
z/OS

MVS Programming: Resource Recovery
Version 2 Release 1

SA23-1395-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 657.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
Who should use this document ix
How to use this document ix
Where to find more information x

How to send your comments to IBM . . xi
If you have a technical problem. xi

z/OS Version 2 Release 1 summary of
changes xiii

Chapter 1. Introducing resource
recovery 1
Resource recovery programs 1
Resource recovery functions 3
Two-phase commit protocol 4
Distributed resource recovery 8
Heuristic decisions 17
Planning a resource manager 18

Chapter 2. Using registration services 21
Registration 22
NOTIFICATION exit routine 23

Chapter 3. Using context services . . . 31
Contexts 31
Callable services for contexts 33
Context services exit routines 34

Chapter 4. Using resource recovery
services 51
Resource manager states 51
Resource manager roles 52
Resource manager failures 52
Restarting 55
Expressing interest in a UR 60
Protecting the resource 62
Protecting distributed resources 67
Cascaded transactions 69
Local transactions 73
Unit of work identifiers 81
Setting exits with RRS 83
Example of resource manager processing 86
Resource recovery exit routines 91
RRS version information. 135

Chapter 5. Callable registration
services. 137
Register_Resource_Manager (CRGGRM,
CRG4GRM) 137
Retrieve_Resource_Manager_Data (CRGRRMD,
CRG4RRMD) 144
Set_Exit_Information (CRGSEIF,
CRGSEIF1,CRG4SEIF) 148
Unregister_Resource_Manager (CRGDRM,
CRG4DRM) 166

Chapter 6. Callable context services 171
Begin_Context (CTXBEGC, CTX4BEGC) 171
Delete_Context_Interest (CTXDINT, CTX4DINT) 176
End_Context (CTXENDC, CTX4ENDC). 180
Express_Context_Interest (CTXEINT, CTXEINT1,
CTX4EINT) 186
Retrieve_Context_Data (CTXRDTA, CTX4RDTA) 194
Retrieve_Context_Interest_Data (CTXRCID,
CTX4RCID) 200
Retrieve_Current_Context_Token (CTXRCC,
CTX4RCC) 204
Set_Context_Data (CTXSDTA, CTX4SDTA) . . . 207
Set_Context_Interest_Data (CTXSCID, CTXSCID2,
CTX4SCID) 212
Switch_Context (CTXSWCH, CTX4SWCH) . . . 217

Chapter 7. Callable resource recovery
services. 225
Backout_Agent_UR (ATRABAK, ATR4ABAK) . . 225
Backout_UR (ATRBACK, ATR4BACK) 231
Begin_Restart (ATRIBRS, ATR4IBRS) 236
Begin_Transaction (ATRBEG, ATR4BEG) 241
Change_Interest_Type (ATRSIT, ATR4SIT) 247
Commit_Agent_UR (ATRACMT, ATR4ACMT) . . 254
Commit_UR (ATRCMIT, ATR4CMIT) 261
Create_Cascaded_UR (ATRCCUR2, ATRCCUR3,
ATR4CCUR). 266
Delegate_Commit_Agent_UR (ATRADCT,
ATRADCT1, ATR4ADCT) 276
Delete_Post_Sync_PET (ATRDPSP2, ATR4DPSP) 286
Delete_UR_Interest (ATRDINT, ATR4DINT) . . . 291
End_Restart (ATRIERS, ATR4IERS) 296
End_Transaction (ATREND, ATR4END) 301
Express_UR_Interest (ATREINT, ATREINT1,
ATREINT2, ATREINT3, ATREINT4, ATREINT5,
ATR4EINT) 309
Forget_Agent_UR_Interest (ATRAFGT, ATR4AFGT) 339
Post_Deferred_UR_Exit (ATRPDUE, ATR4PDUE) 345
Prepare_Agent_UR (ATRAPRP, ATR4APRP) . . . 351
Respond_to_Retrieved_Interest (ATRIRRI,
ATR4IRRI) 359
Retain_Interest (ATRSROI, ATRSROI1, ATR4SROI) 366
Retrieve_Environment (ATRRENV, ATR4RENV) 379
Retrieve_Interest_Count (ATRREIC, ATR4REIC) 387

© Copyright IBM Corp. 1997, 2013 iii

Retrieve_Interest_Data (ATRRID, ATR4RID) . . . 391
Retrieve_Log_Name (ATRIRLN, ATR4IRLN) . . . 399
Retrieve_RM_Metadata (ATRRDTA, ATR4RDTA) 405
Retrieve_Side_Information (ATRRUSI, ATRRUSI2,
ATR4RUSI) 410
Retrieve_Side_Information_Fast (ATRRUSF,
ATRRUSF1, ATR4RUSF) 421
Retrieve_UR_Data (ATRRURD, ATRRURD1,
ATRRURD2, ATR4RURD) 429
Retrieve_UR_Interest (ATRIRNI, ATR4IRNI) . . . 438
Retrieve_Work_Identifier (ATRRWID, ATRRWID2,
ATR4RWID) 446
Set_Environment (ATRSENV, ATR4SENV) 461
Set_Log_Name (ATRISLN, ATR4ISLN) 471
Set_Persistent_Interest_Data (ATRSPID, ATR4SPID) 477
Set_Post_Sync_PET (ATRSPSP2, ATR4SPSP) . . . 482
Set_RM_Metadata (ATRSDTA, ATR4SDTA) . . . 490
Set_Side_Information (ATRSUSI, ATRSUSI2,
ATR4SUSI) 495
Set_Syncpoint_Controls (ATRSSPC, ATR4SSPC) . . 505
Set_Work_Identifier (ATRSWID, ATRSWID2,
ATR4SWID) 518

Chapter 8. RRS setup and control . . 531
Defining RRS as a subsystem 531
Establishing dispatching priority of the RRS
address space 531
Creating default RRS CTRACE parmlib member 532
Creating a cataloged procedure for starting RRS 532
Defining RRS to automatic restart management
(ARM). 533
Configuring and defining RRS logging
requirements 533
Actions to avoid 539
RRS use of XCF 540
Starting RRS. 541
Stopping RRS 544
Using the SETRRS ARCHIVELOGGING [DISABLE
| ENABLE] command 545
Using the SETRRS CANCEL command 545
Using the SETRRS SHUTDOWN command . . . 545
Using the DISPLAY RRS command 545
Collecting problem data 545
Recovering from a hung UR after an SDSRM
failure 546
Latch identification 546
RRS SDUMP exit 547

Chapter 9. RRS application
programming 549
Working with application programs 549

Working with cascaded transactions 552
Logging data 556
Logging cascaded transactions. 559

Chapter 10. Using RRS panels 561
Setting up access authorization 561
Allocating the RRS panel libraries 562
Adding RRS as an ISPF menu option 563
Using the main selection panel 564
Using wildcards in RRS panels 565
Specifying global options 566
Checking the log streams 566
Working with resource manager information . . . 573
Working with UR information 575
Working with work manager information 586
Removing a resource manager interest in a UR . . 588
Working with RRS system information 589

Chapter 11. ATRQUERY — Obtain RRS
Information 591

Chapter 12. ATRSRV — Resolve Units
of Recovery 623

Chapter 13. ATRQSRV utility - query
and update RRS information 639
Using the ATRQSRV utility 639
Authorizing use of the utility 639
Report levels 639
Coding the ATRQSRV utility 639
ATRQSRV return codes 641
Examples of using the ATRQSRV utility 641
ATRQSRV statement details and parameters . . . 642

Appendix. Accessibility 653
Accessibility features 653
Using assistive technologies 653
Keyboard navigation of the user interface 653
Dotted decimal syntax diagrams 653

Notices 657
Policy for unsupported hardware. 658
Minimum supported hardware 659
Programming interface information 659
Trademarks 659

Glossary 661

Index 669

iv z/OS V2R1.0 MVS Programming: Resource Recovery

Figures

1. Context as a Series of URs 4
2. UR State Transitions 5
3. ATM Transaction 6
4. Two-Phase Commit Actions 7
5. Backout — Application Request 7
6. Backout — Resource Manager Votes NO . . . 8
7. Transaction — Syncpoint Processing. 9
8. Peer-to-Peer Processing 10
9. Communication Processing 11

10. Syncpoint Processing — Peer-to-Peer 14
11. Client-Server — High-Level Flow 15
12. Syncpoint Processing — Client-Server 17
13. Order of Invocation for Context Services Exit

Routines 35
14. A Sample Cascaded UR Family 69
15. Application Code Segment 77
16. State Transitions for URs in Local Transaction

Mode 81
17. Obtaining the STOKEN 96
18. Sample JCL for IXCMIAPU 543
19. Example: Adding RRS as an Option on your

ISPF Menu 563
20. Main Selection Panel (ATRFPCMN) 564

21. RRS Global Panel Options (ATRFPVAR) 566
22. Log Stream Selection (ATRFPLBS) 567
23. Detail Unit of Recovery Report Entry 570
24. Detail Archive Report Entry. 572
25. Sample Resource Manager Entry 573
26. Sample Resource Manager Meta Data Entry 573
27. Resource Manager Selection (ATRFPRMS) 574
28. Resource Manager List (ATRFPRML) 575
29. Unit of Recovery Selection (ATRFPURS) 577
30. RRS ATRQUERY RC Table (ATRFPRCL) 578
31. UR Selection Profiles (ATRFPURP) 579
32. UR List (ATRFPURL) 580
33. UR Details (ATRFPURD). 582
34. UR Interest Details (ATRFPURE) 582
35. Cascaded UR Family (ATRFPCFD) 583
36. Formatted UR Work IDs (ATRFPIDF) 585
37. Unformatted UR Work IDs (ATRFPIDU) 585
38. RRS URI Persistent Interest Data (ATRFPPDT) 586
39. Work Manager Selection (ATRFPWMS) 587
40. Work Manager List (ATRFPWML) 588
41. Remove Interest Confirmation (ATRFPRIN) 588
42. RRS System Information Selection (ATRFPSIS) 589
43. RRS System Information List (ATRFPSIL) 590

© Copyright IBM Corp. 1997, 2013 v

vi z/OS V2R1.0 MVS Programming: Resource Recovery

Tables

1. Context Type Differences 31
2. Context Services Exit Routines 34
3. Resource Manager Processing and States 51
4. UR States and Failure Actions 52
5. Processing a Privately-Managed Context 54
6. RRS Processing of a UR associated with a

Privately-Managed Context 54
7. UR States and Recovery Records 56
8. Restart Environments and Restrictions . . . 57
9. Log Name Checking 59

10. UR States and Callable Services Allowed 64
11. Phases of Ending Context States 71
12. Context Termination Processing 72
13. UR Transaction State Changes (in-reset to

in-flight) 79
14. UR State Changes (in-flight to in-reset) and

Transaction Mode 80
15. Differences Between Tightly-Coupled and

Loosely-Coupled Transaction Nodes 82
16. Unit of Work Identifiers 83
17. Summary of RRS Exit Routines 84
18. Exit Routine Processing Overlap 98
19. Actions for Incomplete URs 359
20. Unit of Work Identifiers 447

21. Setting Unit of Work Identifiers 518
22. RRS Logs 534
23. Basic Coupling Facility Structures 536
24. RRS Structure Sizes 536
25. Latch Identifiers 546
26. Event Logging Summary. 557
27. RRS Panel Libraries 562
28. Summary of main selection panel options 564
29. UR Comments 580
30. UR Interest Status 583
31. Return and Reason Codes for the ATRSRV

Macro 631
32. Statements 640
33. ATRQSRV Return Codes 641
34. URINFO 642
35. RMINFO 646
36. WMINFO 647
37. LOGINFO 648
38. SYSINFO 649
39. REMOVINT 650
40. COMMIT 650
41. BACKOUT 651
42. DELETERM 651
43. UNREGRM 652

© Copyright IBM Corp. 1997, 2013 vii

viii z/OS V2R1.0 MVS Programming: Resource Recovery

About this document

This document describes RRS, the system-level resource recovery platform for
z/OS. The document describes two major tasks:
1. How to use RRS services in authorized resource managers, such as database

programs, and communications managers that manage distributed transactional
communications.

2. How to manage RRS in an installation that runs resource managers that use
RRS.

Who should use this document
This document is for:
1. Programmers who design and code resource managers. These programmers

need to know how to work with MVS™ system interfaces and how to work
with databases.

2. System programmers responsible for managing MVS, including such tasks as
starting and stopping system functions and troubleshooting. Database
administrators might also be involved in managing RRS.

How to use this document
If you are responsible for managing MVS or administering databases at your
installation, you will find most of the information you need in Chapter 1,
“Introducing resource recovery,” on page 1 and Chapter 8, “RRS setup and
control,” on page 531.

If you design and code a resource manager, Chapter 1, “Introducing resource
recovery,” on page 1, which includes “Planning a resource manager” on page 18,
provides concepts and a list of planning considerations for coding a resource
manager that works with RRS. Detailed programming information appears in:
v Chapter 2, “Using registration services,” on page 21
v Chapter 3, “Using context services,” on page 31
v Chapter 4, “Using resource recovery services,” on page 51
v Chapter 5, “Callable registration services,” on page 137
v Chapter 7, “Callable resource recovery services,” on page 225

Note: If you are an application programmer interested in using RRMS services,
you will also find information in z/OS MVS Programming: Callable Services for
High-Level Languages.

If you want to code a program that checks information about RRS or manipulates
RRS information directly, then two macros might be useful:
v Chapter 11, “ATRQUERY — Obtain RRS Information,” on page 591
v Chapter 12, “ATRSRV — Resolve Units of Recovery,” on page 623

This document is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

© Copyright IBM Corp. 1997, 2013 ix

Note: If you call the services described in this document from assembler language
programs, you must use a high-level assembler.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information Roadmap.

You might also need the following information:

Short Title Used in This Document Title Order Number

SNA Sync Point Services Architecture Systems Network Architecture Sync Point Services
Architecture Reference

SC31-8134

x z/OS V2R1.0 MVS Programming: Resource Recovery

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Programming: Resource Recovery
SA23-1395-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1997, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V2R1.0 MVS Programming: Resource Recovery

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration, GA32-0889

v z/OS Planning for Installation, GA32-0890

v z/OS Summary of Message and Interface Changes, SA23-2300

v z/OS Introduction and Release Guide, GA32-0887

© Copyright IBM Corp. 1997, 2013 xiii

xiv z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 1. Introducing resource recovery

Many computer resources are so critical to a company's work that the integrity of
these resources must be guaranteed. If changes to the data in the resources are
corrupted by a hardware or software failure, human error, or a catastrophe, the
computer must be able to restore the data. These critical resources are called
protected resources or, sometimes, recoverable resources.

Resource recovery is the protection of the resources. Resource recovery consists of
the protocols and program interfaces that allow an application program to make
consistent changes to multiple protected resources.

z/OS, when requested, can coordinate changes to one or more protected resources,
which can be accessed through different resource managers and reside on different
systems. z/OS ensures that all changes are made or no changes are made.
Resources that z/OS can protect include:
v A hierarchical database
v A relational database
v A product-specific resource

This section describes how to provide resource recovery for resources on a single
system and for resources distributed across multiple systems. The topics are:
v “Resource recovery programs”
v “Two-phase commit protocol” on page 4
v “Resource recovery functions” on page 3
v “Distributed resource recovery” on page 8

“Planning a resource manager” on page 18 lists information you need if you are
thinking of providing a resource manager to work with RRS.

Resource recovery programs
To understand how to use resource recovery on the z/OS platform, you need to
understand both the programs that work together and something of how they
work together. First, you need to know what an exit manager is.

An exit manager is an authorized program that controls the flow of a predefined
set of events. When a predefined event occurs, the exit manager gives control to an
exit routine owned by a program interested in the event. In this exit routine, the
program provides the processing for the event. z/OS provides two exit managers:
resource recovery services (RRS) and context services.

The following three programs work together to protect resources:
v Application program: The application program accesses protected resources and

requests changes to the resources.
v Resource manager: A resource manager controls and manages access to a

resource. A resource manager is an authorized program that provides an
application programming interface (API) that allows the application program to

© Copyright IBM Corp. 1997, 2013 1

read and change a protected resource. The resource manager, through exit
routines that get control in response to events, takes actions that commit or back
out changes to a resource it manages.
Often an application changes more than one protected resource, so that more
than one resource manager is involved.
A resource manager may be an IBM® product, part of an IBM product, or a
product from another vendor. There are several types of resource managers; see
“Types of resource managers” on page 3.

Note: The resource manager in resource recovery is different from an RTM
resource manager, which is related to the operating system's recovery
termination management (RTM) and runs during termination processing.

v Syncpoint manager: Resource recovery services (RRS) is the syncpoint manager.
It uses a two-phase commit protocol, described in “Two-phase commit protocol”
on page 4 to coordinate changes to protected resources, so that all changes are
made or no changes are made. During its processing, RRS drives resource
manager exit routines. For example, if a commit event occurs (such as when an
application requests changes be made to several resources), RRS drives the
commit exit routine for each resource manager involved.

Two other operating system components also play key roles in resource recovery:
v Registration services: Registration services coordinates communication between

the resource manager and the exit managers. A resource manager must register
itself with the system as a resource manager. The resource manager must also
set its exit routines with each exit manager; the resource manager identifies the
exit manager and the exit routines it provides for resource recovery. Registration
services is itself an exit manager, though it drives only one exit routine. There is
more information in Chapter 2, “Using registration services,” on page 21.

v Context services: Context services is an exit manager that provides the data
constructs and primitives that resource managers can use as an anchor for a
given work request to track specific events related to the work request. For
example, when a given context ends, context services drives the end-context exit
routines for each resource manager involved. There is more information in
Chapter 3, “Using context services,” on page 31.

Registration services, context services, and resource recovery services (RRS) are
three separate MVS components, but it is sometimes useful to think of them as a
single function called recoverable resource management services (RRMS), the z/OS
syncpoint manager.

RRMS provides a systems programming interface (SPI) that enables a resource
manager:
v To register with the system as a resource manager
v To express interest in work requests that access its resources
v To take part in resource recovery for those work requests

Because RRS provides much of the resource recovery function (syncpoint
processing, in particular), technical information, like this book, often uses the term
RRS unless specifically describing context services or registration services.

RRS can enable resource recovery on a single system or, with a communications
manager such as APPC/MVS, on multiple systems. If the resources used by an
application program are distributed, so that they are on multiple systems, a
communications resource manager on each system works with the syncpoint

2 z/OS V2R1.0 MVS Programming: Resource Recovery

manager on that system. The communications resource managers, in cooperation
with the syncpoint managers, work together to coordinate the entire set of changes.

Types of resource managers
There are three types of resource managers:

Data Resource Manager: A resource manager that allows the application to
read and change data. Data resource managers include database managers, such
as DB2®, and record file managers, such as VSAM. To process a syncpoint
event, a data resource manager would take actions such as committing or
backing out changes to the data it manages.
Communications Resource Manager: A resource manager that controls access
to distributed resources and acts as an extension to the syncpoint manager. A
communications resource manager provides access to distributed resources by
allowing an application to communicate with other applications and resource
managers, possibly located on different systems. It acts as an extension to the
syncpoint manager by allowing the local syncpoint manager to communicate
with other syncpoint managers as needed to ensure coordination of the
distributed resources the application accesses. Communications resource
managers include APPC/MVS and Transactional Remote Procedure Calls
(TRPC). To process a syncpoint event, a communication resource manager
communicates the event to the distributed syncpoint managers.
Work Manager: A work manager is a resource manager that controls
application access to system resources by determining when and in what
environment the application runs. Work managers include CICS® Transaction
Server and IMS™ Transaction Monitor. To process a syncpoint event, a work
manager might ensure that the application is in the correct environment to
allow the syncpoint processing to continue.

Note that a single resource manager can be more than one type. For example, IMS
is both a data resource manager and a work manager.

Resource recovery functions
Resource recovery based on the two-phase commit protocol has two functions:
v Commit: During the commit process, all changes to both local and distributed

resources are made permanently.
v Backout: During the backout process, all pending changes to both local and

distributed resources are not made.

The set of changes that are to be made or not made as a unit are called a unit of
recovery (UR). A UR represents an application program's changes to resources
since the last commit or backout or, for the first UR, since the beginning of the
application. Each UR is associated with a context, which consists of the UR, or
more than one UR, with the associated application programs, resource managers,
and protected resources.

A context, which is sometimes called a work context, represents a work request.
The life of a context consists typically of a series of URs. Figure 1 on page 4 shows
the relation of the context, application program, and URs.

Chapter 1. Introducing resource recovery 3

Two-phase commit protocol
When the application is ready to commit or back out its changes, the application
invokes RRS to begin the two-phase commit protocol.

The two-phase commit protocol is a set of actions used to make sure that an
application program makes all changes to the collection of resources represented
by a UR or makes no changes to the collection. The protocol verifies the
all-or-nothing changes even if the application program, the system, RRS, or a
resource manager fails.

The phases of the protocol are:
v Phase 1: In the first phase, each resource manager prepares to commit the

changes. A resource manager typically prepares by writing the unchanged data
image, often called undo data, and the changed data image, often called redo
data, in a resource manager log that it can access during restart.
If the resource manager can then commit the changes, it tells RRS that it agrees
to allow the commit to continue. If the resource manager cannot commit the
changes, it tells RRS to back out the changes.
The decision to commit or back out the changes represented by a UR depends
on responses from all of the resource managers. If the decision is to commit the
changes, RRS hardens the decision, meaning that it stores the decision in an RRS
log, and phase 2 begins. If the decision is to back out the changes, RRS generally
does not harden the decision, and phase 2 begins as soon as the decision is
made.
Once a commit decision is hardened, the application changes are considered to
be committed. If the application, the system, RRS, or a resource manager fails
after the decision is hardened, the application changes will be made during
restart. Before the decision is hardened, a failure of the application, the system,
RRS, or a resource manager would cause the changes to be backed out during
restart.

v Phase 2: In the second phase, the resource managers commit or back out the
changes represented by a UR.

Figure 2 on page 5 shows the valid states that can occur as RRS processes a UR.
Each arrow represents a valid state change. Figure 2 on page 5 also shows how

unit of recovery

CONTEXT

APPLICATION

change 1

change 2

commit changes

change 3

change 4

change 5

commit changes

unit of recovery

Figure 1. Context as a Series of URs

4 z/OS V2R1.0 MVS Programming: Resource Recovery

valid state changes correspond to the phases of the two-phase commit protocol.
You can find definitions of each state in “UR states” on page 64.

You can see examples of how the two-phase commit protocol works, including
state changes, in “Commit” and “Backout” on page 7.

Commit
For a look at the commit function, think of a person who requests an automated
teller machine (ATM) to transfer money from a savings account to a checking
account. The application program receives the person's input from the ATM. Each
account is in a different database. Each database has its own resource manager.
The syncpoint manager is RRS. Figure 3 on page 6 shows how the ATM
application, resource managers, and RRS work together

In Reset

In State Check

In Prepare

In Doubt

In Backout

In End In Forget Forgotten

Phase 1

Phase 2

In Completion

In Commit

In Only Agent

In Flight

Figure 2. UR State Transitions

Chapter 1. Introducing resource recovery 5

The actions required to process the ATM transaction are:
1. The ATM user requests transfer of money from a savings account to a

checking account.
2. The ATM application program receives the ATM input.

Figure 4 on page 7 shows, for the same transaction, the sequence of the
following actions, with time moving from left to right, in the two-phase
commit protocol RRS uses to commit the changes. The top lines in the figure
show the state of the UR and the two phases of the two-phase commit
protocol. For more information, see “UR states” on page 64 and “Two-phase
commit protocol” on page 4.

3. The ATM application requests the savings resource manager to subtract the
money from the savings database. For this step, the application uses the
resource manager's application programming interface (API).

4. The ATM application requests the checking resource manager to add the
money to the checking database. The application uses this resource manager's
API.

5. The ATM application issues a call to RRS to commit the database changes.
6. RRS asks the resource managers to prepare for the changes.
7. The resource managers indicate whether or not they can make the changes, by

voting YES or NO. In Figure 4 on page 7, both resource managers vote YES.
8. In response, RRS notifies the resource managers to commit the changes, that

is, to make the changes permanently in the databases.
9. The resource managers complete the commit and return OK to RRS.

10. RRS gives a return code to the application program, indicating that all
changes were made in the databases.

RRS

Resource manager for
savings database

API

ATM application:
Subtract from savings
Add to checking
Commit the changes

C
o
m
m
i
t

API

Resource manager for
checking database

Figure 3. ATM Transaction

6 z/OS V2R1.0 MVS Programming: Resource Recovery

Backout
If, for any reason, the ATM application cannot complete the transfer, the
application requests backout in step 5, instead of commit. In this case, the changes
are backed out and are not actually made in any database. See Figure 5.

A resource manager can also request backout. If a resource manager cannot make
the change to its database, the resource manager votes NO during prepare. If any
resource manager votes NO, all of the changes are backed out. See Figure 6 on
page 8

Return
Code:

Changes
Committed

(10)

OK

OK
(9)

Notify
Commit

(8)

YES

YES
(7)

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes
(3,4)

In-
Reset

In-Commit

(Phase 2)

In-Prepare

(Phase 1)

In-
Flight

In-
Reset

UR STATE

PROTOCOL PHASE

ATM application:
Subtract from savings
Add to checking Commit

(5)

Prepare
(6)

Figure 4. Two-Phase Commit Actions

Return
Code:

Changes
Backed Out

OK

OK

Notify
BackoutRRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

In-
Reset

In-BackoutIn-
Flight

In-
Reset

UR STATE

ATM application:
Subtract from savings
Add to checking Backout

Figure 5. Backout — Application Request

Chapter 1. Introducing resource recovery 7

page 8.

Distributed resource recovery
The resources that a work request updates can be distributed — reside on more
than one system. Figure 7 on page 9 shows the programs that participate in
distributed resource recovery, also called distributed syncpoint processing.

When resources reside on multiple systems, a part of the application must run on
each system. Using the ATM example presented earlier. assume that the resource
manager for the savings account database runs on system A, and the resource
manager for the checking account database runs on system B. We know from the
earlier example that the ATM application has three main responsibilities:
1. Communicate with the ATM user
2. Update the savings account database using the resource manager on system A
3. Update the checking account database using the resource manager on system B

Assume that the part of the application running on system A (APPL-A) always
communicates with the ATM user.

When the ATM user requests the transfer of money from savings to checking,
APPL-A sees the request, and uses the resource manager on system update the
savings account database. Completing the transaction means that APPL-A must
communicate with the resource manager on system B to update the checking
account database. Thus, part of the application (APPL-B) must reside on system B.

APPL-B listens for a signal from APPL-A, and the signal tells APPL-B to use the
resource manager on system B to update the checking account database. Another
way to implement the application would be for the signal from APPL-A to actually
initiate APPL-B.

In either case, APPL-A communicates with APPL-B through a communications
resource manager (CRM), such as APPC/MVS. The main function of a CRM is to

Return
Code:

Changes
Backed Out

OK

OK

Notify
Backout

NO

YES

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

In-
Reset

In-Backout

(Phase 2)

In-Prepare

(Phase 1)

In-
Flight

In-
Reset

UR STATE

PROTOCOL PHASE

ATM application:
Subtract from savings
Add to checking Commit

Prepare

Figure 6. Backout — Resource Manager Votes NO

8 z/OS V2R1.0 MVS Programming: Resource Recovery

allow applications to communicate across systems, but it also allows RRS on one
system to communicate with RRS on another system.

Keep this brief description of distributed processing in mind. It applies to the two
models for processing distributed resources: the peer-to-peer model and the
client-server model. Which model is appropriate depends on the application and
how its resources are distributed.

Peer-to-peer model
Using the peer-to-peer model, all systems are equal until an application program
running on a system issues the commit request that begins the syncpoint
operation. The fact that any system can initiate the syncpoint operation is an
important attribute of the peer-to-peer model.

A good place to begin a description of the peer-to-peer model is with a more
detailed description of what happens when the ATM user mentioned earlier
requests a transfer of money from a savings account to a checking account.
Figure 8 on page 10 lists the processing steps.

RRS

Resource
manager
for
billing
database

Commun-
ication
resource
manager
(APPC/
MVS 2)

C
o
m
m
i
t

APIAPI

Electric
company
application

AGENT SYSTEM

Commun-
ication
resource
manager
(APPC/
MVS 1)

API

RRS

Resource
manager
for
checking
database

Bank
application

C
o
m
m
i
t

API

INITIATING SYSTEM

Figure 7. Transaction — Syncpoint Processing

Chapter 1. Introducing resource recovery 9

As Figure 8 describes, APPL-A must be able to communicate with APPL-B. It is
also true, though less obvious in the example, that RRS on system A must be able
to communicate with RRS on system B.

Note that the initiating system is the system on which the commit request is first
issued. In the example, the initiating system is system A. Every other system (such
as system B in the example) is an agent system. The communications resource
manager (CRM) that runs on an agent system is called an agent CRM.

Figure 8 presents a high-level example of peer-to-peer processing. To help explain
the role of the communications manager, this book uses APPC/MVS as the
communications resource manager, but any communications resource manager that
implements the peer-to-peer model would perform the same processing. Figure 9
on page 11 adds communication processing to the high-level example.

1. The ATM user requests a transfer of money from a savings account to a checking account. The savings account database resides on one
system (system A), while the checking account database resides on another system (system B).

2. The ATM application program (APPL-A) on system A receives the input from the ATM user.

3. APPL-A requests that the savings resource manager on system A subtract the money from the savings database.

APPL-A requests the checking resource manager on system B to add the money to the checking database. To make this request, APPL-A
communicates with APPL-B (the part of the ATM application that runs on system B). APPL-B tells the resource manager on system B to
add the money to the checking account database.

4. APPL-A calls RRS to commit the database changes.

5. RRS on system A asks both resource managers (the one on system A and the one on system B) to prepare for the changes.

6. Both resource managers indicate to RRS on system A whether or not they can make the changes by voting YES or NO. For this example,
assume that both vote YES.

7. In response, RRS on system A notifies both resource managers to make the changes permanent, which is called committing the changes.

8. The resource managers complete the commit and return OK to RRS on system A.

9. RRS on system A issues a return code to APPL-A to indicate that its commit request was successful; the databases have been changed.

Figure 8. Peer-to-Peer Processing

10 z/OS V2R1.0 MVS Programming: Resource Recovery

The initiator is responsible for the overall decision. The agents are responsible for
collecting local votes and distributing the decision to the local coordinator (RRS).
When APPC/MVS becomes an agent, it informs RRS by taking the distributed
syncpoint resource manager (DSRM) role, which makes it responsible for
informing RRS of the commit decision.

RRS on each MVS system provides the two-phase commit protocol for the resource
managers on its system. Each RRS collects the prepare votes from the local
resource managers, then returns the collective vote to the DSRM.

When a work request is distributed rather than local, the two-phase commit
processing is slightly different: on the agent system, the UR state becomes in-doubt
at the end of phase 1. The state remains in-doubt until the initiator collects all the
votes and returns a commit or backout signal to the DSRM on the agent system.

Remember that RRS is an exit manager; it drives resource manager exit routines in
response to resource recovery events. For example, when an application requests
commit, RRS drives the PREPARE and COMMIT exit routines for each resource
manager involved.

1. The ATM user requests a transfer of money from a savings account to a checking account. The savings account database resides on one
system (system A), while the checking account database resides on another system (system B).

2. The ATM application program (APPL-A) on system A receives the input from the ATM user.

3. APPL-A requests that the savings resource manager on system A subtract the money from the savings database.

APPL-A requests the checking resource manager on system B to add the money to the checking database. To make this request, APPL-A
communicates with APPL-B (the part of the ATM application that runs on system B). APPL-B tells the resource manager on system B to
add the money to the checking account database.

4. APPL-A calls RRS to commit the database changes. Because the application on system A requests the commit, system A becomes the
initiating system.

5. RRS on system A asks both resource managers (the one on system A and the one on system B) to prepare for the changes:

v RRS on system A collects prepare votes from resource managers on system A. These votes are called local prepare votes.

v RRS on system A tells RRS on system B (the agent system) to collect prepare votes from resource managers on system B. These s are
vote called distributed prepare votes. To collect these distributed prepare votes:

– RRS on the initiating system (system A) tells APPC on A to system notify the application on the agent system (system B) of the
need to commit the changes. APPC on system A contacts APPC onand APPC system B, on system B tells APPL-B that a commit is
needed.

– APPL-B calls RRS on system B, requesting that the changes be committed.

– RRS on system B, the agent system, collects distributed prepare votes from the resource managers on system B.

6. Both resource managers indicate to RRS on system A whether or not they can make the changes by voting YES or NO. For this example,
assume that both vote YES:

v RRS on system A, the initiating system, determines the outcome of the local prepare votes.

v RRS on system B, the agent system, tells RRS on system A the result of the distributed prepare votes, using APPC to communicate
with RRS on system A.

RRS on system A, the initiating system, makes the final decision to commit or back out the resource changes, basing the decision on the
local prepare votes and the result of the distributed votes. For this example, assume that the overall result is to commit the resource
changes.

7. In response, RRS on system A notifies both resource managers to make the changes permanent, which is called committing the changes:

v RRS on the initiating system (system A) tells the resource managers on system A to commit the changes.

v RRS on system A uses APPC to tell RRS on system B, the agent system, that the final decision is to commit the resource changes.

8. The resource managers complete the commit and return OK to RRS on system A:

v The resource managers on system A tell RRS on system A that the commit is complete.

v The resource managers on system B tell RRS on system B that the commit is complete, and RRS on system B uses APPC to tell RRS
on system A that the commit is complete on the agent system.

9. RRS on system A issues a return code to APPL-A to indicate that its commit request was successful; the databases have been changed.

Figure 9. Communication Processing

Chapter 1. Introducing resource recovery 11

To put all the pieces together, assume a transaction where a user requests the
transfer of money from a checking account to the electric company to pay an
electric bill. The actions required to process this sample transaction are:
1. The user of a computer connected by a modem to the bank's computer

requests transfer of money from a checking account to the electric company to
pay an electric bill.

2. The bank application program receives the user's input.
Figure 10 on page 14 shows, for this transaction, the sequence of the following
actions, with time moving from left to right, in the two-phase commit protocol
with distributed resource recovery. The top lines of the figure show the states
for each UR as it moves through the two-phase commit protocol. For more
information, see “UR states” on page 64 and “Two-phase commit protocol” on
page 4.

3. The bank application:
v Requests the checking resource manager to subtract the money from the

checking database
v Allocates a conversation to the electric company application to receive the

money as payment for the electric bill
4. The electric company application requests the billing database resource

manager to add the money to the user's account.
5. The bank application issues a call to RRS 1 to commit the checking database

changes.
6. RRS 1 asks the checking resource manager to prepare for the changes. The

PREPARE exit routine votes YES.
If any vote is NO, all changes are backed out on all systems.

7. RRS 1 also sends a PREPARE signal through APPC/MVS 1 to APPC/MVS 2.
In response to the PREPARE signal:
a. APPC/MVS 2 informs RRS 2 that it is assuming the role of distributed

syncpoint resource manager (DSRM). RRS 2 does not complete the commit;
that is, RRS 2 does not drive COMMIT exit routines until told to do so by
the DSRM. (This action is related to the processing described for step 10).

b. APPC/MVS 2 informs the electric company application that a commit has
been requested.

8. The electric company application issues a call to RRS 2 to commit the billing
database changes.

9. RRS 2 asks the billing resource manager to prepare for the changes. The
PREPARE exit routine votes YES.
If any vote is NO, all changes are backed out on all systems.

10. The resources are distributed, so RRS 2 cannot make a unilateral commit; it
must synchronize its commit with RRS 1 to ensure that all changes are made
or no changes are made.
Because APPC/MVS 2 took the DSRM role earlier, RRS 2 does not call
COMMIT exits. Instead, RRS 2 collects the votes on system 2. If all resource
managers vote yes, then the local collective vote is to commit the changes, and
RRS 2 tells APPC/MVS 2 to send a REQUEST_COMMIT signal through
APPC/MVS 1 to RRS 1.
If any resource manager on the electric company's system (the agent system)
votes not to commit the resource, then the local collective vote is NO, and
RRS 2 sends a REQUEST_BACKOUT signal.

11. RRS 1 notifies the checking resource manager to commit the changes. The
checking resource manager completes the commit and returns OK to RRS 1.

12 z/OS V2R1.0 MVS Programming: Resource Recovery

For a REQUEST_BACKOUT signal, RRS 1 notifies the checking resource
manager to backout the changes. The changes are not made.

12. RRS 1 notifies APPC/MVS 1 to commit the changes. APPC/MVS 1 sends a
COMMITTED signal through APPC/MVS 2 to RRS 2.

13. RRS 2 notifies the billing resource manager to commit the changes. The billing
resource manager completes the commit and returns OK to RRS 2.

14. RRS 2 informs APPC/MVS 2 that RRS 2 has finished its processing for the
UR. APPC/MVS 2 sends a FORGET signal through APPC/MVS 1 to RRS 1;
the signal means that APPC/MVS 1 can do clean up for the UR.

15. RRS 1 has finished its processing for the UR and informs APPC/MVS 1.
16. RRS 1 and RRS 2 give return codes to the application programs, indicating

that all changes were made in the databases.

At this point, you might want to know more about how RRS uses APPC to
communicate across systems. The basic mechanism is the exit routines APPC sets
with RRS.

APPC registers with RRS as a resource manager, just like any resource manager.
Thus, RRS will drive APPC's PREPARE and COMMIT exit routines when the bank
application and the billing application issue their commit requests.

Unlike the other resource managers, however, APPC has no database to update.
Instead, APPC is responsible for communication. Thus, APPC uses its COMMIT
and PREPARE exit routines to kick off communications, not to update databases:
v The PREPARE signal described in step 7 on page 12, for example, is sent by

APPC's PREPARE exit, which then waits for a response from the other system.
v The REQUEST_COMMIT signal described in step 10 on page 12 is sent by

APPC's DISTRIBUTED_SYNCPOINT exit routine, which then waits for a
response.

After APPC's PREPARE exit receives the response, the COMMITTED signal
described in step 12 is sent by APPC's COMMIT exit routine, which then waits for
a response.

After APPC's waiting DISTRIBUTED_SYNCPOINT exit routine receives the
response, the FORGET signal described in step 14 is sent by APPC's END_UR exit
routine and received by its waiting COMMIT exit.

Chapter 1. Introducing resource recovery 13

Client-server model
With the client-server model, there can be one client system, which is always the
initiating system, and many server systems, which are always agent systems.

The client-server model provides a generic, or flexible, approach to distributed
syncpoint processing. It is used, for example, by Transactional Remote Procedure
Call (TRPC), a communications protocol, and might be suited for many other uses.

Figure 11 on page 15 shows the high-level flow of syncpoint processing using the
client-server model. The dotted lines link the functions provided on each system.

UR 1 STATE

UR 2 STATE

INITIATING SYSTEM
(UR 1)

AGENT SYSTEM
(UR 2)

Bank
application

Electric co.
application

Resource
manager for
checking

Resource
manager for
billing

RRS 1

APPC/MVS 2

changes

APPC/MVS 1

RRS 2

In-
Reset

In-
Reset

In-
Flight

In-
Prepare

In-
Commit

In-
End

In-
Reset

In-
Reset

return
code

return
code

In-
End

In-
Flight

(3)

(6)(6)

(4) (8)

(11)
(12) (15)

(16)

(16)

end
UR

end
UR

(OK)
(7)

(7a) (7b)

(9) (14)OK(13)(10)YES

YES

vote

PREPARE

COMMITTED

FORGET

notify
commit

REQUEST
COMMITcommit

Commit
(5)

notify
commit

In-
Doubt

In-
Commit

In-
State-
Check

In-
Pre-
pare

In-
State-
Check

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*

Figure 10. Syncpoint Processing — Peer-to-Peer

14 z/OS V2R1.0 MVS Programming: Resource Recovery

In Figure 11, note that the application on SYS1, the client system, initiates the
syncpoint by sending a function call to SYS2 to request resource changes. When
SYS2 sends a successful result back, the application on SYS1 calls RRS on SYS1 to
commit the changes. RRS1 sends the request through the communications resource
manager (CRM1) to SYS2. CRM2 takes the server distributed syncpoint resource
manager (SDSRM) role and, acting as an agent, calls RRS2 on SYS2 to collect the
votes on SYS2, then returns the result to RRS1 on SYS1.

To understand client-server syncpoint processing in more detail, assume a
transaction where a user requests the transfer of money from a checking account to
a savings account. The transaction requires updates to protected resources on two
systems:
1. UR 1 represents the changes on the first system, the initiating system, where

RM 1 manages the checking account database, and CRM 1 manages the
communications protocols.

2. UR 2 represents the changes on the second system, the agent system, where
RM 2 manages the savings account database. CRM 2 on the second system
takes the role of the server distributed syncpoint resource manager (SDSRM)
and manages the communications protocols on the agent system.

The actions required to process this sample transaction follow. Figure 12 on page
17 shows, for this transaction, the sequence of these actions, with time moving
from left to right. The top lines of the figure show the states for each UR as it
moves through the two-phase commit protocol. For more information, see “UR
states” on page 64 and “Two-phase commit protocol” on page 4.

Application

COMMIT

Resource
Managers

Resource
Managers

CRM1 CRM2

(SDSRM)

Application

SYS1 SYS2

Request

function call

Result

RRS1 RRS2

Figure 11. Client-Server — High-Level Flow

Chapter 1. Introducing resource recovery 15

1. After making update requests to both RM 1, the resource manager for
checking on the initiating system, and RM 2, the resource manager for savings
on the agent (server) system, the bank application issues a call to RRS 1 to
commit the distributed transaction.

2. RRS 1 tells RM 1, the resource manager for checking, to prepare its changes.
RM 1 prepares the resources for commit, then indicates to RRS 1 that it is
ready to commit the changes.

3. RRS 1 tells CRM 1 to prepare its resources for the commit. That is, RRS 1
drives the CRM 1 prepare exit routine.

4. From its prepare exit routine, CRM 1, the communications resource manager
on the initiating system, sends a PREPARE signal to CRM 2, the
communications resource manager on the agent, or server, system.

5. CRM 2, on the agent, or server, system, calls the Prepare_Agent_UR service to
tell RRS 2 to initiate the prepare phase for UR 2, which represents the
requested change to the savings account.

6. RRS 2 then tells RM 2, the resource manager for savings, to prepare its
resources for commit. RM 2 prepares its resources and tells RRS 2 that it is
ready to commit the changes.

7. RRS 2 returns the local collective vote results to CRM 2. For this example,
assume that the local collective vote is to commit the changes.

8. CRM 2 sends a REQUEST_COMMIT signal to CRM 1 to request that the
initiating system commit the changes.

9. Because CRM 1 received a REQUEST_COMMIT signal, it tells RRS 1 that the
resources on the agent system can be committed. RRS 1 determines the overall
results. For this example, the overall collective vote is to commit the changes;
RRS 1 hardens the commit decision. That is, RRS 1 writes a record to its log to
indicate that the state of UR1 is now in_commit.

10. RRS 1 tells RM 1, the resource manager for checking, to commit its changes.
RM 1 commits its changes.

11. RRS 1 drives the CRM 1 commit exit routine to tell CRM 1 to commit its
resources.

12. From its commit exit routine, CRM 1 sends a COMMIT signal to CRM 2 to
indicate that the initiating system has committed the changes.

13. CRM 2, acting as the SDSRM, calls the Commit_Agent_UR service to tell RRS
2 that the overall decision is to commit all resources. RRS 2 hardens the
commit decision. That is, RRS 2 writes a record to its log to indicate that the
state of UR 2 is now in_commit.

14. RRS 2 tells RM 2, the resource manager for savings, to commit its changes.
RM 2 commits the changes.

15. RRS 2 then returns to CRM 2 with the information that the local resources, the
resources on the agent, or server, system, are committed.

16. CRM 2 sends a FORGET signal to CRM 1 to indicate that the initiating system
can forget the UR, then calls the Forget_Agent_UR service to tell RRS 2 to
delete its log record.

17. Because CRM 1 received a FORGET signal, it tells RRS 1 that its processing is
complete. CRM 1 receives the FORGET signal and returns to RRS 1 from its
commit exit routine.

18. RRS 1 then returns the results of the commit request to the bank application
and deletes the log record for UR1. The state of UR 1 is now forgotten.

16 z/OS V2R1.0 MVS Programming: Resource Recovery

Heuristic decisions
Whether a syncpoint is local or distributed, following the two-phase commit
protocol means that a decision to commit or back out a set of resource changes is,
on one level, a holistic decision. That is, the decision to commit or back out is
made by the participant designated to make the decision, based on input from the
whole set of participants.

There are, however, occasions when a local or distributed resource manager might
make a commit or backout decision on its own. This decision is called a heuristic
decision because it is made by a resource manager that is not designated to make
the final decision for the UR as a whole. Installation personnel usually are
involved in making a heuristic decision. For example:

UR 1 STATE

UR 2 STATE

INITIATING SYSTEM
(UR 1)

AGENT SYSTEM
(UR 2)

Bank
application

Resource
manager for
checking
(RM 1)

Resource
manager for
saving
(RM 2)

CRM 1

CRM 2-SDSRM

RRS 1

RRS 2

In-
Flight

In-
State-
Check

In-
End

For-
gotten

For-
gotten

In-
End

In-
Pre-
Pare

(5)

(6) (7) (15)(13) (14)

(8) (16)

(10)(11) (18)

PREPARE

COMMIT

REQUEST
COMMIT

Commit
(1)

Pre-
pare

Pre-
pare

In-
Commit

In-
Doubt

In-
Commit

In-
Pre-
Pare

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

(9) (12) (17)(4)

(3)(2)

Figure 12. Syncpoint Processing — Client-Server

Chapter 1. Introducing resource recovery 17

v Suppose a system involved in distributed resource processing is hung.
Installation personnel use RRS panels to resolve any URs in an in-doubt state.
The installation might commit the UR on one system, but the resource managers
or installation personnel might back out the UR on another system.

v Database locks are being held too long because one or more resource managers
or applications involved in a UR failed in a way that is not detectable by RRS. A
heuristic decision must be made to free locked resources. Since RRS does not
limit transaction duration, properly designed resource managers should track
resource lock hold durations and either automatically make a heuristic decision
after an excessive time has passed, or warn installation personnel that they
should make a heuristic decision.

There are three possible heuristic conditions
v Heuristic commit (HC): A heuristic decision to commit some of the protected

resources associated with a UR.
v Heuristic reset (HR): A heuristic decision to back out some of the protected

resources associated with a UR.
v Heuristic mixed (HM): Inconsistent commit or backout decisions for a UR. One

of the decisions is heuristic.

Any heuristic condition is a problem because it often means that there have been
inconsistent changes to protected resources. Resolving the problem might require
manual intervention.

Planning a resource manager
A resource manager can control:
v Protected resources, which can be recovered if a failure occurs
v Unprotected resources

To control protected data resources, a resource manager must provide the
following:
v An application programming interface (API) that an application program can use

to read, write, and change resources
v A log of changes to the resource's data before the changes are permanent
v A log of the state of the work
v A commit action to make permanent changes to the resource manager's data
v A backout action to restore the resource manager's data to its previous contents

Resource managers for unprotected resources do not log data changes or provide
actions for commit and backout. This information deals with the actions resource
managers take to work with RRS to control protected resources.

While each resource manager that works with RRS to control protected resources
will be different, all must consider a common set of decisions and actions,
including the following:
1. Your resource manager must register (make itself known to the operating

system) before it can work with exit managers, such as RRS, to protect
resources. To register, the resource manager issues a call to the
Register_Resource_Manager service. When registering, the resource manager
can specify global data, which is passed to all of the resource manager's exit
routines when they are invoked.

18 z/OS V2R1.0 MVS Programming: Resource Recovery

More information appears in Chapter 2, “Using registration services,” on page
21, and you can find descriptions of each service in Chapter 5, “Callable
registration services,” on page 137.

2. Decide whether or not to set the notification exit routine with registration
services. This exit routine, though optional, is important because it keeps your
resource manager informed of events related to registration. It is driven when
an exit manager becomes available or unavailable, and it is also driven when
your resource manager exit routines have become unset. For information on the
exit routine, see Chapter 2, “Using registration services,” on page 21.

3. After registering, your resource manager must establish connections to each exit
manager it needs. To connect to an exit manager, the resource manager issues
one or more calls to the Set_Exit_Information service. Each call specifies one
exit manager and identifies the exit routines that the specified exit manager is
to invoke, or drive. Setting an exit routine means that the exit manager will
drive the exit routine when the event occurs.
The exit manager drives the exit routines in response to predefined events. For
RRS, these predefined events are events that occur during resource recovery.
For example, when an application commits the changes for a UR, RRS invokes
the COMMIT exit routine for each affected resource manager. The exit routine
sets a return code that determines how the exit manager continues to process
the event.
A resource manager must set its exit routines before an exit manager can
invoke any of the routines.
For information about each exit manager and the exit routines it can drive, see:
v Chapter 2, “Using registration services,” on page 21
v Chapter 3, “Using context services,” on page 31
v Chapter 4, “Using resource recovery services,” on page 51

4. Decide whether or not your resource manager needs to express interest in a
work context. A context represents a business unit of work: one or more units of
recovery with the associated application programs, resource managers, and
protected resources. The context should be the anchor for the resource
manager's control structures related to the work request.
When an application program requests access to a resource, the resource
manager might express an interest in the context associated with the
application program and its work request. A resource manager might need to
express interest in a work context because a context can persist over multiple
URs.
A work context can be either a native context, which is associated with a single
application task, or a privately managed context, which can be switched from
one task to another. A privately managed context is usually used by a work
manager, such as IMS.
More information appears in Chapter 3, “Using context services,” on page 31.

5. Decide how to use resource recovery services to implement the two-phase
commit protocol in your resource manager, described in Chapter 4, “Using
resource recovery services,” on page 51.

6. You need to plan the actions your resource manager will take if a failure
occurs.
The effect of a resource manager failure depends on the scope of the failure,
which can be either:
v Exit manager scope
v System scope

Chapter 1. Introducing resource recovery 19

If a resource manager has registered, the state of the resource manager is
registered. It is known to the system, and it can then set exits with one or more
exit managers. For example, one resource manager might set exits with RRS
while another might set exits with both RRS and context services. Once a
resource manager sets exits with an exit manager, its state with that exit
manager is set.
Exit Manager Scope: A failure that has exit manager scope occurs when the
failure causes the resource manager's exits to be unset with a specific exit
manager. The exit manager changes the resource manager state from set to
unset and drives the resource manager's NOTIFICATION exit routine to inform
the resource manager of the failure.
For example, assume that a resource manager has set its exits with RRS. During
processing, RRS drives the resource manager's EXIT_FAILED exit routine, but
the routine returns an unexpected return code. This unexpected return code
causes RRS to unset the resource manager's exits and drive its NOTIFICATION
exit routine. The resource manager state with the system is still registered, but
its state with RRS is unset (though it continues to run and might remain set
with another exit manager).
System Scope: In contrast, a failure that has system scope changes the resource
manager state from registered to unregistered, either because the resource
manager task or address space has failed, or because the resource manager has
itself requested the state change. As a result, the resource manager state with
all interested exit managers changes from set to unset. Before it can again
participate in resource recovery, the resource manager must restart.

20 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 2. Using registration services

Registration services allow a resource manager to define itself to the operating
system. A resource manager is a program that controls and manages access to a
resource.

Examples of resource managers are a database manager that works with RRS to
protect resources, a work manager that uses the context services component, and a
communications resource manager that handles protected communications, such as
Advanced Program-to-Program Communication/MVS (APPC/MVS).

Note: The resource manager here is different from an RTM resource manager,
which is related to the operating system's recovery termination management (RTM)
and runs during termination processing.

As part of registration, a resource manager identifies itself and its exit routines, if
any, to exit managers, which have registered with the system. An exit manager
invokes an exit routine when a specific event occurs. Examples of exit managers
are context services and resource recovery services.

The registration services are:

Callable service Description

Register_Resource_Manager Register a resource manager.

Retrieve_Resource_Manager_Data Retrieve resource manager global data.

Set_Exit_Information Identify resource manager and its exit
routines, if any, to an exit manager.

Unregister_Resource_Manager Unregister a resource manager.

For information on the calls, see Chapter 5, “Callable registration services,” on
page 137.

An authorized resource manager can provide an exit routine to be invoked to
notify the resource manager about events related to registration, such as when an
exit manager becomes registered or unregistered, or when your resource manager
exit routines have become unset. Although the notification exit routine is optional,
it is a good idea to provide one; it can report events that are important to your
resource manager. The registration services exit routine is:

Exit routine

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol Event

NOTIFICATION
1
(1)
CRG_NOTIFICATION_

EXIT

An exit manager has become
registered or unregistered.

“NOTIFICATION exit routine” on page 23 describes the routine.

© Copyright IBM Corp. 1997, 2013 21

Registration
A resource manager must register every time it is started, regardless of whether the
start is caused by failure of the system or the resource manager itself. If an exit
manager fails, however, the resource manager does not need to register again,
though it does have to call Set_Exit_Information to reidentify itself and to reset the
exits for the exit manager that failed.

Registration is the same when starting for the first time, restarting after a normal
shut down, or restarting after a failure. The sequence is:
1. Call the Register_Resource_Manager service.
2. Call the Set_Exit_Information service one or more times to identify the resource

manager to appropriate exit managers and to identify all of the resource
manager's exit routines.

In the call to the Register_Resource_Manager service, the resource manager
identifies itself with a unique 32-byte name. Registration services checks whether
or not the name is already registered on the current system; the check does not
include other systems in the sysplex. If the name is not registered, registration
services registers it and returns a 16-byte resource manager token. This token
represents the resource manager and is required on many calls. The resource
manager token is a random value that is not preserved across a restart of the
system, exit manager, or resource manager. Thus:
v Do not use the resource manager token as an identifier in log records.
v Do not try to discern the contents of the token or create any dependencies on

the contents.

Setting exit routines
A resource manager should call the Set_Exit_Information service one or more times
to identify itself and the entry points for its exit routines for each exit manager.
Each call specifies one exit manager and its exit routines.

Resource manager global data
During registration, the resource manager can provide global data. When an exit
manager invokes an exit routine, the exit manager passes this global data to the
routine. The global data should provide the exit routine with an anchor or anchors
to the resource manager's data structures.

The global data is not preserved across a restart of the system, exit manager, or
resource manager.

The resource manager can call the Retrieve_Resource_Manager_Data service to
retrieve the global data.

Unregistration
A registered resource manager becomes unregistered as follows:
v The resource manager explicitly unregisters itself by a call to the

Unregister_Resource_Manager service.
v Registration services implicitly unregisters a resource manager if:

– The resource manager's task ends.
– The cross memory resource-owning task of the resource manager ends.
– The resource manager's address space ends.

Using Registration Services

22 z/OS V2R1.0 MVS Programming: Resource Recovery

When it registers, the resource manager chooses which of the preceding events
applies.

v The system can implicitly unregister a resource manager because of errors, such
as consecutive exit errors.

When the resource manager is unregistered, exit managers do not invoke its exit
routines.

NOTIFICATION exit routine
If the exit manager specified in a call to the Set_Exit_Information service is not
available, the system returns an error code. If and when the exit manager becomes
available, the system gives control to the NOTIFICATION exit routine, if provided;
the routine can reissue the call to the Set_Exit_Information service.

The NOTIFICATION exit routine has a second use. If an exit manager becomes
unavailable, the system gives control to the NOTIFICATION exit routine, if
provided.

Programming considerations
The following topics describe installing, invoking, processing, and returning for the
exit routine and the action taken on an exit routine failure.

Installing an exit routine: To install the registration services exit routine, the
resource manager must:
v Call the Register_Resource_Manager service.
v Set the NOTIFICATION exit routine or routines for a resource manager through

one or more calls to the Set_Exit_Information service.

Invoking an exit routine: The system invokes a NOTIFICATION exit routine for
the following events related to an exit manager:
v An exit manager that was not available when the Set_Exit_Information service

was called becomes available
v A running exit manager becomes unavailable
v A running exit manager has changed the resource manager state to unset.

Note that some exit managers, such as context services, are always available.

The notification_exit_type parameter in the call to the Set_Exit_Information service
specifies how registration services is to invoke the exit routine:
v SRB routine: The system schedules a service request block (SRB) at local priority

in the resource manager's address space to give control to the exit routine.
The exit routine may run synchronously or asynchronously. In either case, it will
be nonpreemptable.
A resource manager in a swappable address space must use SRB exit routines.

v PC routine: The system issues a stacking Program Call (PC) instruction to give
control to the exit routine. The stacking PC must use a system LX so that the
routine is available from all address spaces.

Note: Consider carefully before deciding to use a system LX. Using a system LX
improperly can prevent ASIDs from being reused, which can in turn cause
unscheduled IPLs. To avoid unnecessary loss of ASIDs, IBM recommends that a
resource manager use a system LX only when the resource manager is a

Using Registration Services

Chapter 2. Using registration services 23

long-running address space. See "Reusing ASIDs" in z/OS MVS Programming:
Extended Addressability Guide for more detail.
The exit routine will run synchronously; therefore, the resource manager should
not suspend processing of the work unit. The system cannot invoke any other
exit routines until the PC routine completes.
The resource manager must be in a nonswappable address space to use PC exit
routines. A PC exit routine must remain available to the system until the
resource manager ends processing, unregisters, or issues a call to the
Set_Exit_Information service to change the exit routine.
A PC exit routine and any routine that it invokes cannot issue an SVC
instruction.

The advantage of the PC routine over an SRB routine is a shorter path length to
invoke it. Invocation of an SRB routine has the overhead of scheduling and
dispatching an SRB.

Processing by an exit routine: A resource manager can have a NOTIFICATION
exit routine for each exit manager or a single routine for all exit managers. At
invocation, the exit routine receives a parameter list, which names the exit
manager. If a resource manager uses a single exit routine, the routine can identify
the processing needed based on the exit_manager_name parameter.

If the exit manager was unavailable when the resource manager called the
Set_Exit_Information service, the exit routine can now set its exits with the exit
manager.

If the resource manager previously set its exit routines with the exit manager, the
exit routine was invoked because the exit manager became unavailable. In this
case, the routine can do processing needed because the exit manager is no longer
available.

Returning from an exit routine: An exit routine returns to its exit manager as
follows:
v An SRB routine must return to the address that was in register 14 on entry to

the routine.
v A PC routine must return with a Program Return (PR) instruction.

Action on exit routine failure: If the exit routine fails, it returns a nonzero return
code or abnormally ends with an abend code. In response, the system unsets the
resource manager's exit routines and unregisters the resource manager.

Environment
Before the exit routine receives control, registration services establishes a function
recovery routine (FRR) for error recovery.

An SRB exit routine receives control in the following environment:

Minimum authorization: Key of the resource manager when it registered, supervisor
state

Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN, home address space of the resource

manager when it registered
AMODE: 31-bit
ASC mode: Primary

NOTIFICATION Exit Routine

24 z/OS V2R1.0 MVS Programming: Resource Recovery

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

A PC exit routine receives control in the following environment:

Minimum authorization: Determined by the PC instruction characteristics, supervisor
state

Dispatchable unit mode: SRB or task
Cross memory mode: Determined by the PC instruction characteristics, home

address space unpredictable
AMODE: Determined by the PC instruction characteristics
ASC mode: Determined by the PC instruction characteristics
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
The high level language (HLL) definitions for the exit routine parameter list are:

HLL Definition Description
CRGASM 390 Assembler declarations
CRGC C/390 declarations

Entry to an exit routine
The exit routine receives information in the registers and a parameter list.

Registers at entry
When an SRB exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

1 Address of the parameter list for the exit routine

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Address of the exit routine's entry point

When an SRB exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

NOTIFICATION Exit Routine

Chapter 2. Using registration services 25

1 Address of the parameter list for the exit routine

2-15 Not applicable

When a PC exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

Parameter list syntax
The parameter list consists of pointers to fields containing the values. If a
parameter is not meaningful for the exit routine being invoked, the field contains
binary zeros. All parameters, except return_code, are input to the exit routine.
Access to the parameters is controlled by storage protect key:
v Input parameters: For the parameters received by the exit routine, the resource

manager and exit routine have READ access, but might not have WRITE access.
v Output parameters: For the parameters returned by the exit routine, the resource

manager and exit routine have READ and WRITE access.

(return_code
,version
,exit_number
,resource_manager_token
,reg_exit_manager_name
,resource_manager_global_data
,exit_manager_name
,value1
,value2
,value3
,value4
,value5)

Parameters
return_code

Points to a field that, upon return from the exit routine, is to contain a
hexadecimal return code. Define the field as a 4-byte integer.

version
Points to a field that contains the version of the registration services interface.
The current version is 1. Define the field as a 4-byte integer.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
1

Decimal
1

Equate symbol
CRG_NOTIFICATION_EXIT

NOTIFICATION Exit Routine

26 z/OS V2R1.0 MVS Programming: Resource Recovery

resource_manager_token
Points to a field that contains the resource manager token. Define the field as a
16-byte character string. Your resource manager received the token from the
Register_Resource_Manager service.

reg_exit_manager_name
Points to a field that contains the name of the exit manager that is driving the
exit. Define the field as a 16-byte character string. The exit manager for this
exit routine is registration services; its exit manager name is:
CRG.REGSERV.IBM

resource_manager_global_data
Points to a field that contains the resource manager's global data. Define the
field as a 16-byte character string. Your resource manager provided this data in
the call to the Register_Resource_Manager service.

For the exit routine, this data should be an anchor or anchors for data
structures in the resource manager.

exit_manager_name
Points to a field that contains the name of the exit manager for which this exit
is being driven. Define the field as a 16-byte character string. The name of the
RRS exit manager is:
ATR.EXITMGR.IBM

value1
Points to a field that contains the reason the exit routine is being invoked.
Define the field as a 4-byte hexadecimal constant.

Value in:
Hexadecimal
(Decimal)
Equate Symbol Event

1
(1)
CRG_EM_AVAILABLE

Exit manager registered: The exit manager
that was previously not available during a
call to the Set_Exit_Information service is
now available.

2
(2)
CRG_EM_UNAVAILABLE

Exit manager unregistered: The exit manager
that was previously available during a call to
the Set_Exit_Information service is now
unavailable.

3
(3)
CRG_RM_EXITS_UNSET

Resource manager exits unset: The exit
manager has unset the exits for the resource
manager.

value2
Points to a field that, when value1 is CRG_RM_EXITS_UNSET, contains the
reason the exits were unset. Define the field as a 4-byte hexadecimal constant.

NOTIFICATION Exit Routine

Chapter 2. Using registration services 27

Value in:
Hexadecimal
(Decimal)
Equate Symbol Meaning

0
(0)
CRG_UNSET_EFE_REQUESTED

The resource manager's EXIT_FAILED exit
routine has requested that the exit manager
unset the resource manager's exit routines.

1
(1)
CRG_UNSET_EFE_FAILED

The resource manager's EXIT_FAILED exit
routine has failed, and the exit manager has
unset the resource manager's exit routines.

2
(2)
CRG_UNSET_EFE_BAD_RETCODE

The resource manager's EXIT_FAILED exit
routine has returned a bad return code, and
the exit manager has unset the resource
manager's exit routines.

8000–8008
(32768–32776)
EXIT_MANAGER_SPECIFIC

The exit manager has unset the resource
manager's exit routines for a reason that is
specific to the resource manager. See the
information about the resource manager for
information about the specific code.

8009
(32777)
ATR_EM_UNAVAILABLE

The resource manager has been unset
because RRS was terminated through the
SETRRS SHUTDOWN command.

800A–FFFF
(32778–65535)
EXIT_MANAGER_SPECIFIC

The exit manager has unset the resource
manager's exit routines for a reason that is
specific to the resource manager. See the
information about the resource manager for
information about the specific code.

value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Exit from an exit routine
The exit routine provides information to the system in the return code in the
parameter list.

Registers at Exit: When a SRB exit routine returns control, the GPRs must contain:

Register
Contents

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When an SRB exit routine returns control, the ARs must contain:

Register
Contents

NOTIFICATION Exit Routine

28 z/OS V2R1.0 MVS Programming: Resource Recovery

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When a PC exit routine returns control, the GPRs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine returns control, the ARs contain:

Register
Contents

0-15 Not applicable

Return codes
When the NOTIFICATION exit routine returns control to the system, the routine
must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and Action

0
(0)
CRG_OK

Meaning: The NOTIFICATION exit routine
completed processing.

Action: None.

hhh
(dddd)
cccccccccccc

Meaning: The NOTIFICATION exit routine
failed.

Action: Check the exit routine for a probable
coding error. Correct the exit routine and
rerun it.

NOTIFICATION Exit Routine

Chapter 2. Using registration services 29

NOTIFICATION Exit Routine

30 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 3. Using context services

Context services allow a resource manager to indicate interest in a work context.

A context represents the resources for a work request; a context consists of the
application program requesting the work and the protected resources involved in
the work. A context represents a business unit of work: one or more units of
recovery with the associated application programs, resource managers, and
protected resources. The context should be the anchor for the resource manager's
control structures related to the work request.

When an application program requests access to a resource, the resource manager
might express an interest in the context associated with the application program
and its work request. A resource manager that is using RRS might need to express
interest in a work context, not just a particular UR, because a context can persist
over multiple URs (as shown earlier in Figure 1 on page 4).

Contexts
A context can be either:
v A native context, which is the automatically occurring context of the application

program and protected resources associated with a work request. A native
context is associated with a single application task. This context always exists.

v A privately-managed context, which a resource manager creates. The resource
manager owns a privately-managed context it creates, and the resource manager
can switch a privately-managed context from one task to another. A
privately-managed context is usually used by a work manager, which is a
resource manager, like IMS, that accepts and manages work, such as
transactions, from outside the system.

Table 1 summarizes the differences between the two types of contexts.

Table 1. Context Type Differences

Difference Native Context Privately-Managed Context

Creation of
context

Implicitly by the operating system Explicitly by a resource manager

Association of
context

Always with an application's task Temporarily may not be associated
with any task

Association
change

Cannot change association from
one application's task to another

Can change association from one
application's task to another at any
time. The change can even be to a
work unit in a different home
address space

© Copyright IBM Corp. 1997, 2013 31

Table 1. Context Type Differences (continued)

Difference Native Context Privately-Managed Context

Context end v When the application's task ends

v When a resource manager
running under the application's
task explicitly ends the context
(though a new native context
automatically begins)

v When the home address space of
the application's task abnormally
ends

v When a resource manager
explicitly ends a
privately-managed context that
it owned. If the context is
associated with an application's
task, the resource manager must
be running under that task

v If the owning resource manager
ends or unregisters, a context
disassociated from an
application's task ends
immediately

v If the owning resource manager
ends or unregisters, a context
associated with an application's
task continues until the task
ends

v If the application's task
associated with a
privately-managed context ends,
the system invokes the
PVT_CONTEXT_OWNER exit
routine, if provided. The routine
indicates if the
privately-managed context is to
be ended or disassociated from
the task

Expressing Interest in a Context: A resource manager expresses interest in a
context to cause the system to invoke the resource manager's exit routine when:
v The context ends
v The context switches from one application's task to another

When expressing interest in a context, a resource manager can provide context
interest data. This data can contain an anchor for the resource manager's data
structures for the context.

When a resource manager expresses interest in a context, the system provides a
context token that represents the context. The context token is unique within an
MVS system or sysplex but is not guaranteed to be unique across a network of
MVS systems.

Privately-Managed Contexts: When a resource manager that is processing
transactions creates a new work request, the resource manager should create a new
privately-managed context for the request. The resource manager can associate the
context with the application's task that will run for the work request.

If needed, the resource manager can disassociate the privately-managed context
from a task and later reassociate it with the same task or another task. By changing
the associations, the resource manager can have one task that runs for many work
requests, many tasks that run in series for a single work request, or both. Note that
a context cannot be associated at the same time with multiple tasks.

Using Context Services

32 z/OS V2R1.0 MVS Programming: Resource Recovery

When a task changes from processing for one work request to processing for
another work request, the resource manager should switch the privately-managed
contexts associated with the task.

Current Context: Every task in the system has an associated context; thus, there is
always a context for a given task. When a task is created, context services provides
the original (native) context for the task. A call to the Begin_Context service creates
a privately-managed context, and a call to the Switch_Context service changes the
current context to the privately-managed context. The native context still exists, but
is not current. If a later call to the Switch_Context service disassociates the
privately-managed context, the native context again becomes the current context.

If a privately-managed context associated with a task ends, the native context
becomes the current context. If a task ends while there is a privately-managed
context associated with it, the privately-managed context ends, followed
immediately by the end of the task's native context.

Callable services for contexts
Resource managers that use context services might use any of the following
services, particularly Express_Context_Interest:

Callable Service Description

Delete_Context_Interest Delete interest in a context

Express_Context_Interest Express® interest in a context

Retrieve_Context_Interest_Data Retrieve context interest data

Retrieve_Current_Context_Token Retrieve the context token for the currently
active context

Set_Context_Interest_Data Set context interest data

Resource managers that are also work managers use the following context services:

Callable Service Description

Begin_Context Begin a privately-managed context

End_Context End a privately-managed context

Switch_Context Switch a context

Unauthorized resource managers
Resource managers which run in PKM 8–15 and problem state are considered to be
unauthorized. Unauthorized resource managers can use context services to obtain
and manage contexts; however, context services imposes limitations on them which
it does not impose on PKM 0–7 or supervisor state resource managers. These
limitations include:
v At most, 256 unauthorized resource managers can register from a single address

space, unless an operator explicitly allows additional resource managers.
v At most, 256 contexts can be obtained by each unauthorized resource manager,

unless an operator explicitly allows the resource manager to get more.
v Unauthorized resource manager names must end with .UA

v The CRG_UNREG_EOM option cannot be used as an unregister option on the
Register_Resource_Manager service.

Using Context Services

Chapter 3. Using context services 33

v No exits are allowed.
v Interest cannot be expressed in any context. As a result, the unauthorized

resource manager cannot get notification of context related events.
v Contexts can only be switched between tasks in the unauthorized resource

manager's home address space.
v Only contexts obtained by unauthorized resource managers registered in the

same home address space can be affected.
v Only the following services can be used by unauthorized resource managers:

– Begin_Context
– End_Context
– Retrieve_Context_Data
– Retrieve_Current_Context_Token
– Switch_Context

Context services exit routines
Your resource manager can provide exit routines to be invoked when events occur
for its interest in a context. Table 2 lists the context services exit routines.

Table 2. Context Services Exit Routines

Exit Routine

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol Event

CONTEXT_SWITCH
2
(2)
CTX_SWITCH_EXIT

A call to the Switch_Context
service or the termination of
a disassociated context

END_CONTEXT
4
(4)
CTX_END_CONTEXT_EXIT

A context is ending for any
reason, including a call to the
End_Context service

EOM_CONTEXT
5
(5)
CTX_EOM_CONTEXT_EXIT

A context is ending because
the address space associated
with it is ending. This exit
routine is invoked before the
END_CONTEXT exit routine

EXIT_FAILED
1
(1)
CTX_EXIT_FAILED_EXIT

A context services exit
routine failed

PVT_CONTEXT_OWNER
3
(3)
CTX_PRIVATE_CONTEXT_

OWNER

A work unit associated with
a private context is ending

These exit routines are optional. A resource manager could, for example, use
context services without any exit routine and call the Express_Context_Interest
service just to keep data in the context_interest_data area the service provides. If,

Using Context Services

34 z/OS V2R1.0 MVS Programming: Resource Recovery

however, your resource manager does choose to provide any context services exit
routines, it must also provide an EXIT_FAILED exit routine.

When a context ends, the exit routines that context services invokes, and the order
in which context services invokes the routines, depend on:
v The type of context (privately-managed context or native context)
v The reason the context is ending

Figure 13 shows the conditions and the order in which exit routines are invoked.

For a privately-managed context:

v When the task associated with the context ends:

1. PVT_CONTEXT_OWNER

2. CONTEXT_SWITCH (if the owner tells RRS to disassociate the context from the task)

3. END_CONTEXT

v When the address space associated with the context ends:

1. PVT_CONTEXT_OWNER

2. CONTEXT_SWITCH (if the owner tells RRS to disassociate the context from the task — see note 1)

3. EOM_CONTEXT

4. END_CONTEXT (see note 2)

v When the context is not associated with a task and its owner ends:

1. EOM_CONTEXT

2. CONTEXT_SWITCH

3. END_CONTEXT (see note 2)

v When the End_Context service was called to end a context associated with a task:

1. END_CONTEXT

v When the End_Context service was called to end a context not associated with a task:

1. CONTEXT_SWITCH

2. END_CONTEXT

For a native context:

v When the task associated with the context ends:

1. END_CONTEXT

v When the address space associated with the context ends:

1. EOM_CONTEXT

2. END_CONTEXT (see note 2)

v When the End_Context service was called to end the context:

1. END_CONTEXT

Note:

1. If the PVT_CONTEXT_OWNER exit routine tells context services to disassociate the context from the task,
context services drives CONTEXT_SWITCH exit routines. If any CONTEXT_SWITCH exit routine disallows
the switch, context services continues processing to end the context, but it changes the reason for the context
end to CTX_FORCED_END_OF_CONTEXT.

2. During processing the end of an address space, context services invokes the CONTEXT_SWITCH,
EOM_CONTEXT, and PVT_CONTEXT_OWNER exit routines before the RTM resource managers (RESMGRs).

Figure 13. Order of Invocation for Context Services Exit Routines

Using Context Services

Chapter 3. Using context services 35

Programming considerations
The following topics discuss installing, invoking, processing, and returning for an
exit routine and the action taken on an exit routine failure.

Installing an exit routine
To ensure that context services can drive its exit routines, the resource manager
must:
v Register itself through a call to the Register_Resource_Manager service.
v Set the context services exit routines through one or more calls to the

Set_Exit_Information service. If the resource manager specifies any exit routines,
it must also specify the EXIT_FAILED routine.

Note that exits might be driven even before control returns from
Set_Exit_Information.

If your resource manager needs private context delegation to RRS, you must
specify the RRS resource manager name so Context Services knows to
communicate with RRS. You specify this through the variable_data_1 parameter on
the Set_Exit_Information service. See “Private context delegation” on page 53 for a
description of private context delegation to RRS.

Set_Exit_Information returns codes related to its processing. See
“Set_Exit_Information (CRGSEIF, CRGSEIF1,CRG4SEIF)” on page 148.
Set_Exit_Information might also return codes from the exit manager. The following
table lists the return codes you might get from Context Services when you call the
Set_Exit_Information service to set the Context Services exit routines.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

8000
(32768)
CTX_DELEGATION_INV

Meaning: The specified resource manager
does not support private context delegation.
The system rejects the service request.

Action: Specify the name of a resource
manager that supports private context
delegation.

Invoking an exit routine
Before context services can invoke an exit routine, however, the resource manager
must also express interest in a context through a call to the
Express_Context_Interest service.

The system invokes a context services exit routine when its context-related event
occurs and the resource manager has expressed interest in the context related to
the event. If your resource manager has more than one interest in a context, the
system will invoke the exit routine for each interest.

The exit_type parameter in the call to the Set_Exit_Information service specifies
how context services is to invoke the exit routine:
v SRB routine: The system schedules a service request block (SRB) at local priority

in the resource manager's address space to give control to the exit routine.

Using Context Services

36 z/OS V2R1.0 MVS Programming: Resource Recovery

The exit routine may run synchronously or asynchronously. In either case, it will
be nonpreemptable.
A resource manager in a swappable address space must use SRB exit routines.

v PC routine: The system issues a stacking Program Call (PC) instruction to give
control to the exit routine. The stacking PC must use a system LX so that the
routine is available from all address spaces.

Note: Consider carefully before deciding to use a system LX. Using a system LX
improperly can prevent ASIDs from being reused, which can in turn cause
unscheduled IPLs. To avoid unnecessary loss of ASIDs, IBM recommends that a
resource manager use a system LX only when the resource manager is a
long-running address space. See "Reusing ASIDs" in z/OS MVS Programming:
Extended Addressability Guide for more detail.
The exit routine will run synchronously; therefore, the resource manager must
not suspend processing of the work unit. The system cannot invoke any other
exit routines until the PC routine completes.
The resource manager must be in a nonswappable address space to use PC exit
routines. A PC exit routine must remain available to the system until the
resource manager ends processing, unregisters, or issues a call to the set exit
routine service to change the exit routine.
A PC exit routine and any routine that it invokes cannot issue an SVC
instruction.

The advantage of the PC routine over an SRB routine is a shorter path length to
invoke it. Invocation of an SRB routine has the overhead of scheduling and
dispatching an SRB.

Processing by an exit routine
A resource manager can have an exit routine for each context services exit or a
single routine for all context services exits. At invocation, all context services exit
routines receive a parameter list in the same format but with exit-specific meanings
for some parameters. If a resource manager uses a single exit routine, the routine
can identify the processing needed based on the exit number parameter.

Returning from an exit routine
An exit routine returns to context services as follows:
v An SRB routine must return to the address that was in register 14 on entry to

the routine.
v A PC routine must return with a Program Return (PR) instruction.

Action if an exit routine fails
If an exit routine percolates an abend or returns an unexpected return code, the
system gives control to the EXIT_FAILED exit routine.

Action if exit routines are unset
If a resource manager's exit routines are unset for any reason:
v Context services will not quiesce any exit routines that are active when the exit

routines are unset. The exit routines continue to run.

A quiesced exit routine completes normally or abnormally, then returns to the
caller.

If an exit routine that continues to run requests a context service, it will get an
error return code from the service.

Using Context Services

Chapter 3. Using context services 37

Environment
Before the exit routine receives control, context services establishes a functional
recovery routine (FRR) for error recovery.

An SRB exit routine receives control in the following environment:

Minimum authorization: Key of the resource manager when it registered, supervisor
state

Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN, home address space of the resource

manager when it registered
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

A PC exit routine receives control in the following environment:

Minimum authorization: Determined by the PC instruction characteristics, supervisor
state

Dispatchable unit mode: SRB or Task
Cross memory mode: Determined by the PC instruction characteristics, home

address space unpredictable
AMODE: Determined by the PC instruction characteristics
ASC mode: Determined by the PC instruction characteristics
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
The high level language (HLL) definitions for the exit routine parameter list are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Entry to an exit routine
The exit routine receives information in the registers and a parameter list.

Registers at entry
When an SRB exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

1 Address of the parameter list for the exit routine

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Address of the exit routine's entry point

Using Context Services

38 z/OS V2R1.0 MVS Programming: Resource Recovery

When an SRB exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

1 Address of the parameter list for the exit routine

2-15 Not applicable

When a PC exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

Parameter list
The parameter list is the same for all context services exit routines.

The parameter list consists of pointers to fields containing the values. If a
parameter is not meaningful for the exit routine being invoked, the field contains
binary zeros. All parameters, except return_code, are input to the exit routine.
Access to the parameters is controlled by storage protect key:
v Input parameters: For the parameters received by the exit routine, the resource

manager and exit routine have READ access, but might not have WRITE access.
v Output parameters: For the parameters returned by the exit routine, the resource

manager and exit routine have READ and WRITE access.

Syntax:

(return_code
,version
,exit_number
,resource_manager_token
,exit_manager_name
,resource_manager_global_data
,context_token
,context_interest_token
,context_interest_data
,value1
,value2
,value3
,value4
,value5)

Parameters:

return_code
Points to a field that, upon return from the exit routine, is to contain a
hexadecimal return code. Define the field as a 4-byte integer.

Using Context Services

Chapter 3. Using context services 39

The return codes have unique meanings for each exit routine. See the
individual exit routine descriptions for the return codes.

version
Points to a field that contains the version of the context services interface. The
current version is 1. Define the field as a 4-byte integer.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer.

Each of the following exit routine descriptions includes the number of the exit.
If a single exit routine is used for multiple exits, the routine can use this
number to determine the event that caused the exit to be driven.

resource_manager_token
Points to a field that contains the resource manager token. Define the field as a
16-byte character string. Your resource manager received the token from the
Register_Resource_Manager service.

exit_manager_name
Points to a field that contains the name of the exit manager. Define the field as
a 16-byte character string. The exit manager for this exit routine is context
services: its exit manager name is:
CTX.EXITMGR.IBM

The equate symbol for the name is CTX_EXIT_MGR_NAME.

resource_manager_global_data
Points to a field that contains the resource manager global data. Define the
field as a 16-byte character string. Your resource manager provided this data in
the call to the Register_Resource_Manager service.

For the exit routine, this data should be an anchor or anchors for data
structures in the resource manager.

context_token
Points to a field that contains the context token for the context for which the
system is invoking the exit routine. Define the field as a 16-byte character
string.

Your resource manager receives the token from the Express_Context_Interest
service or, for a privately-managed context, from the Begin_Context service.

context_interest _token
Points to a field that contains the context interest token for the interest for
which the system is invoking the exit routine. Define the field as a 16-byte
character string. Your resource manager received the token from the
Express_Context_Interest service.

context_interest_data
Points to a field that contains the context interest data. Define the field as a
16-byte character string. Your resource manager provided this data in a call to
the Express_Context_Interest service or the Set_Context_Interest_Data service.

value1
value2
value3
value4

Using Context Services

40 z/OS V2R1.0 MVS Programming: Resource Recovery

value5
Point to fields that contain values unique for the exit routines. Define each
field as a 4-byte integer. If a value is not used for an exit routine, its field
contains binary zeros.

See the individual exit routine descriptions for the values.

Exit from an exit routine
The exit routine provides information to the system in the return code in the
parameter list.

Registers at Exit: When an SRB exit routine returns control, the GPRs must
contain:

Register
Contents

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When an SRB exit routine returns control, the ARs must contain:

Register
Contents

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When a PC exit routine returns control, the GPRs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine returns control, the ARs contain:

Register
Contents

0-15 Not applicable

CONTEXT_SWITCH exit routine
The CONTEXT_SWITCH exit routine receives control for:
v A context switch: A resource manager called the Switch_Context service to

switch the context associated with the application's task to another context. The
exit routine decides if the switch should be allowed or disallowed. If allowed,
the routine does processing needed before a context switch.

v Context end: Either a resource manager called the End_Context service to end a
context not associated with a task, or a context not associated with a task is
ending for another reason. The value1 parameter reports the reason the exit was
called. The exit routine does processing needed when the context ends.

Restrictions
Do not call any of the following services to process the context passed to the exit
routine in the context_token parameter:

Using Context Services

Chapter 3. Using context services 41

End_Context
Context_Switch
Express_Context_Interest

Unique parameters
For information about common parameters, see “Parameter list” on page 39.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
2

Decimal
2

Equate symbol
CTX_SWITCH_EXIT

value1
Points to a field that describes the event causing the context switch. Define the
field as a 4-byte integer. The hexadecimal values for the events are:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Event

1
(1)
CTX_SWITCH_TO

Switching to a context: The call to the
Switch_Context service requests a switch to
the context identified in the context_token
parameter.

2
(2)
CTX_SWITCH_FROM

Switching from a context: The call to the
Switch_Context service requests a switch
from the context identified in the
context_token parameter.

3
(3)
CTX_SWITCH_DISASSOC_END_NORM

Normal end of a work unit: The
disassociated privately-managed context
identified in the context_token parameter is
being ended by a call to the End_Context
service. The completion_type from the
End_Context service is
CTX_NORMAL_TERMINATION.

4
(4)
CTX_SWITCH_DISASSOC_END_

ABNORM

Abnormal end of a work unit: The
disassociated privately-managed context
identified in the context_token parameter is
being ended by a call to the End_Context
service. The completion_type from the
End_Context service is
CTX_ABNORMAL_TERMINATION.

5
(5)
CTX_SWITCH_END_FORCED

Forced end of a work unit: The context
identified in the context_token parameter is
being ended by a call to the End_Context
service after a call to the Switch_Context
service marked the switch as disallowed. The
completion_type from the End_Context service
is CTX_FORCED_END_OF_CONTEXT.

CONTEXT_SWITCH Exit Routine

42 z/OS V2R1.0 MVS Programming: Resource Recovery

Value in:
Hexadecimal
(Decimal)
Equate Symbol Event

6
(6)
CTX_SWITCH_MEMTERM

Memory termination of work unit's address
space: The address space for the work unit
associated with the context identified in the
context_token parameter is ending.

7
(7)
CTX_SWITCH_MEMTERM_PRIV_OWNER

Context owner's address space terminated:
The address space for the owner of the
private context identified in the context_token
parameter is ending.

This condition occurs only when the context
is not associated with any dispatchable unit.

8
(8)
CTX_SWITCH_UNREG_PRIV_OWNER

Context owner unregistered: The resource
manager that owns the private context
identified in the context_token parameter has
called the Unregister_Resource_Manager
service.

This event occurs only when the context is
not associated with any dispatchable unit.

value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the CONTEXT_SWITCH exit routine returns control to the system, the
routine must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
CTX_OK

Meaning: The CONTEXT_SWITCH exit
routine allows the switch requested in the call
to the Switch_Context service. If the
CONTEXT_SWITCH exit routines for all
interests in the context return CTX_OK, the
Switch_Context service processes the request.
Note: This is the only code that can be
returned when the value1 parameter contains:

CTX_SWITCH_DISASSOC_END_FORCED

CTX_SWITCH_MEMTERM

CTX_SWITCH_MEMTERM_PRIV_OWNER

Action: None.

CONTEXT_SWITCH Exit Routine

Chapter 3. Using context services 43

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

800
(2048)
CTX_DISALLOW_SWITCH

Meaning: The CONTEXT_SWITCH exit
routine disallows the switch requested in the
call to the Switch_Context service. The system
rejects the Switch_Context request, does not
perform the switch, and returns this return
code to the calling resource manager.

This return code is provided for resource
managers that cannot tolerate a context switch
to or from the target environment. Note that
by disallowing the switch behavior, the
issuing resource manager may present
problems for the owing work manager or
other resource managers interested in the
context. For this reason, IBM discourages
usage of this return code.
Note: This code cannot be returned when the
value1 parameter contains:

CTX_SWITCH_DISASSOC_END_FORCED

CTX_SWITCH_MEMTERM

CTX_SWITCH_MEMTERM_PRIV_OWNER

Action: Check the resource manager for a
probable coding or environmental error.
Correct the resource manager and rerun it.

801
(2049)
CTX_DISALLOW_SWITCH_WU

Meaning: The CONTEXT_SWITCH exit
routine disallows the switch requested in the
call to the Switch_Context service because the
calling resource manager is running under the
wrong work unit. The system rejects the
Switch_Context request, does not perform the
switch, and returns this return code to the
calling resource manager.

This return code is provided for resource
managers that cannot tolerate a context switch
to or from the target environment. Note that
by disallowing the switch behavior, the
issuing resource manager may present
problems for the owing work manager or
other resource managers interested in the
context. For this reason, IBM discourages
usage of this return code.
Note: This code cannot be returned when the
value1 parameter contains:

CTX_SWITCH_DISASSOC_END_FORCED

CTX_SWITCH_MEMTERM

CTX_SWITCH_MEMTERM_PRIV_OWNER

Action: Check the resource manager for a
probable coding or environmental error.
Correct the resource manager and rerun it.

CONTEXT_SWITCH Exit Routine

44 z/OS V2R1.0 MVS Programming: Resource Recovery

END_CONTEXT exit routine
The END_CONTEXT exit routine receives control when a context is ending for any
reason, including a call to the End_Context service. The exit routine should clean
up private resource manager structures for this context.

Restrictions
Do not call any of the following services to process the context passed to the exit
routine in the context_token parameter:

End_Context
Context_Switch
Express_Context_Interest

Unique parameters
For information about common parameters, see “Parameter list” on page 39.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
4

Decimal
4

Equate symbol
CTX_END_CONTEXT_EXIT

value1
Points to a field that contains the completion type for the context. The
completion type was specified in a call to the End_Context service. Define the
field as a 4-byte integer. The hexadecimal values for the completion types are:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Completion type

0
(0)
CTX_NORMAL_TERMINATION

The context is ending normally.

1
(1)
CTX_ABNORMAL_TERMINATION

The context is ending abnormally.

2
(2)
CTX_ABNORMAL_EOM_TERMINATION

The context must end because the address
space for the application is ending
abnormally.

3
(3)
CTX_FORCED_END_OF_CONTEXT

A work manager is forcing the context to
end.

END_CONTEXT Exit Routine

Chapter 3. Using context services 45

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Completion type

4
(4)
CTX_PRIV_OWNER_TERMINATION

The privately-managed context must end
because the resource manager that owns the
context is ending.

value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the END_CONTEXT exit routine returns control to the system, the routine
must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
CTX_OK

Meaning: The END_CONTEXT exit routine
completed processing.

Action: None.

EOM_CONTEXT exit routine
The EOM_CONTEXT exit routine receives control when a context is ending
because the address space associated with the context is ending. The purpose of
this exit is to inform the resource managers that the address space is ending. If you
provide this exit, it is invoked before the END_CONTEXT exit routine

Unique parameters
For information about common parameters, see “Parameter list” on page 39.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
5

Decimal
5

Equate symbol
CTX_EOM_CONTEXT_EXIT

value1
value2
value3
value4

END_CONTEXT Exit Routine

46 z/OS V2R1.0 MVS Programming: Resource Recovery

value5
Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the EOM_CONTEXT exit routine returns control to the system, the routine
must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
CTX_OK

Meaning: The EOM_CONTEXT exit routine
completed processing.

Action: None.

EXIT_FAILED exit routine
The EXIT_FAILED exit routine receives control when a context services exit routine
fails. Context services gives this routine the exit number of the failed routine and
the reason why the routine failed. The return code from the EXIT_FAILED routine
tells context services what action to take, usually unsetting the resource manager's
context services exit routines.

If the EXIT_FAILED exit routine percolates an abend or returns an undefined
return code, context services unsets the resource manager's context services exit
routines.

Restrictions
Do not call any of the following services to process the context passed to the exit
routine in the context_token parameter:

End_Context
Context_Switch
Express_Context_Interest

Unique parameters
For information about common parameters, see “Parameter list” on page 39.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
1

Decimal
1

Equate symbol
CTX_EXIT_FAILED_EXIT

value1
Points to a field that contains the exit number of the failed exit routine. See the
individual exit routine descriptions for the numbers. Define the field as a
4-byte integer.

EOM_CONTEXT Exit Routine

Chapter 3. Using context services 47

value2
Points to a field that contains the reason why the exit routine failed. Define the
field as a 4-byte integer. The hexadecimal values for the reasons are:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Reason

1
(1)
CTX_EXIT_INCORRECT_RC

Incorrect return code: An exit routine
returned an incorrect return code to context
services. The incorrect code is in the value3
parameter.

2
(2)
CTX_EXIT_ABENDED

Exit routine abended: The abend percolated
to the context services FRR. The ABEND
code is in the value3 parameter.

3
(3)
CTX_EXIT_ABENDED_RSN

Exit routine abended: The abend percolated
to the context services FRR. The ABEND
code is in the value3 parameter, and its
reason code is in value4.

4
(4)
CTX_MEMTERM

Address space ended: While the exit routine
was running, the dispatchable unit's address
space or the privately-managed context
owner's address space terminated.

value3
Points to a field that contains the following code, depending on value2. Define
the field as a 4-byte integer.

Value in value2 Contents of value3 Field

CTX_EXIT_INCORRECT_RC The incorrect return code

CTX_EXIT_ABENDED The abend code

CTX_EXIT_ABENDED_RSN The abend code

value4
Points to a field that contains, if value2 is CTX_EXIT_ABENDED_RSN, the
ABEND reason code. Otherwise the field contains binary zeros. Define the field
as a 4-byte integer.

value5
Points to a field that contains binary zeros. Define the field as a 4-byte integer.

Return codes
When the EXIT_FAILED exit routine returns control to the system, the routine
must provide a hexadecimal return code in the return_code parameter.

EXIT_FAILED Exit Routine

48 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and Action

810
(2064)
CTX_EXIT_UNSET_RM

Meaning: The EXIT_FAILED exit routine
completed processing. Context services is to
unset the context services exit routines for
the resource manager.

Action: The resource manager should load a
new copy of the failed exit routine, then call
the Set_Exit_Information service to set all of
its exit routines with context services again.

If the problem recurs, you should check the
failed exit routine for a probable coding
error. Correct the routine and rerun the
resource manager.

hhh
(dddd)
An exit-specific equate symbol

Meaning: The EXIT_FAILED exit routine
completed processing for the exit routine
that failed. The return code is valid for the
failed exit; see the return codes for the failed
exit.

Action: Perform the action for the return
code.

PVT_CONTEXT_OWNER exit routine
The PVT_CONTEXT_OWNER exit routine receives control when a work unit
associated with a private context is ending. The exit routine decides if the
privately-managed context should be allowed to end or not.

The exit is driven only for the resource manager that issued Begin_Context to
create the privately-managed context, and only if that resource manager expressed
interest in the context. If the resource manager expressed interest multiple times,
the resource manager's PVT_CONTEXT_OWNER exit routine is driven once for
each expression of interest. If any exit invocation returns
CTX_DIS_PVT_CONTEXT, then RRS disassociates the context from the
dispatchable unit and does not end the context.

Unique parameters
For information about common parameters, see “Parameter list” on page 39.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
3

Decimal
3

Equate symbol
CTX_PRIVATE_CONTEXT_OWNER

EXIT_FAILED Exit Routine

Chapter 3. Using context services 49

value1
Points to a field that indicates how the privately-managed context is ending.
Define the field as a 4-byte integer. The hexadecimal values for the endings
are:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Type of ending

0
(0)
CTX_NORMAL_TERM

Normal ending

1
(1)
CTX_ABNORMAL_TERM

Abnormal ending

value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the PVT_CONTEXT_OWNER exit routine returns control to the system, the
routine must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
CTX_END_PVT_CONTEXT

Meaning: The PVT_CONTEXT_OWNER exit
routine completed processing. The context
should be allowed to end.

Action: None.

1
(1)
CTX_DIS_PVT_CONTEXT

Meaning: The PVT_CONTEXT_OWNER exit
routine completed processing. The
privately-managed context from the work
unit that is ending should be disassociated
from the work unit that is ending but the
context should not be ended.

Action: If the PVT_CONTEXT_OWNER exit
routine tells context services to disassociate
the context from the task, context services
drives CONTEXT_SWITCH exit routines. If
any CONTEXT_SWITCH exit routine
disallows the switch, context services
continues processing to end the context, but
it changes the reason for the context end to
CTX_FORCED_END_OF_CONTEXT.

PVT_CONTEXT_OWNER Exit Routine

50 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 4. Using resource recovery services

Resource recovery services (RRS) provides a set of services that implement the
two-phase commit protocol on the z/OS platform. Your resource manager follows
the two-phase commit protocol to protect resources by invoking these services and
providing exit routines. While “Planning a resource manager” on page 18 presents
an overview of how to plan a resource manager, this section describes how to use
RRS services and how to code the exit routines. You can find details about each
resource recovery service in Chapter 7, “Callable resource recovery services,” on
page 225 and details about each exit routine in “Resource recovery exit routines”
on page 91.

Resource manager states
While processing protected resources, the resource manager passes through
different states. The resource manager state determines the processing the resource
manager can perform. Table 3 and the following topics describe the resource
manager processing in the order in which it should occur. Table 3 also shows the
state the resource manager is in before the processing and the state it is in after the
processing.

Table 3. Resource Manager Processing and States

Resource manager
processing

Resource manager
state Description

Registering
Before: Reset
After: Registered

The resource manager registers itself with
the operating system's registration services.

Setting exit routines Before: Registered
After: Set

The resource manager sets its exit routines
by identifying them and their entry points.

Note that the resource manager's
EXIT_FAILED exit routine or the exit
manager can unset the exit routines, leaving
the resource manager in a registered state,
but with its exit routines unset.

Restarting
Before: Set
During: Restart
After: Run

The resource manager restarts itself by
retrieving and processing any URs that
were incomplete from the last time the
resource manager was running. Note that
the process is the same for starting and
restarting.

Expressing interest in
a context

Run When an application program requests
access to a resource, the resource manager
optionally expresses interest in the context
associated with the application and the
work request.

Expressing interest in
a UR

Run The resource manager expresses interest in
the UR being processed by the application
program.

Protecting the
resource

Run The resource manager changes or does not
change the resource.

© Copyright IBM Corp. 1997, 2013 51

Resource manager roles
For each UR, there is a syncpoint manager and participating resource managers.
The syncpoint manager determines the outcome, either commit or back out, for the
UR, and the participating resource managers accept the outcome and ensure that
the resources they manage are changed or not changed. Normally, RRS takes the
role of syncpoint manager, and all resource managers act as participants.

Sometimes, however, a resource manager can tell RRS that it needs to determine
the outcome of the syncpoint. For example, a communication resource manager
might need this control when the outcome of the syncpoint is actually being
determined by a syncpoint manager on another system and the communication
resource manager is being used to communicate the outcome to RRS. In this case,
the communication resource manager becomes the syncpoint manager.

When the resource manager becomes the syncpoint manager, it is either:
v A distributed syncpoint manager (DSRM)
v A server distributed syncpoint manager (SDSRM)

The difference between the DSRM role and the SDSRM role is how they
communicate the outcome to RRS:
v The DSRM role is provided for communication resource managers, such as

APPC/MVS, that follow the peer-to-peer model, described earlier in
“Peer-to-peer model” on page 9.

v The SDSRM role is provided for communication resource managers that follow
the client-server model, described earlier in “Client-server model” on page 14.

To take either the DSRM role or the SDSRM role, the resource manager calls the
Set_Syncpoint_Controls service. Note that, for any given syncpoint operation, only
one resource manager can take the DSRM or SDSRM role.

Resource manager failures
When a resource manager fails, the effect of the failure on each UR it has
expressed interest in is determined by several factors: the state of the UR, the
failure action specified by the resource manager when it expressed interest, and,
sometimes, whether the interest is protected or unprotected. Table 4 lists the
possible UR states and the effect a resource manager failure would have on the
UR.

If multiple resource managers fail, or if a failing resource manager has multiple
interests in a UR, Table 4 might show different actions for the same UR. In that
case, the action for a protected interest overrides the actions for an unprotected
interest.

Table 4. UR States and Failure Actions

UR state at time of failure Action

In-reset If the failure action specified for the UR is standard, RRS
performs backout processing for the UR when commit is
requested. If the failure action is forget, RRS takes no
action.

In-flight If the failure action specified for the UR is standard, RRS
performs backout processing for the UR. If the failure
action is forget, RRS takes no action.

Using Resource Recovery Services

52 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 4. UR States and Failure Actions (continued)

UR state at time of failure Action

In-state-check If the failure action specified for the UR is standard, RRS
performs backout processing for the UR and returns
RR_BACKED_OUT_OUTCOME_PENDING to the
application. If the failure action is forget, RRS continues as
if the resource manager was not associated with the UR.
Note that a forget failure action is only valid for
unprotected interests.

In-prepare If the failure action specified for the UR is standard, RRS
performs backout processing for the UR and returns
RR_BACKED_OUT_OUTCOME_PENDING to the
application. If the failure action is forget, RRS continues as
if the resource manager was not associated with the UR.
Note that a forget failure action is only valid for
unprotected interests.

In-doubt When the UR state is resolved, RRS performs commit or
backout processing.

In-commit RRS returns RR_COMMITTED_OUTCOME_PENDING to
the application.

For an unprotected interest, RRS returns RR_OK.

In-backout RRS returns RR_BACKED_OUT_OUTCOME_PENDING to
the application.

If the failing resource manager had an unprotected interest,
RRS returns RR_BACKED_OUT.

In-end, in-completion, or
in-forget with a commit
collective vote

RRS returns RR_COMMITTED_OUTCOME_PENDING to
the application.

If the failing resource manager had an unprotected interest,
RRS returns RR_OK.

In-end, in-completion, or
in-forget with a backout
collective vote

RRS returns RR_BACKED_OUT_OUTCOME_PENDING to
the application.

If the failing resource manager had an unprotected interest,
RRS returns RR_BACKED_OUT.

In-only-agent RRS returns RR_BACKED_OUT_OUTCOME_PENDING to
the application.

If the failing resource manager had an unprotected interest,
RRS returns RR_BACKED_OUT.

Private context delegation
RRS does not allow a work manager to terminate when the address space owns
contexts that have in-doubt units of recovery associated with them. This restriction
causes address space termination to hang until each in-doubt unit of recovery is
resolved. This delay will prevent the work manager from restarting with RRS in a
different address space. To allow the work manager to terminate while in-doubt
units of recovery exist, the work manager can use private contexts and request
private context delegation to RRS. Private context delegation allows a work
manager to designate another resource manager that will assume ownership of
privately-managed contexts when the work manager terminates.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 53

RRS will only assume ownership of privately-managed contexts that have an
associated unit of recovery with an SDSRM interest. RRS does not assume
ownership of any other privately-managed contexts. If RRS does not assume
ownership of a privately-managed context, that context will be ended by Context
Services.

Table 5 describes how Context Services processes a privately-managed context:

Table 5. Processing a Privately-Managed Context

Situation Outcome

Context switched to a task in
the owning space, owning
space fails

Context Services asks RRS to assume ownership of the
context.

If RRS will accept ownership:

v RM Context_Switch exits are driven.

v If the switch is not rejected, RRS becomes the owner of
the context. Otherwise, the context is ended.

If RRS does not accept ownership, the context is ended.

Context switched to a task in
a non-owning space, owning
space fails

The context will be marked for deferred delegation to RRS.
The context is neither ended nor delegated to RRS.

Context switched to a task in
a non-owning space, owning
space has already failed,
non-owning space fails

Context Services asks RRS to assume ownership of the
context.

If RRS will accept ownership:

v RM Context_Switch exits are driven.

v If the switch is not rejected, RRS becomes the owner of
the context. Otherwise, the context is ended.

If RRS does not accept ownership, the context is ended.

Context not switched to any
task, owning space fails

RM Context_Switch exits are driven. If the switch is not
rejected, Context Services asks RRS to assume ownership of
the context.

If RRS will accept ownership, RRS becomes the owner of
the context.

If RRS does not accept ownership, the context is ended.

Note: If the owning space and the space where the privately-managed context is switched
are failing at the same time, the privately-managed context might be ended before it can be
delegated to RRS.

When Context Services asks RRS to assume ownership of a privately-managed
context, RRS will take different actions depending on the state of the UR associated
with the privately-managed context. Table 6 describes the outcome of the context
switch depending on the UR state.

Table 6. RRS Processing of a UR associated with a Privately-Managed Context

UR state Outcome

In-flight
In-state-check
In-prepare

RRS does not assume ownership of the context. Context
Services will end the context. RRS forces the unit of
recovery to be backed out.

Using Resource Recovery Services

54 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 6. RRS Processing of a UR associated with a Privately-Managed Context (continued)

UR state Outcome

In-doubt
RRS assumes ownership of the context. RRS ends the
context after the SDSRM resolves the unit of recovery by
calling either the ATRACMT or the ATRABAK callable
service.

In-only-agent
In-commit
In-backout
In-end
In-completion
In-forget
Forgotten

RRS does not assume ownership of the context. Context
Services will end the context.

When RRS restarts
If RRS fails, a resource manager might receive a return code of
ATR_NOT_AVAILABLE from a call to an RRS service. If the resource manager has
set a NOTIFICATION exit routine for RRS, the system invokes the routine to notify
the resource manager when RRS has failed and again when RRS has restarted. The
NOTIFICATION exit routine should call Set_Exit_Information to reset the RRS exit
routines and perform restart processing.

When RRS restarts after a failure, its records are in the RRS logs. From these logs,
RRS re-creates the state of all incomplete protected URs and protected interests in
them.

RRS uses the re-created URs and interests to inform the resource managers, which
must each reset its RRS exit routines and go through restart processing, of their
outstanding obligations and to complete the processing of the incomplete URs.

Restarting
The processing steps required to start a resource manager for the first time or to
restart it at a later time are basically the same.

When a resource manager restarts, RRS requires it to use the same resource
manager name that it used when it was previously running. This requirement
exists because RRS uses the resource manager name to identify incomplete URs
across failures that involve the resource manager. The name must be unique in a
sysplex.

After a resource manager has set its exit routines, it must:
v Check that the logs being used are the same as the logs used previously
v Obtain any interests in URs that were left as incomplete when it or RRS

previously stopped running
v Respond to any incomplete interests, based on the information returned from

RRS and the information in the resource manager logs.
RRS does not return the incomplete URs in any particular order. If the resource
manager expressed protected interest several times in a UR, RRS returns each
interest separately with its unique UR interest token.
Table 7 on page 56 describes the recovery records RRS returns to the resource
manager when it restarts after a failure, whether the failure was caused by the

Using Resource Recovery Services

Chapter 4. Using resource recovery services 55

resource manager, RRS, or the system. See “Configuring and defining RRS
logging requirements” on page 533 for more information about records logged
by RRS.

Once a resource manager has set its exits with RRS, it is considered active on the
system. If the resource manager cannot successfully restart on the same system it
was running on before it failed, then it needs to unregister itself as a resource
manager on that system prior to restarting on another system.

Table 7. UR States and Recovery Records

UR State at time of failure Recovery records at restart

In-reset Nothing.

In-flight Nothing.

In-state-check Nothing.

In-prepare For presumed nothing protocol, in-backout information.
Otherwise, nothing.

For presumed abort protocol, nothing.

In-doubt In-doubt information. If the UR state is resolved before the
resource manager restarts, in-commit or in-backout
information.

In-commit In-commit information.

In-backout For a presumed nothing expression of interest if RRS has
logged an in-prepare record, in-backout information.
Otherwise, nothing.

For presumed abort protocol, when RRS has logged an
in-doubt record, in-doubt information. Otherwise, nothing.

In-end, in-completion, or
in-forget with a commit
collective vote

In-commit information.

In-end, in-completion, or
in-forget with a backout
collective vote

For a presumed nothing expression of interest if RRS has
logged an in-prepare record, in-backout information.
Otherwise, nothing.

For presumed abort protocol, when RRS has logged an
in-doubt record, in-doubt information. Otherwise, nothing.

In-only-agent Nothing.

The resource manager must use its own logs to process the
UR at restart. The resource manager should try to back out
because RRS returned BACKOUT_ OUTCOME_PENDING
to the application. If backout is not possible, the resource
manager should notify installation personnel.

When RRS indicates that there are no more incomplete URs, the resource manager
ends restart. Once the resource manager ends restart (calls the End_Restart
service), it can begin to process new URs.

The services the resource manager uses during restart are:

Using Resource Recovery Services

56 z/OS V2R1.0 MVS Programming: Resource Recovery

Callable service Description

Retrieve_Log_Name Retrieve the resource manager log name and
the RRS log name as a check that the restart
logs are the same as the previously used
logs.

Set_Log_Name If the resource manager is starting for the
first time, provide the resource manager log
name to RRS, in preparation for a future
restart.

Begin_Restart Begin the restart process.

Retrieve_UR_Interest Retrieve an incomplete UR interest. The
resource manager should repeat these calls
until RRS indicates it has no more
incomplete URs.

End_Restart End the restart process. The resource
manager must issue this call before it can
process any new URs.

Respond_to_Retrieved_Interest Respond to each retrieved incomplete UR. If
the resource manager does not complete its
processing of a retrieved UR, RRS returns the
UR again when the resource manager next
restarts.

For information on the calls, see Chapter 7, “Callable resource recovery services,”
on page 225.

Resource manager restart environments
In z/OS® V1R6, RRS removes all resource manager restart affinity restrictions. This
enables a resource manager to restart on any z/OS V1R6 system in the same
logging group whenever the resource manager terminates:
v independent of whether RRS or the system fails
v independent of whether the terminating resource manager has incomplete

interests or not.

There are four different environments for a resource manager restart. Table 8 lists
the environments and any RRS restrictions on where the resource manager can
restart.

Table 8. Restart Environments and Restrictions

Environment for the restart Restrictions

The resource manager has no protected interest in any
incomplete UR.

