
z/OS

MVS Programming:
Writing Transaction Schedulers
for APPC/MVS
Version 2 Release 1

SA23-1398-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 103.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About This Book. ix
Who Should Use This Book ix
How to Use This Book ix
Where to Find More Information ix

How to send your comments to IBM . . xi
If you have a technical problem. xi

z/OS Version 2 Release 1 summary of
changes xiii

Part 1. An Introduction to APPC/MVS
System Services 1

Chapter 1. Transaction Scheduler
Services in APPC/MVS 3

Chapter 2. General Transaction
Scheduler Function: From Start-up to
Termination 7

Part 2. APPC/MVS System Services
Reference 11

Chapter 3. Invocation Details for
APPC/MVS System Services 13
Syntax Conventions for the System Services . . . 13
Linkage Conventions for the System Services . . . 13
Parameter Description for Callable Services. . . . 13
Versions of Callable Services. 15
Interface Definition File (IDF) 15

Chapter 4. APPC/MVS System Services
Summary. 17
Associate 17
Cleanup_Address_Space 21
Cleanup_TP 24

Sending Error Log Information 29
Connect 31
Control 33
Define_Local_TP. 35
Disconnect. 37
Identify. 39
Join_Sysappc_Group 46
Set_AS_Attributes 49
Unidentify. 51

Chapter 5. Transaction Scheduler User
Exits. 53
XCF Message User Routine 53

Environment 54
Processing 54
Message Types 54
Programming Considerations 56
Entry Specifications. 56
Return Specifications 57

Extract Exit 58
Environment 58
Exit Recovery. 59
Programming Requirements 59
Entry Specifications. 59
Return Specifications 60

TP Profile Conversion Exit 60
Environment 60
Exit Recovery. 60
Programming Requirements 61
Installation 61
Return Specifications 62

TP Profile Syntax Exit 62
Environment 62
Exit Recovery. 63
Programming Requirements 63
Installation 63
Return Specifications 64

Profile Syntax Message Routine. 64
Environment 64
Entry Specifications. 65
Return Specifications 65

Part 3. Appendixes. 67

Appendix A. Character Sets. 69

Appendix B. Previous Versions of
APPC/MVS System Services 73
ATBCMAS— Cleanup_Address_Space 73
ATBCMTP— Cleanup_TP 75
ATBCTP1— Cleanup_TP 78
ATBIDEN— Identify 82
ATBIDN1— Identify 88
ATBMIGRP— Join_Sysappc_Group 94
ATBUNID— Unidentify 97

Appendix C. Accessibility 99
Accessibility features 99
Using assistive technologies 99
Keyboard navigation of the user interface 99
Dotted decimal syntax diagrams 99

Notices 103
Policy for unsupported hardware. 104

© Copyright IBM Corp. 1991, 2013 iii

Minimum supported hardware 105
Programming Interface Information 105
Trademarks 105

Glossary 107

Index 117

iv z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Figures

1. Transaction Program Routing 4
2. Transaction Schedulers in APPC/MVS 7
3. ATBASOC - Associate 18
4. ATBCAS1 - Cleanup_Address_Space Service 22
5. ATBCTP3 - Cleanup_TP 25
6. Format of GDS Variable for Sending Log Data 30
7. Format of Product ID in GDS Variable . . . 31
8. ATBCONN - Connect Service 32
9. ATBCNTL - Control 34

10. ATBDFTP - Define Local TP 36
11. ATBDCON - Disconnect 38
12. ATBIDN4 - Identify 40
13. ATBJGP1 - Join_Sysappc_Group. 47

14. ATBSASA - Set_AS_Attributes 50
15. ATBUID1 - Unidentify 51
16. How APPC/MVS Messages are Mapped 57
17. Parameter List of the TP Profile Syntax Exit 64
18. Input to the TP Profile Syntax Message

Routine 65
19. ATBCMAS - Cleanup_Address_Space Service 73
20. ATBCMTP - Cleanup_TP 76
21. ATBCTP1 - Cleanup_TP 79
22. ATBIDEN - Identify 83
23. ATBIDN1 - Identify 89
24. ATBMIGRP - Join_Sysappc_Group 95
25. ATBUNID - Unidentify. 98

© Copyright IBM Corp. 1991, 2013 v

vi z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Tables

1. APPC/MVS System Callable Services 17
2. Relationship between TP_ID and address space

parameters 20

3. Character Sets 01134, Type A, and 00640 69

© Copyright IBM Corp. 1991, 2013 vii

viii z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

About This Book

This book contains two parts. Part 1 gives a brief introduction to the APPC/MVS
system services and their use by transaction schedulers. Part 2 gives details about
each service, including function, requirements, syntax, linkage information,
parameters, and related exit routines.

Who Should Use This Book
This book is for system programmers who write transaction schedulers to use in
addition to or instead of the transaction scheduler that APPC/MVS provides. The
book assumes the user understands the concepts of APPC/MVS, and can code in
one or more high-level languages (HLLs) that APPC/MVS supports. Using this
book also requires you to be familiar with the operating system and the services
that programs running under it can invoke.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see z/OS Information Roadmap.

Where to Find More Information
Before using this book, you should be familiar with APPC/MVS application
programming and administration information from z/OS MVS Programming:
Writing Transaction Programs for APPC/MVS and z/OS MVS Planning: APPC/MVS
Management.

Where necessary, this book references information in other books, using the
shortened version of the book title. For complete titles and order numbers of the
books for all products that are part of z/OS, see z/OS Information Roadmap.

© Copyright IBM Corp. 1991, 2013 ix

x z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS
SA23-1398-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1991, 2013 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1991, 2013 xiii

xiv z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 1. An Introduction to APPC/MVS System Services

APPC/MVS is an implementation of IBM's Advanced Program-to-Program
Communication (APPC) in the MVS operating SYSTEM. APPC/MVS allows MVS
application programs to communicate on a peer-to-peer basis with other
application programs on the same MVS SYSTEM, different MVS systems, or
different operating SYSTEMs (including OS/2, OS/400 and VM) in an SNA
network. These communicating programs, known as transaction programs,
together form cooperative processing applications that can exploit the strengths of
different computer architectures.

Transaction programs can be scheduled on MVS by the APPC/MVS transaction
scheduler or by an alternative transaction scheduler. This book documents the
services that an alternative transaction scheduler must issue to interact with
APPC/MVS. These services are callable from high-level or assembler language
programs that are running in supervisor state or with PSW key 0-7.

© Copyright IBM Corp. 1991, 2013 1

2 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 1. Transaction Scheduler Services in APPC/MVS

APPC/MVS provides a transaction scheduler that initiates and schedules
APPC/MVS transaction programs (TPs) in response to inbound requests from
other TPs in an SNA network. APPC/MVS also provides system services that let
installations use alternative transaction schedulers and assign TPs to run under
them. Those system services are applicable to MVS subsystems and other
applications that provide their own work schedulers and want to receive work
requests from APPC/MVS.

Transaction schedulers must be defined to a logical unit (LU) that represents the
point of entry for inbound requests from an SNA network. That definition must be
made in an APPCPMxx parmlib member on MVS. The transaction scheduler can
then use system services to receive inbound requests that are directed to the LU,
and can schedule the appropriate TPs to handle the requests. A transaction
scheduler can obtain TP-specific scheduling information from TP profiles that are
maintained by system administrators.

A transaction scheduler commonly has direct control over a number of address
spaces and schedules its applications into these subordinate address spaces; the use
of subordinate address spaces allows a transaction scheduler to access APPC from
its own environment for additional performance and function. Each transaction
scheduler may have its own term for these subordinate address spaces; for
example, the APPC/MVS transaction scheduler refers to them as transaction
initiators.

See Figure 1 on page 4 for an overview of how multiple transaction schedulers and
their subordinate address spaces operate under APPC/MVS. When APPC/MVS
receives an inbound allocate request for a particular LU, it sends a message
describing the request to the associated transaction scheduler. That scheduler can
then schedule the appropriate transaction program into a subordinate address
space to process the request. A transaction scheduler can also process inbound
allocate requests within its own address space.

© Copyright IBM Corp. 1991, 2013 3

The following transaction scheduler services are provided by APPC/MVS. See
Figure 2 on page 7 for an example of the sequence in which a transaction scheduler
calls these services.

Join_Sysappc_Group
A callable service that transaction schedulers and other system applications
can use to join the XCF group used by APPC/MVS. Each transaction
scheduler must be a member of the APPC XCF group. APPC/MVS notifies
all group members of “general interest” events, such as APPC initialization
and termination, and notifies individual transaction schedulers of inbound
allocate requests for TPs under their control. Transaction schedulers must
call the Join_Sysappc_Group service before calling the Identify service.

Identify
A callable service that a transaction scheduler can use to make itself known
to APPC/MVS. A transaction scheduler issues Identify after it has
initialized itself and is ready to receive or schedule requests from
APPC/MVS. The transaction scheduler must supply an XCF member token
on Identify to allow APPC/MVS to communicate with it. A transaction
scheduler must identify itself to APPC/MVS before its subordinate address
spaces can connect to APPC/MVS.

Inbound
Work

TP
Profile

APPC/MVS
Transaction
Scheduler

Transaction
Scheduler

Message
Routine

Transaction
Initiator

APPC/MVS Transaction
Scheduler Subordinate
Address Spaces

Transaction
Scheduler Subordinate
Address Spaces

Transaction
Programs

Transaction
Programs

Message
Routine

APPC/MVS
Address
Space

Route To
Scheduler
Associated
With the LU

VTAM

Figure 1. Transaction Program Routing

4 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Connect
A callable service that a transaction scheduler can use to inform
APPC/MVS that an address space is a subordinate address space of a
particular transaction scheduler. The subordinate address space is said to
be connected to that transaction scheduler. Connect is required only for
transaction schedulers managing one or more subordinate address spaces.

Set_AS_Attributes
A callable service that a transaction scheduler can use to prevent
conversations allocated by a subordinate address space from being
associated with the system default LU. This service is important in
situations where a subordinate address space could allocate an APPC
conversation before the transaction scheduler connects the subordinate
address space to itself.

Associate
A callable service that a transaction scheduler or subordinate address space
can use to associate or relate a particular transaction program instance and
its conversations with either the transaction scheduler address space or one
of the transaction scheduler's subordinate address spaces. Any previous
association established between this TP and another address space is
broken. Associate can also be used to provide or change a unit_of_work_id
for the transaction program.

Cleanup_TP
A callable service that may be used to request APPC/MVS to clean up all
conversation resources associated with a transaction program instance.
Conversation resources refers to network resources such as control
structures and buffers that are used to manage the transaction program
instance and its conversations. This service can be called asynchronously.

Cleanup_Address_Space
A callable service that can be used to request APPC/MVS to clean up all
APPC/MVS resources for an address space. APPC/MVS will clean up all
conversation resources for all transaction programs associated with the
address space at the time Cleanup_Address_Space was issued. This service
can be called asynchronously.

Control
A callable service that can be used by a transaction scheduler to control the
operational characteristics of a specified LU. Control allows a transaction
scheduler to temporarily halt or resume processing of inbound allocate
requests received for the LU.

Define_Local_TP
A callable service that can be used by a transaction scheduler to create a
new local transaction program instance to be associated with the
transaction scheduler address space. A transaction scheduler may wish to
create a new transaction program instance so that it can allocate outbound
conversations under a transaction program distinct from any inbound
transactions it has received. The Define_Local_TP service returns the
transaction program identifier (TP_ID), assigned by APPC/MVS, that
represents the new transaction program instance just created. This TP_ID
can then be passed on the Allocate call or returned by the transaction
scheduler extract exit described below.

Chapter 1. Transaction Scheduler Services in APPC/MVS 5

Disconnect
A callable service that can be used by a transaction scheduler to inform
APPC/MVS that an address space is no longer a subordinate address space
of a transaction scheduler.

Unidentify
A callable service that can be used by a transaction scheduler to reverse the
effect of invocation of the Identify service. Unidentify terminates all APPC
services for the specified transaction scheduler and its subordinate address
spaces.

After performing Unidentify, a transaction scheduler can issue the
IXCLEAVE macro to undo the effects of its invocation of
Join_Sysappc_Group.

6 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 2. General Transaction Scheduler Function: From
Start-up to Termination

The following figure is a general example of how a transaction scheduler uses
APPC/MVS services. Each number in Figure 2 corresponds to a possible step, and
to an explanation in the text immediately following the diagram.

Transaction
Scheduler
Subordinate
Address
Space

Schedule
transaction
to a waiting
subordinate
address space

Join SYSAPPC group

Set AS Attributes
(optional)

Notification of
APPC events

Connect

Unidentify

Associate

Cleanup TP

Cleanup Address Space(10)

(9)

(7)

(14)

(6)

(4)

(3)

(2)

(1)

(13)

(12)

(11)

Disconnect

Control

Define Local TP

(7)

(7)

Identify

TP Profile
ConversionExit

APPC/MVS
Services

(8) Extract Exit

Transaction
Program

ATBEXAI . . .

Transaction
Scheduler

XCF Message
User Routine
(required)

Request transaction
program attach

(5)

Figure 2. Transaction Schedulers in APPC/MVS

© Copyright IBM Corp. 1991, 2013 7

Explanations:
1. Each transaction scheduler must join the APPC XCF group. The transaction

scheduler must supply the address of its XCF message user routine, which
will receive messages from APPC/MVS. Join_Sysappc_Group returns a value
to be used as the member token parameter of Identify. A transaction scheduler
must invoke Join_Sysappc_Group before invoking Identify.

2. The transaction scheduler optionally calls the Set_AS_Attributes service to
prevent conversations allocated by a subordinate address space from being
associated with the system default LU. This prevention takes effect in cases
when the subordinate address space is not connected to a transaction
scheduler.

3. The transaction scheduler issues the Identify service to make itself known to
APPC/MVS. The Identify service indicates to APPC/MVS that the transaction
scheduler is fully operational and is ready to receive and schedule requests
from APPC/MVS. The Identify service also identifies possible exit routines for
TP profile conversion and information extraction.

4. APPC/MVS notifies all members of the APPC group of significant events,
such as APPC initialization and termination.

5. When an inbound allocate request is received, APPC/MVS performs checking,
obtains related data, and sends an XCF message requesting the transaction
scheduler to attach the TP. The transaction scheduler's XCF message user
routine must recognize that the message describes the TP to be attached, and
process it.

6. Any time a new subordinate address space is created, the transaction
scheduler must issue Connect on behalf of the subordinate address space to
inform APPC/MVS that the newly created subordinate address space is
owned by the transaction scheduler. Connect must be issued for the
subordinate address space before any other APPC/MVS services are used in
that address space. Connect is only required for a transaction scheduler
managing one or more subordinate address spaces.

7. When a transaction scheduler receives a transaction request from APPC/MVS,
the transaction scheduler has the option of passing that work on to a
subordinate address space, or of processing the work itself. If the transaction
scheduler decides to pass the transaction on to a subordinate address space to
process, the transaction scheduler or subordinate address space must invoke
the Associate service. If the scheduler specifies a TP profile conversion exit on
the Identify service, and the requested transaction has a TP profile entry that
requires conversion, the exit is invoked to convert the entry. APPC/MVS then
saves the converted copy for future requests, avoiding repeated conversion.

8. After the TP starts running, it might request information about the
environment in which it was scheduled. The transaction program can invoke
the APPC/MVS Extract_Information service to obtain information about its
environment. The Extract_Information service will use the transaction
scheduler extract exit to obtain the information to return to the transaction
program.

9. Cleanup_TP can be called to cleanup a TP after it is processed, or reject an
inbound TP that cannot be processed (for example, because the TP was not
available). If the TP is rejected, you can use Cleanup_TP to send error log data
to the partner system or TP that submitted the request.

10. Cleanup_Address_Space can be issued to clean up all transaction programs in
an address space. The transaction scheduler will probably issue
Cleanup_Address_Space after each transaction program completes in a
subordinate address space. Cleanup_Address_Space can be used to clean up

8 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

conversations normally in error situations. In error situations, all conversations
are terminated, and the partner TPs are notified of termination with a
Deallocate_ABEND_SVC sense code.

11. The transaction scheduler can use the Control request to temporarily halt or
resume processing of inbound allocate requests received for a specific LU or
all LUs for that transaction scheduler.

12. The transaction scheduler can issue Define_Local_TP to create a TP instance in
its address space.

13. Disconnect is the opposite of Connect and is issued by the transaction
scheduler to inform APPC/MVS that the specified address space is no longer
under the control of the transaction scheduler. Address space termination is an
automatic Disconnect.

14. The transaction scheduler issues an Unidentify request to terminate use of
APPC/MVS services. Unidentify is the opposite of Identify.

Additional Considerations:

v The transaction scheduler can also issue IXCLEAVE to undo the effects of
Join_Sysappc_Group. IXCLEAVE is an XCF macro that disassociates a member
from its XCF group (in this case, the APPC XCF group). The input to the
IXCLEAVE macro is the member token that was passed back from
Join_Sysappc_Group. For more information about the IXCLEAVE macro,
including syntax, see z/OS MVS Programming: Sysplex Services Reference.

v The transaction scheduler may process protected conversations (conversations
with a synchronization level of syncpt). To do so, you must:
– Define it to an LU that is capable of handling conversations with a

synchronization level of syncpt. See the session management section of z/OS
MVS Planning: APPC/MVS Management for further information about enabling
LUs for protected conversations support.

– Be aware of changes for the following APPC/MVS system services:
- Cleanup_Address_Space (all versions)
- Cleanup_TP (all versions)
- Control
- Unidentify

v Additionally, the transaction scheduler may register as a resource manager of
protected conversations. Doing so allows the scheduler to obtain a privately
managed context that it can use to associate with the inbound Allocate request.
Note that designing and coding a scheduler to act as a resource manager is
relatively difficult. If you want to code an alternate transaction scheduler to
manage the contexts for protected conversations, you need to understand the
concepts and requirements for resource recovery in z/OS MVS Programming:
Resource Recovery. Design the scheduler to use APPC/MVS system services,
along with registration and context callable services, in the following sequence:
1. Join the APPC XCF group by calling the Join_Sysappc_Group service.

Optionally, call the Set_AS_Attributes service.
2. Register through the Register_Resource_Manager service, supplying a

resource manager name. The service returns a resource manager token that
the scheduler uses on subsequent calls to registration and context services.

3. Use the Identify service to identify itself to APPC/MVS; on this service call,
provide the resource manager name. After receiving an inbound Allocate
request for the LU associated with this scheduler, APPC/MVS creates a
privately managed context, and passes the context token to the scheduler
through an XCF message.

Chapter 2. General Transaction Scheduler Function: From Start-up to Termination 9

4. Change to the correct state to call context services. To do this, call the
Set_Exit_Information service to cause the server resource manager state to
change to SET state. The server is now in the correct state with context
services to issue context callable services.

5. Switch to the context passed through the XCF message, by issuing a call to
the Switch_Context service. After the service returns, the privately managed
context is the current context.

6. Receive the inbound protected conversation by issuing the Get_Conversation
service. As part of processing this service, APPC/MVS expresses interest in
the unit of recovery under the privately managed context, and sets the
logical unit of work identifier (LUWID) for the current context.

Depending on the design of the scheduler routines, either the scheduler or its
subordinate address space invoke the Associate service, and perform steps 4
through 6. If the scheduler uses subordinate address spaces, it must pass to
them the context token for the privately managed context.

