+)C_WSA endl__FR7-stream
===== TEXT ===== CLASS: C_WSA
00000000 C36DE6E2 C1404040 40404040 40404040 180F58FF 001007FF 00000000 00000010 *C.WSA...........................*
00000020 00000000 00000000 00000368 00000000 180F58FF 001007FF 00000000 00000030 *................................*
00000040 00000000 00000000 00000368 00000000 00000000 00000000 00000000*
===== TEXT ===== CLASS: C_@@DLLI
00000000 00000000 00000250*
===== TEXT ===== CLASS: C_@@PPA2
00000000 00000000 00000350*
--

CONTROL SECTION: A
USABILITY: UNSPECIFIED AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====

TRANSLATOR VER MOD DATE TIME
569623400 01 06 01/17/2011

===== ESDs =====
B_PRV(ED)

CLASS: B_PRV LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 2 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: 24
TEXT NOLOAD FILL: UNSPEC

B_TEXT(ED)
CLASS: B_TEXT LENGTH: 18 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
TEXT LOAD FILL: UNSPEC

C_ADATA0000(ED)
CLASS: C_ADATA0000 LENGTH: AA (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
DESCRIPTIVE DATA DATA NOLOAD READ-ONLY UNSPEC

C_ADATA0001(ED)
CLASS: C_ADATA0001 LENGTH: 16 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
DESCRIPTIVE DATA DATA NOLOAD READ-ONLY UNSPEC

A(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 0 (HEX) AMODE: UNS
ATTRIBUTES: STRONG

ENTA(ER)
TEXT TYPE: UNSPEC CLASS OFFSET: 14 (HEX)

TARGET SECTION: A TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 14 (HEX) AMODE: UNS
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

ENTB(ER)
TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

Q1(PR)
CLASS: B_PRV LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 2 ALIGNMENT: FULL WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: WEAK

ENTA(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 14 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 14 (HEX) AMODE: UNS
ATTRIBUTES: STRONG

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 571

===== RLDs ===== CLASS: B_TEXT
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000006 00000006 BR RES 0004 1 (+)ENTA
0000000C 0000000C C-OF RES 0004 2 (+)Q1
00000010 00000010 BR UNRES 0004 1 (+)ENTB
===== TEXT ===== CLASS: B_TEXT
00000000 07FEC1C1 C1C10000 00140000 00000000 00000000 C5D5E3C1 ..AAAA..............ENTA........*
==== ADATA ==== CLASS: C_ADATA0000
00000000 10000003 00010000 0000009E F2F0F1F1 F0F1F1F7 F1F3F1F2 F5F6F9F6 60F2F3F4 *............2011011713125696.234*
00000020 F14BF64B F0404040 0006E4D2 F6F2F8F3 F540A961 D6E240F0 F14BF1F2 4BF0F040 *1.6.0.....UK62835.z.OS.01.12.00.*
00000040 40404040 40404040 4040C1C4 C1E3C1F3 4040C1E2 E2C5D4C2 D3C54040 40404040 *..........ADATA3..ASSEMBLE......*
00000060 40400000 00010000 006A0000 00000000 00010000 008A0000 00200000 00000000 *................................*
00000080 00000000 00000000 0000D3C5 D6D5C14B C1C4C1E3 C1F34BD1 D6C2F1F7 F1F9F74B *..........LEONA.ADATA3.JOB17197.*
000000A0 C4F0F0F0 F0F1F0F1 4B6F D0000101........................*
==== ADATA ==== CLASS: C_ADATA0001
00000000 10000103 00000000 0000000A C731F038 09628623 0025G.0...f.............*
--

CONTROL SECTION: CEESTART
USABILITY: REENTRANT AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== ESDs =====
C_CODE(ED)

CLASS: C_CODE LENGTH: 7C (HEX) CLASS OFFSET: 368 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT INSTR LOAD READ-ONLY 0 (HEX)

CEESTART(LD)
CLASS: C_CODE TEXT TYPE: INSTR CLASS OFFSET: 368 (HEX)
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: ANY
ATTRIBUTES: STRONG

CEEMAIN(ER)
TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS: C_DATA
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: WEAK

CEEFMAIN(ER)
TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: WEAK

CEEBETBL(ER)
TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

CEEROOTA(ER)
TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

===== RLDs ===== CLASS: C_CODE
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000018 00000380 N-BR RES 0004 1 (+)CEESTART
0000002C 00000394 BR RES 0004 1 (+)CEEMAIN
00000060 000003C8 N-BR RES 0004 1 (+)CEESTART
00000068 000003D0 BR UNRES 0004 1 (+)CEEFMAIN
00000074 000003DC BR UNRES 0004 1 (+)CEEBETBL
00000078 000003E0 BR UNRES 0004 1 (+)CEEROOTA
===== TEXT ===== CLASS: C_CODE
00000368 47000000 47000002 90ECD00C 053047F0 30180014 CE030310 00000394 C3C5C5E2 *...............0...........mCEES*
00000388 E3C1D9E3 000058F0 306A050F 00000008 00000000 00000000 00000000 00000000 *TART...0........................*
000003A8 FFFF004C 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
000003C8 0000037A 00000000 00000000 00000000 00000000 00000000 00000000*
--

LISTING OF PROGRAM OBJECT ADATA3 PAGE 11

CONTROL SECTION: HELLOW1#C
USABILITY: REENTRANT AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====

TRANSLATOR VER MOD DATE TIME
5647A01 02 10 08/16/2000

===== ESDs =====
C_CODE(ED)

CLASS: C_CODE LENGTH: 368 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT INSTR LOAD READ-ONLY 0 (HEX)

HELLOW1#C(LD)
CLASS: C_CODE TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: ANY
ATTRIBUTES: STRONG

C_WSA(ED)
CLASS: C_WSA LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA DEFER FILL: 0 (HEX)

HELLOW1#S(PR)
CLASS: C_WSA LENGTH: C (HEX) CLASS OFFSET: 50 (HEX)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: STRONG

AMBLIST

572 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

C_@@DLLI(ED)
CLASS: C_@@DLLI LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA LOAD FILL: 0 (HEX)$PRIV000010(PR)
CLASS: C_@@DLLI LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: STRONG,MAPPED

main(LD)
CLASS: C_CODE TEXT TYPE: INSTR CLASS OFFSET: 58 (HEX)
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 58 (HEX) AMODE: ANY
ATTRIBUTES: STRONG,MAPPED

CEESG003(ER)
TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

CBCSG003(ER)
TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

C_DATA(ED)
CLASS: C_DATA LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT DATA LOAD FILL: 0 (HEX)

HELLOW1#T(LD)
CLASS: C_DATA TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: ANY
ATTRIBUTES: STRONG

C_WSA(ED)
CLASS: C_WSA LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA DEFER FILL: 0 (HEX)

endl__FR7-stream(PR)
CLASS: C_WSA LENGTH: 0 (HEX) CLASS OFFSET: 30 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: STRONG,MAPPED,INDIRECT,MANGLED

endl__FR7-stream(ER)
TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: EXP/IMP ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG,MAPPED,MANGLED

__ls__7os-amFPCc(PR)
CLASS: C_WSA LENGTH: 0 (HEX) CLASS OFFSET: 10 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: STRONG,MAPPED,INDIRECT,MANGLED

__ls__7os-amFPCc(ER)
TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: EXP/IMP ELEMENT OFFSET: 0 (HEX)

AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG,MAPPED,MANGLED

cout(PR)
CLASS: C_WSA LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: FULL WORD PRIORITY: 0 (HEX) SCOPE: EXP/IMP
ATTRIBUTES: STRONG,MAPPED

@@TRGLOR(ER)
TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG

CEESTART(ER)
TEXT TYPE: INSTR CLASS OFFSET: 368 (HEX)

TARGET SECTION: CEESTART TARGET CLASS: C_CODE
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

C_@@PPA2(ED)
CLASS: C_@@PPA2 LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 3 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: ANY
TEXT DATA LOAD READ-ONLY 0 (HEX)

$PRIV000011(PR)
CLASS: C_@@PPA2 LENGTH: 8 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 3 ALIGNMENT: BYTE PRIORITY: 0 (HEX) SCOPE: LIBRARY
ATTRIBUTES: STRONG,MAPPED

EDCINPL(ER)
TEXT TYPE: INSTR CLASS OFFSET: 0 (HEX)

TARGET SECTION: TARGET CLASS:
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
UNRESOLVED AUTOCALL
ATTRIBUTES: STRONG main(ER)

TEXT TYPE: INSTR CLASS OFFSET: 58 (HEX)
TARGET SECTION: HELLOW1#C TARGET CLASS: C_CODE
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 58 (HEX) AMODE: UNS
RESOLVED AUTOCALL

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 573

ATTRIBUTES: STRONG,MAPPED
C_COPTIONS(ED)

CLASS: C_COPTIONS LENGTH: 1F2 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT DATA NOLOAD READ-ONLY 0 (HEX)

===== RLDs ===== CLASS: C_@@PPA2
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000004 00000004 N-BR RES 0004 1 (+)HELLOW1#C $PRIV000011
===== RLDs ===== CLASS: C_@@DLLIC_COPTIONS(ED)

CLASS: C_COPTIONS LENGTH: 1F2 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT DATA NOLOAD READ-ONLY 0 (HEX)

===== RLDs ===== CLASS: C_@@PPA2
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000004 00000004 N-BR RES 0004 1 (+)HELLOW1#C $PRIV000011

ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000004 00000004 N-BR RES 0004 1 (+)HELLOW1#C $PRIV000010
===== RLDs ===== CLASS: C_CODE
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000108 00000108 C-OF RES 0004 3 (+)HELLOW1#S
0000010C 0000010C N-BR RES 0004 1 (+)HELLOW1#C
00000110 00000110 N-BR RES 0004 1 (+)HELLOW1#C
0000032C 0000032C C-OF RES 0004 3 (+)HELLOW1#S
00000330 00000330 C-OF RES 0004 3 (+)endl__FR7-stream
00000334 00000334 C-OF RES 0004 3 (+)__ls__7os-amFPCc
00000338 00000338 C-OF UNRES 0004 3 (+)cout
0000033C 0000033C BR UNRES 0004 1 (+)@@TRGLOR
00000354 00000354 N-BR RES 0004 1 (-)HELLOW1#C
00000354 00000354 N-BR RES 0004 1 (+)CEESTART
===== TEXT ===== CLASS: C_CODE
00000000 F2F0F0F0 F0F8F1F6 F1F0F0F5 F4F3F0F2 F0C1F0F0 00000000 1CCEA106 000002F8 *20000816100543020A00...........8*
00000020 00000000 00000000 FF800000 00000001 90000001 00400012 00000000 50000058 *................................*
00000040 00000040 38270000 00000000 00000000 00049481 89950000 47F0F028 01C3C5C5 *..................main...00..CEE*
00000060 000000A0 FFFFFFC0 47F0F001 58F0C31C 184E05EF 00000000 05404140 401E07F4 *.........00..0C................4*
00000080 90E6D00C 58E0D04C 4100E0A0 5500C314 4140F040 4720F014 5000E04C 9210E000 *.W............C...0...0.....k...*
000000A0 50D0E004 18DE5800 C1F45000 D0985810 D0985820 40704152 10005860 40745810 *........A4...q...q..............*
000000C0 50005820 500458F0 20085800 200C1826 4DE0F010 47000008 58205008 5800D098 *.......0..........0............q*
000000E0 58F04078 4DE0F010 47000008 5800D098 5000C1F4 180D58D0 D0041BFF 58E0D00C *.0....0........q..A4............*
00000100 9826D01C 051E0707 00000050 00000340 00000180 00000000 1CCE2109 000001D0 *q...............................*
00000120 00000000 00000000 FE000000 00000001 E0000000 02400012 00000000 5000003F *................................*
00000140 00000068 18260000 00000000 00000000 002A96A2 A3998581 947A7A96 97859981 *..................ostream..opera*
00000160 A396994C 4C4D96A2 A3998581 94504D5C 5D4D96A2 A3998581 94505D5D 00000000 *tor...ostream.....ostream.......*
===== TEXT ===== CLASS: C_COPTIONS
00000000 C1C7C7D9 C3D6D7E8 4DD5D6D6 E5C5D9D3 C1D75D40 C1D5E2C9 C1D3C9C1 E240C1D9 *AGGRCOPY.NOOVERLAP..ANSIALIAS.AR*
00000020 C3C84DF0 5D40C1D9 C7D7C1D9 E2C540D5 D6C3D6D4 D7C1C3E3 40D5D6C3 D6D4D7D9 *CH.0..ARGPARSE.NOCOMPACT.NOCOMPR*
00000040 C5E2E240 D5D6C3D6 D5E5D3C9 E340C3E2 C5C3E34D C3D6C4C5 6B40C8C5 D3D3D6E6 *ESS.NOCONVLIT.CSECT.CODE..HELLOW*
--

CONTROL SECTION: IEWBLIT
USABILITY: UNSPECIFIED AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== ESDs =====
B_LIT(ED)

CLASS: B_LIT LENGTH: 120 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: ANY
TEXT DATA LOAD FILL: UNSPEC

IEWBLIT(LD)
CLASS: B_LIT TEXT TYPE: DATA CLASS OFFSET: 0 (HEX)

===== ESDs =====
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 0 (HEX) AMODE: ANY
ATTRIBUTES: GENERATED,STRONG

===== RLDs ===== CLASS: B_LIT
ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
00000028 00000028 LTKN RES 0008 0 (+)
00000050 00000050 CPR RES 0004 0 C_CODE
00000054 00000054 SEGM RES 0004 0 (+)C_CODE
00000070 00000070 CPR RES 0004 0 C_@@DLLI
00000074 00000074 SEGM RES 0004 0 (+)C_@@DLLI
00000090 00000090 CPR RES 0004 0 C_DATA
00000094 00000094 SEGM RES 0004 0 (+)C_DATA
000000B0 000000B0 CPR RES 0004 0 C_@@PPA2
000000B4 000000B4 SEGM RES 0004 0 (+)C_@@PPA2
000000D0 000000D0 CPR RES 0004 0 B_TEXT
000000D4 000000D4 SEGM RES 0004 0 (+)B_TEXT
000000F0 000000F0 CPR RES 0004 0 B_LIT
000000F4 000000F4 SEGM RES 0004 0 (+)B_LIT
00000110 00000110 CPR RES 0004 0 C_WSA
===== TEXT ===== CLASS: B_LIT
00000000 C9C5E6C2 D3C9E340 00000120 01000000 00000040 00000020 00000007 00000001 *IEWBLIT.........................*
00000020 00000000 00000000 00000000 00000000 00000000 18000000 00000000 00000000 *................................*
00000040 C36DC3D6 C4C54040 40404040 40404040 000003E4 00000000 03038000 00000000 *C.CODE.............U............*
00000060 C36D7C7C C4D3D3C9 40404040 40404040 00000008 00000000 03030000 00000000 *C...DLLI........................*
00000080 C36DC4C1 E3C14040 40404040 40404040 00000014 00000000 03030000 00000000 *C.DATA..........................*
000000A0 C36D7C7C D7D7C1F2 40404040 40404040 00000008 00000000 03038000 00000000 *C...PPA2........................*
000000C0 C26DE3C5 E7E34040 40404040 40404040 00000018 00000000 01030000 00000000 *B.TEXT..........................*
000000E0 C26DD3C9 E3404040 40404040 40404040 00000120 00000000 03030000 00000000 *B.LIT...........................*
00000100 C36DE6E2 C1404040 40404040 40404040 0000005C 00000000 03032080 00000000 *C.WSA...........................*
--
==== MERGE CLASS PART INITIALIZERS ====
CLASS PART OFFSET REPEAT --------------------- I N I T I A L T E X T -----------------------

AMBLIST

574 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

C_@@DLLI $PRIV000010 000000 00001 00000000 00000250
C_@@PPA2 $PRIV000011 000000 00001 00000000 00000350
--

** LONG NAME TABLE LISTING OF PROGRAM OBJECT ADATA3 ** PAGE 16

ABBREVIATION LONG NAME

__ls__7os-amFPCc := __ls__7ostreamFPCc
endl__FR7-stream := endl__FR7ostream

** END OF LONG NAME TABLE LISTING OF PROGRAM OBJECT ADATA3 **
** END OF PROGRAM OBJECT LISTING

“Example: Output for LISTLOAD OUTPUT=MODLIST,ADATA=YES for a program
object” on page 570 is an example of the output produced by LISTLOAD
OUTPUT=MODLIST for an overlay structured load module.

Example: Output for LISTLOAD OUTPUT=MODLIST for an
overlay structured load module

LISTING OF LOAD MODULE PL1LOAD PAGE 0001

RECORD# 1 TYPE 20 - CESD ESDID 1 ESD SIZE 240
CESD# SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH(DEC) (HEX)
1 PLITC0Z 00(SD) 000000 1 1206 486
2 PLITC0ZA 00(SD) 000488 1 608 260
3 IHEQINV 06(PR) 000000 3 4 4
4 IHESADA 02(ER) 000000
5 INESADB 02(ER) 000000
6 IHEQERR 06(PR) 000004 3 4 4
7 IHEQTIC 06(PR) 000008 3 4 4
8 IHEMAIN 00(SD) 000718 1 4 4
9 IHENTRY 00(SD) 000720 1 12 C
l0 IHESAPC 02(ER) 000000
11 IHEQLWF 06(PR) 00000C 3 4 4
12 IHEQSLA 06(PR) 000010 3 4 4
13 IHEQLW0 06(PR) 000014 3 4 4
14 PLITC0ZB 06(PR) 000018 3 4 4
15 PLITC0ZC 06(PR) 00001C 3 4 4

RECORD# 2 TYPE 20 - CESD ESDID 16 ESD SIZE 240
CESD# SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH(DEC) (HEX)
16 IHELDQA 02(ER) 000000
17 IHELDQB 02(ER) 000000
18 IHEIQBT 02(ER) 000000
19 IHEIQBC 02(ER) 000000
20 IHESAFA 02(ER) 000000
21 IHESAFB 02(ER) 000000
22 AA 02(ER) 000000
23 C 00(SD) 000730 1 4 4
24 B 00(SD) 000738 1 4 4
25 A 00(SD) 000740 1 4 4
26 IHESPRT 00(SD) 000748 1 56 38
27 IHEQSPR 06(PR) 000020 3 4 4
28 IHEDNC 02(ER) 000000
29 IHEVPF 02(ER) 000000
30 IHEDMA 02(ER) 000000

RECORD# 3 TYPE 20 - CESD ESDID 31 ESD SIZE 64
CESD# SYMBOL TYPE ADDRESS SEGNUM ID/LENGTH(DEC) (HEX)
31 IHEVPB 02(ER) 000000
32 IHEVSC 02(ER) 000000
33 IHEUPA 02(ER) 000000
34 IHEVQC 02(ER) 000000

LISTING OF LOAD MODULE PL1LOAD PAGE 0002

RECORD# 4 TYPE 01 - CONTROL CONTROL SIZE 32 CCW 060000000 40000780
CESD# LENGTH
1 0488
2 0260
8 0008
9 0010
23 0008
24 0008
25 0008
26 0038

RECORD# 5 T E X T
000000 47F0F914 07D7D3F1 E3C3F0F2 000000D8 000004B8 90EBD00C 58B0F010 5800F00C
000020 58F0B0Z0 05EF05A0 4190D0B8 50DC0018 9200D062 92919963 92C0D000 9202D063
000040 F811D090 B132F810 D092B080 FA11D092 B130F821 99A80009 F821D0AB D092D203
000060 D0AEB134 F811D090 B13CF810 D092B080 FA11D092 B13AF821 D0B2D090 F821D0B5
000080 D09241A0 A0600700 9203D063 4110B174 58F0B05C 95EF4119 B1144120 818358F0
0000A0 B05405EF 9203D063 58F0B058 05EF9204 D0635880 8979F821 D0908000 F821D093
0000C0 8002FA20 D093B111 5879B06C D2017000 D091D201 79920004 9205D063 F821D090
0000E0 7000F821 D0937002 FA20D093 B10F5860 B068D201 60000001 D2016002 D0949206

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 575

000100 D0634150 D0AE5050 D0944150 D0905050 D0989680 00084119 D09458F0 B06405EF
000120 5880B070 D2038000 D0909207 D063F811 D090B10C F8100092 B080FA11 D092B10A
000140 F9118000 D0904770 A0C8F911 8002D092 4780A0EE 92989963 4110B168 58F0B05C
000160 05EF4110 B14058F0 B05005EF 9208D063 58F0B058 95EF9208 D0639210 D0634180
000180 D0A85080 D0984180 D0825080 D09C4180 D0905080 99A99689 D0A04110 D09858F0
0001A0 B04005EF D205D0B2 D0909211 D063D202 D090D0B2 F9210009 B0D19200 D0904780
0001C0 A13E9280 D090D202 D091D0B5 F921D091 B0CF9200 00014789 A1569280 D091D200
0001E0 D094D090 D600D094 D0919180 D0944780 A19E9212 99634119 B15C58F0 B05C05EF
000200 4110B0A0 4120B183 58F0B054 05EF4110 D0B24120 818758F9 B05405EF 9212D063
000220 58F0B058 05EF9213 D0634110 B15058F0 B05C05EF 41198984 4120B183 58F0B054
000240 05EF9213 D06358F0 B05805EF 9214D063 58F0B030 95EF47F9 47F0F00C 03C1E7F1
000260 000000D0 90EBD00C 18AF41E0 A0285830 80381B22 59293959 58F0B02C 47F0F062
000280 9201D084 58E01000 50E0D088 4580A03A 07FA05A0 41000989 50DC001C 9200D062
000200 9209D063 41A0A088 07F80700 47F0F00C 03C1C3F1 00099258 90EBD00C 58A0F008
0002C0 45E0A016 9202D084 D207D0A0 10009200 D0A458E0 199859E9 D0884580 A03A47F0
0002E0 A0000700 47F0F00C 03C1C3F2 00000258 90EBD00C 58A0F008 45E0A016 9203D084
000300 D207D0A8 10009200 D0AC58E0 100850E0 D0884580 A93047F9 A0860700 920BD063
000320 920CD063 5880D0A0 F821D090 80005870 D0A4FA21 00097000 F821D093 8002FA21
000340 D0937002 9502D084 4780A062 9503D084 4780A076 58600088 F872D098 D0904FE0
000360 D09810FE 54E0B078 90EFD098 964ED098 2B006A00 00087000 600047F0 A0805880
000380 D088D201 8000D091 D2018002 D09447F0 A0805880 99889295 8000D090 58F0B060
0003A0 05EF920D D063920E D0635880 D0A8F822 D0908000 5870D0AC FB22D090 7000F822
0003C0 D0938003 FB22D093 70039502 D0844780 A0E89503 99844789 A0FC5860 D088F872
0003E0 D098D090 4FE0D098 10FE54E0 B07890EF D098964E 00082899 6A00D098 70006000
000400 47F0A106 5880D088 D2018000 D091D201 8002D094 47F9A196 5880D088 D2058000
000420 D09058F0 B06005EF 920FD063 58F0B92C 05EFF014 91800091 4780F03C 5820D050
000440 12224770 F03C59DC 00104770 F03C58D0 D00450DC 99199189 D0004710 F03258D0
000460 D00447F0 F0225020 D00898EB D00C07FE 58F0B030 97FF584C 00001244 47B0F056
000480 587C0014 D2033050 70504140 4001504C 00005040 39549299 304C5030 D00818D3
0004A0 583C0010 5030D004 50DC0010 5020D008 5020D060 07FEIC00 00001000 000014B8
0004C0 000024B8 000034B8 000044B8 000054B8 000064B8 000074B8 00000000 00000000
0004E0 00000434 00000434 00000000 89300008 00000648 41660001 000002E4 000002AC

----------------- LISTING OF LOAD MODULE PL1LOAD PAGE 0003
000500 00000258 00000000 00000000 00000000 00000000 00000000 00000000 00000000

000520 00000730 00000738 00000740 00000748 80000000 00000001 0C020000 00000544
000540 00140014 40D7D3F1 E3C3F0F2 6060C3D6 D4D7D3C5 E3C5C440 00000560 00270027

000560 40C5D9D9 6D9D6BC5 E7D7C5C3 E3C5C440 C1C440C9 E240F4F0 4EF2F0C9 40C2E4E3
000580 40C1C440 C9E24002 0C040C00 000005D4 002C002C 40C5D9D9 969968C5 E7D7C5C3
0005A0 E3C5C440 C140C9E2 40F1F84E F4F1C940 C2E4E340 C140C9E2 49D9C5C1 D3D3E840
0005C0 000C041C 018C0C2C 0CIC0000 000005D4 00120012 40D7D3F1 E3C3F9F2 6060C5D5
0005E0 E3C5D9C5 C440000C 040C050C 000C006C 000C020C 010C001C 0009958C 0000063B
000600 00000740 80000638 00000748 00000242 80000534 00000748 0009921C 80000534
000620 00099748 0000016C 80000534 00000748 000000A4 80000534 8993892C 8A060089
000640 04800620 41C90008 C08000D0 1C021AC1 95043008 47808200 D2AFC000 40009680
000660 900647F0 8206D2AF 4000C000 1BFF50FD 00101817 41000038 0A0A98EC D00C07FE
000680 00033BC8 00480A0A 05804860 B08050E7 00309180 90064780 89189295 701047F0
0006A0 801C9206 70104150 A05818C6 41D00020 1CCC1AD5 50D70014 18499595 70104770
0006C0 804048D0 900447F0 80581B22 8D200008 41100001 19128C20 00084789 809648D7
0006E0 00224820 B07A4BD0 B0864740 807A1BCC 48I0B07E 1DC11AD2 80009908 41DCD001
000700 47F0808A 4AD0B086 4AD0B084 06208920 00081AD2 410D0000 00000099 47F0809E
000720 58F0F008 07FF0000 00000000 50070034 003C004C 001058F0 003C004C 58070034
000740 003C004C D2071024 00201002 00000000 00000004 00000000 00000000 00000000
000760 07E2E8E2 D7D9C9D5 E3000000 00000000 00000000 00000000 00000000 00000000

RECORD# 6 TYPE 02 - RLD RLD SIZE 236
R-PTR P-PTR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR

2 1 0C 000010
14 1 24 00002E
15 1 24 00029A
1 1 0D 0002B4 0C 0002EC
12 1 25 000448 24 000454
3 1 24 000478
13 1 24 000482
3 1 24 000490
12 1 25 0004A2 24 0004AA
2 2 0D 0004BC 0D 0004C0 0D 0004C4 0D 0004C8 0D 0004CC 0D 0004D0

0C 0004D4
4 2 8C 0004D8
5 2 8C 0004DC
1 2 0D 0004E0 PC 0004E4
2 2 0C 0004F0
1 2 0D 0004F8 0D 0004FC 0D 000500 0C 000504
16 2 9C 000508
17 2 9C 00050C
18 2 9C 000510
19 2 9C 000514
20 2 9C 0004E8
21 2 9C 000518
22 2 9C 00051C
23 2 0C 000520

LISTING OF LOAD MODULE PL1LOAD PAGE 0004

RECORD# 7 TYPE 0E - RLD RLD SIZE 236
R-PTR P-PTR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR FL ADDR
24 2 0C 000524
25 2 0C 000528
26 2 0C 00052C
2 2 09 00053D 09 000559 09 00058D 09 0005CD 0D 0005F8 0C 0005FC

AMBLIST

576 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

25 2 0C 000600
2 2 08 000605
26 2 0C 000608
1 2 0C 00060C
2 2 08 000611
26 2 0C 000614
1 2 0C 000618
2 2 08 00061D
26 2 0C 000620
1 2 0C 000624
2 2 08 000629
26 2 0C 00062C
1 2 0C 000630
2 2 08 000635
1 8 0C 000718
10 9 8C 000728
27 26 24 000748

******END OF LOAD MODULE LISTING

“Example: Output for LISTLOAD OUTPUT=MODLIST for a normal (non-overlay)
structured load module” is an example of the output produced by LISTLOAD
OUTPUT=MODLIST for a normal (non-overlay) structured load module.

Example: Output for LISTLOAD OUTPUT=MODLIST for a normal
(non-overlay) structured load module
****LOAD MODULE PROCESSED EITHER BY VS LINKAGE EDITOR OR BINDER
LISTING OF LOAD MODULE MYMOD PAGE 0001

RECORD# 1 TYPE 20 - CESD ESDID 1 ESD SIZE 144
CESD# SYMBOL TYPE ADDRESS R/R/A ID/LENGTH(DEC) (HEX)

1 A 00(SD) 000000 00 24 18
2 ENTA 03(LR) 000014 00 1 1
3 ENTB 03(LR) 000028 00 5 5
4 Q1 06(PR) 000000 03 4 4
5 B 00(SD) 000018 00 20 14
6 UNRES 02(ER) 000000
7 DANGLE 02(ER) 000000
8 $NULL 07(NULL) 000000 00 0 0
9 $NULL 07(NULL) 000000 00 0 0

“Example: Output for LISTLOAD OUTPUT=MODLIST for a PDSE (program object
Version 1)” is an example of the output produced by LISTLOAD
OUTPUT=MODLIST for a PDSE (program object Version 1).

Example: Output for LISTLOAD OUTPUT=MODLIST for a PDSE
(program object Version 1)

LISTING OF PROGRAM OBJECT TESTPR PAGE 1

THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695DF108 AT LEVEL 01.00 ON 09/16/92 AT 09:42:47
--

CONTROL SECTION: A
AMODE: 24 ALIGNMENT: DOUBLE WORD LENGTH: 24 (DEC) MODULE OFFSET: 0 (DEC)
RMODE: 24 USABILITY: UNSPECIFIED LENGTH: 18 (HEX) MODULE OFFSET: 0 (HEX)

STORAGE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====

TRANSLATOR VER MOD DATE TIME
566896201 02 01 09/16/92

===== ESDs =====
ALPHA(PR)

ALIGNMENT: FULL WORD LENGTH: 00000004
===== RLDs =====
SEC.OFF MOD.OFF TYPE BDY STATUS REFERENCED SYMBOL
00000004 00000004 CPR NONE RES $CUMULATIVE PSEUDO REGISTER LENGTH
00000008 00000008 PR NONE RES (+)ALPHA
00000010 00000010 CPR NONE RES $CUMULATIVE PSEUDO REGISTER LENGTH
00000014 00000014 CPR NONE RES $CUMULATIVE PSEUDO REGISTER LENGTH
===== TEXT =====
00000000 C1C1C1C1 00000014 00000000 00000000 00000014 00000014

LISTING OF PROGRAM OBJECT TESTPR PAGE 2

PSEUDO REGISTER
VECTOR LOC LENGTH NAME

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 577

0 4 ALPHA
0 10 BETA

LENGTH OF PSEUDO REGISTERS 14
** END OF PROGRAM OBJECT LISTING

“Example: Output for LISTLOAD OUTPUT=MODLIST,SECTION1=YES for a
program object” is an example of the output produced by LISTLOAD
OUTPUT=MODLIST,SECTION1=YES for a program object.

Example: Output for LISTLOAD
OUTPUT=MODLIST,SECTION1=YES for a program object

MODULE SECTION: $MODULE
USABILITY: UNSPECIFIED OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRU =====

DATE USER DATA
09/28/2007 *** z/OS V1.9 ***

===== ESDs =====
TESTASM(ER)

TEXT TYPE: UNSPEC CLASS OFFSET: 10 (HEX)
TARGET SECTION: TESTASM TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX)
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

===== MAP ===== CLASS: B_MAP
00000000 00000220 D4000000 FFFFFFFF 00000000 0000001D 00000000 00000000 00000000
00000020 000000C0 C3000006 00000039 00000000 0000001D 6A000001 00000000 00000000
00000040 00000080 E2800008 00000031 00000000 0000000C 64000001 00000000 00000000
00000060 00000000 D3000008 00000029 00000000 00000000 01000001 00000000 00000000
00000080 00000000 E2800007 00000022 00000010 0000000D 64000001 00000000 00000000
000000A0 00000000 D3000007 0000001B 00000000 00000000 01000001 00000000 00000000
000000C0 00000140 C3600005 00000016 00000000 00000007 6A000048 00000000 00000000
000000E0 00000100 E2800004 00000012 00000000 00000001 64000048 00000000 00000000
00000100 00000120 E2800008 00000031 00000001 00000003 64000048 00000000 00000000
00000120 00000000 E2800007 00000022 00000004 00000003 64000048 00000000 00000000
00000140 000001A0 C3600006 0000000C 00000000 00000002 6A000015 00000000 00000000
00000160 00000180 E2800008 00000031 00000000 00000001 64000015 00000000 00000000
00000180 00000000 E2800007 00000022 00000001 00000001 64000015 00000000 00000000
000001A0 000001E0 C3600006 00000006 00000000 00000001 6A00006A 00000000 00000000
000001C0 00000000 E2800004 00000012 00000000 00000001 6400006A 00000000 00000000
000001E0 00000000 C3600006 00000000 00000000 00000001 6A000056 00000000 00000000
00000200 00000000 E2800004 00000012 00000000 00000001 64000056 00000000 00000000
00000220 00000000 C5000000 FFFFFFFF 00000000 00000000 00000000 00000000 00000000
===== MAP ===== CLASS: B_MAP
00000000 C26DC9C4 D9E4C26D C9C4D9C2 C26DC9C4 D9D30000 0001C26D C5E2C4E3 C5E2E3C1
00000020 E2D4E3C5 E2E3C1E2 D4C5C4C3 D6C5E7E3 E2C5C4C3 D6C5E7E3 E2C26DE3 C5E7E3

“Example: Output for LISTLOAD OUTPUT=MODLIST,IMPEXP=YES for a
program object” is an example of the output produced by LISTLOAD
OUTPUT=MODLIST,IMPEXP=YES for a program object.

Example: Output for LISTLOAD OUTPUT=MODLIST,IMPEXP=YES
for a program object

==== IEWBCIET VERS 02 ==== CLASS: B_IMPEXP
EXPORTED FUNCTIONS CLASS +OFF/ADDR ADA_CLASS +OFF/ADDR LN REF_CLASS +OFF/ADDR ATTRIBUTES

Failure C_CODE 000000A8 C_WSA +00000010 X
Traverse C_CODE 00000140 C_WSA +00000010 X

EXPORTED VARIABLES CLASS +OFF/ADDR
blks C_WSA +0000007C
bytes C_WSA +0000008C
chrs C_WSA +00000084
dirs C_WSA +00000078
pipes C_WSA +00000080
regs C_WSA +00000074
syms C_WSA +00000088

IMPORTED FUNCTIONS DLL CELHV003 INDX LN REF_CLASS +OFF/ADDR ATTRIBUTES
fprintf 006D 04 C_WSA +00000038 XNU
printf 006F 04 C_WSA +00000010 XNU
strerror 00A8 04 C_WSA +00000030 XNU
__errno 0156 04 C_WSA +00000018 XNU
_exit 0174 04 C_WSA +00000020 XNU
closedir 017F 04 C_WSA +00000050 XNU
lstat 01A7 04 C_WSA +00000048 XNU
opendir 01AD 04 C_WSA +00000028 XNU
readdir 01B3 04 C_WSA +00000040 XNU

AMBLIST

578 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Description of MODLIST output for a program object
The listing produced by LISTLOAD OUTPUT=MODLIST consists of multiple parts
(see “Example: Output for LISTLOAD OUTPUT=MODLIST,ADATA=YES for a
program object” on page 570):

A page heading, displayed at the top of each page.
The page heading consists of one or two heading lines, in the following
format:

LISTING OF PROGRAM OBJECT xxxxxxxx

The heading lines are followed by the title line, entered in the TITLE parameter
of the LISTLOAD control statement.

The binder-generated program object identification record (IDRB).
The IDRB record is displayed on a line by itself, in the format:

THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695PMB01 AT LEVEL 01.12
ON mm/dd/yyyy AT hh:mm:ss

The binder program identifier, version and level, date and time of binding are
presented here. The IDRB line is followed by a line of dashes.

An individual listing for each control section in the program object,
separated by a dashed line.

For each control section in the module, the ESD Section Definition (SD) record
is formatted, followed by all data classes in the following sequence:
1. IDRZ - SPZAP identification data
2. IDRL - Language translator identification data
3. IDRU - User-supplied identification data
4. SYM - internal symbol dictionary
5. ESD - External Symbol Dictionary
6. RLD - ReLocation Dictionary
7. TEXT - Instructions and data for the CSECT
8. ADATA - ADATA information

The SD record occupies two print lines:
v The first begins with one of the constants CONTROL SECTION, SEGMENT

TABLE, ENTRY TABLE, or MODULE SECTION, and displays either the
section or common name. If there is no user-defined name, then a
binder-generated name will be displayed as follows:
– $PRIVxxxxx, where x is a number for user sections which originally had

blank names or were unnamed.
– $BLANKCOM - unnamed common
– $MODULE - binder-generated section containing module level

information, and is only output when SECTION1=YES
– $SUMMARY - binder-generated section containing merge classes for the

module
v The second line displays the USABILITY, AMODE, the overlay segment and

region. USABILITY must contain one of the values UNSPECIFIED,
NON-REUSABLE, REUSABLE, REENTRANT or REFRESHABLE. For
non-overlay modules, the latter two fields will contain zero.

Each of the eight class subsections begin with an identifier line of the format:
===== class name =====

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 579

IDR detail is in the same format as described in “Description of LISTIDR
output” on page 599, except that it is displayed only for the single section. The
remainder of the classes are described below:
v SYM data is displayed 40 bytes per line
v ESD data occupies three to four lines per ESD record. The first containing

the external name (abbreviated name, if name longer than 16 bytes),
followed by the ESD record type in parenthesis. The rest of the formatted
fields vary depending on the ESD record type:
– ED records define an element definition. Its length, and various attributes

will be used to bind and load the class contained in the section. Each ED
record occupies three print lines:
1. The first line displays:

- CLASS name - up to 16 bytes.
- LENGTH of defined class element in hexadecimal.
- CLASS OFFSET - in hexadecimal.
- FORMAT - where the first field is the class record format with

either F (fixed length record), or V (variable length record), follows
by the hexadecimal value of the record format in parenthesis.

2. The second line shows:
- NAME SPACE - in hexadecimal.
- ALIGNMENT - any of the following:

v DOUBLE WORD
v QUAD WORD
v 32 BYTE
v 64 BYTE
v 128 BYTE
v 256 BYTE
v 512 BYTE
v 1024 BYTE
v 2048 BYTE
v PAGE

DOUBLE WORD, QUAD WORD, or PAGE.
- BIND METHOD - CATENATE or MERGE.
- RMODE - 24, 64, ANY, or UNSPECIFIED

3. The third line displays the binder and loader attributes:
- Binder attributes can be DESCRIPTIVE DATA, TEXT, or

REMOVABLE
- Loader attributes can be NOLOAD, LOAD, DEFER, READ-ONLY

(or FILL: UNSPEC is printed, if there is no fill character).
– ER records define external references from the named section. For the

$MODULE section these are external references with no corresponding
RLDs. Each ER record occupies four print lines, where:
1. The first line displays:

- TEXT TYPE - can be either UNSPEC (unspecified), INSTRUC
(instructions or code), DATA, or TRANS.DEF (translator defined).

- CLASS OFFSET - in hexadecimal.
2. The second line shows:

AMBLIST

580 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

- TARGET SECTION - Target section name (abbreviated name, if
name is longer than 16 bytes).

- TARGET CLASS - Name of class containing target label.
3. The third line shows:

- NAME SPACE - in hexadecimal.
- SCOPE - Scope of name (SECTION, MODULE, LIBRARY, or

IMP/EXP).
- ELEMENT OFFSET - in hexadecimal.
- AMODE - 24, 31, 64, ANY, MIN or UNSPEC

4. The fourth line displays the ER status and autocall, where:
- ER status can either be RESOLVED or UNRESOLVED
- AUTOCALL can either be AUTOCALL or NEVERCALL

5. The fifth line displays binder attributes. Possible attributes are XPL,
STRONG or WEAK, MAPPED, INDIRECT, GENERATED, or
MANGLED.

6. If extended attributes exist, a sixth line displays the location of these
attributes as the class and offset within that class.

– LD records define a label or entry point in the named section. Each LD
record occupies three print lines, where:
1. The first line displays:

- CLASS NAME - up to 16 bytes.
- TEXT TYPE - can be either UNSPEC, INSTR, DATA, or TRANS.DEF
- CLASS OFFSET - in hexadecimal.

2. The second line shows:
- NAME SPACE - in hexadecimal.
- SCOPE - Scope of name (SECTION, MODULE, LIBRARY, or

IMP/EXP).
- ELEMENT OFFSET - in hexadecimal.
- AMODE - can either be 24, 31, 64, MIN, ANY, or UNSPECIFIED

3. The third line displays the binder attributes. Possible attributes are
XPL (xplink), STRONG or WEAK, MAPPED, INDIRECT,
GENERATED (the LD record was generated by the binder), or
MANGLED. In addition, if the record contains the name of the symbol
which defines the environment or associated data (ADA), that symbol
will be printed.

4. If extended attributes exist, a fourth line will contain the resident class
and offset.

– PD (Part Definition) and PR (Part Reference) records define parts or
pseudo registers. The PR record is a local definition of the part (within
the section), whereas the PD record is a global definition for all of the
associated PRs (PRs with the same name). PR and PD records contain the
same formatted fields. Each record occupies three print lines, where:
1. The first line displays:

- CLASS name - up to 16 bytes.
- LENGTH - in hexadecimal.
- CLASS OFFSET - in hexadecimal.