For example, the resource manager can be starting for
the first time.

No restart restrictions. The resource manager can start on
any system in the logging group.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 57

Table 8. Restart Environments and Restrictions (continued)

Environment for the restart Restrictions

The resource manager has an incomplete protected
interest in one or more URs. RRS has remained active on
the system where the resource manager was last active.

1. The resource manager restarts on a z/OS V1R6
system:

v The system where the resource manager failed is
z/OS V1R6 or above:

– No restart restrictions. The resource manager
can restart on this system.

v The system where the resource manager failed is
z/OS V1R5 or below:

– The resource manager must restart on the same
system. RRS will fail any attempt by this
resource manager to restart on a different
system.

2. The resource manager restarts on a z/OS V1R5 or
below system:

v The resource manager must restart on the same
system. RRS will fail any attempt by this resource
manager to restart on a different system.

The resource manager has an incomplete protected
interest in one or more URs. RRS did not remain active
on the system where the resource manager was last
active, but RRS might have already restarted on the
system where it failed.

From the group of resource managers that have
protected interests in a common set of URs, no resource
managers are currently active with RRS.

1. The resource manager restarts on a z/OS V1R2 or
above system:

v No restart restrictions. The resource manager can
restart on this system.

2. The resource manager restarts on a z/OS V1R1 or
below system:

v The resource manager can restart on this system,
but this force the other resource managers in the
same resource manager group to restart on this
system also.

The resource manager has an incomplete protected
interest in one or more URs. RRS did not remain active
on the system where the resource manager was last
active, but RRS might have already restarted on the
system where it failed.

From the group of resource managers that have
protected interests in a common set of URs, one or more
managers are currently active with RRS.

1. The currently active resource manager(s) restarted on
a z/OS V1R2 or above system:

v No restart restrictions. The resource manager can
restart on this system.

2. The currently active resource manager(s) restarted on
a z/OS V1R1 or below system:

v The resource manager must restart on the system
where the rest of the resource manager group is
active.

Log name checks
When a resource manager restarts, it obtains information from RRS to verify that
RRS can provide the state of resources at the time the resource manager was last
active. Because RRS keeps information about resources in coupling facility log
streams, the resource manager can verify that the log streams RRS is now using are
the same as when the resource manager was last active. If the log streams RRS is
using do not match the log streams the resource manager expects, then the
resource manager might need to shut down.

To verify that the RRS log streams are current, the resource manager uses RRS
services to compare the log name of the current log streams with the log name it
expects. Note that the log name is not the name of an actual log stream but a
constant, something like a token, that RRS uses to identify a particular set of log

Using Resource Recovery Services

58 z/OS V2R1.0 MVS Programming: Resource Recovery

streams. A resource manager can also create and maintain a resource manager log
name to identify the set of logs that it uses

During restart, the resource manager can then obtain information about log names,
which involves two calls:
v The resource manager issues a call to Retrieve_Log_Name to retrieve the current

RRS log name. If the call also retrieves the resource manager log name stored by
RRS, the resource manager knows that it is restarting. If the call returns
ATR_RM_LOGNAME_NOT_SET, the resource manager knows that it is
performing a cold start.

v If the resource manager is performing a cold start, it issues a call to
Set_Log_Name to tell RRS the name of the resource manager log. RRS stores the
name.

Later, when restarting, the resource manager can compare the following:
v Information known to the resource manager:

– The current resource manager log name
– The RRS log name that the resource manager stored in its log after calling

Retrieve_Log_Name when the resource manager was last active
v Information returned by the Retrieve_Log_Name service:

– The resource manager log name previously stored by RRS
– The current RRS log name

If the names match, the resource manager can continue restart, because the correct
logs are being used. Table 9 indicates the possible comparisons, the meaning of
each, and the possible actions the resource manager or installation personnel might
take.

Table 9. Log Name Checking

Comparison Meaning Action

Stored RRS log name = RRS log
name just retrieved

Current resource manager log name
= resource manager log name just
retrieved

Logs match. Continue with normal restart.

Stored RRS log name ≠ RRS log name
just retrieved

Current resource manager log name
= resource manager log name just
retrieved

RRS is using an old log. Check for incorrect logs being used
during restart and correct the
condition.

Stored RRS log name = RRS log
name just retrieved

Current resource manager log name ≠
resource manager log name just
retrieved

The resource manager is using an old
log.

Check for incorrect logs being used
during restart and correct the
condition.

Stored RRS log name ≠ RRS log name
just retrieved

Current resource manager log name ≠
resource manager log name just
retrieved

The RRS logs and the resource
manager logs do not match.

Check for incorrect logs being used
during restart and correct the
condition.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 59

Table 9. Log Name Checking (continued)

Comparison Meaning Action

Stored RRS log name = RRS log
name just retrieved

The resource manager log name is
not available from
Retrieve_Log_Name

RRS or the resource manager failed
before the resource manager log
name was recorded.

Continue with normal start.

Stored RRS log name is not available
from resource manager log

Current resource manager log name
= resource manager log name just
retrieved

RRS or the resource manager failed
before the RRS log name was
recorded.

Continue with normal start.

Stored RRS log name is not available
from resource manager log

The resource manager log name is
not available from
Retrieve_Log_Name

RRS and the resource manager are
both doing cold starts, or the
resource manager is starting for the
first time.

Continue with normal start.

Stored RRS log name is not available
from resource manager log

The resource manager log name is
not available from
Retrieve_Log_Name

After a successful Internal Cold Start,
in response to a log stream error
against the RRS RM.DATA log stream
as identified by message ATR250E,
Retrieve_Log_Name could return
code
ATR_RM_LOGNAME_NOT_SET.

Continue with normal start.

Stored RRS log name ≠ RRS log name
just retrieved

The resource manager log name is
not available from
Retrieve_Log_Name

RRS is doing a cold start. If the cold start is expected, continue
with normal restart; otherwise, report
the error to the support center for the
resource manager, and do not restart
the resource manager.

Stored RRS log name was not
available from resource manager log

Current resource manager log name ≠
resource manager log name just
retrieved

The resource manager is doing a cold
start.

If the cold start is expected, continue
with normal restart; otherwise, report
the error to the support center for the
resource manager, and do not restart
the resource manager.

Expressing interest in a UR
When an application program requests access to a resource, the resource manager
that owns the resource needs to express an interest in the UR. The expressed
interest tells RRS that the resource manager is involved with the UR. The interest
can be protected, which means the changes require coordination, or unprotected,
which means the changes do not require coordination.

In response, RRS invokes the resource manager's exit routines in the syncpoint
processing of the UR, enabling the resource manager to protect its resource.

Most database accesses are read-only accesses. For a read-only access, the resource
manager should express an unprotected interest in the UR. The resource manager's
exit routines are invoked; however, if a failure occurs, RRS does not needlessly
inform the resource manager that it previously expressed interest in the UR.

Using Resource Recovery Services

60 z/OS V2R1.0 MVS Programming: Resource Recovery

If your resource manager expects to process multiple URs for the same work
context, see Chapter 3, “Using context services,” on page 31.

The services related to expressing interest in a UR are:

Callable service Description

Express_UR_Interest Express an interest in a UR and provide
persistent and nonpersistent interest data.

Retrieve_Interest_Count Determine if resource managers have
expressed more than one interest in a UR.

Change_Interest_Type Change the interest type from unprotected to
protected.

Retain_UR_Interest Express interest in the next UR for the
current context.

Delete_UR_Interest Delete an interest in a UR.

For more information, see Chapter 7, “Callable resource recovery services,” on
page 225.

On Express_UR_Interest, you specify the type of two-phase commit protocol for
the UR, and there are additional techniques you can use to optimize RRS
processing.

Types of two-phase commit protocols
A call to the Express_UR_Interest service can specify the type of two-phase commit
protocol to be used for a UR. The value specified affects RRS processing if the
resource manager has to restart:
v Presumed nothing: For a presumed nothing interest in a protected UR, RRS logs

an in-prepare record, including the persistent interest data RRS passes to the exit
routines, in the RRS log before invoking the PREPARE exit routines. During
restart, RRS returns such a UR when the resource manager calls the
Retrieve_UR_Interest service. RRS tells the resource manager that the UR is to be
backed out. The resource manager uses the persistent interest data during the
backout.
If one protected interest in a UR is presumed nothing, RRS uses the presumed
nothing protocol. If there is only one presumed nothing protected interest in a
UR and this interest is by a distributed syncpoint resource manager, RRS does
not log an in-prepare record.

v Presumed abort: When the UR is in the in-prepare state, RRS does not harden
any information in the RRS log about the UR. During restart, RRS cannot return
such a UR when the resource manager calls the Retrieve_UR_Interest service.
The resource manager presumes the UR was backed out.

Other optimizations
In addition to the presumed abort protocol, RRS provides additional protocol
optimizations, including the following:
v Only agent: If the resource manager provides an ONLY_AGENT exit routine

and only the resource manager expresses only one interest in the UR, RRS
invokes its ONLY_AGENT exit routine, skipping:
– Invoking the PREPARE exit routine
– Invoking the COMMIT exit routine

Using Resource Recovery Services

Chapter 4. Using resource recovery services 61

– Invoking the END_UR exit routine
– Hardening any information about the UR in the RRS log
Note that RRS does not drive the ONLY_AGENT exit routine when the resource
manager for the UR is a server distributed syncpoint resource manager
(SDSRM).

v Read-only exit routine minimization: If the PREPARE exit routine completes its
processing for the UR, because the request was read only, the routine should
return an ATRX_FORGET return code. RRS assumes the resource manager
concurs with the commit. RRS does not invoke additional exit routines for that
interest in the UR.

v All read only: If the PREPARE exit routines of all of the resource managers
interested in the UR return an ATRX_FORGET return code, because all requests
are read only, RRS immediately completes the UR without hardening a commit
decision in the RRS log.
For distributed resources, the read-only optimization reduces network flows.

The following optimization applies only to distributed resources:
v Sending and receiving last agent: A system uses sending last agent to pass

responsibility for determining the final outcome of a commit decision to the
receiving system. The sending system informs the receiving system that it can
commit the work request.
Because the receiving system knows that the sending system can commit, the
network flow required for the prepare phase on the two systems is eliminated.

Protecting the resource
When the resource manager processes the UR, it needs to prepare for changes to
its resource, which includes two steps:
v Log the unchanged data
v Log the potential changed data.

If all resource managers vote YES to indicate that they can make the changes, RRS
instructs each resource manager to make the changes; only then does the resource
manager make the changes. If any resource manager votes NO to indicate that it
cannot make the changes, RRS instructs all resource managers to not make the
changes; the resource managers backout the changes.

The services used to protect the resource are:

Callable service Description

Retrieve_UR_Data Retrieve UR data, including the UR identifier
(URID).

Set_Persistent_Interest_Data Provide persistent interest data.

Retrieve_UR_Interest_Data Retrieve persistent and nonpersistent interest
data.

Post_Deferred_UR_Exit Give to RRS the response from a resource
manager exit routine that previously replied
with a defer return code. A later response
might be needed in a distributed
environment.

Using Resource Recovery Services

62 z/OS V2R1.0 MVS Programming: Resource Recovery

For information on the services, see Chapter 7, “Callable resource recovery
services,” on page 225.

The exit routines used to protect the resource are:

Exit Routine Event for Invoking the Routine

STATE_CHECK An application program called the
Application_Commit_UR service.

PREPARE RRS is ready for the resource managers to
prepare for resource recovery.

ONLY_AGENT Only one resource manager expressed only
one interest in the UR.

DISTRIBUTED_SYNCPOINT When a resource manager has taken the
DSRM role for an interest in a UR and the
UR becomes in-doubt, this exit resolves the
in-doubt condition

COMMIT The resource manager is to make the changes
permanent.

BACKOUT The resource manager is to not make the
changes, thus, backing them out.

END_UR The UR processing is finished.

EXIT_FAILED An RRS exit routine in the resource manager
failed.

COMPLETION The exit routine can do processing needed
before RRS returns control to the application
program.

SUBODINATE_FAILED Either RRS or any resource manager on a
subordinate system failed, the subordinate
system itself terminated, or the context
associated with the subordinate UR
abnormally terminated.

For information on the exit routines, see “Resource recovery exit routines” on page
91.

Vote collection
RRS invokes the PREPARE exit routine to notify the resource managers to prepare
for changes to their resources, and each exit routine issues a return code that, like a
vote, indicates to RRS how the syncpoint operation should proceed.

RRS collects the votes (checks the return codes set by PREPARE exit routines) from
all the resource managers that have expressed an interest in the UR, then
determines the overall results.

The possible overall results are:
v OK or YES: At least one PREPARE exit routine returned OK or HC. None

returned BACKOUT, HR, or HM.
v Forget or YES: All PREPARE exit routines returned FORGET or ABSTAIN. None

returned BACKOUT, HC, HM, HR, or OK.
If the return code indicates FORGET and no resource manager returned
ABSTAIN, the UR is complete.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 63

If a resource manager has taken the DSRM role and the return code is FORGET,
but at least one resource manager returned ABSTAIN, RRS invokes the END_UR
exit routine, rather than the DISTRIBUTED_SYNCPOINT exit routine.

v Backout or NO: At least one resource manager returned BACKOUT or HR.
None returned HC or HM.

v Heuristic mixed or NO: Any of the following:
– A resource manager returned HM.
– A resource manager returned HC and the result is backout.
– A resource manager returned HR and the result is commit.

For information about the various codes a PREPARE exit routine can return, see
“Return codes” on page 128.

UR states
During processing, a UR assumes different states. In each UR state, a resource
manager can issue certain callable services. Table 10 lists each UR state and the
callable services that apply. UR states are not related to resource manager states.

Table 10. UR States and Callable Services Allowed

UR state Description Callable services allowed

In-reset The UR is starting. The application has not yet
changed any resources. Backout_UR

Commit_UR
Create_Cascaded_UR
Delete_Post_Sync_PET
Express_UR_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Post_Sync_PET

In-flight The application accesses resources. The
application has potential changes to resources, but
the changes are not committed. The resource
managers for the resources express interest in the
UR.

Note that only one UR in a context can be in the
in-flight state at a time.

Application_Backout_UR
Application_Commit_UR
Backout_Agent_UR
Backout_UR
Change_Interest_Type
Commit_UR
Delete_Post_Sync_PET
Delete_UR_Interest
Express_UR_Interest
Prepare_Agent_UR
Retrieve_Interest_Count
Retrieve_Interest_Data
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Persistent_Interest_Data
Set_Post_Sync_PET
Set_Side_Information
Set_Syncpoint_Controls
Set_Work_Identifier

Using Resource Recovery Services

64 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 10. UR States and Callable Services Allowed (continued)

UR state Description Callable services allowed

In-state-check The application program issues a commit. Before
starting prepare, the resource managers'
STATE_CHECK exit routines check that the
resources are in the correct state. RRS stops the
commit if the return code from a routine tells RRS
to stop it. Some reasons why a routine would
request stopping the commit are:

v A resource on the same system as the
application is not in the proper state for a
commit.

v A protected conversation is not in the required
state: send, send pending, defer receive, defer
allocate, sync_point, sync_point send,
sync_point deallocate.

v A protected conversation is in send state. The
communications manager started sending the
basic conversation logical record, but did not
finish sending it.

Change_Interest_Type
Post_Deferred_UR_Exit
Retain_Interest
Retrieve_Interest_Count
Retrieve_Interest_Data
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Persistent_Interest_Data
Set_Side_Information
Set_Syncpoint_Controls
Set_Work_Identifier

In-prepare The application program in the proper state issues
a commit. In response, RRS begins the two-phase
commit process. RRS invokes the PREPARE exit
routines of the interested resource managers; the
routines determine if the resource can be changed.

Post_Deferred_UR_Exit
Retain_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Syncpoint_Controls
Set_Work_Identifier

In-only-agent Only one resource manager expressed only one
interest in the UR. RRS invokes the resource
manager's ONLY_AGENT exit routine to tell the
resource manager to process the commit request
immediately.

Post_Deferred_UR_Exit
Retain_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Work_Identifier

Using Resource Recovery Services

Chapter 4. Using resource recovery services 65

Table 10. UR States and Callable Services Allowed (continued)

UR state Description Callable services allowed

In-doubt During distributed processing of a UR, the UR is
in an in-doubt state when a resource manager is
coordinating the processing and RRS is waiting
for the coordinator to tell it whether to resolve the
UR by a commit or a backout.

During the in-doubt state, a resource manager
cannot make a unilateral decision to commit or
backout changes to its resource.

Commit_Agent_UR
Backout_Agent_UR
Post_Deferred_UR_Exit
Respond_to_Retrieved_Interest
Retain_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Work_Identifier

In-commit One of the following occurred:

v The PREPARE exit routines replied YES.

v The DSRM or SDSRM told RRS to commit an
in_doubt UR.

v The installation used the RRS panels to commit
an in_doubt UR.

RRS notifies the resource managers to make the
changes in the resources permanent. The resource
managers indicate that the changes have been
made.

Forget_Agent_UR_Interest
Post_Deferred_UR_Exit
Respond_to_Retrieved_Interest
Retain_Interest
Retrieve_Interest_Count
Retrieve_Interest_Data
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Work_Identifier

In-backout One of the following occurred:

v One or more PREPARE exit routines replied
NO.

v The application issued a backout.

v The DSRM or SDSRM told RRS to backout an
in_doubt UR.

v The installation used the RRS panels to backout
an in_doubt UR.

v Before phase 2 of the two-phase commit
protocol, the system, application, RRS, or a
resource manager failed.

RRS notifies the resource managers to not make
the changes in the resources. The resource
managers indicate that the changes have not been
made.

Forget_Agent_UR_Interest
Post_Deferred_UR_Exit
Respond_to_Retrieved_Interest
Retain_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Work_Identifier

Using Resource Recovery Services

66 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 10. UR States and Callable Services Allowed (continued)

UR state Description Callable services allowed

In-end The resources have been updated.
Forget_Agent_UR_Interest
Post_Deferred_UR_Exit
Retain_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information
Set_Work_Identifier

In-completion The resources have been updated, and RRS has
completed its processing of the UR. Forget_Agent_UR_Interest

Post_Deferred_UR_Exit
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information

In-forget During distributed processing, the UR has
completed but RRS is waiting for the SDSRM to
indicate how to process the log records for the
UR.

Forget_Agent_UR_Interest
Retrieve_Interest_Count
Retrieve_Log_Name
Retrieve_Side_Information
Retrieve_Interest_Data
Retrieve_UR_Data
Retrieve_Work_Identifier
Set_Log_Name
Set_Side_Information

Forgotten The UR has completed, and RRS has deleted its
log records.

If any resource manager has a protected interest in a UR, RRS keeps track of the
UR's state and records the state in a log. Thus, after a failure, RRS knows the state
of the UR and is aware if a UR is incomplete. When the resource manager restarts,
RRS provides the resource manager with information about the incomplete UR, so
that the resource manager can complete its processing.

Protecting distributed resources
Using the peer-to-peer (DSRM) model for distributed resource recovery, an
application's work request across distributed systems is connected by Systems
Network Architecture (SNA) LU 6.2 conversations handled by a communications
manager such as APPC/MVS. Each work request has a logical unit of work
identifier (LUWID).

When the first protected conversation is allocated for a work request, RRS
generates an LUWID for it. The resource manager handling the outbound
protected conversation uses a call to the Retrieve_Work_Identifier service to obtain

Using Resource Recovery Services

Chapter 4. Using resource recovery services 67

the LUWID and passes the LUWID in the conversation. When the application
accepts an inbound protected conversation, the resource manager handling it uses
a call to the Set_Work_Identifier service to set the LUWID.

A resource manager can also use a call to the Set_Work_Identifier service to set the
next LUWID for transaction chaining. In this case, RRS generates the LUWID for
the next UR based on the current and next LUWIDs for the current UR. RRS
generates the LUWID before returning control to the application program
following a commit or backout call and before invoking any COMPLETION exit
routines.

Resource managers in distributed processing need the following services:

Callable service Description

Set_Syncpoint_Controls Define the resource manager's role in
supporting a distributed environment for
protected resources. This call is usually
issued in the resource manager's
STATE_CHECK or PREPARE exit routine.

Set_Side_Information Set the side information for an interest in a
UR.

Retrieve_Side_Information Retrieve the side information for an interest
in a UR.

Set_Work_Identifier Set the unit of work identifier (UWID), which
is an LU 6.2 logical unit of work identifier
(LUWID) or an Enterprise identifier (EID).

Retrieve_Work_Identifier Retrieve the unit of work identifier (UWID),
which is an LU 6.2 logical unit of work
identifier (LUWID) or an Enterprise identifier
(EID).

For more information, see Chapter 7, “Callable resource recovery services,” on
page 225.

A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role for an interest in a UR additionally needs the following
calls:

Callable service Description

Prepare_Agent_UR Start the prepare phase of a syncpoint
operation for a unit of recovery

Backout_Agent_UR backout a unit of recovery

Commit_Agent_UR Commit a unit of recovery

Forget_Agent_UR_Interest Forget a unit of recovery

For information on the calls, see Chapter 7, “Callable resource recovery services,”
on page 225.

Using Resource Recovery Services

68 z/OS V2R1.0 MVS Programming: Resource Recovery

Cascaded transactions
A cascaded transaction is a type of distributed transaction, or part of a distributed
transaction, in which the coordination between the units of recovery is controlled
by RRS. If you have a set of units of recovery, each with a separate work context,
which need to be coordinated as a single transaction within a single commit scope,
you can group the URs together by performing RRS calls to create a single
cascaded transaction. A group of URs related in this way is called a cascaded UR
family.

Cascaded UR families
A cascaded UR family is created when a work manager tells RRS to cascade a new
UR from an existing UR. A work manager can do that with either the
Create_Cascaded_UR service or the Express_UR_Interest service. Figure 14 shows a
logical view of a sample cascaded UR family.

The existing UR is called the parent of the cascaded UR. The cascaded UR is called
a child of the parent UR. The URID of a child UR is different from the URID of its
parent. Each UR in a cascaded UR family will have a unique LUWID and EID if
they have these work identifiers. Each UR will also have an XID with a unique
BQUAL, but the FORMATID and GTRID components of the XID are the same for
each UR in a cascaded UR family. Every member of a cascaded UR family will
have at least an XID as a work identifier. See “Unit of work identifiers” on page 81
for more information about these work identifiers.

Multiple cascaded URs can be associated with the same parent UR. The children of
one parent are called siblings.

Cascaded URs can be embedded in other cascaded URs to any level. The ancestors
of a UR are the parent of the cascaded UR and, recursively, the parents of its
ancestors. The descendants of a UR are the children of the UR and, recursively, the
children of its descendants.

A top-level UR is one with no parent. A top-level UR and all of its descendants are
called a cascaded UR family, or sometimes simply a UR family.

UR 1

Context A

UR 2

Context B

UR 4

Context D
UR 3

Context C

Figure 14. A Sample Cascaded UR Family

Using Resource Recovery Services

Chapter 4. Using resource recovery services 69

In Figure 14 on page 69, UR 1 is the top-level UR. UR 2 and UR3 are its children,
and siblings of each other. UR 2 is the parent of UR 4. UR 4's ancestors are UR 2
and UR 1. UR 2, UR 3, and UR 4 are all descendants of UR 1.

Note: Context Services has no awareness of any relationship between the contexts.
They are only related by the URs being managed by RRS.

Understanding cascaded transactions
A work manager typically needs to create a cascaded UR when a single work
request involves multiple work managers. The initial work manager would obtain
the initial work context that represented the work request. When the work request
moved from the execution environment of the original work manager into a
second work manager's environment, the second work manager could obtain a
new work context to represent the work request, allowing it to manipulate the
work context.

The work manager that creates a cascaded UR is responsible for informing RRS
when the application running under the UR is complete by calling the
Set_Side_Information service specifying the ATR_APPL_COMPLETE information
identifier. The work manager must do this so that RRS can know when all of the
parts of a cascaded UR family are ready for syncpoint processing. When a
cascaded UR is created, it is not application-complete. An application is
application-complete after it has finished its processing and returned any results to
its caller, but before its protected resources have been committed. RRS does not
allow top-level URs to be marked application-complete or application-incomplete.
RRS automatically considers a top-level UR to be complete when backout or
commit processing is initiated for the UR.

A cascaded UR is similar to a top-level UR in that changes made on behalf of a
cascaded UR are either all committed or all rolled back. However, a cascaded UR
cannot be committed by itself. In order to make the changes of a cascaded UR
permanent, a request must be made to commit the top-level UR of the cascaded
UR's UR family.

Similarly, the changes made by all of the URs in a UR family are either committed
or backed out. If any of the URs in a UR family are backed out, all of the other
URs in that family will be backed out as well. RRS will wait until all of the URs in
the UR family are application-complete before committing the UR family. If a
backout is requested against a cascaded UR, RRS will consider that UR to be
application-complete and will immediately backout that individual UR.

See “Working with cascaded transactions” on page 552 for more information about
working with cascaded transactions in application programs.

Note: The cascaded UR relationship is not the same as the subtransaction
relationship defined by nested transactions. Nested transactions allow
subtransactions to commit without committing the top-level transaction. When a
subtransaction backs out, its descendants are backed out, but not its ancestors.
Additionally, locks used to serialize access to resources are shared across nested
subtransactions, but they may not be shared across cascaded URs.

Multisystem cascaded transactions
A cascaded transaction can exist across multiple systems in a sysplex, as long as all
of the systems involved in the transaction use the same RRS logging group. A
cascaded transaction that has URs on multiple systems in a sysplex in which the

Using Resource Recovery Services

70 z/OS V2R1.0 MVS Programming: Resource Recovery

cross system coordination is being provided by RRS is known as a multisystem
cascaded transaction (sometimes also called a sysplex cascaded transaction or a sysplex
cascade).

As with normal (non-multisystem) cascaded transactions, a work manager that
creates a multisystem cascaded transaction is responsible for informing RRS when
the part of the application executing under a multisystem cascaded UR is complete
by using the Set_Side_Information service to mark the UR as application-complete.

The top-level UR of a multisystem cascaded transaction is the UR first built to
represent the original work request. The system where the top-level UR of a
particular multisystem cascaded transaction resides is called the coordinator of that
multisystem cascaded transaction. A system where a multisystem cascaded child
UR resides is called a subordinate.

Multisystem cascaded transactions work very similarly to normal cascaded
transactions, but you need to be aware of additional database locking and work
manager considerations when you work with cascaded transactions across a
sysplex. See “Working with cascaded transactions” on page 552 for more
information about the application and work manager considerations of working
with multisystem cascaded transactions.

End context processing with cascaded transactions
When working with cascaded URs, contexts become grouped through the URs they
are associated with. During the lifetime of a cascaded UR family, the contexts
associated with any of the members of the family may end, either normally or
abnormally. What RRS does when one of the contexts ends depends on the state
the UR is in when the context ends. Those states are grouped into 3 phases:

Table 11. Phases of Ending Context States

Phase States

0/1 in-flight, in-state-check, in-prepare

Doubt in-doubt

2 in-commit, in-backout, in-end, in-completion, in-forget

Note: in-only-agent is not considered, because a member of a cascaded UR family can
never be in that state. in-reset and forgotten are not considered because those states
indicate that there is no UR to process.

For each phase shown in Table 11, there are 3 possible ways the context could
terminate: normal termination, abnormal termination, or memory termination.

Normal context termination
May occur due to one of the following:
v An explicit End_Context call
v The task that the context is associated with ends normally

Abnormal context termination
May occur due to one of the following:
v An explicit End_Context call
v The task that the context is associated with ends abnormally
v A task RRS is executing syncpoint processing under is asynchronously

abended

Memory context termination
May occur due to one of the following:

Using Resource Recovery Services

Chapter 4. Using resource recovery services 71

v Private context owner termination
v Client address space termination

Note: A client address space is one in which a task has a context that
has a UR associated with it.

Table 12 shows how RRS responds to each possible condition for each phase.

Table 12. Context Termination Processing

Phase Condition Top-level UR terminating Cascaded UR terminating

0/1 Normal
termination —
environment
indicates
commit on
normal
termination

Implicit commit processing,
unless a RM has taken the
SDSRM role. If the UR has an
SDSRM, application backout
processing.

Application backout
processing

Normal
termination —
environment
indicates
rollback
(backout) on
normal
termination

Implicit backout processing Application backout
processing

Abnormal
termination

Implicit backout processing Application backout
processing

Memory
termination

Implicit backout processing Application backout
processing

Doubt Any
termination

Operator intervention Operator intervention

2 Any
termination

Continue syncpoint Continue syncpoint

Application backout processing
RRS considers the terminating UR application-complete. RRS backs out the
UR, and marks the entire cascaded UR family backout-required. Each
cascaded UR in the family will eventually be backed out. The top-level UR
is backed out when the application initiates syncpoint or when the
top-level UR's context terminates.

Implicit commit processing
RRS goes through normal syncpoint processing, as if the application had
issued Application_Commit_UR normally.

Implicit backout processing
RRS goes through normal backout processing, as if the application had
issued Application_Backout_UR normally.

Operator intervention
If the failure occurred due to a CANCEL, RRS issues a WTOR message to
the operator. The operator can reply COMMIT, BACKOUT, or WAIT. If the
operator replies COMMIT or BACKOUT, RRS marks the UR heuristic
mixed and goes into phase 2 to commit or backout the UR as instructed.

Using Resource Recovery Services

72 z/OS V2R1.0 MVS Programming: Resource Recovery

If the operator replies WAIT, RRS holds up context termination until the
operator resolves the in-doubt condition through DSRM, SDSRM, or the
system management panels. It is not always possible to specify WAIT.

If the failure was not due to a CANCEL, RRS holds up context termination
until the in-doubt condition is resolved by the DSRM or SDSRM, or by the
operator through the system management panels.

Continue syncpoint
RRS continues syncpoint processing.

Local transactions
Some software platforms do not provide transaction coordination as part of the
kernel operating system. In these environments, a resource manager (RM) typically
provides RM-specific transactional functions so that, for at least the resources that
the resource manager controls, applications can rely on the data integrity,
coherency, and consistency attributes that transactions provide. For example, a
resource manager might define RM-specific commit functions, such as MQCMIT
and SQLCMIT, that an application can use to commit its resources.

When a syncpoint coordinator is available and coordinating a transaction which
could involve multiple resource managers, the transaction is known as a global
transaction. When, instead, each resource manager involved is seperately
coordinating its own changes, and only its changes, the transaction is known as a
local transaction. In a typical local transaction, the application changes resources
owned by a given resource manager (such as using a Java™ Database Connectivity
(JDBC) connection for a relational database) and then uses an RM-specific commit
function (such as the commit() method for JDBC connections) to commit the
changes.

When operating in a local transaction environment, called local transaction mode, a
resource manager must behave as follows:
v In local transaction mode, an application acts as its own resource coordinator,

and each resource manager must behave independently. It is possible that an
application, in the absence of a global transaction coordinator, needs to process
multiple resources owned by different resource managers. In local transaction
mode, each resource manager is independent. The application acts as transaction
coordinator and can, if necessary, direct different resource managers to different
outcomes.

v A resource manager must treat separate attachments or connections to the same
application independently. It is possible that an application might need to
process multiple resources owned by the same resource manager. If an
application defines two separate attachments or connections to the same
resource manager in local transaction mode, the resource manager must treat
each connection independently. This independence allows an application to
commit some connections to the same resource manager and roll back others.

v A resource manager that defines local commit functions allows its resources to
be accessed locally. When in local transaction mode, a resource manager does
not permit global commit services like Commit_UR and
Application_Commit_UR. If a resource manager does not provide its own local
commit functions, a connection to the resource manager should use
commit-on-return when in local transaction mode.

v If a connection is made to a resource manager when in local transaction mode,
the connection is known as a local connection. If a local connection connects the
application to a work manager, and the connection touches resources managed

Using Resource Recovery Services

Chapter 4. Using resource recovery services 73

by different resource managers as a result, it is the responsibility of the work
manager to act as the coordinator of those resources.

There are also rules that govern the transition between local transaction mode and
global transaction mode. There are rules that govern when a transition between
local and global transaction mode is allowed:
v Local to global is only allowed when there are no uncommited local connections.
v Global to local is only allowed when the global transaction is in-reset.

Global commit and rollback functions, such as SRRCMIT, are not allowed in local
transaction mode. Local commit and rollback functions, such as MQCMIT, are not
allowed in global transaction mode.

Implementing local transactions on z/OS involves the participation of four
separate entities:

The transaction coordinator, RRS. RRS is responsible for keeping track of when
there is an active global or a local transaction associated with a given work
context. RRS is also responsible for:
v Ensuring that global transaction functions, such as commit and rollback, are not

permitted when a local transaction is active for a given work context
v Preventing the start of a global transaction when the current UR state is in-flight

or beyond
v Rejecting global commit functions against URs which are in local transaction

mode, known as local URs, which are in any state except in-reset

v Notifying resource managers, by driving their appropriate syncpoint exit
routines, when a work manager or an application has ended a global transaction

A work manager, such as WebSphere for OS/390. A work manager is responsible
for ensuring that the correct transactional environment is established or restored
before it dispatches the application. A work manager is also responsible for:
v Ensuring that the default transaction mode is correctly set either for the address

space or for each individual context
v Enforcing transaction policy on the application or method exit and invoking

End_Transaction to take the appropriate action

A resource manager, such as DB2. A resource manager must manage its resources
correctly regardless of whether the transaction mode is local or global. A resource
manager is also responsible for:
v Notifying RRS if it supports local transaction mode
v Ensuring that its local transactional functions are not executed when the

transaction environment for the work context is global
v Registering its uncommitted local interest with RRS
v Deleting its interest when the local resource is committed or rolled back via the

resource manager's local transaction functions
v Correctly using the local transaction flag in its COMMIT, BACKOUT, and

COMPLETION exit routines
v Using its own logs to recover its local transactions during restart, because local

URs are not written to RRS logs

An application. An application defines the demarcation between local transaction
mode and global transaction mode, based on the transaction mode set by a work
manager when it dispatches the application.

Using Resource Recovery Services

74 z/OS V2R1.0 MVS Programming: Resource Recovery

An example local transaction
Assume that a simple Java method, which uses JDBC to access DB2, is dispatched
in a WebSphere for OS/390 server that is deployed with transaction policy of
TX_NOT_SUPPORTED. (There are several different transaction policies, called
deployment descriptors, that the container, or object server, can enforce upon
method dispatch.) TX_NOT_SUPPORTED indicates that, on method dispatch, the
current transaction environment is suspended, and a new local transaction
environment is established. When the method completes, the original transaction
environment is resumed.
1. During initialization, WebSphere for OS/390 (the work manager) and DB2 (the

resource manager accessed by JDBC), inform RRS, using the
Set_Exit_Information service, that they can support local transactions.

2. WebSphere for OS/390 receives an inbound request to drive a method that
requires a TX_NOT_SUPPORTED environment. WebSphere for OS/390 calls the
RRS Set_Environment service to set the environment transaction mode to local,
providing a default for new transactions started for this context, and then
dispatches the method.

3. At the application's request, the JDBC driver accesses DB2 using local
transactional semantics.

4. DB2 registers interest in the UR, informing RRS that DB2 has uncommitted
local resources associated with the current UR. If an attempt is made to use a
global commit function to commit those local resources, RRS disallows it.

5. The method might have created several connections accessing DB2. In this
example, assume that the method uses the JDBC-specific connection commit
function to commit some of the local connections and uses the JDBC-specific
rollback function on others.

6. When the method commits the last local connection, DB2 no longer has
uncommitted local resources, so it deletes its last expression of interest in the
unit of recovery.

7. This deletion notifies RRS that the method can, if necessary, now start a global
transaction.

In this example, RRS, the transaction coordinator, managed the transaction mode.
WebSphere for OS/390, the work manager, ensured that the transaction
environment was correct for the dispatch of the method. JDBC/DB2, the resource
manager, used local transactional behavior to access the database, and the
application used the JDBC-specific commit functions to commit or roll back the
local connections.

Local and global interactions
RRS assumes that the logic of current z/OS applications depends on a global
transaction, so RRS processing is based on implicit global transaction mode. In this
mode, a global transaction is always active for a given application, and, if it
accesses resources via an RRS-compliant resource manager, those resources are
committed globally, along with any other resources the application might have
accessed. In this mode, RRS performs a global commit for a transaction that ends
normally, and a global rollback for an application that ends abnormally.

Implicit global transaction mode, however, is not appropriate for an application
developed on a platform that does not include a global resource coordinator like
RRS. In this environment, the application accesses the resources, then uses
RM-specific commit or rollback functions to control the outcome. Such an

Using Resource Recovery Services

Chapter 4. Using resource recovery services 75

application requires an implicit local transaction, as well as the ability to switch
between local transaction mode and global transaction mode.

Consider the application code segment shown in Figure 15 on page 77. Before the
work manager dispatches the application, the work manager must call
Set_Environment to set up the transaction mode correctly, dispatching the
application initially with local transaction mode as the default. Thus, when the
application creates two connections to different databases and accesses them, it is
already in local transaction mode. When the application begins a global
transaction, the resource managers switch the transaction mode to global.

Processing would be very similar even if the application processed its transactions
in a different order. Assume that it performs the global transaction first, followed
by the local accesses to the databases. The work manager, before it dispatches the
application, calls Set_Environment to initially set local transaction mode as the
default, and the application starts a global transaction. The transaction is
successful, however, because there are no outstanding uncommitted local
connections; the application is free to start a global transaction. Thus, the
application can switch between local and global transaction mode without code
changes. Two RRS services, Begin_Transaction and End_Transaction, are available
for applications that need to clearly mark the boundaries of a transaction. These
services allow an application to demarcate the transitions between local transaction
mode and global transaction mode.

Using Resource Recovery Services

76 z/OS V2R1.0 MVS Programming: Resource Recovery

Planning considerations
When deciding if and how to use the local transaction services and processing that
RRS provides, consider the following:

Compatibility with RMs that process local transactions. There are additional
transaction mode issues because some z/OS resource managers have defined
RM-specific commit functions for some time, and these functions have enabled the
resource managers to process local transactions. At least some of the processing
done by current z/OS resource managers does not mesh completely with RRS.

Examples:
v DB2 can, when using its current attachment to RRS, escalate transaction mode. If

an application touches a DB2 resource, DB2 considers the connection to be local.

javax.transaction.UserTransaction ut;
javax.sql.DataSource ds1;
javax.sql.DataSource ds2;
java.sql.Connection con1;
java.sql.Connection con2;
java.sql.Statement stmt1;
java.sql.Statement stmt2;
InitialContext initCtx = new InitialContext();
// Obtain con1 object and set it up for transactions
ds1=(javax.sql.DataSource)initCtx.lookup("Database1");
con1=ds1.getConnection;
stmt1=con1.createStatement;
// Obtain con2 object and set it up for transactions
ds2=(javax.sql.DataSource)initCtx.lookup("Database2");
con2=ds2.getConnection;
stmt2=con2.createStatement;
// LOGICAL BEGIN LOCAL TRANSACTION
// start local transaction on con1 and do some work
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
// start local transaction on con2 and do some work
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
// interleave some work on con1
stmt1.executeUpdate(...);
// commit local transaction 2
con2.commit()
// rollback local transaction 1
con1.rollback()
// LOGICAL END LOCAL TRANSACTION

ut = ejbContext.getUserTransaction();
// EXPLICIT BEGIN GLOBAL TRANSACTION
ut.begin();
// Do some updates on both connections
stmt1.executeQuery(...);
stmt1.executeUpdate(...);
stmt2.executeQuery(...);
stmt2.executeUpdate(...);
// commit both connections
ut.commit();
// EXPLICIT END GLOBAL TRANSACTION
con1.close();
con2.close();

Figure 15. Application Code Segment

Using Resource Recovery Services

Chapter 4. Using resource recovery services 77

If the application, however, subsequently touches another resource manager, DB2
escalates the transaction mode of the connection to global.

v Some work managers have what amounts to a permanent expression of interest
in a UR for a given privately-managed context. They use the
Retrieve_Interest_Count service to determine whether or not they can perform a
resource manager local commit operation. If another resource manager does not
express interest, the work manager shortcuts the RRS commit process, for
performance reasons, and commits the connection(s) in local transaction mode.

To remain compatible with existing applications that exploit these and other
proprietary behaviors, RRS defines a special transaction mode, known as
hybrid-global transaction mode. This transaction mode is synonymous with global
mode with one exception: hybrid-global mode allows resource managers to process
transactions in ways that are not normal for URs in global transaction mode. RRS
treats a UR that is in hybrid-global transaction mode as a global transaction, and it
does not know when a resource manager might treat it as a local transaction.

If the work manager has not specified an environment setting for transaction mode
that would apply to a given UR, RRS sets the transaction mode for the UR to
hybrid-global mode when the UR state changes to in-flight.

Resource managers can be informed of the transaction mode when they express
interest in a UR; and, they can retrieve the transaction mode with a call to
Retrieve_Side_Information or Retrieve_Side_Information_Fast.

When in hybrid-global transaction mode, an application cannot use the
Begin_Transaction service to start either a local or a global transaction.

Compatibility with RMs that process global transactions. To prevent or minimize
failures related to its support of local transactions, RRS provides the following:
v A program cannot begin a local transaction or use the Begin_Transaction service

unless the Set_Environment service has been used set the transaction mode
environment to something other then hybrid-global.

v A resource manager cannot become involved in a local transaction until it has
informed RRS, via the Set_Exit_Information service, that it supports local
transactions.

v A work manager can prevent the starting of local transactions by using
Set_Environment to establish a hybrid-global transaction mode environment and
setting the transaction mode environment as protected.

v If a resource manager that does not support local transaction mode expresses an
interest in a UR that is in local transaction mode, the service fails with an
existing return code, ATR_UR_STATE_ERROR. This return code indicates that
the resource manager cannot express interest in the UR, but it is not the resource
manager's fault. When receiveing this return code, the resource manager should
not unset its exits with RRS.

Ported work manager environments. When porting a work environment, such as a
webserver, it is important to minimize the cost of the port. In order to facilitate the
porting of work managers from local transaction mode only environments, while
maintaining consistency, RRS provides the Set_Environment service.
Set_Environment allows a work manager to set a default transaction mode for URs
that are started in a specified scope, such as address space or context.

End context. With the Set_Environment service, a work manager can explicitly set
a termination option to affect the processing that RRS automatically performs in

Using Resource Recovery Services

78 z/OS V2R1.0 MVS Programming: Resource Recovery

the case of normal and abnormal context termination (implicit commit). This
capability can be used in any transaction mode.

Restart conditions. RRS never hardens interests that resource managers have
expressed in a local UR. Therefore, RRS never returns any local interests when it
restarts. Resource managers must use their own recovery logs to ensure the correct
processing of resources accessed while in local transaction mode.

Archive logging. RRS does not write local URs to its archive log, but you can
display URs in local transaction mode and in-flight state, or beyond, through an
RRS panel, assuming RRS is active.

Connection techniques. Most z/OS resource managers use connection techniques
that are not RRS-enabled. When resource managers use these techniques, any local
uncommitted resources are invisible to RRS, and RRS permits global transactions to
be started. In addition, the resource manager is not notified of any cleanup efforts
of the work managers, such as calls to End_Transaction. Because of these potential
problems, do not intermix connection techniques that are not RRS-enabled with
those that are.

Global transaction identifiers. A work identifier cannot be set for a local
transaction regardless of its state.

Transaction state transitions
Local transaction mode affects UR state transitions. The transaction mode for a
given UR is not set until the UR changes to in-flight, and, once set, the transaction
mode cannot be changed for that UR. The transaction mode of a given UR is
determined when the UR state changes from in-reset to in-flight. Table 13 lists the
events that can cause this state change, along with the resulting transaction mode.
Events which cause RRS to select a transaction mode other then the default mode
are highlighted in the table.

Table 13. UR Transaction State Changes (in-reset to in-flight)

Event
Default local transaction
mode�1�

Default global transaction
mode�1�

Default implicit global
transaction mode�1�

Begin_Transaction with
MODE =
ATR_LOCAL_MODE

local mode local mode Rejected

Begin_Transaction with
MODE =
ATR_GLOBAL_MODE

global mode global mode Rejected

Create_Cascaded_UR (Both
parent and child UR)

global mode global mode hybrid-global mode

Express_UR_Interest
(Applies to first expression
of interest)

local mode �2� global mode hybrid-global mode

Retrieve_UR_Data (only
with a states option of
ATR_STANDARD_STATES)

global mode global mode hybrid-global mode

Retrieve_Work_Identifier global mode global mode hybrid-global mode

Set_Post_Sync_PET local mode global mode hybrid-global mode

Using Resource Recovery Services

Chapter 4. Using resource recovery services 79

Table 13. UR Transaction State Changes (in-reset to in-flight) (continued)

Event
Default local transaction
mode�1�

Default global transaction
mode�1�

Default implicit global
transaction mode�1�

Notes:

�1� The default transaction mode is set by a call to the Set_Environment service.

�2� Before it can express interest in a local UR, a resource manager must have called Set_Exit_Information to notify
RRS that it can tolerate local transaction mode. If the resource manager has not done this, RRS will reject the
Express_UR_Interest service with a return code of ATR_UR_STATE_ERROR.

Table 14 shows the RRS-related actions that eventually cause an in-flight UR to
return to in-reset state.

Table 14. UR State Changes (in-flight to in-reset) and Transaction Mode

Event Local transaction mode Global transaction mode
Hybrid global transaction
mode

Explicit end of transaction
via the End_Transaction
service

in-reset in-reset in-reset

Explicit end of transaction
via a service other than
End_Transaction (for
example, Commit_UR or
Backout_UR)

Rejected. Not permitted for
local URs that are in-flight
or beyond.

in-reset in-reset

The deletion of the last
expression of interest in a
UR which did not
transition from in-reset to
in-flight by a call to the
Begin_Transaction service

in-reset No state change No state change

State transitions for URs in local mode are different from state transitions for URs
in global mode. Figure 16 on page 81 shows a state transition diagram for URs in
local transaction mode.

Using Resource Recovery Services

80 z/OS V2R1.0 MVS Programming: Resource Recovery

Unit of work identifiers
Unit of work IDs are persistent tokens used to identify a transaction. They are
persistent because they are hardened by resource managers and transaction
managers during syncpoint processing. Because they are persistent, they can be
used to identify a particular transaction, part of a transaction, or both during
normal processing and during restart processing.

Note: Resource managers sometimes use work IDs for other purposes. For
example, XIDs are sometimes used as "lock tokens" by data managers. A lock token
identifies the owner of a database lock; therefore, any program executing with a
given lock token can access data controlled by the token.

RRS supports the following work IDs:
v Unit of recovery identifier (URID)
v Logical unit of work identifier (LUWID)
v Enterprise identifier (EID)
v X/Open identifier (XID)

A URID is a local identifier specific to RRS. It is RRS-specific because it is not
defined by any standards body and is only used by RRS and the resource
managers that work directly with RRS.

Notes:

1. First expression of interest, Begin_Transaction mode=local
2. End_Transaction action=backout
3. End_Transaction action=commit
4. Deletion of last interest for implicit local transactions

(If Begin_Transaction was used, the UR stays in-flight until End_Transaction is called.)
5. Completion exits driven if Drive_Completion exit set via Set_Side_Information

In Reset

In Backout

In Forget Forgotten

In Commit

In Flight

In Completion

1

2 3 4

5

Figure 16. State Transitions for URs in Local Transaction Mode

Using Resource Recovery Services

Chapter 4. Using resource recovery services 81

A URID is a local identifier because a URID is associated with a single unit of
recovery. A distributed or cascaded transaction with many separate nodes and
many URs will have many different URIDs. LUWIDs, EIDs, and XIDs are all global
identifiers or a combination of a global identifier and a nonglobal identifier.

A LUWID is defined by the SAA LU 6.2 syncpoint architecture to identify a
distributed transaction using the LU 6.2 protocols. It is a global identifier: all of the
nodes in a distributed transaction that are part of a nondisjoint LU 6.2 transaction
subtree have the same LUWID.

An EID is both a local and a global identifier. The first 4–bytes of an EID are the
transaction identifier (TID). The TID is a local identifier: each node in a distributed
transaction can have a different TID. The remaining 8–40 bytes of the EID are the
global transaction identifier (GTID). The GTID is a global identifier: all of the
nodes in a nondisjoint distributed transaction subtree managed by a
communication resource manager using EIDs have the same GTID.

An XID is defined by the X/Open XA standard. In addition to the length and
FormatID fields, an XID has two important parts: the global transaction identifier
(GTRID) and the branch qualifier (BQUAL). The GTRID is a global identifier. All of
the nodes in a nondisjoint distributed transaction managed by an X/Open
compliant communications manager will have the same GTRID. The BQUAL,
however, is not a simple local identifier. Communications resource managers use
the BQUAL to denote tightly-coupled and loosely-coupled transaction nodes.
Table 15 shows the differences between tightly-coupled and loosely-coupled
transaction nodes.

Table 15. Differences Between Tightly-Coupled and Loosely-Coupled Transaction Nodes

Tightly-coupled transaction nodes Loosely-coupled transaction nodes

v Have exactly the same XIDs, including the
BQUAL

v Normally share database locks

v A communications resource manager may
send a single set of two-phase commit
flows to the entire set of tightly-coupled
nodes.
Note: When RRS manages tightly-coupled
nodes, it does not do this.

v Have XIDs with different BQUALs

v Do not normally share database locks

v A communications resource manager
sends separate two-phase commit flows to
each node.

Nodes in a distributed transaction connected by a communication resource
manager that does not use XIDs are normally loosely-coupled, as are cascaded
transactions created by RRS. There are, however, exceptions. For example,
APPC/MVS will set the same XID in each UR it creates, but send separate
two-phase commit flows to each node, under the following conditions:
v APPC is asked to allocate multiple protected conversations between the same

two LUs (source and target), and
v The LUs are part of the same distributed transaction (they are using the same

LUWID), and
v The target LU is an alternate scheduler, which causes APPC to create a work

context and a UR for the alternate scheduler.

When RRS creates a cascaded transaction, each UR in the cascaded UR family will
have an XID. Each UR's XID will have the same FORMATID and GTRID, but by
default each will have a different BQUAL. When creating a cascaded UR via a call

Using Resource Recovery Services

82 z/OS V2R1.0 MVS Programming: Resource Recovery

to the Express_UR_Interest service, a work manager can override this default
behavior and directly control the BQUAL that RRS will use for the UR by
specifying an XID on the call.

RRS automatically creates a URID whenever it creates a UR. RRS assigns an XID to
a UR whenever the UR becomes part of a cascaded UR family. Otherwise, RRS
assigns LUWIDs, EIDs, and XIDs to URs as indicated on either the
Set_Work_Identifier service or the Retrieve_Work_Identifier service.

Table 16 lists each identifier, its format, whether RRS can generate it, and how RRS
propagates the identifier when creating a cascaded UR.

Table 16. Unit of Work Identifiers

Unit of work
identifier
(UWID) Format

Generate via
Retrieve_Work_
Identifier service Propagated to a cascaded UR

LU 6.2 logical
unit of work
identifier
(LUWID)

netid.luname.instnum.seqnum

netid.luname
1-17 character identifier of the
network and LU, preceded by a
1-byte fixed length field

instnum 6-byte fixed TP instance

seqnum 2-byte fixed sequence number

Allowed. Not propagated.

Enterprise
Identifier (EID)

tidgtid

tid 4-byte transaction identifier
(TID)

gtid 8-40 byte global transaction
identifier (GTID)

Not allowed. Not propagated.

X/Open
Identifier (XID)

FormatIDGtrid_lengthBqual_lengthID

FormatID
4-byte fixed format ID

Gtrid_length
4-byte fixed GTRID length

Bqual_length
4-byte fixed BQUAL length

ID 128-byte character XID
The GTRID length and BQUAL length
define the length of the first and second
subsection of the ID. The GTRID must
have a length of at least 1 byte, however
the BQUAL can have a length of 0. The
length of the entire XID cannot exceed
140 bytes.

Required.

RRS automatically
generates an XID
whenever any request
for an XID is made
against a UR that does
not already have one.

The format ID is propagated.

GTRID and GTRID length are
propagated.

BQUAL and BQUAL length are not
propagated. BQUAL will be different
from all other BQUALs with the same
FORMATID and GTRID. This behavior
may be overridden by specifying an XID
when creating a cascaded UR with the
Express_UR_Interest service.

Setting exits with RRS
Your resource manager can provide exit routines to be invoked for events during
the two-phase commit protocol for a unit of recovery (UR). Table 17 on page 84
lists the RRS exit routines. A resource manager can cause RRS to bypass the
required COMMIT, BACKOUT, and PREPARE exit routines by supplying the
return codes for these exits in a call to the Set_Syncpoint_Controls service.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 83

Table 17. Summary of RRS Exit Routines

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol Exit routine Event Required or optional

1
(1)
ATR_STATE_CHECK_

EXIT

STATE_CHECK An application program
called the Commit_UR
service or the
Application_Commit_UR
service, or a server
distributed syncpoint
resource manager (SDSRM)
called the
Prepare_Agent_UR service.

Optional.

If not provided, RRS assumes the
state of the resource manager's
resources is correct for all commit
requests.

See “STATE_CHECK exit routine” on
page 130.

2
(2)
ATR_PREPARE_EXIT

PREPARE The UR entered the
in-prepare state.

Required.

If the Set_Syncpoint_Controls service
provides a return code for the
PREPARE exit, RRS bypasses the exit
for that expression of interest only.

See “PREPARE exit routine” on page
126.

3
(3)
ATR_DISTRIBUTED_

SYNCPOINT_EXIT

DISTRIBUTED_
SYNCPOINT

In distributed processing of
a UR, the return codes from
the PREPARE exit routines
include at least one OK, no
backout, and no
heuristic-mixed effect. The
UR state is in-doubt.

Note that your resource
manager must call the
Set_Syncpoint_Controls
service to enable the
DISTRIBUTED_
SYNCPOINT exit routine.

Optional.

A resource manager that takes the
distributed syncpoint manager
(DSRM) role provides this exit
routine.

If it is not provided, RRS coordinates
the commit processing and rejects
any resource manager call to the
Set_Syncpoint_Controls service that
specifies the DSRM role.

See “DISTRIBUTED_SYNCPOINT
exit routine” on page 113.

4
(4)
ATR_COMMIT_EXIT

COMMIT The UR entered the
in-commit state, or a server
distributed syncpoint
resource manager (SDSRM)
called the
Commit_Agent_UR service.

Required.

If the Set_Syncpoint_Controls service
provides a return code for the
COMMIT exit, RRS bypasses the exit
for that expression of interest only.

See “COMMIT exit routine” on page
108.

5
(5)
ATR_BACKOUT_EXIT

BACKOUT The UR entered the
in-backout state, or a
server distributed syncpoint
resource manager (SDSRM)
called the
Backout_Agent_UR service.

Required.

If the Set_Syncpoint_Controls service
provides a return code for the
BACKOUT exit, RRS bypasses the
exit for that expression of interest
only.

See “BACKOUT exit routine” on
page 104.

Using Resource Recovery Services

84 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 17. Summary of RRS Exit Routines (continued)

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol Exit routine Event Required or optional

6
(6)
ATR_END_UR_EXIT

END_UR The UR entered the in-end
state.

Optional.

If not provided, RRS considers the
resource manager's interest in the UR
complete when its COMMIT or
BACKOUT exit routine completes,
unless either of the following is true:

v The resource manager has an
enabled COMPLETION exit
routine.

v The resource manager is an
SDSRM; RRS must wait for the
resource manager to call
Forget_Agent_UR_Interest before
RRS can complete UR processing.

See “END_UR exit routine” on page
116.

7
(7)
ATR_EXIT_FAILED_

EXIT

EXIT_FAILED An RRS exit routine failed. Required.

See “EXIT_FAILED exit routine” on
page 118.

8
(8)
ATR_COMPLETION_

EXIT

COMPLETION A UR being processed
across distributed systems
completed, and a call to the
Set_Side_Information
service specified
ATR_DRIVE_
COMPLETION.

Optional.

If not provided, RRS assumes the
resource manager requires no actions
when distributed UR processing is
completed, unless the following is
true:

v The resource manager is an
SDSRM; RRS must wait for the
resource manager to call
Forget_Agent_UR_Interest before
RRS can complete UR processing.

See “COMPLETION exit routine” on
page 111.

9
(9)
ATR_ONLY_AGENT_

EXIT

ONLY_AGENT Only one resource manager
expressed only one interest
in the UR, and the
application requested
commit. (If the application
requested backout, RRS
drives the BACKOUT exit
routine.)

Optional.

If not provided, RRS invokes the
resource manager's PREPARE exit
routine and continues with the
standard two-phase commit protocol.

See “ONLY_AGENT exit routine” on
page 122.

Using Resource Recovery Services

Chapter 4. Using resource recovery services 85

Table 17. Summary of RRS Exit Routines (continued)

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol Exit routine Event Required or optional

10
(10)
ATR_SUBORDINATE_
FAILED_EXIT

SUBORDINATE_
FAILED

FEither RRS or a resource
manager on a subordinate
system failed, the
subordinate system itself
terminated, or the context
associated with the
subordinate UR abnormally
terminated.

Optional.

See “SUBORDINATE_FAILED exit
routine” on page 133.

B
(11)
ATR_
PRE-PREPARE_EXIT

PRE_PREPARE An application program
called:

v Commit_ UR (ATRCMIT,
ATR4CMIT) service

v Application_Commit_UR
(SRRCMIT) service

v End_Transaction
(ATREND, ATR4END)
service

v End_Context
(CTXENDC, CTX4ENDC)
service

v Server distributed
syncpoint resource
manager (SDSRM) called
the Prepare_Agent_UR
(ATRAPRP, ATR4APRP)
service

v Delegate_Commit_
Agent_UR (ATRADCT,
ATRADCT1, ATR4ADCT)
service

The UR stays in-flight state.

Optional.

If not provided, RRS will proceed to
process the optional State_Check
exit.

See “PRE_PREPARE exit routine” on
page 125 for more information.

Example of resource manager processing
This section gives pseudo-code examples of resource manager processing in the
following topics:
v “Restart processing” on page 87
v “UR processing” on page 89
v “PREPARE exit routine” on page 89
v “COMMIT exit routine” on page 90
v “BACKOUT exit routine” on page 90
v “DISTRIBUTED_SYNCPOINT exit routine” on page 90

The examples assume SRB exit routines; see Chapter 4, “Using resource recovery
services,” on page 51 for information about SRB routines.

Using Resource Recovery Services

86 z/OS V2R1.0 MVS Programming: Resource Recovery

These examples indicate possible processing, but the processing can be done in
other ways. For instance, in the first example on restart processing:
v Commit and backout processing are performed inline. The resource manager

could specify ATR_RESPOND_CONTINUE in the Respond_to_Retrieved_Interest
call and perform the commit and backout processing in the COMMIT and
BACKOUT exit routines.

v The resource manager responds to all retrieved URs after it begins to process
new URs. A resource manager can, however, respond to all retrieved interests
before calling the End_Restart service.

Also, the examples emphasize processing related to RRS; processing related to
database management is very high level.

Restart processing
The following example indicates, in pseudo-code, the restart processing by a
resource manager.
Start processing

Call to Register_Resource_Manager service

Call to Set_Exit_Information service for context services exit routines

Call to Set_Exit_Information service for RRS exit routines

Call to Retrieve_Log_Name service

If call returns ATR_RM_LOGNAME_NOT_SET

Cold start

Call to Set_Log_Name service

Else

Match resource manager log name and RRS log token
to previous name and token

If match

Proceed with restart

Else

Fail resource manager restart

Perform resource manager log processing, if needed

Read resource manager logs and build resource manager structures

Perform media recovery, if needed

Call to Begin_Restart service

Do until return code is ATR_NO_MORE_INCOMPLETE_INTERESTS

Call Retrieve_UR_Interest service to obtain incomplete URs

End do

Call to End_Restart service

Do until no records remain

Using Resource Recovery Services

Chapter 4. Using resource recovery services 87

If UR is not in resource manager logs

Call Respond_to_Retrieved_Interest service,
specifying ATR_RESPOND_COMPLETE

If UR state is in-backout

Do UNDO action to backout UR

Read UNDO records from the resource manager log in LIFO order

Do until no UNDO records remain

Write a compensating REDO record

Rewrite the database record

End do

End do

Call Respond_to_Retrieved_Interest service,
specifying ATR_RESPOND_COMPLETE

If UR state is in-commit

Do REDO action to commit UR

Read REDO records from the resource manager log in FIFO order

Do until no REDO records remain

Write the database record

End do

End do

Call Respond_to_Retrieved_Interest service,
specifying ATR_RESPOND_COMPLETE

If UR state is in-doubt

If role is distributed syncpoint resource manager

Do TODO action to resolve UR

End do

If role is participant
Do TODO action to resolve UR

Read REDO records from the resource manager log in FIFO order

Do until no REDO records remain

Apply database changes

End do

End do

Call Respond_to_Retrieved_Interest service,
specifying ATR_RESPOND_CONTINUE

End do

Using Resource Recovery Services

88 z/OS V2R1.0 MVS Programming: Resource Recovery

Do until no resource manager log records remain

If UR not known by RRS, do action indicated by resource
manager log and do not inform RRS of result

End do

Enable connections to application program

Begin processing new URs

UR processing
The following example indicates, in pseudo-code, the processing of a UR by a
resource manager. For the example, the resource manager has requested a
presumed abort protocol, the Application_Commit_UR service was called, and the
resource manager needs to maintain an interest in the context.
Respond to application program connection request

Receive read request from application

Call Express_Context_Interest service

Call Express_UR_Interest service to express an unprotected interest in UR

Provide requested data to the application

Receive write request from application to change data

Call Change_Interest_Type service to change UR interest from
unprotected to protected

Write recovery data in the resource manager log

Write UNDO record

Write REDO record

< RRS receives commit UR call from application to commit the change >

< RRS might invoke the STATE_CHECK exit routine, especially for
distributed processing >

< RRS invokes the PREPARE exit routine >

< Depending on the PREPARE votes, RRS invokes the COMMIT or
BACKOUT exit routine >

< RRS invokes the END_UR exit routine >

PREPARE exit routine
The following example indicates, in pseudo-code, the processing a PREPARE exit
routine might perform. There are other possibilities; some resource managers, for
example, might hold the database locks until the COMMIT or BACKOUT exit gets
control.
If request is read

Release the database locks

Set exit routine return code to ATRX_FORGET

Return to address in general purpose register 14

Using Resource Recovery Services

Chapter 4. Using resource recovery services 89

Else

Harden UNDO record to external storage

Harden REDO record to external storage

Write an in-doubt record to the resource manager log

Set exit routine return code to ATRX_OK

Return to address in general purpose register 14

COMMIT exit routine
The following example indicates, in pseudo-code, the processing of a COMMIT exit
routine. In the parameter list RRS passes to the exit routine, the nonpersistent
interest data points to resource manager structures that represent the resources
being changed.
Write the database record or records to permanently change the
database

Release the database locks

Write a successful commit record to the resource manager log

Set exit routine return code to ATRX_OK

Return to address in general purpose register 14

BACKOUT exit routine
The following example indicates, in pseudo-code, the processing of a BACKOUT
exit routine. In the parameter list RRS passes to the exit routine, the nonpersistent
interest data points to resource manager structures that represent the resources the
application had intended to change.
Rewrite the database record or records

Release the database locks

Set exit routine return code to ATRX_OK

Return to address in general purpose register 14

DISTRIBUTED_SYNCPOINT exit routine
The following example indicates, in pseudo-code, the processing of a
DISTRIBUTED_SYNCPOINT exit routine.
Send a REQUEST_COMMIT message to the conversational partner

Wait for the return message

If the partner sent a COMMIT message

Set exit routine return code to ATRX_OK

If the partner sent a BACKOUT message

Set exit routine return code to ATRX_BACKOUT

Return to address in general purpose register 14

Using Resource Recovery Services

90 z/OS V2R1.0 MVS Programming: Resource Recovery

Resource recovery exit routines
This section describes, under “Programming considerations,” information that is
common to all RRS exit routines, followed by a description of each exit routine.

Programming considerations
The following topics describe installing, invoking, processing, and returning for an
exit routine and the action taken on an exit routine failure.

Installing an exit routine
To install the RRS exit routines, the resource manager must:
v Call the Register_Resource_Manager service.
v Set the RRS exit routines through one or more calls to the Set_Exit_Information

service. If the resource manager issues more than one call for RRS exit routines,
the first call must specify all the required exit routines.

If your resource manager will need RRS to generate logical unit of work identifiers
(LUWIDs), you must specify the LU name RRS is to use. You specify this name
through the variable_data_1 parameter on the Set_Exit_Information service.

Specifying RRS specific Set_Exit_Information return codes
Set_Exit_Information return codes related to its processing; see
“Set_Exit_Information (CRGSEIF, CRGSEIF1,CRG4SEIF)” on page 148. The service
might also return codes from their exit manager.

The following table lists the return codes you might get from RRS when you call
the Set_Exit_Information service to set the RRS exit routines.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

8000
(32768)
ATR_EXIT_PREPARE_NOT_

SPECIFIED

Meaning: The call did not specify the
required PREPARE exit. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

8001
(32769)
ATR_EXIT_COMMIT_NOT_

SPECIFIED

Meaning: The call did not specify the
required COMMIT exit. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

8002
(32770)
ATR_EXIT_BACKOUT_NOT_

SPECIFIED

Meaning: The call did not specify the
required BACKOUT exit. The system rejects
the service request.

Action: Check the calling program for a
probable coding error.

RRS Exit Routines

Chapter 4. Using resource recovery services 91

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

8003
(32771)
ATR_EXIT_EXIT_FAILED_NOT_

SPECIFIED

Meaning: The call did not specify the
required EXIT-FAILED exit. The system
rejects the service request.

Action: Check the calling program for a
probable coding error.

8004
(32772)
ATR_RM_ACTIVE_ON_

ANOTHER_SYSTEM

Meaning: The resource manager named in
the call currently has exits set on another
system in the sysplex. The system rejects the
service request.

Action: Check the calling program for a
probable coding error.

8005
(32773)
ATR_RM_NEW_KEY_INV

Meaning: The key of the resource manager
is different from the key RRS expects. This
difference could occur if the resource
manager registered again with a different
key while RRS remains active. The system
rejects the service request.

Action: Check the calling program for a
probable coding error.

8006
(32774)
ATR_SEIF_PARM_NOT_ADDR

Meaning: The caller passed parameters to
RRS that were not addressable. The key of
the data is different from the key RRS
expects. The system rejects the service
request.

Action: Check the calling program for a
probable coding error.

8007
(32775)
ATR_EM_WRONG_STATE

Meaning: The calling resource manager tried
to set its exit routines during unset
processing for its exit routines. The system
rejects the service request.

Action: Check the calling program for a
probable coding error.

8008
(32776)
ATR_RM_WRONG_STATE

Meaning: The calling resource manager tried
to set its exit routines while not in Unset,
Reset, or Set state. The system rejects the
service request.

Action: Check the calling program for a
probable coding error.

RRS Exit Routines

92 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

800A
ATR_RM_METADATA_UNSUPPORTED

Meaning: The caller requested RM Metadata
support, but the system does not have RM
Metadata support active. RRS was not able
to connect to the RM Metadata log stream.
The system rejects the service request.

Action:

v Define the RM Metadata log stream and
retry the service request.

v Retry the service request without setting
the
ATR_8K_RM_METADATA_REQUESTED
flag.

v Restart the resource manager on a system
that can connect to the RM Metadata log
stream.

Specifying RRS specific RM UNSET reason codes
CRG_RM_EXITS_UNSET reason codes related to its processing; see the section
named value2 in “Parameters” on page 26.

The following table lists the reason codes you might get from RRS when exits were
unset.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

8009
(32777)
ATR_EM_UNAVAILABLE

Meaning: The resource manager has been
Unset because RRS was terminated through
the SETRRS SHUTDOWN command.

Action: Wait for RRS to become active and
Reset the resource manager's exit with RRS.

Invoking an exit routine
The system invokes an RRS exit routine when an event occurs. Before an exit
routine can be invoked, the resource manager must:
v Express interest in a UR through a call to the Express_UR_Interest service
v For a restart UR obtained by a call to the Retrieve_UR_Interest service, specify a

response code of ATR_RESPOND_CONTINUE on each call to
Respond_to_Retrieved_Interest, then call the End_Restart service

If there are multiple interests in a UR, either through one resource manager or
multiple resource managers, the order in which RRS invokes the exit routines for a
given event is as follows:
1. All SRB type exit routines, either one after another or all at once

asynchronously

RRS Exit Routines

Chapter 4. Using resource recovery services 93

2. All PC type exit routines, in the order in which the resource managers first
expressed interest in the UR. If any resource manager has multiple expressions
of interest in the UR, RRS invokes the exit routines for those interests one after
another in the order in which the resource manager expressed the interest.

The exit_type parameter in the call to the Set_Exit_Information service specifies
how RRS is to invoke the exit routine:
v SRB routine: The system schedules a service request block (SRB) at local priority

in the resource manager's address space to give control to the exit routine.
The exit routine may run synchronously or asynchronously. In either case, it is
nonpreemptable. Because RRS might, under certain conditions, wait for one SRB
routine to complete before driving another, it is not a good idea to suspend exit
routine processing.
A resource manager in a swappable address space must use SRB exit routines.

v PC routine: The system issues a stacking Program Call (PC) instruction to give
control to the exit routine. The stacking PC must either use a system LX so that
the routine is available from all address spaces or establish a connection in the
RRS address space to the PC table, as described in “Establishing a connection to
the PC table” on page 95.

Note: Consider carefully before deciding to use a system LX. Using a system LX
improperly can prevent ASIDs from being reused, which can in turn cause
unscheduled IPLs. To avoid unnecessary loss of ASIDs, IBM recommends that a
resource manager use a non-system LX or an SRB. See Reusing ASIDs in z/OS
MVS Programming: Extended Addressability Guide for more detail.
The exit routine will run synchronously; therefore, the resource manager must
not suspend processing of the work unit. The system cannot invoke exit routines
for other interests in the UR until the PC routine completes.
The resource manager must be in a nonswappable address space to use PC exit
routines. A PC exit routine must remain available to the system until the
resource manager ends processing, unregisters, or issues a call to the set exit
routine service to change the exit routine.
It is also important to note that a PC exit routine and any routine that it invokes
cannot issue any SVC instruction.
When RRS invokes a PC type exit routine, the way the PC is defined in its entry
table determines the cross memory environment in effect when it gets control:
– If a nonspace switching PC is used, the primary address space and the

secondary address space will be the RRS address space.
– If a space switching PC is used, depending on the PC definition, the RRS

address space will either be the secondary address space or not be part of the
environment at all.

If RRS is the primary or secondary address space and exit routine recovery is
defined as MODE=FULLXM, the exit routine will not receive control if the RRS
address space is cancelled. If RRS is the primary address space and exit routine
recovery is defined as MODE=PRIMARY, the exit routine will not receive control
if the RRS address space is cancelled.

The advantage of the PC routine over an SRB routine is a shorter path length.
Invocation of an SRB routine has the overhead of scheduling and dispatching an
SRB. Choose the type of exit routine as follows:
v Choose an SRB routine if the exit routine's processing is longer. The routine can

perform the processing asynchronously and provide the return code later.

RRS Exit Routines

94 z/OS V2R1.0 MVS Programming: Resource Recovery

v Choose a PC routine if the exit routine's processing is short, without I/O or
implicit waits by services called. Because the routine runs synchronously, the
return code indicates that its processing is complete.

If you need to suspend the processing of either a PC routine or an SRB routine, set
an ATRX_LATER return code and return to RRS, then call the
Post_Deferred_UR_Exit service when processing is complete.

Establishing a connection to the PC table: To use a nonsystem LX, a resource
manager must issue the ETCON macro to connect the RRS address space to its
own LX. The resource manager must issue ETCON before it calls the
Set_Exit_Information service. For information about using ETCON, see z/OS MVS
Programming: Extended Addressability Guide.

So that the resource manager has the information it needs to issue ETCON, RRS
provides the STOKEN of its address space through a nonpersistent system level
name/token pair. The name is defined through ATR_RRS_STOKEN_NAME in
ATRRASM and ATRRC. For information about using name/token pairs, see z/OS
MVS Programming: Assembler Services Guide and z/OS MVS Programming: Authorized
Assembler Services Guide.

Figure 17 on page 96 shows a sample of Assembler language code to obtain the
STOKEN of the RRS address space. Note that the sample in Figure 17 on page 96
does not include the entry and exit linkage.

RRS Exit Routines

Chapter 4. Using resource recovery services 95

* Initialize the NAME field

MVC NAME,ATR_RRS_STOKEN_NAME Get RRS STOKEN Name

* Attempt to retrieve the STOKEN

LOAD EP=IEANTRT Get address of IEANTRT routine
LR R15,R0 Set address for Call
CALL (15),(LEVEL,NAME,TOKEN,RETCODE)

*
LA R15,IEANT_OK Get successful return code value
C R15,RETCODE Was TOKEN Returned?
BNE RRSDOWN No, RRS must not be available
EJECT

* Save RRS’ STOKEN

LA R2,TOKEN Set pointer to TOKEN area
USING ATR_STKN_TOKEN,R2 Set addressability -

* ATR_STKN_TOKEN area maps
* the returned TOKEN

MVC SAVESTKN,ATR_RRS_STOKEN Move RRS STOKEN to return
* area

DROP R2 Free up register 2

* Do processing with the STOKEN as necessary here

*

B CONT
EJECT

* Do processing when STOKEN unavailable here

RRSDOWN DS 0H
*

B CONT
EJECT

CONT Return to caller

* Local working storage declares

NAME DS CL16 Name for Name/Token pair
TOKEN DS XL16 Token for Name/Token Pair
RETCODE DS F
SAVESTKN DS CL8 RRS STOKEN

* Constant and Equates

LEVEL DC A(IEANT_SYSTEM_LEVEL) SYSTEM LEVEL
R0 EQU 0
R2 EQU 2
R14 EQU 14
R15 EQU 15

EJECT

* RRS Constants

ATRRASM
EJECT

* NAME/TOKEN VARIABLE DECLARES

IEANTASM

Figure 17. Obtaining the STOKEN

RRS Exit Routines

96 z/OS V2R1.0 MVS Programming: Resource Recovery

Processing by an exit routine
A resource manager can have an exit routine for each RRS exit or a single routine
for all RRS exits. At invocation, all RRS exit routines receive a parameter list in the
same format but with exit-specific meanings for some parameters. If a resource
manager uses a single exit routine, the routine can identify the processing needed
based on the exit number parameter.

When an exit routine receives control, the routine can perform the expected
processing. Alternatively, at any time in its processing, the exit routine can
postpone its processing, taking the following steps:
v Log the exit notification
v Request scheduling of a task that can perform the processing asynchronously
v Pass a return code of ATRX_LATER or ATRX_LATER_CONTINUE back to RRS.

Later, when the exit routine completes processing, the resource manager can
provide its return code to RRS through a call to the Post_Deferred_UR_Exit service.

Returning from an exit routine
An exit routine returns to RRS as follows:
v An SRB routine must return to the address that was in register 14 on entry to

the routine.
v A PC routine must return with a Program Return (PR) instruction.

If an exit routine returns ATRX_FORGET, the system does not invoke any
subsequent RRS exit routines for the current interest in the UR. RRS deletes the
interest in the UR.

Action if an exit routine fails: If an exit routine abends or returns an unexpected
return code, the system gives control to the EXIT_FAILED exit routine.

Action if exit routines are unset: If a resource manager's exit routines are unset
for any reason:
v RRS will quiesce any SRB exit routines, but PC exit routines continue to run.
v Context services will not quiesce SRB or PC exit routines. They continue to run.

A quiesced exit routine completes normally or abnormally, then returns to the
caller.

If an exit routine that continues to run requests an RRS service, it will get an error
return code from the service.

A resource manager's failure causes its exit routines to become unset with the exit
managers. A resource manager's exit routines can also be unset if its EXIT_FAILED
exit routine fails. If the exit routines are unset, RRS takes the actions shown earlier
in Table 4 on page 52 for an incomplete interest in an active UR.

Overlapping of exit routine processing
While a resource manager's exit routine is running, exit routines for other interests
in the UR are also active. Active means they are running or have returned an
ATRX_LATER or ATRX_LATER_CONTINUE return code. (If a routine returns
ATRX_LATER or ATRX_LATER_CONTINUE, it is considered active until the
resource manager provides its final return code through a call to the
Post_Deferred_UR_Exit service.)

RRS Exit Routines

Chapter 4. Using resource recovery services 97

Table 18 indicates potential overlaps of exit routine processing. The table columns
indicate other exit routines that may be active when the exit routine of the row is
active.

Table 18. Exit Routine Processing Overlap

Active Exit
STATE_
CHECK

PRE-
PARE

DIST_
SYNCPT COMMIT

BACK-
OUT END_ UR

ONLY_
AGENT

COMPLE-
TION

EXIT_
FAILED

SUBOR-
DINATE_
FAILED

STATE_
CHECK

Y N N N N N N N O N

PREPARE C Y N N N N N N O N

DIST_
SYNCPT

C C N N N N N N O N

COMMIT C C C Y N N N N O N

BACKOUT C C C N Y N N N O N

END_UR C C C C C Y N N O N

ONLY_
AGENT

C N N N N N N N O N

COMPLE-
TION

C C C C C C N Y O N

EXIT_
FAILED

O O O O O O O O O N

SUBOR-
DINATE_
FAILED

N N N N N N N N N Y

Note: The table symbols are:

C The column exit routine has completed for this UR.

N No, the column exit routine is not invoked for this UR when the row exit routine is active.

Y Yes, the column exit routine may be concurrently active.

O Yes, the column exit routine may be concurrently active but only when the following are true:

v On the Set_Exit_Information service, the resource manager used variable_data_2 to set ATR_EF_ON_LATER_WITH_SYNC.

v The row exit routine returned either ATRX_LATER or ATR_LATER_CONTINUE to RRS

Additional details are:
v RRS does not overlap exit routines for the same interest in a UR.
v STATE_CHECK exit routine: If a STATE_CHECK exit routine returns an

ATRX_REDRIVE code, RRS invokes all STATE_CHECK exit routines again, but
not until all the originally invoked STATE_CHECK exit routines complete.

v PREPARE exit routine: If one PREPARE exit routine votes NO, requesting
backout of the UR, RRS stops invoking PREPARE exit routines. When all
PREPARE exit routines that were invoked are complete, RRS starts to invoke
BACKOUT exit routines.

v DISTRIBUTED_SYNCPOINT exit routine: RRS does not invoke other exit
routines for a UR if the DISTRIBUTED_SYNCPOINT exit routine has not
completed, with two exceptions:
1. When the installation uses a panel to resolve an in-doubt UR
2. When a cancelled application leaves an in-doubt UR and the installation

responds COMMIT or BACKOUT to the message that identifies the in-doubt
UR

In either case, RRS starts invoking COMMIT, BACKOUT, END_UR, or
COMPLETION exit routines even though the DISTRIBUTED_SYNCPOINT exit

RRS Exit Routines

98 z/OS V2R1.0 MVS Programming: Resource Recovery

routine has not completed. If the DISTRIBUTED_SYNCPOINT exit routine
subsequently passes back a return code, RRS ignores the code. If, however, the
DISTRIBUTED_SYNCPOINT exit routine is an SRB routine, RRS purges the exit
routine before it drives any other exits.

Environment
Before the exit routine receives control, RRS establishes a function recovery routine
(specifically, an EUT FRR) for error recovery. Because RRS has already established
an EUT FRR when the exit routine receives control, the exit routine cannot
establish an ESTAE-type recovery environment. Do not schedule an IRB to the task
under which syncpoint processing was initiated. RRS may run on that task (with
its FRR), waiting for your exit to complete.

An SRB exit routine receives control in the following environment:

Minimum authorization: Key of the resource manager when it registered, supervisor
state

Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN, home address space of the resource

manager when it registered
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

A PC exit routine receives control in the following environment:

Minimum authorization: Determined by the PC instruction characteristics, supervisor
state

Dispatchable unit mode: Task
Cross memory mode: Determined by the PC instruction characteristics, home

address space unpredictable
AMODE: Determined by the PC instruction characteristics
ASC mode: Determined by the PC instruction characteristics
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements: The high level language (HLL) definitions for the
exit routine parameter list are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Entry to an exit routine: The exit routine receives information in the registers and
a parameter list.

Registers at entry: When an SRB exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

RRS Exit Routines

Chapter 4. Using resource recovery services 99

1 Address of the parameter list for the exit routine

2-12 Not applicable

13 Address of a 72-byte save area

14 Return address

15 Address of the exit routine's entry point

When an SRB exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine receives control, the GPRs contain:

Register
Contents

0 Not applicable

1 Address of the parameter list for the exit routine

2-15 Not applicable

When a PC exit routine receives control, the ARs contain:

Register
Contents

0-15 Not applicable

Parameter list
The parameter list is the same for all RRS exit routines.

The parameter list consists of pointers to fields that contain the values. If a
parameter is not meaningful for the exit routine being invoked, the field contains
binary zeros. All parameters, except return_code, are input to the exit routine.
Access to the parameters is controlled by storage protect key:
v Input parameters: For the parameters received by the exit routine, the resource

manager and exit routine have READ access, but might not have WRITE access.
v Output parameters: For the parameters returned by the exit routine, the resource

manager and exit routine have READ and WRITE access.

RRS Exit Routines

100 z/OS V2R1.0 MVS Programming: Resource Recovery

Syntax:

(return_code
,version
,exit_number
,resource_manager_token
,exit_manager_name
,resource_manager_global_data
,ur_interest_token
,nonpersistent_interest_data
,exit_flags
,value1
,value2
,value3
,value4
,value5)

Parameters:

return_code
Points to a field that, upon return from the exit routine, is to contain a
hexadecimal return code. Define the field as a 4-byte integer.

The return codes have unique meanings for each exit routine. See the following
exit routine descriptions for the return codes.

version
Points to a field that contains the version of the RRS interface. The current
version is 1. Define the field as a 4-byte integer.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer.

See the following exit routine descriptions for the values. If a single exit
routine is used for multiple exits, the routine can use this number to branch to
the correct action logic.

resource_manager_token
Points to a field that contains the resource manager token. Define the field as a
16-byte character string. Your resource manager received the token from the
register resource manager service.

exit_manager_name
Points to a field that contains the name of the resource manager that is
functioning as the exit manager. Define the field as a 16-byte character string.
The exit manager for this exit routine is RRS; its exit manager name is:
ATR.EXITMGR.IBM

resource_manager_global_data
Points to a field that contains the resource manager global data. Define the
field as a 16-byte character string. Your resource manager provided this data in
the call to the Register_Resource_Manager service.

For the exit routine, this data should be an anchor or anchors for data
structures in the resource manager.

ur_interest_token
Points to a field that contains the UR interest token for the interest for which

RRS Exit Routines

Chapter 4. Using resource recovery services 101

the system is invoking the exit routine. Define the field as a 16-byte character
string. Your resource manager received the token from the Express_UR_Interest
service or the Retrieve_UR_Interest service.

nonpersistent_interest_data
Points to a field that contains the nonpersistent interest data. Define the field
as a 16-byte character string. Your resource manager provided this data in a
call to the service: express UR interest, process interest, or retain interest.

exit_flags
Points to a field that contains flags for the exit routine. Define the field as a
4-byte integer. See the following exit routine descriptions for the flags that are
meaningful for each routine. If a restart occurs, RRS preserves the settings for
bits 2-8 as they were at the last time data was logged before the restart.

The bits in the field mean the following:

Bit Bit Mask, in Hex Meaning, if Bit is On

0 X'80000000' Name: ATRXFLAGRESTARTINTEREST

Meaning: The UR interest being processed
is for a restart expression of interest.

1 X'40000000' Name: ATRXFLAGTERMINATING
SYNCPOINT

Meaning: The context is ending. Therefore
RRS issued an implicit commit or backout
for the UR. There cannot be any more new
URs for this context.

2 X'20000000' Name:
ATRXFLAGRESOLVEDBYINSTALLATION

Meaning: The installation used an RRS
panel to commit or back out the UR, which
had been in an in-doubt state.

3 X'10000000' Name: ATRXFLAGHEURISTICMIXED

Meaning: RRS detected a heuristic-mixed
condition for this UR.

4 X'08000000' Name: ATRXFLAGRESYNCINPROGRESS

Meaning: RRS detected a resync in progress
for the UR.

5 X'04000000' Name:
ATRXFLAGPREPARERESULTFORGET

Meaning: For the UR, the collected prepare
vote was FORGET, meaning that the
prepare votes were ABSTAIN or FORGET.
The vote for this interest in the UR was
ABSTAIN.

6 X'02000000' Name: ATRXFLAGIMMEDIATEBACKOUT

Meaning: The backout operation occurred
because the application, either explicitly or
implicitly, requested backout, not because a
resource manager could not commit its
resources.

RRS Exit Routines

102 z/OS V2R1.0 MVS Programming: Resource Recovery

Bit Bit Mask, in Hex Meaning, if Bit is On

7 X'01000000' Name: ATRXFLAGREDRIVELIMIT

Meaning: The STATE_CHECK redrive limit
has been reached for this UR; thus, the exit
routine cannot issue the ATRX_REDRIVE
return code.

8 X'00800000' Name: ATRXFLAGCOMMIT

Meaning: The overall vote for the UR is
commit.

9 X'00400000' Name:
ATRXFLAGAPPLICATIONASYNCABEND

Meaning: The application encountered an
asynchronous abend.

10 X'00200000' Name: ATRXFLAGRETAININTINV

Meaning: The ATRSROI callable service
should not be called from this exit routine.

11 X'00100000' Name: ATRXFLAGCASCADEDUR

Meaning: The UR being processed is a
cascaded UR.

12-13 X'00' Name: ATRXFLAGHYRBIDGLOBALMODE

Meaning: The UR being processed is in
hybrid-global transaction mode.

X'01' Name: ATRXFLAGGLOBALMODE

Meaning: The UR being processed is in
global transaction mode.

X'10' Name: ATRXFLAGLOCALMODE

Meaning: The UR being processed is in
local transaction mode.

14-31 Reserved for future use.

value1
value2
value3
value4
value5

Point to fields that contain values unique for the exit routines. Define each
field as a 4-byte integer. If a value is not used for an exit routine, its field
contains binary zeros.

See the following exit routine descriptions for the values.

Exit from an exit routine
The exit routine provides information to the system in the return code in the
parameter list.

Registers at Exit: When an SRB exit routine returns control, the GPRs must
contain:

RRS Exit Routines

Chapter 4. Using resource recovery services 103

Register
Contents

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When an SRB exit routine returns control, the ARs must contain:

Register
Contents

0-1 Not applicable

2-13 Restored to contents upon entry

14-15 Not applicable

When a PC exit routine returns control, the GPRs contain:

Register
Contents

0-15 Not applicable

When a PC exit routine returns control, the ARs contain:

Register
Contents

0-15 Not applicable

BACKOUT exit routine
The BACKOUT exit routine receives control when the UR state is in-backout. RRS
invokes BACKOUT exit routines when:
v The application calls a service to back out the UR.
v The application calls a service to commit the UR, but a resource manager voted

BACKOUT in its PREPARE exit routine.
v A resource manager that has taken the SDSRM role calls the Backout_Agent_UR

service.
v An application or a work manager calls the End_Transaction service.

Note: The resource manager can specify in a call to the Set_Syncpoint_Controls
service the return code for the BACKOUT exit routine. In this case, RRS does not
invoke the routine.

Processing
The BACKOUT exit routine should back out the UR by not making the changes in
the resources for this interest in the UR.

Defer exit processing
Return code, ATRX_DEFER, is provided to allow a resource manager to request
RRS to defer the backout processing for a particular interest. Upon receiving the
ATRX_DEFER return code, RRS will requeue the interest to be processed later for
syncpoint processing. The Backout exit can only be deferred once for any one
expression of interest. RRS will invoke the resource manager's Exit_Failed exit if
the resource manager attempts to defer the Backout exit twice for any one of its
interests.

RRS Exit Routines

104 z/OS V2R1.0 MVS Programming: Resource Recovery

v Syncpoint processing:

When the syncpoint processing is first initiated, RRS builds a syncpoint queue in
the order in which the resource manager expressed its interests in the UR. There
could be multiple resource managers with multiple interests on the queue. When
a resource manager defers the backout processing for one interest, this particular
interest will be moved to the end of the syncpoint queue. The exit ordering is
thus disrupted and no longer preserved for this resource manager. RRS is not
sensitive if the Backout exit is driven in the correct order. RRS will continue to
drive the backout exit for all the outstanding interests on the syncpoint queue.
The resource manager is in control of the Backout exit ordering by returning the
proper exit return code.

v Cascaded transactions:

If a resource manager has an interest in multiple URs in a locally cascaded
transaction, the exit invocation for the RM's interest will be deferred after all the
child UR interests have been handled as opposed to after the current UR's
interests have been processed. Deferring and rescheduling the backout exit is not
enabled for multisystem cascaded transactions.

v Exit failed processing:

The Exit_Failed exit receives control when one of the RRS exit routines fails. RRS
gives this routine the exit number of the failed routine and the reason why the
routine failed. RRS, at most, invokes the Exit_Failed once for each UR state for
any one expression of interest. When the Exit_Failed exit returns control to RRS,
the routine must provide a return code for the failed exit. If the failed exit is the
Backout exit and it has been deferred before, the resource manager cannot defer
it again. An attempt to do so will cause RRS to unset the resource manager's
RRS exit routines. If the Backout exit has not been deferred before, the resource
manager can return a ATRX_DEFER return code to request RRS to drive the exit
later.
As a part of defer backout exit processing the Exit_Failed exit could be driven
for the following reasons:
– A resource manager returns a "defer" return code more than once for any one

of its expression of interest
– A resource manager defers the backout processing for all of its expressions of

interest. (The Exit_Failed exit will be driven for the last interest the resource
manager expressed in the UR.)

– A "defer" return code is returned after the resource manager had previously
returned an OK return code for one of its expression of interest (an OK return
code indicates the backout processing is completed for the "backout first"
expression of interest).

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

BACKOUT Exit Routine

Chapter 4. Using resource recovery services 105

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
5

Decimal
5

Equate symbol
ATR_BACKOUT_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

0 The UR interest being processed is for a restart expression of
interest.

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

2 The installation used an RRS panel to commit or back out the UR,
which had been in an in-doubt state.

3 RRS has detected a heuristic-mixed condition for this UR.

6 The backout was requested by the application.

9 The application encountered an asynchronous abend.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

12 The UR being processed is in local transaction mode. If neither bit
12 nor bit 13 is on, the UR being processed is in hybrid-global
transaction mode.

13 The UR being processed is in global transaction mode. In this case,
bit 1 is also on, indicating that the resource manager should not
attempt to call the Retain_Interest service. If neither bit 12 nor bit
13 is on, the UR being processed is in hybrid-global transaction
mode.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the BACKOUT exit routine returns control to RRS, the routine must provide
a hexadecimal return code in the return_code parameter.

BACKOUT Exit Routine

106 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager completed
backout processing for the interest in the
UR. RRS continues with backout processing.

Action: None.

4
(4)
ATRX_OK_OUTCOME_PENDING

Meaning: The resource manager completed
backout processing for the interest in the
UR; however, not all changes are complete.

RRS records this exception in logrec. RRS
continues with backout processing.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The resource manager completed
backout processing for the interest in the
UR.

The resource manager no longer has an
interest in the UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

24
(36)
ATRX_HC

Meaning: The exit routine detected a
heuristic commit for the UR. Resources have
already been changed.

RRS records this exception in logrec. RRS
continues with backout processing.

Action: None.

28
(40)
ATRX_HR

Meaning: The exit routine detected a
heuristic reset for the UR.

RRS records this exception in logrec. RRS
continues with backout processing.

Action: None.

2C
(44)
ATRX_HM

Meaning: The exit routine detected a
heuristic mix for the UR. That is, some
resources have been committed and some
have been backed out.

RRS records this exception in logrec. RRS
continues with backout processing for the
UR.

Action: None.

BACKOUT Exit Routine

Chapter 4. Using resource recovery services 107

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

40
(64)

ATRX_DEFER

Meaning: The resource manager requests
that RRS defer the exit processing for this
expression of interest.

Action: RRS will re-invoke the backout exit
for this expression of interest after all other
back out exits for this resource manager
have been invoked for this UR.

COMMIT exit routine
The COMMIT exit routine receives control when the UR state is in-commit. RRS
invokes the COMMIT exit routine when it determines that the UR should be
committed or when:
v A resource manager that has taken the SDSRM role calls the Commit_Agent_UR

service.
v An application or a work manager calls the End_Transaction service.

Note: The resource manager can specify in a call to the Set_Syncpoint_Controls
service the return code for the COMMIT exit routine. In this case, RRS does not
invoke the routine.

Processing
The COMMIT exit routine should commit the UR by making the changes in all
resources for this interest in the UR.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

BACKOUT Exit Routine

108 z/OS V2R1.0 MVS Programming: Resource Recovery

Hexadecimal
4

Decimal
4

Equate symbol
ATR_COMMIT_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

0 The UR interest being processed is for a restart expression of
interest.

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

2 The installation used an RRS panel to commit or back out the UR,
which had been in an in-doubt state.

3 RRS has detected a heuristic-mixed condition for this UR.

6 The backout was requested by the application.

9 The application encountered an asynchronous abend.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

12 The UR being processed is in local transaction mode. If neither bit
12 nor bit 13 is on, the UR being processed is in hybrid-global
transaction mode.

13 The UR being processed is in global transaction mode. In this case,
bit 1 is also on, indicating that the resource manager should not
attempt to call the Retain_Interest service. If neither bit 12 nor bit
13 is on, the UR being processed is in hybrid-global transaction
mode.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the COMMIT exit routine returns control to RRS, the routine must provide a
hexadecimal return code in the return_code parameter.

COMMIT Exit Routine

Chapter 4. Using resource recovery services 109

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager completed
commit processing for the interest in the UR.
RRS continues processing the UR.

Action: None.

4
(4)
ATRX_OK_OUTCOME_PENDING

Meaning: The resource manager completed
commit processing for the interest in the UR;
however, not all updates are complete.

RRS records this exception in logrec. RRS
continues with commit processing.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The resource manager completed
commit processing for the interest in the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

24
(36)
ATRX_HC

Meaning: The exit routine detected a
heuristic commit for the UR. Resources have
already been changed.

RRS records this exception in logrec. RRS
continues with commit processing.

Action: None.

28
(40)
ATRX_HR

Meaning: The exit routine detected a
heuristic reset for the UR.

RRS records this exception in logrec. RRS
continues with commit processing.

Action: None.

2C
(44)
ATRX_HM

Meaning: The exit routine detected a
heuristic mix for the UR. That is, some
resources have been committed and some
have been backed out.

RRS records this exception in logrec. RRS
continues with commit processing for the
UR.

Action: None.

COMMIT Exit Routine

110 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

COMPLETION exit routine
The COMPLETION exit routine receives control for each interest in a UR after any
resource manager with an interest in the UR specifies ATR_DRIVE_COMPLETION
in a call to the Set_Side_Information service. RRS invokes the COMPLETION exit
routine after:
v The resource manager completes syncpoint processing but before RRS returns

control to the application program.
v An application or a work manager calls the End_Transaction service.

Bit 8 in exit_flags indicates whether the exit routine is invoked for commit or for
backout.

The exit routine is useful when a work request is distributed across several
systems.

Processing
The COMPLETION exit routine allows a communication resource manager to
deallocate some or all conversations after RRS completes processing for a UR, but
before RRS gives control to the application program.

For example, the COMPLETION exit routine can abnormally deallocate all
outbound conversations for a distributed syncpoint communication resource
manager, if a failure occurs on one conversation for a UR.

A resource manager can also use the COMPLETION exit routine to obtain the
LUWID (logical unit of work identifier) for the next UR, created by an earlier call
to the Retain_Interest service. A call to the Retrieve_Work_Identifier service, using
the UR interest token created through the Retain_Interest service, returns the
LUWID of the next UR. This technique works only when the current UR state is
in-completion or, if the resource manager has taken the SDSRM role, in-forget.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest

COMMIT Exit Routine

Chapter 4. Using resource recovery services 111

Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
8

Decimal
8

Equate symbol
ATR_COMPLETION_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

0 The UR interest being processed is for a restart expression of
interest.

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

2 The installation used an RRS panel to commit or back out the UR,
which had been in an in-doubt state.

3 RRS has detected a heuristic-mixed condition for this UR.

4 RRS detected a resync in progress for the UR.

5 For the UR, the collected prepare vote was FORGET. meaning that
the prepare votes were ABSTAIN or FORGET. The vote for this
interest in the UR was ABSTAIN.

6 The backout was requested by the application.

8 If set, the overall vote for the UR is commit. If not set, the overall
vote for the UR is backout.

9 The application encountered an asynchronous abend.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

12 The UR being processed is in local transaction mode. If neither bit
12 nor bit 13 is on, the UR being processed is in hybrid-global
transaction mode.

13 The UR being processed is in global transaction mode. In this case,
bit 1 is also on, indicating that the resource manager should not
attempt to call the Retain_Interest service. If neither bit 12 nor bit
13 is on, the UR being processed is in hybrid-global transaction
mode.

value1
value2
value3
value4

COMPLETION Exit Routine

112 z/OS V2R1.0 MVS Programming: Resource Recovery

value5
Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the COMPLETION exit routine returns control to RRS, the routine must
provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager completed
COMPLETION exit processing for the
interest in the UR. RRS continues processing
the UR.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The resource manager completed
COMPLETION exit processing for the
interest in the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

34
(52)
ATRX_LATER_CONTINUE

Meaning: The resource manager will
provide a return code at a later time, but the
application or transaction program can
continue processing, which means that the
context could end before the UR is complete.
(If any resource manager has called
Set_Syncpoint_Controls to take the SDSRM
role for this UR, RRS treats this return code
as if it were ATRX_LATER.)

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

DISTRIBUTED_SYNCPOINT exit routine
The DISTRIBUTED_SYNCPOINT exit routine is for resource managers in a
distributed resource recovery environment. A resource manager's
DISTRIBUTED_SYNCPOINT exit routine is enabled when the resource manager
takes the distributed syncpoint resource manager role (specifies ATR_DSRM in a

COMPLETION Exit Routine

Chapter 4. Using resource recovery services 113

call to the Set_Syncpoint_Controls service). RRS invokes the
DISTRIBUTED_SYNCPOINT exit routine after the PREPARE exit routines for all
interests in a UR:
v Vote OK to request commit.
v Return ATRX_ABSTAIN or ATRX_FORGET.

If the overall prepare vote is FORGET, but at least one resource manager returned
ABSTAIN, RRS does not invoke the DISTRIBUTED_SYNCPOINT exit routine.
Instead, RRS invokes the END_UR exit routines for those interests that have
returned ABSTAIN. Additional information appears in “Vote collection” on page 63
and “PREPARE exit routine” on page 126.

Note: For a UR, only one resource manager can request the distributed syncpoint
role and the request can be for only one interest. The call to the
Set_Syncpoint_Controls service is usually issued in the resource manager's
STATE_CHECK or PREPARE exit routine.

Processing
The DISTRIBUTED_SYNCPOINT routine is responsible for resolving an in-doubt
UR:
v It communicates with another system to inform it of the result of the local

prepare vote and to receive from that system the overall distributed prepare
vote.

v It returns the other system's overall commit or backout vote to RRS.

RRS can then continue with the appropriate commit or backout processing.

If all the local PREPARE exit routines reply ABSTAIN or FORGET, RRS does not
drive the DISTRIBUTED_SYNCPOINT exit routine.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
3

Decimal
3

Equate symbol
ATR_DISTRIBUTED_SYNCPOINT_EXIT

DISTRIBUTED_SYNCPOINT Exit Routine

114 z/OS V2R1.0 MVS Programming: Resource Recovery

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

0 The UR interest being processed is for a restart expression of
interest.

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the DISTRIBUTED_SYNCPOINT exit routine returns control to RRS, the
routine must provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and Action

0
(0)
ATRX_OK

Meaning: The exit routine determined that
the UR should be committed. RRS continues
commit processing for the UR.

Action: None.

8
(8)
ATRX_BACKOUT

Meaning: The exit routine determined that
the UR should be backed out. RRS proceeds
with backout processing for the UR.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The exit routine determined that
the UR should be committed. RRS continues
commit processing for the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

DISTRIBUTED_SYNCPOINT Exit Routine

Chapter 4. Using resource recovery services 115

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and Action

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

38
(56)
ATRX_HM_BACKOUT

Meaning: The exit routine detected a
heuristic mix for the UR.

RRS records this exception in logrec. RRS
proceeds with backout processing for the
UR.

Action: None.

3C
(60)
ATRX_HM_COMMIT

Meaning: The exit routine detected a
heuristic mix for the UR.

RRS records this exception in logrec. RRS
proceeds with commit processing for the
UR.

Action: None.

END_UR exit routine
The END_UR exit routine receives control when the UR state reaches in-end.

Processing
The END_UR exit routine should clean up private resource manager structures
used for the UR.

A communications resource manager can use an END_UR exit routine to
determine the final outcome of the commit process and communicate this outcome
to other systems.

Note: Do not use the END_UR exit routine to delay completion of commit or
backout processing. A delay might cause an incorrect final return code to be sent to
the application programs on other systems.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

DISTRIBUTED_SYNCPOINT Exit Routine

116 z/OS V2R1.0 MVS Programming: Resource Recovery

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
6

Decimal
6

Equate symbol
ATR_END_UR_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

0 The UR interest being processed is for a restart expression of
interest.

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

3 RRS has detected a heuristic-mixed condition for this UR.

4 RRS detected a resync in progress for the UR.

5 For the UR, the collected prepare vote was FORGET. meaning that
the prepare votes were ABSTAIN or FORGET. The vote for this
interest in the UR was ABSTAIN.

6 The backout was requested by the application.

8 The overall vote for the UR is commit.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the END_UR exit routine returns control to RRS, the routine must provide a
hexadecimal return code in the return_code parameter.

END_UR Exit Routine

Chapter 4. Using resource recovery services 117

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and Action

0
(0)
ATRX_OK

Meaning: The resource manager completed
processing for the interest in the UR. RRS
continues processing the UR.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The resource manager completed
processing for the interest in the UR. RRS
continues processing the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the exit routine calls the post exit
routine service to give the return code to
RRS.

Action: None.

EXIT_FAILED exit routine
The EXIT_FAILED exit routine receives control when one of the RRS exit routines
fails. RRS gives this routine the exit number of the failed routine and the reason
why the routine failed.

RRS, at most, invokes the EXIT_FAILED exit once for each UR state for any one
expression of interest. Also, EXIT_FAILED processing might overlap with resource
manager processing to post the results of an exit by calling Post_Deferred_UR_Exit
at a later time. Thus, the completion of Post_Deferred_UR_Exit and the
EXIT_FAILED exit routine can occur in any order:
v If Post_Deferred_UR_Exit completes first, RRS ignores the return code from

EXIT_FAILED.
v If EXIT_FAILED completes first, RRS returns the ATR_POST_NOT_PENDING

code to Post_Deferred_UR_Exit.

If the resource manager requests it on a call to the Set_Side_Information service,
RRS will drive the EXIT_FAILED exit routine when an exit routine has returned
ATRX_LATER and an asynchronous abend or address space termination has
occurred.

Processing
The EXIT_FAILED exit routine should provide RRS a return code for the failing
exit or tell RRS to unset the resource manager's RRS exit routines.

If the EXIT_FAILED exit routine fails, RRS unsets the resource manager's RRS exit
routines.

END_UR Exit Routine

118 z/OS V2R1.0 MVS Programming: Resource Recovery

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
7

Decimal
7

Equate symbol
ATR_EXIT_FAILED_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The flags
apply to the failed exit routine; see the description of the failed exit routine.

value1
Points to a field that contains the exit number of the failed exit routine. For the
number, see the description of the failed exit routine or Table 17 on page 84.
Define the field as a 4-byte integer.

value2
Points to a field that contains the reason why the exit routine failed. Define the
field as a 4-byte integer. The field contains one of the following:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Reason

1
(1)
ATR_EXIT_RC_NOT_VALID

Incorrect return code: An exit routine
returned an incorrect return code to RRS. The
incorrect code is in the value3 parameter.

2
(2)
ATR_EXIT_ABENDED

Exit routine abended: The abend percolated
to the FRR for RRS. The ABEND code is in
the value3 parameter.

3
(3)
ATR_REDRIVE_LIMIT

STATE_CHECK invoked too many times:
The STATE_CHECK exit routine has been
invoked for a UR more times than allowed.

EXIT_FAILED Exit Routine

Chapter 4. Using resource recovery services 119

Value in:
Hexadecimal
(Decimal)
Equate Symbol Reason

4
(4)
ATR_RC_INCORRECT_AFTER_POST

Inappropriate call: The resource manager
called the Post_Deferrerd_UR_Exit service
with a valid completion code. However, the
exit routine specified in the call had
previously returned a code other than
ATRX_LATER or ATRX_LATER_CONTINUE.

5
(5)
ATR_MEMTERM

Abnormal end: The dispatchable unit
associated with the context or the owner of
the unassociated privately managed context
started abnormal termination while the exit
routine was running.

6
(6)
ATR_FORGET_NOT_VALID

Incorrect use of FORGET: An exit routine
set an ATRX_FORGET return code when the
resource manager it represents had the
DSRM or SDSRM role, but the exit routine
has not yet completed all of its
responsibilities to resolve the UR. A DSRM or
SDSRM can return ATRX_FORGET only after
the UR has come out of in-doubt state.

7
(7)
ATR_EXIT_ABENDED_RSN

Exit routine abended: The abend percolated
to the FRR for RRS. The ABEND code is in
the value3 parameter and its reason code is in
value4.

8
(8)
ATR_ASYNC_ABEND

Asynchronous abend while RRS was
waiting: The SRB or task that requested the
syncpoint was asynchronously abended
while RRS was waiting for
Post_Deferred_UR_Exit to complete a
response from an exit, or an exit returned
ATRX_LATER while RRS was processing an
asynchronously abended syncpoint. The
value3 parameter contains the abend code.

This value appears only when
ATR_EF_ON_LATER_WITH_ASYNC was
specified on a call to Set_Exit_Information for
RRS.

9
(9)
ATR_ASYNC_ABEND_RSN

Asynchronous abend while RRS was
waiting: The SRB or task that requested the
syncpoint was asynchronously abended
while RRS was waiting for
Post_Deferred_UR_Exit to complete a
response from an exit, or an exit returned
ATRX_LATER while RRS was processing an
asynchronously abended syncpoint. The
value3 parameter contains the abend code,
and value4 contains the reason code.

This value appears only when
ATR_EF_ON_LATER_WITH_ASYNC was
specified on a call to Set_Exit_Information for
RRS.

EXIT_FAILED Exit Routine

120 z/OS V2R1.0 MVS Programming: Resource Recovery

Value in:
Hexadecimal
(Decimal)
Equate Symbol Reason

A
(10)
ATR_ASYNC_MEMTERM

Address space termination while RRS was
waiting: The SRB or task that requested the
syncpoint had its address space terminated
while RRS was waiting for
Post_Deferred_UR_Exit to complete a
response from an exit, or an exit returned
ATRX_LATER while RRS was processing a
syncpoint that had its address space
terminated. The value3 parameter contains
the abend code, and value4 contains the
reason code.

This value appears only when
ATR_EF_ON_LATER_WITH_ASYNC was
specified on a call to Set_Exit_Information for
RRS.

B
(11)

ATR_ALREADY_DEFERRED

Exit routine already deferred: The resource
manager has already requested RRS to defer
the exit routine for this expression of interest.

C
(12)

ATR_ALL_DEFERRED

All deferred: The resource manager
requested RRS to defer the exit routine for all
of its expressions of interest.

