
z/OS

MVS Programming: Callable Services for
High-Level Languages
Version 2 Release 1

SA23-1377-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 439.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information xi
Who should use this information xi
How to use this information xi
z/OS information xi

How to send your comments to IBM xiii
If you have a technical problem xiii

Summary of changes xv
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated September 2014 xv
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated March 2014 xv
z/OS Version 2 Release 1 summary of changes . . xv

Part 1. Window services. 1

Chapter 1. Introduction to window
services. 3
Permanent data objects 3
Temporary data objects 3
Structure of a data object 3
What does window services provide? 4

The ways that window services can map an object 5
Access to permanent data objects 8
Access to temporary data objects 9

Chapter 2. Using window services . . . 11
Obtaining access to a data object 12

Identifying the object 12
Specifying the object’s size 13
Specifying the type of access 13
Obtaining a scroll area. 13

Defining a view of a data object 14
Identifying the data object 14
Identifying a window 14
Defining the disposition of a window’s contents 15
Defining the expected reference pattern 15
Identifying the blocks you want to view 16
Extending the size of a data object. 17

Defining multiple views of an object 17
Non-overlapping views 17
Overlapping views 17

Saving interim changes to a permanent data object 18
Updating a temporary data object 18
Refreshing changed data 19
Updating a permanent object on DASD 20

When there is a scroll area 20
When there is no scroll area 20

Changing a view in a window 20
Terminating access to a data object 22
Handling return codes and abnormal terminations 22

Chapter 3. Window services 23
CSREVW — View an object and sequentially access
it 23

Abend codes 25
Return codes and reason codes 26

CSRIDAC — Request or terminate access to a data
object 27

Abend codes 30
Return codes and reason codes 30

CSRREFR — Refresh an object 31
Abend codes 32
Return codes and reason codes 33

CSRSAVE — Save changes made to a permanent
object 34

Abend codes 35
Return codes and reason codes 35

CSRSCOT — Save object changes in a scroll area . . 36
Abend codes 37
Return codes and reason codes 37

CSRVIEW — View an object 39
Abend codes 41
Return codes and reason codes 41

Chapter 4. Window services coding
examples. 45
ADA example 45
C/370 example 50
COBOL example. 53
FORTRAN example 57
Pascal example 61
PL/I example. 65

Part 2. Reference pattern services 71

Chapter 5. Introduction to reference
pattern services 73
How does the system manage data? 73
An example of how the system manages data in an
array 74

What pages does the system bring in when a gap
exists? 76

Chapter 6. Using reference pattern
services 79
Defining the reference pattern for a data area . . . 79

Defining the range of the area 79
Identifying the direction of the reference. . . . 80
Defining the reference pattern 80
Choosing the number of bytes on a page fault . . 82

© Copyright IBM Corp. 1994, 2014 iii

Examples of using CSRIRP to define a reference
pattern 83
Removing the definition of the reference pattern . . 84
Handling return codes. 85

Chapter 7. Reference pattern services 87
CSRIRP — Define a reference pattern. 87

Return codes and reason codes 89
CSRRRP — Remove a reference pattern 89

Return codes and reason codes 90

Chapter 8. Reference pattern services
coding examples 91
C/370 example 91
COBOL example. 94
FORTRAN example 98
Pascal example 101
PL/I example 103

Part 3. Global resource
serialization latch manager
services 107

Chapter 9. Using the latch manager
services. 109
Syntax and linkage conventions for latch manager
callable services 109
ISGLCRT — Create a latch set 110

ABEND codes 112
Return codes 112
Examples of calls to latch manager services . . 112

ISGLOBT — Obtain a latch 114
ABEND codes 116
Return codes 116
Example 117

ISGLREL — Release a latch. 117
ABEND codes 119
Return codes 119
Example 120

ISGLPRG — Purge a requestor from a latch set . . 120
ABEND codes 121
Return codes 121
Example 122

ISGLPBA — Purge a group of requestors from a
group of latch sets. 122

ABEND codes 124
Return codes 124

Part 4. Resource recovery
services (RRS) 125

Chapter 10. Using protected
resources 127
Resource recovery programs 127
Two-phase commit protocol 128
Resource recovery process 128
Requesting resource protection and recovery . . . 131

Using distributed resource recovery 131
Application_Backout_UR (SRRBACK) 132

Description 132
Application_Commit_UR (SRRCMIT) 136

Description 136
Additional callable services. 140

Part 5. CEA TSO/E address space
services 141

Chapter 11. Introduction to CEA
TSO/E address space services 143
CEA TSO/E address space manager components 143
System prerequisites for the CEA TSO/E address
space services 144
Working with TSO/E address spaces started by
CEA 145

Communicating with programs running in the
TSO/E address spaces 146
Reconnecting to CEA TSO/E address spaces . . 148

Chapter 12. Using CEA TSO/E address
space services 151
Invoking the CEATsoRequest API 151

Parameters 152
Requirements for callers 157

Understanding the request types 157
CeaTsoStart - Starting a new TSO/E session . . 157
CeaTsoAttn - Sending an attention interrupt to a
TSO/E session 158
CeaTsoEnd - Ending a TSO/E session 159
CeaTsoPing - Sending a ping on behalf of an
application 160
CeaTsoQuery - Querying the TSO/E address
spaces 160
CeaTsoQueryApp - Querying TSO/E sessions
by application 161

Return, reason, and diagnostic codes 162
Return codes 163
Reason codes 163
Diagnostic codes 167

CEAYTSOR header file 170
CEAXRDEF header file 174
Programming example 179

Sample compile job 196

Part 6. zEnterprise Data
Compression (zEDC) 197

Chapter 13. Overview and planning of
zEnterprise Data Compression (zEDC) 199
Requirements for zEnterprise Data Compression 200
Planning for zEnterprise Data Compression . . . 200

Chapter 14. Application interfaces for
zEnterprise Data Compression 203
Invoking unauthorized interfaces for zEnterprise
Data Compression 203

iv z/OS V2R1.0 MVS Callable Services for HLL

|

||

|
||
||
||

|
||
|
||

zlib for zEnterprise Data Compression 203
Invoking System z authorized interfaces for
zEnterprise Data Compression. 207

System z authorized compression services . . . 208

Chapter 15. Troubleshooting for
zEnterprise Data Compression 223

Part 7. Other callable services. . . 225

Chapter 16. IEAAFFN — Assign
processor affinity for encryption or
decryption. 227
Restrictions and limitations 228
Requirements 228
Return codes 228

Chapter 17. CSRL16J — Transfer
control to another routine 231
Defining the entry characteristics of the target
routine 231
Freeing dynamic storage associated with the caller 232
Programming requirements. 232
Restrictions 234
Performance implications 234
Syntax diagram. 235

C/370 syntax 235
PL/I syntax 235

Parameters 235
Return codes 235
Example 236

C/370 example program 236
Assembler program for use with the C/370
example 238

Chapter 18. CSRSI — System
information service 239
Description 239

Environment 239
Programming requirements. 239
Restrictions 240
Input register information 240
Output register information 240
Syntax. 240
Parameters 241
Return codes 242

CSRSIC C/370 header file 243

Part 8. Base Control Program
internal interface (BCPii) services . 255

Chapter 19. Base Control Program
internal interface (BCPii) 257
BCPii setup and installation 257

Setting up connectivity to the support element 258
Setting up authority to use BCPii 261
BCPii configuration 264

Setting up event notification for BCPii z/OS
UNIX applications. 264
Setting up access for BCPii TSO/E REXX execs 266
BCPii startup and shutdown 266

BCPii callable services 267
Syntax, linkage and programming considerations 268

Calling formats 268
BCPii connection scope 268
Linkage considerations 269
REXX programming considerations 269
Assembler programming considerations . . . 278
Programming Examples 278

HWICMD — Issue a BCPii hardware management
command 278

Description 279
HWICONN — Establish a BCPii connection . . . 297

Description 298
HWIDISC — Release a BCPii connection 308

Description 308
HWIEVENT — Register or unregister for BCPii
events 314

Monitoring events occurring on a particular
CPC or image 314
Monitoring operating system message events
(Hwi_Event_OpSysMsg). 314
Monitoring communication availability between
BCPii and the CPC 315
Monitoring the status of the BCPii address
space 315
Description 316

HWILIST — Retrieve HMC and BCPii
configuration-related information. 326

Description 326
HWIQUERY — BCPii retrieval of
SE/HMC-managed attributes 338

Description 338
HWISET — BCPii set SE/HMC-managed attributes 366

Description 366
HWIBeginEventDelivery — Begin delivery of BCPii
event notifications 396

Description 396
HWIEndEventDelivery — End delivery of BCPii
event notifications 399

Description 399
HWIManageEvents — Manage the list of BCPii
events 402

Description 402
HWIGetEvent — Retrieve outstanding BCPii event
notifications 407

Description 407

Part 9. Appendixes 413

Appendix A. BCPii communication
error reason codes 415

Appendix B. BCPii summary tables 417
HWIQUERY and HWISET 417
HWICMD 428
HWIEVENT 430

Contents v

||
|
||
||

|
||

||

||

||

||

Appendix C. General use C/C++
header files 433

Appendix D. Accessibility 435
Accessibility features 435
Using assistive technologies 435
Keyboard navigation of the user interface 435
Dotted decimal syntax diagrams 435

Notices 439
Policy for unsupported hardware. 440
Minimum supported hardware 441

Additional notices 441
Programming interface information 442
Trademarks 442

Glossary 443

Index 445

vi z/OS V2R1.0 MVS Callable Services for HLL

Figures

1. Structure of a Data Object 4
2. Mapping a Permanent Object That Has No

Scroll Area 5
3. Mapping a Permanent Object That Has a Scroll

Area 6
4. Mapping a Temporary Object 6
5. Mapping an Object to Multiple Windows 7
6. Mapping Multiple Objects 8
7. Illustration of a Reference Pattern with a Gap 76
8. Two Typical Reference Patterns 80
9. Illustration of Forward Direction of Reference 81

10. Illustration of Backward Direction of Reference 82
11. ATM Transaction 129

12. Two-Phase Commit Actions 130
13. Backout — Application Request 130
14. Backout — Resource Manager Votes NO 131
15. Transaction — Distributed Resource Recovery 132
16. Sample REXX EXEC 145
17. Example illustrating that the REXX

SYSTERMID is the same as the z/OSMF ISPF
application identifier 146

18. Sample TSO/E messages written to the queue 148
19. Contents included in the ceasapit.x file 151
20. CSRLJPLI declarations for return codes for

PL/I 234
21. BCPii setup and installation steps 258

© Copyright IBM Corp. 1994, 2014 vii

viii z/OS V2R1.0 MVS Callable Services for HLL

Tables

1. CSREVW Return and Reason Codes 26
2. CSRIDAC Return and Reason Codes 30
3. CSRREFR Return and Reason Codes 33
4. CSRSAVE Return and Reason Codes 35
5. CSRSCOT Return and Reason Codes 38
6. CSRVIEW Return and Reason Codes 42
7. ISGLCRT Return Codes 112
8. ISGLOBT Return Codes 117
9. ISGLREL Return Codes 119

10. ISGLPRG Return Codes 121
11. ISGLPBA Return Codes 124
12. CEA TSO/E address space manager

components 143
13. System prerequisites 144
14. Message type identifiers 146
15. Message types 147
16. Data types 147
17. Input and output for each structure used for

the CeaTsoStart request type 158
18. Input and output for each structure used for

the CeaTsoAttn request type 158
19. Input and output for each structure used for

the CeaTsoEnd request type. 159
20. Input and output for each structure used for

the CeaTsoPing request type 160
21. Input and output for each structure used for

the CeaTsoQuery request type 161
22. Input and output for each structure used for

the CeaTsoQueryApp request type 162
23. Return codes. 163
24. Reason codes 164
25. Diagnostic code 167
26. Comparison table between unauthorized and

System z authorized interfaces for zEDC . . 201
27. Standard zlib functions and whether they are

supported using zEDC 204
28. Compression and decompression with zlib 207
29. Compression and decompression with System

z authorized interfaces for zEDC 208
30. Environment for the FPZ4RZV service 208
31. Parameters for the FPZ4RZV service 209
32. Return and Reason Codes for the FPZ4RZV

service 210
33. Environment for the FPZ4PRB service 211
34. Parameters for the FPZ4PRB service 211
35. Return and Reason Codes for the FPZ4PRB

service 211
36. Environment for the FPZ4RMR service 212

37. Parameters for the FPZ4RMR service 212
38. Return and Reason Codes for the FPZ4RMR

service 213
39. Environment for the FPZ4DMR service 214
40. Parameters for the FPZ4DMR service 214
41. Return and Reason Codes for the FPZ4DMR

service 215
42. Environment for the FPZ4ABC service 215
43. Parameters for the FPZ4ABC service 216
44. Header elements in the FPZ4ABC-generated

list 217
45. Entries elements in the FPZ4ABC-generated

list 217
46. Return and Reason Codes for the FPZ4ABC

service 217
47. Environment for the FPZ4URZ service 220
48. Parameters for the FPZ4URZ service 220
49. Return and Reason Codes for the FPZ4URZ

service 220
50. IEAAFFN Return Codes 228
51. CSRL16J Return Codes 235
52. Minimum BCPii microcode levels by SE

hardware level 259
53. Minimum BCPii microcode levels by HMC

level 259
54. Minimum BCPii microcode levels by LPAR

level 259
55. BCPii APIs supported in the REXX

environment 269
56. HWIREXX keywords 270
57. Return codes from the HWIREXX service 271
58. Return codes from a REXX BCPii host

command 275
59. REXX return codes from the BCPii hwihost

function 277
60. Structure pointed to by CmdParm_Ptr

(non-REXX); CmdParm stem variable (REXX) . 284
61. Reasons for abend X'042', RC X'0001yyyy' 291
62. Reasons for abend X'042', RC X'0002yyyy' 302
63. Reasons for abend X'042', RC X'0003yyyy' 310
64. Reasons for abend X'042', RC X'0004yyyy' 321
65. Reasons for abend X'042', RC X'0005yyyy' 332
66. Reasons for abend X'042', RC X'0006yyyy' 361
67. Reasons for abend X'042', RC X'0007yyyy' 391
68. Reasons for abend X'042', RC X'0004yyyy' 405
69. HWIQUERY and HWISET attributes 417
70. HWICMD types 428
71. HWIEVENT types 430

© Copyright IBM Corp. 1994, 2014 ix

|
||
|
||
||
|
||
||
||
|
||
||
||
|
||
||

||
|
||
||
||
|
||
||
||
|
||
|
||
|
||
||
||
|
||

|
||
||
||
|
||
|
||
|
||

x z/OS V2R1.0 MVS Callable Services for HLL

About this information

Callable services are for use by any program coded in C, COBOL, FORTRAN,
Pascal, or PL/I — this information refers to programs written in these languages as
high-level language (HLL) programs. Callable services enable HLL programs to use
specific MVS™ services by issuing program CALLs.

Who should use this information
This information is for programmers who code in C, COBOL, FORTRAN, Pascal,
or PL/I and want to use the callable services that MVS provides.

How to use this information
This information is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, go to
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

© Copyright IBM Corp. 1994, 2014 xi

http://www.ibm.com/systems/z/os/zos/bkserv/

xii z/OS V2R1.0 MVS Callable Services for HLL

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Callable Services for HLL
SA23-1377-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1994, 2014 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 MVS Callable Services for HLL

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
September 2014

The following changes are made for z/OS Version 2 Release 1 (V2R1), as updated
September 2014.

Changed

Changes have been made to the descriptions of the FPZ4ABC and FPZ4RMR
compression services.

Changes have been made to some parameter field descriptions for the FPZ4PRB,
FPZ4RMR and FPZ4RZV compression services.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
March 2014

The following changes are made for z/OS Version 2 Release 1 (V2R1), as updated
March 2014.

New

New option fields are added in the FPZ4RZV and FPZ4PRB compression services.

Note: For more information on the zEDC compression enhancements, see z/OS
DFSMS Using the New Functions.

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1994, 2014 xv

xvi z/OS V2R1.0 MVS Callable Services for HLL

Part 1. Window services

© Copyright IBM Corp. 1994, 2014 1

2 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 1. Introduction to window services

Window services allow HLL programs to:
v Read or update an existing permanent data object
v Create and save a new permanent data object
v Create and use a temporary data object

Window services enable your program to access data objects without your
program performing any input or output (I/O) operations. All your program needs
to do is issue a CALL to the appropriate service program. The service program
performs any I/O operations that are required to make the data object available to
your program. When you want to update or save a data object, window services
again perform any required I/O operations.

Permanent data objects
A permanent data object is a virtual storage access method (VSAM) linear data set
that resides on DASD. (This type of data set is also called a data-in-virtual object.)
You can read data from an existing permanent object and also update the content
of the object. You can create a new permanent object and when you are finished,
save it on DASD. Because you can save this type of object on DASD, window
services calls it a permanent object. Window services can handle very large
permanent objects that contain as many as 4 gigabytes (four billion bytes).

Note: Installations whose FORTRAN programs used data-in-virtual objects prior to
MVS/SP 3.1.0 had to write an assembler language interface program to allow the
FORTRAN program to invoke the data-in-virtual program. Window services
eliminates the need for this interface program.

Temporary data objects
A temporary data object is an area of expanded storage that window services
provides for your program. You can use this storage to hold temporary data, such
as intermediate results of a computation, instead of using a DASD workfile. Or
you might use the storage area as a temporary buffer for data that your program
generates or obtains from some other source. When you finish using the storage
area, window services deletes it. Because you cannot save the storage area,
window services calls it a temporary object. Window services can handle very
large temporary objects that contain as many as 16 terabytes (16 trillion bytes).

Structure of a data object
Think of a data object as a contiguous string of bytes organized into blocks, each
4096 bytes long. The first block contains bytes 0 to 4095 of the object, the second
block contains bytes 4096 to 8191, and so forth.

Your program references data in the object by identifying the block or blocks that
contain the desired data. Window services makes the blocks available to your
program by mapping a window in your program storage to the blocks. A window
is a storage area that your program provides and makes known to window
services. Mapping the window to the blocks means that window services makes
the data from those blocks available in the window when you reference the data.

© Copyright IBM Corp. 1994, 2014 3

You can map a window to all or part of a data object depending on the size of the
object and the size of the window. You can examine or change data that is in the
window by using the same instructions that you use to examine or change any
other data in your program storage.

The following figure shows the structure of a data object and shows a window
mapped to two of the object’s blocks.

What does window services provide?
Window services allows you to view and manipulate data objects in a number of
ways. You can have access to one or more data objects at the same time. You can
also define multiple windows for a given data object. You can then view a different
part of the object through each window. Before you can access any data object, you
must request access from window services.

When you request access to a permanent data object, you must indicate whether
you want a scroll area. A scroll area is an area of expanded storage that window
services obtains and maps to the permanent data object. You can think of the
permanent object as being available in the scroll area. When you request a view of
the object, window services maps the window to the scroll area. If you do not
request a scroll area, window services maps the window directly to the object on
DASD.

A scroll area enables you to save interim changes to a permanent object without
changing the object on DASD. Also, when your program accesses a permanent
object through a scroll area, your program might attain better performance than it
would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of
expanded storage. This area of expanded storage is the temporary data object.
When you request a view of the object, window services maps the window to the
temporary object. Window services initializes a temporary object to binary zeroes.

Note:

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

2nd block

1st block

4096 bytes

4096 bytes

4096 bytes

4096 bytes

4096 bytes

your address
space data object

window

Figure 1. Structure of a Data Object

4 z/OS V2R1.0 MVS Callable Services for HLL

1. Window services does not transfer data from the object on DASD, from the
scroll area, or from the temporary object until your program references the
data. Then window services transfers those blocks.

2. The expanded storage that window services uses for a scroll area or for a
temporary object is called a hiperspace. A hiperspace is a range of contiguous
virtual storage addresses that a program can indirectly access through a
window in the program’s virtual storage. Window services uses as many
hiperspaces as needed to contain the data object.

The ways that window services can map an object
Window services can map a data object a number of ways. The following examples
show how window services can:
v Map a permanent object that has no scroll area
v Map a permanent object that has a scroll area
v Map a temporary object
v Map an object to multiple windows
v Map multiple objects

Example 1 — Mapping a permanent object that has no scroll
area
If a permanent object has no scroll area, window services maps the object from
DASD directly to your window. In this example, your window provides a view of
the first and second blocks of an object.

Example 2 — Mapping a permanent object that has a scroll area
If the object has a scroll area, window services maps the object from DASD to the
scroll area. Window services then maps the blocks that you wish to view from the
scroll area to your window. In this example, your window provides a view of the
third and fourth blocks of an object.

space

window

your address

1st block

2nd block

permanent object
on DASD

1st block

2nd block

3rd block

.

.

last block

Figure 2. Mapping a Permanent Object That Has No Scroll Area

Chapter 1. Introduction to window services 5

Example 3 — Mapping a temporary object
Window services uses a hiperspace as a temporary object. In this example, your
window provides a view of the first and second blocks of a temporary object.

Example 4 — Mapping multiple Windows to an object
Window services can map multiple windows to the same object. In this example,
one window provides a view of the second and third blocks of an object, and a
second window provides a view of the last block.

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

4th block

3rd block

your address
space

scroll area

window

permanent object
on DASD

DIV
object

Figure 3. Mapping a Permanent Object That Has a Scroll Area

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

2nd block

1st block

your address
space temporary object

window

Figure 4. Mapping a Temporary Object

6 z/OS V2R1.0 MVS Callable Services for HLL

Example 5 — Mapping multiple objects
Window services can map windows in the same address space to multiple objects.
The objects can be temporary objects, permanent objects, or a combination of
temporary and permanent objects. In this example, one window provides a view of
the second block of a temporary object, and a second window provides a view of
the fourth and fifth blocks of a permanent object.

/ /

/ /

.

.

.

.

1st block

3rd block2nd block

3rd block 4th block

last block

2nd block

last block

your address
space

temporary object

window

window
second

first

Figure 5. Mapping an Object to Multiple Windows

Chapter 1. Introduction to window services 7

Access to permanent data objects
When you have access to a permanent data object, you can:
v View the object through one or more windows — Depending on the object size

and the window size, a single window can view all or part of a permanent
object. If you define multiple windows, each window can view a different part
of the object. For example, one window might view the first block of the
permanent object and another window might view the second block. You can
also have several windows view the same part of the object or have views in
multiple windows overlap. For example, one window might view the first and
second blocks of a data object while another window views the second and third
blocks.

v Change data that appears in a window — You can examine or change data that
is in a window by using the same instructions you use to examine or change
any other data in your program’s storage. These changes do not alter the object
on DASD or in the scroll area.

/ /

/ /

/ /

/ /

.

.

.

.

.

.

.

1st block

1st block

3rd block

3rd block

4th block

4th block

5th block

5th block

4th block

last block

last block

2nd block

2nd block

2nd block

your address
space

scroll area

temporary object

window

window

second

first

permanent object
on DASD

DIV
object

Figure 6. Mapping Multiple Objects

8 z/OS V2R1.0 MVS Callable Services for HLL

v Save interim changes in a scroll area — After changing data in a window, you
can have window services save the changed blocks in a scroll area, if you have
requested one. Window services replaces blocks in the scroll area with
corresponding changed blocks from the window. Saving changes in the scroll
area does not alter the object on DASD or alter data in the window.

v Refresh a window or the scroll area — After you change data in a window or
save changes in the scroll area, you may discover that you no longer need those
changes. In that case, you can have window services refresh the changed data.
To refresh the window or the scroll area, window services replaces changed data
with data from the object as it appears on DASD.

v Replace the view in a window — After you finish using data that is in a
window, you can have window services replace the view in the window with a
different view of the object. For example, if you are viewing the third, fourth,
and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth
blocks.

v Update the object on DASD — If you have changes available in a window or in
the scroll area, you can save the changes on DASD. Window services replaces
blocks on DASD with corresponding changed blocks from the window and the
scroll area. Updating an object on DASD does not alter data in the window or in
the scroll area.

Access to temporary data objects
When you have access to a temporary data object, you can:
v View the object through one or more windows — Depending on the object size

and the window size, a single window can view all or part of a temporary
object. If you define multiple windows, each window can view a different part
of the object. For example, one window might view the first block of the
temporary object and another window might view the second block. Unlike a
permanent object, however, you cannot define multiple windows that have
overlapping views of a temporary object.

v Change data that appears in a window — This function is the same for a
temporary object as it is for a permanent object: you can examine or change data
that is in a window by using the same instructions you use to examine or
change any other data in your address space.

v Update the temporary object — After you have changed data in a window, you
can have window services update the object with those changes. Window
services replaces blocks in the object with corresponding changed blocks from
the window. The data in the window remains as it was.

v Refresh a window or the object — After you change data in a window or save
changes in the object, you may discover that you no longer need those changes.
In that case, you can have window services refresh the changed data. To refresh
the window or the object, window services replaces changed data with binary
zeroes.

v Replace the view in a window — After you finish using data that is in a
window, you can have window services replace the view in the window with a
different view of the object. For example, if you are viewing the third, fourth,
and fifth blocks of an object and are finished with those blocks, you might have
window services replace that view with a view of the sixth, seventh, and eighth
blocks.

Chapter 1. Introduction to window services 9

10 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 2. Using window services

To use, create, or update a data object, you call a series of programs that window
services provides. These programs enable you to:
v Access an existing object, create and save a new permanent object, or create a

temporary object
v Obtain a scroll area where you can make interim changes to a permanent object
v Define windows and establish views of an object in those windows
v Change or terminate the view in a window
v Update a scroll area or a temporary object with changes you have made in a

window
v Refresh changes that you no longer need in a window or a scroll area
v Update a permanent object on DASD with changes that are in a window or a

scroll area
v Terminate access to an object

The window services programs that you call and the sequence in which you call
them depends on your use of the data object.

The first step in using any data object is to gain access to the object. To gain access,
call CSRIDAC. The object can be an existing permanent object, or a new permanent
or temporary object you want to create. For a permanent object, you can request an
optional scroll area. A scroll area enables you to make interim changes to an
object’s data without affecting the data on DASD. When CSRIDAC grants access, it
provides an object identifier that identifies the object. Use that identifier to identify
the object when you request other services from window services.

After obtaining access to an object, define one or more windows and establish
views of the object in those windows. To establish a view of an object, tell window
services which blocks you want to view and in which windows. You can view
multiple objects and multiple parts of each object at the same time. To define
windows and establish views, call CSRVIEW or CSREVW. After establishing a
view, you can examine or change data that is in the window using the same
instructions you use to examine or change other data in your program’s storage.

After making changes to the part of an object that is in a window, you will
probably want to save those changes. How you save changes depends on whether
the object is permanent, is temporary, or has a scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll
area without affecting the object on DASD. Later, you can update the object on
DASD with changes saved in the scroll area. If the object is permanent and has no
scroll area, you can update it on DASD with changes that are in a window. If the
object is temporary, you can update it with changes that are in a window. To
update an object on DASD, call CSRSAVE. To update a temporary object or a scroll
area, call CSRSCOT.

After making changes in a window and possibly saving them in a scroll area or
using them to update a temporary object, you might decide that you no longer
need those changes. In this case, you can refresh the changed blocks. After
refreshing a block of a permanent object or a scroll area to which a window is

© Copyright IBM Corp. 1994, 2014 11

mapped, the refreshed block contains the same data that the corresponding block
contains on DASD. After refreshing a block of a temporary object to which a
window is mapped, the block contains binary zeroes. To refresh a changed block,
call CSRREFR.

After finishing with a view in a window, you can use the same window to view a
different part of the object or to view a different object. Before changing the view
in a window, you must terminate the current view. If you plan to view a different
part of the same object, terminate the current view by calling CSRVIEW. If you
plan to view a different object or will not reuse the window, you can terminate the
view by calling CSRIDAC.

When you finish using a data object, terminate access to the object by calling
CSRIDAC.

The following restrictions apply to using window services:
1. When you attach a new task, you cannot pass ownership of a mapped virtual

storage window to the new task. That is, you cannot use the ATTACH or
ATTACHX keywords GSPV and GSPL to pass the mapped virtual storage.

2. While your program is in cross-memory mode, your program cannot invoke
data-in-virtual services; however, your program can reference and update data
in a mapped virtual storage window.

3. The task that obtains the ID (through DIV IDENTIFY) is the only one that can
issue other DIV services for that ID.

4. When you identify a data-in-virtual object using the IDENTIFY service, you
cannot request a checkpoint until you invoke the corresponding UNIDENTIFY
service.

This topic explains how to do the previously described functions and contains the
following subtopics:
v “Obtaining access to a data object”
v “Defining a view of a data object” on page 14
v “Defining multiple views of an object” on page 17
v “Saving interim changes to a permanent data object” on page 18
v “Updating a temporary data object” on page 18
v “Refreshing changed data” on page 19
v “Updating a permanent object on DASD” on page 20
v “Changing a view in a window” on page 20
v “Terminating access to a data object” on page 22
v “Handling return codes and abnormal terminations” on page 22.

Obtaining access to a data object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate
that you want to access an object by specifying BEGIN as the value for op_type. For
a description of the CSRIDAC parameters and return codes, see “CSRIDAC —
Request or terminate access to a data object” on page 27.

Identifying the object
You must identify the data object you wish to access. How you identify the object
depends on whether the object is permanent or temporary.

12 z/OS V2R1.0 MVS Callable Services for HLL

Permanent object
For a permanent object, object_name and object_type work together. For object_name
you have a choice: specify either the data set name of the object or the DDNAME
to which the object is allocated. The object_type parameter must then indicate
whether object_name is a DDNAME or a data set name:
v If object_name is a DDNAME, specify DDNAME as the value for object_type.
v If object_name is a data set name, specify DSNAME as the value for object_type.

If you specify DSNAME for object_type, indicate whether the object already exists
or whether window services is to create it:
v If the object already exists, specify OLD as the value for object_state.
v If window services is to create the object, specify NEW as the value for

object_state.

Temporary object
To identify a temporary object, specify TEMPSPACE as the value for object_type.
Window services assumes that a temporary object is new and ignores the value
that you specify for object_state.

Specifying the object’s size
If the object is permanent and new or is temporary, you must tell window services
the size of the object. You specify object size through the object_size parameter. The
size specified becomes the maximum size that window services will allow for that
object. You express the size as a number of 4096-byte blocks. If the number of bytes
in the object is not an exact multiple of 4096, round object_size to the next whole
number. For example:
v If the object size is to be less than 4097 bytes, specify 1.
v If the object size is 5000 bytes, specify 2.
v If the object size is 410,000 bytes, specify 101.

Specifying the type of access
For an existing (OLD) permanent object, you must specify how you intend to
access the object. You specify your intentions through the access_mode parameter:
v If you intend to only read the object, specify READ for access_mode.
v If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes
you will update the object and ignores the value you specify for access_mode.

Obtaining a scroll area
A scroll area is storage that window services provides for your use. This storage is
outside your program’s storage area and is accessible only through window
services.

For a permanent object, a scroll area is optional. A scroll area allows you to make
interim changes to a permanent object without altering the object on DASD. Later,

Note: Requirement for NEW objects: If you specify NEW as the value for object_state, your system must include
MVS/Data Facility Product. (MVS/DFP) 3.1.0 and SMS must be active.

Chapter 2. Using window services 13

if you want, you can update the object on DASD with the interim changes. A scroll
area might also improve performance when your program accesses a permanent
object.

For a temporary object, the scroll area is the object. Therefore, for a temporary
object, a scroll area is required.

To indicate whether you want a scroll area, provide the appropriate value for
scroll_area:
v To request a scroll area, supply a value of YES. YES is required for a temporary

object.
v To indicate you do not want a scroll area, supply a value of NO.

Defining a view of a data object
To view all or part of a data object, you must provide window services with
information about the object and how you want to view it. You must provide
window services with the following information:
v The object identifier
v Where the window is in your address space
v Window disposition — that is, whether window services is to initialize the

window the first time you reference data in the window
v Whether you intend to reference blocks of data sequentially or randomly
v The blocks of data that you want to view
v Whether you want to extend the size of the object

To define a view of a data object, call CSRVIEW or CSREVW. Whether you use
CSRVIEW or CSREVW depends on how you plan to reference the data. “Defining
the expected reference pattern” on page 15 describes the differences between the
two services. Specify BEGIN on CSRVIEW or CSREVW as the type of operation.
For descriptions of the CALL syntax and return codes from CSRVIEW or CSREVW,
see “CSRVIEW — View an object” on page 39 or “CSREVW — View an object and
sequentially access it” on page 23.

Identifying the data object
To identify the object you want to view, specify the object identifier as the value
for object_id. Use the same value CSRIDAC returned in object_id when you
requested access to the object.

Identifying a window
You must identify the window through which you will view the object. The
window is a virtual storage area in your address space. You are responsible for
obtaining the storage, which must meet the following requirements:
v The storage must not be page fixed.
v Pages in the window must not be page loaded (must not be loaded by the

PGLOAD macro).
v The storage must start on a 4K boundary and must be a multiple of 4096 bytes

in length.

To identify the window, use the window_name parameter. The value supplied for
window_name must be the symbolic name you assigned to the window storage area
in your program.

14 z/OS V2R1.0 MVS Callable Services for HLL

Defining a window in this way provides one window through which you can view
the object. To define multiple windows that provide simultaneous views of
different parts of the object, see “Defining multiple views of an object” on page 17.

Defining the disposition of a window’s contents
You must specify whether window services is to replace or retain the window
contents. You do this by selecting either the replace or retain option. This option
determines how window services handles the data that is in the window the first
time you reference the data. You select the option by supplying a value of
REPLACE or RETAIN® for disposition.

Replace option
If you specify the replace option, the first time you reference a block to which a
window is mapped, window services replaces the data in the window with
corresponding data from the object. For example, assume you have requested a
view of the first block of a permanent object and have specified the replace option.
The first time you reference the window, window services replaces the data in the
window with the first 4096 bytes (the first block) from the object.

If you have selected the replace option and then call CSRSAVE to update a
permanent object, or call CSRSCOT to update a scroll area, or call CSRSCOT to
update a temporary object, window services updates only the specified blocks that
have changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that is
currently in an object.

Retain option
If you select the retain option, window services retains data that is in the window.
When you reference a block in the window the first time, the block contains the
same data it contained before the reference.

When you select the retain option, window services considers all of the data in the
window as changed. Therefore, if you call CSRSCOT to update a scroll area or a
temporary object, or call CSRSAVE to update a permanent object, window services
updates all of the specified blocks to which a window or scroll area are mapped.

Select the retain option when you want to replace data in an object without regard
for the data that it currently contains. You also use the retain option when you
want to initialize a new object.

Defining the expected reference pattern
You must tell window services whether you intend to reference the blocks of an
object sequentially or randomly. An intention to access randomly tells window
services to bring one block (4096 bytes) of data into the window at a time. An
intention to access sequentially tells window services to read more than one block
into your window at one time. The performance gain is in having blocks of data
already in central storage at the time the program needs to reference them. You
specify the intent on either CSRVIEW or CSREVW, two services that differ on how
to specify sequential access.
v CSRVIEW allows you a choice between random or sequential access.

If you specify random, when you reference data that is not in your window,
window services brings in one block — the one that contains the data your
program references.

Chapter 2. Using window services 15

If you specify sequential, when you reference data that is not in your window,
window services transfers up to 16 blocks — the one that contains the data your
program requests, plus the next 15 consecutive blocks. The number of
consecutive blocks varies, depending on the size of the window and availability
of central storage. Use CSRVIEW if one of the following is true:
– You are going to access randomly.
– You are going to access sequentially, and you are satisfied with a maximum of

16 blocks coming into the window at a time.
v CSREVW is for sequential access only. It allows you to specify the maximum

number of consecutive blocks that window services brings into the window at
one time. The number ranges from one block through 256 blocks. Use CSREVW
if you want fewer than 16 blocks or more than 16 blocks at one time. Programs
that benefit from having more than 16 blocks come into a window at one time
reference data areas that are greater than one megabyte.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM
for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255
for pfcount. pfcount represents the number of blocks window services will bring
into the window, in addition to the one that it always brings in.

Note that window services brings in multiple pages differently depending on
whether your object is permanent or temporary and whether the system has had to
move pages of your data from central storage to make those pages of central
available for other programs. The rule is that SEQ on CSRVIEW and pfcount on
CSREVW apply to:
v A permanent object when movement is from the object on DASD to central

storage
v A temporary object when your program has scrolled the data out and references

it again

SEQ and pfcount do not apply after the system has had to move data (either
changed or unchanged) to auxiliary or expanded storage, and your program again
references it, requiring the system to bring the data back into central storage.

End the view, whether established with CSRVIEW or CSREVW, with CSRVIEW
END.

Identifying the blocks you want to view
To identify the blocks of data you want to view, use offset and span. The values you
assign to offset and span, together, define a contiguous string of blocks that you
want to view:
v The value assigned to offset specifies the relative block at which to start the view.

An offset of 0 means the first block; an offset of 1 means the second block; an
offset of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to view. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it means the view is to start at the specified offset and extend
until the currently defined end of the object.

The following table shows examples of several offset and span combinations and
the resulting view in the window.

16 z/OS V2R1.0 MVS Callable Services for HLL

Offset Span Resulting view in the window

0 0 view the entire object
0 1 view the first block only
1 0 view the second block through the last block
1 1 view the second block only
2 2 view the third and fourth blocks only

Extending the size of a data object
You can use offset and span to extend the size of an object up to the previously
defined maximum size for the object. You can extend the size of either permanent
objects or temporary objects. For objects created through CSRIDAC, the value
assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that
defines the current size of the object.

For example, assume you have access to a permanent object whose maximum
allowable size is four 4096-byte blocks. The object is currently two blocks long. If
you define a window and specify an offset of 1 and a span of 2, the window
contains a view of the second block and a view of a third block, which does not
yet exist in the permanent object. When you reference the window, the content of
the second block, as seen in the window, depends on the disposition you selected,
replace or retain. The third block, as seen in the window, initially contains binary
zeroes. If you later call CSRSAVE to update the permanent object with changes
from the window, window services extends the size of the permanent object to
three blocks by appending the new block of data to the object.

Defining multiple views of an object
You might need to view different parts of an object at the same time. For a
permanent object, you can define windows that have non-overlapping views as
well as windows that have overlapping views. For a temporary object, you can
define windows that have only non-overlapping views.
v A non-overlapping view means that no two windows view the same block of the

object. For example, a view is non-overlapping when one window views the first
and second blocks of an object and another window views the ninth and tenth
blocks of the same object. Neither window views a common block.

v An overlapping view means that two or more windows view the same block of
the object. For example, the view overlaps when the second window in the
previous example views the second and third blocks. Both windows view a
common block, the second block.

Non-overlapping views
To define multiple windows that have a non-overlapping view, call CSRIDAC once
to obtain the object identifier. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify the value BEGIN for operation_type, the same object
identifier for object_id, and a different value for window_name. Define each
window’s view by specifying values for offset and span that create windows with
non-overlapping views.

Overlapping views
To define multiple windows that have an overlapping view of a permanent object,
define each window as though it were viewing a different object. That is, define
each window under a different object identifier. To obtain the object identifiers, call

Chapter 2. Using window services 17

CSRIDAC once for each identifier you need. Only one of the calls to CSRIDAC can
specify an access mode of UPDATE. Other calls to CSRIDAC must specify an
access mode of READ.

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window.
On each call, specify the value BEGIN for the operation type, a different object
identifier for object_id, and a different value for window_name. Define each
window’s view by specifying values for offset and span that create windows with
the required overlapping views.

Saving interim changes to a permanent data object
Window services allows you to save interim changes you make to a permanent
object. You must have previously requested a scroll area for the object, however.
You request a scroll area when you call CSRIDAC to gain access to the object.
Window services saves changes by replacing blocks in the scroll area with
corresponding changed blocks from a window. Saving changes in the scroll area
does not alter the object on DASD.

After you have a view of the object and have made changes in the window, you
can save those changes in the scroll area. To save changes in the scroll area, call
CSRSCOT. For a description of the CSRSCOT parameters and return codes, see
“CSRSCOT — Save object changes in a scroll area” on page 36.

To identify the object, you must supply an object identifier for object_id. The value
supplied for object_id must be the same value CSRIDAC returned in object_id when
you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:
v The value assigned to offset specifies the relative block at which to start. An

offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services save all changed blocks to
which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Updating a temporary data object
After making changes in a window to a temporary object, you can update the
object with those changes. You must identify the object and must specify the range
of blocks that you want to update. To be updated, a block must be mapped to a
window and must contain changes in the window. Window services replaces each
block within the specified range with the corresponding changed block from a
window.

To update a temporary object, call CSRSCOT. For a description of the CSRSCOT
parameters and return codes, see “CSRSCOT — Save object changes in a scroll
area” on page 36.

18 z/OS V2R1.0 MVS Callable Services for HLL

To identify the object, you must supply an object identifier for object_id. The value
you supply for object_id must be the same value CSRIDAC returned in object_id
when you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:
v The value assigned to offset specifies the relative block at which to start. An

offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Refreshing changed data
You can refresh blocks that are mapped to either a temporary object or to a
permanent object. You must identify the object and specify the range of blocks you
want to refresh. When you refresh blocks mapped to a temporary object, window
services replaces, with binary zeros, all changed blocks that are mapped to the
window. When you refresh blocks mapped to a permanent object, window services
replaces specified changed blocks in a window or in the scroll area with
corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. For a description of CSRREFR parameters and
return codes, see “CSRREFR — Refresh an object” on page 31.

To identify the object, you must supply an object identifier for object_id. The value
supplied for object_id must be the same value CSRIDAC returned in object_id when
you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:
v The value assigned to offset specifies the relative block at which to start. An

offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services refresh all changed blocks to
which a window is mapped, or that have been saved in a scroll area.

Window services refreshes each block within the range specified by offset and span
providing the block has changed and a window or a scroll area is mapped to the
block. At the completion of the refresh operation, blocks from a permanent object
that have been refreshed appear the same as the corresponding blocks on DASD.
Refreshed blocks from a temporary object contain binary zeroes.

Chapter 2. Using window services 19

Updating a permanent object on DASD
You can update a permanent object on DASD with changes that appear in a
window or in the object’s scroll area. You must identify the object and specify the
range of blocks that you want to update.

To update an object, call CSRSAVE. For a description of theCSRSAVE parameters
and return codes, see “CSRSAVE — Save changes made to a permanent object” on
page 34.

To identify the object, you must supply an object identifier for object_id. The value
you provide for object_id must be the same value CSRIDAC returned when you
requested access to the object.

To identify the blocks of the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:
v The value assigned to offset specifies the relative block at which to start. An

offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped, or have been saved in the scroll area.

When there is a scroll area
When the object has a scroll area, window services first updates blocks in the scroll
area with corresponding blocks from windows. To be updated, a scroll area block
must be within the specified range, a window must be mapped to the block, and
the window must contain changes. Window services next updates blocks on DASD
with corresponding blocks from the scroll area. To be updated, a DASD block must
be within the specified range and have changes in the scroll area. Blocks in the
window remain unchanged.

When there is no scroll area
When there is no scroll area, window services updates blocks of the object on
DASD with corresponding blocks from a window. To be updated, a DASD block
must be within the specified range, mapped to a window, and have changes in the
window. Blocks in the window remain unchanged.

Changing a view in a window
To change the view in a window so you can view a different part of the same
object or view a different object, you must first terminate the current view. To
terminate the view, whether the view was mapped by CSRVIEW or CSREVW, call
CSRVIEW and supply a value of END for operation_type. You must also identify the
object, identify the window, identify the blocks you are currently viewing, and
specify a disposition for the data that is in the window. For a description of
CSRVIEW parameters and return codes, see “CSRVIEW — View an object” on page
39.

To identify the object, supply an object identifier for object_id. The value supplied
for object_id must be the value you supplied when you established the view.

20 z/OS V2R1.0 MVS Callable Services for HLL

To identify the window, supply the window name for window_name. The value
supplied for window_name must be the same value you supplied when you
established the view.

To identify the blocks you are currently viewing, supply values for offset and span.
The values you supply must be the same values you supplied for offset and span
when you established the view.

To specify a disposition for the data you are currently viewing, supply a value for
disposition. The value determines what data will be in the window after the CALL
to CSRVIEW completes.
v For a permanent object that has no scroll area:

– To retain the data that is currently in the window, supply a value of RETAIN
for disposition.

– To discard the data that is currently in the window, supply a value of
REPLACE for disposition. After the operation completes, the window contents
are unpredictable.

For example, assume that a window is mapped to one block of a permanent
object that has no scroll area. The window contains the character string
AAA......A and the block to which the window is mapped contains BBB......B. If
you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA......A, and the mapped block contains BBB......B. If you specify a
value of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB......B.

v For a permanent object that has a scroll area or for a temporary object:
– To retain the data that is currently in the window, supply a value of RETAIN

for disposition. CSRVIEW also updates the mapped blocks of the scroll area or
temporary object so that they contain the same data as the window.

– To discard the data that is currently in the window, supply a value of
REPLACE for disposition. Upon completion of the operation, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary
object. The window contains the character string AAA......A and the block to
which the window is mapped contains BBB......B. If you specify a value of
RETAIN, upon completion of the CALL, the window still contains AAA......A
and the mapped block of the object also contains AAA......A. If you specify a
value of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB......B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and
the value you specify for disposition determine whether CSRVIEW updates the
mapped blocks. CSRVIEW updates the mapped blocks of a temporary object or a
permanent object’s scroll area if you specify a disposition of RETAIN. In all other
cases, to update the mapped blocks, call the appropriate service before terminating
the view:
v To update a temporary object, or to update the scroll area of a permanent object,

call CSRSCOT.
v To update an object on DASD, call CSRSAVE.

Upon successful completion of the CSRVIEW operation, the content of the window
depends on the value specified for disposition. The window is no longer mapped

Chapter 2. Using window services 21

to a scroll area or to an object, however. The storage used for the window is
available for other use, perhaps to use as a window for a different part of the same
object or to use as a window for a different object.

Terminating access to a data object
When you finish using a data object, you must terminate access to the object.
When you terminate access, window services returns to the system any virtual
storage it obtained for the object: storage for a temporary object or storage for a
scroll area. If the object is temporary, window services deletes the object. If the
object is permanent and window services dynamically allocated the data set when
you requested access to the object, window services dynamically unallocates the
data set. Your window is no longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not
update the object on DASD with changes that are in a window or the scroll area.
To update the object, call CSRSAVE before terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a value of END for
operation_type. To identify the object, supply an object identifier for object_id. The
value you supply for object_id must be the same value CSRIDAC returned when
you obtained access to the object.

Upon successful completion of the call, the storage used for the window is
available for other use, perhaps as a window for viewing a different part of the
same object or to use as a window for viewing a different object.

Handling return codes and abnormal terminations
Each time you call a service, your program receives either a return code and
reason code or an abend code and a reason code. These codes indicate whether the
service completed successfully, encountered an unusual condition, or was unable to
complete successfully.

When you receive a return code that indicates a problem or an unusual condition,
your program can either attempt to correct the problem or can terminate its
execution. Return codes and reason codes are explained in Chapter 3, “Window
services,” on page 23 with the description of each callable service program.

When an abend occurs, the system passes control to a recovery routine, if you or
your installation have provided one. A recovery routine might be able to correct
the problem that caused the abend and allow your program to continue execution.
If a recovery routine has been provided, it can handle the abend condition the
same way it handles other abend conditions. If a recovery routine has not been
provided, the system terminates execution of your program. For an explanation of
the abend codes, see z/OS MVS System Codes.

22 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 3. Window services

To use window services, you issue CALLs that invoke the appropriate window
services program. Each service program performs one or more functions and
requires a set of parameters coded in a specific order on the CALL statement.

Depending on the function requested from a service, there might be one or more
parameter values that the service ignores. Although a service might ignore a
parameter value, you must still code that parameter on the CALL statement.
Because the service ignores the parameter value, you can assign the parameter any
value that is acceptable for the parameter’s data type. If the service uses a
particular parameter value, the CALL statement description in this topic defines
the allowable values that you can assign to the parameter.

This topic describes the CALL statements that invoke window services. Each
description includes a syntax diagram, parameter descriptions, and return code
and reason code explanations with recommended actions. Return codes and reason
codes are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. For examples of how to code the CALL statements, see Chapter 4,
“Window services coding examples,” on page 45.

This topic contains the following subtopics:
v “CSREVW — View an object and sequentially access it”
v “CSRIDAC — Request or terminate access to a data object” on page 27
v “CSRREFR — Refresh an object” on page 31
v “CSRSAVE — Save changes made to a permanent object” on page 34
v “CSRSCOT — Save object changes in a scroll area” on page 36
v “CSRVIEW — View an object” on page 39

CSREVW — View an object and sequentially access it
Call CSREVW if you reference data in a sequential pattern and you want to:
v Map a window to one or more blocks (4096 bytes) of a data object. If you

specified scrolling when you called CSRIDAC to identify the object, CSREVW
maps the window to the blocks in the scroll area and maps the scroll area to the
object.

v Specify how many blocks window services is to bring into the window each
time CSREVW needs more data from the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW and CSRVIEW services differ on how to specify sequential access:
v If you use CSRVIEW and specify sequential, when you reference data that is not

in your window, window services reads up to 16 blocks — the one that contains
the data your program requests, plus the next 15 consecutive blocks. The
number of consecutive blocks varies, depending on the size of the window and
the availability of central storage.

© Copyright IBM Corp. 1994, 2014 23

v If you use CSREVW, you can specify the number of additional consecutive
blocks that window services reads into the window at one time. The number
ranges from 0 through 255.

Use CSREVW if your program has sequential access and can benefit from having
more than 16 blocks come into a window at one time, or fewer than 16 blocks at
one time.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSREVW
uses to obtain input values, assign appropriate values. For parameters that
CSREVW ignores, assign any value that is valid for the particular parameter’s data
type.
v To map a window to a data object and begin viewing the object, specify BEGIN

and SEQ and assign values, acceptable to CSREVW, to:
– object_id

– offset

– span

– window_name

– disposition

– pfcount

v CSREVW returns values in return_code and in reason_code.To end the view and
unmap the data object, use CSRVIEW END and specify all values, except for
pfcount, that you specified when you mapped the window.

CALL statement Parameters

CALL CSREVW (operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,pfcount
,return_code
,reason_code)

operation_type
Specify BEGIN to request that CSREVW map a data object.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

CSREVW

24 z/OS V2R1.0 MVS Callable Services for HLL

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

,usage
Specify SEQ to tell CSREVW that the expected pattern of references to data in
the object will be sequential.

Define this field as character data of length 6. Pad the string on the right with
1 blank.

,disposition
Defines how CSREVW is to handle data that is in the window when you begin
a view. When you specify CSREVW BEGIN and a disposition of:

REPLACE
The first time you reference a block to which the window is mapped,
CSREVW replaces the data in the window with the data from the
referenced block.

RETAIN
When you reference a block to which the window is mapped, the data
in the window remains unchanged. When you call CSRSAVE to save
the mapped blocks, CSRSAVE saves all of the mapped blocks because
CSRSAVE considers them changed.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with 1 blank.

,pfcount
Specifies the number of additional blocks you want window services to bring
into the window each time your program references data that is not already in
the window. The number you specify is added to the minimum of one block
that window services always brings in. That is, if you specify a value of 20,
window services brings in a total of 21. The number of additional blocks
ranges from zero through 255.

Define pfcount as integer data of length 4.

,return_code
When CSREVW completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes” on page 26.

,reason_code
When CSREVW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes” on page 26.

Abend codes
CSREVW issues abend code X'019'. For more information, see z/OS MVS System
Codes.