10 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 2. APPC/MVS System Services Reference

This section describes the features and usage requirements of the APPC/MVS
SYSTEM services. System programmers coding authorized programs in high-level
languages or assembler can use these callable services to obtain the SYSTEM
services they need. This section includes detailed information—such as the
function, syntax, linkage information, and parameters— needed to use the SYSTEM
services.

© Copyright IBM Corp. 1991, 2013 11

12 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 3. Invocation Details for APPC/MVS System Services

APPC/MVS system services provide access to system services not normally used
by transaction programs, but used by other MVS components, management
subsystems, and transaction schedulers. These system services have a standard set
of syntax and linkage requirements as well as parameter specification details
necessary for successful invocation.

Syntax Conventions for the System Services
All APPC/MVS system services have a general calling syntax as follows:
CALL routine_name (parameters,return_code)

The specific format for invoking APPC/MVS callable services through the
assembler CALL macro is:
CALL routine_name,(parm1,parm2,..return_code),VL

Linkage Conventions for the System Services
Callers must also use the following linkage conventions for all APPC/MVS system
services:
v Register 1 must contain the address of a parameter list, which is a list of

consecutive words, each containing the address of a parameter to be passed. The
last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.
v Register 14 must contain the return address.
v Register 15 must contain the entry-point address of the service being called.
v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must

all be set to zero.

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1, and 15 are not restored).

Any high-level language that generates this type of interface can be used to invoke
APPC/MVS callable services.

Two methods can be used to access the APPC/MVS system services.
v The ATBCSS module from SYS1.CSSLIB can be link-edited with any program

that issues APPC/MVS system services.
v A program can issue the MVS LOAD macro for the APPC/MVS system service

to obtain its entry-point address, and then use that address to call the
APPC/MVS system service.

Parameter Description for Callable Services
All the parameters of the APPC/MVS callable system services are required
positional parameters. When you invoke a service, you must specify all the
parameters in the order listed. APPC/MVS checks all parameters for valid values,
regardless of whether the parameters are used in call processing. Even though a
language may allow parameters to be omitted, APPC/MVS services do not.

© Copyright IBM Corp. 1991, 2013 13

Note: Some parameters do not require values and allow you to substitute zeros or
a string of blanks for the parameter. The descriptions of the parameters identify
those that can be replaced by blanks or zeros, and when to do so.

In the descriptions of services in this document, each parameter is described as
supplied or returned:

Supplied
You supply a value for the parameter in the call.

Returned
The service returns a value in the named parameter when the call is
finished (for example, return_code).

Each parameter is also described in terms of its data type, character set, and
length:

Data type
Either address, character string, integer, pointer, or structure.

Character set
Applies only to parameters whose values are character strings and governs
the values allowed for that parameter. Possible character sets are:
v No restriction

There is no restriction on the byte values contained in the character
string.

v Type A EBCDIC
The string can contain only uppercase alphabetics, numerics, and
national characters (@, $, #), and must begin with an alphabetic or
national character. Use of @, $, and # is discouraged, because those
characters display differently on different national code pages.

v 01134
The string can contain uppercase alphabetics or numerics, with no
restriction on the first character.

v 00640
The string can contain upper- or lowercase alphabetics, numerics, or any
of 19 special characters with no restriction on the first character.

Note: APPC/MVS does not allow blanks in 00640 character strings.

For more detailed information about the characters in each character set,
see Appendix A, “Character Sets,” on page 69.

Length
Depends on the data type of the parameter:
v For an address, integer, or pointer, the length indicates the size of the

field in bits.
v For a character-string parameter, the length value indicates the number

of characters that can be contained in a character type parameter. The
length can specify a single number or a minimum and maximum
number.

v For a structure parameter, the length value indicates the size of the
structure in bytes, or a minimum and maximum size if the size of the
structure is variable.

14 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Versions of Callable Services
Some APPC/MVS calls have a version number as the last character of the call
name (for example, ATBIDN1). That number corresponds to the version of
APPC/MVS in which the call was introduced.

To determine which calls are valid on a system, you can obtain the current
APPC/MVS version number from the APPC/MVS Version service. On any system,
valid APPC/MVS calls include those with no version number in the call name or a
version number less than or equal to the current APPC/MVS version number. For
example, calls to ATBIDEN and ATBIDN1 are both valid when the current
APPC/MVS version number is 1 or higher. Likewise, a call named ATBxxx2 would
be valid only when the current APPC/MVS version number is 2 or higher.

For more information about APPC/MVS version numbers, including how to obtain
the version number that is current on your system, see the Version service in z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS.

Interface Definition File (IDF)
APPC/MVS provides an IDF (also called a pseudonym file) that defines variables
and values for parameters of APPC/MVS system services. The IDF can be included
or copied from a central library into programs that invoke APPC/MVS callable
services.

For APPC/MVS system services, the IDF for assembler language programs is the
ATBCSASM member of SYS1.MACLIB.

Chapter 3. Invocation Details for APPC/MVS System Services 15

16 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 4. APPC/MVS System Services Summary

This chapter describes the specific system services available in APPC/MVS. The
function, invocation requirements, parameters, and other detailed information are
explained separately for each system service.

Callers of these system services must be in supervisor state or have a PSW key of
0-7. Callers that are not in supervisor state or do not have PSW key 0-7 end with
system completion (abend) code 0C2, with the exceptions of the
Join_Sysappc_Group and Set_Address_Space_Attributes services, which provide a
return code.

The ATBCSS module from SYS1.CSSLIB must be link-edited with any program that
issues these services.

The following table lists the system services that have more than one associated
call name. This chapter describes the current versions of the calls, which are the
preferred programming interfaces for these services. The previous versions are
described in Appendix B, “Previous Versions of APPC/MVS System Services,” on
page 73.

Table 1. APPC/MVS System Callable Services

Service Name
Previous Call
Name

Current Call
Name

Reference for
Current Call

Cleanup_Address_Space ATBCMAS ATBCAS1 21

Cleanup_TP ATBCMTP,
ATBCTP1

ATBCTP3 24

Identify ATBIDEN,
ATBIDN1

ATBIDN4 39

Join_Sysappc_Group ATBMIGRP ATBJGP1 46

Unidentify ATBUNID ATBUID1 51

Associate
Use the Associate service to associate a particular transaction program and its
conversations with either the transaction scheduler address space or one of the
transaction scheduler's subordinate address spaces. Any previous association
established between this TP and another address space is broken.

When a transaction scheduler receives an inbound allocate request from
APPC/MVS, the targeted TP is automatically associated with the transaction
scheduler. If the transaction scheduler passes that work to an awaiting subordinate
address space, the transaction scheduler or subordinate address space must invoke
the Associate service. If you do not use the Associate service for TPs running in
subordinate address spaces, APPC/MVS cannot clean up conversation resources
when the subordinate address space is terminated.

You can associate multiple transaction programs with a transaction scheduler, but
you can only associate one transaction program with a subordinate address space

© Copyright IBM Corp. 1991, 2013 17

at a time. A transaction scheduler is responsible for ensuring the integrity of TPs
that run at the same time in the transaction scheduler's address space.

You can also use the Associate service to provide or change a unit_of_work_id for
the transaction program.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied/Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance assigned to this transaction by
APPC/MVS. The TP_ID is a token that uniquely identifies an instance of a
program using APPC/MVS services. The TP_ID is passed to the transaction
scheduler in the inbound allocate request message. The TP_ID is also generated
when a program calls Define_Local_TP or is not started through APPC and
calls an allocate service.

A zero TP_ID can be specified if the Current_ASCB_ptr points to a subordinate
address space. A zero TP_ID specifies that the transaction program instance in
the current address space is to be associated to the new address space. If the
Current_ASCB_ptr points to the transaction scheduler address space (that is, a
transaction scheduler address space is the one that called Identify), a zero
TP_ID will not be allowed.

A transaction scheduler cannot have the TP_ID for a locally started transaction
in a subordinate address space. In this situation, the transaction scheduler sets
this value to zero, and APPC/MVS sets the TP_ID upon return to the caller.

Current_ASCB_ptr
Supplied parameter
v Type: Pointer

CALL ATBASOC (TP_ID,
Current_ASCB_ptr,
New_ASCB_ptr,
Unit_of_work_id,
Return_code
);

Figure 3. ATBASOC - Associate

Associate

18 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space where the transaction program currently resides.

New_ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the new
address space to associate with the transaction program instance.

Unit_of_work_id
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 Bytes

Specifies an ID assigned to this program instance by the transaction scheduler
(for example, a job number or transaction code). This is an optional parameter
used only in APPC/MVS diagnostics. It correlates APPC activity to program
instances as they are known in APPC/MVS to program instances as they are
known to other components and subsystems. To specify no Unit_of_work_ID,
set the parameter to 8 blanks. If Unit_of_work_id is specified, TP_ID must also
be specified.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Associate may return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 The transaction program association is successful.

8 The specified TP_ID does not exist.

12 Associate failed; this address space is already associated with another
TP_ID.

16 The Current_ASCB_ptr is a transaction scheduler address space and
not a subordinate address space. A TP_ID of zero cannot be specified
for a transaction scheduler address space.

20 The value specified on the New_ASCB_ptr parameter is not valid.

24 The value specified on the Current_ASCB_ptr parameter is not valid.

28 The transaction program to be associated has an active APPC request
outstanding.

30 The combination of parameters is not valid.

32 The requested service is not supported in the caller's environment. For

Associate

Chapter 4. APPC/MVS System Services Summary 19

example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

36 The requested transaction scheduler service must be invoked from the
transaction scheduler address space or from a transaction scheduler
subordinate address space.

38 The specified program is an APPC/MVS server. It cannot be associated
with another address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. The caller does not have to reside in the current or new associated address

space of the TP instance.
2. This service cannot be called while there is an APPC request outstanding from

the transaction program instance (TP_ID) specified on the call. If the Associate
service is called while there is an outstanding APPC request, the system does
not perform the Associate service function, and the caller receives a return code
of 28 (decimal).

3. You cannot associate a TP that's currently registered for an allocate queue
(through the Register_for_Allocates service). If the Associate service is called
while the TP is registered for an allocate queue, the system does not perform
the Associate service function, and the caller receives a return code of 38
(decimal). For more information about the Register_for_Allocates service, see
z/OS MVS Programming: Writing Servers for APPC/MVS.

4. The new address space specified on the New_ASCB_ptr parameter cannot be a
subordinate address space that is currently running a TP. If the new address
space is a subordinate address space that is running a TP, the system does not
perform the Associate service function, and the caller receives a return code of
12 (decimal).

5. Transaction schedulers that call the Associate service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

6. Two process identifiers (TP_ID and New_ASCB_ptr) are supported to
accommodate different types of Associate scenarios. Table 2 describes the action
taken by APPC/MVS based upon how all these parameters are specified on the
Associate service.

Table 2. Relationship between TP_ID and address space parameters

TP_ID
Current
ASCB_ptr

New
ASCB_ptr Action taken by APPC/MVS

0 0 0 Parameters not valid - Associate will give
return code 30.

0 variable 0 The transaction program residing in the
subordinate address space is associated with
the home address space of the caller. If the
transaction program does not reside in a
subordinate address space, Associate gives a
return code of 16. If no active transaction
program exists, Associate gives a return
code of 8.

Associate

20 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Table 2. Relationship between TP_ID and address space parameters (continued)

TP_ID
Current
ASCB_ptr

New
ASCB_ptr Action taken by APPC/MVS

0 0 variable The transaction program residing in the
home address space of the caller is
associated with the new address space
identified. If the transaction program does
not reside in a subordinate address space,
Associate gives a return code of 16. If no
active transaction program exists, Associate
gives a return code of 8.

0 variable variable The transaction program residing in the
current subordinate address space identified
is associated with the new address space
identified. If the transaction program does
not reside in a subordinate address space,
Associate gives a return code of 16. If no
active transaction program exists, Associate
gives a return code of 8.

variable - 0 The specified TP_ID is associated with the
home address space of the caller.

variable - variable The specified TP_ID is associated with the
new address space specified by
New_ASCB_ptr.

Cleanup_Address_Space
You can use the Cleanup_Address_Space service to clean up all APPC/MVS
resources for an address space. APPC/MVS cleans up all conversation resources
for all transaction programs that are associated with the address space at the time
the Cleanup_Address_Space is issued.

The Cleanup_Address_Space service may be invoked by a transaction scheduler
subordinate address space for a transaction program or job that terminates
normally or abnormally.

APPC/MVS deletes one or more TP_IDs from the system as a result of this call;
this cleanup process might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Associate

Chapter 4. APPC/MVS System Services Summary 21

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) for the address
space to be cleaned up. All conversations for all transaction program instances
associated with this address space are to be deallocated. Invokers of this
service can get this value from the PSAAOLD field in the PSA for the current
address space or from the RMPLASCB field in the resource manager parameter
list (RMPL). If this parameter is set to zero, the home address space of the
program that issued the Cleanup_Address_Space call will be used as the
default address space.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
generate the TYPE of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally, even
though it may have left active conversations. APPC/MVS deallocates
all conversations in a proper state for normal deallocation with
Deallocate Type(Sync_Level). All conversations not in the proper state
for a normal deallocation are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or the
transaction program was terminated on behalf of some action by the
system (for example, the address space was cancelled or forced). This
condition is normally detected by transaction scheduler's subordinate
address space.

All active conversations are deallocated with Type(Abend_SVC).

Notify_type
Supplied parameter
v Type: Structure

CALL ATBCAS1 (ASCB_ptr,
Condition,
Notify_Type,
Return_code
);

Figure 4. ATBCAS1 - Cleanup_Address_Space Service

Cleanup_Address_Space

22 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the
program by ECB when the service is complete. The possible types are:
v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB
Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.
When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during
asynchronous processing, and the specified ECB is posted when all returned
parameters are set. The completion code field in the ECB contains the return
code for the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_Address_Space may return one of the following decimal values in the
return code parameter:

Decimal
Meaning

0 Request accepted. All conversations owned by the address space are
cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The ASCB_ptr supplied does not point to a valid ASCB.

12 The asynchronous request failed. Resubmit the request with a
Notify_type of None or report the problem to IBM.

20 APPC/MVS was cancelled during an asynchronous request for this
service.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Cleanup_Address_Space

Chapter 4. APPC/MVS System Services Summary 23

Characteristics and Restrictions
1. Conversations with active APPC requests are not immediately deallocated.

Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. Cleanup_Address_Space may access fields located through the ASCB_ptr
parameter before it establishes recovery, to improve performance in the case
where no APPC resources must be cleaned up. If an incorrect ASCB_ptr is
passed to Cleanup_Address_Space, the caller might abnormally end with
completion code 0C4 when Cleanup_Address_Space uses the passed value to
get addressability to fields in the ASCB.

3. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

4. If you call the Cleanup_Address_Space service while a unit of work is waiting
on an ECB as a result of an asynchronous call, APPC/MVS does not post the
ECB after performing the Cleanup_Address_Space operation (APPC/MVS
considers all resources associated with the address space “terminated”). The
application's recovery environment must clean up the waiting ECB.

5. Transaction schedulers that call the Cleanup_Address_Space service while in
task mode should not have any enabled unlocked task (EUT) functional
recovery routines (FRRs) established. For more information about EUT FRRs,
see the information on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide.

6. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on
whether a syncpoint operation is in progress. When a syncpoint operation is in
progress for the current UR for the context with which the protected
conversation is associated, APPC/MVS does not immediately deallocate the
conversation. The syncpoint operation is allowed to complete. As part of the
syncpoint processing, the protected conversation might be deallocated, in which
case no further cleanup is required for that conversation.
If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:
v The protected conversation is deallocated with TYPE(ABEND_SVC).
v The current UR is put into backout-required state.
v If the protected conversation is an inbound conversation, the logical unit of

work ID (LUWID) for the next UR is reset.
v The current UR and subsequent units of recovery for the context will not

include the protected conversation being cleaned up by this service.

Cleanup_TP
Cleanup_TP is used to request that APPC/MVS clean up all conversation resources
associated with a transaction program instance. Conversation resources include
network resources, control blocks, and buffers that are used by APPC/MVS to
manage the transaction program instance and its conversations.

Call Cleanup_TP for one of the following reasons:
v The TP requested by an inbound allocate request is not recognized or not

available.
v The transaction scheduler cannot queue or schedule the transaction program at

this time.

Cleanup_Address_Space

24 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v The requesting userid is not authorized to use the transaction program
v The TP was attached and executed, and has completed normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
may occur asynchronously.

When calling Cleanup_TP, you can send error log information to a partner TP or
system. See “Sending Error Log Information” on page 29 for more information.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller's
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

CALL ATBCTP3 (TP_ID,
Condition,
Notify_Type,
Error_Log_Information_Length,
Error_Log_Information,
Return_Code
);

Figure 5. ATBCTP3 - Cleanup_TP

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 25

Note: If you specify a value of zero on the Condition parameter, you cannot
send error log information to partner TPs or systems.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally, even
though it might have left active conversations. APPC/MVS deallocates
all conversations in a proper state for normal deallocation with
Deallocate Type(Sync_Level). All conversations not in the proper state
for a normal deallocation are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or the
transaction program was terminated on behalf of some action by the
system (for example, the address space was cancelled or forced). This
condition is normally detected by transaction scheduler's subordinate
address space. All active conversations are deallocated with
TYPE(Abend_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that is not temporary. The partner
should not attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that might be temporary. The
partner can attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084B6031'.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the conversation with a
sense code of X'10086021'.

5 Security_Not_Valid

Specifies that the transaction scheduler detected a security violation.
APPC/MVS deallocates the conversation with a sense code of
X'080F6051'.

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the level of
synchronization requested by the sender. APPC/MVS deallocates the
conversation with a sense code of X'10086041'.

7 User_Not_Authorized_For_TP

Specifies that the user is not authorized to access the transaction
program. APPC/MVS deallocates the conversation with a sense code of
X'080F0983'.

Notify_type
Supplied parameter
v Type: Structure

Cleanup_TP

26 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the
program by ECB when the service is complete. The possible types are:
v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB
Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.
When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during
asynchronous processing, and the specified ECB is posted when all returned
parameters are set. The completion code field in the ECB contains the return
code for the service.

Error_log_information_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the length of the error log information specified on the
Error_log_information parameter:
v If error log information is not to be sent, specify 0 on this parameter.
v If error log information is to be sent, specify the number of bytes of error

log information provided, in the range 1-512 (decimal).

If you specify a value greater than 512 on the Error_log_information_length
parameter, the system returns return code 16 (decimal) to the caller.

Error_log_information
Supplied parameter
v Type: Character string
v Char Set: N/A
v Length: 0-512 bytes

Specifies error log information to be sent to all partner systems running TPs
that have established conversations with the TP to be cleaned up. This
parameter contains information about an error that occurred while scheduling
a TP. The scheduler can send error log information only when the Condition
parameter (for the Cleanup_TP service) specifies one of the following values:
v System
v TP_Not_Available_No_Retry
v TP_Not_Available_Retry

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 27

v TPN_Not_Recognized
v Security_Not_Valid
v Sync_Level_Not_Supported_Pgm
v User_Not_Authorized_For_TP

If you do not specify one of the above values on the Condition parameter,
Cleanup_TP does not send error log information, even if it is specified on this
parameter.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

When APPC/MVS returns control to your TP, the Return_code parameter
contains one of the following decimal return codes:

Return Code Meaning and Action

0 Meaning: Successful completion. All conversations owned by the
transaction program instance will be cleaned up asynchronously.