2. The second line shows:
- NAME SPACE - in hexadecimal.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 581

- ALIGNMENT - any of: the following:
v BYTE
v HALF WORD
v FULL WORD
v DOUBLE WORD
v QUAD WORD
v 32 BYTE
v 64 BYTE
v 128 BYTE
v 256 BYTE
v 512 BYTE
v 1024 BYTE
v 2048 BYTE
v PAGE

- PRIORITY - Controls the order of the part within the element.
- SCOPE - Scope of part (SECTION, MODULE, LIBRARY, or

IMP/EXP).
3. The third line displays binder attributes. Possible attributes are: XPL,

STRONG or WEAK, MAPPED, INDIRECT, GENERATED, or
MANGLED.

v RLD data is displayed one line per RLD record, by element offset of the
associated address constant. Where multiple RLD records refer to the same
adcon, the element offsets will be the same. RLD data shown consists of:
– Element Offset - The offset, in hex, of the associated address constant

within the element.
– Class Offset - The offset, in hex, of the associated address constant within

the class.
– ADCON TYPE - The type of address constant associated with this RLD

entry. The type may be:
- BR - Branch or V-type
- N_BR - Non-branch or A-type
- SEGM - address of start of class
- C OF - Q-type, offset from start of class
- CPR - total length of the class
- LTKN - loader token, for use of the system loader
- R-IM - reference to an external symbol from a relative immediate

instruction
- DATA - data associated with the target symbol
- LDIS - QY-type, reference to an external symbol from a long

displacement instruction
– Status - This field identifies the status of the associated address constant.

Valid status values are: RES (resolved), UNRES (unresolved), and N-REL
(non-relocatable constant).

– LENGTH - The adcon length in hexadecimal.
– ATTRIBUTES, which may be:

- HOBCHG - High order bit of V-type adcon was changed by the binder.
Possible value can be either YES or NO.

AMBLIST

582 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

- X - XPLINK linkage
- S - part of a conditional sequential RLD string, will be followed by

another RLD describing an adcon at the same location.
– NAME SPACE of reference in hexadecimal.
– TARGET NAME - Name of the referenced symbol.
– PARTRES - If the RLD describes an adcon on a part (PR), this will be the

name of the resident part.
– XATTR NAME - Symbol defining the location at which the extended

attributes (if any) are stored.
– XATTR OFF - Offset from symbol XATTR NAME at which the extended

attributes are stored.
v TEXT data is displayed by class name. In addition to the hexadecimal

representation, text data is in EBCDIC format.
For the $MODULE section, instead of TEXT, it is identified as MAP and
shows the binder-generated class B_MAP information.
For the IEWBCIE section, when IMPEXP=SYMBOLS, instead of TEXT, it is
identifed as IEWBCIET VERS nn (where nn is the import/export table
version number) and shows information about the imported and exported
symbols. Columns with the heading +OFF/ADDR distinguish offsets from
addresses by preceding offsets with a plus sign (+). They are always
preceded by their corresponding class. However, when an address is shown,
it is relative to the module beginning at a zero origin, not relative to the
beginning of the class. To determine the address within the class (as shown
in the NUMERICAL MAP), subtract off the location of the class from the
address (the location of the class is available in the SEGMENT MAP TABLE).
The attributes shown as follows:

O or X
referred symbol is OS linkage or XPLINK linkage

N or P
reference is by name or reference is by pointer

R or U
reference is Resolved or Unresolved

v ADATA information, if requested through ADATA=YES on the LISTLOAD
OUTPUT=MODLIST control card, like TEXT data is displayed by class name
in both hexadecimal and EBCDIC presentation. In the EBCDIC presentation,
non-printable characters are replaced with periods (.).
The abbreviation-to-long name equivalence table is displayed prior to end of
the listing, with all the abbreviated names (external names exceeding 16
bytes in length) in the formatted part of the listing with their long names.

A trailer record.

** END OF PROGRAM OBJECT LISTING

Description of MODLIST Output for a Load module/PDS
The listing produced by LISTLOAD OUTPUT=MODLIST consists of multiple parts
(see “Example: Output for LISTLOAD OUTPUT=MODLIST for an overlay
structured load module” on page 575 and “Example: Output for LISTLOAD
OUTPUT=MODLIST for a normal (non-overlay) structured load module” on page
577).

A page heading, displayed at the top of each page.
The page heading consists of one or two heading lines, in the following
format:

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 583

LISTING OF LOAD MODULE PL1LOAD

An individual listing for each record in the load module. Each record on
DASD is identified by a sequence number (RECORD#), and type. Often there
is size information for the record as well. This information is followed by its
contents formatted according to the record type.

For more information on the details of the following fields, see z/OS MVS
Program Management: Advanced Facilities, Appendix B. Load Module formats.

TYPE 20 - CESD
This is a record containing definitions or uses of external symbols.
v CESD# - An internal number for the symbol assigned by the binder.
v SYMBOL - The name of the symbol as used in the program, or an

abbreviation of it.
v TYPE - See chapter 2 of z/OS MVS Program Management: User's Guide and

Reference for a description of the various types of external symbol dictionary
entries.
– ER - External Reference
– WX -Weak External reference
– LR - Label Reference
– SD - Section Definition, a control section (CSECT)
– PC - Private Code
– CM - Common area
– PR - Pseudoregister

v ADDRESS - Offset within the bound program where the symbol is defined.
v SEGNUM - Overlay structured modules only: the overlay segment number.
v R/R/A - Non-overlay modules only: A bit-coded byte, displayed in hex,

indicating AMODE, RMODE, and read- only attributes. The values of the
three attributes are ORed together in the value displayed.
– 08 - Read-only
– 04 - RMODE=ANY (RMODE=24 if off)
– 01 - AMODE=24
– 02 - AMODE=31
– 03 - AMODE=ANY
– 10 - AMODE=64

v ID/LENGTH - ESD number of referenced symbol for an LR, length of the
section or field for SD, PC, CM, or PR
– (DEC) - Length or ID displayed in decimal
– (HEX) - Length or ID displayed in hexadecimal

TYPE 0 - RLD (May be 02, 06, or 0E)
In the RLD record type, AMBLIST outputs information in the following
columns:
v R-PTR - The ESDID of the target element
v P-PTR - The ESDID of the element containing the adcon or data area to be

modified
v FL - flags
v ADDR - address

AMBLIST

584 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

TYPE 0 - CONTROL (May be 01, 05, or 0D)
The CONTROL record lists information on each of the control sections for the
load module:
v CESD# - CESD number of the control section
v LENGTH - length of that control section

TEXT
This record type contains the program as loaded for execution. Text data is
displayed by class name. In addition to the hexadecimal representation, text
data is in EBCDIC format.

A trailer record.
******END OF LOAD MODULE LISTING

LISTLOAD OUTPUT=XREF output
This section includes examples of LISTLOAD OUTPUT=XREF output as well as
cross-reference listings, such as:
v “Example: Output for LISTLOAD OUTPUT=XREF for a program object with

class names: B_PRV and B_TEXT” on page 586 shows the output from a
program object version 2 that contains a single initial load text class. See the
descriptions following this figure for explanations.

v Figure 182 on page 591 shows a sample segment map table for a multiple-text
class module.

v “Example: Output for LISTLOAD OUTPUT=XREF for a load module” on page
591 and “Example: Output for LISTLOAD OUTPUT=XREF for a program object”
on page 592 allow you to compare the output for a load module with the output
for a program object version 1.

The listing has the following parts:
v Segment map, which only appears for Program Objects and not for Load

Modules.
v Numerical map, which presents information approximately in the order in which

it appears in the module.
v Numerical cross-reference.
v Alphabetical map, which presents information alphabetically by symbol name.
v Alphabetical cross-reference.

In z/OS V1R10, the format of the LISTLOAD numerical and alphabetical
cross-references for program objects was significantly changed. The information is
now presented in a more concise format that more closely resembles the format
produced by the binder.

In the listing shown in “Example: Output for LISTLOAD OUTPUT=XREF for a
program object with class names: B_PRV and B_TEXT” on page 586, page 1 shows
the numerical map of the module. Page 2 shows the numerical cross-reference list
of the module. Page 4 shows the alphabetical map, and page 5 the alphabetical
cross-reference list.

Note: The module shown in the “Example: Output for LISTLOAD OUTPUT=XREF
for a program object with class names: B_PRV and B_TEXT” on page 586 is not in
overlay format; for overlay modules, each segment is formatted separately.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 585

As with the other output from AMBLIST, each page begins with a standard
heading. The first line of each page contains a page number and begins with one
of the following heading constants:
v SEGMENT MAP OF PROGRAM OBJECT
v NUMERICAL MAP OF PROGRAM OBJECT
v NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT
v ALPHABETICAL MAP OF PROGRAM OBJECT
v ALPHABETICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT

The member name will appear following the heading. If the name is more than
sixteen characters, its formatted 16-bytes abbreviation name is printed instead. An
optional second line will be used to print the title information, provided by the
user on the LISTLOAD control statement. Each of the four parts has its own
subheading line(s), to describe the detail that follows.

Example: Output for LISTLOAD OUTPUT=XREF for a program
object with class names: B_PRV and B_TEXT

** SEGMENT MAP TABLE ** PAGE 1

CLASS SEGMENT OFFSET LENGTH LOAD TYPE ALIGNMENT RMODE
B_TEXT 1 0 2030 INITIAL CAT PAGE 31
�A� ** NUMERICAL MAP OF PROGRAM OBJECT LOADMOD1 ** PAGE 2

--
CLAS LOC ELEM LOC LENGTH TYPE ALIGNMENT NAME
0 430 ED PAGE SD1

430 238 ED DOUBLE WORD SD2
668 8 ED DOUBLE WORD SDX

668 0 LD LD1
66C 4 LD LD2

1000 30 ED PAGE $BLANKCOM
2000 30 ED PAGE CM1
CLASS LENGTH 2030

--
RESIDENT CLASS: B_PRV

CLAS LOC ELEM LOC LENGTH TYPE ALIGNMENT NAME
0 0 ED PAGE SD1
0 0 ED DOUBLE WORD SD2
0 0 ED DOUBLE WORD SDX
0 0 ED PAGE $BLANKCOM
0 0 ED PAGE CM1
0 18 ED DOUBLE WORD $PRIV000003

0 1 PD BYTE A
1 1 PD BYTE E
2 1 PD BYTE C
3 1 PD BYTE G
4 2 PD HALF WORD F
8 4 PD FULL WORD D
10 8 PD DOUBLE WORD B

CLASS LENGTH 18
--
�B� ** NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT LOADMOD1 ** PAGE 3

CLAS LOC ELEM LOC FROM CLASS FROM SECTION �1� REFERS TO SYMBOL CLAS LOC ELEM LOC IN CLASS �2� IN SECTION �3�
48 48 B_TEXT SD1 SD1 0 0 B_TEXT
C6 C6 B_TEXT SD1 A $CLASS_OFFSET B_PRV
12E 12E B_TEXT SD1 B $CLASS_OFFSET B_PRV
196 196 B_TEXT SD1 C $CLASS_OFFSET B_PRV
1FE 1FE B_TEXT SD1 D $CLASS_OFFSET B_PRV
266 266 B_TEXT SD1 E $CLASS_OFFSET B_PRV
2CE 2CE B_TEXT SD1 F $CLASS_OFFSET B_PRV
336 336 B_TEXT SD1 G $CLASS_OFFSET B_PRV
39C 39C B_TEXT SD1 $CLASS_LEN $CLASS_LEN B_PRV
478 48 B_TEXT SD2 SD2 430 0 B_TEXT
4F4 C4 B_TEXT SD2 LD2 66C 4 B_TEXT SDX
554 124 B_TEXT SD2 CM1 2000 0 B_TEXT
604 1D4 B_TEXT SD2 CM1 2000 0 B_TEXT
CLASS LENGTH 2030

--
** NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT LOADMOD1 ** PAGE 4

RESIDENT CLASS: B_PRV
**** NO RLD DATA ****
CLASS LENGTH 18

LENGTH OF PROGRAM OBJECT 2030
--
�C� ** ALPHABETICAL MAP OF PROGRAM OBJECT LOADMOD1 ** PAGE 5

AMBLIST

586 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

ENTRY NAME CLAS LOC ELEM LEN/LOC CLASS NAME SECTION NAME OR ENTRY TYPE
$PRIV000003

0 18 B_PRV (ED)
$BLANKCOM

0 0 B_PRV (ED)
$BLANKCOM

1000 30 B_TEXT (ED)
A

0 1 B_PRV (PD)
B

10 8 B_PRV (PD)
C

2 1 B_PRV (PD)
CM1

2000 30 B_TEXT (ED)
CM1

0 0 B_PRV (ED)
D

8 4 B_PRV (PD)
E

1 1 B_PRV (PD)
F

4 2 B_PRV (PD)
G

3 1 B_PRV (PD)
LD1

668 0 B_TEXT SDX
LD2

66C 4 B_TEXT SDX
SDX

668 8 B_TEXT (ED)
SDX

0 0 B_PRV (ED)
SD1

0 430 B_TEXT (ED)
SD1

0 0 B_PRV (ED)
SD2

430 238 B_TEXT (ED)
SD2

0 0 B_PRV (ED)
--
�D� ** ALPHABETICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT LOADMOD1 ** PAGE 6

SYMBOL REFERRED CLAS LOC ELEM LOC IN CLASS IN SECTION CLAS LOC ELEM LOC FROM CLASS FROM SECTION
$CLASS_LEN $CLASS_LEN B_PRV 39C 39C B_TEXT SD1
A $CLASS_OFFSET B_PRV C6 C6 B_TEXT SD1
B $CLASS_OFFSET B_PRV 12E 12E B_TEXT SD1
C $CLASS_OFFSET B_PRV 196 196 B_TEXT SD1
CM1 2000 0 B_TEXT 554 124 B_TEXT SD2
CM1 2000 0 B_TEXT 604 1D4 B_TEXT SD2
D $CLASS_OFFSET B_PRV 1FE 1FE B_TEXT SD1
E $CLASS_OFFSET B_PRV 266 266 B_TEXT SD1
F $CLASS_OFFSET B_PRV 2CE 2CE B_TEXT SD1
G $CLASS_OFFSET B_PRV 336 336 B_TEXT SD1
LD2 66C 4 B_TEXT SDX 4F4 C4 B_TEXT SD2
SD1 0 0 B_TEXT 48 48 B_TEXT SD1
SD2 430 0 B_TEXT 478 48 B_TEXT SD2
LENGTH OF PROGRAM OBJECT 2030
--

Segment map
When the binder produces a program object executable, it is composed of one or
more segments. The binder will always arrange the program so that segment 1
contains the entry point. To understand the importance of the information
contained in the Segment Map Table, see Understanding binder programming
concepts in z/OS MVS Program Management: Advanced Facilities, in particular
Multiple-text class modules, load segments and ESD offsets. For an example of a
Segment map for a multiple-text class module, see “Sample segment map table for
LISTLOAD OUTPUT=XREF of mutiple-text class module” on page 591.

Each of the columns in a Segment map table is described as follows:

CLASS
The class name of this part of the segment. The segment will be composed
of one or more classes. Note that a section may contribute to more than
one class.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 587

SEGMENT
The segment in which this class resides. A given class will reside in only
one segment, and all classes in the same segment will have the same
attributes.

OFFSET
The offset the beginning of the named class from the beginning of the
segment. Note that every segment has it's own origin (offset 0), because
each may be independently loaded.

LENGTH
The length of the named class in the segment.

LOAD
The loading time attribute of the class, which will be the same for all
classes with the same segment number. The possible values are:

INITIAL
An initial load class which is loaded when the program entry point
or alias is loaded.

DEFER
A deferred load class which is not loaded when the program entry
point or alias is loaded.

TYPE The binding type of class. The possible values are:

CAT A concatenated class. This is the usual way in which a section
contributes to a class (known as elements). The elements are
arranged one after the other.

MERGE
A "merge" class. This type of class is used for parts, which are for
data, where one or more part comprises an element.

ALIGNMENT
The alignment of the class or elements contained in the class. The possible
values are:
v BYTE
v HALF WORD
v FULL WORD
v DOUBLE WORD
v QUAD WORD
v 32 BYTE
v 64 BYTE
v 128 BYTE
v 256 BYTE
v 512 BYTE
v 1024 BYTE
v 2048 BYTE
v PAGE

RMODE
The residency mode of the class and the segment. If only one value is
listed, it is the residency mode of both the class and segment. If a second
value is given, the first value is the residency mode of the class and the
second value is the residency mode of the segment (for example, 24,31
would indicate that a class with the attribute RMODE=24 is part of a

AMBLIST

588 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

segment that has RMODE=31). The segment is loaded according to the
residency mode of the segment. The possible values are: 24, 31, and 64.

Numerical map
The �A� Numerical Map prints one line for each defined element definition, part, or
control section in the composite ESD. The detail line contains the class offset (in
hex), either a section offset for (labels/parts) or a length (for control sections
element definitions), the ESD record type, alignment (for LD/PD record type), and
the label/part, section or element definition name. Sections generated by the
binder, or binder-generated names for unnamed user sections, will be displayed as:
v $PRIVxxxxxx - where xxxxxx is numeric.
v $BLANKCOM
v $SEGTAB
v $ENTAB

All other entries will contain a valid name, assigned by the user for a label/part, a
control section/element definition or named common. For label (LD) or part (PD)
type ESD entries, the class offset and label/part name will be indented to show
that the label/part is contained within the previous section entry.

If the module is in overlay format, the map and cross-reference will alternate for
each segment. In this case, the map will begin with a segment identifier line:

SEG. nnnnn --

and will end with a segment length line:
LENGTH OF SEGMENT nnnnn

The numerical map is functionally equivalent to the load map produced by the
linkage editor or binder.

Numerical cross-reference
The �B� numerical cross-reference listing contains one entry for each RLD record in
the module, presented in sequence by the hexadecimal class offset of the related
address constant. There is one RLD record for each A-, V-, and Q-type address
constant in the module, and one RLD record for each class reference (RLD
type=21), class length (CXD), or loader token.

Each entry consists of one line that is described as follows:

�1� The first part of the line describes the adcon itself, showing the class and
element offsets, in hex, and the name of the section (FROM SECTION) containing
the adcon. Because all adcons must reside within a section, there will always be
either a user-defined section name or a representation of the binder-generated
name, such as $PRIV000001 or $BLANKCOM.

�2� The second part of the line describes the referenced, or target, symbol. It
contains the name of the referenced symbol (REFERS TO SYMBOL), the class and
element offsets of the referenced label/part or section/element definition, and the
class name of the referenced class name, if the reference is resolved, or one of the
following constants:
v $UNRESOLVED - A strong reference (ER) could not be resolved during binding.
v $UNRESOLVED(W) - A weak reference (WX) could not be resolved during

binding.
v $NEVER CALL - The symbol was marked never call, and no attempt was made

during binding to resolve the symbol from the library.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 589

v $CLASS-OFFSET - The reference was to a class offset (Q-con).
v $CLASS-LEN - The reference was to a class length (RLD type=40).

If the RLD item is for a class offset or class length, the constant string
$CLASS_OFFSET or $CLASS_LEN will appear in place of a name.

�3� The third part of the line will be blank except for resolved A-type and V-type
address constants and displays the containing section name (IN SECTION). If the
target section does not have a name, then a representation of the binder-generated
name ($PRIV000005, $BLANKCOM) will be printed. If the target name in the
second part of the line matches the containing section name, the containing section
name will not be printed, since it would provide no additional information.

The last, or only, segment cross-reference will be followed by the length of the
program object:

LENGTH OF PROGRAM OBJECT nnnn

If no RLD available in a class, the following message will appear instead of the
formatted detail:

**** NO ADCONS IN THIS CLASS ****

Alphabetical map
The �C� alphabetical map displays label definitions, part definitions, control
sections and element definitions (except ER and PR) in alphabetical sequence, two
print lines per ESD entry. It contains all of the same information as the Numerical
Map, but in a different sequence. This part always begins on a new page, with a
standard page heading of ALPHABETICAL MAP OF PROGRAM OBJECT

The first detail line contains the label, section or common name.

The second detail line consists of the class offset, the element offset (type LD/PD
records) or element definition length (all other types), the class name (name of the
containing class), and the name of the containing section/element (type LD/PD
records) or the ESD entry type (all other types). Element lengths are indented, to
distinguish them from element offsets. If the module is in overlay format, the
segment number is printed to the right of the section length.

Note: There is no preset order in which entries with identical names are output.

Alphabetical cross-reference
The �D� alphabetical cross-reference listing provides the same information as the
numerical cross-reference listing, but in a different sequence. This part of the report
is in collating sequence by referenced name (the name of the symbol being referred
to in the address constant).

The alphabetical cross-reference begins on a new page with a standard page
heading ALPHABETICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT, and
like the numerical cross-reference, contains nine columns:
1. Class offset. This is the hex offset of the named item within a class of the

program object. Class offsets for the second and third detail lines have been
indented.

2. Element offset. This is the hex offset of the named label or part within its
section. Lines referring to an element, rather than a label, will always display
zero for the element offset.

3. Overlay segment. This is displayed for overlay format modules only.

AMBLIST

590 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

4. Symbol. This field varies between the three detail lines, as described in the
following text. If the displayed name is a special section name, then one of the
binder-generated names for example, $PRIVxxxxxx), described earlier, will
replace the name.

If no RLD is available in a program object, the following message will appear
instead of the formatted detail:

**** NO RLD DATA ***

The cross reference listing concludes with the line
** END OF MAP AND CROSS-REFERENCE LISTING

Sample segment map table for LISTLOAD OUTPUT=XREF of
mutiple-text class module
Figure 182 is an example of a segment map for a multiple-text class module.

LISTLOAD OUTPUT=MAP
This section produces output identical to the SEGMENT MAP TABLE and
NUMERICAL MAP sections of the LISTLOAD OUTPUT=XREF Output. See
“Segment map” on page 587 and “Numerical map” on page 589 for more
information.

LISTLOAD OUTPUT=XREF output (comparison of load module
and program object version 1)

“Example: Output for LISTLOAD OUTPUT=XREF for a load module” shows an
example of output produced by LISTLOAD OUTPUT=XREF for a load module.

Example: Output for LISTLOAD OUTPUT=XREF for a load
module

LISTLOAD OUTPUT=XREF,DDN=DD1,
MEMBER=MAINRTN

***** ATTRIBUTES OF MODULE *****
MEMBER NAME: MAINRTN MAIN ENTRY POINT: 00000000
LIBRARY: DD1 AMODE OF MAIN ENTRY POINT: 31

NO ALIASES **
--

**** LINKAGE EDITOR ATTRIBUTES OF MODULE ****
** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 NOT-EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 EP-ZERO 11 RLD
12 EDIT 13 NO-SYMS 14 F-LEVEL 15 NOT-REFR

--
MODULE SSI: NONE
APFCODE: 00000000
RMODE: ANY

** SEGMENT MAP TABLE **
CLASS SEGMENT OFFSET LENGTH LOAD TYPE ALIGNMENT RMODE
C_CODE 1 0 160 INITIAL CAT DOUBLE WORD 31
B_TEXT 1 160 99A INITIAL CAT DOUBLE WORD 31

C_EXTNATTR 1 B00 28 INITIAL CAT DOUBLE WORD 31
C_DATA 1 B28 18 INITIAL CAT DOUBLE WORD 31

C_@@PPA2 1 B40 8 INITIAL MERGE DOUBLE WORD 31
B_LIT 1 B48 140 INITIAL CAT DOUBLE WORD 31

B_IMPEXP 1 C88 98 INITIAL CAT DOUBLE WORD 31
C_WSA 2 0 24 DEFER MERGE DOUBLE WORD 31

Figure 182. Example: Segment map table for LISTLOAD OUTPUT=XREF of multiple-text class module

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 591

LONGPARM: NO
*****LOAD MODULE PROCESSED EITHER BY VS LINKAGE EDITOR OR BINDER

NUMERICAL MAP AND CROSS-REFERENCE LIST OF LOAD MODULE MAINRTN PAGE 0001

CONTROL SECTION ENTRY
LMOD LOC NAME LENGTH TYPE LMOD LOC CSECT LOC NAME

00 MAINRTN 166 SD
168 $PRIVATE BC PC

1D4 6C NONAME1M
228 $PRIVATE BC PC

294 6C NONAME2M
2E8 SUBRTN 102 SD
3F0 AAAAAAAA 54 CM
448 $BLANKCOM 54 CM

--
LMOD LOC CSECT LOC IN CSECT REFERS TO SYMBOL AT LMOD LOC CSECT LOC IN CSECT

AC AC MAINRTN AAAAAAAA 3F0 00 AAAAAAAA
B0 B0 MAINRTN NONAME1M 1D4 6C $PRIVATE
B4 B4 MAINRTN NONAME2M 294 6C $PRIVATE
160 160 MAINRTN SUBRTN 2E8 00 SUBRTN
394 AC SUBRTN $BLANKCOM 448 00 $BLANKCOM

LENGTH OF LOAD MODULE 4A0
ALPHABETICAL MAP OF LOAD MODULE MAINRTN PAGE 0002

CONTROL SECTION ENTRY
NAME LMOD LOC LENGTH TYPE NAME LMOD LOC CSECT LOC CSECT NAME

$BLANKCOM 448 54 CM
$PRIVATE 168 BC PC
$PRIVATE 228 BC PC
AAAAAAAA 3F0 54 CM
MAINRTN 00 166 SD

NONAME1M 1D4 6C $PRIVATE
NONAME2M 294 6C $PRIVATE

SUBRTN 2E8 102 SD
ALPHABETICAL CROSS-REFERENCE LIST OF LOAD MODULE MAINRTN PAGE 0003

SYMBOL AT LMOD LOC CSECT LOC IN CSECT IS REFERRED TO BY LMOD LOC CSECT LOC IN CSECT
$BLANKCOM 448 00 $BLANKCOM 394 AC SUBRTN
AAAAAAAA 3F0 00 AAAAAAAA AC AC MAINRTN
NONAME1M 1D4 6C $PRIVATE B0 B0 MAINRTN
NONAME2M 294 6C $PRIVATE B4 B4 MAINRTN
SUBRTN 2E8 00 SUBRTN 160 160 MAINRTN
** END OF MAP AND CROSS-REFERENCE LISTING

“Example: Output for LISTLOAD OUTPUT=XREF for a program object” shows an
example of output produced by LISTLOAD OUTPUT=XREF for a program object.

Example: Output for LISTLOAD OUTPUT=XREF for a program
object

LISTLOAD OUTPUT=XREF,DDN=DD1,
MEMBER=(MAINRTN,

THISISALONGALIASNAMEYOUMAYCHANGETHENAMEIFYOULIKEANYNAMEWILLDOOOO),
TITLE=(’XREF LISTINGS OF A LONG ALIAS NAME’,10)

***** M O D U L E S U M M A R Y *****
MEMBER NAME: MAINRTN MAIN ENTRY POINT: 00000000
LIBRARY: DD1 AMODE OF MAIN ENTRY POINT: 31

** ALIASES ** ENTRY POINT AMODE
THISISALO-LDOOOO 00000000 31

**** ATTRIBUTES OF MODULE ****

** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **
0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 RESERVED 11 RLD
12 EDIT 13 NO-SYMS 14 RESERVED 15 NOT-REFR
16 RESERVED 17 <16M 18 NOT-PL 19 NO-SSI
20 APF 21 PGM OBJ 22 NOT-SIGN 23 RESERVED
24 NOT-ALTP 25 RESERVED 26 RESERVED 27 RMODEANY
28 RESERVED 29 RESERVED 30 RESERVED 31 RESERVED
32 NON-MIGR 33 NO-PRIME 34 NO-PACK 35 RESERVED
36 RESERVED 37 RESERVED 38 RESERVED 39 RESERVED

--
- MODULE SSI: NONE

APFCODE: 00000000
RMODE: ANY
LONGPARM: NO

PO FORMAT: 1
XPLINK: NO

*****PROGRAM OBJECT PROCESSED BY BINDER

AMBLIST

592 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

***THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS (PMAR AND PMARL)
PMAR 001E0109 02C00C12 00000000 04A00000 00000000 00000000 00000000 0000
PMARL 00328080 00000000 00020000 049C0000 01E80000 00000000 06A00000 00440000

018C0000 00200000 016C0000 00140000 01D0
THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695PMB01 AT LEVEL 01.10 ON 01/08/2008 AT 23:14:53
--

** SEGMENT MAP TABLE ** PAGE 1
XREF LISTINGS OF A LONG ALIAS NAME

CLASS SEGMENT OFFSET LENGTH LOAD TYPE ALIGNMENT RMODE
B_TEXT 1 0 4A0 INITIAL CAT DOUBLE WORD 31

** NUMERICAL MAP OF PROGRAM OBJECT MAINRTN ** PAGE 2
XREF LISTINGS OF A LONG ALIAS NAME

--
0RESIDENT CLASS: B_TEXT

CLAS LOC ELEM LOC LENGTH TYPE ALIGNMENT NAME
0 166 ED DOUBLE WORD MAINRTN

168 BC ED DOUBLE WORD $PRIV000010
1D4 6C LD NONAME1M

228 BC ED DOUBLE WORD $PRIV000011
294 6C LD NONAME2M

2E8 102 ED DOUBLE WORD SUBRTN
3F0 54 ED DOUBLE WORD AAAAAAAA
448 54 ED DOUBLE WORD $BLANKCOM
CLASS LENGTH 4A0

** NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT MAINRTN ** PAGE 3
XREF LISTINGS OF A LONG ALIAS NAME

--
RESIDENT CLASS: B_TEXT

CLAS LOC ELEM LOC FROM CLASS FROM SECTION REFERS TO SYMBOL CLAS LOC ELEM LOC IN CLASS IN SECTION
AC AC B_TEXT MAINRTN AAAAAAAA 3F0 0 B_TEXT
B0 B0 B_TEXT MAINRTN NONAME1M 1D4 6C B_TEXT $PRIV000010
B4 B4 B_TEXT MAINRTN NONAME2M 294 6C B_TEXT $PRIV000011
160 160 B_TEXT MAINRTN SUBRTN 2E8 0 B_TEXT
394 AC B_TEXT SUBRTN $BLANKCOM 448 0 B_TEXT
CLASS LENGTH 4A0

LENGTH OF PROGRAM OBJECT 4A0
--

** ALPHABETICAL MAP OF PROGRAM OBJECT MAINRTN ** PAGE 4
XREF LISTINGS OF A LONG ALIAS NAME

ENTRY NAME CLAS LOC ELEM LEN/LOC CLASS NAME SECTION NAME OR ENTRY TYPE
$PRIV000010

168 BC B_TEXT (ED)
$PRIV000011

228 BC B_TEXT (ED)
$BLANKCOM

448 54 B_TEXT (ED)
AAAAAAAA

3F0 54 B_TEXT (ED)
MAINRTN

0 166 B_TEXT (ED)
NONAME1M

1D4 6C B_TEXT $PRIV000010
NONAME2M

294 6C B_TEXT $PRIV000011
SUBRTN

2E8 102 B_TEXT (ED)
--

** ALPHABETICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT MAINRTN ** PAGE 5
XREF LISTINGS OF A LONG ALIAS NAME

SYMBOL REFERRED CLAS LOC ELEM LOC IN CLASS IN SECTION CLAS LOC ELEM LOC FROM CLASS FROM SECTION
$BLANKCOM 448 0 B_TEXT 394 AC B_TEXT SUBRTN
AAAAAAAA 3F0 0 B_TEXT AC AC B_TEXT MAINRTN
NONAME1M 1D4 6C B_TEXT $PRIV000010 B0 B0 B_TEXT MAINRTN
NONAME2M 294 6C B_TEXT $PRIV000011 B4 B4 B_TEXT MAINRTN
SUBRTN 2E8 0 B_TEXT 160 160 B_TEXT MAINRTN
LENGTH OF PROGRAM OBJECT 4A0
--

** LONG NAME TABLE LISTING OF PROGRAM OBJECT MAINRTN ** PAGE 6
XREF LISTINGS OF A LONG ALIAS NAME

ABBREVIATION LONG NAME

THISISALO-LDOOOO := THISISALONGALIASNAMEYOUMAYCHANGETHENAMEIFYOULIKEANYNAMEWILLDOOOO
** END OF LONG NAME TABLE LISTING OF PROGRAM OBJECT MAINRTN **

** END OF MAP AND CROSS-REFERENCE LISTING

LISTLOAD OUTPUT=BOTH Output
“Example: Output for LISTLOAD OUTPUT=BOTH for a PDSE” shows an example
of output produced by LISTLOAD OUTPUT=BOTH for a PDSE.

Example: Output for LISTLOAD OUTPUT=BOTH for a PDSE
1 LISTLOAD MEMBER=TESTLR5,OUTPUT=BOTH,SECTION1=NO
1 ***** M O D U L E S U M M A R Y *****
0 MEMBER NAME: TESTLR5 MAIN ENTRY POINT: 00000028

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 593

0 LIBRARY: SYSLIB AMODE OF MAIN ENTRY POINT: 24
0 NO ALIASES **

0 **** ATTRIBUTES OF MODULE ****
0 ** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **
0 0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST

4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 RESERVED 11 RLD
12 EDIT 13 NO-SYMS 14 RESERVED 15 NOT-REFR
16 RESERVED 17 <16M 18 NOT-PL 19 NO-SSI
20 NOT-APF 21 PGM OBJ 22 NOT-SIGN 23 RESERVED
24 NOT-ALTP 25 RESERVED 26 RESERVED 27 RMODE24
28 RESERVED 29 RESERVED 30 RESERVED 31 RESERVED
32 MIGRATE 33 NO-PRIME 34 NO-PACK 35 RESERVED
36 RESERVED 37 RESERVED 38 RESERVED 39 RESERVED

0--
- MODULE SSI: NONE

APFCODE: 00000000
RMODE: 24
LONGPARM: NO
PO FORMAT: 2
XPLINK: NO

0 *****PROGRAM OBJECT PROCESSED BY BINDER
***THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS (PMAR AND PMARL)
PMAR 001E0208 02C00400 00000000 00380000 00280000 00280000 00000000 0000
PMARL 00520080 00000000 00020000 00380000 02280000 07FC0000 09EC0000 00400000

013C0000 00200000 011C0000 00020000 017C0001 00000000 00380000 00000000
00002005 013F0193 505FC3D6 D7E84040 4040

1 LISTING OF PROGRAM OBJECT TESTLR5 PAGE 1

0THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695PMB01 AT LEVEL 01.06 ON 01/13/2005 AT 19:35:05
0--
0 MODULE SECTION: $SUMMARY
0USABILITY: UNSPECIFIED AMODE: ANY OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== ESDs =====
0B_PRV(ED)

CLASS: B_PRV LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 2 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: UNS
TEXT NOLOAD FILL: UNSPEC

Q1(PD)
CLASS: B_PRV LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 2 ALIGNMENT: FULL WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: WEAK

0--
0 CONTROL SECTION: A
0USABILITY: UNSPECIFIED AMODE: 24 OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====
0 TRANSLATOR VER MOD DATE TIME
0 566896201 02 01 01/13/2005
===== IDRU =====
0 DATE USER DATA
0 01/13/2005 MYDATA
===== ESDs =====
0B_TEXT(ED)

CLASS: B_TEXT LENGTH: 18 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
TEXT LOAD FILL: UNSPEC

A(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 0 (HEX) AMODE: 24
ATTRIBUTES: GENERATED,STRONG

ENTA(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 14 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 14 (HEX) AMODE: 24
ATTRIBUTES: STRONG

ENTA(ER)
TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)

TARGET SECTION: A TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

B_PRV(ED)
CLASS: B_PRV LENGTH: 0 (HEX) CLASS OFFSET: 0 (HEX) FORMAT: F(0001)

1 LISTING OF PROGRAM OBJECT TESTLR5 PAGE 2

0 CONTROL SECTION: A
===== ESDs =====
0 NAME SPACE: 2 ALIGNMENT: DOUBLE WORD BIND METHOD: MERGE RMODE: UNS

TEXT NOLOAD FILL: UNSPEC

AMBLIST

594 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Q1(PR)
CLASS: B_PRV LENGTH: 4 (HEX) CLASS OFFSET: 0 (HEX)
NAME SPACE: 2 ALIGNMENT: FULL WORD PRIORITY: 0 (HEX) SCOPE: MODULE
ATTRIBUTES: WEAK

ENTB(ER)
TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)

TARGET SECTION: B TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

===== RLDs ===== CLASS: B_TEXT
0ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
000000006 00000006 BR RES 0004 1 (+)ENTA
0000000C 0000000C C-OF RES 0004 2 (+)Q1
00000010 00000010 BR RES 0004 1 (+)ENTB
===== TEXT ===== CLASS: B_TEXT
000000000 07FEC1C1 C1C10000 00140000 00000000 00000028 C5D5E3C1 ..AAAA..............ENTA........*
0--
0 CONTROL SECTION: B
0USABILITY: UNSPECIFIED AMODE: 24 OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====
0 TRANSLATOR VER MOD DATE TIME
0 566896201 02 01 01/13/2005
===== ESDs =====
0B_TEXT(ED)

CLASS: B_TEXT LENGTH: 14 (HEX) CLASS OFFSET: 18 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
TEXT LOAD FILL: UNSPEC

B(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 18 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 0 (HEX) AMODE: 24
ATTRIBUTES: GENERATED,STRONG

ENTB(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 28 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 10 (HEX) AMODE: 24
ATTRIBUTES: STRONG

ENTB(ER)
TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)

TARGET SECTION: B TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS

1 LISTING OF PROGRAM OBJECT TESTLR5 PAGE 3

0 CONTROL SECTION: B
===== ESDs =====
0 RESOLVED AUTOCALL

ATTRIBUTES: STRONG
UNRES(ER)

TEXT TYPE: UNSPEC CLASS OFFSET: 0 (HEX)
TARGET SECTION: UNRES TARGET CLASS: B_TEXT
NAME SPACE: 1 SCOPE: LIBRARY ELEMENT OFFSET: 0 (HEX) AMODE: UNS
RESOLVED AUTOCALL
ATTRIBUTES: STRONG

===== RLDs ===== CLASS: B_TEXT
0ELEM.OFF CLS.OFF TYPE STATUS LENG ATTR NSPACE TARGET NAME PARTRES XATTR NAME XATTR OFF
000000006 0000001E BR RES 0004 1 (+)ENTB
0000000C 00000024 BR RES 0004 1 (+)UNRES
===== TEXT ===== CLASS: B_TEXT
000000018 07FEC2C2 C2C20000 00280000 00000030 C5D5E3C2 ..BBBB..........ENTB............*
0--
0 CONTROL SECTION: UNRES
0USABILITY: UNSPECIFIED AMODE: 24 OVERLAY SEGMENT: 0 OVERLAY REGION: 0
===== IDRL =====
0 TRANSLATOR VER MOD DATE TIME
0 566896201 02 01 07/23/2004
===== ESDs =====
0B_TEXT(ED)

CLASS: B_TEXT LENGTH: 7 (HEX) CLASS OFFSET: 30 (HEX) FORMAT: F(0001)
NAME SPACE: 1 ALIGNMENT: DOUBLE WORD BIND METHOD: CATENATE RMODE: 24
TEXT LOAD FILL: UNSPEC

UNRES(LD)
CLASS: B_TEXT TEXT TYPE: UNSPEC CLASS OFFSET: 30 (HEX)
NAME SPACE: 1 SCOPE: MODULE ELEMENT OFFSET: 0 (HEX) AMODE: 24
ATTRIBUTES: GENERATED,STRONG

===== TEXT ===== CLASS: B_TEXT
000000030 07FEE4D5 D9C5E2
..UNRES.........................*
0** END OF PROGRAM OBJECT LISTING
1 ** SEGMENT MAP TABLE ** PAGE 4

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 595

0CLASS SEGMENT OFFSET LENGTH LOAD TYPE ALIGNMENT RMODE
0B_TEXT 1 0 38 INITIAL CAT DOUBLE WORD 24
1 ** NUMERICAL MAP OF PROGRAM OBJECT TESTLR5 ** PAGE 5

0--
0RESIDENT CLASS: B_TEXT
0 CLAS LOC ELEM LOC LENGTH TYPE ALIGNMENT NAME
0 0 18 ED DOUBLE WORD A

14 14 LD ENTA
18 14 ED DOUBLE WORD B

28 10 LD ENTB
30 7 ED DOUBLE WORD UNRES

0 CLASS LENGTH 38
0--
0RESIDENT CLASS: B_PRV
0 CLAS LOC ELEM LOC LENGTH TYPE ALIGNMENT NAME
0 0 0 ED DOUBLE WORD A

0 0 ED DOUBLE WORD $PRIV000003
0 4 PD FULL WORD Q1

0 CLASS LENGTH 0
0--
1 ** NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT TESTLR5 ** PAGE 6

0RESIDENT CLASS: B_TEXT
0CLAS LOC ELEM LOC FROM CLASS FROM SECTION REFERS TO SYMBOL CLAS LOC ELEM LOC IN CLASS IN SECTION
0 6 6 B_TEXT A ENTA 14 14 B_TEXT A

C C B_TEXT A Q1 $CLASS_OFFSET B_PRV
10 10 B_TEXT A ENTB 28 10 B_TEXT B
1E 6 B_TEXT B ENTB 28 10 B_TEXT B
24 C B_TEXT B UNRES 30 0 B_TEXT

0 CLASS LENGTH 38
0--
1 ** NUMERICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT TESTLR5 ** PAGE 7

0RESIDENT CLASS: B_PRV
0 **** NO RLD DATA ****
0 CLASS LENGTH 0
0LENGTH OF PROGRAM OBJECT 38
0--
1 ** ALPHABETICAL MAP OF PROGRAM OBJECT TESTLR5 ** PAGE 8

0ENTRY NAME CLAS LOC ELEM LEN/LOC CLASS NAME SECTION NAME OR ENTRY TYPE
0$PRIV000003

0 0 B_PRV (ED)
A

0 0 B_PRV (ED)
A

0 18 B_TEXT (ED)
B

18 14 B_TEXT (ED)
ENTA

14 14 B_TEXT A
ENTB

28 10 B_TEXT B
Q1

0 4 B_PRV (PD)
UNRES

30 7 B_TEXT (ED)
0--
1 ** ALPHABETICAL CROSS-REFERENCE LIST OF PROGRAM OBJECT TESTLR5 ** PAGE 9

0SYMBOL REFERRED CLAS LOC ELEM LOC IN CLASS IN SECTION CLAS LOC ELEM LOC FROM CLASS FROM SECTION
0ENTA 14 14 B_TEXT A 6 6 B_TEXT A
ENTB 28 10 B_TEXT B 10 10 B_TEXT A
ENTB 28 10 B_TEXT B 1E 6 B_TEXT B
Q1 $CLASS_OFFSET B_PRV C C B_TEXT A
UNRES 30 0 B_TEXT 24 C B_TEXT B
0LENGTH OF PROGRAM OBJECT 38
0** END OF MAP AND CROSS-REFERENCE LISTING

LISTIDR output
Figure 183 on page 597 shows an example of LISTIDR output for a load module
processed by the linkage editor or binder.