CSREVW

Chapter 3. Window services 25

Return codes and reason codes
When CSREVW returns control to your program, return_code contains a return code
and reason_code contains a reason code. Return codes and reason codes are shown
in hexadecimal followed by the decimal equivalent enclosed in parentheses. Table 1
identifies return code and reason code combinations, tells what each means, and
recommends an action that you should take.

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with
any reason code means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes, which are two bytes long and
right justified, are explained in z/OS MVS Programming: Assembler Services Reference
ABE-HSP. To resolve a data-in-virtual problem, request help from your system
programmer.

Table 1. CSREVW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning: The operation was successful. The service could not
retain all the data that was in the scroll area, however.

Action: Notify your system programmer.

00000012 (18) xxxx000A (10) Meaning: There is another service currently executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped
area of the object.

Action: If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the
wrong range of blocks on CSRVIEW or on CSRREFR. If you do
not find any errors in your program, notify your system
programmer.

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0040 (64) Meaning: The specified MAP range would cause the hiperspace
data-in-virtual object to be extended such that the installation data
space limits would be exceeded.

Action: Change the MAP range you have specified or request
your system programmer to increase the installation’s data space
limits.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

CSREVW

26 z/OS V2R1.0 MVS Callable Services for HLL

Table 1. CSREVW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be
read into real storage.

Action: Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRIDAC — Request or terminate access to a data object
Call CSRIDAC to:
v Request access to a data object
v Terminate access to a data object

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRIDAC
uses to obtain input values, assign values that are acceptable to CSRIDAC. For
parameters that CSRIDAC ignores, assign any value that is valid for the particular
parameter’s data type.

The parameter values that CSRIDAC uses depends on whether you are requesting
access to an object or terminating access.
v To request access to a data object, specify BEGIN for operation_type, and assign

values, acceptable to CSRIDAC, to the following parameters:
– object_type

– object_name if the object is permanent
– scroll_area

– object_state if the object is permanent and object_type specifies DSNAME
– access_mode if the object exists and is permanent
– object_size if the object is new or temporary
– object_size if the object is new or temporary

CSRIDAC ignores other parameter values. CSRIDAC returns values in object_id,
high_offset, return_code, and reason_code.

v To terminate access to a data object, specify END for operation_type, and assign a
value, acceptable to CSRIDAC, to object_id. CSRIDAC ignores other parameter
values. CSRIDAC returns values in return_code and reason_code.

CSREVW

Chapter 3. Window services 27

CALL statement Parameters

CALL CSRIDAC (operation_type
,object_type
,object_name
,scroll_area
,object_state
,access_mode
,object_size
,object_id
,high_offset
,return_code
,reason_code)

operation_type
Specifies the type of operation the service is to perform:
v To request access to an object, specify BEGIN.
v To terminate access to an object, specify END. If the object is temporary,

CSRIDAC deletes it.

Define operation_type as character data of length 5. If you specify END, pad the
string on the right with 1 or 2 blanks.

,object_type
Specifies the type of object. The types are:

DDNAME
The object is an existing (OLD) VSAM linear data set allocated to the
file whose DDNAME is specified by object_name.

DSNAME
The object is the linear VSAM data set whose name is specified by
object_name. The data set may already exist or may be a new data set
that you want window services to create.

TEMPSPACE
The object is a temporary data object. Window services deletes the
object when your program calls CSRIDAC and operation_type equals
END.

If operation_type is BEGIN, you must supply a value.

Define this parameter as character data of length 9. If you specify either
DDNAME or DSNAME, pad the string on the right with 1 to 3 blanks.

,object_name
Specifies the data set name of a permanent object or the DDNAME of a data
definition (DD) statement that defines a permanent object.
v If object_type is DDNAME, object_name must contain the name of a DD

statement.
v If object_type is DSNAME, object_name must contain the data set name of the

permanent object.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for object_name.

Define object_name as character data of length 1 to 45. If object_name contains
fewer than 45 characters, pad the name on the right with a blank.

CSRIDAC

28 z/OS V2R1.0 MVS Callable Services for HLL

,scroll_area
Specifies whether window services is to create a scroll area for the data object.

YES Create a scroll area.

NO Do not create a scroll area.

If operation_type is BEGIN and object_type is TEMPSPACE, specify YES.

Define scroll_area as character data of length 3. If you specify NO, pad the
string on the right with a blank.

,object_state
Specifies the state of the object.

OLD The object exists.

NEW The object does not exist and window services must create it.

If operation_type is BEGIN and object_type is DSNAME, you must supply a
value for object_state.

Define object_state as character data of length 3.

,access_mode
Specifies the type of access required.

READ READ access.

UPDATE
UPDATE access.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for access_mode. For a new or temporary data object, window
services assumes UPDATE.

Define access_mode as character data of length 6. If you specify READ, pad the
string on the right with 1 or 2 blanks.

,object_size
Specifies the maximum size of the new object in units of 4096 bytes.

This parameter is required if either of the following conditions is true:
v Operation_type is BEGIN, object_type is DSNAME, and object_state is NEW
v Operation_type is BEGIN and object_type is TEMPSPACE

Define object_size as integer data of length 4.

,object_id
Specifies the object identifier.

When operation_type is BEGIN, the service returns the object identifier in this
parameter. Use the identifier to identify the object to other window services.

When operation_type is END, you must supply the object identifier in this
parameter.

Define object_id as character data of length 8.

,high_offset
When CSRIDAC completes, high_offset contains the size of the existing object
expressed in blocks of 4096 bytes

Define high_offset as integer data of length 4.

CSRIDAC

Chapter 3. Window services 29

,return_code
When CSRIDAC completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

,reason_code
When CSRIDAC completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

Abend codes
CSRIDAC issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return codes and reason codes
When CSRIDAC returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes are
shown in hexadecimal followed by the decimal equivalent enclosed in parentheses.
Table 2 identifies return code and reason code combinations, tells what each means,
and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason codes.
Data-in-virtual reason codes are two bytes long and right justified. To resolve a
data-in-virtual problem, request help from your system programmer. For
information about data-in-virtual, see the z/OS MVS Programming: Assembler
Services Guide.

Table 2. CSRIDAC Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000008 (8) 00000118 (280) Meaning: The system could not obtain enough storage to create a
hiperspace for the temporary object or the scroll area.
Note: Hiperspace™ is the name the system uses to identify the
storage it uses to create a temporary object or a scroll area for a
permanent object.

Action: Notify your system programmer. The system programmer
might have to increase the SMF limit for data spaces and
hiperspace that are intended for the user.

00000008 (8) 00000119 (281) Meaning: The system could not delete or unidentify the
temporary object or the scroll area.

Action: Notify your system programmer.

00000008 (8) 0000011A (282) Meaning: The system was unable to create a new VSAM linear
data set. DFP 3.1 must be running and SMS must be active.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: Another service currently is executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

CSRIDAC

30 z/OS V2R1.0 MVS Callable Services for HLL

Table 2. CSRIDAC Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0037 (55) Meaning: The caller invoked ACCESS. The access is successful,
but the system is issuing a warning that the data set was not
allocated with a SHAREOPTIONS(1,3).

Action: Notify your system programmer.

0000000C (12) xxxx003E (62) Meaning: The hiperspace data-in-virtual object may not be
accessed at this time. (If MODE=READ, the object is already
accessed under a different ID for UPDATE. If MODE=UPDATE,
the object is already accessed under at least one other ID.)

Action: Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0805 (2053) Meaning: System error — A system error of indeterminate origin
has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

00000010 (16) rrrrnnnn Meaning: The system was unable to allocate or unallocate the
data set specified as object_name. The value rrrr is the return code
from dynamic allocation. The value nnnn is the two-byte reason
code from dynamic allocation. See z/OS MVS Programming:
Authorized Assembler Services Guide for dynamic allocation return
and reason codes.

Action: If object_state is NEW, make sure that a data set of the
same name does not already exist. If one does already exist, either
use the existing data set or change the name of your data set. If
you are unable to correct the problem, notify your system
programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRREFR — Refresh an object
To refresh changed data that is in a window, a scroll area, or a temporary object,
call CSRREFR. CSRREFR refreshes changed data within specified blocks as follows:
v If the object is permanent, CSRREFR replaces specified changed blocks in

windows or the scroll area with corresponding blocks from the object on DASD.
v For a temporary object, CSRREFR refreshes specified changed blocks in windows

and the object by setting the blocks to binary zeroes.

CSRIDAC

Chapter 3. Window services 31

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRREFR
uses to obtain input values, assign values that are acceptable to CSRREFR. For
parameters that CSRREFR ignores, assign any value that is valid for the particular
parameter’s data type.

Assign values, acceptable to CSRREFR, to object_id, offset, and span. CSRREFR
ignores other parameter values. CSRREFR returns values in return_code and
reason_code.

CALL statement Parameters

CALL CSRREFR (object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services
refreshes. To refresh the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRREFR is to refresh.

Define span as integer data of length 4.

,return_code
When CSRREFR completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes” on page 33.

,reason_code
When CSRREFR completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes” on page 33.

Abend codes
CSRREFR issues abend code X'019'. For more information, see z/OS MVS System
Codes.

CSRREFR

32 z/OS V2R1.0 MVS Callable Services for HLL

Return codes and reason codes
When CSRREFR returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes are
shown in hexadecimal followed by the decimal equivalent enclosed in parentheses.
Table 3 identifies return code and reason code combinations, tells what each means,
and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason codes.
Data-in-virtual reason codes are two bytes long and right justified. To resolve a
data-in-virtual problem, request help from your system programmer.

Table 3. CSRREFR Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000008 (8) 00000152 (338) Meaning: The system could not refresh all of the temporary object
within the specified span.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not include any mapped block
of the object.

Action: If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the
wrong range of blocks on CSRVIEW or on CSRREFR. If you do
not find any errors in your program, notify your system
programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be
read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0805 (2053) Meaning: System error — A system error of indeterminate origin
has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

CSRREFR

Chapter 3. Window services 33

Table 3. CSRREFR Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRSAVE — Save changes made to a permanent object
To update specified blocks of a permanent object with changes, call CSRSAVE. The
changes can be in blocks that are mapped to the scroll area, in blocks that are
mapped to windows, or in a combination of these places.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRSAVE
uses to obtain input values, assign values that are acceptable to CSRSAVE. For
parameters that CSRSAVE ignores, assign any value that is valid for the particular
parameter’s data type.

Assign values, acceptable to CSRSAVE, to object_id, offset, and span. CSRSAVE
ignores other parameter values. CSRSAVE returns values in new_hi_offset,
return_code, and reason_code.

CALL statement Parameters

CALL CSRSAVE (object_id
,offset
,span
,new_hi_offset
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services
saves. To save the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSAVE is to save.

Note: You cannot use CSRSAVE to save changes made to a temporary object. If you call CSRSAVE for a
temporary object, CSRSAVE ignores the request and returns control to your program with a return code of 8. To
save changes made to a temporary object, call CSRSCOT.

CSRREFR

34 z/OS V2R1.0 MVS Callable Services for HLL

Define span as integer data of length 4.

,new_hi_offset
When CSRSAVE completes, new_hi_offset contains the new size of the object
expressed in units of 4096 bytes.

Define new_hi_offset as integer data of length 4.

,return_code
When CSRSAVE completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

,reason_code
When CSRSAVE completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

Abend codes
CSRSAVE issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return codes and reason codes
When CSRSAVE returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes are
shown in hexadecimal followed by the decimal equivalent enclosed in parentheses.
Table 4 identifies return code and reason code combinations, tells what each means,
and recommends an action that you should take.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with
any reason code means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes are two bytes long and right
justified. To resolve a data-in-virtual problem, request help from your system
programmer. For information about data-in-virtual, see the z/OS MVS Programming:
Assembler Services Guide.

Table 4. CSRSAVE Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning: Media damage may be present in allocated DASD
space. The damage is beyond the currently saved portion of the
object. The SAVE operation completed successfully.

Action: Notify your system programmer.

00000008 (8) xxxx0143 (323) Meaning: You cannot use the SAVE service for a temporary
object.

Action: Use the scrollout (CSRSCOT) service.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

CSRSAVE

Chapter 3. Window services 35

Table 4. CSRSAVE Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped
area of the object.

Action: If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the
wrong range of blocks on CSRVIEW or on CSRREFR. If you do
not find any errors in your program, notify your system
programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be
read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRSCOT — Save object changes in a scroll area
Call CSRSCOT to:
v Update specified blocks of a permanent object’s scroll area with changes that

appear in a window you have defined for the object. CSRSCOT requires that the
permanent object have a scroll area. CSRSCOT changes only the content of the
scroll area and not the content of the permanent data object.

v Update specified blocks of a temporary data object with the changes that appear
in a window you have defined for the data object.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRSCOT
uses to obtain input values, assign values that are acceptable to CSRSCOT. For
parameters that CSRSCOT ignores, assign any value that is valid for the particular
parameter’s data type.

CSRSAVE

36 z/OS V2R1.0 MVS Callable Services for HLL

Assign values, acceptable to CSRSCOT, to object_id, offset, and span. CSRSCOT
ignores other parameter values. CSRSCOT returns values in return_code and
reason_code.

CALL statement Parameters

CALL CSRSCOT (object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0 specifies
the first block of 4096 bytes or bytes 0 to 4095 of the object; a value of 1
specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the object,
and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object CSRSCOT updates.
To update the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSCOT is to update.

Define span as integer data of length 4.

,return_code
When CSRSCOT completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

,reason_code
When CSRSCOT completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

Abend codes
CSRSCOT issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return codes and reason codes
When CSRSCOT returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes are
shown in hexadecimal followed by the decimal equivalent enclosed in parentheses.
Table 5 on page 38 identifies return code and reason code combinations, tells what
each means, and recommends an action that you should take.

CSRSCOT

Chapter 3. Window services 37

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason codes.
Data-in-virtual reason codes are two bytes long and right justified. For information
about data-in-virtual, see z/OS MVS Programming: Assembler Services Guide. To
resolve the problem, request help from your system programmer.

Table 5. CSRSCOT Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning: Media damage may be present in allocated DASD
space. The damage is beyond the currently saved portion of the
object. The SAVE operation completed successfully.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped
area of the object.

Action: If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the
wrong range of blocks on CSRVIEW or on CSRREFR. If you do
not find any errors in your program, notify your system
programmer.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be
read into real storage.

Action: Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRSCOT

38 z/OS V2R1.0 MVS Callable Services for HLL

CSRVIEW — View an object
Call CSRVIEW to:
v Map a window to one or more blocks of a data object. If you specified scrolling

when you called CSRIDAC to identify the object, CSRVIEW maps the window
to the scroll area and the scroll area to the object.

v Specify that the reference pattern you are using is either random or sequential.
v End a view that you previously created through CSRVIEW or CSREVW and

unmap the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW service also maps a data object. Use that service if your program can
benefit from having more than 16 blocks come into a window at one time or if it
can benefit from having fewer than 16.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRVIEW
uses to obtain input values, assign values that are acceptable to CSRVIEW. For
parameters that CSRVIEW ignores, assign any value that is valid for the particular
parameter’s data type.

The type of function you request determines which parameter values CSRVIEW
uses to obtain input values:
v To map a window to a data object and begin viewing the object, specify BEGIN

for operation_type, and assign values, acceptable to CSRVIEW, to:
– object_id

– offset

– span

– window_name

– usage

– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in
return_code and in reason_code.

v To end a view set by either CSRVIEW or CSREVW and to unmap the data
object, specify END for operation_type, and assign values, acceptable to
CSRVIEW, to:
– object_id

– offset

– span

– window_name

– usage

– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in
return_code and reason_code.

CSRVIEW

Chapter 3. Window services 39

CALL statement Parameters

CALL CSRVIEW (operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,return_code
,reason_code)

operation_type
Specifies the type of operation CSRVIEW is to perform. To begin viewing an
object, specify BEGIN. To end a view, specify END.

Define operation_type as character data of length 5. If you specify END, pad the
string on the right with 1 or 2 blanks.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

,usage
Specifies the expected pattern of references to pages in the object. Specify one
of the following values:

SEQ The reference pattern is expected to be sequential. If you specify SEQ,
window services brings up to 16 blocks of data into the window at a
time, depending on the size of the window.

RANDOM
The reference pattern is expected to be random. If you specify
RANDOM, window services brings data into the window one block at
a time.

Define usage as character data of length 6. If you specify SEQ, pad the string
on the right with 1 to 3 blanks.

,disposition
Defines how CSRVIEW is to handle data that is in the window when you
begin or end a view.

CSRVIEW

40 z/OS V2R1.0 MVS Callable Services for HLL

v When you specify CSRVIEW with an operation_type of BEGIN and a
disposition of:

REPLACE
The first time you reference a block to which the window is
mapped, CSRVIEW replaces the data in the window with the data
from the referenced block.

RETAIN
When you reference a block to which the window is mapped, the
data in the window remains unchanged. When you call CSRSAVE to
save the mapped blocks, CSRSAVE saves all of the mapped blocks
because CSRSAVE considers them changed.

v When you specify CSRVIEW with an operation_type of END and a
disposition of:

REPLACE
CSRVIEW discards the data that is in the window making the
window contents unpredictable. CSRVIEW does not update mapped
blocks of the object or scroll area.

RETAIN
If the object is permanent and has no scroll area, CSRVIEW retains
the data that is in the window. CSRVIEW does not update mapped
blocks of the object. If the object is permanent and has a scroll area,
or if the object is temporary, CSRVIEW retains the data that is in the
window and updates the mapped blocks of the object or scroll area.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with a blank.

,return_code
When CSRVIEW completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

,reason_code
When CSRVIEW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return codes and reason
codes.”

Abend codes
CSRVIEW issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return codes and reason codes
When CSRVIEW returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes are
shown in hexadecimal followed by the decimal equivalent enclosed in parentheses.
Table 6 on page 42 identifies return code and reason code combinations, tells what
each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with
any reason code means that data-in-virtual encountered a problem or an
unexpected condition. Data-in-virtual reason codes are two bytes long and right

CSRVIEW

Chapter 3. Window services 41

justified. For information about data-in-virtual, see z/OS MVS Programming:
Assembler Services Guide. To resolve the problem, request help from your system
programmer.

Table 6. CSRVIEW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning: The operation was successful.

Action: Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning: The operation was successful. The service could not
retain all the data that was in the scroll area, however.

Action: Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning: There is another service currently executing with the
specified ID.

Action: Use a different ID or wait until the other service
completes. If the problem persists, notify your system
programmer.

0000000C (12) xxxx0017 (23) Meaning: An I/O error has occurred.

Action: Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning: The specified range does not encompass any mapped
area of the object.

Action: If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the
wrong range of blocks on CSRVIEW or on CSRREFR. If you do
not find any errors in your program, notify your system
programmer.

0000000C (12) xxxx001C (28) Meaning: The object cannot be accessed at the current time.

Action: Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0040 (64) Meaning: The specified MAP range would cause the hiperspace
data-in-virtual object to be extended such that the installation data
space limits would be exceeded.

Action: Change the MAP range you have specified or request
your system programmer to increase the installation’s data space
limits.

0000000C (12) xxxx0801 (2049) Meaning: System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action: Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning: System error — I/O driver failure.

Action: Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning: System error — A necessary page table could not be
read into real storage.

Action: Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning: System error — Catalog update failed.

Action: Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning: System error — I/O error.

Action: Notify your system programmer.

CSRVIEW

42 z/OS V2R1.0 MVS Callable Services for HLL

Table 6. CSRVIEW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0808 (2056) Meaning: System error — I/O from a previous request has not
completed.

Action: Notify your system programmer.

0000002C (44) 00000004 (4) Meaning: Window services have not been defined to your system
or the link to the service failed.

Action: Notify your system programmer.

CSRVIEW

Chapter 3. Window services 43

CSRVIEW

44 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 4. Window services coding examples

The following examples show how to invoke window services from each of the
supported languages. Following each program example is an example of the JCL
needed to compile, link edit, and execute the program example. Use these
examples to supplement and reinforce information that is presented in other topics
within this information.

Note: Included in the FORTRAN example is the code for a required assembler
language program. This program ensures that the window for the FORTRAN
program is aligned on a 4K boundary.

The examples are presented in Chapter 4, “Window services coding examples”:
v “ADA example”
v “C/370 example” on page 50
v “COBOL example” on page 53
v “FORTRAN example” on page 57
v “Pascal example” on page 61
v “PL/I example” on page 65

ADA example
-- --- --
-- This program illustrates how Data Window services are invoked --
-- using ADA. Note that the data object referenced in this program --
-- is permanent and already allocated, and is defined by the DD --
-- statement CSRDD1 in the JCL. --
-- --
-- This program must be linkedited with the CSR linkage-assist --
-- routines (also known as stubs) in SYS1.CSSLIB. --
-- --- --

with EBCDIC; use EBCDIC;
with System;
with Text_Io;
with Unchecked_Conversion;
with Td_Standard; use Td_Standard;

procedure CRTPAN06 is

subtype Str3 is EString (1..3);
subtype Str5 is EString (1..5);
subtype Str6 is EString (1..6);
subtype Str7 is EString (1..7);
subtype Str8 is EString (1..8);
subtype Str9 is EString (1..9);

function Integer_Address is new Unchecked_Conversion
(System.Address, Integer);

function Int_To_32 is new Unchecked_Conversion
(Integer, Integer_32);

Orig, -- Index to indicate the ’start’
-- of an array

Ad, I : Integer; -- Temporary variables
Voffset, -- Offset passed as parameter
Vofset2, -- Offset passed as parameter

© Copyright IBM Corp. 1994, 2014 45

Vobjsiz, -- Object size, as parameter
Vwinsiz, -- Window size, as parameter
High_Offset, -- Size of object in pages
New_Hi_Offset, -- New max size of the object
Return_Code, -- Return code
Reason_Code : Integer_32; -- Reason code
Object_Id : Str8; -- Identifying token
Cscroll : Str3; -- Scroll area YES/NO
Cobstate : Str3; -- Object state NEW/OLD
Coptype : Str5; -- Operation type BEGIN/END
Caccess : Str6; -- Access RANDOM/SEQ
Cusage : Str6; -- Usage READ/UPDATE
Cdisp : Str7; -- Disposition RETAIN/REPLACE
Csptype : Str9; -- Object type DSNAME/DDNAME/TEMPSPACE
Cobname : Str7; -- Object name
K : constant Integer := 1024; -- One kilo-byte
Pagesize : constant Integer := 4 * K; -- Page (4K) boundary
Offset : constant Integer_32 := 0; -- Start of permanent object
Window_Size : constant Integer := 40; -- Window size in pages
Num_Win_Elem : constant Integer := Window_Size*K; -- Num of 4-byte

-- elements in window
Object_Size : constant Integer := 3*Window_Size; -- Chosen object

-- size in pages
Num_Sp_Elem : constant Integer := (Window_Size+1)*K; -- Num of

-- 4-byte elements in space

type S is array (positive range <>) of Integer; -- Define byte
-- aligned space

Sp : S (1..Num_Sp_Elem); -- Space allocated for window

procedure CSRIDAC (Op_Type : in Str5;
Object_Type : in Str9;
Object_Name : in Str7;
Scroll_Area : in Str3;
Object_State: in Str3;
Access_Mode : in Str6;
Vobjsiz : in Integer_32;
Object_Id : out Str8;
High_Offset : out Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRIDAC);

procedure CSRVIEW (Op_Type : in Str5;
Object_Id : in Str8;
Offset : in Integer_32;
Window_Size : in Integer_32;
Window_Name : in S;
Usage : in Str6;
Disposition : in Str7;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRVIEW);

procedure CSRSCOT (Object_Id : in Str8;
Offset : in Integer_32;
Span : in Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRSCOT);

procedure CSRSAVE (Object_Id : in Str8;
Offset : in Integer_32;
Span : in Integer_32;
New_Hi_Offset : out Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

ADA Example

46 z/OS V2R1.0 MVS Callable Services for HLL

pragma Interface (Assembler, CSRSAVE);

procedure CSRREFR (Object_Id : in Str8;
Offset : in Integer_32;
Span : in Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRREFR);

begin
Text_Io.Put_Line ("<<Begin Window Services Interface Validation>>");
Text_Io.New_Line;

Vobjsiz := Int_To_32(Object_Size); -- Set object size in variable
Voffset := Offset; -- Set offset to 0 for 1st map
Vwinsiz := Int_To_32(Window_Size); -- Set window size in variable
Vofset2 := Offset+Vwinsiz; -- Set offset to 40 for 2nd map

Coptype := "BEGIN";
Csptype := "DDNAME ";
Cobname := "CSRDD1 ";
Cscroll := "YES";
Cobstate := "OLD";
Caccess := "UPDATE";

CSRIDAC (Coptype, -- Set up access to the
Csptype, -- permanent object and
Cobname, -- request a scroll area
Cscroll,
Cobstate,
Caccess,
Vobjsiz,
Object_Id,
High_Offset,
Return_Code,
Reason_Code);

-- When you want to map a window to your object, data window services
-- expects the address of the start of the window to be on a page (4K)
-- boundary, and the length of the window to be a multiple of 4096 bytes.
-- If your window is an array, the address of the first element
-- of the array must be on a page boundary. If this is not the case,
-- you can appropriately choose one slice of your array that starts
-- on a 4K boundary and is a multiple of 4096 bytes in length to map
-- onto your object.
-- To illustrate, consider the array A(1..max_len). If the address of
-- A(1) is not on page boundary, you cannot map A(1..max_len) to your
-- object. You can, however, map A(n..m) to your object if you choose
-- some appropriate values n and m such that A(n) starts on a 4K
-- boundary and A(n..m) is a multiple of 4096 bytes in length.

Ad := Integer_Address(Sp(1)’Address); -- Get address of start of array

-- Determine the first element whose address is on page boundary
-- and use that element as the origin of the array.

Orig := (Ad mod Pagesize); -- See where the start of
-- array is in page

if Orig = 0 then -- If already on page boundary
Orig := 1; -- Keep the old origin

else
Orig := (Pagesize - Orig) / 4 + 1; -- Need new origin

end if;

Coptype := "BEGIN";
Cusage := "RANDOM";

ADA Example

Chapter 4. Window services coding examples 47

Cdisp := "REPLACE";

-- You can pass an array slice as a parameter to a non-Ada subprogram,
-- and because the slice is a composite object, the parameter list
-- contains the actual address of the first element in the slice.
-- To elaborate further:
-- Scalar data is passed by copy, but composite data is passed by
-- reference. If the scalar value was passed as a scalar, the assemble\
-- program would receive the address of the copy and not the address of
-- the scalar. By passing the scalar value as an array slice, a
-- composite data type is being passed and thus is passed by reference.
-- Using this technique, the assembler code receives the actual address
-- of the scalar, not a copy of the scalar.

CSRVIEW (Coptype, -- Now map a window (the array)
Object_Id, -- to the permanent object.
Voffset, -- (Actually, CSRVIEW will map the
Vwinsiz, -- window to the blocks in the
Sp(Orig..Num_Sp_Elem), -- scroll area and map the scroll
Cusage, -- area to the object.)
Cdisp,
Return_Code,
Reason_Code);

for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
Sp(I+Orig) := I+1;

end loop;

CSRSCOT (Object_Id, -- Capture the view in window.
Voffset, -- Note: only the scroll area
Vwinsiz, -- is updated, the permanent
Return_Code, -- object remains unchanged.
Reason_Code);

Coptype := "END ";
Cusage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the view in window
Object_Id,
Voffset,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "BEGIN";
Cusage := "RANDOM";
Cdisp := "REPLACE";

CSRVIEW (Coptype, -- Now map the same window
Object_Id, -- to different part of the
Vofset2, -- permanent object.
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
Sp(I+Orig) := I+1;

end loop;

ADA Example

48 z/OS V2R1.0 MVS Callable Services for HLL

CSRSAVE (Object_Id, -- Capture the view in window.
Vofset2, -- Note: this time the permanent
Vwinsiz, -- object is updated with the
New_Hi_Offset, -- changes.
Return_Code,
Reason_Code);

Coptype := "END ";
CUsage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the current view in
Object_Id, -- the window
Vofset2,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "BEGIN";
Cusage := "RANDOM";
Cdisp := "REPLACE";

CSRVIEW (Coptype, -- Now go back to reestablish
Object_Id, -- the 1st map using the same
Voffset, -- window area
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

CSRREFR (Object_Id, -- Refresh the data in the window
Voffset,
Vwinsiz,
Return_Code,
Reason_Code);

Coptype := "END ";
Cusage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the view in window
Object_Id,
Voffset,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "END ";
Csptype := "DDNAME ";
Cobname := "CSRDD1 ";
Cscroll := "YES";
Cobstate := "OLD";
Caccess := "UPDATE";

CSRIDAC (Coptype, -- Terminate access to the
Csptype, -- permanent object
Cobname,
Cscroll,
Cobstate,

ADA Example

Chapter 4. Window services coding examples 49

Caccess,
Vwinsiz,
Object_Id,
High_Offset,
Return_Code,
Reason_Code);

end CRTPAN06;

//ADAJOB JOB 00000100
//* 00000500
//* JCL USED TO COMPILE, LINK, AND EXECUTE THE ADA PROGRAM CRTPAN06 00000600
//* THAT USES DATA WINDOW SERVICES 00000700
//* 00000800
/*JOBPARM T=2,L=99 00050000
//ADACOBI EXEC PGM=IKJEFT01,DYNAMNBR=133 00055813
//SYSTSPRT DD SYSOUT=* 00055913
//SYSTSIN DD * 00056008

ALLOC FI(SYSLIB) DS(’SYS1.CSSLIB’) SHR 00056147
EX ’HLQ.SEVGEXE1(ADA)’ ’USERID.DWS.ADA’’ (MAI CRE’ 00056251

/* 00057008
//ADARUN EXEC PGM=CRTPAN06,DYNAMNBR=133 00070036
//STEPLIB DD DISP=SHR,DSN=HLQ.SEVHMOD1 00100051
// DD DISP=SHR,DSN=USERID.LOAD 00110051
//CSRDD1 DD DSN=USERID.ADA.DWSTEST.DATA,DISP=SHR 00120051
//CONOUT DD SYSOUT=*, 00130013
// DCB=(LRECL=133,RECFM=F) 00140027

C/370 example
The following example, coded in C/370™, creates and uses a temporary data object.
#include <stdio.h>
#include <stdlib.h>
/* Defined macros that will be used in the program. */
#define SIZE 8*1024
#define OBJ_SIZE 8
#define PAGE_SIZE (4*1024)
#define DWS_FILE "DWS.FILE1 "
#define TRUE 1
#define FALSE 0
char windows[SIZE];
char *view;
void init_mem(char init_value, char *low_mem, int size);
int chk_code(long int ret, long int reason, int linenumber);
main()
{

/* Initialized variables that will be used in the Callable */
/* Services. */
char op_type1[5] = "BEGIN";
char op_type2[5] = "END ";
char object_type[9] = "TEMPSPACE";
char object_name[45] = DWS_FILE;
char scroll_area[3] = "YES";
char object_state[3] = "NEW";
char access_mode[6] = "UPDATE";
long int object_size = OBJ_SIZE;
char disposition[7] = "REPLACE";
char usage[6] = "SEQ ";
char object_id[8];
long int high_offset, return_code, reason_code;
long int offset, window_size, window_addr;
long int span, new_hi_offset;
long int addr;
int i, ret, origin, errflag = FALSE;
double id;
/* Set up access to a Hiperspace object using TEMPSPACE. */

ADA Example

50 z/OS V2R1.0 MVS Callable Services for HLL

/* Check for return code and reason code after the call. */
csridac(op_type1, object_type, object_name, scroll_area, object_state,

access_mode,&object_size,&object_id,&high_offset,&return_code,;
&reason_code);

chk_code(return_code,reason_code,__LINE__);
/* Define a window in a 4K region and initialize */
/* variables for CSRVIEW. Define the window for the */
/* TEMPSPACE and verify the return code and reason code. */
init_mem(’0’,windows,SIZE);
addr = (int) windows % 4096;
if (addr != 0) view = windows + 4096 - addr;
offset = 0; window_size = 1;
csrview(op_type1,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Change values in the window into 1. */
init_mem(’1’,view,4096);
/* Capture the view in the 1st window. */
offset = 0; window_size = 1;
csrscot(&object_id, &offset, &window_size,&return_code,;

&reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Make sure that CSRSAVE will not save changes for temporary */
/* object. The return code should be equal to 8 and control */
/* will be returned to the program. */
offset = 0; window_size = 1;
csrsave(&object_id, &offset, &window_size, &high_offset,;

&return_code, &reason_code);
if (return_code != 8) {

errflag = TRUE;
printf("return_code was not set to proper value.\n");

}
/* Terminate the view to the window. */
offset = 0; window_size = 1;
csrview(op_type2,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Change values in the window array into 0’s. */
init_mem(’0’,view,4096);
/* View the window again. */
offset = 0; window_size = 1;
csrview(op_type1,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* The values in the window should remain to 1’s. */
for (i=0; i<4096; i++) {

if (errflag == TRUE) printf("%d %c ", i, view[i]);
if (view[i] != ’1’) errflag = TRUE;

}
/* Refresh the window to 0’s. */
offset = 0; window_size = 1;
csrrefr(&object_id, &offset, &window_size,;

&return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* The values inside the window should equal to 0’s. */
for (i=0; i<4096; i++) {

if (errflag == TRUE) printf("%d %c ", i, view[i]);
if (view[i] != 0) errflag = TRUE;

}
/* Terminate the view to the window. */
offset = 0; window_size = 1;
csrview(op_type2,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Terminate the access to the Hiperspace object. */
csridac(op_type2, object_type, object_name, scroll_area, object_state,

access_mode,&object_size,&object_id,&high_offset,&return_code,;

C/370 Example

Chapter 4. Window services coding examples 51

&reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Report the status of the test. */
if (errflag) {

printf("Test failed at line %d\n", __LINE__);
exit(1);

}
else {

printf("Test successful : %s\n", __FILE__);
exit(0);

}
}
/* Functions that will be used in the program. */
/* chk_code will check return code and reason code returned from*/
/* the Callable Services. It will report an error if the code(s)*/
/* is not equal to 0. */
int chk_code(long int ret, long int reason, int linenumber)
{

if (ret != 0)
printf("return_code = %ld instead of 0 at line %d\n",

ret, linenumber);
if (reason != 0)

printf("reason_code = %ld instead of 0 at line %d\n",
reason, linenumber);

}
/* init_mem will initialize a block of memory starting at a */
/* given location to a specified value. */
void init_mem(char init_val, char *low_mem, int size)
{

int i;
for (i=0; i<size; i++) *(low_mem+i) = init_val;

}
//*
//*--
//* JCL USED TO COMPILE, LINK, AND, EXECUTE THE C/370 PROGRAM
//*--
//*
//DPTTST1A JOB ’DPT04P,DPT,?,S=I’,’DPTTST1’,MSGCLASS=H,
// CLASS=J,NOTIFY=DPTTST1,MSGLEVEL=(1,1)
//CC EXEC EDCC,INFILE=’DPTTST1.DWS.SOURCE(DWS1)’,
// CPARM=’NOOPT,SOURCE,NOSEQ,NOMAR’,
// OUTFILE=’DPTTST1.DWS.OBJECT(DWS1)’
//*--
//* LINK STEP
//*--
//LKED EXEC PGM=IEWL,PARM=’MAP,RMODE=ANY,AMODE=31’
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJECT DD DSN=DPTTST1.DWS.OBJECT,DISP=SHR
//SYSLIN DD *

ENTRY CEESTART
INCLUDE OBJECT(DWS1)
NAME DWS1(R)

//SYSLMOD DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DISP=(NEW,DELETE,DELETE),
// SPACE=(32000,(30,30))
//*--
//* GO STEP. THIS STEP DEFINES A NAME FOR A PERMANENT OBJECT THAT
//* THE DDNAME OBJECT TYPE WILL REFERENCE.
//*--
//GO EXEC PGM=DWS1,REGION=4M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=125,BLKSIZE=6000)

C/370 Example

52 z/OS V2R1.0 MVS Callable Services for HLL

//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DSN=DPTTST1.DWS.FILE1,DISP=SHR

COBOL example
IDENTIFICATION DIVISION.

* Program using COBOL to create a 40-page window *
* aligned on a page boundary. This is done by locating a *
* page boundary within a 40*4096+4095 byte work area. *
* The DWS interface validation routine is then called passing *
* the 40 page window. *

PROGRAM-ID. DWSCBSAM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 WORKAREA.

2 FILLER PIC X OCCURS 167935 TIMES.
PROCEDURE DIVISION.

DISPLAY " DWSCBSAM CALLING DWSCB4K "
CALL "DWSCB4K" USING WORKAREA
DISPLAY " DWSCBSAM BACK FROM DWSCB4K "
GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. DWSCB4K.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 P POINTER.
1 PR REDEFINES P PIC 9(9) COMP.
1 DUMMY PIC 9(9) COMP.
1 R PIC 9(9) COMP.
LINKAGE SECTION.
1 INWORK PIC X(167935).
1 WINDOW.

2 FILLER PIC X(4096) OCCURS 40 TIMES.
PROCEDURE DIVISION USING INWORK.

SET P TO ADDRESS OF INWORK
DIVIDE PR BY 4096

GIVING DUMMY
REMAINDER R

IF R NOT EQUAL 0 THEN
COMPUTE PR = PR + 4096 - R
SET ADDRESS OF WINDOW TO P
DISPLAY " DWSCBK4 CALLING DWSCB2 "
CALL "DWSCB2" USING WINDOW.
DISPLAY " DWSCBK4 BACK FROM DWSCB2 "
GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. DWSCB2.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
* WINDOW SIZE CHOSEN TO BE 40 PAGES
1 NWINPG PIC 9(9) COMP VALUE 40.
1 NWINEL PIC 9(9) COMP.
1 NWLAST PIC 9(9) COMP.
1 NOBJPG PIC 9(9) COMP.
* WINDOWS WILL BEGIN ORIGIN-ING AT OFFSET 0 IN DATA OBJECT
1 WINOFF PIC 9(9) COMP VALUE 0.
1 RETRN1 PIC 9(9) COMP.

C/370 Example

Chapter 4. Window services coding examples 53

1 REASON PIC 9(9) COMP.
1 NEWOFF PIC 9(9) COMP.
1 OBSIZ PIC 9(9) COMP.
1 TOKEN PIC X(8).
1 K PIC 9(9) COMP.
LINKAGE SECTION.
1 WINDOW.

2 FILLER PIC X(4096) OCCURS 40 TIMES.
1 WINDOW-ARRAY REDEFINES WINDOW.

2 A PIC S9(8) COMP OCCURS 40960 TIMES.
PROCEDURE DIVISION USING WINDOW.

DISPLAY "Begin Data Windowing Services Interface Validation"
* WINDOW COMPOSED OF 4-BYTE ELEMENTS

COMPUTE NWINEL = 1024 * NWINPG.
* WINDOW MAY NOT BEGIN AT ARRAY ELEMENT 1, SO LEAVE ROOM

COMPUTE NWLAST = 1024 * NWINPG + 1023
* IN THE FOLLOWING, ARBITRARILY SET OBJECT SIZE = 3 WINDOWS WORTH

COMPUTE NOBJPG = 3 * NWINPG
* SET UP ACCESS TO A HIPERSPACE OBJECT

CALL "CSRIDAC" USING
BY CONTENT

"BEGIN",
"TEMPSPACE",
"MY FIRST HIPERSPACE",
"YES",
"NEW",
"UPDATE",

BY REFERENCE
NOBJPG,
TOKEN,
OBSIZ,
RETRN1,
REASON

* PUT SOME DATA INTO THE WINDOW AREA
MOVE ALL "DATA" TO WINDOW

* NOW VIEW SOMETHING IN THE WINDOW
CALL "CSRVIEW" USING

BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"REPLACE",

BY REFERENCE
RETRN1,
REASON

* CALCULATE SOMETHING IN THE WINDOW AREA
PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL

MOVE K TO A(K)
END-PERFORM

* CAPTURE THE VIEW IN THE WINDOW
CALL "CSRSCOT" USING

TOKEN,
WINOFF,
NWINPG,
RETRN1,
REASON

* END THE VIEW IN THE WINDOW
CALL "CSRVIEW" USING

BY CONTENT
"END ",

BY REFERENCE
TOKEN,

COBOL Example

54 z/OS V2R1.0 MVS Callable Services for HLL

WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* NOW VIEW SOMETHING ELSE (2ND WINDOW"S WORTH OF DATA) IN WINDOW
ADD NWINPG TO WINOFF
CALL "CSRVIEW" USING

BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN",

BY REFERENCE
RETRN1,
REASON

* CALCULATE SOMETHING NEW IN THE WINDOW AREA
PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL

COMPUTE A(K) = - K
END-PERFORM

* SAVE THE DATA IN THE WINDOW
CALL "CSRSCOT" USING

TOKEN,
WINOFF,
NWINPG,
RETRN1,
REASON

* NOW END THE CURRENT VIEW IN WINDOW
CALL "CSRVIEW" USING

BY CONTENT
"END ",

BY REFERENCE
TOKEN,
WINOFF
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* NOW GO BACK TO THE FIRST VIEW IN THE WINDOW
MOVE 0 TO WINOFF
CALL "CSRVIEW" USING

BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"REPLACE",

BY REFERENCE
RETRN1,
REASON

COBOL Example

Chapter 4. Window services coding examples 55

* REFRESH THE DATA IN THE WINDOW FOR THIS VIEW
CALL "CSRREFR" USING

TOKEN,
WINOFF,
NWINPG,
RETRN1,
REASON

* NOW END THE VIEW IN THE WINDOW
CALL "CSRVIEW" USING

BY CONTENT
"END ",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* TERMINATE ACCESS TO THE HIPERSPACE OBJECT
CALL "CSRIDAC" USING

BY CONTENT
"END ",
"TEMPSPACE",
"MY FIRST HIPERSPACE ENDS HERE ",
"YES",
"NEW",
"UPDATE",

BY REFERENCE
NOBJPG,
TOKEN,
OBSIZ,
RETRN1,
REASON

DISPLAY "-*** Run ended with Object Size in pages = " NEWOFF
GOBACK

**
* *
* JCL FOR COBOL EXAMPLE *
* *
**
//JOB1XXX JOB ’A9907P,B9222095’, 00010000
// ’A.A.USER’,RD=R, 00020000
// MSGCLASS=H,NOTIFY=AAUSER, 00030000
// MSGLEVEL=(1,1),CLASS=7 00040000
//LKED EXEC PGM=IEWL,PARM=’SIZE=(1024K,512K),LIST,XREF,LET,MAP’, 00080000
// REGION=1024K 00090000
//SYSLIN DD DDNAME=SYSIN 00110000
//SYSLMOD DD DSNAME=AAUSER.USER.LOAD(CRTCON01),DISP=SHR 00120000
//SYSLIB DD DSNAME=CEE.SCEELED,DISP=SHR 00140000
//* 00150100
//* FF310.OBJ HOLDS OBJECT CODE FROM THE COMPILE 00150200
//* 00150300
//MYLIB DD DSN=AAUSER.FF310.OBJ,DISP=SHR 00151000
//* 00151100
//* THE CSR STUBS ARE IN SYS1.CSSLIB 00151200
//* 00151300
//INLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00152000
//SYSPRINT DD SYSOUT=* 00170000
//SYSIN DD * 00230000
INCLUDE MYLIB(DWSCBSAM,DWSCB4K,DWSCB2) 00231000
LIBRARY INLIB(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00240000
NAME CRTCON01(R) 00250000

COBOL Example

56 z/OS V2R1.0 MVS Callable Services for HLL

FORTRAN example
**
* *
* *
* FORTRAN EXAMPLE. THE FORTRAN EXAMPLE IS FOLLOWED BY AN *
* ASSEMBLER PROGRAM CALLED ADDR. YOU MUST LINKEDIT THIS *
* ASSEMBLER PROGRAM WITH THE FORTRAN PROGRAM OBJECT *
* CODE AND THE CSR STUBS. THE ASSEMBLER PROGRAM ENSURES *
* THAT YOUR WINDOW IS ALIGNED ON A 4K BOUNDARY . *
* *
**
@PROCESS DC(WINCOM)

PROGRAM CRTFON01
C
C Test Program for Data Window Services
C
C Window size chosen to be 40 pages

PARAMETER (NWINPG = 40)
C Window composed of 4-byte elements

PARAMETER (NWINEL = 1024*NWINPG)
C Window may not begin at array element 1, so leave room

PARAMETER (NWLAST = 1024*NWINPG+1023)
C In the following, arbitrarily set object size = 3 windows worth

PARAMETER (NOBJPG = 3*NWINPG)
C Windows will begin origin-ing at offset 0 in data object

INTEGER WINOFF
PARAMETER (WINOFF = 0)

C
INTEGER RETRN1, REASON, HIOFF, NEWOFF, OBSIZ, OFF
INTEGER ADDR, PAGE, A
INTEGER JUNK /-1599029040/
REAL*8 TOKEN
COMMON /WINCOM/ A(NWLAST)

C
C

WRITE (6, 91)
91 FORMAT(’1*** Begin Data Windowing Services Interface Validation’)

C
C Set up access to a Hiperspace object

CALL CSRIDAC(’BEGIN’,
* ’TEMPSPACE’,
* ’MY FIRST HIPERSPACE’,
* ’YES’,
* ’NEW’,
* ’UPDATE’,
* NOBJPG,
* TOKEN,
* OBSIZ,
* RETRN1,
* REASON)

C
C Determine first page-boundary element in Window Array "A"

PAGE = ADDR(A(1))
PAGE = MOD(PAGE, 4096)
IF (PAGE .NE. 0) PAGE = (4096 - PAGE) / 4
PAGE = PAGE + 1

C
C Put data into the window

DO 100 K = 1, NWINEL
A(K+PAGE-1) = JUNK

100 CONTINUE
C
C Now view data in the window

CALL CSRVIEW(’BEGIN’,
* TOKEN,
* WINOFF,

FORTRAN Example

Chapter 4. Window services coding examples 57

* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Calculate a value in the window area

DO 101 K = 1, NWINEL
A(K+PAGE-1) = K

101 CONTINUE
C
C Capture the view in the window

CALL CSRSCOT(TOKEN,
* WINOFF,
* NWINPG,
* RETRN1,
* REASON)

C
C End the view in the window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Now view other data (2nd window’s worth of data) in window

CALL CSRVIEW(’BEGIN’,
* TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Calculate a new value in the window

DO 102 K = 1, NWINEL
A(K+PAGE-1) = -K

102 CONTINUE
C
C Capture the view in the window

CALL CSRSCOT(TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* RETRN1,
* REASON)

C
C Now end the current view in window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Now go back to the first view in the window

CALL CSRVIEW(’BEGIN’,
* TOKEN,

FORTRAN Example

58 z/OS V2R1.0 MVS Callable Services for HLL

* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Refresh the data in the window for this view

CALL CSRREFR(TOKEN,
* WINOFF,
* NWINPG,
* RETRN1,
* REASON)

C
C Now end the view in the window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Terminate access to the Hiperspace object

CALL CSRIDAC(’END ’,
* ’TEMPSPACE’,
* ’MY FIRST HIPERSPACE ENDS HERE ’,
* ’YES’,
* ’NEW’,
* ’UPDATE’,
* NOBJPG,
* TOKEN,
* OBSIZ,
* RETRN1,
* REASON)

C
STOP
END

**
* *
* *
* THIS ASSEMBLER PROGRAM ENSURES THAT YOUR WINDOW IS ALIGNED *
* ON A 4K BOUNDARY. ASSEMBLE THIS PROGRAM AND LINKEDIT THE *
* OBJECT CODE WITH THE FORTRAN CODE AND THE CSR STUBS. *
* *
**
ADDR TITLE ’LOC/ADDR Function for Fortran’
*
* Calling Sequence:
*
* INTEGER ADDR
* - - -
* L = LOC(x)
* L = ADDR(x)
*
* Returns address of "x" in R0, with high-order bit set to zero
*
ADDR CSECT

ENTRY LOC
LOC EQU *

USING *,15
L 0,0(,1) Get pointer to x
N 0,MASK Set sign bit to 0
BR 14 Return

FORTRAN Example

Chapter 4. Window services coding examples 59

MASK DC A(X’7FFFFFFF’) Mask with high-order bit 0
END

**
* *
* JCL TO COMPILE AND LINKEDIT THE ASSEMBLER PROGRAM, THE *
* FORTRAN PROGRAM, AND THE STUBS. *
* *
**
//FORTJOB JOB 00255013
//* 00003100
//* 00003100
//* Compile and linkedit for FORTRAN 00003100
//* 00003100
//* 00003100
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00001000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM=’SYSOUT=A’, 00002000
// PGMNAME=MAIN,PGMLIB=’&&GOSET’,FVLNSPC=’3200,(25,6)’ 00003000
//* 00003100
//* PARAMETER DEFAULT-VALUE USAGE 00003900
//* 00004000
//* FVPGM FORTVS2 COMPILER NAME 00005000
//* FVREGN 2100K FORT-STEP REGION 00006000
//* FVPDECK NODECK COMPILER DECK OPTION 00007000
//* FVPOLST NOLIST COMPILER LIST OPTION 00008000
//* FVPOPT 0 COMPILER OPTIMIZATION 00009000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00010000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00011000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00012000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00013000
//* 00014000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00015000
// PARM=’&FVPDECK,&FVPOLST,OPT(&FVPOPT)’ 00016000
//STEPLIB DD DSN=HLLDS.FORT230.VSF2COMP,DISP=SHR 00017000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00018000
//SYSTERM DD &FVTERM 00019000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00020000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00021000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00022000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00023000
// PARM=’LET,LIST,XREF’ 00024000
//SYSPRINT DD SYSOUT=A 00025000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00027000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00028000
// SPACE=(TRK,(10,10,1),RLSE) 00029000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00030000
// DD DDNAME=SYSIN 00040000
// PEND
// EXEC VSF2CL,FVTERM=’SYSOUT=H’,
// PGMNAME=CRTFON01,PGMLIB=’WINDOW.USER.LOAD’ 00003000
//FORT.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTFON01),DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380,
// VOL=SER=VM2TSO
//LKED.SYSIN DD *

LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC,ADDR)
NAME CRTFON01(R)

/*
//* The CSR stubs are available in SYS1.CSSLIB.
//* The object code for the ADDR routine is in
//* TEST.OBJ
//*
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
// DD DSN=WINDOW.TEST.OBJ,DISP=SHR
//*
//*
**

FORTRAN Example

60 z/OS V2R1.0 MVS Callable Services for HLL

* *
* JCL TO EXECUTE THE FORTRAN PROGRAM. *
* *
**
//FON01 JOB MSGLEVEL=(1,1)
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00001000
// GOF5DD=’DDNAME=SYSIN’, 00002000
// GOF6DD=’SYSOUT=A’, 00003000
// GOF7DD=’SYSOUT=B’ 00004000
//* 00005000
//* PARAMETER DEFAULT-VALUE USAGE 00007000
//* 00008000
//* GOPGM MAIN PROGRAM NAME 00009000
//* GOREGN 100K GO-STEP REGION 00010000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00011000
//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00012000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00013000
//* 00014000
//* 00015000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00016000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
//FT05F001 DD &GOF5DD 00018000
//FT06F001 DD &GOF6DD 00019000
//FT07F001 DD &GOF7DD 00020000
// PEND
//GO EXEC VSF2G,GOPGM=CRTFON01,GOREGN=999K
//GO.STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
// DD DSN=WINDOW.USER.LOAD,DISP=SHR,VOL=SER=VM2TSO,UNIT=3380

Pascal example
**
* *
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
* *
* *
**
program CRTPAN06;
const

