
z/OS

MVS Initialization and Tuning Guide
Version 2 Release 1

SA23-1379-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 111.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this information ix
Who should use this information ix
z/OS information ix

How to send your comments to IBM . . xi
If you have a technical problem. xi

z/OS Version 2 Release 1 summary of
changes xiii

Chapter 1. Storage management
overview 1
Initialization process 1

System address space creation 2
Master scheduler initialization 5
Subsystem initialization. 5
START/LOGON/MOUNT processing 6

Processor storage overview 6
System preferred area 8
Nucleus area 8
The fixed link pack area (FLPA) 8
System queue area (SQA-Fixed) 9
Fixed LSQA storage requirements 9
V=R area 9

Virtual storage overview 10
The virtual storage address space 10
General virtual storage allocation considerations 12
System Queue Area (SQA/Extended SQA) . . . 12
Pageable link pack area (PLPA/Extended PLPA) 14
Placing modules in the system search order for
programs 15
Modified link pack area (MLPA/Extended
MLPA) 24
Common service area (CSA/Extended CSA) . . 24
Local system queue area (LSQA/Extended
LSQA) 25
Large frame area (LFAREA) 25
Scheduler work area (SWA/Extended SWA) . . 32
Subpools 229, 230, 249 - Extended 229, 230, 249 32
System region 32
The private area user region/extended private
area user region 33
Identifying problems in virtual storage (DIAGxx
parmlib member) 36

Auxiliary storage overview 37
System data sets 38
Paging data sets 39
Using storage-class memory (SCM) 41

Improving module fetch performance with LLA . . 44
LLA and module search order 44

Planning to use LLA 45
Coding the required members of parmlib . . . 45
Controlling LLA and VLF through operator
commands. 47

Allocation considerations 52
Serialization of resources during allocation . . . 52
Improving allocation performance 53
The volume attribute list 54
Use and mount attributes. 54

Chapter 2. Auxiliary storage
management initialization 59
Page operations 59

Paging operations and algorithms 59
Page data set sizes 61
Storage requirements for page data sets 62
Page data set protection 62

SYSTEMS level ENQ 63
Status information record. 63

Space calculation examples 63
Example 1: Sizing the PLPA page data set, size of
the PLPA and extended PLPA unknown 64
Example 2: Sizing the PLPA page data set, size of
the PLPA and extended PLPA known. 64
Example 3: Sizing the common page data set . . 64
Example 4: Sizing local page data sets 64
Example 5: Sizing page data sets when using
storage-class memory (SCM). 66

Performance recommendations 66
Estimating total size of paging data sets 68

Using measurement facilities 68
Adding paging space 68
Deleting, replacing or draining page data sets . . 69

Questions and answers 69

Chapter 3. The system resources
manager 73
System tuning and SRM 73
Section 1: Description of the system resources
manager (SRM) 74

Controlling SRM. 74
Objectives 74
Types of control 75
Functions 75
I/O service units 83

Section 2: Basic SRM parameter concepts 83
MPL adjustment control 84
Transaction Definition for CLISTs 84
Directed VIO Activity 84
Alternate wait management 85
Dispatching mode control 85

Section 3: Advanced SRM parameter concepts . . . 85
Selective enablement for I/O 85
Adjustment of constants options 87

Section 4: Guidelines 88

© Copyright IBM Corp. 1991, 2013 iii

Defining installation requirements 89
Preparing an initial OPT 90

Section 5: Installation management controls . . . 105
Operator commands related to SRM. 106

Appendix. Accessibility 107
Accessibility features 107
Using assistive technologies 107
Keyboard navigation of the user interface 107
Dotted decimal syntax diagrams 107

Notices 111
Policy for unsupported hardware. 112
Minimum supported hardware 113
Programming Interface Information 113
Trademarks 113

Index 115

iv z/OS V2R1.0 MVS Initialization and Tuning Guide

Figures

1. Virtual storage layout for multiple address
spaces. 4

2. Virtual storage layout for a single address
space. 11

3. Auxiliary storage requirement overview 39
4. Auxiliary storage diagram with SCM 43

© Copyright IBM Corp. 1991, 2013 v

vi z/OS V2R1.0 MVS Initialization and Tuning Guide

Tables

1. Offsets for the SQA/CSA threshold levels 13
2. The two supported LFAREA syntax methods 27
3. LFAREA calculation example 1 28
4. LFAREA calculation example 2 30
5. LFAREA calculation example 3 30
6. LFAREA calculation example 4 31
7. LFAREA calculation example 5 32
8. FREEZE|NOFREEZE processing 51
9. Processing order for allocation requests

requiring serialization 53
10. Summary of mount and use attribute

combinations 56
11. Sharable and nonsharable volume requests 57
12. ASM criteria for paging to storage-class

memory (SCM) or page data sets 60
13. Page data set values 63
14. Summary of MPL adjustment control 84
15. Summary of variables used to determine if

changes are needed to the number of
processors enabled for I/O interruptions . . . 86

16. Relating SRM seconds to real time 86
17. Keywords provided in OPT to single pageable

storage shortage 88
18. IBM zEnterprise 196 (z196) processor models 90
19. IBM System z10 Enterprise Class (z10 EC)

processor models. 93
20. IBM System z9 Business Class (z9 BC)

processor models. 96
21. IBM System z9 Enterprise Class (z9 EC)

processor models. 98
22. zSeries 990 processor models 100
23. zSeries 900 processor models 101
24. zSeries 890 processor models 102
25. zSeries 800 processor models 103
26. S/390 9672 processor models 104
27. S/390 3000 processor models 105

© Copyright IBM Corp. 1991, 2013 vii

viii z/OS V2R1.0 MVS Initialization and Tuning Guide

About this information

This information is a preliminary tuning guide for the MVS™ element of z/OS®.
The information describes how to initialize the system and how to get system
performance improved.

For information about how to install the software products that are necessary to
run z/OS, see z/OS Planning for Installation.

Who should use this information
This information is for anyone whose job includes designing and planning to meet
installation needs based on system workload, resources, and requirements. For that
audience, the information is intended as a guide to what to do to implement
installation policies.

The information is also for anyone who tunes the system. This person must be able
to determine where the system needs adjustment, to understand the effects of
changing the system parameters, and to determine what changes to the system
parameters will bring about the desired effect.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

© Copyright IBM Corp. 1991, 2013 ix

http://www.ibm.com/systems/z/os/zos/bkserv/

x z/OS V2R1.0 MVS Initialization and Tuning Guide

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Initialization and Tuning Guide
SA23-1379-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1991, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V2R1.0 MVS Initialization and Tuning Guide

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1991, 2013 xiii

xiv z/OS V2R1.0 MVS Initialization and Tuning Guide

Chapter 1. Storage management overview

To tailor the system's storage parameters, you need a general understanding of the
system initialization and storage initialization processes. This section contains the
following topics:
v “Initialization process”
v “Processor storage overview” on page 6
v “Virtual storage overview” on page 10
v “Auxiliary storage overview” on page 37
v “Improving module fetch performance with LLA” on page 44
v “Allocation considerations” on page 52.

For information about the storage management subsystem (SMS), see the DFSMS
library.

Initialization process
The system initialization process prepares the system control program and its
environment to do work for the installation. The process essentially consists of:
v System and storage initialization, including the creation of system component

address spaces.
v Master scheduler initialization and subsystem initialization.

When the system is initialized and the job entry subsystem is active, the
installation can submit jobs for processing by using the START, LOGON, or
MOUNT command.

The initialization process begins when the system operator selects the LOAD
function at the system console. MVS locates all of the usable central storage that is
online and available to the system, and creates a virtual environment for the
building of various system areas.

IPL includes the following major initialization functions:
v Loads the DAT-off nucleus into central storage.
v Loads the DAT-on nucleus into virtual storage so that it spans above and below

16 megabytes (except the prefixed storage area (PSA), which IPL loads at virtual
zero).

v Builds the nucleus map, NUCMAP, of the DAT-on nucleus. NUCMAP resides in
virtual storage above the nucleus.

v Allocates the system's minimum virtual storage for the system queue area (SQA)
and the extended SQA.

v Allocates virtual storage for the extended local system queue area (extended
LSQA) for the master scheduler address space.

The system continues the initialization process, interpreting and acting on the
system parameters that were specified. NIP carries out the following major
initialization functions:
v Expands the SQA and the extended SQA by the amounts specified on the SQA

system parameter.

© Copyright IBM Corp. 1991, 2013 1

v Creates the pageable link pack area (PLPA) and the extended PLPA for a cold
start IPL; resets tables to match an existing PLPA and extended PLPA for a quick
start or a warm start IPL. For more information about quick starts and warm
starts, see z/OS MVS Initialization and Tuning Reference.

v Loads modules into the fixed link pack area (FLPA) or the extended FLPA. Note
that NIP carries out this function only if the FIX system parameter is specified.

v Loads modules into the modified link pack area (MLPA) and the extended
MLPA. Note that NIP carries out this function only if the MLPA system
parameter is specified.

v Allocates virtual storage for the common service area (CSA) and the extended
CSA. The amount of storage allocated depends on the values specified on the
CSA system parameter at IPL.

v Page protects the: NUCMAP, PLPA and extended PLPA, MLPA and extended
MLPA, FLPA and extended FLPA, and portions of the nucleus.

Note: An installation can override page protection of the MLPA and FLPA by
specifying NOPROT on the MLPA and FIX system parameters.

See Figure 1 on page 4 for the relative position of the system areas in virtual
storage. Most of the system areas exist both below and above 16 megabytes,
providing an environment that can support both 24-bit and 31-bit addressing.
However, each area and its counterpart above 16 megabytes can be thought of as a
single logical area in virtual storage.

System address space creation
In addition to initializing system areas, MVS establishes system component address
spaces. MVS establishes an address space for the master scheduler (the master
scheduler address space) and other system address spaces for various subsystems
and system components. Some of the component address spaces are:

MASTER
Master address space

ABARS, ABARxxxx
1 to 15 DFSMShsm secondary address spaces to perform aggregate backup
or aggregate recovery processing.

ALLOCAS
Allocation services and data areas

ANTMAIN
Concurrent copy support

APPC APPC/MVS component

ASCH APPC/MVS scheduling

CATALOG
Catalog functions. Also known as CAS (catalog address space).

BPXOINIT
z/OS UNIX System Services

CONSOLE
Communications task

DFM Distributed File Manager/MVS

DFMCAS
Distributed File Manager/MVS

2 z/OS V2R1.0 MVS Initialization and Tuning Guide

DLF Data lookaside facility

DUMPSRV
Dumping services

HSM DFSMShsm

HZSPROC
IBM® Health Checker for z/OS

FTPSERVE
FTP server(s); can be user-specified names.

GDEDFM
For each Distributed File Manager/MVS user conversation that is active,
an address space named GDEDFM is created.

GRS Global resource serialization

IEFSCHAS
Scheduler address space

IOSAS
I/O supervisor, ESCON®, I/O recovery

IXGLOGR
System logger

JES2 JES2

JES2AUX
JES2 additional support

JES2CIxx
1-25 JES2 address spaces used to perform z/OS converter and interpreter
functions

JES2MON
JES2 address space monitor

JES3 JES3

JES3AUX
JES3 additional support

JES3DLOG
JES3 hardcopy log (DLOG)

JESXCF
JES common coupling services address space

LLA Link list

NFS DFSMS/MVS Network File System address space

OAM DFSMSdfp Object Access Method

OMVS
z/OS UNIX System Services

PCAUTH
Cross-memory support

PORTMAP
Portmapper function

RASP Real storage manager (includes advanced address space facilities support)

Chapter 1. Storage management overview 3

RMM DFSMSrmm

RRS Resource recovery services (RRS)

SMF System management facilities

SMS Storage management subsystem

SMSPDSE1
Optional restartable PDSE address space. If the SMSPDSE1 address space is
started, SMSPDSE manages PDSEs in the LINKLST concatenatio and
SMSPDSE1 manages all other PDSEs.

SMSVSAM
VSAM record level sharing

TCPIP TCP/IP for MVS

TRACE
System trace

VLF Virtual lookaside facility

XCFAS
Cross system coupling facility

VTAM®

VTAM

WLM Workload management

User Region -
TRACE

User Region -
PCAUTH

Additional
Address
Spaces

2G- - - -
Extended
LSQA/SWA/229/230/249

Extended
Private

Extended
User Region -
TRACE

Extended CSA

Extended PLPA/FLPA/MLPA

Extended SQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA

CSA

LSQA/SWA/229/230/249

User Region -
Master Scheduler

Extended
User Region -
PCAUTH

System Region

Extended
Common

16 Mb - -

Common

Private

Common PSA

Extended User Region -
Master Scheduler

Additional
Address
Spaces

Figure 1. Virtual storage layout for multiple address spaces

4 z/OS V2R1.0 MVS Initialization and Tuning Guide

Address spaces differ in their ability to use system services depending on whether
the address space is a limited function or full function address space.
v Limited function address space

If the specific initialization routines provided by the components that use
IEEMB881 enter a wait state, pending Master Scheduler Initialization, STC does
no additional address space initialization. Thus, the functions that component
address spaces can perform are limited. Components with limited function
address spaces cannot:
– Allocate data sets.
– Read JCL procedures from SYS1.PROCLIB.
– Allocate a SYSOUT file through the Job Entry Subsystem.
– Use some system services because the components frequently run in cross

memory mode.
v Full function address space

If, after a component completes its own initialization, it returns to IEEPRWI2
and completes STC processing, the address space is fully initialized. Such an
address space is called a full function address space.
The component creating a full function address space does not need to provide a
procedure in SYS1.PROCLIB. If specified to IEEMB881, a common system
address space procedure, IEESYSAS, will invoke a specified program to run in
the address space.
For example, if a full function address space called FFA is to be started using the
module IEEMB899, the component would ordinarily need to supply a procedure
of the following form:
//FFA PROC
// EXEC PGM=IEEMB899

The procedure will be invoked as follows:
//IEESYSAS JOB
//FFA EXEC IEESYSAS

The procedure IEESYSAS consists of the following statements:
//IEESYSAS PROG=IEFBR14
// EXEC PGM=&PROG

Master scheduler initialization
Master scheduler initialization routines initialize system services such as the
system log and communications task, and start the master scheduler itself. They
also cause creation of the system address space for the job entry subsystem (JES2
or JES3), and then start the job entry subsystem.

Note: When JES3 is the primary job entry subsystem, a second JES3 address space
(JES3AUX)can be optionally initialized after master scheduler initialization
completes. The JES3AUX address space is an auxiliary address space that contains
JES3 control blocks and data.

Subsystem initialization
Subsystem initialization is the process of readying a subsystem for use in the
system. IEFSSNxx members of SYS1.PARMLIB contain the definitions for the
primary subsystems, such as JES2 or JES3, and the secondary subsystems, such as
VPSS and DB2®. For detailed information about the data contained in IEFSSNxx
members for secondary systems, please refer to the installation information for the
specific system.

Chapter 1. Storage management overview 5

|
|

During system initialization, the defined subsystems are initialized. You should
define the primary subsystem (JES) first, because other subsystems, such as DB2,
require the services of the primary subsystem in their initialization routines.
Problems can occur if subsystems that use the subsystem affinity service in their
initialization routines are initialized before the primary subsystem. After the
primary JES is initialized, then the subsystems are initialized in the order in which
the IEFSSNxx parmlib members are specified by the SSN parameter. For example,
for SSN=(aa,bb) parmlib member IEFSSNaa would be processed before IEFSSNbb.

Note: The storage management subsystem (SMS) is the only subsystem that can be
defined before the primary subsystem. Refer to the description of parmlib member
IEFSSNxx in z/OS MVS Initialization and Tuning Reference for SMS considerations.

Using IEFSSNxx to initialize the subsystems, you can specify the name of a
subsystem initialization routine to be given control during master scheduler
initialization, and you can specify the input parameter to be passed to the
subsystem initialization routine. IEFSSNxx is described in more detail in z/OS MVS
Initialization and Tuning Reference.

START/LOGON/MOUNT processing
After the system is initialized and the job entry subsystem is active, jobs may be
submitted for processing. When a job is activated through START (for batch jobs),
LOGON (for time-sharing jobs) or MOUNT, a new address space must be
allocated. Note that before LOGON, the operator must have started TCAM or
VTAM/TCAS, which have their own address spaces. Figure 1 on page 4 is a virtual
storage map containing or naming the basic system component address spaces, the
optional TCAM and VTAM system address spaces, and a user address space.

The system resources manager decides, based on resource availability, whether a
new address space can be created. If not, the new address space will not be created
until the system resources manager finds conditions suitable.

Processor storage overview
Processor storage only consists of real storage (formerly called central storage) in
the z/Architecture® mode. This section provides an overview of real storage. Note
that unlike the combination of central and expanded storage in the ESA/390
environment, expanded storage is not supported in the z/Architecture mode.

The system uses a portion of both central storage and virtual storage. To determine
how much central storage is available to the installation, the system's fixed storage
requirements must be subtracted from the total central storage. The central storage
available to an installation can be used for the concurrent execution of the paged-in
portions of any installation programs.

The real storage manager (RSM) controls the allocation of central storage during
initialization and pages in user or system functions for execution. Some RSM
functions:
v Allocate central storage to satisfy GETMAIN requests for SQA and LSQA.
v Allocate central storage for page fixing.
v Allocate central storage for an address space that is to be swapped in.

If there is storage above 16 megabytes, RSM allocates central storage locations
above 16 megabytes for SQA, LSQA, and the pageable requirements of the system.
When non-fixed pages are fixed for the first time, RSM:

6 z/OS V2R1.0 MVS Initialization and Tuning Guide

v Ensures that the pages occupy the appropriate type of frame
v Fixes the pages and records the type of frame used

Pages that must reside in central storage below 16 megabytes include:
v SQA subpool 226 pages.
v Fixed pages obtained using the RC, RU, VRC, or VRU form of GETMAIN if one

of the following is true:
– LOC=24 is specified.
– LOC=RES, the default, is either specified or taken, and the program issuing

the GETMAIN resides below 16 megabytes, runs in 24-bit mode, and has not
requested storage from a subpool supported only above 16 megabytes.

v Fixed pages obtained using the LU, LC, EU, EC, VU, VC, or R form of
GETMAIN.

v Storage whose virtual address and real address are the same (V=R pages).

Pages that can reside in central storage above 16 megabytes include:
v Nucleus pages.
v SQA subpools 239 and 245 pages.
v LSQA pages.
v All pages with virtual addresses greater than 16 megabytes.
v Fixed pages obtained using the RC, RU, VRC, or VRU form of GETMAIN if one

of the following is true:
– LOC=(24,31) is specified.
– LOC=(RES,31) is specified.
– LOC=31 is specified.
– LOC=(31,31) is specified.
– LOC=RES, the default, is either specified or taken, and the program issuing

the GETMAIN resides above 16 megabytes virtual.
– LOC=RES, the default, is either specified or taken, and the program issuing

the GETMAIN resides below 16 megabytes virtual, but runs in 31-bit mode
and has requested storage from a subpool supported only above 16
megabytes.

v Any non-fixed page.

Note: The system backs nucleus pages in real storage below 2 gigabytes. You can
however, back SQA and LSQA pages above 2 gigabytes when you specify
LOC=(24,64) or LOC=(31,64).

Each installation is responsible for establishing many of the central storage
parameters that govern RSM's processing. The following overview describes the
function of each area composing central storage.

The primary requirements/areas composing central storage are:
1. The basic system fixed storage requirements — the nucleus, the allocated

portion of SQA, and the fixed portion of CSA.
2. The private area fixed requirements of each swapped-in address space — the

LSQA for each address space and the page-fixed portion of each virtual address
space.

Once initialized, the basic system fixed requirements (sometimes called global
system requirements) remain the same until system parameters are changed. Fixed

Chapter 1. Storage management overview 7

storage requirements (or usage) will, however, increase as various batch or time
sharing users are swapped-in. Thus, to calculate the approximate fixed storage
requirements for an installation, the fixed requirements for each swapped-in
address space must be added to the basic fixed system requirements. Fixed
requirements for each virtual address space include system storage requirements
for the LSQA (which is fixed when users are swapped in) and the central storage
estimates for the page-fixed portions of the installation's programs.

The central storage for the processor, reduced by the global fixed and paged-in
virtual storage required to support installation options, identifies the central
storage remaining to support swapped-in address spaces. The total number of jobs
that can be swapped in concurrently can be determined by estimating the working
set (the amount of virtual storage that must be paged in for the program to run
effectively) for each installation program. The working set requirements will vary
from program to program and will also change dynamically during execution of
the program. Allowances should be made for maximum requirements when making
the estimates.

System preferred area
To enable a V=R allocation to occur and storage to be varied offline, MVS performs
special handling for the following types of pages:
v SQA
v LSQA for non-swappable address spaces
v Fixed page frame assignments for non-swappable address spaces.

Because MVS cannot, upon demand, free the frames used for these page types,
central storage could become fragmented (by the frames that could not be freed).
Such fragmentation could prevent a V=R allocation or prevent a storage unit from
being varied offline. Therefore, for all storage requests for the types of pages noted,
RSM allocates storage from the preferred area to prevent fragmentation of the
nonpreferred “reconfigurable” area.

A system parameter, RSU, allows the installation to specify the number of storage
units that are to be kept free of long-term fixed storage allocations, and thus be
available for varying offline. Once this limit is established, the remainder of central
storage, excluding storage reserved for V=R allocation, is marked as preferred area
storage and used for long-term fixed storage allocation.

Nucleus area
The nucleus area contains the nucleus load module and extensions to the nucleus
that are initialized during IPL processing.

The nucleus includes a base and an architectural extension.

The fixed link pack area (FLPA)
An installation can elect to have some modules that are normally loaded in the
pageable link pack area (PLPA) loaded into the fixed link pack area (FLPA). This
area should be used only for modules that significantly increase performance when
they are fixed rather than pageable. Modules placed in the FLPA must be reentrant
and refreshable.

The FLPA exists only for the duration of an IPL. Therefore, if an FLPA is desired,
the modules in the FLPA must be specified for each IPL (including quick-start and
warm-start IPLs).

8 z/OS V2R1.0 MVS Initialization and Tuning Guide

It is the responsibility of the installation to determine which modules, if any, to
place in the FLPA. Note that if a module is heavily used and is in the PLPA, the
system's paging algorithms will tend to keep that module in central storage. The
best candidates for the FLPA are modules that are infrequently used but are
needed for fast response to some terminal-oriented action.

Specified by: A list of modules to be put in FLPA must be established by the
installation in the fixed LPA list (IEAFIXxx) member of SYS1.PARMLIB. Modules
from any partitioned data set can be included in the FLPA. FLPA is selected
through specification of the FIX system parameter in IEASYSxx or from the
operator's console at system initialization.

Any module in the FLPA will be treated by the system as though it came from an
APF-authorized library. Ensure that you have properly protected any library
named in IEAFIXxx to avoid system security and integrity exposures, just as you
would protect any APF-authorized library. This area may be used to contain
reenterable routines from either APF-authorized or non-APF-authorized libraries
that are to be part of the pageable extension to the link pack area during the
current IPL.

System queue area (SQA-Fixed)
SQA is allocated in fixed storage upon demand as long-term fixed storage and
remains so until explicitly freed. The number of central frames assigned to SQA
may increase and decrease to meet the demands of the system.

All SQA requirements are allocated in 4K frames as needed. These frames are
placed within the preferred area (above 16 megabytes, if possible) to keep
long-term resident pages grouped together.

If no space is available within the preferred area, and none can be obtained by
stealing a non-fixed/unchanged page, then the “reconfigurable area” is reduced by
one storage increment and the increment is marked as preferred area storage. An
increment is the basic unit of physical storage. If there is no “reconfigurable area”
to be reduced, a page is assigned from the V=R area. Excluded from page stealing
are frames that have been fixed (for example, through the PGFIX macro), allocated
to a V=R region, placed offline using a CONFIG command, have been changed,
have I/O in progress, or contain a storage error.

Fixed LSQA storage requirements
Except for the extended private area page tables, which are pageable, the local
system queue area (LSQA) for any swapped-in address space is fixed in central
storage (above 16 megabytes, if possible). It remains so until it is explicitly freed or
until the end of the job step or task associated with it. The number of LSQA frames
allocated in central storage might increase or decrease to meet the demands of the
system. If preferred storage is required for LSQA and no space is available in the
preferred area, and none can be obtained by stealing a non-fixed/unchanged page,
then the “reconfigurable area” is reduced by one storage increment, and the
increment is marked as preferred area storage. If there is no “reconfigurable area”
to be reduced, a page is assigned from the V=R area.

V=R area
This area is used for the execution of job steps specified as fixed because they are
assigned to V=R regions in virtual storage (see “Real regions” on page 33). Such
jobs run as nonpageable and nonswappable.

Chapter 1. Storage management overview 9

The V=R area is allocated starting directly above the system region in central
storage. The virtual addresses for V=R regions are mapped one-to-one with the
central addresses in this area. When a job requests a V=R region, the lowest
available address in the V=R area in central storage, followed by a contiguous area
equal in size to the V=R region in virtual storage, is located and allocated to the
region.

If there is not enough V=R space available in the V=R area, the allocation and
execution of new V=R regions are prohibited until enough contiguous storage is
made available.

The V=R area can become fragmented because of system allocation for SQA and
LSQA or because of long-term fixing. When this happens, it becomes more difficult
— and may be impossible — for the system to find contiguous storage space for
allocating V=R regions. Such fragmentation may last for the duration of an IPL. It
is possible that fragmentation will have a cumulative effect as long-term fixed
pages are occasionally assigned frames from the V=R area.

Specified by:
v The REAL parameter of the IEASYSxx member
v Use of the REAL parameter from the operator's console during NIP.

Virtual storage overview
Estimating the virtual storage allocated at an installation is important primarily
because this storage must be backed up by central storage in some ratio (for
example, 25%). This backup storage contributes significantly to an installation's
total central storage requirements.

Virtual storage must also be backed by auxiliary storage. For information about
estimating the amount of storage your installation will need, see the discussion of
paging data space in Chapter 2, “Auxiliary storage management initialization,” on
page 59.

Each installation can use virtual storage parameters to specify how certain virtual
storage areas are to be allocated. These parameters have an impact on central
storage use and overall system performance. The following overview describes the
function of each virtual storage area. For information about identifying problems
with virtual storage requests, see “Identifying problems in virtual storage (DIAGxx
parmlib member)” on page 36.

The virtual storage address space
A two-gigabyte virtual storage address space is provided for:
v The master scheduler address space
v JES
v Other system component address spaces, such as allocation, system trace, system

management facilities (SMF), and dumping services
v Each user (batch or TSO/E).

The system uses a portion of each virtual address space. Each virtual address space
consists of:
v The common area below 16 megabytes
v The private area below 16 megabytes

10 z/OS V2R1.0 MVS Initialization and Tuning Guide

v The extended common area above 16 megabytes
v The extended private area above 16 megabytes.

Figure 2 shows the layout of the storage areas for an address space in virtual
storage. Note that most of the system areas exist both below and above 16
megabytes, providing an environment that can support 24-bit, 31-bit, and 64-bit
addressing. However, each area and its counterpart above 16 megabytes can be
thought of as a single logical area in virtual storage.

The common area contains system control programs and control blocks. The
following storage areas are located in the common area:
v Prefixed storage area (PSA)
v Common service area (CSA)
v Pageable link pack area (PLPA)
v Fixed link pack area (FLPA)
v Modified link pack area (MLPA)
v System queue area (SQA)
v Nucleus, which is fixed and nonswappable.

Each storage area in the common area (below 16 megabytes) has a counterpart in
the extended common area (above 16 megabytes) with the exception of the PSA.

Extended CSA

Extended User Region

Extended PLPA/FLPA/MLPA

Extended SQA

Extended Nucleus

Nucleus

SQA

PLPA/FLPA/MLPA

CSA

PSA

System Region

User Region

LSQA/SWA/229/230

16 Mb

24K

8K

0

Private

Common

Extended
Common

Extended
Private

2G
Extended LSQA/SWA/229/230

Low User
Private 4G

2TB

512TB

16 EB

Shared
Area

Private

Reserved

Low User Region

Default Shared Memory Addressing

High User Region

Common

Figure 2. Virtual storage layout for a single address space

Chapter 1. Storage management overview 11

For more information about using storage above the 2-gigabyte address, see z/OS
MVS Programming: Extended Addressability Guide.

Each address space uses the same common area. Portions of the common area are
paged in and out as the demands of the system change and as new user jobs
(batch or time-shared) start and old ones terminate.

The private area contains:
v A local system queue area (LSQA).
v A scheduler work area (SWA).
v Subpools 229, 230, and 249 (the authorized user key area).
v A 16K system region area.
v Either a V=V (virtual = virtual) or V=R (virtual = real) private user region for

running programs and storing data.

Except for the 16K system region area and V=R user regions, each storage area in
the private area below 16 megabytes has a counterpart in the extended private area
above 16 megabytes.

Each address space has its own unique private area allocation. The private area
(except LSQA) is pageable unless a user specifies a V=R region. If assigned as V=R,
the actual V=R region area (excluding SWA, the 16K system region area, and
subpools 229, 230, and 249) is fixed and nonswappable.

General virtual storage allocation considerations
Virtual storage allocated in each address space is divided between the system's
requirements and the user's requirements. The base system control programs
require space from each of the basic areas.

Storage for SQA, CSA, LSQA, and SWA is assigned for either the system or a
specific user. Generally, space is assigned to the system in SQA and CSA and, for
users, in LSQA or SWA.

System Queue Area (SQA/Extended SQA)
This area contains tables and queues relating to the entire system. Its contents are
highly dependent on configuration and job requirements at an installation. The
total amount of virtual storage and number of private virtual storage address
spaces are two of the factors that affect the system's use of SQA.

The SQA is allocated directly below the nucleus; the extended SQA is allocated
directly above the extended nucleus.

The size of the SQA can be specified through the:
v SQA parameter in the IEASYSxx member of SYS1.PARMLIB
v NIP or operator's console.

If the specified amount of virtual storage is not available during initialization, a
warning message will be issued. The SQA parameter may be respecified at that
time from the operator's console.

Virtual SQA is allocated as a number of 64K blocks to be added to the minimum
system requirements for SQA. If the SQA required by the system configuration
exceeds the amount that has been reserved through the SQA parameter, the system

12 z/OS V2R1.0 MVS Initialization and Tuning Guide

attempts to allocate additional virtual SQA from the CSA area. When certain
storage thresholds are reached, as explained in “SQA/CSA thresholds,” the system
stops creating new address spaces. When SQA is in use, it is fixed in central
storage.

The size of the SQA cannot be increased or decreased by the operator during a
restart that reuses the previously initialized PLPA (a quick start). The size will be
the same as during the preceding IPL.

SQA/CSA thresholds
Ensuring the appropriate size of the extended SQA and extended CSA storage is
critical to the long-term operation of the system.

If the size allocated for SQA is too large, the thresholds for the IRA100E and
IRA101E messages will not be met and CSA can become exhausted and cause a
system outage. One way to avoid this problem is to allocate the minimum SQA
required or allow for some CSA conversion so that the storage thresholds that
trigger the IRA100E and IRA101E messages are based only on the remaining CSA.

If the size allocated for extended SQA is too small or is used up very quickly, the
system attempts to use extended CSA. When both extended SQA and extended
CSA are used up, the system allocates space from SQA and CSA below 16
megabytes. The allocation of this storage could eventually lead to a system failure.
v When the size, in bytes, of combined total of free SQA + CSA pages falls below

the "high insufficient" threshold, the system issues message IRA100E
v If the size, in bytes, of available SQA and SQA pages falls below the "low

insufficient" threshold, the system issues message IRA101E
v If storage is freed such that the available SQA+CSA amount reaches the "high

sufficient" threshold, the system issues message IRA102I

The following conditions may be responsible for a shortage of SQA/CSA:
v There has been storage growth beyond the previous normal range.
v Allocation of SQA and/or CSA is inadequate.
v The current thresholds at which the IRA100E and/or IRA101E messages are

issued are too high for your installation.