AMBLIST

596 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 184 on page 598 shows an example of LISTIDR output for a program object
processed by the binder.

LISTIDR DDN=DD1,MEMBER=TLIST
***** M O D U L E S U M M A R Y *****

MEMBER NAME: TLIST MAIN ENTRY POINT: 0000000E
LIBRARY: DD1 AMODE OF MAIN ENTRY POINT: 24

NO ALIASES **
--

**** ATTRIBUTES OF MODULE ****
** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 EP > ZERO 11 RLD
12 EDIT 13 NO-SYMS 14 F-LEVEL 15 NOT-REFR

--
MODULE SSI: NONE
APFCODE: 00000000
RMODE: 24
LONGPARM: NO

*****LOAD MODULE PROCESSED EITHER BY VS LINKAGE EDITOR OR BINDER
LISTIDR FOR LOAD MODULE TLIST PAGE 0001

�B� CSECT YR/DAY SPZAP DATA
A 1972/271 92240
B 1972/271 NO IDENT

--

�A� THIS LOAD MODULE WAS PRODUCED BY LINKAGE EDITOR 5695DF108 AT LEVEL 21.01 ON DAY 271 OF YEAR 1992.
--

�C� CSECT TRANSLATOR VR.MD YR/DY
A 566896201 02.01 1972/271
B 566896201 02.01 1972/271
D1 566896201 02.01 1972/271
UNRES 566896201 02.01 1992/034

--

�D� CSECT YR/DAY USER
A 1972/271 ANOTHERONE
B 1972/271 myprogram

--

Figure 183. Example: LISTIDR output for a load module processed by linkage editor or binder

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 597

The IDR listing, as in Figure 183 on page 597 and Figure 184, has four sections that
are separated by dashed lines. The four sections contain:

�A� The linkage editor identification or binder identification record (IDRB). The
identification record is displayed in a single line. This line shows the
binder or linkage editor program identifier, version and release numbers,
and the data and time of binding.

Note: The time of binding is listed only for a program object.

LISTIDR MEMBER=(LOADMOD2) 00020905
***** M O D U L E S U M M A R Y *****

MEMBER NAME: LOADMOD2 MAIN ENTRY POINT: 00000000
LIBRARY: SYSLIB AMODE OF MAIN ENTRY POINT: 31

NO ALIASES **
--

**** ATTRIBUTES OF MODULE ****
** BIT STATUS BIT STATUS BIT STATUS BIT STATUS **

0 NOT-RENT 1 NOT-REUS 2 NOT-OVLY 3 NOT-TEST
4 NOT-OL 5 BLOCK 6 EXEC 7 MULTI-RCD
8 NOT-DC 9 ZERO-ORG 10 RESERVED 11 RLD
12 EDIT 13 NO-SYMS 14 RESERVED 15 NOT-REFR
16 RESERVED 17 <16M 18 NOT-PL 19 NO-SSI
20 NOT-APF 21 PGM OBJ 22 NOT-SIGN 23 RESERVED
24 NOT-ALTP 25 RESERVED 26 RESERVED 27 RMODEANY
28 RESERVED 29 RESERVED 30 RESERVED 31 RESERVED
32 MIGRATE 33 NO-PRIME 34 NO-PACK 35 RESERVED
36 RESERVED 37 RESERVED 38 RESERVED 39 RESERVED

--
MODULE SSI: NONE
APFCODE: 00000000
RMODE: ANY
LONGPARM: NO
PO FORMAT: 2
XPLINK: NO

�A� *****PROGRAM OBJECT PROCESSED BY BINDER
***THE FOLLOWING ARE THE UNFORMATTED PDSE DIRECTORY ENTRY SECTIONS (PMAR AND PMARL)
PMAR 001E0206 02C00412 00000000 04500000 00000000 00000000 00000000 0000
PMARL 005200C0 00000000 00020000 04500000 02380000 08180000 0EF40000 00500000

01240000 00200000 01040000 00020000 01740001 00000000 04500000 00000000
00001995 154F0205 408FC2D7 C2C6F6F4 F5F5

LISTIDR FOR PROGRAM OBJECT LOADMOD2 PAGE 1

--
THIS PROGRAM OBJECT WAS ORIGINALLY PRODUCED BY 5695DF108 AT LEVEL 01.01 ON 06/03/95 AT 20:54:08
--
�B�DATE PTF NUMBER
CSECT: SDX

04/16/2001 ZAPIDR01
04/16/2001 ZAPIDR02
04/16/2001 ZAPIDR03
04/16/2001 ZAPIDR04
04/16/2001 ZAPIDR05
04/16/2001 ZAPIDR06
04/16/2001 ZAPIDR07
04/16/2001 ZAPIDR08
04/16/2001 ZAPIDR09

--
�C�TRANSLATOR VER MOD DATE
CSECT: CM1

566896201 02 01 04/16/2001
CSECT: SDX

566896201 02 01 04/16/2001
CSECT: SD1

566896201 02 01 04/16/2001
CSECT: SD2

566896201 02 01 04/16/2001
--
�D�DATE USER DATA
CSECT: $MODULE LEVEL DATA

04/16/2001 THIS IS A TEST
CSECT: SD1

04/16/2001 USER IDR TEST 2
04/16/2001 USER IDR TEST 3

--

Figure 184. Example: LISTIDR output for a program object processed by binder

AMBLIST

598 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

�B� A list of SPZAP IDR entries (IDRZ), if any. The IDRZ records, if any, are
formatted two or more lines per section. The first contains the associated
CSECT name, and the second, and subsequent lines, a modification date
and up to eight bytes of PTF number or other data entered on the SPZAP
IDRDATA control statement. There will be one detail line for each
modification to the control section. For load module output, the IDRZ
records are formatted one line per section.

�C� A list of language translator IDR records (IDRL). These entries are
formatted only if OUTPUT=ALL was specified, or defaulted, on the
LISTIDR control statement. The IDRL records, if any, are also formatted
two or more lines per CSECT. The section name appears on the first line,
and the translator program id, version and release, and date of translation
on the second and subsequent lines. There will be one line of translator
data for each compiler, assembler or other language product involved in
the production of the object code for that section. For load module output,
the IDRL records are formatted one line per section. Blank CSECT names
in program objects will be seen as $BLANKCOM. They will be be seen as
$BLANKCM in load modules.

�D� A list of user-supplied IDR data (IDRU), if any. The IDRU records normally
appear two lines per CSECT. The first line shows the section name, and the
second line an entry date and up to 80 bytes of data, entered by the user
on the binder IDENTIFY control statement. If the section name is a module
level section (identified as '00000001'x), the constants $MODULE LEVEL
DATA are printed in place of the section name.

For program objects, if no data is available in a section, one of the following
messages will appear instead of the formatted detail:

NO SPZAP DATA EXISTS FOR THIS PROGRAM OBJECT
NO BINDER DATA EXISTS FOR THIS PROGRAM OBJECT

NO TRANSLATION DATA EXISTS FOR THIS PROGRAM OBJECT
NO IDENTITY/USER DATA EXISTS FOR THIS PROGRAM OBJECT

For load modules, if no SPZAP data is available, the following message will
appear instead of the formatted detail:

THIS LOAD MODULE CONTAINS NO INFORMATION SUPPLIED BY SPZAP

Description of LISTIDR output

LISTLPA output
Figure 185 on page 600 shows an example of LISTLPA output.

AMBLIST

Chapter 16. AMBLIST: Map load modules and program objects 599

MODIFIED LINK PACK AREA MAP - ALPHABETICALLY BY NAME

PAGEABLE LINK PACK AREA MAP - ALPHABETICALLY BY NAME

MODIFIED LINK PACK AREA MAP - NUMERICALLY BY ENTRY POINT

N 00.12SEC VIRT

N 00.12SEC VIRT

NAME

IGC00020

IGC0006I

NAME

IGC0005E

IGGC019BN

NAME

AHLACFV

AHLDSP

AHLFI0

AHLFRR

AHLFSVC

AHLPINT

AHLSBCU1

AHLSBUF

AHLSETEV

AHLSRB

AHLSTAE

AHLTACFV

AHLTDIR

AHLTEXT

AHLTF0R

AHLTLSR

AHLTPID

AHLTSRB

AHLSTAE

AHLTSYFL

AHLTUSR

AHLTXSYS

AHLVCON

AHLWTOMD

AMDSYS01

AMDSYS03

NAME

AHLDMPMD

AHLEXT

AHLFPI

AHLFSSCH

AHLMCER

AHLREADR

AHLSBL0K

AHLSETD

AHLSFE0B

AHLSRM

AHLSVC

AHLTCCWG

AHLTDSP

AHLTFCG

AHLTFRR

AHLTPI

AHLTSLIP

AHLTSRM

AHLTSVC

AHLTSYSM

AHLTVTAM

AHLVCOFF

AHLWSMOD

AMDSYS00

AMDSYS02

AMDSYS04

AMDSYS05

AMDUSRFD

AMDUSRFF

AMDUSRF9

CVAFGTF

DCMBE1

DCM181

DCM183

DCM271

AMDSYS06

AMDUSRFE

AMDUSRF8

CCKRIUWT

DCMBE0

DCM180

DCM182

DCM270

DCM272

NAME

IGC0005E

IGC0006I

NAME

IGGC019BN

IGC00020

EP ADDR

00B42000

00B419C0

EP ADDR

00B37FA0

00B414D8

200K SYS

EP ADDR

819B595E

81963962

8193A926

8198F7EA

8193A9D8

8198F748

81991F4A

81991A90

81928000

819639EE

8198F8C6

819B596A

81926A58

81956920

81954570

819717D2

81971468

EP ADDR

81926EBE

8198F660

8193A9FC

8193A946

81926450

81977C08

819916B0

81926000

819917EE

81963A62

8198F61A

8191A000

81971658

8192D000

81954694

8197147E

8192F000

81971770

819547B4

8193A908

819299C0

81963850

81989EE8

81926E4C

81936000

91039000

81975178

00F28000

00C4C000

00B8E230

00C4E730

00C56328

00CB8078

8195458C

81931000

8198F508

819B5940

819B6F40

819916B0

81934000

819BB648

8193B000

81961C08

00BF1008

00C08590

00C48000

00C56328

00F26000

00C54020

00C26318

00F24000

00F24000

00E1E830

EP ADDR

00B37FA0

00B419C0

EP ADDR

00B414D8

00B42000

200K SYS

MAJOR LPDE NAME MAJOR LPDE NAME

276K

MAJOR LPDE NAME

AHLTVTAM

AHLTXSYS

AHLTSYFL

AHLTSYSM

AHLTSYFL

AHLTSYSM

AHLWSMOD

AHLWSMOD

AHLTXSYS

AHLTSYSM

AHLTVTAM

AHLSETD

AHLTPID

AHLTPID

AHLTFOR

AHLSETD

IMDUSRFF

DCM3B3

DCM270

MAJOR LPDE NAME

AHLSETD

AHLTSYSM

AHLTSYFL

AHLTSYFL

AHLTSETD

AHLWSMOD

AHLWSMOD

AHLTXSYS

AHLTSYSM

AHLTPID

AHLTFOR

AHLTPID

AHLTFOR

IMDUSRF8

ISTAICIR

DCM3B3

MAJOR LPDE NAME MAJOR LPDE NAME

276K

LOCATION

LOCATION

LOCATION

01928000

01956920

01954570

01971468

0193A908

019299C0

01963850

01989EE8

01936000

01939000

01975178

00F28000

00B8E230

00C4E730

00CB8078

00C26318

LOCATION

01977C08

01926000

0192A000

0192D000

0192F000

01931000

0198F508

019B5940

019B6F40

019916B0

01934000

019BB648

0193B000

01961C08

00BF1008

00F26000

00C54020

00F24000

00E1E830

00000FE0

000014E0

000007D0

LOCATION

LOCATION

LENGTH

LENGTH

LENGTH

00001998

000006E0

00000A90

00000B98

000006F8

00000640

000007B0

00000118

00002AD8

00001828

99999358

00001E60

000003F8

000008D0

00000F88

00000CE8

LENGTH

000003F8

00001708

00002378

000016D0

00001C50

00002768

00000AF8

000006C0

000000C0

00000950

00001208

00000548

00002038

000003F8

000006C8

00001360

00000FE0

LENGTH

LENGTH

Figure 185. Sample LISTLPA output

600 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 17. SPZAP: Modify data in programs and VTOCs

SPZAP is a service aid program that operates in problem state. SPZAP allows you
to dynamically update and maintain programs and data sets. SPZAP can be used
to apply fixes to modules or programs that need to be at current levels of the
operating system. The functions of SPZAP provide many capabilities, including:
v Using the inspect and modify functions of SPZAP, you can fix programming

errors that require only the replacement of instructions in a load module
member of a PDS or a program object member of a PDSE without recompiling
the program.

v Using the modify function of SPZAP, you can set traps in a program by
inserting incorrect instructions. The incorrect instructions will force abnormal
ending; the dump of storage provided as a result of the abnormal ending is a
valuable diagnostic tool, because it shows the contents of storage at a predictable
point during processing.

v Using SPZAP to replace data directly on a direct access device, you can
reconstruct VTOCs or data records that may have been destroyed as the result of
an I/O error or a programming error.

v On the advice of the IBM Support Center, start tracing in system components
that do not use component trace. The IBM Support Center will tell you how to
use the SPZAP service aid to start traces in these components.

v Update the system status index (SSI) in the directory entry for any load module
in a PDS or program object in a PDSE. Update the CSECT identification record
(IDR) in any load module in a PDS or program object in a PDSE.

Planning for SPZAP
SPZAP is an application that provides editing capabilities for data on a direct
access storage device (DASD). Protect against SPZAP (and other applications that
can update data sets) being used to damage data through use of the installation's
security protection scheme:
v In z/OS DFSMS Using Data Sets, see the chapter, “Protecting Data Sets” for

information pertaining to protecting data sets.
v In z/OS DFSMSdfp Advanced Services, see the chapter, “Protecting the VTOC and

VTOC Index” for information pertaining to protecting VTOCs.
Installations using RACF should employ a combination of GDASDVOL and
DASDVOL resource profiles to establish this protection. See z/OS Security Server
RACF Security Administrator's Guide for more information regarding these
profiles.
IBM recognizes the particular sensitivity of the VTOC. For a VTOC, the console
operator must respond to message AMA117D before SPZAP will process an
update request. This authorization must be supplied in addition to authorization
through use of the installation's security protection scheme.

Inspecting and modifying data
The inspection function is controlled by the VERIFY statement. VERIFY allows you
to check the contents of a specific location in a load module member of a PDS, a
program object member of a PDSE or a z/OS UNIX file, a specific physical record
of a direct access data set, or a record of a member of a data PDSE before you

© Copyright IBM Corp. 1988, 2015 601

replace the contents. If the contents at the specified location do not agree with the
contents as specified in the VERIFY statement, subsequent REP operations are not
performed.

Note: A PDSE containing data other than a program object will be referred to as a
PDSE data library.

The SPZAP modification function is controlled by the REP (replace) control
statement. The REP control statement allows you to replace instructions or data at
a specific location in a load module member of a PDS, a program object in a PDSE
or a z/OS UNIX file, a physical record in a direct access data set or a record of a
member of a PDSE data library.

To avoid possible errors in replacing data, you should always precede any REP
operation with a VERIFY operation.

SPZAP is often used to inspect and modify the contents of executable programs to
correct errors. Executable programs can be in one of two forms:
v A load module, which is created by the linkage editor and is stored in a PDS.
v A program object, which is created by the program management binder and is

stored in a PDSE or a z/OS UNIX System Services file.

Note:

1. All subsequent references in this topic to a program object in a PDSE also apply
to a program object in a z/OS UNIX file.

2. For program objects located in a PDSE, SPZAP only supports CSECTs
assembled with the GOFF or SECTALGN(>8) options.

In addition, SPZAP can be used to inspect and modify data other than executable
programs. Examples of such types of data are:
v A sequential (QSAM/BSAM and EXCP) data set.
v A direct organization (BDAM) data set.
v A VSAM data set in a conventional DASD volume.
v A partitioned data set extended (PDSE) program library (see preceding note).

There are several types of data sets that are not supported by SPZAP:
v An extended sequential data set.
v A VSAM data set in an extended address volume.
v A partitioned data set extended (PDSE) data library (see preceding note).
v A load module that includes a CSECT assembled with quadword alignment.

See the following topics for more information:
v “Inspecting and modifying a load module or program object”
v “Inspecting and modifying a data record” on page 609

Inspecting and modifying a load module or program object
To inspect or modify data in a load module or program object, you need a NAME
statement to supply SPZAP the name of the appropriate member of the file. The
load module must be a member of the PDS, identified by the SYSLIB DD
statement included in the JCL. The program object must be a member of the PDSE
or a file in the z/OS UNIX directory identified by the SYSLIB DD statement
included in the JCL.

SPZAP

602 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

To inspect or modify a program object that is in a z/OS UNIX file system, use the
PATH parameter on the SYSLIB DD statement instead of the DSNAME parameter.
Use PATH to identify the directory that contains the file that is the program object.
Use the NAME statement to identify the file.

If the load module member of a PDS or program object member of a PDSE
contains more than one control section (CSECT), you must also supply SPZAP
with the name of the CSECT that is to be inspected or modified. If no CSECT
name is given in the NAME statement, SPZAP assumes that the control section to
be processed is the first one encountered in searching the load module.

Whenever SPZAP updates a CSECT in a load module member of a PDS or
program object member of a PDSE in response to your NAME and REP control
statements, it also puts descriptive maintenance data in a CSECT identification
record (IDR) associated with the load module or program object. This function will
be performed automatically after all REP statements associated with the NAME
statement have been processed; any optional user data that has to be placed in the
IDR will come from the IDRDATA statement. See “SPZAP control statements” on
page 618 for an explanation of the IDRDATA statement.

Figure 186 shows how to inspect and modify a load module containing a single
CSECT.

SYSLIB DD Statement: Defines the system library SYS1.LINKLIB containing the
module IEEVLNKT that SPZAP is to process.

NAME Control Statement: Instructs SPZAP that the operations defined by the
control statements that follow are to be performed on the module IEEVLNKT.

VERIFY Control Statement: Requests that SPZAP check the hexadecimal data at
offset X'0018' in the module IEEVLNKT to make sure that it is the same as the
hexadecimal data specified in this statement. If the data is the same, SPZAP
continues processing the subsequent statements sequentially. If the data is not
identical, SPZAP will not perform the REP and SETSSI operations requested for the
module. It will, however, perform the requested DUMP operation before
discontinuing the processing. It will also dump a hexadecimal image of the module
IEEVLNKT to the SYSPRINT data set.

REP Control Statement: Causes SPZAP to replace the data at offset X'0018' in
module IEEVLNKT with the data given in this control statement, provided the
VERIFY statement was successful.

//ZAPCSECT JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEEVLNKT
VERIFY 0018 C9C8,D2D9,D1C2,C7D5
REP 0018 E5C6,D3D6,E6F0,4040
SETSSI 01211234
IDRDATA 71144
DUMP IEEVLNKT
/*

Figure 186. Example: Inspecting and modifying a single CSECT load module

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 603

SETSSI Control Statement: Instructs SPZAP to replace the system status
information in the directory entry for module IEEVLNKT with the SSI data given
in the statement, if the VERIFY statement was successful. The new SSI is to
contain:
v A change level of 01
v A flag byte of 21
v A serial number of 1234

IDRDATA Control Statement: Causes SPZAP to update the IDR in module
IEEVLNKT with the data 71144, if the REP operation is successful.

DUMP Control Statement: Requests that a hexadecimal image of module
IEEVLNKT be dumped to the SYSPRINT data set. Since the DUMP statement
follows the REP statement, the image will reflect the changes made by SPZAP if
the VERIFY operation was successful.

Figure 187 shows how to apply an IBM-supplied PTF in the form of an SPZAP fix,
rather than a module replacement PTF.

SYSLIB DD Statement: Defines the library (SYS1.NUCLEUS) that contains input
module IEANUC01.

SYSIN DD Statement: Defines the input stream.

NAME Control Statement: Instructs SPZAP that the operations defined by the
control statements that immediately follow this statement are to be performed on
the CSECT IEWFETCH contained in the load module IEANUC01.

IDRDATA Control Statement: Causes SPZAP to update the IDR in module
IEANUC01 for CSECT IEWFETCH with the date LOCFIX01, if either of the REP
operations is successful.

VERIFY control statements: Requests that SPZAP compare the contents of the
locations X'01F0' and X'0210' in the control section IEWFETCH with the data given
in the VERIFY control statements. If the comparisons are equal, SPZAP continues
processing subsequent control statements sequentially. However, if the data at the
locations does not compare identically to the data given in the VERIFY control
statements, SPZAP dumps a hexadecimal image of CSECT IEWFETCH to the
SYSPRINT data set; the subsequent REP and SETSSI statements are ignored. The
DUMPT function specified will be performed before SPZAP ends processing.

//PTF40228 JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.NUCLEUS,DISP=OLD
//SYSIN DD *
NAME IEANUC01 IEWFETCH
IDRDATA LOCFIX01
VERIFY 01F0 47F0C018
VERIFY 0210 5830C8F4
REP 01F0 4780C072
REP 0210 4130C8F4
SETSSI 02114228
DUMPT IEANUC01 IEWFETCH
/*

Figure 187. Example: Modifying a CSECT in a load module

SPZAP

604 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

REP control statements: Causes SPZAP to replace the data at offsets X'01F0' and
X'0210' from the start of CSECT IEWFETCH with the hexadecimal data specified
on the corresponding REP statements.

SETSSI Control Statement: Causes SPZAP to replace the system status
information in the directory for module IEANUC01 with the SSI data given in the
SETSSI statement after the replacement operations have been effected. The new SSI
will contain a change level of 02, a flag byte of 11, and a serial number of 4228.

DUMPT Control Statement: Causes SPZAP to produce a translated dump for
CSECT IEWFETCH of load module IEANUC01.

Use the JCL in Figure 188 to inspect and modify two CSECTs in the same load
module.

SYSLIB DD Statement: Defines the system library SYS1.LINKLIB containing the
load module IEFX5000 that is to be changed by SPZAP.

NAME Control Statement #1: Instructs SPZAP that the operations requested
through the control statements immediately following it are to be performed on
CSECT IEFQMSSS in load module IEFX5000.

VERIFY Control Statement #1: Requests that SPZAP check the hexadecimal data
at offset X'0284' in CSECT IEFQMSSS to make sure it is the same as the data
specified in this control statement. If the data is identical, SPZAP continues
processing the control statements. If the data is not identical, SPZAP does not
perform the REP or SETSSI for CSECT IEFQMSSS, but it does perform the DUMPT
operation. It also provides a hexadecimal dump of CSECT IEFQMSSS.

REP Control Statement #1: Causes SPZAP to replace the data at offset X'0284' in
CSECT IEFQMSSS with the hexadecimal data given in this control statement.

IDRDATA Control Statement #1: Causes SPZAP to update the IDR in module
IEFX5000 for CSECT IEFQMSSS with the data PTF01483, if the first REP operation
is successful.

//CHANGIT JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEFX5000 IEFQMSSS
VERIFY 0284 4780,C096
REP 0284 4770,C096
IDRDATA PTF01483
SETSSI 01212448
DUMPT IEFX5000 IEFQMSSS
NAME IEFX5000 IEFQMRAW
VERIFY 0154 4780,C042
REP 0154 4770,C042
IDRDATA PTF01483
SETSSI 01212448
DUMPT IEFX5000 IEFQMRAW
/*

Figure 188. Example: Inspecting and modifying two CSECTs

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 605

SETSSI Control Statement #1: Instructs SPZAP to replace the system status
information in the directory entry for module IEFX5000 with the SSI data given.
The new SSI will contain a change level of 01, a flag byte of 21, and a serial
number of 2448.

DUMPT Control Statement #1: Provides a translated dump of CSECT IEFQMSSS.

NAME Control Statement #2: Indicates that the operations defined by the control
statements that immediately follow this statement are to be performed on CSECT
IEFQMRAW in the load module IEFX5000.

VERIFY Control Statement #2: Requests that SPZAP perform the VERIFY function
at offset X'0154' from the start of CSECT IEFQMRAW. If the VERIFY operation is
successful, SPZAP continues processing the subsequent control statements
sequentially. If the VERIFY is rejected, however, SPZAP does not perform the
following REP or SETSSI operations, but it does dump a hexadecimal image of
CSECT IEFQMRAW to the SYSPRINT data set and performs the DUMPT operation
as requested.

REP Control Statement #2: Causes SPZAP to replace the data at hexadecimal offset
X'0154' from the start of CSECT IEFQMRAW with the hexadecimal data that is
specified in this control statement.

IDRDATA Control Statement #2: Causes SPZAP to update the IDR in module
IEFX5000 for CSECT IEFQMRAW with the data PTF01483, if the second REP
operation is successful.

SETSSI Control Statement #2: Causes SPZAP to perform the same function as the
previous SETSSI, but only if the second VERIFY is not rejected.

DUMPT Control Statement #2: Causes SPZAP to perform the DUMPT function on
control section IEFQMRAW.

Use the JCL shown in Figure 189 to inspect and modify control section PRINTF in
z/OS UNIX System Services.

SYSLIB DD Statement: Defines the directory ‘/sj/sjpl/binder/unixzap/’
containing the program object LOADMOD1 that SPZAP is to process.

SYSIN DD Statement: Defines the input stream.

NAME control statement: Instructs SPZAP that the operations defined by the
control statements that follow are to be performed on the control section PRINTF
of the program object LOADMOD1.

//ZAPUNIX EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD PATH=’/sj/sjpl/binder/unixzap/’,
// PATHDISP=(KEEP,KEEP)
//SYSIN DD *
NAME LOADMOD1 PRINTF
VERIFY 0000 58F0C210
REP 0000 68F0D210
DUMP LOADMOD1 PRINTF

/*

Figure 189. Example: Inspecting and Modifying a CSECT in z/OS UNIX System Services

SPZAP

606 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

VERIFY control statement: Requests that SPZAP compare the contents of the
location X'0000' in the control section PRINTF with the data given on the VERIFY
control statement. If the comparisons are equal, SPZAP continues processing
subsequent control statements sequentially. If the data does not compare, SPZAP
dumps a hexadecimal image of CSECT PRINTF to the SYSPRINT data set; the
subsequent REP control statement is ignored.

REP control statement: Causes SPZAP to replace the data at offset X'0000' from the
start of the CSECT PRINTF with the hexadecimal data provided.

DUMP control statement: Requests that a hexadecimal image of program object
LOADMOD1, control section PRINTF be dumped to the SYSPRINT data set.
Because the dump statement follows the REP statement, the image will reflect the
changes made by SPZAP if the VERIFY operation was successful.

Use the JCL in Figure 190 to inspect and modify a CSECT within a program object.

SYSLIB DD statement: Defines the library SYS1.USERLIB containing a program
object with an alias of LONGALIASNAME. (Note the continuation character (#)
following LONG.) One CSECT in this program object is being changed.

SYSIN DD statement: Defines the input stream.

NAME control statement: This control statement contains a ‘#’ in column 72 and is
continued to a second control statement. The first 18 columns of the continued
statement are blanks and are ignored. The string ALIASNAME on this continued
statement is concatenated with the string LONG to form member name
LONGALIASNAME. Note that this statement could have been contained in one
record as NAME LONGALIASNAME PDSPROCR. Either way, the NAME
statement indicates that SPZAP is to use the VERIFY and two REP statements to
one CSECT PDSPROCR in the program object member whose alias is
LONGALIASNAME.

Note: Leading blanks on the continued statement are ignored. No characters on
the first card are skipped. Therefore, in order to split an operand, part on the first
card and the rest on the second, it is important that the part of the operand on the
first card extends to column 71. A blank in column 71 indicates that the non-blank
string in the second card begins a new operand.

VERIFY control statement: Requests that SPZAP check the data at hexadecimal
displacement X'000070' from the start of the data record defined in the CCHHR
statement to make sure it is the same as the hexadecimal data specified in this

//UPDATE JOB MSGLEVEL=(1,1)
//ZAPSTEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=SYS1.USERLIB,DISP=OLD
//SYSIN DD *
NAME LONG#

ALIASNAME PDSPROCR
VERIFY 000070 58E0,9118
REP 000074 50E0,9434,9140,9058,47E0,C0A8,45E0,C476,94BF,9058,#

181D,58D0,D004,1FFF,43F0,A046,1F00,BF07,A047
REP 00009A 1861,1870,1F55,0E64,98EC,D00C,07FE

Figure 190. Example: Using SPZAP to modify a CSECT

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 607

control statement. If the data is the same, SPZAP continues processing the
following control statements sequentially. If the data is not identical, SPZAP does
not perform the REP function but does perform the ABSDUMPT operation; it also
dumps a formatted hexadecimal image of the data record defined by the CCHHR
statement to the SYSPRINT data set.

REP Control Statement #1: Causes SPZAP to replace the data at offset X'000074' in
CSECT PDSPROCR with the hexadecimal data given in this control statement.
Notice that this statement contains a non-blank (#) in column 72 indicating that it
is continued to a second control statement.

REP Control Statement #2: Causes SPZAP to replace the data at offset X'00009A' in
CSECT PDSPROCR with the hexadecimal data given in this control statement.

Accessing data in a CSECT
For a complete description of the control statements mentioned in the following
discussion, see “SPZAP control statements” on page 618.

Once the CSECT has been found, the use of offset parameters in the VERIFY and
REP statements allow SPZAP to locate the data that is to be verified and replaced.
The offset parameters are specified in hexadecimal notation and define the
displacement of the data relative to the beginning of the CSECT. For example, if a
hexadecimal offset of X'40' is specified in a VERIFY statement, SPZAP will find the
location that is 64 bytes beyond the beginning of the CSECT identified by the
NAME statement, and begin verifying the data from that point.

Normally, the assembly listing address associated with the instruction to be
inspected or modified can be used as the offset value in the VERIFY or REP
statement. However, if a CSECT has been assembled with other CSECTs so that its
origin is not at assembly location zero, then the locations in the assembly listing do
not reflect the correct displacements of data in the CSECT. You must compute the
proper displacements by subtracting the assembly listing address delimiting the
start of the CSECT from the assembly listing address of the data to be referenced.

You can, however, use the BASE control statement to eliminate the need for such
calculations and allow you to use the assembly listing locations. The BASE control
statement should be included in the input to SPZAP immediately following the
NAME statement that identifies the CSECT. The parameter in the BASE statement
must be the assembly listing address (in hexadecimal) at which the CSECT begins.
SPZAP then subtracts this value from the offset specified on any VERIFY or REP
statement that follows the BASE statement, and uses the difference as the
displacement of the data.

Figure 191 on page 609 is a sample assembly listing showing more than one control
section. To refer to the second CSECT (IEFCVOL2), you could include in the input
to SPZAP a BASE statement with a location of 0398. Then, to refer to the
subsequent LOAD instruction (L R2,CTJCTAD) you could use an offset of X'039A' in
the VERIFY or REP statements that follow in the SPZAP input stream.

SPZAP

608 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Inspecting and modifying a data record
You will inspect and modify a data record differently depending on whether the
data record is in a PDSE or some other type of data set, such as a VTOC or
sequential data set.

Note: The following information does NOT apply to a PDS. SPZAP only supports
a PDS that contains load modules.

Record not in a PDSE: To inspect or modify a specific data record that is not in a
PDSE you must use a CCHHR control statement to specify its direct access
address. This CCHHR address must be within the limits of the direct access data
set defined in the SYSLIB DD control statement.

When you use the CCHHR control statement, SPZAP reads the physical record
you want to inspect or modify. The offset parameters specified in subsequent
VERIFY and REP statements are then used to locate the data that will be verified
or replaced within the record. These hexadecimal offsets must define the
displacement of data relative to the beginning of the record and include the length
of any key field.

If you request a REP operation for a record identified by a CCHHR control
statement, SPZAP issues message AMA112I to provide a record of your request.

In z/OS V1R7 and later DSNTYPE=LARGE data sets are supported when using
V1R7 or a later release of SPZAP.

Record in a PDSE: To inspect or modify a specific data record in a PDSE data
library, you must use the RECORD control statement preceded by a NAME control

LISTING TITLE

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

000000 1 IEFCVOL1 CSECT 10000017

.

.

.

000384 00000000 378 VCNQMSSS DC V(IEFQMSSS) 55800017
379 * 56000017

000388 00000000 380 VCMSG15 DC V(IEFVMG15) 56100017
00038C D200 1001 8000 00000 00000 381 MVCMSG MVC 0(1,R1),0(R8) 56200017

382 * 56300017
000392 D200 1001 1000 00001 00000 383 MVCBLNKS MVC 1(1,R1),0(R1) 56400017

384 * 56500017

000398 386 CSECT 56600017
000398 0590 387 BALR R9.0 56700017
00039A 388 USING *,R9 56800017
00039A 5820 C010 00010 389 L R2,LCTJCTAD 56900017

.

.

.

Figure 191. Sample Assembly Listing Showing Multiple Control Sections

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 609

statement to specify its direct access address. This combination of RECORD and
NAME serves as a pointer to a specific location in a PDSE data library member.

The CCHHR control statement does not apply to a PDSE. Any attempt to access
data in a PDSE with a CCHHR control statement will cause an error message. Any
VER|VERIFY, REP, IDRDATA, or SETSSI control statements immediately following
a CCHHR statement will be flagged in error and ignored.

To determine the relative record number for a specific record, invoke SPZAP,
specifying:
NAME membernam
ABSDUMP(T) 1 99999999

The results show a display of all records in the member, record length, relative
record number, and other pertinent information.

In Figure 192, the data set to be modified is a volume table of contents.

SYSPRINT DD Statement: Defines the message data set.

SYSLIB DD Statement: Defines the data set to be accessed by SPZAP in
performing the operations specified by the control statements. In this example, it
defines the VTOC (a Format 4 DSCB) on a 3390 volume with a serial number of
111111. DCB=(KEYLEN=44) is specified so that the dump produced by the
ABSDUMPT control statement will show the dsname which is a 44-byte key. Note
that this is not necessary for the VERIFY and REP control statements.

CCHHR Control Statement: Indicates that SPZAP is to access the direct access
record address “0005000001” in the data set defined by the SYSLIB DD statement
while performing the operations specified by the following control statements.

VERIFY Control Statement: Requests that SPZAP check the data at hexadecimal
displacement X'2C' from the start of the data record defined in the CCHHR
statement to make sure it is the same as the hexadecimal data specified in this
control statement. If the data is the same, SPZAP continues processing the
following control statements sequentially. If the data is not identical, SPZAP does
not perform the REP function but does perform the ABSDUMPT operation; it also
dumps a formatted hexadecimal image of the data record defined by the CCHHR
statement to the SYSPRINT data set.

//ZAPIT JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=FORMAT4.DSCB,DISP=OLD,
// UNIT=3390,VOLUME=SER=111111,DCB=(KEYLEN=44)
//SYSIN DD *
CCHHR 0005000001
VERIFY 2C 0504
REP 2C 0A08
REP 2E 0001,03000102
ABSDUMPT ALL
/*

Figure 192. Example: Inspecting and modifying a data record

SPZAP

610 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

REP control statements: Cause the eight bytes of data starting at displacement 2C
from the beginning of the record to be replaced with the hexadecimal data in the
REP control statements. The 2C displacement value allows for a 44-byte key at the
beginning of the record.

ABSDUMPT Control Statement: Causes SPZAP to dump the entire data set to the
SYSPRINT data set. Since DCB=(KEYLEN=44) is specified on the SYSLIB DD
statement, the 44-byte dsname is also dumped.

Note: If the VTOC is to be modified, message AMA117D is issued to the operator,
requesting permission for the modification.

Figure 193 shows how to inspect and modify a record within a PDSE data library.

SYSLIB DD statement: Defines the data set that SPZAP is to access to perform the
operations specified by the control statements. In this example, it defines a private
PDSE data library. The NAME statement identifies the member as USERDATA,
which is shown in Figure 203 on page 633.

SYSIN DD statement: Defines the input stream containing the SPZAP control
statements.

NAME control statement: Instructs SPZAP that the control statements that
immediately follow this statement are to be performed on the member whose
name is USERDATA.

RECORD control statement: Indicates that SPZAP is to access relative record 3,
the third record in the member USERDATA. Record 3 is the object of the VERIFY
and REP operations that follow.

VERIFY control statement: Requests that SPZAP check the data at hexadecimal
displacement X'0010' to compare it to the string specified. If there is a difference,
this VERIFY is flagged with an error message, the contents of record 3 are
displayed, and the following REP statement is flagged and ignored.

REP control statement: Causes SPZAP to replace the data at offset X'000014' in
record 3 of member USERDATA with the data X'10C7C5E3C4E2' if the preceding
VERIFY statement completed successfully. If the preceding VERIFY statement was
flagged in error, then this statement is also flagged in error, and no data is
replaced.

ABSDUMP control statement: Causes SPZAP to display record 3 of member
USERDATA. Record 3 is displayed whether the VERIFY succeeded or failed.

//UPDDATA JOB MSGLEVEL=(1,1)
//ZAPSTEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSN=IBMUSER.LMD.PDSE,DISP=OLD
//SYSIN DD *
NAME USERDATA
RECORD 0003
VER 000010 04B3,9017
REP 000014 10C7,C5E3,C4E2
ABSDUMP 3 3

Figure 193. Example: Using SPZAP to modify a data record

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 611

Updating the System Status Index (SSI)
You can use the SETSSI control statement to overlay the existing data in the SSI
with your own data. For a complete description of the SETSSI control statement,
see “SPZAP control statements” on page 618.

The SSI is a 4-byte field created by the linkage editor in the directory entry of a
load module. It is useful for keeping track of any modifications that are performed
on a load module. SPZAP updates the system status index automatically whenever
it replaces data in the associated module.

Not all load modules have system status information. In those that do, the SSI is
located in the last four bytes of the user data field in the directory entry. Figure 194
shows the position of the SSI in load module directory entries.

Figure 195 on page 613 shows the composition of the SSI field and the flag bits
used to indicate the types of changes made to the corresponding load module
program.

The first byte of SSI information contains the member's change level. When a load
module is initially released by IBM, its change level is set at one. Thereafter, the
change level is increased by one for each release that includes a new version of
that program. If you make a change to the SSI for any of the IBM-released
programs, take care not to destroy this maintenance level indicator unless you
purposely mean to do so. To keep the change level byte at its original value, find
out what information is contained in the SSI before using the SETSSI function. The
LISTLOAD control statement of the LIST service aid can give you the information
you need.

┌───────────────┬───────────┬──────┬────────────────────┬────────────┐
* Member Name * TTR * C * User Data Field * SSI *
* 1 8 * 9 11 * 12 * 13 to 70 maximum * variable *
└───────────────┴───────────┴──────┴────────────────────┴────────────┘

Figure 194. SSI bytes in a load module directory entry

SPZAP

612 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The second byte of the SSI is called the flag byte. Bits within the flag byte contain
information reflecting the member's maintenance status. You need only be
concerned with two of the eight bits when you are using SPZAP:
v Bit 2, the local fix flag, indicates that the user has modified a particular member.

(It is not used to reflect modifications made by IBM-supplied program
temporary fix or a PTF.) SPZAP sets this local fix flag bit to one after
successfully modifying a load module.

v Bit 3, the program temporary fix flag, is set to one when an IBM-authorized PTF
is applied to a system library to correct an error in an IBM module.

All other bits in the flag byte should be retained in the SSI as they appeared before
the SETSSI operation took place, so as not to interfere with the normal system
maintenance procedures.

The third and fourth bytes of the system status index are used to store a serial
number that identifies the first digit and the last three digits of a PTF number.
SPZAP will not change these bytes unless you request a change by using the
SETSSI control statement.