K = 1024; (* One kilo-byte *)
PAGESIZE = 4 * K; (* 4K page boundary *)
OFFSET = 0; (* Windows starts *)
WINDOW_SIZE = 40; (* Window size in pages *)
NUM_WIN_ELEM = WINDOW_SIZE*K; (* Num of 4-byte elements *)
OBJECT_SIZE = 3*WINDOW_SIZE; (* Chosen object size in pages*)
SPACE_SIZE = (WINDOW_SIZE+1)*4*K; (* Space allocated for window *)

type
S = space[SPACE_SIZE] of INTEGER; (* Define byte aligned space *)
STR3 = packed array (. 1..3 .) of CHAR;
STR5 = packed array (. 1..5 .) of CHAR;
STR6 = packed array (. 1..6 .) of CHAR;
STR7 = packed array (. 1..7 .) of CHAR;
STR9 = packed array (. 1..9 .) of CHAR;
STR44 = packed array (. 1..44 .) of CHAR;

var
SP : @S; (* Declare pointer to space *)
ORIG, (* Start address of window *)
AD, I, (* Temporary variables *)
VOFFSET, (* Offset passed as parameter *)
VOFSET2, (* Offset passed as parameter *)
VOBJSIZ, (* Object size, as parameter *)
VWINSIZ, (* Window Size, as parameter *)
HIGH_OFFSET, (* Size of object in pages *)
NEW_HI_OFFSET, (* New max size of the object *)

FORTRAN Example

Chapter 4. Window services coding examples 61

RETURN_CODE, (* Return code *)
REASON_CODE : INTEGER; (* Reason code *)
OBJECT_ID : REAL; (* Identifying token *)
CSCROLL : STR3; (* Scroll area YES/NO *)
COBSTATE : STR3; (* Object state NEW/OLD *)
COPTYPE : STR5; (* Operation type BEGIN/END *)
CACCESS : STR6; (* Access RANDOM/SEQ *)
CUSAGE : STR6; (* Usage READ/UPDATE *)
CDISP : STR7; (* Disposition RETAIN/REPLACE *)
CSPTYPE : STR9; (* Object type DSNAME/DDNAME/TEMPSPACE *)
COBNAME : STR44; (* Object name *)

procedure CSRIDAC (var OP_TYPE : STR5;
var OBJECT_TYPE : STR9;
var OBJECT_NAME : STR44;
var SCROLL_AREA : STR3;
var OBJECT_STATE : STR3;
var ACCESS_MODE : STR6;
var VOBJSIZ : INTEGER;
var OBJECT_ID : REAL;
var HIGH_OFFSET : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRVIEW (var OP_TYPE : STR5;
var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var WINDOW_SIZE : INTEGER;
var WINDOW_NAME : INTEGER;
var USAGE : STR6;
var DISPOSITION : STR7;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRSCOT (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRSAVE (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var NEW_HI_OFFSET : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRREFR (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

begin
TERMOUT(OUTPUT); (* Output to terminal *)
WRITELN (’<< Begin Data Windowing Services Interface Validation >>’);
WRITELN;
VOBJSIZ := OBJECT_SIZE; (* Set object size variable *)
VOFFSET := OFFSET; (* Set offset variable to 0 *)
VWINSIZ := WINDOW_SIZE; (* Set window size variable *)
VOFSET2 := OFFSET+WINDOW_SIZE; (* Set offset variable to 0 *)
COPTYPE := ’BEGIN’ ;
CSPTYPE := ’DDNAME ’ ;
COBNAME := ’CSRDD1 ’ ;
CSCROLL := ’YES’ ;
COBSTATE := ’NEW’ ;
CACCESS := ’UPDATE’ ;
CSRIDAC (COPTYPE, (* Set up access to a *)

CSPTYPE, (* hiperspace object *)
COBNAME,
CSCROLL,
COBSTATE,
CACCESS,

Pascal Example

62 z/OS V2R1.0 MVS Callable Services for HLL

VOBJSIZ,
OBJECT_ID,
HIGH_OFFSET,
RETURN_CODE,
REASON_CODE);

NEW(SP); (* Allocate space *)
AD := ADDR(SP@); (* or ORD(SP) *) (* Get address of space *)
ORIG := AD mod PAGESIZE; (* See where space is in page *)
if ORIG <> 0 then (* If not on page boundary *)

ORIG := PAGESIZE-ORIG; (* then locate page boundary *)
for I := 0 to NUM_WIN_ELEM-1 do (* Put data into window *)

SP@[4*I+ORIG] := 999999; (* area *)
COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now view data in 1st *)

OBJECT_ID, (* window *)
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a value in 1st *)
SP@[4*I+ORIG] := I+1; (* window *)

CSRSCOT(OBJECT_ID, (* Capture the view in 1st *)
VOFFSET, (* window *)
VWINSIZ,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the view in 1st window *)

OBJECT_ID,
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now view other data in the *)

OBJECT_ID, (* 2nd window *)
VOFSET2,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a new value in *)
SP@[4*I+ORIG] := I-101; (* the window *)

CSRSAVE (OBJECT_ID,
VOFSET2,
VWINSIZ,
NEW_HI_OFFSET,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the current view in *)

Pascal Example

Chapter 4. Window services coding examples 63

OBJECT_ID, (* window *)
VOFSET2,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now go back to the view in *)

OBJECT_ID, (* the 1st window *)
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

CSRREFR (OBJECT_ID, (* Refresh the data in 1st *)
VOFFSET, (* window *)
VWINSIZ,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the view in 1st window *)

OBJECT_ID,
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CSPTYPE := ’DDNAME ’ ;
COBNAME := ’CSRDD1 ’ ;
CSCROLL := ’YES’ ;
COBSTATE := ’NEW’ ;
CACCESS := ’UPDATE’ ;
CSRIDAC (COPTYPE, (* Terminate access to the *)

CSPTYPE, (* Hiperspace object *)
COBNAME,
CSCROLL,
COBSTATE,
CACCESS,
VWINSIZ,
OBJECT_ID,
HIGH_OFFSET,
RETURN_CODE,
REASON_CODE);

end.
**
* *
* JCL to compile and linkedit *
* *
**
//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000

Pascal Example

64 z/OS V2R1.0 MVS Callable Services for HLL

// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000

LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
NAME CRTPAN06(R) 00600006

/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000
**
* *
* JCL to execute. A DD statement, CSRDD1, is needed to define *
* the permanent object which already exists. *
* *
* *
**
//PASC2JOB JOB MSGLEVEL=(1,1) 00010000
//GO EXEC PGM=CRTPAN06 00020002
//STEPLIB DD DSN=WINDOW.PASCAL22.LINKLIB, 00030000
// DISP=SHR,UNIT=3380, 00040000
// VOL=SER=VM2TSO 00050000
// DD DSN=WINDOW.USER.LOAD, 00060000
// DISP=SHR,UNIT=3380, 00070000
// VOL=SER=VM2TSO 00080000
//CSRDD1 DD DSN=DIV.TESTDS01,DISP=SHR
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00090000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00100000

PL/I example

* *
* PL/I EXAMPLE *
* OBJECT IS TEMPORARY *
* *
* *
* *

CRTPLN3: PROCEDURE OPTIONS (MAIN); CSR00010

CSR00020
DCL CSR00030
(CSR00040
K INIT(1024), /* ONE KILO-BYTE */ CSR00050
PAGESIZE INIT(4096), /* 4K PAGE BOUNDARY */ CSR00060
OFFSET INIT(0), /* WINDOWS STARTS */ CSR00070
WINDOW_SIZE INIT(20), /* WINDOW SIZE IN PAGES */ CSR00080
NUM_WIN_ELEM INIT (20480), /* NUM OF 4-BYTE ELEMENTS */ CSR00090
OBJECT_SIZE INIT (60)) /* CHOSEN OBJECT SIZE IN PGS */ CSR00100
FIXED BIN(31); CSR00110

CSR00120
DCL CSR00130
/* 32767 IS UPPER LIMIT FOR ARRAY BOUND. */ CSR00140
S(32767) BIN(31) FIXED BASED(SP); /* DEFINE WORD ALIGNED SPACE */ CSR00150

CSR00160
DCL SP PTR; CSR00170

CSR00180
DCL CSR00190
(CSR00200
ORIG, /* START ADDRESS OF WINDOW */ CSR00210
AD, I, /* TEMPORARY VARIABLES */ CSR00220
HIGH_OFFSET, /* SIZE OF OBJECT IN PAGES */ CSR00230
NEW_HI_OFFSET, /* NEW MAX SIZE OF THE OBJECT */ CSR00240
RETURN_CODE, /* RETURN CODE */ CSR00250
REASON_CODE) FIXED BIN(31); /* REASON CODE */ CSR00260

CSR00270
DCL CSR00280
OBJECT_ID CHAR(8); /* IDENTIFYING TOKEN */ CSR00290

CSR00300

Pascal Example

Chapter 4. Window services coding examples 65

/**/ CSR00310
CSR00320

DCL CSRIDAC ENTRY(CHAR(5), /* OP_TYPE */ CSR00330
CHAR(9), /* OBJECT_TYPE */ CSR00340
CHAR(44), /* OBJECT_NAME */ CSR00350
CHAR(3), /* SCROLL_AREA */ CSR00360
CHAR(3), /* OBJECT_STATE */ CSR00370
CHAR(6), /* ACCESS_MODE */ CSR00380
FIXED BIN(31), /* OBJECT_SIZE */ CSR00390
CHAR(8), /* OBJECT_ID */ CSR00400
FIXED BIN(31), /* HIGH_OFFSET */ CSR00410
FIXED BIN(31), /* RETURN_CODE */ CSR00420
FIXED BIN(31)) /* REASON_CODE */ CSR00430
OPTIONS(ASSEMBLER); CSR00440

CSR00450
CSR00460

DCL CSRVIEW ENTRY(CHAR(5), /* OP_TYPE */ CSR00470
CHAR(8), /* OBJECT_ID */ CSR00480
FIXED BIN(31), /* OFFSET */ CSR00490
FIXED BIN(31), /* WINDOW_SIZE */ CSR00500
FIXED BIN(31), /* WINDOW_NAME */ CSR00510
CHAR(6), /* USAGE */ CSR00520
CHAR(7), /* DISPOSITION */ CSR00530
FIXED BIN(31), /* RETURN_CODE */ CSR00540
FIXED BIN(31)) /* REASON_CODE */ CSR00550
OPTIONS(ASSEMBLER); CSR00560

CSR00570
CSR00580

DCL CSRSCOT ENTRY(CHAR(8), /* OBJECT_ID */ CSR00590
FIXED BIN(31), /* OFFSET */ CSR00600
FIXED BIN(31), /* SPAN */ CSR00610
FIXED BIN(31), /* RETURN_CODE */ CSR00620
FIXED BIN(31)) /* REASON_CODE */ CSR00630
OPTIONS(ASSEMBLER); CSR00640

CSR00650
CSR00660

DCL CSRSAVE ENTRY(CHAR(8), /* OBJECT_ID */ CSR00670
FIXED BIN(31), /* OFFSET */ CSR00680
FIXED BIN(31), /* SPAN */ CSR00690
FIXED BIN(31), /* NEW_HI_OFFSET */ CSR00700
FIXED BIN(31), /* RETURN_CODE */ CSR00710
FIXED BIN(31)) /* REASON_CODE */ CSR00720
OPTIONS(ASSEMBLER); CSR00730

CSR00740
CSR00750

DCL CSRREFR ENTRY(CHAR(8), /* OBJECT_ID */ CSR00760
FIXED BIN(31), /* OFFSET */ CSR00770
FIXED BIN(31), /* SPAN */ CSR00780
FIXED BIN(31), /* RETURN_CODE */ CSR00790
FIXED BIN(31)) /* REASON_CODE */ CSR00800
OPTIONS(ASSEMBLER); CSR00810

CSR00820
/**/ CSR00830

CSR00840
CSR00850

PUT SKIP LIST CSR00860
(’<< BEGIN DATA WINDOWING SERVICES INTERFACE VALIDATION >>’); CSR00870

PUT SKIP LIST (’ ’); CSR00880
CSR00890

CALL CSR00900
CSRIDAC (’BEGIN’, /* SET UP ACCESS TO A HIPER- */ CSR00910

’TEMPSPACE’, /* SPACE OBJECT */ CSR00920
’MY FIRST HIPERSPACE’, CSR00930
’YES’, CSR00940
’NEW’, CSR00950
’UPDATE’, CSR00960
OBJECT_SIZE, CSR00970

PL/I Example

66 z/OS V2R1.0 MVS Callable Services for HLL

OBJECT_ID, CSR00980
HIGH_OFFSET, CSR00990
RETURN_CODE, CSR01000
REASON_CODE); CSR01010

CSR01020
ALLOC S; /* ALLOCATE SPACE */ CSR01030
AD = UNSPEC(SP); /* GET ADDRESS OF SPACE */ CSR01040
ORIG = MOD(AD,PAGESIZE); /* SEE WHERE SPACE IS IN PAGE */ CSR01050
IF ORIG ¬= 0 THEN /* IF NOT ON PAGE BOUNDARY */ CSR01060

ORIG = (PAGESIZE-ORIG) / 4; /* THEN LOCATE PAGE BOUNDARY */ CSR01070
ORIG = ORIG + 1; CSR01080

CSR01090
DO I = 1 TO NUM_WIN_ELEM; /* PUT SOME DATA INTO WINDOW */ CSR01100

S(I+ORIG-1) = 99; /* AREA */ CSR01110
END; CSR01120

CSR01130
CALL CSR01140
CSRVIEW (’BEGIN’, /* NOW VIEW DATA IN FIRST */ CSR01150

OBJECT_ID, /* WINDOW */ CSR01160
OFFSET, CSR01170
WINDOW_SIZE, CSR01180
S(ORIG), CSR01190
’RANDOM’, CSR01200
’REPLACE’, CSR01210
RETURN_CODE, CSR01220
REASON_CODE); CSR01230

CSR01240
DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE VALUE IN 1ST */ CSR01250

S(I+ORIG-1) = I+1; /* WINDOW */ CSR01260
END; CSR01270

CSR01280
CALL CSR01290
CSRSCOT(OBJECT_ID, /* CAPTURE THE VIEW IN 1ST */ CSR01300

OFFSET, /* WINDOW */ CSR01310
WINDOW_SIZE, CSR01320
RETURN_CODE, CSR01330
REASON_CODE); CSR01340

CSR01350
CALL CSR01360
CSRVIEW (’END ’, /* END THE VIEW IN 1ST WINDOW */ CSR01370

OBJECT_ID, CSR01380
OFFSET, CSR01390
WINDOW_SIZE, CSR01400
S(ORIG), CSR01410
’RANDOM’, CSR01420
’RETAIN ’, CSR01430
RETURN_CODE, CSR01440
REASON_CODE); CSR01450

CSR01460
CALL CSR01470
CSRVIEW (’BEGIN’, /* NOW VIEW OTHER DATA IN */ CSR01480

OBJECT_ID, /* 2ND WINDOW */ CSR01490
OFFSET+WINDOW_SIZE, CSR01500
WINDOW_SIZE, CSR01510
S(ORIG), CSR01520
’RANDOM’, CSR01530
’REPLACE’, CSR01540
RETURN_CODE, CSR01550
REASON_CODE); CSR01560

CSR01570
DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE NEW VALUE IN */ CSR01580

S(I+ORIG-1) = I-101; /* WINDOW */ CSR01590
END; CSR01600

CSR01610
CALL CSR01620
CSRSCOT (OBJECT_ID, CSR01630

OFFSET+WINDOW_SIZE, CSR01640

PL/I Example

Chapter 4. Window services coding examples 67

WINDOW_SIZE, CSR01650
RETURN_CODE, CSR01670
REASON_CODE); CSR01680

CSR01690
CALL CSR01700
CSRVIEW (’END ’, /* END THE CURRENT VIEW IN */ CSR01710

OBJECT_ID, /* WINDOW */ CSR01720
OFFSET+WINDOW_SIZE, CSR01730
WINDOW_SIZE, CSR01740
S(ORIG), CSR01750
’RANDOM’, CSR01760
’RETAIN ’, CSR01770
RETURN_CODE, CSR01780
REASON_CODE); CSR01790

CSR01800
CALL CSR01810
CSRVIEW (’BEGIN’, /* NOW GO BACK TO THE VIEW IN */ CSR01820

OBJECT_ID, /* THE 1ST WINDOW */ CSR01830
OFFSET, CSR01840
WINDOW_SIZE, CSR01850
S(ORIG), CSR01860
’RANDOM’, CSR01870
’REPLACE’, CSR01880
RETURN_CODE, CSR01890
REASON_CODE); CSR01900

CSR01910
CALL CSR01920
CSRREFR (OBJECT_ID, /* REFRESH THE DATA IN 1ST */ CSR01930

OFFSET, /* WINDOW */ CSR01940
WINDOW_SIZE, CSR01950
RETURN_CODE, CSR01960
REASON_CODE); CSR01970

CSR01980
CALL CSR01990
CSRVIEW (’END ’, /* END THE VIEW IN 1ST WINDOW */ CSR02000

OBJECT_ID, CSR02010
OFFSET, CSR02020
WINDOW_SIZE, CSR02030
S(ORIG), CSR02040
’RANDOM’, CSR02050
’RETAIN ’, CSR02060
RETURN_CODE, CSR02070
REASON_CODE); CSR02080

CSR02090
CALL CSR02100
CSRIDAC (’END ’, /* TERMINATE ACCESS TO THE */ CSR02110

’TEMPSPACE’, /* HIPERSPACE OBJECT */ CSR02120
’MY FIRST HIPERSPACE ENDS HERE ’, CSR02130
’YES’, CSR02140
’NEW’, CSR02150
’UPDATE’, CSR02160
WINDOW_SIZE, CSR02170
OBJECT_ID, CSR02180
HIGH_OFFSET, CSR02190
RETURN_CODE, CSR02200
REASON_CODE); CSR02210

CSR02220
FREE S; CSR02230
END CRTPLN3; CSR02260

* *
* *
* JCL TO COMPILE AND LINKEDIT PL/I PROGRAM. *
* *
* *
* *

PL/I Example

68 z/OS V2R1.0 MVS Callable Services for HLL

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL 00050000
//PLI.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPLN3),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,UNIT=3380,VOL=SER=VM2TSO, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000

LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00100001
NAME CRTPLN3(R) 00110008

/* 00120000
//* 00121001
//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1) 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=WINDOW.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
//SYSLIB DD DSN=CEE.SCEERUN,DISP=SHR 00050000
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I Example

Chapter 4. Window services coding examples 69

PL/I Example

70 z/OS V2R1.0 MVS Callable Services for HLL

Part 2. Reference pattern services

© Copyright IBM Corp. 1994, 2014 71

72 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 5. Introduction to reference pattern services

Reference pattern services allow HLL programs to define a reference pattern for a
specified area of virtual storage that the program is about to reference.
Additionally, the program specifies how much data it wants the operating system
to bring into central storage at one time. Data and instructions in virtual storage
must reside in central storage before they can be processed. The system honors the
request according to the availability of central storage. By bringing in more data at
one time, the system might improve the performance of your program.

The term reference pattern refers to the order in which a program’s instructions
process a range of data, such as an array or part of an array.

Programs that benefit most from reference pattern services are those that reference
amounts of data that are greater than one megabyte. The program should reference
the data in a sequential manner and in a consistent direction, either forward or
backward. In forward direction, the program references data elements in order of
ascending addresses. In backward direction, the program references data elements
in order of decreasing addresses. In addition, if the program “skips over” certain
areas, and these areas are of uniform size and are repeated at regular intervals
throughout the area, reference pattern services might provide additional
performance improvement.

Two reference pattern services are available through program CALLs:
v CSRIRP identifies the range of data and the reference pattern, and defines the

number of bytes that the system is requested to bring into central storage at one
time. These activities are called “defining the reference pattern”.

v CSRRRP removes the definition; it tells the system that the program has stopped
using the reference pattern with the range of data.

A program might have a number of different ways of referencing a particular area.
In this case, the program can issue multiple pairs of CSRIRP and CSRRRP services
for the area. Only one pattern can be in effect at a time.

Although reference pattern services can be used for data structures other than
arrays, for simplicity, examples in Chapter 5, “Introduction to reference pattern
services” and Chapter 6, “Using reference pattern services,” on page 79 use the
services with arrays.

How does the system manage data?
Before you can evaluate the performance advantage that reference pattern services
offer, you must understand some facts about how the operating system handles the
data your program references. The system divides the data into 4096-byte chunks;
each chunk is called a “page”. For the processor to execute an instruction, the page
that contains the data that the instruction requires must reside in central storage.
Central storage contains pages of data for many programs — your program, plus
other programs that the system is working on. The system brings a page of your
data into central storage when your program needs data on that page. If the
program uses the data in a sequential manner, once the program finishes using the
data on that page, it will not immediately use the page again. After your program
finishes using that page, the system might remove the page from central storage to

© Copyright IBM Corp. 1994, 2014 73

make room for another page of your data or maybe a page of some other
program’s data. The system allows pages to stay in central storage if they are
referenced frequently enough and if the system does not need those pages for
other programs.

The process that the system goes through when it pauses to bring a page into
central storage is called a “page fault”. This interruption causes the system to stop
working on your program (or “suspend” your program) while more of your
program’s data comes into central storage. Then, when the page is in central
storage and the system is available to your program again, the system resumes
running your program at the instruction where it left off.

Reference pattern services can change the way the system handles your program’s
data. With direction from reference pattern services, the system moves multiple
pages into central storage at a time. By bringing in many pages at a time, the
system takes fewer page faults. Fewer page faults mean possible performance
gains for your program.

An example of how the system manages data in an array
To evaluate the performance advantage reference pattern services offers, you need
to understand how the system handles a range of data. The best way to describe
this is through an example of a simple two-dimensional array. As array A(i,j) of 3
rows and 4 columns illustrates, the system stores arrays in FORTRAN programs in
column-major order and stores arrays in COBOL, Pascal, PL/1, and C programs in
row-major order.
v A(1,1) A(1,2) A(1,3) A(1,4)

A(2,1) A(2,2) A(2,3) A(2,4)
A(3,1) A(3,2) A(3,3) A(3,4)

The system stores the elements of the arrays in the following order:
Sequence of FORTRAN COBOL, Pascal, PL/1, C

Element in Storage Array Element Array Element

1 A(1,1) A(1,1)
2 A(2,1) A(1,2)
3 A(3,1) A(1,3)
4 A(1,2) A(1,4)
5 A(2,2) A(2,1)
6 A(3,2) A(2,2)
7 A(1,3) A(2,3)
8 A(2,3) A(2,4)
9 A(3,3) A(3,1)
10 A(1,4) A(3,2)
11 A(2,4) A(3,3)
12 A(3,4) A(3,4)

Examples in Chapter 5, “Introduction to reference pattern services,” on page 73
and Chapter 6, “Using reference pattern services,” on page 79 depict data as a
horizontal string. The elements in the arrays, therefore, would look like the
following:

Location of elements

1 2 3 4 5 6 7 8 9 10 11 12

Consider a two-dimensional array, ARRAY1, that has 1024 columns and 1024 rows
and each element is eight bytes in size. The size of the array, therefore, is 1048576
elements or 8388608 bytes. For simplicity, assume the array is aligned on a page

74 z/OS V2R1.0 MVS Callable Services for HLL

boundary. Also, assume the data is not in central storage. The program references
each element in the array in a forward direction, starting with the first element.

First, consider how the system brings data into central storage without information
from reference pattern services. At the first reference of ARRAY1, the system takes
a page fault and brings into central storage the page (of 4096 bytes) that contains
the first element. After the program finishes processing the 512th (4096 divided by
8) element in the array, the system takes another page fault and brings in a second
page. The system takes a page fault every 512 elements, throughout the array.

The following linear representation shows the elements in the array and the page
faults the system takes as a program processes the array.

By bringing in one page at a time, the system takes 2048 page faults (8388608
divided by 4096), each page fault adding to the elapsed time of the program.

Suppose, through CSRIRP, the system knew in advance that a program would be
using the array in a consistently forward direction. The system could then assume
that the program’s use of the pages of the array would be sequential. To decrease
the number of page faults, each time the program requested data that was not in
central storage, the system could bring in more than one page at a time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into
central storage on each page fault. In this case, the system takes not 2048 page
faults, but 103 (8388608 divided by 81920=102.4). Page faults occur in the array as
follows:

The system brings in successive pages only to the end of the array.

Consider another way of referencing ARRAY1. The program references the first
twenty elements, then skips over the next 1004 elements, and so forth through the
array. CSRIRP allows you to tell the system to bring in only the pages that contain
the data the program references. In this case, the reference pattern includes a
repeating gap of 8032 bytes (1004×8) every 8192 bytes (1024×8). The pattern looks
like this:

0 512th 1024th . . .

. . .

1048576element element
. . .

1 page fault each 512 elements (1 page)

. . .

1 page fault each 10240 elements (20 pages)

Chapter 5. Introduction to reference pattern services 75

The grouping of consecutive bytes that the program references is called a reference
unit. The grouping of consecutive bytes that the program skips over is called a
gap. Reference units and gaps alternate throughout the array at regular intervals.
The reference pattern is as follows:
v The reference unit is 20 elements in size — 160 consecutive bytes that the

program references.
v The gap is 1004 elements in size — 8032 consecutive bytes that the program

skips over.

Figure 7 shows this reference pattern and the pages that the system does not bring
into central storage.

What pages does the system bring in when a gap exists?
When a gap exists, the number of pages the system brings in depends on the size
of the gap, the size of the reference unit, and where the page boundary lies in
relation to the gap and the reference unit. The following examples illustrate those
factors.

Example 1
Figure 7 illustrates ARRAY1, the 1024-by-1024 array of eight-byte elements, where
the program references 20 elements, then skips over the next 1004, and so forth in
a forward direction throughout the array. The reference pattern includes a reference
unit of 160 and a gap of 8032 bytes. The reference units begin on every other page
boundary.

Every other consecutive page of the data does not come into central storage; those
pages contain only the “skipped over” data.

Example 2
In example 2, the reference pattern includes a reference unit of 4800 bytes and a
gap of 3392 bytes. The example assumes that the area to be referenced starts on a
page boundary.

skip skip

. . .

skip

309330732069204910451025
elements ...

211

skip

1st 2nd 3rd 4th 5th 6th 7th
page

...
pagepage page page page page

not brought into central storage

reference units

page
2048th

Figure 7. Illustration of a Reference Pattern with a Gap

76 z/OS V2R1.0 MVS Callable Services for HLL

Because each page contains data that the program references, the system brings in
all pages.

Example 3
In example 3, the area to be referenced does not begin on a page boundary. The
reference pattern includes a reference unit of 2000 bytes and a gap of 5000 bytes.
When you specify a reference pattern that includes a gap, the reference unit must
be at the start of the area, as the following illustration shows:

Because the gap is larger than 4096 bytes, some pages do not come into central
storage. Notice that the system does not bring in the fifth page.

Summary of how the size of the gap affects the number of pages the system brings
into central storage:
v If the gap is less than 4096 bytes, the system has to bring into central all pages

of the array.
v If the gap is greater than 4095 bytes and less than 8192, the system might not

have to bring in certain pages. Pages that contain only data in the gap do not
come in.

v If the gap is greater than 8191 bytes, the system definitely does not have to bring
in certain pages that contain the gap.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

all pages brought into central storage

reference units

page
2048th

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

most pages brought into central storage

Start of
reference
pattern

Chapter 5. Introduction to reference pattern services 77

78 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 6. Using reference pattern services

The two reference pattern services are CSRIRP and CSRRRP. First, you issue CALL
CSRIRP to define a reference pattern for an area; then, issue CALL CSRRRP to
remove the definition of reference pattern for the area. To avoid unnecessary
processing, issue the calls outside of the loops that control processing of the data
elements contained in the area.

Defining the reference pattern for a data area
On CSRIRP, you tell the system:
v The lowest address of the area to be referenced
v The size of the area
v The direction of reference
v The reference pattern, in terms of reference unit and gap (if one exists)
v The number of reference units the system is to bring into central storage on a

page fault

The system will not process CSRIRP unless the values you specify can result in a
performance gain for your program. To make sure the system processes CSRIRP,
ask the system to bring in more than three pages (that is, 12288 bytes) on each
page fault.

Your program can have only one pattern defined for that area at one time. If your
program will later reference the same area with another reference pattern, use
CSRRRP to remove the definition, and then use CSRIRP to define another pattern.

Although the system brings in pages 4096 bytes at a time, you do not have to
specify values on CSRIRP or CSRRRP in increments of 4096.

Defining the range of the area
On CSRIRP, you define the range of the area to be referenced:
v low_address identifies the lowest addressed byte in the range.
v size identifies the size, in bytes, of the range.

When reference is forward, low_address identifies the first element that the program
can reference in the range. When reference is backward, low_address identifies the
last element that the program can reference in the range: reference proceeds from
the high-address end in the range towards low_address.

The following parameters define the lowest address and the size of ARRAY1, a
1024-by-1024 array that consists of 8-byte elements. ARRAY1(1,1) identifies the
element in the first row and the first column.
CSRIRP with low_address of ARRAY1(1,1)

size of 1024*1024*8 bytes

When a gap exists, define the range according to the following rules:
v If direction is forward, low_address must be the first data element in a reference

unit.

© Copyright IBM Corp. 1994, 2014 79

v If direction is backward, the value you use for size must be such that the first
data element the program references is the high-address end of a reference unit.

These two rules are described and illustrated in “Using CSRIRP when a gap exists”
on page 81.

Identifying the direction of the reference
On direction, you specify the direction of reference through the array. Forward
reference means instructions start with the element indicated by low_address and
proceed through the range of data specified by size. Backward reference means the
program starts processing the high-address end of the range specified by size and
proceeds toward the low_address end.
v “+1” indicates forward direction.
v “-1” indicates backward direction.

An example of forward reference through ARRAY1 is specified as follows:
CSRIRP with direction of +1

“Using CSRIRP when a gap exists” on page 81 contains examples of forward and
backward references when a gap exists.

Defining the reference pattern
Figure 8 identifies two reference patterns that characterize most of the reference
patterns that reference pattern services applies to.

How you define the reference pattern depends on whether your program’s
reference pattern is like pattern #1 or pattern #2.
v With pattern #1 where no uniform gap exists, the program uses every element,

every other element, or at least most elements on each page of array data. No
definable gap exists. Do not use reference pattern services if the reference
pattern is irregular and includes skipping over many areas larger than a page.
– The unitsize parameter identifies the reference pattern; it indicates the number

of bytes you want the system to use as a reference unit. Look at logical
groupings of bytes, such as one row, a number of rows, or one element, if the

0

0

20

4096

xxxxx

xx

5020

8192

5040 10040

12288

10060 15060

16384

15080

20480

20080

...

...

Characteristics of pattern:
- Gaps of uniform size
- Reference units, uniform in size, that occur in a repeating pattern

Characteristics of pattern:
- No uniform gap
- Reference in regular intervals (such as every element) or in irregular intervals

Pattern #2: Uniform gap

Pattern #1: No uniform gap

Figure 8. Two Typical Reference Patterns

80 z/OS V2R1.0 MVS Callable Services for HLL

elements are large in size. Or, you might choose to divide the area to be
referenced, and bring in that area on a certain number of page faults. Use the
value 0 on gapsize.

– The units parameter tells the system how many reference units to try to bring
in on a page fault. For a reference pattern that begins on a page boundary
and has no gaps, the total number of bytes the system tries to bring into
central storage at a time is the value on unitsize times the number on units,
rounded up to the nearest multiple of 4096. See “Choosing the number of
bytes on a page fault” on page 82 for more information on how to choose the
total number of bytes.

v With pattern #2 where a uniform gap exists, the pattern includes alternating
gaps and reference units. Specify the reference pattern carefully. If you identify a
reference pattern and do not adhere to it, the system will work harder than if
you had not used the service.
– The unitsize and gapsize parameters identify the reference pattern. Pattern #2

in Figure 8 on page 80 includes a reference unit of 20 bytes and a gap of 5000
bytes. Because the gap is greater than 4095, some pages of the array might
not be brought into central storage.

– The units parameter tells the system how many reference units to try to bring
into central storage at a time. “What pages does the system bring in when a
gap exists?” on page 76 can help you understand how many bytes come into
central storage at one time when a gap exists.

Using CSRIRP when a gap exists
When a gap exists, you have to follow one of two rules in coding the two
parameters, low_address and size, that define the range of data. The direction of
reference determines which rule you follow:
v When reference is forward, low_address must identify the beginning of a

reference unit.
Figure 9 illustrates forward reference through a range of data that includes gaps.
Consider the reference pattern where the program references 2000 bytes and
skips the next 5000 bytes, and so forth throughout the array. The range of data
starts at low_address and ends at the point identified in the figure by A. A can be
any part of a gap or reference unit.

v When reference is backward, the value you code on size determines the location
of the first element the program actually references. Calculate that value so that
the first element the program references is the high-address end of a reference
unit.
Figure 10 on page 82 illustrates backward reference through the same array as in
Figure 9. Again, the program references 2000 bytes and skips the next 5000 bytes,
and so forth throughout the array. The range starts at low_address and ends at

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

low address
A

forward direction

size

Figure 9. Illustration of Forward Direction of Reference

Chapter 6. Using reference pattern services 81

the point identified in the figure by B, where B must be the high-address end of
a reference unit. low_address can be any part of a gap or reference unit.

Choosing the number of bytes on a page fault
An important consideration in using reference pattern services is how many bytes
to ask the system to bring in on a page fault. To determine this, you need to
understand some factors that affect the performance of your program.

Pages do not stay in central storage if they are not referenced frequently enough
and other programs need that central storage. The longer it takes for a program to
begin referencing a page in central storage, the greater the chance that the page has
been moved out before being referenced. When you tell the system how many
bytes it should try and bring into central at one time, you have to consider the
following:
1. Contention for central storage:

Your program contends for central storage along with all other submitted jobs.
The greater the size of central storage, the more bytes you can ask the system
to bring in on a page fault. The system responds with as much of the data you
request as possible, given the availability of central storage.

2. Contention for processor time:
Your program contends for the processor’s attention along with all other
submitted jobs. The more competition, the less the processor can do for your
program and the smaller the number of bytes you should request.

3. The elapsed time of processing one page of your data:
How long it takes a program to process a page depends on the number of
references per page and the elapsed time per reference. If your program uses
only a small percentage of elements on a page and references them only once
or twice, the program completes the use of pages quickly. If the processing of
each referenced element includes processor-intensive operations or a
time-intensive operation, such as I/O, the time the program takes to process a
page increases.

Conditions might vary between the peak activity of the daytime period and the
low activity of the nighttime. You might be able to request a greater number at
night than during the day.

What if you specify too many bytes? What if you ask the system to bring in so many
pages that, by the time your program needs to use some of those pages, they have
left central storage? The answer is that the system will have to bring them in
again. This action causes an extra page fault and extra system overhead and
decreases the benefit of reference pattern services.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

backward direction

low addressB

size

Figure 10. Illustration of Backward Direction of Reference

82 z/OS V2R1.0 MVS Callable Services for HLL

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages, at
a time. But, by the time your program begins referencing the data on the 30th
page, the system has moved that page and the ones after it out of central storage.
It moved them out because the program did not use them soon enough. In this
case, your program has lost the benefit of moving the last 21 pages in. Your
program would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system will
take more page faults than it needs to and you are not taking full advantage of
reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (or 10 pages) at a
time. Your program’s use of each page is not time-intensive, meaning that the
program finishes using the pages quickly. The program can request a number
greater than 10 without causing additional page faults.

IBM® recommends that you use one of the following approaches, depending on
whether you want to involve your system programmer in the decision.
v The first approach is the simple one. Choose a conservative number of bytes,

around 81920 (20 pages), and run the program. Look for an improvement in the
elapsed time. If you like the results, you might increase the number of bytes. If
you continue to increase the number, at some point you will notice a
diminishing improvement or even an increase in elapsed time. Do not ask for so
much that your program or other programs suffer from degraded performance.

v The second approach is for the program that needs very significant performance
improvements — those programs that require amounts in excess of 50 pages. If
you have such a program, you and your system programmer should examine
the program's elapsed time, paging speeds, and processor execution times. In
fact, the system programmer can tune the system with your program in mind,
providing the needed paging resources. z/OS MVS Initialization and Tuning Guide
can provide information on tuning the system.
Reference pattern services affects movement of pages from auxiliary and
expanded storage to central storage. To gain insight into the effectiveness of
your reference patterns, you and your system programmer will need the kind of
information that the SMF Type 30 record provides. A Type 30 record includes
counts of pages moved in anticipation of your program’s use of those pages. The
record provides counts of pages moved between expanded and central and
between auxiliary and central. It also provides elapsed time values. Use this
information to calculate rates of movement in determining whether to specify a
very large number of bytes — for example, amounts greater than 204800 bytes
(50 pages).

Examples of using CSRIRP to define a reference pattern
To clarify the relationships between the unitsize, gapsize, and units parameters, this
topic contains three examples of defining a reference pattern. So that you can
compare the three examples with what the system does without information from
CSRIRP, the following call approximates the system’s normal paging operation:
CSRIRP with unitsize of 4096 bytes

gapsize of 0 bytes
units of 1 reference unit (that is, one page)

Each time the system takes a page fault, it brings in 4096 bytes (one page), the
system’s reference unit. It brings in one reference unit at a time.

Chapter 6. Using reference pattern services 83

Example 1 The program processes all elements in an array in a forward direction.
The processing of each element is fairly simple. The program runs during the peak
hours, and many programs compete for processor time and central storage. A
reasonable value to choose for the number of bytes to come into central on a page
fault might be 80000 bytes (around 20 pages); unitsize can be 4000 bytes and units
can be 20. The following CSRIRP service communicates this pattern to the system:
CSRIRP with unitsize of 4000 bytes

gapsize of 0 bytes
units of 20
direction of +1

Example 2 The program performs the same process as in Example 1, except the
program does not reference every element in the array. The program runs during
the night hours when contention for the processor and for central storage is light.
In this case, a reasonable value to choose for the number of bytes to come into
central storage on a page fault might be 200000 bytes (around 50 pages). unitsize
can again be 4000 bytes and units can be 50. The following CSRIRP service
communicates this pattern:
CSRIRP with unitsize of 4000 bytes

gapsize of 0 bytes
units of 50
direction of +1

Example 3 The program references in a consistently forward direction through the
same large array. The pattern of reference in this example includes a gap. The
program references 8192 bytes, then skips the next 4096 bytes, references the next
8192 bytes, skips the next 4096 bytes throughout the array. The program chooses to
bring in data 8 pages at a time. Because of the placement of reference units and
gaps on page boundaries, the system does not bring in the data in the gaps.

The following CSRIRP service reflects this reference pattern:
CSRIRP with unitsize of 4096*2 bytes

gapsize of 4096 bytes
units of 4
direction of +1

where the system is to bring into central storage 8 pages (4×4096×2 bytes) on a
page fault. The system’s response to CSRIRP is illustrated as follows:

Removing the definition of the reference pattern
When a program is finished referencing the array in the way you specified on
CSRIRP, use CSRRRP to remove the definition. The following example tells the
system that the program in “Defining the range of the area” on page 79 has
stopped referencing the array. low_address and size have the same values you coded
on the CSRIRP service that defined the reference pattern for that area.
CSRRRP with low_address of ARRAY1(1,1)

size of 1024*1024*8 bytes

not brought into central storage

4 x 8194 bytes on each page fault

84 z/OS V2R1.0 MVS Callable Services for HLL

Handling return codes
Each time you call CSRIRP or CSRRRP, your program receives a return code and a
reason code. These codes indicate whether the service completed successfully or
whether the system rejected the service.

When you receive a return code that indicates a problem or an unusual condition,
try to correct the problem, and rerun the program. Return codes and reason codes
are described in Chapter 7, “Reference pattern services,” on page 87 with the
description of each reference pattern service.

Chapter 6. Using reference pattern services 85

86 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 7. Reference pattern services

To use reference pattern services, you issue CALLs that invoke the appropriate
reference pattern services program. Each service program performs one or more
functions and requires a set of parameters coded in a specific order on the CALL
statement.

This topic describes the CALL statements that invoke reference pattern services.
Each description includes a syntax diagram, parameter descriptions, and return
code and reason code explanations with recommended actions. For examples of
how to code the CALL statements, see Chapter 8, “Reference pattern services
coding examples,” on page 91.

This topic contains the following subtopics:
v “CSRIRP — Define a reference pattern”
v “CSRRRP — Remove a reference pattern” on page 89.

CSRIRP — Define a reference pattern
Call CSRIRP to define a reference pattern for a large data area, such as an array,
that you are about to reference. Through CSRIRP, you identify the data area and
describe the reference pattern. Additionally, you tell the system how many bytes of
data you want it to bring into central storage on a page fault (that is, each time the
program references data that is not in central storage). This action might
significantly improve the performance of the program.

Two parameters define the reference pattern:
v unitsize refers to a reference unit — a grouping of consecutive bytes that the

program references.
v gapsize refers to a gap — a grouping of consecutive bytes that the program

repeatedly skips over; when a pattern has a gap, reference units and gaps
alternate throughout the data area.

Reference units and gaps must each be uniform in size and appear throughout the
data area at repeating intervals.

Another parameter, units, allows you to specify how many reference units you
want the system to bring into central storage each time the program references
data that is not in central storage.

When you end the reference pattern in that data area, call the CSRRRP service.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRIRP
uses to obtain input values, assign appropriate values.

On entry to CSRIRP, register 1 points to the reference pattern service parameter
list. Note that when a FORTRAN program calls CSRIRP, and it is running in access
register (AR) mode, register 1 does not point to the reference pattern service
parameter list; it points to a list of parameter addresses. Each address in this list
points to the data in the corresponding parameter of the reference pattern service
parameter list. To use reference pattern services in this environment, the caller

© Copyright IBM Corp. 1994, 2014 87

must provide an assembler interface routine to convert the FORTRAN parameter
list to the form expected by reference services.

Assign values, acceptable to CSRIRP, to low_address, size, direction, unitsize, gapsize,
and units. CSRIRP returns values in return_code and reason_code.

CALL statement Parameters

CALL CSRIRP (low_address
,size
,direction
,unitsize
,gapsize
,units
,return_code
,reason_code)

The parameters are explained as follows:

low_address
Specifies the beginning point of the data to be referenced.

low_address is the name of the data that resides at the beginning of the data
area. When the direction is forward and a gap exists, low_address must identify
the beginning of a reference unit.

,size
Identifies the size, in bytes, of the data area to be accessed. When direction is
backward and a gap exists, the value of size must be such that the first data
element the program references is the high-address end of a reference unit.

Define size as integer data of length 4.

,direction
Indicates the direction of reference, either “+1” for forward or “-1” for
backward.

Define direction as integer data of length 4.

,unitsize
Specifies the size of a reference unit.

If the pattern does not have a gap, define the reference unit as a logical
grouping according to the structure of the data array. Examples are: one row, a
number of rows, one element, or one page (4096 bytes). If the pattern has a
gap, define unitsize as the grouping of bytes that the program references and
gap as the grouping of bytes that the program skips over.

Define unitsize as integer data of length 4.

,gapsize
Specifies the size, in bytes, of a gap. If the pattern has a gap, define the gap as
the grouping of bytes that the program skips over. If the pattern does not have
a gap, use the value “0”.

Define gapsize as integer data of length 4.

,units
Indicates how many reference units the system is to bring into central storage
each time the program needs data that is not in central storage.

88 z/OS V2R1.0 MVS Callable Services for HLL

Define units as integer data of length 4.

,return_code
When CSRIRP completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code
When CSRIRP completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes
When CSRIRP returns control to your program, return_code contains a return and
reason_code contains a reason code. The following table identifies return code and
reason code combinations and tells what each means.

Return and reason codes, in hexadecimal, from CSRIRP are:

Return Code Reason Code Meaning

00 None CSRIRP completed successfully.

04 xx0001xx CSRIRP completed successfully; however, the system did
not accept the reference pattern the caller specified. The
system decided that bringing in pages of 4096 bytes would
be more efficient.

08 xx0002xx Unsuccessful completion. The range that the caller
specified overlaps the range that a previous request
specified.

08 xx0003xx Unsuccessful completion. The number of CSRIRP requests
for the user exceeds 100, the maximum number the system
allows.

08 xx0004xx Unsuccessful completion. Storage is not available for the
CSRIRP service.

08 00000004 Unsuccessful completion. The direction that the caller
specified is not valid.

CSRRRP — Remove a reference pattern
Call CSRRRP to remove the reference pattern for a data area, as specified by the
CSRIRP service. On CSRRRP, you identify the beginning of the data area and its
size. Code low_address and size exactly as you coded them on the CSRIRP service
that defined the reference pattern.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRRRP
uses to obtain input values, assign values that are acceptable to CSRRRP.

Assign values to CSRRRP, to low_address and size. CSRRRP returns values in
return_code and reason_code.

Chapter 7. Reference pattern services 89

CALL statement Parameters

CALL CSRRRP (low_address
,size
,return_code
,reason_code)

The parameters are explained as follows:

low_address
Specifies the beginning point of the data to be referenced.

low_address is the name of the data that resides at the beginning of the data
area.

,size
Specifies the size, in bytes, of the data area.

Define size as integer data of length 4.

,return_code
When CSRRRP completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code
When CSRRRP completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes
When CSRRRP returns control to your program, return_code contains a hexadecimal
return code and reason_code contains a hexadecimal reason code. The following
table identifies return code and reason code combinations and tells what each
means.

Return Code Reason Code Meaning

00 None CSRRRP completed successfully.

08 xx0101xx Unsuccessful completion. No CSRIRP service request was
in effect for the specified data area. Check to see if the
system rejected the previous CSRIRP request for the data
area.

CSRRRP

90 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 8. Reference pattern services coding examples

The following examples show how to invoke reference pattern services from each
of the supported languages. Following each program example is an example of the
JCL needed to compile, link edit, and execute the program example. Use these
examples to supplement and reinforce information that is presented in other topics
within this information.

Note: Included in the FORTRAN example is the code for a required assembler
language program. This program ensures that the reference pattern for the
FORTRAN program is aligned on a 4K boundary.

The programs in this topic are similar. They each process two arrays, A and B. The
arrays are 200×200 in size, each element consisting of 4 bytes. Processing is as
follows:
v Declare the arrays.
v Define reference patterns for A and B.
v Initialize A and B.
v Remove the definitions of the reference patterns for A and B.
v Define new reference patterns for A and B.
v Multiply A and B, generating array C.
v Remove the definitions of the reference patterns for A and B.

The examples are presented in the following topics:
v “C/370 example”
v “COBOL example” on page 94
v “FORTRAN example” on page 98
v “Pascal example” on page 101
v “PL/I example” on page 103

C/370 example
The following example is coded in C/370:
#include <stdio.h>
#include <stdlib.h>
#include "csrbpc"

#define m 200
#define n 200
#define p 200
#define kelement_size 4
int chk_code(long int ret, long int reason, int linenumber);

main()
{

long int A[m] [n];
long int B[m] [n];
long int C[m] [n];
long int i;
long int j;
long int k;
long int rc;
long int rsn;

© Copyright IBM Corp. 1994, 2014 91

long int arraysize;
long int direction;
long int unitsize;
long int gap;
long int units;

arraysize = m*n*kelement_size;
direction = csr_forward;
unitsize = kelement_size*n;
gap = 0;
units = 20;

csrirp(A, &arraysize, &direction,;
&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*p*kelement_size;

csrirp(B, &arraysize, &direction,;
&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
for (i=0; i<m; i++) {

for (j=0; j<n; j++) {
A[i][j] = i + j;

}
}
for (i=0; i<n; i++) {

for (j=0; j<p; j++) {
B[i][j] = i + j;

}
}

arraysize = m*n*kelement_size;

csrrrp(A, &arraysize,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*p*kelement_size;
csrrrp(B, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*n*kelement_size;
units = 25;
csrirp(A, &arraysize, &direction,;

&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = n*p*kelement_size;
gap = (p-1)*kelement_size;
units = 50;

C/370 example

92 z/OS V2R1.0 MVS Callable Services for HLL

csrirp(B, &arraysize, &direction,;
&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
for (i=0; i<m; i++) {

for (j=0; j<p; j++) {
C[i][j] = 0;
for (k=0; k<n; k++) {

C[i][j] = C[i][j] + A[i][k] * B[k][j];
}

}
}
arraysize = m*n*kelement_size;
csrrrp(A, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
arraysize = n*p*kelement_size;
csrrrp(B, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
}

/* chk_code will check return code and reason code from previous */
/* calls to HLL services. It will print a message if any of the */

int chk_code(long int ret, long int reason, int linenumber)
{

if (ret != 0)
printf("return_code = %ld instead of 0 at line %d\n",

ret, linenumber);
if (reason != 0)

printf("reason_code = %ld instead of 0 at line %d\n",
reason, linenumber);

}
//*--
//* JCL USED TO COMPILE, LINK, THE C/370 PROGRAM
//*--
//CJOB JOB
//CCSTEP EXEC EDCCO,
// CPARM=’LIST,XREF,OPTIMIZE,RENT,SOURCE’,
// INFILE=’REFPAT.SAMPLE.PROG(C),DISP=SHR’
//COMPILE.SYSLIN DD DSN=’TEST.MPS.OBJ(C),DISP=SHR’
//COMPILE.USERLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM=’AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF’ 00022007
//PLKED.SYSIN DD DSN=’TEST.MPS.OBJ(C),DISP=SHR’
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *

LIBRARY IN(CSRIRP,CSRRRP)
NAME BPGC(R)

//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
//*--
//* JCL USED TO EXECUTE THE C/370 PROGRAM
//*--
//CGO JOB TIME=1440,MSGLEVEL=(1,1),MSGCLASS=A
//RUN EXEC PGM=BPGC,TIME=1440 00110804
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00111002
// UNIT=3380,VOL=SER=VM2TSO 00111101

C/370 example

Chapter 8. Reference pattern services coding examples 93

// DD DSN=CEE.SCEERUN,DISP=SHR 0111002
//SYSPRINT DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

COBOL example
//*--
//* THE FOLLOWING EXAMPLE IS CODED IN COBOL:
//*--

IDENTIFICATION DIVISION.

* MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C *
* USE THE REFERENCE PATTERN CALLABLE SERVICES TO IMPROVE THE *
* PERFORMANCE. *

PROGRAM-ID. TESTCOB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* COPY THE INCLUDE FILE (WHICH DEFINES CSRFORWARD, CSRBACKWARD)
COPY CSRBPCOB.

* DIMENSIONS OF ARRAYS - A IS M BY N, B IS N BY P, C IS M BY P
1 M PIC 9(9) COMP VALUE 200.
1 N PIC 9(9) COMP VALUE 200.
1 P PIC 9(9) COMP VALUE 200.

* ARRAY DECLARATIONS FOR ARRAY A - M = 200, N = 200
1 A1.
2 A2 OCCURS 200 TIMES.
3 A3 OCCURS 200 TIMES.
4 ARRAY-A PIC S9(8).

* ARRAY DECLARATIONS FOR ARRAY B - N = 200, P = 200
1 B1.
2 B2 OCCURS 200 TIMES.
3 B3 OCCURS 200 TIMES.
4 ARRAY-B PIC S9(8).

* ARRAY DECLARATIONS FOR ARRAY C - M = 200, P = 200
1 C1.
2 C2 OCCURS 200 TIMES.
3 C3 OCCURS 200 TIMES.
4 ARRAY-C PIC S9(8).