Action: None required.

4 Meaning: No conversations exist to be cleaned up.

Action: None required.

8 Meaning: The TP_ID parameter specified a TP instance that does not
exist.

Action: Specify a valid TP instance on the TP_ID parameter.

12 Meaning: An asynchronous request failed.

Action: Specify a Notify_Type of None on the call to Cleanup_TP, then
submit the request again. If the problem persists, contact the IBM
Support Center.

16 Meaning: The Error_log_information_length parameter contains a value
that is greater than 512 (decimal). The transaction scheduler can only
send up to 512 (decimal) bytes of error log information.

Action: Specify a value between 0 and 512 (decimal) on the
Error_log_information_length parameter.

20 Meaning: APPC/MVS was cancelled during an asynchronous request
for this service.

Action: Contact the operator to determine if APPC/MVS can be
restarted.

32 Meaning: The requested service is not supported in the caller's
environment. For example, the caller might be holding a lock.

Action: See the “Environment” section for the required environment for
calling Cleanup_TP. Ensure that the scheduler calls Cleanup_TP while
running in the required environment.

44 Meaning: APPC/MVS is not active.

Action: Contact the operator to determine if APPC/MVS can be
restarted.

Cleanup_TP

28 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Return Code Meaning and Action

48 Meaning: APPC/MVS services failure.

Action: Contact the IBM Support Center.

Characteristics and Restrictions
1. Conversations with active APPC requests are not immediately deallocated.

Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB
as a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application's recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the information
on providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on
whether a syncpoint operation is in progress. When a syncpoint operation is in
progress for the current UR for the context with which the protected
conversation is associated, APPC/MVS does not immediately deallocate the
conversation. The syncpoint operation is allowed to complete. As part of the
syncpoint processing, the protected conversation might be deallocated, in which
case no further cleanup is required for that conversation.
If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:
v The protected conversation is deallocated with TYPE(ABEND_SVC).
v The current UR is put into backout-required state.
v If the protected conversation is an inbound conversation, the logical unit of

work ID (LUWID) for the next UR is reset.
v The current UR and subsequent units of recovery for the context will not

include the protected conversation being cleaned up by this service.

Sending Error Log Information
When calling Cleanup_TP, you can send error log information to a partner TP or
system. Error log information describes errors that your scheduler finds when it
tries to schedule a TP. Programmers for partner systems can use the information to
help diagnose errors in their TPs. For example, Cleanup_TP can send error log
information that indicates a partner TP name specified on an inbound allocate
request is not acceptable to your scheduler.

The error log information is sent to all systems with TPs that have established
conversations with the TP to be cleaned up. If the partner system is MVS, the
partner TP can use the Error_Extract service to return the error log information
(see z/OS MVS Programming: Writing Transaction Programs for APPC/MVS for
information about how to use Error_Extract). If the partner system is not MVS, the

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 29

partner system must determine how to obtain and use the error log information.
Your can specify error log information for both basic and mapped conversations.

To send error log information to a partner TP or system, you must specify a value
other than Normal on the Condition parameter for this service. APPC/MVS sends
the error log information in a generalized data stream (GDS) variable, and then
sends an FMH-7 to notify the partner system that an error occurred. The GDS
variable has the format shown in Figure 6:

Figure 7 on page 31 shows the format of the product ID subvector in the GDS
variable shown in the previous figure.

PID Subvector

Product Set ID

Msg
Length

1Byte

Rsvd
X'00'

PSID
Key
X'10'

PSID
Length
X'0010'

GDS
Variable
Length

GDS
Variable

ID
X'12E1'

PSID
Subv

Length
X'0E'

1Byte1Byte2 Bytes 2 Bytes 2 Bytes2 Bytes

Msg
Text

Figure 6. Format of GDS Variable for Sending Log Data

Cleanup_TP

30 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Example

In this example, assume that an alternate scheduler cannot schedule a TP because
the user who ran the TP did not have access to a required data set. The scheduler
calls Cleanup_TP to clean up the conversation. The scheduler sends a sense code of
user_not_authorized_for_TP and error log information to the partner TP:
Condition = User_not_authorized_for_TP;
Notify_type = ATB_None;
Error_log_information = ’ ’;
Error_log_information = ’User does not have access to data set ’user.dsname’’;
Error_log_information_length = Length(Error_log_information);
CALL ATBCTP3(TP_ID,

Condition,
Notify_type,
Error_log_information_length,
Error_log_information,
Return_code,
);

Connect
The Connect service is used by a transaction scheduler to inform APPC/MVS that
an address space is a subordinate address space of a particular transaction
scheduler. The subordinate address space is said to be connected to that transaction
scheduler. The Connect service must be issued by the same address space that
issued the Identify. Connect is only required for a transaction scheduler managing
subordinate address spaces.

A connection is required to provide an integrity structure for APPC/MVS. When a
transaction scheduler issues an Identify, an implicit Connect is assumed. A
transaction scheduler may associate or reassociate transaction programs from one

Software
Product

Common
Name
Key
X'06'

PID
Subvector

Class
X'04'

PID
Subvector

Length
X'0B'

PID
Subvector

Key
X'11'

Software
Product

Common
Name
Length
X'08'

1 Byte1 Byte1 Byte 1 Byte1 Byte

Software
Product

Common
Name

*

Figure 7. Format of Product ID in GDS Variable

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 31

subordinate address space to another. The connection allows APPC/MVS to ensure
that TPs attached from one scheduler are always associated with address spaces
connected with that scheduler.

A connection also enables APPC/MVS to process outbound Allocate requests from
an MVS program. The base LU name of the transaction scheduler associated with
the outbound allocate request is defined in the APPCPMxx parmlib member.

An address space remains connected to a particular transaction scheduler until the
address space is terminated or issues an explicit Disconnect. (See “Disconnect” on
page 37.) Memory termination causes an automatic Disconnect.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space being connected to the transaction scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Connect may return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Address space successfully connected.

4 ASCB_ptr was invalid.

CALL ATBCONN (ASCB_ptr,
Return_code
);

Figure 8. ATBCONN - Connect Service

Connect

32 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

8 Connect was rejected, having specified an address space that already
had outstanding APPC conversations or service calls, or an address
space that was already connected. You might need to call
Cleanup_Address_Space before trying to Connect.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. The caller's home address space must be the transaction scheduler address

space (that is, the same home address space that issued the Identify).
2. A transaction scheduler must issue Identify before it can issue a Connect.
3. Transaction schedulers that call the Connect service should not have any

enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Control
The Control service is used by a transaction scheduler to control the operational
characteristics of a specified LU. Control allows a transaction scheduler to
temporarily halt or resume processing of inbound Allocate requests received for
the LU.

When a transaction scheduler requests that processing be halted for an LU, all
subsequent inbound Allocate requests received for that LU are rejected with a
sense code of X'084C0000' (TP_Not_Available_No_Retry). However, inbound
Allocate requests that have already been received and are being processed will not
be halted. Thus, the transaction scheduler can receive inbound Allocate request
messages for the LU after Control has been issued. In addition, if the scheduler is
processing protected conversations, APPC/MVS continues to accept inbound
resynchronization requests for the LU, even after the scheduler issues the Control
service. For more information about protected conversations, see Chapter 2,
“General Transaction Scheduler Function: From Start-up to Termination,” on page
7.

The LU specified must be assigned to the transaction scheduler requesting the
service through the SCHED keyword on the LUADD statement in the APPCPMxx
parmlib member.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked

Connect

Chapter 4. APPC/MVS System Services Summary 33

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Format

Parameters

LU_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the LU.

Function
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The Function specifies how the LU operation is to be changed. Valid values for
this parameter are:

Value Meaning

0 Halt_Input

Specifies that APPC/MVS should temporarily halt processing of
inbound Allocate requests to the specified LU. The requests are rejected
with a sense code of X'084C0000' (TP_Not_Available_No_Retry).

1 Resume_Input

Specifies that APPC/MVS should resume processing of inbound
Allocate requests to the specified LU.

2 Halt_All_Input

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to all of the LUs belonging to the transaction
scheduler. The requests are rejected with a sense code of X'084C0000'
(TP_Not_Available_No_Retry). Only those LUs currently in Active or
Outbound_Only state are immediately placed in Outbound_Only state.
Those LUs currently in Pending state are eventually placed in
Outbound_Only state; the update is not immediate. The state of LUs
added by a subsequent SET command will be set to Outbound_Only.
(See the LU_Initial_Status parameter of the Identify service for more
information.)

3 Resume_All_Input

Specifies that APPC/MVS should resume processing of Allocate
requests to all of the LUs belonging to the transaction scheduler. Only

CALL ATBCNTL (LU_name,
Function,
Return_code
);

Figure 9. ATBCNTL - Control

Control

34 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

those LUs currently in Active or Outbound_Only state are immediately
resumed. Those LUs currently in Pending state are eventually placed in
Active state; the update is not immediate. The state of LUs added by a
subsequent SET command will be set to Active. (See the
LU_Initial_Status parameter of the Identify service for more
information.)

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Control might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Request accepted.

4 Request accepted. One or more requested LUs were not in the
appropriate state for the requested function.

8 The LU_name parameter was not valid or was not assigned to the
transaction scheduler making the request.

12 The LU is in a state (pending or in_termination) that cannot be
changed by this service.

16 The function value specified was not valid.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Control service should not have any enabled
unlocked task (EUT) functional recovery routines (FRRs) established. For more
information about EUT FRRs, see the information on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Define_Local_TP
Define_Local_TP can be used by a transaction scheduler to create a new local
transaction program ID (TP_ID) to be associated with the transaction scheduler
address space. A transaction scheduler may wish to create a new TP_ID so it can
allocate outbound conversations under a TP_ID distinct from any TP_IDs it has
received. The Define_Local_TP service will return the TP_ID that represents the
new transaction program just created. This TP_ID can then be passed on the
Allocate call or returned by the transaction scheduler extract. The Define_Local_TP
service can only be used by a transaction scheduler that has identified itself to
APPC/MVS.

Control

Chapter 4. APPC/MVS System Services Summary 35

The Define_Local_TP service gives the transaction scheduler control over defining
one or more TP_IDs in the transaction scheduler address space. The transaction
scheduler extract exit will be used to resolve ambiguity whenever there is more
than one transaction program defined in the address space. See “Extract Exit” on
page 58 for more details on this exit.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_name_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

TP_name_length specifies the length of data contained in the TP_name
parameter.

TP_name
Supplied parameter
v Type: Character string
v Char Set: 00640 or Type A
v Length: 1 - 64 bytes

TP_name specifies the name of the local transaction program to be associated
with this transaction program instance.

LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

LU_name specifies the name of the LU with which the newly created TP_ID
should be associated. This must be an LU that is assigned to the transaction

CALL ATBDFTP (TP_name_length,
TP_name,
LU_name,
TP_ID,
Return_code
);

Figure 10. ATBDFTP - Define Local TP

Define_Local_TP

36 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

scheduler. If the LU_name parameter specified is all blanks, the base LU, if
any, for the transaction scheduler will be used.

TP_ID
Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

TP_ID is a token that represents the transaction program instance that was just
created.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Define_Local_TP may return one of the following decimal values in the return
code parameter:

Decimal
Meaning

0 Request accepted. The TP_ID is returned in parameter TP_ID.

4 Request rejected. The LU specified was not an LU that is assigned to
the transaction scheduler.

8 Request rejected. The TP name is not a valid character string.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. The caller must be from a transaction scheduler address space (from the

transaction scheduler address space that issued the Identify).
2. If an LU_name of all blanks is specified, and there is no base LU defined for

the transaction scheduler, the request will be rejected with return code 4.
3. Transaction schedulers that call the Define_Local_TP service should not have

any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Disconnect
The Disconnect service can be used by a transaction scheduler to inform
APPC/MVS that an address space is no longer one of its subordinate address
spaces.

Define_Local_TP

Chapter 4. APPC/MVS System Services Summary 37

An address space remains connected to a particular transaction scheduler until the
address space is terminated or issues an explicit Disconnect. Address space
termination is an implicit Disconnect. Normally address space termination is all
that is required to disconnect an address space from a transaction scheduler.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space being disconnected from the transaction scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Disconnect might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Address space was successfully disconnected.

4 The value specified on the ASCB_ptr is not valid.

8 The address space specified was not a subordinate address space
connected to the transaction scheduler.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

CALL ATBDCON (ASCB_Ptr,
Return_Code
);

Figure 11. ATBDCON - Disconnect

Disconnect

38 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Disconnect service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself
and is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to
communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:
1. Identify itself to APPC/MVS.
2. Provide its XCF member token to APPC/MVS so that it can be notified of

inbound allocate requests.
3. Optionally identify an information extract exit that may be invoked by

APPC/MVS when it needs information from the transaction scheduler.
4. Determine whether the APPCPMxx parmlib member correctly defines the LUs

for the transaction scheduler.
5. Specify initial status for LUs belonging to the transaction scheduler.
6. Identify an exit to convert a TP profile the first time it is referenced, and store

the converted profile for future references.
7. Optionally provide a resource manager name, if the transaction scheduler is to

process inbound, protected conversations (conversations with a synchronization
level of syncpt), and is designed to use privately managed contexts to represent
each of those inbound Allocate requests. For more information about schedulers
that process protected conversations, see the additional considerations listed in
Chapter 2, “General Transaction Scheduler Function: From Start-up to
Termination,” on page 7.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode:

PASN = HASN = SASN or
PASN ¬= HASN ¬= SASN

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Disconnect

Chapter 4. APPC/MVS System Services Summary 39

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character String
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the
SCHED-keyword of one or more LUADD statements in APPCPMxx. The
transaction scheduler name will also be used for operator displays. If the
transaction scheduler runs only as a “single instance per system,” this value
should be a string that suggests the name of the component performing the
Identify (for example, “ASCH” is an abbreviation used to identify the APPC
transaction scheduler). If the transaction scheduler can run as “multiple copies
per system,” this value should be a string that identifies a particular copy of
the transaction scheduler (for example, subsystems may wish to use the
subsystem name that appears in the IEFSSNxx parmlib member). Once a
transaction scheduler has successfully been identified, no other Identify call
using the same Scheduler_Name will be accepted unless a corresponding
Unidentify statement is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler's information extract exit.
This is an optional exit and may be left zero. If specified, this exit must reside
in the common-area of storage. See “Extract Exit” on page 58 for information
about coding a transaction scheduler extract exit.

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies a user-defined field or token passed to the transaction scheduler's
information extract exit.

CALL ATBIDN4 (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Scheduler_TP_profile_exit,
Scheduler_TP_profile_exit_data,
Resource_Manager_Name,
Return_code
);

Figure 12. ATBIDN4 - Identify

Identify

40 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler's
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival
of inbound allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound allocate request
that specifies a TP_Name for which a TP_Profile entry does not exist. If
a TP_Profile entry does not exist, the inbound allocate request is
rejected with TP_Not_Recognized (sense code X'10086021').

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks and reject the request if any of
these checks fail. If a TP_Profile entry does not exist, APPC/MVS will
indicate this in the XCF message sent to the transaction scheduler to
notify it of the inbound allocate request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

Valid values for this parameter are:

Value Meaning

0 Active

Identify

Chapter 4. APPC/MVS System Services Summary 41

Specifies that APPC/MVS should activate the LU(s) controlled by this
transaction scheduler. The status of every LU controlled by this
transaction scheduler will initially be put into Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
allocate requests to the LU or LUs controlled by this transaction
scheduler. The transaction scheduler has to call Control Resume for the
LU to begin accepting inbound requests. The status of every LU
controlled by this transaction scheduler, whether it is added to the
system at initialization or by a subsequent SET command, will initially
be put into Outbound_Only state, unless Control Resume_All is called
to set the status.

When the APPC address space terminates and restarts, the transaction
schedulers that have called Identify and Connect before have to
reidentify themselves and reconnect all their subordinate address
spaces. A transaction scheduler can use this option to temporarily halt
processing of inbound allocate requests to the LU while it is in the
process of reconnecting its subordinate address spaces. It can issue a
Control Resume request to activate all the LUs when the reconnect
process is finished.

Scheduler_TP_profile_exit
Supplied parameter
v Type: Character string
v Char set: 01134
v Length: 8 bytes

Specifies the name of the exit that will receive control when the TP profile
requires conversion. To specify no exit, set this parameter to 8 blanks. If you
specify an exit, it must reside in LPA or in the LNKLST concatenation. (See the
PROGxx or LNKLSTxx parmlib member description in z/OS MVS Initialization
and Tuning Reference for more information about the LNKLST concatenation.)
For more information about this exit, see “TP Profile Conversion Exit” on page
60.

Scheduler_TP_profile_exit_data
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies data to be passed to the TP profile conversion exit each time it is
invoked; for example, the address of a workarea for the exit to use. For more
information about how the exit receives this input data, see “TP Profile
Conversion Exit” on page 60.

Resource_Manager_Name
Supplied parameter
v Type: Character string
v Character Set: See the description of the Register_Resource_Manager callable

service in z/OS MVS Programming: Resource Recovery for more information
about the Resource_Manager_Name character set and naming restrictions.

v Length: 32 bytes

Identify

42 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies the unique name that identifies the transaction scheduler as a
resource manager that is registered with the registration services.
Resource_Manager_Name is an optional parameter and may be set to zeroes or
blanks if either:
v The LUs for the transaction scheduler do not support protected

conversations, or
v The scheduler is not designed to use a privately managed context to

represent an inbound Allocate request.

If the transaction scheduler provides a Resource_Manager_Name, but a
privately managed context could not be created to represent subsequent
inbound Allocate requests, APPC/MVS rejects the inbound Allocate request,
and the allocator of the conversation will receive a TP_Not_Available_Retry
error return code on the next conversation call that allows a
TP_Not_Available_Retry return code to be presented.

For more information about schedulers that process protected conversations,
see the additional considerations listed in Chapter 2, “General Transaction
Scheduler Function: From Start-up to Termination,” on page 7.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Identify might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is present. The
APPCPMxx parmlib member or members specify at least one LU name
that is controlled by the transaction scheduler, but no LU name is
designated as the transaction scheduler's base LU. This situation might
arise because the APPCPMxx parmlib member was incorrectly coded,
or because the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are applicable.
APPC/MVS found that the APPCPMxx parmlib member specifies no
LU names that are controlled by the transaction scheduler. This
situation might arise because the APPCPMxx parmlib member did not
specify the correct transaction scheduler name on the SCHED keyword
of LUADD, or it might arise because APPC/MVS tried to initialize for
the specified LUname and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction scheduler
address space is already identified using the same scheduler name as
the Scheduler_name parameter passed in. This may occur if the caller
issued Identify twice with the same scheduler name.

14 The Identify request was rejected. The calling transaction scheduler
address space is already identified using a different scheduler name
from the Scheduler_name parameter passed in. This may occur if the
caller issued Identify twice with different scheduler names.

Identify

Chapter 4. APPC/MVS System Services Summary 43

16 The Identify request was rejected. The Scheduler_Name parameter of
Identify is already in use by some other address space that previously
issued Identify.

18 The Identify request was rejected. The Scheduler_TP_profile_exit name
that was passed could not be loaded.

20 The Identify request was rejected. The Scheduler_Name parameter
value is not valid.

22 The Identify request was rejected. The Scheduler_TP_profile_exit name
is not valid.

24 The Identify request was rejected. The TP_Profile_Processing parameter
value is not valid.

26 The Identify request was rejected. The Resource_Manager_Name value
does not represent a Resource Manager registered with RRS.