Note: IBM recommends that you do not change the storage thresholds set by the
system. Setting the thresholds too low can hamper the ability of the system to
recover from storage shortages and may result in unscheduled system outages.
Setting the thresholds too high can cause IRA100E, IRA101E, and IRA102I
messages to be issued excessively. If you do change the storage thresholds, you
should be sure that the threshold is not being reached because of a problem in the
system or inadequate allocation of CSA/SQA.
The SQA/CSA threshold levels are contained in the IGVDCLIM CSECT in load
module IEAIPL04. Table 1 shows the offsets of the threshold values.

Table 1. Offsets for the SQA/CSA threshold levels

Offset Default
Value

System Enforced
Minimum

Description Comments

0000 x'41000' x'9000' Sufficient space
high

IRA102I message issued at
this threshold

0004 x'21000' x'5000' Sufficient space
low

IRA102I message issued at
this threshold

Chapter 1. Storage management overview 13

Table 1. Offsets for the SQA/CSA threshold levels (continued)

Offset Default
Value

System Enforced
Minimum

Description Comments

0008 x'40000' x'8000' Insufficent space
high

IRA100E message issued at
this threshold

000C x'20000' x'4000' Insufficient space
low

IRA101E message issued at
this threshold

If you change the default thresholds, make sure that the new sufficient threshold
values are at least x'1000' larger than the insufficient values. The new values
become effective at the next IPL.

Pageable link pack area (PLPA/Extended PLPA)
This area contains SVC routines, access methods, and other read-only system
programs along with any read-only reenterable user programs selected by an
installation that can be shared among users of the system. Any module in the
pageable link pack area will be treated by the system as though it came from an
APF-authorized library. Ensure that you have properly protected SYS1.LPALIB and
any library named in LPALSTxx or on an LPA statement in PROGxx to avoid
system security and integrity exposures, just as you would protect any
APF-authorized library.

It is desirable to place all frequently used refreshable SYS1.LINKLIB and
SYS1.CMDLIB modules in the PLPA because of the following advantages:
v If possible, PLPA is backed by central storage above 16 megabytes; central

storage below 16 megabytes is then available for other uses.
v The length of time that a page occupies central storage depends on its frequency

of use. If the page is not used over a period of time, the system will reuse (steal)
the central storage frame that the page occupies.

v The most frequently used PLPA modules in a time period will tend to remain in
central storage.

v PLPA paged-in modules avoid program fetch overhead.
v Two or more programs that need the same PLPA module share the common

PLPA code, thus reducing the demand for central storage.
v The main cost of unused PLPA modules is paging space, because only auxiliary

storage is involved when modules are not being used.
v All modules in the PLPA are treated as refreshable, and are not paged-out. This

action reduces the overall paging rate compared with modules in other libraries.

See “Placing modules in the system search order for programs” on page 15 for an
alternative suggestion on the placement of some PLPA and SYS1.CMDLIB
modules. Any installation may also specify that some reenterable modules from the
LNKLST concatenation, SYS1.SVCLIB, and/or the LPALST concatenation be placed
in a fixed extension to the link pack area (FLPA) to further improve performance
(see “The fixed link pack area (FLPA)” on page 8).

Modules loaded into the PLPA are packed within page boundaries. Modules larger
than 4K begin on a page boundary with smaller modules filling out. PLPA can be
used more efficiently through use of the LPA packing list (IEAPAKxx). IEAPAKxx
allows an installation to pack groups of related modules together, which can
sharply reduce page faults. The total size of modules within a group should not

14 z/OS V2R1.0 MVS Initialization and Tuning Guide

exceed 4K, and the residence mode (RMODE) of the modules in a group should be
the same. For more information about IEAPAKxx, see z/OS MVS Initialization and
Tuning Reference .

Placing modules in the system search order for programs
Modules (programs), whether stored as load modules or program objects, must be
loaded into both virtual storage and central storage before they can be run. When
one module calls another module, either directly by asking for it to be run or
indirectly by requesting a system service that uses it, it does not begin to run
instantly. How long it takes before a requested module begins to run depends on
where in its search order the system finds a usable copy and on how long it takes
the system to make the copy it finds available.

You should consider these factors when deciding where to place individual
modules or libraries containing multiple modules in the system-wide search order
for modules:
v The search order the system uses for modules
v How placement affects virtual storage boundaries
v How placement affects system performance
v How placement affects application performance

Search order the system uses for programs
When a program is requested through a system service (like LINK, LOAD, XCTL,
or ATTACH) using default options, the system searches for it in the following
sequence:
1. Job pack area (JPA)

A program in JPA has already been loaded in the requesting address space. If
the copy in JPA can be used, it will be used. Otherwise, the system either
searches for a new copy or defers the request until the copy in JPA becomes
available. (For example, the system defers a request until a previous caller is
finished before reusing a serially-reusable module that is already in JPA.)

2. TASKLIB
A program can allocate one or more data sets to a TASKLIB concatenation.
Data sets concatenated to TASKLIB are searched for after JPA but before any
specified STEPLIB or JOBLIB. Modules loaded by unauthorized tasks that are
found in TASKLIB must be brought into private area virtual storage before they
can run. Modules that have previously been loaded in common area virtual
storage (LPA modules or those loaded by an authorized program into CSA)
must be loaded into common area virtual storage before they can run. For more
information about TASKLIB, see z/OS MVS Programming: Assembler Services
Guide.

3. STEPLIB or JOBLIB
STEPLIB and JOBLIB are specific DD names that can be used to allocate data
sets to be searched ahead of the default system search order for programs. Data
sets can be allocated to both the STEPLIB and JOBLIB concatenations in JCL or
by a program using dynamic allocation. However, only one or the other will be
searched for modules. If both STEPLIB and JOBLIB are allocated for a
particular jobstep, the system searches STEPLIB and ignores JOBLIB. Any data
sets concatenated to STEPLIB or JOBLIB will be searched after any TASKLIB
but before LPA. Modules found in STEPLIB or JOBLIB must be brought into
private area virtual storage before they can run. Modules that have previously
been loaded in common area virtual storage (LPA modules or those loaded by

Chapter 1. Storage management overview 15

an authorized program into CSA) must be loaded into common area virtual
storage before they can run. For more information about JOBLIB and STEPLIB,
see z/OS MVS JCL Reference.

4. LPA, which is searched in this order:
a. Dynamic LPA modules, as specified in PROGxx members
b. Fixed LPA (FLPA) modules, as specified in IEAFIXxx members
c. Modified LPA (MLPA) modules, as specified in IEALPAxx members
d. Pageable LPA (PLPA) modules, loaded from libraries specified in LPALSTxx

or PROGxx
LPA modules are loaded in common storage, shared by all address spaces in
the system. Because these modules are reentrant and are not self-modifying,
each can be used by any number of tasks in any number of address spaces at
the same time. Modules found in LPA do not need to be brought into virtual
storage, because they are already in virtual storage.

5. Libraries in the linklist, as specified in PROGxx and LNKLSTxx.
By default, the linklist begins with SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB,
SYS1.SIEALNKE, and SYS1.SIEAMIGE. However, you can change this order
using SYSLIB in PROGxx and add other libraries to the linklist concatenation.
The system must bring modules found in the linklist into private area virtual
storage before the programs can run.

Note:

1. For more information about which system services load modules, see:
v z/OS MVS Programming: Assembler Services Guide

v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Authorized Assembler Services Guide

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

2. The default search order can be changed by specifying certain options on the
macros used to call programs. The parameters that affect the search order the
system will use are EP, EPLOC, DE, DCB, and TASKLIB. For more information
about these parameters, see the topic about the search for the load module in
z/OS MVS Programming: Assembler Services Guide.

3. Some IBM subsystems (notably CICS® and IMS™) and applications (such as
ISPF) use the facilities described in the above note to establish other search
orders for programs.

4. A copy of a module already loaded in virtual storage might not be accessible to
another module that needs it. For example, the copy might reside in another
address space, or might have been used or be in use and not be reusable or
reentrant. Whenever an accessible copy is not available, any module to be used
must be loaded. For more information about the system's search order for
programs and when modules are usable or unusable, see the information on
Program Management in z/OS MVS Programming: Assembler Services Guide.

Module placement effect on application performance
Modules begin to run most quickly when all these conditions are true:
v They are already loaded in virtual storage
v The virtual storage they are loaded into is accessible to the programs that call

them

16 z/OS V2R1.0 MVS Initialization and Tuning Guide

v The copy that is loaded is usable
v The virtual storage is backed by central storage (that is, the virtual storage pages

containing the programs are not paged out).

Modules that are accessible and usable (and have already been loaded into virtual
storage but not backed in central storage) must be returned to central storage from
page data sets on DASD or SCM. Modules in the private area and those in LPA
(other than in FLPA) can be in virtual storage without being backed by central
storage. Because I/O is very slow compared to storage access, these modules will
begin to run much faster when they are in central storage.

Modules placed anywhere in LPA are always in virtual storage, and modules
placed in FLPA are also always in central storage. Whether modules in LPA, but
outside FLPA, are in central storage depends on how often they are used by all the
users of the system, and on how much central storage is available. The more often
an LPA module is used, and the more central storage is available on the system,
the more likely it is that the pages containing the copy of the module will be in
central storage at any given time.

LPA pages are only stolen, and never paged out, because there are copies of all
LPA pages in the LPA page data set. But the results of paging out and page
stealing are usually the same; unless stolen pages are reclaimed before being used
for something else, they will not be in central storage when the module they
contain is called.

LPA modules must be referenced very often to prevent their pages from being
stolen. When a page in LPA (other than in FLPA) is not continually referenced by
multiple address spaces, it tends to be stolen. One reason these pages might be
stolen is that address spaces often get swapped out (without the PLPA pages to
which they refer), and a swapped-out address space cannot refer to a page in LPA.

When all the pages containing an LPA module (or its first page) are not in central
storage when the module is called, the module will begin to run only after its first
page has been brought into central storage.

Modules can also be loaded into CSA by authorized programs. When modules are
loaded into CSA and shared by multiple address spaces, the performance
considerations are similar to those for modules placed in LPA. (However, unlike
LPA pages, CSA pages must be paged out when the system reclaims them.)

When a usable and accessible copy of a module cannot be found in virtual storage,
either the request must be deferred or the module must be loaded. When the
module must be loaded, it can be loaded from a VLF data space used by LLA, or
from load libraries or PDSEs residing on DASD.

Modules not in LPA must always be loaded the first time they are used by an
address space. How long this takes depends on:
v Whether the directory for the library in which the module resides is cached
v Whether the module itself is cached in storage
v The response time of the DASD subsystem on which the module resides at the

time the I/O loads the module.

The LLA address space caches directory entries for all the modules in the data sets
in the linklist concatenation (defined in PROGxx and LNKLSTxx) by default.
Because the directory entries are cached, the system does not need to read the data

Chapter 1. Storage management overview 17

set directory to find out where the module is before fetching it. This reduces I/O
significantly. In addition, unless the system defaults are changed, LLA will use VLF
to cache small, frequently-used load modules from the linklist. A module cached in
VLF by LLA can be copied into its caller's virtual storage much more quickly than
the module can be fetched from DASD.

You can control the amount of storage used by VLF by specifying the MAXVIRT
parameter in a COFVLFxx member of PARMLIB. You can also define additional
libraries to be managed by LLA and VLF. For more information about controlling
VLF's use of storage and defining additional libraries, see z/OS MVS Initialization
and Tuning Reference .

When a module is called and no accessible or usable copy of it exists in central
storage, and it is not cached by LLA, the system must bring it in from DASD.
Unless the directory entry for the module is cached, this involves at least two sets
of I/O operations. The first reads the data set's directory to find out where the
module is stored, and the second reads the member of the data set to load the
module. The second I/O operation might be followed by additional I/O operations
to finish loading the module when the module is large or when the system,
channel subsystem, or DASD subsystem is heavily loaded.

How long it takes to complete these I/O operations depends on how busy all of
the resources needed to complete them are. These resources include:
v The DASD volume
v The DASD controller
v The DASD control unit
v The channel path
v The channel subsystem
v The CPs enabled for I/O in the processor
v The number of SAPs (CMOS processors only).

In addition, if cached controllers are used, the reference patterns of the data on
DASD will determine whether a module being fetched will be in the cache.
Reading data from cache is much faster than reading it from the DASD volume
itself. If the fetch time for the modules in a data set is important, you should try to
place it on a volume, string, control unit, and channel path that are busy a small
percentage of the time, and behind a cache controller with a high ratio of cache
reads to DASD reads.

Finally, the time it takes to read a module from a load library (not a PDSE) on
DASD is minimized when the modules are written to a data set by the binder,
linkage editor, or an IEBCOPY COPYMOD operation when the data set has a block
size equal to or greater than the size of the largest load module or, if the library
contains load modules larger than 32 kilobytes, set to the maximum supported
block size of 32760 bytes.

Access time for modules: From a performance standpoint, modules not already
loaded in an address space will usually be available to a program in the least time
when found at the beginning of the following list, and will take more time to be
available when found later in the list. Remember that the system stops searching
for a module once it has been found in the search order; so, if it is present in more
than one place, only the first copy found will be used. The placement of the first
copy in the search order will affect how long it takes the system to make the
module available. Possible places are:

18 z/OS V2R1.0 MVS Initialization and Tuning Guide

1. LPA
2. Link list concatenation (all directory entries and some modules cached

automatically)
3. TASKLIB/STEPLIB/JOBLIB (with LLA caching of the library)
4. TASKLIB/STEPLIB/JOBLIB (without LLA caching of the library).

For best application performance, you should place as many frequently-used
modules as high on this list as you can. However, the following system-wide
factors must be considered when you decide how many load modules to place in
LPA:
v Performance

When central storage is not constrained, frequently-used LPA routines almost
always reside in central storage, and access to these modules will be very fast.

v Virtual Storage
How much virtual storage is available for address spaces that use the modules
placed in LPA, and how much is available for address spaces that do not use the
modules placed in LPA.

Module placement effect on system performance
Whether the placement of a module affects system performance depends on how
many address spaces use the module and on how often the module is used.
Placement of infrequently-used modules that are used by few address spaces have
little effect on system-wide performance or on the performance of address spaces
that do not use the modules. Placement of frequently-used modules used by a
large number of address spaces, particularly those used by a number of address
spaces at the same time, can substantially affect system performance.

Placement of modules in LPA: More central storage can be used when a large
number of address spaces each load their own copy of a frequently-used module,
because multiple copies are more likely to exist in central storage at any time. One
possible consequence of increased central storage use is increased paging.

When frequently-used modules are placed in LPA, all address spaces share the
same copy, and central storage usage tends to be reduced. The probability of
reducing central storage usage increases with the number of address spaces using a
module placed in LPA, with the number of those address spaces usually swapped
in at any given time, and with how often the address spaces reference the module.
You should consider placing in LPA modules used very often by a large number of
address spaces.

By contrast, if few address spaces load a module, it is less likely that multiple
copies of it will exist in central storage at any one time. The same is true if many
address spaces load a module, run it once, and then never run it again, as might
happen for those used only when initializing a function or an application. This is
also true when many address spaces load a module but use it infrequently, even
when a large number of these address spaces are often swapped in at one time; for
example, some modules are used only when unusual circumstances arise within an
application. Modules that fit these descriptions are seldom good candidates for
placement in LPA.

You can add modules to LPA in these ways:
v Add the library containing the modules to the LPA list

Chapter 1. Storage management overview 19

Any library containing only reentrant modules can be added to the LPA list,
which places all its modules in LPA. Note that modules are added to LPA from
the first place in the LPA list concatenation they are found.

v Add the modules to dynamic LPA
Use this approach instead of placing modules in FLPA or MLPA whenever
possible. Searches for modules in dynamic LPA are approximately as fast as
those for modules in LPA, and placement of modules in dynamic LPA imposes
no overhead on searches for other modules. Note that another LPA module
whose address was stored before a module with the same name was loaded into
dynamic LPA might continue to be used.

v Add the modules to FLPA
Modules in the fixed LPA list will be found very quickly, but at the expense of
modules that must be found in the LPA directory. It is undesirable to make this
list very long because searches for other modules will be prolonged. Note that
modules placed in IEAFIXxx that reside in an LPA List data set will be placed in
LPA twice, once in PLPA and once in FLPA.

v Add the modules to MLPA
Like placement in FLPA, placing a large number of modules in MLPA causes
searches for all modules to be delayed, and this should be avoided. The delay
will be proportional to the number of modules placed in MLPA, and it can
become significant if you place a large number of modules in MLPA.

Placement of modules outside LPA: In addition to the effects on central storage,
channel subsystem and DASD subsystem load are increased when a module is
fetched frequently from DASD. How much it increases depends on how many I/O
operations are required to fetch the module and on the size of the module to be
fetched.

Module placement effect on virtual storage
When a module is loaded into the private area for an address space, the region
available for other things is reduced by the amount of storage used for the module.
Modules loaded from anywhere other than LPA (FLPA, MLPA, dynamic LPA, or
PLPA) will be loaded into individual address spaces or into CSA.

When a module is added to LPA below 16 megabytes, the size of the
explicitly-allocated common area below 16 megabytes will be increased by the
amount of storage used for the module. When the explicitly-allocated common
area does not end on a segment boundary, IPL processing allocates additional CSA
down to the next segment boundary. Therefore, which virtual storage boundaries
change when modules are added to LPA depends on whether a segment boundary
is crossed or not.

When modules are added to LPA below 16 megabytes, and this does not result in
the expansion of explicitly-allocated common storage past a segment boundary,
less virtual storage will be available for CSA (and SQA overflow) storage. The
amounts of CSA and SQA specified in IEASYSxx will still be available, but the
system will add less CSA to that specified during IPL.

When the addition of modules to LPA does not result in a reduction in the size of
the private area below 16 megabytes, adding load modules to LPA increases the
amount of private area available for address spaces that use those load modules.
This is because the system uses the copy of the load module in LPA rather than
loading copies into each address space using the load module. In this case, there is
no change to the private area storage available to address spaces that do not use
those load modules.

20 z/OS V2R1.0 MVS Initialization and Tuning Guide

When modules are added to LPA below 16 megabytes, the growth in LPA can
cause the common area below 16 megabytes to cross one or more segment
boundaries, which will reduce the available private area below 16 megabytes by a
corresponding amount; each time the common area crosses a segment boundary,
the private area is reduced by the size of one segment. The segment size in OS/390
is one megabyte.

When the size of the private area is reduced as a result of placing modules in LPA
below 16 megabytes, the private area virtual storage available to address spaces
that use these modules might or might not be changed. For example, if an address
space uses 1.5 megabyte of modules, all of them are placed in LPA below 16
megabytes, and this causes the common area to expand across two segment
boundaries, .5 megabytes less private area storage will be available for programs in
that address space. But if adding the same 1.5 megabytes of modules causes only
one segment boundary to be crossed, .5 megabytes more will be available, and
adding exactly 1 megabytes of modules would cause no change in the amount of
private area storage available to programs in that address space. (These examples
assume that no other changes are made to other common virtual storage area
allocations at the same time.)

When the size of the private area is reduced as a result of placing modules in LPA
below 16 megabytes, less storage will be available to all address spaces that do not
use those modules.

A process similar to the process described for LPA is used when ELPA, the other
Extended common areas, and the Extended private area are built above 16
megabytes. The only difference is that common storage areas above 16 megabytes
are built from 16 megabytes upward, while those below 16 megabytes are built
from 16 megabytes downward.

Modules can also be loaded in CSA, and some subsystems (like IMS) make use of
this facility to make programs available to multiple address spaces. The virtual
storage considerations for these modules are similar to those for LPA.

Recommendations for Improving System Performance
The following recommendations should improve system performance. They
assume that the system's default search order will be used to find modules. You
should determine what search order will be used for programs running in each of
your applications and modify these recommendations as appropriate when other
search orders will be used to find modules.
v Determine how much private area, CSA, and SQA virtual storage are required to

run your applications, both above 16 megabytes and below.
v Determine which modules or libraries are important to the applications you care

most about. From this list, determine how many are reentrant to see which are
able to be placed in LPA. Of the remaining candidates, determine which can be
safely placed in LPA, considering security and system integrity.

Note: All modules placed in LPA are assumed to be authorized. IBM
publications identify libraries that can be placed in the LPA list safely, and many
list modules you should consider placing in LPA to improve the performance of
specific subsystems and applications.
Note that the system will try to load RMODE(ANY) modules above 16
megabytes whenever possible. RMODE(24) modules will always be loaded
below 16 megabytes.

Chapter 1. Storage management overview 21

v To the extent possible without compromising required virtual storage, security,
or integrity, place libraries containing a high percentage of frequently-used
reentrant modules (and containing no modules that are not reentrant) in the LPA
list. For example, if TSO/E response time is important and virtual storage
considerations allow it, add the CMDLIB data set to the LPA list.

v To the extent possible without compromising available virtual storage, place
frequently or moderately-used refreshable modules from other libraries (like the
linklist concatenation) in LPA using dynamic LPA or MLPA. Make sure you do
not inadvertently duplicate modules, module names, or aliases that already exist
in LPA. For example, if TSO/E performance is important, but virtual storage
considerations do not allow CMDLIB to be placed in the LPA list, place only the
most frequently-used TSO/E modules on your system in dynamic LPA.
Use dynamic LPA to do this rather than MLPA whenever possible. Modules that
might be used by the system before a SET PROG command can be processed
cannot be placed solely in dynamic LPA. If these modules are not required in
LPA before a SET PROG command can be processed, the library in which they
reside can be placed in the linklist so they are available before a SET PROG can
be processed, but enjoy the performance advantages of LPA residency later. For
example, Language Environment® runtime modules required by z/OS UNIX
System Services initialization can be made available by placing the SCEERUN
library in the linklist, and performance for applications using Langauge
Environment (including z/OS UNIX System Services) can be improved by also
placing selected modules from SCEERUN in dynamic LPA.
For more information about dynamic LPA, see the information about PROGxx in
z/OS MVS Initialization and Tuning Reference. For information about MLPA, see
the information about IEALPAxx in z/OS MVS Initialization and Tuning Reference .
To load modules in dynamic LPA, list them on an LPA ADD statement in a
PROGxx member of PARMLIB. You can add or remove modules from dynamic
LPA without an IPL using SET PROG=xx and SETPROG LPA operator
commands. For more information, z/OS MVS Initialization and Tuning Reference
and z/OS MVS System Commands.

v By contrast, do not place in LPA infrequently-used modules, those not important
to critical applications (such as TSO/E command processors on a system where
TSO/E response time is not important), and low-use user programs when this
placement would negatively affect critical applications. Virtual storage is a finite
resource, and placement of modules in LPA should be prioritized when
necessary. Leaving low-use modules from the linklist (such as those in CMDLIB
on systems where TSO/E performance is not critical) and low-use application
modules outside LPA so they are loaded into user subpools will affect the
performance of address spaces that use them and cause them to be swapped in
and out with those address spaces. However, this placement usually has little or
no effect on other address spaces that do not use these modules.

v Configure as much storage as possible as central storage.
v If other measures (like WLM policy changes, managing the content of LPA, and

balancing central and expanded storage allocations) fail to control storage
saturation, and paging and swapping begin to affect your critical workloads, the
most effective way to fix the problem is to add storage to the system.
Sometimes, this is as simple as changing the storage allocated to different LPARs
on the same processor. You should consider other options only when you cannot
add storage to the system. For additional paging flexibility and efficiency, you
can add optional storage-class memory (SCM) on Flash Express® solid-state
drives (SSD) as a second type of auxiliary storage. DASD auxiliary storage is
required. For details refer to “Using storage-class memory (SCM)” on page 41.

22 z/OS V2R1.0 MVS Initialization and Tuning Guide

v If you experience significant PLPA paging, you can use the fixed LPA to reduce
page-fault overhead and increase performance at the expense of central storage.
You can assure that specific modules are kept in central storage by adding them
to the fixed LPA by listing them in IEAFIXxx. This trade-off can be desirable
with a system that tends to be CPU-bound, where it can be best to divert some
of the central storage from possible use by additional address spaces, and use it
for additional LPA modules.
High-usage PLPA modules probably need not be listed in IEAFIXxx because
they tend to be referenced frequently enough to remain in central storage. A
large FLPA makes less central storage available for pageable programs.
Accordingly, fewer address spaces might be in central storage than would
otherwise be the case. No loss in throughput should occur, however, if CPU use
remains reasonably high.
Note that a large FLPA can increase other demand paging and swapping activity,
and that this will impede the system's normal self-tuning actions because
keeping these modules in storage might prevent other, more frequently-used
modules, from being in storage as workloads shift over the course of time. Also,
like module packing lists, fixed LPA lists need to be maintained when installing
new releases of software, installing significant amounts of service, or when your
workloads change. If you can prevent LPA paging by adding central storage, the
system will be simpler to manage.

v When there is significant page-in activity for PLPA pages, and you cannot take
other actions to reduce it economically, you can minimize page faults and disk
arm movement by specifying module packing through the IEAPAKxx member
of parmlib. Module packing reduces page faults by placing in the same virtual
page those small modules (less than 4K bytes) that refer to each other frequently.
In addition, module groups that frequently refer to each other but that exceed
4K bytes in combined size can be placed in adjacent (4K) auxiliary storage slots
to reduce seek time. Thus, use of IEAPAKxx should improve performance
compared with the simple loading of the PLPA from the LPALST concatenation.
(See the description of parmlib member IEAPAKxx in z/OS MVS Initialization and
Tuning Reference.)
However, you must maintain module packing lists whenever you install new
levels of software or significant service, or when your workloads change. If you
can increase the amount of central storage enough to control PLPA paging rather
than using a module packing list, the system will be simpler to manage.

v If the first PLPA page data set specified during IPL is large enough, all PLPA
pages are written to the same data set. If the first page data set is not large
enough to contain all PLPA pages (for example, when allocated as a one-cylinder
data set as recommended below), the remaining pages are written to the
common page data set (the second one specified during IPL). For best
performance, all PLPA pages would be written to a single page data set on a
single DASD volume.
However, a reasonable alternative is to define the PLPA page data set as a single
cylinder and define enough storage for the common page data set to contain
both the PLPA and common pages. When defined this way, the PLPA and
common page data sets should be contiguous, with the small PLPA data set
followed immediately by the large common data set on the volume. You should
consider allocating these data sets this way unless you experience significant
PLPA paging, because it reduces the number of page data sets for which space
must be managed and simplifies support.

v If you have significant swapping or paging activity that affects critical
applications, and you cannot add central storage or storage-class memory (SCM)
to manage it, you can tune the paging subsystem.

Chapter 1. Storage management overview 23

When most paging subsystem activity is for swapping, a large number of page
data sets can outperform a small number of page data sets, even on high-speed
or cached devices. If you have substantial swapping, consider using eight or
more page data sets on different low-use volumes on low-use control units and
channel paths. However, these should generally be considered stop-gap
solutions. If the storage demand continues to grow, tuning the paging subsystem
will usually delay the inevitable for only a short time. In the long run, adding
central storage is always a better solution.

Note: Some cached devices also do not support cached paging.

Modified link pack area (MLPA/Extended MLPA)
This area may be used to contain reenterable routines from either APF-authorized
or non-APF-authorized libraries that are to be part of the pageable extension to the
link pack area during the current IPL. Any module in the modified link pack area
will be treated by the system as though it came from an APF-authorized library.
Ensure that you have properly protected any library named in IEALPAxx to avoid
system security and integrity exposures, just as you would protect any
APF-authorized library.

The MLPA exists only for the duration of an IPL. Therefore, if an MLPA is desired,
the modules in the MLPA must be specified for each IPL (including quick start and
warm start IPLs).

The MLPA is allocated just below the FLPA (or the PLPA, if there is no FLPA); the
extended MLPA is allocated above the extended FLPA (or the extended PLPA if
there is no extended FLPA). When the system searches for a routine, the MLPA is
searched before the PLPA.

Note: Loading a large number of modules in the MLPA can increase fetch time for
modules that are not loaded in the LPA. This could affect system performance.

The MLPA can be used at IPL time to temporarily modify or update the PLPA with
new or replacement modules. No actual modification is made to the quick start
PLPA stored in the system's paging data sets. The MLPA is read-only, unless
NOPROT is specified on the MLPA system parameter.

Specified by:

v Including a module list as an IEALPAxx member of SYS1.PARMLIB; where xx is
the specific list.

v Including the MLPA system parameter in IEASYSxx or specifying MLPA from
the operator's console during system initialization.

Common service area (CSA/Extended CSA)
This area contains pageable and fixed data areas that are addressable by all active
virtual storage address spaces. CSA normally contains data referenced by a number
of system address spaces, enabling address spaces to communicate by referencing
the same piece of CSA data.

CSA is allocated directly below the MLPA; extended CSA is allocated directly
above the extended MLPA. If the virtual SQA space is depleted, the system will
allocate additional SQA space from the CSA.

Specified by:

24 z/OS V2R1.0 MVS Initialization and Tuning Guide

v The SYSP parameter at the operator's console to specify an alternative system
parameter list (IEASYSxx) that contains a CSA specification.

v The CSA parameter at the operator's console during system initialization. This
value overrides the current system parameter value for CSA that was established
by IEASYS00 or IEASYSxx.

Note: If the size allocated for extended SQA is too small or is used up very
quickly, the system attempts to steal space from extended CSA. When both
extended SQA and extended CSA are used up, the system allocates space from
SQA and CSA below 16 megabytes. The allocation of this storage could eventually
lead to a system failure. Ensuring the appropriate size of extended SQA and
extended CSA storage is critical to the long-term operation of the system.

SQA/CSA shortage thresholds
Ensuring the appropriate size of extended SQA and extended CSA storage is
critical to the long-term operation of the system. If the size allocated for extended
SQA is too small or is used up very quickly, the system attempts to use extended
CSA. When both extended SQA and extended CSA are used up, the system
allocates space from SQA and CSA below 16 megabytes. The allocation of this
storage could eventually lead to a system failure.
v When the size, in bytes, of combined total of free SQA + CSA pages falls below

the "high insufficient" threshold, the system issues message IRA100E
v If the size, in bytes, of available SQA and SQA pages falls below the "low

insufficient" threshold, the system issues message IRA101E

For more information about SQA shortages and the thresholds, see “SQA/CSA
thresholds” on page 13.

Local system queue area (LSQA/Extended LSQA)
Each virtual address space has an LSQA. The area contains tables and queues
associated with the user's address space.

LSQA is intermixed with SWA and subpools 229, 230, and 249 downward from the
bottom of the CSA into the unallocated portion of the private area, as needed.
Extended LSQA is intermixed with SWA and subpools 229, 230, and 249
downward from 2 gigabytes into the unallocated portion of the extended private
area, as needed. (See Figure 2 on page 11.) LSQA will not be taken from space
below the top of the highest storage currently allocated to the private area user
region. Any job will abnormally terminate unless there is enough space for
allocating LSQA.

Large frame area (LFAREA)
The large frame area is used for the fixed 1 MB large pages and fixed 2 GB large
pages. Using large pages can improve performance for some applications by
reducing the overhead of dynamic address translation. This is achieved by each
large page requiring only one entry in the Translation Look-aside Buffer (TLB), as
compared to the larger number of entries required for an equivalent number of 4
KB pages. A single TLB entry improves TLB coverage for exploiters of large pages
by increasing the hit rate and decreasing the number of TLB misses that an
application incurs.

Attention: Large pages are a performance improvement feature for some
cases—switching to large pages is not recommended for all workloads.