1 I PIC 9(9) COMP.
1 J PIC 9(9) COMP.
1 K PIC 9(9) COMP.
1 X PIC 9(9) COMP.
1 ARRAY-A-SIZE PIC 9(9) COMP.
1 ARRAY-B-SIZE PIC 9(9) COMP.
1 UNITSIZE PIC 9(9) COMP.
1 GAP PIC 9(9) COMP.
1 UNITS PIC 9(9) COMP.
1 RETCODE PIC 9(9) COMP.
1 RSNCODE PIC 9(9) COMP.
PROCEDURE DIVISION.

DISPLAY " BPAGE PROGRAM START "

* CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY A
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 25
* SO WE’RE ASKING FOR 25 ROWS TO COME IN AT A TIME

C/370 example

94 z/OS V2R1.0 MVS Callable Services for HLL

COMPUTE ARRAY-A-SIZE = M * N * 4
COMPUTE UNITSIZE = N * 4
COMPUTE GAP = 0
COMPUTE UNITS = 25

CALL "CSRIRP" USING
ARRAY-A(1, 1),
ARRAY-A-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "FIRST RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY B
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 25
* SO WE’RE ASKING FOR 25 ROWS TO COME IN AT A TIME

COMPUTE ARRAY-B-SIZE = N * P * 4
COMPUTE UNITSIZE = P * 4
COMPUTE GAP = 0
COMPUTE UNITS = 25
CALL "CSRIRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "SECOND RETURN CODE IS "
DISPLAY RETCODE

* INITIALIZE EACH ARRAY A ELEMENT TO THE SUM OF ITS INDICES
PERFORM VARYING I FROM 1 BY 1 UNTIL I = M

PERFORM VARYING J FROM 1 BY 1 UNTIL J = N
COMPUTE X = I + J
MOVE X TO ARRAY-A(I, J)
END-PERFORM

END-PERFORM

* INITIALIZE EACH ARRAY B ELEMENT TO THE SUM OF ITS INDICES
PERFORM VARYING I FROM 1 BY 1 UNTIL I = N

PERFORM VARYING J FROM 1 BY 1 UNTIL J = P
COMPUTE X = I + J
MOVE X TO ARRAY-B(I, J)

END-PERFORM
END-PERFORM

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
CALL "CSRRRP" USING

ARRAY-A(1, 1),
ARRAY-A-SIZE,
RETCODE,
RSNCODE

DISPLAY "THIRD RETURN CODE IS "
DISPLAY RETCODE

COBOL example

Chapter 8. Reference pattern services coding examples 95

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
CALL "CSRRRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
RETCODE,
RSNCODE

DISPLAY "FOURTH RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR ARRAY A
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 20
* SO WE’RE ASKING FOR 20 ROWS TO COME IN AT A TIME

COMPUTE ARRAY-A-SIZE = M * N * 4
COMPUTE UNITSIZE = N * 4
COMPUTE GAP = 0
COMPUTE UNITS = 20

CALL "CSRIRP" USING
ARRAY-A(1, 1),
ARRAY-A-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "FIFTH RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR ARRAY B
* UNITSIZE WILL BE THE SIZE OF ONE ELEMENT.
* GAP WILL BE (N-1)*4 (IE. THE REST OF THE ROW).
* UNITS WILL BE 50
* SO WE’RE ASKING FOR 50 ELEMENTS OF A COLUMN TO COME IN
* AT ONE TIME

COMPUTE ARRAY-B-SIZE = N * P * 4
COMPUTE UNITSIZE = 4
COMPUTE GAP = (N - 1) * 4
COMPUTE UNITS = 50

CALL "CSRIRP" USING
ARRAY-B(1, 1),
ARRAY-B-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "SIXTH RETURN CODE IS "
DISPLAY RETCODE

* MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C
PERFORM VARYING I FROM 1 BY 1 UNTIL I = M

PERFORM VARYING J FROM 1 BY 1 UNTIL J = P
COMPUTE ARRAY-C(I, J) = 0
PERFORM VARYING K FROM 1 BY 1 UNTIL K = N
COMPUTE X = ARRAY-C(I, J) +

ARRAY-A(I, K) * ARRAY-B(K, J)
END-PERFORM

END-PERFORM
END-PERFORM

COBOL example

96 z/OS V2R1.0 MVS Callable Services for HLL

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
CALL "CSRRRP" USING

ARRAY-A(1, 1),
ARRAY-A-SIZE,
RETCODE,
RSNCODE

DISPLAY "SEVENTH RETURN CODE IS "
DISPLAY RETCODE

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
CALL "CSRRRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
RETCODE,
RSNCODE

DISPLAY "EIGHTH RETURN CODE IS "
DISPLAY RETCODE

DISPLAY " BPAGE PROGRAM END "
GOBACK.

//*--
//* JCL USED TO COMPILE, LINK, THE COBOL PROGRAM
//*--
//FCHANGC JOB ’D3113P,D31,?’,’FCHANG6-6756’,CLASS=T,
// MSGCLASS=H,NOTIFY=FCHANG,REGION=0K
//CCSTEP EXEC EDCCO,
// CPARM=’LIST,XREF,OPTIMIZE,RENT,SOURCE’,
// INFILE=’FCHANG.PUB.TEST(C)’
//COMPILE.SYSLIN DD DSN=’FCHANG.MPS.OBJ(C),DISP=SHR’
//COMPILE.USERLIB DD DSN=’FCHANG.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM=’AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF’ 00022007
//PLKED.SYSIN DD DSN=’FCHANG.MPS.OBJ(C),DISP=SHR’
//LKED.SYSLMOD DD DSN=RSMID.FBB4417.LINKLIB,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *

LIBRARY IN(CSRIRP,CSRRRP)
NAME BPGC(R)

//LKED.IN DD DSN=FCHANG.MPS.OBJ,DISP=SHR
//*--
//* LINK PROGRAM
//*--
//COBOLLK JOB 00010002
//LINKEDIT EXEC PGM=IEWL, 00040000
// PARM=’MAP,XREF,LIST,LET,AC=1,SIZE=(1000K,100K)’ 00050000
//SYSLIN DD DDNAME=SYSIN 00051000
//SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=OLD 00052002
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00053000
//MYLIB DD DSN=REFPAT.COBOL.OBJ,DISP=SHR 00053102
//CSRLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00053202
//SYSPRINT DD SYSOUT=H 00053300
//* 00053400
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053500
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053600
//SYSIN DD * 00053700

INCLUDE MYLIB(COBOL) 00053802
LIBRARY CSRLIB(CSRIRP,CSRRRP) 00053901
NAME COBLOAD(R) 00054002

/* 00055000
//*--
//* JCL USED TO EXECUTE THE COBOL PROGRAM
//*--
//COB2 JOB MSGLEVEL=(1,1),TIME=1440 00010000
//GO EXEC PGM=COBLOAD 00020001
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR 00030001

COBOL example

Chapter 8. Reference pattern services coding examples 97

// DD DSN=REFPAT.USER.LOAD,DISP=SHR,VOL=SER=RSMPAK, 00040001
// UNIT=3380 00041001
//SYSABOUT DD SYSOUT=* 00050000
//SYSOUT DD SYSOUT=A 00051001
//SYSDBOUT DD SYSOUT=* 00060000
//SYSUDUMP DD SYSOUT=* 00070000

FORTRAN example
**
* *
* *
* This is FORTRAN. Followed by an assembler routine *
* called ADDR that has to be linkedited with the object *
* code from this testcase, and the CSR stubs. *
* *
**
@PROCESS DC(BPAGEFOR)

PROGRAM BPAGEFOR
C

INCLUDE ’SYS1.SAMPLIB(CSRBPFOR)’
C
C Multiply two arrays together - testing CSRIRP, CSRRRP services
C
C

INTEGER M /200/
INTEGER N /200/
INTEGER P /200/
PARAMETER (NKELEMENT_SIZE=4)
INTEGER RC,RSN
COMMON /WINCOM/A(200,200)
COMMON /WINCOM/B(200,200)
COMMON /WINCOM/C(200,200)

C
C Initialize the arrays
C

CALL CSRIRP(A(1,1),
* M*N*NKELEMENT_SIZE,
* CSR_FORWARD,
* M*NKELEMENT_SIZE,
* 0,
* 20,
* RC,
* RSN)
CALL CSRIRP(B(1,1),
* N*P*NKELEMENT_SIZE,
* CSR_FORWARD,
* N*NKELEMENT_SIZE,
* 0,
* 20,
* RC,
* RSN)
DO 102 J = 1, N
DO 100 I = 1, M

A(I,J) = I + J
100 CONTINUE
102 CONTINUE

DO 106 J = 1, P
DO 104 I = 1, N

B(I,J) = I + J
104 CONTINUE
106 CONTINUE

C
CALL CSRRRP(A(1,1),
* M*N*NKELEMENT_SIZE,
* RC,
* RSN)

COBOL example

98 z/OS V2R1.0 MVS Callable Services for HLL

CALL CSRRRP(B(1,1),
* N*P*NKELEMENT_SIZE,
* RC,
* RSN)

C
C Multiply the two arrays together
C

CALL CSRIRP (A(1,1),
* M*N*NKELEMENT_SIZE,
* CSR_FORWARD,
* N*NKELEMENT_SIZE,
* (N-1)*KELEMENT_SIZE,
* 50,
* RC,
* RSN)
CALL CSRIRP (B(1,1),
* N*P*NKELEMENT_SIZE,
* CSR_FORWARD,
* NKELEMENT_SIZE*N,
* 0,
* 20,
* RC,
* RSN)
DO 112 I = 1, M
DO 110 J = 1, N
DO 108 K = 1, P

C(I,J) = C(I,J) + A(I,K) * B(K,J)
108 CONTINUE
110 CONTINUE
112 CONTINUE

CALL CSRRRP (A(1,1),
* M*N*NKELEMENT_SIZE,
* RC,
* RSN)
CALL CSRRRP (B(1,1),
* N*P*NKELEMENT_SIZE,
* RC,
* RSN)

STOP
END

** 00010000
* * 00020000
* THIS IS THE JCL THAT COMPILES THE PROGRAM. * 00030000
* * 00020000
** 00080000
//FORTJOB JOB 00090007
// MSGCLASS=H,RDR=R, 00110007
// MSGLEVEL=(1,1),CLASS=T 00120000
//* 00130000
//* 00140000
//* COMPILE AND LINKEDIT FOR FORTRAN 00150000
//* 00160000
//* 00170000
//* 00180000
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00190000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM=’SYSOUT=A’, 00200000
// PGMNAME=MAIN,PGMLIB=’&&GOSET’,FVLNSPC=’3200,(25,6)’ 00210000
//* 00220000
//* COPYRIGHT: 5668-806 00230000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00240000
//* LICENSED MATERIALS - PROPERTY OF IBM 00250000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00260000
//* 00270000
//* STATUS: 02.03.00 (VV.RR.MM) 00280000
//* 00290000
//* PARAMETER DEFAULT-VALUE USAGE 00300000

FORTRAN example

Chapter 8. Reference pattern services coding examples 99

//* 00310000
//* FVPGM FORTVS2 COMPILER NAME 00320000
//* FVREGN 2100K FORT-STEP REGION 00330000
//* FVPDECK NODECK COMPILER DECK OPTION 00340000
//* FVPOLST NOLIST COMPILER LIST OPTION 00350000
//* FVPOPT 0 COMPILER OPTIMIZATION 00360000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00370000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00380000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00390000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00400000
//* 00410000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00420000
// PARM=’&FVPDECK,&FVPOLST,OPT(&FVPOPT)’ 00430000
//STEPLIB DD DSN=D24PP.FORT230.VSF2COMP,DISP=SHR 00440000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00450000
//SYSTERM DD &FVTERM 00460000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00470000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00480000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00490000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00500000
// PARM=’LET,LIST,XREF’ 00510000
//SYSPRINT DD SYSOUT=A 00520000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00530000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00540000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00550000
// SPACE=(TRK,(10,10,1),RLSE) 00560000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00570000
// DD DDNAME=SYSIN 00580000
// PEND 00590000
// EXEC VSF2CL,FVTERM=’SYSOUT=H’, 00600000
// PGMNAME=FORTRAN,PGMLIB=’REFPAT.USER.LOAD’ 00680008
//FORT.SYSIN DD DSN=REFPAT.SAMPLE.PROG(FORTRAN),DISP=SHR 00690008
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00700000
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR 00710007
//LKED.SYSIN DD * 00720000

INCLUDE IN(CSRIRP,CSRRRP,ADDR) 00730000
NAME BPGFORT(R) 00740006

/* 00750000
//* THE CSR STUBS ARE AVAILABLE IN SYS1.CSSLIB, 00760007
//* THE OBJ FOR THE ADDR ROUTINE IS IN TEST.OBJ 00770007
//* 00780000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00790007
// DD DSN=REFPAT.TEST.OBJ,DISP=SHR 00mm0007

** 00010000
* * 00020000
* THIS IS THE JCL I USE TO EXECUTE THE PROGRAM. * 00030000
* * 00060000
** 00070000
//FONO1 JOB MSGLEVEL=(1,1),TIME=1440 00080003
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00090000
//* 00100000
//* 00110000
//* EXECUTE A FORTRAN TESTCASE - CHANGE ALL CRTFONXX TO CRTFONZZ 00120000
//* 00130000
// GOF5DD=’DDNAME=SYSIN’, 00140000
// GOF6DD=’SYSOUT=A’, 00150000
// GOF7DD=’SYSOUT=B’ 00160000
//* 00170000
//* COPYRIGHT: 5668-806 00180000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00190000
//* LICENSED MATERIALS - PROPERTY OF IBM 00200000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00210000
//* 00220000
//* STATUS: 02.03.00 (VV.RR.MM) 00230000
//* 00240000
//* PARAMETER DEFAULT-VALUE USAGE 00250000
//* 00260000

FORTRAN example

100 z/OS V2R1.0 MVS Callable Services for HLL

//* GOPGM MAIN PROGRAM NAME 00270000
//* GOREGN 100K GO-STEP REGION 00280000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00290000
//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00300000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00310000
//* 00320000
//* 00330000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00340000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00350004
//FT05F001 DD &GOF5DD 00360000
//FT06F001 DD &GOF6DD 00370000
//FT07F001 DD &GOF7DD 00380000
// PEND 00390000
//GO EXEC VSF2G,GOPGM=BPGFORT,GOREGN=999K 00400004
//GO.STEPLIB DD DSN=WINDOW.D24PP.FORTLIB,DISP=SHR, 00410004
// VOL=SER=VM2TSO,UNIT=3380 00410104
// DD DSN=WINDOW.R40.VSF2LOAD,DISP=SHR, 00411004
// VOL=SER=VM2TSO,UNIT=3380 00412004
// DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00420003
// VOL=SER=VM2TSO,UNIT=3380 00430004

Pascal example
**
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
**
program BPAGEPAS;

%include CSRBPPAS

CONST
m = 250;
n = 250;
p = 250;
kelement_size = 4;
a_size = m*n*kelement_size;
b_size = n*p*kelement_size;
c_size = m*p*kelement_size;

VAR
a : array (.1..m, 1..n.) of integer;
b : array (.1..n, 1..p.) of integer;
c : array (.1..m, 1..p.) of integer;
i : integer;
j : integer;
k : integer;
rc : integer;
rsn : integer;

BEGIN
csrirp (a(.1,1.), a_size, csr_forward,

kelement_size*m,
0,
50,
rc,
rsn);

csrirp (b(.1,1.), b_size, csr_forward,
kelement_size*n,
0,
20,
rc,
rsn);

for i:=1 to m do
for j:=1 to n do

FORTRAN example

Chapter 8. Reference pattern services coding examples 101

a(.i,j.) := i + j;
for i:=1 to n do

for j:=1 to p do
b(.i,j.) := i + j;
csrrrp (a(.1,1.), a_size,

rc,
rsn);

csrrrp (b(.1,1.), b_size,
rc,
rsn);

/* Multiply the two arrays together */

csrirp (a(.1,1.), m*n*kelement_size, csr_forward,
kelement_size*n,
0,
20,
rc,
rsn);

csrirp (b(.1,1.), n*p*kelement_size, csr_forward,
(p-1)*kelement_size,
0,
50,
rc,
rsn);

for i:=1 to m do
for J:=1 to p do

begin;
c(.i,j.) := 0;
for k:=1 to n do

c(.i,j.) := c(.i,j.) + a(.i,k.) * b(.k,j.);
end;

csrrrp (a(.1,1.), m*n*kelement_size,
rc,
rsn);

csrrrp (b(.1,1.), n*p*kelement_size,
rc,
rsn);

END.
** 00010000
* * 00020000
* JCL TO COMPILE AND LINKEDIT * 00030000
* * 00040000
** 00050000
//PASCJOB JOB 00060008
//GOGO EXEC PAS22CL 00100000
//* 00110000
//* COMPILE AND LINKEDIT FOR PASCAL 00120000
//* 00130000
//* CHANGE THE MEMBER NAME ON THE NEXT LINE AND THE 00140000
//* NAME CRTPANXX(R) SIX LINES DOWN 00150000
//* 00160000
//PASC.SYSLIB DD 00161006
// DD 00162006
// DD DSN=REFPAT.DECLARE.SET(CSRBPPAS),DISP=SHR 00163008
//PASC.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PASCAL),DISP=SHR 00170008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,UNIT=3380, 00180008
// VOL=SER=VM2TSO 00190009
//LKED.SYSIN DD * 00200000

LIBRARY IN(CSRIRP,CSRRRP) 00210005
NAME BPGPASC(R) 00220003

/* 00230000
//* SYS1.CSSLIB IS THE SOURCE OF THE CSR STUBS 00240008
//* 00250000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00260008
**
* *

Pascal example

102 z/OS V2R1.0 MVS Callable Services for HLL

* JCL TO EXECUTE PASCAL *
* *
**
//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000
// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000

LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
NAME CRTPAN06(R) 00600006

/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000

* *
* *
* JCL TO COMPILE AND LINKEDIT. *
* *
* *
* *

** 00010000
* * 00020000
* JCL TO EXECUTE. THIS ONE NEEDS A DD STATEMENT FOR THE * 00030000
* PERMANENT DIV OBJECT - CSRDD1. DATASET ALREADY EXISTS. * 00040000
* * 00060000
** 00070000
//PASCGO JOB MSGLEVEL=(1,1),TIME=1440 00080002
//* 00090000
//* 00100000
//* RUN A PASCAL TESTCASE - CHANGE THE NAME ON THE NEXT LINE 00110000
//* 00/20000
//* 00130000
//GO EXEC PGM=BPGPASC 00140000
//STEPLIB DD DSN=REFPAT.USER.LOAD, 00150002
// DISP=SHR,UNIT=3380, 00190000
// VOL=SER=VM2TSO 00200003
//CSRDD1 DD DSN=DIV.TESTDS,DISP=SHR 00210000
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00220000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00230000

PL/I example
**
* *
* PLI example *
* *
**
BPGPLI: PROCEDURE OPTIONS(MAIN); 00010023

00020002
%INCLUDE SYSLIB(CSRBPPLI); 00020122

00020222
/* INITs */ 00021013

DCL M INIT(512) FIXED BIN(31); 00022035
DCL N INIT(512) FIXED BIN(31); 00023035
DCL P INIT(512) FIXED BIN(31); 00024035

00025013
/* Arrays */ 00026013

DCL A (M,N) BIN FIXED(31); /* First array */ 00029113
DCL B (N,P) BIN FIXED(31); /* Second array */ 00029213
DCL C (M,P) BIN FIXED(31); /* Product of first and second */ 00029313

Pascal example

Chapter 8. Reference pattern services coding examples 103

DCL KELEMENT_SIZE INIT(4) FIXED BIN(31); /* Size of an element of an 00029416
array. This value is tied 00029513
directly to the data type of 00029613
the three arrays (ie. FIXED(31)00029713
is 4 bytes */ 00029813

00029913
/* Indices */ 00030013

DCL I FIXED BIN(31), 00031013
J FIXED BIN(31), 00031113
K FIXED BIN(31); 00031213

00032013
/* Others */ 00037013

DCL RC FIXED BIN(31); 00039013
DCL RSN FIXED BIN(31); 00039113

00390108
00391808

/* Initialize the first two arrays such that each element 00411013
equals the sum of the indices for that element (eg. 00412013
A(4,10) = 14 */ 00413013

00414013
CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00415013

KELEMENT_SIZE*N, 00416013
0, 00417013
20, 00418013
RC, 00419013
RSN); 00419113

CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00419913
KELEMENT_SIZE*P, 00420013
0, 00420113
20, 00420213
RC, 00420313
RSN); 00420413

DO I = 1 TO M; 00421213
DO J = 1 TO N; 00421313

A(I,J) = I + J; 00421413
END; 00421513

END; 00421613
00421713

DO I = 1 TO N; 00421813
DO J = 1 TO P; 00421913

B(I,J) = I + J; 00422013
END; 00422113

END; 00422213
CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00422313

RC, 00422513
RSN); 00422613

CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00423413
RC, 00423613
RSN); 00423713

00424513
/* Multiply the two arrays together */ 00424613

00424713
CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00424813

KELEMENT_SIZE*N, 00424913
0, 00425013
20, 00425133
RC, 00425213
RSN); 00425313

CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00426113
KELEMENT_SIZE, 00426213
(P-1)*KELEMENT_SIZE, 00426313
50, 00426413
RC, 00426513
RSN); 00426613

DO I = 1 TO M; 00427413
DO J = 1 TO P; 00427513

C(I,J) = 0; 00427613

PL/I example

104 z/OS V2R1.0 MVS Callable Services for HLL

DO K = 1 TO N; 00427713
C(I,J) = C(I,J) + A(I,K) * B(K,J); 00427813

END; 00427913
END; 00428013

END; 00428113
00428213

CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00428313
RC, 00428513
RSN); 00428613

CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00429413
RC, 00429613
RSN); 00429713

00430513
END BPGPLI; 01080024

* *
* *
* JCL TO COMPILE AND LINKEDIT. *
* *
* *
* *

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL,PARM.PLI=’MACRO’ 00050000
//PLI.SYSLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//PLI.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PLI),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,UNIT=3380,VOL=SER=RSMPAK, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000

INCLUDE IN(CSRIRP,CSRRRP) 00100001
NAME BPGPLI(R) 00110008

/* 00120000
//* 00121001
//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000
//PLIJOB JOB 00010007

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1),TIME=1440 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE - CHANGE NAME ON NEXT LINE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
// DD DSN=CEE.SCEERUN,DISP=SHR 0
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I example

Chapter 8. Reference pattern services coding examples 105

PL/I example

106 z/OS V2R1.0 MVS Callable Services for HLL

Part 3. Global resource serialization latch manager services

© Copyright IBM Corp. 1994, 2014 107

108 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 9. Using the latch manager services

To use global resource serialization latch manager services, you issue CALLs from
high level language programs. Each service requires a set of parameters coded in a
specific order on the CALL statement.

This topic describes the CALL statements that invoke latch manager services. Each
description includes a syntax diagram, parameter descriptions, and return and
reason code explanations with recommended actions. Return and reason codes are
shown in hexadecimal and decimal, along with the associated equate symbol.

This topic contains the following subtopics:
v “ISGLCRT — Create a latch set” on page 110
v “ISGLOBT — Obtain a latch” on page 114
v “ISGLREL — Release a latch” on page 117
v “ISGLPRG — Purge a requestor from a latch set” on page 120
v “ISGLPBA — Purge a group of requestors from a group of latch sets” on page

122

For information about the basic function of the latch manager, how to plan to use
the latch manager, and how to use the latch manager callable services, see the
serialization topic in z/OS MVS Programming: Authorized Assembler Services Guide.

Syntax and linkage conventions for latch manager callable services
The latch manager callable services have the following general calling syntax:

CALL routine_name(parameters)

Some specific calling formats for languages that can invoke the latch manager
callable services are:

C routine_name (parm1,parm2,...return_code)

COBOL
CALL “routine_name” USING parm1,parm2,...return_code

FORTRAN
CALL routine_name (parm1,parm2,...return_code)

PL/I
CALL routine_name (parm1,parm2,...return_code)

REXX
ADDRESS LU62 “routine_name parm1 parm2...return_code”

IBM provides files, called interface definition files (IDFs), that define variables and
values for the parameters used with latch manager services. IBM provides IDFs for
some of the listed languages. See the serialization topic in z/OS MVS Programming:
Authorized Assembler Services Guide for information about the IDFs that are available
on MVS.

© Copyright IBM Corp. 1994, 2014 109

ISGLCRT — Create a latch set
Call the Latch_Create service to create a set of latches. Your application should call
Latch_Create during application initialization, and specify a number of latches that
is sufficient to serialize all the resources that the application requires. Programs
that run as part of the application can call the following related services:

ISGLOBT
Requests exclusive or shared ownership of a latch.

ISGLREL
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Create, constants defined in the latch
manager IDFs are followed by their numeric equivalents; you may specify either
when coding calls to Latch_Create.

Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v number_of_latches
v latch_set_name
v create_option

Latch_Create returns values in the following parameters:
v latch_set_token
v return_code

CALL statement Parameters

CALL ISGLCRT (number_of_latches
,latch_set_name
,create_option
,latch_set_token
,return_code)

The parameters are explained as follows:

number_of_latches
Specifies a fullword integer that indicates the number of latches to be created.

,latch_set_name
Specifies a 48-byte area that contains the name of the latch set. The latch set
name must be unique within the current address space. The latch set name can
be any value up to 48 characters, but the first character must not be binary
zeros or an EBCDIC blank. If the latch set name is less than 48 characters, it
must be padded on the right with blanks.

IBM recommends that you use a standard naming convention for the latch set
name. To avoid using a name that IBM uses, do not begin the latch set name

ISGLCRT callable service

110 z/OS V2R1.0 MVS Callable Services for HLL

with the character string SYS. It is a good idea to select a latch set name that is
readable in output from the DISPLAY GRS command and interactive problem
control system (IPCS). Avoid '@', '$', and '#' because those characters do not
always display consistently.

,create_option
Specifies a fullword integer that must have one of the following values:
v ISGLCRT_PRIVATE (or a value of 0)
v ISGLCRT_PRIVATE + ISGLCRT_LOWSTGUSAGE (or a value of 2)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 (or a value of 64)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 (or a value of 128)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 +

ISGLCRT_LOWSTGUSAGE (or a value of 66)
v ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 +

ISGLCRT_LOWSTGUSAGE (or a value of 130)

If the creating address space is constrained by private storage, use the
ISGLCRT_LOWSTGUSAGE option. ISGLCRT_LOWSTGUSAGE reduces storage
usage at the cost of performance. IBM suggests that this option is only used if
there is a known or possible storage constraint issue. See "Specifying the
Number of Latches in a Latch Set" in z/OS MVS Programming: Authorized
Assembler Services Guide for a description of the amount of storage that can be
consumed by a latch set.

If you want to have the latch obtain services detect some simple latch deadlock
situations, consider using the ISGLCRT_DEADLOCKDET1 and
ISGLCRT_DEADLOCKDET2 options. For performance reasons, latch deadlock
detection is not exhaustive. It can detect some simple deadlock situations.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET1 is specified, it can
detect the following deadlock situations:
v The work unit requests exclusive ownership of a latch that the work unit

already owns exclusively.
v The work unit requests shared ownership of a latch that the work unit

already owns exclusively.

When ISGLCRT_PRIVATE + ISGLCRT_DEADLOCKDET2 is specified, it can
detect all the deadlock situations listed under ISGLCRT_PRIVATE +
ISGLCRT_DEADLOCKDET1, and it can also detect if the work unit holding a
SHARED latch requests exclusive use of the same latch.

Because ISGLCRT_DEADLOCKDET2 provides the best deadlock detection,
IBM suggests that you use ISGLCRT_DEADLOCKDET1 in cases where it can
be used and use ISGLCRT_DEADLOCKDET2 in all cases where there are not
many SHARED latch holders.

Note:

1. The unit of work context of the requester is captured at latch obtain time.
The system does not know if the application passes responsibility for
releasing the latch to another unit of work. To prevent false detection,
deadlock detection can not be used if latches are used in such a way that
responsibility for releasing the latch is passed between the obtainer and the
releaser.

2. Deadlock detection can be safely used by SRBs, if all the obtained latches
are released by the SRB work unit before the unit of work completes. There
is a possibility of false deadlock hits otherwise.

ISGLCRT callable service

Chapter 9. Using the latch manager services 111

3. Deadlock detection is not performed if the latches are obtained
conditionally using the ISGLOBT_ASYNC_ECB option in ISGLOBT.

,latch_set_token
Specifies an 8-byte area to contain the latch set token returned by the
Latch_Create service. The latch set token uniquely identifies the latch set.
Programs must specify this value on calls to the Latch_Obtain, Latch_Release,
and Latch_Purge services.

,return_code
A fullword integer to contain the return code from the Latch_Create service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Create service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 7. ISGLCRT Return Codes

Return code and Equate symbol Meaning and Action

00
(0)
ISGLCRT_SUCCESS

Meaning: The Latch_Create service completed successfully.

Action: None required.

04
(4)
ISGLCRT_DUPLICATE_NAME

Meaning: The specified latch_set_name already exists, and is
associated with a latch set that was created by a program running
in the current primary address space. The latch manager does not
create a new latch set.

Action: To create a new latch set, specify a unique name on the
latch_set_name parameter, then call the Latch_Create service again.
Otherwise, continue processing with the returned latch set token.

10
(16)
ISGLCRT_NO_STORAGE

Meaning: Environmental error. Not enough storage was available
to contain the requested number of latches. The latch manager
does not create a new latch set.

Action: Specify a smaller value on the number_of_latches
parameter.

Examples of calls to latch manager services
The following is an example of how to call all the latch manager services in C
language:
/***/
/* C Example */
/***/
#pragma linkage(setsup, OS)
#pragma linkage(setprob, OS)
#include <ISGLMC.H> /* Include C language IDF */

main()
{

const int numberOfLatches = 16; /* in this example we create 16
latches */

ISGLM_LSNM_type latchSetName
= "EXAMPLE.ONE_LATCH_SET_NAME ";

/* set up 48-byte latch set name */

ISGLCRT callable service

112 z/OS V2R1.0 MVS Callable Services for HLL

ISGLM_LSTK_type latchSetToken; /* latch set token - output from
create and input to obtain,
release, and purge */

int returnCode = 0; /* return code from services */

const int latchNumber = 6; /* in this example we obtain latch
six */

ISGLM_LRID_type requestorID = "123";/* requestor ID - output from
obtain and input to purge */

int ECB = 0; /* ECB used for latch obtain
service */

ISGLM_EADDR_type ECBaddress = &ECB;/* pointer to ECB */
ISGLM_LTK_type latchToken; /* latch token - output from

obtain and input to release */
union {

double alignment; /* force double word alignment */
ISGLM_WA_type area; /* set up work area */

} work;

setsup(); /* set supervisor state PSW */

/***/
/* create a latch set with 16 latches */
/***/

isglcrt(numberOfLatches
,latchSetName
,ISGLCRT_PRIVATE
,&latchSetToken;
,&returnCode);

/***/
/* obtain latch */
/***/

isglobt(latchSetToken
,latchNumber
,requestorID
,ISGLOBT_SYNC /* suspend until granted */
,ISGLOBT_EXCLUSIVE /* access option (exclusive) */
,&ECBaddress /* required, but not used */
,&latchToken /* identifies request */
,&work.area
,&returnCode);

/***/
/* release latch */
/***/

isglrel(latchSetToken
,latchToken
,ISGLREL_UNCOND /* ABEND if latch not owned */
,&workarea
,&returnCode);

/***/
/* purge requestor from latch set */
/***/

isglprg(latchSetToken
,requestorID
,&returnCode);

setprob(); /* set problem state PSW */
}
**

ISGLCRT callable service

Chapter 9. Using the latch manager services 113

* SETSUP subroutine
**
SETSUP CSECT
SETSUP AMODE 31
SETSUP RMODE ANY

SAVE (14,12) save regs
SAC 0 ensure primary mode
LR 12,15 establish addressability
USING SETSUP,12
MODESET MODE=SUP set supervisor state
RETURN (14,12),RC=0 restore caller’s regs and return
END SETSUP

**
* SETPROB subroutine
**
SETPROB CSECT
SETPROB AMODE 31
SETPROB RMODE ANY

SAVE (14,12) save regs
LR 12,15 establish addressability
USING SETPROB,12
MODESET MODE=PROB set problem state
RETURN (14,12),RC=0 restore caller’s regs and return
END SETPROB

ISGLOBT — Obtain a latch
Call the Latch_Obtain service to request exclusive or shared ownership of a latch.
When a requestor owns a particular latch, the requestor can use the resource
associated with that latch. The following callable services are related to
Latch_Obtain:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLREL
Releases ownership of an owned latch or a pending request to obtain a
latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Obtain:
v The term requestor describes a task or SRB routine that calls the Latch_Obtain

service to request ownership of a latch.
v Constants defined in the latch manager IDFs are followed by their numeric

equivalents; you may specify either when coding calls to Latch_Obtain. For
example, “ISGLOBT_COND (value of 1)” indicates the constant
ISGLOBT_COND and its associated value, 1.

Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v latch_number
v requestor_ID
v obtain_option
v access_option

ISGLCRT callable service

114 z/OS V2R1.0 MVS Callable Services for HLL

v ECB_address

Latch_Obtain returns values in the following parameters:
v latch_set_token
v return_code

Latch_Obtain uses the following parameter for temporary storage:
v work_area

CALL statement Parameters

CALL ISGLOBT (latch_set_token
,latch_number
,requestor_ID
,obtain_option
,access_option
,ECB_address
,latch_token
,work_area
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token that the Latch_Create
service returned earlier when it created the latch set.

,latch_number
Specifies a fullword integer that contains the number of the latch to be
obtained. The latch_number must be in the range from 0 to the total number of
latches in the associated latch set minus one.

,requestor_ID
Specifies an 8-byte area that contains a value that identifies the caller of the
Latch_Obtain service. The requestor_ID can be any value except all binary
zeros.

Recovery routines can purge all granted and pending requests for a particular
requestor (identified by a requestor_id) within a specific latch set. When
specifying the requestor_ID on Latch_Obtain, consider which latches would be
purged if the Latch_Purge service were to be called with the specified
requestor_ID. For more information about the Latch_Purge service, see
“ISGLPRG — Purge a requestor from a latch set” on page 120.

,obtain_option
A fullword integer that specifies how the system is to handle the Latch_Obtain
request if the latch manager cannot immediately grant ownership of the latch
to the requestor:

ISGLOBT_SYNC (value of 0)
The system processes the request synchronously. The system suspends the
requestor. When the latch manager eventually grants ownership of the
latch to the requestor, the system returns control to the requestor.

ISGLOBT_COND (value of 1)
The system processes the request conditionally. The system returns control
to the requestor with a return code of ISGLOBT_CONTENTION (value of
4). The latch manager does not queue the request to obtain the latch.

ISGLOBT callable service

Chapter 9. Using the latch manager services 115

ISGLOBT_ASYNC_ECB (value of 2)
The system processes the request asynchronously. The system returns
control to the requestor with a return code of ISGLOBT_CONTENTION
(value of 4). When the latch manager eventually grants ownership of the
latch to the requestor, the system posts the ECB pointed to by the value
specified on the ECB_address parameter.

When you specify this option, the ECB_address parameter must contain
the address of an initialized ECB that is addressable from the home
address space (HASN).

,access_option
A fullword or character string that specifies the access required:
v ISGLOBT_EXCLUSIVE (value of 0) - Exclusive (write) access
v ISGLOBT_SHARED (value of 1) - Shared (read) access

,ECB_address
Specifies a fullword that contains the address of an ECB. If you specify an
obtain_option of ISGLOBT_SYNC (value of 0) or ISGLOBT_COND (value of 1)
on the call to Latch_Obtain, the ECB_address field must be valid (though its
contents are ignored). IBM recommends that an address of 0 be used when no
ECB is to be processed.

If you specify an obtain_option of ISGLOBT_ASYNC_ECB (value of 2) and the
system returns a return code of ISGLOBT_CONTENTION (value of 4) to the
caller, the system posts the ECB pointed to by the value specified on the
ECB_address parameter when the latch manager grants ownership of the latch
to the requestor.

,latch_token
Specifies an 8-byte area to contain the latch token returned by the
Latch_Obtain service. You must provide this value as a parameter on a call to
the Latch_Release service to release the latch.

,work_area
Specifies a 256-byte work area that provides temporary storage for the
Latch_Obtain service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Obtain.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Obtain service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Obtain service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

ISGLOBT callable service

116 z/OS V2R1.0 MVS Callable Services for HLL

Table 8. ISGLOBT Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLOBT_SUCCESS

Meaning: The Latch_Obtain service completed successfully.

Action: None.

04
(4)
ISGLOBT_CONTENTION

Meaning: A requestor called Latch_Obtain with an
obtain_option of ISGLOBT_COND (value of 1) or
ISGLOBT_ASYNC_ECB (value of 2). The latch is not
immediately available.

Action: If the requestor specified an obtain_option of
ISGLOBT_COND (value of 1), no response is required. If the
requestor specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2), and the latch is still
required, wait on the ECB to be posted when the latch
manager grants ownership of the latch to the requestor.

Example
See “Examples of calls to latch manager services” on page 112 for an example of
how to call Latch_Obtain in C language.

ISGLREL — Release a latch
Call the Latch_Release service to release ownership of an owned latch or a pending
request to obtain a latch. Requestors should call Latch_Release when the use of a
resource associated with a latch is no longer required. The following callable
services are related to Latch_Release:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Release:
v The term requestor describes a program that calls the Latch_Release service to

release ownership of an owned latch or a pending request to obtain a latch.
v Constants defined in the latch manager IDFs are followed by their numeric

equivalents; you may specify either when coding calls to Latch_Obtain. For
example, “ISGLREL_COND (value of 1)” indicates the constant ISGLREL_COND
and its associated value, 1.

Write the CALL as shown on the syntax diagram, coding all parameters in the
specified order.

Assign values to the following parameters:
v latch_set_token
v latch_token
v release_option

Latch_Release returns a value in the following parameter:
v return_code

ISGLOBT callable service

Chapter 9. Using the latch manager services 117

Latch_Release uses the following parameter for temporary storage:
v work_area

CALL statement Parameters

CALL ISGLREL (latch_set_token
,latch_token
,release_option
,work_area
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch set token returned to the caller
of the Latch_Create service. The latch set token identifies the latch set that
contains the latch to be released.

,latch_token
Specifies an 8-byte area that contains the latch token returned to the caller of
the Latch_Obtain service. The latch token identifies the request to be released.

,release_option
Specifies a fullword integer that tells the latch manager what to do when the
requestor either no longer owns the latch to be released or still has a pending
request to obtain the latch to be released:

ISGLREL_UNCOND (value of 0)
Abend the requestor:
v If a requestor originally specified an obtain_option of ISGLOBT_SYNC

(value of 0) when obtaining the latch, the latch manager does not release
the latch. The system abends the caller of Latch_Release with abend
X'9C6', reason code xxxx0009.

v If a requestor originally specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager does not release the latch. The system abends the caller of
Latch_Release with abend X'9C6', reason code xxxx0007.

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system abends the caller of Latch_Release with
abend X'9C6', reason code xxxx000A.

ISGLREL_COND (value of 1)
Return control to the requestor:
v If a requestor originally specified an obtain_option of

ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager releases the request for ownership of the latch. The system
returns control to the caller of Latch_Release with a return code of
ISGLREL_NOT_OWNED_ECB_REQUEST (value of 4).

v If a requestor originally specified an obtain_option of ISGLOBT_SYNC
(value of 0) when obtaining the latch, the latch manager does not release
the request for ownership of the latch. The system returns control to the
caller of Latch_Release with a return code of
ISGLREL_STILL_SUSPENDED (value of 8).

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system returns control to the caller of

ISGLREL callable service

118 z/OS V2R1.0 MVS Callable Services for HLL

Latch_Release with a return code of
ISGLREL_INCORRECT_LATCH_TOKEN (value of 12).

,work_area
Specifies a 256-byte work area that provides temporary storage for the
Latch_Release service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Release.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Release service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Release service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 9. ISGLREL Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLREL_SUCCESS

Meaning: The Latch_Release service completed
successfully. The caller released ownership of the
specified latch request.

Action: None.

04
(4)
ISGLREL_NOT_OWNED_ECB_REQUEST

Meaning: The requestor that originally called the
Latch_Obtain service is still expecting the system
to post an ECB (to indicate that the requestor has
obtained the latch). The call to the Latch_Release
service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not post the ECB at the address specified on
the original call to Latch_Obtain. The latch
manager releases the latch.

Action: Validate the integrity of the resource
associated with the latch (the requestor might
have used the resource without waiting on the
ECB). If the resource is undamaged, no action is
necessary (a requestor routine may have been in
the process of cancelling the request to obtain the
latch).

ISGLREL callable service

Chapter 9. Using the latch manager services 119

Table 9. ISGLREL Return Codes (continued)

Return code and Equate Symbol Meaning and Action

08
(8)
ISGLREL_STILL_SUSPENDED

Meaning: Program error. The request specified a
correct latch token, but the program that
originally requested the latch is still suspended
and waiting to obtain the latch.

The latch requestor originally specified an
obtain_option of ISGLOBT_SYNC on the call to
the Latch_Obtain service. The call to the
Latch_Release service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not release the latch. The latch requestor
remains suspended.

Action:

v Wait for the latch requestor to obtain the latch
and receive control back from the system; then
call the Latch_Release service again, or

v End the program that originally requested the
latch.

0C
(12)
ISGLREL_INCORRECT_LATCH_TOKEN

Meaning: The latch manager could not find a
granted or pending request associated with the
value on the latch token parameter. The latch
manager does not release a latch.

This return code does not indicate an error if a
routine calls Latch_Release to ensure that a latch
is released. For example, if an error occurs when a
requestor calls the Latch_Obtain service, the
requestor's recovery routine might call
Latch_Release to ensure that the requested latch is
released. If the error prevented the requestor from
obtaining the latch, the recovery routine receives
this return code.

Action: If the return code is not expected, validate
that the latch token is the same latch token
returned to the caller of Latch_Obtain.

Example
See “Examples of calls to latch manager services” on page 112 for an example of
how to call Latch_Release in C language.

ISGLPRG — Purge a requestor from a latch set
Call the Latch_Purge service to purge all granted and pending requests for a
particular requestor within a specific latch set. Recovery routines should call
Latch_Purge when one or more errors prevent requestors from releasing latches.
The following callable services are related to Latch_Purge:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLREL
Releases control of an owned latch or a pending request to obtain a latch.

ISGLREL callable service

120 z/OS V2R1.0 MVS Callable Services for HLL

In the following description of Latch_Purge, constants defined in the latch manager
IDFs are followed by their numeric equivalents; you may specify either when
coding calls to Latch_Purge.

Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID

Latch_Purge returns a value in the return_code parameter.

CALL statement Parameters

CALL ISGLPRG (latch_set_token
,requestor_ID
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service. The latch set token identifies the latch set from
which latch requests are to be purged.

,requestor_ID
Specifies an 8-byte area that contains the requestor_ID originally specified on
one or more previous calls to the Latch_Obtain service. The Latch_Purge
service is to release all Latch_Obtain requests that specify this requestor_ID.

,return_code
A fullword integer that contains the return code from the Latch_Purge service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Purge service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in paretheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 10. ISGLPRG Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge service completed successfully.

Action: None.

ISGLPRG callable service

Chapter 9. Using the latch manager services 121

Table 10. ISGLPRG Return Codes (continued)

Return code and Equate Symbol Meaning and Action

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a
particular requestor from a latch set, the latch manager
found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from
purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified
requestor.

Action: Take a dump and check for a storage overlay. If
your application can continue without the resources
serialized by the damaged latches, no action is required.

Example
See “Examples of calls to latch manager services” on page 112 for an example of
how to call Latch_Purge in C language.

ISGLPBA — Purge a group of requestors from a group of latch sets
Call the Latch_Purge_by_Address_Space service to purge all granted and pending
requests for a group of requestors for a group of latch sets in the same address
space. To effectively use this service, your latch_set_names and your requestor_IDs
should be defined such that they have a common portion and a unique portion.
Groups of latch sets can then be formed by masking off the unique portion of the
latch_set_name, and groups of latch requests in a latch set can then be formed by
masking off the unique portion of the requestor_ID. Masking off the unique
portion of the requestor_ID allows a single purge request to handle multiple latch
sets and multiple requests in a latch set. Recovery routines should call
Latch_Purge_by_Address_Space when one or more errors prevent requestors from
releasing latches.

The following callable services are related to Latch_Purge_by_Address_Space:

ISGLCRT
Creates a latch set that an application can use to serialize resources.

ISGLOBT
Requests exclusive or shared control of a latch.

ISGLREL
Releases control of an owned latch or a pending request to obtain a latch.

ISGLPRG
Purges all granted and pending requests for a particular requestor within a
specific latch set.

In the following description of Latch_Purge_by_Address_Space, equate symbols
defined in the ISGLMASM macro are followed by their numeric equivalents; you
may specify either when coding calls to Latch_Purge_by_Address_Space.

Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID

ISGLPRG callable service

122 z/OS V2R1.0 MVS Callable Services for HLL

v requestor_ID_mask
v latch_set_name
v latch_set_name_mask

Latch_Purge_by_Address_Space returns a value in the return_code parameter.

CALL statement Parameters

CALL ISGLPBA (latch_set_token
,requestor_ID
,requestor_ID_mask
,latch_set_name
,latch_set_name_mask
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service or a value of zero. If the value is not zero, the
latch_set_token identifies the latch set from which latch requests are to be
purged. If the latch_set_token is set to zero, a group of latch sets, determined
by the latch_set_name and latch_set_name_mask, will have their latch requests
purged.

,requestor_id
Specifies an 8-byte area that contains a portion of the requestor_ID originally
specified on one or more previous calls to the Latch_Obtain service. This
operand will be compared to the result of logically ANDing each requestor_ID
in the latch set with the requestor_ID_mask. Make sure that any corresponding
bits that are zero in the requestor_ID_mask are also zero in this field, otherwise
no ID matches will occur. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,requestor_id_mask
Specifies an 8-byte area that contains the requestor_ID_mask that will be
logically ANDed to each requestor_ID in the latch set and then compared to
the requestor_ID operand. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,latch_set_name
Specifies a 48-byte area that contains the portion of the latch_set_name that
will be compared to the result of logically ANDing the latch_set_name_mask
with each latch set name in the primary address space. Make sure that any
corresponding bits that are zero in the latch_set_name_mask are also zero in
this field, otherwise no name matches will occur. Each latch set that has a
name match will have its Latch_Obtain requests released. If the latch_set_token
operand is non-zero this operand is ignored.

,latch_set_name_mask
Specifies a 48-byte area that contains the mask that will be logically ANDed to
each of the latch set names in the primary address apace and then compared to
the latch_set_name operand. Each latch set that has a name match will have its
Latch_Obtain requests released. If the latch_set_token operand is non-zero this
operand is ignored.

ISGLPBA callable service

Chapter 9. Using the latch manager services 123

,return_code
A fullwprd integer that contains the return code from the
Latch_Purge_By_Address_Space service.

ABEND codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return codes
When the Latch_Purge_by_Address_Space service returns control to your program,
the return_code contains a hexadecimal return code. The following table identifies
return codes in hexadecimal and decimal (in parentheses), the equate symbol
associated with each return code, the meaning of each return code, and a
recommended action:

Table 11. ISGLPBA Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning: The Latch_Purge_by_Address_Space service
completed successfully.

Action: None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning: Program error. While purging all requests for a
particular requestor from a latch set, the latch manager
found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from
purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified
requestor.

Action: Take a dump and check for a storage overlay. If
your application can continue without the resources
serialized by the damaged latches, no action is required.

ISGLPBA callable service

124 z/OS V2R1.0 MVS Callable Services for HLL

Part 4. Resource recovery services (RRS)

© Copyright IBM Corp. 1994, 2014 125

126 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 10. Using protected resources

Many computer resources are so critical to a company's work that the integrity of
these resources must be guaranteed. If changes to the data in the resources are
corrupted by a hardware or software failure, human error, or a catastrophe, the
computer must be able to restore the data. These critical resources are called
protected resources or, sometimes, recoverable resources.

The system, when requested, can coordinate changes to one or more protected
resources so that all changes are made or no changes are made. Resources that the
system can protect are, for example:
v A hierarchical database
v A relational database
v A product-specific resource

Resource recovery is the protection of the resources. Resource recovery consists of
the protocols and program interfaces that allow an application program to make
consistent changes to multiple protected resources.

Resource recovery programs
Three programs work together to protect resources:
v Application program: The application program accesses protected resources and

requests changes to the resources.
v Resource manager: A resource manager is an authorized program that controls

and manages access to a resource. A resource manager provides interfaces that
allow the application program to read and change a protected resource. The
resource manager also takes actions that commit or back out changes to a
resource it manages.
Often an application changes more than one protected resource, so that more
than one resource manager is involved.
A resource manager may be an IBM product, part of an IBM product, or a
product from another vendor. A resource manager can be:
– A database manager, such as DB2®

– A program, such as IMS/ESA® Transaction Manager, that accepts work from
an end user or another system and manages that work

Note: The resource manager in resource recovery is different from an RTM
resource manager, which is related to the operating system's recovery
termination management (RTM) and runs during termination processing.

v Sync-point manager: The sync-point manager coordinates changes to protected
resources, so that all changes are made or no changes are made. The z/OS
sync-point manager is recoverable resource management services (RRMS). Three
MVS components provide RRMS function; because resource recovery services
(RRS) provides the sync-point services, most technical information uses RRS
rather than RRMS.
If your resources are distributed, so that they are on multiple systems, the
communication resource manager on one system will coordinate the changes.
Each communication resource manager works with RRS on its system.

© Copyright IBM Corp. 1994, 2014 127

RRS can enable resource recovery on a single system or, with APPC/MVS, on
multiple systems.

The application program, resource manager, and sync-point manager use a
two-phase commit protocol to protect resources.

Two-phase commit protocol
The two-phase commit protocol is a set of actions used to make sure that an
application program makes all changes to a collection of resources or makes no
changes to the collection. The protocol makes sure of the all-or-nothing changes
even if the system, RRS, or the resource manager fails.

The phases of the protocol are:
v Phase 1: In the first phase, each resource manager must be prepared to either

commit or backout the changes. They prepare for the commit and tell RRS either
YES, the change can be made, or NO, the change cannot be made.
First, RRS decides the results of the YES or NO responses from the resource
managers. If the decision is YES to commit the changes, RRS hardens the
decision, meaning that it stores the decision in an RRS log.
Once a commit decision is hardened, the application changes are considered
committed. If there is a failure after this point, the resource manager will make
the changes during restart. Before this point, a failure causes the resource
manager to back out the changes during restart.

v Phase 2: In the second phase, the resource managers commit or back out the
changes.

Resource recovery process
For a look at the resource recovery process, think of a person who requests an
automated teller machine (ATM) to transfer money from a savings account to a
checking account. The application program receives the person's input from the
ATM. Each account is in a different database. Each database has its own resource
manager. The sync-point manager is RRS. Figure 11 on page 129 shows how the
ATM application, resource managers, and RRS work together

128 z/OS V2R1.0 MVS Callable Services for HLL

The actions required to process the ATM transaction are:
1. The ATM user requests transfer of money from a savings account to a

checking account.
2. The ATM application program receives the ATM input.

Figure 12 on page 130 shows, for the same transaction, the sequence of the
following actions, with time moving from left to right, in the two-phase
commit protocol RRS uses to commit the changes. The top line in the figure
shows the two phases of the protocol described in “Two-phase commit
protocol” on page 128.

3. The ATM application requests the savings resource manager to subtract the
money from the savings database. For this step, the application uses the
resource manager's application programming interface (API).

4. The ATM application requests the checking resource manager to add the
money to the checking database. The application uses this resource manager's
API.