28 The Identify request was rejected. The LU_Initial_Status parameter
value is not valid.

32 The requested service is not supported in the caller's environment. For
example, this return code is given if the caller invokes any of the
transaction scheduler services while holding a lock.

38 The requested transaction scheduler service cannot be invoked from a
subordinate address space, or an address space that has outstanding
APPC/MVS conversations.

40 The requested transaction scheduler service cannot be invoked from an
APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Usage Notes
1. The transaction scheduler will be notified of an inbound allocate request only if

the request passes all validity and security checks. The userid specified in the
request must have RACF authority to access the TP profile entry (whether or
not it exists), and if the TP profile entry is found, it must be marked
“activated”.

2. Timing restrictions on activities after Identify
The transaction scheduler might create subordinate address spaces and call
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:
v The base LU is successfully initialized
v ATBSASA is called to prevent allocated conversations being associated with

the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 49.

3. Factors delaying asynchronous completion of Identify
Some conditions might substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.
An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify

Identify

44 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Some conditions might cause an Identify to fail asynchronously after it has
been accepted, for example, VTAM parameters might be mismatched (there
might not be an APPL macro for the specified LUname), or APPC/MVS may be
unable to open the specified TP profile file.
An XCF message will be sent to the XCF member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.
A transaction scheduler address space must issue Unidentify to undo its
Identify, even if all of its LUs fail asynchronously.
When LU initialization fails asynchronously, the system issues error messages
indicating the cause of the failure (for example, unable to open the TP profile
file). These messages will be issued to the same operator who receives
messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler
See “Join_Sysappc_Group” on page 46 for information regarding joining an
XCF group.

6. Asynchronous initialization of the base LU name
If Identify produces a return code of zero, then the transaction scheduler
issuing Identify will receive an LU activation or LU deactivation message, with
LU_Flags indicating that the message describes the base LU name. An LU
deactivation message will indicate asynchronous failure of the attempt to
initialize the LU name; an LU activation message will indicate successful
initialization of the LUname.

7. Operation without a base LU name
If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command which establishes a
base LU name for the transaction scheduler.
APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler can to issue its own operator message
asking the operator to perform such a SET command.

8. Operation with no LU names
If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base LU
name for the transaction scheduler.
In contrast to return code 4, APPC/MVS issues an operator message telling the
operator to perform such a SET command.

9. Use of privately managed contexts for protected conversations
A transaction scheduler should not change its resource manager name or
remain as an unregistered resource manager while it is identified to
APPC/MVS. Remaining unregistered, or changing the resource manager name
without notifying APPC/MVS, results in the inability to create a privately
managed context for inbound Allocate requests for LUs owned by the
transaction scheduler. To avoid this inability:
v Make sure the scheduler registers its resource manager name with

registration services.
v For a changed resource manager name, make sure the scheduler issues the

Unidentify service, followed by the Identify service, to notify APPC/MVS of
the name change.

Identify

Chapter 4. APPC/MVS System Services Summary 45

Characteristics and Restrictions
1. Identify performs an automatic Connect of the home address space of the

calling transaction scheduler. (See “Connect” on page 31.)
2. APPC/MVS supports one Identify per address space. Because of this, each

transaction scheduler must be in its own address space.
3. The Identify service causes APPC/MVS to open one or more VTAM ACBs for

the transaction scheduler's LUs. The ACBs are opened asynchronously if the
Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler's
corresponding XCF message user routine and information extract exit may be
invoked at any time.

5. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on recovery and
termination in z/OS MVS Programming: Authorized Assembler Services Guide.

6. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

Join_Sysappc_Group
Use the Join_Sysappc_Group service to join the XCF group used by APPC/MVS.
Each transaction scheduler must join the APPC XCF group. Other system
applications can also join the APPC XCF group to be notified of APPC events.

APPC/MVS communicates with members of its XCF group by invoking their XCF
message user routines. APPC/MVS notifies all group members of general interest
events such as APPC initialization and termination. APPC/MVS also notifies
individual transaction schedulers when inbound allocate requests arrive for them.
To notify individual schedulers, APPC/MVS uses a member_token that the
transaction scheduler passes in on the Identify service. A transaction scheduler
must call the Join_Sysappc_Group service, which provides the member token,
before calling the Identify service. Unlike Identify and most other scheduler
services, the Join_Sysappc_Group service can be called when APPC/MVS is not
active.

If you do not use the Join_Sysappc_Group service to join the APPC XCF group,
you must use APPC_GROUP_NAME as the group name with the IXCJOIN macro.
A different group name is chosen on each system; therefore, each of these groups is
“local to a system” and APPC/MVS can use the facilities of XCF regardless of
whether XCF can perform cross-system communication. Also, the service performs
IXCJOIN with the LASTING=NO option; thus, XCF “system-local mode” can be
tolerated.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN

Identify

46 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

XCFMSGIN_exit_address
Supplied parameter
v Type: Address
v Char Set: N/A
v Length: 32 bits

XCFMSGIN_exit_address specifies the address of the transaction scheduler's
XCF message user routine. The routine takes control when a message becomes
available for this member from another member of the group. For details about
the requirements for and processing of the XCF message user routine, see
“XCF Message User Routine” on page 53.

XCFMSGIN_memdata
Supplied parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

XCFMSGIN_memdata is an optional parameter that specifies an 8-byte
member data field. This field is provided to the message user routine for this
member. If you do not specify a value, XCF sets the member data field to
binary zero. The transaction scheduler can use this field to pass the address
and ASID or ALET of a particular control structure to the XCF message user
routine.

Member_token
Returned parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

Member_token specifies the location where this service places the member
token that represents the caller of this service.

XCF_return_code
Returned parameter
v Type: Integer

CALL ATBJGP1 (XCFMSGIN_exit_address,
XCFMSGIN_memdata,
Member_token,
XCF_return_code,
XCF_reason_code,
Return_code
);

Figure 13. ATBJGP1 - Join_Sysappc_Group

Join_Sysappc_Group

Chapter 4. APPC/MVS System Services Summary 47

v Char Set: N/A
v Length: 32 bits

The return code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

XCF_reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The reason code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Join_Sysappc_Group may return one of the following decimal values in the
return code parameter:

Decimal
Meaning

0 Request successful.

8 Request unsuccessful - XCF failed or request denied by XCF.

40 The caller was not running in supervisor state or PSW key 0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. This service will execute successfully even if XCF is operating in XCF local

mode.
2. The caller must issue the IXCLEAVE macro to undo the effects of

Join_Sysappc_Group. IXCLEAVE processing is performed automatically if the
caller's address space or task terminates.

3. The message buffer that is provided in the message user routine must be
accessible using the same protect key that is in effect at invocation of
Join_Sysappc_Group.

4. The task that calls this service might end abnormally if a privileged program
issues the XCF IXCTERM macro against this member. In that case, the task
terminates with system completion code 00C, reason code 4, and the task's
recovery routine cannot retry. Transaction schedulers can handle this by
attaching a subtask that invokes Join_Sysappc_Group, and reattaching the
subtask if it terminates with completion code 00C, reason code 4.

5. A transaction scheduler may join XCF groups other than the APPC group
joined by this service.

6. The name of APPC's XCF group might vary from system to system and might
change during re-IPL. If you need to know the XCF group name used by APPC
(to dedicate specific resources to it, for example), you can use the ATBAPPCA
mapping macro. The ATBAPPCA mapping macro is described in z/OS MVS
Data Areas, Vol 1.

Join_Sysappc_Group

48 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

7. Transaction schedulers that call the Join_Sysappc_Group service should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Set_AS_Attributes
The Set_AS_Attributes service lets a transaction scheduler set attributes for a
subordinate address space. In particular, this service can set an attribute to
designate whether conversations allocated from the specified address space are to
be associated to the system base LU. You can use this service to prevent an
inadvertent association in cases where the subordinate address space allocates a
conversation before the transaction scheduler connects the subordinate address
space to itself. Without Set_AS_Attributes in such cases, the conversation is
assigned to the system base LU, and when the transaction scheduler attempts to
connect the subordinate address space to itself later, if the conversation is still
outstanding, the connect fails.

For example, you could use Set_AS_Attributes for this purpose in the following
manner:
1. The transaction scheduler is active when APPC is not, so Identify and Connect

cannot be performed.
2. The transaction scheduler calls Set_AS_Attributes with the

Default_LU_Designation parameter set to 1 (to not associate conversations with
the system base LU).

3. APPC is started on the system.
4. A subordinate address space allocates a conversation before the transaction

scheduler identifies itself to APPC and connects the subordinate address space.

In the above scenario, if the transaction scheduler did not call Set_AS_Attributes
first, APPC/MVS would assign the subordinate address space to the system base
LU as soon as APPC/MVS received the outbound allocate request.

Instead, because the transaction scheduler does call Set_AS_Attributes first, APPC
rejects the allocate request. When the transaction scheduler is notified of APPC
initialization, the transaction scheduler can identify itself to APPC and connect the
subordinate address space to itself.

The Set_AS_Attributes service can be called when APPC/MVS is not active.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Join_Sysappc_Group

Chapter 4. APPC/MVS System Services Summary 49

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) that represents
the subordinate address space whose attributes are to be set.

Default_LU_Designation
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies whether conversations allocated from the specified address space
should be associated with the system base LU. If conversations are not to be
associated with the system base LU, the address space cannot use APPC
services until it is explicitly connected using the ATBCONN service.

Valid values for this parameter are:

Value Meaning

0 Associate outbound conversations with the system base LU. This value
is the default.

1 Do not associate conversations with the system base LU.

By default, the conversations from any unconnected address space will
automatically be associated to the system base LU unless this service is
called.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Set_AS_Attributes might return one of the following decimal values in the
return code parameter:

Decimal
Meaning

0 Attributes were set successfully.

4 Request failed -- the ASCB_ptr was not valid.

8 Request failed -- the value for Default_LU_Designation was not valid
(must be 0 or 1).

CALL ATBSASA (ASCB_ptr,
Default_LU_Designation,
Return_Code
);

Figure 14. ATBSASA - Set_AS_Attributes

Set_AS_Attributes

50 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

40 The caller was not running in supervisor state or with PSW key 0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Set_AS_Attributes service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Unidentify
Unidentify can be used by a transaction scheduler to reverse the effects of the
Identify service. Unidentify terminates all APPC services for the transaction
scheduler and its subordinate address spaces. Unidentify causes APPC/MVS to
shut down the LU or LUs assigned to the transaction scheduler that issued
Unidentify. The caller does not have to wait for this to occur. Once the Unidentify
request is accepted, APPC/MVS returns control to the caller and assumes
responsibility for taking down the LU or LUs. After APPC/MVS returns control, a
transaction scheduler may invoke the IXCLEAVE macro to undo the effects of its
invocation of Join_Sysappc_Group.

Unidentify automatically disconnects address spaces currently connected to the
issuing transaction scheduler. New conversations (that is, inbound or outbound
Allocate requests) for the scheduler are rejected. The outcome of existing
conversations for the scheduler depends on the type of Unidentify call. (Existing
conversations are those for which one LU has successfully sent and its partner LU
has successfully received the Allocate request.)

After an Unidentify, the LU is placed in pending state to await another Identify
request. A transaction scheduler must issue Identify if it is to restart.

Calls to Unidentify must be issued from the address space that issued the Identify.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL ATBUID1 (Unidentify_type,
Return_code

);

Figure 15. ATBUID1 - Unidentify

Set_AS_Attributes

Chapter 4. APPC/MVS System Services Summary 51

Parameters

Unidentify_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the type of Unidentify requested, which affects each LU that is
identified with this transaction scheduler. Valid values for this parameter are:

Value Meaning

0 Unidentify_Normal

Calls to ATBUID1 with an Unidentify_type of Normal (or calls to
ATBUNID) cause the ACB for each LU to be closed only after all
existing conversations are deallocated. Because work for the LU is
quiesced, a normal Unidentify is similar to LUDEL processing.

1 Unidentify_Immediate

Calls to ATBUID1 with an Unidentify_type of Immediate cause the
ACB of each LU to be closed immediately. All existing conversations
fail when a TP issues the next APPC/MVS or CPI-C service call.

Unidentify_Immediate can be used in situations requiring fast
termination, such as takeover by a backup scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Unidentify might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Unidentify was accepted.

16 The Identify_type value passed on ATBUID1 was not valid.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Unidentify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Unidentify

52 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 5. Transaction Scheduler User Exits

Transaction schedulers need to provide the following user exit routines to perform
certain functions.
v XCF message user routine

Each transaction scheduler must provide an XCF message user routine to obtain
information about general APPC/MVS events and to receive inbound allocate
requests that are directed to the scheduler.

v Extract exit
Transaction schedulers must supply an extract exit routine if they:
– Call the ATBEXAI service to extract information about their scheduling
– Run more than one transaction program in their address space

simultaneously, and one of the TPs issues an Allocate, Get_TP_Properties, or
Get_Conversation request.

v TP profile conversion exit
Schedulers can provide an exit routine to convert a TP profile on its first
reference and store the converted form of the profile for future reference, thus
avoiding repeated conversion and potentially improving performance.

v TP profile syntax exit and message routine
Schedulers can provide an exit routine to check the syntax of scheduler-specific
information before it is added to the TP profile. An associated message routine
can issue messages about syntax errors to the SYSPRINT data set.

XCF Message User Routine
APPC/MVS invokes a transaction scheduler's XCF message user routine to inform
the transaction scheduler of general events affecting APPC/MVS, and to pass to it
all inbound Allocate requests that are addressed to the transaction scheduler's LU.
Depending on the message that APPC/MVS passes, the message user routine
might have to issue the XCF IXCMSGI macro to obtain additional information.

The transaction scheduler identifies its XCF message user routine to APPC/MVS
on the Join_Sysappc_Group service.

References
v See z/OS MVS Programming: Sysplex Services Guide for more information about

designing an XCF message user routine.
v See z/OS MVS Programming: Sysplex Services Reference for the coding details for

the IXCMSGI macro.
v See IXCYMEPL in z/OS MVS Data Areas, Vol 3 for complete field names and

lengths, offsets, and descriptions of the fields in the message user routine
parameter list, which is mapped by the IXCYMEPL mapping macro.

v See ATBXCFMS in z/OS MVS Data Areas, Vol 1 for complete field names and
lengths, offsets, and descriptions of the fields in XCF messages sent by
APPC/MVS, which are mapped by the ATBXCFMS mapping macro.

© Copyright IBM Corp. 1991, 2013 53

Environment
The XCF message user routine receives control in the following environment:

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB mode
Cross memory mode: PASN = HASN = SASN. The primary address space equals

the primary address space of the transaction scheduler, and
can be swappable or nonswappable.

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The user routine does not hold any locks on entry.

Processing
All XCF messages sent by APPC/MVS contain a type code to indicate the type of
message being sent. The type code is the first four bytes of the 32-byte message
control area passed in the parameter list (mapped by IXCYMEPL) to the message
user routine. The user routine must examine the type code to determine whether it
is a general event message or an Allocate request message. The user routine should
be optimized to handle requests to allocate TPs, because these will be the most
common.

Note: Messages requesting the transaction scheduler to allocate a TP will not be
sent until APPC/MVS activates at least one of the transaction scheduler's LUs.
However, because XCF messages might be delivered out of sequence, the XCF
message user routine might receive an Allocate TP request message before it
receives the message reporting that the LU is active. Also, the message user routine
is not single-threaded; several processors may execute the user routine
simultaneously, with each processor handling a different message.

z/OS MVS Programming: Sysplex Services Guide contains general information about
designing and coding an XCF message user routine; you should be familiar with
that information before coding the message user routine for a transaction
scheduler. The rest of this section contains guidance that applies only to designing
a message user routine for use with a transaction scheduler for APPC/MVS.

Message Types
The contents of the 32-byte message control area (MEPLCNTL field) indicate that
the XCF message is one of the following types:
v APPC Initialization or Termination
v LU Activation or Deactivation
v Allocate TP request.

The ATBXCFMS mapping macro maps these APPC/MVS messages. The general
event message for APPC initialization/termination is small enough to be contained
in the 32-byte message control area. However, the LU activation/deactivation and
the Allocate TP request messages are each too large to fit in the 32-byte message
control area. Also, for the LU activation/deactivation message, additional
information is available if optional data was supplied for the transaction
scheduler's LU in the USERVAR, ALTLU, and GRNAME keywords on the LUADD
statement in the APPCPMxx parmlib member. In these cases, the message user
routine must issue the XCF IXCMSGI macro to receive the rest of the message or
the additional information.

XCF Message User Routine

54 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

When you design the message user routine to issue the IXCMSGI macro, provide
the message token value in the MEPLMTOK field of the parameter list. Also
provide a buffer to contain the data returned by IXCMSGI; the storage key for the
buffer must match the PSW key of the caller of Join_Sysappc_Group.

You may receive data in a single or in multiple buffers. See z/OS MVS
Programming: Sysplex Services Guide for information about designing a message user
routine to use single or multiple buffers without encountering errors.

Programming Notes for LU Activation/Deactivation Messages
For LU activation/deactivation messages:
v In the XCF 32-byte control area, a flag indicates whether the LU is capable of

handling outbound Allocate requests that use a network-qualified name to
identify the partner LU.

v In the IXGMSGI buffer:
– If the LU is a member of a VTAM generic resource group, a field contains the

generic resource name associated with the LU.
– Optional USERVAR data might indicate that a transaction scheduler has an

alias name defined for its local LU. Depending on the release of VTAM your
installation is using, one of the following results:
- With VTAM 4.3 or earlier, conversation allocations from that LU will fail if

the partner LU name on the Allocate request is the USERVAR alias of the
local LU name.

- With VTAM 4.4 or later, conversation allocations from that LU will be
accepted if the partner LU name on the Allocate request is the USERVAR
alias of the local LU name.

Programming Notes for Allocate TP Request Messages
If the message user routine issues IXCMSGI for more data, but the IXCMSGI
macro fails, the message user routine should call the Cleanup_TP service to clean
up any outstanding APPC/MVS resources, supplying the TP_ID that was passed
to the message user routine in the 32-byte control area.

If the IXCMSGI macro successfully returns to the message user routine, the buffer
contains the Allocate TP request message, which includes such data as:

TP_ID
A token that uniquely identifies a transaction to MVS. Transaction schedulers
use it to inform APPC/MVS:
v Where the transaction executes (through the Associate service)
v When the transaction terminates normally or abnormally (through the

Cleanup_TP service).

PROFILE
The TP profile entry contents, if a profile was available. The profile can be
mapped by the ATBDFTP mapping macro, which is in z/OS MVS Data Areas,
Vol 1 the format and content of the TP_Profile is transaction-scheduler
dependent.

CONV_CORR
The conversation correlator associated with this TP. The conversation
correlator, which is specified in the FMH-5 that contains the input for the
allocate request, associates that request with a response from the transaction
scheduler. See z/OS MVS Programming: Writing Transaction Programs for
APPC/MVS for more information about how partner TPs and transaction
schedulers can use a conversation correlator.

XCF Message User Routine

Chapter 5. Transaction Scheduler User Exits 55

CONV_SYNC_LEVEL
The synchronization level of the conversation associated with this TP. The
synchronization level is one of the following:

Value Meaning

0 None

1 Confirm

2 Syncpt

LUWID
The logical unit of work ID is used to identify the most recent sync point, or
for accounting purposes.