Chapter 1. Storage management overview 25

Large pages provide performance value to a select set of applications that can
generally be characterized as memory access-intensive and long-running. These
applications meet the following criteria:
1. They must reference large ranges of memory.
2. They tend to exhaust the private storage areas available within the 2 GB

address space (such as the IBM WebSphere® application), or they use private
storage above the 2 GB address space (such as IBM DB2 software).

LFAREA parameter
The IEASYSxx LFAREA parameter specifies the amount of real storage to be made
available for 1 MB and 2 GB large pages. All 1 MB and 2 GB pages are backed by
contiguous 4 KB real storage frames, and are allocated from real storage as
specified by the LFAREA parameter. If the system becomes constrained by a lack of
sufficient 4 KB pages to handle workload demand, it can use free 1 MB large pages
to back 4 KB page requests, enabling the system to react dynamically to changing
system storage frame requirements.

If additional 1 MB large pages are required, the system can recombine 4 KB frames
that had been taken from the 1 MB large page area and place them back into the
LFAREA as 1 MB pages. However, frequent use of this decomposition and
recombination function can indicate a system configuration and tuning issue—the
large-page allocation (LFAREA) might be too large, or the demand for 4 KB frames
might be higher than expected. To resolve this issue, you can either decrease the
size of the large page frame area (LFAREA) or adjust the workload to reduce the
demand for 4 KB frames.

Because the IEASYSxx LFAREA parameter requires an IPL in order to change the
LFAREA value, the following considerations apply:
v If the value specified for LFAREA is too small, available 1 MB and 2 GB pages

might not exist for applications that could benefit from large page usage.
v If the value specified for LFAREA is too large, such that the system does not

have enough 4 KB pages to satisfy workload requirements, 1 MB pages could be
demoted to 256 4 KB pages (2 GB pages are never demoted to 4 KB pages).
Because a CPU cost exists when the system converts 1 MB pages to 4 KB pages
and vice-versa, select an LFAREA value that can accommodate your 2 GB and 1
MB page application requirements and your workload requirements for 4 KB
frames.

v The LFAREA request can be specified with target and minimum values for 2 GB
and 1 MB pages. If the amount of online real storage at IPL is not sufficient to
reserve both areas at their target values, the system will attempt to reserve the
target value for 2 GB pages by reducing the 1 MB request, provided the 1 MB
request can be satisfied at or above its minimum value. If reducing the 1 MB
request to its minimum is still not enough, the system will reduce the 2 GB
request toward its minimum value. If the request cannot be satisfied at the
specified 2 GB and 1 MB minimum values, the system will prompt the operator
to re-specify the LFAREA request when PROMPT was specified, either explicitly
or by default, or will reserve zero 1 MB and 2 GB pages when NOPROMPT was
specified.

v Determine the total number of 1 MB and 2 GB pages that your applications
require, and consider using this number as a starting point for your LFAREA
target values.

v Use output from the DISPLAY VIRTSTOR,LFAREA system command as an
estimate for the maximum number of 1 MB pages used on behalf of both 1 MB

26 z/OS V2R1.0 MVS Initialization and Tuning Guide

and 4 KB requests. Use this estimate to determine if your LFAREA value is too
small or too large; refer to message IAR019I for additional details.

v While 1 MB and 2 GB large pages can provide enhanced performance for your
system, they also consume real storage. Ensure that your LFAREA specification
reserves the optimal amount of real storage in balance with other system
considerations to maximize overall system performance.

Refer to the following documentation for additional details on LFAREA:
v For specific details on specifying the IEASYSxx LFAREA parameter, refer to z/OS

MVS Initialization and Tuning Reference.
v For information on calculating the LFAREA value based on DB2 requests, refer

to IBM DB2 10 for z/OS Managing Performance.
v For information on calculating the LFAREA value based on JAVA heaps, refer to

IBM SDK for z/OS, Java Technology Edition.

LFAREA syntax and examples
Specifying the LFAREA parameter is done using one of the two separate and
distinct syntax methods and percentage calculation formulas, which are shown in
Table 2. Following Table 2, the subsequent tables show examples of specific
LFAREA calculations and specifications.

Attention: All LFAREA calculation and specification examples are examples only,
and are never to be used as a substitute for the specific calculations and
specifications that are required for your z/OS system.

Table 2 describes the two LFAREA syntax methods, and the formulas for the
percentage specification.

Note:
The LFAREA parameter is also described in z/OS MVS Initialization and Tuning
Reference.

Table 2. The two supported LFAREA syntax methods

Syntax Percentage formula (optional) Usage notes

LFAREA=xM|xG|xT|x% If a percentage (x%) is specified, the
system calculates the requested
number of 1 MB pages to reserve
using the following formula:

Number of 1 MB pages to reserve =
(x% * online real storage at
IPL in megabytes) - 2048 MB

or

Number of 1 MB pages to reserve =
[(x% * online real storage
in gigabytes) - 2 GB] * 1024

Note that the resulting 1 MB number
of pages is rounded down to the next
whole number of 1 MB pages (which
will be zero for values less than 1
MB).

Consider the following usage notes
before using this syntax method:

v The variable x specifies the
LFAREA size in megabytes (M),
gigabytes (G), or terabytes (T), or
as a percentage (%).

v This syntax method reserves only
the 1 MB large frame area. To
define the 2 GB large frame area,
you must use the alternative
syntax method which specifies
1M= and 2G= values.

v This syntax method provides
compatibility with your prior z/OS
version when a percentage is
specified because it uses the same
formula and reserves the same
number of 1 MB pages that were
reserved on your prior z/OS
version.

Chapter 1. Storage management overview 27

Table 2. The two supported LFAREA syntax methods (continued)

Syntax Percentage formula (optional) Usage notes

LFAREA=(1M=(target[%],minimum[
%]), 2G=(target[%],minimum[%]))

If percentages (target% and
minimum%) are specified, the
requested target and minimum
number of 1 MB pages to reserve are
calculated using the formula:

number of 1 MB pages to reserve =
(target% or minimum%) * (online
real storage at IPL in megabytes
- 4096 MB)

or

number of 1 MB pages to reserve =
(target% or minimum% * (online
real storage at IPL in gigabytes
- 4 GB)) * 1024

If percentages (target% and
minimum%) are specified, the
requested target or minimum number
of 2 GB pages to reserve is calculated
using the formula:

number of 2 GB pages to reserve =
target% or minimum% * (online
real storage at IPL in 2 gigabytes
- 4 GB)

Note that the resulting 1 MB or 2 GB
number of pages is rounded down to
the next respective 1 MB or 2 GB
whole number of pages (which will
be zero for values less than 1 MB or
2 GB).

Consider the following usage notes
before using this syntax method:

v The target and minimum values
specify either the number of pages
or the percentage of online real
storage at IPL as calculated using
the percentage formula.

v This syntax method can reserve
both 1 MB and 2 GB large frame
areas.

v You cannot combine both fixed
and percentage target and minimum
values within each 1 MB or 2 GB
specification.

LFAREA calculation example 1: Table 3 shows an example of the maximum
amount of LFAREA that can be configured for various amounts of online real
storage using the LFAREA=(1M=(target,minimum),2G=(target,minimum)) syntax. The
maximum amount is calculated using the formula: 80% of (online storage at IPL –
4GB). Also shown are the smallest percentages that can be specified for an
LFAREA request for 1 MB or 2 GB pages to reserve at least one 1 MB page or one
2 GB page, respectively.

For example, on a z/OS system with 16 GB of online storage at IPL,
LFAREA=(2G=17%) must be specified to reserve at least one 2 GB page. This is
calculated as percentage * (online storage at IPL – 4GB) = 0.17 * (16GB – 4GB) = 0.17 *
12GB = 2.04 GB, which is rounded down to the 2 GB boundary at 2 GB. To satisfy
this request, the system must have 2 GB of contiguous real storage on a 2 GB
boundary above the bar. The request will be refused if there are offline storage
increments that create discontiguous areas which prevent contiguous 2 GB pages
from being formed.

Table 3. LFAREA calculation example 1

Amount of online real
storage at IPL in gigabytes
(GB)

Maximum amount
available for LFAREA in
gigabytes (GB)

Minimum percentage
request for at least one 1
MB page

Minimum percentage
request for at least one 2
GB page

4 0 Not applicable Not applicable

28 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 3. LFAREA calculation example 1 (continued)

Amount of online real
storage at IPL in gigabytes
(GB)

Maximum amount
available for LFAREA in
gigabytes (GB)

Minimum percentage
request for at least one 1
MB page

Minimum percentage
request for at least one 2
GB page

4.25 0.2 1% (results in two 1 MB
pages)

Not applicable

6.5 2 1% (results in 25 1 MB
pages)

80%

6.75 2.2 1% (results in 28 1 MB
pages)

79%

8 3.2 1% (results in 40 1 MB
pages)

50%

16 9.6 1% (results in 122 1 MB
pages)

17%

32 22.4 1% (results in 286 1 MB
pages)

8%

64 48 1% (results in 614 1 MB
pages)

4%

128 99.2 1% (results in 1269 1 MB
pages)

2%

208 163.2 1% (results in 2088 1 MB
pages)

1%

256 201.6 1% (results in 2580 1 MB
pages)

1%

512 406.4 1% (results in 5201 1 MB
pages)

1% (results in two 2 GB
pages)

1024 816 1% (results in 10444 1 MB
pages)

1% (results in five 2 GB
pages)

2048 1635.2 1% (results in 20930 1 MB
pages)

1% (results in ten 2 GB
pages)

4096 3273.6 1% (results in 41902 1 MB
pages)

1% (results in twenty 2 GB
pages

Note the following additional points regarding Table 3 on page 28:
v 4 GB is not enough online real storage to form an LFAREA.
v 4.25 GB is the next incremental size up from 4096 MB (using an increment size

of 256 MB) and the smallest amount of online real storage that can be configured
for LFAREA=(1M=1%) to reserve at least one 1 MB page (in this case two 1 MB
pages).

v 6.5 GB is the smallest amount of online real storage that can be configured to
reserve at least one 2 GB page. Note that LFAREA=(2G=80%) is required to
reserve that one page, leaving no storage available for 1 MB pages (because the
sum of 1 MB and 2 GB pages must not exceed 80% of online real storage).

v 6.75 GB is the next incremental size up from 6656 MB (using an increment size
of 256 MB) and the smallest amount of online real storage that can be configured
for LFAREA=(1M=1%,2G=79%) to reserve at least one 1 MB page and one 2 GB
page (in this case 28 1 MB pages).

v 208 GB is the smallest amount of online real storage for LFAREA=(2G=1%) to
reserve one 2 GB page (below 208 GB, a percentage higher than 1% is required
to reserve at least one 2 GB page).

Chapter 1. Storage management overview 29

LFAREA calculation examples 2 and 3: The specific numbers of 1 MB pages and
2 GB pages that your system requires depend on multiple factors. One factor is the
number of 1 MB pages and 2 GB pages that exploiting applications require for
various workloads to gain a performance benefit. The following LFAREA
specification examples illustrate how various amounts of online storage at IPL
affect the resulting number of 1 MB and 2 GB pages.

Table 4 and Table 5 illustrate a simplified approach, using a LFAREA percentage
specification, that works for any amount of online real storage without operator
intervention. The specified minimum percentage of 0% allows the system to
continue the IPL after reserving as many 1 MB and 2 GB pages as possible, up to
the specified target percentages. For these examples, some number of 1 MB pages
will always be reserved in the large frame area when the online real storage at IPL
is above 4 GB. However, 2 GB pages are reserved only when the amount of online
real storage at IPL is sufficiently large. Note that Table 5 doubles the requested
percentage, which provides a similar number of 1 MB and 2 GB pages at lower
amounts of online storage.

Table 4. LFAREA calculation example 2

LFAREA=(1M=(10%,0%),2G=(10%,0%))

Amount of online real storage at IPL
in gigabytes (GB)

Resulting number of 1 MB pages Resulting number of 2 GB pages

2 0 0

4 0 0

8 409 0

16 1228 0

32 2867 1

64 6144 3

128 12697 6

256 25804 12

512 52019 25

1024 104448 51

2048 209305 102

4096 419020 204

Table 5. LFAREA calculation example 3

LFAREA=(1M=(20%,0%),2G=(20%,0%))

Amount of online real storage at IPL
in gigabytes (GB)

Resulting number of 1 MB pages Resulting number of 2 GB pages

2 0 0

4 0 0

8 819 0

16 2457 1

32 5734 2

64 12288 6

128 25395 12

256 51609 25

30 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 5. LFAREA calculation example 3 (continued)

LFAREA=(1M=(20%,0%),2G=(20%,0%))

Amount of online real storage at IPL
in gigabytes (GB)

Resulting number of 1 MB pages Resulting number of 2 GB pages

512 104038 50

1024 208896 102

2048 418611 204

4096 838041 409

LFAREA calculation example 4: Table 6 shows a series of LFAREA requests on a
z/OS system with 64 GB of online real storage at IPL. The 1 MB pages are
requested with target and minimum percentages of 40% and 20%, respectively, while
the 2 GB pages are requested as a target numerical value that is increased with
each request. This illustrates how the 1 MB pages are reduced toward the
minimum to satisfy the requested target number of 2 GB pages. Table 6 also shows
that as the number of 2 GB pages reaches 19, the required reduction in 1 MB pages
would be below the requested minimum. In this case, the system prompts to
re-specify LFAREA. Also shown is a case where the requested number of 2 GB
pages is 25, which by itself exceeds the 80% system limit and results in a prompt
to re-specify LFAREA.

Table 6. LFAREA calculation example 4

LFAREA request with 64 GB of
online real storage available at IPL

Resulting number of 1 MB pages Resulting number of 2 GB pages

LFAREA=(1M=(40%,20%),2G=11 24576 (40%) 11

LFAREA=(1M=(40%,20%),2G=12 24576 (40%) 12

LFAREA=(1M=(40%,20%),2G=13 22118 (36%) 13

LFAREA=(1M=(40%,20%),2G=14 20275 (33%) 14

LFAREA=(1M=(40%,20%),2G=15 18432 (30%) 15

LFAREA=(1M=(40%,20%),2G=16 15974 (26%) 16

LFAREA=(1M=(40%,20%),2G=17 14131 (23%) 17

LFAREA=(1M=(40%,20%),2G=18 12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=19 Unable to satisfy 1 MB minimum Unable to satisfy 1 MB minimum

LFAREA=(1M=(40%,20%),2G=25 Above 80% limit Above 80% limit

LFAREA calculation example 5: In comparison to Table 6, Table 7 on page 32 also
shows a series of LFAREA requests on a system with 64 GB of online real storage
at IPL. The 1 MB pages are again requested with target and minimum percentages
of 40% and 20%, respectively. The 2 GB pages, however, are requested as minimum
and target numerical values that are increased with each request. This example
illustrates how the 1 MB pages are again reduced toward the minimum to satisfy
the target number of 2 GB pages, but when the 1 MB minimum cannot be reduced
further, the 2 GB request is reduced toward its minimum. As shown in Table 7 on
page 32, when the number of 2 GB pages reaches 19, the required reduction in 1
MB pages is below the requested minimum. At this point, the 2 GB request is
reduced to 18, which is still above its minimum. When the 2 GB request reaches
21, it can no longer be satisfied by reducing either the 1 MB request or the 2 GB
request, because either reduction would be below the requested minimum. At this
point, a prompt to re-specify LFAREA is issued. Note also that this example

Chapter 1. Storage management overview 31

illustrates how the system prioritizes the 2 GB request over the 1 MB request,
provided that the request can be satisfied at or above the requested minimum.

Table 7. LFAREA calculation example 5

LFAREA request with 64 GB of
online real storage available at IPL

Resulting number of 1 MB pages Resulting number of 2 GB pages

LFAREA=(1M=(40%,20%),2G=(11,9) 24576 (40%) 11

LFAREA=(1M=(40%,20%),2G=(12,10) 24576 (40%) 12

LFAREA=(1M=(40%,20%),2G=(13,11) 22118 (36%) 13

LFAREA=(1M=(40%,20%),2G=(14,12) 20275 (33%) 14

LFAREA=(1M=(40%,20%),2G=(15,13) 18432 (30%) 15

LFAREA=(1M=(40%,20%),2G=(16,14) 15974 (26%) 16

LFAREA=(1M=(40%,20%),2G=(17,15) 14131 (23%) 17

LFAREA=(1M=(40%,20%),2G=(18,16) 12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(19,17) 12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(20,18) 12288 (20%) 18

LFAREA=(1M=(40%,20%),2G=(21,19) Unable to satisfy minimum Unable to satisfy minimum

Scheduler work area (SWA/Extended SWA)
This area contains control blocks that exist from task initiation to task termination.
It includes control blocks and tables created during JCL interpretation and used by
the initiator during job step scheduling. Each initiator has its own SWA within the
user's private area.

To enable recovery, the SWA can be recorded on direct access storage in the JOB
JOURNAL. SWA is allocated at the top of each private area intermixed with LSQA
and subpools 229, 230, and 249.

Subpools 229, 230, 249 - Extended 229, 230, 249
This area allows local storage within a virtual address space to be obtained in the
requestor's storage protect key. The area is used for control blocks that can be
obtained only by authorized programs having appropriate storage protect keys.
These control blocks were placed in storage by system components on behalf of the
user.

These subpools are intermixed with LSQA and SWA. Subpool 229 is fetch
protected; subpools 230 and 249 are not. All three subpools are pageable. Subpools
229 and 230 are freed automatically at task termination; subpool 249 is freed
automatically at jobstep task termination.

System region
This area is reserved for GETMAINs by all system functions (for example, ERPs)
running under the region control tasks. It comprises 16K (except in the master
scheduler address space, in which it has a 200K maximum) of each private area
immediately above the PSA. V=V region space allocated to user jobs is allocated
upwards from the top of this area. This area is pageable and exists for the life of
each address space.

32 z/OS V2R1.0 MVS Initialization and Tuning Guide

The private area user region/extended private area user region
The portion of the user's private area within each virtual address space that is
available to the user's problem programs is called the user region.

Types of user regions
There are two types of user regions: virtual (or V=V) and real (or V=R). Virtual
and real regions are mutually exclusive; private areas can be assigned to V=R or
V=V, but not to both. The installation determines the region to which jobs are
assigned. Usually, V=R should be assigned to regions containing jobs that cannot
run in the V=V environment, or that are not readily adaptable to it. Programs that
require a one-to-one mapping from virtual to central storage, such as program
control interruption (PCI) driven channel programs, are candidates for real regions.

Two significant differences between virtual and real regions are:
v How they affect an installation's central storage requirements
v How their virtual storage addresses relate to their central storage addresses.

For virtual regions, which are pageable and swappable, the system allocates only
as many central storage frames as are needed to store the paged-in portion of the
job (plus its LSQA). The processor translates the virtual addresses of programs
running in virtual regions to locate their central storage equivalent.

For real regions, which are nonpageable and nonswappable, the system allocates
and fixes as many central storage frames as are needed to contain the entire user
region. The virtual addresses for real regions map one-for-one with central storage
addresses.

Virtual regions: Virtual regions begin at the top of the system region (see Figure 2
on page 11) and are allocated upward through the user region to the bottom of the
area containing the LSQA, SWA, and the user key area (subpools 229, 230, and
249). Virtual regions are allocated above 16 megabytes also, beginning at the top of
the extended CSA, and upward to the bottom of the extended LSQA, SWA, and
the user key area (subpools 229, 230, and 249).

As a portion of any V=V job is paged in, 4K multiples (each 4K multiple being one
page) of central storage are allocated from the available central storage. Central
storage is dynamically assigned and freed on a demand basis as the job executes.
V=V region requests that specify a specific region start address, are supported only
for restart requests, and must specify an explicit size through JCL (see “Specifying
region size” on page 34).

Real regions: Real regions begin at the top of the system region (see Figure 2 on
page 11) and are allocated upward to the bottom of the area containing LSQA,
SWA, and the user key area (subpools 229, 230, and 249). Unlike virtual regions,
real regions are only allocated below 16 megabytes.

The system assigns real regions to a virtual space within the private area that maps
one-for-one with the real addresses in central storage below 16 megabytes. Central
storage for the entire region is allocated and fixed when the region is first created.

Specifying region type: A user can assign jobs (or job steps) to virtual or real
regions by coding a value of VIRT or REAL on the ADDRSPC parameter on the
job's JOB or EXEC statement. For more information on coding the ADDRSPC
parameter, see z/OS MVS JCL Reference.

Chapter 1. Storage management overview 33

The system uses ADDRSPC with the REGION parameter. The relationship between
the ADDRSPC and REGION parameter is explained in z/OS MVS JCL User's Guide.

Region size and region limit

What is region size?: The region size is the amount of storage in the user region
available to the job, started task, or TSO/E user. The system uses region size to
determine the amount of storage that can be allocated to a job or step when a
request is made using the STORAGE or GETMAIN macros and a variable length is
requested. The region size minus the amount of storage currently allocated,
determines the maximum amount of storage that can be allocated to a job by any
single variable-length GETMAIN request.

What is region limit?: The region limit is the maximum total storage that can be
allocated to a job by any combination of requests for additional storage using the
GETMAIN or STORAGE macros. It is, in effect, a second limit on the size of the
user's private area, imposed when the region size is exceeded.

Specifying region size: Users can specify a job's region size by coding the
REGION parameter on the JOB or EXEC statement. The system rounds all region
sizes to a 4K multiple.

The region size value should be less than the region limit value to protect against
programs that issue variable length GETMAINs with very large maximums, and
then do not immediately free part of that space or free such a small amount that a
later GETMAIN (possibly issued by a system service) causes the job to fail.

For V=V jobs, the region size can be as large as the entire private area, minus the
size of LSQA/SWA/user key area (subpools 229, 230, and 249) and the system
region (see Figure 2 on page 11).

For V=R jobs, the REGION parameter value cannot be greater than the value of the
REAL system parameter specified at IPL. If the user does not explicitly specify a
V=R job's region size in the job's JCL, the system uses the VRREGN system
parameter value in the IEASYS00 member of SYS1.PARMLIB.

For more information on coding the REGION parameter, see z/OS MVS JCL
Reference.

Note: VRREGN should not be confused with the REAL system parameter. REAL
specifies the total amount of central storage that is to be reserved for running all
active V=R regions. VRREGN specifies the default subset of that total space that is
required for an individual job that does not have a region size specified in its JCL.

An installation can override the VRREGN default value in IEASYS00 by:
v Using an alternate system parameter list (IEASYSxx) that contains the desired

VRREGN parameter value.
v Specifying the desired VRREGN value at the operator's console during system

initialization. This value overrides the value for VRREGN that was specified in
IEASYS00 or IEASYSxx.

For V=R requests, if contiguous storage of at least the size of the REGION
parameter or the system default is not available in virtual or central storage, a
request for a V=R region is placed on a wait queue until space becomes available.

34 z/OS V2R1.0 MVS Initialization and Tuning Guide

Note that V=R regions must be mapped one for one into central storage. Therefore,
they do not have their entire virtual storage private area at their disposal; they can
use only that portion of their private area having addresses that correspond to the
contiguous central storage area assigned to their region, and to LSQA, SWA, and
subpools 229, 230, and 249.

Limiting user region size

Why control region size or region limit?: Placing controls on a program's
maximum region size or region limit is optional. The region size allowed to users
can affect performance of the entire system. When there is no limit on region size
and the system uses its default values, users might obtain so much space within a
region (by repeated requests for small amounts of storage or a single request for a
large amount) that no space would remain in the private area for the system to
use. This situation is likely to occur when a program issues a request for storage
and specifies a variable length with such a large maximum value that most or all
of the space remaining in the private area is allocated to the request. If this
program actively uses this large amount of space (to write tables, for example), it
can affect central storage (also known as real storage) and thus impact
performance.

To avoid an unexpected out-of-space condition, the installation should require the
specification of some region size on the REGION parameter of JOB or EXEC JCL
statements. Also, the installation can set system-wide defaults for region size
through the job entry subsystem (JES) or with MVS installation exit routines. The
installation can control user region limits for varying circumstances by selecting
values and associating them with job classes or accounting information.

Using JES to limit region size: After interpreting the user-coded JCL, JES will
pass to MVS either the value requested by the user on the REGION parameter, or
the installation-defined JES defaults. JES determines the REGION value based on
various factors, including the source of the job, or the class of the job, or both.

The limit for the user region size below 16 megabytes equals (1) the region size
that is specified in the JCL, plus 64K, or (2) the JES default, plus 64K, if no region
size is specified in the JCL. The IBM default limit for the user region size above 16
megabytes is 32 megabytes.

Note: If the region size specified in the JCL is zero, the region will be limited by
the size of the private area.

For more information on JES defaults, see either z/OS JES2 Initialization and Tuning
Reference or z/OS JES3 Initialization and Tuning Reference, depending on which JES
your system is using.

Using exit routines to limit region size: Two MVS installation exits are available
to override the region values that JES passes to MVS. The exit routines are called
IEFUSI and IEALIMIT and are described in detail in z/OS MVS Installation Exits.

The installation can use either IEFUSI or IEALIMIT to change the job's limit for the
region size below 16 megabytes of virtual storage. However, to change the limit for
the region size above 16 megabytes, the installation must code the IEFUSI
installation exit.

Chapter 1. Storage management overview 35

If your installation does not supply an IEFUSI exit routine, the system uses the
default values in the IBM-supplied IEALIMIT exit routine to determine region size.
To determine region limit, the system adds 64K to the default region size.

Region and MEMLIMIT values and limits set by the IEFUSI exit will not be
honored for programs with the NOHONORIEFUSIREGION program property
table (PPT) attribute specified. The NOHONORIEFUSIREGION PPT attribute can
be specified in the SCHEDxx member of SYS1.PARMLIB, or as an IBM supplied
PPT default. This PPT attribute is used to bypass IEFUSI region controls for
specific programs that require a larger than normal region in order to successfully
execute.

Identifying problems in virtual storage (DIAGxx parmlib
member)

This section describes functions you can use to identify problems with virtual
storage requests (such as excessive use of common storage, or storage that is not
freed at the end of a job or address space). The functions are as follows; you can
control their status in the DIAGxx parmlib member.:
v Common storage tracking
v GETMAIN/FREEMAIN/STORAGE (GFS) trace.

Using the common storage tracking function
Common storage tracking collects data about requests to obtain or free storage in
CSA, ECSA, SQA, and ESQA. You can use this data to identify jobs or address
spaces that use up an excessive amount of common storage or have ended without
freeing common storage. If those jobs or address spaces have code to free that
storage when they are canceled, you might relieve the shortage and avoid an IPL if
you cancel those jobs or address spaces using an operator command.

You can use Resource Measurement Facility™ (RMF™) or a compatible monitor
program to display the data that the storage tracking function collects. You can
also format storage tracking data in a dump using interactive problem control
system (IPCS). For information on how to use IPCS to format common storage
tracking data, see the description of the VERBEXIT VSMDATA subcommand in
z/OS MVS IPCS Commands.

The OWNER parameter on the CPOOL BUILD, GETMAIN, and STORAGE
OBTAIN macros assigns ownership of the obtained CSA, ECSA, SQA, or ESQA
storage to a particular address space or the system. To get the most value from the
common storage tracking function, ensure that authorized programs specify the
OWNER parameter on all CPOOL BUILD, GETMAIN, and STORAGE OBTAIN
macros that:
v Request storage in CSA, ECSA, SQA, or ESQA, and
v Have an owning address space that is not the home address space.

IBM recommends that common storage tracking always be activated.

You can turn storage tracking on by activating a DIAGxx parmlib member, either
at IPL (specify DIAG=xx as a system parameter) or during normal processing
(enter a SET DIAG=xx command). For more information about using SET
DIAG=xx, see z/OS MVS System Commands.

If you do not specify a DIAGxx parmlib member at IPL, the system processes the
default member DIAG00. If DIAG00 does not exist, common storage tracking will
not be turned on. Common storage remains active until turned off through a SET

36 z/OS V2R1.0 MVS Initialization and Tuning Guide

DIAG=xx command. DIAG00 also turns off the GFS trace function, which is
described in “Using GETMAIN/FREEMAIN/STORAGE (GFS) trace.”

IBM also provides the DIAG01 parmlib member, which turns the common storage
tracking function on, and DIAG02, which turns the common storage tracking
function off. Your installation must create any additional DIAGxx parmlib
members.

Using GETMAIN/FREEMAIN/STORAGE (GFS) trace
GFS trace helps you identify problems related to requests to obtain or free storage.
GFS trace uses the generalized trace facility (GTF) to collect data about storage
requests, and places this data in USRF65 user trace records in the GTF trace. You
can use IPCS to format the GTF trace records.

To turn GFS trace on or off, activate a DIAGxx parmlib member, either at IPL
(specify DIAG=xx as a system parameter) or during normal processing (enter a
SET DIAG=xx operator command). If you do not specify a DIAGxx parmlib
member at IPL, the system processes the default member DIAG00, which turns
GFS trace off. See z/OS MVS System Commands for more information about using
SET DIAG=xx.

The DIAGxx parmlib member also allows you to specify:
v GFS trace filtering data, which limits GFS trace output according to:

– Address space identifier (ASID)
– Storage subpool
– The length of the storage specified on a request
– Storage key

v GFS trace record data, which determines the data to be placed in each record,
according to one or more data items specified on the DATA keyword.

GFS trace degrades performance to a degree that depends on the current workload
in the system. Therefore, it is a good idea to activate GFS trace only when you
know there is a problem. For information about a GFS trace, see z/OS MVS
Diagnosis: Tools and Service Aids.

Auxiliary storage overview
Auxiliary storage DASD hard disk drives are required on z/OS systems for storing
all system data sets. For additional paging flexibility and efficiency, you can add
optional storage-class memory (SCM) on Flash Express solid-state drives as a
second type of auxiliary storage.

You must have enough auxiliary storage available to store the programs and data
that comprise your z/OS system. This auxiliary storage that supports basic system
requirements has three logical areas (see Figure 3 on page 39):
v System data set storage area.
v Paging data sets for backup of all pageable address spaces.
v TSO data sets.

If your auxiliary storage includes SCM on Flash drives, you must be aware of the
data storage requirements and limitations for each storage medium, which are
described in the following sections. Refer to Chapter 2, “Auxiliary storage
management initialization,” on page 59, and to the PAGE, PAGESCM, NONVIO
and PAGTOTL parameters (IEASYSxx PARMLIB member) in z/OS MVS
Initialization and Tuning Reference.

Chapter 1. Storage management overview 37

System data sets
During z/OS system installation, you must allocate space for the required system
data sets on appropriate direct access devices. The DEFINE function of access
method services defines both the storage requirements and the volume for each
system data set. Some data sets must be allocated on the system residence volume,
while others can be placed on other direct access volumes.

38 z/OS V2R1.0 MVS Initialization and Tuning Guide

Paging data sets
Paging data sets and optional storage-class memory (SCM), contain the paged-out
portions of all virtual storage address spaces. In addition, output to virtual I/O

Paging Data
Sets

Primary storage
for common area

Storage for
VIO data sets

Paged-out
address spaces

Optionally, you can place SYS1.LOGREC
on another volume. If you do, be sure to
catalog the data set in the master catalog.

For JES2 installations.

For JES3 installations

Note that auxiliary storage need not be organized as shown above.
This figure summarizes the makeup of auxiliary storage.)