D
(13)

ATR_DEFER_NOT_VALID

Inappropriate defer request: The resource
manager requested RRS to defer the exit
routine but exit processing has previously
completed for one of the resource manager's
expression of interest.

E
(14)

ATR_DEFER_SRB_NOT_VALID

Deferment invalid for SRB exit routine: The
resource manager requested RRS to defer the
SRB exit routine. SRB exit routines cannot be
deferred.

value3
Points to a field that contains the following code, depending on value2. Define
the field as a 4-byte integer.

Value in value2 Contents of value3 Field

ATR_EXIT_RC_NOT_VALID The incorrect return code

ATR_EXIT_ABENDED The ABEND code

ATR_EXIT_ABENDED_RSN The ABEND code

ATR_ASYNC_ABEND The ABEND code

ATR_ASYNC_ABEND_RSN The ABEND code

ATR_ASYNC_MEMTERM The ABEND code

Any other value Binary zeros

EXIT_FAILED Exit Routine

Chapter 4. Using resource recovery services 121

value4
Points to a field that contains the following code, depending on value2. Define
the field as a 4-byte integer.

Value in value2 Contents of value4 Field

ATR_EXIT_ABENDED_RSN The ABEND reason code

ATR_ASYNC_ABEND_RSN The ABEND reason code

ATR_ASYNC_MEMTERM The ABEND reason code

Any other value Binary zeros

value5
Points to a field that contains binary zeros. Define the field as a 4-byte integer.

ABEND codes
The DISTRIBUTED_SYNCPOINT exit routine might end with an abend X'5C4'
with a X'xxxx0006' reason code. If your exit routine provides a recovery
environment, do not retry for this abend; RRS must stop the exit routine. To detect
this abend, ignore the first four digits of the reason code and test for X'0006' in the
lower half of the word that contains the abend reason code.

Return codes
When the EXIT_FAILED exit routine returns control to RRS, the routine must
provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

hh
(ddd)
An exit-specific equate symbol

Meaning: The EXIT_FAILED exit routine
completed processing. The return code is
valid for the failed exit; see the return codes
for the failed exit.

Action: Perform the action for the return
code.

404
(1028)
ATRX_UNSET_RM

Meaning: The EXIT_FAILED exit routine
completed processing. RRS is to unset the
RRS exit routines for the resource manager.

Action: The resource manager should load a
new copy of the failed exit routine, then call
the set exit routine service to set all of its
exit routines with RRS again.

If the problem repeats, you should check the
failed exit routine for a probable coding
error. Correct the routine and rerun the
resource manager.

ONLY_AGENT exit routine
The ONLY_AGENT exit routine receives control when there is only one expression
of interest in the UR. RRS does not need to process this UR with a two-phase
commit protocol.

EXIT_FAILED Exit Routine

122 z/OS V2R1.0 MVS Programming: Resource Recovery

Besides ONLY_AGENT, a resource manager could also have PRE_PREPARE
and/or STATE_CHECK exit routines. The exit routines get control in this order if
they exist: PRE_PREPARE first, STATE_CHECK second, and ONLY_AGENT last.

If the PRE_PREPARE exit routine adds interests, the ONLY_AGENT exit routine
will not be called since ONLY_AGENT requires only one Resource Manager with a
single expression of interest.

Processing
The ONLY_AGENT exit routine should change or not change its resources. The
routine can unilaterally decide to commit or back out the resources. When the
ONLY_AGENT exit routine returns control, RRS considers the UR processing to be
complete.

The exit routine or resource manager is responsible for hardening into a log any
information required to ensure its commit or backout completes. RRS does not log
any information for the UR.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
9

Decimal
9

Equate symbol
ATR_ONLY_AGENT_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful; the others are set to zero.

Bit Meaning, if Bit is On

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

value1

ONLY_AGENT Exit Routine

Chapter 4. Using resource recovery services 123

value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the ONLY_AGENT exit routine returns control to RRS, the routine must
provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager completed
commit processing for the interest in the UR.
RRS returns to the application.

Action: None.

4
(4)
ATRX_OK_OUTCOME_PENDING

Meaning: The resource manager completed
commit processing for the interest in the UR;
however, not all updates are complete.

RRS records this exception in logrec. RRS
returns to the application.

Action: None.

8
(8)
ATRX_BACKOUT

Meaning: The resource manager backed out
the interest in the UR. RRS returns to the
application.

Action: None.

C
(12)
ATRX_BACKOUT_OUTCOME_

PENDING

Meaning: The resource manager backed out
the interest in the UR. However, not all
processing is complete. RRS returns to the
application.

Action: None.

24
(36)
ATRX_HC

Meaning: The exit routine detected a
heuristic commit for the UR.

RRS records this exception in logrec. RRS
returns to the application.

Action: None.

28
(40)
ATRX_HR

Meaning: The exit routine detected a
heuristic reset for the UR.

RRS records this exception in logrec. RRS
returns to the application.

Action: None.

ONLY_AGENT Exit Routine

124 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

2C
(44)
ATRX_HM

Meaning: The exit routine detected a
heuristic mix for the UR.

RRS records this exception in logrec. RRS
returns to the application.

Action: None.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the exit routine calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

PRE_PREPARE exit routine
The PRE-PREPARE exit routine receives control after either of the following events
occurs:
v An application requests commit (calls the Commit_UR service, or the

Application_Commit_UR service, or the End_Transaction service).
v A resource manager that has:

– Taken SDSRM role calls the Prepare_Agent_UR service or the
Degegate_Commit_Agent_UR service.

– Called the End_Context service.

If a resource manager has both PRE-PREPARE and STATE_CHECK exits,
PRE_PREPARE exit gets control before the STATE_CHECK exit.

Processing
The PRE_PREPARE exit routine should perform any processing the resource
manager requires prior to proceeding with the commit request.

Restrictions
The PRE_PREPARE exit routine will not be re-driven if the STATE_CHECK exit
cause the transaction to transition back to in-flight.

Unique Parameters
exit_number

Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:
v Hexadecimal B
v Decimal 11
v Equate symbol ATR_PRE_PREPARE_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flags are meaningful;

ONLY_AGENT Exit Routine

Chapter 4. Using resource recovery services 125

Bit Meaning, if Bit is On

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

11 The UR being processed is a cascaded UR.

Return codes
When the PRE_PREPARE exit routine returns control to RRS, the routine must
provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The exit routine has completed its
required processing, and now it's ready to
proceed with the commit request.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The exit routine determined that
the resources are ready for a commit. RRS
continues commit processing for the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post-Deferred_UR_Exit Service to give the
return code to RRS.

Action: None.

PREPARE exit routine
The PREPARE exit routine receives control when the UR state is in-prepare,
meaning that either (1) the application requested a commit or (2) a resource
manager that has taken the SDSRM role called the Prepare_Agent_UR service. In
either case, the routine indicates, through a return code, how the commit is to
proceed.

As with all exit routines, there is no way to predict the order in which RRS
invokes the PREPARE exit routines for the UR when multiple resource managers
have interests in a UR. Once RRS has invoked all the PREPARE exit routines for
the UR, it uses their return codes to determine the overall vote on the requested
commit. See “Vote collection” on page 63 for information about how RRS uses the
return codes.

PRE_PREPARE Exit

126 z/OS V2R1.0 MVS Programming: Resource Recovery

In distributed processing, the PREPARE exit routine of a resource manager on an
agent system can return an ABSTAIN return code to keep from influencing the
overall prepare vote. If all other PREPARE exit routines on the agent system also
return FORGET or ABSTAIN, then the distributed syncpoint resource manager for
the agent system can return FORGET to the system initiating the work request.
This action prevents an unintended commit, when the other resource managers
have indicated that a commit is not necessary.

Processing
The PREPARE exit routine determines if the resource manager can commit the UR
and votes, or reports its findings, in the return code. Processing in the routine
should consist of:
1. The routine should check to see if the resources are to be changed.

If not, such as for a read only request, the routine should release locks on all
resources involved and return an ATRX_FORGET return code. RRS will not
invoke any more resource manager exit routines for this interest in the UR.

2. If resource are to be changed, the routine hardens the undo and redo change
records, which the resource manager wrote when the change was requested, by
writing the records on nonvolatile external storage that can be accessed during
restart after a failure. The routine returns an ATRX_OK return code.
For all the possible return codes, see “Return codes” on page 128.

3. If the resource manager requires persistent interest data in its own log to
recover during restart, the routine must harden the persistent interest data.

Note: For distributed processing, the resource manager can specify in a call to the
Set_Syncpoint_Controls service the return code for the PREPARE exit routine. In
this case, RRS does not invoke the routine.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
2

Decimal
2

Equate symbol
ATR_PREPARE_EXIT

PREPARE Exit Routine

Chapter 4. Using resource recovery services 127

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flag is meaningful; the others are set to zero.

Bit Meaning, if Bit is On

1 The context is ending. Therefore RRS issued an implicit commit or
backout for the UR. There cannot be any more new URs for this
context.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define each field as a 4-byte integer.

Return codes
When the PREPARE exit routine returns control to RRS, the routine must provide a
hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager votes to
commit the UR. If the resource manager
requires persistent interest data to recover
during restart, the resource manager must
write the data in its log before returning
with this return code. RRS continues
collecting prepare votes.
Note: This code is a YES vote.

Action: None.

8
(8)
ATRX_BACKOUT

Meaning: The resource manager votes to
back out the UR. If, to recover during
restart, the resource manager requires
persistent interest data not logged by RRS,
the resource manager must write the data in
its own log before returning with this return
code. RRS backs out the UR by invoking the
BACKOUT exit routines for all resource
managers currently interested in the UR.
Note: This code is a NO vote.

Action: None.

PREPARE Exit Routine

128 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

C
(12)
ATRX_BACKOUT_OUTCOME_

PENDING

Meaning: The resource manager votes to
back out the UR. If the resource manager
requires persistent interest data to recover
during restart, the resource manager must
write the data in its log before returning
with this return code. However, all updates
are not necessarily complete. RRS backs out
the UR by invoking the BACKOUT exit
routines for all resource managers currently
interested in the UR.

RRS records this exception in logrec.
Note: This code is a NO vote.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The resource manager agrees with
the commit of the UR. The resource manager
no longer has an interest in this UR.

RRS deletes this interest in the UR. RRS does
not invoke any subsequent exit routines for
this interest in the UR. RRS continues
collecting prepare votes.
Note: This code is effectively a YES vote.

Action: None.

14
(20)
ATRX_ABSTAIN

Meaning: The resource manager concurs
with the prepare vote by the other exit
routines for the interest in the UR. The
resource manager continues to be interested
in the UR.

RRS continues collecting prepare votes.

Unless the resource manager has taken the
SDSRM role, IBM recommends that any
resource manager that votes ABSTAIN
should also provide an END_UR exit
routine. RRS uses exit flag 5 to tell the
END_UR exit routine if the overall prepare
vote is FORGET.
Note: This code is effectively a YES vote.

Action: None.

PREPARE Exit Routine

Chapter 4. Using resource recovery services 129

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

24
(36)
ATRX_HC

Meaning: The resource manager detects a
heuristic commit for the UR. Resources have
already been changed.

RRS records this exception in logrec. RRS
continues collecting prepare votes. RRS
notifies the resource manager of the overall
decision for the UR by invoking its
COMMIT or BACKOUT exit routine.
Note: This code is effectively a YES vote.

Action: None.

28
(40)
ATRX_HR

Meaning: The resource manager made a
heuristic reset decision for the UR. Resources
have already been backed out.

RRS records this exception in logrec. RRS
backs out the UR by invoking the
BACKOUT exit routines for all resource
managers currently interested in the UR.
Note: This code is a NO vote.

Action: None.

2C
(44)
ATRX_HM

Meaning: The resource manager detects a
heuristic mix for the UR. That is, some
resources have been committed and some
have been backed out.

RRS records this exception in logrec. RRS
backs out the UR by invoking the
BACKOUT exit routines for all resource
managers currently interested in the UR.
Note: This code is a NO vote.

Action: None.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time. The
exit routine does the PREPARE processing
asynchronously.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

STATE_CHECK exit routine
The STATE_CHECK exit routine receives control after either of the following
events occurs:
v An application requests commit (calls the Commit_UR service, or the

Application_Commit_UR service).

PREPARE Exit Routine

130 z/OS V2R1.0 MVS Programming: Resource Recovery

v A resource manager that has taken the SDSRM role calls the Prepare_Agent_UR
service.

The resource manager can then verify the state of its resources.

If a resource manager has both an ONLY-AGENT and a STATE_CHECK exit
routine, STATE_CHECK gets control before ONLY_AGENT.

Processing
The STATE_CHECK exit routine should check that the state of the resource
manager's resources permits the resource manager to proceed with the commit
request. This exit routine can be used for distributed resources, typically to check
the states of protected conversations.

The STATE_CHECK exit routine might find that the resources are not in a state to
proceed with a commit; for example, one protected conversation is in send state,
but another is in receive state. In this case, the routine can change the state of one
of the resources and pass an ATRX_REDRIVE return code. In response, RRS
invokes all the STATE_CHECK exit routines again.

Note: RRS performs a maximum of N redrives, where N is the number of UR
interests with STATE_CHECK exit routines. RRS treats any ATRX_REDRIVE return
code as an error if the redrive limit has been exceeded.

RRS invokes the STATE_CHECK exit routines in any order. If any exit routine
changes the state of the resources and the change might affect another resource
manager, the exit manager should specify the ATRX_REDRIVE return code, which
causes RRS to invoke all STATE_CHECK exit routines again.

Alternatively, if a resource is not in a state to proceed, RRS can return the
RR_PROGRAM_STATE_CHECK return code for the Application_Commit_UR call
or the Prepare_Agent_UR call. In response, the application should initiate resource
manager actions that will make the resource manager able to accept the commit
when the application issues it again.

If a STATE_CHECK exit driven for a cascaded UR returns
ATRX_STATE_INCORRECT, RRS will back out the UR's entire cascaded UR family
and return RR_BACKED_OUT to the application.

Restrictions
Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

STATE_CHECK Exit Routine

Chapter 4. Using resource recovery services 131

Hexadecimal
1

Decimal
1

Equate symbol
ATR_STATE_CHECK_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. The following
flag is meaningful; the others are set to zero.

Bit Meaning, if Bit is On

7 For the UR, the STATE_CHECK exit routine returned an
ATRX_REDRIVE code. However, because the redrive limit has been
reached for the UR, the return code is not valid.

10 The ATRSROI callable service should not be issued.

11 The UR being processed is a cascaded UR.

value1
value2
value3
value4
value5

Point to fields that contain binary zeros. Define the field as a 4-byte integer.

Return codes
When the STATE_CHECK exit routine returns control to RRS, the routine must
provide a hexadecimal return code in the return_code parameter.

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The exit routine determined that
the resources are ready for a commit. RRS
continues commit processing for the UR.

Action: None.

10
(16)
ATRX_FORGET

Meaning: The exit routine determined that
the resources are ready for a commit. RRS
continues commit processing for the UR.

The resource manager no longer has an
interest in this UR. RRS deletes this interest
in the UR. RRS does not invoke any
subsequent exit routines for this interest in
the UR.

Action: None.

STATE_CHECK Exit Routine

132 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

1C
(28)
ATRX_REDRIVE

Meaning: The exit routine determined that
RRS should invoke the STATE_CHECK exit
routines again.

This return code should be used by the
STATE_CHECK exit routine of a resource
manager that changes the state of a resource
when the change might affect other resource
managers. For example, a conversation
resource manager can change the
conversation state.

In response, RRS invokes all STATE_CHECK
exit routines again for this UR. In this way,
the resource manager making the change
can ensure that all resource managers will
see the changed state of the resource.

Action: None.

20
(32)
ATRX_STATE_INCORRECT

Meaning: The exit routine determined that
the resources are not ready for a commit.

This return code does not mean that the UR
should be backed out. Rather, it means that
the resource manager is not ready to
perform commit processing.

In response, RRS stops invoking exit
routines. When all of the running
STATE_CHECK exit routines have
completed, RRS returns to the application
with a STATE_CHECK return code unless
the UR is cascaded. For a cascaded UR, RRS
backs out the UR's entire cascaded UR
family and returns RR_BACKED_OUT to the
application.

Action: None.

30
(48)
ATRX_LATER

Meaning: The resource manager will
provide a return code at a later time.

Later, the resource manager calls the
Post_Deferred_UR_Exit service to give the
return code to RRS.

Action: None.

SUBORDINATE_FAILED exit routine
The SUBORDINATE_FAILED exit routine receives control for a sysplex cascade
top-level UR when RRS or any resource manager on a subordinate system fails, the
subordinate system itself terminates, or the context associated with the subordinate
UR abnormally terminates.. The UR state is in-flight. In addition to marking the

STATE_CHECK Exit Routine

Chapter 4. Using resource recovery services 133

top-level UR of the sysplex cascaded transaction backout required, RRS will, if
requested, invoke this exit to inform the top-level resource manager about the
failure.

Subordinate Failed Exits will not be driven if Pre_Prepare processing detects the
failure first. In this case, Pre_Prepare will set the transaction to BackOut before
starting the syncpoint.

Processing
The SUBORDINATE_FAILED exit routine should return an ATRX_OK return code.
RRS takes no action against the UR.

Restrictions
RRS does not invoke this exit for a resource manager who has expressed interest in
a cascaded UR.

Do not call the following service to process the UR passed to the exit routine in the
ur_interest_token parameter:

Forget_Agent_UR_Interest

Do not call any of the following services to process the context associated with the
UR passed to the exit routine in the ur_interest_token parameter:

End_Context
Express_Context_Interest
Switch_Context

Unique parameters
For information about common parameters, see “Parameter list” on page 100.

exit_number
Points to a field that contains the exit number. Define the field as a 4-byte
integer. The exit number is:

Hexadecimal
A

Decimal
10

Equate symbol
ATR_SUBORDINATE_FAILED_EXIT

exit_flags
Points to a field of exit flags. Define the field as a 4-byte integer. All flags are
set to zero.

value1
value2
value3
value4
value5

Points to a field that contains binary zeros. Define the field as a 4-byte integer.

Return codes
When the SUBORDINATE_FAILED exit routine returns control to RRS, the routine
must provide a hexadecimal return code in the return_code parameter.

SUBORDINATE_FAILED Exit Routine

134 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
(Decimal)
Equate Symbol Meaning and action

0
(0)
ATRX_OK

Meaning: The resource manager
acknowledged the notification about the
subordinate failure.

Action: None.

RRS version information
RRS supports the use of the IEFSSREQ macro interface function code 54 to obtain
information about the RRS subsystem. RRS fills the following SSVI fields:

Field Contents

SSVIRLEN X'0050'

SSVIRVER X'01'

SSVIFLEN X'0030'

SSVIVERS Value in CVTPRODN (for example, SP 6.0.3)

SSVIFMID Value in CVTPRODI (for example, HBB6603)

SSVICNAM RRS

SSVIUDOF X'00000000'

SSVISDOF X'00000030'

SSVIVLEN X'001E'

SSVIVDAT ,RRS_COMMAND_PREFIX='SETRRS '

For details about the IEFSSREQ macro interface, see z/OS MVS Using the Subsystem
Interface.

SUBORDINATE_FAILED Exit Routine

Chapter 4. Using resource recovery services 135

136 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 5. Callable registration services

This section describes the callable services that an authorized resource manager can
use to request work registration services. The chapter presents the callable services
in alphabetical order by descriptive name.

Register_Resource_Manager (CRGGRM, CRG4GRM)
v CRGGRM is for AMODE(31) callers.
v CRG4GRM is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Register_Resource_Manager service (CRGGRM) to
register itself with the system. In response to the call, the system returns:
v A return code
v The resource manager token (RM_TOKEN)

A resource manager needs to register before it can issue the required calls to the
Set_Exit_Information service to identify itself and its exit routines with exit
managers. Note also that the exit routines the resource manager sets are invoked in
the same key as the resource manager at the time it calls Set_Exit_Information.

Resource Manager Token: The resource manager token is a random value that is
not preserved across restarts of the system, exit manager, or resource manager.
Thus:
v Do not use the resource manager token as an identifier in resource manager log

records.
v Do not try to discern the contents of the token or create any dependencies on

the contents.

You need this token for calls to the following services: Begin_Context,
Begin_Restart, End_Restart, Express_Context_Interest, Express_UR_Interest,
Retrieve_UR_Interest, Retrieve_Log_Name, Set_Exit_Information, Set_Log_Name,
and Unregister_Resource_Manager.

Resource Manager Global Data: Your resource manager can specify global data in
the call to the Register_Resource_Manager service. Exit managers obtain the
resource manager's global data from the system and pass this global data to all of
the resource manager's exit routines. This data should provide the exit routines
with an anchor or anchors to resource manager data structures.

A resource manager cannot change this data without unregistering and then
registering again. Therefore, it is a good idea to use the data to identify data
structures that the resource manager can modify rather than passing the contents
of the structures.

The global data can be retrieved by a call to the Retrieve_Resource_Manager_Data
service.

© Copyright IBM Corp. 1997, 2013 137

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: If PKM 8–15 problem state, PASN=HASN=SASN; otherwise,

any PASN, any HASN, any SASN
AMODE:

31 bit (CRGGRM)
64 bit (CRG4GRM)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine CRGCSS (31 bit) or
CRG4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the service. The high
level language (HLL) definitions for the callable service are:

HLL Definition Description
CRGASM 390 Assembler declarations
CRGC C/390 declarations

Restrictions

To call the service, the resource manager state must be unregistered. After a
successful call, the resource manager state is registered.

Resource managers with a PKM allowing PSW key 0–7 or supervisor state must
have a PSW key of 0–7 when invoking this service. Resource managers that are
PKM 8–15 problem state may not specify CRG_UNREG_EOM for unregister_option.

PKM 8–15 problem state RMs must specify a resource manager name that ends in
.UA, followed by enough trailing blanks to make the entire name 32 bytes long.

By default, a single address space may register a maximum of 256 PKM 8–15
problem state resource managers. This limit may be removed by the operator.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

Register_Resource_Manager

138 z/OS V2R1.0 MVS Programming: Resource Recovery

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CRGGRM
(return_code
,resource_manager_name
,resource_manager_token
,unregister_option
,resource_manager_global_data)

CALL CRG4GRM
(return_code
,resource_manager_name
,resource_manager_token
,unregister_option
,resource_manager_global_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Register_Resource_Manager

Chapter 5. Callable registration services 139

Contains the return code from the Register_Resource_Manager service.

,resource_manager_name
Supplied parameter
v Type: Character string
v Character Set: See note
v Length: 32 bytes

Specifies the name of the resource manager making the call. For RRS, the name
must be unique across a sysplex. For context services, the name must be
unique within a system. In either case, the resource manager must use the
same name each time it registers.

PKM 8–15 problem state resource managers must specify a resource manager
name that ends with the characters .UA and trailing blanks (if they are needed).
For example, IEA.GENERAL.SERVER.IBM.UA would be a valid value.

Note: The name can consist of the following printable characters:
v Alphanumeric characters: A-Z and 0-9
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C')
v The period (.)
v The underscore (_)
v The trailing blank characters needed to fill the 32-byte field

The name may not start with a blank or contain embedded blanks. Lower case
characters are folded to upper case characters.

Use the following conventions to avoid name conflicts:
v IBM-provided PKM 0–7 or supervisor state programs use A-C or G-I as the

first character and .IBM as the ending qualifier.
v IBM-provided PKM 8–15 programs use A-C or G-I as the first character and

.IBM.UA as the ending qualifier.
v Other PKM 0–7 or supervisor state resource managers should begin the

name with D-F or J-Z and end the name with a period and the company
name or acronym.

v Other PKM 8–15 resource managers should begin the name with D-F or J-Z
and end the name with a period and the company name or acronym
followed by .UA as the ending qualifier.

For example, PKM 0–7 or supervisor state names could be:
IEAV5.IBM
DATAMGR.VENDORCORP
RESMANAGER.GROWTHCOMPANY

PKM 8–15 problem state names could be:
IEAV5.IBM.UA
DATAMGR.VENDORCORP.UA
RESMANAGER.GROWTHCOMPANY.UA

The name specified in this call is also used in a call to the
Retrieve_Resource_Manager data service.

,resource_manager_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Register_Resource_Manager

140 z/OS V2R1.0 MVS Programming: Resource Recovery

Receives the resource manager token that uniquely identifies the resource
manager.

If the resource manager name is already registered, the system returns
CRG_RM_NAME_REGISTERED as the return code and returns the token that
is already associated with the resource manager name.

,unregister_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates how the system is to determine that the resource manager is ending
unexpectedly. Specify the event as one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
CRG_UNREG_CMRO

Cross memory resource-owning task ends:
The system monitors for the ending of the
cross memory resource-owning task (the top,
or first, job step task in the address space).
When the task ends, the system implicitly
unregisters the resource manager.

1
(1)
CRG_UNREG_CURRENT

Resource manager, which is the current
task, ends: The system monitors for the
ending of the current task. When it ends, the
system implicitly unregisters the resource
manager.

2
(2)
CRG_UNREG_EOM

The resource manager's address space,
which is the home address space, ends: The
system monitors for the ending of the current
address space. When it ends, the system
implicitly unregisters the resource manager.
Note: This option cannot be used by PKM
8–15 problem state callers.

,resource_manager_global_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the global data for the resource manager. The system passes this data
to all exit routines for the resource manager.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00330000'
or X'00330001'. See z/OS MVS System Codes for the explanations and actions.

Register_Resource_Manager

Chapter 5. Callable registration services 141

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CRG_OK

Meaning: Successful completion.

Action: None.

103
CRG_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
CRG_MODE_INV

Meaning: Program error. The resource
manager is not in task mode. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CRG_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CRG_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

108
CRG_KEY_INV

Meaning: Program error. The resource
manager is in supervisor state, but in an
unauthorized key (8-F). The system rejects
the service call because it could cause a
system integrity exposure.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Register_Resource_Manager

142 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

10A
CRG_XMEM_INV

Meaning: Environment error. The resource
manager is PKM 8–15 problem state, but not
PASN=HASN=SASN. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

300
CRG_RM_NAME_INV

Meaning: Program error. The resource
manager name specified in the call is
incorrect. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

302
CRG_UNREGOPT_INV

Meaning: Program error. The
unregister_option value specified in the call is
not valid, possibly because a PKM 8–15
problem state resource manager used the
CRG_UNREG_EOM option. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

700
CRG_RM_NAME_REGISTERED

Meaning: Program error. The resource
manager is already registered.

The system rejects the service call. However,
the system returns the resource manager
token in the resource_manager_token field.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
CRG_MAX_RM_EXCEEDED

Meaning: Environment error. There are
already 256 PKM 8–15 problem state
resource managers registered in the current
home address space. The system rejects the
service call.

Action: Either allow additional resource
managers or change your program so less
than 256 resource managers are required.

FFF
CRG_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Register_Resource_Manager

Chapter 5. Callable registration services 143

Example

In the pseudocode example, the resource manager issues a call to register. To
indicate if the system needs to implicitly unregister the resource manager, the call
requests that the system monitor for the ending of the current task.
...
RM_NAME = MY_RM_NAME
RM_GL_DATA = MY_GLOBAL_DATA
UNREG_OPT = CRG_UNREG_CURRENT
CALL CRGGRM(RC,RM_NAME,RM_TOKEN,

UNREG_OPT,RM_GL_DATA)
IF RC = CRG_OK THEN

MY_RM_TOKEN = RM_TOKEN...

Retrieve_Resource_Manager_Data (CRGRRMD, CRG4RRMD)
v CRGRRMD is for AMODE(31) callers.
v CRG4RRMD is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Retrieve_Resource_Manager_Data service to obtain
the global data related to a specified resource manager. In response to the call, the
system returns:
v A return code
v The resource manager token
v The resource manager global data, which was specified in a call to the

Register_Resource_Manager service

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CRGRRMD)
64 bit (CRG4RRMD

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.
Linkage: Uses standard MVS linkage conventions.

Programming requirements

Either link edit your object code with the linkable stub routine CRGCSS (31 bit) or
CRG4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the service. The high
level language (HLL) definitions for the callable service are:

HLL Definition Description
CRGASM 390 Assembler declarations
CRGC C/390 declarations

Register_Resource_Manager

144 z/OS V2R1.0 MVS Programming: Resource Recovery

Restrictions

The state of the resource manager associated with the specified resource manager
name must be registered.

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They must specify a resource manager token of a key 8–15 problem
state resource manager that registered from the home address space. Some exit
managers may not permit unauthorized resource managers to set exits.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

Retrieve_Resource_Manager_Data

Chapter 5. Callable registration services 145

CALL CRGRRMD
(return_code
,resource_manager_name
,resource_manager_token
,resource_manager_global_data)

CALL CRG4RRMD
(return_code
,resource_manager_name
,resource_manager_token
,resource_manager_global_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Resource_Manager_Data service.

,resource_manager_name
Supplied parameter
v Type: Character string
v Character Set: See note
v Length: 32 bytes

Specifies the name of the resource manager making the call. The name must
match the name specified on a call to the Register_Resource_Manager service.

Note: The name can consist of the following printable characters:
v Alphanumeric characters: A-Z and 0-9.
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C').
v The period (.).
v The underscore (_).
v The trailing blank characters needed to fill the 32-byte field.

The name may not start with a blank or contain embedded blanks. Lower case
characters are folded to upper case characters.

,resource_manager_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Retrieve_Resource_Manager_Data

146 z/OS V2R1.0 MVS Programming: Resource Recovery

Receives the resource manager token that uniquely identifies the resource
manager. The token was assigned when the resource manager called the
Register_Resource_Manager service.

,resource_manager_global_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the global data the resource manager provided when it registered.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00350000'
or X'00350001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CRG_OK

Meaning: Successful completion.

Action: None.

103
CRG_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CRG_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CRG_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

Retrieve_Resource_Manager_Data

Chapter 5. Callable registration services 147

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

300
CRG_RM_NAME_INV

Meaning: Program error. The resource
manager name specified in the call is
incorrect. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
CRG_RM_STATE_ERROR

Meaning: Program error. The resource
manager is not in a valid state to issue the
service call. The resource manager state
must be registered. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

756
CRG_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a resource manager token that does
not belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

FFF
CRG_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve its global
data. Storage for the call parameters has been allocated.
...
RM_TOKEN = MY_RM_TOKEN
CALL CRGRRMD(RC,RM_NAME,RM_TOKEN,RM_DATA)...

Set_Exit_Information (CRGSEIF, CRGSEIF1,CRG4SEIF)
v CRGSEIF is for AMODE(31) callers.
v CRGSEIF1 is for AMODE(31) callers and also supports the LX reuse facility.
v CRG4SEIF is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and also supports the LX reuse facility.

Retrieve_Resource_Manager_Data

148 z/OS V2R1.0 MVS Programming: Resource Recovery

A resource manager calls the Set_Exit_Information service to notify a specific exit
manager of its intent to work with that exit manager, and to identify the entry
points for the exit routines, if any, to be driven by that specific exit manager.
Supported exit managers include:
v Context services
v Resource recovery services/MVS (RRS)

In response to the call, the system returns a return code.

When the resource manager calls the Set_Exit_Information service, all exit routines
specified must be ready to receive control; the exit routines might be driven even
before control returns from the call.

Following a successful call to the Set_Exit_Information service, the resource
manager is considered to be set with the specified exit manager. The call to
Set_Exit_Information is required; your resource manager can, however, issue the
call without specifying any exit routines, if the exit manager requires no exit
routines, and your resource manager has no exit routines. In this case, specify
binary zero in the exit_count parameter. If you do not want to set a
NOTIFICATION exit routine with registration services, code a binary zero (0) in
the notification_exit_type parameter.

A PKM 8–15 problem state resource manager cannot set a NOTIFICATION exit
routine. A PKM 8–15 problem state resource manager must specify binary zero (0)
in the notification_exit_type parameter.

Specifying the Call: A resource manager must issue a call to the
Set_Exit_Information service before an exit manager can invoke any of the resource
manager's exit routines. The resource manager should call Set_Exit_Information
one or more times after its call to the Register_Resource_Manager service. Each call
specifies one exit manager and its exit routines. All exit routines required by an
exit manager must be specified on the first call for the exit manager. The required
exit routines are:
v For context services: None
v For RRS: BACKOUT, COMMIT, PREPARE, and EXIT_FAILED

Note: Context services supports PKM 8–15 problem state resource managers, but
RRS does not.
Subsequent calls for an exit manager can replace exit information, and can add and
delete optional exit routines, but cannot delete a required exit routine.

Note: A resource manager can bypass the required RRS BACKOUT, COMMIT, and
PREPARE exit routines by specifying their return codes in a call to the
Set_Syncpoint_Controls service. This process is called prevoting.

Notification Exit Routine: Like a resource manager, each exit manager must
register with the system. If the exit manager specified in a Set_Exit_Information
call is not registered, the system returns CRG_EM_STATE_ERROR as the return code. If
and when the exit manager registers, the system gives control to the
NOTIFICATION exit routine, if provided; and the routine can call the
Set_Exit_Information service again.

The NOTIFICATION exit routine, if provided, also gets control when an exit
manager unregisters or has its exits unset. Note that some exit managers, such as
context services, are always available and never unregister.

Set_Exit_Information

Chapter 5. Callable registration services 149

Parameter Array for Exit Routines: To set more than one exit routine in a call,
specify each of the following parameters as a 1-dimensional array: exit_number,
exit_entry, and exit_type. The first position in each parameter array specifies the
first exit routine, the second position specifies the second exit routine, and so on.
The exit_count indicates the number of exit routines and, thus, the number of
positions in each array.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CRGSEIF)
31 bit (CRGSEIF1)
64 bit (CRG4SEIF)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Link edit your object code with the linkable stub routine CRGCSS (31 bit) or
CRG4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the service. The high
level language (HLL) definitions for the callable service are:

HLL definition Description
CRGASM 390 Assembler declarations
CRGC C/390 declarations

Restrictions

The state of the resource manager associated with the specified resource manager
token must be registered. After a successful call, the resource manager state is set,
which means it has set its exits with the exit manager specified in the call.

The resource manager can specify an exit entry, then later alter it. Make such a
change very carefully because exit routines could be currently running.

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They must specify a resource manager token of a key 8–15 problem
state resource manager that registered from the home address space.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Set_Exit_Information

150 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CRGSEIF
(return_code
,resource_manager_token
,notification_exit_type
,notification_exit_entry
,exit_manager_name
,exit_count
,exit_number
,exit_entry
,exit_type
,variable_data_1
,variable_data_2
,variable_data_3)

Set_Exit_Information

Chapter 5. Callable registration services 151

CALL CRGSEIF1
(return_code
,resource_manager_token
,notification_exit_type
,notification_exit_entry8
,exit_manager_name
,exit_count
,exit_number
,exit_entry8
,exit_type
,variable_data_1
,variable_data_2
,variable_data_3)

CALL CRG4SEIF
(return_code
,resource_manager_token
,notification_exit_type
,notification_exit_entry64
,exit_manager_name
,exit_count
,exit_number
,exit_entry64
,exit_type
,variable_data_1

,variable_data_3)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_Exit_Information service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,notification_exit_type
Supplied parameter
v Type: Integer
v Length: 4 bytes

Set_Exit_Information

152 z/OS V2R1.0 MVS Programming: Resource Recovery

Indicates the type of NOTIFICATION exit routine, based on how the system is
to give the routine control if the exit manager registers or unregisters after this
call, or unsets the resource manager's exits. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
CRG_EXIT_TYPE_NONE

No routine: When the exit manager registers
or unregisters, the system does not give
control to a NOTIFICATION exit routine. The
system ignores the notification_exit_entry field
in the call.
Note: This is the only Notification exit type
supported for PKM 8–15 problem state
resource managers.

1
(1)
CRG_EXIT_TYPE_SRB

SRB: When the exit manager registers or
unregisters, or has its exits unset, the system
schedules an SRB in the resource manager's
address space to give control to the
NOTIFICATION exit routine. The primary
address space when the resource manager
registers is the resource manager's address
space.
Note: This exit type is not supported for
PKM 8–15 problem state resource managers.

2
(2)
CRG_EXIT_TYPE_PC

Program Call (PC): When the exit manager
registers or unregisters, or has its exits unset,
the system issues a PC instruction to give
control to the NOTIFICATION exit routine.
The primary address space when the
resource manager registers is the resource
manager's address space.
Note: This exit type is not supported for
PKM 8–15 problem state resource managers.

3
(3)
CRG_EXIT_TYPE_PCS

Program Call (PC): When the exit manager
registers or unregisters, or has its exits unset
, the system issues a PC instruction to give
control to the NOTIFICATION exit routine.
The exit routine is defined through a PC
number with a sequence number. The
primary address space when the resource
manager registers is the resource manager's
address space.
Note:

1. This exit type is not supported for PKM
8-15 problem state resource managers.

2. This exit type is only valid with
CRGSEIF1 and CRG4SEIF.

,notification_exit_entry
Supplied parameter
v Character Set: N/A
v Length: 4 bytes

Specifies the entry point for the NOTIFICATION exit routine, as follows:

Set_Exit_Information

Chapter 5. Callable registration services 153

v The address of the routine

If you coded CRG_EXIT_TYPE_NONE on the notification_exit_type parameter,
the system ignores this parameter, but you might code a binary zero to indicate
no exit routine here as well.

,notification_exit_entry8
Supplied parameter
v Character Set: N/A
v Length: 8 bytes

Specifies the entry point for the NOTIFICATION exit routine, as follows:

If you coded CRG_EXIT_TYPE_NONE on the notification_exit_type parameter,
the system ignores this parameter, but you might code binary zeros to indicate
no exit routine here as well.

If you coded CTX_EXIT_TYPE_SRB on the exit_type parameter, the high order
word should be binary zeros, the low order word is the address of the SRB
routine.

If you coded CRG_EXIT_TYPE_PC on the notification_exit_type parameter, the
high word must contain binary zeros.

If you coded CRG_EXIT_TYPE_PCS on the notification_exit_type parameter,
the high word must contain the sequence number.

,notification_exit_entry64
Supplied parameter
v Character Set: N/A
v Length: 8 bytes

Specifies the entry point for the NOTIFICATION exit routine, as follows:

If you coded CRG_EXIT_TYPE_NONE on the notification_exit_type parameter,
the system ignores this parameter, but you might code binary zeros to indicate
no exit routine here as well.

If you coded CTX_EXIT_TYPE_SRB on the exit_type parameter, the high order
word should be binary zeros, the low order word is the address of the SRB
routine.

If you coded CRG_EXIT_TYPE_PC on the notification_exit_type parameter, the
high word must contain binary zeros.

If you coded CRG_EXIT_TYPE_PCS on the notification_exit_type parameter,
the high word must contain the sequence number.

,exit_manager_name
Supplied parameter
v Type: Character string
v Character Set: See note
v Length: 16 bytes

Specifies the name of the resource manager that is functioning as an exit
manager and that is being informed of the exit routines. If a resource manager
sets exits with RRS, its name is preserved across restarts of the system or
restarts of RRS.

The names of the IBM-provided exit managers are:
v Context services: CTX.EXITMGR.IBM
v Registration services: CRG.REGSERV.IBM

Set_Exit_Information

154 z/OS V2R1.0 MVS Programming: Resource Recovery

Note: While CRG.REGSERV.IBM is an exit manager, you cannot set exits using
CRGSEIF. You can only set exits for registration services with CRGGRM.

v RRS: ATR.EXITMGR.IBM

,exit_count
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies, in hexadecimal, the number of exit routines defined in the call. The
maximum count is the total number of exits for the exit manager:
v For context services: 5
v For registration services: 1
v For RRS: 10

When the call specifies more than one exit routine, the count indicates the
number of positions in the array for each of the following parameters:
exit_number, exit_entry, and exit_type.

When the call does not define any exit routines, specify binary zeros in the
exit_count parameter.

Context services does not support any exit types for PKM 8–15 problem state
resource managers. A PKM 8–15 problem state resource manager must specify
binary zero (0) in the exit_count parameter when setting exits with context
services.

,exit_number
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the exit number assigned to the exit by the exit manager. When the
call specifies more than one exit routine, the numbers are the first row of the
array.

If the call does not specify any exit routines in the exit_count and associated
parameters, specify binary zeros in the exit_number parameter.

For context services, the exit routines and the numbers assigned by the exit
manager are:

Exit

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol

EXIT_FAILED
1
(1)
CTX_EXIT_FAILED_EXIT

CONTEXT_SWITCH
2
(2)
CTX_SWITCH_EXIT

Set_Exit_Information

Chapter 5. Callable registration services 155

Exit

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol

PVT_CONTEXT_OWNER
3
(3)
CTX_PRIVATE_CONTEXT_OWNER

END_CONTEXT
4
(4)
CTX_END_CONTEXT_EXIT

EOM_CONTEXT
5
(5)
CTX_EOM_CONTEXT_EXIT

For RRS, the exit routines and the numbers assigned by the exit manager are:

Exit

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol

STATE_CHECK
1
(1)
ATR_STATE_CHECK_EXIT

PREPARE
2
(2)
ATR_PREPARE_EXIT

DISTRIBUTED_SYNCPOINT
3
(3)
ATR_DISTRIBUTED_SYNCPOINT_EXIT

COMMIT
4
(4)
ATR_COMMIT_EXIT

BACKOUT
5
(5)
ATR_BACKOUT_EXIT

END_UR
6
(6)
ATR_END_UR_EXIT

EXIT_FAILED
7
(7)
ATR_EXIT_FAILED_EXIT

Set_Exit_Information

156 z/OS V2R1.0 MVS Programming: Resource Recovery

Exit

Exit Number in:
Hexadecimal
(Decimal)
Equate Symbol

COMPLETION
8
(8)
ATR_COMPLETION_EXIT

ONLY_AGENT
9
(9)
ATR_ONLY_AGENT_EXIT

SUBORDINATE_FAILED
A
(10)
ATR_SUBORDINATE_FAILED_EXIT

PRE_PREPARE
B
(11)
ATR_PRE_PREPARE_EXIT

,exit_entry
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the entry point for an exit routine, as follows:
v The address of the routine
v Binary zeros, to indicate no exit routine

When the call specifies more than one exit routine, code the parameters as a
1-dimensional array.

Do not specify zero for a required exit routine.

If zero is specified, the exit is not set. If a subsequent Set_Exit_Information call
specifies zero for an exit that was previously set, the exit routine is deleted
from the list of exit routines for this resource manager. However, if the
previously set exit routine is required, the system does not delete the exit
routine and continues to use the previously specified address or PC number.

,exit_entry8
Supplied parameter
v Type: Integer
v Length: 8 bytes

Specifies the entry point for an exit routine, as follows:

When the call specifies more than one exit routine, code the parameters as a
1-dimensional array.

Do not specify zero for a required exit routine. If an exit address is specified,
the system only supports a padded 31-bit address.

If you coded CTX_EXIT_TYPE_SRB on the exit_type parameter, the high order
word should be binary zeros, the low order word is the address of the SRB
routine.

Set_Exit_Information

Chapter 5. Callable registration services 157

If you coded CTX_EXIT_TYPE_PC or ATR_EXIT_TYPE_PC on the exit_type
parameter, the high word must contain zeros.

If you coded CTX_EXIT_TYPE_PCS or ATR_EXIT_TYPE_PCS on the exit_type
parameter, the high word must contain the sequence number.

If zero is specified, the exit is not set. If a subsequent Set_Exit_Information call
specifies zero for an exit that was previously set, the exit routine is deleted
from the list of exit routines for this resource manager. However, if the
previously set exit routine is required, the system does not delete the exit
routine and continues to use the previously specified address or PC number.

,exit_entry64
Supplied parameter
v Type: Integer
v Length: 8 bytes

Specifies the entry point for an exit routine, as follows:

When the call specifies more than one exit routine, code the parameters as a
1-dimensional array.

Do not specify zero for a required exit routine. If an exit address is specified,
the system only supports a padded 64-bit address.

If you coded CTX_EXIT_TYPE_SRB on the exit_type parameter, the high order
word should be binary zeros, the low order word is the address of the SRB
routine.

If you coded CTX_EXIT_TYPE_PC or ATR_EXIT_TYPE_PC on the exit_type
parameter, the high word must contain zeros.

If you coded CTX_EXIT_TYPE_PCS or ATR_EXIT_TYPE_PCS on the exit_type
parameter, the high word must contain the sequence number.

If zero is specified, the exit is not set. If a subsequent Set_Exit_Information call
specifies zero for an exit that was previously set, the exit routine is deleted
from the list of exit routines for this resource manager. However, if the
previously set exit routine is required, the system does not delete the exit
routine and continues to use the previously specified address or PC number.

,exit_type
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the type of exit routine, based on how the system is to give the
routine control. When the call specifies more than one exit routine, code the
parameters as a 1-dimensional array.

If the exit_entry value is zero, the system ignores the exit_type value; you can
specify binary zeros as the exit_type value.

The exit types are defined by each exit manager.

For context services, the exit types valid for PKM 0–7 or supervisor state
resource managers are:

Set_Exit_Information

158 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
CTX_EXIT_TYPE_SRB

SRB: The system schedules an SRB in the
resource manager's address space to give
control to the exit routine.

2
(2)
CTX_EXIT_TYPE_PC

Program call (PC): The system issues a PC
instruction to give control to the exit routine.

3
(3)
CTX_EXIT_TYPE_PCS

Program call (PC): The system issues a PC
instruction to give control to the exit routine
which is defined through a PC number with
a sequence number.

Note: Context services does not support any exit types for PKM 8–15 problem
state resource managers.

For RRS, the exit types valid for PKM 0–7 or supervisor state resource
managers are:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_EXIT_TYPE_SRB

SRB: The system schedules an SRB in the
resource manager's address space to give
control to the exit routine.

2
(2)
ATR_EXIT_TYPE_PC

Program call (PC): The system issues a PC
instruction to give control to the exit routine.

3
(3)
ATR_EXIT_TYPE_PCS

Program call (PC): The system issues a PC
instruction to give control to the exit routine
which is defined through a PC number with
a sequence number.

Note: RRS does not support PKM 8–15 problem state resource managers.

,variable_data_1
Supplied/Returned parameter
v Type: Integer
v Length: 4 bytes

For Context Services, specifies the address of a storage area containing the
name of the RRS resource manager that will assume ownership of
privately-managed contexts when the address space owning the
privately-managed contexts terminates. See “Private context delegation” on
page 53 for a description of private context delegation to RRS.

Set_Exit_Information

Chapter 5. Callable registration services 159

The storage area has the following format:
v A 4–byte data area length
v A 4–byte data area version
v A 32–byte resource manager name. Currently, the only resource manager

that supports private context delegation is RRS. The RRS resource manager
name is: ATR.RESOURCEMANAGER.IBM

Note: The data area length includes the length and version fields, not just the
RM name. For example, this parameter's length is 40 bytes.

When private context delegation is requested, privately-managed contexts are
marked as needing private context delegation when they are created by the
Begin_Context call.

For example:
1. A work manager requests private context delegation.
2. It creates a privately managed context.
3. It turns off private context delegation by calling Set_Exit_Information again,

specifying hexadecimal zeros for variable_data_1.
4. It creates a new privately managed context.

Note: After this sequence of events, the privately-managed context from step 2
will still go through private context delegation if the work manager terminates.
The new privately managed context from step 4 will not go through private
context delegation if the work manager terminates.

For RRS, specifies the address of the prefix required if the resource manager is
to issue a call to the Retrieve_Work_Identifier service and specify that the
service is to generate an LUWID.

The prefix has the following format:
v A 1-byte hexadecimal integer that specifies the length of the prefix.
v The prefix for a unit of work identifier (UWID); the system uses the prefix as

the LU name when generating an LUWID.
The prefix of an LUWID has the following format:

netid.luname

where:

netid.luname
1-17 character identifier of the network and LU, preceded by a
1-byte length field

Exit managers other than Context Services and RRS expect variable_data_1 to
contain binary zeros. If you do not need the UWID prefix or private context
delegation, specify binary zeros.

,variable_data_2
Supplied/Returned parameter
v Type: Integer
v Length: 4 bytes

If the exit manager does not expect any data, specify binary zeros in this
parameter. If the exit manager is RRS (ATR.EXITMGR.IBM), variable_data_2 has
the following format:

Set_Exit_Information

160 z/OS V2R1.0 MVS Programming: Resource Recovery

Byte and Name Meaning

0
ATR_EXIT_OPTION_FLAGS

Flags that control RRS exit processing

1
ATR_RESOURCE_MANAGER_OPTION

_FLAGS

Flags that specify resource manager options
to RRS

2–3
ATR_VARDATA_2_RSRVD_2_3

Reserved for IBM use. You must set these
bytes to 0.

ATR_EXIT_OPTION_FLAGS has the following format:

Bit and Name Meaning

0
ATR_EF_ON_LATER_WITH_ASYNC

RRS is to drive the resource manager's
EXIT_FAILED exit when both of the
following are true:

v An exit responds (or has responded)
ATRX_LATER.

v The dispatchable unit that requested the
syncpoint has abended asynchronously or
was running in an address space that has
been terminated.

1–7
ATR_EXIT_OPTS_RSRVD

Reserved for IBM use. You must set these
bits to 0.

ATR_RESOURCE_MANAGER_OPTION_FLAGS has the following format:

Bit and name Meaning

0
ATR_SUPPORTS_LOCAL_TRAN_MODE

Indicates that the resource manager supports
local transaction mode; RRS can permit this
resource manager to express interest in local
transaction mode URs.

1
ATR_8K_RM_METADATA_REQUESTED

Indicates that the resource manager wants to
be able to set and retrieve up to 8K of RM
Metadata.

2–7
ATR_RM_OPTS_RSRVD

Reserved for IBM use. You must set these
bits to 0.

If ATR_EF_ON_LATER_WITH_ASYNC is not set and an exit responds (or has
responded) ATRX_LATER, RRS will not drive any exit routines but will wait
for Post_Deferred_UR_Exit to supply the deferred response.

,variable_data_3
Supplied/Returned parameter

This parameter can be:
v Data in a 4-byte field supplied to the exit manager.
v A 4-byte field to receive character data from the exit manager.

The exit manager defines the data to be specified or received.

Set_Exit_Information

Chapter 5. Callable registration services 161

If the exit manager does not expect any data, specify binary zeros in this
parameter. Nothing is returned in this parameter.

ABEND codes

The call might result in an abend X'AC7' with a reason code of X'00360000',
X'00360001', or X'00360002'. See z/OS MVS System Codes for the explanations and
actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

0
CRG_OK

Meaning: Successful completion.

Action: None.

103
CRG_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CRG_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CRG_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

301
CRG_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is
incorrect. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Exit_Information

162 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

305
CRG_SEIF_CURRENTLY_INVOKED

Meaning: Program error. The resource
manager is currently setting exits with this
exit manager. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

310
CRG_NOTIF_EXIT_TYPE_INV

Meaning: Program error. The notification
exit type specified in the call is not valid,
possibly because the resource manager is
PKM 8–15 problem state. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

311
CRG_NOTIF_EXIT_ENTRY_INV

Meaning: Program error. The
NOTIFICATION exit entry provided in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

320
CRG_EM_NAME_INV

Meaning: Program error. The exit manager
name specified in the call is syntactically
incorrect. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

340
CRG_EXIT_CNT_INV

Meaning: Program error. The exit count
specified in the call exceeds the total number
of exits for the exit manager. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

341
CRG_EXIT_NUM_INV

Meaning: Program error. The exit number
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Exit_Information

Chapter 5. Callable registration services 163

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

342
CRG_EXIT_TYPE_INV

Meaning: Program error. The exit type
specified in the call is not valid, possibly
because the resource manager is PKM 8–15
problem state. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

343
CRG_VAR1_INV

Meaning: Program error. The data in the
variable_data_1 parameter is not valid for this
exit manager. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

344
CRG_VAR2_INV

Meaning: Program error. The data in the
variable_data_2 parameter is not valid for this
exit manager. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

345
CRG_VAR3_INV

Meaning: Program error. The data in the
variable_data_3 parameter is not valid for this
exit manager. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

346
CRG_REQ_EXIT_NOT_SET

Meaning: Program error. The call failed to
specify an exit routine that is required by
the exit manager. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

347
CRG_DELEXIT_INV

Meaning: Program error. The call attempted
to delete an exit routine that is required by
the exit manager by specifying zero for the
exit routine in the exit_entry parameter. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Exit_Information

164 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

348
CRG_DUP_EXIT_SET

Meaning: Program error. The call tried to set
a duplicate exit; that is, the resource
manager has already set, with this exit
manager, an exit with the specified number.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

349
CRG_EXIT_TYPE_SRV

Meaning: Program error. The exit type
specified is valid for this exit manager but is
not valid for this exit. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

34A
CRG_EXIT_ENTRY_INV

Meaning: Program error. The exit_entry
value specified on the call is not valid for
this exit manager. You might, for example,
have specified zero when the corresponding
exit_number specifies a value. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

720
CRG_EM_STATE_ERROR

Meaning: Environmental error. The exit
manager specified in the call is not
registered as an exit manager. The system
rejects the service call.

Action: When the exit manager registers, the
system gives control to a notification exit
routine, if specified in the call. The
notification exit routine can issue the set exit
routine call again.
Note: The exit manager might never
register.

756
CRG_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a resource manager token that does
not belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

Set_Exit_Information

Chapter 5. Callable registration services 165

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

758
CRG_EM_FAILED_RM_AUTH

Meaning: Program error. The exit manager
specified in the call does not support PKM
8–15 problem state resource managers. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

FFF
CRG_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

1000 - FFFF Meaning: Additional returns codes that the
specific exit manager can issue.

Action: See the information about the exit
manager. The return codes that RRS issues
are defined in “Installing an exit routine” on
page 91. The return codes that Context
Services issues are defined in “Installing an
exit routine” on page 36.

Example

In the pseudocode example, the resource manager issues a call to set its exit
routines with context services. Because context services does not require any
variable data, the call has null variable data parameters. Because context services is
always available, the call does not specify a notification exit routine.
...
RM_TOKEN = MY_RM_TOKEN
EM_NAME = CTXSER_NAME
EXIT_CNT = 2
EXIT_NUM(1) = CTX_END_CONTEXT_EXIT
EXIT_ADDR(1) = ADDR(END_EXIT_PROC)
EXIT_TYPE(1) = CRG_EXIT_TYPE_SRB
EXIT_NUM(2) = CTX_SWITCH_EXIT
EXIT_ADDR(2) = ADDR(SWITCH_PROC)
EXIT_TYPE(2) = CRG_EXIT_TYPE_SRB
CALL CRGSEIF(RC,RM_TOKEN,CRG_EXIT_TYPE_NONE,CRG_NULL_PARAMETER,

EM_NAME,EXIT_CNT,EXIT_NUM,EXIT_ADDR,EXIT_TYPE,
CRG_NULL_PARAMETER,CRG_NULL_PARAMETER,
CRG_NULL_PARAMETER)...

Unregister_Resource_Manager (CRGDRM, CRG4DRM)
v CRGDRM is for AMODE(31) callers.
v CRG4DRM is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Set_Exit_Information

166 z/OS V2R1.0 MVS Programming: Resource Recovery

A resource manager calls the Unregister_Resource_Manager service to unregister
itself explicitly. In response to the call, the system returns a return code.

Explicit and Implicit Unregistration: Normally, when a resource manager is
ending processing, it issues a call to unregister itself. The call can be issued from
any address space. If your resource manager does not explicitly unregister, the
system implicitly unregisters it as follows, depending on the unregister_option
specified in the call to the Register_Resource_Manager service that registered the
resource manager:
v When the resource manager's task ends. The resource manager runs as a task in

the home address space.
v When the cross memory resource-owning task of the resource manager ends.

This task is the top, or first, job step task in the home address space.
v When the resource manager's address space ends.

The system can also unregister a resource manager because of errors, such as
consecutive exit errors.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CRGDRM)
64 bit (CRG4DRM)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.
Linkage: Uses standard MVS linkage conventions.

Programming requirements

The resource manager does not have to issue the call to the
Unregister_Resource_Manager service from the same task and address space in
which it issued the corresponding call to the Register_Resource_Manager service.

Either link edit your object code with the linkable stub routine CRGCSS (31 bit) or
CRG4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the service. The high
level language (HLL) definitions for the callable service are:

HLL Definition Description
CRGASM 390 Assembler declarations
CRGC C/390 declarations

Restrictions

The state of the resource manager associated with the resource manager token
specified must be registered, set, reset, or run. After a successful call, the resource
manager state is unregistered.

Unregister_Resource_Manager

Chapter 5. Callable registration services 167

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They must specify a resource manager token of a key 8–15 problem
state resource manager that registered from the home address space.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CRGDRM
(return_code
,resource_manager_token)

Unregister_Resource_Manager

168 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL CRG4DRM
(return_code
,resource_manager_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Unregister_Resource_Manager service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that uniquely identifies the resource
manager. Your resource manager received the token from the
Register_Resource_Manager service.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00310000'
or X'00310001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CRG_OK

Meaning: Successful completion.

Action: None.

103
CRG_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Unregister_Resource_Manager

Chapter 5. Callable registration services 169

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

105
CRG_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CRG_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

301
CRG_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
one of the currently valid resource manager
tokens. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

756
CRG_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a resource manager token that does
not belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

FFF
CRG_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, a resource manager issues a call to unregister itself.
...
RM_TOKEN = MY_RM_TOKEN
CALL CRGDRM(RC,RM_TOKEN)...

Unregister_Resource_Manager

170 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 6. Callable context services

This section describes the callable services that an authorized resource manager can
use to request work context services. The chapter presents the callable services in
alphabetical order by descriptive name.

Begin_Context (CTXBEGC, CTX4BEGC)
v CTXBEGC is for AMODE(31) callers
v CTX4BEGC is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Begin_Context service to create a privately-managed
context. Begin_Context is intended for use in a program that manages work on
behalf of another program or user. The program accepts the responsibility to
manage the environment for the other program.

In response to the call, context services returns:
v A return code.
v The context token for the privately-managed context. You need this token for a

call to the following services: End_Context, Express_Context_Interest,
Express_UR_Interest, Retrieve_Interest_Count, or Switch_Context.

Contexts: A context represents the resources for a work request; a context consists
of the application program requesting the work and the protected resources
involved in the work. The two types of contexts are:
v Native context
v Privately-managed context

An application's task has a native context associated with it. A resource manager
can use a call to the Begin_Context service to obtain a privately-managed context,
then use a call to the Switch_Context service to associate the privately-managed
context with a task. While the privately-managed context is associated with a task,
interactions with the application are related to the privately-managed context.

Later, the resource manager can use a call to the Switch_Context service to
disassociate the privately-managed context; subsequent interactions are related to
the native context for the task.

Current context: The native context is the original current context for an
application's task. A Begin_Context call obtains a privately-managed context, and a
call to Switch_Context associates the privately-managed context with the
application; the native context still exists but is not current. The privately-managed
context is the current context. If a call to the Switch_Context service later
disassociates the privately-managed context, the native context again becomes the
current context.

Context token: The context token is a random value that is not preserved across
restarts of the system, exit manager, or resource manager. Thus:
v Do not use the context token as an identifier in log records.

© Copyright IBM Corp. 1997, 2013 171

v Do not try to discern the contents of the token or create any dependencies on
the contents.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXBEGC)
64 bit (CTX4BEGC)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager

Programming requirements

The resource manager's object code must be linked with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB. The high level language
(HLL) definitions for the callable service are:

HLL definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

To call the service, the resource manager associated with the resource manager
token specified in the call must be in set state, which means it has registered and
called the Set_Exit_Information service, specifying context services as the exit
manager.

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They must specify a resource manager token of a key 8–15 problem
state resource manager which registered from the home address space.

If a PKM 8–15 problem state resource manager attempts to create a context and
doing so will result in the PKM 8–15 problem state resource manager registered in
the space owning more than 256 contexts per unauthorized resource manager,
context services will request confirmation of the request from a system operator. If
the operator allows the request, the PKM 8–15 problem state resource managers
registered in the space will be able to create as many contexts as they want. If the
operator does not allow the request, a context will not be returned.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Begin_Context

172 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXBEGC
(return_code
,resource_manager_token
,context_token)

CALL CTX4BEGC
(return_code
,resource_manager_token
,context_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter

Begin_Context

Chapter 6. Callable context services 173

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Begin_Context service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the token for the privately-managed context that the resource
manager is creating. The context token uniquely identifies the
privately-managed context.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00110000'
or X'00110001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Begin_Context

174 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports context services. Then rerun the
resource manager.

301
CTX_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
CTX_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager must be in set state. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

756
CTX_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a resource manager token that does
not belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

F00
CTX_MAX_CTXT_EXCEEDED

Meaning: Environment error. The resource
manager is PKM 8–15 problem state and
attempted to create more than the allowable
number of active contexts. The system
rejects the service call.

Action: Either allow unauthorized resource
managers to own additional contexts or
change your program so less contexts are
required.

Begin_Context

Chapter 6. Callable context services 175

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to create a private
context. Storage for the call parameters has been allocated.
...
RM_TOKEN = REG_TOKEN
CALL CTXBEGC(RC,RM_TOKEN,C_TOKEN)
IF RC ≠ CTX_OK THEN

/* handle error */...

Delete_Context_Interest (CTXDINT, CTX4DINT)
v CTXDINT is for AMODE(31) callers.
v CTX4DINT is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Delete_Context_Interest service to delete its interest in
a native context or a privately-managed context. In response to the call, context
services issues a return code.

Note: If your resource manager does not issue a Delete_Context_Interest call, the
system deletes the context interest when the context ends.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXDINT)
64 bit (CTX4DINT)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Begin_Context

176 z/OS V2R1.0 MVS Programming: Resource Recovery

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

To call the service, the resource manager associated with the context interest token
specified in the call must be in set state, which means it has registered and called
the Set_Exit_Information service, specifying context services as the exit manager.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Delete_Context_Interest

Chapter 6. Callable context services 177

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXDINT
(return_code
,context_interest_token)

CALL CTX4DINT
(return_code
,context_interest_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Delete_Context_Interest service.

,context_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context interest token that identifies the context interest to be
deleted. Your resource manager received the token from the
Express_Context_Interest service.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00120000'
or X'00120001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Delete_Context_Interest

178 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports context services. Then rerun the
resource manager.

365
CTX_CI_TOKEN_INV

Meaning: Program error. The context
interest token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to delete an interest
in a context. Storage for the call parameters has been allocated.
...
CI_TOKEN = CONTEXT_INTEREST_TOKEN
CALL CTXDINT(RC,CI_TOKEN)
IF RC ≠ CTX_OK THEN

Delete_Context_Interest

Chapter 6. Callable context services 179

/* handle error */...

End_Context (CTXENDC, CTX4ENDC)
v CTXENDC is for AMODE(31) callers.
v CTX4ENDC is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the End_Context service to end a privately-managed
context or a dispatchable unit native context. A native context has a fixed
association with a single dispatchable unit.

When an application program ends processing, your resource manager should call
the End_Context service to end any context associated with the application. RRS
default actions are to commit on normal context termination and backout on
abnormal context termination.

In response to the call, the system issues a return code. After the call, the context
token associated with the ended context is no longer valid.

Next current context: A call to the End_Context service ends the context specified
in the context_token parameter. If the call specifies a privately-managed context, the
native context becomes the current context. If the call specifies a native context,
which is also the current context, a new native context becomes the current
context.

Ending a privately-managed context: If a call to the End_Context service specifies
a privately-managed context not associated with a unit of work, the system gives
control to the CONTEXT_SWITCH exit routines of all resource managers interested
in the context. If any CONTEXT_SWITCH exit routine disallows the context end,
the call does not end the context. However, CONTEXT_SWITCH exit routines
cannot stop the context end if one of the following is true:
v The address space of the resource manager that owns the privately-managed

context is terminating.
v The End_Context service forces the ending.

The End_Context service might fail because a CONTEXT_SWITCH exit routine
disallows ending the context. To override the decision when there is no other way
to resolve the problem, the privately-managed context owner can force an end to
the context by specifying a completion_type of CTX_FORCED_END_OF_CONTEXT
on the End_Context call.

After the CONTEXT_SWITCH exit routines have completed, if the
privately-managed context is still ending, the system invokes the END_CONTEXT
exit routines associated with the context.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN

Delete_Context_Interest

180 z/OS V2R1.0 MVS Programming: Resource Recovery

AMODE:
31 bit (CTXENDC)
64 bit (CTX4ENDC)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

To call the service, the resource manager associated with the context specified in
the call must be in set state, which means it has registered and called the
Set_Exit_Information service, specifying context services as the exit manager.

When calling End_Context to end a native context:
v The context must be the current context.
v Your resource manager must be running under the work unit associated with

the native context.

When calling End_Context to end a privately-managed context associated with the
work unit:
v Your resource manager must be running under the work unit associated with

the privately-managed context.

If you are coding an RRS exit routine, do not call this service to process the context
associated with the UR passed to the exit routine in the ur_interest_token parameter.

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They can only end native contexts and privately managed contexts
obtained by a key 8–15 problem state resource manager that registered from the
home address space.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

End_Context

Chapter 6. Callable context services 181

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXENDC
(return_code
,context_token
,completion_type)

CALL CTX4ENDC
(return_code
,context_token
,completion_type)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

End_Context

182 z/OS V2R1.0 MVS Programming: Resource Recovery

Contains the return code from the End_Context service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token for the context that the resource manager wants to end, as
follows:
v 0: Binary zeros specify the current context associated with the application's

task or SRB.
v token: The context token of a privately-managed context.

For a privately-managed context, your resource manager received the
context_token from the Begin_Context service.

,completion_type
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the type of completion for the context. The value is passed to the
END_CONTEXT exit routine. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol

Resource manager specifies the
completion_type because:

0
(0)
CTX_NORMAL_TERMINATION

The context is ending normally.

1
(1)
CTX_ABNORMAL_TERMINATION

The context is ending abnormally.

3
(3)
CTX_FORCED_END_OF_CONTEXT

The context must be forced to end. A
SWITCH_CONTEXT exit routine cannot
prevent the context from ending.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00140000'
or X'00140001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

End_Context

Chapter 6. Callable context services 183

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
CTX_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports context services. Then rerun the
resource manager.

360
CTX_COMPLETION_TYPE_INV

Meaning: Program error. The completion_type
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

361
CTX_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

End_Context

184 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

363
CTX_OTHER_WU_NATIVE

Meaning: Program error. The native context
specified in the call is the native context of
another unit of work. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

366
CTX_PRIVATE_OTHER_WU

Meaning: Program error. The
privately-managed context specified in the
call is the current context of another work
unit. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

369
CTX_SWITCH_EXIT_PREVENTED_

END

Meaning: Program error. A
CONTEXT_SWITCH exit routine returned a
code that indicated the context should not
be ended. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

756
CTX_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a context token that does not
belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to end a context.
Storage for the call parameters has been allocated.
...
COMPLETION_TYPE = CTX_NORMAL_TERMINATION
C_TOKEN = CONTEXT_1
CALL CTXENDC(RC,C_TOKEN,COMPETION_TYPE)
IF RC ≠ CTX_OK THEN

End_Context

Chapter 6. Callable context services 185

/* Handle error */...

Express_Context_Interest (CTXEINT, CTXEINT1, CTX4EINT)
A resource manager calls the Express_Context_Interest service to express an
interest in a privately-managed context or a dispatchable unit native context. A
native context has a fixed association with a single dispatchable unit. There are
three versions of Express_Context_Interest, each with different parameters.
v CTXEINT is for AMODE(31) callers and is the basic version of the service.
v CTXEINT1 is for AMODE(31) callers and adds work manager name support.
v CTX4EINTis for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and includes work manager name support.

Code your resource manager to call the version that includes the support you
need.

In response to the call, context services returns:
v A return code.
v The context token of the current context, if requested.
v The context interest token. You need the context interest token for calls to the

following services: Delete_Context_Interest, Retrieve_Context_Interest_Data, or
Set_Context_Interest_Data.

v For CTXEINT1 and CTX4EINT callers, the work manager name of the resource
manager that owns the context associated with the expression of interest.

If your resource manager already has an interest in the context, a call to the
Express_Context_Interest service can do one of the following, depending on the
multiple_interest_option parameter you supply:
v Return the context interest token and the context interest data for the existing

interest
If your resource manager already has several interests in a context, there is no
way to predict which one the service will return.

v Create a new interest in the context and provide a new context interest token for
the new interest

Expressing interest: Expressing interest in a context tells the system to invoke your
resource manager's exit routines for this context interest. A resource manager can
express interest in any context in any address space. A resource manager can make
the call multiple times to create multiple context interests.

Expressing interest in a context has no connection with expressing interest in a unit
of recovery (UR).

Context interest data: In the call, your resource manager provides context interest
data. The system passes this data to your resource manager's exit routines invoked
for this context interest. This data can contain an anchor for the resource manager's
data structures for the context. Your resource manager can issue:
v A call to the Retrieve_Context_Interest_Data service
v A call to the Set_Context_Interest_Data service to specify the data, if it is not

specified in the Express_Context_Interest call
v One or more calls to the Set_Context_Interest_Data service to change this data

End_Context

186 z/OS V2R1.0 MVS Programming: Resource Recovery

Context end: The context abnormally ends if the application program abnormally
ends processing or if the application's address space abnormally ends. Other
conditions that can abnormally end a context are:
v The End_Context service specifies an abnormal condition.
v The owner of a disassociated privately-managed context ends.

Depending on how the context ends and on the memterm_option parameter in the
Express_Context_Interest call, the system might give control to your resource
manager's END_CONTEXT exit routine.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXEINT, CTXEINT1)
64 bit (CTX4EINT)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

To call the service, the resource manager associated with the context specified in
the call must be in set state, which means it has registered and called the set exit
routine service, specifying context services as the exit manager. must be in run
state.

When the resource manager issues the call in SRB mode, the call cannot specify a
context_token of 0, indicating the current context.

If you are coding an RRS exit routine, do not call this service to process the context
associated with the UR passed to the exit routine in the ur_interest_token parameter.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Express_Context_Interest

Chapter 6. Callable context services 187

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL CTXEINT
(return_code
,resource_manager_token
,context_token
,memterm_option
,context_interest_data
,current_context_token
,context_interest_token
,returned_context_interest_data
,multiple_interest_option)

Express_Context_Interest

188 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL CTXEINT1
(return_code
,resource_manager_token
,context_token
,memterm_option
,context_interest_data
,current_context_token
,context_interest_token
,returned_context_interest_data
,multiple_interest_option
,work_manager_name)

CALL CTX4EINT
(return_code
,resource_manager_token
,context_token
,memterm_option
,context_interest_data
,current_context_token
,context_interest_token
,returned_context_interest_data
,multiple_interest_option
,work_manager_name)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Express_Context_Interest service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Express_Context_Interest

Chapter 6. Callable context services 189

Specifies the token for the context in which the resource manager is expressing
an interest, as follows:
v 0: Binary zeros specify the current context associated with the application's

task.
v token: The context token of a privately-managed context.

For a privately-managed context, your resource manager received the
context_token from the Begin_Context service.

,memterm_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates whether or not the resource manager's END_CONTEXT exit routine
should receive control if the context abnormally ends. Specify one of the
following:

Constant in: Hexadecimal (Decimal) Equate
Symbol Description

0
(0)
CTX_ALL_TERMINATIONS

All endings: The END_CONTEXT exit
routine receives control at all endings,
including memory termination.

1
(1)
CTX_NOT_MEMTERM

All endings, except memory termination:
The END_CONTEXT exit routine receives
control at all endings except memory
termination.

,context_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context interest data that the system is to associate with this
context interest. The Retrieve_Context_Interest_Data service can retrieve the
context interest data.

,current_context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the following from the service:
v The token of the current context, if the call specifies zeros in the

context_token parameter. The token is a 16-byte character string.
v Undefined, if context_token specifies a token.

,context_interest_token
Returned parameter
v Type: Character string
v Character Set: No restriction

Express_Context_Interest

190 z/OS V2R1.0 MVS Programming: Resource Recovery

v Length: 16 bytes

Receives the context interest token from the service. The context interest token
uniquely identifies your resource manager's interest in the context. If you
specified CTX_CONDITIONAL on multiple_interest_option, the context interest
token represents an existing interest, if there is one. Otherwise, the context
interest token represents the newly created interest.

,returned_context_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

If multiple_interest_option specified CTX_CONDITIONAL and the return code
from the service is CTX_RM_ALREADY_HAS_INTEREST, this field receives
the context interest data from the service. The data comes from an already
existing interest that the resource manager has in the context. If the resource
manager does not have an existing interest, the service returns binary zeros.

Otherwise, this field is undefined.

,multiple_interest_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates whether or not the service is to create a new interest when the
resource manager already has an interest in the context. Specify one of the
following:

Constant in: Hexadecimal (Decimal) Equate
Symbol Description

0
(0)
CTX_UNCONDITIONAL

Unconditional: The service should create a
new interest, even when the resource
manager already has an interest in the
context.

1
(1)
CTX_CONDITIONAL

Conditional: The service should not create a
new interest when the resource manager
already has an interest in the context.

When you specify CTX_CONDITIONAL and the resource manager has an
existing interest in the specified context, the values in memterm_option and
context_interest_data are ignored.

,work_manager_name
Returned parameter
v Type: Character string
v Character Set: See Note
v Length: 32 bytes

For CTXEINT1 callers, this field receives the work manager name from the
service. The work manager name is the 32–byte name of the resource manager
that owns the privately-managed context this expression of interest pertains to.

Express_Context_Interest

Chapter 6. Callable context services 191

If the expression of interest is for a dispatchable unit native context, the work
manager name returned is a concatenation of the following strings:
v SystemName
v Period (.)
v JobName
v Period (.)
v ASID (4 bytes readable hexadecimal)
v Blanks (padded to 32 bytes)

Note: The work manager name can consist of the following printable
characters:
v Alphanumeric characters: A–Z and 0–9
v National characters: $ (X'5B'), # (X'7B'), and @ (X'7C')
v The period (.)
v The underscore (_)
v The trailing blank characters needed to fill the 32–byte field

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00130000'
or X'00130001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

8
CTX_RM_ALREADY_HAS_INTEREST

Meaning: The resource manager already has
an expression of interest in this context. The
system returns the context_interest_token and
returned_context_interest_data for an existing
expression of interest in the context by the
resource manager.

Action: Process the returned information.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Express_Context_Interest

192 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
CTX_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

301
CTX_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

361
CTX_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

364
CTX_MEMTERM_INV

Meaning: Program error. The
memterm_option value specified in the call is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

367
CTX_MULTIPLE_INTEREST_

OPTION_INV

Meaning: Program error. The
multiple_interest_option value specified in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Express_Context_Interest

Chapter 6. Callable context services 193

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

36A
CTX_DU_TERMINATING

Meaning: Environmental error. The
application's task or SRB associated with the
specified context is abnormally ending. The
system rejects the service call.

Action: None.

701
CTX_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the context
specified in the call is not in a valid state to
issue the service call. The resource manager
must be in set state. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to express an
interest in a context. Storage for the call parameters has been allocated.
...
RM_TOKEN = REG_TOKEN
C_TOKEN = CONTEXT_1
MEMTERM_OPT = CTX_ALL_TERMINATIONS
CI_DATA = CONTEXT_1_DATA
CALL CTXEINT1(RC,RM_TOKEN,C_TOKEN,MEMTERM_OPT,CI_DATA,

CUR_C_TOKEN,CI_TOKEN,
RETURNED_CONTEXT_INTEREST_DATA,
MULTIPLE_INTEREST_OPTION,
WORK_MANAGER_NAME)

IF RC = CTX_OK THEN
DO
CONTEXT_INTEREST_TOKEN = CI_TOKEN
MYWMNAME=WORK_MANAGER_NAME
END DO...

Retrieve_Context_Data (CTXRDTA, CTX4RDTA)
v CTXRDTA is for AMODE(31) callers.
v CTX4RDTA is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Express_Context_Interest

194 z/OS V2R1.0 MVS Programming: Resource Recovery

A resource manager calls the Retrieve_Context_Data service to retrieve the data
associated with a particular context. The data must have previously been set by a
call to Set_Context_Data. The resource manager specifies a key which identifies the
data that is to be retrieved.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXRDTA)
64 bit (CTX4RDTA)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

The caller must be in Task mode when invoking Retrieve_Context_Data for the
current dispatchable unit's context.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Retrieve_Context_Data

Chapter 6. Callable context services 195

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXRDTA
(return_code
,context_token
,context_key
,context_bufferlength
,context_datalength
,context_data_buffer)

CALL CTX4RDTA
(return_code
,context_token
,context_key
,context_bufferlength
,context_datalength
,context_data_buffer)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Provides the return code for the call.

,context_token
Supplied parameter

Retrieve_Context_Data

196 z/OS V2R1.0 MVS Programming: Resource Recovery

v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

The context_token identifies the context with which the data is associated. If a
value of "binary zeros" is supplied in this field, then the context will be the
currently active context of this dispatchable unit of work. A context token may
be obtained via the Begin_Context, Express_Context_Interest, or
Retrieve_Current_Context_Token services.

,context_key
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

The context_key is the identifier which was supplied on the earlier
Set_Context_Data, and identifies the data which is to be retrieved.

If context_key is set to CTX.OWNER_INFO.IBM, the type and authorization of
the context specified by the context_token will be returned in the
context_data_buffer.

,context_bufferlength
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The context_bufferlength is the length of the area specified by the
context_data_buffer keyword for the return of the data. The minimum length is
1. If the length of the buffer is less than the length of the saved data, then only
as much of the data will be returned as will fit in the buffer. In this case, the
actual length of the data will be returned in the context_datalength keyword.

,context_datalength
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The context_datalength is the actual length of the data specified by the
context_data_buffer keyword. A value of zero indicates that no data was
returned. This value may be larger than context_bufferlength if the return code
is CTX_PARTIAL_DATA.

,context_data_buffer
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 1 to 4096 bytes

The context_data_buffer is the area to which the saved data will be returned.

If context_key is set to CTX.OWNER_INFO.IBM, the following 6–word data
string will be returned:

Retrieve_Context_Data

Chapter 6. Callable context services 197

Word Contents

0
0: The target work context is a DU native
context.

1: The target work context is a privately
managed context.

1
0: The target work context is owned by an
authorized resource manager.

1: The target work context is owned by an
unauthorized resource manager.

2–5 These words are reserved for future use.
They contain random contents.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00210000'
or X'00210001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.
Note: If there is no data associated with the
specified key, the context datalength
returned will be 0.

Action: None.

5
CTX_PARTIAL_DATA

Meaning: Program error. Partial data was
returned. The buffer is not long enough to
hold all of the data. The service completes
successfully, but returns only partial data.
The actual length of the data associated with
the input context_key is returned in
context_datalength.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

103
CTX_INTERRUPT_INV

Meaning: Program error. The caller is
disabled. The system rejects the service call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

Retrieve_Context_Data

198 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
CTX_MODE_INV

Meaning: Program error. The caller is not in
task mode and specified 0 for context_token.
The system rejects the service call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks may be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: The release of MVS does not
support this service. The service stub has
been linked on a system that does not
support the correct level of Context Services.
The system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports the correct level of Context
Services. Then rerun the resource manager.

361
CTX_CONTEXT_TOKEN_INV

Meaning: Program error. The context
interest token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36D
CTX_BUFFER_LENGTH_INV

Meaning: Program error. The Buffer length
specified via the CTXRDTA invocation is
invalid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve the data
associated with the key FRED for the context associated with the current
dispatchable unit.

Retrieve_Context_Data

Chapter 6. Callable context services 199

...
C_TOKEN = ’’B;
DATA_KEY = ’FRED’;
DATA_LEN = 0;
BUFFER_LEN = 20;
DATA = ’’;
CALL CTXRDTA(RC,C_TOKEN,DATA_KEY,BUFFER_LEN,DATA_LEN,DATA);
IF RC ¬= CTX_OK THEN

/* handle error situation */...
IF DATA_LEN = 0 THEN

/* handle no data associated with FRED */...

Retrieve_Context_Interest_Data (CTXRCID, CTX4RCID)
v CTXRCID is for AMODE(31) callers.
v CTX4RCID is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Retrieve_Context_Interest_Data service to retrieve the
context interest data supplied by the resource manager in:
v A call to the Express_Context_Interest service
v A call to the Set_Context_Interest_Data service

In response to the call, context services also returns a return code.

A resource manager can express interest in a context multiple times. The particular
interest for this call is identified by the context interest token your resource
manager received from the Express_Context_Interest service.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXRCID)
64 bit (CTX4RCID)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Retrieve_Context_Data

200 z/OS V2R1.0 MVS Programming: Resource Recovery

Restrictions

To call the service, the resource manager associated with the context interest token
specified in the call must be in set state, which means it has registered and called
the Set_Exit_Information service, specifying context services as the exit manager.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXRCID
(return_code
,context_interest_token
,context_interest_data)

Retrieve_Context_Interest_Data

Chapter 6. Callable context services 201

CALL CTX4RCID
(return_code
,context_interest_token
,context_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Context_Interest_Data service.

,context_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context interest token that identifies your resource manager's
interest in the context. Your resource manager received the token from the
Express_Context_Interest service.

,context_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the context interest data associated with this context interest. The
resource manager supplied the data on the most recent call to the
Express_Context_Interest or Set_Context_Interest_Data service. If no earlier call
has supplied context interest data, the field contains hexadecimal zeros.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00160000'
or X'00160001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Retrieve_Context_Interest_Data

202 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

365
CTX_CI_TOKEN_INV

Meaning: Program error. The context
interest token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve context
interest data. Storage for the call parameters has been allocated.
...
CI_TOKEN = CONTEXT_INTEREST_TOKEN
CALL CTXRCID(RC,CI_TOKEN,CI_DATA)
IF RC = CTX_OK THEN

Retrieve_Context_Interest_Data

Chapter 6. Callable context services 203

CONTEXT_I_DATA = CI_DATA...

Retrieve_Current_Context_Token (CTXRCC, CTX4RCC)
v CTXRCC is for AMODE(31) callers.
v CTX4RCC is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Retrieve_Current_Context_Token service to obtain the
context token for the currently active context. The token can be used in subsequent
calls to other context services to identify that context.

Note: The Retrieve_Current_Context_Token service is intended to be used to
obtain the context token of the active context of the current dispatchable unit of
work.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXRCC)
64 bit (CTX4RCC)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

None.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Retrieve_Context_Interest_Data

204 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXRCC
(return_code
,context_token)

CALL CTX4RCC
(return_code
,context_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A

Retrieve_Current_Context_Token

Chapter 6. Callable context services 205

v Length: 4 bytes

Provides the return code for the call.

,context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

The context_token identifies the context that is currently active.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00220000'
or X'00220001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_INV

Meaning: Program error. The caller is
disabled. The system rejects the service call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

104
CTX_MODE_INV

Meaning: Program error. The caller is not in
task mode. The system rejects the service
call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Current_Context_Token

206 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
CTX_UNSUPPORTED_RELEASE

Meaning: The release of MVS does not
support this service. The service stub has
been linked on a system that does not
support the correct level of Context Services.

Action: Remove the resource manager from
the system, and install it on a system that
supports the correct level of Context
Services. Then rerun the resource manager.

36A
CTX_DU_TERMINATING

Meaning: Program error. The dispatchable
unit associated with the specified context is
terminating. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve the
context token of the current context. Storage for the call parameters has been
allocated.
...
C_TOKEN = ’’B;
CALL CTXRCC(RC,C_TOKEN);
IF RC ¬= CTX_OK THEN

/* handle error situation */...

Set_Context_Data (CTXSDTA, CTX4SDTA)
v CTXSDTA is for AMODE(31) callers.
v CTX4SDTA is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Set_Context_Data service to save data to be
associated with a specific context and to identify it with a specified key. This key
can be used to identify the data in subsequent calls to Set_Context_Data, or to the
Retrieve_Context_Data service. In response to the call, context services issues a
return code.

Note:

Retrieve_Current_Context_Token

Chapter 6. Callable context services 207

1. The Set_Context_Data service can be used to change or delete the data
specified on a previous invocation of Set_Context_Data. The data may be
retrieved via the Retrieve_Context_Data service.

2. The data set by calling Set_Context_Data can only be set by a program running
with a PKM of 0–7 or in supervisor state; however, the data can be retrieved by
any program.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXSDTA)
64 bit (CTX4SDTA)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

The caller must be in Task mode when invoking Set_Context_Data for the current
dispatchable unit's context.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

Set_Context_Data

208 z/OS V2R1.0 MVS Programming: Resource Recovery

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXSDTA
(return_code
,context_token
,context_key
,context_datalength
,context_data)

CALL CTX4SDTA
(return_code
,context_token
,context_key
,context_datalength
,context_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Set_Context_Data service.

Set_Context_Data

Chapter 6. Callable context services 209

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

The context_token identifies the context with which the data is to be
associated. If a value of "binary zeros" is supplied in this field, then the context
will be the currently active context of this dispatchable unit of work. A context
token may be obtained via the Begin_Context, Express_Context_Interest, or
Retrieve_Current_Context_Token services.

,context_key
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

The context_key is an identifier used to identify the data to be saved, and by
which the data can be changed or deleted by later calls to Set_Context_Data, or
retrieved by a call to Retrieve_Context_Data.

You may code almost any key to identify data. However, a specific key,
CTX.OWNER_INFO.IBM, is reserved by IBM to return special data. You may
not set context_key to CTX.OWNER_INFO.IBM with the Set_Context_Data
service.

,context_datalength
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The context_datalength is the length of the data specified by the context_data
keyword. The maximum value is 4096 bytes of data. If a length of zero is
specified, the previously saved data identified by context_datakey will be
deleted.

,context_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 1 to 4096 bytes

The context_data is the data to be saved. The contents of this parameter are
ignored if the context_datalength is 0.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00200000'
or X'00200001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Set_Context_Data

210 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_INV

Meaning: Program error. The caller is
disabled. The system rejects the service call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

104
CTX_MODE_INV

Meaning: Program error. The caller is not in
task mode. The system rejects the service
call.

Action: Check program logic for probable
coding error. Correct the problem and
reissue service.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks may be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environment error. The release of
MVS does not support this service. The
service stub has been linked on a system
that does not support the correct level of
Context Services.

Action: Remove the resource manager from
the system, and install it on a system that
supports the correct level of Context
Services. Then rerun the resource manager.

309
CTX_RESERVED_NAME

Meaning: Program error. The value specified
in context_key is reserved for Context
Services. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

361
CTX_CONTEXT_TOKEN_INV

Meaning: Program error. The context
interest token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Context_Data

Chapter 6. Callable context services 211

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

36B
CTX_DATA_LENGTH_INV

Meaning: Program error. The data length
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36C
CTX_DATA_KEY_NOTFOUND

Meaning: Program error. The data key value
specified in the call is not found. The system
rejects the service call. This code is only
returned when the specified data length is 0.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36E
CTX_STORAGE_UNAVAILABLE

Meaning: Environment error. There is no
storage available from the necessary subpool
to save the data. The system rejects the
service call.

Action: Determine why the system ran out
of subpool 247. Correct the problem and
reissue service.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to associate data for
the key FRED with the current context. Storage for the call has been allocated.
...
C_TOKEN = ’’B;
DATA_KEY = ’FRED’;
DATA_LEN = 6;
DATA = ’MYDATA’;
CALL CTXSDTA(RC,C_TOKEN,DATA_KEY,DATA_LEN,DATA);
IF RC ¬= CTX_OK THEN

/* handle error situation */...

Set_Context_Interest_Data (CTXSCID, CTXSCID2, CTX4SCID)
A resource manager calls the Set_Context_Interest_Data service to provide or
change context interest data. The system passes the current context interest data to
the resource manager's exit routines associated with the context interest. Your
resource manager can issue:
v A call to the Set_Context_Interest_Data service to specify the data, if it is not

specified in a call to the Express_Context_Interest service

Set_Context_Data

212 z/OS V2R1.0 MVS Programming: Resource Recovery

v One or more calls to the Set_Context_Interest_Data service to change this data
v A call to the Retrieve_Context_Interest_Data service to retrieve the data

There are three versions of Set_Context_Interest_Data, each with different
parameters.
v CTXSCID is for AMODE(31) callers and is the basic version of the service.
v CTXSCID2 is for AMODE(31) callers and adds current context interest data

support.
v CTX4SCID is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and adds current context interest data support.

Code your resource manager to call the version that includes the support you
need.

For CTXSCID2 and CTX4SCID callers, to enable serialized update of the context
interest data, you must provide the expected current value of the context interest
data when you make the call to Set_Context_Interest_Data. If the provided data
does not match the real data, the set request will fail and the actual current data
will be returned.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXSCID, CTXSCID2)
64 bit (CTX4SCID)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Restrictions

To call the service, the resource manager associated with the context interest token
specified in the call must be in set state, which means it has registered and called
the set exit routine service, specifying context services as the exit manager.

Set_Context_Interest_Data

Chapter 6. Callable context services 213

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL CTXSCID
(return_code
,context_interest_token
,context_interest_data)

CALL CTXSCID2
(return_code
,context_interest_token
,context_interest_data
,current_context_interest_data)

Set_Context_Interest_Data

214 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL CTX4SCID
(return_code
,context_interest_token
,context_interest_data
,current_context_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Set_Context_Interest_Data service.

,context_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context interest token that identifies your resource manager's
interest in the context. Your resource manager received the token from the
Express_Context_Interest service.

,context_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context interest data the system is to associate with this context
interest. The Express_Context_Interest service can also specify this data. If
context interest data already exists, the system replaces it with the context
interest data you supply.

,current_context_interest_data
Supplied and returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For CTXSCID2 callers, specifies the current context interest data the system is
to compare with context interest data. As part of a compare and swap, if
current_context_interest_data matches the context interest data, then the
context interest data is set to context_interest_data. Otherwise,
current_context_interest_data returns the context interest data.

Set_Context_Interest_Data

Chapter 6. Callable context services 215

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00170000'
or X'00170001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

8
CTX_CUR_CI_DATA_MISMATCH

Meaning: Program error. The context
interest data parameter no longer contains
the value that was passed on input to
Set_Context_Interest_Data. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

365
CTX_CI_TOKEN_INV

Meaning: Program error. The context
interest token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Context_Interest_Data

216 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
CTX_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the context
specified in the call is not in a valid state to
issue the service call. The resource manager
must be in set state. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager retrieves the current context
interest data value for an interest identified by context_interest_token and updates
that value to new_ci_data. Storage for the call parameters has already been
allocated.
...
DONE = FALSE
CI_TOKEN = CONTEXT_INTEREST_TOKEN
/* RETRIEVE CURRENT VERSION OF CI_DATA */
CALL CTXRCID(RC,CI_TOKEN,CURRENT_CI_DATA)
/* BUILD NEW DATA */
DO WHILE(¬DONE)

CI_DATA = NEW_CI_DATA
/* UPDATE CI_DATA IF IT HAS NOT CHANGED SINCE LAST TIME I LOOKED */
CALL CTXSCID2(RC,CI_TOKEN,CI_DATA,CURRENT_CI_DATA)
IF RC ¬= CTX_CUR_CI_DATA_MISMATCH THEN

DONE = TRUE
END DO...

Switch_Context (CTXSWCH, CTX4SWCH)
v CTXSWCH is for AMODE(31) callers.
v CTX4SWCH is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager calls the Switch_Context service to switch the context
associated with the application's task to another context. In response to the call, the
system returns a return code.

A context can be associated with only one task at a time. A context represents the
resources for a work request; a context consists of the application program
requesting the work and the protected resources involved in the work.

Set_Context_Interest_Data

Chapter 6. Callable context services 217

A native context exists when an application requests work. A resource manager can
associate a privately-managed context with an application by calling the
Switch_Context service.

Possible context switches: A call to the Switch_Context service can switch the
context for the current task:
v From one privately-managed context to another privately managed context
v From the native context to a privately-managed context
v From a privately-managed context to the native context

The call cannot be used to switch from one native context to another.

Results of context switches: The results of using the call to associate the current
application's task with a different context depend on the type of the previously
current context:
v If the previously current context was a native context, it will still be associated

with the task, but it will no longer be the current context.
v If the previously current context was a privately-managed context, it will be

disassociated from the task. If the call specifies a new privately-managed
context, the new context becomes the current context. Otherwise, the native
context becomes the current context for the task.

When it processes the Switch_Context service, the system invokes each
CONTEXT_SWITCH exit routine set by a resource manager with an interest in the
context. Any CONTEXT_SWITCH exit routine can disallow the context switch.

Environment

The requirements for the resource manager are:

Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (CTXSWCH)
64 bit (CTX4SWCH)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the resource manager.

Programming requirements

Either link edit the resource manager's object code with the linkable stub routine
CTXCSS (31 bit) or CTX4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the
service. The high level language (HLL) definitions for the callable service are:

HLL Definition Description
CTXASM 390 Assembler declarations
CTXC C/390 declarations

Switch_Context

218 z/OS V2R1.0 MVS Programming: Resource Recovery

Restrictions

To call the service, the resource manager associated with the context specified in
the call must be in set state, which means it has registered and called the
Set_Exit_Information service, specifying context services as the exit manager.

The context to be associated with the current application's task must not be already
associated with another task.

If you are coding an RRS exit routine, do not call this service to process the context
associated with the UR passed to the exit routine in the ur_interest_token parameter.

Resource managers that are PKM 8–15 problem state must register using the
Register_Resource_Manager service from the home address space before invoking
this service. They can only switch contexts obtained by a key 8–15 problem state
resource manager which registered from the home address space.

Note: A PKM 8–15 problem state resource manager can switch to and from the
native context.

Input register information

Before issuing the call, the resource manager does not have to place any
information into any register unless using it in register notation for the parameters,
or using it as a base register.

Output register information

When control returns to the resource manager, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the resource manager, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some resource managers depend on register contents remaining the same before
and after issuing a call. If the system changes the contents of registers on which
the resource manager depends, the resource manager must save them before
calling the service, and restore them after the system returns control.

Performance implications

None.

Switch_Context

Chapter 6. Callable context services 219

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL CTXSWCH
(return_code
,context_token
,disassociated_context_token)

CALL CTX4SWCH
(return_code
,context_token
,disassociated_context_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Switch_Context service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token for the context to be associated with the current
application's task:
v 0: Binary zeros specify the native context. The call switches the task from a

privately-managed context to the native context.
v token: Specifies the context token of a privately-managed context. The call

switches the task from its current context to the specified privately-managed
context. The current context can be a privately-managed context or a native
context.

,disassociated_context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token for the privately-managed context that was disassociated by
the switch.
v 0: Binary zeros, if the previous current context was the native context.

Switch_Context

220 z/OS V2R1.0 MVS Programming: Resource Recovery

v token: The disassociated context token. It identifies the privately-managed
context that has been disassociated from the current task.

ABEND codes

The call might result in an abend X'AC7' with a reason code of either X'00150000'
or X'00150001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
CTX_OK

Meaning: Successful completion.

Action: None.

103
CTX_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
CTX_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
CTX_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
CTX_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

Switch_Context

Chapter 6. Callable context services 221

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

361
CTX_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

362
CTX_PRIVATE_CURRENT

Meaning: Program error. The
privately-managed context specified in the
context_token parameter in the call is already
the current context. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

363
CTX_OTHER_WU_NATIVE

Meaning: Program error. The context
specified in the context_token parameter in
the call is the native context for another task
or SRB. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

366
CTX_PRIVATE_OTHER_WU

Meaning: Program error. The
privately-managed context specified in the
call is the current context of another work
unit. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

368
CTX_CURRENT_WU_NATIVE

Meaning: Program error. The context
specified in the context_token parameter in
the call is the native context and is already
the current context. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36A
CTX_DU_TERMINATING

Meaning: Environmental error. The task or
SRB associated with or to be associated with
the context specified in the context_token
parameter in the call is terminating. The
system rejects the service call.

Action: None.

Switch_Context

222 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

756
CTX_AUTH_FAILURE

Meaning: Program error. The resource
manager is PKM 8–15 problem state and
specified a context token that does not
belong to a PKM 8–15 problem state
resource manager registered in the home
address space. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

800
CTX_DISALLOW_SWITCH

Meaning: Program error. A
CONTEXT_SWITCH exit routine disallowed
the context switch requested in the call. The
system rejects the service call.

Action: Check the resource manager for a
probable coding or environmental error.
Correct the resource manager and rerun it.

801
CTX_DISALLOW_SWITCH_WU

Meaning: Program error. A
CONTEXT_SWITCH exit routine disallowed
the context switch requested in the call
because the calling resource manager is
running under the wrong work unit. The
system rejects the service call.

Action: Check the resource manager for a
probable coding or environmental error.
Correct the resource manager and rerun it.

FFF
CTX_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to switch an
application's task or SRB to another context. Storage for the call parameters has
been allocated.
...
C_TOKEN = CONTEXT_1
CALL CTXSWCH(RC,C_TOKEN,DISASSOC_C_TOKEN)
IF RC ≠ CTX_OK THEN...

Switch_Context

Chapter 6. Callable context services 223

Switch_Context

224 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 7. Callable resource recovery services

This section describes the callable services that an authorized resource manager can
use to request resource recovery services. The chapter lists the services in
alphabetical order by descriptive name.

Backout_Agent_UR (ATRABAK, ATR4ABAK)
v ATRABAK is for AMODE(31) callers.
v ATR4ABAK is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role calls the Backout_Agent_UR service to tell RRS to back out
the unit of recovery (UR) associated with the specified UR interest.

Your resource manager can invoke this service either to initiate a backout operation
for an in-flight UR or to resolve an in-doubt UR to in-backout.
Backout_Agent_UR changes the unit of recovery state to in-forget or forgotten.

If a resource manager with an interest in a UR has taken the SDSRM role, RRS will
implicitly change the log_option to ATR_DEFER_EXPLICIT under any of the
following conditions:
v When the application backs out the UR through a call to the Backout_UR service

or the Application_Backout_UR service.
v When an RRS panel or the ATRSRV macro is used to resolve an in-doubt UR.
v When RRS recreates a committed or backed out UR during restart processing.

If any of these conditions has occurred, RRS returns the ATR_UR_STATE_ERROR
return code. The UR might be in any state, but, once it reaches in-forget, it will
remain in that state until the Forget_Agent_UR service is called. RRS waits for
Forget_Agent_UR to ensure that the resource manager that has taken the SDSRM
role is always informed of the results of the UR and allows the resource manager
to safely prevote its BACKOUT and COMMIT exits.

Environment

Authorization: Supervisor state, or PKM allowing keys 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRABAK)
64 bit (ATR4ABAK)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be in the primary address space and

addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

© Copyright IBM Corp. 1997, 2013 225

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To use the service:
v The resource manager state must be run.
v The unit of recovery state must be in-flight or in-doubt.

CAUTION:
The resource manager must ensure that no application can be updating protected
resources for the unit of recovery being backed out. This is necessary to ensure
that no resource manager taking part in the unit of recovery sees updates being
made on behalf of a unit of recovery at the same time as they are executing
syncpoint processing.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Backout_Agent_UR

226 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications

None.

Syntax

CALL ATRABAK
(return_code
,UR_interest_token
,log_option)

CALL ATR4ABAK
(return_code
,UR_interest_token
,log_option)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Backout_Agent_UR service.

UR_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR.

log_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how RRS is to process log entries for the unit of recovery. Code one
of the following values:

Backout_Agent_UR

Chapter 7. Callable resource recovery services 227

Constant in
Hexadecimal
(Decimal)
Equate Symbol Description

X'0'
(0)
ATR_DEFER_IMPLICIT

Meaning: RRS is to delete the log record when the UR
state changes to forgotten. The deletion is an unforced
deletion.

Your resource manager will not call the
Forget_Agent_UR_Interest service.

X'1'
(1)
ATR_DEFER_EXPLICIT

Meaning: RRS must keep the log record for the unit
of recovery until your resource manager calls the
Forget_Agent_UR_Interest service. The log_option
specified on Forget_Agent_UR_Interest then
determines how RRS is to process the log entry.

Your resource manager will call the
Forget_Agent_UR_Interest service.

X'2'
(2)
ATR_IMMEDIATE

Meaning: RRS is to immediately delete from the log
the resource manager's interest in the UR. RRS
hardens a new log record without the interest before
driving any additional exit routines.

Abend codes

The call might result in an abend X'5C4' with a reason code of either X'001A0000'
or X'001A0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the program, GPR 15 and return_code contain a
hexadecimal return code.

Return Codes
in Hexadecimal
Equate Symbol Description

0
ATR_OK

Meaning: The backout operation completed
successfully. All protected resources have
been returned to the previous state of
consistency.

If the resource manager has taken the
SDSRM role, and the log_option is
ATR_IMMEDIATE, RRS will have deleted its
interest before returning control from the
service.

Action: Continue normal processing.

Backout_Agent_UR

228 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Codes
in Hexadecimal
Equate Symbol Description

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks; no
locks can be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
level does not support this service. The
system rejects the service call.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

12D
ATR_BACKED_OUT_OUTCOME_

PENDING

Meaning: The backout operation completed.
However, the state of one or more of the
protected resources is not known.

Action: Continue normal processing for a
backed out unit of recovery.

12E
ATR_BACKED_OUT_OUTCOME_

MIXED

Meaning: The backout operation completed.
However, at least one of the protected
resources has advanced to a new
synchronization state.

Action: Report the error to the other
transactional participants.

370
ATR_URI_TOKEN_INV

Meaning: The specified UR_interest_token
does not represent a valid expression of
interest. This condition can occur after RRS
has terminated and restarted.

Action: The system rejects this service
request. Check program logic for probable
coding error.

Backout_Agent_UR

Chapter 7. Callable resource recovery services 229

Return Codes
in Hexadecimal
Equate Symbol Description

395
ATR_LOG_OPT_INV

Meaning: The specified log_option value is
not valid.

Action: The system rejects this service
request. Check program logic for probable
coding error.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager state is not
valid for this request.

Action: The system rejects this service
request. Check program logic for probable
coding error.

702
ATR_RM_EXITS_UNSET

Meaning: RRS has unset the RRS exit
routines for this resource manager.

Action: The system rejects this service
request. The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

731
ATR_UR_STATE_ERROR

Meaning: If this service was called to
resolve an in_doubt UR, the in-doubt
condition might have already been resolved
by operator action. If the service was called
to back out an in-flight UR, the application
might have already requested backout. Call
Retrieve_UR_Data or
Retrieve_Side_Information to obtain
information about the state of the UR. If you
receive this return code, you must call
Forget_Agent_UR to complete processing for
the UR.

Action: Call Forget_Agent_UR to complete
the processing of this UR.

74A
ATR_NOT_SERVER_DSRM

Meaning: The resource manager does not
have the server distributed syncpoint
resource manager role for the unit of
recovery.

Action: The system rejects this service
request. Check program logic for probable
coding error.

750
ATR_RESPOND_CONTINUE_REQUIRED

Meaning: The resource manager must call
Respond_to_Retrieved_Interest before it can
call Backout_Agent_UR for this interest.

Action: The system rejects this service
request. Call Respond_to_Retrieved_Interest,
then call Backout_Agent_UR for this interest.

Backout_Agent_UR

230 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Codes
in Hexadecimal
Equate Symbol Description

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error.

Action: The system rejects this service
request. Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager needs to back out a unit of
recovery. Storage for the call parameters has been allocated.
...
URI_TOKEN = MY_URI_TOKEN
FTOPT=ATR_DEFER_IMPLICIT
CALL ATRABAK(RC,URI_TOKEN,FTOPT)...

Backout_UR (ATRBACK, ATR4BACK)
v ATRBACK is for AMODE(31) callers.
v ATR4BACK is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager or application program calls the Backout_UR service to
indicate that the changes for the unit of recovery (UR) are not to be made. In
response, RRS requests that the resource managers return their resources to the
values they had before the UR was processed, then issues a return code to the
caller.

This call performs the same services as the Application_Backout_UR (SRRBACK)
service, with one exception: Backout_UR provides return codes for many error
conditions that cause Application_Backout_UR to abnormally end the calling
program with abend code X'5C4'. For a description of Application_Backout_UR,
see z/OS MVS Programming: Callable Services for High-Level Languages.

Backout_Agent_UR

Chapter 7. Callable resource recovery services 231

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRBACK)
64 bit (ATR4BACK)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL Definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The UR state must be in-reset or in-flight.

The UR must not be in local transaction mode.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

Backout_UR

232 z/OS V2R1.0 MVS Programming: Resource Recovery

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRBACK
(return_code)

CALL ATR4BACK
(return_code)

Parameters

The parameters are explained as follows:

return_code
Returned parameter:
v Type: Integer
v Character set: N/A
v Length: Full word

Contains the return code from the Backout_UR service.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00170000' or
X'00170001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Backout_UR

Chapter 7. Callable resource recovery services 233

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks; no
locks can be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
level does not support this service. The
system rejects the service call.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

Backout_UR

234 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

12D
ATR_BACKED_OUT_OUTCOME_PENDING

Meaning: Environmental error. RRS
requested that the resource managers back
out the changes to the resources. The
backout was not completed. The reason
might be that:

v A resource manager failed with a
protected interest in an incomplete UR.

v RRS failed before UR processing is
completed.

RRS cannot determine if one or more of the
protected resources was backed out.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

12E
ATR_BACKED_OUT_OUTCOME_MIXED

Meaning: Environmental error. The
requested backout of changes was
completed; however, one or more of the
protected resources were changed.

Action: Same as the action for return code
12D.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a
valid state or a valid transaction mode for
the service call. The UR state must be
in-reset or in-flight. The transaction mode
must not be local. The system rejects the
service call.

Action: Check the calling program for a
probable coding error or an application
environment configuration error. Correct the
calling program and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Backout_UR

Chapter 7. Callable resource recovery services 235

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

F05
ATR_UNEXPECTED_CTX_ERROR

Meaning: Environmental error. The service
call encountered an unexpected error from a
context services service. The system rejects
the service call.

Action: Examine the dump from context
services and correct the problem, then rerun
the calling program.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the calling program backs out a UR.
...
CALL ATRBACK (RC)...

Begin_Restart (ATRIBRS, ATR4IBRS)
v ATRIBRS is for AMODE(31) callers.
v ATR4IBRS is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Begin_Restart service to begin resource manager
restart. Before calling Begin_Restart, your resource manager should call the
Retrieve_Log_Name service to check log names and tokens to make sure the restart
logs are the same as the previous logs. After calling Begin_Restart, your resource
manager should call the Retrieve_UR_Interest service repetitively to obtain your
interests in incomplete units of recovery (URs).

In response to the Begin_Restart call, RRS issues a return code. If the code is
ATR_HARDENED_DATA_LOST, some hardened data, which is stored in an RRS log on
nonvolatile external storage, has been lost; the calls to the Retrieve_UR_Interest
service might not return all of your interests in incomplete URs. In this case, your
resource manager should not back out any URs that the Retrieve_UR_Interest
service does not return.

Backout_UR

236 z/OS V2R1.0 MVS Programming: Resource Recovery

Cold Starts: If hardened data was lost from an RRS log, this restart might appear
as a cold start. Your resource manager can recognize a cold start when its call to
the Retrieve_Log_Name service does not return the name of its previous resource
manager log.

Your resource manager's first start is always a cold start.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRIBRS)
64 bit (ATR4IBRS)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the resource manager token specified in the
call must be in set state, which means it has registered and set its exit routines
with RRS. After a successful Begin_Restart call, the resource manager enters the
restart state.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

Begin_Restart

Chapter 7. Callable resource recovery services 237

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

Calls to the Begin_Restart service can significantly affect performance because two
events must be serialized across the sysplex:
v RRS initialization
v Begin_Restart calls from other resource managers

Also, while processing the call, RRS might need to read one or more logs.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRIBRS
(return_code
,resource_manager_token)

CALL ATR4IBRS
(return_code
,resource_manager_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter

Type: Integer
Character Set: N/A
Length: 4 bytes

Begin_Restart

238 z/OS V2R1.0 MVS Programming: Resource Recovery

Is a fullword that receives an integer return code from the service.