5. The ATM application issues a call to RRS to commit the database changes.
6. RRS asks the resource managers to prepare for the changes.
7. The resource managers indicate whether or not they can make the changes, by

voting YES or NO. In Figure 12 on page 130, both resource managers vote
YES.

8. In response, RRS notifies the resource managers to commit the changes, that
is, to make the changes permanently in the databases.

9. The resource managers complete the commit and return OK to RRS.
10. RRS gives a return code to the application program, indicating that all

changes were made in the databases.

RRS

Resource manager for
savings database

API

ATM application:
Subtract from savings
Add to checking
Commit the changes

C
o
m
m
i
t

API

Resource manager for
checking database

Figure 11. ATM Transaction

Chapter 10. Using protected resources 129

If the ATM user decides not to transfer the money and presses a NO selection, the
application requests backout, instead of commit, in step 6. In this case, the changes
are backed out and are not actually made in any database. See Figure 13.

Or if a resource manager cannot make the change to its database, the resource
manager votes NO during prepare. If any resource manager votes NO, all of the
changes are backed out. See Figure 14 on page 131.

Return
Code:

Changes
Committed

(10)

OK

OK
(9)

Notify
Commit

(8)

YES

YES
(7)

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes
(3,4)

(Phase 2)(Phase 1)PROTOCOL PHASE

ATM application:
Subtract from savings
Add to checking Commit

(5)

Prepare
(6)

Figure 12. Two-Phase Commit Actions

Return
Code:

Changes
Backed Out

OK

OK

Notify
BackoutRRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

ATM application:
Subtract from savings
Add to checking Backout

Figure 13. Backout — Application Request

130 z/OS V2R1.0 MVS Callable Services for HLL

Requesting resource protection and recovery
To request resource protection, your application program must use resource
managers that work with RRS to protect resources. The code in your application
should do the following:
1. Request one or more accesses to resources for reads, writes, or both.
2. If all of the changes are to be made, request commit by issuing a call to the

Application_Commit_UR service.
3. If none of the changes are to be made, request backout by issuing a call to the

Application_Backout_UR service.

For details about the calls, see “Application_Backout_UR (SRRBACK)” on page 132
and “Application_Commit_UR (SRRCMIT)” on page 136.

Using distributed resource recovery
The databases for a work request may be distributed, residing on more than one
system. In this case, the application program initiating the work uses a distributed
communications manager, such as APPC/MVS, to request changes by an
application program on another system. The database resource managers,
communication resource managers, and RRS components work together to make or
not make all changes of both application programs. Figure 15 on page 132
illustrates distributed resource recovery.

Return
Code:

Changes
Backed Out

OK

OK

Notify
Backout

NO

YES

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

ATM application:
Subtract from savings
Add to checking Commit

Prepare

Figure 14. Backout — Resource Manager Votes NO

Chapter 10. Using protected resources 131

Application_Backout_UR (SRRBACK)
Call the Application_Backout_UR service to indicate that the changes for the unit
of recovery (UR) are not to be made. A UR represents the application's changes to
resources since the last commit or backout or, for the first UR, since the beginning
of the application. In response to the call, RRS requests that the resource managers
return their resources to the values they had before the UR was processed.

An application might need to issue a call to the Application_Backout_UR service if:
v An APPC/MVS call returns a TAKE_BACKOUT return code. For example, a CI

send_data call to a communications manager could return TAKE_BACKOUT.
v A resource manager call returns a return code that indicates that a resource

manager directly backed out its resource. This situation can occur if the resource
manager does not have the capability to return a TAKE_BACKOUT code.

v A communications resource manager call returns a return code that indicates
that a backout must be done, such as a return code of
COM_RESOURCE_FAILURE_NO_RETRY from a CI call.

Description

Environment
The requirements for the caller are:

Requirement Details
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements
The two methods described here can be used to access the callable service.

Application

RRS

Resource
manager

Commun-
ication
resource
manager

C
o
m
m
i
t

APIAPI

Commun-
ication
resource
manager

API

RRS

Resource
manager

Application

C
o
m
m
i
t

API

• • • • • • •

Figure 15. Transaction — Distributed Resource Recovery

Application_Backout_UR

132 z/OS V2R1.0 MVS Callable Services for HLL

v Linkedit the stub routine ATRSCSS with the program that uses the service.
ATRSCSS resides in SYS1.CSSLIB.

v Code the MVS LOAD macro within a program that uses the service to obtain
the entry point address of the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can
provide the proper assembler interface. Other programming notations, such as
variable declarations, are also language-dependent.

SYS1.CSSLIB contains stubs for all of MVS's callable services including RRS. Other
program products like DB2 and IMS™ also provide libraries that contain stubs for
their versions of SRRBACK and SRRCMIT.

Because other program products like DB2 and IMS provide their own stubs for
SRRBACK or SRRCMIT, you must make sure your program uses the correct stub.
You need to take particular care when recompiling and linkediting any application
that uses these services. When you linkedit, make sure that the data sets in the
syslib concatenation are in the right order. For example, if you want a DB2
application to use the RRS callable service SRRBACK or SRRCMIT, you must
ensure that SYS1.CSSLIB precedes the data sets with the stubs that DB2 provides
for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects
SRRCMIT for another program product like IMS, the application does not run
correctly, and your program receives an error return code from the call to
SRRCMIT.

For examples of the JCL link edit statements used with high-level languages, see
Chapter 4, “Window services coding examples,” on page 45 or Chapter 8,
“Reference pattern services coding examples,” on page 91.

High level language (HLL) definitions: The high level language (HLL)
definitions for the callable service are:

HLL Definition Description
ATRSASM 390 Assembler declarations
ATRSC C/390 declarations
ATRSCOB COBOL 390 declarations
ATRSPAS Pascal 390 declarations
ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either
use a BASSM instruction in place of the CALL or specify a LINKINST=BASSM
parameter on the CALL macro. For example:
CALL SRRBACK(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are
truncated at 30 characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are
truncated at 31 characters.

Restrictions: The state of the UR must be in-reset or in-flight. A successful call
creates a new UR that is in-reset.

Application_Backout_UR

Chapter 10. Using protected resources 133

The UR cannot be in local transaction mode.

Input register information: Before issuing the call, the caller does not have to
place any information into any register unless using it in register notation for the
parameter, or using it as a base register.

Output register information: When control returns to the caller, the GPRs
contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications: None.

Syntax: Write the call as shown in the syntax diagram. You must code the
parameters in the CALL statement as shown.

CALL statement Parameters

CALL SRRBACK (return_code)

Parameters: The parameters are explained as follows:

return_code
Returned parameter
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Application_Backout_UR service.

ABEND codes: The call might result in an abend X'5C4' with a reason code of
X'00150000' through X'00150010'. See z/OS MVS System Codes for the explanations
and actions.

If your application ends abnormally during sync-point processing, the condition is
called an asynchronous abend, and you might need to see the programmer at your

Application_Backout_UR

134 z/OS V2R1.0 MVS Callable Services for HLL

installation responsible for managing RRS. Under information about working with
application programs, z/OS MVS Programming: Resource Recovery contains
additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the
synch-point service results in an abend X'058'. When RRS restarts, transactions that
were in progress are resolved.

Return codes: When the service returns control to your program, GPR 15 and
return_code contain a hexadecimal return code, shown in the following table. If you
need help with a return code, see the programmer at your installation responsible
for managing RRS. Under information about working with application programs,
z/OS MVS Programming: Resource Recovery contains additional details about these
return codes.

Hexadecimal
Return Code

Decimal Return
Code Meaning and Action

0 0 Code: RR_OK

Meaning: Successful completion. The resource managers returned
their resources to the values they had before the UR was
processed.

Action: None.

12D 301 Code: RR_BACKED_OUT_OUTCOME_PENDING

Meaning: Environmental error. The backout was not completed,
for one of the following reasons:

v RRS requested that the resource managers back out the changes
to the resources. However, the state of one or more of the
resources is not known.

v RRS is not active.

v The resource manager fails with an incomplete protected
interest in the UR, or RRS fails before the UR is complete.

Action: The action by an application depends on the system
environment. Some possible actions are:

v Display a warning message to the end user.

v Write an exception entry into an output log.

v Abnormally end the application because the resource manager
will not allow any further changes to the resource until the
situation is resolved.

12E 302 Code: RR_BACKED_OUT_OUTCOME_MIXED

Meaning: Environmental error. RRS requested that the resource
managers back out the changes to the resources. However, one or
more resources were changed.

Action: Same as the action for return code 12D (301).

Example: In the pseudocode example, the application issues a call to request that
RRS back out a UR.

Application_Backout_UR

Chapter 10. Using protected resources 135

...
CALL SRRBACK(RETCODE)...

Application_Commit_UR (SRRCMIT)
Call the Application_Commit_UR service to indicate that the changes for the unit
of recovery (UR) are to be made permanent. A UR represents the application's
changes to resources since the last commit or backout or, for the first UR, since the
beginning of the application. In response to the call, RRS requests that the resource
managers make the changes permanent.

Certain resource managers, such as a communications manager, can issue a
TAKE_COMMIT return code to an application that has requested changes to resources.
In response to the TAKE_COMMIT code from the resource manager, the application
should request the changes to the resources:
v If all of the change requests are accepted, call the Application_Commit_UR

service again.
v If any of the change requests are not accepted. call the Application_Backout_UR

service to back out the changes.

Description

Environment
The requirements for the caller are:

Requirement Details
Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming requirements
The two methods described here can be used to access the callable service.
v Linkedit the stub routine ATRSCSS with the program that uses the service.

ATRSCSS resides in SYS1.CSSLIB.
v Code the MVS LOAD macro within a program that uses the service to obtain

the entry point address of the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can
provide the proper assembler interface. Other programming notations, such as
variable declarations, are also language-dependent.

SYS1.CSSLIB contains stubs for all of MVS's callable services including RRS. Other
program products like DB2 and IMS also provide libraries that contain stubs for
their versions of SRRBACK and SRRCMIT.

Application_Backout_UR

136 z/OS V2R1.0 MVS Callable Services for HLL

Because other program products like DB2 and IMS provide their own stubs for
SRRBACK or SRRCMIT, you must make sure your program uses the correct stub.
You need to take particular care when recompiling and linkediting any application
that uses these services. When you linkedit, make sure that the data sets in the
syslib concatenation are in the right order. For example, if you want a DB2
application to use the RRS callable service SRRBACK or SRRCMIT, you must
ensure that SYS1.CSSLIB precedes the data sets with the stubs that DB2 provides
for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects
SRRCMIT for another program product like IMS, the application does not run
correctly, and your program receives an error return code from the call to
SRRCMIT.

For examples of the JCL link edit statements for high-level languages, see
Chapter 4, “Window services coding examples,” on page 45 or Chapter 8,
“Reference pattern services coding examples,” on page 91.

High level language (HLL) definitions: The high level language (HLL)
definitions for the callable service are:

HLL Definition Description
ATRSASM 390 Assembler declarations
ATRSC C/390 declarations
ATRSCOB COBOL 390 declarations
ATRSPAS Pascal 390 declarations
ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either
use a BASSM instruction in place of the CALL or specify a LINKINST=BASSM
parameter on the CALL macro. For example:
CALL SRRCMIT(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are
truncated at 30 characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are
truncated at 31 characters.

Restrictions
The state of the UR that represents the changes must be in-reset or in-flight.

The UR cannot be in local transaction mode.

Input register information
Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameter, or using it as a base
register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

Application_Commit_UR

Chapter 10. Using protected resources 137

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
Write the call as shown in the syntax diagram. You must code the parameter in the
CALL statement as shown.

CALL statement Parameters

CALL SRRCMIT (return_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Application_Commit_UR service.

ABEND codes
The call might result in an abend X'5C4' with a reason code of X'00160000' through
X'00160012'. See z/OS MVS System Codes for the explanations and actions.

If your application ends abnormally during sync-point processing, the condition is
called an asynchronous abend, and you might need to see the programmer at your
installation responsible for managing RRS. Under information about working with
application programs, z/OS MVS Programming: Resource Recovery contains
additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the
synch-point service results in an abend X'058'. When RRS restarts, transactions that
were in progress are resolved.

Application_Commit_UR

138 z/OS V2R1.0 MVS Callable Services for HLL

Return codes
When the service returns control to your program, GPR 15 and return_code contain
a hexadecimal return code, shown in the following table. If you need help with a
return code, see the programmer at your installation responsible for managing
RRS. Under information about working with application programs, z/OS MVS
Programming: Resource Recovery contains additional details about these return codes.

Hexadecimal
Return Code

Decimal Return
Code Meaning and Action

0 0 Code: RR_OK

Meaning: Successful completion. The changes to all protected
resources have been made permanent.

Action: None.

65 101 Code: RR_COMMITTED_OUTCOME_PENDING

Meaning: Environmental error. The commit was not completed:

v RRS requested that the resource managers make the changes to
the resources permanent. However, the state of one or more of
the resources is not known.

Action: The action by an application depends on the system
environment. Some possible actions are:

v Display a warning message to the end user.

v Write an exception entry into an output log.

v Abnormally end the application because the resource manager
will not allow any further changes to the resource until the
situation is resolved.

66 102 Code: RR_COMMITTED_OUTCOME_MIXED

Meaning: Environmental error. RRS requested that the resource
managers make the changes to the resources permanent. One or
more resources were changed, but one or more were not changed.

Action: Same as the action for return code 65 (101).

C8 200 Code: RR_PROGRAM_STATE_CHECK

Meaning: Environmental error. The commit failed. The resource
managers did not make the changes to the resources because one
of the following occurred:

v A resource on the same system as the application is not in the
proper state for a commit.

v A protected conversation is not in the required state: send,
send pending, defer receive, defer allocate, sync_point,
sync_point send, sync_point deallocate.

v A protected conversation is in send state. The communications
manager started sending the basic conversation logical record,
but did not finish sending it.

Action: Initiate an action by a resource manager to get its
resource to a committable state, then call Application_Commit_UR
again. For example, if the application has allocated a protected
conversation through APPPC/MVS, and the conversation is in
receive state, the application gets this return code. It then must
use APPC/MVS services to change the conversation to send state
before issuing the commit request again.

Application_Commit_UR

Chapter 10. Using protected resources 139

Hexadecimal
Return Code

Decimal Return
Code Meaning and Action

12C 300 Code: RR_BACKED_OUT

Meaning: Environmental error. The commit failed. The resource
managers backed out the changes, returning the resources to the
values they had before the UR was processed.

Action: Same as the action for return code 65 (101).

12D 301 Code: RR_BACKED_OUT_OUTCOME_PENDING

Meaning: Environmental error. The commit failed for one of the
following reasons:

v RRS requested that the resource managers back out the changes
to the resources. However, the state of one or more of the
resources is not known.

v RRS is not active.

Action: Same as the action for return code 65 (101).

12E 302 Code: RR_BACKED_OUT_OUTCOME_MIXED

Meaning: Environmental error. The commit failed. RRS requested
that the resource managers back out the changes to the resources.
One or more resources were backed out, but one or more were
changed.

Action: Same as the action for return code 65 (101).

Example
In the pseudocode example, the application issues a call to request that RRS
commit a UR.
...
CALL SRRCMIT(RETCODE)...

Additional callable services
Additional callable services that an authorized resource manager can use to request
resource recovery services can be found in z/OS MVS Programming: Resource
Recovery.

Application_Commit_UR

140 z/OS V2R1.0 MVS Callable Services for HLL

Part 5. CEA TSO/E address space services

© Copyright IBM Corp. 1994, 2014 141

142 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 11. Introduction to CEA TSO/E address space
services

The z/OS CEA TSO/E address space manager provides services to programmatically
start and manage TSO/E address spaces and provides a communications
mechanism for use between the caller and the programs running in these managed
address spaces.

CEA TSO/E address space services allow callers to:
v Start a new TSO/E address space.
v End a TSO/E address space started by CEA.
v Send an attention interrupt to a TSO/E address space started by CEA.
v Obtain information about a TSO/E address space started by CEA.
v Obtain information about all the TSO/E address spaces that CEA started for an

application.
v Ping a TSO/E address space that was started by CEA to prevent the address

space from ending because it has been idle too long.

CEA TSO/E address space manager components
The CEA TSO/E address space manager ships with the common event adapter
(CEA) component of z/OS. The CEA component provides the framework and
manages the resources for the TSO/E address spaces started using the CEA TSO/E
address space manager. Table 12 describes the components included in the CEA
TSO/E address space manager.

Table 12. CEA TSO/E address space manager components

Component Description

CEA address space The CEA TSO/E address space manager is integrated into the CEA
address space infrastructure. The function is started automatically
when CEA is started.

Attention: If the CEA address space ends, all the TSO/E sessions
created by CEA will also end. Callers will not be notified that the
CEA address space has ended. Instead, when a caller attempts to
invoke the CEA TSO/E address space services or use the z/OS
UNIX message queue, the request will fail.

Session table When the CEA TSO/E address space manager starts a new TSO/E
address space, the attributes of the address space and the resources
obtained are stored in an internal session table. The entry exists for
the life of the session and is removed when the TSO/E address
space ends.

To display the contents of the session table, use the MODIFY
CEA,DIAG,SESSTABLE command. For more details about the
command, see the topic about displaying the CEA TSO/E address
space information in z/OS MVS System Commands.

© Copyright IBM Corp. 1994, 2014 143

Table 12. CEA TSO/E address space manager components (continued)

Component Description

z/OS UNIX message
queue

The CEA TSO/E address space manager creates and manages a
z/OS UNIX message queue, which is used to facilitate
communication between the caller and the TSO/E address space.
For more information about the z/OS UNIX message queue, see
“Communicating with programs running in the TSO/E address
spaces” on page 146.

CEATsoRequest API The CEA TSO/E address space manager provides the
CEATsoRequest API, which is a 64-bit C-language based API that
callers can use to request TSO/E address space services. For more
information about the API, see Chapter 12, “Using CEA TSO/E
address space services,” on page 151.

System prerequisites for the CEA TSO/E address space services
Table 13 describes the system prerequisites for using the CEA TSO/E address space
services.

Table 13. System prerequisites

Prerequisite Description

CEA must be active. The CEA TSO/E address space manager runs in the CEA
address space, which is started automatically during
z/OS initialization. If your installation has stopped CEA,
restart it. Otherwise, the services are not enabled.

To determine whether the CEA address space is active,
enter the following z/OS system console command:

D A,CEA

The TRUSTED attribute must
be assigned to the CEA started
task.

To allow the CEA TSO/E address space manager to
access or create any resource it needs, the CEA started
task requires the TRUSTED(YES) attribute to be set on
the RDEFINE STARTED CEA.** definition.

If the TRUSTED attribute is not assigned to the CEA
started task, the CEA TSO/E address space manager
services might not be operational. For example, the
services will not be able to create or access z/OS UNIX
message queues.

For more information about the RACF® TRUSTED
attribute, see the topic on associating started procedures
and jobs with user IDs in z/OS Security Server RACF
System Programmer's Guide, and the topic on using started
procedures in z/OS Security Server RACF Security
Administrator's Guide.

The CEA address space must be
started in full function mode.

Because the CEATsoRequest API requires z/OS UNIX
System Services, CEA must be started in full function
mode. For information about starting CEA in full
function mode, see the topic about customizing CEA in
z/OS Planning for Installation.

Callers must be authorized to
SAF resource profile
CEA.CEATSO.TSOREQUEST.

To access the CEATsoRequest API, callers must be
authorized by their security product to SAF resource
profile CEA.CEATSO.TSOREQUEST.

144 z/OS V2R1.0 MVS Callable Services for HLL

Table 13. System prerequisites (continued)

Prerequisite Description

Users must be authorized to the
appropriate resources.

The user ID of the user for whom the caller is requesting
TSO/E address space services must be authorized to use
TSO/E, OMVS, and any other resources the address
space requires.

Working with TSO/E address spaces started by CEA
The CEA TSO/E address space manager can create up to 10 concurrent address
spaces for a single user, and can create a maximum of 50 concurrent TSO/E
address spaces. You can use the same processes that you use to work with other
TSO/E address spaces when working with the TSO/E address spaces that are
created by the CEA TSO/E address space manager.

For example, you can issue the D TS z/OS console command to display
information about TSO/E address spaces, or you can issue the C u=userid,A=asid
console command to cancel a TSO/E address space. For the display command, the
TSO/E address spaces will appear in the list, indistinguishable from the other
TSO/E address spaces. Note that TSO/E sessions started by CEA do not add to the
count for the total maximum sessions for VTAM®.

You can also display information about these TSO/E address spaces using SDSF, a
REXX EXEC, or a CLIST. Note that the application identifier that was specified
when the TSO/E session was started is displayed where you would typically
expect to see a terminal ID.

For example, if the CEA TSO/E address space manager starts a TSO/E session for
the z/OSMF ISPF task, which has an application identifier equal to IZUIS, and you
issue the REXX EXEC depicted in Figure 16, you will obtain the results depicted in
Figure 17 on page 146:

/* REXX */
trace all
myapp = sysvar(’systermid’)
say myapp
exit 0

Figure 16. Sample REXX EXEC

Chapter 11. Introduction to CEA TSO/E address space services 145

Communicating with programs running in the TSO/E address
spaces

A z/OS UNIX message queue is the mechanism the CEA TSO/E address space
manager uses for allowing communications between the caller and TSO/E, ISPF,
and other programs running in the TSO/E address space. To communicate with
the TSO/E address space, callers must read data from and write data to the
message queue.

The CEA TSO/E address space manager creates a z/OS UNIX message queue for
each TSO/E address space when the TSO/E address space is started, and anchors
the message queue in the session table for the duration of the session. The CEA
TSO/E address space manager deletes the message queue when the TSO/E
address space ends.

Messages that typically are written to a 3270-type terminal are translated to UTF-8,
converted to a JSON format, and written to the z/OS UNIX message queue along
with identifying header information and a message type identifier. For a list of the
message type identifiers, see Table 14.

Table 14. Message type identifiers

Message Type ID Description

1 Control data for the client.

2 TSO/E data for the client.

3 ISPF data for the client.

4 thru 32768 Reserved for IBM.

32769 Control TSO/E data from the client.

32770 TSO/E data from the client.

32771 ISPF data from the client.

OK Attention Clear Help

TSO Messages - ASID: 0x38

READY
COMMAND REXX NOT FOUND
DATA SET CEAID.CEA.REXX NOT IN CATALOG OR CATALOG CANNOT BE ACCESSED
COMMAND CAT NOT FOUND

3 *-* myapp = sysvar(’systermid’)
>>> “IZUIS”

4 *-* say myapp
>>> “IZUIS”

IZUIS
5 *-* exit 0

>>> “0”

Figure 17. Example illustrating that the REXX SYSTERMID is the same as the z/OSMF ISPF
application identifier

146 z/OS V2R1.0 MVS Callable Services for HLL

Table 14. Message type identifiers (continued)

Message Type ID Description

32772 thru 65535 Reserved for IBM.

65536 and above Available for use by applications.

For information about the JSON format used for TSO/E messages, see “JSON
format for TSO/E messages.” For the JSON format used for ISPF messages, see the
topic about JSON data structures and variables used to communicate between ISPF
and a client in z/OS ISPF Services Guide.

JSON format for TSO/E messages
TSO/E messages are written to the z/OS UNIX message queue using message
type identifiers 2 and 32770 and are formatted as follows:

{“message-type”:{“VERSION”:“JSON-version",“data-type”:“data-value”}}

where:

message-type
Keyword that identifies the type of TSO/E message. Table 15 lists and
describes the message types that can be used for message type identifiers 2
and 32770.

Table 15. Message types

Message Type Description Message Type ID

TSO MESSAGE Indicates that the system has created data
or a message to be displayed on the client.
The caller should read the message and
display it accordingly.

2

TSO PROMPT Indicates that the system requires a
response from the client.

2

TSO RESPONSE Indicates that a response was created by the
client in response to a prompt. Callers
should use this keyword when writing a
response to the message queue.

32770

JSON-version
A four-digit number that identifies the JSON version used to format the
message.

data-type
Keyword that describes the type of data included in the data-value variable.
Table 16 lists and describes the data types that can be used for each TSO/E
message type.

Table 16. Data types

Data Type Description Message Type

DATA Indicates that the data included in the
data-value variable is either a message from
the system or a response from the client.
For this data type, the data-value variable is
a character string that can contain up to
32,767 bytes.

TSO MESSAGE and
TSO RESPONSE

Chapter 11. Introduction to CEA TSO/E address space services 147

Table 16. Data types (continued)

Data Type Description Message Type

HIDDEN Indicates whether the client should hide or
mask the response. For this data type, the
data-value variable is a Boolean that can
have the value of either TRUE or FALSE.
When TRUE, this tells the client to hide or
mask the response as it is entered.
Otherwise, the response will display as it is
entered.

TSO PROMPT

ACTION Indicates that the caller would like to
interrupt or end a process that is in
progress. For this data type, specify ATTN
as the value for the data-value variable.

Callers should use the CEATsoRequest API
to issue the CeaTsoAttn request type before
using a message to issue an attention
interrupt. Use this data type only if the
CeaTsoAttn request fails.

TSO RESPONSE

Sample TSO/E messages written to the z/OS UNIX message
queue
Figure 18 provides an example that illustrates how TSO/E messages appear on the
z/OS UNIX message queue.

Note: The message type identifiers are not part of the JSON structure. They are
included for illustration purposes only.

Reconnecting to CEA TSO/E address spaces
When a user requests to end a TSO/E session created by CEA, if the caller has not
set the abnormal logoff flag (CEATSO_ABLOGOFF) or the no reconnect flag
(CEATSO_NORECONN), the CEA TSO/E address space manager can intercept
that request and place the session in a dormant state instead of ending it.

2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56455I
IBMUSER LOGON IN PROGRESS AT 03:46:24 ON OCTOBER 12, 2011"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56951I NO BROADCAST MESSAGES
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"TIME"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56650I TIME-03:46:50 AM.
CPU-00:00:00 SERVICE-775140 SESSION-00:00:26 OCTOBER 12,2011"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"ALLOC DA"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56700A ENTER DATA SET NAME
OR * - "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"’sys1.brodcast’"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56225I DATA SET SYS1.BRODCAST
ALREADY IN USE, TRY LATER+"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"IKJ56225I DATA SET IS ALLOCATED
TO ANOTHER JOB OR USER"}}
2 {"TSO MESSAGE":{"VERSION":"0100","DATA":"READY "}}
2 {"TSO PROMPT":{"VERSION":"0100","HIDDEN":"FALSE"}}
32770 {"TSO RESPONSE":{"VERSION":"0100","DATA":"LOGOFF"}}

Figure 18. Sample TSO/E messages written to the queue

148 z/OS V2R1.0 MVS Callable Services for HLL

A dormant TSO/E session is a session that has been deactivated for communication
through its message queue but remains available at a TSO/E READY prompt for a
period of time so that the user can reconnect to it. Reconnecting to a dormant
session is faster and uses fewer resources than constructing a new session because
the session resources are retained and reused when the user reconnects to the
session.

To enable the CEA reconnect feature, which is disabled by default, specify non-zero
values for the RECONSESSIONS and RECONTIME statements in the TSOASMGR
parmlib statement in the CEAPRMxx parmlib member. The RECONSESSIONS
statement indicates how many dormant sessions can be created for each user, and
the RECONTIME statement indicates the amount of time a dormant session
remains a candidate for reconnection.

The CEA TSO/E address space manager can create a maximum of three dormant
sessions per user and can keep a dormant session available for reconnection for a
maximum of 23 hours, 59 minutes, and 59 seconds. The settings you specify for the
TSOASMGR parmlib statement affect all of the TSO/E sessions that are managed
by the CEA TSO/E address space manager. For more information about the
TSOASMGR parmlib statement, see the topic about the CEAPRMxx parmlib
member in z/OS MVS Initialization and Tuning Reference.

When the CEA reconnect feature is enabled, to reconnect to a dormant session, the
user must do the following:
v Request to start a new TSO/E session before the specified RECONTIME expires.

After the RECONTIME expires, the session remains in a dormant state until
CEA ends it; however, the session is no longer a candidate for reconnection.

v Use the same security credentials and logon parameters that were used for the
dormant session.

If no dormant sessions are available that satisfy these requirements, the CEA
TSO/E address space manager will create a new address space for the user.

Dormant TSO/E sessions do not interfere with the maximum number of sessions
allowed. That is, if a user tries to create a new session and the number of active
and dormant sessions equal the maximum allowed, the CEA TSO/E address space
manager will end a dormant session and create a new session for the user.

Idle time versus RECONTIME
Each dormant TSO/E session has an idle application time, which is not adjustable,
and a reconnect time (RECONTIME). The idle time cannot exceed 15 minutes.
Otherwise, the CEA TSO/E address space manager will end the session regardless
of reconnect time. To prevent your dormant sessions from ending because of idle
time, issue a ping request at least once every 15 minutes, which informs CEA that
all of the sessions for your application are still active. For more information, see
“CeaTsoPing - Sending a ping on behalf of an application” on page 160.

TSO/E LOGON RECONNECT operand versus CEA reconnect
The TSO/E LOGON command is not supported for CEA-managed TSO/E
sessions, and the capability provided by the TSO/E LOGON RECONNECT
operand is different from the CEA reconnect feature. For more information about
the TSO/E LOGON RECONNECT operand, see the topic about LOGON command
operands in z/OS TSO/E Command Reference.

Chapter 11. Introduction to CEA TSO/E address space services 149

150 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 12. Using CEA TSO/E address space services

To use CEA TSO/E address space services, you issue CALLs from high-level
language programs that invoke the CEATsoRequest API. The API is a 64-bit
C-language based interface that the CEA TSO/E address space manager uses to
receive requests from callers and to determine what action to take to process the
request.

The CEATsoRequest API supports the following request types:
v CeaTsoStart. Start a TSO/E address space.
v CeaTsoAttn. Send an attention interrupt to a TSO/E address space started by

CEA.
v CeaTsoEnd. End a TSO/E address space started by CEA.
v CeaTsoPing. Ping a TSO/E address space that was started by CEA to prevent

the address space from ending because it has been idle too long.
v CeaTsoQuery. Obtain information about a specific TSO/E address space started

by CEA.
v CeaTsoQueryApp. Obtain information about all the TSO/E address spaces that

CEA started for an application.

For more details about the request types, see “Understanding the request types” on
page 157.

Invoking the CEATsoRequest API
The format to use to call the CEATsoRequest API follows:
#include <ceaytsor.h>
#include <ceaxrdef.h>

int32_t CEATsoRequest(CEATsoRequestStruct_t* RequestStruct,
CEATsoQueryStruct_t* QueryStruct,
CEATsoError_t* ErrorStruct)

The call format is the same for each request type. The only difference is the fields
that are required for each structure. For a description of each parameter and all the
possible fields that can be included in each structure, see “Parameters” on page
152. For a list of the fields that are required for each request type, see
“Understanding the request types” on page 157.

The CEATsoRequest API is used as a dynamically loaded library. The file
ceasapit.x, which exists in /usr/lib, contains the sidedeck needed to link your
program to the DLL. The contents of the file are depicted in Figure 19.

To compile your programs, the following header files are required: ceaytsor.h and
ceaxrdef.h. The header files are stored in partitioned data set SYS1.SIEAHDRV. The
contents of the header files are provided in “CEAYTSOR header file” on page 170
and “CEAXRDEF header file” on page 174.

IMPORT CODE64,’ceasapit.dll’,’CEATsoRequest’

Figure 19. Contents included in the ceasapit.x file

© Copyright IBM Corp. 1994, 2014 151

Parameters
RequestStruct

Pointer to the CEATsoRequestStruct structure. The layout of the
CEATsoRequestStruct structure follows:
struct CEATsoRequestStruct_s {

char ceatso_eyecatcher[8];
uint32_t ceatso_version;
uint32_t ceatso_requesttype;
char ceatso_userid[8];
uint32_t ceatso_asid;
char ceatso_logonproc[8];
char ceatso_command[80];
uint16_t ceatso_numqueryreq;
uint16_t ceatso_numqueryrslt;
uint32_t ceatso_duration;
uint32_t ceatso_msgqueueid;
uint16_t ceatso_charset;
uint16_t ceatso_codepage;
uint16_t ceatso_screenrows;
uint16_t ceatso_screencols;
char ceatso_account[40];
char ceatso_group[8];
char ceatso_region[7];
char ceatso_instance[1];
char ceatso_apptag[8];
char ceatso_stoken[8];
uint32_t ceatso_ascbaddr;
uint16_t ceatso_flags;
uint16_t ceatso_index;
char rsvd1[8];

};
typedef struct CEATsoRequestStruct_s CEATsoRequestStruct_t;

The fields in the CEATsoRequestStruct structure are explained as follows:

ceatso_eyecatcher
Eye catcher. Specify ‘CEAYTSOR’.

ceatso_version
Structure version number.

ceatso_requesttype
Type of request. Specify one of the following values:
v CeaTsoStart
v CeaTsoAttn
v CeaTsoEnd
v CeaTsoPing
v CeaTsoQuery
v CeaTsoQueryApp

For more details about each request type, see “Understanding the
request types” on page 157.

ceatso_userid
User ID of the authenticated user for which the TSO/E address space
was created.

ceatso_asid
The address space ID (ASID) for the TSO/E address space.

152 z/OS V2R1.0 MVS Callable Services for HLL

ceatso_logonproc
Name of the TSO/E logon procedure to use to log onto the TSO/E
address space.

ceatso_command
Unused.

ceatso_numqueryreq
Maximum number of sessions to query.

ceatso_numqueryrslt
Number of sessions found that satisfy the query.

ceatso_duration
Unused.

ceatso_msgqueueid
The ID of the z/OS UNIX message queue that is used for
communications between the caller and the TSO/E session.

ceatso_charset
Character set to use for the caller’s TSO/E address space. This value is
used by the applications running in the TSO/E address space to
convert messages and responses from UTF-8 to EBCDIC. The default
character set, which is 697 decimal, will be used if zero is specified as
the value.

ceatso_codepage
Codepage to use for the caller’s TSO/E address space. This value is
used by the applications running in the TSO/E address space to
convert messages and responses from UTF-8 to EBCDIC. The default
codepage, which is 1047 decimal, will be used if zero is specified as the
value.

ceatso_screenrows
Number of rows to be displayed on the screen. The default number of
rows, which is 24, will be used if zero is specified as the value.

ceatso_screencols
Number of columns to be displayed on the screen. The default number
of columns, which is 80, will be used if zero is specified as the value.

ceatso_account
TSO/E account number.

ceatso_group
TSO/E group name.

ceatso_region
Region size used for the TSO/E address space.

ceatso_instance
Number of active TSO/E address spaces that were started by CEA for
the corresponding user ID. In the session table, this value is stored
with the oldest TSO/E session entry created for the user.

ceatso_apptag
Identifies the application that is responsible for creating the TSO/E
address space.

ceatso_stoken
A token that uniquely identifies the TSO/E address space.

Chapter 12. Using CEA TSO/E address space services 153

ceatso_ascbaddr
Address of the address space control block that was created for the
TSO/E address space.

ceatso_flags
When ending a TSO/E session, you can set the following flags:
v CEATSO_ABLOGOFF (0x8000). If this flag is set, the CANCEL

command will be issued to end the TSO/E session regardless of
whether the CEA reconnect feature is enabled. Otherwise, the
LOGOFF command will be issued or the TSO/E session will be
placed in a dormant state as a candidate for reconnection.

v CEATSO_NORECONN (0x4000). If this flag is set, the CEA TSO/E
address space manager will end the TSO/E session even if the CEA
reconnect feature is enabled. That is, if the client allows users to set
this flag, users can force the CEA TSO/E address space manager to
end a TSO/E session even if your installation has enabled the
reconnect feature. For more information about the reconnect feature,
see “Reconnecting to CEA TSO/E address spaces” on page 148.

When starting a TSO/E session, the CEA TSO/E address space
manager sets the CEATSO_RECONNECTD (0x2000) flag if the user
was connected to a dormant TSO/E session instead of a new session.

ceatso_index
The index value, STOKEN, and ASID together identify the TSO/E
address space to the CEA TSO/E address space services.

rsvd1 Reserved for future use.

QueryStruct
Pointer to the CEATsoQueryStruct structure. This structure is used to return
query results for the CeaTsoQuery and CeaTsoQueryApp request types. The
layout of the CEATsoQueryStruct structure follows:
struct CEATsoQueryStruct_s{

char ceatsoq_eyecatcher[8];
uint32_t ceatsoq_version;
uint32_t ceatsoq_requesttype;
char ceatsoq_userid[8];
uint32_t ceatsoq_asid;
char ceatsoq_logonproc[8];
char ceatsoq_command[80];
uint16_t ceatsoq_numqueryreq;
uint16_t ceatsoq_numqueryrslt;
uint32_t ceatsoq_duration;
uint32_t ceatsoq_msgqueueid;
uint16_t ceatsoq_charset;
uint16_t ceatsoq_codepage;
uint16_t ceatsoq_screenrows;
uint16_t ceatsoq_screencols;
char ceatsoq_account[40];
char ceatsoq_group[8];
char ceatsoq_region[7];
char ceatsoq_instance[1];
char ceatsoq_apptag[8];
char ceatsoq_stoken[8];
uint32_t ceatsoq_ascbaddr;
uint16_t ceatsoq_flags;
uint16_t ceatsoq_index;
char rsvd1[8];

};
typedef struct CEATsoQueryStruct_s CEATsoQueryStruct_t;

154 z/OS V2R1.0 MVS Callable Services for HLL

The fields in the CEATsoQueryStruct structure are explained as follows:

ceatso_eyecatcher
Eye catcher. The value is ‘CEAYTSOQ’.

ceatso_version
Structure version number.

ceatso_requesttype
Type of request. The CeaTsoQueryStruct returns results for the
CeaTsoQuery and CeaTsoQueryApp request types. For more details
about each request type, see “Understanding the request types” on
page 157.

ceatso_userid
User ID of the authenticated user for which the TSO/E address space
was created.

ceatso_asid
The address space ID (ASID) for the TSO/E address space.

ceatso_logonproc
Name of the TSO/E logon procedure to use to log onto the TSO/E
address space.

ceatso_command
Unused.

ceatso_numqueryreq
Maximum number of sessions to query.

ceatso_numqueryrslt
Number of sessions found that satisfy the query.

ceatso_duration
Unused.

ceatso_msgqueueid
The ID of the z/OS UNIX message queue that is used for
communications between the caller and the TSO/E session.

ceatso_charset
Character set to use for the caller’s TSO/E address space. This value is
used by the applications running in the TSO/E address space to
convert messages and responses from UTF-8 to EBCDIC. The default
character set, which is 697 decimal, will be used if zero is specified as
the value.

ceatso_codepage
Codepage to use for the caller’s TSO/E address space. This value is
used by the applications running in the TSO/E address space to
convert messages and responses from UTF-8 to EBCDIC. The default
codepage, which is 1047 decimal, will be used if zero is specified as the
value.

ceatso_screenrows
Number of rows to be displayed on the screen. The default number of
rows, which is 24, will be used if zero is specified as the value.

ceatso_screencols
Number of columns to be displayed on the screen. The default number
of columns, which is 80, will be used if zero is specified as the value.

Chapter 12. Using CEA TSO/E address space services 155

ceatso_account
TSO/E account number.

ceatso_group
TSO/E group name.

ceatso_region
Region size used for the TSO/E address space.

ceatso_instance
Number of active TSO/E address spaces that were started by CEA for
the corresponding user ID. In the session table, this value is stored
with the oldest TSO/E session entry created for the user.

ceatso_apptag
Identifies the application that is responsible for creating the TSO/E
address space.

ceatso_stoken
A token that uniquely identifies the TSO/E address space.

ceatso_ascbaddr
Address of the address space control block that was created for the
TSO/E address space.

ceatso_flags
When ending a TSO/E session, you can set the following flags:
v CEATSO_ABLOGOFF (0x8000). If this flag is set, the CANCEL

command will be issued to end the TSO/E session regardless of
whether the CEA reconnect feature is enabled. Otherwise, the
LOGOFF command will be issued or the TSO/E session will be
placed in a dormant state as a candidate for reconnection.

v CEATSO_NORECONN (0x4000). If this flag is set, the CEA TSO/E
address space manager will end the TSO/E session even if the CEA
reconnect feature is enabled. That is, if the client allows users to set
this flag, users can force the CEA TSO/E address space manager to
end a TSO/E session even if your installation has enabled the
reconnect feature. For more information about the reconnect feature,
see “Reconnecting to CEA TSO/E address spaces” on page 148.

When starting a TSO/E session, the CEA TSO/E address space
manager sets the CEATSO_RECONNECTD (0x2000) flag if the user
was connected to a dormant TSO/E session instead of a new session.

ceatso_index
The index value, STOKEN, and ASID together identify the TSO/E
address space to the CEA TSO/E address space services.

rsvd1 Reserved for future use.

ErrorStruct

Pointer to the CEATsoErrorStruct structure. This structure contains information
about the results of the request. The layout of the CEATsoErrorStruct structure
follows:
struct CEATsoError_s {

char eyeCatcher[8];
uint32_t version;
int32_t returnCode;
uint32_t reasonCode;

156 z/OS V2R1.0 MVS Callable Services for HLL

CEATsoDiag_t diag;
};
typedef struct CEATsoError_s CEATsoError_t;

The fields in the CEATsoErrorStruct structure are explained as follows:

eyeCatcher
Eye catcher. Specify ‘CEAIERRO’.

version
Structure version number.

returnCode
Return code. For more information about return codes, see “Return
codes” on page 163.

reasonCode
Reason code. For more information about reason codes, see “Reason
codes” on page 163.

diag Diagnostic codes, which are mapped by a CEATsoDiag_t structure.
This structure can contain up to four diagnostic codes that provide
more details about the failure. For more information about diagnostic
codes, see “Diagnostic codes” on page 167.

Requirements for callers
To send requests to the API, the environment of the caller must satisfy the
following requirements:
v Minimum authorization: Problem state
v Dispatchable unit mode: Task
v Cross memory mode: PASN=HASN=SASN
v AMODE: 64-bit
v ASC mode: Primary
v Interrupt status: Enabled for I/O and external interrupts
v Locks: No locks held
v Linkage: Uses standard C linkage conventions
v Library path (LIBPATH): Must be set to include /usr/lib

Understanding the request types
This section describes the request types that are provided by the CEATsoRequest
API. For a description of the API, including the call format and parameters, see
“Invoking the CEATsoRequest API” on page 151.

CeaTsoStart - Starting a new TSO/E session
Use the CeaTsoStart request type to start a new TSO/E address space or to
reconnect to a dormant TSO/E session. When you start a new TSO/E address
space, a z/OS UNIX message queue is also created to enable communication
between the caller and the TSO/E address space. When you reconnect to a TSO/E
session, the existing message queue is reused.

The TSO/E address space is started or reconnected to using the security
environment of the caller. If there is task-level security, it is used for the address
space. Otherwise, the address space security environment is used. The user tokens
(UTOKENs) from both environments are saved and are used to verify subsequent
requests.

Chapter 12. Using CEA TSO/E address space services 157

Table 17 lists the input callers must provide for each structure used for this request
type and the output that will be provided. No other fields in the structures are
used. The value for the unused fields is indeterminate. For more details about the
fields listed for each structure, see “Parameters” on page 152.

Table 17. Input and output for each structure used for the CeaTsoStart request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_logonproc

v ceatso_charset

v ceatso_codepage

v ceatso_screenrows

v ceatso_screencols

v ceatso_account

v ceatso_group

v ceatso_region

v ceatso_apptag

If the return code is
CEASUCCESS, the following
fields are returned:

v ceatso_userid

v ceatso_asid

v ceatso_msgqueueid

v ceatso_stoken

v ceatso_index

v ceatso_flags. The value is
tsor_reconnected if the CEA
TSO/E address space
manager connected the
user to a dormant TSO/E
session.

CeaTsoQueryStruct Not used for this request
type.

Not used for this request
type.

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

CeaTsoAttn - Sending an attention interrupt to a TSO/E
session

Use the CeaTsoAttn request type to send an attention interrupt to a TSO/E address
space started by CEA. An attention interrupt allows you to interrupt or end a
process that is taking place. This request type is useful if the client is stuck at a
prompt or if you submitted a request to which the system is not responding.

To perform this request, the CEA TSO/E address space manager extracts the
caller’s security UTOKEN from the caller’s environment and uses it when needed.

Table 18 lists the input callers must provide for each structure used for this request
type and the output that will be provided. No other fields in the structures are
used. The value for the unused fields is indeterminate. For more details about the
fields listed for each structure, see “Parameters” on page 152.

Table 18. Input and output for each structure used for the CeaTsoAttn request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_asid

v ceatso_apptag

v ceatso_stoken

v ceatso_index

None

158 z/OS V2R1.0 MVS Callable Services for HLL

Table 18. Input and output for each structure used for the CeaTsoAttn request
type (continued)

Structure Required Input Output

CeaTsoQueryStruct Not used for this request
type.

Not used for this request
type.

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

CeaTsoEnd - Ending a TSO/E session
Use the CeaTsoEnd request type to end a TSO/E address space started by CEA or
to place the session into a dormant state. When you end a TSO/E address space,
all of the associated resources are returned to the system, including the z/OS
UNIX message queue that was used for communicating with the session.

If the CEA reconnect feature is enabled and the caller has not set the
CEATSO_ABLOGOFF flag (0x8000) or the CEATSO_NORECONN flag (0x4000), the
CEA TSO/E address space manager will intercept the CeaTsoEnd request and
place the TSO/E session in a dormant state instead of ending it. In this case, some
of the session resources are retained and reused when the user reconnects to the
session. For more information about the reconnect feature, see “Reconnecting to
CEA TSO/E address spaces” on page 148.

To perform the CeaTsoEnd request, the CEA TSO/E address space manager
extracts the caller’s security UTOKEN from the caller’s environment and uses it
when needed.

Table 19 lists the input callers must provide for each structure used for this request
type and the output that will be provided. No other fields in the structures are
used. The value for the unused fields is indeterminate. For more details about the
fields listed for each structure, see “Parameters” on page 152.

Table 19. Input and output for each structure used for the CeaTsoEnd request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_asid

v ceatso_apptag

v ceatso_stoken

v ceatso_index

Optional input:

v ceatso_flags

None

CeaTsoQueryStruct Not used for this request
type.

Not used for this request
type.

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

Chapter 12. Using CEA TSO/E address space services 159

CeaTsoPing - Sending a ping on behalf of an application
Each TSO/E session has an idle application time that the CEA TSO/E address
space manager uses to determine if the application that is associated with the
session is active. If the idle application time is 15 minutes, the application is
considered to be inactive. In which case, the CEA TSO/E address space manager
ends all the CEA-managed TSO/E sessions for that application that have the same
application identifier.

To prevent TSO/E sessions from ending because of idle application time, callers
can use the CeaTsoPing request type to issue a ping request at least once every 15
minutes. Doing so informs CEA that the application is still active, and causes the
CEA TSO/E address space manager to reset the idle application time for all the
CEA-managed TSO/E sessions that have the same application identifier.

To perform this request, the CEA TSO/E address space manager extracts the
caller’s security UTOKEN from the caller’s environment and uses it when needed.

Table 20 lists the input callers must provide for each structure used for this request
type and the output that will be provided. No other fields in the structures are
used. The value for the unused fields is indeterminate. For more details about the
fields listed for each structure, see “Parameters” on page 152.

Table 20. Input and output for each structure used for the CeaTsoPing request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_asid

v ceatso_apptag

v ceatso_stoken

v ceatso_index

None

CeaTsoQueryStruct Not used for this request
type.

Not used for this request
type.

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

CeaTsoQuery - Querying the TSO/E address spaces
Use the CeaTsoQuery request type to obtain information from the CEA TSO/E
address space manager about a TSO/E address space started by CEA.

To perform this request, the CEA TSO/E address space manager extracts the
caller’s security UTOKEN from the caller’s environment and uses it when needed.

Table 21 on page 161 lists the input callers must provide for each structure used for
this request type and the output that will be provided. No other fields in the
structures are used. The value for the unused fields is indeterminate. For more
details about the fields listed for each structure, see “Parameters” on page 152.

160 z/OS V2R1.0 MVS Callable Services for HLL

Table 21. Input and output for each structure used for the CeaTsoQuery request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_asid

v ceatso_apptag

v ceatso_stoken

v ceatso_index

None

CeaTsoQueryStruct v eyecatcher

v ceatso_version

If the return code is
CEASUCCESS, the following
fields are returned:

v ceatso_userid

v ceatso_asid

v ceatso_logonproc

v ceatso_msgqueueid

v ceatso_charset

v ceatso_codepage

v ceatso_screenrows

v ceatso_screencols

v ceatso_account

v ceatso_group

v ceatso_region

v ceatso_apptag

v ceatso_stoken

v ceatso_index

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

CeaTsoQueryApp - Querying TSO/E sessions by application
Use the CeaTsoQueryApp request type to obtain information from the CEA TSO/E
address space manager about all the TSO/E address spaces that CEA started that
are associated with a specific application identifier.

To perform this request, the CEA TSO/E address space manager extracts the
caller’s security UTOKEN from the caller’s environment and uses it when needed.

Table 22 on page 162 lists the input callers must provide for each structure used for
this request type and the output that will be provided. No other fields in the
structures are used. The value for the unused fields is indeterminate. For more
details about the fields listed for each structure, see “Parameters” on page 152.

Attention: It is the caller’s responsibility to free the storage associated with the
query structures that are returned.

Chapter 12. Using CEA TSO/E address space services 161

Table 22. Input and output for each structure used for the CeaTsoQueryApp request type

Structure Required Input Output

CeaTsoRequestStruct v eyecatcher

v ceatso_version

v ceatso_requesttype

v ceatso_asid

v ceatso_numqueryreq

v ceatso_apptag

v ceatso_stoken

v ceatso_index

If the return code is
CEASUCCESS, the following
field is returned:

v ceatso_numqueryrslt

CeaTsoQueryStruct None If the return code is
CEASUCCESS, an array of
query structures are allocated
and the following fields are
returned for each:

v eyecatcher

v ceatso_version

v ceatso_userid

v ceatso_asid

v ceatso_logonproc

v ceatso_msgqueueid

v ceatso_charset

v ceatso_codepage

v ceatso_screenrows

v ceatso_screencols

v ceatso_account

v ceatso_group

v ceatso_region

v ceatso_apptag

v ceatso_stoken

v ceatso_index

CeaTsoErrorStruct v eyeCatcher

v version

v returnCode

v reasonCode

v diag

Return, reason, and diagnostic codes
When the CEATsoRequest API returns control to your program, the
CEATsoErrorStruct structure contains the return, reason, and diagnostic codes that
you can use to identify more information about any errors that occurred.

The codes the API returns are described in the following sections:
v “Return codes” on page 163
v “Reason codes” on page 163
v “Diagnostic codes” on page 167

162 z/OS V2R1.0 MVS Callable Services for HLL

Return codes
Table 23 lists and describes the return codes that are typically returned after the
CEATsoRequest API processes a request.

Table 23. Return codes

Hexadecimal Return
Code Equate Symbol, Meaning, and Action

FFFFFFFF Equate symbol: CEAFAILURE

Meaning: One or more errors occurred during CEATSOREQUEST
processing.

Action: Check the reason and diagnostic codes to obtain additional
information, and correct any errors.