Required MVS
Libraries and Data
Sets

SYS1.LINKLIB
SYS1.MIGLIB
SYS1.LPALIB
SYS1.MACLIB
SYS1.CSSLIB
Mast. Catalog

TSO
Data Sets

SYS1.BRODCAST
SYS1.CMDLIB
SYS1.HELP
SYS1.UADS

Required MVS
Libraries and Data
Sets

SYS1.PARMLIB
SYS1.PROCLIB
SYS1.SAMPLIB
SYS1.HASPACE
SYS1.HASPCKPT
SYS1.JES3LIB

2
2
3

System residence
Volume

SYS1.NUCLEUS
SYS1.LOGREC
SYS1.SVCLIB

PASSWORD
(optional)

1

(can be on any direct
access volume
including system
residence volume)

SYS1.DAE
SYS1.DUMPnn
SYS1.IMAGELIB
SYS1.PAGEDUMP
SYS1.MANn
SYS1.STGINDEX
SYS1.TCOMMAC
SYS1.TELCMLIB
SYS1.VTAMLIB
SYS1.VTAMLST
SMP Data Sets

Optional System Data Sets

System Data
Sets

Figure 3. Auxiliary storage requirement overview

Chapter 1. Storage management overview 39

devices may be stored in the paging data sets. VIO data cannot be stored on SCM
because SCM does not currently support persistence across IPLs. Before the first
IPL, you must allocate sufficient space to back up the following virtual storage
areas:
v Primary storage for the pageable portions of the common area
v Secondary storage for duplicate copies of the pageable common area
v The paged-out portions of all swapped-in address spaces - both system and

installation
v Space for all address spaces that are, or were, swapped out
v VIO data sets that are backed by auxiliary storage.

Note: VIO data must remain on page data sets even when SCM is installed. All
other data types can be paged to page data sets or to SCM.

Paging data sets are specified in IEASYSxx members of SYS1.PARMLIB. When this
is done, any PAGE parameter in an IEASYSxx specified during IPL overrides any
PAGE parameter in IEASYS00. For paging to SCM, use the PAGESCM IEASYSxx
member.

To add paging space to the system after system installation, the installation must
use the access method services to define and format the new paging data sets. To
add the new data sets to the existing paging space, either use the PAGEADD
operator command or reIPL the system, issuing the PAGE parameter at the
operator's console. To delete paging space, use the PAGEDEL operator command.
To bring additional SCM online after an IPL, use the CONFIG ONLINE command.

During initialization, paging spaces are set up by merging the selected IEASYSxx
parmlib member list of data set names with any names provided by the PAGE
parameter (issued at the operator console) and any names from the previous IPL.

Directed VIO
When backed by auxiliary storage, VIO data set pages can be directed to a subset
of the local paging data sets through directed VIO, which allows the installation to
direct VIO activity away from selected local paging data sets and use these data
sets only for non-VIO paging. With directed VIO, faster paging devices can be
reserved for paging where good response time is important. The NONVIO system
parameter, with the PAGE parameter in the IEASYSxx parmlib member, allows the
installation to define those local paging data sets that are not to be used for VIO,
leaving the rest available for VIO activity. However, if space is depleted on the
paging data sets that were made available for VIO paging, the non-VIO paging
data sets will be used for VIO paging.

The installation uses the DVIO keyword in the IEAOPTxx parmlib member to
either activate or deactivate directed VIO. To activate directed VIO, the operator
issues a SET OPT=xx command where the xx specifies the IEAOPTxx parmlib
member that contains the DVIO=YES keyword; to deactivate directed VIO, xx
specifies an IEAOPTxx parmlib member that contains the DVIO=NO keyword. The
NONVIO parameter of IEASYSxx and the DVIO keyword of IEAOPTxx is
explained more fully in z/OS MVS Initialization and Tuning Reference.

Primary and secondary PLPA
During initialization, both primary and secondary PLPAs are established. The
PLPA is established initially from the LPALST concatenation.

40 z/OS V2R1.0 MVS Initialization and Tuning Guide

On the PLPA page dataset, ASM maintains records that have pointers to the PLPA
and extended PLPA pages. During quick start and warm start IPLs, the system
uses the pointers to locate the PLPA and extended PLPA pages. The system then
rebuilds the PLPA and extended PLPA page and segment tables, and uses them for
the current IPL.

If CLPA is specified at the operator's console, indicating a cold start is to be
performed, the PLPA storage is deleted and made available for system paging use.
A new PLPA and extended PLPA is then loaded, and pointers to the PLPA and
extended PLPA pages are recorded on the PLPA page dataset. CLPA also implies
CVIO.

If storage-class memory (SCM) is installed, ASM pages PLPA to the PLPA data set
and also to SCM. ASM then uses the PLPA data set for warm starts, and the PLPA
on SCM for resolving page faults.

Virtual I/O storage space
Virtual I/O operations may send VIO dataset pages to the local paging dataset
space. During a quick start, the installation uses the CVIO parameter to purge VIO
dataset pages. During a warm start, the system can recover the VIO dataset pages
from the paging space. If an installation wants to delete VIO page space reserved
during the warm start, it issues the CVIO system parameter at the operator's
console. CVIO applies only to the VIO dataset pages that are associated with
journaled job classes. (The VIO journaling dataset contains entries for the VIO
datasets associated with journaled job classes.) If there are no journaled job classes
or no VIO journaling dataset, there is no recovery of VIO dataset pages. Instead, all
VIO dataset pages are purged and the warm start is effectively a quick start.

If the SPACE parameter for a DD statement having a UNIT parameter, associated
with a UNITNAME that was defined with having VIO=YES, is not specified, the
default size is 10 primary and 50 secondary blocks with an average block length of
1000 bytes.

The cumulative number of page datasets must not exceed 256. This maximum
number of 256 page data sets should follow these guidelines:
v There must either be one PLPA page data set or *NONE* must be specified to

indicate that SCM is to be substituted. In either case, the specification counts
toward the 256 maximum.

v There must either be one common page data set or *NONE* must be specified
to indicate that SCM is to be substituted. In either case, the specification counts
toward the 256 maximum.

v There must be at least one local page data set, but no more than 253.

The actual number of pages required in paging data sets depends on the system
load, including the size of the VIO data sets being created and the rates at which
they are created and deleted.

Using storage-class memory (SCM)
Adding optional storage-class memory (SCM) on Flash Express cards to your
auxiliary storage can increase paging performance and flexibility. Even with SCM
usage, page data sets on DASD are required for auxiliary storage. With the
exception of VIO data, which must remain on page data sets, all other data types
can be paged out to SCM. ASM pages out from main memory to either storage
medium based on the response times and on data set characteristics, critical paging
requirements, disk availability (during a HyperSwap® failover, for example) and

Chapter 1. Storage management overview 41

available storage space. For additional information, refer to Chapter 2, “Auxiliary
storage management initialization,” on page 59.

Figure 4 on page 43 depicts the required auxiliary storage management page data
sets with the addition of optional SCM. For additional information on using SCM,
refer to Chapter 2, “Auxiliary storage management initialization,” on page 59 and
the PAGE, PAGESCM, NONVIO and PAGTOTL parameters of parmlib member
IEASYSxx in z/OS MVS Initialization and Tuning Reference.

42 z/OS V2R1.0 MVS Initialization and Tuning Guide

Optionally, you can place SYS1.LOGREC
on another volume. If you do, be sure to
catalog the data set in the master catalog.

1

2 For JES2 installations.

3 For JES3 installations

Note(that auxiliary storage need not be organized as shown above.
This figure summarizes the makeup of auxiliary storage.)

Required MVS
Libraries and Data
Sets

SYS1.LINKLIB
SYS1.MIGLIB
SYS1.LPALIB
SYS1.MACLIB
SYS1.CSSLIB
Mast. Catalog

TSO
Data Sets

SYS1.BRODCAST
SYS1.CMDLIB
SYS1.HELP
SYS1.UADS

Required MVS
Libraries and Data
Sets

SYS1.PARMLIB
SYS1.PROCLIB
SYS1.SAMPLIB
SYS1.HASPACE
SYS1.HASPCKPT
SYS1.JES3LIB

2
2
3

System residence
Volume

SYS1.NUCLEUS
SYS1.LOGREC
SYS1.SVCLIB

PASSWORD
(optional)

1

(can be on any direct
access volume
including system
residence volume)

SYS1.DAE
SYS1.DUMPnn
SYS1.IMAGELIB
SYS1.PAGEDUMP
SYS1.MANn
SYS1.STGINDEX
SYS1.TCOMMAC
SYS1.TELCMLIB
SYS1.VTAMLIB
SYS1.VTAMLST
SMP Data Sets

Optional System Data Sets

*

*

*

System Data SetsPaging Data Sets

Primary storage
for common area

Storage for VIO
data sets

Paged-out
address spaces

Paged-out
address spaces

Non-VIO data

Storage-class memory
(SCM) (optional)

Figure 4. Auxiliary storage diagram with SCM

Chapter 1. Storage management overview 43

Improving module fetch performance with LLA
You can improve the performance of module fetching on your system by allowing
library lookaside (LLA) to manage your production load libraries. LLA reduces the
amount of I/O needed to locate and fetch modules from DASD storage.

Specifically, LLA improves module fetch performance in the following ways:
v By maintaining (in the LLA address space) copies of the library directories the

system uses to locate load modules. The system can quickly search the LLA copy
of a directory in virtual storage instead of using costly I/O to search the
directories on DASD.

v By placing (or staging) copies of selected modules in a virtual lookaside facility
(VLF) data space (when you define the LLA class to VLF, and start VLF). The
system can quickly fetch modules from virtual storage, rather than using slower
I/O to fetch the modules from DASD.
LLA determines which modules, if staged, would provide the most benefit to
module fetch performance. LLA evaluates modules as candidates for staging
based on statistics it collects about the members of the libraries it manages (such
as module size, frequency of fetches per module (fetch count), and the time
required to fetch a particular module).
If necessary, you can directly influence LLA staging decisions through
installation exit routines (CSVLLIX1 and CSVLLIX2). For information about
coding these exit routines, see z/OS MVS Installation Exits .

LLA and module search order
When a program requests a module, the system searches for the requested module
in various system areas and libraries, in the following order:
1. Modules that were loaded under the current task (LLEs)
2. The job pack area (JPA)
3. Tasklib, steplib, joblib, or any libraries that were indicated by a DCB specified

as an input parameter to the macro used to request the module (LINK, LINKX,
LOAD, ATTACH, ATTACHX, XCTL or XCTLX).

4. Active link pack area (LPA), which contains the FLPA and MLPA
5. Pageable link pack area (PLPA)
6. SYS1.LINKLIB and libraries concatenated to it through the LNKLSTxx member

of parmlib. (“Placing modules in the system search order for programs” on
page 15 explains the performance improvements that can be achieved by
moving modules from the LNKLST concatenation to LPA.)

When searching TASKLIBs, STEPLIBs, JOBLIBs, a specified DCB, or the LNKLST
concatenation for a module, the system searches each data set directory for the first
directory entry that matches the name of the module. The directory is located on
DASD with the data set, and is updated whenever the module is changed. The
directory entry contains information about the module and where it is located in
storage. (For more information, see the “Program Management” topic in the z/OS
MVS Programming: Assembler Services Guide.)

As mentioned previously, LLA caches, in its address space, a copy of the directory
entries for the libraries it manages. For modules that reside in LLA-managed
libraries, the system can quickly search the directories in virtual storage instead of
using I/O to search the directories on DASD.

44 z/OS V2R1.0 MVS Initialization and Tuning Guide

Planning to use LLA
To use LLA, do the following:
1. Determine which libraries LLA is to manage
2. Code members of parmlib (see “Coding the required members of parmlib”)
3. Control LLA through operator commands (see “Controlling LLA and VLF

through operator commands” on page 47).

When determining which data sets LLA is to manage, try to limit these choices to
production load libraries that are rarely changed. Because LLA manages LNKLST
libraries by default, you need only determine which non-LNKLST libraries LLA is
to manage. If, for some reason, you do not want LLA to manage particular
LNKLST libraries, you must explicitly remove such libraries from LLA
management (as described in “Removing libraries from LLA management” on
page 49).

Using VLF with LLA
Because you obtain the most benefit from LLA when you have both LLA and VLF
functioning, you should plan to use both. When used with VLF, LLA reduces the
I/O required to fetch modules from DASD by causing selected modules to be
staged in VLF data spaces. LLA does not use VLF to manage library directories.
When used without VLF, LLA eliminates only the I/O the system would use in
searching library directories on DASD.

LLA notes
1. All LLA-managed libraries must be cataloged. This includes LNKLST libraries.

A library must remain cataloged for the entire time it is managed by LLA.
Please see “Recataloging LLA-managed data sets while LLA is active” on page
52 for additional information about recataloging LLA-managed libraries.

2. The benefits of LLA load module caching applies only to modules that are
retrieved through the following macros: LINK, LINKX, LOAD, ATTACH,
ATTACHX, XCTL and XCTLX.

3. LLA does not stage load modules in overlay format. LLA manages the
directory entries of overlay format modules, but the modules themselves are
provided through program fetch. If you want to make overlay format modules
eligible for staging, you must re-linkedit the modules as non-overlay format.
These reformatted modules might occupy more storage when they execute and,
if LLA does not stage them, might take longer to be fetched.

Coding the required members of parmlib
LLA and VLF are associated with parmlib members, as follows:
v Use the CSVLLAxx member to identify the libraries that LLA is to manage.
v Use the COFVLFxx member to extend VLF services to LLA.

This information provides guidance information for coding the keywords of
CSVLLAxx. For information about the required syntax and rules for coding
CSVLLAxx and COFVLFxx, see z/OS MVS Initialization and Tuning Reference.

Coding CSVLLAxx
Use CSVLLAxx to specify which libraries LLA is to manage and how it is to
manage them.

IBM does not provide a default CSVLLAxx member (such as CSVLLA00). If you
do not supply a CSVLLAxx member, LLA will, by default, manage only the

Chapter 1. Storage management overview 45

libraries that are accessed through the LNKLST concatenation. If you supply a
CSVLLAxx member, LLA manages the libraries you specify in CSVLLAxx (on the
LIBRARIES keyword) in addition to any libraries that are accessed through the
LNKLST concatenation. Because LLA manages the LNKLST libraries by default, it
is not necessary to specify any LNKLST libraries on the LIBRARIES keyword.

Using multiple CSVLLAxx members: To use more than one CSVLLAxx member
at a time, specify the additional members to be used on the PARMLIB and SUFFIX
keywords in the original CSVLLAxx member. The CSVLLAxx members pointed to
by the PARMLIB and SUFFIX keywords must not point back to the original
member, nor to each other.

You can use the PARMLIB and SUFFIX keywords to specify CSVLLAxx members
that reside in data sets other than PARMLIB. You can then control LLA's
specifications without having update access to PARMLIB.

You can also use the PARMSUFFIX parameter of the CSVLLAxx parmlib member
to specify additional CSVLLAxx members. PARMSUFFIX differs from the
PARMLIB(dsn) SUFFIX(xx) statement in that no data set name is specified.
PARMSUFFIX searches the logical parmlib for the CSVLLAxx member.

Example of multiple CSVLLAxx members: Let's say you want two PARMLIBS
(IMS.PARMLLA and AMVS.LLAPARMS) so that a TSO REXX exec can
automatically activate a new module in LNKLST when it has copied the new
module into a LNKLST library.

Do the following; START LLA,LLA=IM,SUB=MSTR with CSVLLAIM as shown:
FREEZE(-LNKLST-)
PARMLIB(IMS.PARMLLA)
SUFFIX(IA)
PARMLIB(AMVS.LLAPARMS)
SUFFIX(RX)

where AMVS.LLAPARMS (CSVLLARX) would contain the latest update requested
by the REXX exec, such as:

REMOVE(...)/LIBRARIES(...)MEMBERS...
or

PARMSUFFIX(...)
or

PARMLIB(...) SUFFIX(...)

The REXX exec and either:
v Use multiple members and use the PARMSUFFIX to identify them, or
v Move the old CSVLLARX to CSVLLARn before building the new one.

Storing program objects in PDSEs: In VMS/ESA 4.3 with DFSMS 1.1.0 and SMS
active, you can produce a program object, and executable program unit that can be
stored in a partitioned data set extended (PDSE) program library. Program objects
resemble load modules in function, but have fewer restrictions and are stored in
PDSE libraries instead of PDS libraries. PDSE libraries that are to be managed by
LLA must contain program objects. LLA manages both load and program libraries.

Coding COFVLFxx
To have VLF stage load modules from LLA-managed libraries, you can use the
default COFVLFxx member that is shipped in parmlib (COFVLF00), or, optionally,
an installation-supplied COFVLFxx member. The installation-supplied member
must contain a CLASS statement for LLA (see COFVLF00 for an example).

46 z/OS V2R1.0 MVS Initialization and Tuning Guide

If you modify the COFVLFxx parmlib member, you must stop and restart VLF to
make the changes effective.

If you want to use an installation-supplied COFVLFxx member instead of
COFVLF00, do the following:
v Specify a CLASS statement for LLA in the alternative COFVLFxx member
v Specify the suffix of the alternative COFVLFxx member on the START VLF

command. Otherwise, the system uses COFVLF00 by default.

For information about the required syntax and rules for coding the COFVLFxx
member, see z/OS MVS Initialization and Tuning Reference.

Controlling LLA and VLF through operator commands
Use the following commands to control LLA:
v START LLA and START VLF
v STOP LLA and STOP VLF
v MODIFY LLA.

This information explains how to use commands to control LLA. For information
about the required syntax and rules for entering commands, see z/OS MVS System
Commands.

Starting LLA
The START LLA command is included in the IBM-supplied IEACMD00 member of
parmlib. Therefore, the system automatically starts LLA when it reads the
IEACMD00 member during system initialization.

Although the system automatically starts LLA, it does not, by default, activate a
CSVLLAxx member. To activate a CSVLLAxx member at system initialization,
specify the suffix (xx) of the CSVLLAxx member in either of the following places:
v In the LLA procedure in SYS1.PROCLIB, as shown, where 'xx' matches the suffix

on the CSVLLAxx member to be used:
//LLA PROC LLA=xx
//LLA EXEC PGM=CSVLLCRE,PARM=’LLA=&LLA’

v On the START LLA command in the IEACMD00 member, as shown, where 'xx'
matches the suffix on the CSVLLAxx member to be used:
COM=’START LLA,SUB=MSTR,LLA=xx’

You should not set a region limit for LLA, either by setting a region size or by an
IEFUSI exit. This will avoid storage exhaustion abends in the LLA address space.

If you do not supply a CSVLLAxx member by the LLA=xx parameter of the LLA
procedure on the first starting of LLA for this IPL, or if you specify a parameter of
LLA=NONE, LLA will by default manage only the libraries that are accessed
through the LNKLST concatenation. If you have started LLA successfully with a
CSVLLAxx member and then stop LLA, a subsequent start of LLA will use that
CSVLLAxx member unless you supply another CSVLLAxx member. If you want to
get back to the default settings, specify LLA=NONE.

When started, LLA manages both the libraries specified in the CSVLLAxx member
as well as the libraries in the LNKLST concatenation.

Chapter 1. Storage management overview 47

|
|
|
|
|
|
|

If you wish to use something other than the parmlib concatenation for LLA,
specify the data set LLA is to use on an //IEFPARM DD statement in the LLA
procedure in PROCLIB.

Starting LLA after system initialization: IBM recommends that you specify
SUB=MSTR on the START LLA command to prevent LLA from failing if JES fails.
For example, in the following command, 'xx' matches the suffix on the CSVLLAxx
member to be used, if any:
START LLA,SUB=MSTR,LLA=xx

Starting VLF
LLA provides better performance when VLF services are available, so it is better
(although not necessary) to start VLF before LLA. However, the operation of LLA
does not depend on VLF.

To allow VLF to be started through the START command, create a VLF procedure,
or use the following procedure, which resides in SYS1.PROCLIB:
//VLF PROC NN=00
//VLF EXEC PGM=COFMINIT,PARM=’NN=&NN’

When you issue the START VLF command, the VLF procedure activates the
IBM-supplied COFVLF00 member, which contains a CLASS statement for LLA.

Stopping LLA and VLF
You can stop LLA and VLF through STOP commands. Note that stopping VLF
purges all the data in VLF data spaces for all classes defined to VLF (including
LLA), and will slow performance.

If LLA or VLF is stopped (either by a STOP command or because of a system
failure), you can use a START command to reactivate the function.

Modifying LLA
You can use the MODIFY LLA command to change LLA dynamically, in either of
the following ways:
v MODIFY LLA,REFRESH. Rebuilds LLA's directory for the entire set of libraries

managed by LLA. This action is often called a complete refresh of LLA.
v MODIFY LLA,UPDATE=xx. Rebuilds LLA's directory only for specified libraries

or modules. xx identifies the CSVLLAxx member that contains the names of the
libraries for which directory information is to be refreshed. This action is often
called a selective refresh of LLA. (For details, see “Identifying members for
selective refreshes” on page 49.)

When an LLA-managed library is updated, the version of a module that is located
by a directory entry saved in LLA will differ from the version located by the
current directory entry on DASD for that module. If you update a load module in
a library that LLA manages, it is a good idea to follow the update by issuing the
appropriate form of the MODIFY LLA command to refresh LLA's cache with the
latest version of the directory information from DASD. Otherwise, the system will
continue to use an older version of a load module.

Note:

1. Applications can use the LLACOPY macro to refresh LLA's directory
information. For information about the LLACOPY macro, see z/OS MVS
Programming: Authorized Assembler Services Guide.

48 z/OS V2R1.0 MVS Initialization and Tuning Guide

2. You can specify up to 255 concurrent LLA modify commands before the system
reports that LLA is busy.

Identifying members for selective refreshes: In CSVLLAxx, specify the
MEMBERS keyword to identify members of LLA-managed libraries for which
LLA-cached directory entries are to be refreshed during selective refreshes of LLA.
If you issue the MODIFY LLA,UPDATE=xx command to select a CSVLLAxx
member that has libraries specified on the MEMBERS keyword, LLA will update
its directory for each of the members listed on the MEMBERS keyword.

Selectively refreshing LLA directory allows updated LLA-managed modules to be
activated without activating other changed LLA-managed modules. Selective LLA
refresh also avoids the purging and restaging of modules that have not changed.
When a staged module is refreshed in the LLA directory, LLA purges the copy of
the module in the virtual lookaside facility (VLF) data space and may then restage
the module into VLF.

For more information about specifying the MEMBERS keyword, see the description
of the CSVLLAxx member in z/OS MVS Initialization and Tuning Reference.

Removing libraries from LLA management
In CSVLLAxx, specify the REMOVE keyword for libraries that are to be removed
dynamically from LLA management. If you issue the MODIFY LLA,UPDATE=xx
command (selective refresh) to select a CSVLLAxx member that lists libraries on
the REMOVE keyword, LLA no longer provides directory entries or staged
modules for these libraries, regardless of whether the libraries are included in the
LNKLST concatenation. (Note that you cannot use REMOVE to change the order
or contents of the LNKLST concatenation itself.)

You can also use the MODIFY LLA,REFRESH command (complete refresh) to
remove libraries from LLA management. This command rebuilds the entire LLA
directory, rather than specified entries in LLA's directory. To limit the adverse
effects on performance caused by an LLA refresh, whenever possible, use a
selective refresh of LLA instead of a complete refresh, or stopping and restarting
LLA.

In any case, when LLA directory entries are refreshed, LLA discards directory
information of the associated module and causes VLF (if active) to remove the
module from the VLF cache. This reduces LLA's performance benefit until LLA
stages them again. Because LLA stages modules using the cached directory entries,
you should refresh LLA whenever a change is made to an LLA-managed data set.

The MODIFY LLA command does not reload (or refresh) modules that are already
loaded into virtual storage, such as modules in long-running or never-ending tasks.

For more information about specifying the REMOVE keyword, see the description
of the CSVLLAxx member in z/OS MVS Initialization and Tuning Reference.

Modifying shared data sets
You can allow two or more systems to share access to the same library directory.
When modifying or stopping LLA in this case, your changes must take effect
simultaneously on all systems that share access to the directory.

In cases where you simply want to update an LLA-managed data set, it is easier to
remove the data set from LLA management and update it, rather than stopping
LLA on all systems. To do so, enter a MODIFY LLA,UPDATE=xx command on

Chapter 1. Storage management overview 49

each system that shares access to the data set, where 'xx' identifies a CSVLLAxx
member that specifies, on the REMOVE keyword, the data set to be removed from
LLA management.

When you have completed updating the data set, enter the MODIFY
LLA,UPDATE=xx command again, this time specifying a CSVLLAxx parmlib
member in which the keyword LIBRARIES specifies the name of the data set.

In any case, whenever multiple systems share access to an LLA-managed data set,
STOP, START, or MODIFY commands must be entered for LLA on all the systems.

Using the FREEZE|NOFREEZE option
For an LLA-managed library, use the FREEZE|NOFREEZE option to indicate
whether the system is to search the LLA-cached or DASD copy of a library
directory. With FREEZE|NOFREEZE, which you code in the CSVLLAxx member,
you specify on a library-by-library basis which directory copy the system is to
search, as follows:
v If you specify FREEZE, the system uses the copy of the directory that is

maintained in the LLA address space (the library is “frozen”).
v If you specify NOFREEZE, the system searches the directory that resides in

DASD storage.

The system always treats libraries in the LNKLST concatenation as frozen.
Therefore, you need only specify the FREEZE option for non-LNKLST libraries, or
for LNKLST libraries that are referenced through TASKLIBs, STEPLIBs, or JOBLIBs.

When an LLA-managed library is frozen, the following is true:
v Users of the library always receive versions of the library's modules that are

pointed to by the LLA-cached directory.
v Users do not see any updates to the library until LLA is refreshed. If a user does

multiple linkedits to a member in a FREEZE data set, the base for each
subsequent linkedit does not include the previous linkedits; the base is the LLA
version of the member.

v If the version of a requested module matches the version of the module in VLF,
the users receive the module from VLF. Otherwise, users receive the module
from DASD.

To take full advantage of LLA's elimination of I/O for directory search, specify
FREEZE for as many read-only or infrequently updated libraries as appropriate.

Having NOFREEZE in effect for an LLA-managed library means that your
installation does not eliminate I/O while searching the library's directory.
However, LLA can still improve performance when the system fetches load
modules from the VLF data space instead of DASD storage.

Table 8 on page 51 summarizes the affects of the FREEZE|NOFREEZE option on
directory search and module fetch.

50 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 8. FREEZE|NOFREEZE processing

Action FREEZE or
NOFREEZE

LNKLST Libraries
Accessed From
LNKLST

LNKLST Libraries
Accessed Outside
LNKLST

Other
Non-LNKLST
Libraries

Directory
Search

FREEZE LLA directory is
used.

LLA directory is
used.

LLA directory is
used.

NOFREEZE LLA directory is
used.

DASD directory is
used (I/O occurs)

DASD directory is
used (I/O occurs)

Module
Fetch

FREEZE Requestor receives
LLA version of
module (from VLF
data space or
DASD).

Requestor receives
LLA version of
module (from VLF
data space or
DASD).

Requestor receives
LLA version of
module (from VLF
data space or
DASD).

NOFREEZE Requestor receives
LLA version of
module (from VLF
data space or
DASD).

Requestor receives
most current
version of module
(from DASD or
VLF data space, if
staged).

Requestor receives
most current
version of module
(from DASD or VLF
data space, if
staged).

You can change the FREEZE|NOFREEZE status of an LLA-managed library at any
time through the MODIFY LLA command. Changing a library from NOFREEZE to
FREEZE also causes a refresh of the directory information for that library (note that
when a library is refreshed, all of its modules are destaged from the VLF data
space, which will slow performance until new versions are staged).

For more information about specifying the FREEZE|NOFREEZE option, see the
description of the CSVLLAxx member in z/OS MVS Initialization and Tuning
Reference.

Changing LLA-managed libraries
After changing a module in, or adding a module to, an LLA-managed library, IBM
recommends that you refresh LLA for the library. A module that is changed and
has a new location is not considered for staging until that member is refreshed.

The recommended way to make updates in the production system is to use
IEBCOPY under FREEZE mode. The member to be updated should be copied to
another data set, the linkedits run against the second data set and then the
updated member can be copied back to the LLA-managed data set. If
LLA-managed production libraries must be updated directly, LLA should be
refreshed to manage the data set in NOFREEZE mode.

LLA ENQ consideration: By default, LLA allocates the libraries it manages as
DISP=SHR. This means that if a job attempts to allocate an LLA-managed library
as DISP=OLD, the job is enqueued until LLA is stopped or the library is removed
from LLA management. Before adding a library to the libraries that LLA manages,
review and, if necessary, change the jobs that reference the library.

Using the GET_LIB_ENQ keyword: The GET_LIB_ENQ keyword in the
CSVLLAxx member allows you to prevent LLA from obtaining an exclusive
enqueue on the libraries it manages. If you specify GET_LIB_ENQ (NO), your
installation's jobs can update, move, or delete LLA-managed libraries while other
users are accessing the libraries. GET_LIB_ENQ (NO) is generally not
recommended, however, because of the risks it poses to data set integrity.

Chapter 1. Storage management overview 51

Compressing LLA-managed libraries: If you compress an LLA-managed library,
LLA continues to provide the obsolete directory entries. For members that have
been staged to the VLF data space, the system will operate successfully. If the
member is not currently staged, however, the cached obsolete directory entry can
be used to fetch the member at the old TTR location from DASD.

Because using obsolete directory entries can cause such problems as abends,
breaches of system integrity, and system failures, use the following procedure to
compress LLA-managed libraries:
1. Issue a MODIFY LLA,UPDATE=xx command, where the CSVLLAxx parmlib

member includes a REMOVE statement identifying the library that needs to be
compressed.

2. Compress the library
3. Issue a MODIFY LLA,UPDATE=xx command, where the CSVLLAxx parmlib

member includes a LIBRARIES statement to return the compressed library to
LLA management.

This procedure causes all members of that library to be discarded from the VLF
data space. The members are then eligible to be staged again.

Recataloging LLA-managed data sets while LLA is active
LLA dynamically allocates the library data sets it manages. To re-catalog an
LLA-managed library data set while LLA is active, do the following:
1. Remove the library data set from LLA. (Issue a MODIFY LLA,UPDATE=xx

command, where xx identifies the suffix of the CSVLLAxx parmlib member
that includes a REMOVE statement that identifies the library data set to be
removed from LLA management.)

2. Recatalog the library data set.
3. Return the library data set to LLA. (Issue a MODIFY LLA,UPDATE=xx

command, where xx identifies the suffix of the CSVLLAxx parmlib member
that includes a LIBRARIES statement that identifies the recataloged library data
set to be returned to LLA management.) Recataloged LNKLST libraries cannot
be put back into LLA management. This causes fetch failures.

Allocation considerations
Before a job can execute, the operating system must set aside the devices, and
space on the devices, for the data that is to be read, merged, sorted, stored,
punched, or printed. In MVS, the “setting-aside” process is called allocation.

MVS assigns units (devices), volumes (space for data sets), and data sets (space for
collections of data) according to the data definition (DD) and data control block (DCB)
information included in the JCL for the job step.

When the data definition or DCB information is in the form of text units, the
allocation of resources is said to be dynamic. Dynamic allocation means you are
requesting the system to allocate and/or deallocate resources for a job step while it
is executing.For details on the use of dynamic allocation, see z/OS MVS
Programming: Authorized Assembler Services Guide.

Serialization of resources during allocation
When the system is setting aside non-sharable devices, volumes and data sets for a
job or a step, it must prevent any other job from using those resources during the
allocation process. To prevent a resource from changing status while it is being

52 z/OS V2R1.0 MVS Initialization and Tuning Guide

allocated to a job, the system uses serialization. Serialization during allocation
causes jobs to wait for the resources and can have a major impact on system
performance. Therefore, the system attempts to minimize the amount of time lost
to serialization by providing a specific order of allocation processing. See Table 9.

Knowing the order in which the system chooses devices, you can improve system
performance by making sure your installation's jobs request resources that require
the least possible serialization.

The system processes resource allocation requests in the order shown in Table 9. As
you move down the list, the degree of serialization – and processing time –
increases.

Table 9. Processing order for allocation requests requiring serialization

Kinds of allocation requests Serialization required

Requests requiring no specific units or
volumes; for example, DUMMY, VIO, and
subsystem data sets.