,resource_manager_token
Supplied parameter

Type: Character string
Character Set: No restrictions
Length: 16 bytes

Is the resource manager token. The token is a 16-byte character string that
identifies the resource manager. Your resource manager received the token
from the Register_Resource_Manager service.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00030000' or
X'00030001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

Begin_Restart

Chapter 7. Callable resource recovery services 239

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
set state. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

738
ATR_RM_ATTR_INC

Meaning: Program error. For the incomplete
UR interests, the resource manager had not
issued Set_Exit_Information calls to set all of
the required exit routines.

For example, if the resource manager has a
distributed syncpoint role, a
DISTRIBUTED_SYNCPOINT exit routine is
required. However, the resource manager
has not called Set_Exit_Information to set a
DISTRIBUTED_SYNCPOINT exit routine.

The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F01
ATR_HARDENED_DATA_LOST

Meaning: System error. RRS has lost some
hardened data. The system accepts the
Begin_Restart call, but following calls to the
Retrieve_UR_Interest service might not
return all of the incomplete UR interests.

Action: The resource manager should
process the incomplete URs obtained from
the Retrieve_UR_Interest service. The
resource manager should not, however, back
out any URs that Retrieve_UR_Interest does
not return.

Begin_Restart

240 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F02
ATR_RESTART_WRONG_SYSTEM

Meaning: Environmental error. The resource
manager is not restarting on the correct
system. The resource manager's incomplete
URs are on another system in the sysplex.
The system rejects the service call.

Action: Restart the resource manager on the
correct system.

F07
ATR_RM_GROUP_RRS_DOWNLEVEL

Meaning: Environmental error. The
restarting Resource Manager belongs to an
RM group which has utilized an RRS
function that is not supported by this
version of RRS. The RRS on this system is
downlevel and cannot honor the request to
restart. The system rejects the service call.

Action: Restart the resource manager on the
correct system.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to begin its restart.
...
RM_TOKEN = MY_RM_TOKEN
CALL ATRIBRS (RC,RM_TOKEN)...

Begin_Transaction (ATRBEG, ATR4BEG)
v ATRBEG is for AMODE(31) callers.
v ATR4BEG is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A work manager calls the Begin_Transaction service to begin a transaction and set
the transaction mode. Begin_Transaction allows an application to clearly mark the
beginning boundary of a transaction. The transaction mode, which affects resource
managers within the boundaries of this transaction, can be local or global, as
follows:
v In local mode, resource managers within the transaction boundaries must behave

independently: the application can use RM-specific functions to commit and roll
back any connections it might have to resource managers. If the application has
multiple connections to the same resource manager, the resource manager treats
the resources affected via each connection as completely separate for the
purposes of syncpoint processing. Committing or backing out the resources
affected by one connection does not affect the resources affected by another

Begin_Restart

Chapter 7. Callable resource recovery services 241

connection. RRS prevents the use of any global commit functions that would act
upon a UR that is in local transaction mode. Local URs begun with
Begin_Transaction must be ended with a call to the End_Transaction service.

v In global mode, resource managers are to accept two-phase commit cues from
RRS, and all updates made through RRS-compliant resource managers are made
atomically. In global mode, an application cannot determine two different
outcomes for any of its connections under a global unit of recovery; the resource
managers prevent the application from using RM-specific local commit
functions.

Environment

The requirements for the caller are:

Minimum authorization: Any
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRBEG)
64 bit (ATR4BEG)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL Definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The current UR state must be in-reset.

The current default environment setting for transaction mode must not be
hybrid-global.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Begin_Transaction

242 z/OS V2R1.0 MVS Programming: Resource Recovery

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRBEG
(return_code
,diag_area
,transaction_mode
,ur_token
,ur_identifier)

CALL ATR4BEG
(return_code
,diag_area
,transaction_mode
,ur_token
,ur_identifier)

Parameters

The parameters are explained as follows:

return_code
Returned parameter

Begin_Transaction

Chapter 7. Callable resource recovery services 243

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Begin_Transaction service.

,diag_area
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

Contains diagnostic data from Begin_Transaction to help IBM Service
determine the cause of a Begin_Transaction failure. Be sure to log this data
when recording any information about a Begin_Transaction failure.

,transaction_mode
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the transaction mode of the transaction to be started. Specify one of
the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_GLOBAL_MODE

Set the transaction mode for the current UR
to global, and set the UR state to In-Flight.

2
(2)
ATR_LOCAL_MODE

Set the transaction mode for the current UR
to local, and set the UR state to In-Flight.

,ur_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the token that uniquely represents the new UR. UR tokens do not
persist across restarts of the resource manager, RRS, or the system.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives a UR identifier (URID) from the service. The URID uniquely identifies
the UR. URIDs returned for global URs persist across restarts of the resource

Begin_Transaction

244 z/OS V2R1.0 MVS Programming: Resource Recovery

manager, RRS, or the system. URIDs are also returned for local URs, but they
do not persist across failures because RRS does not harden any information
about local URs.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00023000' or
X'00023001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

Begin_Transaction

Chapter 7. Callable resource recovery services 245

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

363
ATR_TRAN_MODE_INV

Meaning: Program error. The transaction
mode specified in the call was not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36A
ATR_DU_TERMINATING

Meaning: Environmental error. The task
associated with the context specified in the
call is ending. The system rejects the service
call.

Action: None.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a
valid state for the service call. The UR must
be in the in-reset state. RRS does not
support nested transactions. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

804
ATR_HYBRID_GLOBAL_MODE_ERROR

Meaning: Program error. The current RRS
default for transaction mode is
ATR_HYBRID_GLOBAL_MODE;
hybrid-global mode is not valid for this
service. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the work manager issues a call to begin a local
transaction.
...
TRAN_MODE = ATR_LOCAL_MODE
CALL ATRBEG(RC,DIAG_DATA,TRAN_MODE,UR_TOKEN,URID)

Begin_Transaction

246 z/OS V2R1.0 MVS Programming: Resource Recovery

IF RC = ATR_OK THEN...

Change_Interest_Type (ATRSIT, ATR4SIT)
v ATRSIT is for AMODE(31) callers.
v ATR4SIT is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Change_Interest_Type service to change an interest in
a unit of recovery (UR) from unprotected to protected. The resource manager can
change the interest type until the UR enters the in-prepare state.

On the call, you also specify action for a resource manager failure and provide
persistent interest data.

In response to the call, resource recovery services/MVS (RRS) returns:
v A return code
v A UR identifier (URID)

Action for Resource Manager Failure: On the Change_Interest_Type call, you can
specify how RRS should process requests to commit the UR if your resource
manager becomes:
v Unregistered: Your resource manager is no longer registered as a resource

manager. See “Register_Resource_Manager (CRGGRM, CRG4GRM)” on page 137
for a description of how a resource manager can become unregistered.

v Unset: Your resource manager's exit routines are no longer set with RRS.

RRS reacts to a resource manager failure as follows:
v Standard processing: RRS backs out this UR, if the state of the UR is in-reset,

in-flight, in-state-check, or in-prepare.

Persistent interest data: In the Change_Interest_Type call, your resource manager
can provide persistent interest data for the protected interest. When hardening
information for the interest in an RRS log, RRS records the persistent interest data.
Because the data is hardened, it will be available if your resource manager restarts
or if RRS restarts, forcing your resource manager to restart.

Your resource manager can also provide persistent interest data in a call to:
Express_UR_Interest, Set_Persistent_Interest_Data, or Retain_Interest. Your resource
manager can retrieve persistent interest data in a call to: Retrieve_UR_Interest or
Retrieve_Interest_Data.

URID: Save the returned UR identifier (URID) with the information about the UR
in your resource manager log. During restart processing after your resource
manager, RRS, or the system fails, your resource manager obtains the URID for an
incomplete UR from a Retrieve_UR_Interest call. Compare the URID from
Retrieve_UR_Interest with the URIDs in your resource manager log to find the
data for the incomplete UR.

Your resource manager can also obtain the URID from a call to:
Express_UR_Interest, Retrieve_UR_Interest, Retrieve_UR_Data, or Retain_Interest.

Begin_Transaction

Chapter 7. Callable resource recovery services 247

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSIT)
64 bit (ATR4SIT)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions

Programming Requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The UR state must be in-flight or in-state-check.

The state of the resource manager associated with the UR interest token specified
in the call must be run, which means it has registered, set its exit routines with
RRS, and completed restart.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Change_Interest_Type

248 z/OS V2R1.0 MVS Programming: Resource Recovery

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSIT
(return_code
,ur_interest_token
,ur_identifier
,interest_type
,failure_action
,persistent_interest_data_length
,persistent_interest_data)

CALL ATR4SIT
(return_code
,ur_interest_token
,ur_identifier
,interest_type
,failure_action
,persistent_interest_data_length
,persistent_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Change_Interest_Type service.

Change_Interest_Type

Chapter 7. Callable resource recovery services 249

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the UR. Your resource manager received the
token from the Express_Interest service or the Retain_Interest service.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives a UR identifier (URID) from the service. The URID uniquely identifies
the UR.

,interest_type
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the new type of interest the resource manager has in the UR. Specify
the interest type as follows:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_PROTECTED

Protected: The resource manager is now
expressing a protected interest in the UR.

,failure_action
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how RRS should process commit requests if your resource manager
becomes unregistered or unset. Specify the failure action as follows:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Action

0
(0)
ATR_FAIL_STANDARD

Standard processing

Change_Interest_Type

250 z/OS V2R1.0 MVS Programming: Resource Recovery

,persistent_interest_data_length
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the length in bytes of the persistent interest data. The length can be 0
through 4096.

,persistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in persistent_interest_data_length

The persistent interest data for your resource manager's interest in the UR. RRS
records this data in an RRS log.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'000F0000'
or X'000F0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Change_Interest_Type

Chapter 7. Callable resource recovery services 251

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

371
ATR_INTEREST_TYPE_INV

Meaning: Program error. The interest_type
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

372
ATR_FAILURE_ACTION_INV

Meaning: Program error. The failure_action
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

376
ATR_PERSISTENT_DATA_LEN_INV

Meaning: Program error. The length
specified in the persistent_interest_data_len
parameter in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in run state. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Change_Interest_Type

252 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a
valid state for the service call. The UR state
must be in-reset or in-flight. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

739
ATR_PROTECTED_INTEREST

Meaning: Program error. The URI_TOKEN
specified in the call represents an interest
that is already protected. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

749
ATR_MAX_UR_LOG_DATA_EXCEEDED

Meaning: Environmental error. This request
will exceed the maximum amount of data
that RRS can log for a UR. The system
rejects the service call.

Action: Fail the client program request or
back out the UR. Verify that the space set up
for logging is adequate.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Change_Interest_Type

Chapter 7. Callable resource recovery services 253

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Change_Interest_Type was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to change one of its
interests in a UR from unprotected to protected.
...
URI_TOKEN = MY_URI_TOKEN
P_DATA_LEN = LENGTH(MY_P_DATA)
P_DATA = MY_P_DATA
INT_TYPE = ATR_PROTECTED
FAIL_ACT = ATR_FAIL_STANDARD
CALL ATRSIT(RC,URI_TOKEN,URID,INT_TYPE,FAIL_ACT,

P_DATA_LEN,P_DATA)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Commit_Agent_UR (ATRACMT, ATR4ACMT)
v ATRACMT is for AMODE(31) callers.

Change_Interest_Type

254 z/OS V2R1.0 MVS Programming: Resource Recovery

v ATR4ACMT is for AMODE(64) callers and allows parameters in 64 bit
addressable storage.

A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role calls Commit_Agent_UR to tell RRS to commit the unit of
recovery (UR) associated with the specified UR interest. The SDSRM can invoke
this service to resolve an in_doubt unit of recovery to in_commit.

Commit_Agent_UR changes the unit of recovery state to in_forget or forgotten.

If a resource manager with an interest in a UR has taken the SDSRM role, RRS will
implicitly change the log_option to ATR_DEFER_EXPLICIT under any of the
following conditions:
v When an RRS panel or the ATRSRV macro is used to resolve an in-doubt UR.
v When RRS re-creates a committed or backed out UR during restart processing.

If any of these conditions has occurred, RRS returns the ATR_UR_STATE_ERROR
return code. The UR might be in any state, but, once it reaches in-forget, it will
remain in that state until the Forget_Agent_UR service is called. RRS waits for
Forget_Agent_UR to ensure that the resource manager that has taken the SDSRM
role is always informed of the results of the UR and allows the resource manager
to safely prevote its BACKOUT and COMMIT exits.

Environment

Authorization: Supervisor state, or PKM allowing keys 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRACMT)
64 bit (ATR4ACMT)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be in the primary address space and

addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To use the service:
v The resource manager state must be run.
v The unit of recovery state must be in-doubt.

Commit_Agent_UR

Chapter 7. Callable resource recovery services 255

CAUTION:
The resource manager must ensure that no application can be updating protected
resources for the unit of recovery being committed. This is necessary to ensure
that no resource manager taking part in the unit of recovery sees updates being
made on behalf of a unit of recovery at the same time as they are executing
syncpoint processing.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

CALL ATRACMT
(return_code
,UR_interest_token
,log_option)

Commit_Agent_UR

256 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATR4ACMT
(return_code
,UR_interest_token
,log_option)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code for the Commit_Agent_UR service.

UR_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. The resource manager
received the token from: Express_UR_Interest, Retrieve_UR_Interest, or
Retain_Interest.

log_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies how RRS is to process log entries for the unit of recovery. Code one
of the following values:

Constant in
Hexadecimal
(Decimal)
Equate Symbol Description

X'0'
(0)
ATR_DEFER_IMPLICIT

Meaning: RRS is to logically delete the log record
when the unit of recovery state changes to Forgotten.

Your resource manager will not call the
Forget_Agent_UR_Interest service.

X'1'
(1)
ATR_DEFER_EXPLICIT

Meaning: RRS must keep the log record for the unit
of recovery until your resource manager calls the
Forget_Agent_UR_Interest service. The log_option
specified on Forget_Agent_UR_Interest then
determines how RRS processes the log entry.

Your resource manager will call the
Forget_Agent_UR_Interest service.

Commit_Agent_UR

Chapter 7. Callable resource recovery services 257

Constant in
Hexadecimal
(Decimal)
Equate Symbol Description

X'2'
(2)
ATR_IMMEDIATE

Meaning: RRS is to immediately delete from the log
the interest the server distributed syncpoint manager
(SDSRM) has in the UR. RRS hardens a new log
record without the interest before driving any
additional exit routines.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'001B0000'
or X'001B0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: The commit operation completed
successfully. All protected resources have
advanced to a consistent state.

Action: Continue normal processing.

65
ATR_COMMITTED_OUTCOME_ PENDING

Meaning: The commit operation completed.
The RRS decision was to advance to a
consistent state. However, the state of one or
more of the protected resources is not
known.

Action: Continue normal processing for a
committed unit of recovery.

66
ATR_COMMITTED_OUTCOME_ MIXED

Meaning: The commit operation completed.
The RRS decision was to advance to a
consistent state. However, the state of one or
more of the protected resources has been
returned to the previous consistent state.

Action: Report the error to the other
transactional participants.

103
ATR_INTERRUPT_STATUS_INV

Meaning: The caller is disabled. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

Commit_Agent_UR

258 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: The caller is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a
probable coding error.

107
ATR_UNSUPPORTED_RELEASE

Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

370
ATR_URI_TOKEN_INV

Meaning: The specified UR_interest_token
does not represent a valid expression of
interest. This condition can occur after RRS
has terminated and restarted. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

395
ATR_LOG_OPT_INV

Meaning: The specified log_option value is
not valid. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager state is not
valid for this request. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

702
ATR_RM_EXITS_UNSET

Meaning: RRS has unset the RRS exit
routines for this resource manager. The
system rejects this service request.

Action: The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

Commit_Agent_UR

Chapter 7. Callable resource recovery services 259

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

731
ATR_UR_STATE_ERROR

Meaning: The UR state is not valid for this
request. If this service was called to resolve
an in_doubt UR, the in-doubt condition
might have already been resolved by
operator action. Call Retrieve_UR_Data or
Retrieve_Side_Information to obtain
information about the state of the UR. If you
receive this return code, you must call
Forget_Agent_UR to complete processing for
the UR.

Action: Call Forget_Agent_UR to complete
the processing of this UR.

74A
ATR_NOT_SERVER_DSRM

Meaning: The resource manager does not
have the server distributed syncpoint
resource manager role for the unit of
recovery. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

750
ATR_RESPOND_CONTINUE_ REQUIRED

Meaning: The resource manager must call
Respond_to_Retrieved_Interest before it can
call Commit_Agent_UR for this interest.

Action: The system rejects this service
request. Call Respond_to_Retrieved_Interest,
then call Commit_Agent_UR for this interest.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Commit_Agent_UR

260 z/OS V2R1.0 MVS Programming: Resource Recovery

Example

In the pseudocode example, the resource manager wants to commit the unit of
recovery. Storage for the call parameters has been allocated.
...
URI_TOKEN = MY_URI_TOKEN
FTOPT=ATR_DEFER_IMPLICIT
CALL ATRACMT(RC,URI_TOKEN,FTOPT)...

Commit_UR (ATRCMIT, ATR4CMIT)
v ATRCMIT is for AMODE(31) callers.
v ATR4CMIT is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager or application program calls the Commit_UR service to
indicate that the changes for the unit of recovery (UR) are to be made permanent.
To process the call, RRS requests that the resource managers make the changes
permanent, then issues a return code to the calling program.

This call performs the same services as the Application_Commit_UR call
(SRRCMIT), but provides return codes for many error conditions that cause
Application_Commit_UR to abnormally end the calling program with abend code
X'5C4'. For a description of Application_Commit_UR, see z/OS MVS Programming:
Callable Services for High-Level Languages.

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRCMIT)
64 bit (ATR4CMIT)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: MVS standard linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Commit_Agent_UR

Chapter 7. Callable resource recovery services 261

Restrictions

The UR state must be in-reset or in-flight.

The UR must not be in local transaction mode.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRCMIT
(return_code)

Commit_UR

262 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATR4CMIT
(return_code)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Commit_UR service.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00180000' or
X'00180001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

65
ATR_COMMITTED_OUTCOME_PENDING

Meaning: Environmental error. The commit completed.
However, RRS cannot determine if all of the protected
resources were changed.

Action: The action by the calling program depends on
the system environment. Some possible actions are:

v Display a warning message to the end user.

v Write an exception entry into an output log.

v Abnormally end the application because the resource
manager will not allow any further changes to the
resource until the situation is resolved.

66
ATR_COMMITTED_OUTCOME_

MIXED

Meaning: Environmental error. The commit completed.
However, one or more of the protected resources were
not changed.

Action: Same as the action for return code 65.

Commit_UR

Chapter 7. Callable resource recovery services 263

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

C8
ATR_PROGRAM_STATE_CHECK

Meaning: Environmental error. The commit failed. The
resource managers may have rejected the commit
because one of the following occurred:

v A communications interface conversation that is a
protected resource is not in a required state: send,
send pending, defer receive, defer allocate,
sync_point, sync_point send, or sync_point
deallocate.

v A protected communications interface conversation is
in send state. The program started sending the basic
conversation logical record, but did not finish sending
it.

v A resource on the same system as the application is
not in the proper state for the commit.

Action: Initiate an action by a resource manager to get its
resource to a committable state. Issue the call again.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling program is
disabled; the interrupt status must be enabled for I/O
and external interrupts. The system rejects the service
call.

Action: Check the calling program for a probable coding
error. Correct the calling program and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling program is not in
task mode, which is the required mode. The system
rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the calling program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling program is holding
one or more locks; no locks must be held. The system
rejects the service call.

Action: Check the calling program for a probable coding
error. Correct the calling program and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system release does
not support this service. The system rejects the service
call.

Action: Remove the calling program from the system,
and install it on a system that supports RRS. Then rerun
the calling program.

12C
ATR_BACKED_OUT

Meaning: Environmental error. The commit failed. The
resource managers backed out the changes, returning the
resources to the values they had before the UR was
processed.

Action: Same as the action for return code 65.

Commit_UR

264 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

12D
ATR_BACKED_OUT_OUTCOME_

PENDING

Meaning: Environmental error. The commit failed. RRS
requested that the resource managers back out the
changes to the resources. However, RRS cannot
determine if one or more of the protected resource was
backed out.

Action: Same as the action for return code 65.

12E
ATR_BACKED_OUT_OUTCOME_

MIXED

Meaning: Environmental error. The commit failed. RRS
requested that the resource managers back out the
changes to the resources. One or more resources were
backed out, but one or more were changed.

Action: Same as the action for return code 65.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a valid state
or a valid transaction mode for the service call. The UR
state must be in-reset or in-flight. The transaction mode
cannot be local. The system rejects the service call.

Action: Check the calling program for a probable coding
error or an application environment configuration error.
Correct the calling program and rerun it.

74C
ATR_SDSRM_DISALLOWS_COMMIT

Meaning: Program error. The commit failed. Another
resource manager involved in this UR has taken the
server distributed syncpoint resource manager (SDSRM)
role. Only the SDSRM can initiate the syncpoint
operation for this UR. The system rejects this service
request.

Action: Check the calling program for a probable coding
error. Correct the calling program and rerun it.

756
ATR_CASCADED_UR_DISALLOWS_COMMIT

Meaning: Program error. The commit failed. The current
UR is a child cascaded-UR. Only the top-level UR of a
cascaded-UR family can be committed. The system
rejects this service request.

Action: Check the calling program for a probable coding
error. Correct the calling program and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service request. Retry the
request later. Before retrying the request, the resource
manager must reset its RRS exit routine information and
begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the UR, RRS
has encountered an unexpected error that might have
damaged the UR. The system rejects the service call.

Action: Contact the system programmer who maintains
RRS at your installation. Manual intervention might be
needed to restore consistent resources.

Commit_UR

Chapter 7. Callable resource recovery services 265

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F05
ATR_UNEXPECTED_CTX_ERROR

Meaning: Environmental error. The service call
encountered an unexpected error from a context services
service. The system rejects the service call.

Action: Examine the dump from context services and
correct the problem, then rerun the calling program.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was called
encountered an unexpected error. The system rejects the
service call.

Action: Search problem reporting databases for a fix for
the problem. If no fix exists, contact the IBM Support
Center.

Example

In the pseudocode example, the calling program commits a UR.
...
CALL ATRCMIT (RC)...

Create_Cascaded_UR (ATRCCUR2, ATRCCUR3, ATR4CCUR)
A work manager calls the Create_Cascaded_UR service to create a UR that is
associated with an existing UR. Typically, a work manager would do this when a
single work request involves multiple work managers. The initial work manager
would obtain the initial work context that represented the work request. When the
work request moved from the execution environment of the original work manager
into another work manager's environment, the latter work manager could obtain a
new work context to represent the work request, allowing it to manipulate the
work context as it needs. There are three versions of Create_Cascaded_UR, each
with different parameters.
v ATRCCUR2 is for AMODE(31) callers and is the basic version of the service.
v ATRCCUR3 is for AMODE(31) callers and adds create options support.
v ATR4CCUR is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and adds create options support.

Code your resource manager to call the version that includes the support you
need.

By using the Create_Cascaded_UR service to create a new UR for the new work
context that is cascaded from the original UR, the second work manager ensures
that the resources changed by the work request when it is running in its new
execution environment are committed or backed out atomically along with those
resources changed while the work request was running in other environments.

A work manager that creates a cascaded UR is responsible for informing RRS
when the application running under the UR is application execution complete by
calling the Set_Side_Information service specifying the ATR_APPL_COMPLETE
information identifier.

Commit_UR

266 z/OS V2R1.0 MVS Programming: Resource Recovery

Express_UR_Interest (ATREINT2, ATREINT4, ATREINT5 or ATR4EINT) can also be
used to create a cascaded UR, if the creator also wants to express interest in the
UR.

Multisystem cascaded transactions: When one work manager requests another
work manager, residing on a different system, to become part of an existing work
request, the requesting work manager is responsible for transferring all of the data
needed by the new work manager, including the UR token representing the work
request. The new work manager may then use the Create_Cascaded_UR service to
create a new UR, associated with a new work context, to be cascaded from the
received UR token.

As with normal (non-multisystem) cascaded transactions, a work manager that
creates a multisystem cascaded transaction is responsible for informing RRS when
the part of the application executing under a multisystem cascaded UR is complete
by using the Set_Side_Information service to mark the UR as application-complete.

See “Cascaded transactions” on page 69 for more information about cascaded
transactions, including “Multisystem cascaded transactions” on page 70 for more
information about multisystem cascaded transactions.

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRCCUR2, ATRCCUR3)
64 bit (ATR4CCUR)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: MVS standard linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the child UR state must be in-reset and the parent UR must be
in-reset or in-flight.

The parent UR must not be in local transaction mode.

Create_Cascaded_UR

Chapter 7. Callable resource recovery services 267

When the resource manager issues the call in SRB mode:
v The call cannot specify a child_context_token of 0.
v The call cannot specify a parent_UR_token of 0.

A caller that is PKM 8–15 problem state must specify a parent_UR_token for a UR
that is associated with a DU native context associated with a task in the current
home address space, or a private context owned by a PKM 8–15 problem state
resource manager registered in the home address space.

A caller that is PKM 8–15 problem state must specify a child_context_token for a
context that is either a DU native context associated with a task in the current
home address space, or a private context owned by a PKM 8–15 problem state
resource manager registered in the home address space.

Note: A call to the Retrieve_UR_Data service that does not specify
ATR_EXTENDED_STATES for the states_option could cause a UR to go into an
in-flight state. Once a UR has gone in-flight, it can no longer be made into a
cascaded UR.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Create_Cascaded_UR

268 z/OS V2R1.0 MVS Programming: Resource Recovery

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL ATRCCUR2
(return_code
,parent_UR_token
,child_context_token
,child_UR_token
,child_UR_identifier)

CALL ATRCCUR3
(return_code
,parent_UR_token
,child_context_token
,child_UR_token
,child_UR_identifier
,create_options)

CALL ATR4CCUR
(return_code
,parent_UR_token
,child_context_token
,child_UR_token
,child_UR_identifier
,create_options)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Create_Cascaded_UR service.

,parent_UR_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token of the UR that is to be the parent of the UR specified by the
child_context_token:

Create_Cascaded_UR

Chapter 7. Callable resource recovery services 269

v 0: Binary zero specifies the current UR associated with the application's task
active on the current system. Binary zero may be specified for either the
parent_UR_token or the child_context_token, but not both.

v token: The UR token of a particular UR. The UR token may be from another
system in the same logging group.

Your resource manager may have received the parent_UR_token from the
Retrieve_UR_Data service or from a work manager from another system. If the
UR token was received from another system, RRS will associate the new child
UR, which has a context specified by child_context_token, with the top-level UR
of the cascaded UR family that resides on the system where the work request
originated.

,child_context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token of the context associated with the UR that is to be the child
of the UR specified by the parent_UR_token:
v 0: Binary zero specifies the current UR associated with the application's task.

Binary zero may be specified for either the parent_UR_token or the
child_context_token, but not both.

v token: The token of the context associated with a particular UR.

Your resource manager may have received the parent_UR_token from the
Retrieve_UR_Data service.

,child_UR_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the token that uniquely represents the new unit of recovery.

Note: UR tokens do not persist across restarts of the resource manager, RRS, or
the system.

,child_UR_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives a UR identifier (URID) from the service. The URID uniquely identifies
the UR.

Note: Unlike UR tokens, URIDs are persistent across restarts of the resource
manager, RRS, and the system.

,create_options
Supplied parameter
v Type: Bit string
v Character Set: N/A
v Length: 4bytes

Create_Cascaded_UR

270 z/OS V2R1.0 MVS Programming: Resource Recovery

On ATRCCUR3 calls, specifies various options that determine how RRS will
process this interest. Each of the bits in create_options is either reserved or has a
specific meaning. Each reserved bit must be specified as zero. Each other bit
can be specified as either zero or one. The bit specifications are:

Bit
Positions

Constant in:
Hexadecimal
Equate Symbol Description

0–22 0 Reserved

23
00000000
ATR_DONT_END_

CONTEXT_MASK

00000100
ATR_END_

CONTEXT_MASK

Auto context termination

A resource manager specifies zero when it does
not want RRS to end the work context associated
with the UR in which interest is being expressed
when the UR completes.

A resource manager specifies one when it wants
RRS to end the work context associated with the
UR in which interest is being expressed when the
UR completes.
Note: IBM strongly recommends that one only be
specified by the resource manager that owns the
work context.

24–31 0 Reserved

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'001F0000'
or X'001F0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

Create_Cascaded_UR

Chapter 7. Callable resource recovery services 271

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
ATR_MODE_INV

Meaning: Program error. The calling
program specified 0 in parent_UR_token or
child_context_token, but the calling program
is not in task mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

39A
ATR_PARENT_UR_TOKEN_INV

Meaning: Program or environmental error.
The UR token specified in the
parent_UR_token parameter is not valid
because one of the following is true:

v It was coded incorrectly

v The parent transaction failed

v The system it resided on failed

v The coordinator system failed

v The RRS running on that system failed

v The parent UR belongs to a system that is
not in the same RRS logging group as this
system

If any of these conditions occurs, the system
rejects the service call.

Action: Check the calling program for a
probable coding error.

v If it's a program error, correct the program
and rerun it.

v If the work manager was creating a
multisystem cascaded UR, the work
manager must communicate the failure to
the work manager originating the request.

Installation action: Ensure that the
originating work manager and this work
manager are in the same RRS logging group.

Create_Cascaded_UR

272 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

39B
ATR_CHILD_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the child_context_token parameter
is not valid. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

39E
ATR_PARENT_DU_TERMINATING

Meaning: Environmental error. The task
associated with the UR represented by the
parent_UR_token parameter is ending. The
system rejects the service call.

Action: None.

39F
ATR_CHILD_DU_TERMINATING

Meaning: Environmental error. The task
associated with the context specified by the
child_context_token parameter is ending. The
system rejects the service call.

Action: None.

3A0
ATR_SAME_CURRENT_CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token and the
UR associated with the context represented
by the child_context_token are both 0. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A1
ATR_SAME_PARENT_

CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token, which
may have been specified with a 0, and the
UR associated with the context represented
by the child_context_token are the same UR.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A2
ATR_SAME_CHILD_CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token and the
UR associated with the context represented
by the child_context_token, specified with a 0,
are the same UR. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Create_Cascaded_UR

Chapter 7. Callable resource recovery services 273

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A4
ATR_PARENT_AUTH_FAILURE

Meaning: Program error. The caller is PKM
8–15 problem state, but specified a
parent_UR_token of a UR associated with a
context which:

v Does not belong to a PKM 8–15 problem
state resource manager registered in the
home address space.

v Is not a native context in the home
address space.

The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A5
ATR_CHILD_AUTH_FAILURE

Meaning: Program error. The caller is PKM
8–15 problem state, but specified a
child_context_token of a context which:

v Does not belong to a PKM 8–15 problem
state resource manager registered in the
home address space.

v Is not a native context in the home
address space.

The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3AD
ATR_CREATE_OPTIONS_INV

Meaning: Program error. The create_options
value specified on the call is not valid.
Either reserved bits were nonzero or an
unacceptable selection of options and
parameters was specified. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

743
ATR_PARENT_UR_

STATE_ERROR

Meaning: Program error. The UR specified
by the parent_UR_token is not in a valid state
for the service call. The UR must be in an
in-reset or in-flight state. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Create_Cascaded_UR

274 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

744
ATR_CHILD_UR_STATE_ERROR

Meaning: Program error. The UR associated
with the specified child_context_token is not
in a valid state for the service call. The UR
must be in an in-reset state. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

763
ATR_PARENT_LOCAL_TRAN_

MODE_INV

Meaning: Program error. The parent UR is
in local transaction mode. The system rejects
the service call.

Action: Check the calling program for a
probable coding error or an application
environment configuration error. Correct the
calling program and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Create_Cascaded_UR was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

Create_Cascaded_UR

Chapter 7. Callable resource recovery services 275

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the calling program attempts to create a parent-child
relationship between the current unit of recovery and another unit of recovery that
is to be the parent UR of the current UR. Storage for the call parameters has
already been allocated.
...
PARENT_URTOKEN = TOPURTOKEN
CHILD_CTOKEN = 0
COPTS = ATR_DONT_END_CONTEXT_MASK
CALL ATRCCUR3(RC, PARENT_URTOKEN, CHILD_CTOKEN, CHILDURTOKEN,

CHILDURID, COPTS)
IF RC=0 THEN

NEW_URTOKEN = CHILDURTOKEN
NEW_URID = CHILDURID

...

Delegate_Commit_Agent_UR (ATRADCT, ATRADCT1, ATR4ADCT)
A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role calls Delegate_Commit_Agent_UR to tell RRS to initiate
and complete a syncpoint operation for the unit of recovery (UR) associated with
the specified UR interest. This single call replaces a call to Prepare_Agent_UR,
possibly followed by a call to either Commit_Agent_UR or Backout_Agent_UR.

There are three versions of Delegate_Commit_Agent_UR.
v ATRADCT is for AMODE(31) callers and is the basic version of this service.
v ATRADCT1 is for AMODE(31) callers and allows the specification of the

commit_options mask option. This option allows RRS to delete the SDSRM
interest prior to driving syncpoint processing, freeing RRS to perform exit
optimization.

v ATR4DCT is for AMODE(64) callers, allows parameters in 64 bit addressable
storage, and allows the specification of the commit_options mask option. This
option allows RRS to delete the SDSRM interest prior to driving syncpoint
processing, freeing RRS to perform exit optimization.

When the SDSRM calls ATRADCT, RRS takes responsibility for making the commit
or backout decision for the UR based on the collective prepare vote. The UR will
bypass the in-doubt state and transition directly into in-commit or in-backout.

When the SDSRM calls ATRADCT1 or ATR4ADCT, if commit_options indicated that
the SDSRM's interest is to be removed, RRS deletes the SDSRM's interest and lets
other resource manager(s) take responsibility for making the commit or backout

Create_Cascaded_UR

276 z/OS V2R1.0 MVS Programming: Resource Recovery

decision. If there is only one other Resource Manager with a single expression of
interest, and it provides an Only_Agent exit, RRS will drive its Only_Agent exit.
When the Only_Agent exit returns control, RRS considers the UR processing to be
complete. If there is more than one Resource Manager or the only Resource
Manager did not provide an Only_Agent exit, RRS will perform a two-phase
commit processing for the UR, and commit or backout the UR based on the
collective prepare vote. In this case, UR will bypass the in-doubt state and
transition directly into in-commit or in-backout.

A successful call to Delegate_Commit_Agent_UR changes the UR state to either
in-forget or forgotten, depending on the value of log_option specified on the call. If
the return code is ATR_PROGRAM_STATE_CHECK, the UR state will remain
unchanged.

RRS will implicitly change the log_option to ATR_DEFER_EXPLICIT under any of
the following conditions:
v When the application backs out the UR through a call to the Backout_UR service

or the Application_Backout_UR service.
v When RRS recreates a committed or backed-out UR during restart processing.

If any of these conditions has occurred, RRS returns the ATR_UR_STATE_ERROR
return code. The UR might be in any state, but once it reaches in-forget, it will
remain in that state until the Forget_Agent_UR service is called.

RRS waits for Forget_Agent_UR to ensure that the resource manager that has taken
the SDSRM role is always informed of the results of the UR. This allows the
resource manager to safely prevote its BACKOUT and COMMIT exits.

With ATRADCT1 or ATR4ADCT, if the Delete Interest option has been requested
and a State Check Exit returns the ATRX_STATE_INCORRECT return code, the
syncpoint will be backed out because the SDSRM's interest was deleted prior to the
beginning of the syncpoint processing.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRADCT, ATRADCT1)
64 bit (ATR4ADCT)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be in the primary address space and

addressable by the caller.
Linkage: Standard MVS linkage conventions

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

Delegate_Commit_Agent_UR

Chapter 7. Callable resource recovery services 277

HLL Definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To use this service:
v The resource manager state must be run, which means that the UR interest

token specified in the call has registered, set its exit routines with RRS, and
completed restart.

v The unit of recovery state must be in-flight. With ATRADCT, after the call,
subsequent references to the UR interest token will cause a logic error, unless the
log_option was specified or changed to ATR_DEFER_EXPLICIT.

Caution: The resource manager must ensure that no application can be updating
protected resources for the unit of recovery being committed. This is necessary to
ensure that no resource manager taking part in the unit of recovery sees updates
being made on behalf of a unit of recovery at the same time the updates are
executing syncpoint processing.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Delegate_Commit_Agent_UR

278 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications

None.

Syntax

CALL ATRADCT (return_code
,ur_interest_token
,log_option);

CALL ATRADCT1 (return_code
,ur_interest_token
,log_option
,commit_options);

CALL ATR4ADCT (return_code
,ur_interest_token
,log_option
,commit_options);

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Delegate_Commit_Agent_UR service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. This must be an interest in
which the resource manager has taken the SDSRM role for the UR. The
resource manager received the token from the Express_UR_Interest service or
the Retain_Interest service.

,log_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates how RRS is to process log entries for the UR.

Delegate_Commit_Agent_UR

Chapter 7. Callable resource recovery services 279

With ATRADCT1, if commit_options indicates to remove the SDSRM's interest,
RRS ignores the log_option parameter.

Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

X'0'
(0)
ATR_DEFER_IMPLICIT

Meaning: RRS is to logically delete the log
record when the UR state changes to
forgotten.

Your resource manager will not call the
Forget_Agent_UR service.

X'1'
(1)
ATR_DEFER_EXPLICIT

Meaning: If the UR is committed, RRS must
keep the log record for the UR until your
resource manager calls the
Forget_Agent_UR_Interest service. The
log_option specified on
Forget_Agent_UR_Interest then determines
how RRS processes the log entry for
committed URs.

The Delegate_Commit_Agent_UR return
codes document which return codes require
your resource manager to call
Forget_Agent_UR, as indicated by the final
state of the UR being in-forget.

,commit_options
Supplied parameter
v Type: Bit string
v Character Set: N/A
v Length: 4 bytes

Specifies various options which determine how RRS is to perform the
delegated_commit request. Each of the bits or set of bits in commit_options is
either reserved or has a specific meaning. Each reserved bit must be specified
as zero. Each of the other bits can be specified as zero or one.

The bit specifications are:

Bit
Position

Constant in:
Hexadecimal
Equate Symbol Description

0 00000000
ATR_STANDARD_COMMIT_MASK

When zero is specified, the
SDSRM wants RRS to perform a
normal delegated commit
processing.

Delegate_Commit_Agent_UR

280 z/OS V2R1.0 MVS Programming: Resource Recovery

Bit
Position

Constant in:
Hexadecimal
Equate Symbol Description

0 10000000
ATR_REMOVE_SDSRM_INTEREST_MASK

When one is specified, the
SDSRM wants RRS to remove its
interest in the UR and let other
resource manager(s) take
responsibility for making the
commit or backout decision. In
this case, RRS ignores the
log_option value.

1-31 0
(None)

Reserved

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00220000' or
X'00220001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion. All
protected resources advanced to a consistent
state. The UR state is now in-forget if you
specified a log_option of
ATR_DEFER_EXPLICIT, or forgotten if you
specified a log_option of
ATR_DEFER_IMPLICIT.

Action: Continue normal processing.

8
ATR_FORGET

Meaning: The commit operation completed
successfully. The collective prepare vote
allows the unit of recovery to be completed,
and all resource managers voted to abstain
or forget. The UR state is now forgotten.

Action: Continue normal processing.

Note: This return code is not valid when the
Delete_SDSRM_Interest option has been
specified.

Delegate_Commit_Agent_UR

Chapter 7. Callable resource recovery services 281

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

65
ATR_COMMITTED_OUTCOME_PENDING

Meaning: The commit operation completed.
The RRS decision was to advance to a
consistent state. However, the state of one or
more of the protected resources is not
known. The UR state is now in-forget if you
specified a log_option of
ATR_DEFER_EXPLICIT, or forgotten if you
specified a log_option of
ATR_DEFER_IMPLICIT.

Action: Continue normal processing for a
committed UR.

66
ATR_COMMITTED_OUTCOME_MIXED

Meaning: The commit operation completed.
The RRS decision was to advance to a
consistent state. However, the state of one or
more of the protected resources has been
returned to the previous consistent state.
The UR state is now in-forget if you
specified a log_option of
ATR_DEFER_EXPLICIT, or forgotten if you
specified a log_option of
ATR_DEFER_IMPLICIT.

Action: Report the error to the other
transactional participants.

C8
ATR_PROGRAM_STATE_CHECK

Meaning: The commit operation failed. The
consistency state of the protected resources
has not been altered. This return code
indicates one of the following conditions has
occurred:

v A protected resource, specifically a
communications Interface conversation, is
not in Send, Send Pending, Defer
Receive, Defer Allocate, Sync_Point,
Sync_Point Send, or Sync_Point
Deallocate state.

v A protected resource, specifically a
Communications Interface conversation, is
in Send state, and the program started
but did not finish sending a basic
conversation logical record.

v A protected resource, specifically a local
resource, is not in the proper state for a
commit.

The UR state is unchanged.

Action: If possible, initiate a resource
manager action to get the resources to a
committable state and then invoke the
Delegate_Commit_Agent_UR service again.
Otherwise, issue Backout_Agent_UR to back
out the transaction.

Delegate_Commit_Agent_UR

282 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: The caller is disabled. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: The caller is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a
probable coding error.

107
ATR_UNSUPPORTED_RELEASE

Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

12C
ATR_BACKED_OUT

Meaning: The commit operation failed. All
protected resources have been returned to
the previous consistent state. The UR state is
now forgotten.

Action: Continue normal processing for a
backed out unit of recovery.

12D
ATR_BACKED_OUT_OUTCOME_

PENDING

Meaning: The commit operation failed. The
RRS decision was to return to the previous
consistent state. However, the state of one or
more of the protected resources is not
known. The UR state is now forgotten.

Action: Continue normal processing for a
backed out unit of recovery.

12E
ATR_BACKED_OUT_OUTCOME_

MIXED

Meaning: The commit operation failed.
However, one or more of the protected
resources has advanced to a new
synchronization state. The UR state is now
forgotten.

Action: Report the error to the other
transactional participants.

Delegate_Commit_Agent_UR

Chapter 7. Callable resource recovery services 283

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

370
ATR_URI_TOKEN_INV

Meaning: The specified UR_interest_token
does not represent a valid expression of
interest. This condition can occur after RRS
has terminated and restarted. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

395
ATR_LOG_OPT_INV

Meaning: The specified log_option value is
not valid. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

3AE
ATR_COMMIT_OPTIONS_INV

Meaning: The specified commit_options value
is not valid. Either reserved bits were
nonzero or an unacceptable selection of
options and parameters was specified. The
system rejects this service request.

Action: Check the calling program for a
probable coding error.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager state is not
valid for this request. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

702
ATR_RM_EXITS_UNSET

Meaning: RRS has unset the RRS exit
routines for this resource manager. The
system rejects this service request.

Action: The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

731
ATR_UR_STATE_ERROR

Meaning: The UR state is not valid for this
service request. The system rejects the
request. The application might have already
requested backout. Call Retrieve_UR_Data
or Retrieve_Side_Information to obtain
information about the state of the UR. If you
receive this return code, you must call
Forget_Agent_UR to complete processing for
the UR.

Action: Call Forget_Agent_UR to complete
the processing of this UR.

Delegate_Commit_Agent_UR

284 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

74A
ATR_NOT_SERVER_DSRM

Meaning: The resource manager does not
have the server distributed syncpoint
resource manager role for the unit of
recovery. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

762
ATR_PRESUMED_NOTHING_INVALID

Meaning: The specified UR interest has an
invalid two-phase commit protocol selected.
PRESUMED_NOTHING is not allowed.

Action: Check the calling program for a
probable coding error.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available. The system
rejects the service request.

Action: Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

F06
ATR_WAS_NOT_AVAILABLE

Action: Please refer to the documentation of
this error under the description of the
Delete_UR_Interest service on page 296.

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to tell RRS to
initiate and complete a syncpoint operation for a UR. Storage for the call
parameters has been allocated.
...
URI_TOKEN = MY_URI_TOKEN
LOGOPT = ATR_DEFER_IMPLICIT

Delegate_Commit_Agent_UR

Chapter 7. Callable resource recovery services 285

CALL ATRADCT(RC,URI_TOKEN,LOGOPT)...

Delete_Post_Sync_PET (ATRDPSP2, ATR4DPSP)
v ATRDPSP2 is for AMODE(31) callers.
v ATR4DPSP is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A work manager calls the Delete_Post_Sync_PET service to inform RRS that it no
longer needs to know about syncpoint completion through a pause element token
(PET) set by the Set_Post_Sync_PET service.

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRDPSP2)
64 bit (ATR4DPSP)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: MVS standard linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the UR state must be in-reset or in-flight.

When the resource manager issues the call in SRB mode, the call cannot specify a
ur_token of 0, indicating information for the current UR.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Delegate_Commit_Agent_UR

286 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRDPSP2
(return_code
,UR_token
,pause_element_token)

CALL ATR4DPSP
(return_code
,UR_token
,pause_element_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter

Delete_Post_Sync_PET

Chapter 7. Callable resource recovery services 287

v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Delete_Post_Sync_PET service.

,UR_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token of the UR to which the PET specified by pause_element_token
is associated:
v 0: Binary zero specifies the current UR associated with the application's task.
v token: The UR token of a particular UR.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the pause element token to be disassociated from the UR specified by
the UR_token.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00210000' or
X'00210001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

Delete_Post_Sync_PET

288 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
ATR_MODE_INV

Meaning: Program error. The calling
program specified 0 in UR_token, indicating
the context associated with the current UR,
but the calling program is not in task mode.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the UR_token parameter is not
valid. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A6
ATR_PET_INV

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A7
ATR_PET_OUTDATED

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter is outdated. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Delete_Post_Sync_PET

Chapter 7. Callable resource recovery services 289

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A8
ATR_PET_AUTH_FAILURE

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter was allocated with
auth_level=IEA_AUTHORIZED, and the
caller is unauthorized. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A9
ATR_PET_SPACE_FAILURE

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter represents a pause element
belonging to another address space, and the
caller is unauthorized. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3AA
ATR_PET_NOT_ASSOCIATED

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter does not represent a pause
element associated with the specified UR.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR specified
by the UR_token is not in a valid state for
the service call. The UR must be in an
in-reset or in-flight state. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Delete_Post_Sync_PET

290 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Delete_Post_Sync_PET was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the calling program attempts to disassociate a UR
from its pause element token. Storage for the call parameters has already been
allocated.
...
CALL ATRDPSP2(RC, URTOKEN, PETOKEN)

...

Delete_UR_Interest (ATRDINT, ATR4DINT)
v ATRDINT is for AMODE(31) callers.
v ATR4DINT is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Delete_Post_Sync_PET

Chapter 7. Callable resource recovery services 291

A resource manager calls the Delete_UR_Interest service to delete an interest in a
unit of recovery (UR). Note that RRS normally deletes the interest when the UR is
complete.

In response to the Delete_UR_Interest call, RRS issues a return code.

The call deletes only one interest in the UR; if there are other interests, they
continue to exist. For example, multiple resource managers might have expressed
interest in the UR, or your resource manager might have issued the
Express_UR_Interest call multiple times for this UR.

If the expression of interest to be deleted is the last expression of interest in a UR
that is in local transaction mode, and the transaction was implicitly started (no
Begin_Transaction was issued to demarcate the beginning of the local transaction),
then the unit of recovery is completed and returned to in-reset state. When the
transaction is completed, any post sync PETs that were set for this UR are released.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRDINT)
64 bit (ATR4DINT)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The UR state must be in-flight. After the call, any subsequent reference to the UR
interest token causes a logic error.

The resource manager associated with the UR interest token specified in the call
must be in run state, which means it has registered, set its exit routines with RRS,
and completed restart.

Delete_UR_Interest

292 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRDINT
(return_code
,ur_interest_token)

CALL ATR4DINT
(return_code
,ur_interest_token)

Delete_UR_Interest

Chapter 7. Callable resource recovery services 293

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Delete_UR_Interest service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. Your resource manager
received the token from the Express_UR_Interest service or the Retain_Interest
service.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00010000' or
X'00010001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Delete_UR_Interest

294 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not for one of
the currently valid interests. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in run state. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a
valid state for the service call. The UR state
must be in-flight. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Delete_UR_Interest

Chapter 7. Callable resource recovery services 295

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Delete_UR_Interest was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to delete its interest
in a UR.
...
URI_TOKEN = MY_URI_TOKEN
CALL ATRDINT(RC,URI_TOKEN)...

End_Restart (ATRIERS, ATR4IERS)
v ATRIERS is for AMODE(31) callers.
v ATR4IERS is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the End_Restart service to complete resource manager
restart. Before calling End_Restart, your resource manager calls the

Delete_UR_Interest

296 z/OS V2R1.0 MVS Programming: Resource Recovery

Retrieve_UR_Interest service repetitively until your resource manager obtains all of
its interests in incomplete protected units of recovery (URs).

In response to the call, RRS issues a return code.

After the call, your resource manager can express interest in URs and take part in
processing URs.

The call to End_Restart notifies RRS that it can begin to invoke exit routines for
your resource manager.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRIERS)
64 bit (ATR4IERS)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To call the service, the resource manager associated with the resource manager
token specified in the call must be in restart state. After a successful call, the
resource manager is in run state.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

End_Restart

Chapter 7. Callable resource recovery services 297

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRIERS
(return_code
,resource_manager_token)

CALL ATR4IERS
(return_code
,resource_manager_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the End_Restart service.

End_Restart

298 z/OS V2R1.0 MVS Programming: Resource Recovery

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00040000' or
X'00040001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

End_Restart

Chapter 7. Callable resource recovery services 299

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager must be in restart state.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

73A
ATR_RESTART_INCOMPLETE

Meaning: Program error. The resource
manager has not obtained all of its
incomplete protected URs. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. The resource manager
must call the Retrieve_UR_Interest service
repetitively until it obtains all incomplete
URs that it had expressed interest in. Correct
the resource manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to end its restart.
Storage for the call parameters has been allocated.

End_Restart

300 z/OS V2R1.0 MVS Programming: Resource Recovery

...
RM_TOKEN = MY_RM_TOKEN
CALL ATRIERS(RC,RM_TOKEN)...

End_Transaction (ATREND, ATR4END)
v ATREND is for AMODE(31) callers.
v ATR4END is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

End_Transaction commits or rolls back (backs out) the current transaction. An
application program calls the End_Transaction service to indicate that the changes
for the UR are either to be made permanent (committed) or undone (rolled back).
To process the call, RRS informs the resource managers about the specified action,
then issues a return code to the calling program.

End_Transaction performs the same service as the following services:
v Application_Commit_UR
v Commit_UR
v Application_Backout_UR
v Backout_UR

End_Transaction, however, provides return codes for many error conditions that
cause Application_Commit_UR and Application_Backout_UR to abnormally end
the calling program with ABEND code X'5C4'. For a description of
Application_Commit_UR and Application_Backout_UR, see z/OS MVS
Programming: Callable Services for High-Level Languages.

Typically, End_Transaction is called in local transaction mode when an application
or work manager needs to ensure that all uncommitted local resources are placed
in a consistent state, with all changes either committed or backed out, but not
necessarily in an atomic manner with respect to each other. When the specified
action is commit, and the transaction mode of the current UR is global or
hybrid-global, then this service performs identically to the Commit_UR service.
Similarly, when the specified action is rollback, and the transaction mode of the
current UR is global, then this service performs identically to the Backout_UR
service.

Environment

The requirements for the caller are:

Minimum authorization: Any
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATREND)
64 bit (ATR4END)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions

End_Restart

Chapter 7. Callable resource recovery services 301

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The UR state must be in-reset or in-flight.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

End_Transaction

302 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATREND
(return_code
,diag_area
,action
,current_ur_token)

CALL ATR4END
(return_code
,diag_area
,action
,current_ur_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the End_Transaction service.

,diag_area
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

Contains diagnostic data from End_Transaction to help IBM Service determine
the cause of an End_Transaction failure. Be sure to log this data when
recording any information about an End_Transaction failure.

,action
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates whether the uncommitted resources associated with the current UR
are to be committed or rolled back. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_COMMIT_ACTION

The resource managers are to commit any
uncommitted resources associated with the
current UR.

End_Transaction

Chapter 7. Callable resource recovery services 303

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

2
(2)
ATR_ROLLBACK_ACTION

The resource managers are to roll back any
uncommitted resources associated with the
current UR.

,current_ur_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR token that uniquely represents the current UR. Specify this
token when you want RRS to verify that the UR specified is the current UR
before performing any operation against it.

Specify binary zeros to indicate that RRS is to perform the requested action
against the current UR, regardless of what UR is current.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00240000' or
X'00240001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion. All
protected resources advanced to a consistent
state. If you specified an action of
ATR_COMMIT, all protected resources have
been successfully committed. If you
specified an action of ATR_ROLLBACK, all
protected resources have been successfully
rolled back.

Action: Continue normal processing.

End_Transaction

304 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

65
ATR_COMMITTED_OUTCOME_PENDING

Meaning: Environmental error. The commit
operation completed. However, RRS cannot
determine if all of the protected resources
were changed.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

66
ATR_COMMITTED_OUTCOME_MIXED

Meaning: Environmental error. The commit
operation completed. However, one or more
of the protected resources were not changed.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

End_Transaction

Chapter 7. Callable resource recovery services 305

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

C8
ATR_PROGRAM_STATE_CHECK

Meaning: Environmental error. The commit
operation failed. The resource managers may
have rejected the commit because one of the
following occurred:

v A communications interface conversation
that is a protected resource is not in a
required state: send, send pending, defer
receive, defer allocate, sync_point,
sync_point send, or sync_point deallocate
state.

v A protected communications interface
conversation is in send state. The program
started sending the basic conversation
logical record, but did not finish sending
it.

v A resource on the same system as the
application is not in a proper state for the
commit.

Action: Initiate an action by a resource
manager to get its resource to a commitable
state. Issue the call again.
Note: This code is returned only when
transaction mode is global or hybrid-global.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enable for I/O and external
interrupts. The system rejects this service
request.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The caller is
holding one or more locks; no locks must be
held. The system rejects this service request.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

End_Transaction

306 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
level does not support this service. The
system rejects this service request.

Action: Remove the calling program from
the system, and install it on a system that
supports this level of RRS. Then rerun the
calling program.

12C
ATR_BACKED_OUT

Meaning: Environmental error. The commit
operation failed. All protected resources
have been returned to the previous
consistent state.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

12D
ATR_BACKED_OUT_OUTCOME_

PENDING

Meaning: Environmental error. The commit
or rollback operation failed. The RRS
decision was to return to the previous
consistent state. However, the state of one or
more of the protected resources is not
known.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

End_Transaction

Chapter 7. Callable resource recovery services 307

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

12E
ATR_BACKED_OUT_OUTCOME_

MIXED

Meaning: Environmental error. The commit
or rollback operation failed. The RRS
decision was to return to the previous
consistent state. However, one or more of
the protected resources has changed.

Action: The action by the calling program
depends on the system environment. Some
possible actions are:

v Display a warning message to the end
user.

v Write an exception entry into an output
log.

v Abnormally end the application because
the resource manager will not allow any
further changes to the resource until the
situation is resolved.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The specified
current_UR_token does not identify a valid
UR. The system rejects this service request.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

36B
ATR_ACTION_INV

Meaning: Program error. The specified action
value is not valid. The system rejects this
service request.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR for the
current task is not in a valid state for this
service request. The UR state must be
in-reset or in-flight. The system rejects the
request.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

805
ATR_CUR_UR_TOKEN_

NOT_CURRENT

Meaning: Program error. The current UR
token specified in the call does not match
the token of the current UR.
Note: The system takes no action against
the current UR, so it is therefore possible
that the current UR can be committed at a
later time.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

End_Transaction

308 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available. The system
rejects the service request.

Action: Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

F05
ATR_UNEXPECTED_CTX_ERROR

Meaning: Environmental error. The service
call encountered an unexpected error from a
context services service. The system rejects
the service call.

Action: Examine the dump from context
services and correct the problem, then rerun
the calling program.

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, an application issues an End_Transaction call to tell
RRS to commit a transaction. Storage for the call parameters has been allocated.
...
ACT = ATR_COMMIT
CUR = MY_CURRENT_UR
CALL ATREND(RC,DIAG_DATA,ACT,CUR)...

Express_UR_Interest (ATREINT, ATREINT1, ATREINT2, ATREINT3,
ATREINT4, ATREINT5, ATR4EINT)

A resource manager calls the Express_UR_Interest service to express an interest,
either protected or unprotected, in a unit of recovery (UR). There are seven
versions of Express_UR_Interest, each with different parameters.
v ATREINT is for AMODE(31) callers and is the basic version of the service.
v ATREINT1 is for AMODE(31) callers and adds support for XIDs.
v ATREINT2 is for AMODE(31) callers and supports XIDs and cascaded

transactions.

End_Transaction

Chapter 7. Callable resource recovery services 309

v ATREINT3 is for AMODE(31) callers, supports XIDs and returns transaction
mode information.

v ATREINT4 is for AMODE(31) callers, supports XIDs, cascaded transactions,
COMMIT exit tier priority and returns transaction mode information.

v ATREINT5 is for AMODE(31) callers, supports XIDs, cascaded transactions,
COMMIT exit tier priority and returns transaction mode information. ATREINT5
uses the interest_options parameter to specify various options that determine how
RRS will process an interest. Earlier versions of the service use multiple
parameters to specify specific options.

v ATR4EINT is for AMODE(64) callers, allows parameters in 64 bit addressable
storage, supports XIDs, cascaded transactions, returns transaction mode
information, and COMMIT exit tier priority. ATREINT5 uses the interest_options
parameter to specify various options that determine how RRS will process an
interest. Earlier versions of the service use multiple parameters to specify
specific options.

Code your resource manager to call the version that includes the support you
need.

In response to the different versions of the call, RRS can return:
v A return code.
v A UR interest token for the interest. You need this token on many other RRS

calls to identify a specific UR.
v The current context token, if you specified binary zeros on context_token to

indicate that RRS is to use the current context associated with the current
dispatchable unit.

v A UR identifier (URID).
v A UR token. You need this token if you want to create a UR cascaded from the

UR in which you are expressing interest. You can also use this token as input for
some services instead of using a URI token.

v If you make a conditional request and your resource manager already has an
interest in the UR, the current nonpersistent interest data.

v An indicator of the type of transaction in which interest has been expressed. The
indicator will indicate one of the following:
– Local transaction mode: The transaction in which interest has been expressed

is in local transaction mode. The resource manager should commit the
resources it is managing for the transaction when asked to do so explicitly by
the transaction or when told to do so by RRS.

Note: A resource manager will only be allowed to express interest in a
transaction that is in local transaction mode if it has indicated, through
Set_Exit_Information, that it can participate in local mode transactions.

– Global transaction mode: The transaction in which interest has been expressed
is in global transaction mode. The resource manager may commit its
resources without involving RRS as long as it is the only resource manager
involved in the transaction.

– Hybrid-global transaction mode: The transaction in which interest has been
expressed is in hybrid-global transaction mode. The resource manager may
commit its resources without involving RRS as long as it is the only resource
manager involved in the transaction.

Express_UR_Interest

310 z/OS V2R1.0 MVS Programming: Resource Recovery

Note: Hybrid-global transaction mode is the mode that all RRS managed
transactions ran under prior to RRS support for local and global modes. See
“Local transactions” on page 73 for more information about local and global
transaction modes.

When a UR involves changes to multiple databases, communications, or both, then
multiple resource managers might be interested in the UR and issue
Express_UR_Interest calls for the same UR.

A single resource manager can also issue multiple Express_UR_Interest calls for the
same UR, perhaps one for each of the resource manager's databases or one for each
conversation being handled for the UR by a communication resource manager.
Note, however, that expressing multiple interests in a UR causes RRS to invoke
multiple exit routines. You can provide a shorter path length by expressing only
one interest in a UR and keeping track of the resources for the UR in a control
block that the resource manager maintains. In contrast, a communication resource
manager might find multiple interests more useful, outweighing the overhead of
multiple exit routine invocations.

To avoid creating multiple interests in the same UR, your resource manager can
issue Express_UR_Interest as a conditional request; RRS creates a UR interest only
when one does not already exist for this resource manager.

Protected and unprotected interests: The call can express a protected or
unprotected interest in a UR. For a protected interest, RRS or a resource manager
coordinates changes to the resources, so that all changes are made or no changes
are made. Resources that can be protected are a database, a conversation between
two communications managers, or a product-specific resource.

If an interest is a protected interest and the system, RRS, or the resource manager
fails, RRS will inform the resource manager about the UR, if incomplete, when the
resource manager restarts. The resource manager can then finish processing the
UR.

Action for resource manager failure: On the Express_UR_Interest call, you can
specify how RRS should process requests to commit the UR if your resource
manager becomes:
v Unregistered: Your resource manager is no longer registered as a resource

manager. See “Register_Resource_Manager (CRGGRM, CRG4GRM)” on page 137
for a description of how a resource manager can become unregistered.

v Unset: Your resource manager's exit routines are no longer set with RRS.

RRS should react to a resource manager failure as follows:
v Standard processing: RRS is to back out this UR, if the state of the UR is

in-reset, in-flight, in-state-check, or in-prepare.
v Forget interest: RRS is to delete the resource manager's interest in the UR. You

can specify this value only when interest_type or interest_options indicates that the
interest is unprotected.

Action for subordinate system failure: On the Express_UR_Interest call, you can
specify whether RRS should notify the coordinator UR of a sysplex cascaded
transaction in the event of a failure of either RRS, any resource manager on the
subordinate system, or the subordinate system itself:
v Notify: RRS will drive the SUBORDINATE_FAILED exit to notify the resource

manager that there is a breakage on the subordinate system for which the

Express_UR_Interest

Chapter 7. Callable resource recovery services 311

resource manager is the coordinator. RRS only drives this exit when the sysplex
cascaded transaction was in-flight at the time of the failure.

v Ignore: SUBORDINATE_FAILED exit will not be driven.

Two-phase commit protocol: An Express_UR_Interest call can specify the type of
two-phase commit protocol to be used for the UR if the resource manager is
restarting:
v Presumed nothing: For a presumed nothing expression of interest in a protected

UR, RRS hardens an in-prepare record, including the persistent interest data, in
the RRS log before it invokes the PREPARE exit routines. If the last log record
for a UR was an in-prepare record, RRS returns the UR as in_backout in
response to a Retrieve_UR_Interest call during resource manager restart.
If one protected interest in a UR is presumed nothing, RRS uses the presumed
nothing protocol. If there is only one presumed nothing protected interest in a
UR and this interest is by a distributed syncpoint resource manager, RRS does
not log an in-prepare record.

v Presumed abort: When the UR state is in-prepare, RRS does not harden an
in-prepare record in the RRS log. During restart, RRS cannot return such a UR
in response to a Retrieve_UR_Interest call. The resource manager presumes the
UR was backed out.

Automatic context termination: An Express_UR_Interest call can specify how RRS
should process the work context associated with the UR when the UR is forgotten:
v Standard processing: No changes are made to the work context.
v End processing: RRS will end the work context when the UR is forgotten.

Note: IBM strongly recommends that end processing only be specified by the
resource manager that owns the work context.

XID processing: A resource manager can provide an XID for the UR in which
interest is being expressed as long as the UR does not already have an XID
assigned. The resource manager can tell RRS to use the XID with either:
v Standard Processing, or
v Use BQUAL without checking, and/or
v Use FormatID without checking

The possible results are as follows:

Standard processing:

Interest being expressed in XID specified RRS action

An existing non-cascaded UR No The UR keeps the XID that it already has (if
any).

An existing cascaded UR No The UR keeps the XID that it already has.

A new non-cascaded UR No The UR will not have any XID associated
with it.

A new cascaded UR No The UR will be given an XID that has the
same FormatID and GTRID as its parent
and a new, unique BQUAL.

Express_UR_Interest

312 z/OS V2R1.0 MVS Programming: Resource Recovery

An existing non-cascaded UR Yes If the UR does not already have an XID, the
specified XID will be associated with the
UR. If the UR already has an XID, the call
to Express_UR_Interest will be considered
invalid and no expression of interest will be
created.

An existing cascaded UR Yes The call to Express_UR_Interest will be
considered invalid and no expression of
interest will be created.

A new non-cascaded UR Yes The specified XID will be associated with
the UR.

A new cascaded UR Yes If the specified XID has a FormatID and
GTRID that are the same as its parent, the
specified XID will be associated with the
UR unless the caller request RRS not to
check the specified FormatID. In this case,
only the GTRID component will be
validated.

Use BQUAL without checking:

Interest being expressed in XID specified RRS action

A new cascaded UR Yes RRS will assign the new cascaded UR an
XID that has the same FormatID and
GTRID as its parent. The BQUAL portion of
the XID will be taken from the XID
specified. The FormatID and GTRID
portions of the XID will be ignored.

Persistent interest data: In the Express_UR_Interest call, your resource manager
can provide persistent interest data for the protected interest. When hardening
information for the interest in an RRS log, RRS records the persistent interest data.
Because the data is hardened, it will be available if your resource manager restarts
or if RRS restarts, forcing your resource manager to restart.

Your resource manager can also provide persistent interest data in a call to: Change
_Interest_Type, Set_Persistent_Interest_Data, or Retain_Interest. Your resource
manager can retrieve persistent interest data in a call to: Retrieve_UR_Interest or
Retrieve_Interest_Data.

Nonpersistent Interest Data: The Express_UR_Interest call can also provide
nonpersistent interest data. RRS passes nonpersistent data to each resource
manager exit routine it invokes for this interest. This data is not recorded in
nonvolatile storage and is not available at subsequent restarts.

One use of this data is to pass the exit routines the locations of resource manager
structures that represent the resources being changed.

Your resource manager can also provide nonpersistent interest data in a call to:
Respond_to_Retrieved_Interest or Retain_Interest. Your resource manager can
retrieve it by calling the Retrieve_UR_Interest_Data service.

URID: Save the returned UR identifier (URID) with the information about the UR
in your resource manager log. During restart processing after your resource
manager, RRS, or the system fails, your resource manager obtains the URID for an

Express_UR_Interest

Chapter 7. Callable resource recovery services 313

incomplete UR from a Retrieve_UR_Interest call. Compare the URID from
Retrieve_UR_Interest with the URIDs in your resource manager log to find the
data for the incomplete UR.

Your resource manager can also obtain the URID from a call to:
Change_Interest_Type, Retrieve_UR_Interest, Retrieve_UR_Data, or Retain_Interest.

XID: If the UR does not already have an XID, the resource manager can specify an
XID. If specified, the XID will be used as a work identifier for the UR. XIDs are not
supported by the ATREINT version of Express_UR_Interest. You must call
ATREINT1, ATREINT2, ATREINT3, ATREINT4, ATREINT5, or ATR4EINT to
specify an XID. For additional information about how RRS handles XIDs, see 312.

Creating cascaded units of recovery: A work manager may use
Express_UR_Interest to make a cascaded UR. A work manager would do this when
a single work request involves multiple work managers that require separate
contexts, or when separate transactional pieces of an application need to execute in
parallel. By using the Express_UR_Interest service to make a new UR associated
with a new work context and cascading it from the original UR, a second work
manager ensures that all of the resources changed while it was executing in its
original environment. Cascaded URs are not supported by the ATREINT,
ATREINT1, and ATREINT3 versions of Express_UR_Interest. You must call
ATREINT2, ATREINT4, ATREINT5 or ATR4EINT to make a cascaded UR while
expressing interest. For additional information about cascaded URs, see
“Create_Cascaded_UR (ATRCCUR2, ATRCCUR3, ATR4CCUR)” on page 266.

Multisystem cascaded units of recovery: When one work manager requests
another work manager, residing on a different system, to become part of an
existing work request, the requesting work manager is responsible for transferring
all of the data needed by the new work manager, including the UR token
representing the work request. The new work manager may then use the
Express_UR_Interest service to create a new UR, associated with a new work
context, to be cascaded from the received UR token.

As with normal (non-multisystem) cascaded transactions, a work manager that
creates a multisystem cascaded transaction is responsible for informing RRS when
the part of the application executing under a multisystem cascaded UR is complete
by using the Set_Side_Information service to mark the UR as application-complete.

For additional information about multisystem cascaded transactions, see
“Multisystem cascaded transactions” on page 70.

Local transactions: A resource manager may use Express_UR_Interest to express
interest in a UR that is in local transaction mode. A resource manager must
indicate that it supports local transactions via Set_Exit_Information before it can
express interest in a local transaction mode UR. Calls to ATREINT3, ATREINT4,
ATREINT5, or ATR4EINT return information about the UR's transaction mode. For
additional information about local transactions, see “Local transactions” on page
73.

Commit exit tier priority: On the Express_UR_Interest call, you can specify the tier
priority at which RRS should invoke your COMMIT exit:
v Tier one priority: RRS will invoke the resource manager's COMMIT exit before

other resource managers. If multiple resource managers request the tier one
priority, the commit exits will be driven in the order in which they expressed
interest in the UR.

Express_UR_Interest

314 z/OS V2R1.0 MVS Programming: Resource Recovery

v No priority: The resource manager's exit will be driven after tier one resource
managers' commit exits, if any.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31 bit (ATREINT, ATREINT1, ATREINT2, ATREINT3,

ATREINT4, ATREINT5) 64 bit (ATR4EINT)
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the UR must be in an in-reset or in-flight state. If the UR state is
in-reset, a successful call changes the UR state to in-flight.

To call the service, the resource manager associated with the resource manager
token specified in the call must be in run state.

When the resource manager issues the call in SRB mode, the call cannot specify a
context_token of 0, indicating the current context.

Do not express interests in a given UR asynchronously. An asynchronous thread
may be used to express interest in a given UR, but the contextual thread should be
suspended until the completion of the service. Asynchronous expressions of
interest can cause work managers to make incorrect decisions about optimized
commit flows, causing some resources to be committed and some left
uncommitted.

Cascaded transaction restrictions:

The following restrictions apply when using ATREINT2, ATREINT4 or ATREINT5
to work with cascaded transactions:
v If either UR_family_option or interest_options indicates that a cascaded UR is to be

created, the UR must be in the in-reset state.

Express_UR_Interest

Chapter 7. Callable resource recovery services 315

v When the resource manager issues the call in SRB mode, the call must not
specify binary zero for context_token or parent_UR_token. When either
UR_family_option or interest_options indicates that a cascaded UR is to be created,
the call can specify binary zero for either context_token or parent_UR_token, but
not both.

v If either UR_family_option or interest_options indicates that a cascaded UR is to be
created, an XID may be specified, but the specified XID must have the same
FormatID and GTRID as the XID of the UR specified by parent_UR_token.

v To express an interest that creates a cascaded UR, the parent UR state must be
in-reset or in-flight and the parent UR must not be in local transaction mode.
After successfully expressing interest in a cascaded UR, both the parent and the
child UR are in in-flight state and in global transaction mode.

v For multisystem cascaded transactions, parent_UR_token must specify a token
from a system in the same logging group as this system.

Note: A call to the Retrieve_UR_Data service that does not specify
ATR_EXTENDED_STATES for the states_option could cause a UR to go into an
in-flight state. Once a UR has gone in-flight, it can no longer be made into a
cascaded UR.

Local transaction restrictions

The following restrictions apply when working with local transactions:
v Before Express_UR_Interest can set a UR to local transaction mode, the resource

manager must indicate to RRS, on a call to Set_Exit_Information, that the
resource manager supports local transaction mode.

v URs in local transaction mode cannot participate in cascaded transactions.
v You cannot set an XID for a UR that is in local transaction mode.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

Express_UR_Interest

316 z/OS V2R1.0 MVS Programming: Resource Recovery

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

If possible, resource managers should use presume abort logging protocols in order
to minimize log update activity.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statements as shown.

CALL ATREINT
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,current_context_token
,ur_identifier
,multiple_interest_option
,interest_type
,failure_action
,two_phase_protocol
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data)

CALL ATREINT1
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,current_context_token
,ur_identifier
,multiple_interest_option
,interest_type
,failure_action
,two_phase_protocol
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid)

Express_UR_Interest

Chapter 7. Callable resource recovery services 317

CALL ATREINT2
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,current_context_token
,ur_identifier
,multiple_interest_option
,interest_type
,failure_action
,two_phase_protocol
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid
,ur_family_option
,parent_ur_token)

CALL ATREINT3
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,current_context_token
,ur_identifier
,multiple_interest_option
,interest_type
,failure_action
,two_phase_protocol
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid
,diag_area
,transaction_mode)

Express_UR_Interest

318 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATREINT4
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,current_context_token
,ur_identifier
,multiple_interest_option
,interest_type
,failure_action
,two_phase_protocol
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid
,ur_family_option
,parent_ur_token
,diag_area
,transaction_mode)

CALL ATREINT5
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,ur_token
,current_context_token
,ur_identifier
,interest_options
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid
,parent_ur_token
,diag_area
,transaction_mode)

Express_UR_Interest

Chapter 7. Callable resource recovery services 319

CALL ATR4EINT
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,ur_token
,current_context_token
,ur_identifier
,interest_options
,nonpersistent_interest_data
,current_nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data
,xid_length
,xid
,parent_ur_token
,diag_area
,transaction_mode)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Express_UR_Interest service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token for the context associated with the UR:
v 0: Binary zeros specify the current context associated with the application's

task. Binary zero may be specified for either parent_UR_token or
context_token, but not both.

v token: The context token of a particular context.

Your resource manager might have received the context_token from the
Begin_Context or Retrieve_Current_Context_Token services.

Express_UR_Interest

320 z/OS V2R1.0 MVS Programming: Resource Recovery

,ur_interest_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the UR interest token that uniquely represents this instance of the
resource manager's interest in the UR.

If you specified conditional interest via multiple_interest_option or
interest_options and the return code from the service is
ATR_RM_ALREADY_HAS_INTEREST, then the token returned represents the resource
manager's existing interest in the UR. If there are multiple existing interests,
the one returned is not predictable.

,ur_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

On ATREINT5 calls, receives the UR token that uniquely identifies the unit of
recovery in which interest has been expressed.

If you specified conditional interest via interest_options and the return code
from the service is ATR_RM_ALREADY_HAS_INTEREST, then the token returned
represents the unit of recovery for which the URI token is returned in
URI_token.

,current_context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives the following from the service:
v The token of the current context, if the call specifies zeros in the

context_token parameter. The token is a 16-byte character string.
v Undefined, if context_token specifies a token.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives a UR identifier (URID) from the service. The URID uniquely identifies
the UR.

,interest_options
Supplied parameter
v Type: Bit string
v Character Set: N/A
v Length: 4bytes

On ATREINT5 calls, specifies various options that determine how RRS will
process this interest. Each of the bits in interest_options is either reserved or has

Express_UR_Interest

Chapter 7. Callable resource recovery services 321

a specific meaning. Each reserved bit must be specified as zero. Each other bit
can be specified as either zero or one. The bit specifications are:

Bit
positions

Constant in:
Hexadecimal
Equate Symbol Description

0–2 0 Reserved

3
00000000
ATR_UNCOND_

INT_MASK

10000000
ATR_CONDITIONAL_

INT_MASK

Multiple interests

A resource manager specifies zero to express
unconditional interest in the UR. RRS is to create a
new interest, even if the resource manager already
has an interest in the UR.

A resource manager specifies one to express
conditional interest in the UR. RRS is not to create
a new interest if the resource manager already has
an interest in the UR. Instead, RRS should return
information about the resource manager's existing
interest.
Note: If the resource manager has more than one
interest, information about only one interest will
be returned.

4–6 0 Reserved

7
00000000
ATR_UNPROT_

INT_MASK

01000000
ATR_PROTECTED_

INT_MASK

Interest type

A resource manager specifies zero to express an
unprotected interest in the UR.

A resource manager specifies one to express a
protected interest in the UR.

8–10 0 Reserved

11
00000000
ATR_STANDARD_

FAIL_MASK

00100000
ATR_REMOVE_INT_

ON_FAIL_MASK

Failure action

A resource manager specifies zero when it wants
RRS to do its standard processing if the resource
manager fails.

A resource manager specifies one when it wants
RRS to remove its interest in the UR if the resource
manager fails.
Note: One can only be specified if the resource
manager is expressing an unprotected interest in
the UR.

12–13 0 Reserved

14
00000000
ATR_COMMIT_
NO_PRIORITY

00020000
ATR_COMMIT_
TIER_ONE_
PRIORITY

Commit exit tier priority

When zero is specified, the resource manager does
not require RRS to drive its COMMIT exit at a
higher priority with regards to other resource
managers in the same UR.

When one is specified, the resource manager wants
RRS to drive its COMMIT exit first with respect to
other resource managers' exits.

Express_UR_Interest

322 z/OS V2R1.0 MVS Programming: Resource Recovery

Bit
positions

Constant in:
Hexadecimal
Equate Symbol Description

15
00000000
ATR_PRESUME_

NOTHING_MASK

00010000
ATR_PRESUME_

ABORT_MASK

Two phase protocol

A resource manager specifies zero when it wants
RRS to treat this expression of interest as needing
presume nothing logging.

A resource manager specifies one when it wants
RRS to treat this expression of interest as needing
presume abort logging.

16–18 0 Reserved

19
00000000
ATR_CREATE_

STANDARD_
UR_MASK

00001000
ATR_CREATE_

CASCADED_
UR_MASK

UR family type

A resource manager specifies zero when it wants
RRS to create a normal (non-cascaded) UR.

A resource manager specifies one when it wants
RRS to create a cascaded UR. parent_UR_token
specifies the UR token of the parent of the new
cascaded UR.
Note: To specify one, the UR in which interest is
being expressed must be in in-reset state.

20–22 0 Reserved

23
00000000
ATR_DONT_END_

CONTEXT_MASK

00000100
ATR_END_

CONTEXT_MASK

Auto context termination

A resource manager specifies zero when it does
not want RRS to end the work context associated
with the UR in which interest is being expressed
when the UR completes.

A resource manager specifies one when it wants
RRS to end the work context associated with the
UR in which interest is being expressed when the
UR completes.
Note: IBM strongly recommends that one only be
specified by the resource manager that owns the
work context.

24–26 0 Reserved

27
00000000
ATR_STANDARD_

XID_MASK

00000010
ATR_USE_

BQUAL_MASK

XID processing

A resource manager specifies zero when it wants
RRS to do its standard XID processing.

A resource manager specifies one it wants RRS to
assign the new UR an XID with the same
FormatID and GTRID as its parent and a BQUAL
equal to the BQUAL of the XID specified.
Note: To specify one, the interest must be in a new
cascaded UR and XID must be specified. RRS will
only validate and use the BQUAL and BQUAL
length fields in the specified XID.

Express_UR_Interest

Chapter 7. Callable resource recovery services 323

Bit
positions

Constant in:
Hexadecimal
Equate Symbol Description

28
00000000
ATR_STANDARD_

XID_MASK

00000008
ATR_USE_

FORMATID_MASK

XID processing

A resource manager specifies zero when it wants
RRS to do its standard XID processing.

A Resource manager specifies one when it wants
RRS to assign the new UR an XID with the same
GTRID as its parent and a FormatID equal to the
FormatID of the XID specified.
Note: To specify one, the interest must be in a new
cascaded UR and XID must be specified. RRS will
use the FormatID in the specified XID.

29-30 0
Reserved.

31
00000000
ATR_IGNORE_
SUBORDINATE_
FAILURE_MASK

00200000
ATR_NOTIFY_
SUBORDINATE_
FAILURE_MASK

Subordinate Failure Action

When zero is specified, the resource manager does
not want RRS to drive the
SUBORDINATE_FAILED exit.

When 1 is specified, the resource manager wants
RRS to drive its SUBORDINATE_FAILED exit to
inform the resource manager that RRS or a
resource manager on its subordinate system has
failed or the subordinate system itself has
terminated. The sysplex cascaded transaction for
which this resource manager is the coordinator
was in-flight at the time of the failure.

,multiple_interest_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates whether or not RRS is to create a new interest when the resource
manager already has an interest in the UR. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_UNCONDITIONAL

Unconditional: RRS is to create a new
interest, even when the resource manager
already has an interest in the UR.

1
(1)
ATR_CONDITIONAL

Conditional: RRS is not to create a new
interest when the resource manager already
has an interest in the UR.

Express_UR_Interest

324 z/OS V2R1.0 MVS Programming: Resource Recovery

,interest_type
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates the type of interest the resource manager has in the UR. Specify one
of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_UNPROTECTED

Unprotected: The resource manager is
expressing an unprotected interest in the UR.

1
(1)
ATR_PROTECTED

Protected: The resource manager is
expressing a protected interest in the UR.

When expressing interest in a UR in local transaction mode, RRS will not
harden any data for a local transaction; therefore, the processing for both
ATR_UNPROTECTED and ATR_PROTECTED is identical. You can specify
either.

,failure_action
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Defines how RRS is to process commit requests for the UR if the resource
manager becomes unregistered or unset. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Action

0
(0)
ATR_FAIL_STANDARD

Standard processing

2
(2)
ATR_FAIL_FORGET

Forget interest

,two_phase_protocol
Supplied parameter
v Type: Integer
v Character Set: N/A

Express_UR_Interest

Chapter 7. Callable resource recovery services 325

v Length: 4 bytes

Identifies the two-phase commit protocol RRS is to use for this UR. Specify one
of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Protocol

0
(0)
ATR_PRESUMED_NOTHING

Presumed nothing

1
(1)
ATR_PRESUMED_ABORT

Presumed abort

When expressing interest in a UR in local transaction mode, RRS will not
harden any data for a local transaction; therefore, the syncpoint processing for
both ATR_PRESUMED_NOTHING and ATR_PRESUMED_ABORT is identical.
You can specify either.

,nonpersistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the nonpersistent interest data for your resource manager's interest.
RRS does not record this data in nonvolatile storage.

,current_nonpersistent_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the current nonpersistent interest data when both of
the following conditions occur together:
v You specified conditional interest via multiple_interest_option or

interest_options.
v The return code is ATR_RM_ALREADY_HAS_INTEREST.

Otherwise, the field contains binary zeros.

The nonpersistent interest data is for the resource manager's interest
represented by the UR interest token returned by the service.

,persistent_interest_data_length
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Express_UR_Interest

326 z/OS V2R1.0 MVS Programming: Resource Recovery

Specifies, in hexadecimal, the length of the persistent interest data. Specify X'0'
- X'1000' (0-4096) bytes. If either interest_options or interest_type indicates that
the interest is unprotected, then this field must be binary zeros.

,persistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in persistent_interest_data_length

The persistent interest data for your resource manager's interest in the UR. RRS
records this data in an RRS log. If persistent_interest_data_length is binary zeros,
RRS ignores this parameter.

When expressing interest in a UR in local transaction mode, RRS will not
harden any data for a local transaction, including persistent interest data. If the
caller knows a UR is in local transaction mode, it should set
persistent_interest_data_length to binary zeros. If the calling program does not
know the transaction mode of the UR, however, it should specify all of the
data needed for any mode. It is not considered an error if a nonzero value is
specified in local transaction mode.

,xid_length
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

On ATREINT1, ATREINT2, ATREINT3, ATREINT4 and ATREINT5 calls,
specifies the length of the XID specified by xid as follows:
v 0: Binary zero specifies that no XID is provided. RRS ignores the contents of

the xid parameter.
v non-zero: The length of the value in the xid parameter. The value must be

between ATR_MIN_XID_LENGTH (13) and ATR_MAX_XID_LENGTH (140),
inclusive. This parameter is normally set to a non-zero value only by a
communications resource manager that has received an inbound
transactional request with an XID provided. To specify an XID, the UR state
must be in-reset. After a resource manager successfully uses ATREINT1,
ATREINT2, ATREINT3 or ATREINT4 to set an XID, the transaction mode is
set to global.

,xid
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified by the xid_length parameter

On ATREINT1, ATREINT2, ATREINT3, ATREINT4 and ATREINT5 calls,
specifies the XID your resource manager wants to set for this unit of recovery.
If xid_length is zero, the contents of this parameter are ignored.

An XID has the following format:

FORMATID
4–byte format identifier

GTRID_length
4–byte GTRID length

Express_UR_Interest

Chapter 7. Callable resource recovery services 327

BQUAL_length
4–byte BQUAL length

ID 1–128 byte ID transaction identifier

The 1–128 byte ID field has the following format:

GTRID
1–64 byte GTRID

BQUAL
0–64 byte BQUAL

,ur_family_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

On ATREINT2 and ATREINT4 calls, indicates whether or not RRS is to make
the UR in which the resource manager expresses interest into a cascaded UR.
The parent UR is specified by the parent_UR_token. Specify one of the
following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NO_FAMILY

No family: The UR is not a cascaded UR.

1
(1)
ATR_CASCADED

Cascaded: The UR is a cascaded UR. The
parent UR is specified by parent_UR_token.
This must be the first expression of interest
in the UR.

,parent_UR_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

On ATREINT2, ATREINT4 and ATREINT5 calls, specifies the token of the UR
that is to be the parent of the UR specified by the context_token:
v 0: Binary zero specifies the current UR associated with the application's task

active on the current system. Binary zero may be specified for either the
parent_UR_token or the child_context_token, but not both.

v token: The UR token of a particular UR. The UR token may be from another
system in the same logging group.

Unless UR_family_option is ATR_CASCADED or interest_options indicates that
the interest being expressed is being used to create a new cascaded UR, RRS
ignores this parameter.

Your resource manager may have received the parent_UR_token from the
Retrieve_UR_Data service or from a work manager from another system. If the

Express_UR_Interest

328 z/OS V2R1.0 MVS Programming: Resource Recovery

UR token was received from another system, RRS will associate the new child
UR, specified by child_context_token, with the top-level UR of the cascaded UR
family that resides on the system where the work request originated.

,diag_area
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

On ATREINT3, ATREINT4 and ATREINT5 calls, contains diagnostic data from
Express_UR_Interest to help IBM service determine the cause of an
Express_UR_Interest failure. Be sure to log this data when recording any
information about an Express_UR_Interest failure.

,transaction_mode
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

On ATREINT3 and ATREINT4 calls, indicates the transaction mode of the UR
that the resource manager is expressing interest in. RRS returns one of the
following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_GLOBAL_MODE

The transaction mode for the UR is global.

2
(2)
ATR_LOCAL_MODE

The transaction mode for the UR is local.

3
(3)
ATR_HYBRID_GLOBAL_MODE

The transaction mode for the UR is
hybrid-global.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00020000' or
X'00020001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Express_UR_Interest

Chapter 7. Callable resource recovery services 329

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

8
ATR_RM_ALREADY_HAS_INTEREST

Meaning: For a conditional request, the
resource manager already has an interest in
the UR. The system accepts the service call
and returns:

v The UR interest token

v The UR identifier

v The nonpersistent interest data for the
existing interest

The system might also return the current
context token.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program specified 0 in context_token or
parent_UR_token, but the calling program is
not in task mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

Express_UR_Interest

330 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

361
ATR_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36A
ATR_DU_TERMINATING

Meaning: Environmental error. The task or
SRB associated with the context specified in
the call is ending. The system rejects the
service call.

Action: None.

371
ATR_INTEREST_TYPE_INV

Meaning: Program error. The interest_type
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

372
ATR_FAILURE_ACTION_INV

Meaning: Program error. The failure_action
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

375
ATR_TWO_PHASE_PROTOCOL_INV

Meaning: Program error. The
two_phase_protocol value specified in the call
is not valid. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

376
ATR_PERSISTENT_DATA_LEN_INV

Meaning: Program error. The length
specified in the persistent_interest_data_len
parameter in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Express_UR_Interest

Chapter 7. Callable resource recovery services 331

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

386
ATR_FAILURE_ACTION_

INCORRECT

Meaning: Program error. The failure action
specified in the call is not valid with the
specified interest type. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

389
ATR_PERSISTENT_DATA_NOT_

ALLOWED

Meaning: Program error. The persistent
interest data length specified in the call is
not zero; zero is the only value valid when
either interest_type or interest_options
indicates unprotected interest is being
requested. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

391
ATR_MULTIPLE_INTEREST_

OPTION_INV

Meaning: Program error. The multiple
interest option specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

397
ATR_XID_DATA_INV

Meaning: Program error. The computed
length of the XID does not match the
specified length passed via the xid_length
parameter. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

399
ATR_UR_FAMILY_

OPTION_INV

Meaning: Program error. The UR family
option specified in the call is not valid. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Express_UR_Interest

332 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

39A
ATR_PARENT_UR_TOKEN_INV

Meaning: Program or environmental error.
The UR token specified in the
parent_UR_token parameter is not valid
because one of the following is true:

v It was coded incorrectly

v The parent transaction failed

v The system it resided on failed

v The coordinator system failed

v The RRS running on that system failed

v The parent UR belongs to a system that is
not in the same RRS logging group as this
system

If any of these conditions occurs, the system
rejects the service call.

Action: Check the calling program for a
probable coding error.

v If it's a program error, correct the program
and rerun it.

v If the work manager was creating a
multisystem cascaded UR, the work
manager must communicate the failure to
the work manager originating the request.

Installation Action: Ensure that the
originating work manager and this work
manager are in the same RRS logging group.

39C
ATR_XID_LENGTH_INV

Meaning: Program error. The XID length
specified in the call is not valid. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

39D
ATR_XID_INV

Meaning: Program error. The XID specified
in the call is not valid. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

39E
ATR_PARENT_DU_

TERMINATING

Meaning: Environmental error. The task
associated with the UR family specified by
the parent_UR_token parameter is ending.
The system rejects the service call.

Action: None.

Express_UR_Interest

Chapter 7. Callable resource recovery services 333

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A0
ATR_SAME_CURRENT_CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token and the
UR associated with the context represented
by the child_context_token are both 0. The
system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A1
ATR_SAME_PARENT_

CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token, which
may have been specified with a 0, and the
UR associated with the context represented
by the child_context_token are the same UR.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A2
ATR_SAME_CHILD_CONTEXT_INV

Meaning: Program error. The UR
represented by the parent_UR_token and the
UR associated with the context represented
by the child_context_token, specified with a 0,
are the same UR. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3A4
ATR_PARENT_AUTH_FAILURE

Meaning: Program error. The caller is
PKM8-15 problem state, but specified a
parent_UR_token of a UR associated with a
context which:

v Does not belong to a PKM 8-15 problem
state resource manager registered in the
home address space.

v Is not a native context in the home
address space.

The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Express_UR_Interest

334 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A5
ATR_CHILD_AUTH_FAILURE

Meaning: Program error. The caller is PKM
8-15 problem state, but specified a
child_context_token of a context which:

v Does not belong to a PKM 8-15 problem
state resource manager registered in the
home address space.

v Is not a native context in the home
address space.

The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3AC
ATR_INTEREST_OPTIONS_INV

Meaning: Program error. The interest_options
value specified on the call is not valid.
Either reserved bits were nonzero or an
unacceptable selection of options and
parameters was specified. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3B0
ATR_XID_EXISTS

Meaning: Program error. The resource
manager specified an XID, but the UR
already has an XID. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3B1
ATR_SUBORDINATE_FAILED_
EXIT_NOT_DEFINED

Meaning: Program error. The resource
manager requested to be notified, through
the SUBORDINATE_FAILED exit, in the
event of either RRS, RM, or system failure
on a subordinate system. However, a
SUBORDINATE_FAILED exit was not
provided by the resource manager. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the program
and rerun it.

3B2
ATR_DRV_SUBORDINATE_FAILED_
EXIT_INV

Meaning: Program error. The resource
manager requested to be notified, through
the SUBORDINATE_FAILED exit, in the
event of subordinate failure, but the UR in
which it is expressing interest is a cascaded
UR. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the program
and rerun it.

Express_UR_Interest

Chapter 7. Callable resource recovery services 335

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3B3
ATR_COMMIT_TIER_ONE_SRB_INV

Meaning: Program error. The resource
manager specified a tier one request for an
SRB Commit Exit routine. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the program
and rerun it.

3B7
ATR_COMMIT_TIER_ONE_MISMATCH

Meaning: Program error. The resource
manager expressed interest conditionally
and an expression of interest already exists.
The tier level specified by the RM does not
match the tier level already set in that
interest. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the program
and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager must be in run state. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: RRS/MVS has unset the
RRS/MVS exit routines for this resource
manager.

Action: The system rejects this service
request. The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

Express_UR_Interest

336 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

731
ATR_UR_STATE_ERROR

Meaning: Program error. Either the UR state
or the transaction mode is not valid for the
service call. You cannot call
Express_UR_Interest when:

v Your resource manager is trying to set an
XID, but the xid_length parameter
specified is 0

v The UR state is any other state but
in-reset when either UR_family_option or
interest_options indicates a new cascaded
UR was to be created or the resource
manager attempted to set an XID

v The UR state is beyond in-flight. A new
expression of interest cannot be created if
the UR state is beyond in-flight.

v The UR is in local transaction mode, or
this expression of interest would change
the UR transaction mode to local, but the
resource manager has not called
Set_Exit_Information to inform RRS that it
supports local transaction mode.

The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

743
ATR_PARENT_UR_

STATE_ERROR

Meaning: Program error. The UR specified
by the parent_UR_token is not in a valid state
for the service call. The UR must be in an
in-reset or in-flight state. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

744
ATR_CHILD_UR_STATE_ERROR

Meaning: Program error. The UR associated
with the specified child_context_token is not
in a valid state for the service call. The UR
must be in an in-reset state. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

749
ATR_MAX_UR_LOG_DATA_

EXCEEDED

Meaning: Environmental error. This request
will exceed the maximum amount of data
that RRS can log for a UR. The system
rejects the service call.

Action: Fail the client program request or
back out the UR. Verify that the space set up
for logging is adequate.

Express_UR_Interest

Chapter 7. Callable resource recovery services 337

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

763
ATR_PARENT_LOCAL_TRAN

_MODE_INV

Meaning: Program error. The parent UR is
in local transaction mode. This service is
valid only for a parent UR in global
transaction mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

769
ATR_XID_NO_GLOBAL_MATCH

Meaning: Program error. The XID specified
in the XID parameter does not have the
same FormatID, GTRID_length and GTRID
values as the parent UR's XID. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS had been available to the
resource manager but has gone down and
come back up again.

A commit or backout operation may or may
not have been in progress for the context
under which the Express_UR_Interest was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

Express_UR_Interest

338 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to express protected
interest with presume abort logging in a UR associated with the current context.
...
RM_TOKEN = MY_RM_TOKEN
C_TOKEN = 0
NON_P_DATA = ANCHOR1
P_DATA_LEN = LENGTH(MY_P_DATA)
P_DATA = MY_P_DATA
INT_OPTS = ATR_PROTECTED_INT_MASK + ATR_PRESUME_ABORT_MASK
PARENT = JUNK
XID_LEN = 0
XID = JUNK
CALL ATREINT5(RC,RM_TOKEN,C_TOKEN,URI_TOKEN,UR_TOKEN,CUR_C_TOKEN,

URID,INT_OPTS,NON_P_DATA,C_NON_P_DATA,P_DATA_LEN,
P_DATA,XID_LEN,XID,CASCADE_OPT,PARENT,TRAN_MODE)

IF RC = ATR_OK THEN
MY_C_TOKEN = CUR_C_TOKEN
MY_URTOKEN = URI_TOKEN
MY_URID = URID
MY_URTOKEN = UR_TOKEN
MY_TRAN_MODE = TRAN_MODE...

Forget_Agent_UR_Interest (ATRAFGT, ATR4AFGT)
v ATRAFGT is for AMODE(31) callers.
v ATR4AFGT is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role calls Forget_Agent_UR_Interest to tell RRS to delete the
SDSRM's interest in the specified unit of recovery (UR) and, depending on the
log_option value, delete any log entries that exist. The log_option can be set in
several ways, such as through the Commit_Agent_UR service or the
Backout_Agent_UR service, or implicitly by RRS. The SDSRM should issue
Forget_Agent_UR_Interest only when the log_option is ATR_DEFER_EXPLICIT.

If the call to Forget_Agent_UR_Interest specifies ATR_IMMEDIATE, then, if there is
a log record, RRS deletes the SDSRM's interest and logs the UR without the
SDSRM's interest to ensure that, during any subsequent restart processing, it never
returns the UR to the SDSRM.

If the UR state is in-forget, there are no longer any incomplete interests in the UR;
Forget_Agent_UR_Interest deletes the UR. Otherwise, Forget_Agent_UR_Interest

Express_UR_Interest

Chapter 7. Callable resource recovery services 339

changes the UR state from in-forget to forgotten. The input ur_interest_token is no
longer valid, and the SDSRM no longer has any processing obligation related to
this unit of recovery. If log_option is not ATR_DEFER_EXPLICIT, however, the UR
interest might be returned on restart.

RRS serializes Forget_Agent_UR_Interest processing so that resource manager
interests are not deleted while resource manager exit routines are running.

If a resource manager with an interest in a UR has taken the SDSRM role, RRS will
implicitly change the log_option to ATR_DEFER_EXPLICIT under any of the
following conditions:
v When the application backs out the UR through a call to the Backout_UR service

or the Application_Backout_UR service.
v When an RRS panel or the ATRSRV macro is used to resolve an in-doubt UR.
v When RRS re-creates a committed or backed out UR during restart processing.

RRS changes the log_option to ensure that the resource manager that has taken the
SDSRM role is always informed of the results of the UR and allows the resource
manager to safely prevote its BACKOUT and COMMIT exits.

Environment

Authorization: Supervisor state, or PKM allowing keys 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRAFGT)
64 bit (ATR4AFGT)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be in the primary address space and

addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To use the service:
v The resource manager state must be run.
v The unit of recovery state must be in-commit, in-backout, in-end,

in-completion, or in-forget.

If you are coding an RRS exit routine, do not call this service to process the UR
passed to the exit routine in the ur_interest_token exit routine parameter.

Forget_Agent_UR_Interest

340 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

CALL ATRAFGT
(return_code
,ur_interest_token,
,log_option
);

CALL ATR4AFGT
(return_code
,ur_interest_token,
,log_option
);

Forget_Agent_UR_Interest

Chapter 7. Callable resource recovery services 341

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code for the Forget_Agent_UR_Interest service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. The resource manager
received the token from: Express_UR_Interest, Retrieve_UR_Interest, or
Retain_Interest.

,log_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates how RRS is to process log entries for the unit of recovery. Specify one
of the following values:

Constant in
Hexadecimal
(Decimal)
Equate Symbol Description

X'0'
(0)
ATR_DEFER

Meaning: RRS is to logically delete the log record
when the unit of recovery state changes to Forgotten.

X'2'
(2)
ATR_IMMEDIATE

Meaning: Before returning control to the SDSRM, RRS
must delete the SDSRM's interest from the UR. RRS
hardens a new log record without the interest.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'001C0000'
or X'001C0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Forget_Agent_UR_Interest

342 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: The operation completed
successfully.

Action: Continue normal processing.

10
ATR_OK_NO_CONTEXT

Meaning: The operation completed
successfully. The UR state was
in-completion or in-forget, and there was
no associated context.

Action: Continue normal processing.

11
ATR_FORGET_NOT_REQUIRED

Meaning: The specified ur_interest_token
represents a UR that does not require the
Forget_Agent_UR service.

Action: Continue normal processing.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: The caller is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a
probable coding error.

107
ATR_UNSUPPORTED_RELEASE

Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

370
ATR_URI_TOKEN_INV

Meaning: The specified UR_interest_token
does not represent a valid expression of
interest. This condition can occur after RRS
has terminated and restarted. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

395
ATR_LOG_OPT_INV

Meaning: The specified log_option value is
not valid. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

Forget_Agent_UR_Interest

Chapter 7. Callable resource recovery services 343

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
ATR_RM_STATE_ERROR

Meaning: The resource manager state is not
valid for this request. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

702
ATR_RM_EXITS_UNSET

Meaning: RRS has unset the RRS exit
routines for this resource manager. The
system rejects this service request.

Action: The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

731
ATR_UR_STATE_ERROR

Meaning: The UR state is not valid for this
request. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

74A
ATR_NOT_SERVER_DSRM

Meaning: The resource manager does not
have the server distributed syncpoint
resource manager role for the unit of
recovery. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

750
ATR_RESPOND_CONTINUE_REQUIRED

Meaning: The resource manager must call
Respond_to_Retrieved_Interest before it can
call Forget_Agent_UR for this interest.

Action: The system rejects this service
request. Call Respond_to_Retrieved_Interest,
then call Forget_Agent_UR for this interest.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

Forget_Agent_UR_Interest

344 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager tells RRS to forget the unit of
recovery. Storage for the call parameters has been allocated.
...
URI_TOKEN = MY_URI_TOKEN
FTOPT=ATR_DEFER
CALL ATRAFGT(RC,URI_TOKEN,FTOPT)...

Post_Deferred_UR_Exit (ATRPDUE, ATR4PDUE)
v ATRPDUE is for AMODE(31) callers.
v ATR4PDUE is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Several resource manager exit routines allow the resource manager to initiate
asynchronous processing, then return to RRS with a return code that indicates a
deferred response. The return codes that indicate a deferred response are:

ATRX_LATER
ATRX_LATER_CONTINUE

When the asynchronous processing completes, the resource manager calls the
Post_Deferred_UR_Exit service to pass to RRS a return code that reflects the results
of the asynchronous processing.

In response to the call, RRS issues a return code.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRPDUE)
64 bit (ATR4PDUE)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.

Forget_Agent_UR_Interest

Chapter 7. Callable resource recovery services 345

Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the UR must be in the same state as it was when the exit returned the
deferred response code. The UR state cannot be in-reset, in-flight, or in-forget.

The exit routine's resource manager state must be either:
v Restart, which means it has registered, set its exit routines with RRS, begun

restart, and requested incomplete UR interests
v Run, which means it has registered, set its exit routines with RRS, and

completed restart

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller

Post_Deferred_UR_Exit

346 z/OS V2R1.0 MVS Programming: Resource Recovery

depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRPDUE
(return_code
,ur_interest_token
,exit_number
,completion_code)

CALL ATR4PDUE
(return_code
,ur_interest_token
,exit_number
,completion_code)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Post_Deferred_UR_Exit service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. Your resource manager
received the token on a call to: Express_UR_Interest, Retrieve_UR_Interest, or
Retain_Interest.

,exit_number
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Post_Deferred_UR_Exit

Chapter 7. Callable resource recovery services 347

Specifies the exit number for the exit routine that has completed with the code
in the completion_code parameter. “Set_Exit_Information (CRGSEIF,
CRGSEIF1,CRG4SEIF)” on page 148 lists the exit routines and their numbers,
which are assigned by RRS.

,completion_code
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the return code from the asynchronous exit routine that has now
completed processing. The code can be any valid return code for the exit
routine, except ATRX_LATER or ATRX_LATER_CONTINUE.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00090000' or
X'00090001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

10
ATR_OK_NO_CONTEXT

Meaning: The operation completed
successfully. The UR state was
in-completion or in-forget, and there was
no associated context.

Action: Continue normal processing.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Post_Deferred_UR_Exit

348 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

109
ATR_ENVIRONMENT_INV

Meaning: Program error. The resource
manager invoked the service from an SRB
suspend exit or from an SRB that was ended
abnormally by the PURGEDQ service. The
system rejects the call to
Post_Deferred_UR_Exit.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not for one of
the currently valid interests. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

378
ATR_EXIT_NUMBER_INV

Meaning: Program error. The exit number
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

379
ATR_COMP_CODE_INV

Meaning: Program error. The exit return
code specified in the completion_code
parameter in the call is not valid for the exit
routine. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Check both the
completion code and the exit number in the
call. Correct the resource manager and rerun
it.

381
ATR_LATER_INV

Meaning: Program error. The completion_code
parameter specified in the call is ATRX_LATER
or ATRX_LATER_CONTINUE. This value cannot
be used for this call. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Post_Deferred_UR_Exit

Chapter 7. Callable resource recovery services 349

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in restart or run state. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

740
ATR_POST_NOT_PENDING

Meaning: Program error. For the exit
number and the interest specified in the call,
RRS is not expecting a return code from the
exit routine. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F03
ATR_UR_RESOLVED_BY_

INSTALLATION

Meaning: Environmental error. The resource
manager called the Post_Deferred_UR_Exit
service to resolve a UR in an in-doubt state.
However, the installation had already used
panel input to resolve the UR. The system
rejects the service call.

Action: RRS processes the UR based on the
installation input.

Post_Deferred_UR_Exit

350 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Post_Deferred_UR_Exit
was done at the time of the RRS failure. A
new unit of recovery can not be created
until the current unit of recovery is
completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the exit routine issues a call to supply its return code.
...
EXIT_NUM = ATR_PREPARE_EXIT
URI_TOKEN = MY_URI_TOKEN
CCODE = ATRX_OK
CALL ATRPDUE(RC,URI_TOKEN,EXIT_NUM,CCODE)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Prepare_Agent_UR (ATRAPRP, ATR4APRP)
v ATRAPRP is for AMODE(31) callers.
v ATR4APRP is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Post_Deferred_UR_Exit

Chapter 7. Callable resource recovery services 351

A resource manager that has taken the server distributed syncpoint resource
manager (SDSRM) role calls Prepare_Agent_UR to tell RRS to initiate the prepare
phase of a syncpoint operation for the unit of recovery (UR) associated with the
specified UR interest. When the SDSRM calls this service, RRS collects the local
prepare votes and does one of the following:
1. If the result of the state check indicates that a state check condition exists, RRS

makes no changes to the state of the UR.
2. If the collective prepare vote result was OK, RRS sets the UR state to in-doubt.
3. If the collective prepare vote result was forget, RRS sets the UR state to

forgotten.
4. If the collective prepare vote result was backout, RRS backs out the unit of

recovery and sets its state to forgotten.
5. If the application has already caused backout of the UR, RRS might have

already backed out the UR. In this case, RRS returns ATR_UR_STATE_ERROR.
The UR might be in any state, but, once it reaches in-forget, it remains in that
state until the resource manager calls Forget_Agent_UR.

A successful call to Prepare_Agent_UR changes the UR state to in-doubt or
forgotten.

If a resource manager with an interest in a UR has taken the SDSRM role, RRS will
implicitly change the log_option to ATR_DEFER_EXPLICIT (see
“Commit_Agent_UR (ATRACMT, ATR4ACMT)” on page 254) under any of the
following conditions:
v When the application backs out the UR through a call to the Backout_UR service

or the Application_Backout_UR service.
v When RRS re-creates a UR during restart processing.

If any of these conditions has occurred, RRS returns the ATR_UR_STATE_ERROR
return code. The UR might be in any state, but, once it reaches in-forget, it will
remain in that state until the Forget_Agent_UR service is called. RRS waits for
Forget_Agent_UR to ensure that the resource manager that has taken the SDSRM
role is always informed of the results of the UR. This allows the resource manager
to safely pre-vote its BACKOUT and COMMIT exits.

Note: The SDSRM may issue Forget_Agent_UR without waiting for the UR to
reach the in-forget state.

Environment

Authorization: Supervisor state, or PKM allowing keys 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRAPRP)
64 bit (ATR4APRP)

ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be in the primary address space and

addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Prepare_Agent_UR

352 z/OS V2R1.0 MVS Programming: Resource Recovery

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

To use the service:
v The resource manager state must be run.
v The unit of recovery state must be in_flight.

Attention: Do not invoke this service to prepare a UR with a work context
associated with a task in the resource manager's address space. If you do, it might
be impossible for the resource manager address space to end or for the resource
manager to restart without a complete system restart.