Running SPZAP
You can run SPZAP using control statements as input into the job stream or
dynamically as part of selected macros:
v “Using JCL and control statements to run SPZAP” on page 614
v “Invoking SPZAP dynamically” on page 616

Consider the following points when you run SPZAP:

1 byte

31 4 62 5 7

Change
Level

Flag
Byte

Serial
Number

1 byte 2 bytes

0Bits:

{

(Reserved)

Force Flag

Local Fix Flag

Program Temporary Fix Flag

Dependency Flag

Critical Flag

IBM Flag

Figure 195. Flag bytes in the System Status Index field

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 613

v SPZAP uses the system OPEN macro. Therefore, SPZAP cannot modify or
inspect RACF-protected data sets when SPZAP cannot successfully complete the
access checks that occur during OPEN processing.

v A module can be a load module in a PDS or a program object in a PDSE. SPZAP
replaces a program object in a PDSE rather than updating the program object in
place. Users who have used the BLDL macro to establish a connection to a
particular copy of a program object must invoke BLDL again to gain access to
the new copy.
If you are using LLA to manage a program object that has been changed
through the use of SPZAP, then, to make the modified object available, the
operator must refresh LLA for the directory entries for that program object.
Otherwise, LLA continues to load the unmodified version of the program object.
SPZAP itself cannot identify when a load module or a program object is in use
by another user or is in the process of being loaded through LLA.
See z/OS DFSMS Using Data Sets for more information about PDSEs and their
data structure.

v Unexpired data sets such as system libraries cannot be modified unless the
operator replies r xx,‘U’ to the expiration message that occurs during OPEN.

v If you use SPZAP to modify an operating system module that is made resident
in virtual storage only at IPL time, you must IPL the system again to invoke the
new version of the module you have modified. (Note that this requirement
applies to all modules in SYS1.LPALIB, all data sets named in the LPALSTxx
member of SYS1.PARMLIB, and all modules in SYS1.NUCLEUS.
SPZAP itself cannot determine when a module is loaded only at IPL time.

v The SYSLIB DD statement cannot define a concatenated or a multi-volume data
set.

v SPZAP supports only direct access storage devices (DASD) for the SYSLIB
device.

v When modifying a system data set, such as SYS1.LINKLIB, specify DISP=OLD
on the SYSLIB DD statement.

v If you use SPZAP for a digitally signed module, message AMA165I is issued.
The control statement is to be processed, but the digital signature is no longer
valid.

v SPZAP supports placement of SYSIN and SYSPRINT data sets in
cylinder-managed space.

v SPZAP (AMASPZAP or IGWSPZAP) supports all data sets allocated in the
extended addressing space (EAS) of an extended address volume (EAV).

v SPZAP (AMASPZAP or IGWSPZAP) supports the following dynamic allocation
(DYNALLOC or SVC 99) options for all data sets: S99TIOEX(XTIOT),
S99ACUCB (NOCAPTURE), and S99DSABA (DSAB above the line).

Using JCL and control statements to run SPZAP
One way to invoke SPZAP is through the job stream. The JCL statements you need
to use when running SPZAP are:
v JOB statement
v EXEC statement
v SYSPRINT DD statement
v SYSLIB DD statement
v SYSABEND DD statement
v SYSIN DD statement

SPZAP

614 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

These JCL statements, when used with the control statements in “SPZAP control
statements” on page 618, allow greater function for SPZAP.

Also, when running SPZAP, you must consider the region size available to your
program. The minimum region size needed to run AMASPZAP is 200 kilobytes.

Usually, no REGION parameter is required on the EXEC statement but
REGION=120K (or any other value less than 200K) will cause SPZAP to issue
message AMA154I and stop processing with a return code of 16. In addition,
SPZAP will issue message AMA154I if the program management binder has too
small a region size. This problem might occur if the SYSLIB member is extremely
large, when REGION=4M or REGION=6M might be needed.

JCL statements
JOB Statement

Marks the beginning of the job.

EXEC Statement
Invokes SPZAP. You identify AMASPZAP as the program to be run by
specifying either PGM=AMASPZAP or PGM=IMASPZAP, which is an alias
name for AMASPZAP.

Note: You must ensure that the region size is at least 200K for SPZAP to
complete processing normally.

The only valid parameter that you may specify is PARM=IGNIDRFULL, which
enables SPZAP to override the standard restrictions placed upon CSECT
updates (through NAME and REP) when IDR space for the module is found to
be full.

Note:

1. Do not use PARM=IGNIDRFULL with IBM-maintained modules.
2. PARM=IGNIDRFULL has no meaning if SYSLIB is a program object library.

There is no restriction on the number of IDRZ records associated with a
program object library member.

SYSPRINT DD Statement
Defines a sequential output data set for messages that can be written on a
system printer, a magnetic tape volume, or a direct access volume. This
statement is required for each run of SPZAP.

SYSLIB DD Statement
Defines the direct access data set that will be accessed by SPZAP when
performing the operations specified on the control statements. The DSNAME
parameter and DISP=OLD or DISP=SHR are required. The VOLUME and
UNIT parameters are necessary only if the data set is not cataloged. This
statement cannot define a concatenated or multi-volume data set. It is required
to run SPZAP.

Note:

1. When this data set is the VTOC, you must specify
DSNAME=FORMAT4.DSCB. When you access a record in the VTOC (that
is, a DSCB) for modification, SPZAP issues message AMA117D to the
console. No message is issued, however, when an ABSDUMPT operation is
performed on the VTOC.

2. Standard VSAM processing requires the use of an ACB to access the data
set. However, because SPZAP only supports open with DCB, it does not

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 615

obtain the correct information needed to operate upon a VSAM data set.
Where there is a blocksize mismatch reported by SPZAP, explicit
specification of the blocksize on the SYSLIB DD statement will override
SPZAP's normal size processing.

SYSABEND DD Statement
Defines a sequential output data set to be used in case SPZAP ends
abnormally. The data set can be written to a printer, a magnetic tape volume,
or a direct access volume. This statement is optional.

SYSIN DD Statement
Defines the input stream data set that contains SPZAP control statements.

Return codes
When SPZAP ends, one of the following return codes is placed in general purpose
register 15:

Code Meaning

00 Successful completion.

04 Warning of a condition. This may result in future errors if an action is not
taken to correct the warning now.

08 A SPZAP input statement contains an error or was overridden by operator
intervention. Check the syntax of the statements to determine the cause of
the error.

12 A requested JCL statement is absent or specifies a data set that was not
successfully opened. SPZAP ends immediately.

16 A permanent I/O error has occurred, perhaps caused by a JCL error, such
as incorrect blocksize. SPZAP ends immediately. The region size might be
too small. REGION=200K is the smallest permitted. However, the program
management binder might require as much as 4M or 6M if the program
object is very large.

20 Using DUMP, DUMPT, VER, or REP processing, SPZAP found a control
record for a specific control section that was larger than the specified
BLOCKSIZE. SPZAP ends immediately.

Invoking SPZAP dynamically
You can run SPZAP from selected macros. SPZAP can be invoked by an
application program at run time through the use of the CALL, LINK, XCTL, or
ATTACH macro. The program must supply a list of alternate DDNAMEs of data
sets to be used by SPZAP if the standard DDNAMEs are not used.

A program must be running APF authorized in order to update a VTOC through
SPZAP. Other SPZAP functions do not require the calling program to be
authorized.

The following diagram shows the general form of these macros when used to
invoke SPZAP.

(anyname) CALL AMASPZAP,(oplist,ddnamlst),VL
(anyname) XCTL EP=AMASPZAP
(anyname) LINK EP=AMASPZAP,PARAM=(oplist,ddnamlst),VL=1
(anyname) ATTACH EP=AMASPZAP,PARAM=(oplist,ddnamlst),VL=1

SPZAP

616 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

anyname
Indicates an optional statement label on the macro statement.

EP The entry point for the SPZAP program.

PARAM
Specifies, as a sublist, parameters to be passed from the program to SPZAP.

oplist
Specifies the name of either a halfword of zeros (indicating no options) or a
non-zero halfword followed by a character string whose length is given in
bytes. For the possible parameter value, see the information about the EXEC
statement in “JCL statements” on page 615.

ddnamlst
Specifies the name of a variable-length list containing alternate ddnames for
data sets to be used during SPZAP processing. If all the standard ddnames
(SYSPRINT, SYSLIB, and SYSIN) are used, then you can omit this parameter.

The DDNAME list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the rest of the list. The format of the
list is fixed, with each entry having eight bytes. Any name of less than eight
bytes must be left justified and padded with blanks. If a name is left out in the
list, the entry must contain binary zeros; the standard name is then assumed.
Names can be omitted from the end of the ddname list by shortening the list.

The sequence of 8-byte entries in the list is as follows:

Entry Standard name

0-7 not applicable

8-15 not applicable

16-23 not applicable

24-31 SYSLIB

32-39 SYSIN

40-47 SYSPRINT

VL | VL=1
Indicates that the high-order bit is to be set to 1 in the last word of the address
parameter list.

Note: If you do not supply the name of a DDNAME list, you must ensure that
the high-order bit of the oplist address is set on. Coding VL|VL=1 sets the bit
correctly.

Figure 196 on page 618 is an example of two functionally-equivalent dynamic
invocations of SPZAP.

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 617

SPZAP control statements
SPZAP control statements (entered either through the user's input stream in the
JCL or through the system console) define the processing functions to be
performed during a particular run of SPZAP. To enter other SPZAP control
statements through the system console, you can use the CONSOLE control
statement. The control statements that define the running of SPZAP are:
v ABSDUMP or ABSDUMPT
v BASE
v CCHHR
v CHECKSUM
v Comment (*)
v CONSOLE
v DUMP or DUMPT
v IDRDATA
v NAME
v RECORD
v REP
v SETSSI
v VERIFY

EXSPZAP CSECT
USING *,15 ASSUME REG15 IS BASE
MODID MODULE ID AND DATE IN PROLOG
SAVE (14,12) SAVE REGISTERS
BALR 12,0 ESTABLISH BASE REGISTER
USING *,12
ST 13,SAVEAREA+4 CHAIN NEW SAVEAREA TO PREVIOUS
LR 2,13 TEMPORARILY SAVE ADDRESS OF OLD SAVEAREA
LA 13,SAVEAREA INIT REG13 WITH ADDRESS OF NEW SAVEAREA
ST 13,8(0,2) CHAIN PREVIOUS SAVEAREA TO NEW

* *
* THIS EXAMPLE SHOWS TWO FUNCTIONALLY EQUIVALENT DYNAMIC *
* INVOCATIONS OF SPZAP. *
* NO OPTIONS ARE PASSED. *
* THE DDNAME FOR THE SYSLIB FILE IS CHANGED TO TESTLIBR. *
* THE DDNAME FOR THE SYSIN FILE IS NOT CHANGED. *
* THE DDNAME FOR THE SYSPRINT FILE IS CHANGED TO PRINTOUT. *
* *

LINKZAP1 LINK EP=AMASPZAP,PARAM=(OPTLIST,DDLIST),VL=1
LINKZAP2 LINK EP=AMASPZAP,PARAM=(0,DDLIST),VL=1

L 13,SAVEAREA+4 LOAD ADDRESS OF PREVIOUS SAVEAREA
RETURN (14,12),T,RC=0 RETURN TO CALLER

OPTLIST DC H’0’ NO OPTIONS ARE PASSED TO AMASPZAP
DDLIST DS 0H ALIGN DDNAMES TO HALFWORD BOUNDARY

DC H’48’ LENGTH OF THE CHARACTER STRING
* CONTAINING DDNAME OVERRIDES

DC 24XL1’00’ FIRST 24 CHARACTERS ARE IGNORED
DC CL8’TESTLIBR’ CHANGE SYSLIB FILE TO DDNAME OF TESTLIBR
DC 8XL1’00’ USE SYSIN FILE FOR INPUT OF CONTROL

* STATEMENTS
DC CL8’PRINTOUT’ CHANGE SYSPRINT FILE TO DDNAME OF

* PRINTOUT
SAVEAREA DC 18F’0’ REGISTER SAVEAREA

END

Figure 196. Sample assembler code for dynamic invocation of SPZAP

SPZAP

618 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Coding rules for SPZAP control statements: Follow these rules when coding the
control statements for SPZAP:
v The size of a SPZAP control card is 80 bytes; it can contain 71 bytes of control

information.
v Statements can begin in any column up to column 71.
v The operation name of the statement must precede the parameters and must be

complete on the first statement; you cannot continue the operation name.
v There must be at least one blank between the specified operation name and the

first parameter.
v All parameters must also be separated by at least one blank space.
v Data field parameters may be formatted with commas for easier visual check,

but blanks within data fields are not permitted.
v Data and offset values must be specified as a multiple of two hexadecimal

digits.
v Following the last required parameter and its blank delimiter, the rest of the

space on most control statements can be used for comments. Exceptions to this
are the NAME and DUMP control statements: if you omit the CSECT parameter
from either of these statements, do not use the space following the load module
parameter for comments.

v A record beginning with an asterisk is considered to be a comment statement.
v A comment statement (one that begins with a single asterisk) cannot be

continued.
v Member names and CSECT names for program objects can be as long as 1024

characters.
v When SYSLIB refers to a PDSE or a z/OS UNIX file, you can continue any

non-comment statement as follows:
– Column 72 of the control card to be continued must contain a non-blank

character.
– The string of characters on the immediately following card (starting with the

first non-blank character) is concatenated with column 71 of the preceding
card. AMASPZAP ignores leading blanks in a continuation card, but it
displays the cards on SYSPRINT unchanged.

– You can continue statements as necessary. You cannot, however, continue a
comment field that follows the last parameter.

– Even though some parameters allow you to use a single asterisk (*) to
indicate an omitted parameter, the first non-blank character on a continuation
card cannot be an asterisk. Select the break point carefully to avoid starting a
continuation statement with a single asterisk.

v In other words, for continuation:
– When the SYSLIB is a PDSE or a z/OS UNIX file, IGWSPZAP is invoked,

which supports continuation.
– When the SYSLIB is a PDS, AMASPZAP is invoked, which does not support

continuation.

Following are detailed descriptions of the SPZAP control statements, in
alphabetical order.

{ABSDUMP|ABSDUMPT}{startaddr stopaddr | startrec stoprec | membername |
ALL}

This statement can be used to dump the following, as defined in the SYSLIB
DD statement:

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 619

v A group of physical records
v A group of records belonging to a member of a PDSE data library
v A load module member or all load module members of a PDS
v All members of a PDSE
v The directory of a PDSE that contains program objects

If the key associated with each record is to be formatted, DCB=(KEYLEN=nn),
where “nn” is the length of the record key, must also be specified by the
SYSLIB DD statement. Note that when dumping a VTOC, DCB=(KEYLEN=44)
should be specified; when dumping a PDS directory, DCB=(KEYLEN=8)
should be specified. ABSDUMP produces a hexadecimal printout only, while
ABSDUMPT prints the hexadecimal data, the EBCDIC translation, and the
mnemonic equivalent of the data. See “Reading SPZAP output” on page 629.
The variables are:

startaddr

The absolute direct access device address of the first record to be dumped.
This address must be specified in hexadecimal in the form cccchhhhrr
(cylinder, track and record numbers). This parameter must be exactly 10
digits long.

stopaddr
The absolute direct access device address of the last record to be dumped,
and it must be in the same format as the start address.

Both addresses must be specified when this method of dumping records is
used, and both addresses must be within the limits of the data set defined
by the SYSLIB DD statement. The record number specified in the start
address must be a valid record number. If a record number of 0 is
specified, SPZAP will change it to 1 since the READ routine skips over
such records. The record number specified as the stop address need not be
a valid record number, but if it is not, the dump will continue until the last
record on the track specified in the stop address has been dumped.

Note: When the SYSLIB DD statement describes a data set placed in an
extended address volume (EAV), the startaddr and stopaddr values must be
specified in hexadecimal in the form CCCCcccHRR, where CCCCccc is
referred to as a 28-bit cylinder address. The meanings of the codes are as
follows:
v CCCC is the 16 low order bits of the cylinder number.
v ccc is the 12 high order bits of the cylinder number.
v H is the track number.
v RR is the record number.

startrec
The value of the first relative record of a member of a PDSE data library to
display. This parameter can be 1 to 8 digits long. The first record of a
member has a startrec value of 1.

Note: ABSDUMP|ABSDUMPT startrec stoprec is valid only following a
NAME member statement where SYSLIB is a PDSE data library and member
is a valid member of that library.

stoprec
The value of the last relative record of a member of a PDSE data library to
display. This parameter can be 1 to 8 digits long. If the value of stoprec

SPZAP

620 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

specifies a relative record value greater than that of the last physical
record, printing stops after the last record of the member is printed. If the
value of stoprec is less than the value of startrec, no records are displayed.
One can display all the records of a member of a PDSE data library by
using the following two statements:

NAME member
ABSDUMP|ABSDUMPT 1 99999999

membername

The name of a member of a PDS or a PDSE, as specified by the SYSLIB DD
statement. The name can refer to a load module member of a PDS or a
member of a PDSE data library. In each case, the entire member is dumped
when this variable is specified. (Use DUMP/DUMPT for program object
members of a PDSE.)

ALL
Specifies that the entire data set defined by the SYSLIB DD statement is to
be dumped. How much of the space allocated to the data set is dumped
depends on how the data set is organized:
v For a sequential data set, SPZAP dumps until it reaches end of file.
v For an indexed sequential and direct access data set, SPZAP dumps all

extents.
v For a PDS, SPZAP dumps all extents, including all linkage editor control

records, if any exist.
v For a PDSE data library, SPZAP displays a directory plus a listing of all

members of the library. If the data set is a PDSE that contains program
objects, SPZAP displays only the directory.

BASE xxxxxx
Used by SPZAP to adjust offset values that are to be specified in any
subsequent VERIFY and REP statements. This statement should be used when
the offsets given in the VERIFY and REP statements for a CSECT are to be
obtained from an assembly listing in which the starting address of the CSECT
is not location zero.

For example, assume that CSECT ABC begins at assembly listing location
X'000400', and that the data to be replaced in this CSECT is at location
X'000408'. The actual displacement of the data in the CSECT is X'08'. However,
an offset of X'0408' (obtained from the assembly listing location X'000408') can
be specified in the REP statement if a BASE statement specifying X'000400' is
included prior to the REP statement in the SPZAP input stream. When SPZAP
processes the REP statement, the base value X'000400' will be subtracted from
the offset X'0408' to determine the proper displacement of data within the
CSECT. The variable is:

xxxxxx

A 6-character hexadecimal offset that is to be used as a base for subsequent
VERIFY and REP operations. This value should reflect the starting
assembly listing address of the CSECT being inspected or modified.

Note: The BASE statement should be included in the SPZAP input stream
immediately following the NAME statement that identifies the control
section that is to be involved in the SPZAP operations. The specified base
value remains in effect until all VERIFY, REP, and SETSSI operations for
the CSECT have been processed.

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 621

Figure 197 shows how to use the BASE control statement to inspect and modify a
CSECT whose starting address does not coincide with assembly listing location
zero.

SYSLIB DD Statement: Defines the system library, SYS1.LINKLIB, that contains
the module IEFMCVOL in which the CSECT to be changed, IEFCVOL2, resides.

SYSIN DD Statement: Defines the input stream that contains the SPZAP control
statements.

NAME Control Statement: Instructs SPZAP that the operations defined by the
control statements that immediately follow it are to be performed on CSECT
IEFCVOL2 in the load module IEFMCVOL.

BASE Control Statement: Provides SPZAP with a base value that is to be used to
readjust the offsets on the VERIFY and REP statements that follow it.

IDRDATA Control Statement: Causes SPZAP to update the IDR in module
IEFMCVOL for CSECT IEFCVOL2 with the data MOD04, if the REP operation is
successful.

VERIFY Control Statement: Requests that SPZAP inspect the data at offset
X'039A'. The base value X'0398' given in the previous BASE statement is subtracted
from this offset to determine the proper displacement of the data within CSECT
IEFCVOL2. Therefore, SPZAP checks the data at the location that is actually
displaced X'0002' bytes from the beginning of CSECT IEFCVOL2 to ensure that it is
the same as the hexadecimal data specified in this control statement. If the data is
the same, SPZAP continues processing the following statements in the order in
which they are encountered. If the data is not identical, SPZAP does not perform
the REP, SETSSI, or IDRDATA functions, but it does perform the DUMPs
operation; it also dumps a hexadecimal image of CSECT IEFCVOL2 to the
SYSPRINT data set.

REP Control Statement: Causes SPZAP to replace the data at displacement X'0002'
(offset 039A minus base value 0398) into CSECT IEFCVOL2 with the hexadecimal
data specified in this control statement.

DUMP Control Statement: Requests that SPZAP dump a hexadecimal image of
CSECT IEFCVOL2 to the SYSPRINT data set. Since the DUMP statement follows
the REP statement, the image will reflect the changes made by SPZAP (assuming
no verification has been rejected).

CCHHR record address
Identifies a physical record on a direct access device that is to be modified or

//MODIFY JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *
NAME IEFMCVOL IEFCVOL2
BASE 0398
IDRDATA MOD04
VERIFY 039A 5820C010
REP 039A 47000000
DUMP IEFMCVOL IEFCVOL2

Figure 197. Example: Using the BASE control statement

SPZAP

622 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

verified. The record must be in the data set defined by the SYSLIB DD
statement. Any immediately following REP or VERIFY statements will
reference the data in the specified record. The variable is:

record address

The actual direct access address of the record containing data to be
replaced or verified. It must be specified as a 10-digit hexadecimal number
in the form cccchhhhrr, where cccc is the cylinder, hhhh is the track, and rr is
the record number. For example, 0001000A01 addresses record 1 of cylinder
1, track 10. A zero record number is incorrect and defaults to 1.

Note:

1. You can define more than one CCHHR statement in your input to SPZAP.
However, the VERIFY, REP and SETSSI statements associated with each
CCHHR statement must immediately follow the specific CCHHR statement
to which they apply.

2. When the SYSLIB DD statement describes a data set placed in an extended
address volume (EAV), the record address value must be specified in
hexadecimal in the form CCCCcccHRR, where CCCCccc is referred to as a
28-bit cylinder address. The meanings of the codes are as follows:
v CCCC is the 16 low order bits of the cylinder number.
v ccc is the 12 high order bits of the cylinder number.
v H is the track number.
v RR is the record number.

CHECKSUM [hhhhhhhh]
Used to print or verify a fullword checksum (parity-check). All of the valid
hexadecimal operands since the preceding CHECKSUM statement or SPZAP
initialization are logically concatenated into a single string divided into
fullwords, the sum of which is the checksum. For example, the string
12345678FACE produces the checksum 0D025678. Each CHECKSUM statement
resets the accumulated checksum value to zeros.

The CHECKSUM statement is effective in detecting clerical errors that may
occur when transcribing an SPZAP type of fix. CHECKSUM does not prevent
errors; it only causes a message to be issued. By the time the CHECKSUM
statement is processed, all prior replaces have been done.

hhhhhhhh

8 hexadecimal characters that are compared with the checksum. If the two
values are equal, a message is written indicating that the checksum was
correct and has been reset.
If the operand field is blank, a message is written giving the actual value
of the checksum, and indicating that the checksum has been reset.
When the CHECKSUM control statement is provided with an incorrect
operand, the REP and SETSSI statements processed already are not
affected.
If the operand is not valid or is not equal to the checksum, a message is
written indicating incorrect operand or checksum error. All subsequent
REP and SETSSI statements are ignored until the next NAME or CCHHR
statement is encountered. The results of previously processed statements
are not affected.

* (Comment)
When the first non-blank character in a statement is an asterisk, SPZAP
recognizes the statement as a comment, used to annotate the SPZAP input

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 623

stream and output listing. You can specify the asterisk in any position, but at
least one blank space must follow the asterisk. You can include any number of
comment statements in the input stream, but you cannot continue a comment
statement. When SPZAP recognizes a comment, it writes the entire statement
to the data set specified for SYSPRINT.

CONSOLE
Indicates that SPZAP control statements are to be entered through the system
console. When this statement is encountered in the input stream, the following
message is written to the operator:
AMA116A ENTER AMASPZAP CONTROL STATEMENT OR END

The operator may then enter in any valid SPZAP control statement conforming
to the specifications described in the beginning of this control statement
discussion. After each operator entry through the console is read, validated,
and processed, the message is reissued, and additional input is accepted from
the console until “END” is replied. SPZAP will then continue processing
control statements from the input stream until an end-of-file condition is
detected.

Note:

1. You can enter control statements through the console in either uppercase or
lowercase letters, but AMASPZAP does not fold lowercase input to
uppercase.

2. You cannot continue a control statement entered through the console.

Figure 198 shows how to enable SPZAP control statements to be entered
through the console.

SYSLIB DD Statement: Defines the data set that contains the module to be
updated.

SYSIN DD Statement: Defines the input stream.

CONSOLE Control Statement: Indicates that SPZAP control statements are to
be entered through the console.

{DUMP|DUMPT} member [csect | ALL | *] [class-name]
Dumps a specific control section or all control sections in a load module in a
PDS, a program object in either a PDSE or a z/OS UNIX file. DUMP produces
a hexadecimal printout only, while DUMPT prints the hexadecimal data, the
EBCDIC translation, and the mnemonic equivalent of the data (see “Reading
SPZAP output” on page 629). The variables are:

member

The member name of the load module in a PDS or program object in a
PDSE that contains the control section(s) to be dumped. (Note: This

//CONSOLIN JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD
//SYSIN DD *

CONSOLE
/*

Figure 198. Example: Entering SPZAP control statements through console

SPZAP

624 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

variable, ‘member’, must correspond to the name of a member of the PDS
or PDSE that is defined by the SYSLIB DD statement.

csect | ALL | *

Defines the name of the particular control section that is to be dumped. To
dump all the CSECTs of a load module in a PDS or a program object in a
PDSE, specify “ALL” instead of the CSECT name. If you omit the variable
entirely, or, for program objects only, code “*”, SPZAP assumes that you
mean to dump only the first CSECT in the load module or program object.
If you specify a CSECT name that SPZAP does not find in the member,
SPZAP dumps all of the CSECTs in the member.

Note: DUMP or DUMPT applied to a CSECT consisting only of space
allocations (DS statements) will produce no output between the statement
printback and the dump-completed message.

class-name
Indicates, for program objects only, the class of text that you want to
dump. The default is B_TEXT. Specifying B_*, C_*, or D_* causes SPZAP to
dump all text classes beginning with the string that precedes the asterisk. If
you want to omit the CSECT name and supply a class-name, code a single
asterisk for the CSECT name followed by the class-name.

For information about the values you can specify for class name, see z/OS
MVS Program Management: User's Guide and Reference.

Note: SPZAP does not fold lowercase input to uppercase; be sure to enter
class-name in the correct case.

Figure 199 shows how to use the DUMPT and DUMP control statements to
inspect CSECTs in a program object with multiple text classes in a z/OS UNIX
file:

SYSLIB DD Statement: Defines the z/OS UNIX directory that contains the
module hwz in which the CSECTs to be inspected reside.

SYSIN DD Statement: Defines the input stream that contains the SPZAP
control statements.

DUMPT hwz CEEMAIN C_CODE: This control statement requests that the
contents of class C_CODE in csect CEEMAIN in module hwz be dumped.

DUMP hwz CEESTART B_*: This control statement requests that the contents
of all classes in csect CEESTART in module hwz whose class name begins with
B_ be dumped.

_//ZAPDUMP EXEC PGM=AMASPZAP
_//SYSPRINT DD SYSOUT=*
_//SYSLIB DD PATH=’/u/mydir’,PATHDISP=(KEEP,KEEP)
_//SYSIN DD *
DUMPT hwz CEEMAIN C_CODE
DUMP hwz CEESTART B_*
DUMP hwz ALL C_*
/*

Figure 199. Example: Using the DUMP control statement with a class name

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 625

DUMP hwz ALL C_*: This control statement requests that the contents of all
classes whose class name begins with C_ in any csect in module hwz be
dumped.

IDRDATA xxxxxxxx
Causes SPZAP to place up to eight bytes of user data into the SPZAP CSECT
identification record of the load module; this is only done if a REP operation
associated with a NAME statement is performed and the load module was
processed by the linkage editor to include CSECT identification records. The
variable is:

xxxxxxxx

Eight (or fewer) bytes of user data (with no embedded blanks) that are to
be placed in the user data field of the SPZAP IDR of the named load
module. If more than eight characters are in the variable field, only the
first eight characters will be used.

Note: The IDRDATA statement is valid only when used in conjunction with
the NAME statement. It must follow its associated NAME statement, or the
BASE statement associated with a NAME statement, and precede any DUMP,
DUMPT, ABSDUMP or ABSDUMPT statement. IDRDATA statements
associated with CCHHR statements will be ignored.

NAME member [csect | *] [class-name]
Identifies a CSECT in a load module member of a PDS, a program object
member of a PDSE, or a z/OS UNIX file that is to be the object of subsequent
VERIFY, REP, SETSSI, or IDRDATA operations. The variables are:

member
The member name of the load module belonging to a PDS, the program
object belonging to a PDSE, or a z/OS UNIX file that includes the CSECT
that contains the data to be inspected or modified. The load module or the
program object must be a member of the data set defined by the SYSLIB
DD statement.

csect | *
The name of the particular control section that contains the data to be
verified or replaced. If you omit this variable, or, for program objects only,
code “*”, SPZAP assumes that the first CSECT in the load module
contained in a PDS, the program object contained in a PDSE, or a z/OS
UNIX file is the one to be used. If there is only one CSECT in the load
module or program object, this variable is not necessary.

If you specify a CSECT name that SPZAP does not find in the member you
name, then SPZAP does not perform any requested processing. Instead, it
produces hexadecimal dumps of all CSECTs in the member. (The class of
text dumped is specified on the class-name variable, and the default is
B_text.)

class-name
Indicates, for program objects only, the class of text that you want to
modify. The default is B_text. If you want to omit the CSECT name and
supply a class-name, code a single asterisk for the CSECT name, followed
by the class-name.

For information about the values you can specify for class name, see z/OS
MVS Program Management: User's Guide and Reference.

SPZAP

626 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: SPZAP does not fold lowercase input to uppercase; be sure to enter
class-name in the correct case.

Note that you can define more than one NAME statement in your input to
SPZAP. However, the VERIFY, REP and SETSSI statements associated with
each NAME statement must immediately follow the NAME statement to which
they apply.

NAME member
Identifies the member of a data library that is to be the object of subsequent
VERIFY, REP, ABSDUMP, ABSDUMPT or RECORD operations. The variable is:

member
The member name of a data library whose contents are to be displayed,
verified and/or replaced.

RECORD nnnnnnnn
This statement identifies a particular record in a member of a PDSE data
library and must follow a NAME member statement where member specifies the
name of the member. The combination of NAME and RECORD defines the
record for which VER|VERIFY and possible REPs are to be performed.
nnnnnnnn consists of 1 to 8 decimal digits and specifies the relative record of
interest. Leading zeroes are ignored. For example, the first record of a member
may be specified as 1 or 01 or 00000001.

REP offset data
Modifies data at a specified location in a CSECT or physical record that was
previously defined by the NAME, NAME/RECORD combination, or CCHHR
statement. The data specified on the REP statement will replace the data at the
record or CSECT location stipulated in the offset variable field.

SPZAP issues message AMA122I to record the contents of the specified
location as they were before the change was made.

Note: IBM recommends that, before you replace any data, you always use
VER/VERIFY to make sure that the contents you are going to change with the
REP function are what you expect. The offset and length that you specify on
the VER/VERIFY statement, however, do not need to match any following REP
statement exactly; a single successful VERIFY can validate multiple following
REP statements.

offset
Provides the hexadecimal displacement of data to be replaced in a CSECT
or data record. This displacement need not address a fullword boundary,
but it must be specified as a multiple of two hexadecimal digits (0D, 02C8,
001C52).

If the offset value is outside the limits of data record (physical block) or
CSECT being modified, the replacement operation will not be performed.
When replacing data in a record with a key, the length of the key should
be considered in the calculation of the displacement; that is, offset zero is
the first byte of the key, not of the data.

data

Defines the bytes of data to be inserted at the location. As with the offset
variable, the number of bytes of data defined must be specified as a
multiple of two hexadecimal digits. If desired, the data within the variable

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 627

may be separated by commas (never blanks); but again, the number of
digits between commas must also be a multiple of two. For example, a
REP data variable may look like this:
4160B820 (without commas)

or like this:
4160,B820 (with commas).

If all the data to be modified does not fit into one REP statement (72
bytes), you can code another REP statement.

Note:

1. Remember that SPZAP automatically updates the system status index (SSI)
when it successfully modifies the CSECT named or implied on the previous
NAME statement.

2. If you are performing multiple VERIFY and REP operations on a CSECT,
make sure that all the VERIFY statements precede all the REP statements.
This procedure ensures that all REP operations are ignored if one VERIFY
reject occurs.

3. You are not required to supply a VERIFY statement before the first REP
statement; however, when SPZAP encounters a VERIFY statement, it must
be satisfied before SPZAP processes any following REP requests.

4. When you access a record in the VTOC (for example, the data set control
block (DSCB)) for modification, SPZAP issues the message AMA117D to the
console. No message is issued, however, when an ABSDUMPT operation is
performed on the VTOC.

SETSSI xxyynnnn
Places user-supplied system status information in the directory entry for the
load module member in a PDS or program object member in a PDSE. The SSI
entry must have been created when the load module or program object
member was link edited. The variable is:

xxyynnnn
Four bytes of system status information the user wishes to place in the SSI
field for this member. Each byte is supplied as two hexadecimal digits
indicating the following:
xx - change level
yy - flag byte
nnnn - modification serial number

If SPZAP detects an error in any previous VERIFY or REP operation, the
SETSSI function is not performed.

Note: Because all bits in the SSI entry are set (reset) by the SETSSI statement,
be very careful when using it to avoid altering the vital maintenance-status
information. SPZAP issues message AMA122I to record the SSI as it was before
the SETSSI operation was performed. See “Updating the System Status Index
(SSI)” on page 612.

{VERIFY|VER} offset expected-content

Causes the data at a specified location within a CSECT or physical record to be
compared with the data supplied in the statement.

offset

The hexadecimal displacement of data to be inspected in a CSECT or
record. This displacement does not have to be aligned on a fullword

SPZAP

628 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

boundary, but it must be specified as a multiple of two hexadecimal digits,
such as 0D, 021C, 014682. If this offset value is outside the limits of the
CSECT or data record defined by the preceding NAME, NAME/RECORD,
or CCHHR statement, the VERIFY statement is rejected. If this offset value
plus the length of the expected-content string is outside the limits of the
CSECT or record defined by the preceding NAME, NAME/RECORD
combination, or CCHHR statement, the VERIFY statement is rejected and
flagged in error. When inspecting a record with a key, the length of the key
should also be considered in the calculation of the displacement; that is,
offset zero is the first byte of the key.

expected-content

Defines the bytes of data that are expected at the specified location. As
with the offset variable, the number of bytes of data defined must be
specified as a multiple of two hexadecimal digits. If desired, the data
within the parameter may be separated by commas (never blanks), but
again, the number of digits between commas must also be a multiple of
two. For example, expected content might look like this:
5840C032 (without commas),
or like this:
5840,C032 (with commas)

If all the data does not fit into one VERIFY statement (80-byte logical
record), then another VERIFY statement must be defined.

Note: If the two fields being compared are not in agreement, that is, if the
VERIFY operation is rejected, no succeeding REP or SETSSI operations are
performed until the next NAME or CCHHR control statement is encountered.
SPZAP provides a formatted dump of each CSECT or record for which a
VERIFY operation failed.

Reading SPZAP output
SPZAP provides two different dump formats for the purpose of checking the data
that has been verified or replaced. These dumps (written to the SYSPRINT data set
specified by the user) may be of the formatted hexadecimal type or the translated
form. Both formats are discussed below in detail with examples showing how each
type will look.

Formatted hexadecimal dump: When DUMP or ABSDUMP is the control
statement used, the resulting printout is a hexadecimal representation of the
requested data. Figure 200 on page 630 gives a sample of the formatted
hexadecimal dump. A heading line is printed at the beginning of each block. This
heading consists of the hexadecimal direct access address of the block (ABSDUMP
only), the length of the record, the class of text (program objects only), and the
names of the member and the CSECT that contain the data being printed (if the
dump is for specific CSECT or load module). Each printed line thereafter has a
three-byte displacement address at the left, followed by eight groups of four data
bytes each. The following message is printed under the last line of the dump
printout:
AMA113I COMPLETED DUMP REQUIREMENTS

Translated dump: The control statements DUMPT and ABSDUMPT also provide
an operation code translation and an EBCDIC representation of the data contained
in the dump. Not all characters are translated to EBCDIC, only upper case and a
few special characters are translated. Others, such as lowercase letters are not

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 629

translated and their translations are substituted by periods.

Figure 201 on page 631 shows the format of the translated dump. The first byte of
each halfword of data is translated into its mnemonic operation code equivalent,
provided such a translation is possible. If there is not equivalent mnemonic
representational value to be given, the space is left blank. This translated line of
codes and blanks is printed directly under the corresponding hexadecimal line. An
EBCDIC representation of each byte of data is printed on two lines to the right of
the corresponding line of text, with periods substituted for those bytes that have
been set not to be translated to valid printable characters.

DUMP IEHMVESN ALL

**CCHHR-

**CCHHR-

HMA1131

0022001108

0022001108

COMPLETED DUMPB REQUIREMENTS

MEMBER NAME

MEMBER NAME

IEHMVESN

IEHMVESN

CSECT NAME

CSECT NAME

IEHMVSSN

IEHMVSSN

RECORD LENGTH- 0850

RECORD LENGTH- 0850

000000
000020
000040
000060
000080
0000A0
0000C0
0000E0
000100
000120
000140
000160
000180
0001A0
0001C0
0001E0
000200
000220
000240
000260
000280

000000
000020
000040
000060
000080
0000A0
0000C0
0000E0
000100
000120
000140

000600
000620
000640
000660
000680
0006A0
0006C0
0006E0
000700

47F0F014
D04850D0
9200C2F4
9200C2FC
951858EO
0A1495FF
C2084710
0A1447F0
50210000
C2FC9200
10149601
E0104110
918CD505
000C1B14
D2051004
96FCD201
47F09236
00011932
00105822
91023003

00000724
E340D9C5
C4C1E3C1
40E3D640
D640E5D6
C1D9C540
C2C5D340
C5C8F3F3
40E6D9C9
C5D3E24E
C5E2E2C5

41F0C014
F0004EE0
58E09648
00000708
96C25881
1000D24F
07FE58B0
4180C001
00000000

60606000
9200D00C
90E69500
908A4180
45109098
91685820
451090D8
C1FC47F0
96DC41A0
91689102
10204710
C2245830
10044780
30024780
96FC4130
9110C208
D20196FC
D201100A

00000775
C5C440E3
40C4C1E3
E340D4D6
F3F1C940
D7C9C5C4
E3C5C440
40C961D6
E3D7E4E3
C5D3E240

41FF0005
58FF0000
D503C31C
4770969A
1BBB43B0
0A0AD707
58E09648

90ECD00C
92FFD008
C2FC4780
C00141F0
00000000
C2749581
00000000
908A0700
C0089200
C2094710
915E4100
C27C4833
91E84111
91C0D205
00019580
47109204
100A4820
96FC9140

00000793
C1D7C50F
C140E2C5
E5C5C460
E4E2C5D9
4B40D5D6
C6D6D940
40C5D9D9
40E3D9C1
E6C9D3D3

41FF0001
D219C014
97004780
96FFC334
C32806B0
C31CC31C
45209570

189F5010
9140C20A
9064D203
001450E0
50210000
20114770
50210000
45109100
C2F49200
91685810
E00847F0
000E95FF
000C4640
10043004
10024780
9102C208
96FC4122
C2094710

000007E6
C9C5C8F3
E312C3D6
C3D6D7C9
40D3C1C2
40E4E2C5
C9D5D7E4
D6D940E6
C9D3C5D9
40C2C540

4111000C
F0019200
96D89500
07FE58B0
42B0C328
1BFF07FE
47F09112

D0484110
4780904A
C3009664
964845E0
92801000
90D09102
92801000
00000000
C2F89200
C27458F0
91624100
30024780
917A4140
47F091C6
91E24030
47109204
00014130
92B85820

19E4D5C9
F6F1C940
D7C9C5C4
C5C440E3
C5D3E240
D940D3C1
E34B66C9
C8C9D3C5
40D3C1C2
D7D9D6C3

46009604
C33C07FE
C3284780
C32058F0
41F00008
9600C334
8CA00000

0EC5E2D5
10045010
D20EC2F5
D203C320
96484520
C3274780
90F89110
910A9180
92B01000
C30094F7
101748E0
F0000A0A
30041004
41400001
301C1B33
100A96FC
5810C224
4770922C
00284832

0000073F
C340D6D9
40E2C5E3
E5D6D3E4
D3E4D4C5
D5D6E340
E3D9C1C3
F5C940D7
E3C9D5C7
40D5D640
C44B58B0

D205F000
C080F337
07FE1BDD
04000668
00001288
F000B000
C31C4100
41F00018
43A0400B

60E6D9C1
D00818D1
C2F49108
C31C95FF
95705820
910A9108
C2084710
C1FC4780
0A1495FF
A0429101
F0044CE0
1B444340
47F09192
D2031000
403096FC
5010C224
95801002
41220001
00005930

00000750
40E4D5D3
0F404040
D4C54DE2
4DE25D51
D4D6E5C5
D240C1D3
C5D9D4C1
40E4E2C5
D4D6D9C5

100441FF
F001C080
7FFF0000
41800668
478096D8
41BB0050
0280181B
50E09648

D760E4D7
5810D000
C20C4710
C32A4770
C2640700
C20C4710
90F80700
9168947F
C3344780
C2094780
F0069101
C2245810
D505301C
301095FF
D201100A
4240C224
47709236
402096FC
92B44780

00000761
C1C2C5D3
40404040
5D1CD5D6
C9C5C8F3
C461C3D6
D3D6C3C1
D5C5D5E3
D940D6E4
40D3C1C2

0006D201
96F0F004
58F09660
1BF8189F
95801008
50B0C320
41110000
45E09518

D2052004

92B81233
D203C228
C20947F0

47809268
C2005820

91203012
C200D203
C2004143

47809268
200030
00

47109270
C4122

41220002
000C5020

47F09246
C2009640

Figure 200. Sample formatted hexadecimal dump

SPZAP

630 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Figure 202 on page 632 shows CSECT output (obtained through DUMP/DUMPT)
for a program object module.