No serialization.

Requests for sharable units: DASD that have
permanently resident or reserved volumes
mounted on them.

No serialization.

Teleprocessing devices. Serialized on the requested devices.

Pre-mounted volumes, and devices that do not
need volumes.

Serialized on the group(s) of devices
eligible to satisfy the request. A single
generic device type is serialized at a time.

Online, nonallocated devices that need the
operator to mount volumes.

Serialized on the group(s) of devices
eligible to satisfy the request. A single
generic device type is serialized at a time.

All other requests: offline devices, nonsharable
devices already allocated to other jobs.

Serialized on one or more groups of
devices eligible to satisfy the request. A
single generic device type is serialized at a
time.

Improving allocation performance
You can contribute to the efficiency of allocation processing throughout your
installation in several ways:
v For devices:

– Use the device preference table, specified through the Hardware
Configuration Definition (HCD) to set up the order for device allocation. See
the z/OS MVS Device Validation Support appendix for a listing of the device
preference table installation's devices as esoteric groups, and to group them
for selection by allocation processing.

– Use the eligible device table (EDT) to identify the I/O devices that you want
to include in the esoteric groups.
For more information on the device preference table and the EDT, see z/OS
HCD Planning.

v For volumes, use the VATLSTxx members of SYS1.PARMLIB to specify volume
attributes at IPL.

v For data sets, you can specify the JCL used for your installation's applications
according to the device selection criteria you have set up through the HCD
process and IPL.

Chapter 1. Storage management overview 53

The volume attribute list
In MVS, each online device in the installation has a mount attribute and each
mounted volume has a use attribute.

The mount attributes determine when the volume on that device should be
removed. This information is needed when selecting a device and during step
unallocation processing. The mount attributes are:
v Permanently resident
v Reserved
v Removable.

The use attributes determine the type of nonspecific requests eligible to that
volume. The use attributes are:
v Public
v Private
v Storage.

Allocation routines use the volumes' mount and use attributes in selecting devices
to satisfy allocation requests. Thoughtful selection of the use and mount attributes
is important to the efficiency of your installation. For example, during allocation,
data sets on volumes marked permanently resident or reserved are selected first
because they require no serialization, thus minimizing processing time.

During system initialization, you can assign volumeattributes to direct access
volumes by means of the volume attribute list. The volume attribute list is defined
at IPL time using the VATLSTxx member of SYS1.PARMLIB.

After an IPL, you can assign volume attributes to both direct access and tape
volumes using the MOUNT command. The USE= parameter on the MOUNT
command defines the use attribute the volume is to have; a mount attribute of
reserved is automatic. For the details of using the MOUNT command, see z/OS
MVS System Commands.

When volumes are not specifically assigned a use attribute in the VATLSTxx
member or in a MOUNT command, the system assigns a default. You can specify
this default using the VATDEF statement in VATLSTxx. If you do not specify
VATDEF, the system assigns a default of public. For details on including a volume
attribute list in IEASYSxx,and on coding the VATLSTxx parmlib member itself, see
z/OS MVS Initialization and Tuning Reference.

Use and mount attributes
Every volume is assigned use and mount attributes through an entry in the
VATLSTxx member at IPL, a MOUNT command, or by the system in response to a
DD statement.

The relationships between use and mount attributes are complex, but logical. The
kinds of devices available in an installation, the kinds of data sets that will reside
on a volume, and the kinds of uses the data sets will be put to, all have a bearing
on the attributes assigned to a volume. Generally, the operating system establishes
and treats volume attributes as outlined in the following sections.

54 z/OS V2R1.0 MVS Initialization and Tuning Guide

Use attributes
v Private — meaning the volume can only be allocated when its volume serial

number is explicitly or implicitly specified.
v Public — meaning the volume is eligible for allocation to a temporary data set,

provided the request is not for a specific volume and PRIVATE has not been
specified on the VOLUME parameter of the DD statement.
Both tape and direct access volumes are given the public use attribute.
A public volume may also be allocated when its volume serial number is
specified on the request.

v Storage — meaning the volume is eligible for allocation to both temporary and
non-temporary data sets, when no specific volume is requested and PRIVATE is
not specified. Storage volumes usually contain non-temporary data sets, but
temporary data sets that cannot be assigned to public volumes are also assigned
to storage volumes.

Mount attributes
v Permanently resident — meaning thevolume cannot be demounted. Only direct

access volumes can be permanently resident. The following volumes are always
permanently resident:
– All volumes that cannot be physically demounted, such as drum storage and

fixed disk volumes
– The IPL volume
– The volume containing the system data sets
In the VATLSTxx member, you can assign a permanently-residentvolume any of
the three use attributes. If you do not assign a use attribute to a
permanently-resident volume, the default is public.

v Reserved — meaning the volume is to remain mounted until the operator issues
an UNLOAD command.
Both direct access and tape volumes can be reserved because of the MOUNT
command; only DASD volumes can be reserved through the VATLSTxx member.
The reserved attribute is usually assigned to a volume that will be used by
many jobs to avoid repeated mounting and demounting.
You can assign a reserved direct access volume any of the three use attributes,
through the USE parameter of the MOUNT command or the VATLSTxx member,
whichever is used to reserve the volume.
A reserved tape volume can only be assigned the use attributes of private or
public.

v Removable — meaning that the volume is not permanently resident or reserved.
A removable volume can be demounted either after the end of the job in which
it is last used, or when the unit it is mounted on is needed for another volume.
You can assign the use attributes of private or public to a removable direct access
volume, depending on whether VOLUME=PRIVATE is coded on the DD
statement: if this subparameter is coded, the use attribute is private; if not, it is
public.
You can assign the use attributes of private or public to a removable tape volume
under one of the following conditions:
– Private

- The PRIVATE subparameter is coded on the DD statement.
- The request is for a specific volume.
- The data set is nontemporary (not a system-generated data set name, and a

disposition other than DELETE).

Chapter 1. Storage management overview 55

Note: The request must be for a tape only data set. If, for example, an
esoteric group name includes both tape and direct access devices, a volume
allocated to it will be assigned a use attribute of public.

– Public
- The PRIVATE subparameter is not coded on the DD statement.
- A nonspecific volume request is being made.
- The data set is temporary (a system-generated data set name, or a

disposition of DELETE).

Table 10 summarizes the mount and use attributes and how they are related to
allocation requests.

Table 10. Summary of mount and use attribute combinations

Volume State Temporary
Data Set

Nontemporary
data set

How Assigned How Unmounted

Type of Volume Request

Public and Permanently
Resident (see note)

Nonspecific or
Specific

Specific VATLSTxx entry or by
default

Always mounted

Private and
Permanently Resident
(see note)

Specific Specific VATLSTxx entry Always mounted

Storage and
Permanently Resident
(see note)

Nonspecific or
Specific

Nonspecific or
Specific

VATLSTxx entry Always mounted

Public and Reserved
(Tape and direct access)

Nonspecific or
Specific

Specific Direct access: VATLSTxx
entry or MOUNT
command; Tape: MOUNT
command

UNLOAD or VARY
OFFLINE commands

Private and Reserved
(Tape and direct access)

Specific Specific Direct access: VATLSTxx
entry or MOUNT
command ;Tape: MOUNT
command

UNLOAD or VARY
OFFLINE commands

Storage and Reserved
(see note)

Nonspecific or
Specific

Nonspecific or
Specific

VATLSTxx entry or
MOUNT command

UNLOAD or VARY
OFFLINE commands

Public and Removable
(Tape and direct access)

Nonspecific or
Specific

Specific VOLUME=PRIVATE is not
coded on the DD
statement. (For tape,
nonspecific volume request
and a temporary data set
also cause this assignment.)

When unit is required by
another volume; or by
UNLOAD or VARY
OFFLINE commands.

Private and Removable
(Tape and direct access)

Specific Specific VOLUME=PRIVATE is
coded on the DD
statement. (For tape, a
specific volume request or
a nontemporary data set
also cause this assignment).

At job termination for
direct access; at step
termination or dynamic
unallocation for tape
(unless VOL=RETAIN or
a disposition of PASS
was specified); or when
the unit is required by
another volume.

56 z/OS V2R1.0 MVS Initialization and Tuning Guide

The nonsharable attribute
Some allocation requests imply the exclusive use of a direct access device while the
volume is mounted or unmounted. The system assigns the nonsharable attribute
to volumes that might require demounting during step execution.

When a volume is thus made non-sharable, it cannot be assigned to any other data
set until the non-sharable attribute is removed at the end of step execution.

The following types of requests cause the system to automatically assign the
nonsharable attribute to a volume:
v A specific volume request that specifies more volumes than devices.
v A nonspecific request for a private volume that specifies more volumes than

devices.
v A volume request that includes a request for unit affinity to a preceding DD

statement, but does not specify the same volume for the data set. For more
information, see the discussion of unit affinity in z/OS MVS JCL Reference.

v A request for deferred mounting of the volume on which a requested data set
resides.

Except for one situation, the system will not assign the non-sharable attribute to a
permanently-resident or reserved volume. The exception occurs when the
allocation request is for more volumes than units, and one of the volumes is
reserved. The reserved volume is to share a unit with one or more removable
volumes, which precede it in the list of volume serial numbers.

Consider the following example, where volume A is removable and volume B is
reserved. In this example, both volumes are assigned the non-sharable attribute;
neither of them can be used in another job at the same time. To avoid this
situation, do one of the following:
v Specify the same number of volumes as units
v Specify parallel mounting
v Set the mount attribute of volume A as resident or reserved.

DSN=BCA.ABC,VOL=SER=(A,B),UNIT=DISK

System action: Table 11 shows the system action for sharable and non-sharable
requests.

Table 11. Sharable and nonsharable volume requests

The Request is: The Volume is Allocated:

Sharable Nonsharable

Sharable allocate the volume wait (see note)

Nonsharable wait (see note) wait (see note)

Note: The operator has the option of failing the request. The request will always fail if
waiting is not allowed.

For more detailed information on how an application's JCL influences the
processing of allocation requests, see z/OS MVS JCL Reference.

For details on how dynamic allocation affects the use attributes of the volumes in
your installation, see z/OS MVS Programming: Assembler Services Guide.

Chapter 1. Storage management overview 57

58 z/OS V2R1.0 MVS Initialization and Tuning Guide

Chapter 2. Auxiliary storage management initialization

This topic describes the effective initialization and use of paging, which can use
page data sets only, or page data sets in addition to optional storage-class memory
(SCM).

Paging is the process that z/OS uses to select which pages to move from central
storage to auxiliary storage. Auxiliary storage requires page data sets on DASD,
and can also include the optional SCM on Flash Express (SSD) cards. If SCM is
available and online, ASM uses both SCM and page data sets for auxiliary storage
by paging data to the preferred storage medium, based on response times and
additional factors.

Adding SCM to your system can increase the flexibility and performance of your
paging operations. However, because SCM is not persistent across IPLs, SCM
cannot be used for paging Virtual I/O (VIO) data or PLPA data for warm starts.

For additional information on ASM, refer to “Auxiliary storage overview” on page
37, and the PAGE, PAGESCM, NONVIO and PAGTOTL parameters of parmlib
member IEASYSxx in z/OS MVS Initialization and Tuning Reference.

Page operations
Auxiliary storage manager (ASM) paging controllers attempt to maximize I/O
efficiency by incorporating a set of algorithms to distribute the I/O load as evenly
as is practical. In addition, priority is given to keeping the system operable in
situations where a shortage of a specific type of page space exists.

If you are using optional storage-class memory (SCM) in addition to the required
page data sets, ASM selects the optimal paging medium by comparing the
observed latency times for I/O (response times). To ASM, the response time is the
average time that it takes to complete an I/O request divided by the number of
pages that are serviced by a request. ASM also analyzes data characteristics, critical
paging requirements, availability of the DASD (during a HyperSwap failover, for
example) and available storage space before selecting a paging target.

A HyperSwap failover is a data availability mechanism that permits replacing a
DASD with a backup DASD. During a HyperSwap failover the DASD is not
available for paging, so address spaces in main memory, some of which are critical,
cannot be paged out to the disk. In this case, SCM can be used for critical address
space paging to reduce the risk of critical data loss.

Paging operations and algorithms
To page efficiently and expediently, ASM divides z/OS system pages into classes,
namely PLPA, common and local. Contention is reduced when these classes of
pages are placed on different physical devices. Multiple local page data sets are
recommended. Although the system requires only one local page data set,
performance can be improved when local page data sets are distributed across
multiple devices, even if one device is large enough to hold the entire amount of
required page space.

© Copyright IBM Corp. 1991, 2013 59

The PLPA and common page data sets are optional if storage-class memory (SCM)
is available (specify *NONE* to use SCM), but there can be only one of each.
Spillage back and forth between the PLPA and common page data sets is
permissible, but in the interest of performance, only spilling from PLPA to common
should be permitted.

The general intent of the ASM algorithms for page data set selection construction is
to:
v Use all available local page data sets: When ASM writes a group of data, it selects a

local page data set in a circular order within each type of device, considering the
availability of free space and device response time.
When ASM selects a data set, the paging data sets that reside on Parallel Access
Volume (PAV) devices are examined first because of reliability and performance
characteristics. Because preference is given to PAV devices, it is normal to have a
higher usage of PAV data sets as compared to non-PAV data sets.

v Write group requests to contiguous slots: ASM selects contiguous space in local
page data sets on moveable-head devices to receive group write requests. For
certain types of requests, ASM's slot allocation algorithm tries to select
sequential (contiguous) slots within a cylinder. The reason for doing this is to
shorten the I/O access time needed to read or write a group of requests. For
other types of requests (such as an individual write request), or if there are no
sequential slots, ASM selects any available slots.

v Limit the apparent size of local page data sets to reduce seek time: If possible, ASM
concentrates group requests and individual requests that are within a subset of
the space allocated to a local page data set.

Paging operations and algorithms for storage-class memory
(SCM)
Once page data sets on DASD are selected by ASM as the preferred storage
medium, all of the factors in “Paging operations and algorithms” on page 59
remain applicable. However, if ASM selects SCM as the preferred storage medium,
then additional operations and algorithms apply.

Because SCM does not support persistence of data across IPLs, VIO data can only
be paged out to DASD. Therefore, even when SCM is installed you must still
maintain a minimum amount of storage that supports paging for all of your VIO
data, and a minimum amount of local paging data sets. All other data types can be
paged out to SCM.

With the use of SCM, all PLPA pages can be stored on both SCM and optionally,
on the PLPA data set. If the PLPA page data set exists, it is used during warm
starts, and the PLPA on SCM is used to resolve any page faults. Resolving PLPA
page faults on SCM provides system resiliency, particularly during HyperSwap
failovers.

Table 12 summarizes the criteria that ASM uses to determine which storage
medium to use for paging to auxiliary storage from central storage.

Table 12. ASM criteria for paging to storage-class memory (SCM) or page data sets

Main memory data
type ASM selection criteria for paging to SCM or DASD

PLPA At IPL/NIP, PLPA pages can be paged to both SCM and the PLPA
data set. If the PLPA data set exists, it is used for warm starts, and
SCM is used to resolve PLPA page faults.

60 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 12. ASM criteria for paging to storage-class memory (SCM) or page data
sets (continued)

Main memory data
type ASM selection criteria for paging to SCM or DASD

VIO (Virtual I/O) VIO data is paged to local page data sets only—first to
VIO-accepting data sets, and then any overflow to non-VIO data
sets.

HyperSwap Critical
Address Space data

If SCM space is available, all pages that are assigned to a
HyperSwap Critical Address Space are paged to SCM. If SCM
space is not available, HyperSwap pages are kept in main memory
and are only paged to page data sets if real storage becomes
constrained and no other alternative exists.

Pageable large pages If contiguous SCM space is available, pageable large pages are
paged to SCM. If contiguous SCM is not available, large pages are
demoted to SCM or DASD as 4K page data sets, depending on
service request response times. If SCM is selected, the large page is
demoted to 256 4K blocks and stored across noncontiguous SCM. If
paging data sets is selected, the large page is also demoted to 256
4K blocks and stored across noncontiguous 4K blocks on paging
data sets.

All other data types,
including Common,
Local, and Private
Area data

If available space exists on both page data sets and on SCM, the
system allocates data to the preferred storage medium based on
response times. If the CriticalPaging function is active, data in
Common and address spaces are subject to critical paging.

Configuring storage-class memory (SCM)
The amount of storage-class memory (SCM) that is available to a z/OS system is
specified using the Manage Flash Allocation dialog from the SE/HMC
Configuration menu. This dialog also specifies the amount of SCM that is initially
brought online to the LPAR, after which additional SCM can be brought online
using the CONFIG ONLINE command. For complete command usage information
refer to z/OS MVS System Commands.

z/OS currently supports up to 16 TB of SCM within a single system image, but the
maximum amount of SCM that is available to the central-processing complex
(CPC) is limited by the hardware model. SCM and the data that resides on it can
only be accessed from the partition on which the SCM was defined.

Page data set sizes
The size of a page data set can affect system performance. The maximum number
of slots that a page data set can be is 16,777,215. However, the amount of available
free space on the volume that the page data set is allocated to limits the size that
can be allocated. A 3390 device with 65,520 cylinders contains 11,793,600 slots.

Note: If you are using storage-class memory (SCM), the size of your page data sets
can be reduced, assuming that SCM has demonstrated faster I/O response times.

Note the following recommendations:
v PLPA data set. The total combined size of the PLPA page data set and common

page data set can not exceed the size of the PLPA (and extended PLPA) plus the
amount specified for the CSA and the size of the MLPA. In defining the size of

Chapter 2. Auxiliary storage management initialization 61

these data sets, a reasonable starting value might be four megabytes for PLPA
and 20 megabytes for common, as spilling will occur if the PLPA data set
becomes full.
RMF reports can be used to determine the size requirements for these data sets.
During system initialization, check the size of the page data sets in the page data
set activity report. If the values of the used slots are very close to the values of
the allocated slots, the size should be enlarged. For more information, see the
activity report of the page data set in z/OS RMF Report Analysis.

v Common page data set. The common page data set should be large enough to
contain all of the common area pages plus room for any expected PLPA spill.
Although it is possible for the common page data set to spill to the PLPA page
data set, this situation should not be allowed to occur because it may heavily
impact performance. As noted for the PLPA data set, a reasonable starting size
for the common page data set might be twenty megabytes.

v Local page data sets. The local page data sets must be large enough to hold the
private area and VIO pages that cannot be contained in real storage. To ensure
an even distribution of paging requests across as many data sets as possible, all
local paging data sets should be approximately the same size. To minimize the
path length in the ASM slot selection code (bitmap search), plan for local page
data sets to not exceed 30% of their capacity under normal system workloads.

Storage requirements for page data sets
ASM allocates storage in extended system queue area (ESQA) for every page data
set that is in use. For data sets that are defined during IPL, this storage is obtained
during IPL. For data sets that are added dynamically after IPL, this storage is
obtained during the processing of the PAGEADD command.

Regardless of the page data set size, the ESQA consists of the following:
v A fixed amount of bytes (approximately 32,000 bytes)
v A variable amount that is determined by the size of the data set (24 bytes for

each cylinder)

Page data set protection
The page data set protection feature was introduced in z/OS V1R3 to help guard
you from unintentionally IPLing with a page data set that is already in use. It does
this by formatting and maintaining a status information record at the beginning of
each page data set and by using an ENQ to serialize usage of the data sets.

The page data set protection feature prevents two systems from accidentally using
the same physical data set. However, it is not possible to prevent the same data
sets from being used when:
v the request to use the data set comes from a system outside of the GRS

Ring/Star configuration.
v the installation has excluded the data sets from multi-system serialization. See

z/OS MVS Planning: Global Resource Serialization for more information on
SYSTEMS Exclusion RNL.

Page data sets are protected by a two-tier mechanism using:
v “SYSTEMS level ENQ” on page 63.
v “Status information record” on page 63.

62 z/OS V2R1.0 MVS Initialization and Tuning Guide

SYSTEMS level ENQ
Page data sets are protected with a SYSTEMS level ENQ that contains the name of
the page data set and the volser it resides on. The qname used on the ENQ is
SYSZILRD, and the rname used on the ENQ is the dsname + volser. This ENQ is
obtained during master scheduler initialization for the IPL-specified page data sets.
For example, the ENQ would be obtained from the definitions in the IEASYSxx
parmlib member. The ENQ is also obtained whenever a page data set is added or
replaced after IPL.

A warning-level message is issued if the ENQ cannot be obtained successfully
during IPL for the IPL-specified page data sets. Processing for the command is
terminated if the ENQ cannot be obtained for a page data set that is being added
or replaced with the PAGEADD or PAGEDEL command.

Status information record
A data set status information record is written to every page data set. The status
record identifies the system using the data set.

The status record is validated during IPL. If the record indicates that the data set is
in use by another system, message ILR030A is issued and the system waits for an
operator response to allow or disallow use of the data set.

Note that this feature does not offer full protection in the case of a page data set
that was defined on, or was last used by a pre-z/OS V1R3 environment. This is
because the status record used to perform this check did not exist prior to V1R3.
The z/OS1.3 system will format the status record, issue ILR029I as an
informational message and continue to use the data set (along with the other
system).

Once the IPL is complete, the status record is validated on a regular interval. If
concurrent use of a data set is detected, both systems will be terminated with a 025
wait state code. Catalog information will also be validated with the status record.
If the data set is deleted or key catalog information changes, the system will be
terminated with a 025 wait state code.

Space calculation examples
Table 13 shows the values for page data sets. The examples following these figures
show how to apply their tabular information to typical initialization considerations.

Note: After the system is running, you can use RMF reports to determine the sizes
of page data sets. RMF reports provide the minimum, maximum, and average
number of slots in use for page data sets. Thus, you can use the reports to adjust
data set sizes, as needed.

Table 13. Page data set values

Device Type Slots/Cyl Cyl/Meg

3380
3390

150
180

1.7
1.42

Chapter 2. Auxiliary storage management initialization 63

Example 1: Sizing the PLPA page data set, size of the PLPA
and extended PLPA unknown

Define the PLPA page data set to hold four megabytes; if that amount of space is
exceeded, the remainder can be placed on the common page data set until the
PLPA value is determined exactly.

Therefore: From the tables, 7 cylinders on a 3380 are needed for the 4-megabyte
PLPA page data set. For the 3390, 6 cylinders are needed for the 4-megabyte PLPA
page data set.

Example 2: Sizing the PLPA page data set, size of the PLPA
and extended PLPA known

Assume the PLPA size is known to be 10 megabytes. Define the PLPA page data
set to hold 10 megabytes plus 5%, or 10.5 megabytes. (The extra 5% allows for loss
of space as a result of permanent I/O errors.)

Therefore: From the tables, 18 cylinders on a 3380 are needed for the 10.5-megabyte
PLPA page data set. For the 3390, 15 cylinders are needed for the 10.5-megabyte
PLPA page data set.

Note: This example provides no warm start capability. If installed, SCM can
provide warm start capability.

Example 3: Sizing the common page data set
Use the size of the virtual common service area (CSA) and extended CSA, defined
by the CSA= parameter in the IEASYSxx parmlib member, as the minimum size for
the common page data set. If the system is IPLed with a specification of
CSA=(3000,80000), then the total CSA specified is 83000 kilobytes (approximately
81 megabytes). However, CSA and extended CSA always end on a segment
boundary, so the system may round the size up by as much as 1023 kilobytes each.
That rounding could make the CSA size as large as 83 megabytes with the
CSA=(3000,80000) specification. After the system is running, you can use RMF
reports to determine how much of the common page data set is being used and
adjust the size of the data set accordingly.

Therefore: From the tables, 118 cylinders on a 3390 are needed to start with an
83-megabyte common page data set.

Note: If you are using storage-class memory (SCM), the size of your common page
data set can be reduced, assuming that SCM has demonstrated faster I/O response
times.

Note: This example provides no warm start capability. If installed, SCM can
provide warm start capability.

Example 4: Sizing local page data sets
Assume that the master scheduler address space and JES address space can each
use about eight megabytes of private area storage. Next, determine the number of
address spaces that will be used for subsystem programs such as VTAM and the
system component address spaces, and allow eight megabytes of private area
storage for each. To determine the amount of space necessary for batch address
spaces, multiply the maximum number of batch address spaces that will be

64 z/OS V2R1.0 MVS Initialization and Tuning Guide

allowed to be active at once by the average size of a private area (calculated by the
installation or approximated at eight megabytes).

Note: If you are using storage-class memory (SCM), the size of your local page
data sets can be reduced, assuming that SCM has demonstrated faster I/O
response times.

To determine the amount of space necessary for TSO/E, multiply the maximum
number of TSO/E address spaces allowed on the system at once by the average
size of a private area (calculated by the installation or approximated at eight
megabytes).

Next, determine the amount of space required for any large swappable
applications which run concurrently. Use the allocated region size for the
calculation.

Finally, estimate the space requirements for VIO data sets. Approximate this
requirement by multiplying the expected number of VIO data sets used by the
entire system by the average size of a VIO data set for the installation. After the
system is fully loaded, you can use RMF reports to evaluate the estimates.

Note: If your local DASD storage is not large enough to contain your VIO data,
VIO data will not be paged out to SCM.

For example purposes, assume that the total space necessary for local page data
sets is:

8 megabytes for the master scheduler address space
8 megabytes for the PC/AUTH address space
8 megabytes for the system trace address space
8 megabytes for the global resource serialization address space
8 megabytes for the allocation address space
8 megabytes for the communications task address space
8 megabytes for the dumping services address space
8 megabytes for the system management facilities address space
8 megabytes for the VTAM address space
8 megabytes for the JES address space
8 megabytes for the JES3AUX address space if JES3 is used

10 megabytes for the batch address space (10 batches x 1 megabyte each)
50 megabytes for TSO/E address spaces (50 TSO/E users x 1 megabyte each)

102 megabytes for large swappable application
+ 40 megabytes for VIO data sets (200 data sets x 0.2 megabyte each)
290 megabytes total + 15 meg (approx. 5%) buffer = 305 megabytes

Therefore: From the tables, 549 cylinders on 3380 type devices are necessary. For the
3390, 434 cylinders are necessary.

Note: Even when the local page data sets will fit on one 3390, you should spread
them across more than one device. See performance recommendation number 5. If
large swappable jobs or large VIO users are started and there is insufficient
allocation of space on local page data sets, a system wait X'03C' could result.

Chapter 2. Auxiliary storage management initialization 65

The installation should also consider the extent of the use of data-in-virtual when
calculating paging data set requirements. Users of data-in virtual may use sizable
amounts of virtual storage which may put additional requirements on paging data
sets.

The calculations shown here will provide enough local page space for the system
to run. However, if a program continually requests virtual storage until the
available local page data set space is constrained, this will not be enough space to
prevent an auxiliary storage shortage.

Auxiliary storage shortages can cause severe performance degradation, and if all
local page data set space is exhausted the system might fail. To avoid this, you can
do one or more of the following:
v Use the IEFUSI user exit to set REGION limits for most address spaces and data

spaces. If you have sufficient DASD, add enough extra local page data set space
to accommodate one address space or data space of the size you allow in
addition to the local page data set space the system usually requires, multiply
the sum by 1.43, and allocate that amount of local page data set space. For more
information about IEFUSI, see z/OS MVS Installation Exits.

v Overallocate local page data set space by 300% if you have sufficient DASD.
This is enough auxiliary storage to prevent the system from reaching the
auxiliary storage shortage threshold when the maximum amount of storage is
obtained in a single address space or data space.

Example 5: Sizing page data sets when using storage-class
memory (SCM)

You can replace some of your DASD paging space with SCM. VIO paging,
however, must still be paged to DASD so adequate DASD storage is required to
avoid local storage overruns.

For example, if your VIO local page data sets require a given amount of storage,
but you have only one local storage DASD allocated for VIO, local storage could
become critical. In this case, allocating three times the amount of VIO space
required across several DASDs can provide capacity for local storage overruns and
also for disk failover.

When migrating to SCM, be aware of the following recommendations:
v Maintain your original paging data set configuration while you integrate SCM

into your system configuration.
v Once SCM has become fully integrated into your system configuration, you can

choose to reduce the number of local paging data sets.
v Maintain sufficient local paging data space to accommodate VIO pages, because

VIO pages are not written to SCM.

Performance recommendations
The following recommendations can improve system performance through the
careful use of paging data sets and devices.
1. Allocate only one paging data set per device. Doing this reduces contention

among more than one data set for the use of the device. If you do define more
than one paging data set for each device, the use of Parallel Access Volume
(PAV) devices can help to reduce contention for a device.

66 z/OS V2R1.0 MVS Initialization and Tuning Guide

Reason: If there is more than one paging data set on the same device, a
significant seek penalty is incurred. Additionally, if the data sets are local page
data sets, placing more than one on a device can cause the data sets to be
selected less frequently to fulfill write requests.
Comments: You might, however, place low-activity non-paging data sets on a
device that holds a page data set and check for device contention by executing
RMF to obtain direct access device activity reports during various time
intervals. The RMF data on device activity count, percent busy, and average
queue length should suggest whether device contention is a problem. RMF data
for devices that contain only a page data set can be used as a comparison base.

2. Over-specify space for all page data sets.
Reason: Over-specifying space allows for the creation of additional address
spaces before the deletion of current ones and permits some reasonable increase
in the number of concurrent VIO data sets which may be backed by auxiliary
storage. VIO data set growth might become a problem because there is no
simple way to limit the total number of VIO data sets used by multiple jobs
and TSO/E sessions. VIO data set paging can be controlled by restricting it to
certain page data sets through the use of directed VIO.
VIO data set pages can be purged by a reIPL specifying CVIO (or CLPA). CVIO
indicates that the system is to ignore any VIO pages that exist on the page data
sets and treat the page data sets initially as if there is no valid data on them
(that is, there are no allocated slots). Thus, specifying CVIO prevents the warm
start of jobs that use VIO data sets because the VIO pages have been purged.
(For additional space considerations, see the guideline for estimating the total
size of paging data sets in “Estimating total size of paging data sets” on page
68.)
In all cases, ASM avoids scattering requests across large, over-specified, page
data sets by concentrating its activity to a subset of the space allocated.

3. Use more than one local page data set, each on a unique device, even if the
total required space is containable on one device.
Reason: When ASM uses more than one data set, it can page concurrently on
more than one device. This is especially important during peak loads.

4. Distribute ASM data sets among channel paths and control units.
Reason: Although ASM attempts to use more than one data set concurrently,
the request remains in the channel subsystem queues if the channel path or
control unit is busy.

5. Dedicate channel paths and control units to paging devices.
Reason: In heavy paging environments, ASM can use the path to the paging
devices exclusively for page-ins and page-outs and avoid interference with
other users, such as IMS.

6. Make a page data set the only data set on the device.
Reason: Making a paging data set the only data set on the device enables ASM
to avoid contention. ASM can monopolize the device to its best performance
advantage by controlling its own I/O processing of that data set. ASM does not
have to perform the additional processing that it would otherwise have to
perform if I/O for any other data set, especially another page data set, were on
the same device. If another data set must be placed on the device, select a
low-use data set to minimize contention with the page data set.

7. Do not share volumes that contain page data sets among multiple systems.
Reason: While page data sets may be defined on volumes that contain shared
non-paging data sets, they cannot be shared between systems.

Chapter 2. Auxiliary storage management initialization 67

8. Take one of the following actions to control the risk of auxiliary storage
shortages. Auxiliary storage shortages have severe effects on system
performance when they occur, and can also cause the system to fail. When a
shortage occurs, the system rejects LOGON, MOUNT, and START commands
and keeps address spaces with rapidly increasing auxiliary storage
requirements from running until the shortage is relieved.
a. Use the SMF Step Initiation Exit, IEFUSI, to limit the sizes of most address

spaces and data spaces.
b. If you do not establish limits using IEFUSI, consider over-allocating local

page space by an amount sufficient to allow a single address space or data
space to reach the virtual storage limit (as might happen if a program
looped obtaining storage) without exhausting virtual storage shortage.