00000000 Equate symbol: CEASUCCESS

Meaning: No errors occurred during CEATSOREQUEST
processing. The meaning of a CEASUCCESS return code for each
request type follows:

v CeaTsoStart. A new TSO/E address space was started, or the
user was connected to a dormant TSO/E session. The caller can
now read from and write to the z/OS UNIX message queue.

v CeaTsoAttn. The attention interrupt request was sent to the
specified TSO/E address space.

v CeaTsoEnd. The specified TSO/E address space was ended or
placed into a dormant state. If the session was ended, all
associated resources were returned to the system. Otherwise, the
resources were retained so that they can be reused when the
user reconnects to the session.

v CeaTsoPing. The ping request was performed, and the
timestamp for the specified TSO/E session was updated.

v CeaTsoQuery. The query completed with no errors.

v CeaTsoQueryApp. The query by application completed with no
errors. An array of query structures were allocated and
populated with information about the sessions.

Action: None.

00000004 Equate symbol: CEAWARNING

Meaning: One or more warnings occurred during
CEATSOREQUEST processing.

Action: Check the reason and diagnostic codes to obtain additional
information, and correct any errors.

Reason codes
Table 24 on page 164 lists and describes the reason codes that are typically
returned after the CEATsoRequest API processes a request. Additional reason codes
might also be returned from services that obtained an unexpected error. Those
reason codes are not listed in the table.

Chapter 12. Using CEA TSO/E address space services 163

Table 24. Reason codes

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1000 Equate symbol: CEATSOMSGQSERVICEFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
z/OS UNIX message queue processing failed.

Action: Ensure that the CEA started task is TRUSTED. For more
information about the RACF TRUSTED attribute, see the topic on
associating started procedures and jobs with user IDs in z/OS
Security Server RACF System Programmer's Guide, and the topic on
using started procedures in z/OS Security Server RACF Security
Administrator's Guide.

1001 Equate symbol: CEATSONOUSERIDFOUND

Meaning: Error occurred during CEATSOREQUEST processing: An
input user ID value was expected, but not received.

Action: Specify a user ID.

1002 Equate symbol: CEATSOMATCHMISSING

Meaning: Error occurred during CEATSOREQUEST processing: A
user ID was expected, but not found in the session table.

Action: Ensure that the user ID, STOKEN, and index specified are
valid.

1003 Equate symbol: CEATSOSTOKENMISSING

Meaning: Error occurred during CEATSOREQUEST processing: An
input STOKEN value was expected, but not received.

Action: Specify a STOKEN.

1004 Equate symbol: CEATSOINDEXOUTOFRANGE

Meaning: Error occurred during CEATSOREQUEST processing:
Input table index is too big or too small for the session table.

Action: Specify a valid index. The index for the TSO/E address
space should be between 1 and 50.

1005 Equate symbol: CEATSOStartFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
CEA could not create a TSO/E address space.

Action: Ensure that sufficient system resources are available to
create the TSO/E address space, and verify that the user is
authorized to create address spaces.

1006 Equate symbol: CEATSOATTNFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
CEA could not issue a TSO/E attention interrupt.

Action: Check the diagnostic codes to obtain additional
information, and correct any errors.

164 z/OS V2R1.0 MVS Callable Services for HLL

Table 24. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1007 Equate symbol: CEATSOENDFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
CEA could not end a TSO/E address space.

Action: Check the diagnostic codes to obtain additional
information, and correct any errors.

1008 Equate symbol: CEATSOQUERYFAILED

Meaning: Error occurred during CEATSOREQUEST processing: An
attempt to query the session table failed.

Action: Ensure that the input values you specified are valid. If the
input values are valid, check the diagnostic codes to obtain
additional information. Correct any errors.

1009 Equate symbol: CEATSOQUERYAPPFAILED

Meaning: Error occurred during CEATSOREQUEST processing: An
attempt to query the session table for the TSO/E sessions that are
associated with a specific application failed.

Action: Ensure that the application identifier you specified is valid.
If the application identifier is valid, check the diagnostic codes to
obtain additional information. Correct any errors.

100A Equate symbol: CEATSOPINGFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
Ping processing failed. Typically, this error occurs when the ping
request is not issued from the security environment where the
TSO/E address space was started or the user is not authorized to
the application identified when the TSO/E address space was
created.

Note that the TSO/E address space is started or reconnected to
using the security environment of the caller. If there is task-level
security, it is used for the address space. Otherwise, the address
space security environment is used. The user tokens (UTOKENs)
from both environments are saved and are used to verify
subsequent requests.

Action: Issue the ping request from the security environment that
was used when the TSO/E address space was started, and ensure
that the user is authorized to the application specified when the
address space was created.

100B Equate symbol: CEATSOENDSENDLOGOFFFAILED

Meaning: Error occurred during CEATSOREQUEST processing:
The CANCEL command was issued to end the TSO/E address
space because the LOGOFF command failed.

Action: None.

Chapter 12. Using CEA TSO/E address space services 165

Table 24. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

100C Equate symbol: CEATSOBadAmode

Meaning: Error occurred during CEATSOREQUEST processing:
The call was invoked in the wrong AMODE. AMODE 64 is
required.

Action: Invoke the API in AMODE 64.

100D Equate symbol: CEATSODisabled

Meaning: Error occurred during CEATSOREQUEST processing:
The dispatchable unit is not enabled.

Action: Ensure that the dispatchable unit is enabled.

100E Equate symbol: CEATSONotTaskMode

Meaning: Error occurred during CEATSOREQUEST processing:
The CEATsoRequest API was not invoked under task mode. The
dispatchable unit mode must be task.

Action: Ensure that the dispatchable unit is a task.

100F Equate symbol: CEATSOFRRSet

Meaning: Error occurred during CEATSOREQUEST processing:
The CEATsoRequest API was invoked under a functional recovery
routine (FRR). No FRRs are allowed.

Action: Ensure that no FRRs are invoked in your environment.

1010 Equate symbol: CEATSOLocked

Meaning: Error occurred during CEATSOREQUEST processing:
The caller is holding a system lock. No system locks are allowed.

Action: Release the lock.

1011 Equate symbol: CEATSOXMMode

Meaning: Error occurred during CEATSOREQUEST processing:
The CEATsoRequest API was invoked while running cross memory
mode, which is not allowed. The API must be invoked in primary
mode.

Action: Invoke the API in primary mode.

1013 Equate symbol: CEATsoReqStructFieldBad

Meaning: Error occurred during CEATSOREQUEST processing:
Input provided for a field in the CEATsoRequestStruct structure is
not valid.

Action: To identify the field that is not valid, see the diagnostic
codes.

1014 Equate symbol: CEATsoBadQueryEyecatcher

Meaning: Error occurred during CEATSOREQUEST processing:
The eye catcher specified for the query structure is not valid. The
expected value is CEAYTSOQ.

Action: Specify CEAYTSOQ as the value for the eye catcher field.

166 z/OS V2R1.0 MVS Callable Services for HLL

Table 24. Reason codes (continued)

Hexadecimal Reason
Code Equate Symbol, Meaning, and Action

1015 Equate symbol: CEATsoBadQueryVersion

Meaning: Error occurred during CEATSOREQUEST processing:
The version specified for the query structure is not valid.

Action: Specify a valid version number. The version numbers
allowed are specified in the ceaytsor.h header file.

Diagnostic codes
Table 25 lists and describes the diagnostic codes that are typically returned after
the CEATsoRequest API processes a request. Additional diagnostic codes might
also be returned from services that obtained an unexpected error. Those diagnostic
codes are not listed in the table.

Table 25. Diagnostic code

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

04 Equate symbol: kCEATsoBadRacRouteExtr

Meaning: The TSO/E address space was not started because an
error occurred while trying to authenticate the caller. The CEA
TSO/E address space service could not complete one of the
following actions:

v Extract the security identity of the caller.

v Log the caller into TSO/E.

v Authorize the caller to a required resource.

The following fields are returned in the CEATsoErrorStruct
structure:

v diag2 contains the SAF return code from RACRoute returned in
R15.

v diag3 contains the RACF or installation return code from the
SAF parameter list.

v diag4 contains the RACF or installation exit reason code from
the SAF parameter list.

Note that a value is not always returned in diag2, diag3, and
diag4.

05 Equate symbol: kCEATsoBadRacRouteCreate

Meaning: An error was encountered when requesting verification
of the newly created security identity.

The following fields are returned in the CEATsoErrorStruct
structure:

v diag2 contains the SAF return code from RACRoute returned in
R15.

v diag3 contains the RACF or installation return code from the
SAF parameter list.

v diag4 contains the RACF or installation exit reason code from
the SAF parameter list.

Chapter 12. Using CEA TSO/E address space services 167

Table 25. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

0A Equate symbol: kCEATsoBadAddSession

Meaning: Unable to create a new TSO/E address space.

The return code received from the TSO/E session is provided in
the diag2 field of the CEATsoErrorStruct structure.

0B Equate symbol: kCEATsoBadQuerySession

Meaning: Unable to query the attributes of TSO/E sessions that
are associated with a specific application.

The return code received from the method is provided in the diag2
field of the CEATsoErrorStruct structure.

0C Equate symbol: kCEATsoBadASCBStoken

Meaning: Unable to issue an attention interrupt or query the
session table for information about the TSO/E address space
because the STOKEN could not be found.

0D Equate symbol: kCEATsoBadSessIndex

Meaning: The value provided in the ceatso_index field in the
CeaTsoRequestStruct is zero, which is not valid. The index must be
greater than or equal to one.

0F Equate symbol: kCEATsoBadLOGONMGCRE

Meaning: The MGCRE service used to issue the start command to
start a TSO/E address space failed.

The register where MGCRE returned its return code is provided in
the diag2 field of the CEATsoErrorStruct structure. In this case, the
value in the diag2 field is R15 (register 15).

10 Equate symbol: SESS_SESSIONNOLONGERINTABLE

Meaning: The TSO/E session no longer exists in the session table.

11 Equate symbol: kCEATsoBadSessENQreq

Meaning: Unable to acquire the ENQ on the session table.

The return code received from the method is provided in the diag2
field of the CEATsoErrorStruct structure.

13 Equate symbol: kCEATsoBadSessUpdateLastRef

Meaning: The ping request failed because the CEA TSO/E address
space manager was unable to update the last reference timestamp
for that session.

The return code received from the method is provided in the diag2
field of the CEATsoErrorStruct structure.

14 Equate symbol: kCEATsoBadQuerySessionForApptag

Meaning: Unable to query the sessions table for the specified
application identifier because an error occurred.

The return code received from the method is provided in the diag2
field of the CEATsoErrorStruct structure.

168 z/OS V2R1.0 MVS Callable Services for HLL

Table 25. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

15 Equate symbol: kCEATsoBadNumEntries

Meaning: The number of entries found that match the query
exceeds the maximum number of sessions that can be queried or
exceeds the number of entries the query structure can
accommodate.

The number of entries found is provided in the diag2 field of the
CEATsoErrorStruct structure.

18 Equate symbol: kCEATsoBadResmgrAdd

Meaning: Unable to set the end of memory resource manager; an
ABEND dump was taken.

19 Equate symbol: kCEATsoBadQueryAllSessions

Meaning: Unable to perform a query of all TSO/E sessions in the
session table. You must search for a specific TSO/E session, or
search for TSO/E sessions that are associated with a specific
application identifier.

The return code received from the method is provided in the diag2
field of the CEATsoErrorStruct structure.

1A Equate symbol: kCEATsoBadApptag

Meaning: The value contained in the application identifier field is
not valid.

1B Equate symbol: kCEATsoBaduserid

Meaning: The value contained in the user ID field is not valid.

1C Equate symbol: kCEATsoBadlogonproc

Meaning: The value contained in the logon procedure field is not
valid.

1F Equate symbol: kCEATsoBadscreenrows

Meaning: The number of screen rows specified is out of range. The
minimum number of screen rows is 24, and the maximum is 204.

20 Equate symbol: kCEATsoBadscreencols

Meaning: The number of screen columns specified is out of range.
The minimum number of screen columns is 80, and the maximum
is 160.

21 Equate symbol: kCEATsoBadaccount

Meaning: The value contained in the account field is not valid.

22 Equate symbol: kCEATsoBadgroup

Meaning: The value contained in the TSO/E group name field is
not valid.

23 Equate symbol: kCEATsoBadregion

Meaning: The value contained in the TSO/E region size field is
not valid.

Chapter 12. Using CEA TSO/E address space services 169

Table 25. Diagnostic code (continued)

Hexadecimal
Diagnostic Code Equate Symbol and Meaning

26 Equate symbol: kCEATsoBadCharsetCodepage

Meaning: The value contained in the codepage field is not valid
because no match was found in the Coded Character Set Identifiers
(CCSID) table.

27 Equate symbol: kCEATsoBadregionsize

Meaning: The value contained in the region size field is not valid
because it exceeds the maximum allowable region size of 2,096,128.

CEAYTSOR header file
For the C programmer, include file ceaytsor.h defines the structures, functions, and
macros used for the CEATsoRequest API. The header file is stored in partitioned
data set SYS1.SIEAHDRV, and contains the following information.

#ifndef __ceaytsor__
#define __ceaytsor__

/****** START OF SPECIFICATIONS **************************************
*
* DESCRIPTIVE NAME: CEA TsoRequest structures
*
* ACRONYM: CEAYTSOR
*
* STRUCT NAME: None
*
* LABEL PREFIX: None
*
* COMPONENT ID: Common Event Adpater (CEA)
*
****** END OF SPECIFICATIONS ***/

/***PROPRIETARY_STATEMENT**/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* COPYRIGHT IBM CORP. 2011, 2012 */
/* */
/* STATUS= HBB7770 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/* */
/*01* EXTERNAL CLASSIFICATION: PI */
/*01* END OF EXTERNAL CLASSIFICATION: */
/* */
/***/

/* $Id: ieac1as2.ide, ieapr, osnp_v1r13.5 1.9 12/01/24 17:16:48 $ */

/**
* FUNCTION:
*
*
* This header file defines the structures, functions
* and macros used for CEATsoRequest() API.
*
* This support requires the setting of _XOPEN_SOURCE_EXTENDED

170 z/OS V2R1.0 MVS Callable Services for HLL

*
* RESTRICTIONS:
* None
*
* CHANGE-ACTIVITY:
*
****END OF SPECIFICATIONS***/

/**
Constants

**/
#define CEATSOREQUEST_CURRENTVERSION 1
#define CEATSOQUERY_CURRENTVERSION 1
#define CEATSOERROR_CURRENTVERSION 1
#define CEATSODIAG_CURRENTVERSION 1
#define CEATSOREQUEST_EYECATCHER "CEAYTSOR"
#define CEATSOQUERY_EYECATCHER "CEAYTSOQ"
#define CEATSOERROR_EYECATCHER "CEAIERRO"

/**
CONSTANTS ceatso_requesttype;

These are the request types used in the CEATsoRequest structure
**/
#define CeaTsoStart 1
#define CeaTsoEnd 2
#define CeaTsoQuery 3
#define CeaTsoAttn 4
#define CeaTsoPing 5
#define CeaTsoQueryApp 6

/**
CONSTANTS ceatso_flags

These are the flag values used in the CEATsoRequest structure
**/
#define CEATSO_ABLOGOFF 0x8000 // Use Cancel to end the TSO session
#define CEATSO_NOREUSE 0x4000 // Do not reconnect an existing session

/**
CEATsoRequestStruct_t

eyeCatcher - "CEAYTSOR"
version - CEATSOQUERY_CURRENTVERSION
request - request - uses CeaTso* constants

**/

struct CEATsoRequestStruct_s {
char ceatso_eyecatcher[8]; /* eye catcher: CEAYTSOR */
uint32_t ceatso_version; /* version number */
uint32_t ceatso_requesttype; /* which type request */
char ceatso_userid[8]; /* tso id */
uint32_t ceatso_asid; /* tso asid */
char ceatso_logonproc[8]; /* logon proc name */
char ceatso_command[80]; /* unused */
uint16_t ceatso_numqueryreq; /* caller num max query */
uint16_t ceatso_numqueryrslt; /* actual num query */
uint32_t ceatso_duration; /* unused */
uint32_t ceatso_msgqueueid; /* msg queue id */
uint16_t ceatso_charset; /* callers character set */
uint16_t ceatso_codepage; /* callers code page */
uint16_t ceatso_screenrows; /* screen rows */
uint16_t ceatso_screencols; /* screen cols */
char ceatso_account[40]; /* tso account number */
char ceatso_group[8]; /* tso group name */
char ceatso_region[7]; /* tso region size */
char ceatso_instance[1]; /* tso instance number */
char ceatso_apptag[8]; /* identity of caller */

Chapter 12. Using CEA TSO/E address space services 171

char ceatso_stoken[8]; /* tso asid stoken */
uint32_t ceatso_ascbaddr; /* tso ascb address */
uint16_t ceatso_flags; /* tso request flags */
uint16_t ceatso_index; /* tso session index */
char rsvd1[8]; /* reserved space */
};
typedef struct CEATsoRequestStruct_s CEATsoRequestStruct_t;

/**
CEATsoQueryStruct_t*

This structure is used to return Query results for the CEATsoRequesst
CeaTsoQuery

eyeCatcher - "CEAYTSOQ"
version - 1

**/
struct CEATsoQueryStruct_s{ /* query results */

char ceatsoq_eyecatcher[8]; /* eye catcher: CEAYTSOQ */
uint32_t ceatsoq_version; /* version number */
uint32_t ceatsoq_requesttype; /* which type request */
char ceatsoq_userid[8]; /* tso id */
uint32_t ceatsoq_asid; /* tso asid */
char ceatsoq_logonproc[8]; /* logon proc name */
char ceatsoq_command[80]; /* tso command */
uint16_t ceatsoq_numqueryreq; /* caller num max query */
uint16_t ceatsoq_numqueryrslt; /* actual num query */
uint32_t ceatsoq_duration; /* duration */
uint32_t ceatsoq_msgqueueid; /* msg queue id */
uint16_t ceatsoq_charset; /* callers character set */
uint16_t ceatsoq_codepage; /* callers code page */
uint16_t ceatsoq_screenrows; /* screen rows */
uint16_t ceatsoq_screencols; /* screen cols */
char ceatsoq_account[40]; /* tso account number */
char ceatsoq_group[8]; /* tso group name */
char ceatsoq_region[7]; /* tso region size */
char ceatsoq_instance[1]; /* tso instance number */
char ceatsoq_apptag[8]; /* identity of caller */
char ceatsoq_stoken[8]; /* tso asid stoken */
uint32_t ceatsoq_ascbaddr; /* tso ascb address */
uint16_t ceatsoq_flags; /* tso request flags */
uint16_t ceatsoq_index; /* tso session index */
char rsvd1[8]; /*reserved space */

};
typedef struct CEATsoQueryStruct_s CEATsoQueryStruct_t;

/**
CEATsoDiag_t

version - version of CEADiag_t
flags - diagnostic flags
offset - offset point to additional information
rsvd - reserved for future use
diag1 - Used to hold return codes
diag2 - from system REXX scripts
diag3 - or other things outside of
diag4 - CEA control
rsvd2 - reserved for future use
messageArea - Contains any output messages relating to error codes

* This structure is part of CEAError, doesn’t get its own eyecatcher
**/

struct CEATsoDiag_s {
uint8_t version;
uint8_t flags1;

172 z/OS V2R1.0 MVS Callable Services for HLL

uint16_t offset;
uint8_t diagid;
char rsvd[3];
uint32_t diag1;
uint32_t diag2;
uint32_t diag3;
uint32_t diag4;
char rsvd2[16];
char messageArea[256];

};
typedef struct CEATsoDiag_s CEATsoDiag_t;

/**
CEAError_t

eyeCatcher - "CEAIERRO"
version - version of CEAError_t
returnCode - function return code - duplicate of function return value
reasonCode - further explanation of a return code.
diag - further explanation of a reason code.
**/

struct CEATsoError_s {
char eyeCatcher[8];
uint32_t version;
int32_t returnCode;
uint32_t reasonCode;
CEATsoDiag_t diag;

};
typedef struct CEATsoError_s CEATsoError_t;

/**
Function prototype CEATsoRequest
**/
#ifdef __cplusplus
extern "C" {
#endif
int32_t CEATsoRequest(CEATsoRequestStruct_t*,

CEATsoQueryStruct_t*,
CEATsoError_t*);

#ifdef __cplusplus
}
#endif

/**
Diag Values

These are the possible values that can be retruned in the Diag1
field in the CEAError_t Diag structure returned from the
CEATsoRequest API

Note: Some duplication of codes exist but codes are unique per API
Request Type

**/

#define kCEATsoBadRacRouteExtr 0X0004 //0004
#define kCEATsoBadRacRouteCreate 0X0005 //0005
#define kCEATsoBadAddSession 0X000A //0010
#define kCEATsoBadQuerySession 0X000B //0011
#define kCEATsoBadASCBStoken 0X000C //0012
#define kCEATsoBadSessIndex 0X000D //0013
#define kCEATsoBadRemoveSessEntry 0X000E //0014
#define kCEATsoBadLogonMGCRE 0X000F //0015
#define kCEATsoSessionNotFound 0X0010 //0016
#define kCEATsoBadSessENQreq 0X0011 //0017
#define kCEATsoBadSessDEQreq 0X0012 //0018
#define kCEATsoBadSessUpdateLR 0X0013 //0019

Chapter 12. Using CEA TSO/E address space services 173

#define kCEATsoBadQuerySessApptag 0X0014 //0020
#define kCEATsoBadNumEntries 0X0015 //0021
#define kCEATsoBadMsgQDelete 0X0016 //0022
#define kCEATsoBadAppTag 0X0017 //0023
#define KCEATsoBadWiComCreate 0X0017 //0023
#define KCEATsoBadResmgrAdd 0X0018 //0024
#define kCEATsoBadQueryAllSessions 0X0019 //0025
#define kCEATsoBadApptag 0X001A //0026
#define kCEATsoBaduserid 0X001B //0027
#define kCEATsoBadlogonproc 0X001C //0028
#define kCEATsoBadcharset 0X001D //0029
#define kCEATsoBadcodepage 0X001E //0030
#define kCEATsoBadscreenrows 0X001F //0031
#define kCEATsoBadscreencols 0X0020 //0032
#define kCEATsoBadaccount 0X0021 //0033
#define kCEATsoBadgroup 0X0022 //0034
#define kCEATsoBadregion 0X0023 //0035
#define kCEATsoBadQueryEyecatcher 0X0024 //0036
#define kCEATsoBadQueryVersion 0X0025 //0037
#define kCEATsoBadCharsetCodepage 0X0026 //0038
#define kCEATsoBadregionsize 0X0027 //0039

#endif /* __ceaytsor__ */

CEAXRDEF header file
For the C programmer, include file ceaxrdef.h defines the return codes and reason
codes that are associated with the CEA TSO/E address space manager services.
The header file is stored in partitioned data set SYS1.SIEAHDRV, and contains the
following information.

#ifndef __ceaxrdef__
#define __ceaxrdef__

/****** START OF SPECIFICATIONS *******************************
*
* DESCRIPTIVE NAME: CEA reason code definitions
*
* ACRONYM: CEAXRDEF
*
* STRUCT NAME: None
*
* LABEL PREFIX: None
*
* COMPONENT ID: Common Event Adpater (CEA)
*
**/

/* $Id: ieac1as2.ide, ieapr, osnp_v1r13.5 1.9 12/01/24 17:16:48 $ */

/***PROPRIETARY_STATEMENT**/
/* */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* COPYRIGHT IBM CORP. 2011, 2012 */
/* */
/* STATUS= HBB7770 */
/* */
/***END_OF_PROPRIETARY_STATEMENT*************************************/
/* */
/*01* EXTERNAL CLASSIFICATION: PI */
/*01* END OF EXTERNAL CLASSIFICATION: */
/* */
/**/

174 z/OS V2R1.0 MVS Callable Services for HLL

/**
* ceaxrdef.h header file
* ----------
* This header file defines the reason codes associated with
* the Common Event Adapter (a.k.a. CEAS) client code.
*
*
* CHANGE-ACTIVITY:
*
****END OF SPECIFICATIONS***/

// Completion Codes
#define CEASUCCESS 0
#define CEAFAILURE -1
#define CEAWARNING 4

// Reason Codes
#define CEAUNAVAIL 0x100 //256
#define CEADUPLICATENAME 0x101 //257
#define CEANOCONNAUTH 0x102 //258
#define CEANOACCESS 0x103 //259
#define CEABADPID 0x104 //260
#define CEABADHANDLE 0x105 //261
#define CEADUPESUB 0x106 //262
#define CEADUPHANDLER 0x107 //263
#define CEANOSUBSCRIBE 0x108 //264
#define CEANOMATCH 0x109 //265
#define CEASMALLBUFF 0x10A //266
#define CEANODATA 0x10B //267
#define CEADATATRUNC 0x10C //268 //returned on warning
#define CEAEVENTSMISSED 0x10D //269 //returned on warning
#define CEANOSUBAUTH 0x10E //270
#define CEABADPROTOCOL 0x10F //271
#define CEACOMMFAILURE 0x110 //272
#define CEASYSTEMFAILURE 0x111 //273
#define CEAINVALIDCLIENT 0x112 //274
#define CEASOFTWAREFAILURE 0x113 //275
#define CEABADHANDLEPTR 0x114 //276
#define CEASECURITYFAILURE 0x115 //277
#define CEAINVALIDCOMMAND 0x116 //278
#define CEAMAXCLIENTSCONNECTED 0x117 //279
#define CEANOTYETIMPLEMENTED 0x118 //280
#define CEABADREGVERSION 0x119 //281
#define CEAENFFAILURE 0x11A //282
#define CEADYNEXFAILURE 0x11B //283
#define CEAEVENTSLOSTTRUNC 0x11C //284
#define CEAUSSSHUTDOWN 0x011D //285
#define CEANOENFEXITRTN 0x011E //286
#define CEASYSOPFORCEUNSUBSCRIBE 0x011F //287
#define CEASYSOPFORCEDISCONNECT 0x0120 //288
#define CEAFORCEMINMODE 0x0121 //289
#define CEAUSSNOTACTIVE 0x0122 //290
#define CEAMAXWTOSUBSCRIBED 0x0123 //291
#define CEAMAXEVENTSSUB 0x0124 //292
#define CEAMAXXSUBECONNECTED 0x0125 //293
#define CEAMAXPGMSUBSCRIBED 0x0126 //294

#define CEANONAME 0x0200 //512
#define CEAINVALIDPARM 0x0201 //513
#define CEABADCONNVERSION 0x0202 //514
#define CEANOTRECOGNIZED 0x0203 //515
#define CEANOTYPE 0x0204 //516
#define CEABADENFCODE 0x0205 //517
#define CEABADRETVERSION 0x0206 //518
#define CEABADEVENTVERSION 0x0207 //519
#define CEAINVALIDFORM 0x0208 //520

Chapter 12. Using CEA TSO/E address space services 175

#define CEAINVALIDMODE 0x0209 //521
#define CEAHANDLERNOTFOUND 0x020A //522
#define CEAHANDLERNOTREENT 0x020B //523
#define CEAINVALIDHANDLER 0x020C //524
#define CEACONNECTNOTDEFSEC 0x020D //525
#define CEAEVENTNOTDEFSEC 0x020E //526
#define CEABADCLIENTNAME 0x020F //527
#define CEAINVALIDMSGID 0x0210 //528
#define CEABADADDRESS 0X0211 //529
#define CEAEVENTNOTALPHANUM 0x0212 //530
#define CEAEVENTHASBLANKS 0x0213 //531
#define CEAMAXTHRUPUTREACHED 0x0214 //532
#define CEABADQMASK 0x0215 //533
#define CEABADBITCOMPARE 0x0216 //534
#define CEAMAXENFX 0x0217 //535
#define CEAREJECTENFX 0x0218 //536
#define CEATYPEENFXNOTSUPPORTED 0x0219 //537

#define CEAREQUESTNOTRECOGNIZED 0x0300 //768
#define CEAREQUESTNOTIMPLEMENTED 0x0301 //769
#define CEAPROPERTYSTRUCTBADPTR 0x0302 //770
#define CEAPROPERTYSTRUCTBADEYE 0x0303 //771
#define CEAPROPERTYSTRUCTBADVERSION 0x0304 //772
#define CEAPROPERTYBADRESOURCE 0x0305 //773
#define CEAPROPERTYNOMATCH 0x0306 //774
#define CEAPROPERTYSTRUCTEMPTY 0x0307 //775
#define CEAENVBAD 0x0308 //776
#define CEAFILTERSTRUCTBADEYE 0x0309 //777
#define CEAFILTERSTRUCTBADVERSION 0x030A //778
#define CEAFILTERBADRESOURCE 0x030B //779
#define CEAFILTERNOMATCH 0x030C //780
#define CEABADPARMPTR 0x030D //781
#define CEABADSSISUBSYSTEM 0x030E //782
#define CEABADSSICALL 0x030F //783
#define CEANOSSI 0x0310 //784
#define CEABADSSIENV 0x0311 //785
#define CEAENVBADSSI 0x0312 //786
#define CEANOFILTFORVERBOSE 0x0313 //787
#define CEAUNABLETOALLOCATE 0x0314 //788
#define CEANOTJOBSTERSEELEMENT 0x0315 //789
#define CEAJOBCHAINBROKEN 0x0316 //790
#define CEABADDATENV 0x0317 //791
#define CEASYSOUTCHAINBROKEN 0x0318 //792
#define CEANOTSYSOUTHDRELEMENT 0x0319 //793
#define CEABADFREEPTR 0x031A //794
#define CEABADFREEBLK 0x031B //795
#define CEABADFREEENV 0x031C //796
#define CEAUNABLETOFREE 0x031D //797
#define CEABADIEFQRY 0x031E //798
#define CEASSCHAINBROKEN 0x031F //799
#define CEAENVBADJSQY 0x0320 //800
#define CEABADFILTEROPER 0x0321 //801
#define CEABADS54SUBSYSTEM 0x0322 //802
#define CEABADS54CALL 0x0323 //803
#define CEANOS54 0x0324 //804
#define CEABADS54ENV 0x0325 //805
#define CEAENVBADS54 0x0326 //806
#define CEABADS54STOR 0x0327 //807
#define CEATIMEOUTMAXIMUMEXCEEDED 0x0328 //808
#define CEANEEDSYSOUTFILTER 0x0329 //809
#define CEABUFFERTOOLARGE 0x032A //810
#define CEACCMDSDIAGRCSET 0x032B //811
#define CEACCMDSAXREXXRCSET 0x032C //812
#define CEANOINSTRAUTH 0x032D //813
#define CEATOOMUCHDATA 0x032E //814
#define CEAFILTERNOTSUPPORTED 0x032F //815
#define CEAPRIMARYTYPEMISMATCH 0x0330 //816

176 z/OS V2R1.0 MVS Callable Services for HLL

#define CEABADSUBSYSTEM 0x0331 //817
#define CEAUNABLETOALLOCATE2 0x0332 //818
#define CEABADBUFFER 0x0333 //819
#define CEATIMEOUTLESSTHANMINIMUM 0x0334 //820
#define CEACMDSSYNTAXERROR 0x0335 //821
#define CEACMDSHALTERROR 0x0336 //822
#define CEACMDSUNINITERROR 0x0337 //823
#define CEAFILTERBADCOMBO 0x0338 //824
#define CEACMDSTIMEDOUT 0x0339 //825
#define CEAALLREQBLOCKSINUSE 0x033A //826
#define CEAIPRQCLIENTABENDED 0x033B //827
#define CEAIPRQARGSCANNOTACCESS 0x033C //828
#define CEAPLISTCANNOTACCESS 0x033D //829
#define CEAIPRQSERVERABENDED 0X033E //830
#define CEANOTACTIVE 0X033F //831
#define CEABADIPRQSERVERRC 0X0340 //832
#define CEAMEMORYALLOCATION 0X0341 //833
#define CEASDDIREMPTY 0x0342 //834
#define CEAADDFAILED 0x0343 //835
#define CEAINCIDENTSTRUCTBADEYE 0x0344 //836
#define CEAINCIDENTSTRUCTBADVERSION 0x0345 //837
#define CEAERRORSTRUCTBADEYE 0x0346 //838
#define CEAERRORSTRUCTBADVERSION 0x0347 //839
#define CEAINCINAMESTRUCTBADEYE 0x0348 //840
#define CEABADBRANCHFORIPCSSRVR 0x0349 //841
#define CEABADENVFORMAR 0x034A //842
#define CEAOBJECTTYPEBADEYE 0x034B //843
#define CEAOBJECTTYPEBADVERSION 0x034C //844
#define CEAPROBNOTYPEBADEYE 0x034D //845
#define CEAPROBNOTYPEBADVERSION 0x034E //846
#define CEAMAXINSTANCENOSUPPORT 0x034F //847
#define CEAPDWKEYSTRUCTBADEYE 0x0350 //848
#define CEADIAGSTRUCTBADVERSION 0x0351 //849
#define CEADAEDSNNOTAVAILABLE 0X0352 //850
#define CEACANTFINDCOUNTRYCODE 0x0353 //851
#define CEACANTFINDBRANCHCODE 0x0354 //852
#define CEABADPARMLIST 0x0355 //853
#define CEABADPARM 0x0356 //854
#define CEAGENPREPAREDDSNFAIL 0x0357 //855
#define CEAREXXENVERROR 0x0358 //856
#define CEAAXREXXERROR 0x0359 //857
#define CEAINTERNALBUFFEROVERRUN 0X035A //858
#define CEABADTIMEOUTPTR 0x035B //859
#define CEABADOUTPUTBUFFERPTR 0x035C //860
#define CEABADOUTPUTBUFFERLENPTR 0x035D //861
#define CEABADERRORPTR 0x035E //862
#define CEARECOVERYFAILURE 0x035F //863
#define CEABADACRO 0x0360 //864
#define CEABADVER 0x0361 //865
#define CEADMPINCIDENTNOTFOUND 0x0362 //866
#define CEAINVALIDINCIDENTKEY 0x0363 //867
#define CEABADERRO 0x0364 //868
#define CEASYSREXXNOTACTIVE 0x0365 //869
#define CEASYSREXXBADENVIRONMENT 0X0366 //870
#define CEAEXECTIMEOUT 0X0367 //871
#define CEASYSREXXOVERLOADED 0X0368 //872
#define CEADATABADEYE 0X0369 //873
#define CEADATABADVERSION 0X036A //874
#define CEASYSDUMPBADEYE 0X036B //875
#define CEASYSDUMPBADVERSION 0X036C //876
#define CEAINCIDENTSTRUCTBADTYPE 0X036D //877
#define CEAMIGLIBNOTAPFAUTH 0X036E //878
#define CEANOSAFOPERLOGSNAP 0X036F //879
#define CEALOGGERNOTAVAIL 0X0370 //880
#define CEABADALLOCNEW 0X0371 //881
#define CEATERSEBADALLOC1 0X0372 //882
#define CEABADIXGCONN 0X0373 //883

Chapter 12. Using CEA TSO/E address space services 177

#define CEABADIXGBRWSESTART 0X0374 //884
#define CEABADIXGBRWSEREAD 0X0375 //885
#define CEANOSNAPSHOT 0X0376 //886
#define CEAPDWBOBJECTNOTFOUND 0X0377 //887
#define CEAPDWBDIAGDATAEMPTY 0X0378 //888
#define CEAWRONGIBMPMRFORMAT 0X0379 //889
#define CEABADLEVELOFPREPARATION 0X037A //890
#define CEADAESYMPTOMNOTVALID 0X037B //891
#define CEADAESYMPTOMNOTFOUND 0X037C //892
#define CEAIPCSENQERROR 0X037D //893
#define CEASDDIROPENERROR 0X037E //894
#define CEAXMLINITFAILURE 0X037F //895
#define CEAXMLPARSEFAILURE 0X0380 //896
#define CEAXMLTERMFAILURE 0X0381 //897
#define CEAXMLTAGSTOODEEP 0X0382 //898
#define CEAXMLPARMSBADEYE 0X0383 //899
#define CEADATASPACEBADPTR 0X0384 //900
#define CEAPREPAREOBJINUSE 0X0385 //901
#define CEAPREPAREENQERR 0X0386 //902
#define CEACKSTBADREQ 0X0387 //903
#define CEACKSTBUFLEN 0X0388 //904
#define CEACKSTIGGCSICALLABEND 0X0389 //905
#define CEACKSTBADCONTROLBLOCK 0X038A //906
#define CEACKSTINVALIDSIZETYPE 0X038B //907
#define CEACKSTINVALIDALLOCVALUE 0X038C //908
#define CEACKSTINVALIDIGGCSIENTRY 0X038D //909
#define CEACKSTIGGCSICALLFAIL 0X038E //910
#define CEACKSTUCBSCANFAIL 0X038F //911
#define CEACKSTUCBSCANABND 0X0390 //912

#define CEASETINCIFSELBADEYE 0X0393 //915
#define CEASETINCIFSELBADVERSION 0X0394 //916
#define CEASETINCIFVALBADEYE 0X0395 //917
#define CEASETINCIFVALBADVERSION 0X0396 //918
#define CEASETINCIFVALDATATRUNC 0X0397 //919
#define CEAMIGRATEDDATASETS 0X0398 //920
#define CEAMIGRATEDDATASETSWHSMERR 0X0399 //921

#define CEATSOMSGQSERVICEFAILED 0X1000 //4096
#define CEATSONOUSERIDFOUND 0X1001 //4097
#define CEATSOMATCHMISSING 0X1002 //4098
#define CEATSOSTOKENMISSING 0X1003 //4099
#define CEATSOINDEXOUTOFRANGE 0X1004 //4100
#define CEATSOStartFAILED 0X1005 //4101
#define CEATSOATTNFAILED 0X1006 //4102
#define CEATSOENDFAILED 0X1007 //4103
#define CEATSOQUERYFAILED 0X1008 //4104
#define CEATSOQUERYAPPFAILED 0X1009 //4105
#define CEATSOPINGFAILED 0X100A //4106
#define CEATSOENDSENDLOGOFFFAILED 0X100B //4107
#define CEATSOBADAMODE 0X100C //4108
#define CEATSODISABLED 0X100D //4109
#define CEATSONOTTASKMODE 0X100E //4110
#define CEATSOFRRSET 0X100F //4111
#define CEATSOLOCKED 0X1010 //4112
#define CEATSOXMMODE 0X1011 //4113
#define CEATSOSESSTBLDSPFAILED 0X1012 //4114
#define CEATSOREQSTRUCTFIELDBAD 0X1013 //4115
#define CEATSOBADQUERYEYECATCHER 0X1014 //4116
#define CEATSOBADQUERYVERSION 0X1015 //4117
#endif /* __ceaxrdef__ */

178 z/OS V2R1.0 MVS Callable Services for HLL

Programming example
The following example shows how to invoke the CEATsoRequest API from a C
program. For a sample compile job that you can use to compile this sample
program, see “Sample compile job” on page 196.

/***/
/* */
/* CEASAMPT.c Sample code to demonstrate the */
/* CEATsoRequest() API for CEA HBB7780 */
/* CEA TSO ADDRESS SPACE MANAGER */
/* */
/* */
/* Classification: Unclassified */
/* */
/* Copyright: (C) Copyright IBM Corp. 2011, 2012 */
/* Liscensed Materials - Property of IBM */
/* */
/* */
/* Change History: */
/* $1.0 20110314 CYL: Initial Version */
/* $1.1 20111015 PDA2: Sample Program */
/* */
/***/

#define _XOPEN_SOURCE
#define _POSIX1_SOURCE 2

#define SESS_SESSIONNOLONGERINTABLE 16
#define SESS_MATCHMISSING 11
#define SESS_INDEXOUTOFRANGE 13
#define kMaximumSessions 50

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <env.h>
#include <iconv.h>
#include <sys/msg.h>
#include <sys/types.h>
#include <time.h>

#include "ceaytsor.h"
#include "ceaxrdef.h"

void init_expected_values(void);
void init_ceatso_struct(void);
void print_request_struct(void);
void print_query_struct(void);
void print_error_struct(void);
int send_message(void);
int check_message(int, int);
int verify_messages(int, int);
int verify_attn_messages(int, int);
void save_required_members(void);
void init_required_members(void);
void set_required_members(void);

#define NUMVARS 56

struct message_queue_s {
long int message_type;

Chapter 12. Using CEA TSO/E address space services 179

char message_text[200];
} ;
typedef struct message_queue_s message_queue_t;

int error_counter; /* Total errors */

CEATsoRequestStruct_t ceatso_request;
CEATsoQueryStruct_t ceatso_query;
CEATsoError_t ceatso_error;

char userid[8];
uint32_t asid;
char apptag[8];
uint32_t ascbaddr;
int index_value; /* Save index value */
char stoken[8]; /* Stoken buffer */
char *stoken_ptr; /* Stoken pointer */
char *ptr;

message_queue_t message_queue;
int message_id;
size_t message_size;
char message_text[200];
int wait_seconds; /* Msg receive time */
int sleep_time;

char *tso_cmd_ptr;
char tso_cmd[80] =

"{\"TSO RESPONSE\":{\"VERSION\":\"0100\",\"DATA\":\"ALLOC DA\"}}";

int32_t expected_rc;
uint32_t expected_rsn;
uint32_t expected_diag1;
uint32_t expected_diag2;
uint32_t expected_diag3;
uint32_t expected_diag4;
uint32_t reason_mask;
int CeaTsoSamp1(void);

int main() {
int rc; /* Return code */

CeaTsoSamp1(); /* Invoke the sample code */

return 0;

}

/***/
/** **/
/** Routine to initialize the expected return code, **/
/** reason code and diag codes. **/
/** **/
/***/
void init_expected_values(void) {

expected_rc = CEASUCCESS;
expected_rsn = 0;
expected_diag1 = 0;
expected_diag2 = 0;
expected_diag3 = 0;
expected_diag4 = 0;

return;

180 z/OS V2R1.0 MVS Callable Services for HLL

}

/***/
/** **/
/** Routine to initialize the CEA TSO request structure **/
/** query structure and error strucure for API call **/
/** **/
/***/
void init_ceatso_struct(void) {

/* Initialize CEA TSO Request structure for CEATsoRequest() */
memset(&ceatso_request, ’\0’, sizeof(CEATsoRequestStruct_t));

strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

ceatso_request.ceatso_version = CEATSOREQUEST_CURRENTVERSION;

ceatso_request.ceatso_requesttype = 0;

/*
ceatso_request.ceatso_asid = 0;

*/

strcpy(ceatso_request.ceatso_userid, "IBMUSER ");

strcpy(ceatso_request.ceatso_logonproc, "OMVS0803");

memset(&ceatso_request.ceatso_command, ’ ’, 80);

/*
ceatso_request.ceatso_numqueryreq = 12;

ceatso_request.ceatso_numqueryrslt = 12;

ceatso_request.ceatso_duration = 0;

ceatso_request.ceatso_msgqueueid = 0;
*/

ceatso_request.ceatso_charset = 697;

ceatso_request.ceatso_codepage = 1047;

ceatso_request.ceatso_screenrows = 24;

ceatso_request.ceatso_screencols = 80;

memset(ceatso_request.ceatso_account, ’0’, 40);

memset(ceatso_request.ceatso_group, ’ ’, 8);

strcpy(ceatso_request.ceatso_region, "2000000");

/*
memset(ceatso_request.ceatso_instance, ’ ’, 1);

*/

strcpy(ceatso_request.ceatso_apptag, "IZUIS ");

ceatso_request.ceatso_flags = CEATSO_ABLOGOFF;

/*
memset(ceatso_request.ceatso_stoken, 0xFF, 8);

ceatso_request.ceatso_ascbaddr = 0;

Chapter 12. Using CEA TSO/E address space services 181

ceatso_request.ceatso_index = 0;
*/

/* Initialize the CEA TSO Query structure for CEATsoRequest() */
memset(&ceatso_query, ’\0’, sizeof(CEATsoQueryStruct_t));

strcpy(ceatso_query.ceatsoq_eyecatcher, CEATSOQUERY_EYECATCHER);

memset(&ceatso_request.ceatso_command, ’ ’, 40);

/* Initialize the CEA TSO Error structure for CEATsoRequest() */
memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));

strcpy(ceatso_error.eyeCatcher, CEAINCT_EYE_CEAIERRO);

ceatso_error.version = CEAIERRO_CURRENTVERSION;

return;

}

/***/
/** **/
/** Routine to print out the CEATsoRequest structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_request_struct(void) {

int i;

printf("\n\n\nCEATsoRequest structure\n\n");

printf("sizeof(CEATsoRequestStruct_t) = %d\n\n",
sizeof(CEATsoRequestStruct_t));

printf("CeaTsoRequest Eyecatcher = ");

ptr = ceatso_request.ceatso_eyecatcher;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Version = %d\n",
ceatso_request.ceatso_version);

printf("CeaTsoRequest Requesttype = %d\n",
ceatso_request.ceatso_requesttype);

printf("CeaTsoRequest Userid = ");

ptr = ceatso_request.ceatso_userid;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Asid = %X\n",
ceatso_request.ceatso_asid);

printf("CeaTsoRequest LogonProc = ");

ptr = ceatso_request.ceatso_logonproc;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);

182 z/OS V2R1.0 MVS Callable Services for HLL

printf("\n");

printf("CeaTsoRequest Command = ");

ptr = ceatso_request.ceatso_command;
for (i = 1; i <= 40; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Numqueryreq = %d\n",
ceatso_request.ceatso_numqueryreq);

printf("CeaTsoRequest Numqueryrslt = %d\n",
ceatso_request.ceatso_numqueryrslt);

printf("CeaTsoRequest Duration = %d\n",
ceatso_request.ceatso_duration);

printf("CeaTsoRequest Msgqueueid = %d\n",
ceatso_request.ceatso_msgqueueid);

printf("CeaTsoRequest Charset = %d\n",
ceatso_request.ceatso_charset);

printf("CeaTsoRequest Codepage = %d\n",
ceatso_request.ceatso_codepage);

printf("CeaTsoRequest Screenrows = %d\n",
ceatso_request.ceatso_screenrows);

printf("CeaTsoRequest Screencols = %d\n",
ceatso_request.ceatso_screencols);

printf("CeaTsoRequest Account = ");

ptr = ceatso_request.ceatso_account + 32;
for (i = 1; i < 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Group = ");

ptr = ceatso_request.ceatso_group;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Region = ");

ptr = ceatso_request.ceatso_region;
for (i = 1; i <= 7; i++)

printf("%C", *ptr++);
printf("\n");

ptr = ceatso_request.ceatso_instance;
printf("CeaTsoRequest Instance = %C\n", *ptr);

printf("CeaTsoRequest Apptag = ");

ptr = ceatso_request.ceatso_apptag;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoRequest Stoken = ");

stoken_ptr = ceatso_request.ceatso_stoken;

Chapter 12. Using CEA TSO/E address space services 183

for (i = 1; i <= 8; i++)
printf("%X ", *stoken_ptr++);

printf("\n");

printf("CeaTsoRequest ASCBaddr = %8X\n",
ceatso_request.ceatso_ascbaddr);

printf("CeaTsoRequest Flags = %d\n",
ceatso_request.ceatso_flags);

printf("CeaTsoRequest Index = %d\n",
ceatso_request.ceatso_index);

printf("\n");

return;

}

/***/
/** **/
/** Routine to print out the CEATsoQuery structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_query_struct(void) {

int i;

printf("\n\n\nCEATsoQuery structure\n\n");

printf("sizeof(CEATsoQueryStruct_t) = %d\n\n",
sizeof(CEATsoQueryStruct_t));

printf("CeaTsoQuery Eyecatcher = ");

ptr = ceatso_query.ceatsoq_eyecatcher;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Version = %d\n",
ceatso_query.ceatsoq_version);

printf("CeaTsoQuery Requesttype = %d\n",
ceatso_query.ceatsoq_requesttype);

printf("CeaTsoQuery Userid = ");

ptr = ceatso_query.ceatsoq_userid;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Asid = %X\n",
ceatso_query.ceatsoq_asid);

printf("CeaTsoQuery LogonProc = ");

ptr = ceatso_query.ceatsoq_logonproc;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Command = ");

ptr = ceatso_query.ceatsoq_command;

184 z/OS V2R1.0 MVS Callable Services for HLL

for (i = 1; i <= 40; i++)
printf("%C", *ptr++);

printf("\n");

printf("CeaTsoQuery Numqueryreq = %d\n",
ceatso_query.ceatsoq_numqueryreq);

printf("CeaTsoQuery Numqueryrslt = %d\n",
ceatso_query.ceatsoq_numqueryrslt);

printf("CeaTsoQuery Duration = %d\n",
ceatso_query.ceatsoq_duration);

printf("CeaTsoQuery Msgqueueid = %d\n",
ceatso_query.ceatsoq_msgqueueid);

printf("CeaTsoQuery Charset = %d\n",
ceatso_query.ceatsoq_charset);

printf("CeaTsoQuery Codepage = %d\n",
ceatso_query.ceatsoq_codepage);

printf("CeaTsoQuery Screenrows = %d\n",
ceatso_query.ceatsoq_screenrows);

printf("CeaTsoQuery Screencols = %d\n",
ceatso_query.ceatsoq_screencols);

printf("CeaTsoQuery Account = ");

ptr = ceatso_query.ceatsoq_account + 32;
for (i = 1; i < 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Group = ");

ptr = ceatso_query.ceatsoq_group;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Region = ");

ptr = ceatso_query.ceatsoq_region;
for (i = 1; i <= 7; i++)

printf("%C", *ptr++);
printf("\n");

ptr = ceatso_query.ceatsoq_instance;
printf("CeaTsoQuery Instance = %C\n", *ptr);

printf("CeaTsoQuery Apptag = ");

ptr = ceatso_query.ceatsoq_apptag;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CeaTsoQuery Stoken = ");

stoken_ptr = ceatso_query.ceatsoq_stoken;
for (i = 1; i < 9; i++)

printf("%X ", *stoken_ptr++);
printf("\n");

printf("CeaTsoQuery ASCBaddr = %8X\n",

Chapter 12. Using CEA TSO/E address space services 185

ceatso_query.ceatsoq_ascbaddr);

printf("CeaTsoQuery Flags = %d\n",
ceatso_query.ceatsoq_flags);

printf("CeaTsoQuery Index = %d\n",
ceatso_query.ceatsoq_index);

printf("\n");

return;

}

/***/
/** **/
/** Routine to print out the CEATsoError structure **/
/** used by CEATsoRequest() API. **/
/** **/
/***/
void print_error_struct(void) {

int i;

printf("\n\n\nCEATsoError structure\n\n");

printf("sizeof(CEATsoError_t) = %d\n\n",
sizeof(CEATsoError_t));

printf("CEAError Eyecatcher = ");

ptr = ceatso_error.eyeCatcher;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf("CEAError Version = %8d\n",
ceatso_error.version);

printf("CEAError ReturnCode(hex) = %8X\n",
ceatso_error.returnCode);

printf("CEAError ReasonCode(hex) = %8X\n",
ceatso_error.reasonCode);

printf("CEAError Diag.diag1(hex) = %8X\n",
ceatso_error.diag.diag1);

printf("CEAError Diag.diag2(hex) = %8X\n",
ceatso_error.diag.diag2);

printf("CEAError Diag.diag3(hex) = %8X\n",
ceatso_error.diag.diag3);

printf("CEAError Diag.diag4(hex) = %8X\n",
ceatso_error.diag.diag4);

printf("\n");

return;

}

/***/
/** **/
/** Verify messages **/
/** **/

186 z/OS V2R1.0 MVS Callable Services for HLL

/***/
int verify_messages(int message_id, int wait_seconds) {

int rc;
char *string1;
char *string2;
char *string3;
char *string4;
char *string5;
char *string6;

if (ceatso_request.ceatso_requesttype == CeaTsoStart) {
rc = check_message(message_id, wait_seconds);
string1 = "LOGON IN PROGRESS";
if (rc != 0 || strstr(message_text, string1) == NULL) {

printf(" Failed to receive %s message.\n\n\n", string1);
return 99;