Note:

1. There are no **CCHHR** values. The program management binder manages its
own DASD storage and returns no physical location.

2. **RECORD LENGTH: indicates length of the CSECT or module, not the length
of the physical record containing the CSECT or module.

3. Program management binder returns no text for named or unnamed common
areas. The length of the common section will be indicated. Message AMA152I
indicates that no text has been returned.

4. SPZAP displays MEMBER NAME and CSECT NAME on as many lines as
necessary. The names can be as long as 1024 characters.

5. SPZAP labels common storage in a program object with the tag COMMON
NAME instead of CSECT NAME. Named common displays that name.
Unnamed common is flagged as $BLANK COMMON. Private code is
displayed with the subheading CSECT NAME: $PRIVATE CODE.

6. **UNINITIALIZED DATA SKIPPED may appear.
7. IGWSPZAP is the part of SPZAP that receives control when accessing or

updating program objects in a PDS/E or z/OS UNIX file, or data in a PDS/E.
Listings and messages refer to AMASPZAP when processing a PDS or
IGWSPZAP when processing a PDSE or a z/OS UNIX file.

DUMPT IEANUC05 SUTFPL59

**CCHHR- 01AB000416 RECORD LENGTH- 000068 MEMBER NAME IEANUC05 CSECT NAME SUTFPL59

000000 47F0 F01C 16E2 E4E3 C6D7 D3F5 F940 F9F8 F1F0 F540 C8C2 C2F6 F6F0 F600 90EC D00C *.00..SUTFPL50 98*
BC SRP OR MVZ CP CP MVO STM *105 HBB6606.....*

000020 18BF 41C0 BEFF 41F0 0000 5800 B064 18A1 50D0 A004 50A0 D008 98F1 D010 18DA B365 *.......0........*
LR LA ICM LA L LR ST ST LM LR LXR *&...&....1......*

000040 0014 B362 0048 ED22 A00C 0006 ED32 B00C C00E 58D0 D004 98EC D00C 07FE 0000 0000 *................*
LTXR ED-- ED-- L LM BCR *................*

000060 0000 0048 0000 0048 *........ *

AMA113I COMPLETED DUMP REQUIREMENTS

AMA100I AMASPZAP PROCESSING COMPLETED

Figure 201. Sample translated dump

SPZAP

Chapter 17. SPZAP: Modify data in programs and VTOCs 631

Figure 203 on page 633 shows output for a member of a PDSE data library.
ABSDUMPT 0001 0500 would have been preceded by a NAME membername
statement (not shown).

Note: There are no **CCHHR** values. RECORD NUMBER: shows the 8 digit
value of the relative record number of the member being printed. RECORD
LENGTH: shows the length of the record, while MEMBER NAME: shows the
member name as it appears on the NAME membername statement.

IGWSPZAP INSPECTS, MODIFIES, AND DUMPS CSECTS OR SPECIFIC DATA RECORDS ON DIRECT ACCESS STORAGE.
DUMP MAINRTN ALL 01770000

**RECORD LENGTH: 000000C0 CLASS: B_TEXT MEMBER NAME: MAINRTN
CSECT NAME: $PRIVATE CODE

00000000 90ECD00C 05C050D0 C02241E0 C01E50E0 D00818DE 58D0D004 58E0D00C 980CD014
00000020 07FE0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000060 00000000 00000000 00000000 E3C8C9E2 40C9E240 C140D4C5 E2E2C1C7 C540C4C5
00000080 C6C9D5C5 C440C9D5 40C140E4 D5D5C1D4 C5C440C3 E2C5C3E3 40404040 40404040
000000A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040

**RECORD LENGTH: 00000058 CLASS: B_TEXT MEMBER NAME: MAINRTN
COMMON NAME: AAAAAAAA

AMA152I NO TEXT DATA FOR THIS SECTION

**RECORD LENGTH: 00000108 CLASS: B_TEXT MEMBER NAME: MAINRTN
CSECT NAME: SUBRTN

00000000 90ECD00C 05C050D0 C06241F0 C05E50FD 000818DF 4510C034 001E8000 D5D6E640
00000020 C9D540E3 C8C540C3 C1D3D3C5 C440D9D6 E4E3C9D5 C5400000 FF800A23 58B0C0A6
00000040 D24FB004 C0AA9200 B002D201 B000C0FA 184B1814 0A231BFF 58D0C062 98ECD00C
00000060 07FE0000 00000001 00000001 00000001 00000001 00000001 00000001 00000001
00000080 00000001 00000001 00000001 00000001 00000001 00000001 00000001 00000001
000000A0 00000001 00000001 00000001 00000448 C7D9C5C5 E3C9D5C7 E240C6D9 D6D440E3
000000C0 C8C540E4 D5C3D6D4 D4D6D540 40404040 40404040 40404040 40404040 40404040
000000E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
00000100 00500000 00000000

**RECORD LENGTH: 00000058 CLASS: B_TEXT MEMBER NAME: MAINRTN
COMMON NAME: $BLANK COMMON

AMA152I NO TEXT DATA FOR THIS SECTION

**RECORD LENGTH: 00000168 CLASS: B_TEXT MEMBER NAME: MAINRTN
CSECT NAME: MAINRTN

00000000 90ECD00C 05C050D0 C06241F0 C05E50F0 D00818DF 4140C0B2 18140A23 5850C0AA
00000020 D24FC0B6 50001814 0A235850 C0AED24F C0B65000 18140A23 58B0C0A6 D24FB004
00000040 C10A9200 B002D201 B000C15E 184B1814 0A2358F0 C15A05EF 58D0C062 98ECD00C
00000060 1BFF07FE 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000080 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000000A0 00000000 00000000 00000000 00000168 8000022C 800002EC 00500000 C7D9C5C5
000000C0 E3C9D5C7 E240C6D9 D6D440E3 C8C540C3 C1D3D3C9 D5C740D9 D6E4E3C9 D5C5E240
000000E0 D4C1C9D5 40E2C5C3 E3C9D6D5 40404040 40404040 40404040 40404040 40404040
00000100 40404040 40404040 40404040 00000000 C8C940C6 D9D6D440 E3C8C540 C3C1D3D3
00000120 C5D9E240 C3D6D4D4 D6D540E2 C5C3E3C9 D6D54040 40404040 40404040 40404040
00000140 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
00000160 00000340 00500000

**RECORD LENGTH: 000000C0 CLASS: B_TEXT MEMBER NAME: MAINRTN
CSECT NAME: $PRIVATE CODE

00000000 90ECD00C 05C050D0 C02241E0 C01E50E0 D00818DE 58D0D004 58E0D00C 980CD014
00000020 07FE0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000060 00000000 00000000 00000000 E3C8C9E2 40C9E240 C4C1E3C1 40C4C5C6 C9D5C5C4
00000080 40C9D540 C1D5D6E3 C8C5D940 C3E2C5C3 E340E6C9 E3C840D5 D640D5C1 D4C54040
000000A0 40404040 40404040 40404040 40404040 40404040 40404040 40404040

AMA113I COMPLETED DUMP REQUIREMENTS
AMA100I IGWSPZAP PROCESSING COMPLETED

Figure 202. Sample formatted hexadecimal dump for PDSE program object module

SPZAP

632 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

IGWSPZAP INSPECTS, MODIFIES, AND DUMPS CSECTS OR SPECIFIC DATA RECORDS ON DIRECT ACCESS STORAGE.
NAME USERDATA 03520001
ABSDUMPT 0001 0050 03530001

**RECORD NUMBER: 0000000001, RECORD LENGTH: 000050 MEMBER NAME: USERDATA
000000 02C5 E2C4 4040 4040 4040 0030 4040 0001 C7C5 E3C3 E2C5 C3E3 0000 0000 0200 0530 *.ESD............*

STH STH STH STH BALR *USERDATA........*
000020 E7E3 D5C4 E2E3 D240 0200 0000 4040 4040 E2E3 C1D9 E3C4 4040 0200 0000 4040 4040 *XTNDSTK.........*

CLC MVC STH STH STH STH STH *STARTD..........*
000040 4040 4040 4040 4040 F0F2 F4F8 F0F0 F0F1 *........02480001*

STH STH STH STH SRP SRP SRP *................*

**RECORD NUMBER: 0000000002, RECORD LENGTH: 000050 MEMBER NAME: USERDATA
000000 02C5 E2C4 4040 4040 4040 0020 4040 0004 D7D9 D5E3 D3C9 D5C5 0200 0000 4040 4040 *.ESD............*

STH STH STH STH XC CLC MVZ CLC STH STH *PRNTLINE........*
000020 D7C1 D4C1 F1F4 F0C9 0200 0000 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 *PAMA140I........*

XC NC MVO SRP STH STH STH STH STH STH STH STH STH STH *................*
000040 4040 4040 4040 4040 F0F2 F4F9 F0F0 F0F1 *........02490001*

STH STH STH STH SRP SRP SRP *................*

**RECORD NUMBER: 0000000003, RECORD LENGTH: 000050 MEMBER NAME: USERDATA
000000 02E3 E7E3 4000 0000 4040 0038 4040 0001 47F0 F016 10C7 C5E3 C3E2 C5C3 E340 40F9 *.TXT............*

STH STH STH BC SRP LPR STH *.00..USERDATA..9*
000020 F24B F2F4 F400 90EC D00C 18CF 1FFF 43F0 C52C 1F00 BF07 C52D 581D 0008 1A01 58FD *2.244..........0*

PACK PACK STM LR SLR IC SLR ICM L AR L *E.....E.........*
000040 0000 190F 47D0 C050 F0F2 F5F0 F0F0 F0F1 *.......&02500001*;

CR BC SRP SRP SRP *................*

....

**RECORD NUMBER: 0000000028, RECORD LENGTH: 000050 MEMBER NAME: USERDATA
000000 02D9 D3C4 4040 4040 4040 0020 4040 4040 0002 0001 1C00 003C 0003 0001 0C00 0468 *.RLD............*

MVZ STH STH STH STH STH MR BASSM SPM *................*
000020 0004 0001 0C00 046C 0005 0001 0C00 0470 4040 4040 4040 4040 4040 4040 4040 4040 *.......%........*

BASSM SPM BASSM SPM STH STH STH STH STH STH STH STH *................*
000040 4040 4040 4040 4040 F0F2 F7F5 F0F0 F0F1 *........02750001*

STH STH STH STH SRP SRP SRP *................*

**RECORD NUMBER: 0000000029, RECORD LENGTH: 000050 MEMBER NAME: USERDATA
000000 02C5 D5C4 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 4040 *.END............*

CLC STH STH STH STH STH STH STH STH STH STH STH STH STH STH *................*
000020 F2F5 F6F6 F8F9 F6F2 F0F1 40F0 F2F0 F1F9 F2F2 F4F4 C37D D7D3 61C1 E27D 4040 F0F1 *2566896201.02019*

PACK ZAP SRP STH PACK MVO PACK XC STH SRP *2244C’PL/AS’..01*
000040 F0F4 F9F2 F2F4 F440 F0F2 F7F6 F0F0 F0F1 *0492244.02760001*

SRP CP PACK SRP SRP SRP *................*
AMA113I COMPLETED DUMP REQUIREMENTS
AMA100I IGWSPZAP PROCESSING COMPLETED

Figure 203. Sample translated dump for PDSE data library

Chapter 17. SPZAP: Modify data in programs and VTOCs 633

634 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 18. AMATERSE: Pack and unpack a data set

AMATERSE is a service aid program that operates in problem state. You can use
AMATERSE to pack a data set before transmitting a copy to another site, typically
employing FTP as the transmission mechanism. A complementary unpack service
is provided to create a similar data set at the receiving site.

Note: IBM also supports z/OS Problem Documentation Upload Utility (PDUU),
which is a utility that sends large amounts of documentation to IBM. AMATERSE
is useful for compressing (packing) and unpacking relatively small amounts of
service data, but is incompatible with PDUU (output and input), and offers no
data transfer capability. For information about PDUU, see Chapter 19,
“AMAPDUPL: Problem Documentation Upload Utility,” on page 641.

AMATERSE supports Direct Access Storage Device (DASD) and tape data sets:
v Sequential data sets, which can be unpacked by VM TERSE.
v Partitioned data sets (PDS), and partitioned data sets extended (PDSE) that do

not contain program objects.
v Large format (DSNTYPE=LARGE) data sets.
v Fixed and variable, blocked and unblocked, spanned and unspanned record

formats (RECFM) =F, FB, FBS, V, VB,VBS where the logical record length
(LRECL) is less than 32K; and RECFM=VBS where the LRECL may be more than
32K but less than 64K.

v Data sets with records containing ISO/ANSI or machine code printer control
characters.

v Placement of data sets into cylinder-managed space is also supported.

Planning for AMATERSE
AMATERSE is an application that prepares diagnostic materials, such as z/OS
dumps and traces, for transmission to IBM and independent software vendor sites.
When the materials arrive, AMATERSE also provides a means to create similar
data sets to support diagnosis of problems.

If you have previously used the TRSMAIN utility (see http://
techsupport.services.ibm.com/390/trsmain.html), note the following changes made
to prepare AMATERSE for formal inclusion in z/OS:
v Use AMATERSE as the preferred application program name rather than

TRSMAIN. TRSMAIN ships as an alias entry point to AMATERSE.
v Use the replacements for the DDNAMES, which are SYSUT1 and SYSUT2 .

When the TRSMAIN entry point of AMATERSE is invoked, DDNAMES INFILE
and OUTFILE remain as the defaults.

v AMATERSE is in MIGLIB, a library that is part of the link list. No STEPLIB
DDNAME is necessary to invoke AMATERSE.

v In nearly all cases, you can use AMATERSE, the TRSMAIN utility, and VM terse
interchangeably. See “Restrictions for AMATERSE” on page 638 for the
exceptions to this rule.

© Copyright IBM Corp. 1988, 2015 635

http://techsupport.services.ibm.com/390/trsmain.html
http://techsupport.services.ibm.com/390/trsmain.html

Invoking AMATERSE
Figure 204 shows an example of the JCL to invoke AMATERSE. Lower case text
reflects the data that you must alter.

Specifying the JCL statements for AMATERSE
If you have previously used the TRSMAIN program to invoke AMATERSE, you
can continue using it along with the old DDNAMES. However, if you choose to
use AMATERSE instead of TRSMAIN, realize tat the DDNAMES are changed:
SYSUT1 replaces INFILE and SYSUT2 replaces OUTFILE.

A missing SYSUT1 DD statement results in an RC X'10' error message:
RC X’10’, AMA522E INPUT DATASET HAS AN UNSUPPORTED DATASET ORGANIZATION

A missing SYSUT2 DD statement will result in an RC X'28' error message:
RC X’28’, AMA518E UNABLE TO OPEN OUTPUT DATASET

AMATERSE requires the following JCL statements. The required DD statements are
SYSPRINT, SYSUT1 and SYSUT2. SYSUT3 is optional. Replace aaaaa in the
example with one of the following values:

EXEC
Marks the beginning of the job.

PACK

Compresses records in a data set so that the output is known as the simple
format. .

SPACK
Compresses records in a data set so that the output is known as the complex
format. The SPACK option is more time-consuming than the PACK option by a
factor of about three, but in many cases produces much smaller output.

Note: A data set compressed by either PACK or SPACK should not be
modified in any way. If such a data set is modified, the UNPACK routines are
unable to reconstruct the original data set.

UNPACK
Reverses the PACK or SPACK operation. If you inadvertently packed a data set
multiple times, restore it using the UNPACK function the same multiple
number of times.

SYSPRINT statement
This DD defines where all messages from the program are sent. It must be
RECFM=FBA and an LRECL between 121 and 133. Any block size that is a
legal multiple of the LRECL is supported.

//jobname JOB ...
//stepname EXEC PGM=AMATERSE,PARM=aaaaa
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=12901)
//SYSUT1 DD DISP=bbb,DSN=your.input.dataset.name
//SYSUT2 DD DISP=ccc,DCB=ddd,DSN=your.output.dataset.name,
// SPACE=space_parameters
//SYSUT3 DD DISP=ccc,SPACE=space_parameters

Figure 204. Example: AMATERSE JCL

AMATERSE

636 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Note: The DCB information does not have to be specified on the DD statement
and will default to the correct values.

SYSUT1 statement
This DD defines the data set to be compressed if PACK or SPACK parameter is
specified on the EXEC statement. If UNPACK is specified, then it defines the
compressed data set to be restored. See “Restrictions for AMATERSE” on page
638 for special considerations.

Note: If TRSMAIN entry point is used, INFILE statement is used instead of
SYSUT1.

SYSUT2 statement
This DD defines the data set to receive the compressed output. If you specify
PACK or SPACK on the EXEC statement, this is the data set that receives the
compressed output. If you specify UNPACK, this is the data set that receives
the restored output. See “Allocation considerations” on page 639 and “Space
considerations” on page 639.

SYSUT3 statement
This optional DD defines the temporary data set to use when the PACK or
UNPACK operation is performed against large PDS data sets. This data set acts
as an intermediate form between PDS and PACKED data set. Only the DISP
and SPACE parameters are necessary to be supplied by JCL. If the SYSUT3 DD
statement is missing, AMATERSE allocates this data set by itself and deletes it
automatically after AMATERSE ends.

AMATERSE return codes
When AMATERSE ends, one of the following return codes is placed in general
purpose register 15:

Code Meaning

0 Successful completion.

4 Error in file operation.

8 Error in file operation.

10 Unsupported data set format.

12 Operation cannot be performed with the specified data set.

16 Invalid input specified.

20 Invalid input specified.

24 Severe error in file operation.

28 Severe error occurred during file open.

32 Invalid device.

36 Buffer storage obtain failure.

64 Severe error. Abend with 1111.

99 System or user abend occurred.

Invoking AMATERSE from a problem program
To invoke AMATERSE from a program, specify the following information:
v PACK, SPACK, or UNPACK on the PARM parameter of the EXEC statement

AMATERSE

Chapter 18. AMATERSE: Pack and unpack a data set 637

v The DDNAMES of the data sets to be processed by the AMATERSE program, if
the calling program is to override the DDNAMES.

Figure 205 shows how to invoke AMATERSE using alternate DDNAMES:

For a description of the parameter list, see the topic on "Invoking Utility Programs
from an Application Program" in z/OS DFSMSdfp Utilities. From that information,
AMATERSE supports the optionsaddr and ddnameaddr, but not hdingaddr.
AMATERSE also supports DDNAMES SYSPRINT, SYSUT1, SYSUT2, and SYSUT3,
but not DDNAMES SYSIN and SYSUT4, which are shown in the "ddname
parameter list (DDNMELST)" in that information.

Additional considerations for AMATERSE
When using AMATERSE, certain restrictions apply as well as allocation and space
considerations, as well as restrictions to consider when you are using AMATERSE.

Restrictions for AMATERSE
The following restrictions apply to AMATERSE:
v VSAM data sets and direct (DSORG=DA) data sets are not supported.
v Data sets with keys (KEYLEN) are not supported.
v A partitioned data set (PDS) compressed by AMATERSE on MVS cannot be

unpacked by VM TERSE. This results in a 1007 or 1009 return code from VM
TERSE. A PDS must be compressed to a DASD.

v Partitioned data sets extended (PDSE) containing program objects are not
supported.

v AMATERSE handles data sets with a LRECL of more than 32K but less than 64K
only when RECFM=VBS DASD data sets are processed.

v A data set with the FB record format can be packed and unpacked to a FBS data
set. However, during the UNPACK operation, extending a non-empty output
data set with DISP=MOD is not possible because this results in a FB data set. An
error message is issued for this.

* Invoke AMATERSE to perform SPACK processing
LINK EP=AMATERSE,PARAM=(PARM,DDNAMES),VL=1

.

.

.
* Request SPACK option
PARM DS 0H EXEC PARM= data
PARMLEN DC Y(L’PARMTEXT) Length of data
PARMTEXT DC C’SPACK’ AMATERSE processing option
*
* Request MYPRINT, MYSYSUT1, and MYSYSUT2 instead
* of SYSPRINT, SYSUT1, and SYSUT2 respectively
DDNAMES DS 0H DDNAME override data
DDNAMEL DC Y(DDNAME9-DDNAMET) Length of data
DDNAMTT DS 0C DDNAME override list

DC 5XL8’0’ Not used by AMATERSE
SYSPRINT DC CL8’MYPRINT’ Instead of SYSPRINT

DC XL8’0’ Not used by AMATERSE
SYSUT1 DC CL8’MYSYSUT1’ Instead of SYSUT1
SYSUT2 DC CL8’MYSYSUT2’ Instead of SYSUT2
SYSUT3 DC CL8’MYSYSUT3’ Instead of SYSUT3
DDNAME9 DS 0C End of list

Figure 205. Example: AMATERSE JCL from a problem prgram

AMATERSE

638 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v AMATERSE does not support large block interface (LBI).

Allocation considerations
The data set compressed by AMATERSE (produced by PACK or SPACK) must be
of fixed or fixed-blocked record format (RECFM) with a record length (LRECL) of
1024 and any legal block size (BLKSIZE). These values do not have to be specified
explicitly on the DD statement.

The data set restored by AMATERSE (produced by UNPACK) must match the
original RECFM and LRECL. Leave the DCB information off the DD statement for
AMATERSE program to set it up. If it unpacks to an already existing data set then
the DCB parameters are checked for compatibility. RECFM must be the same in all
cases except for Variable to Undefined and Undefined to Variable. If you specify
the DCB parameters to force data that was originally variable (V) format into
undefined (U) format, or conversely, a warning message is written and the
operation is performed.

Space considerations
When allocating space for the output data set SYSUT2, you must estimate the
required size information:
v For the PACK or SPACK option a data set compressed by AMATERSE is

expected to be about half the size of the original. Allocate more than expected
and use the RLSE (partial release parameter) function of the SPACE value to
release the unused portion back to the system.

v For the UNPACK option: If the data set contains random data, allocate three to
five times the size of the compressed data set. If the data set contains Listing,
Document, or Messages type data, allocate five to ten times the size of the
compressed data set.

If there is not enough allocated space, the program issues ABEND X'B37':
Not Enough Space Allocated for the Output Data Set

AMATERSE

Chapter 18. AMATERSE: Pack and unpack a data set 639

AMATERSE

640 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 19. AMAPDUPL: Problem Documentation Upload
Utility

The IBM z/OS Problem Documentation Upload Utility (PDUU) is a utility that
sends large amounts of documentation in a more efficient manner than using File
Transfer Protocol (FTP) to send one large data set to IBM FTP sites. This utility
sections the input data set (such as stand-alone dump data set) into smaller data
sets that are compressed and sent in parallel using multiple, simultaneous FTP
sessions. This results in shorter transmission time for very large data sets. You can
also encrypt the data sets.

There are two work files for each FTP session (the "A" file and the "B" file). Each
"A" work file is filled by copying records from the input file. When the "A" file is
full, the FTP sessions are started in parallel. At the same time, each "B" work file is
filled by copying records from the input file. When the "B" file is full and the
transfer of the "A" file is complete, transfer of the next "B" file starts. This process
continues between the "A" and the "B" files, until everything in the input file is
sent.

You can have up to 20 FTP sessions running simultaneously. The work data sets
are dynamically allocated and can range in size from 1 MB to 9,999 MB. You can
experiment to see what works best in your environment, but here are some
guidelines:
v Start with three or four parallel FTP sessions. Too many parallel FTP sessions

can saturate the network link.
v Use medium size work data sets.

If the work data sets are very small in relationship to the input data set, you can
end up with too many files on the IBM FTP sites. For example, if you are sending
a 100 GB z/OS stand-alone dump and make the work data set size 1 MB, you
create 100,000 files on the IBM FTP site, which exceeds the IBM limit of 999 files.
This also causes a lot of delay by starting and stopping the FTP sessions for each
file.

If the work data sets are very large in relationship to the input file size, the
amount of overlap time is decreased. When the program first starts, it must fill the
"A" work files before it starts transmitting any data, which means the copy time is
not overlapping with data that needs to be sent through FTP. For example, if you
were sending a 1 GB dump and you set the work data set size to 1 GB (1,000 MB),
there is no overlap between copying the records and sending the work files.

If the input data set is a partitioned data set (PDS/PDSE), the PDUU unloads it
first into a sequential data set using the IEBCOPY utility.

The PDUU always compresses the input data before it is written to the work data
sets, therefore it is not necessary to use a tool such as AMATERSE or TRSMAIN to
compress the input data set before using the PDUU to send it to the IBM FTP site.
In addition, 192-bit triple Data Encryption Standard (DES) can be requested by
using the CIPHER_KEY keyword. Without the keyword, the data is just
compressed. With the keyword, the data is compressed, and then encrypted.

© Copyright IBM Corp. 1988, 2015 641

|

Encryption is provided by the CP Assist for Cryptographic Functions (CPACF),
DES/TDES Enablement (feature 3863) and is available on all processors starting
with the z990 (2084) and z890 (2086). CPACF, feature 3863 enables clear key DES
and TDES instructions on all supported CPs. The encryption algorithm used for
3DES is documented in z/Architecture Principles of Operation..

Planning to use PDUU
Use the PDUU as the primary utility for sending large volumes of documentation,
such as stand-alone dumps, to the IBM FTP site. The encryption capability ensures
that the transfer occurs in a secure manner. AMATERSE is useful for compressing
(packing) and unpacking relatively small amounts of service data, but is
incompatible with PDUU (output and input), and offers no data transfer capability.
If you have previously used the PDUU, shipped as the MTFTPS stand-alone
program from http://www-01.ibm.com/support/docview.wss?uid=isg3T1011823,
you must understand the following changes made to package the PDUU utility as
part of z/OS:
v The PDUU utility name is AMAPDUPL; however, MTFTPS ships as an alias

entry point to AMAPDUPL.
v AMAPDUPL resides in SYS1.MIGLIB (which must be a data set in the LNKLST

concatenation), so a STEPLIB DDNAME is not necessary to invoke AMAPDUPL.
v AMA messages are described in z/OS MVS System Messages, Vol 1 (ABA-AOM).

Prerequisites and restrictions for PDUU
You must properly configure z/OS Communications Server to use the FTP client
program. See the topic on Transferring files using FTP in z/OS V2R1.0
Communications Server: IP Configuration Guide. The PDUU uses active FTP mode as
the default, unless another mode is requested with the corresponding FTP
subcommands defined in FTPCMDS data set.

The PDUU supports the following types of data sets:
v Members of partitioned data sets (PDS) and partitioned data sets extended

(PDSE)
v Large format (DSNTYPE=LARGE) and traditional sequential data sets
v Extended format sequential data sets
v Fixed, variable, and undefined-length, blocked and unblocked, spanned and

unspanned record formats (RECFM) = F, FB, FBS, V, VB, VS, VBS, U)
v Data sets with records containing ISO/ANSI or machine code control characters
v Data sets in cylinder-managed space.
v Partitioned data sets (PDS) and partitioned data sets extended (PDSE).

PDUU does not support the following types of input data sets:
v Large block interface (LBI) (no BLKSIZE value).
v VSAM and direct (DSORG=DA) data sets
v Data sets with keys (KEYLEN)
v z/OS UNIX files
v Concatenated data sets of any type

JCL statements for PDUU
The JCL statements for the PDUU are:

z/OS Problem Documentation Upload Utility

642 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

|

http://www-01.ibm.com/support/docview.wss?uid=isg3T1011823&myns=z000&mynp=OCSWG90&mync=E

SYSPRINT
The data set can be either SYSOUT or a sequential data set. The data set must
be RECFM=FB, LRECL=134. For additional details, see “Prerequisites and
restrictions for PDUU” on page 642.

SYSUT1
The sequential or partitioned data set to transfer to IBM. For additional details,
see “Prerequisites and restrictions for PDUU” on page 642.

SYSUT2
This data set is optional and can be used only when transferring partitioned
data sets (PDS/PDSE). It defines a sequential unload data set for IEBCOPY
output produced during the unload operation. If the SYSUT2 statement is
omitted the unload data set will be allocated dynamically. This parameter can
be used if you want to directly control the allocation of the unload data set, for
example, to specify a particular volume or certain amount of volume space.
For additional details about usage and allocation parameters of the unload
data set see the topic on Unloading (Backing up) Data Sets in z/OS DFSMSdfp
Utilities . See also “Example 9: Using SYSUT2 to allocate an unload data set”
on page 650.

SYSIN
A sequential data set that uses the following control statements. The data set
must be RECFM=FB, LRECL=80. For additional details, see “Prerequisites and
restrictions for PDUU” on page 642.

PDUU is managed through the following SYSIN statements with these
guidelines:
v Use an asterisk (*) in the first column of each comment line to indicate

comments.
v Keywords must start in column one.
v Use control statements that are in form VERB=OPERAND.
v Mixed case verbs and operands are allowed.
v The operand starts in the column after the equal sign and goes to the first

blank column except TARGET_SYS, DIRECTORY, CIPHER_KEY, ACCOUNT, USERID,
and PASSWORD, which can contain blanks.

v Anything after the first blank is ignored except for any operands that can
contain blanks. In those cases, do not use blanks from column one to the
end of the operand.

v Control statements can be coded on one or more (up to 6) consecutive
records. Control statements with operands that allow blanks must not extend
beyond column 71, but can continue on the following record in columns 16
through 71. Columns 1 through 15 of the continuation record must be blank.
See “Example 10: Using a multiple record control statement in SYSIN” on
page 651. Control statements with operands that do not allow blanks can
occupy columns 1 through 80.

TARGET_SYS
The name of the TCP/IP system to transfer the files to using FTP. One
through 256 characters, dotted decimal format is allowed, no default
value, can contain blanks, and it must be specified.

If using a proxy server, this should be the name of the proxy server.

You can include additional FTP command parameters on the
TARGET_SYS parameter by using the z/OS UNIX specifications as
shown in the topic FTP command -- Entering the FTP environment in

z/OS Problem Documentation Upload Utility

Chapter 19. AMAPDUPL: Problem Documentation Upload Utility 643

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

z/OS Communications Server: IP User's Guide and Commands. For
example, to trace output (-d) and use a specific ftpdata_filename
(-f"//'WES.MYFTP.DATA'"):
TARGET_SYS=-d -f"//’WES.MYFTP.DATA’" testcase.boulder.ibm.com

Use the -p parameter to specify an alternate IP stack.

USERID
The user ID on the target system that is used to send the files. One
through 64 characters, no default value, does not have to be specified,
and can contain imbedded blanks. If USERID and PASSWORD are not
supplied and NETRCLEVEL=2, the values from the NETRC data set is
used for the FTP sessions.

If using a proxy server, this can be the full login to the remote system
in the format userid@remote.system.name.

PASSWORD
The password for the USERID on the target system. One through 64
characters and the default value is blanks.

If using a proxy server, this can be the USERID and PASSWORD for
the proxy server in the format userid@password.

ACCOUNT
The account data that is sent when an FTP session is started. One
through 64 characters with no default value.

TARGET_DSN
The variable (descriptive) portion for the file names on the target
system. One through 64 characters, no default value, and it must be
specified.

WORK_DSN
The prefix for the data set names of work files on the sending system.
One through 40 characters, no default value, and it must be specified.
The work data sets are large format, sequential, data sets and cannot
have the compaction attribute.

Note: Because work files are dynamically allocated with large format
and do not support compressed format, if you specify data class for
work files with the compaction attribute or N, the following message is
issued for all work files:
IGD17163I COMPRESSION REQUEST NOT HONORED FOR DATA SET
work_file_dsname BECAUSE DATA SET CHARACTERISTICS
DO NOT MEET COMPRESSION CRITERIA, ALLOCATION CONTINUES

WORK_DSN_SIZE
The maximum size of the work files in megabytes. One through four
decimal digits and the default is 100 MB.

KEEP_WORK
The parameter to save the work data sets that are dynamically
allocated for each FTP session. If you omit the KEEP_WORK parameter,
the program does not save the work data sets. Y is the only value for
the KEEP_WORK parameter.

Note: Only specify this parameter when debugging a problem.

z/OS Problem Documentation Upload Utility

644 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|

DATACLAS
The data class to use when allocating the work files on the sending
system. One through eight characters with no default value.

STORCLAS
The storage class to use when allocating the work files on the sending
system. One through eight characters with no default value.

CC_FTP
The number of parallel FTP sessions to use when transmitting the files.
One or two decimal digits, the value must be between one and 20, and
the default is two.

DIRECTORY
The directory on the target system where the files will be sent with
FTP. One through 32 characters, with no default, can contain blanks,
and you must specify the directory.

PMR The PMR number with which this file is associated. This field must be
13 numeric or uppercase characters, specify in the form xxxxx.yyy.zzz,
and define the variables as:

Table 63. PMR number variables for PDUU

Field Explanation Example

XXXXX PMR Number 34143

YYY Branch office 055

ZZZ IBM Country Code 724

CIPHER_KEY
The encryption key to use for 192-bit triple DES encryption. The 24
characters following CIPHER_KEY= are used as the key. The key can
include imbedded and/or trailing blanks. For example,
CIPHER_KEY=HERE IS CIPHER KEY IN 24 or CIPHER_KEY=Shortkey. If you
do not specify CIPHER_KEY=, no encryption is performed. If you
encrypt the data set using CIPHER_KEY, you must provide IBM with
the encryption key so they can perform problem diagnosis.

Note: If CIPHER_KEY= is followed by 24 blanks, the file will be
encrypted with a key of 24 blanks.

DEBUG
An optional DD statement that gathers debug information such as messages
issued to the SYSPRINT data set and the FTP protocol messages. The data set
must be RECFM=FB, LRECL=134.

FTPCMDS
An optional DD statement that provides additional flexibility for traversing
firewall or proxy servers. When this DD statement is provided, after the initial
USERID and PASSWORD are sent, the specified sequential data set is read by
the application and the commands contained in the data set are included as
FTP commands. The data set must be RECFM=FB and LRECL=80.

JCL examples for PDUU
Use the following JCL examples as a guideline for creating your own JCL.
Consider storing your user ID and password in a separate concatenated data set.

z/OS Problem Documentation Upload Utility

Chapter 19. AMAPDUPL: Problem Documentation Upload Utility 645

Doing so provides added security because the user ID and password are not
directly in the JCL. It is also makes it much easier to change the user ID and
password across multiple jobs.

You can use some of the JCL examples as a starting point to traverse a firewall or
proxy server. There are very few common characteristics for firewall or proxy
servers with local customization. If you are able to traverse the firewall or proxy
server with a plain FTP statement, modifications to the parameters USERID,
PASSWORD, ACCOUNT, and TARGET_SYS, in conjunction with commands in the
FTPCMDS data set, the ftp_data file, or both can permit the z/OS PDUU to
traverse your firewall or proxy server.

Example 1: Simple FTP connection
The JCL example in Figure 206 invokes the AMAPDUPL program to transfer file
H44IPCS.WESSAMP.TRKS055K to the testcase.boulder.ibm.com system as a set of
work files stored in /toibm/mvs with the shared prefix
12345.123.123.wessamp.bigfile. Each of the three work files is 500 MB.

Example 2: FTP connection using a proxy server
In Figure 207 on page 647, the USERID control statement has the format
user@hostname, where hostname is the name of the TCP/IP system to transfer files
to, and user is the user name on the hostname system. The PASSWORD control
statement has format proxyuser@proxypass, where proxyuser is the user name on
the proxy server and proxypass is the user password on the proxy server.
TARGET_SYS is the name of the TCP/IP proxy server.

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//SYSIN DD *
USERID=anonymous
PASSWORD=anonymous
TARGET_SYS=testcase.boulder.ibm.com
TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=12345.123.123
//

Figure 206. Simple FTP connection

z/OS Problem Documentation Upload Utility

646 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Example 3: FTP connection using a proxy server with proxy user
ID
In Figure 208example, the USERID control statement has format
user@proxyuser@hostname, where hostname is the name of the TCP/IP system to
transfer the files to, user is the user name on the hostname system, and proxyuser
is the user name on the proxy server. The PASSWORD control statement has format
proxyuser@proxypass, where proxyuser is the user name on the proxy server and
proxypass is the user's password on the proxy server. TARGET_SYS is the name of
the TCP/IP proxy server.

Example 4: Using a proxy server with the FTPCMDS DD
statement
In Figure 209 on page 648, the USERID control statement has format
proxyuser@hostname, where hostname is the name of the TCP/IP system to transfer
the files to, and proxyuser is the user name on the proxy server. The PASSWORD
control statement defines the user password on the proxy server. The data set
name WES.FTPCMDS.DATA contains an additional user command with an anonymous
user name and password on the hostname system.

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//SYSIN DD *
USERID=anonymous@testcase.boulder.ibm.com
PASSWORD=proxyuser@proxypass
TARGET_SYS=your.proxy.server.name
TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=12345.123.123
//

Figure 207. FTP connection using a proxy server

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//SYSIN DD *
USERID=anonymous@proxyuser@testcase.boulder.ibm.com
PASSWORD=proxyuser@proxypass
TARGET_SYS=proxy.server.name
TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=99999.000.000
//

Figure 208. FTP with a proxy user ID

z/OS Problem Documentation Upload Utility

Chapter 19. AMAPDUPL: Problem Documentation Upload Utility 647

The example in Figure 210 shows the typical format of the FTPCMDS data set.

Example 5: Using a proxy server with a port specification on the
TARGET_SYS parameter
The example in Figure 211 uses a proxy server with a port specification of 2121 on
the TARGET_SYS parameter and inline FTPCMDS DD statement. This example is
similar to the previous one, the only difference are the FTPCMDS is an in-stream
data set and the port specification is included on the TARGET_SYS parameter.

Example 6: Forcing PASSIVE mode using the FTPCMDS inline
DD statement
Figure 212 on page 649 shows the FTP connection set up from the FTP client to the
FTP server using the FTP locsite fwfriendly command.

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//FTPCMDS DD DISP=SHR,DSN=WES.FTPCMDS.DATA
//SYSIN DD *
USERID=proxyid@testcase.boulder.ibm.com
PASSWORD=proxypass
TARGET_SYS=proxy.server.name
TARGET_DSN=SVCD
WORK_DSN=HLQ.FTPOUT
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=99999.000.000
//

Figure 209. FTP using the FTPCMDS DD statement

user anonymous pw userid@company.com

Figure 210. FTPCMDS data set example

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//FTPCMDS DD *
user anonymous pw userid@company.com
//SYSIN DD *
USERID=proxyuser@testcase.boulder.ibm.com
PASSWORD=proxypass
TARGET_SYS=proxy.server.name 2121
TARGET_DSN=SVCD
WORK_DSN=HLQ.FTPOUT
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=99999.000.000
CIPHER_KEY=PMR99999sad
//

Figure 211. FTP specifying port 2121 on TARGET_SYS

z/OS Problem Documentation Upload Utility

648 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The FWFriendly parameter specifies that the FTP client is firewall-friendly. For
additional details, see the topic about LOCSIte subcommand--Specify site
information to the local host in z/OS Communications Server: IP User's Guide and
Commands.

Note: When the FTP server has an IPv6 address, data connections are always set
up from the FTP client to the FTP server without reference to the FWFriendly
setting.

Example 7: Using a userid.NETRC data set
The example in Figure 213 on page 650 uses the proxy login and password stored
in the userid.NETRC data set (you can submit this as a surrogate job where the
userid.NETRC data set is invisible to the job originator). Use of the userid.NETRC
data set requires NETRCLEVEL=2, which is set in the FTP.DATA data set. Using
the -f parameter on TARGET_SYS control statement specifies which FTP.DATA data
set to use.
v Find information about the use of the NETRC data set in z/OS Communications

Server: IP User's Guide and Commands.
v Find information about the use of the FTP.DATA data set in z/OS V2R1.0

Communications Server: IP Configuration Reference.

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//FTPCMDS DD *
LOCSIte FWFriendly
//SYSIN DD *
USERID=proxyuser@testcase.boulder.ibm.com
PASSWORD=proxypass
TARGET_SYS=proxy.server.name
TARGET_DSN=SVCD
WORK_DSN=HLQ.FTPOUT
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=99999.000.000
CIPHER_KEY=PMR99999sad
//

Figure 212. FTP forcing PASSIVE mode

z/OS Problem Documentation Upload Utility

Chapter 19. AMAPDUPL: Problem Documentation Upload Utility 649

Example 8: Using the DEBUG statement
The example in Figure 214 adds the DEBUG DD statement, which creates a data
set that contains the message data, as described in “DEBUG” on page 645.

Example 9: Using SYSUT2 to allocate an unload data set
The JCL example in Figure 215 on page 651 invokes the AMAPDUPL program to
transfer partitioned data set H44IPCS.PDS.DATA to the testcase.boulder.ibm.com.
The optional SYSUT2 statement is used to allocate an unload sequential data set
for the IEBCOPY utility invoked by the PDUU.