CAUTION:
The resource manager must ensure that no application can be updating protected
resources for the unit of recovery being prepared. This is necessary to ensure
that no resource manager taking part in the unit of recovery sees updates being
made on behalf of a unit of recovery at the same time as they are executing
syncpoint processing.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Prepare_Agent_UR

Chapter 7. Callable resource recovery services 353

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

CALL ATRAPRP
(return_code
,ur_interest_token
,log_option
);

CALL ATR4APRP
(return_code
,ur_interest_token
,log_option
);

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code for the Prepare_Agent_UR service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that uniquely represents an instance of the
resource manager's interest in the particular UR. The resource manager
received the token from a call to the Express_UR_Interest service or the
Retain_Interest service.

,log_option
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Prepare_Agent_UR

354 z/OS V2R1.0 MVS Programming: Resource Recovery

Indicates how RRS is to process log entries for the unit of recovery. This option
affects processing only when the service receives a return code of
ATR_FORGET. Specify one of the following:

Constant in
Hexadecimal
(Decimal)
Equate Symbol Description

X'0'
(0)
ATR_DEFER_IMPLICIT

Meaning: RRS is to logically delete the log record
when the unit of recovery state changes to Forgotten.

Your resource manager will not call the
Forget_Agent_UR service.

A later call to the Commit_Agent_UR service or the Backout_Agent_UR service
can override the log option specified here.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'001D0000'
or X'001D0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: The prepare operation completed
successfully. The collective prepare vote
allows the unit of recovery to be committed
and all resource managers did not vote to
abstain or forget. The UR state is now
In_Doubt.

Action: Continue normal processing by
determining the resolution of the In_Doubt
condition and reporting it to RRS with
Commit_Agent_UR or Backout_Agent_UR.

8
ATR_FORGET

Meaning: The prepare operation completed
successfully. The collective prepare vote
allows the unit of recovery to be completed,
and all resource managers voted to abstain
or forget. The UR state is now Forgotten.

Action: Continue normal processing.

Prepare_Agent_UR

Chapter 7. Callable resource recovery services 355

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

C8
ATR_PROGRAM_STATE_CHECK

Meaning: The commit operation failed. The
consistency state of the protected resources
has not been altered. This return code
indicates one of the following conditions has
occurred:

v A protected resource, specifically a
communications Interface conversation, is
not in Send, Send Pending, Defer
Receive, Defer Allocate, Sync_Point,
Sync_Point Send, or Sync_Point
Deallocate state.

v A protected resource, specifically a
Communications Interface conversation, is
in Send state, and the program started
but did not finish sending a basic
conversation logical record.

v A protected resource, specifically a local
resource, is not in the proper state for a
commit.

Action: If possible, initiate a resource
manager action to get the resources to a
committable state and then invoke the
Prepare_Agent_UR service again. Otherwise,
issue Backout_Agent_UR to back out the
transaction.

103
ATR_INTERRUPT_STATUS_INV

Meaning: The caller is disabled. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, which is the
required mode. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: The caller is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a
probable coding error.

107
ATR_UNSUPPORTED_RELEASE

Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports RRS. Then rerun the calling
program.

Prepare_Agent_UR

356 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

12C
ATR_BACKED_OUT

Meaning: The commit operation failed. All
protected resources have been returned to
the previous consistent state.

Action: Continue normal processing for a
backed out unit of recovery. The UR state is
now Forgotten.

12D
ATR_BACKED_OUT_OUTCOME_

PENDING

Meaning: The commit operation failed. The
RRS decision was to return to the previous
consistent state. However, the state of one or
more of the protected resources is not
known.

Action: Continue normal processing for a
backed out unit of recovery. The UR state is
now Forgotten.

12E
ATR_BACKED_OUT_OUTCOME_

MIXED

Meaning: The commit operation failed.
However, one or more of the protected
resources has advanced to a new
synchronization state.

Action: Report the error to the other
transactional participants. The UR state is
now Forgotten.

370
ATR_URI_TOKEN_INV

Meaning: The specified UR_interest_token
does not represent a valid expression of
interest. This condition can occur after RRS
has terminated and restarted. The system
rejects this service request.

Action: Check the calling program for a
probable coding error.

395
ATR_LOG_OPT_INV

Meaning: The specified log_option value is
not valid. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager state is not
valid for this request. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

702
ATR_RM_EXITS_UNSET

Meaning: RRS has unset the RRS exit
routines for this resource manager. The
system rejects this service request.

Action: The resource manager must reset its
RRS exit routine information and begin
restart processing with RRS.

Prepare_Agent_UR

Chapter 7. Callable resource recovery services 357

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

731
ATR_UR_STATE_ERROR

Meaning: The UR state is not valid for this
service request. The system rejects the
request. The application might have already
requested backout. Call Retrieve_UR_Data
or Retrieve_Side_Information to obtain
information about the state of the UR. If you
receive this return code, you must call
Forget_Agent_UR to complete processing for
the UR.

Action: Call Forget_Agent_UR to complete
the processing of this UR.

74A
ATR_NOT_SERVER_DSRM

Meaning: The resource manager does not
have the server distributed syncpoint
resource manager role for the unit of
recovery. The system rejects this service
request.

Action: Check the calling program for a
probable coding error.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F04
ATR_UNEXPECTED_UR_ERROR

Meaning: System error. While processing the
UR, RRS has encountered an unexpected
error that might have damaged the UR. The
system rejects the service call.

Action: Contact the system programmer
who maintains RRS at your installation.
Manual intervention might be needed to
restore consistent resources.

FFF
ATR_UNEXPECTED_ERROR

Meaning: This service routine encountered
an unexpected error. The system rejects this
service request.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager wants to initiate the prepare
phase of syncpoint for the unit of recovery. Storage for the call parameters has
been allocated.
...
URI_TOKEN = MY_URI_TOKEN
FTOPT=ATR_DEFER_IMPLICIT

Prepare_Agent_UR

358 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATRAPRP(RC,URI_TOKEN,FTOPT)...

Respond_to_Retrieved_Interest (ATRIRRI, ATR4IRRI)
v ATRIRRI is for AMODE(31) callers.
v ATR4IRRI is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

The resource manager calls the Respond_to_Retrieved_Interest service to tell RRS
how to process an interest in an incomplete unit of recovery (UR). During restart,
your resource manager must retrieve its interests in repetitive calls to the
Retrieve_UR_Interest service; every call that retrieves an interest must be followed
by a Respond_to_Retrieved_Interest call, which tells RRS that:
v RRS should continue processing the UR by invoking the resource manager's exit

routines.
v The resource manager has completed work for this interest in the UR. RRS

should delete this interest.

In response to the call, RRS returns a return code.

RRS Actions for Incomplete URs: If the response_code you specify on the
Respond_to_Retrieved_Interest call is ATR_RESPOND_CONTINUE, RRS
processing is summarized in Table 19. The usual resource manager role is
participant, but the Set_Syncpoint_Controls call can specify a different role. The
action RRS takes for each incomplete UR depends on the UR state and the resource
manager role.

Table 19. Actions for Incomplete URs

UR state
Resource
manager role

Response
code RRS action for continue

In-doubt Participant Continue Invokes the COMMIT or BACKOUT exit
routine after the UR state is resolved

In-doubt Distributed
syncpoint
resource
manager

Continue Invokes the DISTRIBUTED_SYNCPOINT
exit routine to resolve the in-doubt UR
state

In-doubt Server
distributed
syncpoint
resource
manager

Continue Prepares for eventual Commit_Agent_UR
or Backout_Agent_UR.

In-commit Any Continue or
complete

For continue, RRS invokes the COMMIT
exit routine. For complete, it does not.

In-backout Any Continue or
complete

For continue, RRS invokes the BACKOUT
exit routine. For complete, it does not.

Note: If a resource manager calls Respond_to_Retrieved_Interest in Restart state and
specifies ATR_RESPOND_CONTINUE, RRS does not invoke any exits for any of the
resource manager's interests until the resource manager calls the End_Restart service.

The installation cannot resolve the in-doubt state of a UR through RRS ISPF panels
between the time when the resource manager sets its RRS exit routines and the
time when a resource manager responsible for resolving the UR specifies

Prepare_Agent_UR

Chapter 7. Callable resource recovery services 359

ATR_RESPOND_CONTINUE. It is thus a good idea to design the resource
manager so that this time is as short as possible.

Complete URs: Your resource manager should call the
Respond_to_Retrieved_Interest service with a response_code of
ATR_RESPOND_COMPLETE when a Retrieve_UR_Interest call returns a UR that
your resource manager has completed,

Nonpersistent Interest Data: The Respond_to_Retrieved_Interest call can also
provide nonpersistent interest data. RRS ignores nonpersistent interest data if the
call specifies ATR_RESPOND_COMPLETE. Otherwise, RRS gives this data to each
of the resource manager's exit routines that it invokes for this interest. This data is
not recorded in nonvolatile storage and is not available at subsequent restarts.

Your resource manager can retrieve nonpersistent interest data in a call to the
Retrieve_UR_Interest_Data service.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRIRRI)
64 bit (ATR4IRRI)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the UR interest token specified in the call
must be in either Restart state or Run state.

The state of the specified UR must be in-doubt, in-commit, or in-backout.

Respond_to_Retrieved_Interest

360 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRIRRI
(return_code
,ur_interest_token
,response_code
,nonpersistent_interest_data)

Respond_to_Retrieved_Interest

Chapter 7. Callable resource recovery services 361

CALL ATR4IRRI
(return_code
,ur_interest_token
,response_code
,nonpersistent_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Respond_to_Retrieved_Interest service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Is the UR interest token that identifies your resource manager's interest in the
incomplete UR. Your resource manager received the token from the
Retrieve_UR_Interest callable service.

,response_code
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Indicates how RRS is to respond to the UR interest. Specify one of the
following:

Response Code in:
Hexadecimal
(Decimal)
Equate Symbol Response

X'0'
(0)
ATR_RESPOND_CONTINUE

RRS should continue processing the UR by
invoking the resource manager's exit
routines.

If the resource manager is in Restart state,
RRS does not invoke the exit routines until
the resource manager has called the
End_Restart service.

Respond_to_Retrieved_Interest

362 z/OS V2R1.0 MVS Programming: Resource Recovery

Response Code in:
Hexadecimal
(Decimal)
Equate Symbol Response

X'1'
(1)
ATR_RESPOND_COMPLETE

The resource manager has completed work
for this interest in the UR. RRS should delete
this interest.

You cannot choose this response code for a
UR that is in-doubt.

,nonpersistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the nonpersistent interest data for your resource manager's interest.
RRS provides this data to each exit routine it invokes for the UR but does not
record the data in nonvolatile storage. If you specified a response_code of
ATR_RESPOND_COMPLETE, RRS ignores the data.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00070000' or
X'00070001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Respond_to_Retrieved_Interest

Chapter 7. Callable resource recovery services 363

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

384
ATR_RESPONSE_CODE_INV

Meaning: Program error. The response_code
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

385
ATR_RESPONSE_CODE_

INCORRECT

Meaning: Program error. The response_code
value specified in the call is not correct for
the state of the UR or the role of the
resource manager or both. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in restart or run state. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Respond_to_Retrieved_Interest

364 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

741
ATR_NOT_RETRIEVED_INTEREST

Meaning: Program error. The UR interest
token specified in the call is not for a
retrieved interest. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

742
ATR_RESPONSE_NOT_PENDING

Meaning: Program error. RRS is not
expecting a process interest call for the UR
interest token specified in the call. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Respond_to_Retrieved_Interest

Chapter 7. Callable resource recovery services 365

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the
Respond_to_Retrieved_Interest was done at
the time of the RRS failure. A new unit of
recovery can not be created until the current
unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to respond to a
retrieved interest. The call requests that RRS invoke the resource manager's exit
routines.
...
URI_TOKEN = UR_INTEREST_TOKEN
NON_P_DATA = ANCHOR1
RESPCOD = ATR_CONTINUE
CALL ATRIRRI(RC,URI_TOKEN,RESPCOD,NON_P_DATA)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Retain_Interest (ATRSROI, ATRSROI1, ATR4SROI)
v ATRSROI is for AMODE(31) callers.

Respond_to_Retrieved_Interest

366 z/OS V2R1.0 MVS Programming: Resource Recovery

v ATRSROI1 is for AMODE(31) callers and allows a resource manager to request
to have its COMMIT exit run at a tier one priority with regards to other resource
managers in the next UR.

v ATR4SROI is for AMODE(64) callers and allows parameters in 64 bit addressable
storage and allows a resource manager to request to have its COMMIT exit run
at a tier one priority with regards to other resource managers in the next UR.

A resource manager calls the Retain_Interest service to express interest in the next
unit of recovery (UR) for the current context when the current UR completes.

While managing conversations for a work request, a communications resource
manager can use the Retain_Interest call to make sure it is aware of all URs for the
work request.

The new UR that the Retain_Interest service creates begins after the current UR
reaches in_completion state.

In response to the call, RRS returns:
v A return code.
v A new UR interest token for the interest in the next UR. You need this token for

many calls to RRS services.
v A UR identifier (URID) for the next UR, for both protected and unprotected

expressions of interest.

Once the current UR reaches in_completion state, you can obtain the LUWID for
the UR created by Retain_Interest. To obtain the LUWID, call the
Set_Work_Identifier service:
v Specify the new_ur_interest_token that Retain_Interest provides.
v Request the current LUWID.

Protected and unprotected interests: The call can express a protected or
unprotected interest in the next UR. For a protected interest, RRS or a resource
manager coordinates changes to the resources, so that all changes are made or no
changes are made. Resources that can be protected are a database, a conversation
between two communications managers, or a product-specific resource.

Action for Resource Manager Failure: In the call, you can specify how RRS should
process requests to commit the next UR if the resource manager becomes:
v Unregistered: Your resource manager is no longer registered as a resource

manager. See the Register_Resource_Manager callable service for a description of
the ways in which your resource manager can become unregistered.

v Unset: Your resource manager's exit routines are no longer set with RRS.

RRS can process requests as follows:
v Standard processing: RRS should back out the next UR, if the state of the UR is

in-reset, in-flight, in-state-check, or in-prepare.
v Forget interest: RRS is to delete the resource manager's interest in the next UR.

You may specify this value only if the interest_type is ATR_UNPROTECTED.

Persistent interest data: In the Retain_Interest call, your resource manager can
provide persistent interest data if the interest is protected. When hardening
information for the interest in an RRS log, RRS records the persistent interest data.

Retain_Interest

Chapter 7. Callable resource recovery services 367

Because the data is hardened, it will be available if your resource manager restarts
or if RRS restarts, forcing your resource manager to restart.

In addition to using Retain_Interest, your resource manager can also provide
persistent interest data in a call to any of the following services:
Express_UR_Interest, Change_Interest_Type, or Set_Persistent_Interest_Data. Your
resource manager can retrieve the data in a call to the Retrieve_UR_Interest service
or the Retrieve_UR_Data service.

Nonpersistent interest data: The call can also provide nonpersistent interest data.
RRS gives this data to each resource manager exit routine it invokes for this
interest. This data is not recorded in nonvolatile storage and is not available at
subsequent restarts.

Your resource manager can also provide nonpersistent interest data for an interest
in a call to the Express_UR_Interest service or the Respond_to_Retrieved_Interest
service. Your resource manager can retrieve it in a call to the
Retrieve_Interest_Data service.

URID: Your resource manager should save the returned URID with the data for
the next UR in its resource manager log. During restart processing after the
resource manager, RRS, or system fails, your resource manager obtains the URID
for an incomplete UR from the Retrieve_UR_Interest service. Compare the URID
from the Retrieve_UR_Interest service with URIDs in the resource manager's log to
find the data for the incomplete UR.

Your resource manager can also obtain the URID from a call to the following
services: Express_UR_Interest, Retrieve_UR_Interest, Retrieve_UR_Data, or
Change_Interest_Type.

Commit exit tier priority: On this call, you can specify the tier priority at which
RRS should invoke your COMMIT exit:
v Tier one priority: RRS will invoke the resource manager's COMMIT exit before

other resource managers. If multiple resource managers request the tier one
priority, the commits exits will be driven in the order in which they expressed
interest in the UR.

v No priority: The resource manager's exit will be driven after tier one resource
managers' commit exits, if any.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSROI, ATRSROI1)
64 bit (ATR4SROI)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Retain_Interest

368 z/OS V2R1.0 MVS Programming: Resource Recovery

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

There are restrictions related to the current UR:
v The UR state must not be in_reset, in_flight, in_completion, or in_forget.
v The current UR must not be in local transaction mode.
v The expression of interest must not be a restart expression of interest (that is, an

interest returned by the Retrieve_UR_Interest service).
v No resource manager can have the server distributed syncpoint resource

manager role in the UR.

The state of the resource manager associated with the specified UR interest token
must be run, which means it has registered, set its exit routines with RRS, and
completed restart.

Interest cannot be retained in a cascaded UR, a UR with an SDSRM, or a UR
whose context is terminating.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Retain_Interest

Chapter 7. Callable resource recovery services 369

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSROI
(return_code
,ur_interest_token
,new_ur_interest_token
,ur_identifier
,interest_type
,failure_action
,nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data)

CALL ATRSROI1 (return_code
,ur_interest_token
,new_ur_interest_token
,ur_identifier
,interest_options
,nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data)

CALL ATR4SROI (return_code
,ur_interest_token
,new_ur_interest_token
,ur_identifier
,interest_options
,nonpersistent_interest_data
,persistent_interest_data_length
,persistent_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Retain_Interest

370 z/OS V2R1.0 MVS Programming: Resource Recovery

Contains the return code from the Retain_Interest service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that identifies your resource manager's interest
in the current UR. Your resource manager received the token from the
Express_UR_Interest service.

Note that the token cannot be for a UR interest returned by a
Retrieve_UR_Interest call during restart.

,new_ur_interest_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the UR interest token that identifies your resource
manager's interest in the next UR.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the UR identifier (URID) that uniquely identifies the
next UR.

,interest_options
Supplied parameter
v Type: Bit string
v Character Set: N/A
v Length: 4bytes

Specifies various options that determine how RRS will process this interest.
Each of the bits in interest_options is either reserved or has a specific meaning.
Each reserved bit must be specified as zero. Each other bit can be specified as
either zero or one. The bit specifications are:

Bit positions

Constant in:
Hexadecimal
Equate Symbol Description

7
00000000
ATR_UNPROT_INT_MASK

Interest Type

A resource manager specifies zero to express an
unprotected interest in the UR.

A resource manager specifies one to express a
protected interest in the UR.

Retain_Interest

Chapter 7. Callable resource recovery services 371

Bit positions

Constant in:
Hexadecimal
Equate Symbol Description

11
00000000
ATR_STANDARD_FAIL_MASK

00100000
ATR_REMOVE_INT_ON_FAIL_MASK

Failure action

A resource manager specifies zero when it wants
RRS to do its standard processing if the resource
manager fails.

A resource manager specifies one when it wants
RRS to remove its interest in the UR if the
resource manager fails.
Note: One can only be specified if the resource
manager is expressing an unprotected interest in
the next UR.

14
00000000
ATR_COMMIT_NO_PRIORITY

00020000
ATR_COMMIT_TIER_ONE_
PRIORITY

Commit exit tier priority

When zero is specified, the resource manager
does not require RRS to drive its COMMIT exit at
a higher priority with regards to other resource
managers in the same UR.

When one is specified, the resource manager
wants RRS to drive its COMMIT exit first with
respect to other resource managers' exits.

,interest_type
Supplied parameter
v Type: Integer
v Length: 4 bytes

Indicates the type of interest the resource manager has in the next UR. Specify
one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_UNPROTECTED

Unprotected: The resource manager is
expressing an unprotected interest in the UR.

1
(1)
ATR_PROTECTED

Protected: The resource manager is
expressing a protected interest in the UR.

,failure_action
Supplied parameter
v Type: Integer
v Length: 4 bytes

Defines how RRS is to process commit requests for the next UR if the resource
manager becomes unregistered or unset. Specify one of the following:

Retain_Interest

372 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Action

0
(0)
ATR_FAIL_STANDARD

Standard processing

2
(2)
ATR_FAIL_FORGET

Forget interest

For the current UR, the failure action after this call is ATR_FAIL_STANDARD.

,nonpersistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the nonpersistent interest data for your resource manager's interest.
RRS does not record this data in nonvolatile storage.

,persistent_interest_data_length
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies, in hexadecimal, the length of the persistent interest data. Specify X'0'
- X'1000' (0-4096) bytes. If the interest type is ATR_UNPROTECTED, then this
field must be binary zeros.

,persistent_interest_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in persistent_interest_data_length

The persistent interest data for your resource manager's interest in the UR. RRS
records this data in an RRS log. If persistent_interest_data_length is binary zeros,
RRS ignores this parameter.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00110000' or
X'00110001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Retain_Interest

Chapter 7. Callable resource recovery services 373

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

371
ATR_INTEREST_TYPE_INV

Meaning: Program error. The interest_type
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

372
ATR_FAILURE_ACTION_INV

Meaning: Program error. The failure_action
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retain_Interest

374 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

376
ATR_PERSISTENT_DATA_LEN_INV

Meaning: Program error. The length
specified in the persistent_interest_data_len
parameter in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

386
ATR_FAILURE_ACTION_INCORRECT

Meaning: Program error. The failure action
specified in the call is not valid for the
specified interest type. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

389
ATR_PERSISTENT_DATA_NOT_

ALLOWED

Meaning: Program error. The persistent
interest data length specified in the call is
not zero; zero is the only value valid with
the specified interest type of
ATR_UNPROTECTED. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3B3
ATR_COMMIT_TIER_ONE_SRB_INV

Meaning: Program error. The resource
manager specified a tier one request for an
SRB Commit Exit routine. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3B7
ATR_COMMIT_TIER_ONE_MISMATCH

Meaning: Program error. The resource
manager expressed interest conditionally
and an expression of interest already exists.
The tier level specified by the RM does not
match the tier level already set in that
interest. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in run state. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retain_Interest

Chapter 7. Callable resource recovery services 375

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: The resource manager must reset its
RRS exits and begin restart processing with
RRS.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The current UR is
not in a valid state for the service call. The
UR state must not be in_reset, in_flight,
in_completion, or in_forget. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

736
ATR_SROI_ALREADY_DONE

Meaning: Program error. The resource
manager has already successfully called the
Retain_Interest service for this UR interest
token. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73C
ATR_AFTER_NEW_UR

Meaning: Program error. The application is
already running under a new UR. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73D
ATR_INV_FOR_RESTART_

INTEREST

Meaning: Program error. The current UR is
a restart UR. The retain interest service
cannot be invoked for restart URs. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

747
ATR_TERMINATING_SYNCPOINT

Meaning: Program error. RRS is processing a
terminating syncpoint so there cannot be
any more new URs for this contact. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retain_Interest

376 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

748
ATR_RM_IS_THE_SDSRM

Meaning: Environmental error. A resource
manager has taken the SDSRM role for this
UR. Interest cannot be retained in a UR with
an SDSRM. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

749
ATR_MAX_UR_LOG_DATA_

EXCEEDED

Meaning: Environmental error. This request
will exceed the maximum amount of data
that RRS can log for a UR. The system
rejects the service call.

Action: Fail the client program request or
back out the UR. Verify that the space set up
for logging is adequate.

760
ATR_CASCADED_UR

Meaning: Program error. The UR is a
cascaded UR. Interest cannot be retained in
a cascaded UR. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

764
ATR_LOCAL_TRAN_MODE_INV

Meaning: Program error. The current UR is
in local transaction mode. This service is
valid only for a UR in global transaction
mode. The system rejects the service call.

Action: Check the calling program for a
probable coding error. If the caller is a
resource manager, it should not unset its
exits with RRS.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Retain_Interest

Chapter 7. Callable resource recovery services 377

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Retain_Interest was done at
the time of the RRS failure. A new unit of
recovery can not be created until the current
unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to express protected
interest in the next UR for the current context.
...
URI_TOKEN = MY_URI_TOKEN
NON_P_DATA = ANCHOR1
P_DATA_LEN = LENGTH(MY_P_DATA)
P_DATA = MY_P_DATA
INT_TYPE = ATR_PROTECTED
FAIL_ACT = ATR_FAIL_STANDARD
CALL ATRSROI(RC,URI_TOKEN,NEW_URI_TOKEN,URID,INT_TYPE,

FAIL_ACT,NON_P_DATA,P_DATA_LEN,P_DATA)
IF RC = ATR_OK THEN

Retain_Interest

378 z/OS V2R1.0 MVS Programming: Resource Recovery

MY_NEXT_URITOKEN = NEW_URI_TOKEN...

Retrieve_Environment (ATRRENV, ATR4RENV)
v ATRRENV is for AMODE(31) callers.
v ATR4RENV is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A work manager calls the Retrieve_Environment service to retrieve the
environment settings at the address space level, at the context level, or at the
default level. The settings retrieved have either been set via the Set_Environment
service, or defaulted to. RRS need not be available when the service is called.

Environment

The requirements for the caller are:

Minimum authorization: Any
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRENV)
64 bit (ATR4RENV)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

SRB mode callers cannot specify a context token of 0 when trying to retrieve
environment settings at the context scope (ATR_CONTEXT_SCOPE).

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Retain_Interest

Chapter 7. Callable resource recovery services 379

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRRENV
(return_code
,diag_area
,scope
,context_token
,stoken
,element_count
,environment_id
,environment_value
,environment_protection)

CALL ATR4RENV
(return_code
,diag_area
,scope
,context_token
,stoken
,element_count
,environment_id
,environment_value
,environment_protection)

Retrieve_Environment

380 z/OS V2R1.0 MVS Programming: Resource Recovery

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Retrieve_Environment service.

,diag_area
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

Contains diagnostic data from Retrieve_Environment to help IBM Service
determine the cause of a Retrieve_Environment failure. Be sure to log this data
when recording any information about a Retrieve_Environment failure.

,scope
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the scope at which you want to receive environment setting value(s),
either address space level, context level, or at the default level, as follows:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_ADDRESS_SPACE_SCOPE

Retrieve the environmental setting for each
element in the environment_id array at the
address space level.

2
(2)
ATR_CONTEXT_SCOPE

Retrieve the environmental setting for each
element in the environment_id array at the
context level for the context represented by
the context_token parameter.

3
(3)
ATR_DEFAULT_SCOPE

Retrieve the environmental setting for each
element in the environment_id array at the
level that RRS will use for the UR associated
with the work context represented by the
context_token parameter.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction

Retrieve_Environment

Chapter 7. Callable resource recovery services 381

v Length: 16 bytes

Specifies the token of the context for which the resource manager is retrieving
context scope environment settings:
v 0: Binary zero specifies either:

– The current context (when scope is ATR_CONTEXT_SCOPE or
ATR_DEFAULT_SCOPE)

– No context (when scope is ATR_ADDRESS_SPACE_SCOPE)

If scope is ATR_ADDRESS_SPACE_SCOPE, then context_token must be 0.
v token: Specifies a valid context token.

,stoken
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 8 bytes

Specifies the space token (stoken) of the address space for which the resource
manager is retrieving address space scope environment settings:
v 0: Binary zeros indicate the primary address space. If scope is

ATR_CONTEXT_SCOPE or ATR_DEFAULT_SCOPE, then stoken must be 0.
v token: Specifies a valid address space token.

,element_count
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the number of elements in the environment-retrieving array, which
consists of the environment_id, environment_value, and environment_protection
parameters.

The maximum number of elements is the number of possible environment
settings (transaction mode and two-phase commit action) times the number of
environment-retrieving parameters. The maximum number is 2.

,environment_id
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies one or more identifiers; each identifier supplies an attribute of the
environment settings to be retrieved. When you specify more than one
identifier, you must define an array; element_count indicates the number of
elements in the array. The positions of the identifiers in this array define the
positions of the environment settings to be returned in the environment_id array.
The scope parameter specifies the scope at which these settings are to apply.
Specify each identifier as one of the following:

Retrieve_Environment

382 z/OS V2R1.0 MVS Programming: Resource Recovery

Identifier in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_TRAN_MODE_SETTING

Retrieve the environmental setting for
transaction mode.

If scope is ATR_DEFAULT_SCOPE and no call
was made to Set_Environment to set the
transaction mode, RRS returns
ATR_HYBRID_GLOBAL_MODE.

If scope is ATR_ADDRESS_SPACE_SCOPE or
ATR_CONTEXT_SCOPE, RRS returns the
value of the address space or context as
specified on the last applicable call to
Set_Environment for the specified address
space or context. If the specified environment
has not been set, RRS returns
ATR_ENVIRONMENT_NOT_SET.

2
(2)
ATR_NORM_CTX_END_SETTING

Retrieve the environmental setting for the
two-phase commit action RRS is to take for
in-flight URs when their associated context
goes through normal end processing.

If scope is ATR_DEFAULT_SCOPE and no call
was made to Set_Environment to set the
normal transaction context end setting, RRS
returns ATR_COMMIT_ACTION.

If scope is ATR_ADDRESS_SPACE_SCOPE or
ATR_CONTEXT_SCOPE, RRS returns the
value of the address space or context as
specified on the last applicable call to
Set_Environment for the specified address
space or context. If the specified environment
has not been set, RRS returns
ATR_ENVIRONMENT_NOT_SET.

,environment_value
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Returns a value for each identifier on the environment_id parameter. When you
specify more than one identifier, you must define an array, where element_count
indicates the number of elements in the array. The positions of the identifiers
in the environment_id array define the positions of the environment attributes in
the environment_value array.

The value returned for ATR_TRAN_MODE_SETTING is one of the following:

Retrieve_Environment

Chapter 7. Callable resource recovery services 383

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NOT_SET

The transaction mode environment setting
for this environment_id (address space or
context) has not been set. (This setting is not
valid when scope is ATR_DEFAULT_SCOPE.)

1
(1)
ATR_GLOBAL_MODE

The transaction mode is set to global for the
requested scope.

2
(2)
ATR_LOCAL_MODE

The transaction mode is set to local for the
requested scope.

3
(3)
ATR_HYBRID_GLOBAL_MODE

The transaction mode is set to hybrid-global
for the requested scope. This is the same as
global mode, except it allows the resource
manager to exhibit proprietary connection
behavior.

The value returned for ATR_NORM_CTX_END_SETTING is one of the
following:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NOT_SET

The two-phase commit setting at the scope
specified by environment_id (address space or
context) has not been set. If the two-phase
commit environment is not set, RRS will
commit the UR on normal task termination.

1
(1)
ATR_COMMIT_ACTION

The action RRS will take is to commit the
UR.

2
(2)
ATR_ROLLBACK_ACTION

The action RRS will take is to roll back the
UR.

,environment_protection
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Returns a protection value for each identifier in the environment_id parameter.
When you specify more than one identifier, you must define an array, where
element_count indicates the number of elements in the array. The positions of

Retrieve_Environment

384 z/OS V2R1.0 MVS Programming: Resource Recovery

the identifiers in the environment_id array define the positions of the
corresponding protection values in the environment_protection array.

The value returned is one of the following:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_UNPROTECTED_SETTING

The setting can be changed by an
unauthorized caller.

2
(2)
ATR_PROTECTED_SETTING

The setting can be changed only by an
authorized caller.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00270000' or
X'00270001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, specified a
zero context token, and requested the
retrieval of environment settings at a scope
of ATR_CONTEXT_SCOPE. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

Retrieve_Environment

Chapter 7. Callable resource recovery services 385

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

105
ATR_LOCKS_HELD

Meaning: Program error. The application is
holding one or more locks; no locks must be
held. The system rejects the service call.

Action: Check the application for a probable
coding error. Correct the resource manager
and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

361
ATR_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

362
ATR_STOKEN_INV

Meaning: Program error. The address space
token specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

364
ATR_ENV_SETTING_ID_INV

Meaning: Program error. A value in the
environment_id parameter specified in the call
is not valid. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

366
ATR_SCOPE_INV

Meaning: Program error. The scope specified
in the call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

392
ATR_ELEMENT_COUNT_INV

Meaning: Program error. The element count
value in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Environment

386 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

802
ATR_STOKEN_NOT_ZERO

Meaning: Program error. The stoken
parameter was incorrectly specified. The
stoken is not zero, but the caller specified
ATR_CONTEXT_SCOPE or
ATR_DEFAULT_SCOPE on the scope
parameter. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

803
ATR_CTOKEN_NOT_ZERO

Meaning: Program error. The context token
parameter was incorrectly specified. The
caller specified
ATR_ADDRESS_SPACE_SCOPE on the
scope parameter and a non-zero value on
the context token parameter. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the work manager issues a call to retrieve
environmental settings at the context level.
...
SCOPE = ATR_CONTEXT_SCOPE
C_TOKEN = MY_CONTEXT_TOKEN
A_TOKEN = 0
ELE_CNT = 1
ENV_SET_ID = ATR_NORM_CTX_END_SETTING
CALL ATRRENV(RC,DIAG_DATA,SCOPE,C_TOKEN,A_TOKEN,ELE_CNT,

ENV_SET_ID,ENV_SET,ENV_SET_PROT)...

Retrieve_Interest_Count (ATRREIC, ATR4REIC)
v ATRREIC is for AMODE(31) callers.
v ATR4REIC is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Retrieve_Interest_Count service to determine if RRS
needs to coordinate the syncpoint for a unit of recovery (UR). If multiple interests
are expressed in a UR, RRS must coordinate that UR's syncpoint. If only one

Retrieve_Environment

Chapter 7. Callable resource recovery services 387

interest is expressed in a UR, RRS may be able to allow coordination of the
syncpoint by the resource manager expressing that interest. In response to the call,
RRS returns:
v A return code
v An indication of whether or not RRS must coordinate the syncpoint

Note: The UR status may change after the call, which can affect whether or not
RRS must coordinate the syncpoint.

If the UR is part of a UR family, interest_count_info will always return
ATR_MULTIPLE_INTERESTS.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRREIC)
64 bit (ATR4REIC)

ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used (but the

address of a save area is not required in GPR 13).

Programming requirements

The service does not perform any error checking or have any recovery. The caller
should provide recovery to handle any unexpected errors.

This service is intended for use with URs in hybrid-global transaction mode. For
URs in other transaction modes or when the transaction mode is unknown, call the
Retrieve_Side_Information_Fast service.

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

None.

Retrieve_Interest_Count

388 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

This service has a minimal path length.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRREIC
(return_code
,context_token
,coordinator_info)

CALL ATR4REIC
(return_code
,context_token
,coordinator_info)

Retrieve_Interest_Count

Chapter 7. Callable resource recovery services 389

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_Interest_Count service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context token associated with the UR. Do not specify a context
token of 0.

Your resource manager received the token from:
v The Begin_Context service for a privately managed context
v The Express_UR_Interest service or Express_Context_Interest service for a

native context

,coordinator_info
Received parameter
v Type: Integer
v Length: 4 bytes

Receives from the service an indicator of whether or not RRS must be the
syncpoint coordinator. The indicator is one of the following:

Indicator in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_NO_MORE_THAN_ONE_INTEREST

Only one resource manager has expressed
only one interest in the UR. That resource
manager could coordinate the syncpoint of
this UR itself, or allow RRS to coordinate the
syncpoint.

2
(2)
ATR_MULTIPLE_INTERESTS

One or more resource managers have
expressed more than one interest in the UR.
RRS must coordinate the syncpoint for this
UR, because only RRS has all of the
information needed to properly coordinate
the syncpoint.

ABEND codes

None.

Retrieve_Interest_Count

390 z/OS V2R1.0 MVS Programming: Resource Recovery

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Example

In the pseudocode example, the resource manager issues a call to determine if RRS
must coordinate the syncpoint for the UR. Storage for the call parameters has been
allocated.
...
C_TOKEN = MY_C_TOKEN
CALL ATRREIC(RC,C_TOKEN,COORD_INFO)
IF RC = ATR_OK THEN

CURRENT_COORD_INFO = COORD_INFO...

Retrieve_Interest_Data (ATRRID, ATR4RID)
v ATRRID is for AMODE(31) callers.
v ATR4RID is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Retrieve_Interest_Data service to retrieve data about
an interest in a unit of recovery (UR). In response to the call, RRS returns:
v A return code
v The nonpersistent interest data
v The length of the persistent interest data
v The persistent interest data
v The type of interest: unprotected, protected, or protected and logged
v The type of expression of interest: new or restart

Retrieve_Interest_Count

Chapter 7. Callable resource recovery services 391

v The role the resource manager is taking in the UR interest: participant, last-agent
participant, distributed syncpoint resource manager (DSRM), or server
distributed syncpoint manager (SDSRM)

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRID)
64 bit (ATR4RID)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the UR state cannot be in-reset.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Retrieve_Interest_Data

392 z/OS V2R1.0 MVS Programming: Resource Recovery

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRRID
(return_code
,ur_interest_token
,nonpersistent_interest_data
,persistent_interest_buffer_length
,persistent_interest_data_length
,persistent_interest_data
,interest_type
,expression_of_interest_type
,role)

CALL ATR4RID
(return_code
,ur_interest_token
,nonpersistent_interest_data
,persistent_interest_buffer_length
,persistent_interest_data_length
,persistent_interest_data
,interest_type
,expression_of_interest_type
,role)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Retrieve_Interest_Data

Chapter 7. Callable resource recovery services 393

Contains the return code from the Retrieve_Interest_Data service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that identifies your resource manager's interest
in the UR. Your resource manager received the token from one of the following
services: Express_UR_Interest, Retrieve_UR_Interest, or Retain_Interest.

,nonpersistent_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the nonpersistent interest data for your resource
manager's interest in the UR. RRS does not record this data in nonvolatile
storage.

Your resource manager provided the data in a call to one of the following
services: Express_UR_Interest, Respond_to_Retrieved_Interest, or
Retain_Interest.

,persistent_interest_buffer_length
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies, in hexadecimal, the length of the buffer that your resource manager
is supplying for the persistent interest data. The length in bytes can be X'0' -
X'1000' (0 - 4096).

,persistent_interest_data_length
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the actual length of the persistent interest data. The
length ranges from X'0' - X'1000' (0-4096), where 0 indicates that there is no
persistent interest data.

If the interest type is ATR_UNPROTECTED, then there is no persistent interest
data.

,persistent_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in persistent_interest_buffer_length

Specifies a buffer that receives the persistent interest data for your resource
manager's interest in the UR. If persistent_interest_data_length is 0, RRS ignores
this parameter. Your resource manager provides this data in a call to one of the
following services: Express_UR_Interest, Change_Interest_Type,
Set_Persistent_Interest_Data, or Retain_Interest. Your resource manager can
also retrieve persistent interest data from the Retrieve_UR_Interest service.

Retrieve_Interest_Data

394 z/OS V2R1.0 MVS Programming: Resource Recovery

,interest_type
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the interest type for the resource manager's interest
in the UR. The interest type is indicated by one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_UNPROTECTED

Unprotected: The resource manager
expressed an unprotected interest in the UR.

1
(1)
ATR_PROTECTED

Protected: The resource manager expressed a
protected interest in the UR.

2
(2)
ATR_PROT_LOGGED

Protected and logged: The resource manager
expressed a protected interest in the UR and
the interest is recorded in an RRS log.

,expression_of_interest_type
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the expression of interest type, which indicates
whether the UR is new or restart. The field contains one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NORMAL_INTEREST

Meaning: The expression of interest is a
normal expression (that is, not a restart
expression of interest).

1
(1)
ATR_RESTART_INTEREST

Meaning: The expression of interest is a
restart expression of interest (that is, an
expression of interest returned by the
Retrieve_UR_Interest service).

,role
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the role of the resource manager in the UR interest
identified in ur_interest_token. If your resource manager is not a participant,

Retrieve_Interest_Data

Chapter 7. Callable resource recovery services 395

your resource manager specified its role through a Set_Syncpoint_Controls call.
The role is indicated by one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Role

0
(0)
ATR_PARTICIPANT

Participant

1
(1)
ATR_LAST_AGENT

Last-agent participant

2
(2)
ATR_DSRM

Distributed syncpoint resource manager

3
(3)
ATR_SDSRM

Server distributed syncpoint resource
manager

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'000B0000'
or X'000B0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

5
ATR_PARTIAL_PERSISTENT_DATA

Meaning: Program error. The
persistent_interest_buffer_length value is less
than the actual length of the persistent
interest data.

The system accepts the service call. RRS puts
in the buffer as many characters of the data
as will fit, starting at the left.

Action: No action is required. If the result is
not expected, check the resource manager
for a probable coding error; correct the
resource manager and rerun it.

Retrieve_Interest_Data

396 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37D
ATR_PERSIS_DATA_BUF_LEN_INV

Meaning: Program error. The length
specified for the persistent interest buffer is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be restart or run. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Interest_Data

Chapter 7. Callable resource recovery services 397

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Retrieve_Interest_Data was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to obtain
information about an interest in a UR.

Retrieve_Interest_Data

398 z/OS V2R1.0 MVS Programming: Resource Recovery

...
URI_TOKEN = MY_URI_TOKEN
PD_BUF_LEN = MY_PDATA_LEN
CALL ATRRID(RC,URI_TOKEN,NON_P_DATA,PD_BUF_LEN,PD_LEN,

P_DATA,INT_TYPE,EI_TYPE,ROLE)
IF RC = ATR_OK THEN

MY_P_DATA = P_DATA
MY_INT_TYPE = INT_TYPE
MY_ROLE = ROLE...

Retrieve_Log_Name (ATRIRLN, ATR4IRLN)
v ATRIRLN is for AMODE(31) callers.
v ATR4IRLN is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

Before beginning restart, a resource manager should call the Retrieve_Log_Name
service to obtain log names. In response to the call, RRS returns:
v A return code
v The length of the resource manager log name
v The name of the resource manager log as recorded in the RRS log
v The length of the RRS log name
v The RRS log name

The call provides the resource manager's log name only if the resource manager,
when it was running before this restart, called the Set_Log_Name service to supply
the log name to RRS.

Your resource manager should save the RRS log name in its resource manager log.

Comparing log names: The resource manager compares the information RRS
returns with information in its own logs:
v It compares the returned resource manager log name to the name of the log the

resource manager is currently using
v It compares the returned RRS log name to the RRS log name the resource

manager saved when it was running before this restart

If both comparisons match, the resource manager can correlate unit of recovery
(UR) data it receives from Retrieve_UR_Interest calls with data from its resource
manager log. “Log name checks” on page 58 describes the comparisons and
appropriate actions in more detail.

Environment
The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRIRLN)
64 bit (ATR4IRLN)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

Retrieve_Interest_Data

Chapter 7. Callable resource recovery services 399

Control parameters: Control parameters must be in the primary address space
and addressable by the caller.

Linkage: Standard MVS linkage conventions are used.

Programming requirements
Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions
The resource manager associated with the specified resource manager token must
be in one of the following states:
v Set which means it has registered and set its exit routines with RRS
v Restart, which means it has registered, set its exit routines with RRS, and begun

restart
v Run, which means it has registered, set its exit routines with RRS, and

completed restart

Input register information
Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Retrieve_Log_Name

400 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications
None.

Syntax
Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRIRLN
(return_code
,resource_manager_token
,rm_logname_buffer_len
,rm_logname_len
,rm_logname
,rrs_logname_len
,rrs_logname)

CALL ATR4IRLN
(return_code
,resource_manager_token
,rm_logname_buffer_len
,rm_logname_len
,rm_logname
,rrs_logname_len
,rrs_logname)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_Log_Name service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,rm_logname_buffer_len
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the hexadecimal length of the buffer provided in the rm_logname
parameter. The length is X'1' - X'40' (1 - 64) bytes.

Retrieve_Log_Name

Chapter 7. Callable resource recovery services 401

,rm_logname_len
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service:
v The actual length of the name of the resource manager log. The length

ranges from X'1' - X'40' (1 - 64) bytes. The actual length is provided whether
the log name fits in the rm_logname field or not.

v Binary zeros. The zeros indicate that the resource manager did not call the
Set_Log_Name service to provide the resource manager log name to RRS.

,rm_logname
Returned parameter
v Type: Character string
v Character Set: EBCDIC
v Length: 1 - 64 bytes

Receives from the service:
v The name of the resource manager log. If the name is longer than the

rm_logname field, RRS sets an error return code and places in the rm_logname
field as many characters, starting at the left, as will fit.

v Blanks. The blanks indicate that the resource manager did not call the
Set_Log_Name service to provide the log name to RRS.

,rrs_logname_len
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the length of the RRS log name.

,rrs_logname
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 64 bytes

Receives from the service the RRS log name.

ABEND codes
The call might result in an abend X'5C4' with a reason code of either X'00050000' or
X'00050001'. See z/OS MVS System Codes for the explanations and actions.

Return codes
When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

Retrieve_Log_Name

402 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

6
ATR_RM_LOGNAME_NOT_SET

Meaning: Program processing. The resource
manager has not called the set log name
service to provide the resource manager log
name to RRS. This return code may also be
issued after a successful Internal Cold Start,
in response to a log stream error against the
RRS RM.DATA log stream as identified by
message ATR250E. In this case, RRS was not
able to preserve the log name across the
Internal Cold Start processing.

Action: If this result is expected, no action is
needed. If this result is not expected, check
the resource manager for a probable coding
error; correct the resource manager and
rerun it.

9
ATR_PARTIAL_RM_LOGNAME

Meaning: Program error. The length of the
buffer for the resource manager log name
specified in the call is not long enough to
contain the current resource manager log
name.

The system accepts the service call. RRS
places in the buffer as many characters of
the name as will fit, starting at the left. RRS
returns the actual logname length in
rm_logname_len.

Action: No action is required. If the result is
not expected, check the resource manager
for a probable coding error; correct the
resource manager and rerun it.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Log_Name

Chapter 7. Callable resource recovery services 403

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37C
ATR_RM_LOGNAME_BUF_LEN_INV

Meaning: Program error. The length
specified for the log name buffer is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager state must be set, restart,
or run. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Retrieve_Log_Name

404 z/OS V2R1.0 MVS Programming: Resource Recovery

Example
In the pseudocode example, the resource manager issues a call to obtain its log
name and the RRS log name. Storage for the call parameters has been allocated.
...
RM_TOKEN = MY_RM_TOKEN
LOGNAME_BUF_LEN = LOGNAME_BUFFER_LEN
CALL ATRIRLN(RC,RM_TOKEN,LOGNAME_BUF_LEN,LOGNAME_LEN,LOGNAME_BUFFER,

RRS_LOGNAME_LEN,RRS_LOGNAME)
IF RC = 0 THEN...

Retrieve_RM_Metadata (ATRRDTA, ATR4RDTA)
v ATRRDTA is for AMODE(31) callers.
v ATR4RDTA is for AMODE(64) callers, and allows parameters in 64 bit

addressable storage.

A resource manager calls the Retrieve_RM Metadata service to fetch up to 8K
(8192) bytes of data from RRS that the resource manager previously saved with
RRS via the Set_RM_Metadata service.

If the resource manager has no metadata, a length of zero is returned.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRDTA)
64 bit (ATR4RDTA)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service. The
high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the specified resource manager token must
be in Run state, which means it has been registered, set its exit routines with RRS,
and completed restart.

Retrieve_Log_Name

Chapter 7. Callable resource recovery services 405

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRRDTA (return_code
,resource_manager_token
,rm_metadata_buffer_len
,rm_metadata_len
,rm_metadata)

CALL ATR4RDTA (return_code
,resource_manager_token
,rm_metadata_buffer_len
,rm_metadata_len
,rm_metadata)

Retrieve_RM_Metadata

406 z/OS V2R1.0 MVS Programming: Resource Recovery

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_RM_Metadata service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,rm_metadata_buffer_len
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the length of the buffer that your resource manager is supplying for
the metadata. The length in bytes can be 1 to 8K (8192).

,rm_metadata_len
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

The actual length of the RM metadata. The length ranges from 0 to 8192 bytes.
A zero length indicates that the resource manager does not have any logged
metadata with RRS.

,rm_metadata
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 0-8192 byes

Specifies the buffer to contain the resource manager's metadata.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00290000' or
X'00290001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Retrieve_RM_Metadata

Chapter 7. Callable resource recovery services 407

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

B
ATR_PARTIAL_RM_METADATA

Meaning: Program error. The
rm_metadata_buffer_len value is less than the
actual length of the resource manager's
metadata. The system accepts the service
call. RRS returns in the buffer as much data
as will fit.

Action: No action is required. If the result is
not expected, check the resource manager
for a probable coding error. Correct the
resource manager and rerun it.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.
Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_RM_Metadata

408 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

38B
ATR_RM_METADATA_BUFFER_LEN_INV

Meaning: Program error. The length of the
resource manager metadata buffer specified
in the call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

38C
ATR_RM_METADATA_LOG_

UNAVAILABLE

Meaning: The MetaData callable service
failed since the resource manager MetaData
log stream is not available.

Action: Check SYSLOG for messages
ATR132I or ATR172E that will further
explain why the log is unavailable.

38D
ATR_RM_8K_METADATA_NOT_

ALLOWED

Meaning: The resource manager did not set
the ATR_8K_RM_METADATA_REQUESTED
flag on CRGSEIF/CRGSEIF1/CRG4SEIF so
the resource manager cannot set or retrieve
8K Meta Data.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

38E
ATR_RM_METADATA_MISSING_DATA

Meaning: When reading from the RM Meta
Data log stream, records were encountered
that indicate there was a loss of data or a
gap in the log stream. If Meta Data was
stored for the RM, it cannot be found.

Action: Check SYSLOG for messages
ATR202D and ATR212I that will further
explain the error and how to correct it.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager associated
with the resource manager token specified in
the call is not in a valid state to issue the
service call. The resource manager state
must be run. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_RM_Metadata

Chapter 7. Callable resource recovery services 409

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve its RM
Metadata from RRS that it had previously set.
.
.
.
RM_TOKEN = MY_RM_TOKEN
BUFFER_LEN = MY_BUFFER_LEN
CALL ATRRDTA(RC,RM_TOKEN,BUFFER_LEN,META_LEN,META)
IF RC=0 THEN
.
.
.

Retrieve_Side_Information (ATRRUSI, ATRRUSI2, ATR4RUSI)
The resource manager calls the Retrieve_Side_Information service to retrieve side
information for an interest in a unit of recovery (UR). In response to the call, RRS
returns:
v A return code
v The side information

There are three versions of Retrieve_Side_Information, each with different
parameters.
v ATRRUSI is for AMODE(31) callers and is the basic version of the service. It

must be called specifying a UR interest token.
v ATRRUSI2 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token.
v ATR4RUSI is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and can be called specifying either a UR token or a UR interest token.

Code your resource manager to call the version that includes the support you
need.

Side information: The side information is set by RRS or, in a call to the
Set_Side_Information service, by a resource manager that is interested in the UR.
Much of the side information is set only by a resource manager that uses Systems

Retrieve_RM_Metadata

410 z/OS V2R1.0 MVS Programming: Resource Recovery

Network Architecture (SNA) Logical Unit (LU) 6.2 sync point architecture. See the
Set_Side_Information callable service for a description of side information.

Information about other resource managers: Your resource manager can use a
Retrieve_Side_Information call to obtain information about another resource
manager that is interested in the UR. For example, if the service returns
ATR_NEW_LUWID_PSH_UNACCEPTABLE, your resource manager knows that an LU 6.2
communications resource manager cannot send a new LUWID on any LU 6.2
conversation that it is managing.

Parameter arrays: The side_info_id parameter is an input array; each position
identifies side information the resource manager wants from RRS. The
side_info_state parameter is an output array; RRS places in each position the side
information requested by the corresponding position in the side_info_id array. The
element_count parameter indicates the number of positions in both arrays.

For example, if the call specifies in the fourth position of side_info_id
ATR_BACKOUT_REQUIRED, the fourth position of side_info_state will indicate if backout
required is or is not set for the UR interest.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRUSI, ATRRUSI2)
64 bit (ATR4RUSI)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified UR interest token
must be:
v Restart, which means it has registered, set its exit routines with RRS, begun

restart, and requested incomplete UR interests

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 411

v Run, which means it has registered, set its exit routines with RRS, and
completed restart

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL ATRRUSI
(return_code
,ur_interest_token
,element_count
,side_info_id
,side_info_state)

Retrieve_Side_Information

412 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATRRUSI2
(return_code
,ur_or_uri_token
,element_count
,side_info_id
,side_info_state)

CALL ATR4RUSI
(return_code
,ur_or_uri_token
,element_count
,side_info_id
,side_info_state)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_Side_Information service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRUSI callers, specifies a token that uniquely identifies your resource
manager's interest in the UR whose side information you want to retrieve.
Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest.

,ur_or_uri_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRUSI2 callers, specifies a token that uniquely identifies either the UR,
or your resource manager's interest in the UR, whose side information you
want to retrieve:
v UR token: The token for the UR.
v UR interest token: The UR interest token that identifies your resource

manager's interest in the UR.

Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest,
Create_Cascaded_UR, or Retrieve_UR_Data.

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 413

Because you may pass two different types of tokens through this parameter,
passing an invalid token can generate either a ATR_URI_TOKEN_INV or a
ATR_UR_TOKEN_INV return code. For example, passing an invalid UR token
might result in an ATR_URI_TOKEN_INV return code. Even though a UR
token was passed, if it is invalid, then RRS may not understand what sort of
token it was supposed to be. For this reason, IBM recommends callers check
both return codes, even when they know what type of token they intend to
pass.

,element_count
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the number of elements in the array for the side_info_id and
side_info_state parameters. Both arrays must have the same number of elements.
The maximum count is 13.

,side_info_id
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies one or more identifiers; each identifier requests the state of side
information that RRS or a resource manager might have set. When you specify
more than one identifier, you must define an array, where element_count
indicates the number of identifiers. The positions of the identifiers in this
side_info_id array define the positions of the side information states to be
returned in the side_info_state array.

Specify each identifier as one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

0
(0)
ATR_HEURISTIC_MIX

Heuristic-mixed condition

A heuristic commit occurred while the UR
state was in_backout, a heuristic reset
occurred while the UR state was in_commit,
or a resource manager of distributed
resources informed RRS of a heuristic-mixed
condition. When this information is initially
set through a call to Set_Side_Information,
RRS will harden (or reharden) the UR state,
including this identifier, immediately.

1
(1)
ATR_BACKOUT_REQUIRED

Backout required

When this identifier is initially set, RRS will
force the current UR to back out when a
syncpoint occurs. If a UR state has passed
beyond in_prepare, RRS ignores this
identifier.

Retrieve_Side_Information

414 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

10
(16)
ATR_BREAK_TREE

Break tree

When this identifier is initially set, RRS will
reset the logical unit of work identifier
(LUWID) for the next UR.

11
(17)
ATR_DRIVE_BACKOUT

Backout of next UR

When this identifier is initially set, RRS will,
if any resource manager has called
Retain_Interest for the next UR, complete
backout for the next UR before returning
control to the application program. This
processing ensures that the next UR will be
backed out.

12
(18)
ATR_RESYNC_IN_PROGRESS

Resync in progress

A resync in progress condition has occurred.
If the UR state is before in_end when this
identifier is initially set, RRS will harden (or
reharden) the UR state, including this
identifier, at the next state change.

13
(19)
ATR_NEW_LUWID_PSH_UNACCEPTABLE

New LUWID PSH unacceptable

A communication resource manager cannot
accept a new LUWID presentation header
(PSH). RRS takes no action when this
identifier is set.

14
(20)
ATR_DRIVE_COMPLETION

Invoke completion exit(s)

When this identifier is initially set, RRS will
invoke all COMPLETION exit routines, if
any exist, when the UR state reaches
in-completion. RRS will harden (or reharden)
the UR state, including this identifier, at the
next logging point.

15
(21)
ATR_SDSRM_INITIATED

Syncpoint operation initiated by resource
manager

When this identifier is set, the current
syncpoint operation was initiated by a
resource manager that has taken the SDSRM
role, then called Backout_Agent_UR or
Prepare_Agent_UR. RRS will harden (or
reharden) this identifier whenever it
normally hardens (or rehardens) the UR
state.

16
(22)
ATR_RESOLVED_BY_INSTALLATION

Installation resolved UR

When this identifier is set, an in-doubt UR
has been resolved through the RRS panels or
a program that issued the ATRSRV macro.
RRS will harden (or reharden) the UR state,
including this identifier, immediately.

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 415

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

17
(23)
ATR_TERM_SYNCPOINT

Terminating syncpoint

When this identifier is set, the UR is going
through syncpoint processing because its
context has ended. (This condition is always
true for URs created by restart. When a
resource manager is restarting when RRS has
not failed, RRS might "reconnect" the interest
returned through Retrieve_UR_Interest to an
existing UR. In this case, the UR might not
be marked for terminating syncpoint
processing.)

18
(24)
ATR_COMMITTED

Committed UR

When this identifier is set, the outcome for
the current UR has been determined, and the
result is a commit. RRS always hardens this
identifier when it hardens the commit.

20
(32)
ATR_IMMEDIATE_BACKOUT

Application requested backout

The backout occurred because the
application, either implicitly or explicitly,
requested it, not because a resource manager
could not commit its resources. RRS hardens
this identifier whenever it normally logs
status for the UR.

21
(33)
ATR_APPL_COMPLETE

Application processing is complete

This identifier indicates completion of an
individual UR in a cascaded UR family. RRS
sets this identifier when it is informed that
the application executing for this UR is
complete. RRS will not commit a cascaded
UR family until RRS is informed that all of
the individual cascaded URs in the family
are complete.
Note: If RRS has not set this identifier, it
does not necessarily mean that the
application execution is incomplete; it just
means RRS is unaware of the completion.

23
(35)
ATR_SI_LOCAL_MODE

Local transaction mode

When this identifier is set, the UR is in local
transaction mode and
ATR_SI_GLOBAL_MODE cannot be set.
When neither ATR_SI_LOCAL_MODE nor
ATR_SI_GLOBAL_MODE is set, the
transaction mode is hybrid-global.

Retrieve_Side_Information

416 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

24
(36)
ATR_SI_GLOBAL_MODE

Implicit global transaction mode

When this identifier is set, the UR is in
global transaction mode and
ATR_SI_LOCAL_MODE cannot be set. When
neither ATR_SI_LOCAL_MODE nor
ATR_SI_GLOBAL_MODE is set, the
transaction mode is hybrid-global.

,side_info_state
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives one or more indicators from the service. Each indicator shows
whether or not its matching identifier is set in the side information. This array
must have the same number of positions as the side_info_id array. For each
identifier, the service returns one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol State of the side information

0
(0)
ATR_SIDE_VALUE_NOT_SET

Side value not set: The side information
value is not set. Neither RRS nor a resource
manager has set it, or it has been reset.

1
(1)
ATR_SIDE_VALUE_SET

Side value set: Either RRS or a resource
manager set the side information value.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'000D0000'
or X'000D0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 417

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call does not identify
one of the currently valid interests. If the
specified token is not a valid UR or URI
token, RRS may return this return code even
if the resource manager was attempting to
specify a UR token. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

383
ATR_SIDE_INFO_ID_INV

Meaning: Program error. The identifier for a
side information value in the side_info_id
parameter specified in the call is not valid.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

392
ATR_ELEMENT_COUNT_INV

Meaning: The specified element count is not
valid.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Side_Information

418 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. If the specified token is not a valid UR
or URI token, RRS may return this return
code even if the resource manager was
attempting to specify a URI token. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be restart or run. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 419

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Retrieve_Side_Information
was done at the time of the RRS failure. A
new unit of recovery can not be created
until the current unit of recovery is
completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to request side
information for an interest in a UR. Storage for the call parameters has been
allocated.
...
URI_TOKEN = UR_INTEREST_TOKEN
COUNT = 2
ID(1) = ATR_HEURISTIC_MIX
ID(2) = ATR_RESYNC_IN_PROGRESS
CALL ATRRUSI2(RC,URI_TOKEN,COUNT,ID,STATE)
IF RC = ATR_OK THEN

HM = STATE(1)

Retrieve_Side_Information

420 z/OS V2R1.0 MVS Programming: Resource Recovery

RIP = STATE(2)...

Retrieve_Side_Information_Fast (ATRRUSF, ATRRUSF1, ATR4RUSF)
The resource manager calls the Retrieve_Side_Information_Fast service to retrieve
the current settings of RRS-related environment attributes for the UR associated
with the specified context. There are three versions of
Retrieve_Side_Information_Fast:
v ATRRUSF is for AMODE(31) callers and is the basic version of this service.
v ATRRUSF1 is for AMODE(31) callers and adds support for work managers that

need interest count data, even if an event has occurred that requires RRS to
coordinate the syncpoint.

v ATR4RUSF is for AMODE(64) callers, allows parameters in 64 bit addressable
storage, and adds support for work managers that need interest count data, even
if an event has occurred that requires RRS to coordinate the syncpoint.

This service returns information about:
1. The mode of a UR
2. Who can or must coordinate a UR
3. How many interests exist for a UR (The interest count is only available with

ATRRUSF1 and ATR4RUSF. This information is optional, and is returned only
when the caller specifically requests it.)

If a condition has occurred that requires RRS to coordinate the syncpoint, such as
setting an XID or a post-syncpoint PET, then RRS must coordinate the resources,
even if no resource manager has expressed an interest in the UR.

Environment

The requirements for the caller are:

Minimum authorization: Any
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRUSF, ATRRUSF1)
64 bit (ATR4RUSF)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

This service does not perform any error checking or provide any recovery. The
caller must provide recovery to handle any unexpected errors.

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

Retrieve_Side_Information

Chapter 7. Callable resource recovery services 421

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

None.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

The service has a minimal path length.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRRUSF
(return_code
,context_token
,environment_info)

Retrieve_Side_Information_Fast

422 z/OS V2R1.0 MVS Programming: Resource Recovery

CALL ATRRUSF1
(return_code
,context_token
,environment_info
,side_information_options)

CALL ATR4RUSF
(return_code
,context_token
,environment_info
,side_information_options)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_Side_Information_Fast service.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the context token associated with the UR. Do not specify a context
token of 0.

Your resource manager received the context token from
Retrieve_Current_Context, Begin_Context for a privately managed context, or
Express_UR_Interest or Express_Context_Interest for a native context.

,side_information_options
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Valid on ATRRUSF1 and ATR4RUSF only. Specifies one or more options to
request the type of information to be returned by RRS. Any undefined bits are
reserved and set to zero. You must ignore the reserved bits.

The parameter will have one or more bits turned on that can be referenced by
the following mask:

Retrieve_Side_Information_Fast

Chapter 7. Callable resource recovery services 423

Mask in:
Hexadecimal
Equate Symbol Description

00000001
ATR_INTEREST_COUNT_MASK

A resource manager specifies this mask to
request RRS to return the interest count
information for the UR associated with the
specified context. The interest count
information ATRRUSF1/ATR4RUSF returns
is valid only for a UR that is in-flight. You
must not use the interest count information
ATRRUSF1/ATR4RUSF returns if the UR is
in any other state.

00000002
ATR_CASCADED_TRANSACTION_MASK

A resource manager specifies this mask to
request RRS to return the cascaded
transaction information for the UR that is
associated with the specified context. This is
for ATRRUSF1/ATR4RUSF callers on systems
where the ATRPre_PrepareExitSupport flag is
on in ATRRINST.

,environment_info
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Receives UR environment information. Any undefined bits are reserved and set
to zero. You must ignore the reserved bits.

The parameter will have one or more bits turned on that can be referenced by
the following masks:

Mask in:
Hexadecimal
Equate Symbol Description

00000001
ATR_NO_INTERESTS_MASK

There are no interests in the current UR.
There are no protected resources to commit.

Only one of the following indicators is set for
a given UR at any given time:

v ATR_NO_INTERESTS_MASK

v ATR_RM_COORD_OK_MASK

v ATR_RRS_MUST_COORD_MASK

Note: This bit is never set if
ATR_LOCAL_MODE_MASK is on.

Retrieve_Side_Information_Fast

424 z/OS V2R1.0 MVS Programming: Resource Recovery

Mask in:
Hexadecimal
Equate Symbol Description

00000002
ATR_RM_COORD_OK_MASK

The UR has one or more expressions of
interest by the same resource manager. The
resource manager that owns the expression
(or expressions) of interest can coordinate its
own resources.
Note: Do not confuse this condition with
local transaction mode. Generally, when the
resource manager decides to bypass RRS
calls, the UR is in global transaction mode
and will remain in in-flight state and global
transaction mode.

Only one of the following indicators is set for
a given UR at any given time:

v ATR_NO_INTERESTS_MASK

v ATR_RM_COORD_OK_MASK

v ATR_RRS_MUST_COORD_MASK

00000004
ATR_RRS_MUST_COORD_MASK

One of the following conditions have
occurred that require RRS to coordinate the
syncpoint:

v Multiple resource managers have
expressed interest in the UR

v A resource manager has set an XID for the
UR

v A work manager has set a post syncpoint
PET to be associated with the UR so it can
know when the transaction completes

v The UR of interest is a child UR

If any of the above occurs, RRS must
coordinate the syncpoint for this UR, because
only RRS has all the information needed to
properly coordinate the syncpoint.

Only one of the following indicators is set for
a given UR at any given time:

v ATR_NO_INTERESTS_MASK

v ATR_RM_COORD_OK_MASK

v ATR_RRS_MUST_COORD_MASK

Retrieve_Side_Information_Fast

Chapter 7. Callable resource recovery services 425

Mask in:
Hexadecimal
Equate Symbol Description

00000010
ATR_ZERO_INTEREST_COUNT_MASK

There are no interests in the current UR. This
information is returned if the caller specifies
the ATR_ZERO_INTEREST_COUNT_MASK
in the side_information_options.

For information regarding who can and must
coordinate the syncpoint for the UR, check
the ATR_NO_INTEREST_MASK,
ATR_RM_COORD_OK_MASK, and
ATR_RRS_MUST_COORD_MASK.

Only one of the following interest count
indicators is set for a given UR at any given
time:

v ATR_ZERO_INTEREST_COUNT_MASK

v ATR_ONE_INTEREST_COUNT_MASK

v ATR_MULTIPLE_INTEREST_
COUNT_MASK

00000020
ATR_ONE_INTEREST_COUNT_MASK

Only one resource manager has expressed
only one interest in the UR. This information
is returned if the caller specifies the
ATR_INTEREST_COUNT_MASK in the
side_information_options.

For information regarding who can and must
coordinate the syncpoint for the UR, check
the ATR_NO_INTEREST_MASK,
ATR_RM_COORD_OK_MASK, and
ATR_RRS_MUST_COORD_MASK.

Only one of the following interest count
indicators is set for a given UR at any given
time:

v ATR_ZERO_INTEREST_COUNT_MASK

v ATR_ONE_INTEREST_COUNT_MASK

v ATR_MULTIPLE_INTEREST_
COUNT_MASK

Retrieve_Side_Information_Fast

426 z/OS V2R1.0 MVS Programming: Resource Recovery

Mask in:
Hexadecimal
Equate Symbol Description

00000040
ATR_MULTIPLE_INTEREST_
COUNT_MASK

There are two or more interests in the UR;
either one resource manager has multiple
interests, or multiple resource managers have
one or more interests. This information is
returned if the caller specifies the
ATR_INTEREST_COUNT_MASK in the
side_information_options.

For information regarding who can and must
coordinate the syncpoint for the UR, check
the ATR_NO_INTEREST_MASK,
ATR_RM_COORD_OK_MASK, and
ATR_RRS_MUST_COORD_MASK.

Only one of the following interest count
indicators is set for a given UR at any given
time:

v ATR_ZERO_INTEREST_COUNT_MASK

v ATR_ONE_INTEREST_COUNT_MASK

v ATR_MULTIPLE_INTEREST_
COUNT_MASK

00000100
ATR_UR_STATE_IN_RESET_MASK

When set, the UR state is in-reset.

No other indicators will be set when this
indicator is returned.

00000200
ATR_UR_CASCADED_MASK

This is for ATRRUSF1/ATR4RUSF callers.
When set, the UR is a cascaded UR,
regardless if the UR is a parent or a child
UR, or if the transaction is locally or sysplex
cascaded. If this bit is set, the
ATR_RRS_MUST_COORD_MASK indicator
is also set to indicate that RRS must
coordinate the syncpoint. This information is
returned if the caller specifies the
ATR_CASCADED_TRANSACTION_MASK
in the side_information_options.

00010000
ATR_GLOBAL_MODE_MASK

The UR transaction mode is global, and the
UR state is beyond in-reset.

This setting is valid only when
ATR_UR_STATE_IN_RESET_MASK is not set
because the transaction mode for the UR has
not yet been determined.

Only one of the following indicators is set for
a given UR:

v ATR_GLOBAL_MODE_MASK

v ATR_LOCAL_MODE_MASK

v ATR_HYBRID_GLOBAL_MASK

Retrieve_Side_Information_Fast

Chapter 7. Callable resource recovery services 427

Mask in:
Hexadecimal
Equate Symbol Description

00020000
ATR_LOCAL_MODE_MASK

The UR transaction mode is local, and the
UR state is beyond in-reset.

No interest information will be returned
when this bit is on, since RRS assumes that
the resource manager is always the
coordinator for a local transaction. When this
indicator is set, no other indicators are set.

00040000
ATR_HYBRID_GLOBAL_MASK

The UR transaction mode is hybrid-global,
and the UR state is beyond in-reset. RRS
considers the UR to be a global transaction;
however, resource managers may exhibit
proprietary transactional behaviors.

This setting is valid only when
ATR_UR_STATE_IN_RESET_MASK is not set
because the transaction mode for the UR has
not yet been determined.

Only one of the following indicators is set for
a given UR:

v ATR_GLOBAL_MODE_MASK

v ATR_LOCAL_MODE_MASK

v ATR_HYBRID_GLOBAL_MASK

ABEND codes

None.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports this level of RRS. Rerun the
resource manager.

Retrieve_Side_Information_Fast

428 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3AF
ATR_SIDE_INFORMATION_OPTIONS_INV

Meaning: Program error. The
side_information_options value specified on
the call is invalid. Either reserved bits were
nonzero, or an unacceptable selection of
options was specified. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later after RRS has
been restarted.

Example

In the pseudocode example, the resource manager issues a call to request side
information for the UR associated with a specific context. Storage for the call
parameters has been allocated.
...
CTX_TOKEN = MY_CONTEXT_TOKEN
CALL ATRRUSF(RC,CTX_TOKEN,ENV_INFO)
IF RC = ATR_OK THEN

CURRENT_ENV_INFO = ENV_INFO
LOCAL_MODE = CURRENT_ENV_INFO && ATR_LOCAL_MODE_MASK...

Retrieve_UR_Data (ATRRURD, ATRRURD1, ATRRURD2, ATR4RURD)
The resource manager calls the Retrieve_UR_Data service to retrieve data for a unit
of recovery (UR). There are four versions of Retrieve_UR_Data, each with different
parameters.
v ATRRURD is for AMODE(31) callers and is the basic version of the service. It

must be called specifying a UR interest token.
v ATRRURD1 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token, and also supports the states option parameter.
v ATRRURD2 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token, supports the states option parameter, and returns a
UR token for a new unit of recovery.

v ATR4RURD is for AMODE(64) callers, allows parameters in 64 bit addressable
storage, and can be called specifying either a UR token or a UR interest token,
supports the states option parameter, and returns a UR token for a new unit of
recovery.

Code your resource manager to call the version that includes the support you
need. In response to the call, RRS returns:
v A return code
v The UR identifier (URID)

Retrieve_Side_Information_Fast

Chapter 7. Callable resource recovery services 429

v The UR state: in-reset, in-flight, in-state-check, in-prepare, in-doubt, in-commit,
in-backout, in-end, in-only-agent, in-completion, or in-forget.

v For ATRRURD2 calls, the UR token

For ATRRURD1, ATRURD2, and ATR4URD callers, the list of returned states is
dependent on the value specified in the states_option.

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRURD, ATRRURD1, ATRRURD2)
64 bit (ATR4RURD)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified nonzero UR
interest token must be:
v Restart, which means it has registered, set its exit routines with RRS, begun

restart, and requested incomplete UR interests. Because Retrieve_UR_Data must
supply a UR interest token as input, your resource manager must have called
the Retrieve_UR_Interest service to retrieve this token for a restart UR interest.

v Run, which means it has registered, set its exit routines with RRS, and
completed restart

When the resource manager issues the call in SRB mode, the call cannot specify a
ur_interest_token or ur_or_uri_token of 0, indicating information for the current UR.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Retrieve_UR_Data

430 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

IBM recommends using ATR_EXTENDED_STATES for states_option when a
neither a UR identifier nor a URI token is needed. This will give you better
performance and reduce use of system storage.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL ATRRURD
(return_code
,ur_interest_token
,ur_identifier
,ur_state)

CALL ATRRURD1
(return_code
,ur_or_uri_token
,ur_identifier
,ur_state
,states_option)

Retrieve_UR_Data

Chapter 7. Callable resource recovery services 431

CALL ATRRURD2
(return_code
,ur_or_uri_token
,ur_identifier
,ur_state
,states_option
,ur_token)

CALL ATR4RURD
(return_code
,ur_or_uri_token
,ur_identifier
,ur_state
,states_option
,ur_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_UR_Data service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRURD callers, specifies a token that uniquely identifies your resource
manager's interest in the UR whose data you want to retrieve. Your resource
manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest.

When specifying the token, use one of the following:
v 0: Binary zeros specify the UR data associated with the current context of the

current dispatchable unit.
v token: The UR interest token for an interest in a UR.

,ur_or_uri_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRURD1 or ATRRURD2 callers, specifies a token that uniquely
identifies either the UR, or your resource manager's interest in the UR, whose
data you want to retrieve:

Retrieve_UR_Data

432 z/OS V2R1.0 MVS Programming: Resource Recovery

v 0: Binary zero specifies the current UR associated with the application task.
v UR token: The token for the UR.
v UR interest token: The UR interest token that identifies your resource

manager's interest in the UR.

Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest,
Create_Cascaded_UR, or Retrieve_UR_Data.

Because you may pass two different types of tokens through this parameter,
passing an invalid token can generate either a ATR_URI_TOKEN_INV or a
ATR_UR_TOKEN_INV return code. For example, passing an invalid UR token
might result in an ATR_URI_TOKEN_INV return code. Even though a UR
token was passed, if it is invalid, then RRS may not understand what sort of
token it was supposed to be. For this reason, IBM recommends callers check
both return codes, even when they know what type of token they intend to
pass.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

If the returned UR_state is not ATR_IN_RESET, receives from the service the
UR identifier (URID) that uniquely identifies the UR. If the returned UR_state
is ATR_IN_RESET, contains binary zero.

,ur_state
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the state of the UR. The UR state is indicated by one
of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UR state

0
(0)
ATR_IN_RESET

In-reset This value is only returned if
states_option is ATR_EXTENDED_STATES.

1
(1)
ATR_IN_FLIGHT

In-flight

2
(2)
ATR_IN_STATE_CHECK

In-state-check

3
(3)
ATR_IN_PREPARE

In-prepare

Retrieve_UR_Data

Chapter 7. Callable resource recovery services 433

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UR state

4
(4)
ATR_IN_DOUBT

In-doubt

5
(5)
ATR_IN_COMMIT

In-commit

6
(6)
ATR_IN_BACKOUT

In-backout

7
(7)
ATR_IN_END

In-end

8
(8)
ATR_IN_ONLY_AGENT

In-only-agent

9
(9)
ATR_IN_COMPLETION

In-completion

B
(11)
ATR_IN_FORGET

In-forget

,states_option
Supplied parameter
v Type: Integer
v Length: 4 bytes

For ATRRURD1 or ATRRURD2 callers, defines what states RRS may return for
the specified UR. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UR state

0
(0)
ATR_STANDARD_STATES

One of the following states will be returned:
In-flight, In-state-check, In-prepare,
In-doubt, In-commit, In-backout, In-end,
In-only-agent, In-completion, or In-forget.

A URID will always be returned in UR_state.

Retrieve_UR_Data

434 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UR state

1
(1)
ATR_EXTENDED_STATES

One of the following states will be returned:
In-reset, In-flight, In-state-check, In-prepare,
In-doubt, In-commit, In-backout, In-end,
In-only-agent, In-completion, or In-forget.

If In-reset is returned for UR state, the value
returned in UR_identifier will always be
binary zero (which is not a valid URID).

If ATR_STANDARD_STATES is specified and the UR was In-reset, the UR is
changed to the In-flight state. An In-flight UR cannot be made into a cascaded
UR.

ur_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRURD2 callers, receives the UR token that uniquely represents the new
unit of recovery.

Note: UR tokens do not persist across restarts of the resource manager, RRS, or
the system.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'000C0000'
or X'000C0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_UR_Data

Chapter 7. Callable resource recovery services 435

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
ATR_MODE_INV

Meaning: Program error. The calling
program specified 0 in context_token,
indicating the current context, but the calling
program is not in task mode. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call does not identify
one of the currently valid interests. If the
specified token is not a valid UR or URI
token, RRS may return this return code even
if the resource manager was attempting to
specify a UR token. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

398
ATR_STATES_OPTION_INV

Meaning: Program error. The state option
specified in the call is not valid. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. If the specified token is not a valid UR
or URI token, RRS may return this return
code even if the resource manager was
attempting to specify a URI token. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_UR_Data

436 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be restart or run. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Retrieve_UR_Data was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

Retrieve_UR_Data

Chapter 7. Callable resource recovery services 437

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to request data
about the current UR. Storage for the call parameters has been allocated.
...
URI_TOKEN = 0
STATES_OPT = ATR_STANDARD_STATES
CALL ATRRURD2(RC,URI_TOKEN,URID,UR_STATE,STATES_OPT,

UR_TOKEN)
IF RC = ATR_OK THEN

CURRENT_URID = URID
CURRENT_STATE = UR_STATE
CURRENT_URTOKEN = UR_TOKEN...

Retrieve_UR_Interest (ATRIRNI, ATR4IRNI)
v ATRIRNI is for AMODE(31) callers.
v ATR4IRNI is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

When restarting, a resource manager calls the Retrieve_UR_Interest service to
retrieve information about its interest in an incomplete, protected unit of recovery
(UR). In response to the call, RRS returns:
v A return code.
v The context token for the current context of the incomplete UR.
v The UR interest token to identify the resource manager's interest in the

incomplete UR. You need this token for many calls to RRS services.
v The UR identifier (URID) for the incomplete UR.
v The role the resource manager has in the UR interest: participant, last agent

participant, distributed syncpoint resource manager, or server distributed
syncpoint manager. For a description of each role, see “Set_Syncpoint_Controls
(ATRSSPC, ATR4SSPC)” on page 505.

v The state of the incomplete UR: in-doubt, in-commit, or in-backout.
v The length of the persistent interest data.
v The persistent interest data.

Note: RRS does not return information about URs in local transaction mode.

After the call, the resource manager should call the Respond_to_Retrieved_Interest
service to process the incomplete UR interest. If the resource manager does not call
the Respond_to_Retrieved_Interest service, RRS will return the incomplete UR

Retrieve_UR_Data

438 z/OS V2R1.0 MVS Programming: Resource Recovery

interest in a Retrieve_UR_Interest call each time the resource manager restarts until
the resource manager completes processing of the UR interest or RRS undergoes a
cold start.

URID: When your resource manager was running at an earlier time, it saved, with
the UR data in its resource manager log, the URID returned by any of the
following services: Express_UR_Interest, Retrieve_UR_Data, Change_Interest_Type,
or Retain_Interest. The Retrieve_UR_Interest call provides your resource manager
with the URID for an incomplete UR. Compare the URID from the
Retrieve_UR_Interest call with URIDs in your resource manager log to find the
data for the incomplete UR.

If your resource manager log includes a URID for an incomplete UR that is not
returned by any Retrieve_UR_Interest call, do not make the UR's changes in the
resource; treat the UR as though its state was in-backout. In contrast, if
Retrieve_UR_Interest returns an incomplete UR that is not in your resource
manager log, tell RRS that the UR interest is complete. After a successful Internal
Cold Start, in response to a log stream error against the RRS RM.DATA log stream
as identified by message:
ATR250E RRS LOGSTREAM ERROR FOUND. CORRECT THE ERROR OR OPTIONALLY REPLY

COLDSTART TO BEGIN A RRS INTERNAL COLD START.

complete URs could be returned. If the UR is not in your resource manager log,
tell RRS that the UR interest is complete.

Specifying retrieve interest calls: Your resource manager should call the
Retrieve_UR_Interest service repeatedly to receive UR data for all of its incomplete
interests. If the resource manager expressed protected interest multiple times for
one UR, the Retrieve_UR_Interest service returns each interest separately. When all
UR interests have been returned, the call returns the
ATR_NO_MORE_INCOMPLETE_INTERESTS code.

Note: Retrieve_UR_Interest can be invoked in parallel. (It can be called from
multiple threads simultaneously.) If you exploit the parallel retrieval of interests,
then you should continue retrieving interests until all parallel threads receive the
ATR_NO_MORE_INCOMPLETE_INTERESTS return code, not just the first thread.

UR states: The states given for the incomplete URs are:
v In-doubt: The state of the incomplete UR needs to be resolved.
v In-commit: The failure occurred after the UR was committed, but before the log

record was physically deleted from the RRS log. The resource manager should
change the resource.

v In-backout: The resource manager should not change the resource because the
UR was to be backed out.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRIRNI)
64 bit (ATR4IRNI)

Retrieve_UR_Interest

Chapter 7. Callable resource recovery services 439

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage mode: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified resource manager
token must be restart, which means it has registered, set its exit routines with RRS,
and begun restart.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Retrieve_UR_Interest

440 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRIRNI
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,ur_identifier
,role
,ur_state
,persistent_interest_buffer_length
,persistent_interest_data_length
,persistent_interest_data)

CALL ATR4IRNI
(return_code
,resource_manager_token
,context_token
,ur_interest_token
,ur_identifier
,role
,ur_state
,persistent_interest_buffer_length
,persistent_interest_data_length
,persistent_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_UR_Interest service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

Retrieve_UR_Interest

Chapter 7. Callable resource recovery services 441

,context_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the context token that identifies the current context
for the incomplete UR.

,ur_interest_token
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service the UR interest token that identifies your resource
manager's interest in the incomplete UR.

,ur_identifier
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Receives from the service a UR identifier that uniquely identifies the UR.

,role
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the role of the resource manager in the UR interest
identified by the returned UR interest token. If your resource manager is not a
participant, your resource manager specified its role through a
Set_Syncpoint_Controls call. The role is indicated by one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Role

0
(0)
ATR_PARTICIPANT

Participant

1
(1)
ATR_LAST_AGENT

Last-agent participant

2
(2)
ATR_DSRM

Distributed syncpoint resource manager

Retrieve_UR_Interest

442 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Role

3
(3)
ATR_SDSRM

Server distributed syncpoint resource
manager

For more information about each role, see “Set_Syncpoint_Controls (ATRSSPC,
ATR4SSPC)” on page 505.

,ur_state
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the state of the incomplete UR. The UR state is
indicated by one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UR state

4
(4)
ATR_IN_DOUBT

In-doubt

5
(5)
ATR_IN-COMMIT

In-commit

6
(6)
ATR_IN-BACKOUT

In-backout

,persistent_interest_buffer_length
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the length of the buffer that your resource manager provides for the
persistent interest data. The value can be X'0' -X'1000' (0 - 4096).

,persistent_interest_data_length
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives from the service the actual length of the persistent interest data. The
value can range from X'0' to X'1000' (4096), where 0 indicates that there is no
data.

Retrieve_UR_Interest

Chapter 7. Callable resource recovery services 443

,persistent_interest_data
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified on persistent_interest_buffer_length

Provides a buffer to receive persistent interest data from the service. Your
resource manager provided the data in a call to one of the following services:
Express_UR_Interest, Change_Interest_Type, Set_Persistent_Interest_Data, or
Retain_Interest.

Your resource manager can also retrieve persistent interest data from the
Retrieve_Interest_Data (ATRRID) service (see the topic on
“Retrieve_Interest_Data (ATRRID, ATR4RID)” on page 391).

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00060000' or
X'00060001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

0
ATR_OK

Meaning: Successful completion.

Action: None.

4
ATR_NO_MORE_INCOMPLETE_

INTERESTS

Meaning: Normal processing. RRS has no
more incomplete UR interests for your
resource manager. The parameters do not
contain valid data.

Action: Call the end restart service to
complete restart processing.

5
ATR_PARTIAL_PERSISTENT_DATA

Meaning: Program error. The
persistent_interest_buffer_length value is less
than the actual length of the persistent
interest data.

The system accepts the service call. RRS
places in the buffer as many characters of
the data as will fit, starting at the left.

Action: No action is required. If the result is
not expected, check the resource manager
for a probable coding error; correct the
resource manager and rerun it.

Retrieve_UR_Interest

444 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37D
ATR_PERSIS_DATA_BUF_LEN_INV

Meaning: Program error. The length
specified for the persistent interest buffer is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager state must be restart. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_UR_Interest

Chapter 7. Callable resource recovery services 445

Return Code in:
Hexadecimal
Equate Symbol Meaning and Action

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to request its
interest in an incomplete UR. Storage for the call parameters has been allocated.
...
RM_TOKEN = MY_RM_TOKEN
PD_BUF_LEN = 256
DO UNTIL (RC=ATR_NO_MORE_INCOMPLETE_INTERESTS)

CALL ATRIRNI(RC,RM_TOKEN,C_TOKEN,URI_TOKEN,URID,ROLE,
UR_STATE,PD_BUF_LEN,PD_DATA_LEN,PD_DATA)

IF RC ≠ 0 THEN
/* Handle error */

END DO...

Retrieve_Work_Identifier (ATRRWID, ATRRWID2, ATR4RWID)
The resource manager calls the Retrieve_Work_Identifier service to retrieve a work
identifier related to a unit of recovery (UR). In response to the call, RRS returns:
v A return code
v The actual length of the unit of work identifier (UWID)
v The UWID

There are three versions of Retrieve_Work_Identifier, each with different
parameters.
v ATRRWID is for AMODE(31) callers and is the basic version of the service. It

must be called specifying a UR interest token.
v ATRRWID2 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token.
v ATR4RWID is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and can be called specifying either a UR token or a UR interest token.

Code your resource manager to call the version that includes the support you
need.

Retrieve_UR_Interest

446 z/OS V2R1.0 MVS Programming: Resource Recovery

Only global URs can have work identifiers. Global work identifiers are not
assigned to URs that are in local transaction mode. If you call
Retrieve_Work_Identifier and specify a UR that is in local transaction mode, no
work identifier is returned.

Your resource manager can request the current or next UWID for this UR. Table 20
describes the UWIDs that can be requested.

Table 20. Unit of Work Identifiers

Unit of Work
Identifier
(UWID) Format

Generate option is
allowed or required

Next
UWID is
available

LU 6.2 logical
unit of work
identifier
(LUWID)

netid.luname.instnum.seqnum

netid.luname
1-17 character identifier of the
network and LU, preceded by a
1-byte fixed length field

instnum
6-byte fixed TP instance

seqnum
2-byte fixed sequence number

Allowed only for
authorized callers.

Yes

Enterprise
Identifier
(EID)

tidgtid

tid 4-byte transaction identifier
(TID)

gtid 8-40 byte global transaction
identifier (GTID)

Not allowed No

X/Open
Identifier
(XID)

FormatIDGtrid_lengthBqual_lengthID

FormatID
4-byte fixed format ID

Gtrid_length
4-byte fixed GTRID length

Bqual_length
4-byte fixed BQUAL length

ID 128-byte character XID
The GTRID length and BQUAL length
define the length of the first and second
subsection of the ID. The GTRID must
have a length of at least 1 byte, however
the BQUAL can have a length of 0. The
length of the entire XID cannot exceed
140 bytes.

Required

RRS automatically
generates an XID
whenever a request
for an XID is made
by an authorized
caller against a UR
which does not
already have one.

No

If the requested LUWID or XID has not been set by a call to Set_Work_Identifier or
generated by RRS, you can use Retrieve_Work_Identifier to generate the LUWID or
XID. The service, however, cannot generate EIDs. This service will not generate
LUWID or XID if invoked by an unauthorized caller.

An XID can be set for a UR by a call to Set_Work_Identifier or by a call to
Express_UR_Interest. An XID is generated by RRS for a UR that does not already
have an XID when it is first requested, or when the UR becomes part of a cascaded

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 447

UR family. All of the URs in a cascaded UR family will have the same FormatID
and GTRID components in their XID. No generation of work identifiers will be
performed for unauthorized callers.

All of the URs in a cascaded UR family will have the same FormatID and GTRID
components in their XID.

Environment

The requirements for the caller are:

Minimum authorization:
PKM allowing key 0-7, or supervisor state
None if retrieval of current work identifier is requested;
in this case no generation of work identifiers will be
performed.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRRWID, ATRRWID2)
64 bit (ATR4RWID)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Uses standard MVS linkage conventions

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the specified UR interest token must be in
restart state or in run state.

The UR transaction mode cannot be local.

Note: The LUWID of a UR created by calling the Retain_Interest service is not
available until the UR for which Retain_Interest was called has reached
in_completion state. At that time, you can call Retrieve_Work_Identifier to retrieve
the LUWID by specifying the current LUWID and the new_ur_interest_token
returned on the call to Retain_Interest.

You cannot call this service to generate an LU 6.2 logical unit identifier (LUWID)
when any of the following are true:
v The resource manager returned the ATRX_LATER_CONTINUE return code from an

exit routine for this expression of interest.

Retrieve_Work_Identifier

448 z/OS V2R1.0 MVS Programming: Resource Recovery

v The UR state is in_completion.
v The caller is not authorized.

When the resource manager issues the call in SRB mode, the call must not specify
binary zero for ur_interest_token or ur_or_uri_token.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 449

CALL ATRRWID
(return_code
,ur_interest_token
,retrieve_option
,generate_option
,uwid_type
,uwid_buffer_len
,uwid_len
,uwid_data_buffer)

CALL ATRRWID2
(return_code
,ur_or_uri_token
,retrieve_option
,generate_option
,uwid_type
,uwid_buffer_len
,uwid_len
,uwid_data_buffer)

CALL ATR4RWID
(return_code
,ur_or_uri_token
,retrieve_option
,generate_option
,uwid_type
,uwid_buffer_len
,uwid_len
,uwid_data_buffer)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Retrieve_Work_Identifier service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRWID callers, specifies a token that uniquely identifies your resource
manager's interest in the UR whose data you want to retrieve. Your resource

Retrieve_Work_Identifier

450 z/OS V2R1.0 MVS Programming: Resource Recovery

manager received the token from one of the following services:
Express_UR_Interest, Retrieve_UR_Interest, Retain_Interest.

,ur_or_uri_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRRWID2 callers, specifies a token that uniquely identifies either the UR,
or your resource manager's interest in the UR, whose data you want to
retrieve:
v 0: Binary zero specifies the current UR associated with the application task.
v UR token: The token for the UR.
v UR interest token: The UR interest token that identifies your resource

manager's interest in the UR.

Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest,
Create_Cascaded_UR, or Retrieve_UR_Data.

You must specify a URITOKEN when you specify ATR_GENERATE on
generate_option and ATR_LUWID on uwid_type.

Because you may pass two different types of tokens through this parameter,
passing an invalid token can generate either a ATR_URI_TOKEN_INV or a
ATR_UR_TOKEN_INV return code. For example, passing an invalid UR token
might result in an ATR_URI_TOKEN_INV return code. Even though a UR
token was passed, if it is invalid, then RRS may not understand what sort of
token it was supposed to be. For this reason, IBM recommends callers check
both return codes, even when they know what type of token they intend to
pass.

,retrieve_option
Supplied parameter
v Type: Integer
v Length: 4 bytes

Indicates whether you want to retrieve the current UWID or the next UWID.
Unauthorized callers must specify the ATR_CURRENT retrieve option.

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UWID to be retrieved

0
(0)
ATR_CURRENT

Current UWID: RRS is to retrieve the current
UWID for this UR.

1
(1)
ATR_NEXT

Next UWID: RRS is to retrieve the next
UWID for this UR.
Note: You can validly specify ATR_NEXT
only when uwid_type is ATR_LUWID.

,generate_option
Supplied parameter

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 451

v Type: Integer
v Length: 4 bytes

Specifies the action RRS is to take if a UWID has not been set by a call to the
Set_Work_Identifier service or generated by RRS. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol RRS's action

0
(0)
ATR_DO_NOT_GENERATE

Do not generate: RRS is not to generate a
new UWID.

1
(1)
ATR_GENERATE

Generate: RRS is to generate a new UWID if
the identifier has not yet been set or
generated.

You must specify ATR_GENERATE when uwid_type is ATR_XID. You must
specify ATR_DO_NOT_GENERATE when uwid_type is ATR_EID. You may
specify either ATR_GENERATE or ATR_DO_NOT_GENERATE when uwid_
type is ATR_LUWID. Unauthorized callers must specify the
ATR_DO_NOT_GENERATE option.

You can specify ATR_GENERATE to generate the current LUWID or the next
LUWID.

RRS will generate the current LUWID only when all of the following are true:
v You specified ATR_CURRENT on retrieve_option,
v The call to the Set_Exit_Information service for RRS specified an LU name in

variable_data_1.

RRS will generate the next LUWID only when the following are true:
v You specified ATR_CURRENT on retrieve_option,
v At least one of the following is true:

– Your resource manager's call to the Set_Exit_Information service for RRS
specified an LU name in variable_data_1.

– The current LUWID has already been set or generated.

,uwid_type
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the type of the UWID you want to retrieve. Specify one of the
following:

Retrieve_Work_Identifier

452 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UWID type

0
(0)
ATR_LUWID

An LU 6.2 logical unit of work identifier
(LUWID)

1
(1)
ATR_EID

An Enterprise identifier (EID)

2
(2)
ATR_XID

An X/Open transaction identifier (XID)

,uwid_buffer_len
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the length of the buffer that your resource manager supplies for the
UWID. The recommended length of the buffer is the maximum length for the
UWID you are retrieving. Specify one of the following:

Maximum Length in:
Hexadecimal
(Decimal)
Equate Symbol UWID type

A
(10)
ATR_MIN_LUWID_LENGTH

The minimum length of a LU 6.2 LUWID

1A
(26)
ATR_MAX_LUWID_LENGTH

The maximum length of a LU 6.2 LUWID

C
(12)
ATR_MIN_EID_LENGTH

The minimum length of an Enterprise
identifier

2C
(44)
ATR_MAX_EID_LENGTH

The maximum length of an Enterprise
identifier

D
(13)
ATR_MIN_XID_LENGTH

The minimum length of an X/Open identifier

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 453

Maximum Length in:
Hexadecimal
(Decimal)
Equate Symbol UWID type

8C
(140)
ATR_MAX_XID_LENGTH

The maximum length of an X/Open
identifier

,uwid_len
Returned parameter
v Type: Integer
v Length: 4 bytes

Receives the actual hexadecimal length of the UWID from the service.

,uwid_data_buffer
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in uwid_buffer_len

Specifies a buffer that receives the UWID from the service. The uwid_buffer_len
parameter specifies the length of the buffer. The UWID length is from 10 to 140
bytes.

The format of the UWID returned depends on the UWID type. A LUWID has
the following format:

netid.luname.instnum.seqnum

The fields are as follows:

netid.luname
1-17 character identifier of the network and LU, preceded by a 1-byte
length field

instnum
6-byte TP instance

seqnum
2-byte sequence number

An EID has the following format:
tidgtid

The fields are as follows:

tid 4-byte transaction identifier (TID)

gtid 8-40 byte global transaction identifier (GTID)

For XID, the uwid_data_buffer contains the 4–byte address of the buffer to
contain the retrieved XID. An XID has the following format:
FormatIDGtrid_lengthBqual_lengthID

The fields are as follows:

FormatID
4-byte fixed format ID

Retrieve_Work_Identifier

454 z/OS V2R1.0 MVS Programming: Resource Recovery

Gtrid_length
4-byte fixed Gtrid length

Bqual_length
4-byte fixed Bqual length

ID 128-byte character XID

The 1–128 byte ID field has the following format:

Gtrid 1–64 byte Gtrid

Bqual 0–64 byte Bqual

The length of the entire XID cannot exceed 140 bytes.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'000E0000'
or X'000E0001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

7
ATR_REQUESTED_WID_UNAVAILABLE

Meaning: Program processing. The
requested UWID has not been set by a call
to the Set_Work_Identifier service or been
generated by RRS. The generate_option
parameter specified that a new UWID
should not be generated. The system accepts
the call.

Action: If this result is expected, no action is
needed. If this result is not expected, check
the resource manager for a probable coding
error; correct the resource manager and
rerun it.

A
ATR_PARTIAL_UWID_DATA

Meaning: Program error. The uwid_buffer_len
value specified in the call is less than the
actual length of the UWID.

The system accepts the service call. RRS puts
in the buffer as many characters of the data
as will fit, starting at the left, and returns the
actual length in uwid_len.

Action: No action is required. If the result is
not expected, check the resource manager
for a probable coding error. Correct the
resource manager and rerun it.

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 455

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call does not identify
one of the currently valid interests. If the
specified token is not a valid UR or URI
token, RRS may return this return code even
if the resource manager was attempting to
specify a UR token. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37E
ATR_RETRIEVE_OPTION_INV

Meaning: Program error. The retrieve option
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

380
ATR_UWID_TYPE_INV

Meaning: Program error. The specified
uwid_type is not valid. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Work_Identifier

456 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

382
ATR_UWID_BUF_LEN_INV

Meaning: Program error. The length
specified for the UWID data buffer is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

388
ATR_GENERATE_OPTION_INV

Meaning: Program error. The generate_option
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. If the specified token is not a valid UR
or URI token, RRS may return this return
code even if the resource manager was
attempting to specify a URI token. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3B4
(948)
ATR_AUTH_FAILURE_RETRIEVE_OPTION

Meaning: The caller, which is PKM 8-15
problem state, specified a retrieve_option not
equal to ATR_CURRNET. Only
ATR_CURRENT can be specified when the
caller is PKM 8-15 problem state. To use
other retrieve_option's the caller must be
PKM allowing key 0-7, or supervisor state.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3B5
(949)
ATR_AUTH_FAILURE_GENERATE_
OPTION

Meaning: The caller, which is PKM 8-15
problem state, specified a generate_option
not equal to ATR_DO_NOT_GENERATE.
Only ATR_DO_NOT_GENERATE can be
specified when the caller is PKM 8-15
problem state. To use other retrieve_option's
the caller must be PKM allowing key 0-7, or
supervisor state.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 457

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager must be in restart state or in run
state. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73C
ATR_AFTER_NEW_UR

Meaning: The resource manager has
previously returned the
ATRX_LATER_CONTINUE return code from
an exit routine for this expression of interest.
You cannot generate an LUWID after that
point for this expression of interest.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73F
ATR_LUWID_NOT_AVAILABLE

Meaning: Environmental error. The current
LUWID for the UR specified in the call is
not available. The LUWID created for a UR
by a Retain_Interest call is not available until
the previous UR has reached a complete
state. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

748
ATR_GEN_NOT_ALLOWED_NO_LUNAME

Meaning: The resource manager did not
specify an LU prefix on a
Set_Exit_Information call, so the resource
manager cannot tell RRS to generate a
LUWID. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

74D
ATR_GEN_NOT_ALLOWED_EID

Meaning: The request to generate an
Enterprise identifier is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Retrieve_Work_Identifier

458 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

751
ATR_GEN_REQUIRED_XID

Meaning: Program error. The request to not
generate an XID is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

753
ATR_GEN_NOT_ALLOWED_

NO_URI_TOKEN

Meaning: Program error. The request to
generate a LUWID is not valid, because a
URI token was not specified. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

754
ATR_RETRIEVE_NEXT_EID_INV

Meaning: Program error. The request to
retrieve the next Enterprise identifier is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

755
ATR_RETRIEVE_NEXT_XID_INV

Meaning: Program error. Retrieval of XID
for the next Unit of Recovery is not valid.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

765
ATR_GEN_LUWID_NOT

_ALLOWED_LOCAL

Meaning: Program error. The request to
generate a LUWID is not valid for a UR in
local transaction mode. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. If the caller is a
resource manager, it should not unset its
exits with RRS.

767
ATR_GEN_XID_NOT

_ALLOWED_LOCAL

Meaning: Program error. The request to
generate an XID is not valid for a UR in
local transaction mode. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. If the caller is a
resource manager, it should not unset its
exits with RRS.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 459

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Retrieve_Work_Identifier
was done at the time of the RRS failure. A
new unit of recovery can not be created
until the current unit of recovery is
completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to retrieve the
current LU 6.2 LUWID. If a UWID is not available, RRS will generate one.
...
URI_TOKEN = UR_INTEREST_TOKEN
RET_OPT = ATR_CURRENT
GEN_OPT = ATR_GENERATE
UWID_TYPE = ATR_LUWID
BUF_LEN = ATR_MAX_LUWID_LENGTH
CALL ATRRWID2(RC,URI_TOKEN,RET_OPT,GEN_OPT,UWID_TYPE,

BUF_LEN,LUWID_LEN,LUWID)
IF RC ≠ ATR_OK THEN

Retrieve_Work_Identifier

460 z/OS V2R1.0 MVS Programming: Resource Recovery

/* Handle error */...

Set_Environment (ATRSENV, ATR4SENV)
v ATRSENV is for AMODE(31) callers.
v ATR4SENV is for AMODE(64) callers and allows parameters in 64 bit

addressable storage.

A work manager calls the Set_Environment service to establish environmental
settings for RRS, but RRS need not be available when the service is called.
Typically, a work manager calls Set_Environment to establish transaction default
modes for the primary address space scope and context-specific scopes. The work
manager can also specify that the settings it chooses are to be protected against
change by unauthorized programs. The work manager can direct RRS to establish
the default transaction mode and the default two-phase commit action.

Calling any of the following services will cause a UR state to go from in-reset to
in-flight, setting a transaction mode for that UR:
v Create_Cascaded_UR
v Express_UR_Interest
v Retrieve_Work_Identifier
v Set_Side_Information
v Set_Work_Identifier

Note that calls to Create_Cascaded_UR, Retrieve_Work_Identifier, or
Set_Work_Identifier will never cause a UR to have a local transaction mode.

Establish the default transaction mode: The default transaction mode determines
the transaction mode for an in-reset UR when the first expression of interest
occurs. The first expression of interest establishes the transaction mode for the UR;
the transaction mode cannot change for the life of the UR. The possible transaction
modes are:
v ATR_LOCAL_MODE: Sets local transaction mode as the default for

implicitly-started transactions
v ATR_GLOBAL_MODE: Sets global transaction mode as the default for

implicitly-started transactions
v ATR_HYBRID_GLOBAL_MODE: Sets hybrid-global transaction mode as the

default for implicitly-started transactions. Hybrid-global mode is the same as
global except that it allows resource managers to exhibit proprietary
transactional behavior. Hybrid-global is the default transaction mode in the
absence of an applicable environment setting for a given UR. A resource
manager that does not have any proprietary behaviors can treat hybrid-global
transaction mode as global.

v ATR_NOT_SET: Removes the default transaction mode previously set for this
scope (address space or context). The result of ATR_NOT_SET is the same as if
Set_Environment for this scope had never been issued.

Note that applications cannot use Begin_Transaction to explicitly start a new
transaction when the transaction mode environment is either not set
(ATR_NOT_SET) or set to hybrid-global (ATR_HYBRID_GLOBAL_MODE).

Because the work manager can establish environmental settings for both address
space scope and context scope, conflicting values might apply to a given UR. RRS
uses the following precedence list to resolve conflicting settings:

Retrieve_Work_Identifier

Chapter 7. Callable resource recovery services 461

1. Context scope transaction default (protected or not)
2. Home address space scope default (protected or not)
3. RRS system default

Note: It is important to distinguish that, for address space scope specifications
when zero is specified for stoken, the Set_Environment service affects the primary
address space, while the Retrieve_Environment service relates to the home address
space.

Establish default two-phase commit actions: The work manager can provide a
separate direction to RRS to commit or roll back URs when the UR state is still
in-flight for the following event:
v ATR_NORM_CTX_END_SETTING RRS is to take a prescribed action when a

UR's associated context goes through normal termination. The default action is
to commit the UR.

Environment

The requirements for the caller are:

Minimum authorization: Any
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSENV)
64 bit (ATR4SENV)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The following restrictions are placed on unauthorized (PKM 8–15 problem state)
callers. These callers:
v Must specify ATR_UNPROTECTED_SETTING for the protection_level parameter.
v Cannot change any environmental settings established (by an authorized caller)

with ATR_PROTECTED_SETTING for each element of the environment_protection
parameter.

v Can change an address space scope setting only when that space is the primary
address space (the stoken parameter is 0) and the setting is unprotected.

Set_Environment

462 z/OS V2R1.0 MVS Programming: Resource Recovery

v Can change a context scope setting only when:
– The context is current, the setting is unprotected, and the home address space

scope setting is unprotected.
– The context is not current, the setting is unprotected, the context is owned by

a key 8–15 problem state work manager registered in the home address space,
and the home address space scope setting is unprotected.

SRB mode callers cannot specify a context token of 0 when trying to establish
environment settings at the context scope (ATR_CONTEXT_SCOPE).

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

Set_Environment

Chapter 7. Callable resource recovery services 463

CALL ATRSENV
(return_code
,diag_area
,scope
,context_token
,stoken
,element_count
,environment_id
,environment_value
,environment_protection)

CALL ATR4SENV
(return_code
,diag_area
,scope
,context_token
,stoken
,element_count
,environment_id
,environment_value
,environment_protection)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Set_Environment service.

,diag_area
Returned parameter
v Type: Character string
v Character Set: No restriction
v Length: 32 bytes

Contains diagnostic data from Set_Environment to help IBM Service determine
the cause of a Set_Environment failure. Be sure to log this data when recording
any information about a Set_Environment failure.

,scope
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the scope of the environmental setting value(s), either address space
scope or context scope, as follows:

Set_Environment

464 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_ADDRESS_SPACE_SCOPE

The environmental setting has address space
scope for the address space represented by
the token in the stoken parameter.

2
(2)
ATR_CONTEXT_SCOPE

The environmental setting applies for the
context represented by the token in the
context_token parameter.

,context_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token of the context for which the resource manager is
establishing context scope environment settings:
v 0: Binary zeros specify either:

– The current context (when scope is ATR_CONTEXT_SCOPE)
– No context (when scope is ATR_ADDRESS_SPACE_SCOPE)

If scope is ATR_ADDRESS_SPACE_SCOPE, then context_token must be 0.
v token: Specifies a valid context token.

,stoken
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 8 bytes

Specifies the space token (stoken) of the address space for which the resource
manager is establishing address space scope environment settings:
v 0: Binary zeros indicate the primary address space (required for

unauthorized callers). If scope is ATR_CONTEXT_SCOPE, then stoken must
be 0.

v token: Specifies a valid address space token.

Note: If an unauthorized caller in cross-memory mode specifies 0, the system
rejects the call.

,element_count
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies the number of elements in the environment-setting array, which
consists of the environment_id, environment_value, and environment_protection
parameters.

Set_Environment

Chapter 7. Callable resource recovery services 465

The maximum number of elements is the number of possible environment
settings (transaction mode and two-phase commit action) times the number of
environment-setting parameters. The maximum number is 2.

,environment_id
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Specifies one or more identifiers; each identifier supplies an environment
attribute that is to be set. When you specify more than one identifier, you must
define an array; element_count indicates the number of elements in the array.
The positions of the identifiers in this array define the positions of the
environment attributes in the environment-setting array. The scope parameter
specifies the scope at which these settings are to apply. Specify each identifier
as one of the following:

Identifier in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_TRAN_MODE_SETTING

The service is to set the transaction mode.

2
(2)
ATR_NORM_CTX_END_SETTING

The service is to set the two-phase commit
action RRS should take for in-flight URs
when the associated context goes through
normal end processing.
Note: This setting does not apply to a
cascaded (child) UR. The outcome of the
entire syncpoint tree is determined by the
environmental setting of only the top-level
UR, not any of the child URs.

,environment_value
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Supplies a value for each identifier on the environment_id parameter. When you
specify more than one identifier, you must define an array, where element_count
indicates the number of elements in the array. The positions of the identifiers
in the environment_id array define the positions of the environment attributes in
the environment_value array.