}

rc = check_message(message_id, wait_seconds);
string2 = "NO BROADCAST MESSAGES";
if (rc != 0 || strstr(message_text, string2) == NULL) {

printf(" Failed to receive %s.\n\n\n", string2);
return 99;

}

rc = check_message(message_id, wait_seconds);
string3 = "READY ";
if (rc != 0 || strstr(message_text, string3) == NULL) {

printf(" Failed to receive %s prompt.\n\n\n", string3);
return 99;

}

rc = check_message(message_id, wait_seconds);
string4 = "HIDDEN";
string5 = "FALSE";
if (rc != 0 ||

strstr(message_text, string4) == NULL ||
strstr(message_text, string5) == NULL) {

printf(" Failed to receive %s : %s message.\n\n\n",
string4, string5);

return 99;
}

}

if (ceatso_request.ceatso_requesttype == CeaTsoAttn) {
rc = check_message(message_id, wait_seconds);
string6 = "ENTER DATA SET NAME OR * -";
if (rc != 0 ||

strstr(message_text, string6) == NULL) {
printf(" Failed to receive %s message.\n\n\n", string6);
return 99;

}

rc = check_message(message_id, wait_seconds);
string4 = "HIDDEN";
string5 = "FALSE";
if (rc != 0 ||

strstr(message_text, string4) == NULL ||
strstr(message_text, string5) == NULL) {

printf(" Failed to receive %s : %s message.\n\n\n",
string4, string5);

return 99;
}

}

return 0;

Chapter 12. Using CEA TSO/E address space services 187

}

/***/
/** **/
/** Verify messages after Attn **/
/** **/
/***/
int verify_attn_messages(int message_id, int wait_seconds) {

int rc;
char *string1;
char *string2;
char *string3;

rc = check_message(message_id, wait_seconds);
string1 = "READY ";
if (rc != 0 || strstr(message_text, string1) == NULL) {

printf(" Failed to receive %s prompt after Attn.\n\n\n",
string1);

return 99;
}

rc = check_message(message_id, wait_seconds);
string2 = "HIDDEN";
string3 = "FALSE";
if (rc != 0 ||

strstr(message_text, string2) == NULL ||
strstr(message_text, string3) == NULL) {

printf(" Failed to receive %s : %s message.\n\n\n",
string2, string3);

return 99;
}

return 0;

}

/***/
/** **/
/** Check message text **/
/** **/
/***/
int check_message(int message_id, int wait_seconds) {

int rc;
size_t iconv_rc;
ssize_t msg_rc;
iconv_t cd;
char *input_ptr;
char *output_ptr;
size_t input_msgsize;
size_t output_msgsize;
time_t wait_time;
time_t start_time;
time_t receive_time;

message_size = sizeof(message_queue_t) - sizeof(long int);

memset(&message_text, ’\0’, message_size);

time(&start_time);

/* -6 should include 2 and 3 */

188 z/OS V2R1.0 MVS Callable Services for HLL

message_queue.message_type = (long int)-6;

sleep_time = 2;
msg_rc = 0;

/* Must include IPC_NOWAIT flag, otherwise could hang */
/* the program execution when no msg sending back. */
do {

msg_rc = msgrcv(message_id, &message_queue, message_size,
message_queue.message_type, MSG_NOERROR | IPC_NOWAIT);

sleep(sleep_time);
wait_time = time(&receive_time) - start_time;

} while (wait_time <= wait_seconds && msg_rc <= 0);

if (msg_rc == -1) {
printf("\n\nReceive message failed with\n");
printf(" msg_rc = %d ", msg_rc);
printf(" Wait time = %d seconds\n", wait_time);
printf(" Errno = %X", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return 99;

}
else

printf(" Received Message in %d seconds.\n",
wait_time);

if ((rc = setenv("_ICONV_UCS2", "D", 1)) != 0) {
printf("\n setenv() failed with ");
printf(" rc = %d ", rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return rc;

}

if ((cd = iconv_open("IBM-1047", "UTF-8")) == (iconv_t)-1) {
printf(" iconv_open() failed with ");
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return 99;

}

input_ptr = message_queue.message_text;
output_ptr = message_text;

input_msgsize = msg_rc;
output_msgsize = msg_rc;

if ((iconv_rc = iconv(cd, &input_ptr, &input_msgsize, &output_ptr,
&output_msgsize)) == (size_t)-1) {

printf(" iconv() failed with ");
printf(" rc = %d ", iconv_rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return 99;

}

if ((rc = iconv_close(cd)) == -1) {
printf(" iconv_close() failed with ");
printf(" rc = %d ", rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return rc;

}

printf(" Reveived Message Type: %2d\n",
message_queue.message_type);

Chapter 12. Using CEA TSO/E address space services 189

printf(" Reveived Message Length: %d\n", strlen(message_text));
printf(" Received Message Text: \n");
printf(" %s\n", message_text);
printf("\n");

return 0;

}

/***/
/** **/
/** Send TSO command and check the proper message received **/
/** **/
/***/
int send_message(void) {

int rc;
size_t iconv_rc;
iconv_t cd;
size_t input_msgsize;
size_t output_msgsize;
char *input_ptr;
char *output_ptr;

message_size = sizeof(message_queue_t) - sizeof(long int);
memset(&message_queue.message_text, ’\0’, message_size);
memset(&message_text, ’\0’, message_size);

strcpy(message_text, tso_cmd);

if ((cd = iconv_open("UTF-8", "IBM-1047")) == (iconv_t)-1) {
printf(" iconv_open() failed with ");
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return 99;

}

input_ptr = message_text;
output_ptr = message_queue.message_text;

input_msgsize = strlen(message_text);
output_msgsize = input_msgsize;

if ((iconv_rc = iconv(cd, &input_ptr, &input_msgsize, &output_ptr,
&output_msgsize)) == (size_t)-1) {

printf(" iconv() failed with ");
printf(" rc = %d ", iconv_rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return 99;

}

if ((rc = iconv_close(cd)) == -1) {
printf(" iconv_close() failed with ");
printf(" rc = %d ", rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
return rc;

}

message_queue.message_type = (long int)7;
message_size = strlen(message_queue.message_text);

rc = msgsnd(message_id, &message_queue, message_size, 0);

return rc;

190 z/OS V2R1.0 MVS Callable Services for HLL

}

/***/
/** **/
/** Save some required members of request structure **/
/** for ATTN and END process **/
/** **/
/***/
void save_required_members(void) {

int i;

/* Not required input for End
if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {

strcpy(userid, ceatso_request.ceatso_userid);
strcpy(apptag, ceatso_request.ceatso_apptag);

}

if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
asid = ceatso_request.ceatso_asid;

*/

asid = ceatso_request.ceatso_asid;

stoken_ptr = stoken;
ptr = ceatso_request.ceatso_stoken;
for (i = 1; i < 9; i++)

*stoken_ptr++ = *ptr++;

ascbaddr = ceatso_request.ceatso_ascbaddr;

index_value = ceatso_request.ceatso_index;

/*
printf("\nSave the following value:\n");

*/

/* Not required input for End
if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {

printf(" userid = ");

ptr = userid;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

printf(" apptag = ");

ptr = apptag;
for (i = 1; i <= 8; i++)

printf("%C", *ptr++);
printf("\n");

}
*/

/*
printf(" asid = %X\n", asid);

ptr = ceatso_request.ceatso_stoken;
printf(" stoken = ");
for (i = 1; i < 9; i++)

printf("%X ", *ptr++);
printf("\n");

printf(" ascdaddr = %X\n", ascbaddr);

Chapter 12. Using CEA TSO/E address space services 191

printf(" index_value = %X\n", index_value);

printf("\n");
*/

return;

}

/***/
/** **/
/** Initialize some required members of request structure **/
/** for ATTN and END process **/
/** **/
/***/
void init_required_members(void) {

int i;

memset(ceatso_request.ceatso_eyecatcher, ’F’, 8);

ceatso_request.ceatso_version = 0;

if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
ceatso_request.ceatso_asid = 0;

/*
if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {

memset(ceatso_request.ceatso_userid, ’F’, 8);
memset(ceatso_request.ceatso_apptag, ’F’, 8);

}
*/

memset(ceatso_request.ceatso_stoken, 0xFF, 8);

ceatso_request.ceatso_ascbaddr = 0;

ceatso_request.ceatso_index = 0;

/* Initialize the CEA TSO Error structure for CEATsoRequest() */
memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));

return;

}

/***/
/** **/
/** Set some required members of request structure back **/
/** to the original value for ATTN and END process **/
/** **/
/***/
void set_required_members(void) {

int i;

strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

ceatso_request.ceatso_version = CEATSOREQUEST_CURRENTVERSION;

/*
if (ceatso_request.ceatso_requesttype == CeaTsoEnd) {

strcpy(ceatso_request.ceatso_userid, userid);
strcpy(ceatso_request.ceatso_apptag, apptag);

}
*/

192 z/OS V2R1.0 MVS Callable Services for HLL

if (ceatso_request.ceatso_requesttype == CeaTsoAttn)
ceatso_request.ceatso_asid = asid;

stoken_ptr = stoken;
ptr = ceatso_request.ceatso_stoken;
for (i = 1; i < 9; i++)

*ptr++ = *stoken_ptr++;

ceatso_request.ceatso_ascbaddr = ascbaddr;

ceatso_request.ceatso_index = index_value;

/* Initialize the CEA TSO Error structure for CEATsoRequest() */
memset(&ceatso_error, 0x00, sizeof(CEATsoError_t));
strcpy(ceatso_error.eyeCatcher, CEAINCT_EYE_CEAIERRO);
ceatso_error.version = CEAIERRO_CURRENTVERSION;

return;

}

/***/
/** **/
/** CeaTsoSamp1: Sample code to invoke CEATsoRequest() to start **/
/** a CEA TSo Session send it an Attn interrupt the end the TSO **/
/** session. **/
/** **/
/** Results are returned in the error structure **/
/** **/
/***/
int CeaTsoSamp1() {

int i;
int rc;

printf("==\n");
printf("== Start CeaTsoRequest() Example ==\n");
printf("==\n");
printf("\n");

printf("CEATSORequest() Start session.\n\n");
init_ceatso_struct();
init_expected_values();
ceatso_request.ceatso_requesttype = CeaTsoStart;

CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

if (ceatso_error.returnCode == expected_rc &&
ceatso_error.reasonCode == expected_rsn &&
ceatso_error.diag.diag1 == expected_diag1 &&
ceatso_error.diag.diag2 == expected_diag2 &&
ceatso_error.diag.diag3 == expected_diag3 &&
ceatso_error.diag.diag4 == expected_diag4)

printf(" Verifying logon messages.\n\n");
else {

error_counter = error_counter + 1;
printf("CEATsoRequest() Start session failed.\n\n\n");
print_error_struct();
print_request_struct();
printf("\nVariation %d failed.\n\n\n", variation_id);
printf("\n\n");
return error_counter;

Chapter 12. Using CEA TSO/E address space services 193

}

wait_seconds = 8;
message_id = ceatso_request.ceatso_msgqueueid;
rc = verify_messages(message_id, wait_seconds);

if (rc == 0)
printf("\nCEATsoRequest() Start seesion successful.\n\n");

else {
error_counter = error_counter + 1;
printf("CEATsoRequest() Start failed to receive the message ");
printf("with rc = %d.\n\n\n", rc);
printf("\nVariation %d failed.\n\n\n", variation_id);
printf("\n\n");
return error_counter;

}

save_required_members();

ceatso_request.ceatso_requesttype = CeaTsoAttn;

rc = send_message();

if (rc == 0) {
printf("\n\nSend TSO Command Successful.\n\n");
printf(" Send Message Type: %2d\n",

message_queue.message_type);
printf(" Send Message Length: %d\n",

strlen(message_queue.message_text));
printf("\n");

}
else {

printf("\nSend message failed with ");
printf(" rc = %d ", rc);
printf(" Errno = %X ", errno);
printf(" Errno_Jr = %X\n\n", __errno2());
error_counter = error_counter + 1;
printf("\nVariation %d failed.\n\n\n", variation_id);
printf("\n");
return error_counter;

}

rc = verify_messages(message_id, wait_seconds);

if (rc == 0)
printf("\n\nCEATsoRequest() Attn starts.\n\n");

else {
error_counter = error_counter + 1;
printf("\nVariation %d failed.\n\n\n", variation_id);
printf("\n\n");
return error_counter;

}

ceatso_request.ceatso_requesttype = CeaTsoAttn;
set_required_members();
init_expected_values();
strcpy(ceatso_request.ceatso_eyecatcher, CEATSOREQUEST_EYECATCHER);

CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

if (ceatso_error.returnCode == expected_rc &&
ceatso_error.reasonCode == expected_rsn &&

194 z/OS V2R1.0 MVS Callable Services for HLL

ceatso_error.diag.diag1 == expected_diag1 &&
ceatso_error.diag.diag2 == expected_diag2 &&
ceatso_error.diag.diag3 == expected_diag3 &&
ceatso_error.diag.diag4 == expected_diag4)

printf(" Verifying messages after Attn.\n\n");
else {

error_counter = error_counter + 1;
printf("CEATsoRequest() Attn failed.\n\n");
print_error_struct();
print_request_struct();
printf("\nVariation %d failed.\n\n\n", variation_id);
return error_counter;

}

rc = verify_attn_messages(message_id, wait_seconds);

if (rc == 0)
printf("\nCEATsoRequest() Attn successful.\n\n");

else {
error_counter = error_counter + 1;
printf("CEATsoRequest() Attn failed.\n\n");
print_error_struct();
print_request_struct();
printf("\nVariation %d failed.\n\n\n", variation_id);
return error_counter;

}

printf("\n\nCEATsoRequest() End starts.\n");
set_required_members();
init_expected_values();
ceatso_request.ceatso_requesttype = CeaTsoEnd;

CEATsoRequest(&ceatso_request, &ceatso_query, &ceatso_error);

if (ceatso_error.returnCode == expected_rc &&
ceatso_error.reasonCode == expected_rsn &&
ceatso_error.diag.diag1 == expected_diag1 &&
ceatso_error.diag.diag2 == expected_diag2 &&
ceatso_error.diag.diag3 == expected_diag3 &&
ceatso_error.diag.diag4 == expected_diag4)

printf("\n\n\nCEATsoRequest() End session successful.\n");
else {

error_counter = error_counter + 1;
printf("\n\nCEATsoRequest() End session failed.\n\n");
print_request_struct();
print_error_struct();
printf("\nVariation %d failed.\n\n\n", variation_id);
return error_counter;

}

if (ceatso_error.returnCode == CEASUCCESS)
printf("\n\n\nVariation %d succeeded.\n\n\n\n", variation_id);

else {
error_counter = error_counter + 1;
printf("\n\n\nVariation %d failed.\n\n\n\n", variation_id);

}

printf("==\n");
printf("== Finished Start CeaTsoRequest() Example \n");
printf("==\n");
printf("\n\n\n\n");

Chapter 12. Using CEA TSO/E address space services 195

return error_counter;

}

Sample compile job
For C programmers, you can use the following sample compile job to compile the
sample program. For more details about the sample program, see “Programming
example” on page 179.

/* rexx */
/* c89/cc/c++ */
/* dbx needs -g or -Wc,debug */
/* list\(./\) */
/* export _C89_STEPS=’-1’ enable all steps, inc prelinker */
/* export _C89_TMPS =’-3’ prelinker will write composite .p file*/

’c89 -oceasamt -v -g -Wc,LP64,SHOW,SO,AGGR,XREF,NOOFF,NOOPT,EXP,LIST\(./
SSCOMM,DLL,STA,’’LANGLVL(EXTENDED)’’,WARN64

-Wl,LP64,map,xref
ceasampt.c ceasapit.x

’
’ls -gatlrE ceasamt.* ceasamt’

196 z/OS V2R1.0 MVS Callable Services for HLL

Part 6. zEnterprise Data Compression (zEDC)

© Copyright IBM Corp. 1994, 2014 197

|

|

|

198 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 13. Overview and planning of zEnterprise Data
Compression (zEDC)

In today's z/OS environment, many installations want to compress certain types of
data to occupy less space while its not in use, and then restore the data when
necessary. Using zEnterprise Data Compression (zEDC) to compress data might
help to reduce CPU cost and elapsed time of data compression compared to
traditional software-based compression services, such as CSRCESRV and
CSRCMPSC. zEDC can also lower the cost of applications using host-based
compression that are currently running on z/OS.

zEDC supports the DEFLATE compression data format, which compresses data
using the following algorithms, defined by RFC 1951:
v LZ77

– Replaces repeated string with length, back pointer pairs.
– Points back up to 32K.

v Huffman coding
– Variable length encoding of characters.
– Minimize bit length of stream of characters by assigning shorter codes to

frequent characters.
– Data and length, back pointer pairs are Huffman encoded.

For more details, check IETF standard RFC 1951 at http://www.ietf.org/rfc/
rfc1951.txt.

© Copyright IBM Corp. 1994, 2014 199

|

|

|

|
|
|
|
|
|
|

|
|

|

|

|

|

|

|
|

|

|
|
|

http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt

Requirements for zEnterprise Data Compression
zEDC requires the following:
v z/OS V2R1 operating system.
v IBM zEnterprise EC12 (with GA2 level microcode) or IBM zEnterprise zBC12.
v zEDC Express feature. This System z compression accelerator can improve the

speed of data compression and is sharable across up to 15 partitions and up to 8
cards per CPC.

v zEDC Express software feature must be enabled in an IFAPRDxx parmlib
member.

Planning for zEnterprise Data Compression
zEDC is established by launching either an unauthorized or authorized interface:
v Unauthorized interface for zEDC:

– zlib for zEDC:
- zlib is an OpenSource data compression library supporting the DEFLATE

compressed data format.
- The zlib compression library provides in-memory compression and

decompression functions, including integrity checks of the uncompressed
data. For additional information about zlib, see http://zlib.net/.

v System z authorized interfaces for zEDC:
– Requires supervisor state and supports task and SRB mode.

LZ77
CoDec

Distance

Length

Literal

DEFLATE

Huffman
CoDec
Static/Dynamic

History
buffer

Huffman
table

Uncompressed
data

Compressed
data

Compression

Decompression

Compressed data structure

GZIP
header

header codes header codes header codes
GZIP
trailer

200 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|
|

|
|
|

|

|

http://zlib.net/

– Allows application buffers to be directly read by and written to by
compression accelerator hardware, allowing the application to avoid a data
move, but also adding complexity to managing I/O buffers.

– Operates on independent requests:
- A deflate request produces a full DEFLATE block.
- An inflate request consumes a full DELFATE block.

– Provides software inflate capability to maintain data access when System z
compression accelerator hardware is not available.

v Additional method with the option to use zEDC:
– SMF compression. Use the COMPRESS and PERMFIX keywords in the

SMFPRMxx parmlib member to compress data before writing to a log stream.
For additional information, see z/OS MVS System Management Facilities (SMF)
and z/OS MVS Initialization and Tuning Reference.

Table 26. Comparison table between unauthorized and System z authorized interfaces for zEDC

Options Unauthorized interfaces for zEDC System z authorized interfaces for zEDC

Language C Any language that can call OS callable
services

Data streaming zlib-style data streams supported. Data
can be broken up across requests as
needed, but has to be within the
minimum input buffer limit.

Each request is independent and handled
as a single DEFLATE block. Inflate
requests must receive single complete
DEFLATE block.

Buffer management Data move to device driver managed
buffer.

Application buffer directly used by
System z hardware.

Co-existence support Both inflate and deflate are completed in
software when hardware is not available.

Inflate completed in software when
hardware is not available.

Authorization Controlled by SAF-protected FACILITY
class resource
FPZ.ACCELERATOR.COMPRESSION.

Supervisor state.

Chapter 13. Overview and planning of zEnterprise Data Compression (zEDC) 201

|
|
|

|

|

|

|
|

|

|
|
|
|

||

|||

|||
|

||
|
|
|

|
|
|
|

||
|
|
|

||
|
|
|

||
|
|

|

|
|

202 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 14. Application interfaces for zEnterprise Data
Compression

This topic describes the following interfaces, considerations, and samples for
zEnterprise Data Compression (zEDC):
v Invoking unauthorized interface for zEDC:

– “zlib for zEnterprise Data Compression”
v Invoking System z authorized interfaces for zEDC:

– “System z authorized compression services” on page 208
- “FPZ4RZV — Rendezvous compression service” on page 208
- “FPZ4PRB — Probe device availability compression service” on page 211
- “FPZ4RMR — Memory registration compression service” on page 212
- “FPZ4DMR — Deregister memory compression service” on page 214
- “FPZ4ABC — Submit compression request” on page 215
- “FPZ4URZ — Unrendezvous compression request” on page 219

Invoking unauthorized interfaces for zEnterprise Data Compression

zlib for zEnterprise Data Compression
The zlib data compression library provides in-memory compression and
decompression functions, including integrity checks of the uncompressed data. A
modified version of the zlib compression library is used by zEDC. The
IBM-provided zlib compatible C library provides a set of wrapper functions that
use zEDC compression when appropriate and when zEDC is not appropriate,
software-based compression services are used.

The zlib wrapper functions use the following criteria to determine if zEDC can be
used for compression:
v The system requirements for zEDC have been met. See “Requirements for

zEnterprise Data Compression” on page 200 for the details.
v For a deflate stream, the parameters specified on deflateInit2() are supported by

zEDC. For an inflate stream, all the parameters specified on inflateInit2() are
supported. See “Standard zlib functions” on page 204 for the details.

v Because there are overhead costs when communicating with the hardware, on
the first call to deflate or inflate a data stream, the provided input is checked to
ensure that it is sufficiently large enough to make it worthwhile to use zEDC. If
the data stream is large enough, zEDC is used. If the data stream is small, it
might cost more to compress the data stream with zEDC so software-based
compression services are used. Note: This check is only performed on the first
call to deflate or inflate a data stream.

If any of the above criteria is not met, the zlib wrapper function calls the standard
zlib functions to process the data stream in software.

Once zEDC is used as the compression mechanism (for example, after the first call
to inflate or deflate the data stream is completed), you cannot change the
compression method to software-based compression services. At the same time, if
software-based compression services are used as the compression mechanism (for

© Copyright IBM Corp. 1994, 2014 203

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

example, after the first call to inflate or deflate the data stream is completed), you
cannot change the compression method to zEDC.

Note: Once a data stream starts using zEDC for compression, if a function is called
that cannot be supported by zEDC or the zEDC hardware becomes unavailable,
the unsupported function returns an error return code.

Standard zlib functions
The following table contains the standard zlib functions and whether they are
supported using zEDC:

Table 27. Standard zlib functions and whether they are supported using zEDC

zlib function zEDC-supported Details

zlibVersion Supported. Returns '1.2.7-zEDC'

deflateInit Supported.

deflate All flush modes are
supported.

If the input buffer size is smaller than the minimum threshold for
zEDC on the first call to deflate (compress) a data stream, the data
stream is compressed using traditional software-based compression.

deflateEnd Supported.

inflateInit Supported.

inflate Supported if the flush
mode is one of the
following:

v z_no_flush

v z_sync_flush

v z_finish

If either the input buffer size is smaller than a minimum threshold
for zEDC or the flush mode is z_block or z_trees on the first call to
inflate (decompress) a data stream, the data stream is decompressed
using traditional software-based decompression.

On subsequent calls to inflate a data stream, if the flush mode is
z_block or z_trees and the stream is using zEDC decompression,
Z_STREAM_ERROR is returned

inflateEnd Supported.

deflateInit2 Support is based on
the input parameters.

Input parameters:

level This option is ignored for zEDC and does not affect the
software or zEDC compression decision.

This option is supported for zlib software compression.

method
Must be Z_DEFLATED.

windowBits
Must be -15 for raw deflate, 15 for zlib header and trailer, or
31 for gzip header and trailer. For all other windowBits
values, the data stream uses traditional software-based
compression.

memLevel
This option is ignored for zEDC and does not affect the
software or zEDC compression decision.

This option is supported for zlib software compression.

strategy
Use Z_DEFAULT_STRATEGY or Z_FIXED for zEDC. All
other options use traditional software-based compression.

deflateSetDictionary Supported. This option is supported for zEDC when called before the first
deflate call for the data stream and is not supported after the first call
to deflate.

deflateCopy Supported.

204 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|
|
|

|
|
|

||

|||

|||

|||

||
|
|
|
|

|||

|||

||
|
|

|

|

|

|
|
|
|

|
|
|

|||

||
|
|

||
|

|

|
|

|
|
|
|
|

|
|
|

|

|
|
|

|||
|
|

|||

Table 27. Standard zlib functions and whether they are supported using zEDC (continued)

zlib function zEDC-supported Details

deflateReset Supported.

deflateParams Support is based on
the input parameters.

Input parameters:

Level This option is ignored for zEDC.

Strategy
Use Z_DEFAULT_STRATEGY or Z_FIXED for zEDC. All
other options use traditional software-based compression.

deflateTune Supported. This option only applies to traditional software-based compression.
zEDC accepts the call, but none of the parameters apply to zEDC.

deflateBound Supported.

deflatePending Supported.

deflatePrime Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC.

deflateSetHeader Supported.

inflateInit2 Supported.

inflateSetDictionary Supported if called
immediately after a call
to inflate the data
stream that returns
Z_NEED_DICT.

Otherwise, Z_STREAM_ERROR is returned if the data stream is
attempting to use zEDC decompression.

InflateSync Supported.

inflateCopy Supported.

inflateReset Supported.

inflatateReset2 Supported.

inflatePrime Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC
decompression.

inflateMark Not supported for
zEDC.

Returns Z_STREAM_ERROR if the stream is using zEDC
decompression.

inflateGetHeader Supported.

inflateBackInit Not supported for
zEDC.

InflateBackInit forces stream to software-based compression.

inflateBack Not supported for
zEDC.

zlibCompileFlags Supported.

compress Supported.

compress2 Supported. Level is ignored if using zEDC.

compressBound Supported.

uncompress Supported.

gz* routines Not supported for
zEDC.

Uses software-based compression for inflate and deflate functions.

checksum functions Not supported for
zEDC.

Checksum functions calculate the checksum values using
software-based compression services.

IBM-provided zlib compatible C library
The IBM-provided zlib compatible C library provides the following query
functions in addition to the standard zlib functions:

Chapter 14. Application interfaces for zEnterprise Data Compression 205

|

|||

|||

||
|
|

||

|
|
|

|||
|

|||

|||

||
|
|

|||

|||

||
|
|
|
|

|
|

|||

|||

|||

|||

||
|
|
|

||
|
|
|

|||

||
|
|

||
|
|

|||

|||

|||

|||

|||

||
|
|

||
|
|
|
|

|
|
|

deflateHwAvail(buflen)
Determines if the compression accelerator is available for a deflate
operation. The input parameter buflen is an integer that represents the
input buffer size of the first deflate request. The function returns an integer
with a value of 1 if the compression accelerator will be used for the deflate
operation or a value of 0 if software will be used instead.

inflateHwAvail(buflen)
Determines if the compression accelerator is available for an inflate
operation. The input parameter buflen is an integer that represents the
input buffer size of the first inflate request. The function returns an integer
with a value of 1 if the compression accelerator will be used for this inflate
operation or a value of 0 if software will be used instead.

hwCheck(strm)
Determines if a zlib stream is using the compression accelerator or
software compression. The input parameter strm is a pointer to a zlib
z_stream structure to check. The function returns an integer with a value of
0 if the stream has gone to the compression accelerator, a value of 1 if the
stream is pending to go to the compression accelerator, but still could fall
back to software compression, a value of 2 if the stream has gone to
software compression, or Z_STREAM_ERROR if the stream has not been
initialized correctly.

Running zlib
To compress data with zEDC, your installation must meet the system requirements.
See “Requirements for zEnterprise Data Compression” on page 200 for the system
requirements for zEDC.

To use the IBM-provided zlib compatible C library for data compression or data
expansion services, follow these steps:
1. Link or re-link applications to use the IBM-provided zlib.

The IBM-provided zlib is an archive file in the z/OS UNIX System Services file
system and can be statically linked into your applications. The paths for the
zlib archive file and the zlib header files are:

Path for the zlib archive file:
/usr/lpp/hzc/lib/libzz.a

Path for the zlib header files:
/usr/lpp/hzc/include/

Note: When a new IBM service is provided for zlib, all applications that
statically link zlib must re-link in order to use the updated IBM-provided zlib
and take advantage of the new function.

2. Provide System Authorization Facility (SAF) Access:
v Access to zEDC Express is protected by the SAF FACILITY resource class:

FPZ.ACCELERATOR.COMPRESSION.
v Give READ access to FPZ.ACCELERATOR.COMPRESSION to the identity of

the address space that the zlib task will run in.
3. Use the z/OS UNIX environmental variable,

_HZC_COMPRESSION_METHOD, to control if zEDC is used for data
compression.

Note: If the value of software is set, software-based compression services are
used. All other values result in the default behavior of attempting to use zEDC
for data compression.

206 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|
|

|
|
|

4. Ensure that adequately sized input buffers are available. If the input buffer size
falls below the minimum threshold, data compression occurs using zlib
software compression and not zEDC. This threshold can be controlled at a
system level using the PARMLIB member IQPPRMxx.

5. Allocate the correct amount of storage for I/O buffers. The zEDC requests
generated by zlib use predefined I/O buffer pools. The size of these I/O buffer
pools can be set using PARMLIB member IQPPRMxx.

When zlib is statically linked into an application that runs on software or hardware
that is not compatible with zEDC, zlib uses the following compression and
decompression:

Table 28. Compression and decompression with zlib

Hardware level z/OS level zEDC Express Description

zEC12 (with GA2 level
microcode)

z/OS V2R1 Active zEDC is used for both data compression and
decompression.

zEC12 (with GA2 level
microcode)

z/OS V2R1 Not Active Requirements are not met for zEDC. When
zEDC Express is not available, traditional
software zlib is used for compression and
decompression.

Pre-zEC12 (with GA2 level
microcode)

z/OS V2R1 or
pre-z/OS V2R1

N/A Requirements are not met for zEDC. When
zEDC Express is not available, traditional
software zlib is used for compression and
decompression.

zEDC error handling:
v If a System z compression accelerator is unavailable, data compression requests

transfer to another System z compression accelerator configured to the same
partition. These request transfers are transparent to the application.

v If all System z compression accelerators are unavailable, an error message is sent
to the application.

Invoking System z authorized interfaces for zEnterprise Data
Compression

This topic describes how to invoke System z authorized interfaces for zEnterprise
Data Compression by:
v “System z authorized compression services” on page 208

– “FPZ4RZV — Rendezvous compression service” on page 208
– “FPZ4PRB — Probe device availability compression service” on page 211
– “FPZ4RMR — Memory registration compression service” on page 212
– “FPZ4DMR — Deregister memory compression service” on page 214
– “FPZ4ABC — Submit compression request” on page 215
– “FPZ4URZ — Unrendezvous compression request” on page 219

To compress data with zEDC, your installation must meet the system requirements.
See “Requirements for zEnterprise Data Compression” on page 200 for the system
requirements for zEDC.

All z/OS exploitation of zEDC handles mixed hardware and software levels.
Compatibility APAR OA41245 provides software decompression for installations
running with z/OS V1R13 or V1R12. The same software decompression is also

Chapter 14. Application interfaces for zEnterprise Data Compression 207

|
|
|
|

|
|
|

|
|
|

||

||||

|
|
|||
|

|
|
|||
|
|
|

|
|
|
|
||
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|

|
|
|

|
|
|

provided for installations running z/OS V2R1 on pre-IBM zEnterprise EC12 (with
GA2 level microcode). This allows access to compressed data on all combinations
of environments.

Table 29. Compression and decompression with System z authorized interfaces for zEDC

Hardware level z/OS level zEDC Express Description

zEC12 (with GA2 level
microcode)

z/OS V2R1 Active zEDC is used for both data compression and
decompression.

zEC12 (with GA2 level
microcode)

z/OS V2R1 Not Active Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available.

Pre-zEC12 (with GA2 level
microcode)

z/OS V2R1 N/A Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available.

Pre-zEC12 (with GA2 level
microcode)

Pre-z/OS V2R1 N/A Requirements are not met for zEDC.
Software-based decompression services for
zEDC Express compressed data are used
because zEDC Express compression is not
available. Note: APAR OA41245 is required to
use the software-based decompression
services.

System z authorized compression services
The following compression services are available when using System z authorized
interfaces for zEDC:
v “FPZ4RZV — Rendezvous compression service”
v “FPZ4PRB — Probe device availability compression service” on page 211
v “FPZ4RMR — Memory registration compression service” on page 212
v “FPZ4DMR — Deregister memory compression service” on page 214
v “FPZ4ABC — Submit compression request” on page 215
v “FPZ4URZ — Unrendezvous compression request” on page 219

FPZ4RZV — Rendezvous compression service

Description: The FPZ4RZV service performs the required setup and initialization
of the compression services for an exploiter. The scope is the address space of the
application and it is valid for the life of the Cross Memory Resource Owner Task
(CMRO).

Notes:
1. A maximum of 32 rendezvous tokens are supported per each address space.

This allows multiple applications to exploit the compression driver so each can
maintain their own rendezvous scope.

2. All 64-bit storage is obtained with the MEMLIMIT=NO option.

Table 30. Environment for the FPZ4RZV service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

208 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|

||

||||

|
|
|||
|

|
|
|||
|
|
|
|

|
|
|||
|
|
|
|

|
|
|||
|
|
|
|
|
|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|

|

|
|
|

|

||

||

||

Table 30. Environment for the FPZ4RZV service (continued)

Environmental factor Requirement

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 31. Parameters for the FPZ4RZV service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4RZV_options Bit(64) Input Options for the FPZ4RZV service:

SoftwareInflate (X'80000000 00000000')
Allows compression requests to fall back to
software inflation when no compression devices
are available.

EnableABCScatter (X'40000000 00000000')
Allows compression requests to use the
FPZ4ABC compression service to submit work
with scatter/gather lists.

FailOnNoDevices (X'20000000 00000000')
If specified, compression requests fail when no
compression devices are available. If
FailOnNoDevices is not specified, a valid
rendezvous token is returned even if no
compression devices are currently available.
This returned rendezvous token is used for all
other services.

PlusOne (X'08000000 00000000')
If specified, compression requests will only use
zEDC Express Adapters with the March 31,
2014 Firmware MCL release, or later.

userid Char(8) Input An eight character EBCDIC string identifying the user.

rmr_entries Fixed(32) Input The estimated number of FPZ4RMR compression service
calls to be performed that helps to size the tables used
until the maximum number of registrations is reached.
This is an optional parameter. rmr_entries can be
anywhere between 1 and 64K. The default is 128.

Define rmr_entries as integer data of length 32.

Rendezvous token Char(16) Output This is the token that must be passed to all FPZ services.

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

Chapter 14. Application interfaces for zEnterprise Data Compression 209

|

||

||

||

||

||

||
|

||

||
|
||

||||
|

||||

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

||||

||||
|
|
|
|

|

||||

||||

||||
|

Table 32. Return and Reason Codes for the FPZ4RZV service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

04 0000 Meaning: No zEDC devices are available. zEDC support is active
so it is possible that zEDC devices might become available in the
future.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

04 0102 Meaning: No zEDC devices are available because the system
requirements for zEDC were not met. See “Requirements for
zEnterprise Data Compression” on page 200 for the details. A 'thin'
rendezvous was created.

Action: None.

08 0000 Meaning: No zEDC devices are available because the system
requirements for zEDC were not met. This is the result of
RvzFailOnNoDev being ON or SoftwareInflate being OFF when on
downlevel hardware or software. See “Requirements for zEnterprise
Data Compression” on page 200 for the details. No rendezvous
token is returned.

Action: None.

0C 0201 Meaning: Invalid parameter combination.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0207 Meaning: The calling environment is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0210 Meaning: rmr_entries specified an invalid value.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0226 Meaning: Invalid application specified.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 0301 Meaning: An internal error caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0303 Meaning: The maximum number of rendezvous tokens have been
reached for the address space.

Action: Determine if the calling program is at fault because of a
coding error. If there is no coding error, another program might be
consuming all the rendezvous tokens for the address space. Search
problem reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

210 z/OS V2R1.0 MVS Callable Services for HLL

||

|
|||

|||

|

|||
|
|

|
|

|||
|
|
|

|

|||
|
|
|
|
|

|

|||

|
|

|||

|
|

|||

|
|

|||

|
|

|||

|
|

|||
|

|
|
|
|
|
|

FPZ4PRB — Probe device availability compression service

Description: The FPZ4PRB service checks for the required hardware and software
needed for zEDC. This service returns successful if they are available to the
system. See “Requirements for zEnterprise Data Compression” on page 200 for the
system requirements for zEDC.

Table 33. Environment for the FPZ4PRB service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 34. Parameters for the FPZ4PRB service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4PRB_options Bit(64) Input Options for the FPZ4PRB service:

PlusOne (X'80000000 00000000')
If specified, only zEDC Express Adapters with
the March 31, 2014 Firmware MCL release, or
later, will be honored. The value returned in
NumDevices will only indicate this subset of
devices.

NumDevices Fixed(32) Output The number of devices available for this application.

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

Table 35. Return and Reason Codes for the FPZ4PRB service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: Devices are available.

Action: None.

08 0900 Meaning: The z/OS software level is not correct for zEDC. See
“Requirements for zEnterprise Data Compression” on page 200 for
the details.

Action: None.

08 0901 Meaning: The hardware level is not correct for zEDC. See
“Requirements for zEnterprise Data Compression” on page 200 for
the details.

Action: None.

Chapter 14. Application interfaces for zEnterprise Data Compression 211

|

|
|
|
|

||

||

||

||

||

||

||

||
|

||

||
|
||

||||
|

||||

|
|
|
|
|
|

||||

||||

||||
|

||

|
|||

|||

|

|||
|
|

|

|||
|
|

|

Table 35. Return and Reason Codes for the FPZ4PRB service (continued)

Hexadecimal Return
Code Reason Code Meaning and Action

08 0902 Meaning: No zEDC devices are available. The hardware is at the
correct level, but no zEDC devices were available.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

08 0903 Meaning: zEDC devices were available during this IPL at some
point, but there are no zEDC devices available now.

Action: Perform diagnostics to determine the reason for the failure.

FPZ4RMR — Memory registration compression service

Description: The FPZ4RMR service registers a segment of memory for use by
zEDC Express. The result is that this storage becomes fixed. The data area passed
to FPZ4RMR must be page-aligned, and the size must be a multiple of a page
boundary.

Note: This is not compatible with existing page fix services. This storage is eligible
to be used for I/O as a result of this service.

Table 36. Environment for the FPZ4RMR service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 37. Parameters for the FPZ4RMR service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4RMR_options Bit(64) Input There are no supported options for the FPZ4RMR
service.

Rendezvous token Char(16) Input The rendezvous token.

Data@ Ptr(64) Input The address of the data area to register.

DataLen Fixed(64) Input The length of the data area to register.

Reserved Fixed(32) Input Reserved. Must be 0.

DataKey Fixed(8) Input The key of the data area to register. The format of this
parameter is 0xk0, where k represents the key of the data
area.

RMR Token Char(8) Output The region memory registration token associated with
this data area. This token needs to be passed to the
FPZ4ABC service when this data area is used as input or
output.

212 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|||

|||
|

|
|

|||
|

|
|

|

|
|
|
|

|
|

||

||

||

||

||

||

||

||
|

||

||
|
||

||||
|

||||
|

||||

||||

||||

||||

||||
|
|

||||
|
|
|

Table 37. Parameters for the FPZ4RMR service (continued)

Name Type
Input/
Output Description

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

Table 38. Return and Reason Codes for the FPZ4RMR service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

08 0000 Meaning: Memory can not be registered because of lack of
hardware support.

Action: None.

08 0900 Meaning: Incorrect software level for zEnterprise data compression
accelerator support.

Action: None.

0C 0207 Meaning: The calling environment is invalid.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check that the application successfully called the FPZ4RZV
service.

0C 021D Meaning: The supplied region was not CONTROL(AUTH).

Action: Determine if the calling program is at fault because of a
coding error.

0C 021E Meaning: The supplied region address is incorrect. It might not
have been page-aligned.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

0C 021F Meaning: The region length is invalid. It is possible that it is not a
multiple of page size.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0220 Meaning: There is a region key mismatch.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0226 Meaning: An invalid application ID was encountered.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0227 Meaning: Rendezvous was not created with data space support.

Action: Determine if the calling program is at fault because of a
coding error.

Chapter 14. Application interfaces for zEnterprise Data Compression 213

|

||
|
||

||||

||||
|

||

|
|||

|||

|

|||
|

|

|||
|

|

|||

|
|

|||

|
|

|||

|
|

|||
|

|
|

|||
|

|
|

|||

|
|

|||

|
|

|||

|
|

Table 38. Return and Reason Codes for the FPZ4RMR service (continued)

Hexadecimal Return
Code Reason Code Meaning and Action

10 0301 Meaning: An internal error has occurred.

Action: Determine if the calling program is at fault because of a
coding error.

10 0304 Meaning: Compression services were not initialized. Rendezvous
was not called.

Action: Check that the application successfully called the FPZ4RZV
service.

10 0305 Meaning: Capacity has been reached for memory registrations.

Action: Determine if the calling program is at fault because of a
coding error.

10 0306 Meaning: There is not enough DMA memory available.

Action: Determine if the calling program is at fault because of a
coding error.

FPZ4DMR — Deregister memory compression service

Description: The FPZ4DMR service unregisters a segment of memory for use by
zEDC Express. The result is that this storage becomes unfixed.

Table 39. Environment for the FPZ4DMR service

Environmental factor Requirement

Minimum authorization: Supervisor State

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 40. Parameters for the FPZ4DMR service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4DMR_options Bit(64) Input There are no supported options for the FPZ4DMR
service.

Rendezvous token Char(16) Input The rendezvous token.

RMR token Char(8) Input The region memory registration (RMR) token associated
with this data area to be unregistered.

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

214 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|||

|||

|
|

|||
|

|
|

|||

|
|

|||

|
|
|

|

|
|

||

||

||

||

||

||

||

||
|

||

||
|
||

||||
|

||||
|

||||

||||
|

||||

||||
|

Table 41. Return and Reason Codes for the FPZ4DMR service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

08 0900 Meaning: Incorrect software level for zEnterprise data compression
accelerator support.

Action: None.

0C 0207 Meaning: The calling environment is invalid.

Action: Determine if the calling program is at fault because of a
coding error.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check that the application successfully called the FPZ4RZV
service.

0C 0209 Meaning: An invalid RMR token was provided.

Action: Determine if the calling program is at fault because of a
coding error.

10 0301 Meaning: An internal error has caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0304 Meaning: Compression services were not initialized. Rendezvous
was not called.

Action: Check that the application successfully called the FPZ4RZV
service.

FPZ4ABC — Submit compression request

Description: The FPZ4ABC service submits a single autonomous compression
request for one or more DEFLATE blocks. The input and output buffers can be
either direct buffers or scatter/gather lists. The maximum size of a request for
FPZ4ABC is 1 MB.

Table 42. Environment for the FPZ4ABC service

Environmental factor Requirement

Minimum authorization: Supervisor State with Key 0

Dispatchable unit mode: Task or SRB

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Chapter 14. Application interfaces for zEnterprise Data Compression 215

||

|
|||

|||

|

|||
|

|

|||

|
|

|||

|
|

|||

|
|

|||

|
|

|||
|

|
|
|

|

|
|
|
|

||

||

||

||

||

||

||

||
|

Table 43. Parameters for the FPZ4ABC service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4ABC_options Bit(64) Input Options for the FPZ4ABC service:

Inflate (X'80000000 00000000')
When ON, specifies that this is an inflation
request.

Input Scatter List (X'40000000 00000000')
When ON, the area pointed to by input@ is a
scatter/gather list.

Output Scatter List (X'20000000 00000000')
When ON, the area pointed to by output@ is a
scatter/gather list.

Rendezvous token Char(16) Input The rendezvous token.

Input@ Ptr(64) Input The address of the input area or input scatter/gather list.

Output@ Ptr(64) Input The address of the output area or output scatter/gather
list.

Input@RMR Token Char(8) Input The region memory registration (RMR) token for the
input area or area pointed to by the input scatter/gather
list.

Output@RMR Token Char(8) Input The region memory registration (RMR) token for the
output area or area pointed to by the output
scatter/gather list.

InputLen Fixed(64) Input The length of the area pointed to by Input@. In the event
that a scatter/gather list was provided using Input@, the
total length of the areas provided by the scatter/gather
areas must be provided.

OutputLen Fixed(64) Input The length of the area pointed to by Output@. In the
event that a scatter/gather list was provided using
Output@, the total length of the areas provided by the
scatter/gather areas must be provided.

GeneratedOutputLen Fixed(64) Output This length describes how much output was generated
and stored in either the Output@ or the scatter/gather
list specified by Output@. This length spans across
scatter/gather entries.

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

The FPZ4ABC service allows for the input and output areas to span several
non-contiguous areas. The header of the FPZ4ABC list is immediately followed by
the list entries. Note: All entries in the scatter/gather list must be associated with
the same RMR token.

Scatter/gather lists have alignment rules and every entry in the scatter/gather list
is checked for the following conditions:
v The start of the first buffer in the list can be on any byte boundary.
v The end of the first buffer must be on the required byte boundary.

216 z/OS V2R1.0 MVS Callable Services for HLL

||

||
|
||

||||
|

||||

|
|
|

|
|
|

|
|
|

||||

||||

||||
|

||||
|
|

||||
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||

||||
|

|
|
|
|

|
|

|

|

v The start / end of the intermediate buffers must be on the required byte
boundary.

v The start of the last buffer must be on the required byte boundary.
v The end of the last buffer can be on any boundary.

All required boundaries are on 128-byte alignment. A maximum of 8 scatter/gather
entries are allowed.

Table 44. Header elements in the FPZ4ABC-generated list

Name Type Description

Of Entries Fixed(32) The number of entries in the list.

Version Fixed(8) The version associated with the list.

Reserved Char(3) Reserved space.

Table 45. Entries elements in the FPZ4ABC-generated list

Name Type Description

Address Fixed(64) The address into the area mapped by the region memory
registration (RMR) token.

Length Fixed(32) The length of the area, starting at address, to use.

Reserved Fixed(32) Reserved space.

Table 46. Return and Reason Codes for the FPZ4ABC service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

04 2000 Meaning: No zEDC devices are available. Inflate is completed in
software when hardware is not available.

Action: None.

First buffer area

nth buffer area

Length #n Reserved

Entry pointer #n

Length #1 Reserved

Entry pointer #1

Entry count Ver Reserved

0 63

. . .
Input@

or
Output@

Chapter 14. Application interfaces for zEnterprise Data Compression 217

|

|
|

|
|

|

|

|
|
|

||

|||

|||

|||

|||
|

||

|||

|||
|

|||

|||
|

||

|
|||

|||

|

|||
|

|

Table 46. Return and Reason Codes for the FPZ4ABC service (continued)

Hexadecimal Return
Code Reason Code Meaning and Action

08 0000 Meaning: No zEDC devices are available.

Action: If zEDC devices are available to this system, perform
diagnostics to determine the reason for the failure.

0C 0202 Meaning: One of the buffers had a length of 0, or the first word of
a length was non-zero.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0203 Meaning: A failure occurred while accessing one of the provided
scatter/gather buffers.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0206 Meaning: The output area was not large enough to complete the
request.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0207 Meaning: The calling environment is invalid. The caller is either
Problem State, non-zero key, or in XMEM mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0208 Meaning: The rendezvous token is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0209 Meaning: The region memory registration (RMR) token is invalid.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0221 Meaning: The header of the FPZ4ABC-generated list was not
formed correctly.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0222 Meaning: Either zero or a number greater than the maximum
supported was specified for the number of entries in the
FPZ4ABC-generated list.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0223 Meaning: A buffer in the scatter/gather list was not aligned
properly.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0224 Meaning: The total length of the buffers in the scatter/gather list
does not match the length in the parmlist.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

218 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|||

|||

|
|

|||
|

|
|

|||
|

|
|

|||
|

|
|

|||
|

|
|

|||

|
|

|||

|
|

|||
|

|
|

|||
|
|

|
|

|||
|

|
|

|||
|

|
|

Table 46. Return and Reason Codes for the FPZ4ABC service (continued)

Hexadecimal Return
Code Reason Code Meaning and Action

0C 0225 Meaning: Scatter/gather was requested, but it was not enabled for
this rendezvous token.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 1202 Meaning: An address range is not contained in the region denoted
by the region memory registration (RMR) token.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 1203 Meaning: An unsupported operation was requested.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 1205 Meaning: An inflate request failed because of malformed data.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 2101 Meaning: An inflate request failed in software mode due to
malformed input data.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 2102 Meaning: Not enough space in the output buffer to process the
request in software mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 0301 Meaning: An internal component error occurred.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0304 Meaning: A rendezvous has not yet occurred for this address space.

Action: Check that the application successfully called the FPZ4RZV
service.

10 1203 Meaning: There are no zEDC devices available and either the
request was a deflate request or software inflate was not enabled.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 1301 Meaning: The request failed unexpectedly for an unknown reason.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

FPZ4URZ — Unrendezvous compression request

Description: The FPZ4URZ service removes the address space level information
related to zEDC Express compression services. Any outstanding memory
registrations are unregistered.

Chapter 14. Application interfaces for zEnterprise Data Compression 219

|

|
|||

|||
|

|
|

|||
|

|
|

|||

|
|

|||

|
|

|||
|

|
|

|||
|

|
|

|||

|
|

|||

|
|

|||
|

|
|

|||

|
|
|

|

|
|
|

Table 47. Environment for the FPZ4URZ service

Environmental factor Requirement

Minimum authorization: Supervisor State

Dispatchable unit mode: Task

Cross memory mode: PASN=HASN=SASN

AMODE: 64-bit

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Table 48. Parameters for the FPZ4URZ service

Name Type
Input/
Output Description

ApplicationId Fixed(32) Input The application type to use. 0x01 is the application type
for zEDC.

FPZ4URZ_options Bit(64) Input There are no supported options for the FPZ4URZ
service.

Rendezvous token Char(16) Input The rendezvous token.

Return code Fixed(31) Output The return code for the service.

Reason code Fixed(32) Output The reason code for the service.

Table 49. Return and Reason Codes for the FPZ4URZ service

Hexadecimal Return
Code Reason Code Meaning and Action

00 0000 Meaning: The call completed successfully.

Action: None.

0C 0207 Meaning: The calling environment is invalid. The caller is either
Problem State, non-zero key, or in XMEM mode.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

0C 0208 Meaning: An invalid rendezvous token was passed.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

10 0301 Meaning: An internal error has caused recovery to be entered.

Action: Search problem reporting databases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

10 0304 Meaning: Compression services were not initialized.

Action: Check the calling program for a probable coding error.
Correct the program and rerun it.

Usage example of a System z authorized service
The following example uses the authorized services to perform compression using
zEDC Express. Note: If zEDC Express adapters are not available, data is written to
the destination uncompressed.

220 z/OS V2R1.0 MVS Callable Services for HLL

||

||

||

||

||

||

||

||
|

||

||
|
||

||||
|

||||
|

||||

||||

||||
|

||

|
|||

|||

|

|||
|

|
|

|||

|
|

|||

|
|

|||

|
|
|

|
|
|
|

The FPZ4PRB service is called intermittently after the FPZ4ABC service returns to
the application with a return code that indicates that all zEDC devices have left the
configuration.