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//SYSIN DD *
TARGET_SYS=-f"//’WES.MYFTP.DATA’" testcase.boulder.ibm.com
PMR=99999.999.000
DIRECTORY=/toibm/mvs/
TARGET_DSN=wes.gb01tst
work_dsn=wes.ftpout
cc_ftp=03
WORK_DSN_SIZE=500
//

For this instance, the userid.NETRC datas et consists of one line:
machine testcase.boulder.ibm.com login anonymous password ibmusr@ibm.com

The FTP.DATA data set contains:
;***
;*
NETRCLEVEL 2
;*

Figure 213. FTP using a userid.NETRC data set

//FTP EXEC PGM=AMAPDUPL
//SENDSTP EXEC PGM=AMAPDUPL
//SYSPRINT DD SYSOUT=*
//DEBUG DD DSN=PDUU.DEBUG,DISP=(,CATLG),
// UNIT=SYSALLDA,SPACE=(CYL,(1,1),RLSE)
//SYSUT1 DD DISP=SHR,DSN=H44IPCS.WESSAMP.TRKS055K
//SYSIN DD *
USERID=anonymous
PASSWORD=anonymous
TARGET_SYS=testcase.boulder.ibm.com
TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs
PMR=12345.123.123
//

Figure 214. FTP connection with the DEBUG DD statement

z/OS Problem Documentation Upload Utility

650 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|
|
|
|
|
|

Example 10: Using a multiple record control statement in SYSIN
The following JCL example in Figure 216 invokes the AMAPDUPL program with
FTP.DATA data set specified by the –f parameter on TARGET_SYS control
statement coded on 3 consecutive SYSIN records.

Return codes for PDUU
Upon completion, PDUU places one of the return codes listed in Table 64 in
general purpose register (GPR) 15.

Table 64. Return codes for z/OS Problem Documentation Upload Utility

Return Code Explanation

0 Successful completion

4 Potential successful completion. If not, investigate messages.

8 Invalid parameters in control statement

10 Unsupported data set format

//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=H44IPCS.PDS.DATA,DISP=SHR
//SYSUT2 DD DSN=H44IPCS.UNLOAD.DASD,DISP=(NEW,CATLG),
// DCB=(RECFM=VS),
// SPACE=(CYL,(1,1),RLSE),UNIT=SYSDA
//SYSIN DD *
USERID=anonymous
PASSWORD=anonymous
TARGET_SYS=testcase.boulder.ibm.com
TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=12345.123.123
//

Figure 215. Using SYSUT2 statement for allocating an unload data set

----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
//FTP EXEC PGM=AMAPDUPL
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=H44IPCS.SEQ.DATA,DISP=SHR
//SYSIN DD *
USERID=anonymous
PASSWORD=anonymous
TARGET_SYS=-d -f /u/directoryForFtpData/subdirectoryForFtpData1/subdire

ctoryForFtpData2/subdirectoryForFtpData3/subdirectoryFor
FtpData4/ftpDataFile testcase.boulder.ibm.com

TARGET_DSN=wessamp.bigfile
WORK_DSN=wes.ftpout
CC_FTP=03
WORK_DSN_SIZE=500
DIRECTORY=/toibm/mvs/
PMR=12345.123.123
//

Figure 216. Using a multiple record control statement

z/OS Problem Documentation Upload Utility

Chapter 19. AMAPDUPL: Problem Documentation Upload Utility 651

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

Table 64. Return codes for z/OS Problem Documentation Upload Utility (continued)

Return Code Explanation

12 Storage obtain failure

16 Required input parameters are missing

20 Invalid input data set specified

24 Severe error occurred during dictionary building

28 Severe error occurred during file open

32 Severe error occurred during compression process

36 Error in FTP operation

64 Severe error in file operation

99 System or user abend occurred

z/OS Problem Documentation Upload Utility

652 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 20. Dump suppression

The system requests dumps you might not need. To keep from using your system's
resources on unneeded dumps, you should suppress them. The reasons for the
unneeded dumps and ways to suppress them are:
v Duplicate dumps: The system can request a dump for a problem that recurs.

The dump written when the problem first occurs can be used for diagnosis;
additional dumps are unneeded. Also, sometimes a system can request several
dumps for one instance of a problem. A recurring problem may have been
diagnosed, but the fix has not yet been incorporated into the system.
To eliminate the duplicate dumps, use dump analysis and elimination (DAE).
See “Using DAE to suppress dumps.”

v Dumps for certain abend codes: For some abend codes, the accompanying
messages provide the needed problem data. To eliminate the dumps for these
abend codes, use a SLIP command. See “Using a SLIP command to suppress
dumps” on page 663.

v A dump for an abend in an application program: if the dump is not needed.
See “Using an ABEND macro to suppress dumps” on page 663.

v Dumps the installation decides are not needed: If you decide that certain
dumps are not needed, you can code a routine for an installation exit to
suppress these dumps. See “Using installation exit routines to suppress dumps”
on page 664.

This topic lists the ways that an expected dump can be suppressed, so that you can
determine why you did not receive an intended dump. See “Determining why a
dump was suppressed” on page 664.

Using DAE to suppress dumps
Dump analysis and elimination (DAE) suppresses dumps that match a dump you
already have. Each time DAE suppresses a duplicate dump, the system does not
collect data for the duplicate or write the duplicate to a data set. In this way, DAE
can improve dump management by only dumping unique situations and by
minimizing the number of dumps.

For more information about the topics described in this section, refer to the
following references:
v See z/OS MVS Diagnosis: Reference for symptoms and symptom strings.
v See z/OS MVS Initialization and Tuning Reference for the ADYSETxx and

IEACMD00 parmlib members.
v See z/OS MVS IPCS Commands for the VERBEXIT DAEDATA subcommand.
v See z/OS MVS Planning: Global Resource Serialization for data set serialization.
v See z/OS Security Server RACF Command Language Reference to control access to

data sets.

Performing dump suppression
To perform dump suppression, DAE builds a symptom string, if the data for it is
available. If the symptom string contains the minimum problem data, DAE uses
the symptom string to recognize a duplicate SVC dump or SYSMDUMP dump

© Copyright IBM Corp. 1988, 2015 653

requested for a software error. When installation parameters request suppression,
DAE suppresses the duplicate dump. The following describes DAE processing.
1. DAE obtains problem data. DAE receives the data in the system diagnostic

work area (SDWA) or from values in a SYMREC parameter on the SDUMP or
SDUMPX macro that requested the dump.
v The ESTAE routine or the functional recovery routine (FRR) of the failing

program supplies module-level information, such as the failing load module
name and the failing CSECT name.

v The system supplies system-level data, such as the abend and reason codes,
the failing instruction, and the register/PSW difference.
If the failing component does not supply the failing load module name or
CSECT name, the system determines the name, if possible. In this case, the
name may be IEANUC0x.

2. DAE forms a symptom string. DAE adds a descriptive keyword to each field
of problem data to form a symptom. DAE forms MVS symptoms, rather than
RETAIN® symptoms. DAE combines the symptoms for a requested dump into
a symptom string.
The following tables show the required and optional symptoms. SDWA field
names are given for the symptoms the failing program must provide to enable
dump suppression. The tables have both MVS and RETAIN symptoms so that
you can relate the MVS symptoms DAE uses to the RETAIN symptoms you
might use to search the RETAIN data base. An MVS symptom string must
contain at least five symptoms that are not null. DAE places symptoms into
strings in the order shown in the tables.
Table 65 summarizes the required symptoms, which are first and must be
present.

Table 65. Summary of required symptoms

Symptom SDWA Field MVS Keyword RETAIN Keyword

Name of the failing load
module

SDWAMODN MOD/name RIDS/name#L

Name of the failing CSECT SDWACSCT CSECT/name RIDS/name

Table 66 summarizes the optional symptoms, which must follow the required
symptoms. DAE needs at least three of these optional symptoms to make a
useful symptom string.

Table 66. Summary of optional symptoms

Symptom SDWA Field MVS Keyword RETAIN Keyword

Product/component
identifier with the
component identifier base

SDWACID,
SDWACIDB

PIDS/name PIDS/name

System completion (abend)
code

AB/S0hhh AB/S0hhh

User completion (abend)
code

AB/Udddd AB/Udddd

Recovery routine name SDWAREXN REXN/name RIDS/name#R

Failing instruction area FI/area VALU/Harea

PSW/register difference REGS/hhhhh REGS/hhhhh

Dump suppression

654 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Table 66. Summary of optional symptoms (continued)

Symptom SDWA Field MVS Keyword RETAIN Keyword

Reason code,
accompanying the abend
code or from the REASON
parameter of the macro
that requests the dump

HRC1/nnnn PRCS/nnnn

Subcomponent or module
subfunction

SDWASC SUB1/name VALU/Cname

3. DAE tries to match the symptom string from the dump to a symptom string
for a previous dump of the same type, that is, SVC dump or SYSMDUMP.
When DAE finds a match, DAE considers the dump to be a duplicate.
When DAE is started, it selects active symptom strings to be used to determine
which dumps to suppress. An active symptom is one where either the string
was created for a unique dump within the last 60 days, or its dump count was
updated within the last 60 days.
The systems in a sysplex can share the DAE data set to suppress duplicate
dumps across the sysplex. While each system in a sysplex can use its own DAE
data set, IBM recommends that systems in a sysplex share a DAE data set so
that:
v DAE can write a dump on one system and suppress duplicates on other

systems in the sysplex.
v Only one DAE data set is required, rather than a data set for each system.
See “Defining a DAE data set” on page 659 for more information, including
recommended names for the data set.

4. DAE updates the symptom strings in storage and, when the dump is written
to a dump data set, in the DAE data set, if updating is requested.
v For a unique symptom string, DAE adds a new record. The record contains

the symptom string, the dates of the first and last occurrences, the incidence
count for the number of occurrences, and the name of the system that
provided the string.

v For a duplicate symptom string, DAE updates the incidence count for the
string, the last-occurrence date, and the name of the last system that found
the string.

If updating is requested, DAE examines the incoming dump requests against
captured dumps. If the incoming dump's symptom string matches any dump
on the captured dump queue, it is suppressed. Updates are done when the
DAE data set is updated.
In a sysplex, changes to the in-storage strings of other systems are made after
the shared DAE data set is updated. If an incident is occurring at about the
same time on multiple systems, multiple dumps will be generated — but only
one per system. Dumps on other systems are suppressed after one of the
dumps is written, the DAE data set updated, and the updates propagated to
the other systems.
If the system with the original dump fails before it writes the captured dump,
the dump will not be suppressed the next time it is requested.

5. DAE suppresses a duplicate dump, if DAE is enabled for dump suppression.
Note that, if you specify an ACTION of SVCD, TRDUMP, or NOSUP on a SLIP
command, the command overrides DAE suppression and the system writes the
dump. Also, dumps requested by the DUMP operator command are not eligible
for suppression.

Dump suppression

Chapter 20. Dump suppression 655

When DAE does not suppress a dump, the symptom string is in the dump
header; you can view it with the IPCS VERBEXIT DAEDATA subcommand.
DAE also issues informational messages to indicate why the dump was not
suppressed.
DAE suppresses a dump when all of the following are true:
v DAE located in the dump the minimum set of symptoms.
v The symptom string for the dump matches a symptom string for a previous

dump of the same type.
v Either of the following is true:

– The current ADYSETxx parmlib member specifies SUPPRESS for the type
of dump being requested and the VRADAE key is present in the SDWA.

– The current ADYSETxx parmlib member specifies SUPPRESSALL for the
type of dump being requested and the VRANODAE key is absent from
the SDWA.

Table 67 shows the effect of the VRADAE and VRANODAE keys on dump
suppression when SUPPRESS and SUPPRESSALL keywords are specified in the
ADYSETxx parmlib member. For SUPPRESS, the VRANODAE key can be
present or absent; the system does not check it. The table assumes that the
symptom string from the dump has matched a previous symptom string.

Table 67. VRADAE and VRANODAE keys on dump suppression when SUPPRESS and
SUPPRESSALL keywords are specified in ADYSETxx

ADYSETxx Option VRADAE Key in
SDWA

VRANODAE Key in
SDWA

Dump
Suppressed?

SUPPRESS Yes N/A Yes

SUPPRESS No N/A No

SUPPRESSALL Yes No Yes

SUPPRESSALL No Yes No

SUPPRESSALL No No Yes

SUPPRESSALL Yes Yes No

The only way to ensure that a dump is not suppressed, regardless of the
contents of the ADYSETxx parmlib member, is to specify the VRANODAE key
in the SDWA.

Managing rapidly recurring dumps
DAE can suppress rapidly recurring dumps automatically and the support staff
does not need to be aware when a dump request recurs. However, a surge of
dump requests could affect system performance, even though the dumps are
suppressed. The surge could go unnoticed for hours. To help the support staff take
actions to avoid impact to users, the system can notify you of high-frequency
dump requests.

To obtain notification, add a NOTIFY parameter to the SVCDUMP statement on
the ADYSETxx parmlib member to establish a threshold for notification. The
SVCDUMP statement must also specify UPDATE. The default threshold is 3
dumps requested in 30 minutes for the same symptom string. The notification time
is measured from completion or suppression of dumps, rather than from initiation
of dumps.

The notification is made by the event notification facility (ENF). You can use an
ENF exit to:

Dump suppression

656 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Notify the support staff by a message or a signal to a beeper
v Use automation

Any program can receive the ENF signal. If active, the First Failure Support
Technology™ (FFST™) issues a generic alert in response to this ENF signal.

If DAE is stopped and restarted, DAE begins counting dumps again to reach the
threshold.

If each system has its own DAE data set, notification is for a system. If the systems
of a sysplex share the DAE data set, notification is for the sysplex. For example,
with a shared DAE data set, four dumps for the same symptom string on the same
or different systems in 25 minutes would cause notification if the ADYSETxx
parmlib member contains NOTIFY(4,25).

Note: The system in the sysplex that crosses the notification threshold is the
system that does the notify.

Planning for DAE dump suppression
Planning for DAE dump suppression consists of tasks to be done before an initial
program load (IPL). The system programmer performs the following tasks:
v Selecting or creating an ADYSETxx parmlib member
v Defining a DAE data set

Selecting or creating an ADYSETxx parmlib member
Select or create an ADYSETxx parmlib member to be used at IPL. IBM supplies
three ADYSETxx members:
v ADYSET00, which starts DAE and keeps 400 symptom strings in virtual storage.

The IBM-supplied ADYSET00 member contains:
DAE=START,RECORDS(400),

SVCDUMP(MATCH,SUPPRESSALL,UPDATE,NOTIFY(3,30)),
SYSMDUMP(MATCH,UPDATE)

ADYSET00 does not suppress SYSMDUMP dumps because installation-provided
programs deliberately request them. If desired, change the ADYSETxx member
being used to suppress SYSMDUMP dumps.

v ADYSET01, which stops DAE processing. The IBM-supplied ADYSET01 member
contains:
DAE=STOP

When using the DAE Display facility's TAKEDUMP (T) action in a sysplex
where DAE is active, you must change the contents of ADYSET01 to:
DAE=STOP,GLOBALSTOP

v ADYSET02, which contains the same parameters as ADYSET00.

The IBM-supplied IEACMD00 parmlib member issues a SET DAE=00 command,
which activates ADYSET00 during IPL. If you do not want DAE to start during
IPL, change IEACMD00 to specify SET DAE=01.

For a sysplex, IBM recommends that you use the same ADYSETxx parameter
values in each system. To use the same values, use a shared SYS1.PARMLIB. If
your installation does not share a SYS1.PARMLIB, make the ADYSETxx and
IEACMDxx members in the SYS1.PARMLIB for each system identical. A shared
ADYSETxx or identical ADYSETxx members should specify SHARE(DSN) to share
the DAE data set.

Dump suppression

Chapter 20. Dump suppression 657

IBM recommends that the ADYSETxx member specify SUPPRESSALL, which
requests that dumps be suppressed even though the component or program did
not request dump suppression with a VRADAE key in the system diagnostic work
area (SDWA). SUPPRESSALL is useful because it allows more dumps to be eligible
for suppression.

In the example shown in Figure 217, the systems in the sysplex share a DAE data
set, SYS1.DAESHARE, so DAE can suppress a duplicate of a previous dump from
any system. This member also specifies SUPPRESSALL.

The ADYSET00 member specifies RECORDS(400). If your system does not
suppress a dump when the matching symptom string is in the DAE data set, you
might need more than 400 records in storage; the IBM Support Center can advise
you.

Changing Parmlib Members to Change DAE Processing: While the system is
running, change the DAE data set or parameters for the dumps by creating a new
ADYSETxx parmlib member. See “Changing DAE processing in a Sysplex” on page
662 for the operator actions needed to change the parmlib member.

There is another benefit when all the systems in a sysplex are sharing the DAE
data set. That is, after DAE is started on each system using an ADYSETxx member
which at least contains SHARE(DSN). One operator command can set the DAE
values to be the same on all systems. This is accomplished by issuing the SET
DAE= command, for an ADYSEYxx member which includes the GLOBAL
parameter. ALL systems sharing the DAE data set will be effected.

In Figure 218, the following ADYSET04 member changes the DAE data set being
used on all systems to SYS1.DAESH2 and changes the dump options on all
systems.

None of the changes made using operator commands are kept across an IPL of a
system. At IPL, each system will again use the member specified in IEACMD00 or
the COMMNDxx member being used. To make the changes permanently effective,
do one of the following:
v Make the changes in ADYSET00 and the default IEACMD00 will start DAE.
v Make the changes in the ADYSETxx member and update a COMMNDxx

member to start the ADYSETxx using the SET DAE=xx statement. Then update

DAE=START,RECORDS(400),
SVCDUMP(MATCH,SUPPRESSALL,UPDATE,NOTIFY(3,30)),
SYSMDUMP(MATCH,UPDATE)
SHARE(DSN,OPTIONS),
DSN(SYS1.DAESHARE)

Figure 217. Example: An ADYSETxx Member for a System in a Sysplex

DAE=START,RECORDS(400),
SVCDUMP(MATCH,SUPPRESSALL,UPDATE,NOTIFY(3,30)),
SYSMDUMP(MATCH,UPDATE)
SHARE(DSN,OPTIONS),
DSN(SYS1.DAESH2)
GLOBAL(DSN,OPTIONS)

Figure 218. Example: An ADYSETxx Member with GLOBAL

Dump suppression

658 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

the appropriate IEASYSxx member to include the CMD=xx statement. Once
complete, remove the SET DAE=00 within the IEACMD00 member to ensure
that the two commands do not complete out of sequence.

Defining a DAE data set
Define a DAE data set when defining system data sets. When the system is IPLed
or if DAE is stopped and restarted, DAE should continue using the DAE data set
previously used.
1. Define the DAE data set in a DD statement. Use the default name of

SYS1.DAE for a single system; use a different name for a DAE data set shared
by systems in a sysplex.
The sample DD statement shown in Figure 219 is for a DAE data set used by a
single system.

In a sysplex, each system can have its own DAE data set, but IBM recommends
that all systems in a sysplex share a DAE data set.
The sample DD statement in Figure 220 is for a DAE data set shared by the
systems in a sysplex. The statement will catalog the DAE data set in the shared
master catalog or in the master catalog on each system that uses it.

If you manage your dumps with the hierarchical storage manager (HSM),
consider using an HSM purge time of 60 days to correspond to the DAE record
aging of 60 days.

2. Provide DAE data set integrity through a serialization component, such as
global resource serialization.
For a single system, the DAE data set is a local resource. The default DAE data
set, SYS1.DAE, is defined as a local resource in the default global resource
serialization resource name list (RNL). If you give the DAE data set another
name, add the name to the SYSTEMS exclusion RNL to avoid contention when
more than one system uses the same DAE data set name for physically
different data sets.
For systems in a sysplex, the shared DAE data set is a global resource. To make
global resource serialization treat it as a global resource, do one of the
following:
v Give the DAE data set a name other than SYS1.DAE. For example,

SYS1.DAESHARE.
v If you use the name SYS1.DAE, delete the DAE data set entry from the

default SYSTEMS exclusion RNL. The DAE data set entry is SYSDSN
SYS1.DAE.

For information, see z/OS MVS Planning: Global Resource Serialization.

//DAE DD DSN=SYS1.DAE,DISP=(,CATLG),VOL=(,RETAIN,SER=SG2001),
// DCB=(RECFM=FB,LRECL=255,DSORG=PS,BLKSIZE=0),
// UNIT=3390,SPACE=(TRK,(6,2))

Figure 219. Example: DAE Data Set for Single System

//DAE DD DSN=SYS1.DAESHARE,DISP=(,CATLG),VOL=(,RETAIN,SER=SG1055),
// DCB=(RECFM=FB,LRECL=255,DSORG=PS,BLKSIZE=0),
// UNIT=3390,SPACE=(TRK,(12,2))

Figure 220. Example: DAE Data Set Shared by Sysplex Systems

Dump suppression

Chapter 20. Dump suppression 659

3. Control access to the DAE data set. On a single system or on all systems
sharing the DAE data set in a sysplex, use Resource Access Control Facility
(RACF) to control access. Enter a RACF ADDSD command to define a data set
profile for the DAE data set.

Accessing the DAE data set
A DAE data set that is used by one system or is shared by systems in a sysplex is
accessed by:
v Invoking the IPCS DAE Display panel
v Generating a suppressed dump
v Editing the DAE data set

Invoking the IPCS DAE display panel
For the ways to invoke the panel, see IPCS option 3.5 in the z/OS MVS IPCS User's
Guide . On the panel, you can:
v View the symptom strings the data set contains by entering:

– The date of the dump,
– The last date for the string,
– The number of times the dump has been requested,
– And the last system that requested the dump.

v Search the Entry list for symptoms, system names, dates, etc.
v Navigate through the sysplex dump directory (or whatever dump directory is

active) for the symptom string.
v View the dump title for a symptom string.

Generating a suppressed dump
You may want to obtain a dump that is being suppressed. Perhaps the first dump
was ignored and thrown out, but since then the dump has been requested often
enough so that you would like to analyze the dump. Do the following to obtain
the suppressed dump through the IPCS TAKEDUMP option:
1. Customize the TSO user ID that will invoke the TAKEDUMP action. Make sure

it:
v has authority to issue an MVS operator SET command and, if DAE is active

in a sysplex, the ROUTE command
v has RACF UPDATE access to the DAE data set.

2. Ensure that the ADYSET01 member(s) contains DAE=STOP (or
DAE=STOP,GLOBALSTOP in a sysplex).

3. Check that the active IKJTSOxx member includes the program name
ADYOPCMD in the AUTHCMD NAMES section.

4. In a sysplex, the maximum benefit is realized when DAE is started using
ADYSETxx members which contain at least SHARE(DSN) — enabling shared
data set activities.

5. Use the IPCS DAE dialog Panel to issue action code T (the TAKEDUMP option)
on the line showing the symptom string of interest.

To process the TAKEDUMP option of the IPCS DAE dialog, DAE processing is
stopped, dialog processing occurs, and DAE processing is restarted on the systems
involved. There are some cases where a particular system may end up using
different DAE parameters from those it was previously using. Table 68 on page 661
illustrates possible results.

Dump suppression

660 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

For this discussion there are two systems (SY1 and SY2), and five ADYSETxx
members involved. Members ending with G1 and G2 include
GLOBAL(DSN,OPTIONS) parameters. Members ending with S1 and S2 have
SHARE(DSN,OPTIONS) without GLOBAL options. The center column in Table 68
indicates the system where the TSO user is issuing the TAKEDUMP request.

Table 68. Examples of when DAE parameters may change

Start State TSO Final State

SY1 SY2 SY1 SY2

G1 G1 SY1 G1 G11

S1 S2 SY1 S1 S12

S1 S2 SY2 S2 S22

S1 G1 SY1 S1 S12

S1 G2 SY2 G2 G22

G2 S2 SY2 S2 S22

00 * SY1 00 *3

Note:

1. GLOBAL(DSN) systems remain synchronized.

2. When all systems are NOT in GLOBAL(DSN) mode, the system will be started using
the member last active on the system where the IPCS TAKEDUMP dialog runs.

3. No change to other systems if all work is done on a system which is not sharing the
DAE data set. Here, ADYSET00 contains the default IBM—supplied values.

4. The commands necessary to accomplish the task are issued by the TSO user at their
dispatching priority. It is possible that the system may not dispatch the TSO user due
to that dispatching priority, and therefore the action may not complete in a timely
manner.

The system will generate the next dump for the symptom string. After that dump,
DAE resumes suppressing dumps for the symptom string.

Note: Despite specifying action code T, the dump might still be suppressed. See
“Determining why a dump was suppressed” on page 664 for the reasons, other
than DAE suppression.

Editing the DAE data set
Edit the DAE data set, using Interactive System Productivity Facility (ISPF) edit.
For ISPF edit, see z/OS ISPF Dialog Developer's Guide and Reference. You must have
WRITE access to the DAE data set. Once in ISPF Edit, use the Edit macro
ADYUPDAT as described below.

In the edit session, type one of the following on the command line, place the
cursor on the symptom string line for the dump, and press ENTER. If the cursor is
on the command line, the first symptom string is used. Note that DAE must be
stopped before these actions and started again after.
ADYUPDAT TAKEDUMP
ADYUPDAT NODUMP

ADYUPDAT TAKEDUMP requests that the next dump be generated for this
symptom string. SLIP can still suppress the dump.

Dump suppression

Chapter 20. Dump suppression 661

ADYUPDAT NODUMP undoes the effect of TAKEDUMP, if it was in effect.
Otherwise, NODUMP results in no action.

In the edit session, you can also delete every symptom string that has not been
updated within a specified number of days. You must SAVE the DAE data set for
the deletions to take effect. To request the deletions, enter on the command line:
ADYUPDAT CLEANUP nnn

nnn number of days a record has not been updated for it to be selected for
deletion. The default is 60 days.

ADYUPDAT always issues a status message reflecting the outcome of the
command.

Stopping, starting, and changing DAE
If an ADYSET00 parmlib member is used and the DAE data set is allocated, DAE
starts during IPL. Normally, DAE runs at the same time as the system. However if
DUMPSRV is ever cancelled or restarted, DAE restarts as well albeit with dump
suppression inactive You must manually reactivate dump suppression using the
SET DAE=xx command.

An operator can stop and start DAE with the following steps. One reason to use
these steps would be to change to a different ADYSETxx parmlib member with
different parameters.

Stopping DAE
You can stop DAE with a SET DAE command that specifies the ADYSET01
parmlib member, which contains a DAE=STOP statement:
SET DAE=01

Starting DAE
You can start DAE with a SET DAE command that specifies an ADYSETxx parmlib
member that contains the DAE=START parameter, such as an installation-provided
ADYSET03 parmlib member:
SET DAE=03

Changing DAE processing in a Sysplex
The operator can change all DAE processing in a sysplex, if desired. For example,
the operator can do the following to make all systems in a sysplex use a different
ADYSETxx member:
1. Stop DAE processing using the IBM-supplied ADYSET01 member:

ROUTE *ALL,SET DAE=01

Another way to stop DAE processing on all systems in a sysplex is to specify in
the SET DAE command an ADYSETxx member containing a GLOBALSTOP
parameter.

2. Start DAE processing using, for example, the ADYSET04 member:
ROUTE *ALL,SET DAE=04

Dump suppression

662 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Using a SLIP command to suppress dumps
Some dumps are almost never needed. For example, some abend codes tell the
diagnostician enough to solve the problem. For these codes, place SLIP operator
commands in an IEASLPxx parmlib member to suppress the unneeded dumps.
The IBM-supplied IEASLP00 member contains the SLIP commands to suppress
abend dumps that are seldom needed.

Using SLIP to suppress dumps also suppresses message IEA995I, which contains
symptom dump information. The system may document the abend in a LOGREC
error record.

To suppress dumps for an abend code, specify a SLIP operator command with one
of the following ACTION parameters. Place all the SLIP commands in an
IEASLPxx parmlib member and activate the IEASLPxx member with the following
command in a COMMNDxx or IEACMDxx member that is always used:
CMD=’SET SLIP=xx’

SLIP Parameter
Dumps Suppressed

ACTION=NODUMP
All dumps

ACTION=NOSVCD
SVC dumps

ACTION=NOSYSA
ABEND SYSABEND dumps

ACTION=NOSYSM
ABEND SYSMDUMP dumps

ACTION=NOSYSU
ABEND SYSUDUMP dumps

For example, to suppress SVC dumps and ABEND SYSMDUMP dumps for abend
code X'B37', add the following to IEASLPxx:
SLIP SET,COMP=B37,ACTION=(NOSVCD,NOSYSM),END

For more information about the following topics, see the following references:
v See z/OS MVS Initialization and Tuning Reference for the IEASLPxx member.
v See z/OS MVS System Commands for the SLIP operator command.

Using an ABEND macro to suppress dumps
A program can suppress a dump by issuing an ABEND macro without a DUMP
parameter. Application programmers should not specify a DUMP parameter when
a symptom dump can provide enough information for diagnosis.

See z/OS MVS Programming: Assembler Services Reference ABE-HSP for more
information about the ABEND macro.

Dump suppression

Chapter 20. Dump suppression 663

Using installation exit routines to suppress dumps
An installation can add installation exit routines, summarized in Table 69, to
suppress dumps. Use IEAVTABX if you want to suppress abend dumps based on
the job name, abend code, or other information in the system diagnostic work area
(SDWA). Use IEAVTSEL if you want to discard an SVC or SYSMDUMP dump
based on information in the dump header or from DAE. Use JES2 exit 4 or JES3
exit IATUX34 to suppress different types of dumps.

Table 69. Summary of installation exit routines for dump suppresion

Exit Processing Dump Suppression

IEAVTABX Before any ABEND dump Routine(s) can place a return code of
8 in register 15 to suppress the
requested dump.

IEAVTSEL After an SVC dump or ABEND
SYSMDUMP dump, if the dump
was not suppressed by DAE

Routine(s) can clear the dump data
set.

JES2 exit 4 or
JES3 IATUX34

For any JCL statement Can change the DSNAME parameter
on a dump DD statement to
DUMMY to suppress the dump.

For more information about the following topics, see the following references:
v See z/OS MVS Installation Exits for IEAVTABX and IEAVTSEL.
v See z/OS JES2 Installation Exits for the JES2 exit 4 routine.
v See z/OS JES3 Customizationfor the JES3 IATUX34 exit routine.

Determining why a dump was suppressed
If an intended dump is missing, use this list to decide why. The list gives reasons
why dumps are suppressed, including the ways discussed in this topic. In
planning for problem determination, be aware of all of these ways so that your
installation does not suppress intended dumps.
v DAE suppression of dumps. See “Using DAE to suppress dumps” on page 653.
v SLIP command that suppresses all dumps for an abend code. See “Using a

SLIP command to suppress dumps” on page 663.
v An ABEND macro without a DUMP parameter. See “Using an ABEND macro

to suppress dumps” on page 663.
v An MVS installation exit routine that suppresses the dump. See “Using

installation exit routines to suppress dumps.”
v Resource Access Control Facility (RACF) control of programs in an address

space to be dumped: Beginning with RACF 1.8.1, the installation can protect
ABEND dumps of programs using the FACILITY class. The protection can keep
you from accessing a dump.

v Dump on another system blocked by SYSDCOND in the PROBDESC area
and the IEASDUMP.QUERY routine. A dump on another system in a sysplex is
requested by a DUMP command or SDUMPX macro with a REMOTE parameter.
If the area specified by the PROBDESC parameter contains SYSDCOND, the
dump on the other system is not written because of either of the following on
the other system:
– No IEASDUMP.QUERY routine exists
– No IEASDUMP.QUERY routine returns a code of 0

Dump suppression

664 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v Dump suppressed by CHNGDUMP command. If a CHNGDUMP command
specifies NODUMP for SVC dumps:
– All SVC dumps on the system are suppressed.
– If a DUMP command or SDUMPX macro includes a REMOTE parameter, the

dump on the local system and the dumps on other systems in the sysplex are
suppressed.

v Dump on another system suppressed by CHNGDUMP command on the other
system. If a DUMP command or SDUMPX macro includes a REMOTE
parameter and a CHNGDUMP command previously entered on another system
in the sysplex specifies NODUMP for SVC dumps, the SVC dump on the other
system is suppressed. The dump on the local system is written.

The system can also place the dump in another data set, so that it is not in the
original data set specified in a message you received:
v An installation exit routine at JES2 exit 4 or at JES3 exit IATUX34 can change

the dump data set name.

v DUMPDS operator command can redirect SVC dump output. The command
can redirect SVC dump output to other SYS1.DUMPxx data sets.

For more information about the following topics, see the following references:
v See z/OS Security Server RACF Security Administrator's Guide for the FACILITY

class to control access to program dumps.
v See z/OS MVS System Commands for the DUMP, DUMPDS, and SLIP commands.
v See z/OS MVS Installation Exits for the IEAVTABX and IEAVTSEL exit routines.
v See z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU for

the SDUMPX macro.
v See z/OS MVS Programming: Authorized Assembler Services Guide for the

IEASDUMP.QUERY routine.
v See z/OS JES2 Installation Exits for the JES2 exit 4 routine.
v See z/OS JES3 Customizationfor the JES3 IATUX34 exit routine.

Dump suppression

Chapter 20. Dump suppression 665

Dump suppression

666 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 21. Messages

The system issues messages to do the following:
v Tell the operator or system programmer of progress and problems in system

processing
v Ask the operator to take actions and make decisions
v Tell the application programmer how the system ran the application program

and of problems in the application program

The system issues messages from the base control program components and a
variety of subsystems, products, and applications. Applications running under the
system can also issue their own messages.

Producing messages
You can get the system to produce a message by issuing a macro in any program
or by asking an operator to enter a command. The macros and command are:
v LOG operator command to write a message to the SYSLOG and OPERLOG
v WTL macro to write a message to the SYSLOG and OPERLOG

Note: Use WTO specifying MCSFLAG=HRDCPY instead of using WTL, which
provides additional information with the WTO message that is not with the
WTL message.

v WTO macro to write a message to the operator
v WTOR macro to write a message to the operator and request a reply

Use the following for related activities:
v DOM macro to delete an operator message or group of messages from the

display screen of a console
v REPLY operator command to answer a message
v WRITELOG operator command to start, stop, or print the SYSLOG and to

change the output class for the SYSLOG

For additional information, see the following resources:
v See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN for

DOM and z/OS MVS Programming: Authorized Assembler Services Reference
SET-WTO for the WTO, WTOR, and WTL macros.

v See z/OS MVS System Commands for the LOG, REPLY, and WRITELOG
commands.

Receiving messages
The system issues messages through WTO and WTOR macros to the following
locations. Routing codes determine the display and print location of the messages.
v Console
v Extended console
v Hard-copy log
v Job log

© Copyright IBM Corp. 1988, 2015 667

v SYSOUT data set

The system issues messages to the SYSLOG and OPERLOG using the WTL macro.

The access methods issue messages directly to one of the following locations:
v Display terminal
v Output data set

Console
Messages sent to a console with master authority are intended for the operators.
The system writes in the hard-copy log all messages sent to a console, regardless of
whether the message is displayed.

Hard-Copy log
The hard-copy log is a record of all system message traffic:
v Messages to and from all consoles
v Commands and replies that are entered by the operator.

In a dump, these messages appear in the master trace. With JES3, the hard-copy
log is written to the SYSLOG, the OPERLOG, or both. With JES2, the hard-copy log
is written to the SYSLOG, the OPERLOG, or both; it can also be viewed using a
product like System Display and Search Facility (SDSF). For more information abut
SDSF, see z/OS SDSF Operation and Customization.

System log
The SYSLOG is a SYSOUT data set provided by the job entry subsystem (either
JES2 or JES3). SYSOUT data sets are output spool data sets on direct access storage
devices (DASD). Use SDSF to view the SYSLOG to check for problems. The
SYSLOG consists of the following:
v All messages issued through WTL macros
v All messages entered by LOG operator commands
v Usually, the hard-copy logs
v Any messages routed to the SYSLOG from any system component or program

Job log
Messages sent to the job log are intended for the programmer who submitted a
job. Specify the system output class for the job log in the MSGCLASS parameter of
the JCL JOB statement.

SYSOUT data set
Messages sent to a SYSOUT data set are intended for a programmer. These
messages are issued by an assembler or compiler, the binder and loader, and an
application program. To make all messages about a program appear in the same
SYSOUT listing, specify the same class for the SYSOUT data set and in the
MSGCLASS parameter on the JCL JOB statement.

Receiving symptom dumps
A symptom dump is a system message, either message IEA995I or a numberless
message, which provides some basic diagnostic information for diagnosing an
abend. Often the symptom dump information can provide enough information to
diagnose a problem.

Messages

668 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

The example in Figure 221 shows the symptom dump for an abend X'0C4' with
reason code X'4'. This symptom dump shows the following information:
v Active load module ABENDER is at address X'00006FD8'.
v The failing instruction was at offset X'12' in load module ABENDER.
v The address space identifier (ASID) for the failing task was X'000C'.

Symptom dumps appear in the following places:
v For SYSUDUMP and SYSABEND ABEND dumps: in message IEA995I, which is

routed to the job log.
v For a SYSMDUMP ABEND dump: in message IEA995I in the job log and in the

dump header record.
v For an SVC dump: in the dump header record.
v For any dump in a Time Sharing Option/Extensions (TSO/E) environment:

displayed on the terminal when requested by the TSO/E PROFILE command
with the WTPMSG option.

v In response to a DISPLAY DUMP,ERRDATA operator command, which displays
information from SYS1.DUMPxx data sets on direct access.

If the information in a symptom dump is enough for diagnosis, do not provide a
DD statement for a dump.

For additional information, see one of the following resources:
v See Chapter 9, “Master trace,” on page 221 for information on master trace.
v See z/OS MVS JCL Reference for the JOB statement.
v See Chapter 5, “ABEND dump,” on page 135 for information about the ABEND

dump header record
v See Chapter 2, “SVC dump,” on page 7 for information about the SVC dump

header record
v See z/OS TSO/E Command Reference for the PROFILE command.

Planning message processing for diagnosis
Your installation can change message processing in a number of ways to optimize
diagnosis. Your installation can do the following tasks:
v Control message location
v Suppress messages
v Automate message processing

IEA995I SYMPTOM DUMP OUTPUT
SYSTEM COMPLETION CODE=0C4 REASON CODE=00000004
TIME=16.44.42 SEQ=00057 CPU=0000 ASID=000C
PSW AT TIME OF ERROR 078D0000 00006FEA ILC 4 INTC 04
ACTIVE LOAD MODULE=ABENDER ADDRESS=00006FD8 OFFSET=00000012
DATA AT PSW 00006FE4 - 00105020 30381FFF 58E0D00C
GPR 0-3 FD000008 00005FF8 00000014 00FD6A40
GPR 4-7 00AEC980 00AFF030 00AC4FF8 FD000000
GPR 8-11 00AFF1B0 80AD2050 00000000 00AFF030
GPR 12-15 40006FDE 00005FB0 80FD6A90 00006FD8

END OF SYMPTOM DUMP

Figure 221. Example: Symptom Dump Output

Messages

Chapter 21. Messages 669

v Not retain action messages
v Suppress the symptom dump message (IEA995I)

This section can help you find the information you need to optimize message
processing for your installation.

Controlling message location
An installation can change the following:
v The routing codes for specific messages to control
v On which console to display a message.

Change or specify the routing codes using the following methods:
v A WTO or WTOR macro specifies the routing code for the message that the

macro creates.
v A WTO/WTOR installation exit routine changes the routing code for any WTO

or WTOR message. This exit routine is the routine named in the USEREXIT
parameter in the MPFLSTxx parmlib member or IEAVMXIT.

v The JES3 MSGROUTE initialization statement changes the routing code of JES3
console messages.

v The JES3 CONSOLE initialization statement can control which messages a JES3
console receives.

v Subsystem interface listeners, such as NetView, can change the routing codes.

Suppressing messages
An installation can use the following to suppress messages. Suppressed messages
do not appear on a console.
v An MPFLSTxx parmlib member can specify message suppression. A suppressed

message does not display on a console, but writes to the hard-copy log.
v A WTO/WTOR installation exit routine can suppress any WTO/WTOR

messages or override suppression. This exit routine is the routine named in the
USEREXIT parameter in the MPFLSTxx parmlib member or IEAVMXIT.

v The JES2 installation exit routine, Exit 10, can suppress messages issued by the
JES2 main task.

v The JES3 installation exit routine, IATUX31, can suppress messages routed to
JES3 consoles.

v The CONTROL V operator command can suppress messages by specifying the
message levels to display at a console.

v VARY operator command can change the messages received by a console by
specifying the routing codes of messages to be displayed.

v The LEVEL keyword on the CONSOLE statement in the CONSOLxx parmlib
member also can suppress messages by specifying the message levels to be
displayed at a console. The ROUTCODE keyword can specify the routing codes
of messages that are displayed at the console.

Handling message floods
A MSGFLDxx parmlib member can specify the criteria required to recognize that a
message flooding situation is occurring and the actions to be taken to handle the
message flood. The message flood automation policy can prevent flood messages
from being:
v prevent flood messages from being displayed on a console
v prevent flood messages from being queued for automation

Messages

670 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

v prevent flood messages from being written to the SYSLOG or OPERLOG

Messages are written to the SYSLOG or OPERLOG identifying the job or specific
message that is causing the message flood; messages are also written to the logs
when action is taken against specific messages or messages from that job.

Automating message processing
An MPFLSTxx parmlib member can specify that a message is to be passed to an
automation subsystem, such as NetView. The automation subsystem can perform
actions that the operator would have performed without operator intervention.

Not retaining action messages
The MPFLSTxx parmlib member can specify not to retain a message using the
Action Message Retention Facility (AMRF). An operator cannot recall to the screen
action messages that are not retained.

Suppressing symptom dumps (IEA995I)
Table 70 lists ways to suppress symptom dumps for ABEND dumps. These ways
suppress only message IEA995I; symptom dumps continue to appear in other
locations.