CONTEXT_TOKEN
A token that identifies the context representing a transaction program's unit of
work. This field is meaningful only for protected conversations.

SECTOKN
A token that identifies the security environment created for the user by RACF.
If your installation uses RACF, the alternate transaction scheduler can use this
token to create a security environment in the program's execution address
space. When recalling the RACF ACEE associated with the security token, for
performance reasons, code STAT=NO on the RACROUTE macro.

ENVR
A RACF object that the transaction scheduler can use quickly recreate a
security environment in the program's execution address space.

For more information about the RACF Security_Token and ENVR_Object, see z/OS
Security Server RACROUTE Macro Reference.

Programming Considerations
v The message user routine can reside either in the private storage of the address

space from which the Join_Sysappc_Group service is invoked, or in common
storage.

v The message user routine should return to its caller as soon as possible, because
system resources are held until the message user routine gives up control.

v To avoid performance degradation in the XCF signalling service, and in the
system as a whole, do not issue the SUSPEND macro within the message user
routine.

Entry Specifications
XCF passes information to the message user routine in registers and in a parameter
list.

Registers at Entry
On entry to the message user routine, the registers contain the following
information:

Register Contents

GPR 0 Does not contain any information for use by the message user
routine.

GPR 1 Address of the message user routine parameter list.

XCF Message User Routine

56 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Register Contents

GPRs 2 - 12 Do not contain any information for use by the message user
routine.

GPR 13 Address of a standard save area. (The message user routine does
not have to save and restore XCF's registers in this save area. The
message user routine can use this save area to save its own
registers when it uses services that might overwrite the contents of
registers.)

GPR 14 Return address

GPR 15 Entry point address of message user routine.

ARs 0 - 15 Do not contain any information for use by the message user
routine.

Parameter List Contents: The parameter list that XCF passes to the message user
routine is mapped by the IXCYMEPL mapping macro and is pointed to by GPR 1.
The parameter list is addressable from the primary address space in which the
message user routine runs, and includes the following information:
v A message token (MEPLMTOK) for the message user routine to use when

issuing the IXCMSGI macro.
v The member data value (MEPLMDAT) provided on return from the

Join_Sysappc_Group service (XCFMSGIN_memdata parameter).
v The length of the message (MEPLMLEN).
v The message control area (MEPLCNTL), which contains the message information

from APPC/MVS. The message user routine must look at this 32-byte area to
determine the type and contents of the APPC/MVS message.

Figure 16 illustrates how APPC/MVS messages are mapped.

Return Specifications
On return, the message user routine does not have to set any return codes or place
any information in the GPRs. The message user routine must return control
through a BR 14 or a BSM 0,14.

GPR 1 XCF Message User Routine
Parameter List
mapped by IXCYMEPL

APPC/MVS Message
mapped by ATBXCFMS

MEPLCNTL field
of IXCYMEPL

Message_Type

Pointer

Figure 16. How APPC/MVS Messages are Mapped

XCF Message User Routine

Chapter 5. Transaction Scheduler User Exits 57

Extract Exit
The transaction scheduler extract exit is an optional exit invoked by APPC/MVS to
perform one of the following two functions:
v Provide information requested by a call to the Extract_Information service

(ATBEXAI). When a transaction program calls ATBEXAI for information about
how it was scheduled, the appropriate transaction scheduler extract exit is
driven. The output from this exit is defined by the transaction scheduler. If the
exit is not supplied by the transaction scheduler, the transaction program
receives a return code indicating that no information was returned.

v The extract exit is also invoked when APPC/MVS needs to determine which
transaction program is requesting APPC services. The extract exit is invoked for
this reason only when the request is coming from an address space that has
more than one TP_ID associated with it, (namely, a transaction scheduler
address space). The extract exit is driven to allow the transaction scheduler to
specify a TP_ID. It is used when a transaction program in the transaction
scheduler address space, or when the transaction scheduler issues one of the
following service calls:
– Allocate (unless a TP_ID is specified)
– Get_TP_Properties
– Get_Conversation
The exit is invoked only when there are two or more TPs associated with the
address space.
The extract exit for a transaction scheduler is established when the transaction
scheduler invokes the Identify service. If the transaction scheduler does not
supply this exit, requests from the transaction scheduler address space for the
above service calls are rejected when more than one TP_ID is associated with the
address space. If any of the above service calls are issued from the scheduler
address space in SRB mode, the exit will need a mechanism to determine the
TP_ID when a TCB is not available.

Environment
The transaction scheduler extract exit is given control on the same dispatchable
unit that invoked the particular service: Allocate, Get_TP_Properties,
Get_Conversation, or Extract_Information. Note that these services support SRB
mode callers. Therefore, if the service is invoked from the transaction scheduler
address space in SRB mode, the exit is driven in SRB mode as well, and is
restricted in the services that it can issue. For example, the exit cannot issue SVCs,
nor issue a WAIT or SUSPEND macro, because the exit might be invoked on the
synchronous path of an asynchronous service.

The exit receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = APPC, HASN = caller's HASN, SASN = caller's

PASN
AMODE: 31-bit
ASC mode: Primary
Storage key: 1
Interrupt status: Enabled
Locks: The exit does not hold any locks on entry.

Extract Exit

58 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Exit Recovery
The caller of the exit routine should establish its own recovery environment before
calling the exit routine. The exit routine should also establish its own recovery
environment and, within its recovery, request a tailored dump. Before each exit
routine returns control to its caller, the exit routine must delete the recovery
environment it established and free the storage that it obtained. If the exit routine
does not establish its own recovery environment, the caller does the following
when the exit routine ends abnormally:
v Writes a logrec data set error record, and
v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
v This exit must reside in common storage.
v To preserve the registers of the caller, the exit routine must follow the linkage

conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Entry Specifications
APPC/MVS passes information to the extract exit in registers and in the scheduler
extract control block.

Registers on Entry
On entry to the extract exit, the registers contain the following information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of a one-word parameter list that contains the address
of the scheduler extract control block.

GPRs 2-15 Do not contain any information for use by the exit.

Scheduler Extract Control Block: The scheduler extract control block is in key 1
storage, so its contents are immediately accessible by the exit. The scheduler exit
control block contains a service indicator that the exit can use to determine what
processing needs to be done:

Indicator
Meaning

Get_Info
The extract exit was invoked to supply information requested by a caller of
the Extract_Information service.

Get_TP_ID
The extract exit was invoked because APPC/MVS could not determine
which TP_ID to use for a service call.

Extract Exit

Chapter 5. Transaction Scheduler User Exits 59

The scheduler extract exit control block is mapped by the ATBSECB mapping
macro; for detailed information about all of the fields in ATBSECB, see z/OS MVS
Data Areas, Vol 1.

Return Specifications
On return, the extract exit does not have to place any information in the GPRs.
However, depending on the service indicator, the extract exit must place values in
certain fields before returning to its caller:
v For a Get_Info call, the scheduler exit control block contains the address of a

temporary buffer in which the extract exit should return whatever data is
required by its published interface.
The extract exit also must set the Return_Code field to one of the values that
APPC/MVS returns for the Extract_Information service.

v For a Get_TP_ID call, the scheduler exit control block contains a TP_ID field in
which the extract exit should return the appropriate transaction program ID; that
is, the ID passed to the transaction scheduler on either the inbound Allocate TP
request message or the Define_Local_TP service.
The extract exit also must set the Return_Code field to zero (to indicate
successful processing) or any non-zero value (to indicate a failure).

TP Profile Conversion Exit
The transaction scheduler TP profile conversion exit is established when the
transaction scheduler invokes the Identify service, specifying the exit name. The TP
profile conversion exit allows a transaction scheduler to convert the contents of a
TP Profile when the first inbound allocate request arrives for the TP. The exit then
returns the converted form of the TP profile, which APPC/MVS saves and uses on
subsequent inbound requests.

Environment
This exit is invoked on each inbound request for a TP profile that has not been
previously converted and saved. The exit receives control in the following
environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = APPC
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Storage key: 1
TCB protect key: 1
Interrupt status: Enabled
Locks: The exit does not hold any locks on entry.
Subpool limitations: 1

The TP profile conversion exit receives control after the unconverted TP profile is
retrieved on an inbound request. The exit cannot invoke wait routines.

Exit Recovery
The caller of the exit routine should establish its own recovery environment before
calling the exit routine. The exit routine should also establish its own recovery
environment and, within its recovery, request a tailored dump. Before each exit
routine returns control to its caller, the exit routine must delete the recovery

Extract Exit

60 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

environment it established and free all storage it obtained. If the exit routine does
not establish its own recovery environment, the caller does the following when the
exit routine ends abnormally:
v Writes a logrec data set error record, and
v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
To preserve the registers of the caller, the exit routine must follow the linkage
conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Installation
The TP profile conversion exit must reside in LPA or in the LNKLST concatenation.
It must be a reentrant and reusable module. See the PROGxx or LNKLSTxx
parmlib member description in z/OS MVS Initialization and Tuning Reference for
more information about the LNKLST concatenation.

Entry Specifications
APPC/MVS passes information to the TP profile conversion exit in registers and in
a parameter list.

Registers on Entry: On entry to the extract exit, the registers contain the
following information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents.”

GPRs 2-12 Do not contain any information for use by the exit.

GPR 13 The address of a standard 18-word save area.

GPR 14 The return address.

GPR 15 The entry point address.

Parameter List Contents: The parameter list is pointed to by GPR 1, and is
mapped by the ATBDFTPE mapping macro. It contains such information as:

Parameters
Any data specified on the Scheduler_TP_profile_exit_data parameter of the
Identify call.

TP_profile_key_pointer
The address of the TP profile key. Mapped by ATBDFTP mapping macro.

TP_profile_pointer
The address of the unconverted TP profile as retrieved from DASD. Mapped
by ATBDFTP mapping macro.

TP Profile Conversion Exit

Chapter 5. Transaction Scheduler User Exits 61

Conv_data_pointer
The address that is to contain the converted TP profile. APPC/MVS obtains
and frees this storage.

Conv_data_length
The length that is available for saving a converted TP profile. The converted
TP profile must not exceed this length.

Return Specifications
Before returning control to its caller, the exit must place the length of the converted
TP profile in the Conv_data_length field, if the conversion was successful. Also, the
exit must ensure that the register contents are as follows:

Register Contents

GPRs 0-14 The exit must restore the contents to what they were when the exit
received control.

GPR 15 One of the following return code values:

Value Meaning

0 (0) Conversion was successful. APPC/MVS saves a copy of
the converted TP profile.

4 (4) Conversion was unsuccessful; the conversion exit did not
convert the profile. APPC/MVS saves a copy of the
unconverted TP profile.

12 (C) Conversion was unsuccessful; the conversion exit
encountered a syntax error. APPC/MVS does not save a
copy of the TP profile.

TP Profile Syntax Exit
This exit is provided to enable transaction schedulers to check the syntax of
scheduling information before it is added to the TP profile data set. The syntax
exit, which must be provided along with the scheduler and specified in the TP
profile's TPSCHED_EXIT keyword, is invoked on TPADD or TPMODIFY
commands by the APPC/MVS administration utility or administration dialog. If no
syntax exit is specified, the transaction scheduler information in the TP profile is
assumed to apply to the APPC/MVS transaction scheduler, and the APPC/MVS
administration utility and JCL converter/interpreter check it for the syntax
expected by that scheduler.

If a syntax exit is specified and it finds errors in the transaction scheduler
information, the exit can invoke an IBM-supplied message routine (see “Profile
Syntax Message Routine” on page 64) to write messages to the SYSPRINT data set
and can prevent the profile from being added or modified. The administrator who
is creating or modifying the TP profile can then correct the error and try again.

Environment
The syntax exit receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
RMODE: ANY

TP Profile Conversion Exit

62 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

ASC mode: Primary
Storage key: 1
TCB protect key: 1
Interrupt status: Enabled
Locks: The exit does not hold locks on entry.

Exit Recovery
The caller of the syntax exit should establish its own recovery environment before
calling the exit. The syntax exit should also establish its own recovery environment
and, within its recovery, request a tailored dump. Before the exit returns control to
its caller, the it must delete the recovery environment it established and free all
storage it obtained. If the syntax exit does not establish its own recovery
environment, the caller does the following when the exit ends abnormally:
v Writes a logrec data set error record, and
v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
To preserve the registers of the caller, the syntax exit must follow the linkage
conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Installation
The syntax exit must meet all the following conditions:
v Reside in LPA or in the LNKLST concatenation (for example, SYS1.LINKLIB)
v Be in an APF-authorized STEPLIB (see note below)
v Be link-edited with attributes reusable and reentrant.

Note: If the exit resides in the LPALST concatenation or in the LNKLST
concatenation, the system automatically considers the exit to be authorized.

See z/OS MVS Initialization and Tuning Reference for more information about the
LNKLST concatenation and APF-authorized libraries.

Entry Specifications
APPC/MVS passes information to the syntax exit in registers and in the scheduler
extract control block.

Registers on Entry: On entry to the syntax exit, the registers contain the following
information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents” on page 64.

GPRs 2-12 Do not contain any information for use by the exit.

TP Profile Syntax Exit

Chapter 5. Transaction Scheduler User Exits 63

Register Contents

GPR 13 The address of a standard 72-byte save area.

GPR 14 The return address.

GPR 15 The entry point address.

Parameter List Contents: Figure 17 illustrates the format and content of the
parameter list for the TP profile syntax exit.

Return Specifications
Before returning control to its caller, the syntax exit must ensure that the register
contents are as follows:

Register Contents

GPRs 0-14 The exit must restore the contents to what they were when the exit
received control.

GPR 15 One of the following decimal return code values:

Value Meaning

0 No syntax errors encountered; okay to add or modify
profile.

4 Syntax errors encountered; fix before adding or modifying
profile.

8 Processing error; could not check profile.

12 System error encountered.

Profile Syntax Message Routine
This message routine is provided by IBM to enable TP profile syntax exits to write
messages to the SYSPRINT data set about any errors that they find in the
scheduling information being specified on a TPADD or TPMODIFY command
through the APPC/MVS administration utility or dialog.

Environment
The profile syntax message routine receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode

TP Profile Syntax Exit
Parameter List
(in key 1 storage)

GPR 1

Length of each record
(in a fullword)

Number of records
(in a fullword)

Address of contiguous
text of all records

Address of the Profile
Syntax Message Routine

Pointer

Pointer

Pointer

Pointer

Pointer

Figure 17. Parameter List of the TP Profile Syntax Exit

TP Profile Syntax Exit

64 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
RMODE: ANY
ASC mode: Primary
Storage key: 1
TCB protect key: 1
Interrupt status: Enabled
Locks: The routine does not hold any locks on entry.

The TP profile syntax message routine runs under the APPC administration
utility's task in the APPC administration utility's address space.

Entry Specifications
The profile syntax message routine receives information through registers and a
parameter list.

Registers on Entry
On entry to the syntax message routine, the registers contain the following
information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents.”

GPRs 2-12 Do not contain any information for use by the exit.

GPR 13 The address of a standard 72-byte save area.

GPR 14 The return address.

GPR 15 The entry-point address.

Parameter List Contents
Figure 18 shows the input parameters to the TP profile syntax message routine.

Return Specifications
Before returning control to its caller, the profile syntax message routine sets the
register contents as follows:

Register Contents

GPRs 0-14 The routine restores the contents to what they were when the
routine received control.

Profile Syntax Message Routine
Parameter List
(in key 1 storage)

GPR 1

Actual text of message

Length of message
(in a fullword)

Pointer

Pointer

Pointer

Figure 18. Input to the TP Profile Syntax Message Routine

Profile Syntax Message Routine

Chapter 5. Transaction Scheduler User Exits 65

Register Contents

GPR 15 One of the following decimal return code values:

Value Meaning

0 No syntax errors encountered.

4 Errors encountered; no messages were sent to SYSPRINT.

Profile Syntax Message Routine

66 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2013 67

68 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix A. Character Sets

APPC/MVS makes use of character strings composed of characters from one of the
following character sets:
v Character set 01134, which is composed of the uppercase letters A through Z and

numerals 0-9.
v Character set Type A, which is composed of the uppercase letters A through Z,

numerals 0-9, national characters (@, $, #), and must begin with either an
alphabetic or a national character.

v Character set 00640, which is composed of the uppercase and lowercase letters A
through Z, numerals 0-9, and 19 special characters. Note that APPC/MVS does
not allow blanks in 00640 character strings.

These character sets, along with hexadecimal and graphic representations, are
provided in the following table:

Table 3. Character Sets 01134, Type A, and 00640

Hex
Code Graphic Description

Character Set

01134 Type A 00640
40 Blank
4B . Period X
4C < Less than sign X
4D (Left parenthesis X
4E + Plus sign X
50 & Ampersand X
5B $ Dollar sign X (Note 1)
5C * Asterisk X (Note 2)
5D) Right parenthesis X
5E ; Semicolon X
60 – Dash X
61 / Slash X
6B , Comma X (Note 3)
6C % Percent sign X
6D _ Underscore X
6E > Greater than sign X
6F ? Question mark X
7A : Colon X
7B # Pound sign X (Note 1)
7C @ At sign X (Note 1)
7D ' Single quote X
7E = Equals sign X
7F " Double quote X
81 a Lowercase a X
82 b Lowercase b X
83 c Lowercase c X
84 d Lowercase d X
85 e Lowercase e X
86 f Lowercase f X
87 g Lowercase g X
88 h Lowercase h X
89 i Lowercase i X

© Copyright IBM Corp. 1991, 2013 69

Table 3. Character Sets 01134, Type A, and 00640 (continued)

Hex
Code Graphic Description

Character Set

01134 Type A 00640
91 j Lowercase j X
92 k Lowercase k X
93 l Lowercase l X
94 m Lowercase m X
95 n Lowercase n X
96 o Lowercase o X
97 p Lowercase p X
98 q Lowercase q X
99 r Lowercase r X
A2 s Lowercase s X
A3 t Lowercase t X
A4 u Lowercase u X
A5 v Lowercase v X
A6 w Lowercase w X
A7 x Lowercase x X
A8 y Lowercase y X
A9 z Lowercase z X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X

Character Sets

70 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Table 3. Character Sets 01134, Type A, and 00640 (continued)

Hex
Code Graphic Description

Character Set

01134 Type A 00640
F9 9 Nine X X X

Note:

1. Avoid these characters because they display differently depending on the
national language code page in use.

2. Avoid using the asterisk in TP names because it causes a subset list request
when entered on panels of the APPC administration dialog and in DISPLAY
APPC commands.

3. Avoid using the comma in TP names because it acts as a parameter delimiter
when entered in DISPLAY APPC commands.

Character Sets

Appendix A. Character Sets 71

Character Sets

72 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix B. Previous Versions of APPC/MVS System
Services

This section describes previous APPC/MVS system service calls that have been
replaced by newer versions. The newer versions are documented in Chapter 4,
“APPC/MVS System Services Summary,” on page 17. These previous versions
remain valid in later releases but contain no enhancements.

Callers of these system services must be in supervisor state or PSW key 0-7. Callers
that are not in supervisor state or PSW key 0-7 end with system completion
(abend) code 0C2, with the exception of ATBMIGRP, which provides a return code.

ATBCMAS— Cleanup_Address_Space

Note: The ATBCAS1 call is the preferred programming interface for this service.

Cleanup_Address_Space can be used to request APPC/MVS to clean up all
APPC/MVS resources for an address space. APPC/MVS cleans up all conversation
resources for all transaction programs that are associated with the address space at
the time the Cleanup_Address_Space was issued.