Specify the value for ATR_TRAN_MODE_SETTING as one of the following:

Set_Environment

466 z/OS V2R1.0 MVS Programming: Resource Recovery

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NOT_SET

The transaction mode environment setting
for this environment_id (address space or
context) is to be removed. Setting this value
makes it as if Set_Environment (for the
environment_id specified) was never issued.

1
(1)
ATR_GLOBAL_MODE

The transaction mode is set to global for the
requested scope.

2
(2)
ATR_LOCAL_MODE

The transaction mode is set to local for the
requested scope.

3
(3)
ATR_HYBRID_GLOBAL_MODE

The transaction mode is set to hybrid-global
for the requested scope. This is the same as
global mode, except it allows the resource
manager to exhibit proprietary connection
behavior.

Specify the value for ATR_NORM_CTX_END_SETTING as one of the
following:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_NOT_SET

The environment setting at this
environment_id (address space or context) is
removed. Setting this value makes it as if
Set_Environment (for the environment_id
specified) was never issued.

1
(1)
ATR_COMMIT_ACTION

RRS is to commit in-flight URs.

2
(2)
ATR_ROLLBACK_ACTION

RRS is to roll back in-flight URs.

,environment_protection
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Supplies a protection value for each identifier in the environment_id parameter.
When you specify more than one identifier, you must define an array, where
element_count indicates the number of elements in the array. The positions of

Set_Environment

Chapter 7. Callable resource recovery services 467

the identifiers in the environment_id array define the positions of the
environment attributes in the environment_protection array.

Only an authorized caller can set the protection value. By setting
ATR_PROTECTED_SETTING, authorized callers can prevent unauthorized
callers from changing the environmental settings. Specify each element as one
of the following:

Value in:
Hexadecimal
(Decimal)
Equate Symbol Description

1
(1)
ATR_UNPROTECTED_SETTING

An unauthorized caller can change the
settings specified in the corresponding
element in the environment_value array.

2
(2)
ATR_PROTECTED_SETTING

Only an authorized caller can change the
settings specified in the corresponding
element in the environment_value array.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00260000' or
X'00260001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion. The
environment has been set as desired.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Environment

468 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

104
ATR_MODE_INV

Meaning: Program error. The calling
program is not in task mode, specified a
zero context token, and attempted to set
environment settings at a scope of
ATR_CONTEXT_SCOPE. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The application is
holding one or more locks; no locks must be
held. The system rejects the service call.

Action: Check the application for a probable
coding error. Correct the resource manager
and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

361
ATR_CONTEXT_TOKEN_INV

Meaning: Program error. The context token
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

362
ATR_STOKEN_INV

Meaning: Program error. The address space
token specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

364
ATR_ENV_SETTING_ID_INV

Meaning: Program error. A value in the
environment_id parameter specified in the call
is not valid. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Environment

Chapter 7. Callable resource recovery services 469

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

365
ATR_ENV_SETTING_INV

Meaning: Program error. A value in the
environment_value parameter specified in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

366
ATR_SCOPE_INV

Meaning: Program error. The scope specified
in the call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36B
ATR_ACTION_INV

Meaning: Program error. The value specified
for ATR_NORM_CTX_END_SETTING in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

36C
ATR_PROTLEVEL_INV

Meaning: Program error. The environment
setting protection value in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

392
ATR_ELEMENT_COUNT_INV

Meaning: Program error. The element count
value in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3AB
ATR_AUTH_FAILURE

Meaning: Program error. An unauthorized
caller tried to change a setting for an
authorized context other than the current
context. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

801
ATR_SETTING_PROTECTED

Meaning: Program error. An unauthorized
caller tried to change a setting that was
protected by an authorized caller. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Environment

470 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

802
ATR_STOKEN_NOT_ZERO

Meaning: Program error. The stoken
parameter was incorrectly specified. One of
the following is true:

v The stoken is not zero, but the caller
specified ATR_CONTEXT_SCOPE on the
scope parameter; or,

v The stoken is not zero and the caller is
unauthorized.

In either case, the system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

803
ATR_CTOKEN_NOT_ZERO

Meaning: Program error. The context token
parameter was incorrectly specified. The
caller specified
ATR_ADDRESS_SPACE_SCOPE on the
scope parameter and a non-zero value on
the context token parameter. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the work manager issues a call to establish
environmental settings for RRS.
...
SCOPE = ATR_CONTEXT_SCOPE
C_TOKEN = MY_CONTEXT_TOKEN
A_TOKEN = 0
ELE_CNT = 1
ENV_SET_ID = ATR_NORM_CTX_END_SETTING
ENV_SET = ATR_COMMIT_ACTION
ENV_SET_PROT = ATR_PROTECTED_SETTING
CALL ATRSENV(RC,DIAG_DATA,SCOPE,C_TOKEN,A_TOKEN,ELE_CNT,

ENV_SET_ID,ENV_SET,ENV_SET_PROT)...

Set_Log_Name (ATRISLN, ATR4ISLN)
v ATRISLN is for AMODE(31) callers.

Set_Environment

Chapter 7. Callable resource recovery services 471

v ATR4ISLN is for AMODE(64) callers and allows parameters in 64 bit addressable
storage.

A resource manager calls the Set_Log_Name service to give its log name to RRS.
Note that this name is not necessarily the name of an actual log. It is a value that
your resource manager uses at restart to synchronize processing with RRS.

RRS hardens the resource manager log name in the RRS log. The next time your
resource manager restarts, it can call the Retrieve_Log_Name service to retrieve the
name.

In response to the call, RRS returns a return code.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRISLN)
64 bit (ATR4ISLN)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the specified resource manager token must
be in one of the following states:
v Set, which means it has registered and set its exit routines with RRS
v Restart, which means it has registered, set its exit routines with RRS, and begun

restart
v Run, which means it has registered, set its exit routines with RRS, and

completed restart

Set_Log_Name

472 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRISLN
(return_code
,resource_manager_token
,rm_logname_len
,rm_logname)

Set_Log_Name

Chapter 7. Callable resource recovery services 473

CALL ATR4ISLN
(return_code
,resource_manager_token
,rm_logname_len
,rm_logname)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_Log_Name service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,rm_logname_len
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies, in hexadecimal, the length of the resource manager's log name. The
length can be from X'1' to X'40' (1 - 64) bytes.

,rm_logname
Supplied parameter
v Type: Character string
v Character Set: See description
v Length: Specified in rm_logname_len

Specifies the resource manager's log name. The log name can consist of:
v Alphanumeric characters: A-Z and 0-9.
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C').
v The period (.).
v The underscore(_).
v Trailing blank characters. The name may not start with a blank or contain

embedded blanks.

The field is not case-sensitive. If you specify lower-case letters, RRS converts
them to upper case.

Use the following conventions to avoid name conflicts:

Set_Log_Name

474 z/OS V2R1.0 MVS Programming: Resource Recovery

v IBM-provided resource managers use A-C or G-I as the first character and
.IBM as the ending qualifier.

v Other resource managers should begin the name with D-F or J-Z and end
the name with a period and the company name or acronym.

For example:
RMLOG.VENDORCORP
RESMANAGERLOG.GROWTHCOMPANY

Note: The resource manager log name is preserved across restarts of the
system, restarts of RRS, and restarts of the resource manager.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00080000' or
X'00080001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

Set_Log_Name

Chapter 7. Callable resource recovery services 475

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37A
ATR_RM_LOGNAME_INV

Meaning: Program error. The name for the
resource manager log specified in the call is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37B
ATR_RM_LOGNAME_LEN_INV

Meaning: Program error. The length of the
resource manager log name specified in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the resource
manager token specified in the call is not in
a valid state to issue the service call. The
resource manager state must be set, restart,
or run. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Set_Log_Name

476 z/OS V2R1.0 MVS Programming: Resource Recovery

Example

In the pseudocode example, the resource manager issues a call to give its log name
to RRS.
...
RM_TOKEN = MY_RM_TOKEN
LOGN_LEN = MY_LOGNAME_LEN
LOGNAME = MY_LOGNAME
CALL ATRISLN(RC,RM_TOKEN,LOGN_LEN,LOGNAME)
IF RC=0 THEN...

Set_Persistent_Interest_Data (ATRSPID, ATR4SPID)
v ATRSPID is for AMODE(31) callers.
v ATR4SPID is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

A resource manager calls the Set_Persistent_Interest_Data service to provide
persistent interest data for a protected interest in a unit of recovery (UR). In
response to the call, RRS returns a return code.

Note: Set_Persistent_Interest_Data can be used for an interest in a UR in local
transaction mode, but the data will not be logged.

The call can also be used to delete existing persistent interest data.

Persistent Interest Data: When it hardens information for the interest in an RRS
log, RRS records the persistent interest data. Because the data is hardened, it will
be available if your resource manager restarts or if RRS restarts, forcing your
resource manager to restart.

Your resource manager can also provide persistent interest data in a call to the
following services: Express_UR_Interest, Change_Interest_Type, or Retain_Interest.
Your resource manager can retrieve persistent interest data in a call to the
Retrieve_UR_Interest service or the Retrieve_UR_Data service.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSPID)
64 bit (ATR4SPID)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: MVS standard linkage conventions are used.

Set_Log_Name

Chapter 7. Callable resource recovery services 477

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified UR interest token
must be run, which means it has registered, set its exit routines with RRS, and
completed restart.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Set_Persistent_Interest_Data

478 z/OS V2R1.0 MVS Programming: Resource Recovery

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSPID
(return_code
,ur_interest_token
,persistent_interest_data_length
,persistent_interest_data)

CALL ATR4SPID
(return_code
,ur_interest_token
,persistent_interest_data_length
,persistent_interest_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_Persistent_Interest_Data service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that identifies your resource manager's interest
in the UR. Your resource manager received the token from the
Express_UR_Interest service or the Retain_Interest service.

,persistent_interest_data_length
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies, in hexadecimal, the length of the persistent interest data. The length
can be from X'0' to X'1000' (0 - 4096) bytes. The maximum amount of data that
can be logged for a particular UR is 60K (61440) bytes, which includes the
persistent data and all other data that RRS must log for the UR.

If the call specifies a length of zero, RRS deletes the persistent interest data for
the interest.

,persistent_interest_data
Supplied parameter

Set_Persistent_Interest_Data

Chapter 7. Callable resource recovery services 479

v Type: Character string
v Character Set: No restriction
v Length: Specified in persistent_interest_data_length

Specifies the persistent interest data you want to set for your resource
manager's interest.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00100000' or
X'00100001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Persistent_Interest_Data

480 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

376
ATR_PERSISTENT_DATA_LEN_INV

Meaning: Program error. The length
specified in the persistent_interest_data_len
parameter in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be run. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

730
ATR_NOT_PROTECTED_INTEREST

Meaning: Program error. The UR interest
token does not represent a protected interest.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

749
ATR_MAX_UR_LOG_DATA_

EXCEEDED

Meaning: Environmental error. This request
will exceed the maximum amount of data
that RRS can log for a UR. The system
rejects the service call.

Action: Fail the client program request or
back out the UR. Verify that the space set up
for logging is adequate.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Set_Persistent_Interest_Data

Chapter 7. Callable resource recovery services 481

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Set_Persistent_Interest_Data
was done at the time of the RRS failure. A
new unit of recovery can not be created
until the current unit of recovery is
completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to provide
persistent interest data.
...
URI_TOKEN = MY_URI_TOKEN
P_DATA_LEN = LENGTH(MY_P_DATA)
P_DATA = MY_P_DATA
CALL ATRSPID(RC,URI_TOKEN,P_DATA_LEN,P_DATA)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Set_Post_Sync_PET (ATRSPSP2, ATR4SPSP)
v ATRSPSP2 is for AMODE(31) callers.

Set_Persistent_Interest_Data

482 z/OS V2R1.0 MVS Programming: Resource Recovery

v ATR4SPSP is for AMODE(64) callers and allows parameters in 64 bit addressable
storage.

A work manager calls the Set_Post_Sync_PET service to enable a program to know
when a syncpoint completes and receive information about that syncpoint without
actually expressing interest in a UR or work context. The caller provides a pause
element token (PET) to be associated with a target UR. RRS will release the pause
element designated by the specified PET when the context the UR is associated
with can either be reused for a new UR or ended without RRS holding up the
process. This occurs when the UR reaches the forgotten state, except under the
following circumstances:
v When the UR syncpoint is under the control of an SDSRM and circumstances

require the SDSRM to issue a Forget_Agent_UR_Interest call before the UR can
reach the forgotten state. In this case, RRS will release the PET when the UR
reaches the in-forget state.

v When a COMPLETION exit returned the ATRX_LATER_CONTINUE return code
and RRS is going to give control back to the application prior to transitioning
the UR to the forgotten state. In this case, RRS will release the PET when the UR
is in the in-completion state when all exits finished or returned
ATRX_LATER_CONTINUE.

v When RRS fails. RRS will ensure that the PET is released with an appropriate
release code. The state of the UR cannot be determined.

When RRS issues a release, it will specify a release code that contains information
about the results of the UR.

If you create cascaded transactions, you can also use the Set_Post_Sync_PET
service to determine when a cascaded transaction has completed.

Note: RRS will consider each PET associated with a UR as the equivalent of an
expression of interest when queried by the Retrieve_Interest_Count service.

Because setting a post-syncpoint PET does not cause the UR state to change from
in-reset to in-flight, it is possible for the transaction mode to change after the PET
is associated with a UR. The PET is released when the UR completes, regardless of
the transaction mode. In addition to normal syncpoint completion, a UR in local
transaction mode is considered complete when all resource manager interests in it
are deleted. The release code provides an indication of the transaction mode at the
time RRS releases the PET.

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSPSP2)
64 bit (ATR4SPSP)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: MVS standard linkage conventions are used.

Set_Post_Sync_PET

Chapter 7. Callable resource recovery services 483

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

For the call, the UR state must be in-reset or in-flight.

When the resource manager issues the call in SRB mode, the call cannot specify a
ur_token of 0, indicating information for the current UR.

A PKM 8–15 problem state caller must specify a PET for a Pause Element allocated
with auth_level=IEA_UNAUTHORIZED.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Set_Post_Sync_PET

484 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSPSP2
(return_code
,UR_token
,pause_element_token)

CALL ATR4SPSP
(return_code
,UR_token
,pause_element_token)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Set_Post_Sync_PET service.

,UR_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the token of the UR to which the PET specified by pause_element_token
is to be associated:
v 0: Binary zero specifies the current UR associated with the application's task.
v token: The UR token of a particular UR.

,pause_element_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the pause element token to be associated with the UR specified by the
UR_token. When the UR reaches the forgotten state (or one of the other
conditions specified in the description of this service call), RRS will release the
pause element specified by the pause_element_token.

Set_Post_Sync_PET

Chapter 7. Callable resource recovery services 485

Pause element tokens are not preserved across system or RRS failures. Any
PETs that are associated with URs via the Set_Post_Sync_PET service will be
released if RRS terminates.

When the pause element is released, RRS will place a set of flags in the release
code. The flags are:

Bit
Flag name Meaning, if Bit is On

0
ATRRCODENORRS

RRS will always set this bit to 0. An
application can release the pause element
with this bit set to indicate to the resource
manager that RRS did not release it.

1
ATRRCODERRSFAILED

RRS terminated. Bits 2–23 have undefined
contents.

2–8 Reserved.

9
ATRRCODETERMINATINGSYNCPOINT

The context is ending. RRS issued an implicit
commit or backout for the UR. There cannot
be any more new URs for this context.

10
ATRRCODERESOLVEDBYINSTALLATION

The installation used an RRS panel to
commit or back out the UR, which had been
in an in-doubt state.

11
ATRRCODEHEURISTICMIXED

RRS detected a heuristic-mixed condition for
this UR.

12
ATRRCODERESYNCINPROGRESS

RRS detected a resync in progress for this
UR.

13
ATRRCODEPREPARERESULTFORGET

The collected prepare vote was forget.

14
ATRRCODEIMMEDIATEBACKOUT

Backout was requested by the application.

15 Reserved.

16
ATRRCODECOMMIT

If set, the overall vote for the UR is commit.
If not set, and
ATRRCODEPREPARERESULTFORGET is not
set, the overall vote for the UR is backout.

17–18 Reserved.

19
ATRRCODECASCADEDUR

The UR is a cascaded UR.

20
ATRRCODELOCALMODE

If set, the UR was in local transaction mode.
If this bit is set, then
ATRRCODEGLOBALMODE cannot also be
set. If neither is set, then the UR was in
hybrid-global transaction mode
(ATRRCODEHYBRIDGLOBALMODE).

Set_Post_Sync_PET

486 z/OS V2R1.0 MVS Programming: Resource Recovery

Bit
Flag name Meaning, if Bit is On

21
ATRRCODEGLOBALMODE

If set, the UR was in global transaction
mode. If this bit is set, then
ATRRCODELOCALMODE cannot also be
set. If neither is set, then the UR was in
hybrid-global transaction mode
(ATRRCODEHYBRIDGLOBALMODE).

22–23 Reserved.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00200000' or
X'00200001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The calling
program is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

104
ATR_MODE_INV

Meaning: Program error. The calling
program specified 0 in UR_token, indicating
the context associated with the current UR,
but the calling program is not in task mode.
The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The calling
program is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the calling
program and rerun it.

Set_Post_Sync_PET

Chapter 7. Callable resource recovery services 487

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that is
running a version of RRS that supports this
service call. Then rerun the resource
manager.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the UR_token parameter is not
valid. The system rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A6
ATR_PET_INV

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter is not valid. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A7
ATR_PET_OUTDATED

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter is outdated. The system rejects
the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A8
ATR_PET_AUTH_FAILURE

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter was allocated with
auth_level=IEA_AUTHORIZED, and the
caller is unauthorized. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

3A9
ATR_PET_SPACE_FAILURE

Meaning: Program error. The pause element
token specified in the pause_element_token
parameter represents a pause element
belonging to another address space, and the
caller is unauthorized. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

Set_Post_Sync_PET

488 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR specified
by the UR_token is not in a valid state for
the service call. The UR must be in an
in-reset or in-flight state. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Set_Post_Sync_PET was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Set_Post_Sync_PET

Chapter 7. Callable resource recovery services 489

Example

In the pseudocode example, the calling program attempts to associate a UR a
pause element token. Storage for the call parameters has already been allocated.
...
CALL ATRSPSP2(RC, URTOKEN, PETOKEN)

...

Set_RM_Metadata (ATRSDTA, ATR4SDTA)
v ATRSDTA is for AMODE(31) callers.
v ATR4SDTA is for AMODE(64) callers, and allows parameters in 64 bit

addressable storage.

A resource manager calls the Set_RM Metadata service to give up to 8K (8192)
bytes of data to RRS. RRS will harden the data.

Environment

The requirements for the resource manager are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSDTA)
64 bit (ATR4SDTA)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The resource manager associated with the specified resource manager token must
be in Run state, which means it has been registered, set its exit routines with RRS,
and completed restart.

Set_Post_Sync_PET

490 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSDTA (return_code
,resource_manager_token
,rm_metadata_len
,rm_metadata)

CALL ATR4SDTA (return_code
,resource_manager_token
,rm_metadata_len
,rm_metadata)

Set_RM_Metadata

Chapter 7. Callable resource recovery services 491

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_RM_Metadata service.

,resource_manager_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the resource manager token that identifies the resource manager. Your
resource manager received the token from the Register_Resource_Manager
service.

,rm_metadata_len
Supplied parameter
v Type: Integer
v Character Set: N/A
v Length: 4 bytes

Length of the data specified by the rm_metadata keyword. The maximum
amount of metadata that can be given to RRS to store is 8192 bytes. If a length
of zero is specified, RRS deletes the resource manager's metadata from the log
stream.

,rm_metadata
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in rm_metadata_len

Specifies the resource manager's metadata you want RRS to store.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00280000' or
X'00280001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

Set_RM_Metadata

492 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports registration services. Then rerun
the resource manager.

301
ATR_RM_TOKEN_INV

Meaning: Program error. The resource
manager token specified in the call is
incorrect. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

38A
ATR_RM_METADATA_LEN_INV

Meaning: Program error. The length of the
resource manager metadata specified in the
call is not valid. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

38C
ATR_RM_METADATA_LOG_

UNAVAILABLE

Meaning: The MetaData callable service
failed since the resource manager MetaData
log stream is not available.

Action: Check SYSLOG for messages
ATR132I or ATR172E that will further
explain why the log is unavailable.

Set_RM_Metadata

Chapter 7. Callable resource recovery services 493

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

38D
ATR_RM_8K_METADATA_NOT_

ALLOWED

Meaning: The resource manager did not set
the ATR_8K_RM_METADATA_REQUESTED
flag on Set Exit Information (CRGSEIF,
CRGSEIF1,and CRG4SEIF) so the resource
manager cannot set or retrieve 8K Meta
Data.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

38E
ATR_RM_METADATA_MISSING_DATA

Meaning: When reading from the RM Meta
Data log stream, records were encountered
that indicate there was a loss of data or a
gap in the log stream. If Meta Data was
stored for the RM, it cannot be found.

Action: Check SYSLOG for messages
ATR202D and ATR212I that will further
explain the error and how to correct it.

701
ATR_RM_STATE_ERROR

Meaning: The resource manager associated
with the resource manager token specified in
the call is not in a valid state to issue the
service call. The resource manager state
must be run. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Set_RM_Metadata

494 z/OS V2R1.0 MVS Programming: Resource Recovery

Example

In the pseudocode example, the resource manager issues a call to give its RM
Metadata to RRS.
.
.
.
RM_TOKEN = MY_RM_TOKEN
META_LEN = MY_META_LEN
META = MY_META
CALL ATRSDTA(RC,RM_TOKEN,META_LEN,META)
IF RC=0 THEN
.
.
.

Set_Side_Information (ATRSUSI, ATRSUSI2, ATR4SUSI)
The resource manager calls the Set_Side_Information service to set side information
for an interest in a unit of recovery (UR). In response to the call, RRS returns a
return code. There are three versions of Set_Side_Information, each with different
parameters.
v ATRSUSI is for AMODE(31) callers and is the basic version of the service. It

must be called specifying a UR interest token.
v ATRSUSI2 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token.
v ATR4SUSI is for AMODE(64) callers, allows parameters in 64 bit addressable

storage, and can be called specifying either a UR token or a UR interest token.

Code your resource manager to call the version that includes the support you
need.

Side Information: The side information is set by RRS or, in a call to
Set_Side_Information, by a resource manager that is interested in the UR. Much of
the side information is set only by a resource manager that uses Systems Network
Architecture (SNA) Logical Unit (LU) 6.2 sync point architecture. The side
information, defined in the side_info_id parameter, indicates the following:
v Heuristic-mixed condition
v Backout required
v Break tree
v Backout of next UR
v Resync in progress
v New LUWID presentation header (PSH) unacceptable
v Invoke completion exits
v Application complete
v Reset application complete

Your resource manager can call the Retrieve_Side_Information service to retrieve
side information.

Parameter Array: The side_info_id parameter is an input array; each position
provides side information to RRS. The element_count parameter indicates the
number of positions in the array.

Set_RM_Metadata

Chapter 7. Callable resource recovery services 495

Environment

The requirements for the caller are:

Minimum authorization: None
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSUSI, ATRSUSI2)
64 bit (ATR4SUSI)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified UR interest token
must be run, which means it has registered, set its exit routines with RRS, and
completed restart.

For a UR in local transaction mode, the only side_info_id you can specify is
ATR_DRIVE_COMPLETION.

If the resource manager returns ATRX_LATER_CONTINUE from its END_UR exit,
then this service cannot be called to set ATR_BREAK_TREE at any time after that
point for this expression of interest.

A caller that is PKM 8–15 problem state must specify a UR_token for a UR that is
either:
v Associated with a DU native context associated with a task in the current home

address space, or
v A private context owned by a PKM 8–15 problem state resource manager

registered in the home address space.

A caller that is PKM 8–15 problem state can only specify ATR_APPL_COMPLETE
or ATR_RESET_APPL_COMPLETE for side_info_id.

Set_Side_Information

496 z/OS V2R1.0 MVS Programming: Resource Recovery

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL ATRSUSI
(return_code
,ur_interest_token
,element_count
,side_info_id)

Set_Side_Information

Chapter 7. Callable resource recovery services 497

CALL ATRSUSI2
(return_code
,ur_or_uri_token
,element_count
,side_info_id)

CALL ATR4SUSI
(return_code
,ur_or_uri_token
,element_count
,side_info_id)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Set_Side_Information service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRSUSI callers, specifies a token that uniquely identifies your resource
manager's interest in the UR whose side information you want to set. Your
resource manager received the token from one of the following services:
Express_UR_Interest, Retain_Interest.

,ur_or_uri_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRSUSI2 callers, specifies a token that uniquely identifies either the UR,
or your resource manager's interest in the UR, whose side information you
want to set:
v UR token: The token for the UR.
v UR interest token: The UR interest token that identifies your resource

manager's interest in the UR.

Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest,
Create_Cascaded_UR, or Retrieve_UR_Data.

Set_Side_Information

498 z/OS V2R1.0 MVS Programming: Resource Recovery

Because you may pass two different types of tokens through this parameter,
passing an invalid token can generate either a ATR_URI_TOKEN_INV or a
ATR_UR_TOKEN_INV return code. For example, passing an invalid UR token
might result in an ATR_URI_TOKEN_INV return code. Even though a UR
token was passed, if it is invalid, then RRS may not understand what sort of
token it was supposed to be. For this reason, IBM recommends callers check
both return codes, even when they know what type of token they intend to
pass.

,element_count
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the number of elements in the array for the side_info_id parameter.
Specify a hexadecimal value from X'1' to X'8'

,side_info_id
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies one or more identifiers that set the side information. When you
specify two or more identifiers, place the identifiers in an array. For a UR in
local transaction mode, the only identifier you can specify is
ATR_DRIVE_COMPLETION. The possible identifiers are:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

0
(0)
ATR_HEURISTIC_MIX

Heuristic-mixed condition

A heuristic commit occurred while the UR
state was in_backout, a heuristic reset
occurred while the UR state was in_commit,
or a resource manager of distributed
resources informed RRS of a heuristic-mixed
condition. When this information is initially
set through a call to Set_Side_Information,
RRS will harden (or reharden) the UR state
immediately (before control returns to the
caller), which will make the information
available on restart.

1
(1)
ATR_BACKOUT_REQUIRED

Backout required

When this identifier is initially set, RRS will
force the current UR to back out when a
syncpoint occurs. If a UR state has passed
beyond in_prepare, RRS ignores this
identifier.

10
(16)
ATR_BREAK_TREE

Break tree

When this identifier is initially set, RRS will
reset the logical unit of work identifier
(LUWID) for the next UR.

Set_Side_Information

Chapter 7. Callable resource recovery services 499

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

11
(17)
ATR_DRIVE_BACKOUT

Backout of next UR

When this identifier is initially set, RRS will,
if any resource manger has called
Retain_Interest for the next UR, complete
backout for the next UR before returning
control to the application program. This
processing ensures that the next UR will be
backed out.

12
(18)
ATR_RESYNC_IN_PROGRESS

Resync in progress

A resync in progress condition has occurred.
If the UR state is before in_end when this
identifier is initially set, RRS will harden (or
reharden) the UR state at the next state
change, which will make the information
available on restart.

13
(19)
ATR_NEW_LUWID_PSH_UNACCEPTABLE

New LUWID PSH unacceptable

A communication resource manager cannot
accept a new LUWID presentation header
(PSH). RRS takes no action when this
identifier is set.

14
(20)
ATR_DRIVE_COMPLETION

Invoke completion exit(s)

When this identifier is set, RRS will invoke
any defined COMPLETION exit routines
when the UR is complete. If the UR state is
before in_end when this identifier is initially
set, RRS will harden (or reharden) the UR
state, including this identifier, at the next
logging point.

21
(33)
ATR_APPL_COMPLETE

This identifier indicates completion of an
individual UR in a cascaded UR family.
Setting this identifier informs RRS that the
application executing for this UR is complete.
RRS will not commit a cascaded UR family
until RRS is informed that all of the
individual cascaded URs in the family are
complete.
Note: You cannot specify
ATR_APPL_COMPLETE and
ATR_RESET_APPL_COMPLETE on the same
call to Set_Side_Information.

Set_Side_Information

500 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Identifier

22
(34)
ATR_RESET_APPL_COMPLETE

Application processing is not complete

When this identifier is used, RRS resets the
ATR_APPL_COMPLETE identifier. RRS will
not commit a cascaded UR family until RRS
is informed that all of the individual
cascaded URs in the family are complete.
Note: You cannot specify
ATR_APPL_COMPLETE and
ATR_RESET_APPL_COMPLETE on the same
call to Set_Side_Information.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00130000' or
X'00130001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Side_Information

Chapter 7. Callable resource recovery services 501

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call does not identify
one of the currently valid interests. If the
specified token is not a valid UR or URI
token, RRS may return this return code even
if the resource manager was attempting to
specify a UR token. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

383
ATR_SIDE_INFO_ID_INV

Meaning: Program error. The identifier for a
side information value in the side_info_id
parameter specified in the call is not valid.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

392
ATR_ELEMENT_COUNT_INV

Meaning: The specified element count is not
valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. If the specified token is not a valid UR
or URI token, RRS may return this return
code even if the resource manager was
attempting to specify a URI token. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Side_Information

502 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

3A8
ATR_AUTH_FAILURE

Meaning: Program error. The caller is PKM
8–15 problem state and one of the following
occurred:

v The caller specified the UR token of a UR
associated with a context that neither
belongs to a PKM 8–15 problem state
resource manager registered in the home
address space, nor is it a native context in
the home address space.

v The caller specified a value for
side_info_id other than
ATR_APPL_COMPLETE or
ATR_RESET_APPL_COMPLETE.

The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be run. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73C
ATR_AFTER_NEW_UR

Meaning: Program error. The resource
manager called the Set_Side_Information
service to set ATR_BREAK_TREE, but the
application is already running under a new
UR. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

745
ATR_AFTER_IN_PREPARE

Meaning: Program error. The resource
manager cannot call the
Set_Side_Information service to set
ATR_BACKOUT_REQUIRED because the UR state
is beyond in-prepare. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Side_Information

Chapter 7. Callable resource recovery services 503

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

757
ATR_ID_CONFLICT

Meaning: Program error. Information
identifiers specified on the call conflict with
each other. For example,
ATR_APPL_COMPLETE and
ATR_RESET_APPL_COMPLETE. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

758
ATR_APPL_COMPLETE_INV

Meaning: Program error. The specified UR
cannot be set as ATR_APPL_COMPLETE.
The Set_Side_Information service cannot set
a top-level UR ATR_APPL_COMPLETE or
ATR_RESET_APPL_COMPLETE. The system
rejects the service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

761
ATR_APPL_COMPLETE_INV

_STATE

Meaning: Program error. The specified UR
cannot be set as ATR_APPL_COMPLETE or
not ATR_APPL_COMPLETE, because the UR
is not in a valid state. The system rejects the
service call.

Action: Check the calling program for a
probable coding error. Correct the program
and rerun it.

766
ATR_SIDE_INFO_ID

_LOCAL_INV

Meaning: Program error. The identifier (or
one of the identifiers) specified in the
side_info_id array is not allowed when the
UR is in local transaction mode. The system
rejects the service call.

Action: Check the calling program for a
probable coding error.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

Set_Side_Information

504 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Set_Side_Information was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to set the side
information for ATR_BACKOUT_REQUIRED.
...
URI_TOKEN = UR_INTEREST_TOKEN
COUNT = 1
ID = ATR_BACKOUT_REQUIRED
CALL ATRSUSI(RC,URI_TOKEN,COUNT,ID)
IF RC = ATR_OK THEN...

Set_Syncpoint_Controls (ATRSSPC, ATR4SSPC)
v ATRSSPC is for AMODE(31) callers.
v ATR4SSPC is for AMODE(64) callers and allows parameters in 64 bit addressable

storage.

Set_Side_Information

Chapter 7. Callable resource recovery services 505

A resource manager calls the Set_Syncpoint_Controls service in a distributed
environment. Set_Syncpoint_Controls defines the role the resource manager will
play in processing a UR. Your resource manager can also use the call to set return
codes for exit routines that you want RRS to bypass. In response to the call, RRS
returns a return code.

A distributed syncpoint resource manager (DSRM) usually issues this call in its
STATE_CHECK or PREPARE exit routine. A server distributed syncpoint resource
manager (SDSRM) usually issues this call before it initiates a syncpoint operation.

Resource Manager Role in UR Processing: The possible roles for the resource
manager for the specified interest in a unit of recovery (UR) are:
v Distributed syncpoint resource manager (DSRM): The resource manager

becomes the DSRM and coordinator for the UR. RRS changes from its usual role
of coordinator for a UR into an agent of the coordinator. RRS expects the DSRM
to be using a peer-to-peer protocol.
When it specifies this role, the Set_Syncpoint_Controls service enables the
resource manager's DISTRIBUTED_SYNCPOINT exit routine. When the local
interests in a UR vote to commit the UR, RRS gives control to this routine. For
the in-doubt UR, the DISTRIBUTED_SYNCPOINT exit routine:
1. Communicates with another system to determine its prepare vote for the UR
2. Returns the overall commit or backout vote to RRS

v Server distributed syncpoint resource manager (SDSRM): The resource
manager becomes the SDSRM and coordinator for the UR. RRS changes from its
usual role of coordinator for a UR into an agent of the coordinator. RRS expects
the SDSRM to be using a client/server protocol.
When it specifies this role, the Set_Syncpoint_Controls service disables the
resource manager's ONLY_AGENT exit routine and enables it to use the
following services: Backout_Agent_UR, Commit_Agent_UR,
Forget_Agent_UR_Interest, and Prepare_Agent_UR. These services allow the
resource manager to:
1. Initiate the prepare phase of a syncpoint operation.
2. Obtain the result from the prepare vote collection.
3. Delay and control the initiation of commit or backout processing.
4. Control the deletion of its entries from log records.
See “Protecting distributed resources” on page 67 for more information.

v Last agent participant: The resource manager becomes the last agent for a
distributed syncpoint operation. RRS continues its usual role as coordinator.
For additional information about the roles involved in a distributed syncpoint
operation, see SNA Sync Point Services Architecture

v Participant: The resource manager takes part in the UR interest; participant is
the resource manager's usual role.
As necessary, a resource manager that has assumed another role can reset itself
to participant. Also, any resource manager that wants to prevote exit routines
can call Set_Syncpoint_Controls to take the role of participant. If a UR is in local
transaction mode, participant is the only role a resource manager can have.

When it hardens information for the interest in an RRS log, RRS records the
resource manager's role. However, if the UR state is in-prepare, RRS might not
record the role and options specified in the Set_Syncpoint_Controls call.

Set_Syncpoint_Controls

506 z/OS V2R1.0 MVS Programming: Resource Recovery

Notes on changing roles: For any interest in a particular UR, RRS prevents any
resource manager from successfully calling the Set_Syncpoint_Controls service to
request the DSRM, SDSRM, or last agent participant role if any of the following are
true:
v A resource manager already has the distributed syncpoint resource manager

(DSRM) role for the UR.
v A resource manager already has the server distributed syncpoint resource

manager (SDSRM) role for the UR.
v A resource manager already has the last agent participant role for the UR.
v The UR is a cascaded UR.

A communication resource manager with multiple interests in a UR can move a
role from one of its interests to another. The movable roles are:
v Distributed syncpoint resource manager
v Server distributed syncpoint resource manager
v Last agent participant

To move a role, the resource manager must call the Set_Syncpoint_Controls service
twice, in the following order;
1. For one interest, reset its role to participant from its original role.
2. For the other interest, reset its role from participant to the desired role.

The resource manager is responsible for serializing its processing to make the
resets in the correct order.

Once a syncpoint operation has started, the SDSRM role cannot be changed.

Exit routine return codes: In the call, you can specify whether or not RRS is to
invoke each of the following exit routines:
v PREPARE exit routine
v COMMIT exit routine
v BACKOUT exit routine

For an interest in a local transaction, a resource manager can prevote only its
COMMIT and BACKOUT exits.

If you want RRS to bypass an exit routine, you provide the exit routine's return
code on the call.

Note: Your resource manager might need to know whether an RRS panel was
used to resolve an in_doubt UR or when a resync for the UR is in progress. If so,
do not bypass the COMMIT and/or BACKOUT exit routines unless you provide
an END_UR exit routine.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 507

AMODE:
31 bit (ATRSSPC)
64 bit (ATR4SSPC)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The restrictions for the call are:
v The state of the resource manager associated with the specified UR interest

token must be run.
v The UR state must be in-flight, in-state-check, or in-prepare. To change to or

from the SDSRM role, the UR state must be in-flight.
v The resource manager's interest must be a protected interest if the requested role

is distributed syncpoint resource manager, server distributed syncpoint resource
manager, or last agent participant.

v If the UR transaction mode is local, a resource manager cannot change its role
from ATR_PARTICIPANT.

v To set the role of DSRM, your resource manager needs a
DISTRIBUTED_SYNCPOINT exit routine.

If your resource manager calls the Set_Syncpoint_Controls service asynchronously
for a UR in an in-flight state, there is no way to ensure that the service will be
invoked before the application issues a commit UR request or a backout UR
request. In this case, your resource manager must have a PREPARE or
STATE_CHECK exit routine, even if you expect to use the call to
Set_Syncpoint_Controls to set the return code for the PREPARE exit routine.

A better alternative is either to call Set_Syncpoint_Controls from within a
STATE_CHECK exit routine or to call Set_Syncpoint-Controls before the application
code can get control.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Set_Syncpoint_Controls

508 z/OS V2R1.0 MVS Programming: Resource Recovery

Output register information

When control returns to the caller, the GPRs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

Write the call as shown in the syntax diagram. You must code the parameters in
the CALL statement as shown.

CALL ATRSSPC
(return_code
,ur_interest_token
,prepare_exit_code
,commit_exit_code
,backout_exit_code
,role)

CALL ATR4SSPC
(return_code
,ur_interest_token
,prepare_exit_code
,commit_exit_code
,backout_exit_code
,role)

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 509

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_Syncpoint_Controls service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Specifies the UR interest token that identifies an instance of your resource
manager's interest in a UR. Your resource manager received the token from the
Express_UR_Interest service or the Retain_Interest service.

,prepare_exit_code
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies whether RRS is to invoke the PREPARE exit routine:
v To invoke your resource manager's PREPARE exit routine, specify

ATR_DRIVE_PREPARE_EXIT.
v To bypass your resource manager's PREPARE exit, specify

ATR_PREPARE_OK or ATR_PREPARE_ABSTAIN to set the return code that
the PREPARE exit routine would have returned.

Note: If the UR state is in-prepare or if the UR is in local transaction mode,
RRS ignores the prepare_exit_code parameter.

Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol

Invoke the
PREPARE exit
routine? PREPARE exit routine return code

0
(0)
ATR_PREPARE_OK

No ATRX_OK

14
(20)
ATR_PREPARE_ABSTAIN

No ATRX_ABSTAIN

To set this value, the resource
manager should:

v Be the DSRM or SDSRM

v Have an END_UR exit routine

FFF
(4095)
ATR_DRIVE_PREPARE_EXIT

YES

Set_Syncpoint_Controls

510 z/OS V2R1.0 MVS Programming: Resource Recovery

,commit_exit_code
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies whether RRS is to invoke the COMMIT exit routine:
v To invoke your resource manager's COMMIT exit routine, specify

ATR_DRIVE_COMMIT_EXIT.
v To bypass your resource manager's exit routine, set the return code for the

COMMIT exit routine.

Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol

Invoke the
COMMIT exit
routine? COMMIT Exit routine return code

0
(0)
ATR_COMMIT_OK

No ATRX_OK

FFF
(4095)
ATR_DRIVE_COMMIT_EXIT

Yes

,backout_exit_code
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies whether the resource manager is to invoke the BACKOUT exit
routine:
v To invoke your resource manager's BACKOUT exit routine, specify

ATR_DRIVE_BACKOUT_EXIT.
v To bypass your resource manager's exit routine, set the return code for the

BACKOUT exit routine.

Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol

Invoke the
BACKOUT exit
routine?

BACKOUT exit routine return
code

0
(0)
ATR_BACKOUT_OK

No ATRX_OK

FFF
(4095)
ATR_DRIVE_BACKOUT_EXIT

Yes

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 511

,role
Supplied parameter
v Type: Integer
v Length: 4 bytes

Defines the role your resource manager wants to take for the specified UR
interest. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol Description

0
(0)
ATR_PARTICIPANT

Participant: For this interest, the resource
manager is to be a participant.

1
(1)
ATR_LAST_AGENT

Last-agent participant: For this interest, the
resource manger is to be the last-agent
participant. Specify this role only if the UR
interest token represents a protected interest.

2
(2)
ATR_DSRM

Distributed syncpoint resource manager:
For this interest, the resource manager is to
be the distributed syncpoint resource
manager. Specify this role only if the UR
interest token represents a protected interest.

3
(3)
ATR_SDSRM

Server distributed syncpoint resource
manager: For this interest, the resource
manager is to be the server distributed
syncpoint resource manager. Specify this role
only when the UR interest token represents:

v A protected interest

v A UR that is in-flight

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00120000' or
X'00120001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

Set_Syncpoint_Controls

512 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call is not one of the
currently valid interests. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

373
ATR_PREPARE_CODE_INV

Meaning: Program error. The
prepare_exit_code value specified in the call is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

374
ATR_COMMIT_CODE_INV

Meaning: Program error. The
commit_exit_code value specified in the call is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

387
ATR_PREPARE_CODE_INCORRECT

Meaning: Program error. The
prepare_exit_code value specified in the call is
incorrect.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 513

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

390
ATR_ROLE_INV

Meaning: Program error. The role specified
in the call in not valid. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

394
ATR_BACKOUT_CODE_INV

Meaning: Program error. The
backout_exit_code value specified in the call is
not valid. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be run. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

731
ATR_UR_STATE_ERROR

Meaning: Program error. The UR is not in a
valid state for the service call. The UR state
must be in-flight, in-state-check, or
in-prepare. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

732
ATR_NO_DIST_SYNC_EXIT

Meaning: Program error. A resource
manager that has taken the DSRM role did
not set a DISTRIBUTED_SYNCPOINT exit
routine with RRS. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Syncpoint_Controls

514 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

733
ATR_SSPC_ROLE_ERROR_DSRM

Meaning: Program error. A resource
manager has already obtained the
distributed syncpoint resource manager role
in a call to Set_Syncpoint_Controls. This
action prevents subsequent calls for this UR
to Set_Syncpoint_Controls for either the
distributed syncpoint resource manager role,
the server distributed syncpoint manager
role, or the last agent role. The system rejects
the service call.

Action: Check the resource manager for a
coding error. Correct the resource manager
and rerun it.

If your resource manager does not have a
coding error, this problem may be beyond
its control. Your resource manager might
need to take other actions, such as
interacting with the system operator, to
indicate that this UR cannot be processed
successfully.

Another possible approach is to call the
Set_Side_Information service to set backout
required for the UR.

734
ATR_SSPC_ROLE_ERROR_LAST_AGENT

Meaning: Program error. A resource
manager has already obtained the last agent
role in a call to the Set_Syncpoint_Controls
service. This action prevents subsequent
calls for this UR to the
Set_Syncpoint_Controls service for either the
distributed syncpoint resource manager role
or the last agent role. The system rejects the
service call.

Action: Check the resource manager for a
coding error. Correct the resource manager
and rerun it.

If your resource manager does not have a
coding error, this problem may be beyond
control by the resource manager. Your
resource manager might need to take other
actions, such as interacting with the system
operator, to indicate that this UR cannot be
processed successfully.

Another possible approach is to call the
Set_Side_Information service to set backout
required for the UR.

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 515

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

746
ATR_ROLE_INCORRECT

Meaning: Program error. The interest for the
ur_interest_token specified in the call is not
protected, or the UR is in local transaction
mode. The specified role (ATR_DSRM,
ATR_LAST_AGENT, or ATR_SDSRM) is valid only
for a protected interest in a global or
hybrid-global mode transaction. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

74B
ATR_SSPC_ROLE_ERROR_SERVER_

DSRM

Meaning: Program error. A resource
manager has already obtained the server
distributed syncpoint resource manager role
in a call to Set_Syncpoint_Controls. This
action prevents subsequent calls for this UR
to Set_Syncpoint_Controls for either the
distributed syncpoint resource manager role,
the server distributed syncpoint manager
role, or the last agent role. The system rejects
the service call.

Action: Check the resource manager for a
coding error. Correct the resource manager
and rerun it.

If your resource manager does not have a
coding error, this problem may be beyond
its control. Your resource manager might
need to take other actions, such as
interacting with the system operator, to
indicate that this UR cannot be processed
successfully.

Another possible approach is to call the
Set_Side_Information service to set backout
required for the UR.

74F
ATR_ROLE_CHANGE_AFTER_SYNC

Meaning: Program error. The resource
manager tried to set a role change after a
syncpoint operation had begun. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

759
ATR_ROLE_ERROR_CASCADED_UR

Meaning: Program error. The specified UR is
a cascaded UR. Only the participant role is
valid for cascaded URs. The system rejects
the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Syncpoint_Controls

516 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Set_Syncpoint_Controls
was done at the time of the RRS failure. A
new unit of recovery can not be created
until the current unit of recovery is
completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example

In the pseudocode example, the resource manager issues a call to request the
distributed syncpoint resource manager role and bypass the exit routines.
...
URI_TOKEN = MY_URI_TOKEN
PREP_CODE = ATR_PREPARE_ABSTAIN
CMIT_CODE = ATR_COMMIT_OK
BACK_CODE = ATR_BACKOUT_OK
ROLE = ATR_DSRM

Set_Syncpoint_Controls

Chapter 7. Callable resource recovery services 517

CALL ATRSSPC(RC,URI_TOKEN,PREP_CODE,CMIT_CODE,BACK_CODE,ROLE)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Set_Work_Identifier (ATRSWID, ATRSWID2, ATR4SWID)
The resource manager calls the Set_Work_Identifier service to set the current or
next unit of work identifier (UWID) for a unit of recovery (UR). In response to the
call, RRS returns a return code. There are three versions of Set_Work_Identifier,
each with different parameters.
v ATRSWID is for AMODE(31) callers and is the basic version of the service. It

must be called specifying a UR interest token.
v ATRSWID2 is for AMODE(31) callers and can be called specifying either a UR

token or a UR interest token.
v ATR4SWID is for AMODE(64) callers, allows parameters in 64 bit addressable

storage and can be called specifying either a UR token or a UR interest token.

Code your resource manager to call the version that includes the support you
need.

Table 21 describes the UWIDs that this service can set. Your resource manager can
use the call to set a UWID only if one does not already exist for the UR; the UWID
must be null before the call.

Table 21. Setting Unit of Work Identifiers

Unit of Work
Identifier
(UWID) Format

Current UWID can
be set

Next
UWID
can be set

LU 6.2 logical
unit of work
identifier
(LUWID)

netid.luname.instnum.seqnum

netid.luname
1-17 character identifier of the
network and LU, preceded by a
1-byte fixed length field

instnum
6-byte fixed TP instance

seqnum
2-byte fixed sequence number

Yes Yes

Enterprise
Identifier
(EID)

tidgtid

tid 4-byte transaction identifier
(TID)

gtid 8-40 byte global transaction
identifier (GTID)

Yes No

Set_Syncpoint_Controls

518 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 21. Setting Unit of Work Identifiers (continued)

Unit of Work
Identifier
(UWID) Format

Current UWID can
be set

Next
UWID
can be set

X/Open
Identifier
(XID)

FormatIDGtrid_lengthBqual_lengthID

FormatID
4-byte fixed format ID

Gtrid_length
4-byte fixed GTRID length

Bqual_length
4-byte fixed BQUAL length

ID 128-byte character XID
The GTRID length and BQUAL length
define the length of the first and second
subsection of the ID. The GTRID must
have a length of at least 1 byte, however
the BQUAL can have a length of 0. The
length of the entire XID cannot exceed
140 bytes.

Yes No

The XID for a unit of recovery can also be set with the Express_UR_Interest
service.

The next LUWID is used for the next UR, unless ATR_BREAK_TREE was set in the
UR's side information by a Set_Side_Information call.

All of the URs in a cascaded UR family will have the same GTRID component in
their XID.

Environment

The requirements for the caller are:

Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE:

31 bit (ATRSWID, ATRSWID2)
64 bit (ATR4SWID)

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements

Either link edit your object code with the linkable stub routine ATRRCSS (31 bit) or
ATRR4CSS (64 bit) from SYS1.CSSLIB, or LOAD and CALL the callable service.
The high level language (HLL) definitions for the callable service are:

Set_Work_Identifier

Chapter 7. Callable resource recovery services 519

HLL definition Description
ATRRASM 390 Assembler declarations
ATRRC C/390 declarations

Restrictions

The state of the resource manager associated with the specified UR interest token
must be run, which means it has registered, set its exit routines with RRS, and
completed restart.

You cannot set a global work identifier for a UR in local transaction mode.

For the specified interest in the UR, your resource manager cannot call the
Set_Work_Identifier service if any of the following are true:
v A resource manager's exit routine returns ATRX_LATER_CONTINUE

v The UR state is in_completion.
v For a server distributed syncpoint manager (SDSRM), the UR state is in_forget.

When the resource manager issues the call in SRB mode, the call must not specify
binary zero for ur_interest_token or ur_or_uri_token.

Input register information

Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameters, or using it as a base
register.

Output register information

When control returns to the caller, the GPRs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:.

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Set_Work_Identifier

520 z/OS V2R1.0 MVS Programming: Resource Recovery

Performance implications

None.

Syntax

Write the appropriate call as shown in the syntax diagrams. You must code the
parameters in the CALL statement as shown.

CALL ATRSWID
(return_code
,ur_interest_token
,set_option
,uwid_type
,uwid_len
,uwid_data)

CALL ATRSWID2
(return_code
,ur_or_uri_token
,set_option
,uwid_type
,uwid_len
,uwid_data)

CALL ATR4SWID
(return_code
,ur_or_uri_token
,set_option
,uwid_type
,uwid_len
,uwid_data)

Parameters

The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Set_Work_Identifier service.

,ur_interest_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

Set_Work_Identifier

Chapter 7. Callable resource recovery services 521

For ATRSWID callers, specifies a token that uniquely identifies your resource
manager's interest in the UR whose data you want to set. Your resource
manager received the token from one of the following services:
Express_UR_Interest, Retain_Interest.

,ur_or_uri_token
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: 16 bytes

For ATRSWID2 callers, specifies a token that uniquely identifies either the UR,
or your resource manager's interest in the UR, whose data you want to set:
v UR token: The token for the UR.
v UR interest token: The UR interest token that identifies your resource

manager's interest in the UR.

Your resource manager received the token from one of the following services:
Express_UR_Interest, Retrieve_Interest_Data, Retain_Interest,
Create_Cascaded_UR, or Retrieve_UR_Data.

Because you may pass two different types of tokens through this parameter,
passing an invalid token can generate either a ATR_URI_TOKEN_INV or a
ATR_UR_TOKEN_INV return code. For example, passing an invalid UR token
might result in an ATR_URI_TOKEN_INV return code. Even though a UR
token was passed, if it is invalid, then RRS may not understand what sort of
token it was supposed to be. For this reason, IBM recommends callers check
both return codes, even when they know what type of token they intend to
pass.

,set_option
Supplied parameter
v Type: Integer
v Length: 4 bytes

Identifies the UWID to be set. Specify one of the following:

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UWID to be set

0
(0)
ATR_CURRENT

Current UWID: RRS is to set the current
UWID for this UR.

1
(1)
ATR_NEXT

Next UWID: RRS is to set the next UWID for
this UR. The next UWID cannot be an EID or
XID.

,uwid_type
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the type of the UWID you want to set. Specify one of the following:

Set_Work_Identifier

522 z/OS V2R1.0 MVS Programming: Resource Recovery

Constant in:
Hexadecimal
(Decimal)
Equate Symbol UWID Type

0
(0)
ATR_LUWID

An LU 6.2 logical unit of work identifier
(LUWID)

1
(1)
ATR_EID

An Enterprise identifier (EID)

2
(2)
ATR_XID

An X/Open transaction identifier (XID)

,uwid_len
Supplied parameter
v Type: Integer
v Length: 4 bytes

Specifies the length of the UWID your resource manager wants to set. The
length of the UWID depends on its type. Specify the actual length of the
UWID between the following upper and lower limits:

Maximum Length in:
Hexadecimal
(Decimal)
Equate Symbol UWID type

A
(10)
ATR_MIN_LUWID_LENGTH

The minimum length of a LU 6.2 LUWID

1A
(26)
ATR_MAX_LUWID_LENGTH

The maximum length of a LU 6.2 LUWID

C
(12)
ATR_MIN_EID_LENGTH

The minimum length of an Enterprise
identifier

2C
(44)
ATR_MAX_EID_LENGTH

The maximum length of an Enterprise
identifier

D
(13)
ATR_MIN_XID_LENGTH

The minimum length of an X/Open identifier

Set_Work_Identifier

Chapter 7. Callable resource recovery services 523

Maximum Length in:
Hexadecimal
(Decimal)
Equate Symbol UWID type

8C
(140)
ATR_MAX_XID_LENGTH

The maximum length of an X/Open
identifier

,uwid_data
Supplied parameter
v Type: Character string
v Character Set: No restriction
v Length: Specified in uwid_len parameter

Specifies the contents of the UWID your resource manager wants to set.

The format of the UWID depends on the UWID type. A LUWID has the
following format:

netid.luname.instnum.seqnum

The fields are as follows:

netid.luname
1-17 character identifier of the network and LU, preceded by a 1-byte
length field

instnum
6-byte TP instance

seqnum
2-byte sequence number

An EID has the following format:
tidgtid

The fields are as follows:

tid 4-byte transaction identifier (TID)

gtid 8-40 byte global transaction identifier (GTID)

For XID, the uwid_data_buffer contains the 4–byte address of the buffer to
contain the retrieved XID. An XID has the following format:
FormatIDGtrid_lengthBqual_lengthID

The fields are as follows:

FormatID
4-byte fixed format ID

Gtrid_length
4-byte fixed Gtrid length

Bqual_length
4-byte fixed Bqual length

ID 128-byte character XID

The 1–128 byte ID field has the following format:

Gtrid 1–64 byte Gtrid

Set_Work_Identifier

524 z/OS V2R1.0 MVS Programming: Resource Recovery

Bqual 0–64 byte Bqual

The length of the entire XID cannot exceed 140 bytes.

ABEND codes

The call might result in an abend X'5C4' with a reason code of either X'00140000' or
X'00140001'. See z/OS MVS System Codes for the explanations and actions.

Return codes

When the service returns control to the resource manager, GPR 15 and return_code
contain a hexadecimal return code.

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

0
ATR_OK

Meaning: Successful completion.

Action: None.

103
ATR_INTERRUPT_STATUS_INV

Meaning: Program error. The resource
manager is disabled; the interrupt status
must be enabled for I/O and external
interrupts. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

105
ATR_LOCKS_HELD

Meaning: Program error. The resource
manager is holding one or more locks; no
locks must be held. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

107
ATR_UNSUPPORTED_RELEASE

Meaning: Environmental error. The system
release does not support this service. The
system rejects the service call.

Action: Remove the resource manager from
the system, and install it on a system that
supports RRS. Then rerun the resource
manager.

370
ATR_URI_TOKEN_INV

Meaning: Program error. The UR interest
token specified in the call does not identify
one of the currently valid interests. If the
specified token is not a valid UR or URI
token, RRS may return this return code even
if the resource manager was attempting to
specify a UR token. The system rejects the
service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Work_Identifier

Chapter 7. Callable resource recovery services 525

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

377
ATR_UWID_LEN_INV

Meaning: Program error. The UWID length
specified in the call is not valid. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

37F
ATR_SET_OPTION_INV

Meaning: Program error. The set_option
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

380
ATR_UWID_TYPE_INV

Meaning: Program error. The uwid_type
value specified in the call is not valid. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

393
ATR_LUWID_DATA_INV

Meaning: Program error. The LUWID
specified in uwid_data is not valid. The first
byte of this data must contain a valid length
of an LU name (a value from 1 to 17). The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

397
ATR_XID_DATA_INV

Meaning: Program error. The computed
length of the XID does not match the
specified length passed via the uwid_len
parameter. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

3A3
ATR_UR_TOKEN_INV

Meaning: Program error. The UR token
specified in the call does not identify a valid
UR. If the specified token is not a valid UR
or URI token, RRS may return this return
code even if the resource manager was
attempting to specify a URI token. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Work_Identifier

526 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

701
ATR_RM_STATE_ERROR

Meaning: Program error. The resource
manager associated with the UR interest
token specified in the call is not in a valid
state to issue the service call. The resource
manager state must be run. The system
rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

702
ATR_RM_EXITS_UNSET

Meaning: Program error. RRS has unset the
RRS exit routines for the resource manager.
The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

735
ATR_UWID_ALREADY_SET

Meaning: The UR already has a UWID. The
system rejects the service call.

It is possible that another program in the
system previously set the UWID.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

73C
ATR_AFTER_NEW_UR

Meaning: Program error. The application is
already running under a new UR. The
system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

74E
ATR_SET_NEXT_EID_INV

Meaning: Program error. The resource
manager tried to set the next Enterprise
identifier, but the requested function is not
available. The system rejects the service call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

752
ATR_SET_NEXT_XID_INV

Meaning: Program error. The next XID
cannot be set. The system rejects the service
call.

Action: Check the resource manager for a
probable coding error. Correct the resource
manager and rerun it.

Set_Work_Identifier

Chapter 7. Callable resource recovery services 527

Return Code in:
Hexadecimal
Equate Symbol Meaning and action

764
ATR_LOCAL_TRAN_MODE_INV

Meaning: Program error. The current UR is
in local transaction mode. This service is
valid only for a UR in global transaction
mode. The system rejects the service call.

Action: Check the calling program for a
probable coding error. If the caller is a
resource manager, it should not unset its
exits with RRS.

F00
ATR_NOT_AVAILABLE

Meaning: RRS is not available.

Action: The system rejects the service
request. Retry the request later. Before
retrying the request, the resource manager
must reset its RRS exit routine information
and begin restart processing with RRS.

F06
ATR_WAS_NOT_AVAILABLE

Meaning: RRS was available to the resource
manager, but went down and came back up
again.

A commit or backout operation may or may
not have been in progress for the context
under which the Set_Work_Identifier was
done at the time of the RRS failure. A new
unit of recovery can not be created until the
current unit of recovery is completed.

Action: The system rejects the service
request. Restart your resource manager,
making sure to reset the resource manager's
exit routines with RRS.

The resource manager must inform the
application that one of the following actions
must be taken to complete the current unit
of recovery:

v If a commit or backout request was not
active at the time of the RRS failure, a
commit or backout must be requested
before a new unit of recovery can begin.

v If a commit or backout request was active
at the time of the RRS failure, the context
must be ended, via the CTXENDC service,
before a new unit of recovery can begin.

FFF
ATR_UNEXPECTED_ERROR

Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Set_Work_Identifier

528 z/OS V2R1.0 MVS Programming: Resource Recovery

Example

In the pseudocode example, the resource manager issues a call to set a UWID.
...
URI_TOKEN = UR_INTEREST_TOKEN
SET_OPT = ATR_CURRENT
UWID_TYPE = ATR_LUWID
LUWID_LEN = 26
LUWID = LUWID_1
CALL ATRSWID2(RC,URI_TOKEN,SET_OPT,UWID_TYPE,LUWID_LEN,LUWID)
IF RC ≠ ATR_OK THEN

/* Handle error */...

Set_Work_Identifier

Chapter 7. Callable resource recovery services 529

Set_Work_Identifier

530 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 8. RRS setup and control

If your installation runs a resource manager that provides resource recovery
through RRS, you might need some or all of the following information to help you
manage resource recovery. Your resource manager might provide related
information. This chapter includes the following topics:
v “Defining RRS as a subsystem”
v “Establishing dispatching priority of the RRS address space”
v “Creating default RRS CTRACE parmlib member” on page 532
v “Creating a cataloged procedure for starting RRS” on page 532
v “Defining RRS to automatic restart management (ARM)” on page 533
v “Configuring and defining RRS logging requirements” on page 533
v “Actions to avoid” on page 539
v “RRS use of XCF” on page 540
v “Starting RRS” on page 541
v “Stopping RRS” on page 544
v “Using the SETRRS CANCEL command” on page 545
v “Collecting problem data” on page 545
v “Recovering from a hung UR after an SDSRM failure” on page 546
v “Latch identification” on page 546
v “RRS SDUMP exit” on page 547

Defining RRS as a subsystem
To define RRS as a subsystem, place the following statement in the IEFSSNxx
parmlib member:
SUBSYS SUBNAME(RRS)

Place this statement after the statement that defines the primary subsystem. You
can replace RRS with a subsystem name of your choice, but do not supply any
other parameters. In particular, do not supply an initialization routine. For more
information about IEFSSNxx, see z/OS MVS Initialization and Tuning Reference.

Or, issue the SETSSI ADD,SUBNAME=RRS console command after IPL to dynamically
define the RRS subsystem to the SSI. You can replace RRS with a subsystem name
of your choice but do not supply any other parameters. In particular, do not
supply an initialization routine. For more information about the SETSSI command,
see z/OS MVS System Commands.

Note: RRS does not support any of the other functions provided by the SETSSI
command; especially the ACTIVATE function. RRS can only be started by using the
procedure documented in the next section.

Establishing dispatching priority of the RRS address space
You must establish the dispatching priority of the RRS address space. The best way
to control RRS's dispatching priority is through the workload manager (WLM).
IBM recommends that you put RRS in the SYSSTC service class. The service class
you choose must give RRS a dispatching priority greater than or equal to the

© Copyright IBM Corp. 1997, 2013 531

dispatching priority of applications and resource managers that use RRS. SYSSTC
will usually accomplish this. For information about system-provided service
classes, see z/OS MVS Planning: Workload Management.

Creating default RRS CTRACE parmlib member
If no trace options are supplied in a named parmlib member or in a REPLY to a
TRACE operator command, RRS component trace will trace only unexpected
events. You can find information about the CTncccxx (component trace) parmlib
member in z/OS MVS Initialization and Tuning Reference, and information about
component trace for RRS in z/OS MVS Diagnosis: Tools and Service Aids.

RRS performance can be severely impacted by component tracing. For this reason,
a CTRACE parmlib member for RRS is not provided since you might start
CTRACing causing performance degradation without needing or knowing about it.
However, for problem determination, CTRACing can provide valuable information.
Member ATRCTRRS supplied in SYS1.SAMPLIB is available with an optimal set of
CTRACE parameters used for debugging RRS problems. The BUFSIZE in the
sample has been established to hold 10-30 minutes of tracing on most systems.
When problem determination is needed, see the SET-UP and ACTIVATION
instructions in the ATRCTRRS sample.

Creating a cataloged procedure for starting RRS
IBM supplies, in SYS1.SAMPLIB, a cataloged procedure named ATRRRS that you
can use to start RRS after system initialization. Your installation should copy
SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS). The membername RRS specified
here can be replaced with any other membername, as long as it matches the
subsystem name specified in the SYS1.PARMLIB(IEFSSNxx) used by the
installation. If the names do not match, you may receive error messages when you
start the subsystem.

The contents of ATRRRS are:
//RRS PROC CTMEM=’’,GNAME=’’
//RRS EXEC PGM=ATRIMIKE,REGION=0K,TIME=NOLIMIT,

PARM=’GNAME=&GNAME,CTMEM=&CTMEM’

The parameters in the procedure are as follows:

CTMEM
Specifies the CTnRRSxx parmlib member that RRS component trace is to use.
CTMEM='' indicates that the START command can supply the member name.

GNAME
Specifies the log group name. A log group is a group of systems that share an
RRS workload. Specify a value if your installation needs an RRS log group that
is a subset of the systems in a sysplex. Otherwise, the name defaults to the
sysplex name.

If you specify a name, it must be 1-8 characters in length. The first character
must be alphabetic or @, #, or $. The remaining characters must be alphabetic,
numeric, or @, #, or $.

PGM=ATRIMIKE
Specifies the initialization routine for the RRS jobstep task. PGM=ATRIMIKE is
required.

Managing RRS

532 z/OS V2R1.0 MVS Programming: Resource Recovery

REGION=0K
Specifies that the address space is to have the largest allowable size on the
system.

TIME=NOLIMIT
Specifies that there is no time limit for RRS.

If you used the GNAME parameter to define a log group that is a subset of the
sysplex, take great care to ensure that a resource manager always restarts on a
system within the same log group. If a resource manager restarts on a system
within a different log group, RRS does not detect the discrepancy; it assumes that
the resource manager is doing a cold start.

Defining RRS to automatic restart management (ARM)
If RRS fails, it can use automatic restart management (ARM) to restart itself in a
different address space on the same system. RRS, however, will not restart itself
following a SETRRS CANCEL command. To stop RRS and cause it to restart
automatically, use the FORCE command with ARM and ARMRESTART.

To make automatic restart possible, your installation must:
v Provide an ARM couple data set that contains, either explicitly or through

defaults, an automatic restart management policy for RRS. When setting up your
ARM policy, use the element name SYS_RRS_sysname for RRS.

v Activate the ARM couple data set through a COUPLExx parmlib member or a
SETXCF operator command. The data set must be available when RRS starts and
when it restarts.

v Make sure that no element-restart denies the restart of an RRS element or
changes its restart. An exception is an exit routine that vetoes RRS restart but
then itself starts the RRS address space. This technique, however, might delay
other elements in the restart group that have to wait for RRS services to become
available.

As with other automatic restart management elements, an ENF signal for event 38
occurs when RRS registers with automatic restart management or is automatically
restarted.

For information about automatic restart management parameters, see z/OS MVS
Setting Up a Sysplex.

Configuring and defining RRS logging requirements
RRS uses six log streams that can be shared by multiple systems in a sysplex. If
more than one system wants to use the same set of RRS log streams at the same
time, then the log streams must reside in structures. Each system that wants to
connect to the set of log streams will then need to have access to the coupling
facility (CF) and the DASD on which the system logger offload data set will reside.
If only one system with one RRS image is going to use a particular set of log
streams, or the log streams are used in a sysplex in which information should not
be shared among RRS images, then the log streams can be defined as DASDONLY
log streams. If DASDONLY log streams are used, logger allocates a staging dataset,
not a structure, to which to write data in the interim, so no CF is required. z/OS
MVS Setting Up a Sysplex contains information about the tasks you need to perform
related to the system logger set up. See “Defining the log streams” on page 535 for
specific details related to RRS.

Managing RRS

Chapter 8. RRS setup and control 533

The RRS images on different systems in a sysplex run independently. However,
RRS images that are in the same log group share log streams to keep track of the
work. If a system in the same log group fails, RRS on a different system in the
same log group in the sysplex can use the shared logs to take over the failed
system's work. If there is only one system connected to the structure-based log
streams, or the log streams are DASDONLY, then no other system will take over
the failed system's work. Any outstanding syncpoints will be resolved when RRS
restarts using the logging group, and the resource managers become active within
that logging group.

Table 22 summarizes the RRS logs. In the figure, gname is the log group name. A
log group is a group of systems that share an RRS workload. The default log
group name is the sysplex name.

Table 22. RRS Logs

Data set name and log name Contents
Storage
requirements

ATR.gname.ARCHIVE

RRS archive log

Information about completed URs.
This log is recommended but
optional.

High

ATR.gname.RM.DATA

RRS resource manager data log

Information about the resource
managers using RRS services.

Low, if few
resource
managers;
Medium, if many
resource
managers

ATR.gname.RM.METADATA

RRS resource manager Meta Data
log

Any collection of data that a
resource manger wants to save.
This log is optional.

Low

ATR.gname.MAIN.UR

RRS main UR state log

The state of active URs. RRS
periodically moves this
information into the RRS delayed
UR state log when UR completion
is delayed.

High

ATR.gname.DELAYED.UR

RRS delayed UR state log

The state of active URs, when UR
completion is delayed.

High

ATR.gname.RESTART

RRS restart log

Information about incomplete URs
needed during restart. This
information enables a functioning
RRS instance to take over
incomplete work left over from an
RRS instance that failed.

Medium

Your installation might require an RRS log group that is a subset of the systems in
a sysplex. Using different logging groups allows:
v The separation of production and test environments that exist in the same

sysplex.
v "Rolling" cold starts of RRS.

Use caution when setting up logging groups because RRS is unaware of separate
groups, and resource managers can restart in an unintended group. IBM
recommends using ARM to control restart locations.

Managing RRS

534 z/OS V2R1.0 MVS Programming: Resource Recovery

To use a log group name different from the sysplex name, define the name on the
procedure used to start RRS. Otherwise, the name defaults to the sysplex name.
See “Creating a cataloged procedure for starting RRS” on page 532 for more
information.

To minimize any risk of losing data for structure-based log streams, you can
specify that a staging dataset should be used as the duplexing medium at all times.
Specifying DUPLEXMODE(UNCOND) when defining a structure-based log stream
tells system logger to allocate and use staging datasets as the duplexing medium
on all systems connected to the log stream. If an error occurs in the coupling
facility's data, the DASD backup is a reliable copy of valid data that is available for
restart.

Note that duplexing the logs can significantly slow performance, and RRS will run
effectively without duplexing. But, if RRS logs are damaged, RRS might be unable
to maintain integrity for the work it coordinates, resulting in inconsistent resources
or RRS failure.

While your installation must decide on the risk it can afford to take, IBM strongly
recommends that you use unconditional duplexing for both the resource manager
data log (ATR.gname.RM.DATA) and the restart log (ATR.gname.RESTART),
because any loss of data, unresolved gap, or permanent error against either of
these logstreams will force an RRS cold start. The RM.DATA and RESTART logs
are small and infrequently updated, so the impact on performance is minimal.

Defining the log streams
z/OS MVS Setting Up a Sysplex contains information about planning for system
logger applications. To define the RRS log streams, use the information about
system logger in that book along with the following details.

Use the following information to plan the system logger configuration:

define the log stream as a coupling facility log stream or a DASD-only log
stream

For a coupling facility log stream, you must perform all the setup steps in z/OS
MVS Setting Up a Sysplex.

For a DASD-only log stream, you must perform all the set up steps in z/OS
MVS Setting Up a Sysplex and see "Using System Logger Services" in z/OS MVS
Programming: Assembler Services Guide for special concerns about DASD-only
log streams.

define the number of log streams
RRS uses 6 log streams, although only 4 are required. The archive and meta
data logs are optional.

plan DASD log data sets and staging data sets
System logger allocates VSAM linear data sets for the DASD log data sets and
DASD staging data sets. Even if you do not use DUPLEXMODE(UNCOND), it
is a good idea to provide staging data sets, and system logger requires the log
data sets. Be sure to specify VSAM shareoptions of 3,3 for the DASD log data
sets and the DASD staging data sets. See "Set Up the SMS Environment for
DASD Data Sets" in z/OS MVS Setting Up a Sysplex for more information.

size DASD log data sets and staging data sets
If your RRS log streams are using a coupling facility (CF), then size each
staging data set to be large enough to hold all the log data that can reside in
the CF structure associated with each RRS log stream. The size of the staging

Managing RRS

Chapter 8. RRS setup and control 535

data set should be the same as the value specified on the SIZE parameter in
the CFRM policy couple data set. If your RRS log streams are DASD-only log
streams, then determine the size of the CF structure that would be needed by
each log stream, and make the staging dataset as big as the CF structure would
be. See "Plan Space for Staging Data Sets" in z/OS MVS Setting Up a Sysplex for
more information.

Note: If the log stream is defined to use a structure, and no STG_SIZE
parameter is coded, then the default size for a staging dataset is the size of the
structure.

Mapping log streams to structures
Each non-DASD-only log stream must be mapped to a coupling facility structure.
Coupling facility structures are defined in the CFRM policy. Log streams are then
mapped to those structures via the LOGR policy. A basic structure definition and
mapping for the RRS log streams with an ARCHIVE log would define six
structures and map the log streams as shown in Table 23.

Table 23. Basic Coupling Facility Structures

Structure name Log streams mapped to the structure

Structure One MAIN.UR

Structure Two DELAYED.UR

Structure Three ARCHIVE

Structure Four RM.DATA

Structure Five RESTART

Structure Six METADATA

If you choose not to use the optional ARCHIVE and METADATA logs, then only
four structures need to be defined.

The amount of storage that will be required by each of the log streams will depend
on the number of applications using RRS and the amount of work RRS has to do.
The CFSIZER tool can be used to obtain initial sizes of the structures to be used by
RRS. For more information about the CFSIZER tool, see z/OS MVS Setting Up a
Sysplex. Table 24 provides a starting point for new users of RRS. This table specifies
the maximum and initial sizes of each structure:

Table 24. RRS Structure Sizes

Structure name Log stream Writes per sec

Structure One MAIN.UR 100

Structure Two DELAYED.UR 20

Structure Three ARCHIVE 20

Structure Four RM.DATA 10

Structure Five RESTART 20

Structure Six RM.METADATA 10

Note: IBM created these general recommendations for the amount of structure
storage required for the various RRS log streams through experience testing
various workloads. These recommendations should result in reasonably efficient
usage of coupling facility storage while minimizing the likelihood that you will

Managing RRS

536 z/OS V2R1.0 MVS Programming: Resource Recovery

have to redefine the structures due to variations in your workload. However, the
exact amount of storage you need for log streams will depend on your actual
usage.

The information below is also useful when defining the log streams:

AVGBUFSIZE (average buffer size)
Specify the average size of the block RRS writes to a log:

RM.DATA — 252 bytes
MAIN.UR — 158 bytes (average UR size)
DELAYED.UR — 158 bytes (average UR size)
RESTART — 158 bytes (average UR size)
ARCHIVE — 262 bytes (average UR size + control information)
RM.METADATA — 8460 bytes (8192 bytes of data + control information)

The AVGBUFSIZE is specified when defining the structure to the LOGR couple
data set. If your couple data set has the format provided with OS/390® Release
3, RRS will regularly reset the average buffer size to the optimum value.

MAXBUFSIZE (maximum buffer size)
Specify the maximum size of the block RRS writes to a log:

RM.DATA — 1024 bytes
MAIN.UR — 65276 bytes (64K–260 bytes)
DELAYED.UR — 65276 bytes (64K–260 bytes)
RESTART — 65276 bytes (64K–260 bytes)
ARCHIVE — 65276 bytes (64K–260 bytes)
RM.METADATA — 8460 bytes

If a log stream resides in a structure, then the MAXBUFSIZE is specified when
defining the structure to the LOGR couple data set. If the log stream is
DASDONLY, then the MAXBUFSIZE is a log stream-defined keyword.

You also need the following information about each log stream to determine the
amount of coupling facility space you will need.

LOWOFFLOAD
The point, in a percentage, when system logger will stop offloading coupling
facility data to the DASD data sets for this log stream. For all RRS log streams,
IBM recommends that you use different LOWOFFLOAD defaults for each log
stream as follows:
v RM.DATA — 20
v MAIN.UR — 40
v DELAYED.UR — 40
v RESTART — 20
v ARCHIVE — 0
v RM.METADATA — 20

HIGHOFFLOAD
The point, in a percentage, when system logger is to begin offloading coupling
facility data to the DASD data sets for this log stream. For all RRS log streams,
IBM recommends that you use the HIGHOFFLOAD default of 80.

Managing RRS

Chapter 8. RRS setup and control 537

RRS archive log
RRS writes to the archive log for each completed UR. RRS never uses information
written on the RRS archive log; the information is intended for the installation to
use if a catastrophic problem occurs. To manage the offload datasets allocated for
this log stream, use retention period and autodelete support provided by the
system logger.

RRS writes in the RRS archive log for each completed UR.

RRS RM meta data log
The following describes the RRS RM Meta Data Log:
1. RRS never uses information written on the RRS RM meta data log. It is

resource manager specific intended for their own use.
2. Since the meta data log is optional, RRS can be started without it. Message

ATR132I will be written to SYSLOG and RMs will not be allowed to
set/retrieve RM meta data.

3. Should the RM meta data log be defined while RRS is operational, RRS will
connect to the log automatically. Once connected, RRS will make sure the
MAXBUFSIZE is met or exceeded. If the MAXBUFSIZE is below the required
size, RRS will disconnect from the log and issue message ATR172E. RRS will
continue to connect and check until the properly sized meta data log is defined.
Only then can a resource manager request meta data usage (via set exit
information CRGSEIF/CRGSEIF1/CRG4SEIF) and then set and retrieve meta
data.

4. When RRS connects to a properly sized RM meta data log, the connection will
remain until RRS is terminated.

5. If a resource manager becomes unset, either due to RRS termination or because
the resource manager has itself requested the state change, the resource
manager must restart and again request meta data usage via set exits before
using meta data.

Defining the logs
To define the RRS log streams, use IXCMIAPU, a utility program provided in the
SYS1.MIGLIB system library. Each structure-based log stream needs to be mapped
to a coupling facility structure. An example of JCL to map two of the RRS log
streams to two structures is:
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE STRUCTURE

NAME(LIST15)
LOGSNUM(1)
MAXBUFSIZE(1024)
AVGBUFSIZE(252)
DEFINE STRUCTURE

NAME(LIST14)
LOGSNUM(1)
MAXBUFSIZE(65276)
AVGBUFSIZE(158)

DEFINE LOGSTREAM NAME(ATR.PLEX.RM.DATA)
STRUCTURE(LIST15)
LS_DATACLAS(VSAMLS)
LS_SIZE(size of offload datasets)
HLQ(RRS)
LOWOFFLOAD(20)

Managing RRS

538 z/OS V2R1.0 MVS Programming: Resource Recovery

HIGHOFFLOAD(80)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)
STG_SIZE(number of 4K blocks for staging dataset)

DEFINE LOGSTREAM NAME(ATR.PLEX.MAIN.UR)
STRUCTURE(LIST14)
LS_DATACLASS(VSAMLS)
LS_SIZE(size of offload datasets)
HLQ(RRS)
LOWOFFLOAD(40)
HIGHOFFLOAD(80)

/*

Notice in this example that the RM.DATA log stream DUPLEXMODE(UNCOND)
is specified so that the data written to that log will also be written to a staging
dataset. The MAIN.UR log stream will write the log blocks to the structure and to
the system logger's buffers until the data is offloaded to DASD. Note that the
structures to which the log streams are mapped must also be defined in the active
CFRM policy. Also, if the STG_SIZE is not specified, the default value will be the
size of the structure.

An example of JCL to define a DASDONLY log stream:
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE LOGSTREAM NAME(ATR.PLEX.RM.DATA)

DASDONLY(YES)
LS_DATACLAS(VSAMLS)
LS_SIZE(size of offload datasets)
HLQ(RRS)
LOWOFFLOAD(20)
HIGHOFFLOAD(80)
STG_SIZE(number 4K blocks for staging dataset)
MAXBUFSIZE(1024)

/*

An example of JCL to delete a single RRS log stream and a structure is:
//STEP2 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DELETE LOGSTREAM NAME(log.stream.name)
DELETE STRUCTURE NAME(structure_name)

/*

For more information, see:
v z/OS MVS Setting Up a Sysplex for information about using system logger
v z/OS MVS JCL Reference for information about JCL

Actions to avoid
You should avoid the following actions because they will cause data to be lost
from RRS's log streams. When data is lost from the RM Data log stream, you must
cold start RRS. When data is lost from one or more of the other RRS log streams,
you might need to cold start RRS. An RRS cold start is usually very disruptive.

Do not Power-on-reset and IPL without cancelling RRS
Cancel RRS before performing a power-on-reset and IPL. Details follow:

Managing RRS

Chapter 8. RRS setup and control 539

Make sure that RRS disconnects from its log streams before shutting down the
z/OS images and performing a power-on-reset of the coupling facility and z/OS
CECs. This action will prevent loss of data, and will prevent message ATR212I RRS
DETECTED LOG DATA LOSS at IPL time. When you are shutting down your
system, first bring down all the resource managers, then issue the SETRRS
CANCEL command to bring RRS down. When RRS is cancelled, RRS will
disconnect from its log streams. When RRS disconnects, logger will copy the
contents of the log streams to offload data sets. This preserves the data in the RRS
log streams.

Do not delete offload datasets
Do not delete any offload datasets that contain data from RRS's logs. RRS's offload
datasets have names that begin like this:

<high level qualifier>.ATR.<logging group name>.RM.DATA...
<high level qualifier>.ATR.<logging group name>.ARCHIVE...
<high level qualifier>.ATR.<logging group name>.DELAYED.UR...
<high level qualifier>.ATR.<logging group name>.MAIN.UR...
<high level qualifier>.ATR.<logging group name>.RESTART...

To determine what <high level qualifier> is, create JCL to run IXCMIAPU. For
example:
//REPTLOG JOB MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD

DATA TYPE (LOGR)
REPORT (YES)

/*

To determine what <logging group name> is, use the RRS panels, option 6, "
Display RRS-related system information".

Use only VSAM shareoptions(3,3) for log stream datasets and
staging datasets

If you have multiple systems in the sysplex, it is typical for system logger to
require access to log stream data sets and staging data sets from multiple systems.
For this reason, you must specify VSAM SHAREOPTIONS(3,3) for log stream data
sets and staging data sets. See the topic on Planning for System Logger
Applications in z/OS MVS Setting Up a Sysplex.

Use only Retpd(0) and Autodelete (No)
When you define the RRS log streams, use only AUTODELETE(NO) and RETPD(0)
for all RRS log streams except the archive log. If you fail to do this, some offload
data sets might be automatically deleted even though they still contain data RRS
needs. When data is lost from the RM Data log stream, you must cold start RRS.
See the topic on Add Information about Log Streams and Coupling Facility
Structures to the LOGR Policy in z/OS MVS Setting Up a Sysplex.

RRS use of XCF
RRS uses a single XCF group, called ATRRRS, to communicate between images in
a sysplex. No special processing is required by an installation to enable RRS usage
of XCF. You do not need to modify XCF transport classes. See z/OS MVS Setting Up
a Sysplex for more information.

Managing RRS

540 z/OS V2R1.0 MVS Programming: Resource Recovery

logger.dita#logger
logger.dita#logger

Should the need arise where a z/OS V1R10 system needs to fall back to a lower
release, a fallback toleration APAR, number OA23153, should be installed to allow
the lower level of RRS to start and preserve the Archive Logging preference from
the SETRRS command. Without this APAR on the lower level system, RRS will not
be able to start on that system. This will be identified with the messages:

ATR235I RRS FAILED TO JOIN THE RRS XCF GROUP. RC = 00000008, RSN =
00000010
ASA2013I RRS INITIALIZATION FAILED. COMPONENT ID=SCRRS

In this case, RRS must be removed from the XCF group on the lower level system
to allow the RRS restart. This can be done by the following steps:

Steps to Remove RRS from XCF:

Note: When completed, the Archive Logging Enable/Disable setting on the V1R10
system will be deleted.
1. Set up the proper access authorization to the Facility Class Resource

MVSADMIN.XCF.IXCM2DEL. If your installation uses the RACF® component
of SecureWay for z/OS, this can be done from an authorized userid using the
following commands:

RDEFINE FACILITY (MVSADMIN.XCF.IXCM2DEL) UACC(ALTER)
SETROPTS RACLIST (FACILITY) REFRESH

2. Code up, submit, and review the output from the following JCL sample. The
source for the JCL can be found in SYS1.SAMPLIB member IXCDELUT and
more details can be found in the Deletion Utility for XCF Group Members
section in z/OS MVS Setting Up a Sysplex.
//IXCDELUT JOB
//S1 EXEC PGM=IXCM2DEL,PARM=’ATRRRS,mem01’
//SYSPRINT DD SYSOUT=A

Where:
mem01 is the member name of the member to be deleted.

mem01 can be determined by issuing system command:
D XCF,GROUP,ATRRRS

which results in message:
IXC332I 09.49.44 DISPLAY XCF
GROUP ATRRRS: SY1 SY2

Using the above display as an example, mem01 should be replaced with either
SY1 or SY2 depending on which system RRS is being removed from.

3. Upon successful completion of the JCL job, RRS will now be able to start on the
lower level system.

Starting RRS
Once you have set address space priority, provided the statement in IEFSSNxx, and
know that system logger is active, you can start RRS with the following operator
command:

START RRS

The start can be a warm start or a cold start.

Managing RRS

Chapter 8. RRS setup and control 541

Note: Do not try to start RRS from the IEACMD00 parmlib member; programs
RRS depends on have not been started.

Warm start
In a warm start, RRS can complete work that was in progress when a previous
RRS instance failed or was intentionally stopped. A warm start occurs when all of
the RRS logs are intact and available to the restarting RRS instance.

To enable a warm start, enter the SETRRS CANCEL command, or the FORCE
command with ARMRESTART, to stop RRS. Then enter a START command,
specifying the name of the RRS cataloged procedure in the SYS1.PROCLIB system
library.

A warm start also occurs when RRS is started on any system in a sysplex using the
same logging group after the first. In effect, any attempt to start RRS when its logs
are not empty is a warm start.

Note: While you can warm start RRS as long as the resource manager data log is
intact, a warm start after damage to other logs generally causes loss of data about
incomplete transactions.

Cold start
In contrast, a cold start occurs when the RRS RM data log is empty. The main and
delayed logs are flushed to the archive log if they are not empty during an RRS
cold start. If the RM.METADATA log is defined it will also be cleared. An RRS cold
start is a sysplex-wide operation, affecting all RRS subsystems using the logging
group. In a cold start, RRS cannot complete any work that was in progress; the
RRS logs are not available.

To enable a cold start, do the following:
1. Route a SETRRS CANCEL command to all systems in the sysplex where RRS is

active and using the affected logging group.
2. Decide whether to save the contents of the logs. To save the contents, which is

the safer choice, choose a log group name that is different from the one
previously in use. If there is no need to save any data in the logs, use the same
log group name.

3. Specifying the log group name you need, use the IXCMIAPU utility to delete
and redefine the RRS resource manager data log. The ATRCOLD member of
SYS1.SAMPLIB contains sample JCL to invoke IXCMIAPU to delete and
redefine the RRS resource manager data log.
Figure 18 on page 543 shows the sample JCL. Replace the highlighted field with
the sysplex name or the name of an RRS log group within the sysplex.

Note: Do not run IXCMIAPU when RRS is active; stop RRS before you run the
utility.

4. Start RRS on one system.

In response, the first RRS that starts initiates a sysplex-wide cold start applied to
all RRS subsystems using the affected logging group. This cold start does the
following:
v Moves logged information about incomplete URs to the RRS archive log. Later,

you can use ISPF panels to browse the RRS archive log to see the incomplete
URs.

Managing RRS

542 z/OS V2R1.0 MVS Programming: Resource Recovery

v Deletes the contents of the RRS main UR state log, RRS delayed UR state log,
and RRS restart log (and if being used, the RRS RM MetaDataLog).

Once RRS has been started for the first time, do not use the IXCMIAPU utility to
change any logs other than the RRS resource manager data log. Such action might
cause serious database inconsistencies that require manual verification and
updating.

If, however, you want to force a cold start and keep the data in the existing logs,
specify a different log group name in the JCL that invokes IXCMIAPU, as
described for step 3 in the preceding list.

Internal Cold Start
Internal cold start processing is designed to eliminate the sysplex wide outage
when certain problems are detected with the RM Data log. Normally the problem
is corrected by cancelling RRS in the entire sysplex, request a cold start of RRS
using the ATRCOLD procedure, and then restart RRS on each system in the
sysplex. Internal cold start will try to resolve the problem without the outage.

Internal cold start processing, assuming there are no errors, is done by:
1. RM DATA log problem identified by message:

ATR212I RRS DETECTED LOG DATA LOSS ON LOGSTREAM logstreamname DUE TO
INACCESSIBLE LOG DATA. LOG DATA FROM lowGMT TO highGMT ARE AFFECTED.

2. The operator can decide to do an Internal Cold Start by replying COLDSTART
to message:
ATR250E RRS LOGSTREAM ERROR FOUND. CORRECT THE ERROR OR OPTIONALLY REPLY

COLDSTART TO BEGIN A RRS INTERNAL COLD START.

This message is only issued if all the systems in the sysplex support Internal
Cold Start at the z/OS V2R1 or higher level.

When a resource manager (RM) registers with RRS on a particular system in the
sysplex, an in-storage copy of the RM is created as well as an entry in the RM
Data log. The RM Data log contains active/inactive RMs such that if something
happened to RRS, the RMs involvement with RRS could be recreated from the log.
Internal cold start is just the opposite, if something happened to the RM Data log,
the log could be recreated from the in-storage copy of each RM on every system in
the sysplex.

//ATRCOLD JOB MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DELETE LOGSTREAM NAME(ATR.RRSGROUP.RM.DATA)

/*
// IF (STEP1.RC = 0) THEN
//STEP2 EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DATA TYPE(LOGR)
DEFINE LOGSTREAM NAME(ATR.RRSGROUP.RM.DATA) STRUCTNAME(LIST01)

LS_DATACLAS(VSAMLS)
/*
// ENDIF

Figure 18. Sample JCL for IXCMIAPU

Managing RRS

Chapter 8. RRS setup and control 543

The log can only be recreated if the in-storage RMs remain viable and RRS on all
the systems in the sysplex remain active. If anything fails during an Internal Cold
Start, the ability to recreate the log from the in-storage RMs is not possible. For
that reason, RRS will be terminated for any error forcing the operator to do a
ATRCOLD procedure, and then restart RRS on each system in the sysplex. Once an
internal cold start is started, the termination of one RRS image in the sysplex will
cause all other images to terminate. The termination is identified by an MVS/RRS
TERMINATION DUMP, 5C4, with REASON xxxx0029.

After an Internal Cold Start, the log data is marked for deletion. System logger
does not physically delete the log data or log data set until an offload requires a
new data set to be allocated. This means that there will often be a delay before
eligible log data sets are physically deleted, since offloading will not occur until
the high threshold associated with the log stream is reached. If off-loads are
relatively infrequent, then there may be a considerable delay before log data sets
that are eligible for deletion are actually deleted.

Stopping RRS
Recommendation: Bring down all applications and RMs that utilize RRS services
prior to cancelling RRS. This will minimize the amount of manual intervention
required when you restart the applications and RMs.

You can stop RRS with the following operator commands:
SETRRS CANCEL
SETRRS SHUTDOWN

Issuing SETRRS CANCEL with non-resource manager programs in syncpoint may
result in a X'058' abend. If the abend occurs, transactions that were in progress will
be resolved when RRS restarts.

Issuing SETRRS SHUTDOWN provides a normal shutdown command to bring
down RRS without resulting in a X'058' abend or X'0D6' abend. In order to notify
RRS resource managers that RRS is terminating, all the currently active resource
managers will be unset. After the unset processing is completed, the RRS jobstep
task and all of its subtasks will normally be terminated to clean up the address
space. In addition to the RRS infrastructure tasks, there are also timed process
tasks and server tasks running in the RRS address space. These tasks will also be
shut down normally as well.

If SETRRS CANCEL or SETRRS SHUTDOWN does not stop RRS, you can use the
FORCE RRS,ARM command. In this command, RRS is the subsystem name your
installation assigned to RRS in parmlib member IEFSSNxx.

For information about the operator commands, see z/OS MVS System Commands.
For information about the IEFSSNxx parmlib member, see z/OS MVS Initialization
and Tuning Reference.

RRS should be active on an MVS system that has programs involved in resource
recovery. In a sysplex, RRS should be active on every MVS system image that
might take part in distributed resource recovery. Only one instance of RRS can be
active on each system image.

Usually RRS should be active all the time. However, you should issue a SETRRS
CANCEL or SETRRS SHUTDOWN command prior to a system IPL. Cancelling

Managing RRS

544 z/OS V2R1.0 MVS Programming: Resource Recovery

RRS before an IPL will result in a cleaner system recovery. Use a START ATRRRS
command in the COMMNDxx parmlib member to start RRS during system
initialization. If RRS fails, it can restart; see “Defining RRS to automatic restart
management (ARM)” on page 533.

Using the SETRRS ARCHIVELOGGING [DISABLE | ENABLE] command
Use the SETRRS ARCHIVELOGGING command to disable or enable RRS archive
logging on a given system.

For a complete description of the SETRRS ARCHIVELOGGING command, see
z/OS MVS System Commands.

Using the SETRRS CANCEL command
Use the SETRRS CANCEL command to end RRS abnormally. Use this command
only at the direction of the system programmer. Normally, you will not use this
command, because RRS should be running at all times; stopping RRS can cause
application programs to abend or wait until RRS is restarted.

For a complete description of the SETRRS CANCEL command, see z/OS MVS
System Commands.

Using the SETRRS SHUTDOWN command
Use the SETRRS SHUTDOWN command to end RRS normally. Use this command
only at the direction of the system programmer. Normally, you will not use this
command, because RRS should be running at all times; stopping RRS can cause
application programs to abend or wait until RRS is restarted.

For a complete description of the SETRRS SHUTDOWN command, see z/OS MVS
System Commands.

Using the DISPLAY RRS command
Use the DISPLAY RRS command to display status information about RRS
coordinated transactions to the system console and SYSLOG.

For a complete description of the DISPLAY RRS command, see z/OS MVS System
Commands.

Collecting problem data
RRS provides Interactive System Productivity Facility (ISPF) panels to allow
installation people, such as database administrators or system programmers, to
work with RRS. These are described in Chapter 10, “Using RRS panels,” on page
561. In addition, you can write a batch job to take a snapshot of the contents of
RRS's logs. The ATRBATCH member of SYS1.SAMPLIB contains sample JCL to do
this. Refer to the sample JCL for more details. You will need to modify this sample
before you run it.

RRS provides a DISPLAY RRS command, which is described in z/OS MVS System
Commands.. In addition, you can write a batch job to issue RRS display commands
and place the output in a dataset. The ATRBDISP member of SYS1.SAMPLIB
contains sample JCL to do this. Refer to the sample JCL for more details. You will
need to modify this sample before you run it.

Managing RRS

Chapter 8. RRS setup and control 545

Recovering from a hung UR after an SDSRM failure
When an SDSRM terminates while it is interested in a UR whose state is indoubt,
certain control structures must be destroyed. These control structures are rebuilt
before the RMs needs them. However, the control structures are rebuilt when each
RM interested in the indoubt UR restarts. Thus, the indoubt UR is not allowed to
progress until all the RMs interested in the indoubt UR have restarted.

If an SDSRM fails and restarts, and you then notice that a UR is not progressing
and the SDSRM is interested in the UR, then use the RRS panels to investigate the
UR. If the RRS panels indicate that the UR's state is indoubt, the type is PROT, and
the comments are DX, then restarting all the RMs interested in the indoubt UR may
allow the UR to progress.

Latch identification
RRS uses numerous latches to establish an orderly flow during transaction
processing. If a unit of work hangs up while holding a latch, other work units may
also wait for the latch causing a hung transaction. The Display GRS Contention (D
GRS,C) command, will establish there is contention but does not provide sufficient
information to quickly narrow the problem down to a particular transaction. If
contention persists, the command: D
GRS,ANALYZE,LATCH,DEPENDENCY,DETAIL will display more information
along with the latch identifiers that have been established for some of the RRS
latches. For the RRS address space, the following Latch Identifiers have been
created.

Table 25. Latch Identifiers

Latch set Latch identifier
Identifier
description

Identify the
transaction by RRS
panel option:

CD Context Data CD URID: urid urid - Unit of
Recovery Identifier

3 - Display/Update
RRS Unit of Recovery
information and
search on the urid.

RM Resource
Manager

RM: rmname rmname – Resource
Manager Name

2 - Display/Update
RRS related Resource
Manager information
and search on the
rmname.

SHT System Hash
Table

SHT System: sysname sysname – name of
the system that owns
the SHT. See note
below.

If SHT contention
persists, contact your
IBM Support Center.

SHT System Bucket
Hash Table

SHT Bucket: number
System: sysname

number – bucket
number.

sysname – name of
the system that owns
the SHT. See note
below.

If SHT Bucket
contention persists,
contact your IBM
Support Center.

SHE Sysplex Hash
Element

SHE SURID: surid surid - Sysplex Unit
of Recovery Identifier

3 - Display/Update
RRS Unit of Recovery
information and
search on the surid.

Managing RRS

546 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 25. Latch Identifiers (continued)

Latch set Latch identifier
Identifier
description

Identify the
transaction by RRS
panel option:

UR Units of Recovery UR URID: urid urid - Unit of
Recovery Identifier

3 - Display/Update
RRS Unit of Recovery
information and
search on the urid.

UR Main State Log MainQ Log: log log – UR Log Stream
Name

If State Log
contention persists,
contact your IBM
Support Center.

UR Compression
State Log

CompQ Log: log log – UR Log Stream
Name

If State Log
contention persists,
contact your IBM
Support Center.

Note: For the SHT and SHT Bucket Latch Sets, “Unknown” might be displayed for
the system name. The Unknown SHT table keeps track of transactions that are
moving between systems sometimes because of system restart problems.

As an alternative to identify the transaction by the RRS panels, the DISPLAY RRS
command (D RRS,RM or D RRS,UR) can be used for CD, RM, and UR latch sets.

The following output is an example from command: D
GRS,ANALYZE,LATCH,DEPENDENCY,DETAIL
SY1 ISG374I 16.25.10 GRS ANALYSIS 220

DEPENDENCY ANALYSIS: ENTIRE SYSTEM
----- LONG WAITER #1

JOBNAME: RRS (ASID=002A, TCB=004E03E8)
REQUEST: EXCLUSIVE LT:7EA8907800000007

WAITING 00:59:17 FOR RESOURCE (CREATOR ASID=002A)
SYS.ATRURCPO.00000001 LST:7EA8C10000000124
5: UR URID:C30C9DB97E0AC0000000000201020000

JOBNAME: MAINASID (ASID=0030, TCB=004E6D90)
REQUEST: EXCLUSIVE LT:7EA8B010000000A2

ANALYSIS ENDED: THIS UNIT OF WORK IS NOT WAITING

In the example, the Latch Identifier is:
UR URID:C30C9DB97E0AC0000000000201020000.

For more information about the DISPLAY RRS and DISPLAY GRS commands, see
z/OS MVS System Commands.

RRS SDUMP exit
RRS uses the IEASDUMP.SERVER exit to add RRS information to a dump when a
resource manager is registered with RRS or an application is running an RRS
syncpoint service is dumped as a result of an operator issued console dump
command or SLIP SVC dump command. RRS must be active at the time of the
dump.

The exit is added during RRS initialization and removed during RRS termination.

Managing RRS

Chapter 8. RRS setup and control 547

548 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 9. RRS application programming

Working with application programs
RRS provides an application programming interface (API) consisting of two
callable services:
v Application_Commit_UR
v Application_Backout_UR

These callable services are described in z/OS MVS Programming: Callable Services for
High-Level Languages, including a description of the return codes intended for the
application programmer. To provide additional information a system programmer
or data base administrator might need to help the application programmer, the
following table explains conditions that cause RRS to issue each return code.

Return Code in:
Hexadecimal
Decimal
Equate Symbol Conditions

0
0
RR_OK

One of the following:

v No resource manager expressed interest in
the UR.

v The collective vote from the PREPARE
exit routines is FORGET.

v The collective vote from the PREPARE
exit routines is COMMIT. No COMMIT
exit routine returned ATRX_HM,
ATRX_HR, or
ATRX_OK_OUTCOME_PENDING. No
resource manager became unregistered or
unset with an incomplete protected
interest in the UR.

v The return code from the ONLY_AGENT
exit routine, if invoked, is ATRX_OK.

65
101
RR_COMMITTED_OUTCOME_PENDING

One of the following:

v The collective vote from the PREPARE
exit routines is COMMIT. No COMMIT
exit routine returned ATRX_HM or
ATRX_HR. However, at least one
COMMIT exit routine returned
ATRX_OK_OUTCOME_PENDING or a
resource manager became unregistered or
unset with an incomplete protected
interest in the UR.

v The return code from the ONLY_AGENT
exit routine, if invoked, is
ATRX_OK_OUTCOME_PENDING.

© Copyright IBM Corp. 1997, 2013 549

Return Code in:
Hexadecimal
Decimal
Equate Symbol Conditions

66
102
RR_COMMITTED_OUTCOME_

MIXED

The collective vote from the PREPARE exit
routines is COMMIT. However, one of the
following is true:

v At least one COMMIT exit routine set a
heuristic mix (HM) or heuristic reset (HR)
return code.

v The resource manager called
Set_Side_Information and set heuristic
mix (HM).

v A DISTRIBUTED_SYNCPOINT exit
routine set a heuristic mix (HM) return
code.

C8
200
RR_PROGRAM_STATE_CHECK

A STATE_CHECK exit routine returned an
ATRX_STATE_INCORRECT code. None of
the STATE_CHECK exit routines returned an
ATRX_REDRIVE code.

12C
300
RR_BACKED_OUT

One of the following:

v The collective vote from the PREPARE
exit routines is BACKOUT. No BACKOUT
exit routine returned ATRX_HM,
ATRX_HC, or
ATRX_OK_OUTCOME_PENDING. No
resource manager became unregistered or
unset with an incomplete protected
interest in the UR.

v The return code from the ONLY_AGENT
exit routine, if invoked, is
ATRX_BACKOUT.

12D
301
RR_BACKED_OUT_OUTCOME_

PENDING

One of the following:

v The collective vote from the PREPARE
exit routines is BACKOUT. No BACKOUT
exit routine returned ATRX_HM or
ATRX_HC. However, at least one
BACKOUT exit routine returned
ATRX_OK_OUTCOME_PENDING or a
resource manager became unregistered or
unset with an incomplete protected
interest in the UR.

v The return code from the ONLY_AGENT
exit routine, if invoked, is
ATRX_BACKOUT_OUTCOME_PENDING.

RRS application

550 z/OS V2R1.0 MVS Programming: Resource Recovery

Return Code in:
Hexadecimal
Decimal
Equate Symbol Conditions

12E
302
RR_BACKED_OUT_OUTCOME_

MIXED

One of the following:

v The collective vote from the PREPARE
exit routines is HM.

v The collective vote from the PREPARE
exit routines is BACKOUT. At least one
BACKOUT exit routine returned
ATRX_HM or ATRX_HC.

v The return code from the ONLY_AGENT
exit routine, if invoked, is ATRX_HM.

v The resource manager called
Set_Side_Information and set heuristic
mix (HM).

v A DISTRIBUTED_SYNCPOINT exit
routine set a heuristic mix (HM) return
code.

Note: In COBOL, the equate symbols are truncated at 30 characters. In PL/I, the equate
symbols are truncated at 31 characters.

During syncpoint operations, RRS default actions are to commit on normal context
termination and backout on abnormal context termination.

If RRS fails during a syncpoint operation, the application terminates abnormally. If
RRS fails before the application issues a commit or backout, RRS ensures that the
application will receive an OUTCOME_PENDING return code for each incomplete
UR. However, for an in-doubt UR, RRS does not issue a return code. Later, if RRS
restarts without a system reIPL and the application is still active when the
In-doubt UR is resolved, RRS issues a return code to the application at that time.

When an application ends abnormally during syncpoint processing, and the
ABEND is caused by an outside source, such as the CANCEL command, the
condition is called an asynchronous ABEND. The application needs to consider the
following points related to an asynchronous ABEND:
v If the application encounters an asynchronous ABEND during processing of a

backout request, the application can, on restart, retry the backout request.
v If the application encounters an asynchronous ABEND during processing of a

commit request, the application receives, on restart, no indication of the outcome
for the UR. To continue processing, the application should retry the commit
request that failed rather than trying to back out the UR. Retrying the commit
request can cause any of the following:
– RRS might commit the original UR.
– RRS might commit an empty UR, which is a new UR with no changed

resources.
– An X'5C4' abend might occur.
If the attempt to retry the commit request succeeds (the service return code is
ATR_OK), the application cannot assume that the original commit request
succeeded. The outcome of the original request is unknown. All the application

RRS application

Chapter 9. RRS application programming 551

can assume from the ATR_OK return code is that the context and the current UR
are consistent and that normal syncpoint operations can continue.

v If a resource manager restarts, it can obtain its failed protected interests unless
the syncpoints completed successfully under the RRS server task.

Working with cascaded transactions
Cascaded transactions affect the way applications and work managers must
operate. See “Cascaded transactions” on page 69 for more information about
cascaded transactions. Cascaded transactions should not have any effect on
resource managers that are not work managers. The following topics describe
issues an application programmer or system programmer should be aware of when
working with cascaded transactions in:
v Application programs
v Work managers

Application rules
Applications that work with cascaded transactions have special requirements.

Initiating syncpoints
Like the protocols of Transactional Remote Procedure Calls (TRPC), when a
transaction consists of multiple URs linked together to form a cascaded UR family,
only the application running under the top-level UR can validly request commit to
be initiated. The application can use either the Application_Commit_UR service or
the Commit_UR service to do so.

If a resource manager has taken the SDSRM role on the top-level UR, only that
SDSRM may initiate commit processing for the cascaded UR family. It does so with
the Prepare_Agent_UR service.

All of the application pieces running under cascaded URs would normally
complete their processing, return the results to the application that initiated them,
and then return to their work manager. The work manager would then issue a
Set_Side_Information call for the cascaded UR, indicating that it is complete. When
the top-level UR initiates commit processing, all of the URs will be committed or
backed out as a single atomic transaction.

Any piece of the transaction can validly initiate a backout operation at any time.
Initiating a backout immediately backs out that piece of the overall transaction,
and causes the overall transaction to be backed out eventually.

Application controlled parallelism
An application program can use cascaded transactions to enable transaction
parallelism. While RRMS allows you to do this, use the capability with care. Many
work managers expect to have control over all of the tasks and contexts in their
address space. Work managers may not work correctly if an application is
attempting to create transaction parallelism through RRMS services without their
knowledge.

For an unauthorized application to parallel itself, it needs to do the following:
1. Register as an unauthorized resource manager with Registration Services by

calling Register_Resource_Manager.
2. Identify itself to Context Services by calling Set_Exit_Information.
3. Obtain a private context by calling Begin_Context.

RRS application

552 z/OS V2R1.0 MVS Programming: Resource Recovery

4. Create a cascaded UR associated with the private context by calling
Create_Cascaded_UR.
This call will make the initiating UR (probably the one associated with the
current task) the top-level UR of the cascaded UR family.

5. Create a task (TCB) by calling the MVS macro, ATTACH.
The parallel thread will execute under this task.

6. While running under the new task, switch the private context to the current
TCB by calling Switch_Context.

7. Repeat steps 3–6 to create each parallel thread.

When each task completes its processing, the work manager should mark the UR
on the context switched to that task as application complete. You may also have
the work manager switch the work context off of that task. When all of the parallel
threads have completed their processing, the application running under the
top-level UR can initiate the commit of the transaction.

Cascaded URs and database locking
Some databases will not recognize that the separate URs that make up a cascaded
UR family are part of the same transaction. Others may require an application to
explicitly indicate that it wants to use some form of global transaction locking.
When they do not, the database cannot allow the separate pieces of the transaction
to share database locks. The separate threads of a transaction executing under the
URs of a cascaded UR family must therefore ensure that they do not attempt to
access the same data from different URs. Doing so will result in deadlocks which
could keep the application from ever completing, or cause the overall transaction
to be backed out by the affected resource manager. Remember, transactions are
supposed to be isolated from one another. One transaction may not see the
changes made by another transaction until the changes have been committed.

Just like a normal cascaded UR, a multisystem cascaded UR may be viewed by a
resource manager as being in a different locking scope from other URs in the
cascaded transaction. Database managers may not support sharing database locks
across URs that are executing on different systems. Therefore, you must ensure that
multiple parts of a multisystem cascaded transaction executing on different
systems do not attempt to access the same locked resources. If you do not,
deadlocks could keep your application from ever completing or cause the overall
transaction to be backed out by the affected resource manager.