Table 70. Suppressing symptom dumps

Dump Type CHNGDUMP Operator Command used
to Suppress Symptom Dump

Parmlib Member used to
Suppress Symptom Dump

SYSABEND
ABEND

CHNGDUMP SET,SYSABEND,SDATA=(NOSYM) IEAABD00

SYSMDUMP
ABEND

CHNGDUMP SET,SYSMDUMP=(NOSYM) IEADMR00

SYSUDUMP
ABEND

CHNGDUMP SET,SYSUDUMP,SDATA=(NOSYM) IEADMP00

For more information, see one of the following references:
v See z/OS MVS Planning: Operations for message flood automation, controlling

message display, suppressing messages, AMRF, and automating messages in a
sysplex.

v See z/OS MVS Programming: Assembler Services Reference IAR-XCT for the WTO
and WTOR macros.

v See z/OS MVS Initialization and Tuning Reference for the MPFLSTxx and
CONSOLxx members.

v See z/OS MVS Installation Exits for the exit routine named in the USEREXIT
parameter and for IEAVMXIT.

v See z/OS JES3 Initialization and Tuning Reference for the JES3 initialization
statements.

v See z/OS JES2 Installation Exits for Exit 10.
v See z/OS JES3 Customization for the IATUX31 exit.
v See z/OS MVS System Commands for the CONTROL V and the CHNGDUMP

operator command.

Messages

Chapter 21. Messages 671

672 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Chapter 22. Hardware Instrumentation Services

Hardware instrumentation services (HIS) is a function that collects hardware event
data for IBM System z10™ or later machines.

IBM may request that you provide hardware event data for diagnostics. Before you
start the HIS data collection, you may first need to authorize the sampling facilities
and counter set types you want to use through the support element (SE) console.
For each LPAR of interest, you will need to verify each of the following settings:
v Basic counter set authorization control
v Problem state counter set authorization control
v Crypto activity counter set authorization control
v Extended counter set authorization control
v Basic sampling authorization control

The LPAR to be measured may be already activated and running. A dynamic
update can be done to enable the CPU Measurement Facility without disrupting
this LPAR by selecting the Change LPAR Security icon on the SE or HMC. The
Save and Change options on the LPAR security panel will dynamically change the
running system and also save the change to the activation profiles. See Figure 222
for an example.

For LPARs that have not yet been activated, the CPU Measurement Facility can be
enabled using the security tab for the activation profile. See Figure 223 on page 674
for an example.

Figure 222. Change LPAR Security panel for active LPAR

© Copyright IBM Corp. 1988, 2015 673

|

|
|
|

|

|

|
|

|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

For information about how to set up the authorization of the sampling facilities
and counter sets, see Support Element Operations Guide for System z10 machine on
the Resource Link home page (http://www.ibm.com/servers/resourcelink).

In addition, with the enhanced-monitor facility hardware released with z196
machines, the HIS function expands into a z/OS software event data collector that
will be used by IBM for improved problem analysis. The z/OS event counters are
viewed as an additional counter set, but there is no authorization required to use
the hardware. For information on the enhanced-monitor facility hardware, see
z/Architecture Principles of Operation.

Figure 223. Activation profile security panel for new LPAR

Hardware Instrumentation Services

674 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

|

|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/servers/resourcelink

Appendix. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the "Contact us" web page for z/OS (http://www.ibm.com/
systems/z/os/zos/webqs.html) or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out

© Copyright IBM Corp. 1988, 2015 675

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the

676 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

default option for the FILE keyword. In the example, if you include the FILE
keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix. Accessibility 677

678 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2015 679

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

680 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 681

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

682 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

Index

Special characters
* control statement

in SPZAP 623

A
AB= parameter

in GTF 234
ABDUMP= parameter

in GTF 234
abend analysis

obtain abend code 154
obtain reason code 154

abend code
in STATUS FAILDATA report 43

ABEND dump
analysis 153
contents 142
customize 147
displaying options 142
reasons for selection 3
summary dump contents 146
SYSABEND dump analysis 153
SYSUDUMP dump analysis 153

ABEND dumps
obtaining 137
synopsis 136

ABEND macro
for requesting ABEND dumps 140
in dump customization 147, 149, 150, 152
to suppress dumps 663

abnormal end
indicated in logrec error record 519

ABSDUMP/ABSDUMPT control statement
example 611
in SPZAP 611, 619, 620, 621
parameter 620, 621

abstract xv
accessibility 675

contact IBM 675
features 675

ACR (alternate CPU recovery)
problem data 167
system trace event 174

ACR trace entry
in system trace 174

ADATA= parameter
LISTLOAD control statement 548

address
commonly bad 164

address space
buffers for component trace 356

addressing mode
system trace event 187

ADDSUMM keyword 84
ADDSUMM parameter

of AMDSADMP macro 81, 83
ADINT trace record

formatted 270
unformatted 324

Advanced Program-to-Program Communication
See APPC/MVS 371

AINT (adapter interruption)
system trace event 176

AINT trace entry
in system trace 176

ALIB parameter
AMDSADMP macro 79

ALL parameter
dump option 143

ALLNUC parameter
dump option 26, 60, 143

allocation
automatically of dump data set 8, 56
component trace 413
pre-allocation of dump data set 13

ALLPA parameter
dump option 143, 160

ALLPDATA parameter
dump option 143

ALLPSA parameter
dump option 26, 60

ALLSDATA parameter
dump option 143

ALLVNUC parameter
dump option 143, 160

ALTR trace entry
in system trace 177

AMAPDUPL
overview 641
see also z/OS Problem Documentation Upload Utility

(PDUU) 641
AMATERSE

allocation considerations 639
alternate DDNAMES 638
DASD support 635
DD statements

SYSPRINT 637
SYSUT1 637
SYSUT3 637

exec statement 636
incompatible with z/OS Problem Documentation Upload

Utility (PDUU) 642
PACK 636
parameters 636, 638
planning 635
restrictions 638
return codes 637
sample JCL 636
space considerations 639
SPACK 636
starting

problem state 637
tape support 635
troubleshooting 636
UNPACK 636
using 636
z/OS Problem Documentation Upload Utility (PDUU) 635

AMATERSE service aid 635
reasons for selection 5

© Copyright IBM Corp. 1988, 2015 683

AMBLIST output
obtain 546

AMBLIST service aid
control statement

rules for coding 546
description 545
functions 551
JCL statement 546
LISTIDR control statement 549
LISTLOAD control statement 547
LISTLPA control statement 550
LISTOBJ control statement 548
mapping CSECTs in a load module or program object 552
mapping the contents of the nucleus 556
mapping the modules in the link pack area 556
output 557
reasons for selection 5
tracing modifications to the executable code in a

CSECT 554
AMD029 parameter

of AMDSADMP macro 80
AMDSADDD utility 88

catalog requirement 91
characteristics 88
CLEAR option 90
DEFINE option 90
invocation 88
REALLOC option 90
space requirement 91
syntax 90, 91
unit requirement 91
vollist requirement 91
volser requirement 91

AMDSADMP macro 75
assembly 103
DUMP keyword 84
example 81
format for high-speed dump 75
multiple versions, assembling 104
one-stage generation 96
parameter

ADDSUMM 83
ADDSUMM= 81
ALIB= 79
AMD029= 80
COMPACT= 79
CONSOLE= 77
DDSPROMPT= 80
DUMP 82
DUMP= 78
IPL= 76
IPLEXIST= 80
LNKLIB= 80
MINASID 79
MODLIB= 80
MSG= 79
NUCLIB= 80
OUTPUT= 77
PROMPT 78, 83
REUSEDS= 79
SYSUT= 77
ULABEL= 77
VOLSER= 77

sample JCL 103
stage-two generation 103
symbol 76, 104

AMDSADMP macro (continued)
syntax

for high-speed dump 75
SYS1.MACLIB data set

assembly 103
two-stage generation 96

AMDSAOSG
DDNAMES 97

AMRF (active message retention facility)
for message retention 671

ANR record 526
APPC/MVS (Advanced Program-to-Program

Communications/MVS)
component trace 371

ASIDP trace option
in GTF 247

prompting 253
assistive technologies 675
authorized program

request dump 19
automation

of messages 671

B
BAKR instruction

system trace event 178
BALR instruction

system trace event 178
BASE control statement

example 619
in SPZAP 608, 619, 621
parameter 621

basic hyperswap socket support Component
See basic hyperswap socket support Component 392

basic hyperswap socket support Component (basic hyperswap
socket support Component)

component trace 392
BASR instruction

system trace event 178
BASSM instruction

system trace event 178
BCPii

component trace 388
BR trace entry

in system trace 178
branch

system trace event 178
branch instruction

trace 170
BRANCH parameter

to control summary dump 30
BSG trace entry

in system trace 179
buffer

for component trace 356
logrec 535

C
CALL trace entry

in system trace 181
CALLRTM macro

for requesting ABEND dumps 140
in dump customization 149, 150, 152

684 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

CANCEL operator command
to request ABEND dump 141

catalog
rebuild 616

CB parameter
dump option 143, 160

CCHHR control statement
in SPZAP 609, 622, 623
parameter 623

CCW trace option
in GTF 247

CCW trace record
formatted 270
unformatted 324

CCWN parameter of GTF CCWP 253, 254
CCWP trace option

DATA parameter 254
in GTF 247, 253, 254

I parameter 254
IOSB parameter 255
PCITAB parameter 255
S parameter 254
SI parameter 254

prompting 253
central storage dump

description 65
of stand-alone dump 69

channel program data
record 247

CHECKSUM control statement
in SPZAP 623
parameter 623

CHNGDUMP operator command
in dump customization 34, 63, 149, 151, 153
to change dump options 22, 142
to suppress symptom dump 671

clear
SVC dump 24
Transaction dump 59

CLKC trace entry
in system trace 181

combination of AMBLIST control statement 546
combination of GTF trace options 251
common event adapter Component

See common event adapter Component 396
common event adapter Component (common event adapter

Component)
component trace 396

common storage tracking
reasons for selection 5

COMPACT parameter
of AMDSADMP macro 79

component trace
description 347
IBM Health Checker for z/OS 409
options

for OPS 459
reasons for selection 4
start the external writer 363
start the trace 359, 363, 366
stop the external writer 364
stop the trace 359, 364, 366
sublevel 347, 349
sublevel trace

verifying 367
SYSAPPC for APPC/MVS component 371
SYSAXR for System REXX component 384

component trace (continued)
SYSBCPII for BCPii 388
SYSBHI for basic hyperswap socket support

component 392
SYSCEA for common event adapter component 396
SYSDLF for data lookaside facility (DLF) 399
SYSDSOM for distributed SOM 401
SYSGRS for global resource serialization 403
SYSIEFAL for allocation component 413
SYSIOS for IOS component trace 419
SYSJES for JES common coupling services 425
SYSjes2 for JES2 subsystem 435
SYSLLA for LLA 437
SYSLOGR for system logger 438
SYSOMVS for z/OS UNIX 446
SYSOPS for OPS component 458
sysplex 365
SYSRRS for RRS component 463
SYSRSM for RSM 470
SYSSPI for SPI component 487
SYSVLF for VLF component 488
SYSWLM for WLM component 492
SYSXCF for XCF component 494
SYSXES for cross-system extended services 499
verifying 367
viewing trace data 369

compression
how it works for PDUU 641
use for dumps 15

considerations
one-stage generation 99

CONSOLE control statement
example 624
in SPZAP 624

console supported by stand-alone dump 77
CONSOLE= parameter

of AMDSADMP macro 77
specifying the SYSC constant 77

consolidate
data from GTF traces 261

contact
z/OS 675

control records
GTF trace record

unformatted 319
control registers

format in a dump 50
control statement

for AMBLIST service aid 546
for SPZAP 618

Control statement
for AMBLIST service aid 557
z/OS UNIX 557

copy
SVC dump 24
Transaction dump 59

copy a dump
DASD to DASD 117
multiple devices to DASD 118
tape to DASD 117

COPYDUMP subcommand
to obtain component trace data 369

COPYTRC subcommand
for component traces 369

counter and sampling collection
overview 673

Index 685

COUPLE parameter
dump option 26, 60

CP Assist for Cryptographic Functions (CPACF) 642
cross memory instruction

system trace event 179
cross memory processing mode

problem data 166
cross-system extended services

component trace 499
CRW record 526
CSA dumped by stand-alone dump 69
CSA parameter

dump option 143
CSCH trace entry

in system trace 183
CSCH trace option

in GTF 247
CSCH trace record

formatted 272
CSECT

accessing data 608
tracing modifications to the executable code in a

CSECT 554
CSECT identification record (IDR)

print 596
CSECT name

NAME control statement
of SPZAP 603

CSECTs in a load module or program object
mapping with AMBLIST service aid 552

CTIAXRxx parmlib member
for SYSAXR component trace 385

CTIBHIxx parmlib member
for SYSBHI component trace 392

CTICEAxx parmlib member
for SYSCEA component trace 396

CTIHWI00 parmlib member
for SYSBCPII component trace 389

CTIHZS00 parmlib member
for SYSHZS component trace 410

CTIIEFxx parmlib member
for SYSIEFAL component trace 413

CTIRSM01 471
CTIRSMSP 471
CTIRSMxx parmlib member 471
CTnAPPxx parmlib member

for SYSAPPC component trace 371
CTnBPXxx parmlib member

for SYSOMVS component trace 446
CTnGRSxx parmlib member

for SYSGRS component trace 404
CTnIOSxx parmlib member

for SYSIOS component trace 420
CTnJESON parmlib member

for SYSJES component trace 427
CTnJESxx parmlib member

for SYSJES component trace 427
CTnLOGxx parmlib member

for SYSLOGR component trace 441
CTnOPSxx parmlib member

for SYSOPS component trace 458
CTnRRSxx parmlib member

for SYSRRS component trace 464
CTnRSMxx parmlib member

for SYSRSM component trace 471
CTnXCFxx parmlib member 495

for SYSXCF component trace 495

CTnXESxx parmlib member
for SYSXES component trace 502

CTRACE
component trace 347

CTRACE subcommand
for SYSAPPC component trace 375
for SYSAXR component trace 387
for SYSBHI component trace 394
for SYSCEA component trace 398
for SYSOMVS component trace 449
for SYSOPS component trace 461
for SYSWLM component trace 493
for SYSXCF component trace 498
for SYSXES component trace 504
FULL report 462
SHORT report 462

CTWRSM05 parmlib member 471
customization

of nucleus area in dump 33, 62, 147
customize

master trace 221

D
DAE (dump analysis and elimination)

description 653
DAE data set

editing 660
managing 660
removing old symptom strings 660

DAE Display panel
invoking 660

DAE service aid
reasons for selection 5

DASD (direct access storage device) 70, 76, 77, 97, 104
allocation 87

AMDSADDD utility 88
IPCS SADMP utility 88

data set 87
stand-alone dump 65
types 87

DASD-SIM recovery record 526
data

for diagnosis 163
inspect with SPZAP 601
modify with SPZAP 601

data inspection
use SPZAP 601

data lookaside facility
See DLF 399

data modification
use SPZAP 601, 602, 609, 619

DATA parameter of GTF CCWP 253, 254
data set

automatically allocated for dumps 8, 56
to receive ABEND dump 138

data space
buffers for component trace 356

DCB parameter
for component trace data set 361

DD statement
in AMBLIST service aid

anyname 546
SYSIN data set 546
SYSPRINT data set 546

in IFCDIP00 521
in logon procedure 140

686 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

DD statement (continued)
in SPZAP

SYSABEND data set 616
SYSIN data set 604, 616, 619, 624
SYSLIB data set 602, 603, 604, 605, 610, 614, 615, 619,

624
SYSPRINT data set 610, 615

in stand-alone dump 117
SYSIN data set 97
SYSPRINT data set 97
SYSPUNCH data set 103

SYSMDUMP 139
SYSOUT 139, 158
SYSUT2 statement 117

DDN= parameter
LISTIDR control statement 550
LISTLOAD control statement 547
LISTOBJ control statement 549

DDNAMES
one-stage generation 97

DDR record 526
DDSPROMPT parameter

of AMDSADMP macro 80
Debug data set 650
DEBUG= parameter

in GTF 235
DEFAULTS parameter

dump option 26, 60
detail edit report

produced by
EREP 537
IPCS VERBEXIT LOGDATA subcommand 537

software record 537
symptom record 543

DIAGxx parmlib member
for requesting GFS trace 513

Differences in output
z/OS UNIX 557

disabled
summary dump 30

disk initialization program - IFCDIP00 520
dispatch

system trace event 186
DISPLAY operator command

for SYS1.DUMPxx information 669
to display dump options 22, 142
to find SVC dump 22

DIV (data-in-virtual) 474
DLF (data lookaside facility)

component trace 399
DM parameter

dump option 143, 160
DSNTYPE 360
DSOM (distributed SOMobjects)

component trace 401
DSP trace entry

in system trace 186
DSP trace option

in GTF 247
DSP trace record

comprehensive
unformatted 325

formatted 274
minimal

unformatted 325
dump

automatically allocated data set 8, 56

dump (continued)
customization 147
customize contents of ABEND dump 147
displaying options 22, 142
dump analysis

summary SVC 35
SVC 35

find 22
notification when rapidly recurring 656
pre-allocated data set 13
reasons dumps are suppressed 664
requesting a suppressed dump 660
suppress by abend code 663
suppress by ABEND macro 663
suppress by DAE 653
suppress by installation exit routines 664
suppress by RACF 664
suppress by SLIP trap 663
suppressing when rapidly recurring 655
suppression 653

zeroed page dump 69
time 23
title in SVC dump 23

dump analysis and elimination 55
See DAE 653

DUMP command
SLIP command 357
to obtain component trace 357

DUMP control statement
in SPZAP

example 625
dump data sets

DSNTYPE=LARGE 55
dump grab bag 163

storage overlay 163
DUMP keyword 84
DUMP operator command

in dump customization 34
to request SVC dump 19

DUMP parameter
of AMDSADMP macro 78, 82

dump selection
ABEND dump 1
SNAP dump 1
stand-alone dump 1
SVC dump 1
Transaction dump 1

dump tailor option
for stand-alone dump 84

dump title 41
in AMBLIST service aid

LISTIDR control statement 549, 550
LISTLOAD control statement 547
LISTOBJ control statement 548

specification 547, 548, 549, 550
DUMP/DUMPT control statement

in SPZAP 604, 605, 606, 619, 624, 625
parameter 624, 625

DUMP/DUMPT control statement example
explanation of second control statements 606
inspecting and modifying two CSECTs 605
modifying a CSECT in a load module 604
using SPZAP to modify a CSECT 606

DUMPDS command
make data set available 21

DUMPDS operator command
to clear SYS1.DUMPxx data set 24

Index 687

DUMPOPT or DUMPOPX parameter
in dump customization 149, 150, 152

dumps
description 2

dvolser 120
dynamic invocation

of SPZAP 616

E
EID (event identifier) for GTF 317
EMS trace entry

in system trace 181
enabled

summary dump 30
ENQ parameter

dump option 143
entry

system trace 171
environmental data

definition 524
record header information 525

environmental record 524
EOD record 526

RDE option 526
ERR parameter

dump option 143, 161
error

record in logrec 519
error identifier

in STATUS WORKSHEET report 42
in VERBEXIT LOGDATA report 48

error statistic
definition 524

ESTAE or ESTAEX macro
in dump customization 149, 151, 152

ESTAI parameter
in dump customization 149, 151, 152

ETR recovery record 526
example

CTWRSM05 parmlib member 471
exit 4

for JES2
to suppress dumps 664

exit routine
to suppress dumps 664

EXT trace entry
in system trace 181

EXT trace option
in GTF 247

EXT trace record
comprehensive

unformatted 326
formatted 280
minimal

unformatted 326
extended sequential data set

to hold large dumps 13
external interruption

record 247
external writer

source JCL 360
extract

GTF trace data from dumps 261

F
failing instruction 43
FID (format identifier) 318
FID (format identifier) for GTF 318
fixed link pack area

map 550
FLIH (first level interrupt handler)

problem data
saved by external FLIH 130
saved by I/O FLIH 130
saved by SVC FLIH 130

FLPA parameter
of LISTLPA control statement 551

FORCE ARM command 245
format of the logrec buffer 536
formatting

master trace 223
formatting the Logrec buffer 536
FRR (functional recovery routine)

in dump customization 149, 151, 152
FRR (functional recovery routine) data

record 249
FRR trace record

formatted 281
FTPCMDS 647
FTPCMDS data set example 647

G
general purpose registers

format in a dump 50
generating from AMDSADMP macro

stand-alone dump 96
generic tracking facility 343
GFS trace

requesting 513
global resource serialization

component trace 403
goff listing

AMBLIST output for LISTOBJ with GOFF records. 563
GRSQ parameter

dump option 26, 60, 143
GTF (generalized trace facility)

combining trace options 251
prompting 252
prompting keywords in SYS1.PARMLIB 257
specification of a system event 257
specification of GTF trace for a system event 257
starting 241
starting GTF 243

prompting 252
START command 241
with internal tracking mode 241

starting with data recorded on a device 244
STOP command 244
storing trace options in SYS1.PARMLIB 242
trace VTAM remote network activity 244

GTF (generalized trace facility) trace
ADINT trace record

formatted 270
ADINT trace records

unformatted 324
cataloged procedure 230, 231
CCW trace record

formatted 270

688 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

GTF (generalized trace facility) trace (continued)
CCW trace records

unformatted 324
control record 319
CSCH trace record

formatted 272
customization 232
definition of trace options 232
DSP comprehensive trace record

unformatted 325
DSP minimal trace record

unformatted 325
DSP trace record

formatted 274
EID (event identifier) for USR trace records 317
EXT comprehensive trace record

unformatted 326
EXT minimal trace record 326
EXT trace record

formatted 280
FID (format identifier) for USR trace records 318
formatted output 266
FRR trace record

formatted 281
generation of trace record 230
HEXFORMAT trace record 283
HSCH trace record

formatted 272
I/O trace record

unformatted 330
IBM defaults 230
IBM-supplied catalogued procedure 230
in GTF 229
IOX trace record

formatted 284
lost data record 321

unformatted 322
lost event record 269
LSR trace record

formatted 287
merge with component traces 262
MSCH trace record

formatted 288
output direction 229
parmlib member options 230
PCIDMX trace record

formatted 289
PCIDMX trace records

unformatted 331
PCILG trace record

formatted 289
PCILG trace records

unformatted 331
PCISTG trace record

formatted 290
PCISTG trace records

unformatted 331
PGM trace record

formatted 291
PI comprehensive trace record

unformatted 331
PI minimal trace record

unformatted 332
PI trace record

formatted 291
program event 229
receive 260

GTF (generalized trace facility) trace (continued)
records 262
request reasons 229
RNIO trace record

formatted 293
RR comprehensive trace record

unformatted 332
RR minimal trace record

unformatted 333
RSCH trace record

formatted 294
SDSP trace record

formatted 274
setting up a catalogued procedure 232
SLIP DEBUG trace record

unformatted 337
SLIP trace record

formatted 295
unformatted 333

SLIP user trace record
unformatted 336

source index record 269
SRB trace record

formatted 300
SRM comprehensive trace record

unformatted 337
SRM minimal trace record

unformatted 337
SRM trace record

formatted 302
SSCH trace record

formatted 303
unformatted 338

STAE trace record
formatted 304

starting GTF
how to start 238, 239
START command 239

storage requirement determination 237
SUBSYS trace record

formatted 283
SVC comprehensive trace record

unformatted 338
SVC minimal trace record

unformatted 339
SVC trace record

formatted 305
system data record

unformatted 323
system data records 324
system event 229
SYSTEM trace record

formatted 283
time stamp record 268
trace record format 246
unformatted output 319
use of IPCS to print output 230
use with system trace 230
USR trace record

formatted 311
XSCH trace record

formatted 316
GTF (Generalized trace facility) trace

SLIP standard trace record
unformatted 336

GTF cataloged procedure
IBM defaults 230, 231

Index 689

GTF START command parameter
parm member

BLOK= 234
SIZE= 234

GTF trace
ASIDP option 247
CCWP option 247
CSCH option 247
DSP option 247
EXT option 247
HSCH option 247
IO option 247
IOX option 247
JOBNAMEP option 248
MSCH option 248
PCI option 248
PCIE option 249
PFIDP option 249
PI option 249
PIP option 249
reasons for selection 4
RNIO option 249
SI option 249
SIOP option 249
SLIP option 249
SRM option 249
SSCH option 250
SSCHP option 250
SVC option 250
SVCP option 250
SYS option 250
SYSM option 250
SYSP option 250
TRC option 251
USR option 251

GTF trace event
record 251

GTF trace option
combining options 251
prompting for 252
USRP option 251
XSCH option 251

GTFTRACE subcommand
to format GTF trace 260

H
halt subchannel operation

GTF record 247
hardcopy log

and master trace 221
hardware

error 519
hardware counter and sampling collection

overview 673
hardware instrumentation services

how to collect counter and sampling data 673
Hardware Instrumentation Services (HIS)

overview 673
header record

for incident record 525
for logrec data set

format 525
used by EREP 525
used by recording routine 525

HEXFORMAT trace record
formatted 283

high speed dump 65
high speed dump program

example 81
high virtual private storage

RSM 471
high-speed version

of stand-alone dump 75
high-speed version of stand-alone dump 69
hiperspace data

dump 26, 59, 142, 160
HIS

overview 673
how to send data to IBM 642
HSCH trace entry

in system trace 183
HSCH trace option

in GTF 247
HSCH trace record

formatted 272

I
I/O interruption

GTF record 247
I/O operation

system trace event 183
I/O trace entry

in system trace 181
I/O trace record

unformatted 330
IATUX34 installation exit

for JES3
to suppress dumps 664

IBM Health Checker for z/OS
component trace 409
TRACE command 410

identifier
for formatted GTF formatted trace record 265
for system trace entries 172

IDRC (improved data recording capability) feature
COMPACT parameter 79

IDRDATA control statement
example 604, 605, 606, 619
in SPZAP 604, 605, 606, 619, 626
parameter 626

IEAABD00 parmlib member
in dump customization 148
in dump suppression 671

IEACMD00 parmlib member
in dump customization 34, 63

IEADMP00 parmlib member
in dump customization 152
in dump suppression 671

IEADMR00 parmlib member
in dump customization 150
in dump suppression 671

IEASLPxx parmlib member
for SLIP operator command 663

IEAVADFM exit
in dump customization 150, 153, 160

IEAVADUS exit
in dump customization 150, 153, 160

IEAVTABX exit
in dump customization 150, 151, 153

IEAVTABX installation exit
to suppress dumps 664

IEAVTSDT program 42

690 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

IEAVTSEL installation exit
to suppress dumps 664

IFCDIP00 - disk initialization program
application 520
changing logrec data set size 520
reinitializing logrec data set 520

IFCDIP00 service aid
function 520
initializing logrec data set 520
reallocate space on logrec data set 521

JCL example 521
reinitializing logrec data set 521

JCL example 521
IGD17163I 644
IMPEXP= parameter

LISTLOAD control statement 548
incident record

on logrec data set
content 524
record header 525
size 524

on logrec log stream
content 524
size 524

initialization error messages
in stand-alone dump 70

installation exit routine
in dump customization 150, 151, 153, 160
to suppress dumps 664

instruction address trace
reasons for selection 4

interpretation of software record 537
interruption

code 257
I/O 255
program 249, 257
supervisor 250, 257
SVC interrupt 250, 257
system trace event 181

introduction
SNAP dumps 157

IO parameter
dump option 143, 161

IO trace option
in GTF 247

IO=SSCH= keyword
in GTF 256
prompting 256

IOP trace option
in GTF 255
prompting 255

IOS
component trace 419

IOS recovery record 526
IOSB parameter of GTF CCWP 253, 255
IOX trace option

in GTF 247
IOX trace record

formatted 284
IPCS SADMP utility 68
IPCS service aid

reasons for selection 5
IPCS subcommand

VERBEXIT LOGDATA
to format in-storage logrec buffer 536

IPL record 526
RDE option 526

IPL/outage recorder
function 525

IPL= parameter
of AMDSADMP macro 76

IPLEXIST parameter
of AMDSADMP macro 80

J
JCL statement

AMBLIST service aid 546
SPZAP service aid 614

JES common coupling services
component trace 425

JES2 subsystem
component trace 435

job control language statement in IFCDIP00 521
JCL example 521

JOBNAMEP trace option
in GTF 248, 256
prompting 256

JPA parameter
dump option 143, 161

K
key-length-data format

SDWAVRA 542
keyboard

navigation 675
PF keys 675
shortcut keys 675

L
large dumps

how to send to IBM 641
library lookaside

See LLA 437
link pack area

AMBLIST service aid 550
map 550
mapping using AMBLIST service aid 596
mapping with AMBLIST service aid 556

linkage stack
analysis for diagnosis 164

list a link pack area 550
list CSECT identification record 549
LIST service aid

control statement
LISTLOAD statement 612

description 545
planning 545

LISTIDR control statement
example 554, 555, 556
format 549
in AMBLIST service aid 549, 550, 554, 555, 556

OUTPUT= 549
MODLIB parameter 550
parameter

DDN= 550
MEMBER= 550
TITLE= 550

LISTLOAD control statement
example 553, 554, 556
format 547

Index 691

LISTLOAD control statement (continued)
in AMBLIST service aid 547, 548, 553, 554, 556
in LIST 612
parameter

ADATA= 548
DDN= 547
IMPEXP= 548
MEMBER= 547
OUTPUT= 547
RELOC= 548
TITLE= 547

to list the SSI 612
LISTLPA control statement

example 556
FLPA parameter 551
format 550
in AMBLIST service aid 550, 551, 556
MLPA parameter 551
PLPA parameter 551

LISTOBJ control statement
DDN parameter 549
example 551, 552, 554
format 548
in AMBLIST service aid 548, 549, 551, 552, 554
parameter

MEMBER= 549
TITLE= 548

LLA (library lookaside)
component trace 437

LMI recovery record 526
LNKLIB parameter

of AMDSADMP macro 80
load module

AMBLIST service aid output 547, 548
listing 547
listing current information using AMBLIST service

aid 552
load module list

AMBLIST service aid output 552
locating the logrec buffer 536
locating the WTO buffer 536
locked processing mode

problem data 166
log stream

JCL specification 530
log stream data set

subsys-options2 533
LOGDATA verb 536
logrec

buffer, recording control 535
format of buffer 536
formatting 536
how to print 529
recording control buffer 535

LOGREC Buffer
format in a dump 48

logrec data set
error recording 524

purpose 519
header record

format 525
function 525

initializing 520
must be permanently mounted volume 521
non-sharable data set 525
purpose of error record 519

logrec data set (continued)
reinitialization

JCL example 521
reinitializing 520
reIPL

JCL example 521
size 520
space allocation 520

JCL example 521
reallocating 521

time stamp record 525
format 525

type of record 526
type of record recorded 526

logrec data set - IFCDIP00 reallocation
description 521
JCL example 521

logrec data set - IFCDIP00 reinitialization
description 521
JCL example 521

logrec data set initialization 520
Logrec data set service aid

reasons for selection 5
logrec data set software record

interpretation 537
SDWA-type 537

output 537
symptom record 537

output 543
logrec error record

contents 525
customize 544
for diagnosis 519

logrec log stream
defining 522
error recording 524

purpose 519
example of creating a history data set 534
example of producing an event history 530, 535
example of using system logger utility 522
obtaining record 530
purpose of error record 519
type of record 526
type of record recorded 526

logrec recording medium
planning 520

lost data records
GTF trace record

unformatted 321
lost event record

in GTF trace 269
LPA parameter

dump option 143, 161
LSQA dumped by stand-alone dump 69
LSQA parameter

dump option 143, 161
LSR trace record

formatted 287

M
machine check

problem data 167
macro expansion messages

in stand-alone dump 70
main storage dump

description 65

692 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

main storage dump (continued)
of stand-alone dump 69

map
link pack area 550, 556
nucleus 556

master trace 221, 224
and hardcopy log 221
customize 221
dump output 223
entry in trace table 226
formatting 223
header in trace table 225
receive 222
request 222
start 222
stop 222

MCH record 526
MCH trace entry

in system trace 181
MCIC (machine check interrupt code)

problem identification 168
MDR record 526
MEMBER= parameter

LISTIDR control statement 550
LISTLOAD control statement 547
LISTOBJ control statement 549

membername
for GTF 239

merge
component and GTF trace 262

MERGE subcommand
combining and formatting component trace data 370

message
customize location 670
customize processing 669
from SPZAP 629
produce 667
receive 667

message display
3480 device 120
3490 device 120
3590 device 120
stand-alone dump program 120

messages 667
migrating

one-stage generation
stand-alone dump 100

migration considerations
one-stage generation

stand-alone dump 100
MIH record 526
MINASID parameter

of AMDSADMP macro 79
MLPA parameter

of LISTLPA control statement 551
MOBR trace entry

in system trace 187
mode

cross memory processing mode 166
locked processing mode 166
of processing 165
physically disabled processing mode 166
service request processing mode 166
task processing mode 166

MODE trace entry
in system trace 187

MODE= parameter
in GTF 233

modified link pack area
map 550

MODLIB parameter
of AMDSADMP macro 80
of LISTIDR control statement 550

module
problem data 165

module summary
AMBLIST output for module processed by binder 558,

598
AMBLIST output for module processed by linkage

editor 558, 597
MSCH trace entry

in system trace 183
MSCH trace option

in GTF 248
MSCH trace record

formatted 288
MSG= parameter

of AMDSADMP macro 79
MTFTPS replacement

z/OS Problem Documentation Upload Utility (PDUU) 642
multiple error events 48

N
NAME control statement

example 603, 604, 605, 606, 619
in SPZAP 602, 603, 604, 605, 606, 619, 626
parameter 626

navigation
keyboard 675

NOALL parameter
dump option 26, 60

NOALLPSA parameter
dump option 26, 60

NODEFAULTS parameter
dump option 26, 60

NOPROMPT parameter
in GTF 234

NOPSA parameter
dump option 26, 60

NOSQA parameter
dump option 26, 60

NOSUM parameter
dump option 26, 60

NOSYM parameter
dump option 143

Notices 679
notification

of rapidly recurring dumps 656
NP parameter

in GTF 234
NUC parameter

dump option 143, 161
nucleus

dump 33, 62, 147
mapping using AMBLIST service aid 556

NUCLIB parameter
of AMDSADMP macro 80

Index 693

O
Object module

for AMBLIST service aid 557
z/OS UNIX 557

object module list
obtain 551

object module or GOFF
listing current information using AMBLIST service

aid 551
OBR record 526
OPS (operations services component)

component trace 458
option

for dump content 22, 142
output 115, 116

of AMBLIST service aid 557
of SPZAP 629

output to DASD dump program
example 81

OUTPUT= parameter
LISTIDR control statement 549
LISTLOAD control statement 547
of AMDSADMP macro 77

overlay, storage
in pattern recognition 163

overview
information xv

P
pageable link pack area

map 550
paging activity

RSM 471
PARM option

IGNIDRFULL 615
of JCL EXEC statement

for SPZAP service aid 615
parmlib

CTnXCFxx member 495
parmlib library

IEADMCxx member 20
IEASLPxx member 20

PASSIVE mode 648
PC trace entry

in system trace 179
PCDATA parameter

dump option 143, 161
PCI trace option

in GTF 248
PCIDMX trace record

formatted 289
unformatted 331

PCIE trace option
in GTF 249

PCIL (PCI load)
system trace event 188

PCIL trace entry
in system trace 188

PCILG trace record
formatted 289
unformatted 331

PCIS (PCI store)
system trace event 190

PCIS trace entry
in system trace 190

PCISTG trace record
formatted 290
unformatted 331

PCITAB parameter of GTF CCWP 253, 255
PDMX (PCIE adapter interruption de-multiplexing)

system trace event 191
PDMX trace entry

in system trace 191
PDS/PDSE 641
PFIDP trace option

in GTF 249
PGM trace entry

in system trace 192
PGM trace record

formatted 291
physically disabled processing mode

problem data 166
PI trace option

in GTF 249
PI trace record

comprehensive
unformatted 331

formatted 291
minimal

unformatted 332
PIP trace option

in GTF 249
PLPA parameter

of LISTLPA control statement 551
PMR

number variables for PDUU 645
PR trace entry

in system trace 179
print

ABEND dump 141
SNAP dump 157, 159
stand-alone dump 119
SVC dump 24
SYSABEND dump 141
Transaction dump 59

problem
hardware-detected 154
software-detected 153

problem data
from dump 163
from linkage stack 164
from module 165

problem state
AMATERSE 637

program
system trace event 192

program check
saved problem data 130

program event
trace with GTF 229

program object
AMBLIST service aid output 547, 548
listing 547
listing current information using AMBLIST service

aid 552
using SPZAP to modify a CSECT

example 602
Program object

for AMBLIST service aid 557
z/OS UNIX 557

694 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

program object module
using SPZAP to modify a record

example 609
PROMPT parameter

of AMDSADMP macro 78, 83
prompting

how to request 252
in GTF 252

PSA dumped by stand-alone dump 69
PSA parameter

dump option 26, 60
PSW parameter

dump option 143, 161
PSWREGS data

in dump 38
PT trace entry

in system trace 179

Q
Q parameter

dump option 143, 161

R
RCVY trace entry

in system trace 193
RDE option

on IPL record 526
RDE option on EOD record 526
real storage manager

See RSM 470
reason code

issued by stand-alone dump 108, 113
receive

master trace 222
record

error 519
from logrec data set or logrec log stream 537
GTF trace 262
recording on logrec data set 526
recording on logrec log stream 526

RECORD control statement
in SPZAP 609

recordable extension
in SDWA 542

recording control buffer 535
recording control buffer (RCB) 535
records on logrec data set 526
records on logrec log stream 526
recovery

system trace event 193
recovery routine

in dump customization 149, 151, 152
recovery work area

problem data 166
registers

format in a dump 50
REGS parameter

dump option 143, 161
reinitialize the logrec data set

uncorrectable error 521
RELOC= parameter

of LISTLOAD control statement 548
REP control statement

example 603, 605, 606, 619

REP control statement (continued)
in SPZAP 601, 603, 605, 606, 619, 627
variable 627

resume subchannel data
record 250

retention
message

by AMRF 671
retrieve information from logrec data set

using the EREP program 527
return code 99

from SPZAP 616
return codes

AMATERSE 637
z/OS Problem Documentation Upload Utility (PDUU) 651

REUSEDS parameter
of AMDSADMP macro 79

RGN parameter
dump option 143

RNIO formatted trace record
formatted 293

RNIO trace option
in GTF 249

RR trace record
comprehensive

unformatted 332
minimal

unformatted 333
RRS (resource recovery services)

component trace 463
RSCH trace entry

in system trace 183
RSCH trace record

formatted 294
RSM

trace data 471
RSM (real storage manager)

component trace 470
RST trace entry

in system trace 181

S
S|I|SI parameter of GTF CCWP 254
SA parameter

dump option 143, 161
SA= parameter

in GTF 233
SADMP message

display example 120
MSADMP#U 120
NTRDY message 120
RSADMP# 120
RSADMP# U 120
SADMP# 120
status information

3480 device 120
SADMP= parameter

in GTF 233
SAH parameter

dump option 143, 161
sample JCL

one-stage generation 96
DASD 98
tape 98

Index 695

sample JCL for migrating
one-stage generation

DASD 100
tape 102

scheduled SVC dump 42
SD= parameter

in GTF 234
SDSP trace record

formatted 274
SDUMP= parameter

in GTF 234
SDUMPX 4K SQA buffer

content 53
SDUMPX macro

to request SVC dump 19
SDWA (system diagnostic work area)

recordable extension 542
SDWAVRA (SDWA variable recording area)

key-length-data format 542
secondary extent

allocation 14
calculation 14
SPACE requirement 14

security
problems with APPC/MVS component 381

self-dump
of stand-alone dump 113

sending comments to IBM xvii
sequential data set

extended
to hold large dumps 13

service aid selection
AMATERSE 2
AMBLIST 2
DAE 2
IPCS 2
Logrec data set 2
SLIP 2
SPZAP 2

service aids and tools
descriptions 2
selection 1

service request processing mode
problem data 166

SETRP macro
for requesting ABEND dumps 140
in dump customization 149, 151, 152

SETSSI control statement
example 604, 605, 606
in SPZAP 604, 605, 606, 612, 628
parameter 628

shortcut keys 675
SIGA trace entry

in system trace 183
SIO trace option

in GTF 249
SIOP trace option

in GTF 249
SLH record 527
SLIP command

SDUMPX 4K SQA buffer data 53
SLIP work area data 129

SLIP data
record 249

SLIP debug trace record
formatted 299
unformatted 337

SLIP operator command
control dump contents 33, 62
to request SVC dump 20
to suppress dumps 663

SLIP service aid
reasons for selection 5

SLIP standard trace record
formatted 298
unformatted 336

SLIP trace option
in GTF 249

SLIP user trace record
formatted 298, 299
unformatted 336

SLIP work area
content 129

SNAP dump
contents 160
customization 160
introduction 157
reasons for selection 3
request 157

SNAP macro
for requesting dumps 159

SNAP or SNAPX macro
in dump customization 149, 150, 152
to request SNAP dump 159

software
error 519

software record 527, 537
detail edit report 537
interpretation 537

source index record
in GTF trace 269

source JCL
for component trace external writer 360

SPER trace entry
in system trace 192

SPI (service processor interface)
component trace 487

SPIN trace entry
in system trace 199

SPLS option
in dump customization 148, 149, 152

SPLS parameter
dump option 143, 161

SPR2 trace entry
in system trace 192

SPZAP example
inspect and modify CSECT in z/OS UNIX 602

SPZAP service aid
accessing a load module 608
control statement

* 623
ABSDUMP 611, 619
ABSDUMPT 611, 619
BASE statement 608, 619, 621
CCHHR statement 609, 622
CHECKSUM statement 623
CONSOLE statement 624
DUMP 604, 605, 606, 619, 624
DUMPT 604, 605, 606, 619, 624
IDRDATA statement 604, 605, 606, 619, 626
NAME statement 602, 603, 604, 605, 606, 619, 626
RECORD statement 609
REP statement 601, 603, 605, 606, 619, 627
rules for coding 618