The Cleanup_Address_Space service can be invoked by a transaction scheduler
subordinate address space for a transaction program or job that terminates
normally or abnormally.

APPC/MVS deletes the TP_ID or TP_IDs from the system as a result of this call;
this cleanup process might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter

CALL ATBCMAS (ASCB_ptr,
Condition,
Return_code
);

Figure 19. ATBCMAS - Cleanup_Address_Space Service

© Copyright IBM Corp. 1991, 2013 73

v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) for the address
space to be cleaned up. All conversations for all transaction program instances
associated with this address space are to be deallocated. Invokers of this
service can get this value from the PSAAOLD field in the PSA for the current
address space or from the RMPLASCB field in the RMPL, resource manager
parameter list. If this parameter is set to zero, the home address space of the
program that issued the Cleanup_Address_Space call will be used as the
default address space.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
generate the TYPE of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally, even
though it might have left active conversations. APPC/MVS deallocates
all conversations in a proper state for normal deallocation with
Deallocate Type(Sync_Level). All conversations not in the proper state
for a normal deallocation are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or the
transaction program was terminated on behalf of some action by the
system (for example, the address space was cancelled or forced). This
condition is normally detected by the transaction scheduler's
subordinate address space. All active conversations are deallocated
with Type(Abend_SVC).

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_Address_Space might return one of the following decimal values in
the return code parameter:

Decimal
Meaning

0 Request accepted. All conversations owned by the address space are
cleaned up asynchronously.

4 No conversations exist to be cleaned up.

ATBCMAS— Cleanup_Address_Space

74 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

8 The ASCB_ptr supplied does not point to a valid ASCB.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. Conversations with active APPC requests are not immediately deallocated.

Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. When no APPC resources are to be cleaned up, Cleanup_Address_Space might
access fields located through the ASCB_Ptr parameter before it establishes
recovery (to improve performance). If an incorrect ASCB_ptr is passed to
ATBCMAS, the caller may abend with completion code X'0C4' when ATBCMAS
uses the passed value to get addressability to fields in the ASCB.

3. The Condition parameter defaults to zero (normal) if an incorrect condition is
specified.

4. Transaction schedulers that call the Cleanup_Address_Space service while
running in task mode should not have any enabled unlocked task (EUT)
functional recovery routines (FRRs) established. For more information about
EUT FRRs, see the information on providing recovery in z/OS MVS
Programming: Authorized Assembler Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on
whether a syncpoint operation is in progress. When a syncpoint operation is in
progress for the current UR for the context with which the protected
conversation is associated, APPC/MVS does not immediately deallocate the
conversation. The syncpoint operation is allowed to complete. As part of the
syncpoint processing, the protected conversation might be deallocated, in which
case no further cleanup is required for that conversation.
If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:
v The protected conversation is deallocated with TYPE(ABEND_SVC).
v The current UR is put into backout-required state.
v If the protected conversation is an inbound conversation, the logical unit of

work ID (LUWID) for the next UR is reset.
v The current UR and subsequent units of recovery for the context will not

include the protected conversation being cleaned up by this service.

ATBCMTP— Cleanup_TP
Cleanup_TP can be used to request that APPC/MVS clean up all conversation
resources associated with a transaction program instance. Conversation resources
include network resources, control blocks, and buffers which are used by
APPC/MVS to manage the transaction program instance and its conversations.

The Cleanup_TP service can be invoked for the following reasons:
v The transaction program requested by an inbound allocate request is not

recognized or not available.

ATBCMAS— Cleanup_Address_Space

Appendix B. Previous Versions of APPC/MVS System Services 75

v The transaction scheduler cannot queue or schedule the transaction program at
this time.

v The requesting user ID is not authorized to use the transaction program.
v The transaction program has been attached and executed, and has completed

normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller's
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

CALL ATBCMTP (TP_ID,
Condition,
Return_Code
);

Figure 20. ATBCMTP - Cleanup_TP

ATBCMTP— Cleanup_TP

76 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies that the transaction program completed normally, even
though it might have left active conversations. APPC/MVS deallocates
all conversations in a proper state for normal deallocation with
Deallocate Type(Sync_Level). All conversations not in the proper state
for a normal deallocation are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or the
transaction program was terminated on behalf of some action by the
system (for example, the address space was cancelled or forced). This
condition is normally detected by the transaction scheduler's
subordinate address space. All active conversations are deallocated
with Type(Abend_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that is not temporary. The partner
should not attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that might be temporary. The
partner might attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084B6031'X.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the conversation with a
sense code of X'10086021'.

5 Security_Not_Valid

Specifies that the transaction scheduler detected a security violation.
APPC/MVS deallocates the conversation with a sense code of
X'080F6051'.

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the level of
synchronization requested by the sender. APPC/MVS deallocates the
conversation with a sense code of X'10086041'.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_TP might return one of the following decimal values in the return
code parameter:

Decimal
Meaning

0 Request accepted. All conversations owned by the transaction program
instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

ATBCMTP— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services 77

8 The TP_ID parameter specified a nonexistent transaction program
instance.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. Conversations with active APPC requests are not immediately deallocated.

Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. The Condition parameter defaults to zero (normal) if the specified condition is
not valid.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB
as a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application's recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while running in task
mode should not have any enabled unlocked task (EUT) functional recovery
routines (FRRs) established. For more information about EUT FRRs, see the
information on providing recovery in z/OS MVS Programming: Authorized
Assembler Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on
whether a syncpoint operation is in progress. When a syncpoint operation is in
progress for the current UR for the context with which the protected
conversation is associated, APPC/MVS does not immediately deallocate the
conversation. The syncpoint operation is allowed to complete. As part of the
syncpoint processing, the protected conversation might be deallocated, in which
case no further cleanup is required for that conversation.
If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:
v The protected conversation is deallocated with TYPE(ABEND_SVC).
v The current UR is put into backout-required state.
v If the protected conversation is an inbound conversation, the logical unit of

work ID (LUWID) for the next UR is reset.
v The current UR and subsequent units of recovery for the context will not

include the protected conversation being cleaned up by this service.

ATBCTP1— Cleanup_TP
Cleanup_TP can be used to request that APPC/MVS clean up all conversation
resources associated with a transaction program instance. Conversation resources
include network resources, control blocks, and buffers that are used by
APPC/MVS to manage the transaction program instance and its conversations.

The Cleanup_TP service might be invoked for the following reasons:
v The transaction program requested by an inbound allocate request is not

recognized or not available.

ATBCMTP— Cleanup_TP

78 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v The transaction scheduler cannot queue or schedule the transaction program at
this time.

v The requesting user ID is not authorized to use the transaction program
v The transaction program has been attached and executed, and has completed

normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
may occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller's
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

CALL ATBCTP1 (TP_ID,
Condition,
Notify_Type,
Return_Code
);

Figure 21. ATBCTP1 - Cleanup_TP

ATBCTP1— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services 79

0 Normal

Specifies that the transaction program completed normally, even
though it might have left active conversations. APPC/MVS deallocates
all conversations in a proper state for normal deallocation with
Deallocate Type(Sync_Level). All conversations not in the proper state
for a normal deallocation are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or the
transaction program was terminated on behalf of some action by the
system (for example, the address space was cancelled or forced). This
condition is normally detected by transaction scheduler's subordinate
address space. All active conversations are deallocated with
TYPE(ABEND_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that is not temporary. The partner
should not attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule the
transaction because of a condition that might be temporary. The
partner can attempt to retry the request. APPC/MVS deallocates the
conversation with a sense code of X'084B6031'X.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the conversation with a
sense code of X'10086021'.

5 Security_Not_Valid

Specifies that the transaction scheduler detected a security violation.
APPC/MVS deallocates the conversation with a sense code of
X'080F6051'.

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the level of
synchronization requested by the sender. APPC/MVS deallocates the
conversation with a sense code of X'10086041'.

7 User_Not_Authorized_For_TP

Specifies that the user is not authorized to access the transaction
program. APPC/MVS deallocates the conversation with a sense code of
X'080F0983'.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,

ATBCTP1— Cleanup_TP

80 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

which returns control to the program immediately and later notifies the
program by ECB when the service is complete. The possible types are:
v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB
Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.
When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during
asynchronous processing, and the specified ECB is posted when all returned
parameters are set. The completion code field in the ECB contains the return
code for the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_TP may return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Request accepted. All conversations owned by the transaction program
instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The TP_ID parameter specified a nonexistent transaction program
instance.

12 The asynchronous request failed. Resubmit the request with a
Notify_Type of None or report the problem to IBM.

20 APPC/MVS was cancelled during an asynchronous request for this
service.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. Conversations with active APPC requests are not immediately deallocated.

Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

ATBCTP1— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services 81

2. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB
as a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application's recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the information
on providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on
whether a syncpoint operation is in progress. When a syncpoint operation is in
progress for the current UR for the context with which the protected
conversation is associated, APPC/MVS does not immediately deallocate the
conversation. The syncpoint operation is allowed to complete. As part of the
syncpoint processing, the protected conversation might be deallocated, in which
case no further cleanup is required for that conversation.
If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:
v The protected conversation is deallocated with TYPE(ABEND_SVC).
v The current UR is put into backout-required state.
v If the protected conversation is an inbound conversation, the logical unit of

work ID (LUWID) for the next UR is reset.
v The current UR and subsequent units of recovery for the context will not

include the protected conversation being cleaned up by this service.

ATBIDEN— Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself
and is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to
communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:
1. Identify itself to APPC/MVS.
2. Provide its XCF member token to APPC/MVS so that it can be notified of

inbound Allocate requests.
3. Optionally identify an “information extract exit” that can be invoked by

APPC/MVS when it needs information from the transaction scheduler.
4. Determine whether the APPCPMxx parmlib member correctly defines the LUs

for the transaction scheduler.
5. Specify initial status for LUs belonging to the transaction scheduler.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode

ATBCTP1— Cleanup_TP

82 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the SCHED
keyword of one or more LUADD statements in APPCPMxx. The transaction
scheduler name will also be used for operator displays. If the transaction
scheduler runs only as a “single instance per system,” this value should be a
string which suggests the name of the component performing the Identify (for
example, “ASCH” is an abbreviation used to identify the APPC transaction
scheduler). If the transaction scheduler can run as “multiple copies per
system,” this value should be a string which identifies a particular copy of the
transaction scheduler (for example, subsystems might wish to use the
subsystem name which appears in the IEFSSNxx parmlib member). Once a
transaction scheduler has successfully been identified, no other Identify call
using the same Scheduler_Name will be accepted unless a corresponding
Unidentify statement is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler's information extract exit.
This is an optional exit and can be left zero. See “Extract Exit” on page 58 for
information about coding a transaction scheduler extract exit.

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string

CALL ATBIDEN (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Return_code
);

Figure 22. ATBIDEN - Identify

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services 83

v Char set: No restriction
v Length: 8 bytes

Specifies a user defined field or token passed to the transaction scheduler's
information extract exit.

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler's
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound Allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival
of inbound Allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound Allocate request
that specifies a TP_Name for which a TP_Profile entry does not exist. If
a TP_Profile entry does not exist, the inbound Allocate request is
rejected with TP_Not_Recognized (sense code X'10086021').

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks, and will reject the request if
any of these checks fail. If a TP_Profile entry does not exist,
APPC/MVS will indicate this in the XCF message sent to the
transaction scheduler to notify it of the inbound Allocate request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

ATBIDEN— Identify

84 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Valid values for this parameter are:

Value Meaning

0 Active

Specifies that APPC/MVS should activate the LU or LUs controlled by
this transaction scheduler. The status of every LU controlled by this
transaction scheduler will initially be put into Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to the LU or LUs controlled by this transaction
scheduler. The transaction scheduler has to call Control Resume in
order for the LU to begin accepting inbound requests. The status of
every LU controlled by this transaction scheduler, whether it is added
to the system at initialization or by a subsequent SET command, will
initially be put into Outbound_Only state, unless Control Resume_All
is called to set the status.

When the APPC address space terminates and restarts, the transaction
schedulers that have done Identify and Connect before have to
reidentify themselves and reconnect all their subordinate address
spaces. A transaction scheduler can use this option to temporarily halt
processing of inbound Allocate requests to the LU while it is in the
process of reconnecting its subordinate address spaces. It can issue a
Control Resume request to activate all the LUs when the reconnect
process is finished.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Identify may return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is present. The
APPCPMxx parmlib member or members specify at least one LU name
that is controlled by the transaction scheduler, but no LU name is
designated as the transaction scheduler's base LU. This situation may
arise because the APPCPMxx parmlib member was incorrectly coded,
or because the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are applicable.
APPC/MVS found that the APPCPMxx parmlib member specifies no
LU names that are controlled by the transaction scheduler. This
situation may arise because the APPCPMxx parmlib member did not
specify the correct transaction scheduler name on the SCHED keyword
of LUADD, or it may arise because APPC/MVS tried to initialize for
the specified LU name and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction scheduler

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services 85

address space is already identified using the same scheduler name as
the Scheduler_name parameter passed in. This may occur if the caller
issued Identify twice with the same scheduler name.

14 The Identify request was rejected. The calling transaction scheduler
address space is already identified using a different scheduler name
from the Scheduler_name parameter passed in. This may occur if the
caller issued Identify twice with different scheduler names.

16 The Identify request was rejected. The Scheduler_Name parameter of
Identify is already in use by some other address space that previously
issued Identify.

20 The Identify request was rejected. The Scheduler_Name parameter
value is not valid.

24 The Identify request was rejected. The TP_Profile_Processing parameter
value is not valid.

28 The Identify request was rejected. The LU_Initial_Status parameter
value is not valid.

32 The requested service is not supported in the caller's environment. For
example, this return code is given if the caller invokes any of the
transaction scheduler services while holding a lock.

38 The requested transaction scheduler service cannot be invoked from a
subordinate address space, or an address space that has outstanding
APPC/MVS conversations.

40 The requested transaction scheduler service cannot be invoked from an
APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Usage Notes
1. The transaction scheduler will be notified of an inbound Allocate request only

if the request passes all validity and security checks. The userid specified in the
request must have RACF authority to access the TP profile entry (whether or
not it exists) and if the TP profile entry is found it must be marked “activated”.

2. Timing restrictions on activities after Identify
The transaction scheduler may create subordinate address spaces and invoke
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:
v The base LU is successfully initialized.
v ATBSASA is called to prevent Allocated conversations being associated with

the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 49.

3. Factors delaying asynchronous completion of Identify
Some conditions may substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.
An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify

ATBIDEN— Identify

86 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Some conditions might cause an Identify to fail asynchronously after it has
been accepted; for example, VTAM parameters might be mismatched (there
might not be an APPL macro for the specified LU name), or APPC/MVS might
not be able to open the specified TP profile file.
An XCF message will be sent to the XCF-member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.
A transaction scheduler address space must issue Unidentify to undo its
Identify even if all of its LUs fail asynchronously.
When LU initialization fails asynchronously, APPC/MVS will issue
error-messages indicating the cause of the failure (for example, unable to open
the TP profile file). These messages will be issued to the same operator who
receives messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler
See “ATBMIGRP— Join_Sysappc_Group” on page 94 for information regarding
joining an XCF group.

6. Asynchronous initialization of the base LU name
If Identify produces a return code of zero, then the transaction scheduler
issuing Identify will receive an LU activation or LU deactivation message, with
LU_Flags indicating that the message describes the base LU name. An LU
deactivation message will indicate asynchronous failure of the attempt to
initialize the LU name; an LU activation message will indicate successful
initialization of the LU name.

7. Operation without a base LU name
If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command that establishes a
base LU name for the transaction scheduler.
APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler might wish to issue its own operator
message asking the operator to perform such a SET command.

8. Operation with no LU names
If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base LU
name for the transaction scheduler.
In this case, APPC/MVS issues an operator message telling the operator to
perform such a SET command.

Characteristics and Restrictions
1. Identify performs an automatic Connect of the home address space of the

calling transaction scheduler. (See “Connect” on page 31.)
2. APPC/MVS supports one Identify per address space. Because of this, each

transaction scheduler must be in its own address space.
3. The Identify service causes APPC/MVS to open a VTAM ACB or ACBs for the

transaction scheduler's LUs. The ACB or ACBs are opened asynchronously if
the Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler's
corresponding XCF message user routine and information extract exit can be
invoked at any time.

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services 87

5. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an Allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

6. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

ATBIDN1— Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself
and is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to
communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:
1. Identify itself to APPC/MVS.
2. Provide its XCF member token to APPC/MVS so that it can be notified of

inbound Allocate requests.
3. Optionally identify an information extract exit that may be invoked by

APPC/MVS when it needs information from the transaction scheduler.
4. Determine whether the APPCPMxx parmlib member correctly defines the LUs

for the transaction scheduler.
5. Specify initial status for LUs belonging to the transaction scheduler.
6. Identify an exit to convert a TP profile the first time it is referenced, and store

the converted profile for future references.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

ATBIDEN— Identify

88 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character String
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the SCHED
keyword of one or more LUADD statements in APPCPMxx. The transaction
scheduler name will also be used for operator displays.

If the transaction scheduler runs only as a “single instance per system,” this
value should be a string that suggests the name of the component performing
the Identify (for example, “ASCH” is an abbreviation used to identify the
APPC transaction scheduler). If the transaction scheduler can run as “multiple
copies per system,” this value should be a string that identifies a particular
copy of the transaction scheduler (for example, subsystems may wish to use
the subsystem name that appears in the IEFSSNxx parmlib member).

Once a transaction scheduler has successfully been identified, no other Identify
call using the same Scheduler_Name will be accepted unless a corresponding
Unidentify statement is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler's information extract exit.
This is an optional exit and may be left zero. See “Extract Exit” on page 58 for
information about the requirements for and processing of a transaction
scheduler extract exit.

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies a user-defined field or token passed to the transaction scheduler's
information extract exit.

CALL ATBIDN1 (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Scheduler_TP_profile_exit,
Scheduler_TP_profile_exit_data,
Return_codes
);

Figure 23. ATBIDN1 - Identify

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services 89

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler's
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound Allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival
of inbound Allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound Allocate request
that specifies a TP_Name for which a TP_Profile entry does not exist. If
a TP_Profile entry does not exist, the inbound Allocate request is
rejected with TP_Not_Recognized (sense code X'10086021').

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks and reject the request if any of
these checks fail. If a TP_Profile entry does not exist, APPC/MVS will
indicate this in the XCF message sent to the transaction scheduler to
notify it of the inbound Allocate request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

Valid values for this parameter are:

Value Meaning

0 Active

ATBIDN1— Identify

90 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies that APPC/MVS should activate the LU(s) controlled by this
transaction scheduler. The status of every LU controlled by this
transaction scheduler will initially be put into Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to the LU or LUs controlled by this transaction
scheduler. For the LU to begin accepting inbound requests, the
transaction scheduler has to call the Control service for the
Resume_All_Input function. The status of every LU controlled by this
transaction scheduler, whether it is added to the system at initialization
or by a subsequent SET command, will initially be put into
Outbound_Only state, unless Control Resume_All_Input is called to set
the status.

When the APPC address space terminates and restarts, the transaction
schedulers that have called Identify and Connect before have to
reidentify themselves and reconnect all their subordinate address
spaces. A transaction scheduler can use this option to temporarily halt
processing of inbound Allocate requests to the LU while it is in the
process of reconnecting its subordinate address spaces. It can issue a
Control Resume request to activate all the LUs when the reconnect
process is finished.