Work manager guidelines
A work manager is likely to need to use cascaded URs when it is doing one of two
things:
v Moving work between different work managers
v Executing parts of an application in parallel

Work managers using cascaded URs must also be aware of when an application
should be marked application-complete, and when it should be marked not
application-complete.

Moving work between work managers
When initiating transactions that are combinations of existing transactions, the
separate applications that make up the overall transaction may need to execute in
different work manager environments. For example, an application executing in
Environment A might need to initiate a transactional application that executes in
Environment B; but both pieces must be part of the same transactional scope. Both

RRS application

Chapter 9. RRS application programming 553

pieces of the application need to run under a single RRS unit of recovery. When
the piece of the application running in Environment A requests that Environment B
run the second piece of the transaction, Environment B has two choices:
v Move the current context and UR from Environment A to Environment B.
v Create a cascaded UR in Environment B, which will have a parent UR in

Environment A.

Moving the current context can be more efficient, because it does not require that a
new context and UR be created. Moving the current context also has the advantage
of being more likely to allow the separate pieces of the transaction to share
database locks. However, work manager B cannot be sure that it can actually move
the context. If the context is a DU native context, or if a work manager with an
expression of interest in the context disallows work manager B's switch request,
Context Services will not move the context.

Creating a cascaded UR will always work. Neither the type of context being used
in Environment A nor any RM associated with it can stop work manager B from
creating the cascaded UR. Unfortunately, the separate pieces of the application may
not be able to share database locks.

A work manager may attempt to move the current context, but create a cascaded
UR if the attempt fails. This can be a reasonably efficient choice, as long as the
switch attempt works most of the time. Unfortunately, the application must assume
that it cannot share locks, since it has no way of knowing if the work manager will
switch the context or create a cascaded UR.

Some work manager interfaces, like IMS via OTMA, are context input work manager
interfaces. These interfaces require that they be passed a context as input to start
any transaction coordinated by RRS. The originating work manager must be aware
when an application needs to invoke a context input work manager interface, so
that they can first create a cascaded UR to be passed across the interface. IBM
recommends work managers avoid creating new context input work manager
interfaces.

Parallel processing
A work manager can split a transaction into pieces that execute in parallel, usually
at the request of an application program or an installation. If the multiple separate
pieces of the divided transaction need to touch protected resources, they may need
to have the same transactional scope. To ensure that they do, a work manager
could create cascaded URs for the separate pieces of the transaction. “Application
controlled parallelism” on page 552 describes how an unauthorized application can
use cascaded URs to enable parallelism.

For an authorized work manager to parallel itself, it needs to do the following:
1. Register as an authorized resource manager with Registration Services by

calling Register_Resource_Manager.
2. Identify itself to Context Services by calling Set_Exit_Information.
3. Obtain a private context by calling Begin_Context.
4. Create a cascaded UR associated with the private context by calling

Create_Cascaded_UR.
This call will make the initiating UR (probably the one associated with the
current task) the top-level UR of the cascaded UR family.

5. Create a task (TCB) by calling the MVS macro, ATTACH.
The parallel thread will execute under this task.

RRS application

554 z/OS V2R1.0 MVS Programming: Resource Recovery

6. While running under the new task, switch the private context to the current
TCB by calling Switch_Context.

7. Repeat steps 3–6 to create each parallel thread.

When each task completes its processing, the work manager should mark the UR
on the context switched to that task as application complete. You may also have
the work manager switch the work context off of that task. When all of the parallel
threads have completed their processing, the work manager can initiate the commit
of the transaction.

Application-complete
RRS will not initiate commit processing on a cascaded UR family until all of the
cascaded URs in the family have been marked as application-complete. This
ensures that RRS will not initiate commit or backout processing while a resource
manager is processing an application request.

When RRS initially creates a cascaded UR, it is not application-complete. It is the
responsibility of the work manager that created the cascaded UR to tell RRS when
it is application-complete by using the Set_Side_Information service. Similarly, if a
work manager decides to reuse a cascaded UR after marking it
application-complete, it must tell RRS that it is no longer complete by invoking the
Set_Side_Information service before allowing the application program to run under
the UR. Once it has done this, it must also tell RRS that it is application-complete
when the application program is finished.

Managing contexts of cascaded URs
Once a cascaded UR is created, the context of the cascaded UR cannot end until
the cascaded UR family has reached the second phase of the two-phase commit
(in-commit or in-backout state), without making all of the transactions in the
cascaded UR family back out. Because of this complication, a work manager that
creates a cascaded UR associated with a privately managed context must know
when the cascaded UR is forgotten. The following methods allow a work manager
to either find out when the UR is forgotten, or avoid having to end the work
context:
v The work manager can use a DU native context and allow the context to end

normally when the DU ends.
v The work manager can express interest in the UR. With its END_UR exit, the

work manager can schedule an asynchronous request, through its own
mechanisms, and end the context under the asynchronous request.

Note:

1. This option is not available to unauthorized work managers.
2. A request to end the context must not be issued from the exit or from any

routines it calls or any routines it waits on. Doing so will result in a deadlock
as the exit waits for the context to complete, and the context completion
waits for the exit to complete.

3. The work manager does not know when the UR completes using this
method. If the work manager wants to allow another thread to reuse the
context, one of the other methods must be used to determine when the UR
completes.

v The work manager can use the Set_Post_Sync_PET service to have RRS release
the PET when the cascaded UR has completed. The work manager can pause on
the PET or periodically query the PET to determine when it has been released.
Once the cascaded UR has completed, the context can safely be ended.

RRS application

Chapter 9. RRS application programming 555

Note: A UR exit routine should never wait directly or indirectly on the PET.
Doing so will result in a deadlock as the exit waits for the UR to complete, and
the UR completion waits for the exit to complete.

v If the work manager is responsible for managing the top-level UR, the work
manager can safely end the contexts of URs cascaded from the top-level after it
commits or backs out the top-level UR or ends the top-level UR's work context.

v The work manager can periodically query the state of the cascaded UR, and end
the context when the UR has reached the forgotten state.
If the work manager uses Retrieve_UR_Data to obtain the UR state, it may
receive a return code indicating that the specified UR token is not valid. That
would indicate that the UR has been forgotten.

Additional multisystem cascaded transaction guidelines
A multisystem cascaded transaction can only span across multiple systems that use
the same logging group. A work manager can use the ATRQUERY
REQUEST=SYSINFO macro interface to determine which systems are in a
particular logging group.

When moving work between systems, a work manager is responsible for
transferring all of the data needed for a particular piece of work, including a UR
token to provide transactional context. Once the data is transferred, the work
manager can create a new work context or use an existing work context to
represent the work request locally. When the work manager creates a cascaded
transaction via the Create_Cascaded_UR or Express_UR_Interest service specifying
the transferred UR token, RRS will recognize that the UR token represents a UR on
another system and create a multisystem cascaded transaction.

Just like normal cascaded transactions, the work manager is responsible for
informing RRS when the part of the application executing under a multisystem
cascaded UR is complete by using the Set_Side_Information service to mark the
UR as application-complete.

Since the UR token used to specify the parent of a multisystem cascaded
transaction represents a UR on another system, it is possible that the specified UR
token is no longer valid. This could occur if the parent transaction, the system it is
resident on, the system it is executing on, or the RRS running on that system has
failed. If any of those conditions occur, the token will be recognized as invalid and
RRS will issue a failure return code to the requester.

Note: The token will never again be valid. This could affect a work manager
removing a work request from a queue within a syncpoint and then trying to
create a cascaded transaction with the information taken from the queue. If the
multisystem cascaded transaction cannot be created due to an invalid UR token,
the removal of the work request from the queue cannot be rolled back because it
would result in an endless loop.

Logging data
RRS hardens information about URs and resource managers in RRS logs.
Hardening means storing the information in RRS logs residing on non-volatile
external storage that can be accessed during restart after a failure.

RRS hardens information like the following, which a resource manager needs
during restart for an incomplete UR:
v The UR state

RRS application

556 z/OS V2R1.0 MVS Programming: Resource Recovery

v The name and role of a resource manager with a protected interest in the UR
v The name of the resource manager's log
v The resource manager's persistent interest data

Table 26 summarizes the events that cause RRS to harden log information. It
highlights the additional logging performed for UR interests that have a presumed
nothing protocol. Note that all RRS logging is forced unless Table 26 indicates
otherwise.

Table 26. Event Logging Summary

UR State or condition Event Logging

In-state-check to
in-prepare

The STATE_CHECK exit routines
completed successfully.

RRS logs information only
for presumed nothing
interests.

In-prepare to in-commit The overall prepare vote is okay,
and the syncpoint is local.

RRS logs information for
all protected interests.

In-prepare to in-doubt The overall local prepare vote is
YES, and the syncpoint is
distributed; a resource manager
has taken the DSRM or SDSRM
role.

RRS logs information for
all protected interests.

In-doubt to in-backout The Backout_Agent_UR service
tells RRS to back out the UR with
a log_option of
ATR_DEFER_IMPLICIT.

RRS logs information only
for presumed nothing
interests.

In-doubt to in-backout The Backout_Agent_UR service
tells RRS to back out the UR with
a log_option of
ATR_DEFER_EXPLICIT.

RRS logs information for
all protected interests. If,
on restart, the SDSRM
always wants in-backout
information rather than
in-doubt for URs resolved
to in-backout, it should
always issue
Backout_Agent_UR with a
log_option of
ATR_DEFER_EXPLICIT.

In-doubt to in-backout The Backout_Agent_UR service
tells RRS to back out the UR with
a log_option of ATR_IMMEDIATE.

RRS logs information for
all protected interests
except the interest of the
SDSRM.

In-doubt to in-backout The DISTRIBUTED_SYNCPOINT
exit routine tells RRS to back out
the UR.

RRS logs information only
for presumed nothing
interests.

In-doubt to in-backout The installation resolves the
in-doubt state through a backout
command on a panel

RRS logs information for
all protected interests.

RRS application

Chapter 9. RRS application programming 557

Table 26. Event Logging Summary (continued)

UR State or condition Event Logging

In-doubt to in-commit One of the following occurs:

v The SDSRM calls the
Commit_Agent_UR service to
tell RRS to commit the UR.

v The
DISTRIBUTED_SYNCPOINT
exit routine tells RRS to commit
the UR.

v The installation resolves the
in-doubt state through a commit
command on a panel.

RRS logs information for
all protected interests.

In-forget to forgotten The Forget_Agent_UR_Interest
service with a log_option of
ATR_IMMEDIATE tells RRS to
forget the UR.

The SDSRM's expression
of interest is deleted from
the log.

In-forget to forgotten The UR completes normally. RRS deletes the log entry
for all protected interests.
This deletion is an
unforced deletion.

Any state RRS detected a heuristic-mixed
outcome.

RRS logs information for
all protected interests at
the next state change.

All states, when
information has already
been logged

An RM calls the
Set_Persistent_Interest_Data
service.

RRS immediately logs
updated information for
all protected interests.

All states except in-flight,
in-state-check, in-prepare

The Set_Side_Information service
indicates heuristic mix.

RRS immediately logs
information for all
protected interests.

All states except
in-only-agent

The Set_Side_Information service
indicates resync-in-progress.

RRS logs information for
all protected interests at
the next state change.

All states except in-flight,
in-state-check, in-prepare,
in-doubt

The SDSRM calls the
Forget_Agent_UR_Interest service
with a log_option of
ATR_IMMEDIATE to tell RRS to
forget the UR.

The SDSRM's expression
of interest is physically
deleted from the log.

Any state When UR information has been
hardened, and the installation uses
a panel to remove a resource
manager's interest in a UR.

RRS rehardens all
protected interests in the
UR except the interest
being removed.

As Table 26 on page 557 indicates, RRS hardens data only for protected interests in
a UR. Data is not hardened for unprotected interests. Other considerations related
to hardening are:
v RRS retains hardened information until the resource managers interested in the

UR indicate, through return codes from exit routines or through service calls,
that they have completed their interests in the UR. At that point, RRS deletes the
UR information from its RRS logs.

Note: Because the hardened information for a UR may not be deleted
immediately, a resource manager could see on restart an interest in a UR for

RRS application

558 z/OS V2R1.0 MVS Programming: Resource Recovery

which the resource manager had completed processing. There is no way for a
resource manager to force immediate deletion of hardened information, with one
exception: an SDSRM that uses a log-option of ATR_IMMEDIATE forces
immediate deletion of hardened information.

v RRS does not log any information for a UR with only one expression of interest
when the resource manager has an ONLY_AGENT exit routine.

v If a resource manager's exit routine passes a FORGET return code, RRS does not
log any information for that interest at any subsequent log points.

v For a heuristic-mixed outcome or a resync in progress, RRS hardens, or
rehardens, the UR state of all protected interests in the UR, including the
heuristic-mixed or resync in progress information, at the next state change.
If a resync in progress occurs before the UR reaches an in-prepare state, RRS
defers hardening until the UR reaches the in-prepare state.

v If DRIVE_COMPLETION or DRIVE_BACKOUT is set, RRS hardens, or
rehardens, at the next logging point, the UR state of all protected interests in the
UR.

v When the installation uses a panel to resolve an in-doubt state to in-backout,
RRS hardens all protected interests in the UR. In this way, RRS makes sure that,
on restart, a distributed syncpoint resource manager sees an in-backout state for
a presumed abort interest in a UR. During restart, if a resource manager
specifies ATR_RESPOND_CONTINUE in its process interest call for this UR,
RRS notifies the resource manager that the installation resolved the in-doubt
state to in-backout by invoking the resource manager's BACKOUT exit routine.

v When the installation uses a panel to remove a resource manager's interest in a
UR and RRS had hardened information about the UR, then RRS rehardens the
most recent information in the RRS log, minus the interest the installation
removed. If the installation removed the last interest in the UR, RRS still
rehardens the UR state with no expressions of interest. In this way, RRS makes
sure that, on restart, the resource manager does not see the interest that the
installation removed.

Logging cascaded transactions
When RRS URs are coordinated under a single transactional scope by distributed
protocols that use the distributed syncpoint resource manager (DSRM) or server
distributed syncpoint manager (SDSRM) roles, RRS is required to log separate
in-doubt records for each of the URs except the initiating one. However, RRS
manages all of the URs in a cascaded UR family as if the family was a single UR.
There is no need for cascaded URs to go in-doubt, or be logged separately. If the
top-level UR does not have a DSRM or SDSRM role, RRS can immediately make
the commit or backout decision for the UR family and log only those records
needed to record the final outcome of the cascaded transaction. If the top-level UR
has a RM which has taken the DSRM or SDSRM role, RRS will have to log an
in-doubt record, but it will still only have to log one in-doubt record for the entire
cascaded UR family.

Prior to the existence of cascaded transactions, RRS restricted the amount of data
that could be logged for a single transaction to a single System Logger log block,
64K of data. While all of the data for a single UR must still fit within a single log
block, RRS allows data for cascaded UR families to span multiple log blocks.

RRS application

Chapter 9. RRS application programming 559

560 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 10. Using RRS panels

RRS provides Interactive System Productivity Facility (ISPF) panels to allow
installation people, such as database administrators or system programmers, to
work with RRS. In addition, you can:
v Write a batch job to take a snapshot of the contents of RRS's logs. The

ATRBATCH member of SYS1.SAMPLIB contains sample JCL to do this. Refer to
the sample JCL for more details.

v Use the DISPLAY RRS command to display status information about RRS
coordinated transactions to the system console and SYSLOG. For a complete
description of the DISPLAY RRS command, see z/OS MVS System Commands.

v Use the ATRQSRV Utility to Query and Update RRS Information from JCL jobs.
For a complete description of the ATRQSRV utility, see Chapter 13, “ATRQSRV
utility - query and update RRS information,” on page 639.

When you use the panels, you can view the following information:
v RRS logs
v UR information
v Resource manager information

Through the panels, you can also take the following actions:
v Determine where a resource manager can restart after a system failure
v Resolve an in-doubt state for a UR to in-commit or in-backout

v Remove a resource manager's interest in a UR
v Delete a resource manager from RRS
v Unregister a resource manager to clean up the resource manager's involvement

with RRS.

Thus, the panels provide a way for you to troubleshoot resource recovery. You
might use them, for example, if an application, is hung up and you suspect that
resource recovery might be the cause of the problem.

Before you can use the panels, however, you must set up access authorization,
allocate the libraries containing the panels, and add the RRS application to the
ISPF primary option menu.

Setting up access authorization
If your installation uses the RACF component of SecureWay for z/OS, you can
control access to the information and actions the panels provide. In a Parallel
Sysplex®, you can configure RRS to allow a user to manage all the RRS images in
the sysplex from a single image. Access to RRS system management functions is
controlled by two RACF resources.

To control RRS access across a sysplex, RRS uses the
MVSADMIN.RRS.COMMANDS.gname.sysname resource in the FACILITY class,
where gname is the logging group name, and sysname is the system name. You may
create a RACF profile to permit access to multiple logging groups and systems by
including RACF valid generic characters (**, *, and %) in gname and sysname. See
the z/OS Security Server RACF Security Administrator's Guide and z/OS Security

© Copyright IBM Corp. 1997, 2013 561

Server RACF Command Language Reference for more information about using these
RACF generic characters and defining RACF profiles. By permitting appropriate
access, you can allow users to view or alter RRS information on any number of
systems in the sysplex.

If you are running RRS on a single system, RRS can use either the
MVSADMIN.RRS.COMMANDS.gname.sysname resource or the
MVSADMIN.RRS.COMMANDS resource in the FACILITY class to control access to
RRS system management functions. The MVSADMIN.RRS.COMMANDS resource
only allows access to RRS system management functions on the current system.
You cannot use MVSADMIN.RRS.COMMANDS to allow or disallow use of RRS
on another system.

Note: This restriction does not apply to shared restart or RRS log stream data
being used by the local system. Access to the log stream datasets requires the
appropriate authorization for the system logger address space to the
hlq.data_set_name resource in the DATASET class for each DASD log stream and
staging data set. Use the MVSADMIN.RRS.COMMANDS.gname.sysname resource to
control access to use RRS services to view or modify information in the logs,
including the restart log, of logging groups that are not being used by the local
system.

For example:
v To allow a user to view RRS information only on the current system, you could

provide READ access to the MVSADMIN.RRS.COMMANDS resource in the
FACILITY class.

v Provide ALTER access to the MVSADMIN.RRS.COMMANDS.gname.sysname
resource in the FACILITY class for a particular system in the sysplex, to allow a
user to:
– Resolve an in-doubt UR
– Remove a resource manager's interest in a UR
– Delete a resource manager from RRS
– Unregister a resource manager to clean up the resource manager's

involvement with RRS.

Allocating the RRS panel libraries
Before you use RRS panels, you need to allocate the libraries where the panels are
stored as part of the DD specified in Table 27.

Note: These libraries are not specific to RRS, but are used for all of MVS dialogues
(for example see IPCS dialogues).

Table 27. RRS Panel Libraries

Library DD

SYS1.SBLSPNL0 ISPPLIB

SYS1.SBLSTBL0 ISPTLIB

SYS1.SBLSMSG0 ISPMLIB

SYS1.SBLSCLI0 SYSEXEC

Using RRS Panels

562 z/OS V2R1.0 MVS Programming: Resource Recovery

Adding RRS as an ISPF menu option
To add the RRS panels as an option on your ISPF primary panel, you should make
a copy of the ISPF primary option menu — ISR@PRIM. Then, add the following
information to the processing section of the panel:

RRS,’PANEL(ATRFPCMN) NEWAPPL(RRSP)’

Make sure you concatenate the library containing your customized primary panel
before any others in your logon procedure or CLIST.

The following example shows the two lines added to a copy of the ISPF primary
panel. The two lines are highlighted in the example.

There is an alternative way to access the RRS panels from the ISPF Main Menu.
You can achieve this method by doing the following steps:

------------------------ ISPF/PDF PRIMARY OPTION MENU ----------------
%OPTION ===>_ZCMD
% +USERID -
% 0 +ISPF PARMS - Specify terminal and user parameters +TIME -
% 1 +BROWSE - Display source data or output listings +TERMINAL -
% 2 +EDIT - Create or change source data +PF KEYS -
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO/E command or CLIST
% 7 +DIALOG TEST - Perform dialog testing
% 8 +LM UTILITIES- Perform library management utility functions
% C +CHANGES - Display summary of changes for this release
% R +RRS - RRS resource recovery information
% T +TUTORIAL - Display information about ISPF/PDF
% X +EXIT - Terminate ISPF using log and list defaults
%
+Enter%END+command to terminate ISPF.
%
)INIT

.HELP = ISR00003
&ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */
VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0,’PANEL(ISPOPTA)’
1,’PGM(ISRBRO) PARM(ISRBRO01)’
2,’PGM(ISREDIT) PARM(P,ISREDM01)’
3,’PANEL(ISRUTIL)’
4,’PANEL(ISRFPA)’
5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’
6,’PGM(ISRPTC)’
7,’PGM(ISRYXDR) NOCHECK’
8,’PANEL(ISRLPRIM)’
C,’PGM(ISPTUTOR) PARM(ISR00005)’
R,’PANEL(ATRFPCMN) NEWAPPL(RRSP)’
T,’PGM(ISPTUTOR) PARM(ISR00000)’

’ ’,’ ’
X,’EXIT’
*,’?’)

&ZTRAIL. = .TRAIL
)END

Figure 19. Example: Adding RRS as an Option on your ISPF Menu

Using RRS Panels

Chapter 10. Using RRS panels 563

1. Go to your ISPF Main Menu and choose option 7.1 to perform dialog testing:
Option ===> 7.1

2. After the ISPF Dialogue Test Menu is displayed, you can invoke the selection
panel by doing the following steps:
a. Put atrfpcmn in the panel option.
b. Use atrk as the ID.
c. Press ENTER to display the RRS main panel.
PANEL . . atrfpcmn

Note: This panel is longer than what you see on the screen, make sure to scroll
down to enter the ID.
ID . . . atrk

Using the main selection panel
When you select RRS from the ISPF menu, the system displays the main selection
panel, shown in Figure 20.

To continue, you must select an option from this menu. Use the following table as
a guide for selecting the appropriate option:

Table 28. Summary of main selection panel options

Option number Function Additional information

0 Set or change global options that control the
processing throughout various RRS panels.

“Specifying global options” on page 566

1 v Check logs for resource recovery actions
related to a resource that may have been
damaged

v Determine from which system a particular
resource manager can restart

“Checking the log streams” on page 566

RRS
Option ===> ___

Select an option and press ENTER:

0 Set RRS global panel options
1 Browse an RRS log stream
2 Display/Update RRS related Resource Manager information
3 Display/Update RRS Unit of Recovery information
4 Display/Update RRS related Work Manager information
5 Display/Update RRS UR selection criteria profiles
6 Display RRS-related system information

Figure 20. Main Selection Panel (ATRFPCMN)

Using RRS Panels

564 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 28. Summary of main selection panel options (continued)

Option number Function Additional information

2 v Identify resource managers that are known to
RRS

v Investigate a problem related to a specific
resource manager

“Working with resource manager
information” on page 573

3 Work directly with one or more known units of
recovery (URs).

“Working with UR information” on page
575

4 v Identify work managers that are known to
RRS

v Investigate a problem related to a specific
work manager

“Working with work manager information”
on page 586

5 View or change criteria used to select URs “Working with UR selection profiles” on
page 579

6 View information about system names and RRS
logging groups across a Parallel Sysplex.

“Working with RRS system information” on
page 589

Help: For additional information about using the panels, press PF1 from any panel.

Messages: While you are working with the panels, RRS can issue messages; these
messages appear in z/OS MVS System Messages, Vol 3 (ASB-BPX).

Using wildcards in RRS panels
RRS allows you to use wildcard characters in strings to specify:
v Resource manager names (RMNAME)
v Work manager names (WMNAME)
v RRS logging group names (GNAME)
v System names (SYSNAME)
v Logical unit of work identifiers (LUWIDSTR)
v Global transaction identifiers (GTIDSTR)
v Unit of recovery identifiers (URIDSTR)
v Sysplex unit of recovery identifiers (SURID) (On UR panels)

The character string you specify can contain two types of wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single character.
Using wildcards allows you to quickly and conveniently obtain sets of similar or
related pieces of RRS information. See Chapter 11, “ATRQUERY — Obtain RRS
Information,” on page 591 for more information about the ATRQUERY parameters
that allow wildcards.

Examples using wildcards:
v Work manager or resource manager name: ATR.*.IBM
v Logical unit of work identifier: A?CD.DEF*,*,*
v Global transaction identifier: 003?234*

Using RRS Panels

Chapter 10. Using RRS panels 565

Specifying global options
Many RRS panels use globally set options to control processing. Use the "RRS
Global Panel Options" panel shown in Figure 21 to set or change options. The
following option is available:

Time Display Format: Some RRS panels display a timestamp. You can use this
option to indicate how the timestamp is displayed by selecting either GMT time or
LOCAL time. The default setting is GMT. The change of the time format only
affects the "Display/Update RRS Unit of Recovery information" option. See
Figure 29 on page 577 for reference.

Note: To keep consistency with the existing log stream browse option, the time
displayed in the "RRS Log Stream Browse Selection" panel as shown in Figure 22
on page 567 is still in the local format. It is not affected by the selection on the
"RRS Global Panel Options" panel. This is also the case for the log browse function
from the ATRQSRV utility and from the ATRBATCH sample JCL.

Checking the log streams
To check, or browse, the contents of a log stream, you use the panel shown in
Figure 22 on page 567. In the panel, you identify the log you want to view,
whether you want a summary report or a detailed report, and supply any optional
filters that you need to limit the information returned.

If you want to determine on which system a resource manager can restart, select
log option 4, the RRS Resource Manager Data Log, and specify the resource
manager name. For a description of the output, see “Resource manager entry” on
page 572.

On the panel, you can specify only log streams that are currently defined to system
logger. You cannot browse a log stream that has been copied and is no longer
defined to system logger.

The system displays the sysplex name in the log group name field. The Default
Group Name field will be set to the RRS logging group name being used on the
system; or, the sysplex name, if RRS is not active on the system. If you want to
browse the contents of logs with a different name, type the log group name in the
field.

You can also identify the output data set (the data set the system is to use to hold
the information you request). If you do not provide a name, the system uses
userid.ATR.REPORT.

RRS Global Panel Options

Time Display Format: z (GMT|Local)

Figure 21. RRS Global Panel Options (ATRFPVAR)

Using RRS Panels

566 z/OS V2R1.0 MVS Programming: Resource Recovery

Use filters as much as possible; a request without filters might return a huge
number of entries. Using filters is especially important if you are running RRS in a
Parallel Sysplex. When you select any of the first three logs, you can specify a UR
identifier (URID), which limits the search to entries for that UR. When you select
option 4 or 5, you can identify a resource manager, which limits the search to
entries associated with that resource manager.

With any log, you can use the date and time filters to limit the search to log entries
after a certain date or time, log entries before a certain date or time, or log entries
that fall within a range of dates and/or times. The following example shows how
to define a range of hours within the same day:

Entries from. . . . 1997/03/15 (yyyy/mm/dd)
02:00:00 (hh:mm:ss)

through. 1997/03/15 (yyyy/mm/dd)
10:00:00 (hh:mm:ss)

IBM Recommends that you specify date and time filters to limit the amount of
data searched when browsing the RRS Archive log using a URID filter. The URID
filter causes the log browser to search the entire section of the RRS Archive log that
might contain the URID. Because of the potentially large amount of data in the
RRS Archive log, the absence of the date and time filters may result in noticeable
delays.

After you have defined your selection and pressed Enter, the system browses the
logs for the log group you name and returns the log entries that match the criteria
you specified. Each entry block has a header line that includes the name of the
system from which the block was written, the date and time when the block was
written, and the system logger identifier of the block. The header line has the
following format:

system mm/dd/yyyy hh:mm:ss.ssssss LOCAL BLOCKID=xxxxxxxxxxxxxxxx
BLOCK=xxxx OF yyyy NEXT BLOCKID=xxxxxxxxxxxxxxxx

You can obtain the following types of report entries:
v UR entry, either summary or detail

RRS Log Stream Browse Selection
Command ===>

Provide selection criteria and press Enter:

Select a log stream to view: Level of report detail:
_ 1. RRS Archive log _ 1. Summary

2. RRS Unit of Recovery State logs 2. Detailed
3. RRS Restart log
4. RRS Resource Manager Data log
5. RRS RM Metadata log

RRS Group Name . . . ________ Default Group Name: : ________
Output data set . . ATR.REPORT

Optional filtering:
Entries from LOCAL date in yyyy/mm/dd format

LOCAL time in hh:mm:ss format
through LOCAL date in yyyy/mm/dd format

LOCAL time in hh:mm:ss format
UR identifier . . . (Options 1,2,3)
RM name (Options 4,5)
SURID (Options 1,2,3)

Figure 22. Log Stream Selection (ATRFPLBS)

Using RRS Panels

Chapter 10. Using RRS panels 567

Available from the RRS archive log stream, the RRS unit of recovery (UR) state
log stream, and the RRS restart log stream. See “UR entry.”

v Archive entry, either summary or detail
Available from the RRS archive log stream. See “Archive entry” on page 570.

v Resource manager entry
Available from the RRS resource manager log stream. See “Resource manager
entry” on page 572

v Resource manager meta data entry.
Available from the Resource manager meta data log stream. See “Resource
manager meta data entry” on page 573.

Each UR has a unique UR identifier. When you browse the UR state log stream,
you will find multiple entries for a particular UR. Multiple resource managers
might have expressed an interest in the UR, and the entries are logged over time.
Only the entry with the latest timestamp contains current information.

Each resource manager also has a unique name. When you browse the resource
manager data log stream, you might find multiple entries for a particular resource
manager. Only the entry with the latest timestamp contains current information.

You can also filter by sysplex unit of recovery identifier (SURID). No wildcards are
supported for SURID on this panel. SURID filtering is only valid for UR related log
streams (archive, unit of recovery, and restart log streams).

UR entry
A summary UR entry includes the following information:

URID UR identifier

LOG STREAM
RRS log stream name

PARENT URID
If the UR is a cascaded UR, PARENT URID contains the identifier of the
cascaded UR's parent UR.

SURID
Sysplex UR identifier for the UR. If a UR does not have a SURID, "N/A"
will be displayed. The output also indicates when a UR is part of a
cascaded (or multisystem cascaded) transaction.

WORK MANAGER NAME
Work manager name

Note: If the log entry being browsed was written by a version of RRS that
does not save work manager names, the Work Manager name field will
display <NOT LOGGED>.

STATE
UR state when the block was written

EXITFLAGS
Flag byte for the exit routine most recently driven for the UR. For the
possible indicators, see the description of exit_flags in “Parameters” on
page 101.

Using RRS Panels

568 z/OS V2R1.0 MVS Programming: Resource Recovery

FLAGS
Indicators for the UR. You might need to supply the contents of this field
to IBM service personnel.

LUWID
LU 6.2 logical unit of work identifier for this UR

TID Transaction identifier for this UR

GTID Global transaction identifier for this UR

FORMATID
Format identifier portion (in decimal) of the X/Open ID for this UR

GTRID
Global Transaction Identifier portion of the X/Open ID for this UR

BQUAL
Branch Qualifier portion of the X/Open ID for this UR

If an XID is not present, the FORMATID=, GTRID=, and BQUAL= fields are
displayed as blanks.

A detail UR entry includes both the information in the summary UR entry and the
following additional information for each protected expression of interest:

RMNAME
The name of the resource manager associated with this expression of
interest in the UR. If there are multiple expressions of interest, there will be
multiple detail UR entries.

ROLE The role the resource manager has in relation to this UR:

Participant: the resource manager is not the coordinator for this UR.

DSRM: the resource manager is the distributed syncpoint resource manager
for this UR.

SDSRM: the resource manager is the server distributed syncpoint resource
manager for this UR.

Last Agent: the resource manager is the last agent for this UR.

CMITCODE
A control code that indicates how the resource manager wants RRS to treat
its COMMIT exit routine. A value of X'00000FFF' indicates that RRS is to
drive the COMMIT exit routine. Any other value indicates that RRS is not
to drive the exit routine; instead, RRS is to use the control code as the
return code from the COMMIT exit routine.

BACKCODE
A control code that indicates how the resource manager wants RRS to treat
its BACKOUT exit routine. A value of X'00000FFF' indicates that RRS is to
drive the BACKOUT exit routine. Any other value indicates that RRS is not
to drive the exit routine; instead, RRS is to use the control code as the
return code from the BACKOUT exit routine.

PROTOCOL
The syncpoint logging protocol the resource manager has requested for this
expression of interest:
1. PresumeNothing
2. PresumeAbort

Using RRS Panels

Chapter 10. Using RRS panels 569

Figure 23 shows the format of a detail UR entry.

Archive entry
The summary archive entry includes the following information:

URID Identifier of the UR

JOBNAME
Name of the job that requested commit or backout.

USERID
Identifier of the user that requested commit or backout.

PARENT URID
If the UR is a cascaded UR, PARENT URID contains the identifier of the
cascaded UR's parent UR.

SURID
Sysplex UR identifier for the UR. If a UR does not have a SURID, "N/A"
will be displayed. The output also indicates when a UR is part of a
cascaded (or multisystem cascaded) transaction.

WORK MANAGER NAME
Work manager name

Note: If the log entry being browsed was written by a version of RRS that
does not save work manager names, the Work Manager name field will
display <NOT LOGGED>.

SYNCPOINT
The type of service the job requested:
1. Commit
2. Backout

RETURN CODE
Return code from commit or backout request

START
The date and time when RRS created the UR, or UNKNOWN if the
information is not known. The time format is labeled with LOCAL.

COMPLETE
The date and time when RRS completed processing the UR. The time
format is labeled with LOCAL.

SY2 2001/04/18 11:55:35.315619 LOCAL BLOCKID=000000000006EFDE
URID=B5B4AD1F7E87E4B80000000001020000 LOGSTREAM=ATR.PLEX1.DELAYED.UR
PARENT URID=00000000000000000000000000000000 CASCADED
SURID=02000010000000000100000000000000B5B4AD1F7E87E4B80000000001020000
WORK MANAGER NAME=SY2_RRJRLHY6_RM4
STATE=InCommit EXITFLAGS=00800000 FLAGS=A0800000
LUWID= TID= GTID=

FORMATID=003654931682 (decimal) D9D9D4E2 (hexadecimal)
GTRID=

00B5B4AD1FA3CF4285
BQUAL=

D9D9D4E24BB5B4AD1FA3CF482500
RMNAME=SY2_RRJRLHY6_RM4 ROLE=Participant

CMITCODE=00000FFF BACKCODE=00000FFF PROTOCOL=PresumeNothing

Figure 23. Detail Unit of Recovery Report Entry

Using RRS Panels

570 z/OS V2R1.0 MVS Programming: Resource Recovery

EXITFLAGS
Flag byte set for the exit routine most recently driven for the UR. For the
possible indicators, see the description of exit_flags in “Parameters” on
page 101.

LUWID
LU 6.2 logical unit of work identifier for this UR

TID Transaction identifier for this UR

GTID Global transaction identifier for this UR

FORMATID
Format identifier portion (in decimal) of the X/Open ID for this UR

GTRID
Global Transaction Identifier portion of the X/Open ID for this UR

BQUAL
Branch Qualifier portion of the X/Open ID for this UR

If an XID is not present, the FORMATID=, GTRID=, and BQUAL= fields are displayed as
blanks.

A detail archive entry includes the information in the summary archive entry and
the following information about each expression of interest in the UR:

RMNAME
The name of the resource manager associated with this expression of
interest in the UR. If there are multiple expressions of interest, there are
multiple detail UR entries.

ROLE The role the resource manager has in relation to this UR:

Participant: the resource manager is not the coordinator for this UR.

DSRM: the resource manager is the distributed syncpoint resource
manager for this UR.

SDSRM: the resource manager is the server distributed syncpoint resource
manager for this UR.

Last Agent: the resource manager is the last agent for this UR.

FLAGS
Indicators for the UR. You might need to supply the contents of this field
to IBM service personnel.

PROTOCOL
The syncpoint logging protocol the resource manager has requested for this
expression of interest:
1. PresumeNothing
2. PresumeAbort

The information returned also includes a list of the exit routines that RRS might
have driven for this expression of interest. Each exit routine shows one of the
following:
v If the exit was driven for the UR interest, the most recent overall return code.
v If the exit was not driven, the value Uncalled.
v If the exit was driven for the UR but has not yet returned to RRS, the value

Called.

Using RRS Panels

Chapter 10. Using RRS panels 571

Figure 24 shows the format of a detail archive entry.

Resource manager entry
A resource manager entry reports information about a resource manager, obtained
from the RRS resource manager log stream. The information in the entry includes:

RESOURCE MANAGER
The name of the resource manager

LOGGING SYSTEM
The name of the MVS system that wrote this log block for this resource
manager

The entry also:
v identifies the system on which the resource manager was last active with RRS
v indicates whether there are any restrictions on the system where the resource

manager can restart
v includes the name of the resource manager log, if one was provided
v includes the time stamp, labeled as the log instance number, when the Resource

Manager last stopped using RRS services with no interests (thus allowing it to
restart on any system).

Note: Duplicate entries for the same resource manager might be found in this log
stream. For a specific resource manager, the only entry of interest to RRS is the
latest, or youngest, log entry.

Figure 25 on page 573 shows the format of a resource manager entry.

SY1 11/15/1996 14:02:41.607677 LOCAL BLOCKID=0000000000000001
URID=ADC6419A7ED540000000000101010000 JOBNAME=MAINASID USERID=*
PARENT URID=00000000000000000000000000000000 CASCADED
SURID=02000010000000000100000000000000B5B4AD1F7E87E4B80000000001020000
WORK MANAGER NAME=ABCDEFGHIJKLMNOPQRSTUVWXYZ012345
SYNCPOINT=Commit RETURN CODE=00000000
START=11/15/1996 18:44:12.510303 COMPLETE=11/15/1996 19:02:41.517837 LOCAL
EXITFLAGS=00800000
LUWID=ABC.DEF 00000000000 0002 TID=0028644343397 GTID=

1122334455667788
FORMATID=1122334455 GTRID=

00
00
00

BQUAL=
00
00
00

RMNAME=UTRICK ROLE=Participant
FLAGS=100E0000 PROTOCOL=PresumeNothing
StateCheck EXIT RC=Uncalled
Prepare EXIT RC=00000000
DistSp EXIT RC=Uncalled
Commit EXIT RC=00000000
Backout EXIT RC=Uncalled
EndUr EXIT RC=00000000
ExitFailed EXIT RC=Uncalled
Completion EXIT RC=00000000
OnlyAgent EXIT RC=Uncalled

Figure 24. Detail Archive Report Entry

Using RRS Panels

572 z/OS V2R1.0 MVS Programming: Resource Recovery

Resource manager meta data entry
A resource manager meta data entry reports information saved by a resource
manager, obtained from the RRS resource manager meta data log stream. The
information in the entry includes:

RESOURCE MANAGER
The name of the resource manager

LOGGING SYSTEM
The name of the MVS system that wrote this log block for this resource
manager

The entry also includes the meta data stored by the resource manager in a hex
dump format.

Figure 26 shows the format of a resource manager meta data entry.

Working with resource manager information
From the resource manager selection panel, shown in Figure 27 on page 574, you
can identify a specific resource manager or press Enter to see a scrollable list of
resource managers. If you know, for example, the resource manager associated
with an application that you need to check on, you can go directly to the resource
manager.

You can display any resource managers that:

RRS/MVS LOG STREAM BROWSE DETAIL REPORT

READING ATRRRS.RM.DATA.LOG LOG STREAM

SY1 08/23/1996 11:54:19.061552 LOCAL BLOCKID=0000000000000161
RESOURCE MANAGER=LOGGING1_RM1A LOGGING SYSTEM=SY1
RESOURCE MANAGER MAY RESTART ON ANY SYSTEM
RESOURCE MANAGER WAS LAST ACTIVE WITH RRS ON SYSTEM SY1
A LOG NAME WAS NOT PROVIDED
LOG INSTANCE NUMBER: 08/23/1996 11:54:19.117732

SY1 08/23/1996 11:54:27.070752 LOCAL BLOCKID=0000000000000211
RESOURCE MANAGER=ATR.RESOURCEMANAGER.IBM LOGGING SYSTEM=SY1
RESOURCE MANAGER MUST RESTART ON SYSTEM SY1
RESOURCE MANAGER WAS LAST ACTIVE WITH RRS ON SYSTEM SY1
LOG NAME IS ATR.AD5C492088350281.IBM
LOG INSTANCE NUMBER: 08/20/1996 23:20:15.772928

Figure 25. Sample Resource Manager Entry

RRS/MVS LOG STREAM BROWSE SUMMARY REPORT

READING ATR.PLEX1.RM.METADATA LOG STREAM

SY1 2005/09/23 13:42:40.673986 LOCAL BLOCKID=0000000000003B45
RESOURCE MANAGER=LOGGING_RM1 LOGGING SYSTEM=SY1

0000-000F 40D4C5E3 C1C4C1E3 C1404040 D9D4F140 * METADATA RM1 *

Figure 26. Sample Resource Manager Meta Data Entry

Using RRS Panels

Chapter 10. Using RRS panels 573

v Are currently active with RRS within the sysplex where you are using the panels
v Are currently not active with RRS but were last active with a running RRS

within the sysplex where you are using the panels

Note: You can specify wildcard characters in the specification of resource manager
names, system names, and logging group names to display: * for zero or more
characters, and ? for any single character.

Once a resource manager has set its exit routines, RRS can display information
about the resource manager, and it remains in the list until RRS is cancelled.

After you have made your selection, RRS lists the resource managers you have
selected. Figure 28 on page 575 shows the format of the scrollable list. The returned
information is sorted alphanumerically with a primary ascending sort key of
logging group name and a secondary ascending sort key of system name. Press
PF6 to refresh the list and display the new list of resource managers that match the
resource manager name string you supply.

RRS Resource Manager Selection
Command ===> __

Optionally provide resource manager name, system name, and logging group
patterns and press Enter:

RM name ________________________________
System name ________
Logging Group . . . ________

If left blank, system name and logging group will default to the current
system’s name and group.

Figure 27. Resource Manager Selection (ATRFPRMS)

Using RRS Panels

574 z/OS V2R1.0 MVS Programming: Resource Recovery

The list shows the name of the resource manager and its state, as known on the
local system. To work with a resource manager, select it and choose the action you
want to perform. You can:
1. Obtain the resource manager token and the resource manager state. Enter v in

the selection field to view details. The system will display the resource manager
(RM) name, token, and state.

2. Obtain a scrollable list of the URs associated with the selected resource
manager. Enter u in the selection field to view URs. “Working with UR
information” describes how to work with the information you receive.

3. Remove all of a resource manager's interests, possibly in all URs. Enter r in the
selection field to remove an interest. “Removing a resource manager interest in
a UR” on page 588 describes how to continue.

4. Delete all the resource manager information from all RRS systems in the
logging group and the RRS Resource Manager logs. The specified resource
manager must not be active with RRS or have any interests in the URs.

5. Clean up the resource manager's involvement with RRS. Enter n in the
selection field to unregister a resource manager. Only resource manager's that
have been unregistered with Registration Services but still registered with RRS
can be processed. RRS Resource Manager Unregister processing will be invoked
to clean up the resource manager's involvement with RRS. The system will
display the Unregister RM Confirmation panel to verify that the user wants to
perform the unregister action. RRS will not unregister the resource manager
when:
v The resource manager is still registered with Registration Services.
v The resource manager state is either Reset or Unset. A resource manager in

Reset or Unset state is already considered unregistered with RRS.

Working with UR information
When you request UR information from the main selection panel, you see the
scrollable panel shown in Figure 29 on page 577.

RRS Resource Manager List ROW 34 TO 50 OF 50
Command ===> Scroll ===> PAGE

Commands: v-View Details u-View URs r-Remove Interest d-Delete RM
n-Unregister RM

S RM Name State System Logging Group
ONEWAYA_WM4NAME_SY1 Run SY1 PLEX1
ONEWAYB_RM1NAME_SY1 Run SY1 PLEX1
ONEWAYB_RM2NAME_SY1 Run SY1 PLEX1
ONEWAYB_RM3NAME_SY1 Run SY1 PLEX1
ONEWAYB_RM4NAME_SY1 Run SY1 PLEX1
ONEWAYB_WM1NAME_SY1 Set SY1 PLEX1
ONEWAYB_WM2NAME_SY1 Set SY1 PLEX1
ONEWAYB_WM3NAME_SY1 Run SY1 PLEX1
ONEWAYB_WM4NAME_SY1 Run SY1 PLEX1
ONEWAYC_RM1NAME_SY1 Run SY1 PLEX1
ONEWAYC_RM2NAME_SY1 Run SY1 PLEX1
ONEWAYC_RM3NAME_SY1 Run SY1 PLEX1
ONEWAYC_RM4NAME_SY1 Run SY1 PLEX1
ONEWAYC_WM1NAME_SY1 Run SY1 PLEX1
ONEWAYC_WM2NAME_SY1 Set SY1 PLEX1
ONEWAYC_WM3NAME_SY1 Set SY1 PLEX1

Figure 28. Resource Manager List (ATRFPRML)

Using RRS Panels

Chapter 10. Using RRS panels 575

The scrollable panel allows you to create a profile defining one or more URs you
would like to see information about. You can view URs
v in one or more specific states;
v on specific systems or logging groups in a sysplex;
v with interests in specific resource managers or work managers; and,
v based on when they were created, or how long they have been in some state.

Note: You can specify wildcard characters in the specification of system names,
logging group names, resource manager names, and work manager names to
display: * for zero or more characters, and ? for any single character.
You can exclude URs that
v are not deferred;
v require restart processing;
v have been read from the restart log;
v cascaded URs in a cascaded UR family;
v are in local transaction mode;
v are in global transaction mode (both global transaction mode and hybrid-global

transaction mode);
v are managed by RRS; or,
v are managed by some other work manager.

You can sort URs in a variety of ways. They can be presented in ascending or
descending order, based on these criteria that you can assign sort priority:
v Work Manager Name;
v UR Identifier;
v Creation Time;
v UR State;
v Logical Unit of Work ID (LUWID);
v Enterprise ID (EID);
v X/Open ID (XID);
v Logging Group Name;
v System Name; and,
v Sysplex UR identifier (SURID).

You can also quickly store or retrieve a specific UR profile. Enter save to store the
current profile. Enter get to retrieve a profile. See “Working with UR selection
profiles” on page 579 for more information about working with UR selection
profiles.

Using RRS Panels

576 z/OS V2R1.0 MVS Programming: Resource Recovery

RRS Unit of Recovery Selection
Command ===> __

Commands: save-Save Profile get-Get Profile ENTER-Query

Profile Name . . ________ Profile Data Set HLQ . . ________

UR and Work Identifier Criteria====================
URID pattern . . ________________________________

SURID pattern

LUWID pattern (netid.luname,instnum,seqnum)
__

TID ____________ (from 1 to 4294967295 in decimal)
Low TID . . ____________ High TID . . ____________

GTID Pattern
00-0F __
10-1F __
20-27 __

Format ID ____________ (from 1 to 4294967295 in decimal)

GTRID Pattern
00-0F ___________________________________
10-1F ___________________________________
20-2F ___________________________________
30-3F ___________________________________
40-4F ___________________________________
50-5F ___________________________________
60-6F ___________________________________
70-7F ___________________________________

BQUAL Pattern
00-0F ___________________________________
10-1F ___________________________________
20-2F ___________________________________
30-3F ___________________________________
40-4F ___________________________________
50-5F ___________________________________
60-6F ___________________________________
70-7F ___________________________________

UR Type/State Criteria=============================
UR type: UR State: (’/’ - select one or more)
__ 1. all _ all _ In_Commit

2. unprotected _ In_Flight _ In_Backout
3. protected _ In_State_Check _ In_End

_ In_Prepare _ In_Completion
_ In_Doubt _ In_Forget

System Criteria==========================
System name ________
Logging Group ________

If left blank, system name and logging group will default to the current
system’s name and group.

Resource Manager Criteria==========================
Resource Manager Name . . ________________________________
Work Manager Name ________________________________

Time-related Criteria==============================
Time Format GMT__ (Local|GMT)
UR created after time . . ________ (hh:mm:ss)
UR created after date . . __________ (yyyy/mm/dd)
UR created before time . . ________ (hh:mm:ss)
UR created before date . . __________ (yyyy/mm/dd)
Min Time in State _____________ (hh:mm:ss.ssss)

Exclusion Criteria=================================
_ Interests which are not deferred
_ Restart Required Interests
_ UR was read from Restart Log
_ Cascaded URs in a cascaded UR family

UR with Local Transaction Mode

Using RRS Panels

Chapter 10. Using RRS panels 577

Note: The "Time Format" defaults to the value entered on the "RRS Global Panel
Options" panel. See Figure 21 on page 566.

Because there might be a large number of URs, use this panel to define the URs
you want to see. If you have specific information about the UR, such as its
identifier, you can specify it here. Otherwise, leave the UR identifier blank but use
UR type and/or UR state choices to define a subset of the possible URs. Checking
for URs that are In_Doubt, for example, might be an early step in troubleshooting
an application that you think might be hung because of a resource recovery
problem.

When you have defined your selection, press Enter. The information you requested
appears in the format shown in Figure 32 on page 580.

Note: If some of your requests fail, you may receive error message ATR510I. If so,
press PF5 (LISTERR) to view the error information on the panel shown in
Figure 30.

Viewing multisystem cascaded UR families
To find all top level cascaded URs:
v Use System Name = *
v Exclude cascaded URs

To view a single cascaded UR family:
v Use the f command on the UR list panel (ATRFPURL) against the top (T) or

child (C) UR from the family you are interested in.
v Use the SURID of the sysplex cascaded UR family as a UR filter.

To find all the top level cascaded URs associated with a work manager::
v Use Work Manager Name = wmname (DB2, for example)
v Use System Name = *
v Exclude cascaded URs

RRS ATRQUERY RC Table
Command ===> ___ Scroll ===> ____

Commands: s-View Error Message

Press EXIT to return to the previous panel.

S System Logging Group QueryRC QueryRSN SrvID SrvRC SrvRSN
_ ________ ________ ________ ________ ________ ________ ________

Figure 30. RRS ATRQUERY RC Table (ATRFPRCL)

Using RRS Panels

578 z/OS V2R1.0 MVS Programming: Resource Recovery

Working with UR selection profiles
RRS ISPF Panels allow you to save and reuse sets of UR selection criteria. From the
main selection panel shown in Figure A-2 on page A-4, you can select the
"Display/Update RRS UR selection criteria profiles" option to access a subpanel to
manage your currently defined UR selection profiles. You can rename, copy, or
delete a profile from this panel. You can also select a profile to view or update its
settings as in the panel shown in Figure 29 on page 577.

A partitioned dataset (PDS) is allocated, if one does not already exist, to hold the
profiles. The data set name is in the pattern: hlq.ATR.PROFILE', where hlq is the
high level qualifier. RRS has an option in the UR selection panel and the profile
selection panel to allow you to specify a high level qualifier. The high level
qualifier you provide can contain periods, so you may provide multiple qualifiers.
If you do not specify a high level qualifier, RRS will use your TSO user PREFIX. If
you do not have a TSO user PREFIX, your TSO userid will be used.

Each member in the partitioned data set represents a single profile, with the same
name as specified in the Profile name field.

A partitioned data set extended (PDSE) can be used instead of a PDS as long as
the PDSE is allocated prior to using the RRS ISPF Panels. When using a PDSE,
there could be instances when message "Permanent I/O error" is issued by the RRS
panel processing indicating the data set is out of space. Contact your System
Programmer to discuss how to correct the error.

Following are some samples of UR panels.

RRS UR Selection Profiles
Command ===> ___ Scroll ===> ____

Options: s-Select r-Rename c-Copy d-Delete

Profile Name ________ Profile Data Set HLQ . . ________

Option Profile Prompt Description
_ ________ ________ __

Figure 31. UR Selection Profiles (ATRFPURP)

Using RRS Panels

Chapter 10. Using RRS panels 579

The UR list panel shows the UR identifier, the system and logging group the UR is
on, and the state of each UR, along with its UR type and comments about the UR.
If more than one UR met your criteria, the list is scrollable. To work with a specific
UR, select it and choose the action you want to perform.

The panels shown in Figure 32 and Figure 33 on page 582 may display the
following comments about a UR:

Table 29. UR Comments

UR comment Meaning

A The UR is waiting for the child or subordinate application to
signal that it is complete (ready for the syncpoint to be
driven).

C The UR is a child UR in a cascaded UR family.

D The UR is damaged.

E The UR is waiting for a resource manager to reply to a
syncpoint exit.

L The UR is in local transaction mode.

M The UR is in a heuristic mixed condition.

P The coordinator UR is waiting for a response from RRS on one
or more remote systems in the sysplex.

R The UR information came from the RRS Restart log stream.

S The UR is part of a multisystem cascaded UR family.

T The UR is the top-level UR of a cascaded UR family.

U The UR information came from the RRS Main or Delayed log
stream.
Note: This entry usually represents an incomplete child UR in
a multisystem cascaded transaction on a subordinate system
where either RRS or the system itself has failed and the parent
UR is still active on the coordinator system.

X The UR and its interests are not all in the same state.

RRS Unit of Recovery List
Command ===> ___ Scroll ===> ____

Commands: v-View Details c-Commit b-Backout r-Remove Interest f-View UR Family

S UR Identifier System Logging Group
State Type Comments

_ ________________________________ ________ ________
____________ ____ __________

Figure 32. UR List (ATRFPURL)

Using RRS Panels

580 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 29. UR Comments (continued)

UR comment Meaning

* A portion of the syncpoint represented by this UR has been
marked deferred.

? The UR contains information that this release of RRS does not
understand. For example, the Release 1.3 level of RRS does not
understand the XID data present in some release 2.5 log
blocks, and the comments field will display a ? to indicate
this.

You can:
1. Obtain additional details about the UR including any associated expressions of

interest. Enter v on the command line to view details. The format of the
information you receive appears in Figure 33 on page 582.
From the panel shown in Figure 33 on page 582, you can enter v to obtain
information about expressions of interest in the UR. See Figure 34 on page 582.
You can also enter r to remove an interest. “Removing a resource manager
interest in a UR” on page 588 describes how to continue.
From the panel shown in Figure 33 on page 582, you can also place a non-blank
character in the Display Work IDs field, to present a separate panel showing
the work identifiers, either formatted or unformatted depending on your
specification in the Display IDs formatted field. If you specify formatted
output, the work identifiers are displayed via the panel shown in Figure 36 on
page 585. Unformatted output identifiers are displayed via the panel shown in
Figure 37 on page 585.

2. Change the state of the UR from In-Doubt to In-Commit. Enter c on the
command line. You will receive a confirmation panel so that you can verify the
change.
RRS will reject the request when:
v The UR is not In-Doubt.
v You are trying to process a UR that contains information that this release of

RRS does not understand.

Note: Using this command to change the UR state bypasses normal protocols.
Its use can leave data in an inconsistent state.

3. Change the state of the UR from In-Doubt to In-Backout. Enter b on the
command line. You will receive a confirmation panel so that you can verify the
change.
RRS will reject the request when:
v The UR is not In-Doubt.
v You are trying to process a UR that contains information that this release of

RRS does not understand.

Note: Using this command to change the UR state bypasses normal protocols.
Its use can leave data in an inconsistent state.

4. Remove an interest associated with the UR. Enter r to remove an interest.
“Removing a resource manager interest in a UR” on page 588 describes how to
continue.

5. View the UR's UR family details. Enter f to view UR family details. Cascaded
UR family information is displayed via the panel shown in Figure 35 on page
583

Using RRS Panels

Chapter 10. Using RRS panels 581

583. The f command can be used to display the entire multisystem cascaded
UR family for a given top level UR or child UR.

Note: The "Create time" format (GMT|Local) defaults to the value entered on the
"RRS Global Panel Options" panel. See Figure 21 on page 566.

From the panel shown in Figure 34, you can see the status of a UR interest. This
interest has four possible values described in Table 30 on page 583: If you select
"Display Persistent Interest Data" from the panel shown in Figure 34, you can see
the results in Figure 38 on page 586.

RRS Unit of Recovery Details
Command ===> ___ Scroll ===> ____

Commands r-Remove Interest v-View URI Details

UR identifier : ________________________________
Create time : ______________________________ GMT Comments: ________________
UR state : ____________ UR type : ____
System : ________ Logging Group : ________
SURID : __
Work Manager Name : ________________________________
_ Display Work IDs _ Display IDs formatted

Luwid . : ___________
Eid . . : ___________
Xid . . : ___________

Expressions of Interest:
S RM Name Type Role
_ ________________________________ ____ ____________

Figure 33. UR Details (ATRFPURD)

RRS URI Details
Command ===> ___

UR identifier :
URI token . . :
RM name . . . :
Type : Status . :
Role : State . :
SURID:

Display persistent interest data

Exit/State Status Duration
BACKOUT . . . :
COMPLETION . . :
COMMIT :
DSE/IN_DOUBT . :
End_UR :
EXIT_FAILED . :
ONLY_AGENT . . :
PRE_PREPARE . :
PREPARE . . . :
STATE_CHECK . :

Figure 34. UR Interest Details (ATRFPURE)

Using RRS Panels

582 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 30. UR Interest Status

Status description Meaning

ACTIVE The interest in the unit of recovery is active
and has not reached forgotten state.

COMPLETE The interest in the unit of recovery is
complete and has reached forgotten state.

DEFERRED The interest in the unit of recovery is active;
however, some processing has occurred to
defer its execution. A resource manager may
have responded ATRX_LATER to an exit,
indicating that the resource manager will
return to RRS later with the processing
results for the current state of the unit of
recovery.

The unit of recovery is marked deferred if
its interest was being processed by an RRS
server task, but it was deferred because the
syncpoint processing was required to wait
for some event. The interest will remain
deferred until the event occurs. After the
event occurs, the interest will return to
ACTIVE status.

RESTREQ The Resource Manager has failed with RRS,
and has not yet restarted this interest.
Note: RRS could have failed, causing the
failure for all Resource Managers.Regardless
of the reason, if the Resource Manager has
not completed enough of the restart
processing to transition this interest to
ACTIVE state.

Note: If there is some question about the state of the Resource Manager with RRS, you
may wish to go to the main RRS selection panel, shown in Figure 20 on page 564, and opt
to have RRS display the current state for this Resource Manager.

Note: The "Top-level Create Time" format (GMT|Local) defaults to the value
entered on the "RRS Global Panel Options" panel. See Figure 21 on page 566.

RRS Cascaded UR Family
Command ===> ___ Scroll ===> ____

Commands v-View Details c-Commit b-Backout
Top-level UR identifier : ________________________________
Top-level Work Manager : ________________________________
Top-level Create Time . : ______________________________ GMT
SURID : __
Comments : ____________________
Family State : ____________
Cascaded UR Family:
S Level UR Identifier System Type Comments
_ _____ ________________________________ ____________ ____ __________

Figure 35. Cascaded UR Family (ATRFPCFD)

Using RRS Panels

Chapter 10. Using RRS panels 583

The panel shown in Figure 35 on page 583 displays information about a cascaded
UR family. The information is displayed in two parts. The first part contains
information about the top-level UR of the family, and information pertaining to all
the URs in the family. The second part is a scrollable list of all the URs in the
family. The list is displayed in order from the top-level UR to the lowest level
cascaded child URs.

Only a top-level UR in in-doubt state can be committed or backed out via the
Cascaded UR Family panel.

Exit duration inconsistencies
System programmers may notice the reported total elapsed time of a syncpoint
event that is not equal to the cumulative time spent driving resource manager exits
for syncpoint processing. This anomaly is explained by two timing behaviors:
v Uncaptured time can cause an observed exit time accumulation somewhat

smaller than the reported total. Uncaptured time occurs when RRS does not
capture time it spends in preparation of driving a resource manager exit, but this
time appears as part of the total syncpoint duration.

v Multi-programming can cause an observed exit time accumulation exceeding the
reported total elapsed time duration. Multi-programming is the driving of
multiple exits for the same syncpoint simultaneously, resulting in an overall
smaller elapsed time than the accumulation duration of all the exits.

Exit duration and RRS failures
RRS does not harden exit durations (although it does harden Unit of Recovery
creation time). Therefore, if RRS fails, the system programmer may notice zero
length durations for states previously completed and logged. Because of resource
manager restart processing, the system programmer may also see resource
manager interests regress in state. For example, if an interest has progressed past
the COMMIT state to the IN_END state, upon restart the interest would be
returned to the COMMIT state. In these cases, if RRS has not failed across the
resource manager restart, all durations prior to the COMMIT state are preserved
and are displayable; however, the exit duration for COMMIT state and all exit
durations following the COMMIT state are reset. If RRS has failed, then all
durations prior to the COMMIT state are reported as having a zero length.

Similar processing is performed for restart interests returned in BACKOUT state.
BACKOUT state has the exception, however, that a phase-1 exit (of the two-phase
commit protocol) may have failed. If RRS has not failed across the resource
manager restart, RRS will report any incomplete exit in phase-1 as having been
completed during the restart process. Therefore, durations for the incomplete exits
are reported as the difference between the resource manager restart time and the
time the exit was originally driven.

Using RRS Panels

584 z/OS V2R1.0 MVS Programming: Resource Recovery

The panel shown in Figure 36 is scrollable, because the formatted work identifiers
will not fit on a standard 24x80 screen.

The GTID, GTRID, and BQUAL are all displayed in standard IPCS hex dump format
like:
0- F 00010203 04050607 08090A0B 0C0D0E0F |................|
10-1F 10111213 14151617 18191A1B 1C1D1E1F |................|
20-27 20212223 24252627 |........ |

RRS Unit of Recovery Work IDs

UR identifier : ________________________________

Logical Unit of Work Identifier (LUWID):

NetID.LuName : _________________
TP Instance : ____________
SeqNum . . . : ____

Enterprise Identifier (EID)
TID : ____________ (decimal)
GTID : __

__
__

X/Open Transactions Identifier (XID)
Format ID : ____________ (decimal)

____________ (hexadecimal)
GTRID : __

__
__
__
__
__
__
__

BQUAL : __
__
__
__
__
__
__
__

Figure 36. Formatted UR Work IDs (ATRFPIDF)

RRS Unit of Recovery Work IDs

UR identifier : ________________________________

Logical Unit of Work Identifier (LUWID)
__

Enterprise Identifier (EID)
__
__

X/Open Transactions Identifier (XID)
__
__
__
__

Figure 37. Unformatted UR Work IDs (ATRFPIDU)

Using RRS Panels

Chapter 10. Using RRS panels 585

Figure 38 is displayed if you click on "Display Persistent Interest Data" from the
panel shown in Figure 34 on page 582.

Mixed unit of recovery states
Certain events and conditions can cause the interests in a UR to be in different
states from not only other interests in the UR, but also the overall state or the UR
itself. The RRS system management query function will accurately reflect these
mixed interest states. The following list of syncpoint events can cause interests in a
given UR and the overall UR to be in mixed states:
v Resource manager failure: When a resource manager fails while it has an

interest in a UR, the syncpoint processing for the UR is allowed to proceed. The
UR will progress in state, but the failed expression of interest will not proceed
until the resource manager restarts with RRS, and indicates that it is ready to
continue processing the syncpoint. Since units of recovery can have numerous
expressions of interests from a variety of resource managers depending on the
complexity of the transaction, it is clear that multiple failures of resource
managers and the asynchronous nature of resource manager restart can cause
this mixed state condition.

v Resource manager optimization: A resource manager can respond to RRS that it
has completed all of the syncpoint processing for a UR. RRS will transition that
resource manager's interest to IN_FORGET state immediately, even though the
overall UR state has not progressed to IN_FORGET. A resource manager can also
respond to RRS that it has completed the critical syncpoint processing for a
given UR, and syncpoint processing can continue.

v Timing: The RRS system management query function examines the RRS data
structures in an unserialized manner to minimize the impact of the query to the
component's performance. Since the query function is running unserialized,
inconsistencies in state can sometimes appear.

Working with work manager information
From the resource manager selection panel, shown in Figure 39 on page 587, you
can identify a specific work manager or press Enter to see a scrollable list of work
managers. If you know, for example, the work manager associated with an
application that you need to check on, you can go directly to that work manager.

You can display any work managers that:
v Own contexts that have incomplete units of recovery on this system; or,
v Own or owned contexts that have incomplete units of recovery which are

currently not active with RRS on any system, but were last active on this system.

RRS URI Persistent Interest Data

Command ===>

UR identifier : BC94B8A07E25C0000000000001010000
URI token . . : 7E15C000000000000055000155555555

Offset PI Data
000-00F 00010203 04050607 08090A0B 0C0D0E0F |................|
010-01F 10111213 14151617 18191A1B 1C1D1E1F |................|
020-027 20212223 24252627 |........ |

Figure 38. RRS URI Persistent Interest Data (ATRFPPDT)

Using RRS Panels

586 z/OS V2R1.0 MVS Programming: Resource Recovery

Note: If a native context has an incomplete unit of recovery, the work manager
name reported by RRS is reported as the following concatenated string:
v SystemName
v Period (.)
v JobName of the native context address space
v Period (.)
v ASID (4 bytes readable hexadecimal)
v Blanks (padded to 32 bytes)

Note: You can specify wildcard characters in the specification of work manager
names, system names, and logging group names to display: * for zero or more
characters, and ? for any single character.

After you have made your selection, RRS lists the work managers you have
selected. Figure 40 on page 588 shows the format of the scrollable list. The returned
information is sorted alphanumerically with a primary ascending sort key of
logging group name and a secondary ascending sort key of system name. Press
PF6 to refresh the list and display the new list of work managers that match the
resource manager name string you supply.

Note: The work manager panels will not show UR information from the restart log
stream for cascaded or multisystem cascaded transactions.

RRS Work Manager Selection
Command ===> __

Optionally provide a work manager name, system name, and logging group
patterns and press Enter:

WM name ________________________________
System name ________
Logging group . . . ________

If left blank, system name and logging group will default to the current
system’s name and group.

Figure 39. Work Manager Selection (ATRFPWMS)

Using RRS Panels

Chapter 10. Using RRS panels 587

Removing a resource manager interest in a UR
When you indicate that you want to remove an interest that a resource manager
has in a UR, you see the panel shown in Figure 41.

Note: Use extreme caution when removing interest in a UR – Only do this action
as a last resort.

Both the RM name and the UR identifier on the Remove Interest panel might be
filled in when you see the panel. You can change either field, and you must be
sure that at least one of the fields is filled in. If you supply only a resource
manager name, the system removes all the resource manager's interests from all
associated URs. If you supply only a UR identifier, the system removes all resource
managers' interests associated with the UR.

RRS Work Manager List
Command ===> ___ Scroll ===> ____

Commands: u-View URs

S WM Name System Logging Group
_ _________________________________ ________ ________

Figure 40. Work Manager List (ATRFPWML)

RRS Remove Interest Confirmation
Command ===> __

You are requesting that some resource manager interests be removed from
one or more URs.
RM name : ________________________________
UR identifier . . : ________________________________
System : ________________________________
Logging Group . . : ________________________________
SURID : ________________________________

Press ENTER to continue, PF3 to cancel

Figure 41. Remove Interest Confirmation (ATRFPRIN)

Using RRS Panels

588 z/OS V2R1.0 MVS Programming: Resource Recovery

Specifying both a resource manager name and a UR identifier removes only
interests the specified resource manager has in the specified UR.

The panel displays the system, logging group, and SURID associated with the UR,
but these fields are only informational. They can help you verify that the correct
URs are being processed. You must choose a specific RM name, UR identifier, or
both when you want to remove interest.

When you are ready, press Enter. You will receive a confirmation panel so that you
can verify your action.

RRS will prevent you from removing an interest in a UR when:
v Any resource manager associated with the request to remove an interest is still

active with RRS.
v You are trying to remove a particular resource manager's interest in an in-doubt

UR when the resource manager is functioning as the distributed syncpoint
resource manager (DSRM) or server distributed syncpoint resource manager
(SDSRM) for the UR.

v You are trying to remove interest in a UR that contains information that this
release of RRS does not understand.

Working with RRS system information
When you request RRS related system information from the main selection panel,
you can ask for information on specific systems or logging groups using the panel
shown in Figure 42.

Note: You can specify wildcard characters in the specification of system names and
logging group names to display: * for zero or more characters, and ? for any single
character.

Based on your selections, you will receive data in the scrollable panel shown in
Figure 43 on page 590. If you don't select specific or wildcarded system names or
logging groups, all the system names and logging groups active with RRS are

RRS System Information Selection
Command ===> __

Optionally provide a system name and logging group patterns and press Enter:

System name ________
Logging group . . . ________

If left blank, system name and logging group will default to ’*’.

Figure 42. RRS System Information Selection (ATRFPSIS)

Using RRS Panels

Chapter 10. Using RRS panels 589

displayed.

RRS System Information List
Command ===> ___ Scroll ===> ____

System Name Logging Group Name
________ ________

Figure 43. RRS System Information List (ATRFPSIL)

Using RRS Panels

590 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 11. ATRQUERY — Obtain RRS Information

The ATRQUERY macro allows callers to:
v Retrieve information about resource managers that are involved with RRS

processing
v Retrieve information about units of recovery (URs)
v Retrieve information about resource manager metadata.

Environment

The requirements for the caller are:

Minimum authorization: Problem state, any PSW key, or RACF authority as defined
in the following paragraphs

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held
Control parameters: Control parameters must be in the primary address space.

If your installation uses the RACF component of SecureWay for z/OS to control
access to RRS information, ATRQUERY requires READ access to one of two RACF
resources in the FACILITY class.

To view URs on other systems in a sysplex, ATRQUERY requires READ access to
the MVSADMIN.RRS.COMMANDS.gname.sysname resource in the FACILITY class,
where gname is the target logging group name, and sysname is the target system
name. You may create a RACF profile to permit access to multiple logging groups
and systems by including RACF valid generic characters (**, *, and %) in gname
and sysname. See the z/OS Security Server RACF Security Administrator's Guide and
z/OS Security Server RACF Command Language Reference for more information about
using these RACF generic characters and defining RACF profiles. By permitting
READ access through this profile, you can allow users to view RRS information on
any number of systems in the sysplex.

If you are running RRS on a single system, ATRQUERY requires READ access to
either the MVSADMIN.RRS.COMMANDS.gname.sysname resource or the
MVSADMIN.RRS.COMMANDS resource in the FACILITY class. The
MVSADMIN.RRS.COMMANDS resource only allows access to RRS system
management functions on the current system. You cannot use the
MVSADMIN.RRS.COMMANDS resource to allow or disallow use of RRS on
another system.

ATRQUERY does not check the SYSSTATE global variable or the SPLEVEL global
variable.

Programming requirements

ATRQUERY callers must include the following mapping macros: ATRFZQRY, CVT,
IHAECVT

© Copyright IBM Corp. 1997, 2013 591

To use the ATR_* constants referenced in the keyword descriptions, ATRQUERY
callers must include the ATRRASM mapping macro.

Restrictions

None.

Input register information

Before issuing the ATRQUERY macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0 Contains the reason code

1-13 Unchanged

14 Used as a work register by the system.

15 Contains the return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

The ATRQUERY macro is written as follows:

Note: Keywords prefaced with a vertical bar (|) are mutually exclusive.

name name: symbol. Begin name in column 1.

� One or more blanks must precede ATRQUERY.

ATRQUERY

� One or more blanks must follow ATRQUERY.

REQUEST=RMINFO
|REQUEST=WMINFO

ATRQUERY Macro

592 z/OS V2R1.0 MVS Programming: Resource Recovery

|REQUEST=SYSINFO
|REQUEST=URINFO

,RMNAME=rmname rmname: RS-type address or address in register (2) - (12).

,WMNAME=wmname wmname: RS-type address or address in register (2) - (12).

,ASID=asid asid: RS-type address or address in register (2) - (12).

,URID=urid urid: RS-type address or address in register (2) - (12).

|,URIDSTR=uridstr uridstr: RS-type address or address in register (2) - (12).

,SURID=surid surid: RS-type address or address in register (2) - (12).

|,SURIDSTR=suridstr suridstr: RS-type address or address in register (2) - (12).

,URTYPE=urtype urtype: symbol or value in register (2) - (12).

,URSTATE=urstate urstate: symbol or value in register (2) - (12).

|,URSTMASK=urstmask urstmask: RS-type address or address in register (2) - (12).

,LUWID=luwid luwid: RS-type address or address in register (2) - (12).

|,LUWIDSTR=luwidstr luwidstr: RS-type address or address in register (2) - (12).

,TID=tid tid: RS-type address or address in register (2) - (12).

|,TIDLOW=tidlow tidlow: RS-type address or address in register (2) - (12).

|,TIDHIGH=tidhigh tidhigh: RS-type address or address in register (2) - (12).

,GTID=gtid gtid: RS-type address or address in register (2) - (12).

|,GTIDSTR=gtidstr gtidstr: RS-type address or address in register (2) - (12).

|,XID=xid xid: RS-type address or address in register (2) - (12).

|,XIDFORMATIDSTR=
xidformatidstr

xidformatidstr: RS-type address or address in register (2) - (12).

|,XIDGTRIDSTR=
xidgtridstr

xidgtrridstr: RS-type address or address in register (2) - (12).

|,XIDBQUALSTR=
xidbqualstr

xidbqualstr: RS-type address or address in register (2) - (12).

,RMNAME=rmname rmname: RS-type address or address in register (2) - (12).

,WMNAME=wmname wmname: RS-type address or address in register (2) - (12).
,GNAME=gname gname: RS-type address or address in register (2) - (12).
,SYSNAME=sysname sysname: RS-type address or address in register (2) - (12).
,METADATA

,TODBEG=todbeg todbeg: RS-type address or address in register (2) - (12).

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 593

,TODEND=todend todend: RS-type address or address in register (2) - (12).

,CURDUR=curdur curdur: RS-type address or address in register (2) - (12).

,DEFURONLY=defuronly defuronly: RS-type address or address in register (2) - (12).

|,EXCLMASK=exclmask exclmask: RS-type address or address in register (2) - (12).

,SORTTAB=sorttab sorttab: RS-type address or address in register (2) - (12).
,SORTNUM=sortnum sortnum: RS-type address or address in register (2) - (12).

Note: SORTTAB and SORTNUM must be specified together, on the same
line, separated by a comma.

,EXINFOMASK=exinfomask exinfomask: RS-type address or address in register (2) - (12).

,AREAADDR=areaaddr areaaddr: RS-type address or address in register (2) - (12).

,AREALEN=arealen arealen: RS-type address or address in register (2) - (12).
,AREAALET=areaalet areaalet: RS-type address or address in register (2) - (12).
|,AREAOPT=BYADDR Return complete addresses in the control structures
|,AREAOPT=BYOFFSET Return offsets from the beginning of the storage area in the control structures

,COUNT=count count: RS-type address or address in register (2) - (12).

,RCTABLE=rctable rctable: RS-type address or address in register (2) - (12).
,RCNUM=rcnum rcnum: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5
,PLISTVER=6
,PLISTVER=7

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Parameters

The parameters are explained as follows:

ATRQUERY Macro

594 z/OS V2R1.0 MVS Programming: Resource Recovery

name
An optional symbol, starting in column 1, that is the name on the ATRQUERY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=RMINFO
REQUEST=WMINFO
REQUEST=SYSINFO
REQUEST=URINFO

A required parameter that specifies the requested ATRQUERY function.

You must provide a storage area for the returned information. The
AREAADDR, AREALEN, and AREAALET parameters define the storage area.
If the storage area is not large enough to hold all the information to be
returned, a warning return code is set, along with a reason code to identify the
problem. The number of entries is returned in the COUNT field.

REQUEST=RMINFO
Retrieves information about resource managers that are involved with RRS
processing. The information includes resource managers that are:
v Currently active with RRS on any systems in the sysplex that match all

of the specified filters
v Currently not active with RRS on any system but were logged as last

active with RRS on a system and match all of the specified filters

Note: Resource managers that are currently active with RRS/MVS are ones
that have exits set with RRS.

When you specify REQUEST=RMINFO, DSECT ATRFZRM in mapping
macro ATRFZQRY maps the storage area.

ATRQUERY returns this information sorted alphanumerically with a
primary ascending sort key of logging group name and a secondary
ascending sort key of system name.

REQUEST=WMINFO
Retrieves information about work managers that are involved with
RRS/MVS processing. The information includes work managers that:
v Own contexts that have incomplete units of recovery on this system; or,
v Own or owned contexts that have incomplete units of recovery which

are currently not active with RRS on any system, but were last active on
this system.

Note: If a native context has an incomplete unit of recovery, the work
manager name reported by RRS is reported as the following concatenated
string:
v SystemName
v Period (.)
v JobName of the native context address space
v Period (.)
v ASID
v Blanks (padded to 32–bytes)

When you specify REQUEST=WMINFO, DSECT ATRFZWM in mapping
macro ATRFZQRY maps the storage area.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 595

REQUEST=SYSINFO
Retrieves information about RRS itself.

When you specify REQUEST=SYSINFO, DSECT ATRFZSI in mapping
macro ATRFZQRY maps the storage area.

ATRQUERY returns this information sorted alphanumerically with a
primary ascending sort key of logging group name and a secondary
ascending sort key of system name.

REQUEST=URINFO
Retrieves information about units of recovery (URs) that are active on
systems in the sysplex that match all of the specified filters.

When you specify REQUEST=URINFO, DSECTs ATRFZUR and ATRFZURI
in mapping macro ATRFZQRY map the storage area.

,RMNAME=rmname
With REQUEST=RMINFO or REQUEST=URINFO, an optional parameter that
contains the resource manager name.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

When you specify RMINFO and RMNAME, the system uses the specified
value as a filter on the returned information, only returning information about
the resource managers matching the pattern you specify for this or any other
filters. These resource managers must be:
v Currently active on this system; or,
v Currently inactive, but were active on this system in the past.

When you specify URINFO and RMNAME, the system returns information
about the URs associated with the resource manager you name. When you
specify URINFO without RMNAME, the system returns information about all
currently active resource managers.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field that contains a resource manager name. The name can consist
of the following printable characters:
v Alphanumeric characters: A-Z and 0-9.
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C').
v The period (.).
v The underscore (_).
v The trailing blank characters needed to fill the 32-byte field.
v The wildcard characters: * and ?.

The name may not start with a blank or contain embedded blanks. Lower case
characters are folded to upper case characters.

,WMNAME=wmname
With REQUEST=WMINFO or REQUEST=URINFO, an optional parameter that
contains the work manager name.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

ATRQUERY Macro

596 z/OS V2R1.0 MVS Programming: Resource Recovery

When you specify WMNAME, the system returns information about the work
managers matching the pattern you specify. These work managers must be
managing currently incomplete units of recovery that:
v Are currently active on this system; or,
v Were last active on this system.

When you omit WMNAME, the system returns information about all work
managers that are managing currently incomplete units of recovery that:
v Are currently active on this system; or,
v Were last active on this system.

When you specify URINFO and WMNAME, the system returns information
about the URs associated with the work manager you name. When you specify
URINFO without WMNAME, the system returns information about all
currently active work managers.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field that contains a work manager name. The name can consist of
the following printable characters:
v Alphanumeric characters: A-Z and 0-9.
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C').
v The period (.).
v The underscore (_).
v The trailing blank characters needed to fill the 32-byte field.
v The wildcard characters: * and ?.

The name may not start with a blank or contain embedded blanks. Lower case
characters are folded to upper case characters.

,GNAME=gname
With REQUEST=RMINFO, REQUEST=WMINFO, REQUEST=SYSINFO or
REQUEST=URINFO, an optional parameter that contains the logging group
name.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

When you specify GNAME, the system uses the specified value as a filter on
the returned information, only returning information matching the pattern you
specify.

When you omit GNAME, ATRQUERY uses the current system's logging group
name as a filter on the information returned. To obtain information for all the
systems in a sysplex, specify an asterisk (*) for both GNAME and SYSNAME.
To obtain information for all the systems in a specific logging group, specify
the logging group name for GNAME and specify an asterisk (*) for SYSNAME.

To code: Specify the RS-type address, or address in register (2)-(12), of a
8-character field that contains a logging group name. The name can consist of
the following printable characters:
v Alphanumeric characters: A-Z and 0-9.
v National characters: $ (X'5B'), # (X'7B'), @ (X'7C').
v The period (.).
v The underscore (_).

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 597

v The trailing blank characters needed to fill the 8-byte field.
v The wildcard characters: * and ?.

The name may not start with a blank or contain embedded blanks. Lower case
characters are folded to upper case characters.

,SYSNAME=sysname
With REQUEST=RMINFO, REQUEST=WMINFO, REQUEST=SYSINFO or
REQUEST=URINFO, an optional parameter that contains the system name.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

When you specify SYSNAME, the system uses the specified value as a filter on
the returned information, only returning information matching the pattern you
specify.

When you omit SYSNAME, ATRQUERY uses the current system's system
name as a filter on the information returned. To obtain information for all the
systems in a sysplex, specify an asterisk (*) for both GNAME and SYSNAME.

To code: Specify the RS-type address, or address in register (2)-(12), of a
8-character field that contains a system name.

,METADATA
With REQUEST=RMINFO, an optional keyword that indicates that if the
resource manager has stored Meta Data, it will be returned as part of the
resource manager's information. When you omit METADATA, no Meta Data
information will be returned.

,ASID=asid
When you specify REQUEST=URINFO, an optional input parameter that
contains the address space identifier (ASID) of the address space where the
application you are interested in is running. The system returns information
about URs associated with this address space.

Note: This parameter is left for compatibility with previous releases. IBM
recommends the usage of WMNAME instead of this parameter.

To code: Specify the RS-type address, or address in register (2)-(12), of a
halfword field.

,URID=urid
When you specify REQUEST=URINFO, an optional parameter that contains
the identifier of the specific UR for which information is to be returned. (To
obtain the UR identifier, call the Express_UR_Interest service.)

Note: URID and URIDSTR are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,URIDSTR=uridstr
When you specify REQUEST=URINFO, an optional parameter that contains
the EBCDIC representation of the 16–character identifier of the specific UR for
which information is to be returned.

ATRQUERY Macro

598 z/OS V2R1.0 MVS Programming: Resource Recovery

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

Note: URID and URIDSTR are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,SURID=surid
When you specify REQUEST=URINFO, an optional parameter that contains
the sysplex UR identifier of the specific cascaded UR family for which
information is to be returned. You can obtain a sysplex UR identifier from a
log entry in the Restart, Main, or Delayed log stream or from a prior
ATRQUERY URINFO macro invocation.

Note: SURID and SURIDSTR are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

,SURIDSTR=suridstr
When you specify REQUEST=URINFO, an optional parameter that contains
the EBCDIC representation of the 32–character sysplex UR identifier of the
specific cascaded UR family for which information is to be returned.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

Note: SURID and SURIDSTR are mutually exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
64-character field.

,URTYPE=urtype
When you specify REQUEST=URINFO, an optional input parameter that
contains the type of UR for which information is to be returned.

Use one of the following constants:

ATR_NOFILTER
The UR type will not be used to filter the returned information.

ATR_PROTECTED
The system will return all URs in which at least one resource manager has
a protected interest.

ATR_UNPROTECTED
The system will return all URs in which no resource manager has a
protected interest.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,URSTATE=urstate
When you specify REQUEST=URINFO, an optional parameter that specifies
the state that a given UR or interest in a given UR must be in to be returned.

Note: URSTATE and URSTMASK are mutually exclusive keywords.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 599

Use one of the following values:

ATR_NOFILTER
The UR state will not be used to filter the returned information.

ATR_IN_FLIGHT
In-Flight URs only.

ATR_IN_STATE_CHECK
In-State_Check URs only.

ATR_IN_PREPARE
In-Prepare URs only.

ATR_IN_DOUBT
In-Doubt URs only.

ATR_IN_COMMIT
In-Commit URs only.

ATR_IN_BACKOUT
In-Backout URs only.

ATR_IN_END
In-End URs only.

ATR_COMPLETE
Complete URs only.

Note: This parameter is left for compatibility. IBM recommends the usage
of the ATR_IN_COMPLETION parameter.

ATR_IN_COMPLETION
In-Completion URs only.

ATR_IN_ONLY_AGENT
In-Only-Agent URs only.

ATR_IN_FORGET
In-Forget URs only.

To code: Specify the value, or register (2)-(12) that contains the value.

,URSTMASK=urstmask
When you specify REQUEST=URINFO, an optional parameter that specifies a
32–bit mask identifying one or more states of the URs or interests in the URs
to be returned.

Note: URSTATE and URSTMASK are mutually exclusive keywords.

The following bit constants can be used to create the fullword bit mask:

ATR_NOFILTER_MASK (X'00000000')
The UR state will not be used to filter the returned information.

ATR_IN_FLIGHT_MASK (X'80000000')
Include In-Flight URs.

ATR_IN_STATE_CHECK_MASK (X'40000000')
Include In-State_Check URs.

ATR_IN_PREPARE_MASK (X'20000000')
Include In-Prepare URs.

ATR_IN_DOUBT_MASK (X'1000000')
Include In-Doubt URs.

ATRQUERY Macro

600 z/OS V2R1.0 MVS Programming: Resource Recovery

ATR_IN_COMMIT_MASK (X'08000000')
Include In-Commit URs.

ATR_IN_BACKOUT_MASK (X'04000000')
Include In-Backout URs.

ATR_IN_END_MASK (X'02000000')
Include In-End URs.

ATR_IN_COMPLETION_MASK (X'01000000')
Include In-Completion URs.

ATR_IN_ONLY_AGENT_MASK (X'00800000')
Include In-Only-Agent URs.

ATR_IN_FORGET_MASK (X'00400000')
Include In-Forget URs.

To code: Specify the value, or register (2)-(12) that contains the value. For
example, if the value passed via this parameter is X'0C000000', both the
ATR_IN_COMMIT_MASK and the ATR_IN_BACKOUT_MASK are specified.
URs that are in commit or backout are returned. This definition might be
specified:
CMT_AND_BAK EQU(ATR_IN_COMMIT_MASK+ATR_IN_BACKOUT_MASK)

,LUWID=luwid
When you specify REQUEST=URINFO, an optional input parameter that
specifies the logical unit of work identifier (LUWID) to be used to filter the
returned information.

Note: LUWID and LUWIDSTR are mutually exclusive keywords.

To code: Specify the RS-type address, or address in register (2)-(12), of a
26-character field. A LUWID has the following format:

netid.luname.instnum.seqnum

The fields are as follows:

netid.luname
1-17 character identifier of the network and LU, preceded by a 1-byte
length field

instnum
6-byte TP instance

seqnum
2-byte sequence number

If LUWID and LUWIDSTR are left unspecified, then the LUWID will not be
used as a filter. If LUWIDSTR is specified, but the instnum or the seqnum (or
both) is left unspecified, then that unspecified portion of the LUWID is not
used as a filter.

,LUWIDSTR=luwidstr
When you specify REQUEST=URINFO, the address of an optional 35–character
EBCDIC representation of the LUWID with commas or blanks used to delimit
the netid.luname, instnum, and seqnum fields.

Note: The netid.luname string you specify may include wildcard characters.
An asterisk (*) represents any string having a length of zero or more
characters. A question mark (?) represents a position which may contain any
single character. The instnum and seqnum are optional. However, if the

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 601

seqnum is specified without the instnum, the delimiter between instnum and
seqnum is still required. For example: ABC.LUNAME,,12

Here are some more examples of valid LUWIDSTR pattern specifications:
.,99,12
ABC.*
ABC.*,12
ABC.*,,12
A?C.LUNA??

If LUWID and LUWIDSTR are left unspecified, then the LUWID will not be
used as a filter. If LUWIDSTR is specified, but the instnum or the seqnum (or
both) is left unspecified, then that unspecified portion of the LUWID is not
used as a filter.

Note: LUWID and LUWIDSTR are mutually exclusive keywords.

To code: Specify the RS-type address, or address in register (2)-(12), of a
35-character field.

,TID=tid
When you specify REQUEST=URINFO, an optional input parameter that
contains the transaction identifier (TID) to be used to filter the returned
information. If you specify TID=ATR_NOFILTER, this keyword is ignored.

Note: TID may not be specified if either TIDLOW or TIDHIGH is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-byte
field that contains the TID part of the Enterprise identifier (EID). An EID has
the following format:

tidgtid

,TIDLOW=tidlow
When you specify REQUEST=URINFO, an optional input parameter that
specifies that URs having transaction identifiers (TID) that are equal to or
higher than one specified are returned. The low range indicator is set by
default to be a value lower than, or equal to, all transaction identifiers. If
TIDLOW and TIDHIGH are both specified, URs that have transaction
identifiers that are between the TIDLOW and TIDHIGH values, inclusive, are
returned.

Note: TID may not be specified if either TIDLOW or TIDHIGH is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-byte
field that contains the lowest desired TID part of the Enterprise identifier
(EID). An EID has the following format:

tidgtid

,TIDHIGH=tidhigh
When you specify REQUEST=URINFO, an optional input parameter that
specifies that URs having transaction identifiers (TID) that are equal to or
lower than one specified are returned. The high range indicator is set by
default to be a value higher than, or equal to, all transaction identifiers. If
TIDLOW and TIDHIGH are both specified, URs that have transaction
identifiers that are between the TIDLOW and TIDHIGH values, inclusive, are
returned.

Note: TID may not be specified if either TIDLOW or TIDHIGH is specified.

ATRQUERY Macro

602 z/OS V2R1.0 MVS Programming: Resource Recovery

To code: Specify the RS-type address, or address in register (2)-(12), of a 4-byte
field that contains the highest desired TID part of the Enterprise identifier
(EID). An EID has the following format:

tidgtid

,GTID=gtid
When you specify REQUEST=URINFO, an optional input parameter that
contains the global transaction identifier (GTID) to be used to filter the
returned information. If you specify GTID=ATR_NOFILTER, this keyword is
ignored.

Note: GTID and GTIDSTR are mutually exclusive keywords.

To code: Specify the RS-type address, or address in register (2)-(12), of a
40-byte field that contains the GTID part of the Enterprise identifier (EID). An
EID has the following format:

tidgtid

,GTIDSTR=gtidstr
When you specify REQUEST=URINFO, the address of an optional 80–character
input that contains the EBCDIC representation of the 40–character GTID used
to filter the returned information.

Note: The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters. A
question mark (?) represents a position which may contain any single
character.

Note: GTID and GTIDSTR are mutually exclusive keywords.

To code: Specify the RS-type address, or address in register (2)-(12), of an
80-byte field that contains the EBCDIC representation of the GTID part of the
Enterprise identifier (EID). An EID has the following format:

tidgtid

,XID=xid
When you specify REQUEST=URINFO, the address of an optional
140–character input that contains the X/Open Identifier (XID) used to filter the
returned information.

The default is 0. The XID will not be used to filter the returned information.

Note: XID may not be specified if either XIDFORMATID, XIDGTRIDSTR, or
XIDBQUALSTR is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
140-byte field that contains the X/Open Identifier (XID). An XID has the
following format:

FormatIDGtrid_lengthBqual_lengthID

,XIDFORMATIDSTR=xidformatidstr
When you specify REQUEST=URINFO, the address of the EBCDIC
representation of an optional 8–character input that contains the 4–character
FormatID portion of the X/Open Identifier (XID) used to filter the returned
information.

The default is 0. The XIDFORMATIDSTR will not be used to filter the returned
information.

Note:

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 603

1. The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters.
A question mark (?) represents a position which may contain any single
character.

2. XID may not be specified if either XIDFORMATID, XIDGTRIDSTR, or
XIDBQUALSTR is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of the
EBCDIC representation of a 4-byte field that contains the FormatID portion of
the X/Open Identifier (XID).

,XIDGTRIDSTR=xidgtridstr
When you specify REQUEST=URINFO, the address of the EBCDIC
representation of an optional 128–character input that contains the 64–character
GTRID portion of the X/Open Identifier (XID) used to filter the returned
information.

The default is 0. The XIDGTRIDSTR will not be used to filter the returned
information.

Note:

1. The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters.
A question mark (?) represents a position which may contain any single
character.

2. XID may not be specified if either XIDFORMATID, XIDGTRIDSTR, or
XIDBQUALSTR is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of the
EBCDIC representation of a 64-byte field that contains the GTRID portion of
the X/Open Identifier (XID).

,XIDBQUALSTR=xidbqualstr
When you specify REQUEST=URINFO, the address of the EBCDIC
representation of an optional 128–character input that contains the 64–character
BQUAL portion of the X/Open Identifier (XID) used to filter the returned
information.

The default is 0. The XIDBQUALSTR will not be used to filter the returned
information.

Note:

1. The character string you specify may include wildcard characters. An
asterisk (*) represents any string having a length of zero or more characters.
A question mark (?) represents a position which may contain any single
character.

2. XID may not be specified if either XIDFORMATID, XIDGTRIDSTR, or
XIDBQUALSTR is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of the
EBCDIC representation of a 64-byte field that contains the BQUAL portion of
the X/Open Identifier (XID).

,TODBEG=todbeg
When you specify REQUEST=URINFO, an optional 8–byte begin range time of
day (UTC) value used to filter the returned information. URs which were
created at the same time or later than the time specified by this parameter will
be returned. If this parameter is not specified, the starting TOD range is set to
the UTC time of the oldest UR.

ATRQUERY Macro

604 z/OS V2R1.0 MVS Programming: Resource Recovery

Note: If TODBEG and TODEND are both specified, URs that have create times
that are between the TODBEG and TODEND values, inclusive, are returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-byte field.

,TODEND=todend
When you specify REQUEST=URINFO, an optional 8–byte end range time of
day (UTC) value used to filter the returned information. URs which were
created at the same time or earlier than the time specified by this parameter
will be returned. If this parameter is not specified, the ending TOD range is set
to the current UTC time.

Note: If TODBEG and TODEND are both specified, URs that have create times
that are between the TODBEG and TODEND values, inclusive, are returned.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-byte field.

,CURDUR=curdur
When you specify REQUEST=URINFO, an optional 13–byte field character
string in the format hh:mm:ss.ssss containing the minimum duration that a
given UR has been in its current state. If this parameter is not specified, URs
will be returned regardless of how long they have been in their current state.

To code: Specify the RS-type address, or address in register (2)-(12), of a
13-byte field.

,DEFURONLY=defuronly
When you specify REQUEST=URINFO, an optional 3–character string used to
determine if only the URs that are marked deferred should be returned. There
are two possible strings:
v NO — All URs will be returned, including those marked deferred.
v YES — Only URs marked deferred will be returned.

The default is NO .

Note: This parameter is left for compatibility. IBM recommends the usage of
the EXCLMASK parameter. DEFURONLY and EXCLMASK are mutually
exclusive.

To code: Specify the RS-type address, or address in register (2)-(12), of a
3–character field.

,EXCLMASK=exclmask
When you specify REQUEST=URINFO, an optional parameter that specifies
the address of a fullword containing the 32–bit mask identifying one or more
conditions that identify URs to be excluded from the returned information.

Note: DEFURONLY and EXCLMASK are mutually exclusive keywords.

The following bit constants can be used to create the fullword bit mask:

ATR_NOEXCLUSION_MASK (X'00000000')
No exclusion conditions will be used to filter the returned information.

ATR_UR_IN_RESTART_MASK (X'80000000')
URs that are read from the Restart log will be excluded from the returned
information.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 605

ATR_RESTART_REQUIRED_MASK (X'40000000')
URs that contain interests whose resource managers are required to restart
with RRS will be excluded from the returned information.

ATR_NONDEFERRED_UR_MASK (X'20000000')
URs that are not deferred from an RRS server task will be excluded from
the returned information. This specification is equivalent to specifying the
DEFURONLY keyword.

ATR_CASCADED_UR_MASK (X'10000000')
URs that are included only because they are part of a cascaded UR family
will be excluded from the returned information.

ATR_LOCAL_UR_MASK (X'08000000')
URs in local transaction mode will be excluded from the returned
information.

ATR_GLOBAL_UR_MASK (X'04000000')
URs in global transaction mode or hybrid-global transaction mode will be
excluded from the returned information.

ATR_RRS_MANAGED_UR_MASK (X'02000000')
URs whose current work manager is RRS will be excluded from the
returned information. RRS is a work manager for restart URs and for URs
associated with contexts delegated to RRS.

ATR_NONRRS_MANAGED_UR_MASK (X'01000000')
URs whose current work manager is not RRS will be excluded from the
returned information.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field. For example, if the address passed via this parameter points to
a fullword that contains a value of X'C0000000', both the
ATR_RESTART_LOG_MASK and the ATR_RESTART_REQUIRED_MASK are
specified. Neither URs that are read from the Restart log nor URs that contain
interests that have RMs that are required to restart will be returned. This
definition might be specified:
REST_AND_RQRD DC AL4(ATR_UR_IN_RESTART_MASK+ATR_RESTART_REQUIRED_MASK)

,EXINFOMASK=exinfomask
When you specify REQUEST=URINFO, an optional parameter that specifies
the address of a fullword containing the 32–bit mask identifying which types
of extended information will be returned for the returned units of recovery.

The following bit constants can be used to create the fullword bit mask:

ATR_NOXINFO_MASK (X'00000000')
No extended information will be returned.

ATR_XINFO_TIMESTAMP_MASK (X'80000000')
Timestamp information for each unit of recovery as well as each interest in
each unit of recovery will be added to the returned information.

ATR_XINFO_CASCADED_MASK (X'40000000')
Cascaded family information for each unit of recovery will be added to the
returned information. If any UR in a cascaded UR family is returned, all of
the URs in the family will be returned, unless EXCLUDEURMASK
indicates that they should be excluded.

ATR_XINFO_PID_MASK (X'20000000')
Persistent Interest Data for each unit of recovery interest will be added to
the returned information.

ATRQUERY Macro

606 z/OS V2R1.0 MVS Programming: Resource Recovery

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field containing the desired mask.

,SORTTAB=sorttab
When you specify REQUEST=URINFO, an optional row-major sort table array.
Each element in the table is comprised of a fullword sort key selector and a
32–bit sort options field. Each element in the table represents a sort key;
therefore, a table with multiple elements specifies a multiple key sort of the
returned information. The position of a given sort element in the sort table
array specifies its sort priority. The first element in the table specifies the
primary sort key. The second element specifies the secondary sort key. The
third specifies the tertiary sort key, and so on. A mapping of the element
format is provided in the ATRFZQRY mapping macro.

Note: If SORTTAB is specified, SORTNUM must also be specified.

Example table:

Sort order Sort key Sort option

Primary sort key DC F(ATR_SORT_WM_NAME) DC
F(ATR_SORTOPT_ASCENDING)

Secondary sort key DC F(ATR_SORT_CREATE_TIME) DC
F(ATR_SORTOPT_DESCENDING)

Tertiary sort key DC F(ATR_SORT_URID) DC
F(ATR_SORTOPT_ASCENDING)

The SORTNUM for this table would be 3.

Sort Key Selector Values:

ATR_SORT_WM_NAME (X'00000001')
Sort returned information based on Work Manager Name.

ATR_SORT_URID (X'00000002')
Sort returned information based on UR Identifier.

ATR_SORT_CREATE_TIME (X'00000003')
Sort returned information based on the create time of the UR.

ATR_SORT_UR_STATE (X'00000004')
Sort returned information based on the UR state.

ATR_SORT_LUWID (X'00000005')
Sort returned information based on the Logical Unit Work Identifier.

Note: ATR_SORT_LUWID is really a three key sort, with the primary key
being the luname.netid, the secondary key being the instnum, and the
tertiary key being the seqnum. The luname.netid is padded to 17 bytes
with blanks on the right before comparing the IDs for sort order.

ATR_SORT_TID (X'00000006')
Sort returned information based on the Transaction Identifier.

ATR_SORT_GTID (X'00000007')
Sort returned information based on the Global Transaction Identifier.

ATR_SORT_XID (X'00000008')
Sort returned information based on the X/Open Identifier.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 607

Note: ATR_SORT_XID is really a three key sort, with the primary key
being the FormatID, the secondary key being the Global Transaction ID,
and the tertiary key being the BQUAL.

ATR_SORT_GNAME (X'00000009')
Sort returned information based on the logging group name.

ATR_SORT_SYSNAME (X'0000000A')
Sort returned information based on the system name.

ATR_SORT_SURID (X'0000000B')
Sort returned information based on the sysplex UR identifier.

Sort Option Values:

ATR_SORTOPT_ASCENDING (X'0nnnnnnn')
Sort returned information in ascending order using the sort key.

ATR_SORTOPT_DESCENDING (X'8nnnnnnn')
Sort returned information in descending order using the sort key.

Note: Bits 1–31 are reserved, and must contain binary zeros.

To code: Specify the RS-type address, or address in register (2)-(12), of a sort
table array.

,SORTNUM=sortnum
When you specify REQUEST=URINFO, an optional fullword unsigned integer
value containing the number of elements in the sort table passed via the
SORTTAB parameter. The number of elements that can be passed in the sort
table is limited to the number of possible sort fields.

Note: SORTNUM must be specified if SORTTAB is specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword unsigned integer value.

,AREAADDR=areaaddr
A required input parameter that contains the address of the storage area to
contain the returned information. Specify the length of the area in AREALEN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,AREALEN=arealen
A required input parameter that contains the length of the area to contain the
returned information. Specify the address of the area in AREAADDR.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,AREAALET=areaalet
An optional input parameter that contains the ALET of an entry on the DU
Access List that will be used to address the area to contain the returned
information. Specify the address of the area in AREAADDR.

Note: ALETs of access list entries on the PASN access list and the special
ALET value of 1 (secondary) are not valid.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

ATRQUERY Macro

608 z/OS V2R1.0 MVS Programming: Resource Recovery

,AREAOPT=areaopt
An optional input parameter that specifies the type of addressing used in the
control structures returned in the area specified by AREAADDR.

To code: Specify either:

AREAOPT=BYADDR
Complete addresses are to be returned in the control structures.

AREAOPT=BYOFFSET
Offsets from the beginning of the storage area are to be returned in the
control structures.

The default is BYADDR.

,COUNT=count
A required output parameter that, upon return from the service, will contain
the number of entries that match your request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RCTABLE=rctable
An optional 4–byte input parameter that contains the address of a "2304" area
to contain the return code and reason code from each system and logging
group queried. The area consists of up to 64 36–byte entries. DSECT
ATRFZRCA in mapping macro ATRFZQRY maps the storage area. The number
of entries will be returned in the RCNUM parameter. The table will only
contain valid information if the reason code returned to you is
ATRSRV_REMOTE_WARNING or ATRSRV_REMOTE_ERROR.

The default is RCTABLE=0. No return code table is desired.

To code: Specify the RS-type address, or address in register (2)-(12), of a "2304"
area.

,RCNUM=rcnum
When using RCTABLE, a required output parameter that will contain the
number of entries in the RCTABLE area.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the system copies the return code
from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the system copies the reason code
from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5
,PLISTVER=6

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 609

,PLISTVER=7
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 1, if you use the following parameters:
– AREAADDR
– AREALEN
– ASID
– COUNT
– GTID
– LUWID
– REQUEST
– RMNAME
– TID
– URID
– URSTATE
– URTYPE

v 2, if you use the parameters from PLISTVER=1 plus the following
parameters:
– DEFURONLY

v 3, if you use the parameters from PLISTVER=2 plus the following
parameters:
– CURDUR
– EXCLMASK
– EXINFOMASK
– GTIDSTR
– LUWIDSTR
– SORTNUM
– SORTTAB
– TIDHIGH
– TIDLOW
– TODBEG
– TODEND
– URIDSTR
– URSTMASK

ATRQUERY Macro

610 z/OS V2R1.0 MVS Programming: Resource Recovery

v 4, if you use the parameters from PLISTVER=3 plus the following
parameters:
– AREAALET
– AREAOPT
– GNAME
– RCNUM
– RCTABLE
– SYSNAME

v 5, if you use the parameters from PLISTVER=4 plus the following
parameters:
– XID
– XIDFORMATIDSTR
– XIDGTRIDSTR
– XIDBQUALSTR

v 6, if you use the parameters from PLISTVER=5 plus the following
parameters:
– SURID
– SURIDSTR

v 7, if you use the parameters from PLISTVER=6 plus the following
parameters:
– ATRxinfo
– PID_Mask

v 8, if you use the parameters from PLISTVER=7 plus the following
parameters:
– METADATA

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1
v A decimal value of 2
v A decimal value of 3
v A decimal value of 4
v A decimal value of 5
v A decimal value of 6
v A decimal value of 7

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an in-line
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 611

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register
(1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Note: Declarations for Bit constants are provided in the ATRFZQRY mapping
macro interface.

ABEND codes

None.

Return and reason codes

When the ATRQUERY macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code:

0 ATRQUERY_SUCCESS — request completed successfully

4 ATRQUERY_WARNING — request completed with a warning condition

8 ATRQUERY_FAILURE — request failed
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, if you coded

RSNCODE) contains a reason code. The return and reason codes are shown in
the following table. The ATRFZQRY mapping macro provides the equate
symbols for the return and reason codes.

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

4 3 Equate symbol: ATRQUERY_AREA_FULL

Meaning: The return area is too small to hold all the
information to be returned.

Action: Increase the size of the return area and retry
the request.

ATRQUERY Macro

612 z/OS V2R1.0 MVS Programming: Resource Recovery

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

4 17 Equate symbol: ATRQUERY_REMOTE_WARNING

Meaning: Errors occurred while querying data on at
least one system. Some information may not have
been returned. If you have been provided with an
RCTABLE, it will contain detailed error information
for each system involved in your request.

Action: Fix the errors noted in the RCTABLE and
retry the request.

4 29 Equate symbol:
ATRQUERY_RMMETADATALOGUNAVAILABLE

Meaning: The RM Meta Data log is not available.
No information was returned.

Action: Check SYSLOG for messages ATR132I or
ATR172E that will further explain why the log is
unavailable. Retry the request when the RM Meta
Data log is available.

8 1 Equate symbol: ATRQUERY_ASID_INVALID

Meaning: You specified an address space identifier
(ASID) that does not exist.

Action: Specify a valid ASID and retry the request.

8 2 Equate symbol: ATRQUERY_RRS_NOT_ACTIVE

Meaning: The ATRQUERY service is not available;
RRS is not active on this system.

Action: Retry the request when RRS is available.

8 4 Equate symbol: ATRQUERY_NOT_SAF_AUTH

Meaning: The caller does not have RACF authority
to issue RRS commands.

Action: Obtain READ access to the
MVSADMIN.RRS.COMMANDS resource in the
FACILITY class and retry the request.

8 5 Equate symbol: ATRQUERY_URSTMASK_RSVD

Meaning: Reserved fields in the UR State Mask were
nonzero.

Action: Correct the mask, clearing the reserved
fields, and retry the request.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 613

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 6 Equate symbol: ATRQUERY_XINFOMASK_RSVD

Meaning: Reserved fields in the Extended
Information Mask were nonzero.

ATR_XINFO_PID_MASK is set but the PLISTVER
specified is less than 7. When requesting for
Persistent Interest Data, PLISTVER must be 7 or
higher.

Action: Correct the mask, PLISTVER or clearing the
reserved fields, and retry the request.

8 7 Equate symbol:
ATRQUERY_EXCLUSIONMASK_RSVD

Meaning: Reserved fields in the UR Exclusion
Condition Mask were nonzero.

Action: Correct the mask, clearing the reserved
fields, and retry the request.

8 8 Equate symbol: ATRQUERY_SORTKEY_INVALID

Meaning: The sort table passed contained an invalid
sort key.

Action: Correct the sort table and retry the request.

8 9 Equate symbol: ATRQUERY_SORTOPT_INVALID

Meaning: The sort table passed contained an invalid
option.

Action: Correct the sort table and retry the request.