See “Example 4: Sizing local page data sets” on page 64 for more information
about calculating local page data set space requirements.

Estimating total size of paging data sets
You can obtain a general estimate of the total size of all paging data sets by
considering the following space factors.
1. The space needed for the common areas of virtual storage (PLPA and extended

PLPA, MLPA, and CSA).
2. The space needed for areas of virtual storage: private areas of concurrent

address spaces, and concurrently existing VIO page data sets. (The system
portion of concurrent address spaces needs to be calculated only once, because
it represents the same system modules.)

3. If you add storage-class memory (SCM) to your system, the required sizes of
your paging data sets for VIO and local page data sets must be large enough to
accommodate VIO workload, plus additional space for paging spikes beyond
what SCM can accommodate.

Using measurement facilities
You can possibly simplify the space estimate for the private areas mentioned in
“Estimating total size of paging data sets” by picking an arbitrary value. Set up
this amount of paging space, and then run the system with some typical job loads.
To determine the accuracy of your estimate, start RMF while the jobs are executing.
The paging activity report of the measurement program gives data on the number
of unused 4K slots, the number of VIO data set pages backed by auxiliary storage,
address space pages, and the number of unavailable (defective) slots.

The RMF report also contains the average values based on a number of samples
taken during the report interval. These average values are in a portion of the
report entitled “Local Page data set Slot Counts”. They are somewhat more
representative of actual slot use because slot use is likely to vary during the report
interval. The values from the paging activity report should enable you to adjust
your original space estimate as necessary.

Adding paging space
To add paging space for page data sets on DASD HDDs, you must use the
DEFINE PAGESPACE command of Access Method Services to pre-format and
catalog each new page data set. To add the page data set, you can use the
PAGEADD operator command, or specify the data set at the next IPL on the PAGE
parameter.

68 z/OS V2R1.0 MVS Initialization and Tuning Guide

To dynamically add paging space to storage-class memory (SCM) on Flash Express
SSDs, use the CONFIG ONLINE command. For complete command usage
information refer to z/OS MVS System Commands.

For more information refer to the following information:
v See z/OS DFSMS Access Method Services Commands for information about the

DEFINE PAGESPACE command, and on the related commands - ALTER and
DELETE - used for the handling of VSAM data sets.

v See z/OS MVS System Commands for a description of the PAGEADD command.
v See the description of the PAGE parameter in parmlib member IEASYSxx in

z/OS MVS Initialization and Tuning Reference.

Deleting, replacing or draining page data sets
You might need to remove a local page data set from the system for any of the
following reasons:
v The hardware is being reconfigured.
v The hardware is generating I/O errors.
v The configuration of the page data set is being changed.
v System tuning requires the change.

To remove local page data sets or SCM from your system, use the CONFIG
OFFLINE command.

The PAGEDEL command allows you to delete, replace or drain local page data set
without an IPL, though the command can be disruptive and must be used
judiciously. See z/OS MVS System Commands for the description of the PAGEDEL
command.

ASM will reject a PAGEDEL command that will decrease the amount of auxiliary
storage below an acceptable limit. ASM determines what is acceptable by
examining SRM's auxiliary storage threshold constant, MCCASMTI. If it is
determined that too much storage would be deleted by the PAGEDEL command,
ASM will fail the page delete request.

Questions and answers
The following questions and answers describe ASM functionality:

Q: Does ASM use I/O load balancing?

A: Yes, ASM does its own I/O load balancing.

When selecting a local page data set to fulfill a write request, ASM
attempts to avoid overloading page data sets. ASM also attempts to favor
those devices or channel paths that are providing the best service. If SCM
demonstrates a performance advantage, then SCM is selected over any
page data set.

Q: How does the auxiliary storage shortage prevention algorithm in SRM prevent
shortages?

A: It does so by swapping out address spaces that are accumulating paging
space at a rapid rate. Page space is not immediately freed, but another job
or TSO/E session (still executing) will eventually complete and free page
space. SRM also prevents the creation of new address spaces and informs
the operator of the shortage so that he can optionally cancel a job.

Chapter 2. Auxiliary storage management initialization 69

Q: Is running out of auxiliary storage (paging space) catastrophic?

A: No, not necessarily; it might be possible to add more page data sets with
the PAGEADD operator command, optionally specifying the NONVIO
system parameter. It may be necessary to reIPL to specify an additional
pre-formatted and cataloged page data set. (See the description of the
PAGE parameter of the IEASYSxx member in z/OS MVS Initialization and
Tuning Reference.)

Q: Can we dynamically allocate more paging space?

A: Yes. Additional paging space may be added with the PAGEADD operator
command if the PAGTOTL parameter allowed for expansion (see the
description of the PAGTOTL parameter of the IEASYSxx member in z/OS
MVS Initialization and Tuning Reference and the PAGEADD command in
z/OS MVS System Commands).

If you are using storage-class memory (SCM), you can dynamically allocate
additional paging space to SCM using the CONFIG ONLINE command.

Q: Can we remove paging space from system use?

A: Yes. Use the PAGEDEL command for local page data sets.

Q: How does ASM select slots?

A: ASM selects slots when writing out pages to page data sets based on
whether the write request is an individual request or a group request. For
an individual write request, such as a request to write stolen pages (those
pages changed since they were last read from the page data set), ASM
selects any available slots. For a group write request, such as a request that
results from a VIO move-out of groups of pages to page data sets, ASM
attempts to select available slots that are contiguous. ASM also attempts to
avoid scattering requests across large page data sets.

If you are using storage-class memory (SCM), ASM pages to contiguous
blocks of SCM, if available.

Q: How does ASM select a local page data set for a page-out?

A: ASM selects a local page data set for page-out from its available page data
sets. ASM selects these data sets in a circular order within each type of
data set, subject to the availability of free space and the device response
time.

If you are using storage-class memory (SCM), ASM selects paging space
first from available contiguous blocks of SCM, and then from available
noncontiguous blocks of SCM.

Q: What factors should I consider when allocating storage-class memory (SCM) to a
partition?

A:

1. Continue to define page data sets on DASD, which provides improved
availability compared to failure scenarios that could consume all of
your paging space.

2. Configure approximately the same amount of paging space for
storage-class memory (SCM) on Flash Express cards as you have
defined for page data sets on DASD. For many configurations, a single
pair of Flash Express cards provides enough paging space for an entire
z/OS partition.

70 z/OS V2R1.0 MVS Initialization and Tuning Guide

3. Using 1 MB pageable large pages with SCM can improve system
performance by paging a smaller number of larger pages to SCM than
would be paged to 4 KB page data sets on DASD. If contiguous space
is not available on SCM, 1 MB large pages are demoted to 256 4 KB
blocks and paged to either 4 KB page data sets or to SCM, based on
response time.

4. Because SCM is not persistent across IPLs, PLPA data is also required
for warm starts. The PLPA copy on page data sets is used for warm
starts, and the PLPA copy on SCM is used for resolving page faults. In
addition, local page data sets must accommodate all VIO paging.

5. For additional SCM configuration options, refer to “Space calculation
examples” on page 63, “Estimating total size of paging data sets” on
page 68 and the IEASYSxx system parameter list in z/OS MVS
Initialization and Tuning Reference.

Q: Will data-in-virtual users increase the need for paging data sets?

A: Data-in-virtual does provide applications with functions that would
encourage extensive use of virtual storage. Depending on the extent of the
usage of data-in-virtual, paging data set requirements may increase.

Chapter 2. Auxiliary storage management initialization 71

72 z/OS V2R1.0 MVS Initialization and Tuning Guide

Chapter 3. The system resources manager

Important: Beginning with z/OS V1R3, WLM compatibility mode is no longer
available. Accordingly, the IEAICSxx member, the IEAIPSxx member are no longer
valid. Options in the IEAOPTxx member that were valid only in compatibility
mode also are no longer valid. However, there are some parameters in IEAOPTxx
that are still valid and still used by SRM in goal mode. For information on
compatibility mode, see a previous version of this publication.

See z/OS MVS Planning: Workload Management for more information on WLM goal
mode.

To a large degree, an installation's control over the performance of the system is
exercised through the system resources manager (SRM).

“Section 1: Description of the system resources manager (SRM)” on page 74
discusses the types of control available through SRM, the functions used to
implement these controls, and the concepts inherent in the use of SRM parameters.
The parameters themselves are described in z/OS MVS Initialization and Tuning
Reference.

“Section 2: Basic SRM parameter concepts” on page 83 discusses some basic OPT
parameters. z/OS MVS Initialization and Tuning Reference provides descriptions of
the OPT parameters and syntax rules.

“Section 3: Advanced SRM parameter concepts” on page 85 discusses some more
advanced topics.

“Section 4: Guidelines” on page 88 provides some guidelines for defining
installation requirements and preparing an initial OPT.

“Section 5: Installation management controls” on page 105 contains information
about commands for SRM-related functions.

System tuning and SRM
The task of tuning a system is an iterative and continuous process. The controls
offered by SRM are only one aspect of this process. Initial tuning consists of
selecting appropriate parameters for various system components and subsystems.
Once the system is operational and criteria have been established for the selection
of jobs for execution via job classes and priorities, SRM will control the distribution
of available resources according to the parameters specified by the installation.

SRM, however, can only deal with available resources. If these are inadequate to
meet the needs of the installation, even optimal distribution may not be the answer
— other areas of the system should be examined to determine the possibility of
increasing available resources.

When requirements for the system increase and it becomes necessary to shift
priorities or acquire additional resources, such as a larger processor, more storage,
or more terminals, the SRM parameters might have to be adjusted to reflect
changed conditions.

© Copyright IBM Corp. 1991, 2013 73

Section 1: Description of the system resources manager (SRM)
SRM is a component of the system control program. It determines which address
spaces, of all active address spaces, should be given access to system resources and
the rate at which each address space is allowed to consume these resources.

Before an installation turns to SRM, it should be aware of the response time and
throughput requirements for the various types of work that will be performed on
its system. Questions similar to the following should be considered:
v How important is turnaround time for batch work, and are there distinct types

of batch work with differing turnaround requirements?
v Should subsystems such as IMS and CICS be controlled at all, or should they

receive as much service as they request? That is, should they be allowed
unlimited access to resources without regard to the impact this would have on
other types of work?

v What is acceptable TSO/E response time for various types of commands?
v What is acceptable response time for compiles, sorts, or other batch-like work

executed from a terminal?

Guidelines for defining installation requirements are discussed in “Section 4:
Guidelines” on page 88.

Once these questions have been answered and, whenever possible, quantified, and
the installation is reasonably confident that its requirements do not exceed the
physical capacity of its hardware, it should then turn to SRM to specify the desired
degree of control.

Controlling SRM
You can control the system resources manager (SRM) through the workload
manager. In releases earlier than z/OS V1R3, an installation controlled SRM either
through the IEAIPSxx and IEAICSxx parmlib members or through the workload
manager. Controlling SRM through parmlib members was called workload
management compatibility mode. Controlling SRM through the workload manager
is called goal mode. Some parameters in the IEAOPTxx parmlib member applied
only to compatibility mode (and are no longer valid), and some apply to goal
mode.

With workload manager, you specify performance goals for work, and SRM adapts
the system resources to meet the goals. SRM uses the same controls that exist
today, but it sets them all dynamically based on the goals. For information on how
to use workload manager, see z/OS MVS Planning: Workload Management.

While most information about how to use workload manager is in z/OS MVS
Planning: Workload Management, many of the concepts that SRM uses dynamically
in goal mode are explained in this publication, including the IEAOPTxx
parameters.

Objectives
SRM bases its decision on two fundamental objectives:
1. To distribute system resources among individual address spaces in accordance

with the installation's response, turnaround, and work priority requirements.
2. To achieve optimal use of system resources as seen from the viewpoint of

system throughput.

74 z/OS V2R1.0 MVS Initialization and Tuning Guide

SRM attempts to ensure optimal use of system resources by periodically
monitoring and balancing resource utilization. If resources are under-utilized, SRM
will attempt to increase the system load. If resources are overutilized, SRM will
attempt to reduce the system load.

Types of control
SRM offers three distinct types of control to an installation:
v Service classes
v Dispatching control, for all address spaces
v Period

SRM sets the values of controls dynamically based on the performance goals for
work defined in a service policy. The remainder of this section describes these
types of controls and the functions that SRM uses to implement them.

Dispatching control
Dispatching priorities control the rate at which address spaces are allowed to
consume resources after they have been given access to these resources. This form
of competition takes place outside the sphere of domain control, that is, all address
spaces compete with all other address spaces with regard to dispatching priorities.

Functions
This topic discusses the functions used by SRM to implement the controls
described in “Dispatching control.” The functions are as follows:
v Swapping (see “Swapping”)
v Dispatching of work (see “Dispatching of work” on page 77)
v Resource use functions (see “Resource use functions” on page 77)
v Enqueue delay minimization (see “Enqueue delay minimization” on page 79)
v I/O priority queueing (see “I/O priority queueing” on page 79)
v DASD device allocation (see “DASD device allocation” on page 80)
v Prevention of storage shortages (see “Prevention of storage shortages” on page

80)
v Pageable frame stealing (see “Pageable frame stealing” on page 83).

Swapping
Swapping is the primary function used by SRM to exercise control over
distribution of resources and system throughput. Using system status information
that is periodically monitored, SRM determines which address spaces should have
access to system resources.

In addition to the swapping controls described in the following text, SRM also
provides an optional swap-in delay to limit the response time of TSO/E
transactions.

There are several reasons for swapping. Some swaps are used for control of
domains and the competition for resources between individual address spaces
within a domain, while others provide control over system-wide performance and
help increase the throughput.

Chapter 3. The system resources manager 75

Domain-related swaps:

v Unilateral swap in: If the number of a domain's address spaces that are in the
multiprogramming set (MPS) is less than the number SRM has set for the
swap-in target, SRM swaps in additional address spaces for that domain, if
possible.

v Unilateral swap out: If the number of a domain's address spaces that are in the
multiprogramming set is greater than the number SRM has set for the swap-out
target, SRM swaps out address spaces from that domain.

v Exchange swap: All address spaces of a domain compete with one another for
system resources. When an address space in the multiprogramming set has
exceeded its allotted portion of resources, relative to an address space of the
same domain waiting to be swapped in, SRM performs an exchange swap. That
is, the address space in the multiprogramming set is swapped out and the other
address space is swapped in. (The multiprogramming set consists of those
address spaces that are in central storage and are eligible for access to the
processor.) This competition between address spaces is described in detail in
“Section 2: Basic SRM parameter concepts” on page 83.

System-related swaps:

v Swaps due to storage shortages: Two types of shortages cause swaps: auxiliary
storage shortages and pageable frame shortages. If the number of available
auxiliary storage slots is low, SRM will swap out the address space that is
acquiring auxiliary storage at the fastest rate. For a shortage of pageable frames,
if the number of fixed frames is very high, SRM will swap out the address space
that acquired the greatest number of fixed frames. This process continues until
the number of available slots rises above a fixed target, or until the number of
fixed frames falls below a fixed target.

v Swaps to improve central storage usage: The system will swap out an address space
when the system determines that the current mix of address spaces is not best
utilizing central storage. The system swaps out address spaces to create a
positive effect on system paging and swap costs.

v Swap out an address space to make room for an address space: The system will swap
in an address space when the system determines that it has been out longer than
its recommendation value would dictate. See “Working set management” on
page 78 for information about the recommendation value.

v Swaps due to wait states: In certain cases, such as a batch job going into a long
wait state (LONG option specified on the WAIT SVC, an STIMER wait
specification of greater than or equal to 0.5 seconds, an ENQ for a resource held
by a swapped out user), the address space will itself signal SRM to be swapped
out in order to release storage for the use of other address spaces. Another
example would be a time sharing user's address space that is waiting for input
from the terminal after a transaction has completed processing. SRM also detects
address spaces in a wait state. That is, address spaces in central storage that are
not executable for a fixed interval will be swapped. (See “Logical swapping” on
page 78.)

v Request Swap: The system may request that an address space be swapped out.
For example, the CONFIG STOR, OFFLINE command requests the swap out of
address spaces that occupy frames in the storage unit to be taken offline.

v Transition Swap: A transition swap occurs when the status of an address space
changes from swappable to nonswappable. For example, the system performs a
transition swap out before a nonswappable program or V=R step gets control.
This special swap prevents the job step from improperly using reconfigurable
storage.

76 z/OS V2R1.0 MVS Initialization and Tuning Guide

Swap recommendation value
SRM calculates a swap recommendation value to determine which address spaces
to use in an exchange or unilateral swap. A high swap recommendation value
indicates that the address space is more likely to be swapped in. As the swap
recommendation value decreases, that address space is more likely to be swapped
out.

The swap recommendation value for an address space that is swapped in ranges
from 100 to -999 as service is accumulated. An address space must accumulate
enough CPU service to justify the cost of a swap out. Once the swap
recommendation value goes below 0, the address space is ready to be swapped out
in an exchange swap.

The swap recommendation value for an address space that is swapped out and
ready to come in ranges from 0 to 998 as the address space remains out. Once the
swap recommendation value goes above 100, the address space has been out long
enough to justify the cost of the exchange swap.

For an address space that is swapped out but not ready to come in, the swap
recommendation value as reported by the RMF Monitor II ASD report is
meaningless. The swap recommendation value for an address space that is out too
long is reported as 999. Also, if an address space has been assigned long-term
storage protection (as described in the “Storage Protection” section of the
“Workload Management Participants” chapter in z/OS MVS Planning: Workload
Management), then the swap recommendation value is 999.

For monitored address spaces, SRM calculates a working set manager
recommendation value. See “Working set management” on page 78 for information
about the working set manager recommendation value.

Dispatching of work
Dispatching of work is done on a priority basis. That is, the ready work with the
highest priority is dispatched first. The total range of priorities is from 191 to 255.

Note: Certain system address spaces execute at the highest priority and are
exempt from installation prioritization decisions.

Resource use functions
The resource use functions of SRM attempt to optimize the use of system resources
on a system-wide basis, rather than on an individual address space basis. The
functions are as follows:
v Logical swapping - SRM automatically performs logical swapping when

sufficient central storage is available.
v Working set management - SRM automatically determines the best mix of work

in the multiprogramming set (MPS) and the most productive amount of central
storage to allocate to each address space.

Multiprogramming level adjusting: SRM monitors system-wide utilization of
resources, such as the CPU and paging subsystem, and seeks to alleviate
imbalances, that is, over-utilization or under-utilization. This is accomplished by
periodically adjusting the number of address spaces that are allowed in central
storage and ready to be dispatched for appropriate domains (multiprogramming
set).

Chapter 3. The system resources manager 77

When system contention factors indicate that the system is not being fully utilized,
SRM will select a domain and increase the number of address spaces allowed
access to the processor for that domain, thereby increasing utilization of the
system.

Logical swapping: To use central storage more effectively and reduce processor
and channel subsystem overhead, the SRM logical swap function attempts to
prevent the automatic physical swapping of address spaces. Unlike a physically
swapped address space, where the LSQA, fixed frames, and recently referenced
frames are placed on auxiliary storage, SRM keeps the frames that belong to a
logically swapped address space in central storage.

Address spaces swapped for wait states (for example, TSO/E terminal waits) are
eligible to be logically swapped out whenever the think time associated with the
address space is less than the system threshold value. SRM adjusts this threshold
value according to the demand for central storage. SRM uses the unreferenced
interval count (UIC) to measure this demand for central storage. As the demand
for central storage increases, SRM reduces the system threshold value; as the
demand decreases, SRM increases the system threshold value.

The system threshold value for think time fluctuates between low and high
boundary values. The installation can change these boundary values in the
IEAOPTxx parmlib member. The installation can also set threshold values for the
UIC; setting these threshold values affects how SRM measures the demand for
central storage.

SRM logically swaps address spaces if the real frames they own are not required to
immediately replenish the supply of available real frames. Any address space
subject to a swap out can become logically swapped as long as there is enough
room in the system. Address spaces with pending request swaps or those marked
as swaps due to storage shortages are the only address spaces that are physically
swapped immediately.

Large address spaces that have been selected to be swapped to replenish central
storage are trimmed before they are swapped. The trimming is done in stages and
only to the degree necessary for the address space to be swapped. In some cases, it
might be necessary to trim pages that have been recently referenced in order to
reduce the address space to a swappable size.

SRM's logical swapping function periodically checks all logically swapped out
address spaces to determine how long they've been logically swapped out. SRM
physically swaps out those address spaces that have been logically swapped out
for a period greater than the system threshold value for think time only when it is
necessary to replenish the supply of available frames.

Working set management: SRM automatically determines the best mix of work in
the multiprogramming set (MPS) and the most productive amount of central
storage to allocate to each address space within MPL constraints.

To achieve this, SRM monitors the system paging, page movement, and swapping
rates and productive CPU service for all address spaces to detect when the system
might run more efficiently with selected address space working sets managed
individually. If the system is spending a significant amount of resources for
paging, SRM will start monitoring the central storage of selected address spaces.

78 z/OS V2R1.0 MVS Initialization and Tuning Guide

After SRM decides that an address space should be monitored, SRM collects
additional address space data. Based on this data, SRM might discontinue implicit
block paging.

For monitored address spaces, SRM calculates a working set manager
recommendation value that can override the swap recommendation value. See
“Swap recommendation value” on page 77 for information about the swap
recommendation value. The working set manager recommendation value measures
the value of adding the address space to the current mix of work in the system.
Even when the swap recommendation value indicates that a specific address space
should be swapped in next, the working set manager recommendation value might
indicate that the address space should be bypassed. To ensure that no address
space is repeatedly bypassed, the system swaps in a TSO/E user 30 seconds after
being bypassed. For all other types of address spaces, the system will swap in the
address space 10 minutes after being bypassed.

If a monitored address space is paging heavily, SRM might manage its central
storage usage. When an address space is managed, SRM imposes a central storage
target (implicit dynamic central storage isolation maximum working set) on an
address space.

Enqueue delay minimization
This function deals with the treatment of address spaces enqueued upon system
resources that are in demand by other address spaces or resources for which a
RESERVE has been issued and the device is shared. If an address space controlling
an enqueued resource is swapped out and that resource is required by another
address space, SRM will ensure that the holder of the resource is swapped in again
as soon as possible.

Once in central storage, a swap out of the controlling address space would increase
the duration of the enqueue bottleneck. Therefore, the controlling address space is
given a period of CPU service during which it will not be swapped due to service
considerations (discussed in “Section 2: Basic SRM parameter concepts” on page
83.) The length of this period is specified by the installation by means of a tuning
parameter called the enqueue residence value (ERV), contained in parmlib member
IEAOPTxx.

I/O priority queueing
I/O priority queueing is used to control deferred I/O requests. If this function is
invoked, all deferred I/O requests, except paging and swapping, will be queued
according to the I/O priorities associated with the requesting address spaces.
Paging and swapping are always handled at the highest priority. An address
space's I/O priority is by default the same as its dispatching priority. All address
spaces in one mean-time-to-wait group fall into one I/O priority. In addition,
address spaces that are time sliced have their I/O queued at their time slice
priority. Changes to an address space's dispatching priority when the address
space is time sliced up or down, do not affect the I/O priority.

An installation can assign an I/O priority that is higher or lower than the
dispatching priority for selected groups of work. For example, if the installation is
satisfied with the dispatching priority of an interactive application but would like
the application's I/O requests to be processed before those of other address spaces
executing at the same priority, the application could be given an I/O priority
higher than its dispatching priority.

Chapter 3. The system resources manager 79

If I/O priority queueing is not invoked, all I/O requests are handled in a
first-in/first-out (FIFO) manner.

DASD device allocation
Device allocation selects the most responsive DASD devices as candidates for
permanent data sets on mountable devices (JCL specifies nonspecific VOLUME
information or a specific volume and the volume is not mounted).

The ability of SRM to control DASD device allocation is limited by the decision an
installation makes at system installation time and at initial program loading (IPL)
time, as well as by the user's JCL parameters. SRM can only apply its selection
rules to a set of DASD devices that are equally acceptable for scheduler allocation.
This set of devices does not necessarily include all the DASD devices placed in an
esoteric group during system installation. At that time, an esoteric group is defined
by the UNITNAME macro and entered in the eligible device table (EDT). During
system installation each esoteric group is partitioned into subgroups if either of the
following conditions occurs:
v The group includes DASD devices that are common with another esoteric group.
v The group includes DASD devices that have certain generic differences. System

installation partitions only esoteric groups that consist of magnetic tape or direct
access devices.

For example, assume that you specify the following at system installation time:
UNITNAME=DASD,UNIT=((470,7),(478,8),(580,6))
UNITNAME=SYSDA,UNIT=((580,6))

Because of the intersection with SYSDA (580,6), the DASD group is divided into
two subgroups: (470,7) and (478,8) in one subgroup and (580,6) in the other.

Allocation allows SRM to select from only one subgroup at a time. After allocating
all devices in the first subgroup, allocation selects DASD devices from the next
subgroup. Using the previous example, when a job requests UNIT=DASD,
allocation tells SRM to select a device from the first group (470-476 and 478-47F)
regardless of the relative use of channel paths 4 and 5. After all of the DASD
devices in the first group have been allocated, allocation tells SRM to select devices
from the second group (580-585).

Prevention of storage shortages
SRM periodically monitors the availability of three types of storage and attempts to
prevent shortages from becoming critical. The three types of storage are:
v Auxiliary storage
v SQA
v Pageable frames.

Auxiliary storage: When more than a fixed percentage (constant MCCASMT1) of
auxiliary storage slots have been allocated, SRM reduces demand for this resource
by taking the following steps:
v LOGON, MOUNT and START commands are inhibited until the shortage is

alleviated.
v Initiators are prevented from executing new jobs.
v The target MPL (both in and out targets) in each domain is set to its minimum

value.
v The operator is informed of the shortage.

80 z/OS V2R1.0 MVS Initialization and Tuning Guide

v Choosing from a subset of swappable address spaces, SRM stops the address
space(s) acquiring slots at the fastest rate and prepares the address space for
swap-out (logical swap). When SRM swaps-out an address space because of
excessive slot usage, SRM informs the operator of the name of the job that is
swapped out, permitting the operator to cancel the job.

If the percentage of auxiliary slots allocated continues to increase (constant
MCCASMT2), SRM informs the operator that a critical shortage exists. SRM then
prevents all unilateral swap-ins (except for domain zero). This action allows the
operator to cancel jobs or add auxiliary paging space to alleviate the problem.

When the shortage has been alleviated, the operator is informed and SRM halts its
efforts to reduce the demand for auxiliary storage.

SQA: When the number of available SQA and CSA pages falls below a threshold,
SRM:
v Inhibits LOGON, MOUNT, and START commands until the shortage is

alleviated.
v Informs the operator that an SQA shortage exists.

If the number of available SQA and CSA pages continues to decrease, SRM informs
the operator that a critical shortage of SQA space exists and, except for domain
zero, SRM prevents all unilateral swap-ins.

When the shortage has been alleviated, the operator is informed and SRM halts its
efforts to prevent acquisition of SQA space.

Pageable frames: SRM attempts to ensure that enough pageable central storage is
available to the system. SRM monitors the amount of pageable storage available,
ensures that the currently available pageable storage is greater than a threshold,
and takes continuous preventive action from the time it detects a shortage of
pageable storage until the shortage is relieved.

When SRM detects a shortage of pageable frames caused by an excess of fixed or
DREF storage, SRM uses event code ENVPC055 to signal an ENF event. When the
shortage is relieved, SRM signals another ENVPC055 event to notify listeners that
the shortage is relieved. SRM does not raise the signal for the “shortage relieved”
condition until a delay of 30 seconds following the most recent occurrence of a
fixed-storage shortage. The intent of signalling this event is to give system
components and subsystems that use fixed or DREF storage an opportunity to help
relieve the shortage.

Regardless of the cause of a shortage of pageable storage, SRM takes these actions:
v Inhibits LOGON, MOUNT, and START commands until the shortage is relieved
v Prevents initiators from executing new jobs
v Informs the operator that a shortage of pageable storage exists

Further SRM actions to relieve the shortage depend on the particular cause of the
shortage.

The following system conditions can cause a shortage of pageable storage:
v Too many address spaces are already in storage.

Chapter 3. The system resources manager 81

Too many address spaces in storage does not usually, of itself, cause a shortage
of pageable storage because SRM performs MPL adjustment and logical swap
threshold adjustment, which generally keep an adequate amount of fixed storage
available to back the address spaces.

v Too much page fixing is taking place.
One or more address spaces are using substantial amounts of storage either
through explicit requests to fixed virtual storage or by obtaining virtual storage
that is page fixed by attributes such as LSQA or SQA.

There are different types of pageable storage shortages:
v A shortage of pageable storage below 16 megabytes.
v A shortage when pageable storage has reached a threshold.
v A shortage when fixed and DREF allocated to CASTOUT=NO ESO Hiperspaces

has reached a threshold.

If too much page fixing is the cause of the shortage of pageable storage, SRM:
1. Identifies the largest swappable user or users of fixed storage. If any of these

users own more frames than three times the median fixed frame count, SRM
begins to physically swap them out, starting with the user with the largest
number of fixed pages. SRM continues to swap users out until it releases
enough fixed storage to relieve the shortage.

2. Begins to physically swap out the logically-swapped out address spaces if
swapping out the largest users of fixed storage does not relieve the shortage of
pageable storage.

3. Decreases the MPLs for those domains that have the lowest contention indices
if physically swapping out the logically-swapped out address spaces does not
relieve the shortage of pageable storage. This MPL adjustment allows the swap
analysis function of SRM to swap out enough address spaces to relieve the
shortage.

SRM takes the following additional actions if the shortage of pageable storage
reaches a critical threshold:
1. Informs the operator that there is a critical shortage.
2. Repeats all the steps described above that are applicable to the cause of the

shortage.
3. Prevents any unilateral swap-in, except for domain zero.

When the shortage of pageable storage is relieved, SRM waits for a delay of 30
seconds following the most recent occurrence of a fixed shortage, and then:
v Allows new address spaces to be created through the LOGON, MOUNT, and

START commands.
v Notifies the operator that the shortage is relieved.
v Allows initiators to process new jobs.
v Allows unilateral swap-ins.

Note: Those address spaces that SRM swapped out to relieve the shortage of
pageable storage are not swapped back in if their storage requirements would
potentially cause another shortage to occur.

82 z/OS V2R1.0 MVS Initialization and Tuning Guide

Pageable frame stealing
Pageable frame stealing is the process of taking an assigned central storage frame
away from an address space to make it available for other purposes, such as to
satisfy a page fault or swap in an address space.

When there is a demand for pageable frames, SRM will steal those frames that
have gone unreferenced for a long time and return them to the system. The
unreferenced interval count (UIC) represents the time in seconds for a complete
steal cycle. A complete steal cycle is the time the stealing routine needs to check all
frames in the system. When there is a demand for storage, the stealing routine:
v tests the reference bit of a frame
v decides whether to steal the frame
v schedules the page-out.

When there is no demand for storage, no stealing occurs.

The UIC algorithm forecasts the UIC, based on the current stealing rate. The UIC
can vary between 0 and 65535 and gets calculated every second. When there is no
demand for storage in the system (no stealing occurs) the system has a UIC of
65535. If there is a very high demand for storage in the system, the system has a
UIC close to 0.

Stealing takes place strictly on a demand basis, that is, there is no periodic stealing
of long-unreferenced frames. A complete steal cycle can take days.

SRM modifies the stealing process for address spaces that it is managing and for
address spaces that are storage critical. For these address spaces, SRM attempts to
enforce the address space's real storage target that was set when SRM decided that
the address space was to be managed.