696 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SPZAP service aid (continued)
control statement (continued)

SETSSI statement 604, 605, 606, 612, 628
VERIFY statement 601, 603, 604, 605, 606, 619, 628

data record
inspection 601, 609
modification 601, 609

description 601
DUMP statement

example 625
dynamic invocation

example 617
macro form 616

example
running 602

JCL statement 614
load module

inspection 602
modification 602

monitoring SPZAP use 601
operational consideration 613
output 629
program object

inspection 602
modification 602

reasons for selection 5
return code 616
updating system status information 612

SQA buffer for SDUMPX
content 53

SQA dumped by stand-alone dump 69
SQA parameter

dump option 143, 161
SRB formatted trace record

in GTF trace 300
SRB trace entry

in system trace 186
SRM data

record 249
SRM trace option

in GTF 249
SRM trace record

comprehensive
unformatted 337

formatted 302
minimal

unformatted 337
SS trace entry

in system trace 181
SSAR trace entry

in system trace 179
SSCH trace entry

in system trace 183
SSCH trace option

in GTF 250
SSCH trace record

formatted 303
unformatted 338

SSCHP trace option
in GTF 250, 257
prompting 257

SSI (system status index)
field 612
flag byte 612

SSRB trace entry
in system trace 186

SSRV trace entry
in system trace 204

STAE trace record
formatted 304

stand-alone dump 65, 96
analysis

collecting initial data 121
determining system state 122
disabled loop 129
disabled wait 128
enabled loop 128
enabled wait 124
gathering external symptoms 121
gathering IPCS symptoms 121
problem data saved 130

analyzing 121
considerations

one-stage generation 99
containing component trace records 359
DASD (direct access storage device) 65
data space 86, 87
dump tailoring option, dumping additional storage 84
migrating 100
reasons for selection 3
sample JCL

DASD example 98
tape example 98

sample JCL for migrating
DASD example 100
tape example 102

service aid 65, 84
3480 message 120
3490 message 120
3590 message 120
AMDSADMP macro, coding 81
assembly of the AMDSADMP macro 103
central storage dump 69
coding AMDSADMP macro, for high-speed dump 75
copying dumps, DASD to DASD 117
copying dumps, multiple devices to DASD 118
copying dumps, tape to DASD 117
creation 70
data space 86, 87
DD statement 97
device selection 70
dumping additional storage 82, 83
dvolser 120
error condition 70
example 81
generation, requesting additional storage 82
initialization of residence volume 104
initialization of resident volume 70
IPCS LIST subcommand, self-dump 113
macro message 99
macro parameter 76, 77, 78, 79, 80, 81, 82, 83, 104
main storage dump 69
mapping, nucleus 69
message output 70
nucleus 69
one-stage generation 70, 96, 99
output 115
printing dumps, using IPCS 119
reason code 108, 113
reinitializing 113
residence volume initialization 70
restart 112
restarting stand-alone dump 112

Index 697

stand-alone dump (continued)
service aid (continued)

return code 99
running 83, 107, 108, 113
running stand-alone dump in a sysplex 113
running the dump program 108, 112, 113
sample JCL 96, 103
self-dump 113
stage-two generation 103, 104
storage dump 113
system restart 112
two-stage generation 70
unformatted output 115, 116
viewing dumps, using IPCS 118
virtual storage dump 69
wait state 108, 113
wait-reason code 110
wait-reason code, processing completion 112

specification
of address range 84
of subpool 84

tape sample 102, 103
stand-alone dump example

analyzing a disabled wait 128
determining if TCB in normal wait 126
determining ready work 126
determining resource contention 125
determining system activity 124
determining the module 124
determining the system state 122
gather symptom data 121
obtaining real storage data 125
of using stand-alone dump 81
reading the PSW 122
recognizing an enabled loop 128

stand-along dump
service aid

output 116
START command 244

for GTF 239
start subchannel data

record 250
status

of master tracing 222
of SYS1.DUMPxx data set 22

STATUS subcommand
FAILDATA report 43
REGISTERS report 50
SYSTEM report 42
WORKSHEET report 41

STOP command 244
storage overlay

determination
damaged area 163

in pattern recognition 163
STORE STATUS command 69
striping

use for dumps 15
sublevel

component trace 347
component traces 349
verifying sublevel traces 367

SUBPLST option
in dump customization 148, 149, 152

subpools dumped by stand-alone dump 69
SUBSYS trace record

formatted 283

SUBTASKS parameter
dump option 29, 143, 161
in macro parameter list 148

SUM parameter
dump option 143

SUMDUMP output 35, 36
SUMLIST address range

in dump 37, 38
SUMLSTA address range

in dump 37, 38
summary dump 35

disabled 30
enabled 30
in ABEND dump 146
in SVC dump 30
in Transaction dump 62
suspend 30

summary of changes
as updated February 2015 xix
as updated March 2014 xix

Summary of changes xix
SUMMARY subcommand

TCBERROR report 46
summary SVC dump 7
supervisor

system trace event 215
suppression

generating a suppressed dump 660
of dumps 653
of dumps by abend code 663
of dumps by ABEND macro 663
of dumps by DAE 653
of dumps by installation exit routines 664
of dumps by RACF 664
of dumps by SLIP trap 663
of messages 670
of rapidly recurring dumps 655
of symptom dumps 671
reasons dumps are suppressed 664

SUSP trace entry
in system trace 214

suspend
summary dump 30

suspend lock
system trace event 214

SUSPEND parameter
to control summary dump 30

SVC D
example in SYSTRACE report 50

SVC dump
analyze using IPCS 39
asynchronous 7
automatically allocated data set 8
clearing 24
containing component trace records 359
contents 25
copying 24
customization 26
data set 21
debugging hint 35
displaying options 22
DUMPDS command 21
introduction 7
planning dump data set 8
pre-allocated data set 13
printing 24
reasons for selection 4

698 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

SVC dump (continued)
request 17
scheduled 7
SUMDUMP output for branch-entry SDUMPX 37
SUMDUMP output for SVC dump 36
summary dump 7
summary dump contents 30
suppressing 653
symptom dump 669
synchronous 7
viewing 24

SVC dump example
DISPLAY DUMP,ERRDATA command 23
IPCS VERBX SUMDUMP command 35

SVC interruption
record 250

SVC trace entry
in system trace 215

SVC trace option
in GTF 250

SVC trace record
comprehensive

unformatted 338
formatted 305
minimal

unformatted 339
SVCE trace entry

in system trace 215
SVCP trace option

in GTF 250, 257
prompting 257

SVCR trace entry
in system trace 215

SWA parameter
dump option 143, 161

symptom
display in SVC dumps 23

symptom dump
receive 668
suppress 671

symptom record 537
detail edit report 543
interpretation 543

symptom string
generating a suppressed dump 660
viewing in DAE data set 660

SYMREC macro 543
synchronous SVC dump 42
SYS trace option

combining certain trace options 252
in GTF 250, 252

SYS1.DUMPxx data set
availability 22
control 17
determine contents 22
determine status 22
displaying information 669
to receive SVC dump 19

specify 16
SYS1.LPALIB library 614
SYS1.MACLIB

AMDSADMP macro
assembly 103

SYSABEND
analysis approach 135

SYSABEND DD statement 616

SYSABEND dump
analysis 153
customization 148
symptom dump 669

SYSAPPC component trace
CTnAPPxx parmlib member 371
FMH-5 trace data 381
format options 375
FULL report 380
SHORT report 378
SUMMARY report 379
TRACE command 371
trace request options 371

SYSAXR component trace
CTIAXRxx parmlib member 385
format options 387
TRACE command 386
trace request options 385

SYSBCPII component trace
CTIHWI00 parmlib member 389
SHORT report 390
TALLY report 391
TRACE command 389
trace request options 389

SYSBCPII traces
OPTIONS 390

SYSBHI component trace
CTIBHIxx parmlib member 392
format options 394
TRACE command 393
trace request options 392

SYSCEA component trace
CTICEAxx parmlib member 396
format options 398
TRACE command 397
trace request options 396

SYSDLF component trace
FULL report 399

SYSDSOM component trace
FULL report 402

SYSGRS component trace
CTnGRSxx parmlib member 404
SHORT report 408
TALLY report 408
TRACE command 404
trace request options 404

SYSHZS component trace
CTIHZS00 parmlib member 410
example 411
format 412
output 412
SHORT report 412
trace request options 410

SYSIEFAL component trace
CTIIEFxx parmlib member 413
FULL report 418
SHORT report 418
TRACE command 414
trace request options 413

SYSIN
z/OS Problem Documentation Upload Utility (PDUU) 643

SYSIN DD statement 604, 616, 619
in stand-alone dump 97
used in AMBLIST service aid 546
used in SPZAP 624

SYSIOS component trace
CTnIOSxx parmlib member 420

Index 699

SYSIOS component trace (continued)
SHORT report 423
TRACE command 421
trace request options 420

SYSJES component trace
CTnJESxx parmlib member 427
format options 429
request sublevels 425
requesting 426
TRACE command 427
verifying 367

SYSjes2 component trace
format options 435
request sublevels 435
requesting 435

SYSLIB DD statement 602, 603, 604, 605, 610, 614, 615, 619
used in SPZAP 624

SYSLOGR component trace
CTnLOGxx parmlib member 441
output 445
trace request options 443

SYSM trace option
in GTF 250

SYSMDUMP
analysis approach 135

SYSMDUMP dump
customization 150
preallocate data set 138
suppressing 653
symptom dump 669
to VIO data set 138

SYSOMVS component trace
CTnBPXxx parmlib member 446
format options 449
FULL report 451
SUMMARY report 456
TRACE command 447
trace request options 448

SYSOPS component trace
CTnOPSxx parmlib member 458
format options 461
TRACE command 458
trace options 459
trace request options 458

SYSOUT data set
to receive ABEND dump 141

SYSP trace option
in GTF 250

sysplex
component trace data sets 360
component tracing in systems 365

SYSPRINT
z/OS Problem Documentation Upload Utility (PDUU) 643

SYSPRINT DD
used in AMBLIST service aid 546

SYSPRINT DD statement 610, 615
in stand-alone dump 97

SYSPUNCH DD statement
in stand-alone dump 103

SYSRRS component trace
CTnRRSxx parmlib member 464
FULL report 468
SHORT report 468
SUMMARY report 468
TALLY report 468
TRACE command 464
trace request options 464

SYSRSM component trace
CTnRSMxx parmlib member 471
FULL report 486
TRACE command 471
trace request options 471

system data records
GTF trace record

unformatted 323
system event

trace with GTF 229
System logger component

component trace 438
system mode

in STATUS FAILDATA report 43
system resource manager data

record 249
system restart

for stand-alone dump 112
System REXX Component

See System REXX Component 384
System REXX Component (System REXX Component)

component trace 384
system service

system trace event 204
system spin

system trace event 199
system status index

function 612
system trace 169

ACR trace entry 174
addressing mode trace entries 187
AINT trace entry 176
altering options 177
ALTR trace entry 177
branch trace entries 178
BSG trace entry 179
CALL trace entry 181
CLKC trace entry 181
CSCH trace, entry 183
customizing 169
DSP trace entry 186
EMS trace entry 181
entries 171
entry identifiers 172
example in a dump 172
EXT trace entry 181
format in a dump 50
formatting output 171
HSCH trace entry 183
I/O trace entry 181
increasing the size of trace table 169
MCH trace entry 181
MOBR trace entry 187
MODE trace entry 187
MSCH trace entry 183
PC trace entry 179
PCIL trace entry 188
PCIS trace entry 190
PDMX trace entry 191
PGM trace entry 192
PR trace entry 179
PT trace entry 179
RCVY trace entry 193
reading output 171
receiving output in a dump 171
RSCH trace entry 183
RST trace entry 181

700 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

system trace (continued)
SPER trace entry 192
SPIN trace entry 199
SPR2 trace entry 192
SRB trace entry 186
SS trace entry 181
SSAR trace entry 179
SSCH trace entry 183
SSRB trace entry 186
SSRV trace entry 204
SUSP trace entry 214
SVC trace entry 215
SVCE trace entry 215
SVCR trace entry 215
TIME trace entry 217
tracing branch instructions 170
USRn trace entry 218
WAIT trace entry 186

SYSTEM trace record
formatted 283

system trace table
increasing 169

SYSTRACE subcommand
dump output 172

SYSUDUMP
analysis approach 135

SYSUDUMP dump
analysis 153
customization 152
symptom dump 669

SYSUT= parameter
of AMDSADMP macro 77

SYSUT1
z/OS Problem Documentation Upload Utility (PDUU) 643

SYSUT2
z/OS Problem Documentation Upload Utility (PDUU) 643

SYSUT2 data set 650
SYSUT2 DD statement 117
SYSVLF component trace

FULL report 489
trace request options 488

SYSWLM component trace
format options 493
FULL report 493
TRACE command 492
trace request options 492

SYSXCF component trace
CTnXCFxx parmlib member 495
format options 498
FULL report 499
TRACE command 496
trace request options 495

SYSXES component trace
CTnXESxx parmlib member 502
format options 504
SHORT report 505
TRACE command 502
trace request options 502, 503
verifying 367

T
tape

one-stage JCL example
stand-alone dump 102, 103

task processing mode
problem data 166

time
display in dump 23
system trace event 217

time of dump 42, 43
time stamp record

in GTF trace 268
logrec data set

format 525
how recorded 525
updated at user-specified interval 525

TIME trace entry
in system trace 217

TIME= parameter
in GTF 234

title
display in dump 23

TITLE= parameter
LISTIDR control statement 550
LISTLOAD control statement 547
LISTOBJ control statement 548

tools and service aids
overview 2
selection 1

trace a functional recovery routine operation 249
trace a modify subchannel operation 248
trace a program interruption 249
trace a SLIP trap 249
trace an I/O interruption 247
TRACE command

for SYSAPPC component trace 371
for SYSAXR component trace 386
for SYSBCPII component trace 389
for SYSBHI component trace 393
for SYSCEA component trace 397
for SYSGRS component trace 404
for SYSIEFAL component trace 414
for SYSIOS component trace 421
for SYSJES component trace 427
for SYSOMVS component trace 447
for SYSOPS component trace 458
for SYSRRS component trace 464
for SYSRSM component trace 471
for SYSWLM component trace 492
for SYSXCF component trace 496
for SYSXES component trace 502
IBM Health Checker for z/OS 410

trace data set
for component trace 360

TRACE operator command
determining master trace status 222

trace selection
component trace 1
GFS trace 2
GTF trace 2
master trace 2
system trace 2

trace table
for master trace 224

trace table in storage 224
trace VTAM network activity 249
traces

description 2
trademarks 681
Transaction dump

asynchronous 55
automatically allocated data set 56
clearing 59

Index 701

Transaction dump (continued)
contents 59
copying 59
customization 59
introduction 55
planning dump data set 55
printing 59
request 58
summary dump contents 62
synchronous 55
viewing 59

transaction trace
SYSTTRC for transaction trace 488

Transaction Trace
introduction 507

TRC trace option
in GTF 251

troubleshooting
AMATERSE 636

TRT parameter
dump option 143, 161

TTRC (transaction trace)
transaction trace 488

two-stage generation
migration 105
overriding 107

type of record
ANR record 526
CRW record 526
DASD-SIM recovery record 526
DDR record 526
EOD record 526
ETR recovery record 526
IOS recovery record 526
IPL record 526
LMI recovery record 526
MCH record 526
MDR record 526
MIH record 526
OBR record 526
SLH record 527
software record 527

U
ULABEL= parameter

of AMDSADMP macro 77
unformatted dump 65

SVC dump 24
SYSMDUMP dump 141
Transaction dump 59

unformatted dump program
example 81

unformatted GTF records
control records 319
lost data records 321
system data records 323
user trace records 322

unformatted output
of GTF 319

user
system trace event 218

user data records
GTF trace record 322
unformatted 322

user interface
ISPF 675

user interface (continued)
TSO/E 675

user trace data
record 251

userid.NETRC data set 649
USR trace option

in GTF 251
USR trace record

formatted 311
USRn trace entry

in system trace 218
USRP trace option

in GTF 251, 257
prompting 257

V
VERBEXIT MTRACE subcommand

dump output 223
to format master trace 223

VERBEXIT subcommand
LOGDATA report 48
TRACE report 50

verify
component trace 367
external writer 367

VERIFY control statement
example 603, 604, 605, 606, 619
in SPZAP 601, 603, 604, 605, 606, 619, 628, 629
parameter 628, 629

view
ABEND dump 141
SVC dump 24
Transaction dump 59

viewing
component trace data 369

virtual lookaside facility
See VLF 488

virtual storage dump
description 65
of stand-alone dump 69

VLF (virtual lookaside facility)
component trace 488

VOLSER= parameter
of AMDSADMP macro 77

VSAM object
access 616

VTAM network activity
record 249

W
wait state code

issued by stand-alone dump 108, 113
WAIT trace entry

in system trace 186
wait-reason code

issued by stand-alone dump 110
unload a tape 112

WLM (workload manager)
component trace 492

wrap
of component trace data sets 362

WRAP parameter
TRACE CT command 362

WTO recording control buffer location 536

702 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

X
XCF (cross-system coupling facility)

component trace 494
XSCH trace entry

in system trace 183
XSCH trace option

in GTF 251
XSCH trace record

formatted 316
xsd listing

AMBLIST output for LISTOBJ with XSD record. 562

Z
z/OS Problem Documentation Upload Utility (PDUU)

AMADUPL 641
AMATERSE 635
compression 641
data set

supported 642
unsupported 642

DEBUG 645
encryption 641
encryption key 645
example

DEBUG data set 650
FTP connection using a proxy server 646
FTP proxy server with FTPCMDS DD 647
FTP proxy server with user ID 647
PASSIVE mode 648
port specification 648
simple FTP connection 646
SYSIN continuation record 651
SYSUT2 650
userid.NETRC data set 649

FTPCMDS 645
JCL examples 645
JCL statements 642
messages 642
number of sessions 641
overview 641
partitioned data sets 641
planning use 642
PMR variables 645
prerequisites 642
restrictions 642
return codes 651
SYSIN

ACCOUNT 644
CC-FTP 645
CIPHER_KEY 645
DATACLAS 645
DIRECTORY 645
KEEP_WORK 645
PASSWORD 644
PMR 645
STORCLAS 645
TARGET_DSN 644
TARGET_SYS 643
USERID 644
WORK_DSN 644
WORK_DSN_SIZE 644

z/OS UNIX
component trace 446
example 557
File support 557

z/OS UNIX (continued)
in AMBLIST service aid 557
NAME control statement 602
REP statement 601
SPZAP example

inspect and modify CSECT 602
VERIFY statement 601

zeroed page
dump suppression 69

Index 703

704 z/OS V2R1.0 MVS Diagnosis: Tools and Service Aids

����

Product Number: 5650-ZOS

Printed in USA

GA32-0905-02

	Contents
	Figures
	Tables
	Abstract for MVS Diagnosis: Tools and Service Aids
	Who must use this information
	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated February 2015
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated March 2014
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Selecting tools and service aids
	How do I know which tool or service aid to select?
	What tools and service aids are available?

	Chapter 2. SVC dump
	Planning data set management for SVC dumps
	Using automatically allocated dump data sets
	Naming automatically allocated dump data sets
	Using automatic allocation of SVC dump data sets
	Setting up allocation authority
	Establishing a name pattern
	Defining resources for dump data sets
	Activating automatic allocation
	Verifying dump status
	Managing automatically allocated dump data sets

	Using pre-allocated dump data sets
	Allocating SYS1.DUMPxx data sets with secondary extents

	Choosing SVC dump data sets
	Finding automatically allocated dump data sets
	Communication from the system
	Specifying SYS1.DUMPxx data sets
	Controlling SYS1.DUMPxx data sets

	Obtaining an SVC dump
	Issuing a macro for SVC dump
	Operator activities
	Operator command in an IEASLPxx parmlib member
	Operator command in an IEADMCxx parmlib member

	Making a dump data set available
	Determining current SVC dump options and status
	Dump mode and options
	Status of SYS1.DUMPxx data sets

	Finding SVC dumps
	Title and time of SVC dump(s)
	Symptoms from SVC dumps

	Printing, viewing, copying, and clearing a pre-allocated or SYS1.DUMPxx data set
	Contents of SVC dumps
	Customizing SVC dump contents
	Customized contents using the SDATA parameter
	Contents of summary dumps in SVC dumps
	Customizing contents through operator commands

	Tailoring SVC dumps
	Analyzing summary SVC dumps
	SUMDUMP output for SVC-Entry SDUMPX
	SUMDUMP output for branch-entry SDUMPX
	Analyzing disabled summary dumps
	Analyzing suspend summary dumps

	Analyzing an SVC dump
	Specifying the source of the dump
	Formatting the SVC dump header
	Looking at the dump title
	Displaying the incident token, time and type of dump
	Locating error information
	Analyze TCB structure
	Examining the LOGREC buffer
	Examining the system trace
	Looking at the registers
	Other useful reports for SVC dump analysis
	Reading the SDUMPX 4K SQA buffer

	Chapter 3. Transaction dump
	Planning data sets for transaction dumps
	Planning data set management for transaction dumps
	Using preallocated dump data sets
	Setting up allocation authority
	Choices for IEATDUMP Data Sets
	Naming automatically allocated dump data sets
	Communication from the system

	Obtaining transaction dumps
	Printing, viewing, copying, and clearing a dump data set
	Contents of transaction dumps
	Customizing transaction dump contents
	Customized contents using the SDATA parameter
	Contents of summary dumps in transaction dumps
	Customizing contents through operator commands

	Chapter 4. Stand-alone dump
	Planning for stand-alone dump
	Should I take a stand-alone dump to DASD or to tape?
	If I do dump to DASD, how much space do I need?
	Can I dump to multiple dump data sets?
	What can I name my DASD dump data sets?
	How much of the system should I dump?
	When should I specify the dump tailoring options?
	What type of security does the stand-alone dump program require?
	Should I use IEBGENER or the COPYDUMP subcommand to copy a dump to a data set?
	What is dumped when I run the stand-alone dump program?

	Can I use my current version of the stand-alone dump program to dump a new version of z/OS?

	Creating the stand-alone dump program
	MNOTES from the AMDSADMP macro
	Coding the AMDSADMP macro
	Syntax of the AMDSADMP macro
	Examples of Coding the AMDSADMP Macro
	Using the DUMP or ADDSUMM keyword to request additional storage or address spaces
	Dumping to a DASD data set

	Using the AMDSADDD utility
	Examples of running AMDSADDD in batch mode

	Generating the stand-alone dump program
	One-stage generation
	Considerations when using one-stage generation
	Using one-stage generation of stand-alone dump when migrating

	Two-stage generation
	Assembling multiple versions of AMDSADMP
	Initializing the residence volume
	Using two-stage generation of stand-alone dump when migrating
	Using two-stage generation for overriding

	Running the stand-alone dump program
	Procedure A: Initialize and run stand-alone dump
	Procedure B: Restart stand-alone dump
	Procedure C: ReIPL stand-alone dump
	Procedure D: Dump the stand-alone dump program
	Stand-alone self-dump

	Running the stand-alone dump program in a sysplex
	Method A
	Method B

	Capturing a stand-alone dump quickly
	Minimize the operator actions
	Get a partial stand-alone dump

	Copying, viewing, and printing stand-alone dump output
	Copying the dump to a data set
	Copying from tape
	Copying from DASD
	Copying from multiple dump data sets

	Viewing stand-alone dump output
	Printing stand-alone dump output

	Message output
	Stand-alone dump messages on the 3480, 3490, or 3590 display

	Analyzing stand-alone dump output
	Collecting initial data
	Gathering external symptoms
	Gathering IPCS symptoms
	Determining the system state

	Analyzing an enabled wait
	Reviewing outstanding I/O requests
	Analyzing for resource contention
	Obtaining real storage data
	Determining dispatchability

	Analyzing a disabled wait
	Analyzing an enabled loop
	Analyzing a disabled loop
	SLIP problem data in the SLIP work area
	Problem data saved by first level interrupt handlers

	Chapter 5. ABEND dump
	Synopsis of ABEND dumps
	Obtaining ABEND dumps
	Data set for dump
	Preallocate data sets for SYSMDUMP dumps

	Process for obtaining ABEND dumps

	Printing and viewing dumps
	Contents of ABEND dumps
	Determining current ABEND dump options
	Default contents of ABEND dumps

	Default contents of summary dumps in ABEND dumps

	Customizing ABEND dump contents
	Customizing SYSABEND dump contents
	Customizing SYSMDUMP dump contents
	Customizing SYSUDUMP dump contents

	Analyzing an ABEND dump
	Analysis Procedure

	Chapter 6. SNAP dump
	Obtaining SNAP dumps
	Customizing SNAP dump contents
	Customizing through installation exits
	Customizing through the SNAP or SNAPX macro

	Chapter 7. The dump grab bag
	Problem data for storage overlays
	Analyzing the damaged area
	Common bad addresses

	Problem data from the linkage stack
	Problem data for modules
	Processing modes

	Problem data from recovery work areas
	Problem data for ACR
	Pre-Processing phase data
	Post-Processing phase data

	Data obtained by IPCS

	Problem data for machine checks

	Chapter 8. System trace
	Customizing system tracing
	Increasing the size of the system trace table
	Tracing branch instructions

	Receiving system trace data in a dump
	Formatting system trace data in a dump
	Reading system trace output
	Example of a system trace in a dump
	Summary of system trace entry identifiers
	ACR trace entries
	AINT trace entries
	ALTR trace entries
	BR trace entries
	BSG, PC, PR, PT, PTI, SSAR and SSIR trace entries
	CALL, CLKC, EMS, EXT, I/O, MCH, RST, and SS trace entries
	CSCH, HSCH, MSCH, RSCH, SSCH, SIGA and XSCH trace entries
	DSP, SRB, SSRB, and WAIT trace entries
	MODE and MOBR trace entries
	PCIL trace entries
	PCIS trace entries
	PDMX trace entries
	PGM, SPER and SPR2 trace entries
	RCVY trace entries
	SPIN trace entries
	Spinning modules

	SSRV trace entries
	SUSP trace entries
	SVC, SVCE, and SVCR trace entries
	TIME trace entries
	USRn trace entries
	Multiple trace entries for a user event

	Chapter 9. Master trace
	Master trace and the hardcopy log
	Customizing master trace
	Requesting master trace
	Receiving master trace
	Reading master trace data
	Master trace output formatted in a dump
	Master trace table in storage
	Header in the master trace table
	Entry in the master trace table

	Chapter 10. The Generalized Trace Facility (GTF)
	GTF and IPCS
	GTF and the GTRACE macro
	GTF and system trace

	Using IBM defaults for GTF
	The IBM-Supplied parmlib member of GTF trace options
	The IBM-Supplied cataloged procedure

	Customizing GTF
	Defining GTF trace options
	Setting up a cataloged procedure
	Guidelines for defining GTF trace output data sets in a cataloged procedure

	Determining GTF's storage requirements

	Starting GTF
	Using the START command to invoke GTF
	Guidelines for overriding JCL statements in the GTF cataloged procedure
	Examples of overriding the JCL statements in the GTF cataloged procedure

	Specifying or changing GTF trace options through system prompting
	Examples of starting GTF
	Starting GTF with a cataloged procedure and parmlib member
	Starting GTF with internal tracking
	Starting GTF with trace output to an existing data set on tape
	Starting GTF with trace options stored in SYS1.PARMLIB
	Starting GTF without trace options in a member

	Starting GTF to trace VTAM remote network activity

	Stopping GTF
	GTF trace options
	Combining GTF options
	Prompting keywords

	Examples of sample prompting sequences

	Receiving GTF traces
	Combining, extracting, and merging GTF trace output
	Combining and extracting GTF output

	Merging trace output

	Reading GTF output
	Formatted GTF trace output
	Trace record identifiers
	Example of formatted GTF trace output

	Formatted trace records for events
	Time stamp records
	Source index records
	Lost event records
	ADINT trace records
	CCW trace records
	CSCH and HSCH trace records
	DSP and SDSP trace records
	EOS, INTG, IO, IOCS, and PCI trace records
	EXT trace records
	FRR trace records
	HEXFORMAT, SUBSYS, and SYSTEM trace records
	IOX trace records
	LSR trace records
	MSCH trace records
	PCIDMX trace records
	PCILG trace records
	PCISTG trace records
	PGM and PI trace records
	RNIO trace records
	RSCH trace records
	SLIP trace records
	SLIP standard trace record
	SLIP standard/user trace record
	SLIP user trace record
	SLIP debug trace record
	SRB trace records
	SRM trace records
	SSCH trace records
	STAE trace records
	SVC and SVCR trace records
	TCW trace records
	USR trace records
	Unformatted USR trace record
	Formatted USR trace record
	USRF9 trace record for VSAM
	USRFD trace record for VTAM
	USRFE trace record for BSAM, QSAM, BPAM, and BDAM
	USRFF trace record for open/close/EOV abnormal end
	USRFF trace record for user requested work area
	XSCH trace record
	Event Identifiers (EIDs) for USR trace records
	Format Identifiers (FIDs) for USR trace records

	Unformatted GTF trace output
	Control records
	Unformatted lost event records
	User data records
	System data records
	Unformatted trace records for events
	ADINT trace record
	CCW trace record
	DSP comprehensive trace record
	DSP minimal trace record
	EXT comprehensive trace record
	EXT minimal trace record
	I/O summary trace record
	I/O trace record
	PCIDMX trace record
	PCILG trace record
	PCISTG trace record
	PI comprehensive trace record
	PI minimal trace record
	RR comprehensive trace record
	RR minimal trace record
	SLIP trace records
	SRM comprehensive trace record
	SRM minimal trace record
	SSCH trace record
	SVC comprehensive trace records
	SVC minimal trace record
	TCW trace record

	Chapter 11. The generic tracker facility
	References for IBM tracked events

	Chapter 12. Component trace
	Planning for component tracing
	Create CTncccxx parmlib members for some components
	Specify buffers

	Select the trace options for the component trace
	Decide where to collect the trace records

	Obtaining a component trace
	Request component tracing to address space or data space trace buffers
	Prepare for a specific component trace to trace buffers
	Perform component tracing to trace buffers

	Request writing component trace data to trace data sets
	Prepare for a specific component trace to trace data sets

	Create a parmlib member
	Perform component tracing to trace data sets
	Change trace data sets

	Request component tracing for systems in a sysplex
	Prepare for specific component traces on systems in a sysplex
	Perform component tracing on the systems in the sysplex

	Verifying component tracing
	Verify tracing for component traces without sublevels
	Verify tracing for component traces with sublevels

	Verify that the writer is active

	Viewing the component trace data
	SYSAPPC component trace
	Requesting a SYSAPPC trace
	CTnAPPxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSAPPC traces

	Formatting a SYSAPPC trace
	Examples of subcommands to format a SYSAPPC trace

	Output from a SYSAPPC Trace
	CTRACE COMP(SYSAPPC) SHORT subcommand output
	CTRACE COMP(SYSAPPC) SUMMARY subcommand output
	CTRACE COMP(SYSAPPC) FULL subcommand output

	FMH-5 trace data

	SYSAXR component trace
	Requesting a SYSAXR trace
	CTIAXRnn parmlib member
	TRACE and REPLY commands
	OPTIONS parameter

	Formatting a SYSAXR trace
	Output from a SYSAXR Variables Trace

	SYSBCPII component trace
	Requesting a SYSBCPII trace
	CTIHWI00 parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSBCPII traces

	Formatting a SYSBCPII trace
	Output from a SYSBCPII trace
	CTRACE COMP(SYSBCPII) FULL subcommand output

	SYSBHI component trace
	Requesting a SYSBHI trace
	CTIBHIxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter

	Formatting a SYSBHI trace
	Output from a SYSBHI trace

	SYSCEA component trace
	Requesting a SYSCEA trace
	CTICEAnn parmlib member
	TRACE and REPLY commands
	OPTIONS parameter

	Formatting a SYSCEA trace
	Output from a SYSCEA trace

	SYSDLF component trace
	Requesting a SYSDLF trace
	Formatting a SYSDLF trace
	Output from a SYSDLF trace

	SYSDSOM component trace
	Requesting a SYSDSOM trace
	Formatting a SYSDSOM trace
	Output from a SYSDSOM trace

	SYSGRS component trace
	Requesting a SYSGRS trace
	CTnGRSxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSGRS traces

	Formatting a SYSGRS trace
	Output from a SYSGRS trace

	SYSHZS component trace
	Requesting a SYSHZS trace
	CTIHZS00 parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSHZS traces

	Formatting a SYSHZS trace
	Output from a SYSHZS trace

	SYSIEFAL component trace
	Requesting a SYSIEFAL trace
	CTIIEFxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSIEFAL traces

	Formatting a SYSIEFAL trace
	Output from a SYSIEFAL trace

	SYSIOS component trace
	Requesting a SYSIOS trace
	CTnIOSxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of Requesting SYSIOS traces

	Formatting a SYSIOS trace
	CTRACE COMP(SYSIOS) subcommand output

	SYSJES component trace
	Requesting a SYSJES trace
	CTnJESxx parmlib member
	TRACE and REPLY commands
	Examples of requesting SYSJES traces
	Requesting a SYSJES trace for problems during initialization

	Formatting a SYSJES trace
	Format SYSJES sublevel information
	OPTIONS parameter for formatting a SYSJES trace
	Merging SYSJES information from sublevels

	Output from a SYSJES trace

	SYSjes2 component trace
	Requesting a SYSjes2 trace
	Formatting SYSjes2 sublevel trace Information
	Merging SYSjes2 information from sublevels

	Output from a SYSjes2 trace

	SYSLLA component trace
	Requesting a SYSLLA trace
	Formatting a SYSLLA trace

	SYSLOGR component trace
	Obtaining a dump of system logger information
	Requesting a SYSLOGR trace
	CTnLOGxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter

	Formatting a SYSLOGR trace
	Output from a SYSLOGR trace

	SYSOMVS component trace
	Requesting a SYSOMVS trace
	CTnBPXxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSOMVS traces

	Formatting a SYSOMVS trace
	Example of CTRACE DISPLAY PARAMETERS panel
	Examples of subcommands to format a SYSOMVS trace

	Output from a SYSOMVS trace
	SY1 trace flow
	SY2 trace flow
	Control block trace

	SYSOPS component trace
	Requesting a SYSOPS trace
	CTnOPSxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSOPS traces

	Formatting a SYSOPS trace
	Output from a SYSOPS trace

	SYSRRS component trace
	Requesting a SYSRRS trace
	CTnRRSxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSRRS traces

	Formatting a SYSRRS trace
	Output from a SYSRRS trace

	SYSRSM component trace
	Requesting a SYSRSM trace
	CTnRSMxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSRSM traces

	Formatting a SYSRSM trace
	Output from a SYSRSM trace

	SYSSPI component trace
	Requesting a SYSSPI trace
	Formatting a SYSSPI trace

	SYSTTRC transaction trace
	SYSVLF component trace
	Requesting a SYSVLF trace
	Examples of requesting and stopping SYSVLF full traces

	Formatting a SYSVLF trace
	Output from a SYSVLF trace

	SYSWLM component trace
	Requesting a SYSWLM trace
	TRACE and REPLY commands
	Examples of requesting SYSWLM traces

	Formatting a SYSWLM trace
	Output from a SYSWLM trace

	SYSXCF component trace
	Requesting a SYSXCF trace
	CTnXCFxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSXCF traces

	Formatting a SYSXCF trace
	Output from a SYSXCF trace

	SYSXES component trace
	Requesting a SYSXES trace
	CTnXESxx parmlib member
	TRACE and REPLY commands
	OPTIONS parameter
	Examples of requesting SYSXES traces

	Formatting a SYSXES trace
	Output from a SYSXES trace

	Chapter 13. Transaction trace
	How transaction trace works
	Transaction trace commands
	The TRACE TT command
	Starting transaction trace
	Adding additional trace filter sets
	Removing an active trace filter set
	Stopping transaction trace
	Starting a CTRACE external writer
	Stopping a CTRACE external writer
	Changing the data space size
	Specifying a level indicator
	Tracing latent transactions

	DISPLAY TRACE,TT

	Using IPCS to view transaction trace output

	Chapter 14. GETMAIN, FREEMAIN, STORAGE (GFS) trace
	Starting and stopping GFS trace
	Receiving GFS trace data
	Formatted GFS trace output
	Unformatted GFS trace output

	Chapter 15. Recording logrec error records
	Collection of software and hardware information
	Choosing the correct logrec recording medium
	Initializing and reinitializing the logrec data set
	Initializing the logrec data set
	Reinitializing the logrec data set

	Defining a logrec log stream
	Error recording contents
	Logrec data set header record
	Logrec data set time stamp record
	Types of logrec error records

	Obtaining information from the logrec data set
	Using EREP

	Obtaining records from the logrec log stream
	Using System Logger services to obtain records from the logrec log stream
	Using EREP to obtain records from the logrec log stream
	JCL for the LOGR Subsystem

	Obtaining information from the logrec recording control buffer
	Formatting the logrec buffer
	Finding the logrec and WTO recording control buffers
	Reading the logrec recording control buffer

	Interpreting software records
	Detail edit report for a software record
	Detail edit report for a symptom record

	Chapter 16. AMBLIST: Map load modules and program objects
	Obtaining AMBLIST output
	Specifying the JCL statements
	Controlling AMBLIST processing
	LISTLOAD control statement
	LISTOBJ control statement
	LISTIDR control statement
	LISTLPA control statement

	Examples of running AMBLIST
	List the contents of an object module
	Map the CSECTs in a load module or program object
	Trace modifications to the executable code in a CSECT
	List the modules in the link pack area and the contents of the DAT-on nucleus
	Examples for z/OS UNIX System Services file support

	Reading AMBLIST output
	Module summary
	LISTOBJ outputs
	Description of LISTOBJ output for GOFF

	LISTLOAD OUTPUT=MODLIST output
	Description of MODLIST output for a program object
	Description of MODLIST Output for a Load module/PDS

	LISTLOAD OUTPUT=XREF output
	Segment map
	Numerical map
	Numerical cross-reference
	Alphabetical map
	Alphabetical cross-reference
	Sample segment map table for LISTLOAD OUTPUT=XREF of mutiple-text class module

	LISTLOAD OUTPUT=MAP
	LISTLOAD OUTPUT=XREF output (comparison of load module and program object version 1)
	LISTLOAD OUTPUT=BOTH Output
	LISTIDR output
	Description of LISTIDR output

	LISTLPA output

	Chapter 17. SPZAP: Modify data in programs and VTOCs
	Planning for SPZAP
	Inspecting and modifying data
	Inspecting and modifying a load module or program object
	Accessing data in a CSECT

	Inspecting and modifying a data record

	Updating the System Status Index (SSI)
	Running SPZAP
	Using JCL and control statements to run SPZAP
	JCL statements
	Return codes
	Invoking SPZAP dynamically
	SPZAP control statements
	Reading SPZAP output

	Chapter 18. AMATERSE: Pack and unpack a data set
	Planning for AMATERSE
	Invoking AMATERSE
	Specifying the JCL statements for AMATERSE
	AMATERSE return codes

	Invoking AMATERSE from a problem program
	Additional considerations for AMATERSE
	Restrictions for AMATERSE
	Allocation considerations
	Space considerations

	Chapter 19. AMAPDUPL: Problem Documentation Upload Utility
	Planning to use PDUU
	Prerequisites and restrictions for PDUU

	JCL statements for PDUU
	JCL examples for PDUU
	Example 1: Simple FTP connection
	Example 2: FTP connection using a proxy server
	Example 3: FTP connection using a proxy server with proxy user ID
	Example 4: Using a proxy server with the FTPCMDS DD statement
	Example 5: Using a proxy server with a port specification on the TARGET_SYS parameter
	Example 6: Forcing PASSIVE mode using the FTPCMDS inline DD statement
	Example 7: Using a userid.NETRC data set
	Example 8: Using the DEBUG statement
	Example 9: Using SYSUT2 to allocate an unload data set
	Example 10: Using a multiple record control statement in SYSIN

	Return codes for PDUU

	Chapter 20. Dump suppression
	Using DAE to suppress dumps
	Performing dump suppression
	Managing rapidly recurring dumps

	Planning for DAE dump suppression
	Selecting or creating an ADYSETxx parmlib member
	Defining a DAE data set

	Accessing the DAE data set
	Invoking the IPCS DAE display panel
	Generating a suppressed dump
	Editing the DAE data set

	Stopping, starting, and changing DAE
	Stopping DAE
	Starting DAE

	Changing DAE processing in a Sysplex

	Using a SLIP command to suppress dumps
	Using an ABEND macro to suppress dumps
	Using installation exit routines to suppress dumps
	Determining why a dump was suppressed

	Chapter 21. Messages
	Producing messages
	Receiving messages
	Console
	Hard-Copy log
	System log
	Job log
	SYSOUT data set

	Receiving symptom dumps

	Planning message processing for diagnosis
	Controlling message location
	Suppressing messages
	Handling message floods
	Automating message processing
	Not retaining action messages
	Suppressing symptom dumps (IEA995I)

	Chapter 22. Hardware Instrumentation Services
	Appendix. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