Scheduler_TP_profile_exit
Supplied parameter
v Type: Character string
v Char set: 01134
v Length: 8 bytes

Specifies the name of the exit that will receive control when the TP profile
requires conversion. To specify no exit, set this parameter to 8 blanks. For more
information about the requirements for and processing of this exit, see “TP
Profile Conversion Exit” on page 60.

Scheduler_TP_profile_exit_data
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies data to be passed to the TP profile conversion exit each time it is
invoked; for example, the address of a workarea for the exit to use. For more
information about how the exit receives this input data, see “TP Profile
Conversion Exit” on page 60.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Identify might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services 91

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is present. The
APPCPMxx parmlib member or members specify at least one LU name
that is controlled by the transaction scheduler, but no LU name is
designated as the transaction scheduler's base LU. This situation might
arise because the APPCPMxx parmlib member was incorrectly coded,
or because the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are applicable.
APPC/MVS found that the APPCPMxx parmlib member specifies no
LU names that are controlled by the transaction scheduler. This
situation might arise because the APPCPMxx parmlib member did not
specify the correct transaction scheduler name on the SCHED keyword
of LUADD, or it might arise because APPC/MVS tried to initialize for
the specified LU name and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction scheduler
address space is already identified using the same scheduler name as
the Scheduler_name parameter passed in. This may occur if the caller
issued Identify twice with the same scheduler name.

14 The Identify request was rejected. The calling transaction scheduler
address space is already identified using a different scheduler name
from the Scheduler_name parameter passed in. This may occur if the
caller issued Identify twice with different scheduler names.

16 The Identify request was rejected. The Scheduler_Name parameter of
Identify is already in use by some other address space that previously
issued Identify.

18 The Identify request was rejected. The Scheduler_TP_profile_exit name
that was passed could not be loaded.

20 The Identify request was rejected. The Scheduler_Name parameter
value is not valid.

22 The Identify request was rejected. The Scheduler_TP_profile_exit name
is not valid.

24 The Identify request was rejected. The TP_Profile_Processing parameter
value is not valid.

28 The Identify request was rejected. The LU_Initial_Status parameter
value is not valid.

32 The requested service is not supported in the caller's environment. For
example, this return code is given if the caller invokes any of the
transaction scheduler services while holding a lock.

38 The requested transaction scheduler service cannot be invoked from a
subordinate address space, or an address space that has outstanding
APPC/MVS conversations.

40 The requested transaction scheduler service cannot be invoked from an
APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

ATBIDN1— Identify

92 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Usage Notes
1. The transaction scheduler will be notified of an inbound Allocate request only

if the request passes all validity and security checks. The userid specified in the
request must have RACF authority to access the TP profile entry (whether or
not it exists), and if the TP profile entry is found, it must be marked
“activated”.

2. Timing restrictions on activities after Identify
The transaction scheduler might create subordinate address spaces and call
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:
v The base LU is successfully initialized
v ATBSASA is called to prevent allocated conversations being associated with

the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 49.

3. Factors delaying asynchronous completion of Identify
Some conditions might substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.
An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify
Some conditions might cause an Identify to fail asynchronously after it has
been accepted, for example, VTAM parameters might be mismatched (there
might not be an APPL macro for the specified LU name), or APPC/MVS may
be unable to open the specified TP profile file.
An XCF message will be sent to the XCF member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.
A transaction scheduler address space must issue Unidentify to undo its
Identify, even if all of its LUs fail asynchronously.
When LU initialization fails asynchronously, the system issues error messages
indicating the cause of the failure (for example, unable to open the TP profile
file). These messages will be issued to the same operator who receives
messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler
See “Join_Sysappc_Group” on page 46 for information regarding joining an
XCF group.

6. Asynchronous initialization of the base LU name
If Identify produces a return code of zero, then the transaction scheduler
issuing Identify will receive an LU activation or LU deactivation message, with
LU_Flags indicating that the message describes the base LU name. An LU
deactivation message will indicate asynchronous failure of the attempt to
initialize the LU name; an LU activation message will indicate successful
initialization of the LU name.

7. Operation without a base LU name
If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command which establishes a
base LU name for the transaction scheduler.

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services 93

APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler can issue its own operator message
asking the operator to perform such a SET command.

8. Operation with no LU names
If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base LU
name for the transaction scheduler.
In this case, APPC/MVS issues an operator message telling the operator to
perform such a SET command.

Characteristics and Restrictions
1. Identify performs an automatic Connect of the home address space of the

calling transaction scheduler. (See “Connect” on page 31.)
2. APPC/MVS supports one Identify per address space. Because of this, each

transaction scheduler must be in its own address space.
3. The Identify service causes APPC/MVS to open one or more VTAM ACBs for

the transaction scheduler's LUs. The ACBs are opened asynchronously if the
Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler's
corresponding XCF message user routine and information extract exit may be
invoked at any time.

5. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

6. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

ATBMIGRP— Join_Sysappc_Group

Note: The ATBJGP1 call is the preferred programming interface for this service.

Use ATBMIGRP to join the XCF group used by APPC/MVS. Each transaction
scheduler must join the APPC XCF group. Other system applications can also join
the APPC XCF group to be notified of APPC events.

APPC/MVS communicates with members of its XCF group by invoking their XCF
message user routines. The APPC/MVS notifies all group members of general
interest events such as APPC initialization and termination. APPC/MVS also
notifies individual transaction schedulers when inbound allocate requests arrive for
them. To notify individual schedulers, APPC/MVS uses a member_token that the
transaction scheduler passes in on the Identify service. A transaction scheduler
must call the Join_Sysappc_Group service, which provides the member token,
before calling the Identify service. Unlike Identify and most other scheduler
services, the Join_Sysappc_Group service can be called when the APPC/MVS is
not active.

ATBIDN1— Identify

94 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

If you do not use the Join_Sysappc_Group service to join the APPC XCF group,
you must use APPC_GROUP_NAME as the group name with the IXCJOIN macro.
A different group name is chosen on each system; therefore, each such group is
“local to a system” and APPC/MVS can use the facilities of XCF regardless of
whether XCF can perform cross-system communication. Also, the service performs
IXCJOIN with the LASTING=NO option; thus, XCF “system-local mode” can be
tolerated.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

XCFMSGIN_exit_address
Supplied parameter
v Type: Address
v Char Set: N/A
v Length: 32 bits

XCFMSGIN_exit_address specifies the address of the transaction scheduler's
XCF message user routine. The routine takes control when a message becomes
available for this member from another member of the group. For details about
the message user routine, see “XCF Message User Routine” on page 53.

XCFMSGIN_memdata
Supplied parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

XCFMSGIN_memdata is an optional parameter that specifies an 8 byte
member data field. This field is provided to the message user routine for this
member. If you do not specify a value, XCF sets the member data field to
binary zero. The transaction scheduler can use this field to pass the address
and ASID or ALET of a particular control structure to the XCF message user
routine.

CALL ATBMIGRP (XCFMSGIN_exit_address,
XCFMSGIN_memdata,
Member_token,
XCF_return_code,
XCF_reason_code,
Return_code
);

Figure 24. ATBMIGRP - Join_Sysappc_Group

ATBMIGRP— Join_Sysappc_Group

Appendix B. Previous Versions of APPC/MVS System Services 95

Member_token
Returned parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

Member_token specifies the location where this service places the member
token that represents the caller of this service.

XCF_return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The return code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

XCF_reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The reason code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Join_Sysappc_Group might return one of the following decimal values in the
return code parameter:

Decimal
Meaning

0 Request successful.

8 Request unsuccessful - XCF failed or request denied by XCF.

40 The caller was not running in supervisor state or PSW key 0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions
1. This service will execute successfully even if XCF is operating in XCF local

mode.
2. The caller must issue the IXCLEAVE macro to undo the effects of

Join_Sysappc_Group. IXCLEAVE processing is performed automatically if the
caller's address space or task terminates.

3. The message buffer that is provided in the message user routine must be
accessible using the same protect key that is in effect at invocation of
Join_Sysappc_Group.

4. The task that calls this service might end abnormally if a privileged program
issues the XCF IXCTERM macro against this member. In that case, the task

ATBMIGRP— Join_Sysappc_Group

96 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

terminates with system completion code 00C, reason code 4, and the task's
recovery routine cannot retry. Transaction schedulers can handle this by
attaching a subtask that invokes Join_Sysappc_Group, and reattaching the
subtask if it terminates with completion code 00C, reason code 4.

5. A transaction scheduler can join XCF groups other than the APPC group joined
by this service.

6. The name of APPC's XCF group might vary from system to system and might
change during re-IPL. If you need to know the XCF group name used by
APPC, for example, to dedicate specific resources to it, you can use the
ATBAPPCA mapping macro, which appears in z/OS MVS Data Areas, Vol 1

7. Transaction schedulers that call the Join_Sysappc_Group service should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

ATBUNID— Unidentify

Note: The ATBUID1 call is the preferred programming interface for this service.

Unidentify can be used by a transaction scheduler to reverse the effect of
invocation of the Identify service. Unidentify terminates all APPC services for the
specified transaction scheduler and its subordinate address spaces.

After performing Unidentify, a transaction scheduler can invoke the IXCLEAVE
macro to undo the effects of its invocation of Join_Sysappc_Group.

APPC/MVS asynchronously shuts down the LU or LUs assigned to the transaction
scheduler that called Unidentify. The calling program does not have to wait for this
to occur. Once the Unidentify request is accepted, APPC/MVS returns control to
the calling program and assumes responsibility for taking down the LU or LUs.

Shut down automatically disconnects address spaces currently connected to the
issuing transaction scheduler. Shutting down an LU also includes setting the
session limits to zero. Conversations that are currently running will run to
completion. Any outstanding transaction program allocate requests will not be
honored. Upon completion of all of the LU's conversations, the ACB is closed. The
LU is then placed in pending state, to await another Identify request. A transaction
scheduler must issue Identify if it is to restart.

The Unidentify must be issued from the address space that issued the Identify.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

ATBMIGRP— Join_Sysappc_Group

Appendix B. Previous Versions of APPC/MVS System Services 97

Format

Parameters

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Unidentify might return one of the following decimal values in the return code
parameter:

Decimal
Meaning

0 Unidentify was accepted.

32 The requested service is not supported in the caller's environment. For
example, this return code will be given if the caller invokes any of the
transaction scheduler services while holding a lock.

34 The requested transaction scheduler service must be invoked from a
transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Unidentify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

CALL ATBUNID (Return_Code
);

Figure 25. ATBUNID - Unidentify

ATBUNID— Unidentify

98 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix C. Accessibility

Accessible publications for this product are offered through the z/OS® Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1991, 2013 99

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

100 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix C. Accessibility 101

102 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2013 103

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS™, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

104 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book is intended to help the customer to write authorized transaction
schedulers for use with APPC/MVS. This book documents General-use
Programming Interface and Associated Guidance Information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml
(http://www.ibm.com/legal/copytrade.shtml).

Notices 105

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

106 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Glossary

This glossary defines technical terms and
abbreviations used in APPC/MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate APPC/MVS
book or view the IBM Glossary of Computing
Terms, located on the Internet at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from
American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standard (ANSI).
Copies may be purchased from the American
National St Institute, 11 West 42nd Street, New
York, New York 10036.

A

access method control block (ACB)
A control block that links an application
program to an access method such as
VSAM or VTAM.

access method
A software component in a processor for
controlling the flow of information.

adjacent nodes
Nodes that are connected to a given node
by one or more links with no intervening
nodes.

Advanced Program-to-Program Communication
(APPC)

A set of inter-program communication
services that support cooperative
transaction processing in a SNA network.
APPC is the implementation, on a given
system, of SNA's logical unit type 6.2. See
also logical unit type 6.2 and APPC/MVS.

allocate queue
In APPC, a structure containing elements
that represent requests to allocate (start) a
conversation with an APPC/MVS server.
APPC/MVS queues allocate requests on a
first-in, first-out (FIFO) basis until they
are selected (received) by an APPC/MVS
server.

allocate queue keep time
An APPC/MVS server can specify a keep
time for an allocate queue for which it is
registered. Keep time is the number of
seconds APPC/MVS maintains an allocate

queue when there are no servers for an
allocate queue. For example, keep time
would take effect when the last server of
an allocate queue unregisters.

allocate queue token
When an APPC/MVS server registers to
serve inbound allocate requests,
APPC/MVS returns an allocate queue
token to the server. This token uniquely
identifies the queue of allocate requests
(or allocate queue) to be served. On
subsequent calls to APPC/MVS services,
the server uses the allocate queue token
to indicate the allocate queue upon which
a requested function is to be performed.

allocate request
In APPC, a request from a transaction
program to allocate (start) a conversation
with another transaction program. The
request may be inbound (arriving from
the network for a local transaction
program) or outbound (going from a local
transaction program onto the network).

APPC See Advanced Program-to-Program
Communication.

APPC component
The component of MVS that is
responsible for extending LU 6.2 and CPI
Communications services to applications
running in any MVS address space.
Includes APPC conversation and
scheduling services.

APPC/MVS
The implementation of SNA's LU 6.2 and
related communication services in the
MVS base control program.

APPC/MVS server
In APPC, an MVS application program
that uses the APPC/MVS
Receive_Allocate callable service to
process work requests on behalf of one or
more requestor programs (client TPs). An
APPC/MVS server can serve multiple
client TPs serially or concurrently.

APPC/MVS transaction scheduler
A program supplied by APPC/MVS that
is responsible for scheduling, initiating,

© Copyright IBM Corp. 1991, 2013 107

http://www.ibm.com/software/globalization/terminology/

and terminating MVS TPs in response to
inbound work requests.

APPC/VM
The implementation of APPC on a VM
system.

APPC/VTAM
The implementation of APPC on VTAM.

Application-to-application communication
A set of inter-program communication
services that support cooperative
transaction processing in an SNA
network. See also logical unit type LU 6.2.

application
A collection of software components, or
programs, used to perform specific types
of user-oriented work on a computer.
Compare with distributed application.

B

backout
The process of restoring data changed by
an application program to the state at its
last sync point. Synonymous with rollback
and abort

base logical unit
In APPC/MVS, the default logical unit for
outbound work. When a transaction
program allocates a conversation but
leaves the Local_LU_name parameter
blank, the system can use a base LU to
handle the conversation. A base LU can
be associated with a transaction scheduler,
or it can be a NOSCHED LU.

See also system base LU.

basic conversation
A type of conversation in which programs
exchange data records in an SNA-defined
format. This format is a stream of data
containing 2-byte length prefixes that
specify the amount of data to follow
before the next prefix. Contrast with
mapped conversation.

bind In SNA, a request to activate a session
between two logical units.

boundary function
A capability of a subarea node to provide
protocol support for attached peripheral
nodes.

C

call See communication call.

change number of sessions
This is a set of verbs provided by SNA
that allow an application to change the
(LU,mode) session limit, which controls
the number of LU-LU sessions per mode
name that are available between two LUs
for allocation to conversations.

class of service
A designation of the path control network
characteristics, such as path security,
transmission priority, and bandwidth, that
apply to a particular session.

client A functional unit that receives shared
services from a server.

client/server
The model of interaction in distributed
data processing in which a program at
one site sends a request to a program at
another site and awaits a response. The
requesting program is called a client; the
answering program is called a server.

CNOS See change number of sessions.

commit
To end the current scope of recovery and
begin a new one.

To make all changes permanent that were
made to one or more database files since
the last commit or backout operation, and
make the changed records available to
other users.

committed change
A database change that will not be backed
out during system failure. Changes made
by a logical unit of work are committed
when the sync point at the end of the
logical unit of work is complete.

Common Programming Interface
Provides languages, commands and calls
that allow the development of
applications that are more easily
integrated and moved across multiple
environments.

communication call
A conversation statement that transaction
programs can issue to communicate
through the LU 6.2 protocol boundary.
The specific calls that a transaction
program can issue are determined by the
program's current conversation state. See
also verb.

108 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

communication controller node
A subarea node that contains a network
control program.

communications interface
A uniform set of calls within the Common
Programming Interface that different
systems use to request services. See also
communication call and verb.

configuration
The arrangement of a computer system or
network as defined by the nature,
number, and chief characteristics of its
functional units.

contention loser
When the LUs at both ends of a session
request to allocate a conversation
simultaneously, the contention loser is the
LU that must request and receive
permission from the session partner LU to
allocate the conversation. Contrast with
contention winner.

contention winner
When the LUs at both ends of a session
request to allocate a conversation
simultaneously, the contention winner is
the LU that can allocate the conversation
without requesting permission from the
session partner LU. Contrast with
contention loser.

conversation
A logical connection between two
programs over an LU type 6.2 session that
allows them to communicate with each
other while processing a transaction. See
also basic conversation and mapped
conversation.

conversation characteristics
The attributes of a conversation that
determine the functions and capabilities
of programs within the conversation.

conversation_ID
An 8-byte identifier, used in
Get_Conversation calls, that uniquely
identifies a conversation. It is returned
from APPC/MVS on the CMINIT,
ATBALC2, ATBALLC, ATBGETC, and
ATBRAL2 calls and is required as input
on subsequent APPC/MVS calls.

conversation partner
One of the two programs involved in a
conversation.

conversation state
The condition of a conversation that
reflects what the past action on that
conversation has been and that
determines what the next set of actions
may be.

coupling services
In a sysplex, the functions of XCF that
transfer data and status among members
of a group residing on one or more MVS
systems in the sysplex.

CPI See Common Programming Interface.

cross-system coupling facility (XCF)
XCF provides the MVS coupling services
that allow programs on MVS systems in a
multisystem environment to communicate
(send and receive data) with programs on
MVS systems.

D

database token
In APPC/MVS, a 1- through 8-character
name used in a security definition to
represent a TP profile or side information
file name.

data channel
A device that connects a processor and
main storage with I/O control units.

data link control protocol
Specifications for interpreting control data
and transmitting data across a link.

directory services
Services for resolving user identifications
of network components to network
routing information.

domain
A system services control point (SSCP)
and the resources that it can control.

E

end user
The ultimate source or destination of data
flowing through an SNA network. An end
user can be an application program or a
workstation operator.

event queue
Each APPC/MVS server can be associated
with an event queue. A server can request
to be notified of events related to an
allocate queue for which it is registered.
When such an event occurs, APPC/MVS
places an element on the server's event

Glossary 109

queue. The server can determine which
event occurred by examining the element
(through the Get_Event service).

F

FMH-5
Functional Management Header 5 -- an
SNA data structure that APPC uses to
pass requests to allocate transaction
program conversations between logical
units.

fully qualified name
Synonym for network-qualified name.

G

generic resource name
A name that represents multiple
APPC/MVS logical units (LUs) that
provide the same function in order to
handle session distribution and balancing.

generic userid
In APPC/MVS, a userid, specified in the
TP profile, that provides the initial
security environment for a multi-trans TP.
The generic userid covers the TP's initial
processing until a successful
Get_Transaction call is made. The generic
userid also covers termination processing,
and any processing following a
Return_Transaction call until a subsequent
successful Get_Transaction call.

H

half-duplex protocol
A communications protocol where only
one communications partner can send
data at a time.

host node
A subarea node that contains a system
services control point.