I/O service units
The number of I/O service units is a measurement of individual data set I/O
activity and JES spool reads and writes for all data sets associated with an address
space. SRM calculates I/O service using I/O block (EXCP) counts.

When an address space executes in cross-memory mode (that is, during either
secondary addressing mode or a cross-memory call), the EXCP counts are included
in the I/O service total. This I/O service is not counted for the address space that
is the target of the cross-memory reference.

Section 2: Basic SRM parameter concepts
This section discusses the OPT parameters for these basic SRM specifications:
v MPL adjustment control
v Transaction definition for CLISTs
v Directed VIO activity
v Alternate wait management

For explanations of the OPT parameters, see z/OS MVS Initialization and Tuning
Reference.

See “Section 3: Advanced SRM parameter concepts” on page 85 for information
about advanced OPT concepts.

Chapter 3. The system resources manager 83

MPL adjustment control
The OPT provides keywords to specify upper and lower thresholds for the
variables that SRM uses to determine if it should increase, decrease, or leave the
MPL unchanged. When one of these variables exceeds its threshold value, SRM
regards this change as a signal to adjust the MPL. Table 14 summarizes the internal
names for the control variables, their thresholds, and conditions that can influence
a change.

Table 14. Summary of MPL adjustment control

Control variable and internal name Thresholds that can influence an
MPL change:

Keyword in
OPT

decrease increase

CPU utilization (RCVCPUA) >RCCCPUTH <RCCCPUTL RCCCPUT

Page fault rate (RCVPTR) >RCCPTRTH <RCCPTRTL RCCPTRT (see
note)

UIC (RCVUICA) <RCCUICTL >RCCUICTH RCCUICT

Percentage of online storage fixed
(RCVFXIOP)

>RCCFXTTH <RCCFXTTL RCCFXTT

Percentage of storage that is fixed
within the first 16 megabytes
(RCVMFXA)

>RCCFXETH <RCCFXETL RCCFXET

Note: The default thresholds for this keyword causes the corresponding control variable to
have no effect on MPL adjustment.

Transaction Definition for CLISTs
An installation can specify whether the individual commands in a TSO/E CLIST
are treated as separate TSO/E commands for transaction control. Specifying
CNTCLIST=YES causes a new transaction to be started for each command in the
CLIST. A possible exposure of specifying CNTCLIST=YES is that long CLISTs
composed of trivial and intermediate commands might monopolize a domain's
MPL slots and cause interactive terminal users to be delayed. Specifying
CNTCLIST=NO (the default) causes the entire CLIST to constitute a single
transaction.

Directed VIO Activity
VIO data set pages can be directed to a subset of the local paging data sets
through directed VIO, which allows the installation to direct VIO activity away
from selected local paging data sets that will be used only for non-VIO paging.
With directed VIO, faster paging devices can be reserved for paging where good
response time is important. The NONVIO system parameter, with the PAGE
system parameter, allows the installation to define those local paging data sets that
are not to be used for VIO, leaving the rest available for VIO activity. However, if
space is depleted on the paging data sets made available for VIO paging, the
non-VIO paging data sets will be used for VIO paging.

The installation uses the DVIO keyword to either activate or deactivate directed
VIO.

Note: The NONVIO and PAGE system parameters are in the IEASYSxx parmlib
member.

84 z/OS V2R1.0 MVS Initialization and Tuning Guide

Alternate wait management
An installation can specify whether to activate or deactivate alternate wait
management (AWM). If AWM is activated, SRM and LPAR cooperate to reduce
low utilization effects and overhead.

For HIPERDISPATCH=NO (the default value), specifying CCCAWMT with any
value in the range 1 to 499999 makes AWM active. Specifying CCCAWMT with
any value in the range of 500000 to 1000000 makes AWM inactive. AWM is active
or inactive only for any general CP, System z® Application Assist Processor
(zAAP), and System z Integrated Information Processor (zIIP). The default is 12000
(when AWM is active) for all CPU types.

For HIPERDISPATCH=YES, the valid range for CCCAWMT is 1600 to 3200. For
ZAAPAWMT and ZIIPAWMT, the valid range is 1600 to 499999. Any other value
will be set to the default of 3200. Note that AWM cannot be turned off.

Dispatching mode control
An installation can switch between the HiperDispatch mode enabled or
HiperDispatch mode disabled by specifying the HIPERDISPATCH keyword for the
parmlib member IEAOPT.

For more information about the HIPERDISPATCH parameter, see z/OS MVS
Initialization and Tuning Reference.

Section 3: Advanced SRM parameter concepts
This section includes information about selective enablement for I/O and
adjustment of constants options.

Selective enablement for I/O
Selective enablement for I/O is a function that SRM uses to control the number of
processors that are enabled for I/O interruptions. The intent of this function is to
enable only the minimum number of processors needed to handle the I/O
interruption activity without the system incurring excessive delays. That is, if one
processor can process the I/O interruptions without excessive delays, then only
one processor need be enabled for I/O interruptions.

At system initialization, one processor is enabled for I/O interruptions. To
determine if a change should be made to the number of processors that are
enabled, SRM periodically monitors I/O interruptions.

By comparing this value to threshold values, SRM determines if another processor
should be enabled or if an enabled processor should be disabled for I/O
interruptions. If the computed value exceeds the upper threshold, I/O
interruptions are being delayed, and another processor (if available) will be
enabled for I/O interruptions. If the value is less than the lower threshold (and
more than one processor is enabled), a processor will be disabled for I/O
interruptions. The installation can change the threshold values using the
CPENABLE parameter in the IEAOPTxx parmlib member.

A processor that enters a wait state is always enabled for I/O interruptions,
however, regardless of what you specify for the CPENABLE keyword.

Chapter 3. The system resources manager 85

In addition to enabling a processor when I/O activity requires it, SRM also enables
another processor for I/O interruptions if one of the following occurs:
v An enabled processor is taken offline.
v An enabled processor has a hardware failure.
v SRM detects that no I/O interruptions have been taken for a predetermined

period of time and concludes that the enabled processor is unable to accept
interrupts.

An installation can use the CPENABLE keyword to specify low and high
thresholds for the percentage of I/O interruptions to be processed through the test
pending interrupt (TPI) instruction. SRM uses these thresholds to determine if a
change should be made to the number of processors enabled for I/O interruptions.

The following chart gives the internal names of the control variables and indicates
their relation to the condition.

Table 15. Summary of variables used to determine if changes are needed to the number of
processors enabled for I/O interruptions

Control variable and internal name Percentage of I/O Interruptions Keyword in
OPTunder over

Percentage of I/O interruptions
through TPI instruction (ICVTPIP)

<ICCTPILO >ICCTPIHI CPENABLE

Table 16 relates SRM seconds to real time. The SRM constants that are shown in
this table are merely generalizations and approximations. For more accurate
comparisons of processors, see the internal throughput rate (ITR) numbers in Large
Systems Performance Reference (LSPR), SC28-1187.

Table 16. Relating SRM seconds to real time

Processor Model SRM Seconds/Real Seconds

Processors: zSeries® 990

zSeries 990 Models 301 - 332 508.1298

Processors: zSeries 900

zSeries 900 Models 101–109 269.3964

zSeries 900 Models 110–116, 1C1–1C9 281.5314

Processors: zSeries 890

zSeries 890 Models 110, 210, 310, 410 29.4117

zSeries 890 Models 120, 220, 320, 420 52.0399

zSeries 890 Models 130, 230, 330, 430 99.5222

zSeries 890 Models 140, 240, 340, 440 124.2544

zSeries 890 Models 150, 250, 350, 450 194.0993

zSeries 890 Models 160, 260, 360, 460 236.7423

zSeries 890 Models 170, 270, 370, 470 413.9071

Processors: zSeries 800

zSeries 800 Model 0E1 45.4545

zSeries 800 Model 0A1 90.8430

zSeries 800 Model 0X2 98.5804

zSeries 800 Model 0B1 130.4801

86 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 16. Relating SRM seconds to real time (continued)

Processor Model SRM Seconds/Real Seconds

zSeries 800 Model 0C1 162.3376

zSeries 800 Model 0A2 160.2563

zSeries 800 Model 001 - 004 217.0138

Processors: S/390® 9672 G6 Models

S/390 Models 9672-X17 - 9672-XZ7 194.0993

S/390 Models 9672-Z17 - 9672-ZZ7 224.8200

Processors: S/390 9672 G5 Models

S/390 Model 9672-R16 129.9376

S/390 Model 9672-R26 129.9376

S/390 Models 9672-R36 - 9672-R96 141.0834

S/390 Models 9672-RA6, 9672-RB6 97.9623

S/390 Models 9672-RC6, 9672-RD6 129.9376

S/390 Models 9672-RX6, 9672-T16, 9672-T26 141.0834

S/390 Models 9672-Y16 - 9672-YX6 168.4635

Processors: S/390 3000

S/390 3000 Model A10 41.6666

S/390 3000 Model A20 39.9872

Processors: S/390 2003

S/390 2003 Model 107 27.8520

S/390 2003 Model 124 (All Models) 30.3988 (per CPU)

S/390 2003 Model 1C5 (All Models) 37.6279 (per CPU)

S/390 2003 Model 2X7 (All Models) 46.0914 (per CPU)

S/390 2003 Model 203 6.1814

S/390 2003 Model 204 10.3203

S/390 2003 Model 205 14.4375

S/390 2003 Model 206 18.5680

S/390 2003 Model 207 27.8520

S/390 2003 Model 215 33.3333

S/390 2003 Model 216 41.6666

S/390 2003 Model 224 (All Models) 30.5325 (per CPU)

S/390 2003 Model 225 (All Models) 39.9872 (per CPU)

S/390 2003 Model 246 (All Models) 41.1455 (per CPU)

S/390 2003 Model 2C5 (All Models) 37.6279 (per CPU)

Adjustment of constants options
Certain OPT parameters make it more convenient for installations with unique
resource management requirements to change some SRM constants. The defaults
provided are adequate for most installations. A parameter needs to be specified
only when its default is found to be unsuitable for a particular system
environment. The following functions can be modified by parameters in the OPT:
v Enqueue residence control

Chapter 3. The system resources manager 87

v SRM invocation interval control
v Pageable storage control
v Central storage control

Enqueue residence control
This parameter, specified by the ERV keyword, defines the amount of CPU service
that the address space is allowed to receive before it is considered for a workload
recommendation swap out. The parameter applies to all swapped-in address
spaces that are enqueued on a resource needed by another user. For more
information, see “Enqueue delay minimization” on page 79.

SRM invocation interval control
This parameter, specified by the RMPTTOM keyword, controls the invocation
interval for SRM timed algorithms. Increasing this parameter above the default
value reduces the overhead caused by SRM algorithms, such as swap analysis and
time slicing. However, when these algorithms are invoked at a rate less than the
default, the accuracy of the data on which SRM decisions are made, and thus the
decisions themselves, might be affected.

Pageable storage control
Two keywords are provided in the OPT to signal a shortage of pageable storage.
Keyword MCCFXTPR specifies the percentage of storage that is fixed. Keyword
MCCFXEPR specifies the percentage of storage, within the first 16 MB, that needs
to be fixed before SRM detects a shortage. Table 17 summarizes these keywords.

Table 17. Keywords provided in OPT to single pageable storage shortage

Control variable and internal name Shortage of pageable
storage exists

Keyword in
OPT

Percentage of storage that is fixed
RCETOTFX

>MCCFXTPR MCCFXTPR

Percentage of storage that is fixed within the
first 16 megabytes (RCEBELFX)

>MCCFXEPR MCCFXEPR

Note: These variables are actual frame counts rather than percentages. SRM multiplies the
MCCFXTPR threshold by the amount of online storage and multiplies the MCCFXEPR
threshold by the amount of storage eligible for fixing in order to arrive at the threshold
frame counts that it uses to compare against the actual frame counts. If MCCFXEPR x
(amount of storage eligible for fixing) is greater than MCCFXTPR x (amount of online
storage), then the threshold frame counts that SRM uses to compare against the actual
frame counts are set equal.

Central storage control
This parameter, specified by the MCCAFCTH keyword, indicates the number of
frames on the available frame queue when stealing begins and ends. The range of
values on this keyword determines the block size that SRM uses for stealing. In
order to get a block into central storage, the lower value of the range must be
greater than the block size.

Section 4: Guidelines
This section provides some guidelines for these tasks:
v Defining installation requirements and objectives
v Preparing the initial OPT

88 z/OS V2R1.0 MVS Initialization and Tuning Guide

Defining installation requirements
Before specifying any parameters to SRM, an installation must define response and
throughput requirements for its various classification of work. Examples of specific
questions that should be answered are listed in the following sections. The
applicability of these questions will, of course, vary from installation to installation.

Subsystems
v How many subsystems will be active at any one time and what are they?

v For IMS, how many active regions will there be?

v Will the subsystem address space(s) be nonswappable?

v What is the desired response time and how will it be measured?

Batch
v What is the required batch throughput or turnaround for various job classes?

v How much service do batch jobs require, and what service rate is needed to meet the
turnaround requirement?

– An RMF workload report or reduction of SMF data in type 5 or type 30
records will provide the average service consumed by jobs of different classes.
Based on service definition coefficients of
CPU=10.0,IOC=5.0,MSO=3.0,SRB=10.0; the following approximations can be
made:
- Short jobs use 30,000 service units or less.
- Long jobs use more than 30,000 units.

v What is the average number of ready jobs?

– Most likely, this is the number of active initiators. A few extra initiators may
be started to decrease turnaround times.

TSO/E
v What is the number of terminals?

v What is the average number of ready users?

– As a guideline for installations new to TSO/E, assume that an installation
doing program development on 3270 terminals will have two ready users for
every ten users logged on. This average will vary, depending on the type of
terminal and on the type of TSO/E session (data entry, problem solving,
program development).

v What is the required response time and expected transaction rate for different categories
of TSO/E transactions at different times, such as peak hours?

v What is the expected response time for short transactions?

v How will this response time be measured?

v Should response time be different for select groups of TSO/E users?

v How should semi-trivial and non-trivial transactions be treated?

v How are they defined?

– An installation can use RMF workload reports or SMF data in type 34 and 35
records available to help define trivial and non-trivial TSO/E work. Based on
service definition coefficients of CPU=10.0,IOC=5.0,MSO=3.0,SRB=10.0; the
following approximations can be made:
- Short TSO/E commands use 200 service units or less.
- Medium length commands use between 200 and 1000 service units.
- Long TSO/E commands use 1000 service units or more.

v What is the required service rate for TSO/E users?

Chapter 3. The system resources manager 89

– If 2-second response time (as reported by RMF) is required for very short
TSO/E commands (100 service units), the required service rate for such a
transaction is 100/2 or 50 service units per second. Service rates for other
types of transactions should be computed also.

General
v What is the importance level of TSO/E, batch, IMS, and special batch classes in relation

to one another?

v Which may be delayed or “tuned down” to satisfy other requirements?

– In other words, which response requirements are fixed and which are
variable?

v What percentage of system resources should each group receive?

Preparing an initial OPT
There are several approaches to preparing an initial OPT.
v Use the default OPT.
v Modify the default OPT.
v Create a new OPT.

The following tables describe the service consumed per second of execution time
by CPU model. The values listed are SRM constants. The total system absorption
rate reported by RMF will not equal the values listed here because these do not
include certain types of system processing.

For the latest information about the processor version codes and SRM constants,
see the online documentation at:
www.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex?OpenDocument

Table 18. IBM zEnterprise® 196 (z196) processor models

z196 processor model Service units per second of
task or SRB execution time

Seconds task or SRB execution
time per service unit

z196, Model 401 12648.2213 0.000079

z196, Model 402 12075.4717 0.000083

z196, Model 403 11782.0324 0.000085

z196, Model 404 11552.3466 0.000087

z196, Model 405 11371.7129 0.000088

z196, Model 406 11220.1964 0.000089

z196, Model 407 11080.3324 0.000090

z196, Model 408 10951.4031 0.000091

z196, Model 409 10832.7691 0.000092

z196, Model 410 10716.6778 0.000093

z196, Model 411 10603.0484 0.000094

z196, Model 412 10491.8033 0.000095

z196, Model 413 10389.6104 0.000096

z196, Model 414 10289.3891 0.000097

z196, Model 415 10191.0828 0.000098

z196, Model 501 30888.0309 0.000032

z196, Model 502 29520.2952 0.000034

90 z/OS V2R1.0 MVS Initialization and Tuning Guide

https://www-304.ibm.com/servers/resourcelink/lib03060.nsf/pages/srmindex?OpenDocument

Table 18. IBM zEnterprise® 196 (z196) processor models (continued)

z196 processor model Service units per second of
task or SRB execution time

Seconds task or SRB execution
time per service unit

z196, Model 503 28776.9784 0.000035

z196, Model 504 28218.6949 0.000035

z196, Model 505 27729.6360 0.000036

z196, Model 506 27303.7543 0.000037

z196, Model 507 26890.7563 0.000037

z196, Model 508 26533.9967 0.000038

z196, Model 509 26186.5794 0.000038

z196, Model 510 25848.1422 0.000039

z196, Model 511 25518.3413 0.000039

z196, Model 512 25196.8504 0.000040

z196, Model 513 24883.3593 0.000040

z196, Model 514 24577.5730 0.000041

z196, Model 515 24279.2109 0.000041

z196, Model 601 40404.0404 0.000025

z196, Model 602 38369.3046 0.000026

z196, Model 603 37296.0373 0.000027

z196, Model 604 36529.6804 0.000027

z196, Model 605 35874.4395 0.000028

z196, Model 606 35320.0883 0.000028

z196, Model 607 34782.6087 0.000029

z196, Model 608 34261.2420 0.000029

z196, Model 609 33755.2743 0.000030

z196, Model 610 33264.0333 0.000030

z196, Model 611 32786.8852 0.000031

z196, Model 612 32323.2323 0.000031

z196, Model 613 31872.5100 0.000031

z196, Model 614 31434.1847 0.000032

z196, Model 615 31007.7519 0.000032

z196, Model 701 61776.0618 0.000016

z196, Model 702 58394.1606 0.000017

z196, Model 703 56939.5018 0.000018

z196, Model 704 55749.1289 0.000018

z196, Model 705 54421.7687 0.000018

z196, Model 706 53691.2752 0.000019

z196, Model 707 52805.2805 0.000019

z196, Model 708 51948.0519 0.000019

z196, Model 709 50793.6508 0.000020

z196, Model 710 49844.2368 0.000020

z196, Model 711 48929.6636 0.000020

Chapter 3. The system resources manager 91

Table 18. IBM zEnterprise® 196 (z196) processor models (continued)

z196 processor model Service units per second of
task or SRB execution time

Seconds task or SRB execution
time per service unit

z196, Model 712 48048.0480 0.000021

z196, Model 713 47337.2781 0.000021

z196, Model 714 46647.2303 0.000021

z196, Model 715 45845.2722 0.000022

z196, Model 716 44943.8202 0.000022

z196, Model 717 44444.4444 0.000023

z196, Model 718 44077.1350 0.000023

z196, Model 719 43596.7302 0.000023

z196, Model 720 43360.4336 0.000023

z196, Model 721 42895.4424 0.000023

z196, Model 722 42666.6667 0.000023

z196, Model 723 42328.0423 0.000024

z196, Model 724 42105.2632 0.000024

z196, Model 725 41775.4569 0.000024

z196, Model 726 41558.4416 0.000024

z196, Model 727 41343.6693 0.000024

z196, Model 728 40920.7161 0.000024

z196, Model 729 40712.4682 0.000025

z196, Model 730 40404.0404 0.000025

z196, Model 731 40100.2506 0.000025

z196, Model 732 39900.2494 0.000025

z196, Model 733 39603.9604 0.000025

z196, Model 734 39312.0393 0.000025

z196, Model 735 39119.8044 0.000026

z196, Model 736 38929.4404 0.000026

z196, Model 737 38740.9201 0.000026

z196, Model 738 38554.2169 0.000026

z196, Model 739 38369.3046 0.000026

z196, Model 740 38095.2381 0.000026

z196, Model 741 37914.6919 0.000026

z196, Model 742 37825.0591 0.000026

z196, Model 743 37647.0588 0.000027

z196, Model 744 37470.7260 0.000027

z196, Model 745 37296.0373 0.000027

z196, Model 746 37122.9698 0.000027

z196, Model 747 36951.5012 0.000027

z196, Model 748 36866.3594 0.000027

z196, Model 749 36781.6092 0.000027

z196, Model 750 36613.2723 0.000027

92 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 18. IBM zEnterprise® 196 (z196) processor models (continued)

z196 processor model Service units per second of
task or SRB execution time

Seconds task or SRB execution
time per service unit

z196, Model 751 36446.4692 0.000027

z196, Model 752 36363.6364 0.000028

z196, Model 753 36281.1791 0.000028

z196, Model 754 36199.0950 0.000028

z196, Model 755 36117.3815 0.000028

z196, Model 756 36036.0360 0.000028

z196, Model 757 35955.0562 0.000028

z196, Model 758 35874.4395 0.000028

z196, Model 759 35794.1834 0.000028

z196, Model 760 35714.2857 0.000028

z196, Model 761 35634.7439 0.000028

z196, Model 762 35555.5556 0.000028

z196, Model 763 35476.7184 0.000028

z196, Model 764 35398.2301 0.000028

z196, Model 765 35320.0883 0.000028

z196, Model 766 35242.2907 0.000028

z196, Model 767 35164.8352 0.000028

z196, Model 768 35087.7193 0.000029

z196, Model 769 34934.4978 0.000029

z196, Model 770 34782.6087 0.000029

z196, Model 771 34632.0346 0.000029

z196, Model 772 34482.7586 0.000029

z196, Model 773 34334.7639 0.000029

z196, Model 774 34188.0342 0.000029

z196, Model 775 34042.5532 0.000029

z196, Model 776 33898.3051 0.000030

z196, Model 777 33684.2105 0.000030

z196, Model 778 33472.8033 0.000030

z196, Model 779 33264.0333 0.000030

z196, Model 780 33057.8512 0.000030

Table 19. IBM System z10 Enterprise Class (z10 EC) processor models

System z10® EC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z10™ EC, Model 401 11291.4608 0.000089

z10 EC, Model 402 10680.9079 0.000094

z10 EC, Model 403 10315.9252 0.000097

z10 EC, Model 404 10050.2513 0.000100

z10 EC, Model 405 9846.1538 0.000102

z10 EC, Model 406 9673.5187 0.000103

Chapter 3. The system resources manager 93

Table 19. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z10 EC, Model 407 9518.1440 0.000105

z10 EC, Model 408 9373.1693 0.000107

z10 EC, Model 409 9243.2120 0.000108

z10 EC, Model 410 9111.6173 0.000110

z10 EC, Model 411 8973.6399 0.000111

z10 EC, Model 412 8834.8978 0.000113

z10 EC, Model 501 24427.4809 0.000041

z10 EC, Model 502 23021.5827 0.000043

z10 EC, Model 503 22222.2222 0.000045

z10 EC, Model 504 21621.6216 0.000046

z10 EC, Model 505 21136.0634 0.000047

z10 EC, Model 506 20725.3886 0.000048

z10 EC, Model 507 20356.2341 0.000049

z10 EC, Model 508 20025.0313 0.000050

z10 EC, Model 509 19680.1968 0.000051

z10 EC, Model 510 19370.4600 0.000052

z10 EC, Model 511 19070.3218 0.000052

z10 EC, Model 512 18735.3630 0.000053

z10 EC, Model 601 32989.6907 0.000030

z10 EC, Model 602 31128.4047 0.000032

z10 EC, Model 603 30018.7617 0.000033

z10 EC, Model 604 29143.8980 0.000034

z10 EC, Model 605 28469.7509 0.000035

z10 EC, Model 606 27874.5645 0.000036

z10 EC, Model 607 27350.4274 0.000037

z10 EC, Model 608 26890.7563 0.000037

z10 EC, Model 609 26402.6403 0.000038

z10 EC, Model 610 25931.9287 0.000039

z10 EC, Model 611 25477.7070 0.000039

z10 EC, Model 612 25078.3699 0.000040

z10 EC, Model 701 47619.0476 0.000021

z10 EC, Model 702 44692.7374 0.000022

z10 EC, Model 703 43010.7527 0.000023

z10 EC, Model 704 41666.6667 0.000024

z10 EC, Model 705 40404.0404 0.000025

z10 EC, Model 706 39603.9604 0.000025

z10 EC, Model 707 38834.9515 0.000026

z10 EC, Model 708 38004.7506 0.000026

z10 EC, Model 709 37037.0370 0.000027

94 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 19. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z10 EC, Model 710 36281.1791 0.000028

z10 EC, Model 711 35476.7184 0.000028

z10 EC, Model 712 34782.6087 0.000029

z10 EC, Model 713 34188.0342 0.000029

z10 EC, Model 714 33613.4454 0.000030

z10 EC, Model 715 33057.8512 0.000030

z10 EC, Model 716 32454.3611 0.000031

z10 EC, Model 717 32064.1283 0.000031

z10 EC, Model 718 31746.0317 0.000032

z10 EC, Model 719 31434.1847 0.000032

z10 EC, Model 720 31128.4047 0.000032

z10 EC, Model 721 30769.2308 0.000033

z10 EC, Model 722 30534.3511 0.000033

z10 EC, Model 723 30303.0303 0.000033

z10 EC, Model 724 30075.1880 0.000033

z10 EC, Model 725 29850.7463 0.000034

z10 EC, Model 726 29629.6296 0.000034

z10 EC, Model 727 29411.7647 0.000034

z10 EC, Model 728 29143.8980 0.000034

z10 EC, Model 729 28933.0922 0.000035

z10 EC, Model 730 28725.3142 0.000035

z10 EC, Model 731 28520.4991 0.000035

z10 EC, Model 732 28318.5841 0.000035

z10 EC, Model 733 28119.5079 0.000036

z10 EC, Model 734 27923.2112 0.000036

z10 EC, Model 735 27777.7778 0.000036

z10 EC, Model 736 27633.8515 0.000036

z10 EC, Model 737 27491.4089 0.000036

z10 EC, Model 738 27303.7543 0.000037

z10 EC, Model 739 27118.6441 0.000037

z10 EC, Model 740 26936.0269 0.000037

z10 EC, Model 741 26755.8528 0.000037

z10 EC, Model 742 26666.6667 0.000038

z10 EC, Model 743 26533.9967 0.000038

z10 EC, Model 744 26402.6403 0.000038

z10 EC, Model 745 26272.5780 0.000038

z10 EC, Model 746 26101.1419 0.000038

z10 EC, Model 747 25974.0260 0.000039

z10 EC, Model 748 25848.1422 0.000039

Chapter 3. The system resources manager 95

Table 19. IBM System z10 Enterprise Class (z10 EC) processor models (continued)

System z10® EC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z10 EC, Model 749 25764.8953 0.000039

z10 EC, Model 750 25641.0256 0.000039

z10 EC, Model 751 25477.7070 0.000039

z10 EC, Model 752 25356.5769 0.000039

z10 EC, Model 753 25236.5931 0.000040

z10 EC, Model 754 25117.7394 0.000040

z10 EC, Model 755 25039.1236 0.000040

z10 EC, Model 756 24960.9984 0.000040

z10 EC, Model 757 24883.3593 0.000040

z10 EC, Model 758 24806.2016 0.000040

z10 EC, Model 759 24729.5209 0.000040

z10 EC, Model 760 24615.3846 0.000041

z10 EC, Model 761 24502.2971 0.000041

z10 EC, Model 762 24390.2439 0.000041

z10 EC, Model 763 24279.2109 0.000041

z10 EC, Model 764 24169.1843 0.000041

Table 20. IBM System z9 Business Class (z9 BC) processor models

System z9® BC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9® BC, Model A01 1316.9808 0.000759

z9 BC, Model A02 1265.3223 0.000790

z9 BC, Model A03 1229.1619 0.000814

z9 BC, Model B01 1927.0143 0.000519

z9 BC, Model B02 1851.4233 0.000540

z9 BC, Model B03 1798.5612 0.000556

z9 BC, Model C01 2341.5776 0.000427

z9 BC, Model C02 2249.7188 0.000445

z9 BC, Model C03 2185.4938 0.000458

z9 BC, Model D01 3000.1875 0.000333

z9 BC, Model D02 2882.3635 0.000347

z9 BC, Model D03 2800.1400 0.000357

z9 BC, Model E01 3560.3026 0.000058

z9 BC, Model E02 3420.9964 0.000059

z9 BC, Model F01 4413.7931 0.000060

z9 BC, Model F02 4240.6573 0.000062

z9 BC, Model G01 5588.5435 0.000179

z9 BC, Model H01 6611.5702 0.000151

z9 BC, Model I01 7615.4212 0.000131

z9 BC, Model J01 8743.1694 0.000114

96 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 20. IBM System z9 Business Class (z9 BC) processor models (continued)

System z9® BC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9 BC, Model 1way L0x
LPAR

3560.3026 0.000281

z9 BC, Model 2way L0x
LPAR

3420.9964 0.000292

z9 BC, Model L03 3322.9491 0.000301

z9 BC, Model L04 3238.8664 0.000309

z9 BC, Model 1way M0x
LPAR

4413.7931 0.000227

z9 BC, Model 2way M0x
LPAR

4240.6573 0.000236

z9 BC, Model M03 4119.4645 0.000243

z9 BC, Model M04 4016.0643 0.000249

z9 BC, Model 1way N0x
LPAR

5588.5435 0.000179

z9 BC, Model N02 5369.1275 0.000186

z9 BC, Model N03 5215.1239 0.000192

z9 BC, Model N04 5084.2072 0.000197

z9 BC, Model 1way O0x
LPAR

6611.5702 0.000151

z9 BC, Model O02 6351.7269 0.000157

z9 BC, Model O03 6170.4589 0.000162

z9 BC, Model O04 6015.0376 0.000166

z9 BC, Model 1way P0x
LPAR

7615.4212 0.000131

z9 BC, Model P02 7315.9579 0.000137

z9 BC, Model P03 7107.9520 0.000141

z9 BC, Model P04 6929.4067 0.000144

z9 BC, Model 1way Q0x
LPAR

8743.1694 0.000114

z9 BC, Model Q02 8398.9501 0.000119

z9 BC, Model Q03 8159.1025 0.000123

z9 BC, Model Q04 7952.2863 0.000126

z9 BC, Model R01 9809.9326 0.000102

z9 BC, Model R02 9422.8504 0.000106

z9 BC, Model R03 9153.3181 0.000109

z9 BC, Model R04 8923.5917 0.000112

z9 BC, Model S01 10996.5636 0.000091

z9 BC, Model S02 10568.0317 0.000095

z9 BC, Model S03 10262.9891 0.000097

z9 BC, Model S04 10006.2539 0.000100

z9 BC, Model T01 12298.2321 0.000081

z9 BC, Model T02 11816.8390 0.000085

Chapter 3. The system resources manager 97

Table 20. IBM System z9 Business Class (z9 BC) processor models (continued)