8 A Equate symbol: ATRQUERY_SORTNUM_INVALID

Meaning: The sort element number passed is not
valid.

Action: Correct the number of elements in the sort
table and retry the request.

8 B Equate symbol: ATRQUERY_TID_RANGE_INVALID

Meaning: The value specified for the TIDLOW
parameter is higher than the value specified for the
TIDHIGH parameter.

Action: Correct either the TIDLOW value or the
TIDHIGH value, and retry the request.

8 C Equate symbol:
ATRQUERY_TOD_RANGE_INVALID

Meaning: The time specified for the TODBEG
parameter is after the time specified for the
TODEND parameter.

Action: Correct either the TODBEG value or
TODEND value, and retry the request.

ATRQUERY Macro

614 z/OS V2R1.0 MVS Programming: Resource Recovery

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 D Equate symbol: ATRQUERY_LUWIDSTR_INVALID

Meaning: The value passed via the LUWIDSTR
parameter is not valid.

Action: Correct the LUWIDSTR value and retry the
request.

8 E Equate symbol: ATRQUERY_CURDUR_INVALID

Meaning: The value passed via the CURDUR
parameter is not valid.

Action: Correct the CURDUR value and retry the
request.

8 F Equate symbol: ATRQUERY_SORTTABPTR_BAD

Meaning: The sort table entry count was nonzero,
but a valid table pointer was not passed.

Action: Correct the table pointer value and retry the
request.

8 10 Equate symbol:
ATRQUERY_AREAALET_SECONDARY

Meaning: The AREAALET specified is the secondary
ALET, which is not accessible by the ATRQUERY
service routine.

Action: Correct the AREAALET value and retry the
request.

8 11 Equate symbol:
ATRQUERY_REQUEST_UNKNOWN

Meaning: A downlevel version of RRS did not
understand the request.

Action: Correct the parameter value and retry the
request.

8 12 Equate symbol: ATRQUERY_GNAME_INVALID

Meaning: The value specified for the GNAME
parameter is not valid.

Action: Correct the GNAME value and retry the
request.

8 13 Equate symbol: ATRQUERY_SYSNAME_INVALID

Meaning: The value specified for the SYSNAME
parameter is not valid.

Action: Correct the SYSNAME value and retry the
request.

8 14 Equate symbol: ATRQUERY_RESOURCE_ERROR

Meaning: No buffer was available to satisfy a
remote request.

Action: Retry the request.

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 615

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 15 Equate symbol: ATRQUERY_TOO_MANY_ITEMS

Meaning: There are too many data items to fit in the
buffer to be sorted.

Action: Add more filters and retry the request.

8 16 Equate symbol: ATRQUERY_INSTANCE_FAILURE

Meaning: An error occurred processing a remote
request. Your RCTABLE, if one was provided, will
contain the failing service identifier, return code, and
reason code.

Service identifiers:

1 IXCMSGO macro interface

2 IXCMSGI macro interface
Any other value is an internal error and should be
reported to the IBM Support center.

Action: Fix the errors noted in the RCTABLE and
retry the request.

8 18 Equate symbol: ATRQUERY_REMOTE_ERROR

Meaning: Errors occurred while querying data on all
systems. No information was returned. If you
received an RCTABLE, it will contain detailed error
information for each system involved in your
request.

Action: Fix the errors noted in the RCTABLE and
retry the request.

8 19 Equate symbol: ATRQUERY_RESP_NOT_RECEIVED

Meaning: No response was received from the remote
system. No information was returned.

Action: Retry the request.

8 1A Equate symbol:
ATRQUERY_REMOTE_NOT_ACTIVE

Meaning: The remote system is not active or RRS is
not active on the remote system. No information was
returned.

Action: Retry the request once the remote system is
available.

8 1B Equate symbol: ATRQUERY_AREALEN_INVALID

Meaning: The value specified for the AREALEN
parameter is not valid. No information was returned.

Action: Correct the AREALEN value and retry the
request.

ATRQUERY Macro

616 z/OS V2R1.0 MVS Programming: Resource Recovery

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 1C Equate symbol: ATRQUERY_AREAADDR_INVALID

Meaning: The value specified for the AREAADDR
parameter is not valid. No information was returned.

Action: Correct the AREAADDR value and retry the
request.

8 FFF Equate symbol:
ATRQUERY_UNEXPECTED_ERROR

Meaning: An unexpected system error occurred.

Action: Contact your system support.

Examples

The following examples show several uses of the ATRQUERY macro.

Example 1

To obtain information about all resource managers known to RRS, issue the
following request:

ATRQUERY REQUEST=RMINFO,AREAADDR=AREA@,AREALEN=AREAL, X
COUNT=RETCNT

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY

Example 2

To obtain information about the resource manager named UTRICK, issue the
following request:

ATRQUERY REQUEST=RMINFO,AREAADDR=AREA@,AREALEN=AREAL, X
COUNT=RETCNT,RMNAME=MYRM

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
MYRM DC CL32’UTRICK’ RESOURCE MANAGER NAME
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 617

*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY

Example 3

To obtain information about all URs, issue the following request:
ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X

COUNT=RETCNT
*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY

Example 4

To obtain information about all protected URs, issue the following request.
ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X

COUNT=RETCNT,URTYPE=ATR_PROTECTED
*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 5

To obtain information about the URs associated with the application running in
address space 52, issue the following request:

ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X
COUNT=RETCNT,ASID=MYASID

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA

ATRQUERY Macro

618 z/OS V2R1.0 MVS Programming: Resource Recovery

MYASID DC XL2’52’ ADDRESS SPACE IDENTIFIER
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 6

To return only those URs that are In-Doubt or In-Commit, issue the following
request:

L 10,URSTMASK
ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X

COUNT=RETCNT,URSTMASK(10),PLISTVER=MAX X
*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
URSTMASK DC A(STATES) UR STATE MASK
STATES EQU ATR_IN_DOUBT_MASK+ATR_IN_COMMIT_MASK
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 7

To return URs sorted by UR create time and UR state, in ascending order, issue the
following request:

ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X
COUNT=RETCNT,PLISTVER=MAX, X
SORTTAB=STAB@,SORTNUM=SORTNUM

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH RETURN AREA
URSTMASK DC A(STATES) UR STATE MASK
STATES EQU ATR_IN_DOUBT_MASK+ATR_IN_COMMIT_MASK
*
STAB@ DC A(SORTTAB) SORT TABLE ADDRESS
SORTNUM DC F’2’ ENTRIES IN SORT TABLE
SORTTAB DS 0F SORT TABLE-WORD BOUNDARY

DC A(ATR_SORT_CREATE_TIME) PRIMARY KEY
DC A(ATR_SORTOPT_ASCENDING) PRIMARY KEY OPTION
DC A(ATR_SORT_UR_STATE) SECONDARY KEY
DC A(ATR_SORTOPT_ASCENDING) SECONDARY KEY OPTION

*

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 619

* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 8

To return URs that have been In-Doubt more than 5 seconds, issue the following
request:

ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X
COUNT=RETCNT,PLISTVER=MAX, X
SORTTAB=STAB@,SORTNUM=SORTNUM

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
URSTMASK DC A(STATES) UR STATE MASK
STATES EQU ATR_IN_DOUBT_MASK+ATR_IN_COMMIT_MASK
*
STAB@ DC A(SORTTAB) SORT TABLE ADDRESS
SORTNUM DC F’2’ ENTRIES IN SORT TABLE
SORTTAB DS 0F SORT TABLE-WORD BOUNDARY

DC A(ATR_SORT_CREATE_TIME) PRIMARY KEY
DC A(ATR_SORTOPT_ASCENDING) PRIMARY KEY OPTION
DC A(ATR_SORT_UR_STATE) SECONDARY KEY
DC A(ATR_SORTOPT_ASCENDING) SECONDARY KEY OPTION

*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 9

To return all the work manager names in the system, issue the following request:
ATRQUERY REQUEST=WMINFO,AREAADDR=AREA@,AREALEN=AREAL, X

COUNT=RETCNT,PLISTVER=MAX X
*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

ATRQUERY Macro

620 z/OS V2R1.0 MVS Programming: Resource Recovery

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 10

Issue the following request to obtain information about URs that meet these
conditions:
v The URs are either In-Doubt or In-Commit.
v RMs with names matching the pattern "UTR*" have interests in the URs.
v The URs are sorted by LUWID from lowest to highest; and, in case of ties,

sorted by UR creation time from oldest to newest.
L 10,URSTMASK
ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X

RMNAME=MYRM,COUNT=RETCNT,PLISTVER=MAX, X
URSTMASK=(10),SORTTAB=STABPTR,SORTNUM=SORTNUM

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
MYRM DC CL32’UTR*’ RM NAME PATTERN
URSTMASK DC A(STATES)
SORTNUM DC F’2’ ENTRIES IN SORT TABLE
*
SORTTAB DS 0F SORT TABLE-WORD BOUNDARY
SRTKEY1 DC A(ATR_SORT_LUWID) PRIMARY KEY
SRTOPT1 DC A(ATR_SORTOPT_ASCENDING) PRIMARY KEY OPTION
SRTKEY2 DC A(ATR_SORT_CREATE_TIME) SECONDARY KEY
SRTOPT2 DC A(ATR_SORTOPT_DESCENDING) SECONDARY KEY OPTION
*
STABPTR DC A(SORTTAB)
STATES EQU ATR_IN_DOUBT_MASK+ATR_IN_COMMIT_MASK
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED RM COUNT
RETAREA DS 1024C RETURN AREA
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

Example 11

Issue the following request to obtain information about URs that meet these
conditions:
v The URs are In-Doubt.
v The URs are in logging group PLEX1 on any system in that logging group.

ATRQUERY REQUEST=URINFO,AREAADDR=AREA@,AREALEN=AREAL, X
GNAME=MYGROUP,SYSNAME=ALLSYS,PLISTVER=MAX, X
RCTABLE=MYRC,RCNUM=MYRCNUM

*
* INPUT VALUES
*
AREA@ DC A(RETAREA) ADDRESS OF RETURN AREA
AREAL DC F’1024’ LENGTH OF RETURN AREA
MYGROUP DC CL8’PLEX1’ LOGGING GROUP

ATRQUERY Macro

Chapter 11. ATRQUERY — Obtain RRS Information 621

ALLSYS DC CL8’*’ ALL SYSTEMS
*
* OUTPUT AREAS
*
RETCNT DS F RETURNED COUNT
RETAREA DS 1024C RETURN AREA
MYRC DC CL2304 RCTABLE
MYRCNUM DC F RCTABLE ENTRIES
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZQRY
ATRRASM

ATRQUERY Macro

622 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 12. ATRSRV — Resolve Units of Recovery

The ATRSRV macro allows authorized callers to:
v Remove a resource manager's interest in a UR
v Resolve a UR state from In-doubt to In-Commit.
v Resolve a UR state from In-doubt to In-Backout.
v Remove a Resource Manager's identity
v Unregister a Resource Manager's involvement with RRS
v Perform Forget processing on a UR whose In-Doubt: condition has been

resolved.

Environment

The requirements for the caller are:

Minimum authorization: Supervisor state and PSW key 0-7 or RACF authority as
defined in the following paragraphs

Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

If your installation uses the RACF component of SecureWay for z/OS to control
access to RRS information, ATRSRV requires ALTER access to one of two RACF
resources in the FACILITY class.

To view URs on other systems in a sysplex, ATRSRV requires ALTER access to the
MVSADMIN.RRS.COMMANDS.gname.sysname resource in the FACILITY class,
where gname is the target logging group name, and sysname is the target system
name. You may create a RACF profile to permit access to multiple logging groups
and systems by including RACF valid generic characters (**, *, and %) in gname
and sysname. See the z/OS Security Server RACF Security Administrator's Guide and
z/OS Security Server RACF Command Language Reference for more information about
using these RACF generic characters and defining RACF profiles. By permitting
ALTER access through this profile, you can allow users to alter RRS information on
any number of systems in the sysplex.

If you are running RRS on a single system, ATRSRV requires ALTER access to
either the MVSADMIN.RRS.COMMANDS.gname.sysname resource or the
MVSADMIN.RRS.COMMANDS resource in the FACILITY class. The
MVSADMIN.RRS.COMMANDS resource only allows access to RRS system
management functions on the current system. You cannot use the
MVSADMIN.RRS.COMMANDS resource to allow or disallow use of RRS on
another system.

ATRSRV does not check the SYSSTATE global variable or the SPLEVEL global
variable.

© Copyright IBM Corp. 1997, 2013 623

Programming requirements

ATRSRV callers must include the following mapping macros: ATRFZSRV, CVT,
IHAECVT

Restrictions

None.

Input register information

Before issuing the ATRSRV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information

When control returns to the caller, the GPRs contain:

Register
Contents

0 Contains the reason code

1-13 Unchanged

14 Used as a work register by the system.

15 Contains the return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications

None.

Syntax

The ATRSRV macro is written as follows:

name name: symbol. Begin name in column 1.

� One or more blanks must precede ATRSRV.

ATRSRV

� One or more blanks must follow ATRSRV.

REQUEST=REMOVINT
,RMNAME=(xrmname | 0)
,URID=(xurid | 0)

ATRSRV Macro

624 z/OS V2R1.0 MVS Programming: Resource Recovery

REQUEST=COMMIT
,URID=(xurid | 0)

REQUEST=BACKOUT
,URID=(xurid | 0)

REQUEST=REMOVRM
,RMNAME=xrmname

REQUEST=UNREGRM
,RMNAME=xrmname

REQUEST=FORGET
,URID=xurid

,RMNAME=xrmname xrmname: RS-type address or address in register (2) - (12).

,URID=xurid xurid: RS-type address or address in register (2) - (12).
Note: URID is optional with REQUEST=REMOVINT.

,GNAME=(xgname |
current_gname)

xgname: RS-type address or register (2) - (12).

,SYSNAME=(xsysname |
current_sysname)

xsysname: RS-type address or register (2) - (12).

,RCTABLE=(xrctable | 0) xrctable: RS-type address or address in register (2) - (12).
,RCNUM=xrcnum xrcnum: RS-type address or address in register (2) - (12).

,RETCODE=xretcode xretcode: RS-type address or register (2) - (12).

,RSNCODE=xrsncode xrsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12).
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Parameters

The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the ATRSRV
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=REMOVINT
REQUEST=COMMIT
REQUEST=BACKOUT
REQUEST=REMOVRM

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 625

REQUEST=UNREGRM
REQUEST=FORGET

A required parameter that specifies the requested function:

REQUEST=REMOVINT
Remove a resource manager's interest in a UR.

Note: The resource manager must not be currently active with RRS. That
is, the resource manager cannot have exits set with RRS.

You can provide:
v Only the resource manager name

In this case, the resource manager's interests will be removed from all
URs, except for in-doubt URs, that the resource manager has expressed
interest in.

v Only the UR identifier
In this case, all resource manager interests will be removed from the
specified UR, except for the top-level in-doubt UR.

v Both the resource manager name and the UR identifier
In this case, the resource manager's interests will be removed from the
specified UR.

To affect units of recovery on other systems in a sysplex, you may also
provide a logging group name and a system name with the GNAME and
SYSNAME keywords.

REQUEST=COMMIT
Resolve an In-doubt UR to In-commit.

To affect units of recovery on other systems in a sysplex, you may also
provide a logging group name and a system name with the GNAME and
SYSNAME keywords.

REQUEST=BACKOUT
Resolve an In-doubt UR to In-backout.

To affect units of recovery on other systems in a sysplex, you may also
provide a logging group name and a system name with the GNAME and
SYSNAME keywords.

REQUEST=REMOVRM
Remove a resource manager's identity.

Note: The resource manager must not be currently active with RRS or
have an interest in any URs. If this request is issued after an RRS failure, it
is possible that the request will fail due to outstanding interests. RRS does
not force deletion of log records for completed transactions, so the failure
of RRS may have left completed log records that RRS would normally
return to the restarting RM. The restarting RM would respond COMPLETE
to those interests. Should this occur, a REMOVINT request by RM name
would be required to remove the completed interests before the
REMOVRM request can succeed.

You must provide:
v The resource manager name

To affect units of recovery on other systems in a sysplex, you may also
provide a logging group name with the GNAME keyword. A target system

ATRSRV Macro

626 z/OS V2R1.0 MVS Programming: Resource Recovery

name using the SYSNAME keyword, is not required. However, if the
SYSNAME keyword is used, it is not validated and is ignored.

REQUEST=UNREGRM
Unregister RM - is used to clean up the resource managers involvement
with RRS. Only resource managers that have been unregistered with
Registration Services but still set with RRS can be processed. RRS Resource
Manager Unregister processing will be invoked to clean up the resource
managers involvement with RRS.

You must provide:
v The resource manager name. In this case, provide the resource manager

to be unregistered with RRS.

Optionally you may provide:
v The GNAME and SYSNAME keywords. To affect resource managers on

other systems in a sysplex, you may also provide a logging group name
and a system name with the GNAME and SYSNAME keywords.

REQUEST=FORGET
Perform Forget processing for a UR (Unit of Recovery) whose In-Doubt
condition was previously resolved to In-Commit or In-Backout.

You must provide:
v The URID (Unit of Recovery Identifier). In this case, the SDSRM (Server

Distributed Syncpoint Manager) interest of the UR will be forgotten. The
URID specified must contain the SDSRM interest (top-level UR).
Specifying a URID of a child or subordinate UR is not valid for this
request and will result in a reason code of
ATRSRV_URID_NOT_FOUND (8).

Optionally you may provide:
v The GNAME and SYSNAME keywords. To affect units of recovery on

other systems in a sysplex, you may also provide a logging group name
and a system name with the GNAME and SYSNAME keywords.

,RMNAME=rmname

An input parameter that contains the resource manager name. It is optional
with:
v REQUEST=REMOVINT.

It is required with:
v REQUEST=REMOVRM
v REQUEST=UNREGRM.

If REQUEST=REMOVINT is requested and the resource manager you name is
a distributed syncpoint resource manager (DSRM), you can not remove an
interest from any UR with a state of in-doubt unless you specify URID to
remove all interests from a specific UR. If REQUEST=REMOVRM is requested,
the resource manager will be deleted from RRS storage and the RRS logs. If
REQUEST=UNREGRM is requested, the resource manager will be unregistered
with RRS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
32-character field.

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 627

,URID=urid
An input parameter that contains the UR identifier. It is required with
REQUEST=COMMIT, REQUEST=BACKOUT, or REQUEST=FORGET. It is
optional with REQUEST=REMOVINT.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,GNAME=gname
An optional input parameter that contains the name of the RRS logging group
containing the specified resource manager or URID.
v If you specify GNAME, you must also specify SYSNAME. However, if

REQUEST=REMOVRM, the SYSNAME parameter is not required.
v If you do not specify GNAME, it will default to the current system's RRS

logging group name.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,SYSNAME=sysname
An optional input parameter that contains the name of the system containing
the specified resource manager or URID.
v If you specify SYSNAME, you must also specify GNAME.
v If you do not specify SYSNAME, it will default to the current system's

system name.
v If you specify REQUEST=REMOVRM, this parameter is not required. If

specified, the value is not validated and is ignored.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RCTABLE=rctable
An optional 4–byte input parameter that contains the address of a "36" area to
contain the return code and reason code from the system and logging group
processing the request. The area consists of up to 1 36–byte entry. DSECT
ATRFZRCA in mapping macro ATRFZQRY maps the storage area. The number
of entries will be returned in the RCNUM parameter. The table will only
contain valid information if the reason code returned to you is
ATRSRV_REMOTE_WARNING or ATRSRV_REMOTE_ERROR. Default:
RCTABLE=0 No return code table is desired.

If you specify REQUEST=REMOVRM, this parameter contains the address of a
"2304" area to contain the return/reason code from each system in the Logging
Group processing the REMOVRM request. The area consists of up to 64
36-byte entries.

To code: Specify the RS-type address, or address in register (2)-(12), of a "36"
area, or a "2304" if you specify REQUEST=REMOVRM.

,RCNUM=rcnum
When using RCTABLE, a required output parameter that will contain the
number of entries in the RCTABLE area (either 0 if no error occurred or 1 for
one error).

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RETCODE=retcode
An optional output parameter into which the system copies the return code
from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

ATRSRV Macro

628 z/OS V2R1.0 MVS Programming: Resource Recovery

,RSNCODE=rsncode
An optional output parameter into which the system copies the reason code
from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=1
,PLISTVER=2
,PLISTVER=3
,PLISTVER=4
,PLISTVER=5

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 1, which supports all parameters except those specifically referenced in
higher versions.

v 2, which supports all parameters in version 1 along with the following
parameters:
– GNAME
– RCNUM
– RCTABLE
– SYSNAME

v 3, which supports additional function along with the following REQUEST
parameter:
– REQUEST=REMOVRM

v 4, which supports additional function:
– REQUEST=UNREGRM

v 5, which supports additional function:
– REQUEST=FORGET

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1
v A decimal value of 2
v A decimal value of 3
v A decimal value of 4

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 629

v A decimal value of 5

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E, and
MF=M, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string, which can contain any value that is
valid on an assembler DS pseudo-op. You can use this parameter to force
boundary alignment of the parameter list. If you do not code attr, the system
provides a value of 0D, which forces the parameter list to a doubleword
boundary.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes

None.

Return and reason codes

When the ATRSRV macro returns control to your program:
v GPR 15 (and retcode, if you coded RETCODE) contains a return code:

0 ATRSRV_SUCCESS — request completed successfully

4 ATRSRV_WARNING —request completed with a warning condition

8 ATRSRV_FAILURE — request failed
v When the return code is not 0, GPR 0 (and rsncode, if you coded RSNCODE)

contains a reason code. The return and reason codes are shown in the following
table. The ATRFZSRV mapping macro provides the equate symbols for the
return and reason codes.

ATRSRV Macro

630 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 31. Return and Reason Codes for the ATRSRV Macro

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

4 17 Equate symbol: ATRSRV_REMOTE_WARNING

Meaning: An error occurred while processing a
remote request that did not affect the processing of
the request. If you have been provided with an
RCTABLE, it will contain detailed error information.

Action: Fix the error noted in the RCTABLE to
eliminate the warning message for future requests.

4 20 Equate symbol:
ATRSRV_DeleteRMObjectNotSupported

Meaning: The specified Resource Manager was
deleted from the Resource Manager Data log but one
or more systems in the RRS logging group do not
support the Delete RM (REMOVRM) function. If the
Resource Manager is on those systems, that Resource
Manager will persist.

Action: None. The Resource Manager cannot be
deleted from systems that do not support the Delete
RM (REMOVRM) process.

8 1 Equate symbol: ATRSRV_UR_NOT_IN_DOUBT

Meaning: The UR state is not In-Doubt.

Action: Specify the correct UR and retry the request.

8 2 Equate symbol: ATRSRV_RM_IS_ACTIVE

Meaning: You specified REMOVINT or REMOVRM
but named a resource manager that is currently
active with RRS.

Action: Verify that you specified the correct resource
manager. You might need to stop the resource
manager, or make it inactive with RRS/MVS. When
the resource manager is inactive, retry the request.

8 3 Equate symbol: ATRSRV_RRS_NOT_ACTIVE

Meaning: The ATRSRV service is not available.
RRS/MVS is not active on this system.

Action: Retry the request when RRS/MVS is active.

8 4 Equate symbol: ATRSRV_UR_HAS_DSRM

Meaning: You specified REMOVINT and named a
distributed syncpoint resource manager (DSRM), but
the state of the UR you specified is In-Doubt.

Action: Before you can remove the interest for the
DSRM, the UR state must be resolved or you must
remove all resource manager interests for the
In-Doubt UR.

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 631

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 5 Equate symbol: ATRSRV_BAD_REMOVINT_PARM

Meaning: You specified REMOVINT but did not
specify either RMNAME or URID.

Action: Specify one or both of the missing keywords
and retry the request.

8 6 Equate symbol: ATRSRV_URID_NOT_VALID

Meaning: You specified a UR identifier that is either
not valid or associated with a UR that no longer
exists.

Action: Verify that you specified the correct UR
identifier. If you did not specify the correct UR
identifier, do so and retry the request. If you did
specify the correct UR identifier, the UR has
completed. Do not retry the request.

8 7 Equate symbol: ATRSRV_RID_NOT_SUPPORTED

Meaning: You specified the UR identifier for an
in-doubt UR that the system cannot resolve to
in-commit or In-backout.

Action: You must wait for the DSRM to resolve the
In-Doubt condition.

8 8 Equate symbol: ATRSRV_URID_NOT_FOUND

Meaning: You specified a UR identifier that the
system is unable to find. The UR might still exist but
the system cannot find it. This reason code might
also be issued when the request requires a top level
URID and a child or subordinate URID is specified.

Action: Verify that you specified the correct UR
identifier. If you did not specify the correct UR
identifier, do so and retry the request. If you did
specify the correct UR identifier, retry the request
later.

8 9 Equate symbol: ATRSRV_NO_UR_FOR_RM

Meaning: You specified URINFO and named a
resource manager that does not have any interests in
any URs.

Action: Verify that you provided the correct resource
manager. If you did not specify the correct resource
manager, do so and retry the request. If you
expected URs to be returned, you need to determine
why the named resource manager has no interests in
any URs. Otherwise, do nothing.

ATRSRV Macro

632 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 A Equate symbol: ATRSRV_NOT_AUTH

Meaning: You are not in supervisor state, with
system key, and the RACF component of SecureWay
for z/OS is not active.

Action: Either request activation of the RACF
component and obtain ALTER access to
MVSADMIN.RRS.COMMANDS or recode your
application to run in supervisor state with system
key.

8 B Equate symbol: ATRSRV_NOT_SAF_AUTH

Meaning: You do not have ALTER access to
MVSADMIN.RRS.COMMANDS.

Action: Either obtain ALTER access to
MVSADMIN.RRS.COMMANDS or recode your
application to run in supervisor state with system
key.

8 C Equate symbol: ATRSRV_RRS_DOWNLEVEL

Meaning: The unit of recovery that was specified to
process contains information that is not understood
by this level of RRS. This level of RRS is downlevel.

This reason code may also be issued when an
ATRSRV request was processed on a downlevel
version of RRS that does not understand the request.

Action: The attempt to process this unit of recovery
must be made from a version of RRS that can
process this unit of recovery.

Route the ATRSRV request to a RRS system that
does support the request.

8 F Equate symbol: ATRSRV_GNAME_INVALID

Meaning: The value specified for the GNAME
parameter is not valid.

Action: Correct the GNAME value and retry the
request.

8 10 Equate symbol: ATRSRV_SYSNAME_INVALID

Meaning: The value specified for the SYSNAME
parameter is not valid.

Action: Correct the SYSNAME value and retry the
request.

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 633

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 16 Equate symbol: ATRSRV_INSTANCE_FAILURE

Meaning: An error occurred while processing a
remote request. Your RCTABLE, if one was
provided, will contain the failing service identifier,
return code, and reason code.

Service identifiers:

1 IXCMSGO macro interface

2 IXCMSGI macro interface
Any other value is an internal error and should be
reported to the IBM Support center.

Action: Fix the errors noted in the RCTABLE and
retry the request.

8 18 Equate symbol: ATRSRV_REMOTE_ERROR

Meaning: An error occurred while processing a
remote request. The request was not performed. If
you received an RCTABLE, it will contain detailed
error information.

Action: Fix the error noted in the RCTABLE and
retry the request.

8 19 Equate symbol: ATRSRV_RESP_NOT_RECEIVED

Meaning: No response was received from the remote
system. No information was returned.

Action: Retry the request.

8 1A Equate symbol: ATRSRV_REMOTE_NOT_ACTIVE

Meaning: The remote system is not active or RRS is
not active on the remote system. No information was
returned.

Action: Retry the request once the remote system is
available.

8 1B Equate symbol: ATRSRV_UR_HAS_NO_INT

Meaning: The target UR for a remove interest
request has no interests. The request is rejected.

Action: Specify the correct UR and retry the request.

8 1C Equate symbol: ATRSRV_UR_NOT_TOP

Meaning: The requested action can only be
performed on a top-level UR, but you specified a
cascaded UR. The request is rejected.

Action: Specify the top-level UR associated with the
cascaded UR and retry the request.

ATRSRV Macro

634 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 1D Equate symbol: ATRSRV_RIN_NOT_SUPPORTED

Meaning: RRS is unable to process your remove
interest request because the coordinator system
cannot be found. The request is rejected.

Action: If the URID is in the restart log, retry the
remove interest request.

8 1E Equate symbol: ATRSRV_RMSTILLHASINTERESTS

Meaning: The specified Resource Manager cannot be
deleted since it has outstanding interest in one or
more URs.

Action: If the Resource Manager must be deleted,
the interests in all URs must be removed prior to
deleting the Resource Manager.

8 1F Equate symbol: ATRSRV_RMISNOTKNOWNTORRS

Meaning: The specified Resource Manager could not
be found in the Resource Manager Data log or on
any system in the RRS logging group. Either the
Resource Manager has already been deleted or the
name was entered incorrectly.

Action: Make sure the Resource Manager's name is
spelled correctly. Otherwise the Resource Manager is
deleted.

8 20
Equate symbol:
ATRSRV_DELETERMOBJECTSNOTSUPPORTED

Meaning: The specified Resource Manager was
deleted from the Resource Manager Data log but one
or more systems in the RRS logging group do not
support the Delete RM (REMOVRM) function. If the
Resource Manager is on those systems, that Resource
Manager will persist.

Action: None, the Resource Manager cannot be
deleted from systems that do not support Delete RM
(REMOVRM) process.

8 21
Equate symbol:
ATRSRV_ERRORDELETINGRMLOGENTRY

Meaning: The specified Resource Manager was not
deleted due to errors deleting the Resource Manager
from the Resource Manager logs.

Action: Correct the problem and retry the Delete RM
(REMOVRM) request.

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 635

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 22
Equate symbol:
ATRSRV_DELETERMNOTSUPPORTED

Meaning: The specified Resource Manager is on a
system that does not support the Delete RM
(REMOVRM) function.

Action: None, the Resource Manager cannot be
deleted.

8 23 Equate symbol: ATRSRV_RM_NOT_FOUND

Meaning: The requested Resource Manager could
not be found on the specified system in the RRS
logging group. Either the Resource Manager is not
currently defined on the specified system or it was
entered incorrectly.

Action: Make sure the Resource Manager's name is
spelled correctly. Otherwise, determine where the
Resource Manager is currently defined and perform
the RM Unregister request on that system.

8 24 Equate symbol: ATRSRV_RM_STILL_REGISTERED

Meaning: The requested Resource Manager is still
registered with Registration Services. To unregister a
Resource Manager with RRS, it must be unregistered
with Registration Services.

Action: Issue the request again after the resource
manager has become unregistered with Registration
Services.

8 25 Equate symbol:
ATRSRV_RM_UNREGISTERED_NOT_ALLOWED

Meaning: A Resource Manager in the Reset or Unset
state is already considered unregistered with RRS so
it cannot be unregistered again.

Action: None, the Resource Manager is already
considered unregistered.

8 26 Equate symbol: ATRSRV_UR_Not_In_Forget

Meaning: The UR state is not In-Forget.

Action: Specify the correct UR and retry the request
later.

8 27 Equate symbol: ATRSRV_Not_Server_DSRM

Meaning: The resource manager does not have the
server distributed syncpoint resource manager role
for the unit of recovery. The system rejects this
service request.

Action: Check the calling program for a probable
coding error.

ATRSRV Macro

636 z/OS V2R1.0 MVS Programming: Resource Recovery

Table 31. Return and Reason Codes for the ATRSRV Macro (continued)

Return code in:
hexadecimal

Reason code in:
hexadecimal Meaning and action

8 38 Equate symbol: ATRSRV_UR_Not_In_Forget

Meaning: The ur state is not In-Forget.

Action: Specify the correct UR and retry the request.

8 39 Equate symbol: ATRSRV_Not_Server_DSRM

Meaning: The resource manager does not have the
server distributed syncpoint resource manager role
for the unit of recovery. The system rejects this
service request.

Action: Check the calling program for a probable
coding error.

8 FFF Equate symbol: ATRSRV_UNEXPECTED_ERROR

Meaning: An unexpected system error occurred.

Action: Contact your system support.

Examples

Example 1

Issue the following request to change the state of a single UR from In-doubt to
In-commit:

ATRSRV REQUEST=COMMIT,URID=MYURID
*
* INPUT VALUES
*
MYURID DC XL16’123456789ABCDEF123456789ABCDEF’ UR IDENTIFIER
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZSRV

Example 2

The resource manager named UTRICK is not currently active. Issue the following
request to remove its interests from all of the URs that it had expressed interest in:

ATRSRV REQUEST=REMOVINT,RMNAME=RMTWO
*
* INPUT VALUES
*
RMTWO DC CL32’UTRICK’ RESOURCE MANAGER NAME
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZSRV

ATRSRV Macro

Chapter 12. ATRSRV — Resolve Units of Recovery 637

Example 3

Issue the following request to remove all resource manager interests from a specific
UR:

ATRSRV REQUEST=REMOVINT,URID=MYURID
*
* INPUT VALUES
*
MYURID DC XL16’123456789ABCDEF123456789ABCDEF’ UR IDENTIFIER
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZSRV

Example 4

Issue the following request to remove all interests for resource manager UTRICK
from a specific UR:

ATRSRV REQUEST=REMOVINT,URID=MYURID,RMNAME=MYRM
*
* INPUT VALUES
*
MYRM DC CL32’UTRICK’ RESOURCE MANAGER NAME
MYURID DC XL16’123456789ABCDEF123456789ABCDEF’ UR IDENTIFIER
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZSRV

Example 5

Issue the following request to change the state of a single UR from in-doubt to
in-backout on system SY1 in logging group PLEX1:

ATRSRV REQUEST=BACKOUT,URID=MYURID,SYSNAME=MYSYS, X
GNAME=MYGROUP

*
* INPUT VALUES
*
MYSYS DC CL8’SY1’ SYSTEM NAME
MYGROUP DC CL8’PLEX1’ LOGGING GROUP NAME
MYURID DC XL16’123456789ABCDEF123456789ABCDEF’ UR IDENTIFIER
*
* REQUIRED MAPPINGS
*

CVT DSECT=YES
IHAECVT
ATRFZSRV

ATRSRV Macro

638 z/OS V2R1.0 MVS Programming: Resource Recovery

Chapter 13. ATRQSRV utility - query and update RRS
information

Use the ATRQSRV Utility to Query and Update RRS Information from JCL jobs.

The control statements for this utility program follow standard conventions for JCL
statements. The utility accepts 80-byte records with one or more parameters per
record. See z/OS MVS JCL Reference for additional information about JCL
statements.

Utility control statements are contained in columns 1 through 80. Ensure columns
73 through 80 do not include line numbers. A statement that exceeds 80 characters
must be continued on one or more additional records. When it is necessary to
continue to the next line, use a plus sign as the last character of the line you wish
to continue.

Using the ATRQSRV utility
The name of the utility is ATRQSRV. The program resides in SYS1.LINKLIB so no
special program authorization is required.

Authorizing use of the utility
For more information see, “Setting up access authorization” on page 561.

Report levels
v Each command report will begin with the command input line(s) as entered by

the user.
v Query commands support either a SUMMARY level or a DETAILED level.

– Requesting the SUMMARY level returns a tabular report summarizing the
returned information for the input parameters and is limited to 121 characters
in width. For some commands, not all available information is returned.

– Requesting the DETAILED level returns a non-tabular report displaying all
the returned information for the input parameters and is limited to 121
characters in width.

Coding the ATRQSRV utility
For examples of how to set up your JCL and code the control statements for
ATRQSRV, see the following figures:
v List all resource managers, see Example 1 in “Examples of using the ATRQSRV

utility” on page 641
v List all active units of recovery (URs), see Example 2 in “Examples of using the

ATRQSRV utility” on page 641.

The utility control statements are described below:

PGM=ATRQSRV
Describes the program name (PGM=ATRQSRV) or, if the job control statements
reside in a procedure library, the procedure name.

© Copyright IBM Corp. 1997, 2013 639

ATRQSRV does not support any PARM= values.

SYSPRINT
Defines a sequential data set for the output. The output will contain the
command input line(s) as entered by the user followed by the report. It may
also contain appropriate ATRxxxI messages indicating report success or failure.
The output can be written to a system output device, a tape volume, or a
DASD volume.

The SYSPRINT DD statement is required for each use of ATRQSRV. The block
size for the SYSPRINT data set must be at least 121. Any blocking factor can be
specified for this record size, but the maximum value for the block size is
32670 bytes.

SYSIN
Defines the control data set. The control data set normally resides in the input
stream; however, it can be defined as a member in a partitioned data set or
PDSE.

The SYSIN DD statement is required for each use of ATRQSRV. The block size
for the SYSIN data set must be a multiple of 80. Any blocking factor can be
specified for this block size.

SYSABEND
Defines a sequential data set to contain any SYSABEND dumps. Not required
for normal processing.

STATEMENTS

Table 32. Statements

Statement Use

LOGINFO Browse the Archive, Main/Delayed UR, Restart and RM Data log streams

URINFO Query unit of recovery (UR) information

RMINFO Query resource manager (RM) information

WMINFO Query work manager (WM) information

SYSINFO Query RRS sysplex and logging group information

REMOVINT Remove interest(s) from URs

COMMIT Force an InDoubt transaction to the COMMIT state

BACKOUT Force an InDoubt transaction to the BACKOUT state

DELETERM Delete a resource manager from RRS

UNREGRM Unregister RM to clean up the resource manager's involvement with RRS

Using Wildcards in the ATRQSRV Utility
RRS allows you to use wildcard characters in the ATRQSRV statements. See
“Using wildcards in RRS panels” on page 565 for more information on using
wildcards in the ATRQSRV Utility.

ATRQSRV Utility

640 z/OS V2R1.0 MVS Programming: Resource Recovery

ATRQSRV return codes
Table 33. ATRQSRV Return Codes

Return Code
In Decimal Meaning and Action

0
Meaning: Service completed successfully.

Action: No action required.

4
Meaning: Errors detected. Error messages will appear in SYSPRINT DD,

Action: In SYSPRINT, look for ATR messages and refer to their explanation
and user response.

8
Meaning: Errors writing to SYSPRINT DD. The SYSPRINT DD could not
be used.

Action: In the JCL, make sure the SYSPRINT DD specifies an output type
of data set or file.

12
Meaning: Errors opening SYSPRINT DD. The SYSPRINT DD was not
specified or could not be used. Error messages will appear in the JCL job
log.

Action: In the JCL job log, look for IEC messages and refer to their
explanation and user response.

16
Meaning: Errors closing SYSPRINT DD. The SYSPRINT DD did not close
properly.

Action: In the JCL job log, look for IEC messages and refer to their
explanation and user response.

4095
Meaning: This service encountered an unexpected error.

Action: Contact IBM support.

Examples of using the ATRQSRV utility

Example 1
List all resource managers:

//LISTRM JOB
//STEP1 EXEC PGM=ATRQSRV
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

RMINFO

Example 2
List all active units of recovery (URs)

//LISTUR JOB
//STEP1 EXEC PGM=ATRQSRV
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

URINFO

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 641

ATRQSRV statement details and parameters

URINFO
Table 34. URINFO

URINFO
[URID(urid-pattern)]
[SURID(surid-pattern)]
[URTYPE(ALL|PROT|UNPROT)]
[URSTATE(ALL|urstate-list)]
[RMNAME(rmname-pattern)]
[WMNAME(wmname-pattern)]
[GNAME(gname-pattern)]
[SYSNAME(sysname-pattern)]
[LUWID(luwid-pattern)]
[EIDTID(tid)]
[EIDTIDLOW(tid)]
[EIDTIDHIGH(tid)]
[EIDGTID(gtid-pattern)]
[XIDFORMATID(formatid)]
[XIDGTRID(gtrid-pattern)]
[XIDBQUAL(bqual-pattern)]
[AFTER(yyyy/mm/dd[,hh:mm:ss])]
[BEFORE(yyyy/mm/dd[,hh:mm:ss])]
[TIMEFORMAT(LOCAL|GMT)]
[DURATION(hh:mm:ss.sssss)
[EXCLUDE(NONE|exclude-list)]
[SORT(NONE|sort-list)]
[LEVEL(SUMMARY|DETAILED)]

URID(urid-pattern)
specifies a specific UR identifier or a pattern string containing * and/or ? to
filter the returned information. If omitted, the returned information is not
filtered by UR identifier.

SURID(surid-pattern)
specifies a specific Sysplex UR identifier or a pattern string containing *
and/or ? to filter the returned information. If omitted, the returned information
is not filtered by Sysplex UR identifier.

URTYPE(ALL|PROT|UNPROT
specifies the type of URs to be returned. PROT requests only URs with
protected interests. UNPROT requests only URs with unprotected interests. If
omitted or ALL is specified, the returned information is not filtered by UR
type.

URSTATE(ALL|urstate-list)
specifies the state of the URs to be returned. URSTATE-LIST is one or more of
the following, separated by commas:

FLT
In-Flight UR state

SCK
In-State_Check UR state

OLA
In-Only-Agent UR state

ATRQSRV Utility

642 z/OS V2R1.0 MVS Programming: Resource Recovery

PRP
In-Prepare UR state

DBT
In-Doubt UR state

CMT
In-Commit UR state

BAK
In-Backout UR state

EUR
In-End UR state

CMP
In-Completion UR state

FGT
In-Forget UR state

If omitted or ALL is specified, the returned information is not filtered by UR
state.

RMNAME(rmname-pattern)
specifies a specific resource manager name or a pattern string containing *
and/or ? to filter the returned information. If omitted, the returned information
is not filtered by resource manager name.

WMNAME(wmname-pattern)
specifies a specific work manager name or a pattern string containing * and/or
? to filter the returned information. If omitted, the returned information is not
filtered by work manager name.

GNAME(gname-pattern)
specifies a specific logging group to be queried or a pattern string containing *
and/or ? to determine the logging group(s) to be queried. If omitted, this
parameter defaults to the logging group name of the current system.

SYSNAME(sysname-pattern)
specifies a specific system name to be queried or a pattern string containing *
and/or ? to determine the system(s) to be queried. If omitted, this parameter
defaults to the current system's name.

LUWID(luwid-pattern)
specifies a LUWID or a pattern string containing * and/or ? to filter the
returned information. luwid-pattern has the following format:

netid-pattern.luname-pattern,instnum-pattern,seqnum-pattern

All patterns must be specified. If omitted, the returned information is not
filtered by LUWID.

EIDTID(tid)
specifies a specific TID value to filter the returned information. If omitted, the
returned information is not filtered by TID. If specified, EIDTIDLOW and
EIDTIDHIGH can not be specified.

EIDTIDLOW(tid)
specifies a specific TID value to filter the returned information such that only
URs with TIDs greater than or equal to this value are be returned. If omitted,
the returned information is not filtered by TID. If specified, EIDTID can not be
specified.

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 643

EIDTIDHIGH(tid)
specifies a specific TID value to filter the returned information such that only
URs with TIDs less than or equal to this value are be returned. If omitted, the
returned information is not filtered by TID. If specified, EIDTID can not be
specified.

EIDGTID(gtid-pattern)
specifies a GTID or a pattern string containing * and/or ? to filter the returned
information. If omitted, the returned information is not filtered by GTID.

XIDFORMATID(formatid)
specifies a specific FORMATID to filter the returned information. If omitted,
the returned information is not filtered by FORMATID.

XIDGTRID(gtrid-pattern)
specifies a specific GTRID or a pattern string containing * and/or ? to filter the
returned information. If omitted, the returned information is not filtered by
GTRID.

XIDBQUAL(bqual-pattern)
specifies a specific BQUAL or a pattern string containing * and/or ? to filter
the returned information. If omitted, the returned information is not filtered by
BQUAL.

AFTER(yyyy/mm/dd[,hh:mm:ss])
specifies the date and time for the oldest UR to be returned. If AFTER is
omitted, URs are returned from the oldest UR known. If a time is omitted,
records are returned from midnight of the specified date.

BEFORE(yyyy/mm/dd[,hh:mm:ss])
specifies the date and time for the youngest UR to be returned. If BEFORE is
omitted, URs are returned up to the youngest UR known. If a time is omitted,
records are returned up to midnight of the specified date.

TIMEFORMAT(LOCAL|GMT)
specifies the time format for the AFTER and BEFORE parameters.

DURATION(hh:mm:ss.sssss)
specifies that only URs be returned if they have been in their current state
longer than the specified time. If omitted, the returned information is not
filtered by current state duration.

EXCLUDE(NONE|exclude-list)
specifies that certain information not be returned. exclude-list is one or more of
the following, separated by commas:

NONDEFERRED
Exclude URs that are deferred

FAILEDINTS
Exclude URs with failed interests

RESTARTLOG
Exclude URs from the Restart log stream

CASCADEDURS
Exclude cascaded URs

LOCALTRANS
Exclude Local transaction mode URs

GLOBALTRANS
Exclude Global transaction mode URs

ATRQSRV Utility

644 z/OS V2R1.0 MVS Programming: Resource Recovery

RRSMANAGED
Exclude URs currently managed by RRS

NONRRSMANAGED
Exclude URs currently managed by a non-RRS work manager

If omitted or NONE is specified, no exclusions are performed on the returned
information.

SORT(NONE|sort-list)
specifies that the returned information is to be sorted, using the provided
criteria. sort-list is one or more of the following, separated by commas:
v key,direction
v where

– key is one of the following:
WMNAME URID CREATETIME URSTATE LUWID EID XID GNAME
SYSNAME SURID

– direction is one of the following
A (ascending) D (descending)

A key can only be specified once.

Each sort key/direction pair is applied from left to right. For example,
SORT(SYSNAME,A,URID,A) will cause the UR information to be returned
sorted by system name and within each system name, by UR identifier.

If omitted or NONE is specified, no sorting of the returned information is
performed.

LEVEL(SUMMARY|DETAILED)
specifies a summary (tabular) output or a detailed output

SUMMARY output

URINFO 2006/09/07 17:08:39 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
URINFO LEVEL(SUMMARY)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1) URTYPE(ALL) URSTATE(ALL)
TIMEFORMAT(LOCAL) EXCLUDE(NONE) SORT(NONE)

URID SYSNAME GNAME STATE TYPE COMMENTS WMNAME
BBA25A0F7E2701010 SY1 PLEX1 InCommit Prot * SYS1.MAINASID.0024

DETAILED output

URINFO 2006/09/07 17:08:39 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
URINFO LEVEL(DETAILED)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1) URTYPE(ALL) URSTATE(ALL)
TIMEFORMAT(LOCAL)EXCLUDE(NONE) SORT(NONE)

URID = BBA25A0F7E2701010
Created = 2004/08/07 19:25:20.924229 LOCAL
Comments = *
State = InCommit
Type = Prot
Sysname = SY1
Gname = PLEX1
Surid = N/A
WMName = SY1.MAINASID.0024

LUWID
NetID.LuName = ABC.DEF
TPInstance = 000000000001
SeqNum = 0002

EID
TID = 002864434397 (decimal)
GTID = 00-07 11223344 55667788 |.......h |

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 645

XID
FormatID = 003654931682 (decimal) D9D9D4E2 (hexadecimal)
GTRID = 00-0F E2C9D4C4 C5E5F0F0 F1C9C2D4 D7D2D9D9 |SIMDEV001IBMPKRR|

10-1F E2F1F640 40404040 4040BBA2 5A0F7249 |S16 .s!...|
20-21 D080 |}. |

BQUAL = 00-0F D9D9D4E2 4BBBA25A 0F7249F3 80E2C9D4 |RRMS..s!...3.SIM|
10-1F C4C5E5F0 F0F1C9C2 D4D7D2D9 D9E2F1F6 |DEV001IBMPKRRS16|
20-26 40404040 404040 | |

Expressions of Interest: Number of Entries: 1
URIToken = 7E170000000000000055000155555555

RMName = UTRICK
Type = Prot
Status = DEFERRED
Role = Participant
State = InCommit
BACKOUT = Uncalled
COMPLETION = Uncalled
COMMIT = 00000030 >00:02:17.0157
DSE/IN_DOUBT = Uncalled
End_UR = Uncalled
EXIT_FAILED = 00000000
ONLY_AGENT = Uncalled
PRE_PREPARE = 00000000 00:00:05.3571
PREPARE = 00000000 00:05:19.1777
STATE_CHECK = Uncalled
PDATA = 000-00F D9D9D4E2 4BBBA25A 0F7249F3 80E2C9D4 |RRMS..s!...3.SIM|

010-01F C4C5E5F0 F0F1C9C2 D4D7D2D9 D9E2F1F6 |DEV001IBMPKRRS16|

RMINFO
Table 35. RMINFO

RMINFO
[RMNAME(rmname-pattern)]
[GNAME(gname-pattern)]
[SYSNAME(sysname-pattern)]
[METADATA(NO|YES)]
[LEVEL(SUMMARY|DETAILED)]

where

RMNAME(rmname-pattern)
specifies a specific resource manager name or a pattern string containing *
and/or ? to filter the returned information. If omitted, the returned information
is not filtered by resource manager name.

GNAME(gname-pattern)
specifies a specific logging group to be queried or a pattern string containing *
and/or ? to determine the logging group(s) to be queried. If omitted, this
parameter defaults to the logging group of the current system.

SYSNAME(sysname-pattern)
specifies a specific system name to be queried or a pattern string containing *
and/or ? to determine the system(s) to be queried. If omitted, this parameter
defaults to the current system.

METADATA(NO|YES)
specifies that MetaData will or will not be processed. If NO, the default value,
is specified MetaData will not be returned. If YES is specified and a resource
manager has saved MetaData, it will be returned. To display the MetaData,
LEVEL(DETAILED) must also be specified.

ATRQSRV Utility

646 z/OS V2R1.0 MVS Programming: Resource Recovery

LEVEL(SUMMARY|DETAILED)
specifies a summary (tabular) output or a detailed output.

SUMMARY output

RMINFO 2006/09/07 17:08:39 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
RMINFO LEVEL(SUMMARY)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1) METADATA(NO)
RMNAME RMTOKEN STATE SYSNAME GNAME
UTRICK 01000001021D41780000000300000001 Reset SY1 PLEX1

DETAILED output

RMINFO 2006/09/07 17:08:39 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
RMINFO METADATA(YES) LEVEL(DETAILED)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
RMName = UTRICK

RMToken = 01000001021D41780000000300000001
State = Reset
Sysname = SY1
Gname = PLEX1
MetaData = Not Present
URID SYSNAME GNAME STATE TYPE COMMENTS WMNAME

BBA25A0F7E2701010 SY1 PLEX1 InCommit Prot * SYS1.MAINASID.0024

WMINFO
Table 36. WMINFO

WMINFO
[WMNAME(wmname-pattern)]
[GNAME(gname-pattern)]
[SYSNAME(sysname-pattern)]
LEVEL(SUMMARY|DETAILED)]

where

WMNAME(wmname-pattern)
specifies a specific work manager name or a pattern string containing * and/or
? to filter the returned information. If omitted, the returned information is not
filtered by work manager name.

GNAME(gname-pattern)
specifies a specific logging group to be queried or a pattern string containing *
and/or ? to determine the logging group(s) to be queried. If omitted, this
parameter defaults to the logging group of the current system.

SYSNAME(sysname-pattern)
specifies a specific system name to be queried or a pattern string containing *
and/or ? to determine the system(s) to be queried. If omitted, this parameter
defaults to the current system.

LEVEL(SUMMARY|DETAILED)
specifies a summary (tabular) output or a detailed output.

SUMMARY output

WMINFO 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
WMINFO LEVEL(SUMMARY)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
WMNAME SYSNAME GNAME
SYS1.MAINASID.0024 SY1 PLEX1

DETAILED output

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 647

WMINFO 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
WMINFO LEVEL(DETAILED)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
WMName = SYS1.MAINASID.0024

Sysname = SY1
Gname = PLEX1
URID SYSNAME GNAME STATE TYPE COMMENTS

BBA25A0F7E2701010 SY1 PLEX1 InCommit Prot *

LOGINFO
Table 37. LOGINFO

LOGINFO
LOG(ARCHIVE|UR|RESTART|RMDATA|METADATA)
[GNAME(logging-group-name)]
[URID(ur-identifier)]
[SURID(surid)]
[RMNAME(rmname)]
[AFTER(yyyy/mm/dd[,hh:mm:ss])]
[BEFORE(yyyy/mm/dd[,hh:mm:ss])]
[LEVEL(SUMMARY|DETAILED)

where

LOG(ARCHIVE|UR|RESTART|RMDATA|METADATA)
specifies the log stream(s) to be read.

GNAME(logging-group-name)
specifies the logging group whose log streams are to be read. If omitted, this
parameter defaults to the logging group of the current system.

URID(ur-identifier)
specifies the UR identifier to filter the returned information when
LOG(ARCHIVE), LOG(UR) or LOG(RESTART) is specified. This parameter
may contain a specific UR identifier or a pattern string containing * and/or ?
to filter the returned information. If omitted, returned records will not be
filtered by UR identifier.

SURID(surid)
specifies the Sysplex UR identifier to filter the returned information when
LOG(ARCHIVE), LOG(UR) or LOG(RESTART) is specified. This parameter
may contain a specific Sysplex UR identifier or a pattern string containing *
and/or ? to filter the returned information. If omitted, returned records will
not be filtered by SURID.

RMNAME(rmname)
specifies the resource manager name to filter the returned information when
LOG(RMDATA) or LOG(METADATA) is specified. This parameter may contain
a specific resource manager name or a pattern string containing * and/or ? to
filter the returned information. If omitted, returned records will not be filtered
by resource manager name.

AFTER(yyyy/mm/dd[,hh:mm:ss])
specifies the date and time for the oldest record to be returned. If AFTER is
omitted, records are returned from the oldest record in the log stream. If a time
is omitted, records are returned from midnight of the specified date.

BEFORE(yyyy/mm/dd[,hh:mm:ss])
specifies the date and time for the youngest record to be returned. If BEFORE

ATRQSRV Utility

648 z/OS V2R1.0 MVS Programming: Resource Recovery

is omitted, records are returned up to the youngest record in the log stream. If
a time is omitted, records are returned up to midnight of the specified date.

LEVEL(SUMMARY|DETAILED)
specifies the amount of information returned. See “Checking the log streams”
on page 566 for the data returned for each level and log type.

Output

LOGINFO 2006/09/07 17:43:04 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
LOGINFO LOG(RMDATA)

DEFAULTS: GNAME(PLEX1)
RRS/MVS LOG STREAM BROWSE SUMMARY REPORT

Refer to the following sample report entries:
v Figure 23 on page 570 Detail Unit of Recovery Report Entry
v Figure 24 on page 572 Detail Archive Report Entry
v Figure 25 on page 573 Sample Resource Manager Entry
v Figure 26 on page 573 Sample Resource Manager Meta Data Entry

SYSINFO
Table 38. SYSINFO

SYSINFO
[GNAME(gname-pattern)]
[SYSNAME(sysname-pattern)]
[LEVEL(SUMMARY|DETAILED)]

where

GNAME(gname-pattern)
specifies a specific logging group name or a pattern string containing * and/or
? to filter the returned information. If omitted, information is returned for all
logging groups on systems matching the SYSNAME parameter.

SYSNAME(sysname-pattern)
specifies a specific system name or a pattern string containing * and/or ? to
filter the returned information. If omitted, information is returned for all
systems in the sysplex

LEVEL(SUMMARY|DETAILED)
specifies a summary (tabular) output or a detailed output.

SUMMARY output

SYSINFO 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
SYSINFO LEVEL(SUMMARY)

DEFAULTS: GNAME(*) SYSNAME(*)
SYSNAME GNAME
SY1 PLEX1
SY2 PLEX

DETAILED output

SYSINFO 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
SYSINFO LEVEL(DETAILED)

DEFAULTS: GNAME(*) SYSNAME(*)
Sysname = SY1

Gname = PLEX1
Sysname = SY2

Gname = TEST

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 649

REMOVINT
Table 39. REMOVINT

REMOVINT
[RMNAME(rmname)]
[URID(ur-identifier)]
[GNAME(logging-group-name)]
[SYSNAME(system-name)]

where

RMNAME(rmname)
specifies the resource manager name whose interests are to be removed. This
parameter can not contain any wildcard characters. If RMNAME is not
specified, URID must be specified.

URID(ur-identifier)
specifies the UR identifier whose interests are to be removed. This parameter
can not contain any wildcard characters. If URID is not specified, RMNAME
must be specified

GNAME(logging-group-name)
specifies the logging group that contains the UR identifier. If omitted, this
parameter defaults to the logging group of the current system. If GNAME is
specified, SYSNAME must also be specified.

SYSNAME(system-name)
specifies the system name where the UR resides. If omitted, this parameter
defaults to the current system. If SYSNAME is specified, GNAME must also be
specified.

Output

REMOVINT 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
REMOVINT RMNAME(UTRICK)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
ATR074I Remove Interest processed successfully.

COMMIT
Table 40. COMMIT

COMMIT
URID(ur-identifier)
[GNAME(logging-group-name)]
[SYSNAME(system-name)]

where

URID(ur-identifier)
specifies the UR identifier for the InDoubt UR to be committed. This parameter
is required and can not contain any wildcard characters.

GNAME(logging-group-name)
specifies the logging group that contains the UR identifier. If omitted, this
parameter defaults to the logging group of the current system. If GNAME is
specified, SYSNAME must also be specified.

ATRQSRV Utility

650 z/OS V2R1.0 MVS Programming: Resource Recovery

SYSNAME(system-name)
specifies the system name where the UR resides. If omitted, this parameter
defaults to the current system. If SYSNAME is specified, GNAME must also be
specified.

Output

COMMIT 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
COMMIT URID(BBA25A0F7E2700000000000001010000)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
ATR075I Commit request was scheduled successfully.

BACKOUT
Table 41. BACKOUT

BACKOUT
URID(ur-identifier)
[GNAME(logging-group-name)]
[SYSNAME(system-name)]

where

URID(ur-identifier)
specifies the UR identifier for the InDoubt UR to be backed out. This
parameter is required and can not contain any wildcard characters.

GNAME(logging-group-name)
specifies the logging group that contains the UR identifier. If omitted, this
parameter defaults to the logging group of the current system. If GNAME is
specified, SYSNAME must also be specified.

SYSNAME(system-name)
specifies the system name where the UR resides. If omitted, this parameter
defaults to the current system. If SYSNAME is specified, GNAME must also be
specified.

Output

BACKOUT 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
BACKOUT URID(BBA25A0F7E2700000000000001010000)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
ATR076I Backout request was scheduled successfully.

DELETERM
Table 42. DELETERM

DELETERM
RMNAME(rmname)
[GNAME(logging-group-name)]

where

RMNAME(rmname)
specifies the resource manager name to be deleted. This parameter is required
and can not contain any wildcard characters.

GNAME(logging-group-name)
specifies the logging group that contains the resource manager. If omitted, this
parameter defaults to the logging group of the current system.

Output

ATRQSRV Utility

Chapter 13. ATRQSRV utility - query and update RRS information 651

DELETERM 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
DELETERM RMNAME(UTRICK)

DEFAULTS: GNAME(PLEX1)
ATR529I RM UTRICK was deleted successfully.

UNREGRM
Table 43. UNREGRM

UNREGRM
RMNAME(rmname)
[GNAME(logging-group-name)]
(SYSNAME(system-name)]

where

RMNAME(rmname)
specifies the resource manager name to be unregistered. This parameter is
required and can not contain any wildcard characters.

GNAME(logging-group-name)
specifies the logging group that contains the UR identifier. If omitted, this
parameter defaults to the logging group of the current system. If GNAME is
specified, SYSNAME must also be specified.

SYSNAME(system-name)
specifies the system name where the resource manager resides. If omitted, this
parameter defaults to the current system. If SYSNAME is specified, GNAME
must also be specified.

Output

UNREGRM 2006/09/07 17:19:41 LOCAL -- ATRQSRV - HBB7740 - 2006250 --
UNREGRM RMNAME(UTRICK)

DEFAULTS: GNAME(PLEX1) SYSNAME(SY1)
ATR534I RM UTRICK was unregistered successfully.

ATRQSRV Utility

652 z/OS V2R1.0 MVS Programming: Resource Recovery

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1997, 2013 653

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

654 z/OS V2R1.0 MVS Programming: Resource Recovery

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 655

656 z/OS V2R1.0 MVS Programming: Resource Recovery

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1997, 2013 657

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

658 z/OS V2R1.0 MVS Programming: Resource Recovery

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to all assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 659

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

660 z/OS V2R1.0 MVS Programming: Resource Recovery

Glossary

This glossary defines technical terms and
abbreviations used in z/OS recoverable resource
management services (RRMS) documentation. If
you do not find the term you are looking for,
refer to the index of this book, or view the IBM
Glossary of Computing Terms, located at:

http://www.ibm.com/ibm/terminology

ACID transaction
A transaction involving multiple resource
managers using the two-phase commit
process to ensure ACID (Atomic,
Consistent, Isolated, and Durable)
properties:

atomic
When an application changes data
in multiple resource managers as
a single transaction, and all of
those changes are accomplished
through a single commit request
by a syncpoint manager, the
transaction is called atomic. If the
transaction is successful, all the
changes will be committed. If any
piece of the transaction is not
successful, then all of the changes
will be backed out. An atomic
instant occurs when the syncpoint
manager in a two-phase commit
process logs a commit record for
the transaction.

consistent
Applications involved in an ACID
transaction must be written to
maintain a consistent view of
data. The transaction either makes
valid changes to data, or it
returns all the data to its state
before the transaction was started.

isolated
Databases involved in an ACID
transaction isolate the updates to
their data so that only the
application changing the data
knows about the individual
update requests until the
transaction is complete.

durable
Databases involved in an ACID

transaction ensure the data is
persistent, both before and after
the transaction, regardless of
success or failure.

agent A component that controls the two-phase
commit for a particular node in a
distributed transaction. The agent waits
for its coordinator to inform it of the
outcome of the distributed two-phase
commit. Once informed, the agent
continues with the second phase of the
two-phase commit.

RRS can act as an agent when a resource
manager takes the distributed syncpoint
manager (DSRM) or server distributed
syncpoint manager (SDSRM) role for a
particular unit of recovery (UR).

allocation tree
A multilevel logical tree structure
representing a hierarchical relationship
among transaction programs and other
resource managers in a distributed
two-phase commit operation. The root
node of the tree is the application that
starts the transaction, which may not be
the initiator of the commit request when
you are using a peer-to-peer
communication protocol like LU 6.2. See
also syncpoint tree.

application
In the context of RRS, a program that
accesses one or more resources managed
by resource managers that work with RRS
to manage transactions.

atomic
See ACID transaction.

backout
A request to remove all changes to
resources since the last commit or backout
or, for the first unit of recovery, since the
beginning of the application. Backout is
also called rollback or abort.

cascaded transaction
A type of distributed transaction, or part
of a distributed transaction, in which the
coordination between the nodes is directly
controlled by RRS. See also multisystem
cascaded transaction.

© Copyright IBM Corp. 1997, 2013 661

http://www.ibm.com/software/globalization/terminology/

cascaded UR family
The collection of nodes coordinated by
RRS in a cascaded transaction.

child UR
A unit of recovery cascaded from a parent
UR in a cascaded transaction.

commit
A request to make all changes to
resources since the last commit or backout
or, for the first unit of recovery, since the
beginning of the application.

commit coordinator
See syncpoint manager.

communication resource manager
A resource manager that coordinates a
two-phase commit across multiple nodes
in a distributed transaction. These nodes
may be on the same system or multiple
systems.

consistent
See ACID transaction.

context
Sometimes called a work context, a context
is a representation of a work request, or
part of a work request, in an application.
A context may have a series of units of
recovery associated with it. See also native
context and privately-managed context.

context interest token
A token that represents a resource
manager's interest in a context.

context services
The z/OS system component that
provides services used to track a work
request and allow a resource manager to
express interest in the work request.

context token
A token that represents a work request's
context.

conversation
An APPC communication between two
applications.

coordinator
The syncpoint manager that controls the
two-phase commit process for a node in a
distributed transaction. A coordinator that
is not the global commit coordinator may
also be an agent.

The system where the top-level UR of a
particular multisystem cascaded transaction

resides is also called the coordinator of that
multisystem cascaded transaction.

cross-memory resource owning task
The task in an address space that owns its
cross memory related resources.
Generally, it is the first job step task in an
address space after the initiator task.

data resource manager
A resource manager that allows you to
retrieve or update protected data and
have the changes coordinated via a
syncpoint coordinator.

disjoint
A type of distributed transaction in which
some of the nodes are connected via
different distributed transaction protocols.
See also nondisjoint.

distributed syncpoint resource manager (DSRM)
A resource manager that extends
protection to resources across multiple
nodes using a peer-to-peer protocol. See
also server distributed syncpoint resource
manager (SDSRM).

distributed transaction
A transaction that affects data on multiple
nodes. The nodes may be on one system,
or across multiple systems. When all the
nodes are on one system, the transaction
is sometimes called pseudo distributed.

durable
See ACID transaction.

enterprise identifier (EID)
One possible identifier for a distributed
transaction. The format is a concatenation
of the TID and GTID used by a
communications resource manager that
uses the distributed transaction protocols
of the Encina Toolkit.

exit manager
A system component, such as context
services and resource recovery services,
that invokes exit routines.

external coordinator
A coordinator that controls the two-phase
commit for a unit of recovery owned by
another subsystem or component.

forced update
An update to a log that must be written
to nonvolatile storage before processing
can proceed. To keep work synchronized

662 z/OS V2R1.0 MVS Programming: Resource Recovery

in case of a failure, most RRS logging
operations are forced.

forgotten
See unit of recovery (UR) states in RRS.

global commit coordinator
The syncpoint manager that controls the
overall result of the two-phase commit in
a distributed transaction. See also initiator.

global transaction
A type of transaction in which a
syncpoint coordinator, such as RRS, is
available and coordinating changes to
resources that could involve multiple
resource managers.

heuristic commit (HC)
A decision to commit some, but not all, of
the protected resources in an ACID
transaction.

heuristic decision
The decision to force an abnormal commit
or backout of some but not all of the
resources in an ACID transaction. A
heuristic decision usually occurs when
installation personnel commit or back out
some of the resources in an ACID
transaction.

heuristic mixed
The condition that occurs when resources
in an ACID transaction are in an
inconsistent state. Some resources were
committed and some resources were
backed out.

heuristic reset
The decision to back out some, but not
all, of the protected resources in an ACID
transaction.

in-backout
See unit of recovery (UR) states in RRS.

in-commit
See unit of recovery (UR) states in RRS.

in-completion
See unit of recovery (UR) states in RRS.

in-doubt
See unit of recovery (UR) states in RRS.

in-end See unit of recovery (UR) states in RRS.

in-flight
See unit of recovery (UR) states in RRS.

in-forget
See unit of recovery (UR) states in RRS.

in-only-agent
See unit of recovery (UR) states in RRS.

in-prepare
See unit of recovery (UR) states in RRS.

in-reset
See unit of recovery (UR) states in RRS.

in-state-check
See unit of recovery (UR) states in RRS.

initiator
The node of the original issuer of the
commit or backout request in a
distributed two-phase commit. The
initiator is the root of a syncpoint tree.
The syncpoint manager of initiator node
is known as the global commit coordinator.

isolated
See ACID transaction.

local transaction
A type of transaction in which each
resource manager involved is seperately
coordinating its own changes, and only its
changes, rather than having a syncpoint
coordinator, such as RRS, coordinate
them.

logical unit of work identifier (LUWID)
One possible identifier for a distributed
transaction used by a communications
resource manager that uses LU 6.2
syncpoint protocols.

multisystem cascaded transaction
A cascaded transaction that has URs on
multiple systems in a sysplex in which
the cross system coordination is being
provided by RRS. A multisystem cascaded
transaction is also known as a sysplex
cascaded transaction or a sysplex cascade.

native context
The automatically occurring context of a
work request. A native context is
associated with a single task. This context
always exists.

node A set of changes to protected resources
made by a single work request in a single
execution environment. In RRS, a unit of
recovery is associated with a work context
to form a single transaction node.
Multiple nodes may be connected through
distributed transaction protocols or be
part of a cascaded UR family.

Glossary 663

nondisjoint
A type of distributed transaction in which
all of the nodes are connected via the
same distributed transaction protocol. See
also disjoint.

parent UR
A unit of recovery in a cascaded
transaction with one or more child URs
cascaded from it.

privately-managed context
A context created and owned by a
resource manager. The resource manager
can switch a privately-managed context
from one task to another.
Privately-managed contexts are usually
used by a resource manager that is also a
work manager, like IMS/TM. This sort of
work manager can accept and manage
transactions, or other kinds of work, from
outside the system.

protected conversation
A conversation that connects two nodes in
an ACID transaction. Distributed
programs use protected conversations to
extend protection to resources on multiple
systems.

protected resource
A local or distributed resource that can be
changed in a synchronized manner
during processing coordinated by a
syncpoint manager, such as RRS.
Databases, conversations between two
communications managers, or
product-specific resources can all be
protected resources. A protected resource
is also often called a recoverable resource.

recoverable resource management services
(RRMS)

The set of three system components that
provide resource recovery services in
z/OS: resource recovery services (RRS),
context services, and registration services.

registered
See resource manager (RM) states in RRS.

registration
In RRS, the definition of a resource
manager to the system.

registration services
The z/OS system component that enables
a resource manager to register itself with
the system and identify the exit routines
it provides for resource recovery.

reset See resource manager (RM) states in RRS.

resource
A database, a conversation between two
systems, or a product-specific item. A
resource can be local (residing on the
current system) or distributed (residing
on another system).

A resource is protected when it can be
changed in a synchronized manner.

resource manager (RM)
A subsystem or component, such as CICS,
IMS, or DB2, that manages resources that
can be involved in transactions. There are
three types of resource managers: work
managers, data resource managers, and
communication resource managers.

resource manager (RM) states in RRS
There are five possible resource manager
states in RRS:

reset A resource manager in reset state
has failed or unregistered itself
with the system. It cannot take
part in processing units of
recovery. Note that a resource
manager that is not yet registered
with RRS is also in reset state, but
it does not appear in the RRS
panels.

registered
A resource manager in registered
state has registered itself with
z/OS registration services, and is
ready to set its exit routines with
exit managers.

set A resource manager in set state
has identified its exit routines
with exit managers, such as
context services and resource
recovery services, and is ready to
enter the restart state.

restart A resource manager in restart
state has registered and set its
exits. While in restart state, it is
retrieving and processing any
units of recovery that were
incomplete the last time it was
running. Once the resource
manager has restarted, it can
proceed to the run state.

664 z/OS V2R1.0 MVS Programming: Resource Recovery

run A resource manager in run state is
ready to take part in processing
units of recovery.

resource recovery services (RRS)
The z/OS system component that
provides the services that a resource
manager calls to protect resources. RRS is
the z/OS system level syncpoint manager.

restart See resource manager (RM) states in RRS.

restart anywhere
RRS support that allows resource
managers to restart on any system in the
same logging group that supports
multisystem cascaded transactions.

RRMS
See recoverable resource management services
(RRMS).

RRS See resource recovery services (RRS).

run See resource manager (RM) states in RRS.

server distributed syncpoint resource manager
(SDSRM)

A resource manager that extends
protection to resources across multiple
nodes using a client-server protocol. See
also distributed syncpoint resource manager
(DSRM).

set See resource manager (RM) states in RRS.

state The status of a resource manager (RM) or
a unit of recovery (UR). See resource
manager (RM) states in RRS and unit of
recovery (UR) states in RRS.

subordinate
A system where a child UR of a particular
multisystem cascaded transaction resides.

syncpoint
The beginning or ending of a unit of
recovery when all resources are
consistent.

Syncpoint is also defined as the process of
doing two-phase commit to make atomic
updates to protected resources.

syncpoint manager
A function that coordinates the two-phase
commit process for protected resources, so
that all changes to data are either
committed or backed out. In z/OS, RRS
can act as the system level syncpoint
manager. A syncpoint manager is also

known as a transaction manager, syncpoint
coordinator, or a commit coordinator.

syncpoint tree
A multilevel tree structure representing a
hierarchical relationship among
transaction programs and other resource
managers in a distributed two-phase
commit operation. The root node of the
tree is the initiator, the original issuer of
the commit or backout request. The global
commit coordinator is the syncpoint
manager at the initiator node.

A syncpoint tree is similar to an allocation
tree. They are identical, except when using
a peer-to-peer protocol, such as LU 6.2,
for distributed communications. When
using peer-to-peer protocols, the commit
may occur somewhere other than at the
root node of the allocation tree.

sysplex cascaded transaction
See multisystem cascaded transaction.

transaction manager
See syncpoint manager.

transaction monitor
A work manager that also acts as a
syncpoint manager. IMS/TM is a
transaction monitor.

two-phase commit
The process used by syncpoint managers
and resource managers to coordinate
changes in an ACID transaction.

In the first phase of the process, resource
managers prepare a set of coordinated
changes, but the changes are
uncommitted pending the agreement of
all the resource managers involved in the
transaction. In the second phase, those
changes are all committed if the resource
managers all agreed to them; or, the
changes are all backed out if any of the
resource managers failed or disagreed.

Using the two-phase commit process,
multiple changes across multiple resource
managers can be treated as a single ACID
transaction.

unit of recovery (UR)
A set of changes on one node that is
committed or backed out as part of an
ACID transaction.

A UR is implicitly started the first time a
resource manager touches a protected

Glossary 665

resource on a node. A UR ends when the
two-phase commit process for the ACID
transaction changing it completes.

unit of recovery (UR) states in RRS
There are twelve possible UR states in
RRS:

in-reset
The UR state before an
application program has used any
protected resources.

in-flight
The UR state when an application
accesses protected resources. The
resource managers express
interest in the unit of recovery.

in-state-check
The UR state when the
application has issued a commit
request and the resource
managers check if their resources
are in the correct state.

in-prepare
The UR state when the
application has issued a commit
request and the syncpoint
manager tells each resource
manager to prepare its resources
for commit or backout.

in-doubt
For a distributed request, the state
of the UR is in-doubt on the
originating system from the end
of the prepare phase of the
two-phase commit until the
DSRM returns a commit or
backout request.

in-only-agent
The UR state when only one
resource manager has expressed
an interest in the UR. RRS
invokes the ONLY_AGENT exit
routine to tell the resource
manager to process the commit
immediately.

in-backout
The UR state when one or more
resource managers reply
negatively to a commit request.
The syncpoint manager tells each
resource manager to back out the
changes. The resources are
returned to the values they had

before the UR was processed.
When all the resource managers
have backed out the changes, the
syncpoint manager notifies the
application.

in-commit
The UR state when all resource
managers reply positively to a
commit request. The syncpoint
manager tells each resource
manager to make its changes
permanent. When all resource
managers have made the changes,
the syncpoint manager notifies
the application.

in-end The UR state when the resource
managers have responded to the
syncpoint manager that commit
or backout is complete. The unit
of recovery is logically complete.

in-completion
The UR state when any enabled
completion exit routines run.
Once this phase completes, RRS
passes a return code to the
application indicating that the
changes have been committed or
backed out.

in-forget
A UR state for a distributed
request. The UR has completed,
but RRS is waiting for the SDSRM
to indicate how to process the log
records for the UR.

forgotten
The UR state that occurs when
the UR has completed and RRS
has deleted its log records.

work context
See context.

work manager
A resource manager that controls the
execution of application programs.

work request
A piece of work, such as a request for
service, a batch job, an APPC/MVS, CICS,
or IMS transaction, a TSO LOGON, or a
TSO command. In z/OS, a work request,
or part of a work request, is represented
by a context.

666 z/OS V2R1.0 MVS Programming: Resource Recovery

X/Open identifier (XID)
One possible identifier for a distributed
transaction used by a communications
resource manager that uses the X/Open
distributed transaction processing model.

Glossary 667

668 z/OS V2R1.0 MVS Programming: Resource Recovery

Index

Special characters
(GTID) global transaction identifier 454
(TID) transaction identifier 454

A
access authorization for panel use 561
accessibility 653

contact IBM 653
features 653

action
End_Transaction 303

adding RRS as an ISPF menu option 563
administrative utility

coding 639
agent UR

preparing 351
ancestor UR 69
application

application-complete 555
asynchronous abend 551
controlled parallelism 552
database locking 553
initiating syncpoints for cascaded transactions 552
rules for cascaded transactions 552
service return codes 549

application service
return code explanation 549

ARM (automatic restart) 533
assistive technologies 653
asynchronous abend 551
ATR_GLOBAL_MODE 461
ATR_HYBRID_GLOBAL_MODE 461
ATR_LOCAL_MODE 461
ATR_NORM_CTX_END_SETTING 462
ATR_NOT_SET 461
ATR4ABAK 225
ATR4ACMT 254
ATR4ADCT 276
ATR4AFGT 339
ATR4APRP 351
ATR4BACK 231
ATR4BEG 241
ATR4CCUR 266
ATR4CMIT 261
ATR4DINT 291
ATR4DPSP 286
ATR4EINT 309
ATR4END 301
ATR4IBRS 236
ATR4IERS 296
ATR4IRLN 399
ATR4IRNI 438
ATR4IRRI 359
ATR4ISLN 471
ATR4PDUE 345
ATR4RDTA 405
ATR4REIC 387
ATR4RENV 379
ATR4RID 391

ATR4RURD 429
ATR4RUSF 421
ATR4RUSI 410
ATR4RWID 446
ATR4SDTA 490
ATR4SENV 461
ATR4SIT 247
ATR4SPID 477
ATR4SPSP 482
ATR4SROI 366
ATR4SSPC 505
ATR4SUSI 495
ATR4SWID 518
ATRABAK 225
ATRACMT 254
ATRADCT1 276
ATRAFGT 339
ATRAPRP 351
ATRBACK 231
ATRBEG 241
ATRCCUR2 266
ATRCCUR3 266
ATRCMIT 261
ATRDINT 291
ATRDPSP2 286
ATREINT 309
ATREINT1 309
ATREINT2 309
ATREINT3 309
ATREINT4 309
ATREINT5 309
ATREND 301
ATRIBRS 236
ATRIERS 296
ATRIRLN 399
ATRIRNI 438
ATRIRRI 359
ATRISLN 471
ATRPDUE 345
atrqsrv data utility

using 639
atrqsrv utility

description 639
utility control statements 639

ATRQUERY macro 591
ATRRDTA 405
ATRREIC 387
ATRRENV 379
ATRRID 391
ATRRURD 429
ATRRURD1 429
ATRRURD2 429
ATRRUSF 421
ATRRUSF1 421
ATRRUSI 410
ATRRUSI2 410
ATRRWID 446
ATRRWID2 446
ATRSDTA 490
ATRSENV 461
ATRSIT 247

© Copyright IBM Corp. 1997, 2013 669

ATRSPID 477
ATRSPSP2 482
ATRSROI 366
ATRSROI1 366
ATRSRV macro 623
ATRSSPC 505
ATRSUSI 495
ATRSUSI2 495
ATRSWID 518
ATRSWID2 518
automatic context termination 312
automatic restart 533
AVGBUFSIZE

for RRS log streams 537

B
backout

definition 3
description 7

BACKOUT exit routine 104
bypassing 511
example 90
parameters 105
processing 104
restrictions 105
return codes 106

Backout_Agent_UR call 225
backout_exit_code

Set_Syncpoint_Controls 511
Backout_UR call 231
Begin_Context call 171
Begin_Restart call 236
Begin_Transaction call 241
Bqual 454, 524
bypass exit routines 507

C
callable context services 171
callable registration services 137
callable resource recovery services 225
cascaded transactions 69

application rules 552
application-complete 555
database locking 553
end context processing 71
initiating syncpoints 552
logging 559
managing contexts 555
moving work between work managers 553
parallel processing 552, 554
work manager guidelines 553
working with cascaded transactions 552

cascaded UR
creating 266, 314

cascaded UR families 69
cataloged procedure, RRS 532
Change_Interest_Type call 247
changing roles 507
checking log name 58, 399
child UR 69
child_context_token

Create_Cascaded_UR 270
child_UR_identifier

Create_Cascaded_UR 270

child_UR_token
Create_Cascaded_UR 270

client-server model
distributed resource recovery 14

cold start 542
recognizing 237

collecting problem data 545, 546
commit

agent UR 254
definition 3
description 5
UR 261

commit agent UR
delegating 276

COMMIT exit routine 108
bypassing 511
example 90
parameters 108
processing 108
restrictions 108
return code from Set_Syncpoint_Controls call 506
return codes 109

Commit_Agent_UR call 254
commit_exit_code

Set_Syncpoint_Controls 511
commit_options

Delegate_Commit_Agent_UR 280
Commit_UR call 261
comparing log name 58, 399
COMPLETION exit routine 111

parameters 112
processing 111
restrictions 111
return codes 113

completion_code
Post_Deferred_UR_Exit 348

completion_type
End_Context 183

context
beginning 171
current 33, 171, 180
definition 3
delegating privately-managed 53
deleting interest 176
description 31, 171
ending 180, 187
expressing interest 19, 186
managing in cascaded transactions 555
native 31
privately-managed 31, 32
retrieving data 194
retrieving token 204
setting data 207
switching 217
types 31

context data
retrieving 194
setting 207

context interest data
providing 186, 212
retrieving 200

context services 2
callable services 171
exit routines 34
using 31

context token
retrieving 204

670 z/OS V2R1.0 MVS Programming: Resource Recovery

context token (continued)
using 171

context type differences 31
context_bufferlength

Retrieve_Context_Data 197
context_data

Set_Context_Data 210
context_data_buffer

Retrieve_Context_Data 197
context_datalength

Retrieve_Context_Data 197
Set_Context_Data 210

context_interest_data
Express_Context_Interest 190
Retrieve_Context_Interest_Data 202
Set_Context_Interest_Data 215

context_interest_token
Delete_Context_Interest 178
Express_Context_Interest 190
Retrieve_Context_Interest_Data 202
Set_Context_Interest_Data 215

context_key
Retrieve_Context_Data 197
Set_Context_Data 210

CONTEXT_SWITCH exit routine
parameters 42
return codes 43

context_token
Begin_Context 174
End_Context 183
Express_Context_Interest 189
Express_UR_Interest 320
Retrieve_Context_Data 196
Retrieve_Current_Context_Token 206
Retrieve_Environment 381
Retrieve_Interest_Count 390
Retrieve_Side_Information_Fast 423
Retrieve_UR_Interest 442
Set_Context_Data 210
Set_Environment 465
Switch_Context 220

Create_Cascaded_UR call 266
create_options

Create_Cascaded_UR 270
CRG4DRM 166
CRG4GRM 137
CRG4RRMD 144
CRG4SEIF 148
CRGDRM 166
CRGGRM 137
CRGRRMD 144
CRGSEIF 148
CRGSEIF1 148
CTX4BEGC 171
CTX4DINT 176
CTX4EINT 186
CTX4ENDC 180
CTX4RCC 204
CTX4RCID 200
CTX4RDTA 194
CTX4SCID 212
CTX4SDTA 207
CTX4SWCH 217
CTXBEGC 171
CTXDINT 176
CTXEINT 186
CTXEINT1 186

CTXENDC 180
CTXRCC 204
CTXRCID 200
CTXRDTA 194
CTXSCID 212
CTXSCID2 212
CTXSDTA 207
CTXSWCH 217
current context 33, 171
current_context_interest_data

Set_Context_Interest_Data 215
current_context_token

Express_Context_Interest 190
Express_UR_Interest 321

current_nonpersistent_interest_data
Express_UR_Interest 326

current_ur_token
End_Transaction 304

D
defining the log streams 535
Delegate_Commit_Agent_UR call 276
delegating private contexts 53
Delete_Context_Interest call 176
Delete_Post_Sync_PET call 286
Delete_UR_Interest call 291
descendant UR 69
diag_area

Begin_Transaction 244
End_Transaction 303
Express_UR_Interest 329
Retrieve_Environment 381
Set_Environment 464

disassociated_context_token
Switch_Context 220

distributed resource recovery 67
client-server model 14
description 8
peer-to-peer model 9

distributed syncpoint manager 505
DISTRIBUTED_SYNCPOINT exit routine 113

example 90
parameters 114
processing 114
restrictions 114
return codes 115

DSRM 52
resource manager role 505

E
EID 81

format 454, 524, 602
element_count

Retrieve_Environment 382
Retrieve_Side_Information 414
Set_Environment 465
Set_Side_Information 499

end context processing
with cascaded transactions 71

End_Context call 180
END_CONTEXT exit routine

parameters 45
return codes 46

End_Restart call 296

Index 671

End_Transaction call 301
END_UR Exit Routine 116

parameters 117
processing 116
restrictions 116
return codes 117

Enterprise identifier 454
environment

retrieving 379
setting 461

environment_id
Retrieve_Environment 382
Set_Environment 466

environment_info
Retrieve_Side_Information_Fast 424

environment_protection
Retrieve_Environment 384
Set_Environment 467

environment_value
Retrieve_Environment 383
Set_Environment 466

EOM_CONTEXT exit routine
parameters 46
return codes 47

example
adding RRS to ISPF menu 563
resource manager processing 86

exit duration
and RRS failures 584
inconsistencies 584

exit manager
definition 19

exit routine
context services 34
deferred response 345
notification 149
registration services 23
RRS parameter list 100
RRS summary 51
setting 148

exit routines 104
BACKOUT 104
COMMIT 108
COMPLETION 111
defer exit processing 104
DISTRIBUTED_SYNCPOINT 113
END_UR 116
EXIT_FAILED 118
ONLY_AGENT 122
PREPARE 126
STATE_CHECK 130
SUBORDINATE_FAILED 133

exit_count
Set_Exit_Information 155

exit_entry
Set_Exit_Information 157

exit_entry64
Set_Exit_Information 158

EXIT_FAILED exit routine 118
ABEND codes 122
parameters 47, 119
processing 118
restrictions 119
return codes 48, 122

exit_manager_name
Set_Exit_Information 154

exit_number
Post_Deferred_UR_Exit 347
Set_Exit_Information 155

exit_type
Set_Exit_Information 158

Express_Context_Interest call 186
Express_UR_Interest call 309
expressing interest

in a context 32
in a UR 60

expression_of_interest_type
Retrieve_Interest_Data 395

F
failure

of resource manager 52, 247, 311, 367
of subordinate system 311

failure_action
Change_Interest_Type 250
Express_UR_Interest 325
Retain_Interest 372

forget
UR 339

Forget_Agent_UR_Interest call 339
forgotten state 67

G
generate_option

Retrieve_Work_Identifier 451
global data

resource manager 22, 137, 144
global transaction identifier (GTID) 454
global transactions 73
Gtrid 454, 524

H
harden data 556
HC (heuristic commit) 18
heuristic decisions 17
HM (heuristic mixed) 18
HR (heuristic reset) 18

I
in-backout state 66
in-commit state 66
in-completion state 67
in-doubt state 66
in-end state 67
in-flight state 64
in-forget state 67
in-only-agent state 65
in-prepare state 65
in-reset state 64
in-state-check state 65
installing an exit routine

context services 36
registration services 23
RRS 91, 93

interest data
nonpersistent 313, 360, 368, 391
persistent 247, 313, 367, 391, 477

672 z/OS V2R1.0 MVS Programming: Resource Recovery

interest in context
data 186, 200, 212
deleting 176
expressing 186

interest in UR
change from unprotected to protected 247
count 387
deleting 291
expressing 309
expressing for next UR 366
protected 311, 367
providing side information 495
responding 359
retrieving 438
retrieving data 391
retrieving side information 410
retrieving side information fast 421
unprotected 311, 367

interest_count_info
Retrieve_Interest_Count 390

interest_options
Express_UR_Interest 321, 371

interest_type
Change_Interest_Type 250
Express_UR_Interest 325
Retain_Interest 372
Retrieve_Interest_Data 395

Internal Cold Start 543
introducing resource recovery 1
invoking an exit routine

context services 36
registration services 23
RRS 93

ISPF panels for RRS 561
IXCMIAPU, sample JCL 543

J
JCL control statements 639

K
keyboard

navigation 653
PF keys 653
shortcut keys 653

L
last agent participant

resource manager role 505
library allocation for panel use 562
local connection 73
local transaction mode 73
local transactions 73

affect on UR state transitions 79
example 75
expressing interest in a UR 314
interacting with global transactions 75
planning considerations 77

local UR 74
log

cascaded transactions 559
event logging summary 556
resource manager 471, 556
RRS 556

log name
checking 58
comparing 399
definition 59
retrieving 399

log requirements 533
log stream

defining 535
names 535
requirements 533

log_option
Backout_Agent_UR 227
Commit_Agent_UR 257
Delegate_Commit_Agent_UR 279
Forget_Agent_UR_Interest 342
Prepare_Agent_UR 354

logging data 556
logging group information 589
logical unit of work identifier 454
loosely-coupled transaction node 82
LUWID 81

format 454, 524, 601

M
main selection panel 564
managing RRS 531, 549
MAXBUFSIZE

for RRS log streams 537
memterm_option

Express_Context_Interest 190
mixed unit of recovery states 586
multiple_interest_option

Express_Context_Interest 191
Express_UR_Interest 324

multisystem cascaded transactions 70
Create_Cascaded_UR 267
database locking 553
Express_UR_Interest 314
work manager guidelines 556

N
native context

description 31, 171
navigation

keyboard 653
new_ur_interest_token

Retain_Interest 371
next current context 180
nonpersistent interest data

for UR 313, 360, 368
retrieving 391

nonpersistent_interest_data
Express_UR_Interest 326
Respond_to_Retrieved_Interest 363
Retain_Interest 373
Retrieve_Interest_Data 394

Notices 657
notification exit routine

specifying 149
NOTIFICATION exit routine 23

parameters 26
return codes 29

notification_exit_entry
Set_Exit_Information 153, 154

Index 673

notification_exit_entry64
Set_Exit_Information 154

notification_exit_type
Set_Exit_Information 152

O
obtaining the STOKEN of the RRS address space 95
ONLY_AGENT exit routine 122

parameters 123
processing 123
restrictions 123
return codes 124

optimization 61
overall results 63
overlapping of exit routine processing 97

P
panel display

detail archive report entry 572
detail UR report entry 570
resource manager entry 572
resource manager meta dataentry 573

panel use 561
access authorization 561
adding to ISPF menu 563
library allocation 562
wildcards 565

Parallel Sysplex
RRS access authorization 561

parameter list
context services exit routine 39
RRS exit routines 100

parent UR 69
parent_UR_token

Create_Cascaded_UR 269
Express_UR_Interest 328

participant
resource manager role 505

Pause Element Token 286
peer-to-peer model

distributed resource recovery 9
persistent interest data

for UR 247, 313, 367, 477
retrieving 391

persistent_interest_buffer_length
Retrieve_Interest_Data 394
Retrieve_UR_Interest 443

persistent_interest_data
Change_Interest_Type 251
Express_UR_Interest 327
Retain_Interest 373
Retrieve_UR_Interest 444
Set_Persistent_Interest_Data 479

persistent_interest_data_length
Change_Interest_Type 251
Express_UR_Interest 326
Retain_Interest 373
Retrieve_Interest_Data 394
Retrieve_UR_Interest 443
Set_Persistent_Interest_Data 479

PET
delete post sync 286
set post sync 482

planning a resource manager 18

Post_Deferred_UR_Exit call 345
PRE_PREPARE exit 125

parameters 125
processing 125
restrictions 125
return codes 126

PREPARE exit routine 126
bypassing 510
example 89
parameters 127
processing 127
restrictions 127
return code from Set_Syncpoint_Controls call 506
return codes 128

Prepare_Agent_UR call 351
prepare_exit_code

Set_Syncpoint_Controls 510
presumed abort 312

two-phase commit protocol 61
presumed nothing 312

two-phase commit protocol 61
privately-managed context 32

delegation 53
description 31, 171
ending 180

protected resource
definition 1

protecting distributed resources 67
protecting the resource 62
protocol

for UR processing 312
PVT_CONTEXT_OWNER exit routine

parameters 49
return codes 50

R
recoverable resource management services (RRMS) 2
Register_Resource_Manager call 137
registering, resource manager 18
registration

removing 166
resource manager 22, 137

registration services 2
callable services 137
exit routines 23
NOTIFICATION exit routine 23
overview 18
using 21

removing a resource manager interest in a UR 588
resource

protection on multiple systems 8, 67
resource manager

beginning restart 236
changing role 505
definition 1
ending restart process 296
environments 57
exit routines 22
failure 19, 52, 97
failure action 247, 311, 367
global data 22, 137, 144
planning 18
protecting the resource 62
pseudo-code example 86
registering 18, 22
restarting 55

674 z/OS V2R1.0 MVS Programming: Resource Recovery

resource manager (continued)
retrieving RM Metadata 405
role in UR interest 391
roles 52
setting exit routines 19, 148
setting RM Metadata 490
states 51
token 137
unauthorized 33
unregistration 22

resource manager information 573
resource manager log

retrieving name 399
setting log name 471

resource recovery
overview 1

resource recovery functions
backout 3
commit 3

resource recovery services 225
resource_manager_global_data

Register_Resource_Manager 141
Retrieve_Resource_Manager_Data 147

resource_manager_name
Register_Resource_Manager 140
Retrieve_Resource_Manager_Data 146

resource_manager_token
Begin_Context 174
End_Restart 299
Express_Context_Interest 189
Express_UR_Interest 320
Register_Resource_Manager 140
Retrieve_Log_Name 401
Retrieve_Resource_Manager_Data 146
Retrieve_RM_Metadata 407
Retrieve_UR_Interest 441
Set_Exit_Information 152
Set_Log_Name 474
Set_RM_Metadata 492
Unregister_Resource_Manager 169

resource_manager_token parameter
Begin_Restart 239

Respond_to_Retrieved_Interest call 359
response_code

Respond_to_Retrieved_Interest 362
restart

resource manager 236, 296
resource manager example 87
responding to interests 359
retrieving interests 438
RRS 55

restart anywhere 57
restarting, resource manager 55
Retain_Interest call 366
Retrieve_Context_Data call 194
Retrieve_Context_Interest call 200
Retrieve_Current_Context_Token call 204
Retrieve_Environment call 379
Retrieve_Interest_Count call 387
Retrieve_Interest_Data call 391
Retrieve_Log_Name call 399
retrieve_option

Retrieve_Work_Identifier 451
Retrieve_Resource_Manager_Data call 144
Retrieve_Side_Information call 410
Retrieve_Side_Information_Fast call 421
Retrieve_UR_Data call 429

Retrieve_UR_Interest call 438
Retrieve_Work_Identifier call 446
returned_context_interest_data

Express_Context_Interest 191
RM Metadata

retrieving 405
setting 490

RM Metadata call 405, 490
rm_logname

Retrieve_Log_Name 402
Set_Log_Name 474

rm_logname_buffer_len
Retrieve_Log_Name 401

rm_logname_len
Retrieve_Log_Name 402
Set_Log_Name 474

rm_metadata
Retrieve_RM_Metadata 407
Set_RM_Metadata 492

rm_metadata_buffer_len
Retrieve_RM_Metadata 407

rm_metadata_len
Retrieve_RM_Metadata 407
Set_RM_Metadata 492

role
Retrieve_Interest_Data 395
Retrieve_UR_Interest 442
Set_Syncpoint_Controls 512

role, resource manager 505
RRMS (recoverable resource management services) 2
RRS

automatic restart 533
callable services 225
cataloged procedure 532
cold start 542
collecting problem data 545
exit routine overlapping 97
exit routines 51
Internal Cold Start 543
log requirements 533
panel use 561
recovering from a hung UR

after an SDSRM failure 546
SDUMP exit 547
version information 135
warm start 542

RRS log name
checking 58
retrieving 399

RRS panel libraries 562
rrs_logname

Retrieve_Log_Name 402
rrs_logname_len

Retrieve_Log_Name 402

S
scope

Retrieve_Environment 381
Set_Environment 464

SDSRM 52
resource manager role 505

sending comments to IBM xi
server distributed syncpoint manager 505
Set_Context_Data call 207
Set_Context_Interest_Data call 212
Set_Environment call 461

Index 675

Set_Exit_Information call 148
Set_Log_Name call 471
set_option

Set_Work_Identifier 522
Set_Persistent_Interest_Data call 477
Set_Post_Sync_PET call 482
Set_Side_Information call 495
Set_Syncpoint_Controls call 505
Set_Work_Identifier call 518
setting exit routines 19
setting up access authorization 561, 563
shortcut keys 653
sibling UR 69
side information

description 495
providing for UR interest 495
retrieving for UR interest 410

side_info_id
Retrieve_Side_Information 414
Set_Side_Information 499

side_info_state
Retrieve_Side_Information 417

side_information_options
Retrieve_Side_Information_Fast 423

SRRBACK 231
SRRCMIT 261
state

resource manager 51
UR 64

state of UR
retrieving 429

STATE_CHECK exit routine 130
parameters 131
processing 131
restrictions 131
return codes 132

states_option
Retrieve_UR_Data 434

stoken
Retrieve_Environment 382
Set_Environment 465

STOKEN of RRS address space, obtaining 95
subordinate system

failure action 311
SUBORDINATE_FAILED exit routine 133

parameters 134
processing 134
restrictions 134
return codes 134

summary
RRS exit routines 51

Summary of changes xiii
Switch_Context call 217
syncpoint manager

definition 2
system information 589

T
tightly-coupled transaction node 82
token

context 171
resource manager 137

top-level UR 69
trademarks 659
transaction

beginning 241

transaction (continued)
ending 301
parallelism 552, 554

transaction identifier (TID) 454
transaction mode

establishing default 461
setting 241

transaction_mode
Begin_Transaction 244
Express_UR_Interest 329

transactions
cascaded 69
example local 75
global 73
local 73
local and global interactions 75
multisystem cascaded 70
planning local transactions 77
state transitions 79

two_phase_protocol
Express_UR_Interest 325

two-phase commit actions
establishing default 462

two-phase commit protocol
description 4
presumed abort 61
presumed nothing 61
selecting protocol 312

types of two-phase commit protocol 61

U
unauthorized resource managers

using context services 33
understanding RRS logging requirements 533
unit of recovery 3
unit of recovery identifier 439
unit of work identifier 81, 446
unregister_option

Register_Resource_Manager 141
Unregister_Resource_Manager call 166
unregistration 22

explicit 167
implicit 167
resource manager 166

UR
ancestors 69
back out 225, 231
cascaded 69, 266
child 69
committing 254, 261
definition 3
delegating commit agent 276
deleting interest 291
descendants 69
expressing interest 60, 309
family 69
forgetting 339
incomplete 359
parent 69
processing example 89
retrieving data 429
siblings 69
states and services 64
top-level 69

UR Comments 580
UR family 69

676 z/OS V2R1.0 MVS Programming: Resource Recovery

UR identifier 429
UR information 575
UR selection profiles 579
ur_family_option

Express_UR_Interest 328
ur_identifier

Begin_Transaction 244
Change_Interest_Type 250
Express_UR_Interest 321
Retain_Interest 371
Retrieve_UR_Data 433
Retrieve_UR_Interest 442

ur_interest_token
Change_Interest_Type 250
Delegate_Commit_Agent_UR 279
Delete_UR-Interest 294
Express_UR_Interest 321
Forget_Agent_UR_Interest 342
Post_Deferred_UR_Exit 347
Prepare_Agent_UR 354
Respond_to_Retrieved_Interest 362
Retain_Interest 371
Retrieve_Interest_Data 394
Retrieve_Side_Information 413
Retrieve_UR_Data 432
Retrieve_UR_Interest 442
Retrieve_Work_Identifier 450
Set_Persistent_Interest_Data 479
Set_Side_Information 498
Set_Syncpoint_Controls 510
Set_Work_Identifier 521

UR_interest_token
Backout_Agent_UR 227
Commit_Agent_UR 257

ur_or_uri_token
Retrieve_Side_Information 413
Retrieve_UR_Data 432
Retrieve_Work_Identifier 451
Set_Side_Information 498
Set_Work_Identifier 522

ur_state
Retrieve_UR_Data 433
Retrieve_UR_Interest 443

ur_token
Begin_Transaction 244
Express_UR_Interest 321

URID 81
retrieving 429
using during restart 247, 313, 368, 439

user interface
ISPF 653
TSO/E 653

using context services 31
using registration services 21
using resource recovery services 51
using RRS panels 561
using the main selection panel 564
using wildcards in RRS panels 565
utility program

to query and update rrs information 639
UWID 81

providing 518
retrieving 446

uwid_buffer_len
Retrieve_Work_Identifier 453

uwid_data
Set_Work_Identifier 524

uwid_data_buffer
Retrieve_Work_Identifier 454

uwid_len
Retrieve_Work_Identifier 454
Set_Work_Identifier 523

uwid_type
Retrieve_Work_Identifier 452
Set_Work_Identifier 522

V
version information 135
vote collection 63

W
warm start 542
when RRS restarts 55
wildcards 565
work context 19
work context termination

automatic 312
work identifier 81
work manager

application-complete 555
guidelines for cascaded transactions 553
managing contexts of cascaded URs 555
moving work between work managers 553
parallel processing 554

work manager information 586
work_manager_name

Express_Context_Interest 191
working with application programs 549
working with cascaded transactions 552

X
X/Open identifier 454, 524
XCF

RRS use of 540
xid

Express_UR_Interest 327
XID 81

format 454, 524, 603
using as a work identifier 314

XID processing 312
xid_length

Express_UR_Interest 327

Index 677

678 z/OS V2R1.0 MVS Programming: Resource Recovery

����

Product Number: 5650-ZOS

Printed in USA

SA23-1395-00

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	Where to find more information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introducing resource recovery
	Resource recovery programs
	Resource recovery functions
	Two-phase commit protocol
	Distributed resource recovery
	Heuristic decisions
	Planning a resource manager

	Chapter 2. Using registration services
	Registration
	NOTIFICATION exit routine

	Chapter 3. Using context services
	Contexts
	Callable services for contexts
	Context services exit routines

	Chapter 4. Using resource recovery services
	Resource manager states
	Resource manager roles
	Resource manager failures
	Restarting
	Expressing interest in a UR
	Protecting the resource
	Protecting distributed resources
	Cascaded transactions
	Local transactions
	Unit of work identifiers
	Setting exits with RRS
	Example of resource manager processing
	Resource recovery exit routines
	RRS version information

	Chapter 5. Callable registration services
	Register_Resource_Manager (CRGGRM, CRG4GRM)
	Retrieve_Resource_Manager_Data (CRGRRMD, CRG4RRMD)
	Set_Exit_Information (CRGSEIF, CRGSEIF1,CRG4SEIF)
	Unregister_Resource_Manager (CRGDRM, CRG4DRM)

	Chapter 6. Callable context services
	Begin_Context (CTXBEGC, CTX4BEGC)
	Delete_Context_Interest (CTXDINT, CTX4DINT)
	End_Context (CTXENDC, CTX4ENDC)
	Express_Context_Interest (CTXEINT, CTXEINT1, CTX4EINT)
	Retrieve_Context_Data (CTXRDTA, CTX4RDTA)
	Retrieve_Context_Interest_Data (CTXRCID, CTX4RCID)
	Retrieve_Current_Context_Token (CTXRCC, CTX4RCC)
	Set_Context_Data (CTXSDTA, CTX4SDTA)
	Set_Context_Interest_Data (CTXSCID, CTXSCID2, CTX4SCID)
	Switch_Context (CTXSWCH, CTX4SWCH)

	Chapter 7. Callable resource recovery services
	Backout_Agent_UR (ATRABAK, ATR4ABAK)
	Backout_UR (ATRBACK, ATR4BACK)
	Begin_Restart (ATRIBRS, ATR4IBRS)
	Begin_Transaction (ATRBEG, ATR4BEG)
	Change_Interest_Type (ATRSIT, ATR4SIT)
	Commit_Agent_UR (ATRACMT, ATR4ACMT)
	Commit_UR (ATRCMIT, ATR4CMIT)
	Create_Cascaded_UR (ATRCCUR2, ATRCCUR3, ATR4CCUR)
	Delegate_Commit_Agent_UR (ATRADCT, ATRADCT1, ATR4ADCT)
	Delete_Post_Sync_PET (ATRDPSP2, ATR4DPSP)
	Delete_UR_Interest (ATRDINT, ATR4DINT)
	End_Restart (ATRIERS, ATR4IERS)
	End_Transaction (ATREND, ATR4END)
	Express_UR_Interest (ATREINT, ATREINT1, ATREINT2, ATREINT3, ATREINT4, ATREINT5, ATR4EINT)
	Forget_Agent_UR_Interest (ATRAFGT, ATR4AFGT)
	Post_Deferred_UR_Exit (ATRPDUE, ATR4PDUE)
	Prepare_Agent_UR (ATRAPRP, ATR4APRP)
	Respond_to_Retrieved_Interest (ATRIRRI, ATR4IRRI)
	Retain_Interest (ATRSROI, ATRSROI1, ATR4SROI)
	Retrieve_Environment (ATRRENV, ATR4RENV)
	Retrieve_Interest_Count (ATRREIC, ATR4REIC)
	Retrieve_Interest_Data (ATRRID, ATR4RID)
	Retrieve_Log_Name (ATRIRLN, ATR4IRLN)
	Retrieve_RM_Metadata (ATRRDTA, ATR4RDTA)
	Retrieve_Side_Information (ATRRUSI, ATRRUSI2, ATR4RUSI)
	Retrieve_Side_Information_Fast (ATRRUSF, ATRRUSF1, ATR4RUSF)
	Retrieve_UR_Data (ATRRURD, ATRRURD1, ATRRURD2, ATR4RURD)
	Retrieve_UR_Interest (ATRIRNI, ATR4IRNI)
	Retrieve_Work_Identifier (ATRRWID, ATRRWID2, ATR4RWID)
	Set_Environment (ATRSENV, ATR4SENV)
	Set_Log_Name (ATRISLN, ATR4ISLN)
	Set_Persistent_Interest_Data (ATRSPID, ATR4SPID)
	Set_Post_Sync_PET (ATRSPSP2, ATR4SPSP)
	Set_RM_Metadata (ATRSDTA, ATR4SDTA)
	Set_Side_Information (ATRSUSI, ATRSUSI2, ATR4SUSI)
	Set_Syncpoint_Controls (ATRSSPC, ATR4SSPC)
	Set_Work_Identifier (ATRSWID, ATRSWID2, ATR4SWID)

	Chapter 8. RRS setup and control
	Defining RRS as a subsystem
	Establishing dispatching priority of the RRS address space
	Creating default RRS CTRACE parmlib member
	Creating a cataloged procedure for starting RRS
	Defining RRS to automatic restart management (ARM)
	Configuring and defining RRS logging requirements
	Actions to avoid
	RRS use of XCF
	Starting RRS
	Stopping RRS
	Using the SETRRS ARCHIVELOGGING [DISABLE | ENABLE] command
	Using the SETRRS CANCEL command
	Using the SETRRS SHUTDOWN command
	Using the DISPLAY RRS command
	Collecting problem data
	Recovering from a hung UR after an SDSRM failure
	Latch identification
	RRS SDUMP exit

	Chapter 9. RRS application programming
	Working with application programs
	Working with cascaded transactions
	Logging data
	Logging cascaded transactions

	Chapter 10. Using RRS panels
	Setting up access authorization
	Allocating the RRS panel libraries
	Adding RRS as an ISPF menu option
	Using the main selection panel
	Using wildcards in RRS panels
	Specifying global options
	Checking the log streams
	Working with resource manager information
	Working with UR information
	Working with work manager information
	Removing a resource manager interest in a UR
	Working with RRS system information

	Chapter 11. ATRQUERY — Obtain RRS Information
	Chapter 12. ATRSRV — Resolve Units of Recovery
	Chapter 13. ATRQSRV utility - query and update RRS information
	Using the ATRQSRV utility
	Authorizing use of the utility
	Report levels
	Coding the ATRQSRV utility
	ATRQSRV return codes
	Examples of using the ATRQSRV utility
	ATRQSRV statement details and parameters

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