I

inbound request
A request arriving at a logical unit (LU)
from a partner transaction program. The
LU must establish the environment and
start the local transaction program that is
to handle the request. See also allocate
request.

inbound transaction program
A transaction program on MVS that is
initiated and scheduled in response to an
inbound request from a partner

transaction program. Contrast with
outbound transaction program.

J

JCL See Job Control Language.

JECL See Job Entry Control Language.

Job Control Language
A problem-oriented language designed to
express statements in a job that identify
the job or describe its requirements to an
operating system.

Job Entry Control Language
A problem-oriented language designed to
express statements in a job that describe
its requirements to an operating system's
job entry subsystem.

jobid See job identifier.

job identifier
The job identifier is a unique value that
can be used to uniquely identify a JES job.

K

keep time
see allocate queue keep time

L

layer A layer is a grouping of related functions
that are logically separate from other
functions; the implementation of the
functions in one layer can be changed
without affecting functions in other
layers.

link A link is a transmission medium and data
link control component that together
transmit data between adjacent nodes.

local transaction program
The program being discussed within a
particular context. Contrast with partner
transaction program.

logical unit
A port providing formatting, state
synchronization, and other high-level
services through which an end user
communicates with another end user over
an SNA network.

logical unit of work
The processing a program performs from
one sync point to the next.

logical unit type 6.2
The SNA logical unit type that supports
general communication between

110 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

programs in a cooperative processing
environment; the SNA logical unit type
on which CPI communications and
APPC/MVS TP conversation services are
built.

logon mode
A logon mode contains the parameters
and protocols that determine a session's
characteristics. Logon modes are defined
in VTAM's mode table in SYS1.VTAMLIB.

LU See logical unit.

LU=local
In APPC/MVS, a situation in which a
pair of communicating transaction
programs are on the same MVS system.

LU=own
In SNA terms, a situation in which a pair
of communicating transaction programs
are defined to the same logical unit (LU).

M

management services
In SNA, functions distributed among
network components to operate, manage,
and control the network.

mapped conversation
A type of conversation in which programs
exchange data records with arbitrary data
formats agreed upon by the applications
programmers. Mapped conversations use
mapped verbs that do not require the
prefix information used in basic verbs.
Contrast with basic conversation.

mode name
A symbolic name for a set of session
characteristics. For LU 6.2, a mode name
and a partner LU name together define a
session or a group of parallel sessions
having the same characteristics.

multi-trans
Multi-trans scheduling allows properly
designed TPs to remain active between
conversations and handle multiple
inbound conversations in sequence,
without having to deallocate and
reallocate resources. Because they can be
accessed by multiple users, multi-trans
TPs are responsible for the security of
their resources and conversations.
Contrast with standard.

multi-trans shell
The outer level of a transaction program

with a TP_schedule_type of multi-trans,
which sets up an environment and
accepts inbound conversation requests in
sequence by calling the Get_Transaction
(ATBGTRN) service. The shell may also
call the Return_Transaction (ATBRTRN)
service to restore its shell environment for
other processing between conversations.
For more information, see
TP_Schedule_Type.

N

network addressable unit
A logical unit, physical unit, or system
services control point.

network-qualified name
A name that uniquely identifies a specific
resource (such as an LU) within a specific
network. It consists of a network
identifier and a resource name, each of
which is a 1- to 8-byte symbol string.
Synonymous with fully qualified name.

node An end point of a link, or a junction
common to two or more links in a
network. Nodes can be processors,
controllers, or workstations. Nodes can
vary in routing and other functional
capabilities.

NOSCHED logical unit (LU)
In APPC/MVS, a logical unit (LU) that is
not associated with a transaction
scheduler. Such LUs do not require a
transaction scheduler to be started to be
active. NOSCHED LUs are used by
outbound transaction programs and
APPC/MVS servers.

O

one-way-half duplex
The format of APPC communications
between two transaction programs. One
transaction program is in ‘send’ state and
the other is in ‘receive’ state.

outbound request
A request arriving at a logical unit (LU)
from a local transaction program. The LU
must place the request on the SNA
network. See also allocate request.

outbound transaction program
In APPC, a transaction program that
requests a conversation with a partner
(inbound) transaction program. The
outbound TP issues an allocate request to

Glossary 111

allocate (start) the conversation. Contrast
with inbound transaction program.

P

pacing
A technique by which a receiving
component controls the rate of
transmission by a sending component to
prevent overrun or congestion.

partner
See conversation partner.

partner transaction program
The program at the other end of a
conversation with respect to the local
program. Contrast with local program.

peripheral node
A node that uses local addresses and
therefore is not affected by changes in
network addresses. A peripheral node
requires boundary function assistance
from an adjacent subarea node.

persistent sessions
The option for VTAM persistent sessions
allows LU-LU sessions to remain active
during interruptions in APPC/MVS
service and preserves conversation
requests until APPC/MVS service
resumes. The PSTIMER parameter in the
APPCPMxx parmlib member's LUADD
statement controls whether sessions
persist and for how long.

persistent verification
Persistent verification (PV) is a way of
reducing the number of password
transmissions, by eliminating the need to
provide a userid and password on each
attach (allocate) during multiple
conversations between a user and a
remote LU. The user is verified during
the sign-on process and remains verified
until the user has been signed-off the
remote LU.

physical unit
The component that manages and
monitors the resources of a node as
requested by a system services control
point.

privilege
An identification that a product or
installation defines in order to
differentiate SNA service transaction

programs from other programs, such as
application programs.

protected conversation
An LU 6.2 conversation that has a
synchronization level of syncpt, and that
supports two-phase commit protocols for
resource recovery and resynchronization
protocols. Contrast with unprotected
conversation.

protected resource
A resource defined to RACF for the
purpose of controlling access to the
resource. Some of the resources that can
be protected by RACF are DASD and tape
data sets, DASD volumes, tape volumes,
terminals, and any other resources
defined in the class descriptor table.

A resource (for example, a database) that
can be modified only in accordance with
two-phase commit protocols.

protocol
The meaning of, and the sequencing rules
for, requests and responses used for
managing a network, transferring data,
and synchronizing the states of network
components.

protocol boundary
A software connection between nodes that
provides program-to-program
communication through either a set of
conversation verbs or high-level language
subroutine calls.

PU See physical unit.

R

receive state
The condition of a conversation in which
a transaction program can receive data.

registered transaction program
A transaction program that performs a
specialized function on behalf of an LU.

resource
Any facility of a computing system or
operating system required by a job or
task, and including main storage,
input/output devices, the processing unit,
data sets, and control or processing
programs.

S

SDLC See Synchronous Data Link Control.

112 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

SDSF See System Display and Search Facility.

security information
For APPC/MVS, a userid, password, and
security profile name passed on an
allocate request from a transaction
program to its partner. The partner's
system can verify the information and
permit or deny the request accordingly.

security profile
For APPC/MVS, an optional character
string passed as security information on
an allocate request from a transaction
program to its partner. When the partner
is on MVS with RACF protection, the
system treats the security profile as a
RACF groupid, and can verify that the
requester has access to that group.

send state
The condition of a conversation in which
a transaction program can send data or
request resource synchronization.

served transaction program (TP)
In APPC/MVS, a transaction program
that is processed by an APPC/MVS
server, rather than by a partner TP that
has been scheduled by a transaction
scheduler.

server A functional unit that provides shared
services to workstations over a networks;
for example, a file server, a print server, a
mail server. See also APPC/MVS server.

session
A logical connection between two logical
units that can be activated, tailored to
provide various protocols, and
deactivated as requested.

shell, multi-trans
See multi-trans shell.

shell, test
See test shell.

side information
A collection of system-defined values for
transaction programs whose partners call
them by symbolic destination names
(sym_dest_names). When a transaction
program calls its partner by a
sym_dest_name, APPC uses the
associated values to establish a
conversation between them.

SJF See scheduler JCL facility.

SNA See Systems Network Architecture

SNA service transaction program
An IBM-supplied transaction program
running in an LU that provides utility
services to application transaction
programs or that manages LUs.

SPI See systems programming interface.

SSCP See system services control point.

SSI See subsystem interface.

standard
The standard TP_Schedule_Type for
APPC/MVS. TPs that are scheduled as
standard are initialized and terminated
for each inbound conversation. Contrast
with multi-trans.

standard transaction program
See transaction program.

state See conversation state.

state transition
The act of moving from one conversation
state to another.

subarea
A portion of an SNA network that
consists of a subarea node, and any
attached links and peripheral nodes.

subordinate address space
An address space, managed by a
transaction scheduler, in which a
transaction program runs.

subsystem interface
The subsystem interface (SSI) is the means
by which MVS system routines request
services of the master subsystem, a job
entry subsystem, or any subsystem
defined to MVS through the subsystem
definition process.

symbolic destination name
A variable that specifies the symbolic
name of the destination LU and partner
program, as well as the mode name for
the session carrying the conversation. The
symbolic destination name is provided by
the transaction program and points to an
entry in the side information.

Synchronous Data Link Control
A discipline for managing synchronous,
code-transparent, serial-by-bit,
information transfer over a link. SDLC
conforms to subsets of the Advanced Data

Glossary 113

Communication Control Procedures
(ADCCP) of the American National
Standards Institute and High-level Data
Link Control (HDLC) of the International
Standards Organization.

sync point
An intermediate or end point during
processing of a transaction at which an
update or modification to one or more of
the transaction's protected resources is
logically complete and error free.
Synonymous with synchronization point,
commit point, and point of consistency.

sync point manager (SPM)
The component of the node that
implements two-phase commit and
resynchronization processing. In an MVS
system, the component is RRS.

SYSOUT
A system output stream; also, an indicator
used in data definition statements to
signify that a data set is to be written on
a system output unit.

sysplex
A sysplex (systems complex) is the set of
one or more MVS systems that is given
an XCF sysplex name and in which
programs in the systems can then use
XCF services.

system base LU
A logical unit that is the default LU for
outbound work requests from MVS
programs (TSO/E users, started tasks,
and other work) that are not associated
with a scheduler or an LU. The system
base LU is either:
v An LU defined with the NOSCHED

and BASE parameters, or
v If a base NOSCHED LU is not defined,

the LU defined as the base LU for the
APPC/MVS transaction scheduler.

System Display and Search Facility
The System Display and Search Facility is
a program product that acts as a system
management aid allowing users to
efficiently analyze and control the
operation of an MVS/JES2-based system.

system services control point
A focal point within an SNA network for
managing the configuration, coordinating
network operator and problem
determination requests, and providing

directory services and other session
services for end users of a network.
Multiple SSCPs, cooperating as peers with
one another, can divide the network into
domains of control, with each SSCP
having a hierarchical control relationship
to the physical units and logical units
within its own domain.

Systems Network Architecture (SNA)
A description of the logical structure,
formats, protocols, and operational
sequences for transmitting information
units through, and controlling the
configuration and operation of networks.

systems programming interface (SPI)
Provides languages, commands and calls
that allow the development of
applications that are more easily
integrated and moved across multiple
environments.

T

telecommunication link
A physical medium, such as a wire or
microwave beam, that is used to transmit
data.

test shell
A program that sets up an environment to
test transaction programs in its own
address space, using APPC/MVS Test
services. The TSO/E TEST command is an
example of a test shell.

TP See transaction program.

TP instance
A copy of a transaction program (TP) on
MVS, scheduled and initiated in response
to an inbound allocate request. A TP
instance differs from a TP in that a TP is a
program using communication functions
and a TP instance is the actual processing
of those functions in MVS. Multiple
instances of the same TP can run
simultaneously, each in response to a
separate request and on behalf of a
different user.

See also TP_ID.

TP message log
A log that contains runtime messages for
a transaction program. The parameters
that define the TP message log are in the
program's TP profile and in an
ASCHPMxx parmlib member.

114 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

TP profile
The information required to establish the
environment for and attach a transaction
program on MVS, in response to an
inbound allocate request for that
transaction program.

TP_ID Transaction Program Identifier: a unique
8-character token that APPC/MVS assigns
to each instance of a transaction program.
When multiple instances of a transaction
program are running simultaneously, they
have the same transaction program name,
but each has a unique TP_ID.

TP_Schedule_Type
A type of transaction program, based on
attributes provided by the transaction
programmer. Those attributes can
influence the performance of the
transaction program, and must be
reflected in the TP profile. For more
information about specific
TP_Schedule_Types in APPC/MVS, see
standard and multi_trans.

transaction
A unit of work performed by one or more
transaction programs, involving a specific
set of input data and initiating a specific
process or job.

transaction initiator
A program that runs in a subordinate
address space of the APPC/MVS
transaction scheduler and initiates an
APPC transaction program in response to
an inbound request.

transaction program (TP)
A program used for cooperative
transaction processing within an SNA
network. For APPC/MVS, any program
on MVS that issues APPC/MVS or CPI
Communication calls, or is scheduled by
the APPC/MVS transaction scheduler.

transaction scheduler
A scheduler program that is responsible
for job management of incoming work
requests from cooperative transaction
programs. The default transaction
scheduler for APPC/MVS is the
APPC/MVS transaction scheduler;
however, an installation can define and
use alternative transaction schedulers for
specific applications.

two-phase commit
The protocol that permits updates to
protected resources to be committed or
backed out as a unit. During the first
phase, resource managers are asked if
they are ready to commit. If all resource
managers respond positively, they are
asked to commit their updates. Otherwise,
the resource managers are asked to back
out their updates.

The protocols used by the sync point
manager to accomplish a commit
operation.

U

unit of recovery
A sequence of operations within a unit of
work between sync points.

unit_of_work_id
An 8-character ID assigned by a
transaction scheduler to an inbound
allocate request. The APPC/MVS
transaction scheduler uses this value as
the job ID when the inbound TP is
initiated on MVS.

unprotected conversation
An LU 6.2 conversation that has a
synchronization level of none or confirm.
If conversation errors or failures occur, the
resources used by the application might
be in inconsistent states. Contrast with
protected conversation.

userid (1) A symbol identifying a system user. (2)
A code that uniquely identifies a user to
the system.

user token
A collection of identity and security
information that represents a user or a
job. The token contains a userid, groupid,
security class, origin node, and session
type, where session type is TSO/E logon,
started task, batch job, operator, or trusted
computing base.

UTOKEN
See user token.

V

verb The SNA term for a conversation function
that transaction programs can use to
communicate with each other through the
LU 6.2 protocol boundary. The SNA verbs
provide similar functions but are
implemented differently on the different

Glossary 115

systems (MVS, VM, OS/2 and OS/400)
that support them. See also communication
call.

W

work_unit_identifier (WUID)
See unit_of_work_id.

X

XCF See cross-system coupling facility.

116 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Index

Numerics
00640 character set

contents 69
01134 character set

contents 69

A
accessibility 99

contact IBM 99
features 99

APPC/MVS
system services

overview 3
SYSTEM services

reference 11
assembler programming language

call syntax 13
assistive technologies 99
ATBASOC (Associate) service 17
ATBCAS1 (Cleanup_Address_Space)

service 21
ATBCMAS (Cleanup_Address_Space)

service 73
ATBCMTP (Cleanup_TP) service 75
ATBCNTL (Control) service 33
ATBCONN (Connect) service 31
ATBCSASM member

in SYS1.MACLIB 15
ATBCTP1 (Cleanup_TP) service 78
ATBCTP3 (Cleanup_TP) service 24
ATBDCON (Disconnect) service 37
ATBDFTP (Define_Local_TP) service 35
ATBDFTPE member

in SYS1.MACLIB 61
ATBIDEN (Identify) service 82
ATBIDN1 (Identify) service 88
ATBIDN4 (Identify) service 39
ATBJGP1 (Join_SYSAPPC_Group)

service 46
ATBMIGRP (Join_Sysappc_Group)

service 94
ATBSASA (Set_AS_Attributes)

service 49
ATBSECB member

in SYS1.MACLIB 60
ATBUID1 (Unidentify) service 51
ATBUNID (Unidentify) service 97
ATBXCFMS member

in SYS1.MACLIB 54

C
call syntax

for APPC/MVS system services 13
character set

used in APPC/MVS 69

E
error log information

sending with the Cleanup_TP
service 29

I
information extract exit 58
IXCYMEPL mapping macro

information mapped 57

K
keyboard

navigation 99
PF keys 99
shortcut keys 99

L
linkage conventions

for system services 13

N
navigation

keyboard 99
Notices 103

S
sending comments to IBM xi
shortcut keys 99
Summary of changes xiii
SYS1.MACLIB library

ATBCSASM member 15
ATBDFTPE member 61
ATBSECB member 60
ATBXCFMS member 54

T
TP profile

conversion exit 60
syntax message routine 64

TP profile syntax message routine 64
trademarks 105
transaction program

characters used in name 69
transaction scheduler

exits
information extract exit 58
TP profile conversion exit 60
TP profile syntax exit 62
TP profile syntax message

routine 64
XCF message user routine 53

transaction scheduler (continued)
services

overview 3
reference 11

start-up and termination 7
type A character set

contents 69

U
user interface

ISPF 99
TSO/E 99

X
XCF (cross-system coupling facility)

APPC XCF group
communicating between APPC

transaction schedulers 4
joining, for transaction

schedulers 46, 94
information mapped 57
message user routine

input from APPC/MVS 53

© Copyright IBM Corp. 1991, 2013 117

118 z/OS V2R1.0 MVS Writing Transaction Schedulers for APPC/MVS

����

Product Number: 5650-ZOS

Printed in USA

SA23-1398-00

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Part 1. An Introduction to APPC/MVS System Services
	Chapter 1. Transaction Scheduler Services in APPC/MVS
	Chapter 2. General Transaction Scheduler Function: From Start-up to Termination
	Part 2. APPC/MVS System Services Reference
	Chapter 3. Invocation Details for APPC/MVS System Services
	Syntax Conventions for the System Services
	Linkage Conventions for the System Services
	Parameter Description for Callable Services
	Versions of Callable Services
	Interface Definition File (IDF)

	Chapter 4. APPC/MVS System Services Summary
	Associate
	Cleanup_Address_Space
	Cleanup_TP
	Sending Error Log Information

	Connect
	Control
	Define_Local_TP
	Disconnect
	Identify
	Join_Sysappc_Group
	Set_AS_Attributes
	Unidentify

	Chapter 5. Transaction Scheduler User Exits
	XCF Message User Routine
	Environment
	Processing
	Message Types
	Programming Notes for LU Activation/Deactivation Messages
	Programming Notes for Allocate TP Request Messages

	Programming Considerations
	Entry Specifications
	Registers at Entry

	Return Specifications

	Extract Exit
	Environment
	Exit Recovery
	Programming Requirements
	Entry Specifications
	Registers on Entry

	Return Specifications

	TP Profile Conversion Exit
	Environment
	Exit Recovery
	Programming Requirements
	Installation
	Entry Specifications

	Return Specifications

	TP Profile Syntax Exit
	Environment
	Exit Recovery
	Programming Requirements
	Installation
	Entry Specifications

	Return Specifications

	Profile Syntax Message Routine
	Environment
	Entry Specifications
	Registers on Entry
	Parameter List Contents

	Return Specifications

	Part 3. Appendixes
	Appendix A. Character Sets
	Appendix B. Previous Versions of APPC/MVS System Services
	ATBCMAS— Cleanup_Address_Space
	ATBCMTP— Cleanup_TP
	ATBCTP1— Cleanup_TP
	ATBIDEN— Identify
	ATBIDN1— Identify
	ATBMIGRP— Join_Sysappc_Group
	ATBUNID— Unidentify

	Appendix C. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Numerics
	A
	C
	E
	I
	K
	L
	N
	S
	T
	U
	X