System z9® BC
processor models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9 BC, Model T03 11477.7618 0.000087

z9 BC, Model T04 11188.8112 0.000089

z9 BC, Model U01 13710.3685 0.000073

z9 BC, Model U02 13168.7243 0.000076

z9 BC, Model U03 12789.7682 0.000078

z9 BC, Model U04 12470.7716 0.000080

z9 BC, Model V01 15399.4225 0.000055

z9 BC, Model V02 14801.1101 0.000055

z9 BC, Model V03 14375.5615 0.000056

z9 BC, Model V04 14010.5079 0.000056

z9 BC, Model W01 17278.6177 0.000058

z9 BC, Model W02 16597.5104 0.000060

z9 BC, Model W03 16129.0323 0.000062

z9 BC, Model W04 15717.0923 0.000064

z9 BC, Model X01 19347.0735 0.000052

z9 BC, Model X02 18583.0430 0.000054

z9 BC, Model X03 18058.6907 0.000055

z9 BC, Model X04 17601.7602 0.000057

z9 BC, Model Y01 21419.0094 0.000047

z9 BC, Model Y02 20592.0206 0.000049

z9 BC, Model Y03 20000.0000 0.000050

z9 BC, Model Y04 19488.4287 0.000051

z9 BC, Model Z01 24427.4809 0.000041

z9 BC, Model Z02 23460.4106 0.000043

z9 BC, Model Z03 22792.0228 0.000044

z9 BC, Model Z04 22222.2222 0.000045

Table 21. IBM System z9 Enterprise Class (z9 EC) processor models

System z9 EC processor
models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9 EC, Model 401 10107.3910 0.000099

z9 EC, Model 402 9708.7379 0.000103

z9 EC, Model 403 9433.9623 0.000106

z9 EC, Model 404 9195.4023 0.000109

z9 EC, Model 405 8958.5666 0.000112

z9 EC, Model 406 8762.3220 0.000114

z9 EC, Model 407 8565.3105 0.000117

z9 EC, Model 408 8368.2008 0.000120

z9 EC, Model 501 19631.9018 0.000051

z9 EC, Model 502 18867.9245 0.000053

98 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 21. IBM System z9 Enterprise Class (z9 EC) processor models (continued)

System z9 EC processor
models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9 EC, Model 503 18327.6060 0.000055

z9 EC, Model 504 17857.1429 0.000056

z9 EC, Model 505 17391.3043 0.000058

z9 EC, Model 506 17003.1881 0.000059

z9 EC, Model 507 16614.7456 0.000060

z9 EC, Model 508 16227.1805 0.000062

z9 EC, Model 601 22774.1456 0.000042

z9 EC, Model 602 22857.1429 0.000044

z9 EC, Model 603 22191.4008 0.000045

z9 EC, Model 604 21621.6216 0.000046

z9 EC, Model 605 21052.6316 0.000048

z9 EC, Model 606 20592.0206 0.000049

z9 EC, Model 607 20125.7862 0.000050

z9 EC, Model 608 19656.0197 0.000051

z9 EC, Model 701 29520.2952 0.000034

z9 EC, Model 702 28368.7943 0.000035

z9 EC, Model 703 27538.7263 0.000036

z9 EC, Model 704 26845.6376 0.000037

z9 EC, Model 705 26143.7908 0.000038

z9 EC, Model 706 25559.1054 0.000039

z9 EC, Model 707 25000.0000 0.000040

z9 EC, Model 708 24427.4809 0.000041

z9 EC, Model 709 23845.0075 0.000042

z9 EC, Model 710 23391.8129 0.000043

z9 EC, Model 711 22922.6361 0.000044

z9 EC, Model 712 22566.9958 0.000044

z9 EC, Model 713 22099.4475 0.000045

z9 EC, Model 714 21739.1304 0.000046

z9 EC, Model 715 21390.3743 0.000047

z9 EC, Model 716 21052.6316 0.000048

z9 EC, Model 717 20833.3333 0.000048

z9 EC, Model 718 20592.0206 0.000049

z9 EC, Model 719 20356.2341 0.000049

z9 EC, Model 720 20125.7862 0.000050

z9 EC, Model 721 19900.4975 0.000050

z9 EC, Model 722 19777.5031 0.000051

z9 EC, Model 723 19656.0197 0.000051

z9 EC, Model 724 19536.0195 0.000051

z9 EC, Model 725 19417.4757 0.000052

Chapter 3. The system resources manager 99

Table 21. IBM System z9 Enterprise Class (z9 EC) processor models (continued)

System z9 EC processor
models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

z9 EC, Model 726 19300.3619 0.000052

z9 EC, Model 727 19070.3218 0.000052

z9 EC, Model 728 18845.7008 0.000053

z9 EC, Model 729 18735.3630 0.000053

z9 EC, Model 730 18626.3097 0.000054

z9 EC, Model 731 18518.5185 0.000054

z9 EC, Model 732 18411.9678 0.000054

z9 EC, Model 733 18285.7143 0.000055

z9 EC, Model 734 18161.1805 0.000055

z9 EC, Model 735 18161.1805 0.000055

z9 EC, Model 736 18038.3315 0.000055

z9 EC, Model 737 17917.1333 0.000056

z9 EC, Model 738 17797.5528 0.000056

z9 EC, Model 739 17679.5580 0.000057

z9 EC, Model 740 17563.1175 0.000057

z9 EC, Model 741 17448.2007 0.000057

z9 EC, Model 742 17448.2007 0.000057

z9 EC, Model 743 17334.7779 0.000058

z9 EC, Model 744 17222.8202 0.000058

z9 EC, Model 745 17112.2995 0.000058

z9 EC, Model 746 17003.1881 0.000059

z9 EC, Model 747 16895.4593 0.000059

z9 EC, Model 748 16895.4593 0.000059

z9 EC, Model 749 16771.4885 0.000060

z9 EC, Model 750 16649.3236 0.000060

z9 EC, Model 751 16528.9256 0.000061

z9 EC, Model 752 16410.2564 0.000061

z9 EC, Model 753 16293.2790 0.000061

z9 EC, Model 754 16177.9575 0.000062

Table 22. zSeries 990 processor models

zSeries 990 processor
models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 990, Model 301 21857.9 0.000046

zSeries 990, Model 302 20752.3 0.000048

zSeries 990, Model 303 20075.3 0.000050

zSeries 990, Model 304 19559.9 0.000051

zSeries 990, Model 305 19047.6 0.000053

zSeries 990, Model 306 18626.3 0.000054

zSeries 990, Model 307 18202.5 0.000055

100 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 22. zSeries 990 processor models (continued)

zSeries 990 processor
models

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 990, Model 308 17777.8 0.000056

zSeries 990, Model 309 17353.6 0.000058

zSeries 990, Model 310 17003.2 0.000059

zSeries 990, Model 311 16666.7 0.000060

zSeries 990, Model 312 16326.5 0.000061

zSeries 990, Model 313 15984.0 0.000063

zSeries 990, Model 314 15640.3 0.000064

zSeries 990, Model 315 15296.4 0.000065

zSeries 990, Model 316 14953.3 0.000067

zSeries 990, Model 317 14787.4 0.000068

zSeries 990, Model 318 14611.9 0.000068

zSeries 990, Model 319 14532.2 0.000069

zSeries 990, Model 320 14440.4 0.000069

zSeries 990, Model 321 14349.8 0.000070

zSeries 990, Model 322 14260.2 0.000070

zSeries 990, Model 323 14171.8 0.000071

zSeries 990, Model 324 14084.5 0.000071

zSeries 990, Model 325 13998.3 0.000071

zSeries 990, Model 326 13913.0 0.000072

zSeries 990, Model 327 13828.9 0.000072

zSeries 990, Model 328 13745.7 0.000073

zSeries 990, Model 329 13663.5 0.000073

zSeries 990, Model 330 13582.3 0.000074

zSeries 990, Model 331 13490.7 0.000074

zSeries 990, Model 332 13400.3 0.000075

Table 23. zSeries 900 processor models

zSeries 900 processor
model

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 900, Model 101 11585.8 0.000086

zSeries 900, Model 102 10891.8 0.000092

zSeries 900, Model 103 10430.2 0.000096

zSeries 900, Model 104 10081.9 0.000099

zSeries 900, Model 105 9732.4 0.000103

zSeries 900, Model 106 9384.2 0.000107

zSeries 900, Model 107 9153.3 0.000109

zSeries 900, Model 108 8805.7 0.000114

zSeries 900, Model 109 8456.7 0.000118

zSeries 900, Model 110 9334.9 0.000107

zSeries 900, Model 111 9211.3 0.000109

Chapter 3. The system resources manager 101

Table 23. zSeries 900 processor models (continued)

zSeries 900 processor
model

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 900, Model 112 8968.6 0.000112

zSeries 900, Model 113 8724.1 0.000115

zSeries 900, Model 114 8602.2 0.000116

zSeries 900, Model 115 8359.5 0.00012

zSeries 900, Model 116 8117.7 0.000123

zSeries 900, Model 1C1 12112 0.000083

zSeries 900, Model 1C2 11502.5 0.000087

zSeries 900, Model 1C3 11142.1 0.00009

zSeries 900, Model 1C4 10781.7 0.000093

zSeries 900, Model 1C5 10540.2 0.000095

zSeries 900, Model 1C6 10296 0.000097

zSeries 900, Model 1C7 10056.6 0.000099

zSeries 900, Model 1C8 9816 0.000102

zSeries 900, Model 1C9 9575.1 0.000104

zSeries 900, Model 210 11165.3873 0.000090

zSeries 900, Model 211 10869.5652 0.000092

zSeries 900, Model 212 10723.8606 0.000093

zSeries 900, Model 213 10430.2477 0.000096

zSeries 900, Model 214 10139.4170 0.000099

zSeries 900, Model 215 9993.7539 0.000100

zSeries 900, Model 216 9696.9697 0.000103

zSeries 900, Model 2C1 14692.3783 0.000068

zSeries 900, Model 2C2 13961.6056 0.000072

zSeries 900, Model 2C3 13377.9264 0.000075

zSeries 900, Model 2C4 13082.5838 0.000076

zSeries 900, Model 2C5 12638.2306 0.000079

zSeries 900, Model 2C6 12345.6790 0.000081

zSeries 900, Model 2C7 12048.1928 0.000083

zSeries 900, Model 2C8 11756.0617 0.000085

zSeries 900, Model 2C9 11461.3181 0.000087

Table 24. zSeries 890 processor models

zSeries 800 processor
model

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 890, Model 110 1264.9221 0.000791

zSeries 890, Model 210 1225.2087 0.000816

zSeries 890, Model 310 1200.3901 0.000833

zSeries 890, Model 410 1175.6062 0.000851

zSeries 890, Model 120 2238.0753 0.000447

zSeries 890, Model 220 2167.7280 0.000461

102 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 24. zSeries 890 processor models (continued)

zSeries 800 processor
model

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 890, Model 320 2123.7059 0.000471

zSeries 890, Model 420 2079.8128 0.000481

zSeries 890, Model 130 4280.3638 0.000234

zSeries 890, Model 230 4146.1519 0.000241

zSeries 890, Model 330 4061.9447 0.000246

zSeries 890, Model 430 3978.1203 0.000251

zSeries 890, Model 140 5344.0214 0.000187

zSeries 890, Model 240 5176.3183 0.000193

zSeries 890, Model 340 5071.3154 0.000197

zSeries 890, Model 440 4965.8597 0.000201

zSeries 890, Model 150 8346.3745 0.000120

zSeries 890, Model 250 8084.8914 0.000124

zSeries 890, Model 350 7920.7921 0.000126

zSeries 890, Model 450 7755.6956 0.000129

zSeries 890, Model 160 10184.5958 0.000098

zSeries 890, Model 260 9864.3650 0.000101

zSeries 890, Model 360 9661.8357 0.000104

zSeries 890, Model 460 9461.8569 0.000106

zSeries 890, Model 170 17797.5528 0.000056

zSeries 890, Model 270 17241.3793 0.000058

zSeries 890, Model 370 16895.4593 0.000059

zSeries 890, Model 470 16546.0186 0.000060

Table 25. zSeries 800 processor models

zSeries 800 processor
model

Service units per second of
task or SRB execution time

Seconds Task or SRB Execution
Time Per Service Unit

zSeries 800, Model 0E1 1955.0 0.000512

zSeries 800, Model 0A1 3907.2 0.000256

zSeries 800, Model 0X2
UNI

4239.5 0.000236

zSeries 800, Model 0X2 3900.5 0.000256

zSeries 800, Model 0B1 5612.0 0.000178

zSeries 800, Model 0C1 6980.8 0.000143

zSeries 800, Model 0A2
UNI

6893.6 0.000145

zSeries 800, Model 0A2 6341.7 0.000158

zSeries 800, Model 001 9334.9 0.000107

zSeries 800, Model 002 8588.3 0.000116

zSeries 800, Model 003 8121.8 0.000123

zSeries 800, Model 004 7843.1 0.000128

Chapter 3. The system resources manager 103

Table 26. S/390 9672 processor models

S/390 9672 processor
model

Service units per second of
task or SRB execution time

Seconds of Task or SRB
Execution Time Per Service Unit

S/390 9672, Model T16 6067.5 0.000165

S/390 9672, Model T26 5643.7 0.000177

S/390 9672, Model R36 5460.8 0.000183

S/390 9672, Model R46 5278.8 0.000189

S/390 9672, Model R56 5158.0 0.000194

S/390 9672, Model R66 5036.2 0.000199

S/390 9672, Model R76 4915.5 0.000203

S/390 9672, Model R86 4733.7 0.000211

S/390 9672, Model R96 4490.6 0.000223

S/390 9672, Model RX6 4247.4 0.000235

S/390 9672, Model Y16 7246.4 0.000138

S/390 9672, Model Y26 6739.7 0.000148

S/390 9672, Model Y36 6449.0 0.000155

S/390 9672, Model Y46 6230.5 0.000161

S/390 9672, Model Y56 6086.0 0.000164

S/390 9672, Model Y66 5941.3 0.000168

S/390 9672, Model Y76 5797.1 0.000173

S/390 9672, Model Y86 5578.8 0.000179

S/390 9672, Model Y96 5361.9 0.000187

S/390 9672, Model YX6 5071.3 0.000197

S/390 9672, Model RA6 4212.7 0.000237

S/390 9672, Model RB6 3960.4 0.000253

S/390 9672, Model R16 5588.5 0.000179

S/390 9672, Model R26 5141.4 0.000194

S/390 9672, Model RC6 5029.9 0.000199

S/390 9672, Model RD6 4918.5 0.000203

S/390 9672, Model X17 8346.4 0.000120

S/390 9672, Model X27 7928.6 0.000126

S/390 9672, Model X37 7677.5 0.000130

S/390 9672, Model X47 7511.7 0.000133

S/390 9672, Model X57 7262.8 0.000138

S/390 9672, Model X67 7095.3 0.000141

S/390 9672, Model X77 6762.5 0.000148

S/390 9672, Model X87 6512.0 0.000154

S/390 9672, Model X97 6177.6 0.000162

S/390 9672, Model XX7 6010.5 0.000166

S/390 9672, Model XY7 5759.5 0.000174

S/390 9672, Model XZ7 5592.5 0.000179

S/390 9672, Model Z17 9667.7 0.000103

104 z/OS V2R1.0 MVS Initialization and Tuning Guide

Table 26. S/390 9672 processor models (continued)

S/390 9672 processor
model

Service units per second of
task or SRB execution time

Seconds of Task or SRB
Execution Time Per Service Unit

S/390 9672, Model Z27 9184.8 0.000109

S/390 9672, Model Z37 8893.8 0.000112

S/390 9672, Model Z47 8700.4 0.000115

S/390 9672, Model Z57 8412.2 0.000119

S/390 9672, Model Z67 8217.8 0.000122

S/390 9672, Model Z77 7831.6 0.000128

S/390 9672, Model Z87 7540.1 0.000133

S/390 9672, Model Z97 7249.7 0.000138

S/390 9672, Model ZX7 6959.5 0.000144

S/390 9672, Model ZY7 6765.3 0.000148

S/390 9672, Model ZZ7 6475.1 0.000154

Table 27. S/390 3000 processor models

S/390 3000 processor
model

Service units per second of
task or SRB execution time

Seconds of Task or SRB
Execution Time Per Service Unit

S/390 3000, Model A10 1792.1 0.000558

S/390 3000, Model A20 1582.3 0.000632

If you plan to use these constants for purposes other than those suggested in this
information, observe the following limitations:
v Actual customer workloads and performance may vary. For a more exact

comparison of processors, see the internal throughput rate (ITR) numbers in
Large Systems Performance Reference (LSPR).

v CPU time can vary for different runs of the same job step. One or more of the
following factors might cause variations in the CPU time: CPU architecture (such
as storage buffering), cycle stealing with integrated channels, and the amount of
the queue searching (see z/OS MVS System Management Facilities (SMF)).

v The constants do not account for multiprocessor effects within logical partitions.
For example, a logical 1-way partition in an S/390 9672, Model RX3, has 1090
service units per second, while a 10-way partition on the same machine has
839.3 service units per second.

Using SMF task time
For installations with no prior service data, the task time reported in SMF record
Type 4, 5, 30, 34, and 35 records can be converted to service units using the
preceding tables.

Section 5: Installation management controls
This section contains information about commands for SRM-related installation
management functions.

Chapter 3. The system resources manager 105

Operator commands related to SRM
The system operator can directly influence SRM's control of specific jobs or groups
of jobs by entering commands from the console. The exact formats of these
commands are defined in z/OS MVS System Commands.

The SET command with the OPT parameter is used to switch to a different OPT
after an IPL. SRM bases all control decisions for existing and future jobs on the
parameters in the new parmlib member.

106 z/OS V2R1.0 MVS Initialization and Tuning Guide

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1991, 2013 107

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

108 z/OS V2R1.0 MVS Initialization and Tuning Guide

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 109

110 z/OS V2R1.0 MVS Initialization and Tuning Guide

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2013 111

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

112 z/OS V2R1.0 MVS Initialization and Tuning Guide

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book is intended to help the customer initialize and tune the MVS element of
z/OS. This book documents information that is NOT intended to be used as
Programming Interfaces of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 113

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

114 z/OS V2R1.0 MVS Initialization and Tuning Guide

Index

A
access time

for modules 18
accessibility 107

contact IBM 107
features 107

address space
in virtual storage

description 10
layout in virtual storage 5, 11
swapping 75
system

creation 2
algorithm

auxiliary storage shortage
prevention 69

paging operations 59
slot allocation 60

allocation
considerations 52
device allocation 53
improving performance 53
virtual storage

considerations 12
alternate wait management 85
ASM (auxiliary storage manager)

I/O load balancing 69
initialization 59
local page data set selection 70
overview 37
page data set 62

effect on system performance 61
estimating total size 68
protection 62
size 61
space calculation 63

page data set protection
Status information record 63
SYSTEMS level ENQ 63

page operations 59
performance

recommendations 66
questions and answers 69
shortage prevention 69
storage-class memory (SCM) 41

assistive technologies 107

B
batch

requirements 89

C
central storage control

modifying 88
central storage space

V=R region 9
central storage usage

swaps used 76

COFVLFxx member
coding 46

command
SRM, relationship 106

common area
in virtual storage 11

common page data set 62
sizing 64

common storage tracking function
tracking use of common storage 36

compatibility mode 74
constant

adjusting through IEAOPTxx 87
CSA (common service area)

description 24
tracking use of common storage 36
using the common storage tracking

function 36
CSVLLAxx member

coding 45
specifying the FREEZE|NOFREEZE

option 50
specifying the GET_LIB_ENQ

keyword 51
specifying the MEMBERS

keyword 49
specifying the REMOVE keyword 49

CVIO specification 67

D
data set

page
size recommendations 61

paging
description 39
estimating total size 68

system data set
description 38

data-in-virtual
page data set

affected by data-in-virtual 71
demand swap 78
device allocation

DASD
function used by SRM 80

device selection
recommendations 66

directed VIO 84
page data set 40

dispatching
controlled by SRM 75
priority 77

Dispatching Mode Control 85
dynamic allocation 52

E
EDT (eligible device table) 53

enqueue delay minimization
function used by SRM 79

enqueue residence control
modifying 88

exchange swap 76

F
fixed LSQA

storage requirements 9
FLPA (fixed link pack area)

description 8
FREEZE|NOFREEZE option 50

G
GET_LIB_ENQ keyword 51
GETMAIN macro

macro request
variable-length 35

GETMAIN/FREEMAIN/STORAGE (GFS)
trace

tracing the use of storage macros 37
goal mode 74

I
I/O (input/output)

load balancing
by ASM 69
function supported by DASD

device allocation 80
selective enablement for I/O by

SRM 85
storage space

virtual 41
I/O priority

queueing function used by SRM 79
I/O service units

definition 83
used by SRM 83

IBM zEnterprise (zEnterprise)
processor models

z196 90
IEALIMIT installation exit

description 35
IEASYSxx LFAREA 25, 26
IEASYSxx LFAREA examples 27
IEASYSxx parmlib member 54
IEFUSI installation exit

description 35
initialization

JES2 5
JES3 5
master scheduler 5

installation requirements
defining 89

IPL (initial program load)
major functions 1

© Copyright IBM Corp. 1991, 2013 115

J
JES2 52

initialization 5
region size

limiting 35
JES3

address space
auxiliary 5

initialization 5
region size

limiting 35
JES3AUX address space 5
job pack area

in system search order 15
JOBLIB

in system search order 15

K
keyboard

navigation 107
PF keys 107
shortcut keys 107

L
large frame area

description 25
examples 27

layout of virtual storage
single address space 11

LFAREA
description 25

LFAREA calculation example 1 28
LFAREA calculation example 4 31
LFAREA calculation example 5 31
LFAREA calculation examples 2 and

3 30
LFAREA parameter 26
LFAREA syntax and examples 27
LLA (library lookaside)

CSVLLAxx member 45
LLACOPY macro 48
modification 48
MODIFY LLA command 48
modifying shared data sets 49
overview 44
planning to use 45
refreshing LLA-managed libraries 49
removing libraries from LLA

management 49
START command 47
STOP LLA command 48
using the FREEZE|NOFREEZE

option 50
using the GET_LIB_ENQ

keyword 51
LLACOPY macro 48

directory
modification 48

load balancing
DASD device allocation 80

local page data set
selection by ASM 70
sizing 64

logical swapping
used by SRM 78

LOGON command
processing 6

LPA
in system search order 16
placement of modules 19

LSQA (local system queue area)
description 25
fixed storage requirement 9
storage requirement

fixed 9

M
map of virtual storage

address space 5
master scheduler

initialization, description 5
MEMBERS keyword

of CSVLLAxx 49
MLPA (modified link pack area)

description 24
specification at IPL 24

MODIFY LLA command 48
module library 52
module search order

description 15, 44
mount and use attribute for volume

assigning
using a VATLSTxx parmlib

member 54
using the MOUNT command 54

MOUNT command
processing 6

MPL (multiprogramming level)
adjusting function used by SRM 77

MPL adjustment control
modifying 84

multiprogramming set 76

N
navigation

keyboard 107
NIP (nucleus initialization program)

major functions 1
non-sharable attribute 57
Notices 111
nucleus area

description 8

O
OPT

initial parameter values
selecting 90

parameter on the SET command 106
preparing the initial 90

out-of-space condition 35

P
page data set

description 39

page data set (continued)
directed VIO 40
estimating size 68

measurement facilities 68
size

recommendations 61
space calculation

values 63
page operation

algorithms 59
page space

adding 68
pageable frame stealing

used by SRM 83
pageable storage control

modifying 88
paging

space
adding 70
depletion 70
effects of data-in-virtual 71
removing 70

paging operation
algorithms 59

performance
affected by storage placement 16, 19
recommendations 16, 19, 21

ASM (auxiliary storage
manager) 66

permanently resident volume 55
mount attribute 55
notes 55
use attributes

assigning 55
volumes that are always permanently

resident 55
PLPA (pageable link pack area)

data set 61
description 14
IEAPAKxx 14
primary and secondary 40

priority
dispatching 77

private area in virtual storage 12
private area user region

description 33
real region 33
virtual region 33

processor model
related to SRM seconds 86
service units 90
task/SRB execution time 90

processor models
IBM zEnterprise (zEnterprise)

z196 90
S/390 3000 105
S/390 9672 104
System z10 EC 93
System z9 BC 96
System z9 EC 98
z196 90
zSeries 800 103
zSeries 890 102
zSeries 900 101
zSeries 990 100

processor storage
overview 6

116 z/OS V2R1.0 MVS Initialization and Tuning Guide

R
real regions in private area user

region 33
real time

related to SRM seconds 86
recommendation value

swap 77
working set manager 79

region 34
size

limiting 34
REGION parameter

on the JOB/EXEC statement 35
REMOVE keyword

of CSVLLAxx 49
request swap 76
resource use function

used by SRM 77

S
S/390 3000

processor models 105
S/390 9672

processor models 104
SCM

allocating 70
auxiliary storage 41
questions and answers 69
sizing 66

search order
for modules 15, 44

selective enablement for I/O
by SRM 85
modifying 86

sending comments to IBM xi
serialization

of devices during allocation 52
service unit

processor model 90
task/SRB execution time 90

SET command 106
shortcut keys 107
slot

algorithm for allocating 60
ASM selection 70

space over-specification 67
SQA (system queue area)

fixed, description 9
storage shortage prevention 81
virtual, description 12

SRB (service request block)
execution time

processor model 90
service units 90

SRM (system resources manager)
and system tuning 73
constants 87
control, types 75
description 74
dispatching control 75
examples 88
functions used by 75
guidelines 88
installation control specification

concepts 83

SRM (system resources manager)
(continued)

installation management controls 105
installation requirements

batch 89
guidelines 90
subsystems 89

introduction 73
invocation interval control

modifying 88
IPS (installation performance

specification)
concepts 83

objectives 74
operator commands related to

SRM 106
OPT concepts 83
options 75
parameters

concepts 83
preparing initial OPT 90
requirements

TSO/E 89
SRM seconds

based on processor model 86
related to real time 86

timing parameters 86
START command 52

processing 6
START LLA command 47
STEPLIB

in system search order 15
storage

auxiliary storage
overview 37

processor storage
overview 6

virtual storage
address space 10
overview 10

storage initialization
ASM 59

storage management
initialization process 1
overview 1

storage shortage
prevention

for pageable frames 81
swaps result 76

storage shortage prevention
for auxiliary storage 80
for SQA 81
function used by SRM 80

storage-class memorh
configuring 61

storage-class memory
sizing 66

storage-class memory (SCM)
allocating 70
auxiliary storage 41

subpools 229, 230, 249
description 32

subsystem
requirements 89

Summary of changes xiii
SWA (scheduler work area)

description 32

swap
causes

improve system paging rate 76
storage shortage 76
to improve central storage

usage 76
demand 78
wait state 76

swap dataset
and virtual I/O storage space 41

swap recommendation value 77
swapping

logical
used by SRM 78

types 75
used by SRM 75

system address space
creation 2, 5

system data set
description 38

system initialization
process 1

system paging rate
swap used 76

system preferred area
description 8

system region
description 32

system tuning
SRM discussion 73

System z10 EC
processor models 93

System z9 BC
processor models 96

System z9 EC
processor models 98

T
task

processor model 90
TASKLIB

in system search order 15
transaction

definition
for CLIST 84

transition swap 76
TSO/E

requirements 89

U
UIC (unreferenced interval count)

definition 83
unilateral swap out 76
unilateral swap-in 76
user interface

ISPF 107
TSO/E 107

user region 34

V
V=R central storage space

description 9
VATLSTxx parmlib member 54

Index 117

VIO (virtual input/output)
dataset page

directed 84
directed

paging data set 40
storage space 41

virtual region
in private area user region 33

virtual storage
affect of placement of modules 20
allocation

considerations 12
layout 11
map 11
overview 10
problem identification 36
single address space 11
tracing the use of storage macros 37
using GETMAIN/FREEMAIN/

STORAGE (GFS) trace 37
virtual storage address space

description 10
VLF (virtual lookaside facility)

starting 48
STOP VLF command 48
used with LLA 45

volume attribute list 54

W
wait state

swaps result 76
wall clock time

related to SRM seconds 86
working set management 78
working set manager

recommendation value 79

Z
z196

processor models 90
zSeries 800

processor models 103
zSeries 890

processor models 102
zSeries 900

processor models 101
zSeries 990

processor models 100

118 z/OS V2R1.0 MVS Initialization and Tuning Guide

����

Product Number: 5650-ZOS

Printed in USA

SA23-1379-00

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Storage management overview
	Initialization process
	System address space creation
	Master scheduler initialization
	Subsystem initialization
	START/LOGON/MOUNT processing

	Processor storage overview
	System preferred area
	Nucleus area
	The fixed link pack area (FLPA)
	System queue area (SQA-Fixed)
	Fixed LSQA storage requirements
	V=R area

	Virtual storage overview
	The virtual storage address space
	General virtual storage allocation considerations
	System Queue Area (SQA/Extended SQA)
	SQA/CSA thresholds

	Pageable link pack area (PLPA/Extended PLPA)
	Placing modules in the system search order for programs
	Search order the system uses for programs
	Module placement effect on application performance
	Module placement effect on system performance
	Module placement effect on virtual storage
	Recommendations for Improving System Performance

	Modified link pack area (MLPA/Extended MLPA)
	Common service area (CSA/Extended CSA)
	SQA/CSA shortage thresholds

	Local system queue area (LSQA/Extended LSQA)
	Large frame area (LFAREA)
	LFAREA parameter
	LFAREA syntax and examples

	Scheduler work area (SWA/Extended SWA)
	Subpools 229, 230, 249 - Extended 229, 230, 249
	System region
	The private area user region/extended private area user region
	Types of user regions
	Region size and region limit
	Limiting user region size

	Identifying problems in virtual storage (DIAGxx parmlib member)
	Using the common storage tracking function
	Using GETMAIN/FREEMAIN/STORAGE (GFS) trace

	Auxiliary storage overview
	System data sets
	Paging data sets
	Directed VIO
	Primary and secondary PLPA
	Virtual I/O storage space

	Using storage-class memory (SCM)

	Improving module fetch performance with LLA
	LLA and module search order
	Planning to use LLA
	Using VLF with LLA
	LLA notes

	Coding the required members of parmlib
	Coding CSVLLAxx
	Coding COFVLFxx

	Controlling LLA and VLF through operator commands
	Starting LLA
	Starting VLF
	Stopping LLA and VLF
	Modifying LLA
	Removing libraries from LLA management
	Modifying shared data sets
	Using the FREEZE|NOFREEZE option
	Changing LLA-managed libraries
	Recataloging LLA-managed data sets while LLA is active

	Allocation considerations
	Serialization of resources during allocation
	Improving allocation performance
	The volume attribute list
	Use and mount attributes
	Use attributes
	Mount attributes
	The nonsharable attribute

	Chapter 2. Auxiliary storage management initialization
	Page operations
	Paging operations and algorithms
	Paging operations and algorithms for storage-class memory (SCM)
	Configuring storage-class memory (SCM)

	Page data set sizes
	Storage requirements for page data sets
	Page data set protection
	SYSTEMS level ENQ
	Status information record

	Space calculation examples
	Example 1: Sizing the PLPA page data set, size of the PLPA and extended PLPA unknown
	Example 2: Sizing the PLPA page data set, size of the PLPA and extended PLPA known
	Example 3: Sizing the common page data set
	Example 4: Sizing local page data sets
	Example 5: Sizing page data sets when using storage-class memory (SCM)

	Performance recommendations
	Estimating total size of paging data sets
	Using measurement facilities
	Adding paging space
	Deleting, replacing or draining page data sets

	Questions and answers

	Chapter 3. The system resources manager
	System tuning and SRM
	Section 1: Description of the system resources manager (SRM)
	Controlling SRM
	Objectives
	Types of control
	Dispatching control

	Functions
	Swapping
	Swap recommendation value
	Dispatching of work
	Resource use functions
	Enqueue delay minimization
	I/O priority queueing
	DASD device allocation
	Prevention of storage shortages
	Pageable frame stealing

	I/O service units

	Section 2: Basic SRM parameter concepts
	MPL adjustment control
	Transaction Definition for CLISTs
	Directed VIO Activity
	Alternate wait management
	Dispatching mode control

	Section 3: Advanced SRM parameter concepts
	Selective enablement for I/O
	Adjustment of constants options
	Enqueue residence control
	SRM invocation interval control
	Pageable storage control
	Central storage control

	Section 4: Guidelines
	Defining installation requirements
	Subsystems
	Batch
	TSO/E
	General

	Preparing an initial OPT
	Using SMF task time

	Section 5: Installation management controls
	Operator commands related to SRM

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