Call FPZ4RZV(AppId, RzvOptions, RzvUserId, RzvToken, RetCode, RsnCode) /* Rendezvous with the compression
device driver (once per address
space) */

If RetCode = RcNoDevices Then /* If no devices available */
NoDevices = ON /* Indicate no devices */

Call FPZ4RMR(AppId, RmrOptions, RzvToken, InBuffer@, InBufferLen, 0, InBufKey, InRmrToken,
RetCode, RsnCode) /* Register the input buffer */

Call FPZ4RMR(AppId, RmrOptions, RzvToken, OutBuffer@, OutBufferLen, 0, OutBufKey, OutRmrToken,
RetCode, RsnCode) /* Register the output buffer for

compressed data */

Do Until End of Data
Read next block of data into InBuffer@

If NoDevices = ON Then /* If no devices available */
Call FPZ4PRB(AppId, Options, NumDevices, RetCode, RsnCode) /* Probe for new devices */

If RetCode = RcOk Then /* If devices now available */
NoDevices = OFF /* Indicate we have devices */

Else /* Else no devices */
Write InBuffer /* Processed uncompressed data */

If NoDevices = OFF Then /* If devices available */
Call FPZ4ABC(RzvToken,
InBuffer@, InBufferLen, InRmrToken,
OutBuffer@, OutBufferLen, OutRmrToken,

RetCode, RsnCode) /* Perform compression */

If RetCode = RcOk Then /* If data was compressed */
Write OutBuffer /* Process compressed data */

Else If RetCode = RcNoDevices Then /* If no devices available */
NoDevices = ON /* Indicate no devices */

Write InBuffer /* Process uncompressed data */
End Loop

Call FPZ4DMR(DmrOptions, RzvToken, InRmrToken, RetCode, RsnCode)
Call FPZ4DMR(DmrOptions, RzvToken, OutRmrToken, RetCode, RsnCode)

Chapter 14. Application interfaces for zEnterprise Data Compression 221

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

222 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 15. Troubleshooting for zEnterprise Data
Compression

This topic explains troubleshooting techniques for zEnterprise Data Compression
(zEDC).

RMF provides the following data for the System z accelerator device:
v Load current partition is putting on device.
v Compression and decompression request rate and throughput.
v Achieved compression ratio.

See z/OS RMF User's Guide for the available options to specify on your Monitor I
session for reporting on the System z compression accelerator.

© Copyright IBM Corp. 1994, 2014 223

|

|

|

|
|

|

|

|

|

|
|

224 z/OS V2R1.0 MVS Callable Services for HLL

Part 7. Other callable services

© Copyright IBM Corp. 1994, 2014 225

226 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 16. IEAAFFN — Assign processor affinity for
encryption or decryption

Call IEAAFFN when the only function performed by your program is to encrypt
or decrypt data. Encryption and decryption take place on processors that have
Integrated Cryptographic Features (ICRFs) associated with them. IEAAFFN assigns
a program affinity to processors with an ICRF; that is, IEAAFFN makes sure the
system runs your program on a processor that has an ICRF associated with it.

You do not have to use the IEAAFFN service to ensure the system runs a program
on a processor with an ICRF; the system ensures that automatically. However, you
can avoid some of the system overhead involved in the selection process by using
the IEAAFFN service. IBM recommends that you use the service in programs
whose only function is encryption or decryption.

Note: When you use this service to either establish or remove processor affinity for
a program, the program permanently loses any processor affinity that the system
programmer assigned to it in the SCHEDxx member of SYS1.PARMLIB.

Code the CALL following the syntax of the high level language you are using and
specifying all parameters in the order shown below.

CALL statement Parameters

CALL IEAAFFN (feature
,operation_type
,return_code)

The parameters are explained as follows:

feature
Specifies the feature required by your program. Specify CRYPTO to indicate an
ICRF.

Define feature as character data of length 10. Pad the string on the right with 4
blanks.

,operation_type
Specifies the type of action you want to take. The types are:

GRANT
Establish affinity for the program to processors with an ICRF.

REMOVE
Remove affinity for the program to processors with an ICRF.

Note: After you issue a REMOVE request, the program has no
processor affinity; it can run on any processor.

Define operation_type as character data of length 6. If you specify GRANT, pad
the string on the right with 1 blank.

© Copyright IBM Corp. 1994, 2014 227

,return_code
When IEAAFFN completes, return_code contains the return code from the
service. The return code value is also in register 15.

Define return_code as integer data of length 4. The return codes are explained
under “Return codes.”

Restrictions and limitations
Use the IEAAFFN service to request affinity to processors with an ICRF only for
sections of a program that require an ICRF and not other features, such as a Vector
Facility.

Requirements

Requirement Details
Authorization: Supervisor state or Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: You can be either in cross memory mode or not
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: None held
Control parameters: Must be in the primary address space

Return codes
When IEAAFFN returns control to your program, return_code and register 15
contain a return code. The following table identifies the return codes in
hexadecimal and decimal (in parentheses), tells what each means, and recommends
an action that you should take.

Table 50. IEAAFFN Return Codes

Return code Meaning and Action

00000000 (0) Meaning: The operation was successful.

Action: None required.

00000004 (4) Meaning: The program already had processor affinity assigned to it by the
system programmer. The system replaces that affinity with the affinity you
requested in this service.

Action: None required.

0000000C (12) Meaning: Your program was not running in task mode.

Action: This service is not available to SRB mode programs. See the FEATURE=
option on the SCHEDULE macro for the use of this function in SRB mode.

00000010 (16) Meaning: The feature you specified was not a valid feature.

Action: Specify a valid feature name.

00000014 (20) Meaning: The operation type you specified was not valid.

Action: Specify a valid operation type.

00000018 (24) Meaning: The feature you specified is not installed on any of the processors in
the system.

Action: To the system programmer: See that the program runs on a system with
the feature installed.

228 z/OS V2R1.0 MVS Callable Services for HLL

Table 50. IEAAFFN Return Codes (continued)

Return code Meaning and Action

0000001C (28) Meaning: A system error has occurred.

Action: To the system programmer: The error is recorded in LOGREC. Look for
a record with a subcomponent of “IEAAFFN CSS”; then call your IBM Support
Center.

Chapter 16. IEAAFFN — Assign processor affinity for encryption or decryption 229

230 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 17. CSRL16J — Transfer control to another routine

The CSRL16J service allows you to transfer control to another routine running
under the same request block (RB) as the calling program. The CSRL16J service
will transfer control with the contents of all 16 registers intact. When you transfer
control to the other routine, use the CSRL16J service to:
v Define the entry characteristics and register contents for the target routine.
v Optionally free dynamic storage associated with the calling program.

When the service is successful, control transfers to the target routine. After the
target routine runs, it can transfer control to any program running under the same
request block (RB), including the calling program.

The CSRL16J service returns control to the calling program only when it cannot
transfer control successfully to the target because of an error.

Defining the entry characteristics of the target routine
Specify the entry characteristics for the target in data area L16J, which forms the
parameter list passed from the calling program to CSRL16J. Use the CSRYL16J
mapping macro to see the format of the L16J parameter list. To build the L16J
parameter list, first initialize the parameter list with zeroes and then fill in the
desired fields. This ensures that all fields requiring zeroes are correct. You can
specify the following characteristics for the target in L16J:
v Length of the L16J parameter list, L16JLENGTH field in mapping macro

CSRYL16J.
v Contents of the general purpose registers (GPRs) 0-15, L16JGRS field in mapping

macro CSRYL16J.
v Contents of the access registers (ARs) 0-15, L16JARS field in mapping macro

CSRYL16J.
v PSW information for the target routine, field L16JPSW field in mapping macro

CSRYL16J.
– PSW address and AMODE
– PSW ASC mode - primary or AR
– PSW program mask
– PSW condition code
Authorized callers, (callers in supervisor state, with PSW key 0-7, or with a PKM
that allows any key 0-7) can specify:
– PSW state - problem or supervisor
– PSW key.
For unauthorized callers, the system uses the PSW state and key of the calling
program for the target routine.
See Principles of Operation for more information about the contents of the PSW.

v Bit indicating whether or not you want to specify the contents of the access
registers (ARs) for the target routine. This is the L16JPROCESSARS bit in
mapping macro CSRYL16J.
Set the bit on if you want to specify the contents of the ARs. If you set the bit
off, the system determines the contents of the ARs.

© Copyright IBM Corp. 1994, 2014 231

If the bit is set on when CSRL16J passes control to the target routine, the access
registers (ARs) contain:

Register
Contents

0-15 Specified by the caller
If the bit is set off when CSRL16J passes control to the target routine, the access
registers (ARs) contain:

Register
Contents

0-1 Do not contain any information for use by the routine

2-13 The contents are the same as they were when the caller issued the
CSRL16J service.

14-15 Do not contain any information for use by the routine

Freeing dynamic storage associated with the caller
If the calling program has a dynamic storage area associated with it, you can
specify that some or all of this storage area be freed before CSRL16J transfers
control to the target. In the L16J parameter list, specify:
v The subpool of the area that you want the system to free. L16JSUBPOOL field in

mapping macro CSRYL16J.
v The length, in bytes, of the dynamic storage area you want the system to free.

L16JLENGTHTOFREE field in mapping macro CSRYL16J.
v The address of the dynamic storage area you want the system to free.

L16JAREATOFREE field in mapping macro CSRYL16J.
Make sure that the address is on a double-word boundary. Otherwise the service
ends with an abend code X'978'. See z/OS MVS System Codes for information on
abend code X'978'.

The system frees the storage only when the CSRL16J service is successful.

Programming requirements
These are the requirements:
v The calling program must be in 31-bit addressing mode.
v Before you use the CSRL16J service, you must build a parameter list, L16J, to

pass to the service. The parameter list includes the entry characteristics and
environment for the target.
If you are coding in C/370, you can include the CSRLJC macro to provide
declarations in the calling program for the L16J parameter area and return codes.
If you are coding in PL/I, you can include the CSRLJPLI macro to provide
declarations for the return codes only. See Figure 20 on page 234 for the
CSRLJPLI macro. Use the data area, mapped by the CSRYL16J mapping macro,
as a model for the structure of your parameter list when coding in PL/I.

CSRLJC provides the following declarations for use in your C/370 program:
/***
* Type Definitions for User Specified Parameters *
***/

/* Type for user supplied L16J */
typedef struct ??<

232 z/OS V2R1.0 MVS Callable Services for HLL

int Version; /* Must be 0 */
int Length; /* Initialize to CSRL16J_LENGTH */
int SubPool; /* Subpool of storage to be freed */
union ??<

char GRs??(64??); /* General registers */
int GR??(16??); /* General register 0-15 */

??> u1;
union ??<

char ARs??(64??); /* Access registers */
int AR??(16??); /* Access register 0-15 */

??> u2;
union ??<

char PSW??(8??); /* PSW: the processing will use the address,
AMODE, ASC mode, CC, and program mask. For a
supervisor state or PKM 0-7 or key 0-7
caller, it will use the state and key from
the PSW. Otherwise, it will set to caller
key and state. */

struct ??<
int PSWByte0to3 : 32; /* First 4 bytes */
union ??<

void *PSWAddr; /* Address and AMODE */
struct ??<

int PSWAmode : 1; /* AMODE */
int Rsvd0 : 31;

??> s2;
??> u4;

??> s1;
??> u3;
union ??<

struct ??<
int Flags : 8; /* Flags */
int Rsvd0 : 24; /* Reserved */

??> s3;
struct ??<

int ProcessARs : 1; /* If on, ARs will be processed. Otherwise
not. If not processed, ARs 0, 1, 14, and 15 are
unpredictable. ARs 2-13 are taken from the values
present when the service is entered. */

int Rsvd0 : 31; /* Reserved */
??> s4;

??> u5;

void *AreaToFree; /* Address of area to free. If this is non-0
then the area will be freed using the subpool
specified in L16J.Subpool. This can be used
to free the caller's entire dynamic area if
so desired. When this option is specified, it
is necessary that the area begin on a
doubleword boundary. */

int LengthToFree; /* Length of area to free, in bytes. */
char Rsvd??(8??); /* Reserved */

??> L16J;
/***
* Fixed Service Parameter and Return Code Defines *
***/

#define CSRL16J_LENGTH 168 /* Length of L16J */

/* Service Return Codes */
#define CSRL16J_OK 0
#define CSRL16J_BAD_VERSION 4
#define CSRL16J_BAD_AMODE 8
#define CSRL16J_BAD_RESERVED 12
#define CSRL16J_BAD_LENGTH 16
#define CSRL16J_BAD_PSW 24

Chapter 17. CSRL16J — Transfer control to another routine 233

/***
* Function Prototypes for Service Routines *
***/

extern void csrl16j(
L16J *__L16J, /* Input - User supplied L16J block */
int *__RC); /* Output - Return code */

/***

#endif

CSRLJPLI provides the following declarations for use in your PL/I program:

Restrictions
None.

Performance implications
None.

/**
* Constants for Fixed Return Codes *
**/

/* Load 16 and Jump Service Return Codes */

%DCL CSRL16J_OK FIXED;
%CSRL16J_OK = 0;

%DCL CSRL16J_BAD_VERSION FIXED;
%CSRL16J_BAD_VERSION = 4;

%DCL CSRL16J_BAD_AMODE FIXED;
%CSRL16J_BAD_AMODE = 8;

%DCL CSRL16J_BAD_RESERVED FIXED;
%CSRL16J_BAD_RESERVED = 12;

%DCL CSRL16J_BAD_LENGTH FIXED;
%CSRL16J_BAD_LENGTH = 16;

%DCL CSRL16J_BAD_PSW FIXED;
%CSRL16J_BAD_PSW = 24;

/**
* Service Entry Declarations *
**/

DCL CSRL16J ENTRY
(CHAR(168), /* Input - L16J */
FIXED BIN(31)) /* Output - Return code */
OPTIONS(INTER ASSEMBLER);

/* End of Load 16 and Jump Service Declares */

Figure 20. CSRLJPLI declarations for return codes for PL/I

234 z/OS V2R1.0 MVS Callable Services for HLL

Syntax diagram
Code the invocation following the syntax of the language you are using. Specify
parameters in the order shown.

C/370 syntax

Code Parameters

csrl16j (&L16J
,&return_code)

PL/I syntax

Code Parameters

CALL CSRL16J (L16J
,return_code)

Parameters
The parameters are explained as follows:

L16J
Specifies a parameter list that the service uses to define the entry
characteristics and environment for the target.

return_code
When the service completes, return_code contains the return code.

Return codes
If the CSRL16J service returns control to the caller, an error has occurred and the
service was unable to transfer control to the target routine. In this case, the return
code is always nonzero. When the service successfully transfers control to the
target routine, the return code is zero.

Return codes from the CSRL16J service are as follows:

Table 51. CSRL16J Return Codes

Return Code
(hexadecimal) Meaning and Action

00 Meaning: Successful completion. The calling program will never see this return
code because it indicates that the target routine received control.

Action: None.

04 Meaning: The value specified in the L16JVERSION field of the L16J data area
was not a zero. The L16JVERSION field must contain a value of zero.

Action: When you build the L16J data area, first zero the entire L16J data area
and then fill in the required fields. This process ensures that all fields that must
contain zeroes are correct.

Chapter 17. CSRL16J — Transfer control to another routine 235

Table 51. CSRL16J Return Codes (continued)

Return Code
(hexadecimal) Meaning and Action

08 Meaning: The calling program was not in 31-bit addressing mode, which is
required.

Action: Make sure the calling program is in 31-bit addressing mode.

0C Meaning: One of the fields in the L16J data area that is reserved for IBM use
contained a nonzero value. Any field reserved for IBM use must contain a value
of zero.

Action: When you build the L16J data area, first zero the entire L16J data area
and then fill in the required fields. This process ensures that all fields that must
contain zeroes are correct

10 Meaning: The value specified in field L16JLENGTH in the L16J data area was
less than the actual length of the L16J.

Action: Make sure that the value in the L16JLENGTH field reflects the actual
length of the L16J data area.

18 Meaning: The PSW provided in field L16JPSW of the L16J data area specified an
incorrect ASC mode.

Action: In the L16JPSW field, specify either primary or AR ASC mode.

Example
The following example, coded in C/370 uses CSRL16J to transfer control to a
C/370 program. The target routine executes in the mode and with the register
contents specified by the calling program in the L16J parameter list.

This example performs the following operations:
v Fills in L16J parameter list with PSW and execution mode data.
v Calls an assembler routine to obtain the current register contents of registers 0

through 13 and copies them to the L16J parameter list.
v Defines the contents of registers 14 and 15 for the target routine.
v Issues setjmp to allow return from the target routine.
v Invokes the C/370 function L16JPrg through CSRL16J.
v CSRL16J issues longjmp to return to caller and complete processing.

To use this example, you must also use the assembler program following the
C/370 example.

C/370 example program
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include "CSRLJC.H"

#define FALSE 0
#define TRUE 1

/* REG0TO13 is the assembler assist routine (below) to extract
registers 0 through 13, for C/370 addressability */

#pragma linkage(REG0TO13,OS)

int rcode;
int i;

236 z/OS V2R1.0 MVS Callable Services for HLL

unsigned int regs??(14??); /* Register save area */
jmp_buf JumpBuffer; /* Buffer for setjmp/longjmp */
L16J L16JParmArea; /* L16J parameter list structure */

/* Function prototype for function to be called via L16J */
void L16JPrg();

/* Invoke a C/370 function via L16J Callable Services */
main()
{

/* Start by initializing the entire L16J parameter list */
memset(&L16JParmArea,’\0’,sizeof(L16J));

/* The following fields were implicitly initialized to zero
by the preceding statement:

L16JParmArea.Version
L16JParmArea.SubPool
L16JParmArea.AreaToFree
L16JParmArea.LengthToFree

These field do not need to be explicitly set unless a value
other than zero is required */

/* Place parameter list length size into parameter list */
L16JParmArea.Length = sizeof(L16J);

/* Create a Problem State/Key 8 PSW */
L16JParmArea.u3.s1.PSWByte0to3 = 0x078D1000;
L16JParmArea.u3.s1.u4.PSWAddr = (void *) &L16JPrg;

/* Mode data */
L16JParmArea.u3.s1.u4.s2.PSWAmode = 1;
L16JParmArea.u5.s4.ProcessARs = 1;

/* Call assembler assist routine to obtain current register
values */

REG0TO13(®s);

/* Place register values into parameter list */
for (i=0;i<14;i++)

L16JParmArea.u1.GR??(i??)= regs??(i??);

/* Register 14 is not being used in this linkage, but we
have set it to zero for this example */

L16JParmArea.u1.GRAddr??(14??) = 0;

/* Set register 15 for entry to routine */
L16JParmArea.u1.GRAddr??(15??) = (void *) &L16JPrg;

printf("L16JC - Call L16J to invoke L16JPrg\n");

/* Use setjmp to allow return to this point in program. If
setjmp is being called for the first time, invoke L16JPrg
via L16J Callable Services. If returning from longjmp,
skip call to L16J services and complete processing. */

if (!setjmp(JumpBuffer))
{

csrl16j (&L16JParmArea,&rcode);

/* Demonstrate use of L16J C/370 declares */
switch (rcode)
{

/* Select on a particular return code value */
case CSRL16J_BAD_PSW:

printf("L16JC - L16J unsuccessful, bad PSW\n");
break;

/* Default error processing */
default:

Chapter 17. CSRL16J — Transfer control to another routine 237

printf("L16JC - L16J unsuccessful, RC = %d\n",rcode);
break;

}
}
printf("L16JC - Returned from L16JPrg\n");

}

/* The routine below receives control via L16J Callable Services.
control is passed back to main via longjmp. */

void L16JPrg(void)
{

printf("L16JC - L16JPrg got control\n");
longjmp(JumpBuffer,1);

}

Assembler program for use with the C/370 example
To use this example you must assemble the following program and linkedit it with
the C/370 program.
SR0T013 CSECT
SR0T013 AMODE 31
SR0T013 RMODE ANY
*
* Assembler assist routine to save contents of registers 0 through 13
* to the area pointed to by register 1.
*
REG0TO13 DS 0H

ENTRY REG0TO13
* Get address of the save area

L 15,0(,1)
* Save registers 0 to 13

STM 0,13,0(15)
* Return to the caller

BR 14
END SR0TO13

238 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 18. CSRSI — System information service

Use the CSRSI service to retrieve system information. You can request information
about the machine itself, the logical partition (LPAR) in which the machine is
running, or the virtual machine hypervisor (VM) under which the system is
running. The returned information is mapped by DSECTs in macro CSRSIIDF (for
assembler language callers) or structures in header file CSRSIC (for C language
callers).

The information available depends upon the availability of the Store System
Information (STSI) instruction. When the STSI instruction is not available (which
would be indicated by receiving the return code 4 (equate symbol
CSRSI_STSINOTAVAILABLE), only the SI00PCCACPID, SI00PCCACPUA, and
SI00PCCACAFM fields within the returned infoarea are valid. When the STSI
instruction is available, the validity of the returned infoarea depends upon the
system:
v If the system is running neither under LPAR nor VM, then only the

CSRSI_Request_V1CPC_Machine data are valid.
v If the system is running under a logical partition (LPAR), then both the

CSRSI_Request_V1CPC_Machine data and CSRSI_Request_V2CPC_LPAR data
are valid.

v If the system is running under a virtual machine hypervisor (VM), then all of
the data (CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM) are valid.

You can request any or all of the information regardless of your system, and
validity bits will indicate which returned areas are valid.

Description

Environment
The requirements for the caller are:

Requirement Details
Minimum authorization: Problem state, key 8–15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in

C), 31-bit when using an alternate form
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold a LOCAL lock, the CMS lock, or the

CPU lock but is not required to hold any locks.

Programming requirements
The caller should include the CSRSIIDF macro to map the returned information
and to provide equates for the service.

© Copyright IBM Corp. 1994, 2014 239

Restrictions
None.

Input register information
The caller is not required by the system to set up any registers.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Syntax

CALL statement Parameters

CALL CSRSI, (Request
,Infoarealen
,Infoarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:
1. CSRSI (Request,...Returncode);

v When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);

v This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the CSRSI service is available (in the CVT, both CVTOSEXT
and CVTCSRSI bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL CSRSI:
1. LOAD EP=CSRSI

Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’220’(,15)
L 15,X’30’(,15) Get address of CSRSI
CALL (15),(...)

v Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

System information service (CSRSI)

240 z/OS V2R1.0 MVS Callable Services for HLL

Parameters
Request

Supplied parameter:
v Type: Integer
v Length: Full word

Request identifies the type of system information to be returned. The field
must contain a value that represents one or more of the possible request types.
You add the values to create the full word. Do not specify a request more than
once. The possible requests, and their meanings, are:

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:
v Type: Integer
v Range: X'1040', X'2040', X'3040', X'4040'
v Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:
v Type: Character
v Length: X'1040', X'2040', X'3040', X'4040' bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies
the length of the provided area.) The infoarea must be of the proper length to
hold the requested information. This length depends on the value of the
Request parameter.
v When the Request parameter is CSRSI_Request_V1CPC_Machine, the

returned infoarea is mapped by SIV1 and the infoarealen parameter must be
X'2040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the
returned infoarea is mapped by SIV1V2V3 and the infoarealen parameter
must be X'4040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV1V3
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR, the returned
infoarea is mapped by SIV2 and the infoarealen parameter must be X'1040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV2V3
and the infoarealen parameter must be X'2040'.

System information service (CSRSI)

Chapter 18. CSRSI — System information service 241

v When the Request parameter is CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV3 and the infoarealen parameter must be X'1040'.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the CSRSI service.

Return codes
When the CSRSI service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro CSRSIIDF, described in

z/OS MVS Data Areas in the z/OS Internet library (http://www.ibm.com/
systems/z/os/zos/bkserv/).

v If you are coding in C, use include file CSRSIC.

The following table describes the return codes, shown in decimal.

Return Code and Equate Symbol Meaning and Action

00
(0)
CSRSI_SUCCESS

Meaning: The CSRSI service completed successfully. All
information requested was returned.

Action: Check the si00validityflags field to determine the
validity of each returned area.

04
(4)
CSRSI_STSINOTAVAILABLE

Meaning: The CSRSI service completed successfully, but
since the Store System Information (STSI) instruction was
not available, only the SI00PCCACPID, SI00PCCACPUA,
and SI00PCCACAFM fields are valid.

Action: None required.

08
(8)
CSRSI_SERVICENOTAVAILABLE

Meaning: Environmental error: The CSRSI service is not
available on this system.

Action: Avoid calling the CSRSI service unless running on a
system on which it is available.

12
(C)
CSRSI_BADREQUEST

Meaning: User error: The request parameter did not specify
a word formed from any combination of
CSRSI_Request_V1CPC_Machine,
CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM.

Action: Correct the parameter.

16
(10)
CSRSI_BADINFOAREALEN

Meaning: User error: The Infoarealen parameter did not
match the length of the area required to return the requested
information.

Action: Correct the parameter.

20
(14)
CSRSI_BADLOCK

Meaning: User error: The service was called while holding a
system lock other than CPU, LOCAL/CML, or CMS.

Action: Avoid calling in this environment.

System information service (CSRSI)

242 z/OS V2R1.0 MVS Callable Services for HLL

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

CSRSIC C/370 header file
For the C programmer, include file CSRSIC provides equates for return codes and
data constants, such as Register service request types. To use CSRSIC, copy the file
from SYS1.SAMPLIB to the appropriate local C library. Here are the contents of the
file:
#ifndef __CSRSI

#define __CSRSI

/***
* Type Definitions for User Specified Parameters *
***/

/* Type for Request operand of CSRSI */
typedef int CSRSIRequest;

/* Type for InfoAreaLen operand of CSRSI */
typedef int CSRSIInfoAreaLen;

/* Type for Return Code */
typedef int CSRSIReturnCode;

/***
* Function Prototypes for Service Routines *
***/

#ifdef __cplusplus
extern "OS" ??<

#else
#pragma linkage(CSRSI_calltype,OS)

#endif
typedef void CSRSI_calltype(

CSRSIRequest __REQUEST, /* Input - request type */
CSRSIInfoAreaLen __INFOAREALEN, /* Input - length of infoarea */
void *__INFOAREA, /* Input - info area */
CSRSIReturnCode *__RC); /* Output - return code */

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
??>

#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??< \
struct CSRSI_PSA* CSRSI_pagezero = 0; \

CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \
(Request,Flen,Fptr,Rcptr); \

??>;
#endif

??>;
struct CSRSI_CSRT ??<

unsigned char CSRSI_csrt_filler1 ??(48??);
CSRSI_calltype* CSRSI_addr;

struct CSRSI_CVT ??<
unsigned char CSRSI_cvt_filler1 ??(116??);
struct ??<

int CSRSI_cvtdcb_rsvd1 : 4; /* Not needed */
int CSRSI_cvtosext : 1; /* If on, indicates that the

System information service (CSRSI)

Chapter 18. CSRSI — System information service 243

CVTOSLVL fields are valid */
int CSRSI_cvtdcb_rsvd2 : 3; /* Not needed */

??> CSRSI_cvtdcb;
unsigned char CSRSI_cvt_filler2 ??(427??);
struct CSRSI_CSRT * CSRSI_cvtcsrt;
unsigned char CSRSI_cvt_filler3 ??(716??);
unsigned char CSRSI_cvtoslv0;
unsigned char CSRSI_cvtoslv1;
unsigned char CSRSI_cvtoslv2;
unsigned char CSRSI_cvtoslv3;
struct ??<

int CSRSI_cvtcsrsi : 1; /* If on, indicates that the
CSRSI service is available */

int CSRSI_cvtoslv1_rsvd1 : 7; /* Not needed */
??> CSRSI_cvtoslv4;

unsigned char CSRSI_cvt_filler4 ??(11??); /* */
??>;

struct CSRSI_PSA ??<
char CSRSI_psa_filler??(16??);
struct CSRSI_CVT* CSRSI_cvt;

??>;

/* End of CSRSI Header */

#endif

/***/
/* si11v1 represents the output for a V1 CPC when general CPC */
/* information is requested */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned char si11v1cpcmanufacturer??(16??); /*

The 16-character (0-9
or uppercase A-Z) EBCDIC name
of the manufacturer of the V1
CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si11v1cpctype??(4??); /* The 4-character (0-9) EBCDIC

type identifier of the V1 CPC.
*/

unsigned char _filler2??(12??); /* Reserved */

unsigned char si11v1cpcmodel??(16??); /* The 16-character (0-9 or
uppercase A-Z) EBCDIC model
identifier of the V1 CPC. The
identifier is left-justified
with trailing blank characters
if necessary. */

unsigned char si11v1cpcsequencecode??(16??); /*
The 16-character (0-9
or uppercase A-Z) EBCDIC
sequence code of the V1 CPC.
The sequence code is
right-justified with leading
EBCDIC zeroes if necessary.

*/
unsigned char si11v1cpcplantofmanufacture??(4??); /* The 4-character

(0-9 or uppercase A-Z) EBCDIC
plant code that identifies the
plant of manufacture for the
V1 CPC. The plant code is

System information service (CSRSI)

244 z/OS V2R1.0 MVS Callable Services for HLL

left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler3??(3996??); /* Reserved */

??> si11v1;

/***/
/* si22v1 represents the output for a V1 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned char si22v1cpucapability??(4??); /*

An unsigned binary integer
that specifies the capability
of one of the CPUs contained
in the V1 CPC. It is used as
an indication of the
capability of the CPU relative
to the capability of other CPU
models. */

unsigned int si22v1totalcpucount : 16; /* A 2-byte
unsigned integer
that specifies the
total number of CPUs contained
in the V1 CPC. This number
includes all CPUs in the
configured state, the standby
state, and the reserved state.

*/

unsigned int si22v1configuredcpucount : 16; /* A 2-byte
unsigned binary
integer that specifies
the total number of CPUs that
are in the configured state. A
CPU is in the configured state
when it is described in the
V1-CPC configuration
definition and is available to
be used to execute programs.

*/
unsigned int si22v1standbycpucount : 16; /* A 2-byte

unsigned integer
that specifies the
total number of CPUs that are
in the standby state. A CPU is
in the standby state when it
is described in the V1-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v1reservedcpucount : 16; /* A 2-byte

unsigned binary
integer that specifies
the total number of CPUs that
are in the reserved state. A
CPU is in the reserved state
when it is described in the
V1-CPC configuration
definition, is not available
to be used to execute

System information service (CSRSI)

Chapter 18. CSRSI — System information service 245

programs, and cannot be made
available to be used to
execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

struct ??<
unsigned char _si22v1mpcpucapaf??(2??); /* Each individual

adjustment factor. */
unsigned char _filler2??(4050??);

??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

/***/
/* si22v2 represents the output for a V2 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned int si22v2cpcnumber : 16; /* A 2-byte

unsigned integer
which is the number of
this V2 CPC. This number
distinguishes this V2 CPC from
all other V2 CPCs provided by
the same logical-partition
hypervisor */

unsigned char _filler2; /* Reserved */
struct ??<

unsigned int _si22v2lcpudedicated : 1; /*
When one, indicates that
one or more of the logical
CPUs for this V2 CPC are
provided using V1 CPUs that
are dedicated to this V2 CPC
and are not used to provide
logical CPUs for any other V2
CPCs. The number of logical
CPUs that are provided using
dedicated V1 CPUs is specified
by the dedicated-LCPU-count
value. When zero, bit 0
indicates that none of the
logical CPUs for this V2 CPC
are provided using V1 CPUs
that are dedicated to this V2
CPC. */

unsigned int _si22v2lcpushared : 1; /*
When one, indicates that
or more of the logical CPUs
for this V2 CPC are provided
using V1 CPUs that can be used
to provide logical CPUs for
other V2 CPCs. The number of
logical CPUs that are provided
using shared V1 CPUs is
specified by the
shared-LCPU-count value. When
zero, it indicates that none
of the logical CPUs for this
V2 CPC are provided using

System information service (CSRSI)

246 z/OS V2R1.0 MVS Callable Services for HLL

shared V1 CPUs. */

unsigned int _si22v2lcpuulimit : 1; /*
Utilization limit. When one,
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is limited. When zero, it
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is unlimited. */

unsigned int _filler3 : 5; /* Reserved
*/

??> si22v2lcpuc; /* Characteristics */
unsigned int si22v2totallcpucount : 16; /*

A 2-byte unsigned
integer that specifies the
total number of logical CPUs
that are provided for this V2
CPC. This number includes all
of the logical CPUs that are
in the configured state, the
standby state, and the
reserved state. */

unsigned int si22v2configuredlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs for this V2 CPC that are
in the configured state. A
logical CPU is in the
configured state when it is
described in the V2-CPC
configuration definition and
is available to be used to
execute programs. */

unsigned int si22v2standbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the standby
state. A logical CPU is in the
standby state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/

unsigned int si22v2reservedlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the reserved
state. A logical CPU is in the
reserved state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot

System information service (CSRSI)

Chapter 18. CSRSI — System information service 247

be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v2cpcname??(16??); /*
The 8-character EBCDIC name of
this V2 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v2cpccapabilityaf??(4??); /* Capability Adjustment

Factor (CAF). An unsigned
binary integer of 1000 or
less. The adjustment factor
specifies the amount of the
V1-CPC capability that is
allowed to be used for this V2
CPC by the logical-partition
hypervisor. The fraction of
V1-CPC capability is
determined by dividing the CAF
value by 1000. */

unsigned char _filler4??(16??); /* Reserved */
unsigned int si22v2dedicatedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of configured-state
logical CPUs for this V2 CPC
that are provided using
dedicated V1 CPUs. (See the
description of bit
si22v2lcpudedicated.) */

unsigned int si22v2sharedlcpucount : 16; /*
A 2-byte unsigned
integer that specifies the
number of configured-state
logical CPUs for this V2 CPC
that are provided using shared
V1 CPUs. (See the description
of bit si22v2lcpushared.)

*/
unsigned char _filler5??(4012??); /* Reserved */
??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/***/
/* si22v3db is a description block that comprises part of the */
/* si22v3 data. */
/***/

typedef struct ??<
unsigned char _filler1??(4??); /* Reserved */
unsigned int si22v3dbtotallcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are provided for
this V3 CPC. This number
includes all of the logical

System information service (CSRSI)

248 z/OS V2R1.0 MVS Callable Services for HLL

CPUs that are in the
configured state, the standby
state, and the reserved state.

*/
unsigned int si22v3dbconfiguredlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
configured state. A logical
CPU is in the configured state
when it is described in the
V3-CPC configuration
definition and is available to
be used to execute programs.

*/

unsigned int si22v3dbstandbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
standby state. A logical CPU
is in the standby state when
it is described in the V3-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v3dbreservedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
reserved state. A logical CPU
is in the reserved state when
it is described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v3dbcpcname??(8??); /* The 8-character EBCDIC name
of this V3 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v3dbcpccaf??(4??); /* A 4-byte unsigned binary

integer that specifies an
adjustment factor. The
adjustment factor specifies
the amount of the V1-CPC or
V2-CPC capability that is
allowed to be used for this V3
CPC by the
virtual-machine-hypervisor
program. */

System information service (CSRSI)

Chapter 18. CSRSI — System information service 249

unsigned char si22v3dbvmhpidentifier??(16??); /* The 16-character
EBCDIC identifier of the
virtual-machine-hypervisor
program that provides this V3
CPC. (This identifier may
include qualifiers such as
version number and release
level). The identifier is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler2??(24??); /* Reserved */

??> si22v3db;
/***/
/* si22v3 represents the output for a V3 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(28??); /* Reserved */
unsigned char _filler2??(3??); /* Reserved */
struct ??<

unsigned int _filler3 : 4; /* Reserved
*/

unsigned int _si22v3dbcount : 4; /*
Description Block Count. A
4-bit unsigned binary integer
that indicates the number (up
to 8) of V3-CPC description
blocks that are stored in the
si22v3dbe array. */

??> si22v3dbcountfield; /* */
si22v3db si22v3dbe??(8??); /* Array of entries. Only the number

indicated by si22v3dbcount
are valid */

unsigned char _filler5??(3552??); /* Reserved */
??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/***/
/* SI00 represents the "starter" information. This structure is */
/* part of the information returned on every CSRSI request. */
/***/

typedef struct ??<
char si00cpcvariety; /* SI00CPCVariety_V1CPC_MACHINE,

SI00CPCVariety_V2CPC_LPAR, or
SI00CPCVariety_V3CPC_VM */

struct ??<
int _si00validsi11v1 : 1; /* si11v1 was requested and

the information returned is valid
*/

int _si00validsi22v1 : 1; /* si22v2 was requested and
the information returned is valid

*/
int _si00validsi22v2 : 1; /* si22v2 was requested and

the information returned is valid
*/

int _si00validsi22v3 : 1; /* si22v3 was requested and
the information returned is valid

*/
int _filler1 : 4; /* Reserved */

??> si00validityflags;
unsigned char _filler2??(2??); /* Reserved */
unsigned char si00pccacpid??(12??); /* PCCACPID value for this CPU

System information service (CSRSI)

250 z/OS V2R1.0 MVS Callable Services for HLL

*/
unsigned char si00pccacpua??(2??); /* PCCACPUA value for this CPU

*/
unsigned char si00pccacafm??(2??); /* PCCACAFM value for this CPU

*/
unsigned char _filler3??(4??); /* Reserved */
unsigned char si00lastupdatetimestamp??(8??); /* Time of last STSI

update, via STCK */
unsigned char _filler4??(32??); /* Reserved */
??> si00;

#define si00validsi11v1 si00validityflags._si00validsi11v1
#define si00validsi22v1 si00validityflags._si00validsi22v1
#define si00validsi22v2 si00validityflags._si00validsi22v2
#define si00validsi22v3 si00validityflags._si00validsi22v3

/***/
/* siv1 represents the information returned when V1CPC_MACHINE */
/* data is requested */
/***/

typedef struct ??<
si00 siv1si00; /* Area mapped by

struct si00 */
si11v1 siv1si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1si22v1; /* Area

mapped by struct si22v1 */
??> siv1;

/***/
/* siv1v2 represents the information returned when V1CPC_MACHINE */
/* data and V2CPC_LPAR data is requested */
/***/

typedef struct ??<
si00 siv1v2si00; /* Area mapped by

by struct si00 */
si11v1 siv1v2si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2si22v1; /* Area

mapped by struct si22v2 */
si22v2 siv1v2si22v2; /* Area

mapped by struct si22v2 */
??> siv1v2;

/***/
/* siv1v2v3 represents the information returned when V1CPC_MACHINE */
/* data, V2CPC_LPAR data and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv1v2v3si00; /* Area

mapped by struct si00 */
si11v1 siv1v2v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2v3si22v1; /* Area

mapped by struct si22v1 */
si22v2 siv1v2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv1v2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v2v3;

/***/
/* siv1v3 represents the information returned when V1CPC_MACHINE */

System information service (CSRSI)

Chapter 18. CSRSI — System information service 251

/* data and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv1v3si00; /* Area mapped

by struct si00 */
si11v1 siv1v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v3si22v1; /* Area

mapped by struct si22v1 */
si22v3 siv1v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v3;

/***/
/* siv2 represents the information returned when V2CPC_LPAR */
/* data is requested */
/***/

typedef struct ??<
si00 siv2si00; /* Area mapped by

struct si00 */
si22v2 siv2si22v2; /* Area

mapped by struct si22v2 */
??> siv2;

/***/
/* siv2v3 represents the information returned when V2CPC_LPAR */
/* and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv2v3si00; /* Area mapped

by struct si00 */
si22v2 siv2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv2v3;

/***/
/* siv3 represents the information returned when V3CPC_VM */
/* data is requested */
/***/

typedef struct ??<
si00 siv3si00; /* Area mapped by

struct si00 */
si22v3 siv3si22v3; /* Area

mapped by struct si22v3 */
??> siv3;

/**/
* Fixed Service Parameter and Return Code Defines *
***/

/* SI00 Constants */

#define SI00CPCVARIETY_V1CPC_MACHINE 1
#define SI00CPCVARIETY_V2CPC_LPAR 2
#define SI00CPCVARIETY_V3CPC_VM 3

/* CSRSI Constants */

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2

System information service (CSRSI)

252 z/OS V2R1.0 MVS Callable Services for HLL

#define CSRSI_REQUEST_V3CPC_VM 4

/* CSRSI Return codes */

#define CSRSI_SUCCESS 0
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 20

System information service (CSRSI)

Chapter 18. CSRSI — System information service 253

System information service (CSRSI)

254 z/OS V2R1.0 MVS Callable Services for HLL

Part 8. Base Control Program internal interface (BCPii)
services

© Copyright IBM Corp. 1994, 2014 255

256 z/OS V2R1.0 MVS Callable Services for HLL

Chapter 19. Base Control Program internal interface (BCPii)

IBM provides support within z/OS that allows authorized applications to query,
change, and perform operational procedures against the installed System z
hardware base through a set of application program interfaces. These applications
can access the System z hardware that the application is running on and extend
their reach to other System z processors within the attached process control
(Hardware Management Console) network.

Using the Base Control Program internal interface (BCPii), an authorized z/OS
application can perform the following actions:
v Obtain the System z topology of the current interconnected Central Processor

Complexes (CPCs) as well as the images, capacity records, activation profiles,
and user-defined image groups defined on a particular CPC.

v Query CPC, image (LPAR), capacity record, activation profile, and user-defined
image group information.

v Set various configuration values related to CPC, image and activation profiles.
v Issue commands against CPCs, images (LPARs), and user-defined image groups

to perform minor or even significant hardware- and software-related functions.
v Listen for various hardware and software events that might take place on

various CPCs and images throughout the HMC-connected network.

Communication to the Support Element (SE) / Hardware Management Console
(HMC) using BCPii is done completely within the base operating system and
therefore does not require communication on an IP network (intranet) for
connectivity, providing complete isolation of your System z hardware
communication from any other network traffic within the intranet/internet.

Calls using the BCPii Application Programming Interfaces (APIs) can be made
from the C, the REXX, or the assembler programming languages. See “Syntax,
linkage and programming considerations” on page 268 for an explanation of how
the APIs are called and see the explanation of each service for the syntax for each
of the BCPii APIs.

BCPii setup and installation
Before an installation begins to issue BCPii APIs, a series of setup and installation
steps must be performed. A summary of these steps is listed below. For additional
details on each of these steps, see the supporting documentation that explains how
each of these steps is accomplished:
1. Configure the local Support Element (SE) to support BCPii:

a. Check the levels of hardware that BCPii supports.
b. Enable cross-partition authority for each image (LPAR) that you want to

grant BCPii access.
c. Define an uppercase BCPii SNMP community name on the SE.

See “Setting up connectivity to the support element” on page 258 for details.
2. Authorize an application to use BCPii, including authority to specific resources

(such as CPCs, images and capacity records):
a. Check that the BCPii application is program-authorized.

© Copyright IBM Corp. 1994, 2014 257

|

b. Check that the BCPii application has general authority to use BCPii.
c. Authorize the BCPii application to access the particular resource that

requires BCPii service.
d. Define an uppercase BCPii SNMP community name in the security product

for each CPC as it was defined on the SE. Use the APPLDATA field with
the CPC profile definition to associate a BCPii SNMP community name with
a particular CPC.

These steps enable communication to the local CPC and allows the BCPii
address space to initialize. See “Setting up authority to use BCPii” on page 261
for details.

3. Configure the BCPii address space. See “BCPii configuration” on page 264 for
details.

4. If the caller is running in a z/OS UNIX System Services environment, set up
the notification mechanism to allow hardware and software events to be
propagated to the z/OS UNIX application. See “Setting up event notification
for BCPii z/OS UNIX applications” on page 264 for details.

5. If the installation allows TSO/E users to have access to the BCPii APIs using
REXX, see “Setting up access for BCPii TSO/E REXX execs” on page 266.

After you have activated the BCPii address space, you need to know how to
control the address space. See “BCPii startup and shutdown” on page 266 for
details.

Figure 21 shows the steps needed to setup and install BCPii.

Setting up connectivity to the support element
BCPii uses a low-level operating system connection to establish communication
between an authorized application running on a z/OS image (LPAR) and the
Support Element (SE) associated with the Central Processor Complex (CPC) that
contains this z/OS image. You must configure the support element to permit these
BCPii communications if BCPii services are required to be available by your
installation.

HMC / SE:
�

�

Check partition authority checkbox for each LPAR that you
want to grant BCPii access.

Define uppercase BCPii SNMP community name on the SE.

Process
Control
Network

RACF

Security Product:
�

�

�

�

Ensure BCPii application has general authority to use BCPii.

Authorize BCPii application to access resources that requires BCPii service.

Define BCPii SNMP community name for each CPC as it was defined on

Optionally, authorize z/OS UNIX BCPii applications to listen for BCPii events.

SE.

z/OS Configuration:
�

�

�

Configure the BCPii address space.

Ensure BCPii application is program-authorized.

Optionally, authorize TSO/E users to access BCPii APIs using REXX.

Figure 21. BCPii setup and installation steps

258 z/OS V2R1.0 MVS Callable Services for HLL

|
|

Note: In order to customize the API settings controls on the SE, your userid must
have administrator rights to access these panels.

Levels of hardware that BCPii supports
The HWIBCPii address space, which supports the issuing of BCPii APIs from a
z/OS image, will run on any hardware that supports a level of the z/OS operating
system in which BCPii is included. However, there will be some reduced BCPii
functionality when a BCPii request targets a system that is not running on a
zEnterprise® machine. The BCPii restrictions increase the further downlevel the
hardware is from a zEnterprise machine. To run with the fewest functionality
restrictions possible, make sure the recommended microcode levels are installed for
that SE, HMC and LPAR hardware.

BCPii applications might need to perform hardware or software functions on CPCs
other than the CPC on which the application is running. Such requests can be
targeted to other System z® hardware at a lower or higher hardware level than the
local CPC, provided that these hardware levels are supported to coexist with the
local CPC level.

The HWICMD service is only allowed to be targeted to at least a System z9®

hardware level running on a particular microcode level. BCPii rejects the targeting
of this service to any System z hardware level earlier than System z9. See
“HWICMD — Issue a BCPii hardware management command” on page 278 for
further information.

Consult Table 52 to determine the minimum level of microcode required to run
BCPii on a specific hardware level.

Table 52. Minimum BCPii microcode levels by SE hardware level

SE hardware level Minimum microcode level

IBM System z9 Driver 67 MCL 258 in the G40965 (SE-SYSTEM) EC stream

IBM System z10® Driver 79 MCL 163 in the N24409 (SE-SYSTEM) EC stream

IBM zEnterprise 196 MCL 220 in the N29802 (SE-SYSTEM) EC stream

IBM zEnterprise EC12 Any level

Consult Table 53 to determine the minimum level of microcode required to run
BCPii on a specific HMC level.

Table 53. Minimum BCPii microcode levels by HMC level

HMC level Minimum microcode level

IBM System z9 Driver 67 MCL 158 in the G40969 (HMC-SYSTEM) EC stream

IBM System z10 Driver 79 MCL 034 in the N24415 (HMC-SYSTEM) EC stream

IBM zEnterprise 196 Any level

IBM zEnterprise EC12 Any level

Consult Table 54 to determine the minimum level of microcode required to run
BCPii on a specific LPAR level.

Table 54. Minimum BCPii microcode levels by LPAR level

LPAR level Minimum microcode level

IBM System z9 Driver 67 MCL 008 in the G40954 (LPAR) EC stream

IBM System z10 Driver 79 MCL 002 in the N24404 (LPAR) EC stream

IBM zEnterprise 196 Any level

Chapter 19. Base Control Program internal interface (BCPii) 259

|

Table 54. Minimum BCPii microcode levels by LPAR level (continued)

LPAR level Minimum microcode level

IBM zEnterprise EC12 Any level

Each version of hardware has subtle or sometimes significant changes in the way
information is displayed and saved in the support element. The examples serve as
a guide only to where the actual definitions that need to be modified are located
within the support element configuration windows.

Enable BCPii communications on the support element
You need to enable cross-partition authority on the support element to allow the
support element to accept the BCPii APIs flowing from the user application
through the HWIBCPii address space. This setting controls whether a logical
partition can issue a subset of control program instructions to other logical
partitions activated on the same CPC.

Note: This setting must be selected on the local SE associated with the CPC of the
image that the z/OS BCPii application is running on. It must also be selected for
any other system for which BCPii communication is required.

To change this setting, perform the following steps on the HMC:
1. Select the CPC that is required.
2. Open Single Object Operations.
3. Open the CPC Operational Customization task list.
4. Highlight the CPC icon.
5. Open the Change LPAR Security task, and the Change Logical Partition

Security window displays.
6. Check the cross-partition authority checkbox for each image (LPAR) that you

want to grant BCPii access. At a minimum, the image (LPAR) the BCPii address
space is running needs to have this authority activated.

7. Select Save and Change.

See the HMC book and System z9 Support Element Operations Guide and System z10
Support Element Operations Guide for more information regarding changing the
support element settings.

Failure to set this properly on the local SE associated with the image of z/OS that
is running BCPii results in a severe BCPii address space initialization failure. You
cannot start the address space and will receive communications error X'101' with a
reason code of X'D4'. Failure to set this up properly on remote SEs to which you
want to connect results in the same return code and reason code on the
HWICONN service call.

Note: Make the same updates to all CPCs that you want BCPii to communicate
with and not just the CPC from which the BCPii application is going to run on.

Define the BCPii community name on the support element
BCPii uses an SNMP community name to provide a level of security between the
z/OS image that is executing the BCPii service and the support element itself.

An SNMP community is a logical relationship between an SNMP agent and an
SNMP manager. The community has a name, and all members of a community
have the same access privileges: they are either read-only (members can view

260 z/OS V2R1.0 MVS Callable Services for HLL

configuration and performance information) or read-write (members can view
configuration and performance information, and also change the configuration).

To add the BCPii community name definition to the SE configuration, perform the
following steps on the HMC:
1. Select the CPC that is required.
2. Open Single Object Operations.
3. Select the Console Actions view.
4. Select Support Element Settings.
5. Open the Customize API Settings.
6. Check the Enable SNMP APIs checkbox.
7. Consider checking the "Allow capacity change API requests" checkbox on a

z10 or higher operation system if the installation is to allow a BCPii
application to perform temporary capacity upgrades.

8. Make sure that the SNMP agent parameters are blank.
9. Add a BCPii community name. Click on Add. When a window is prompted,

fill in the following fields:

Name The actual SNMP community name. This value is a 1– to 16–character
alphanumeric field. Only uppercase letters and numbers are allowed.
Because of restrictions with the security products on z/OS, the BCPii
SNMP community name must not contain any lowercase characters.
See “Community name defined in the security product for each CPC”
on page 263 for more information about the SNMP community name.

Address
For BCPii, this address (sometimes referred to as a loop-back address)
must be 127.0.0.1.

Network mask/Prefix
255.255.255.255.

Access Type
Read/write

10. Save the changes.

See System z9 Support Element Operations Guide and System z10 Support Element
Operations Guide for more information regarding changing the support element
settings.

Failure to set this properly on the local SE associated with the image of z/OS that
is running BCPii results in a severe BCPii failure and you cannot start the address
space. Message HWI022I might be issued if the community name defined on the
support element for the local CPC does not match the definition in the security
product for the local CPC. See “Community name defined in the security product
for each CPC” on page 263 for more information.

Note: Make the same updates to all CPCs that you want BCPii to communicate
with.

Setting up authority to use BCPii
Given the nature of the BCPii APIs and the capabilities of a BCPii application to
potentially modify vital hardware resources, a number of authority validations are
performed for each BCPii requestor. A BCPii application needs to have program
authority, general security product authority to be able to issue BCPii commands,

Chapter 19. Base Control Program internal interface (BCPii) 261

authority to the particular resource that the application is trying to access, and a
community name defined in the security product for each CPC to which
communication is required.

Program authority
BCPii applications must be program-authorized, meaning that one of the following
must be true of the application:
v Running in supervisor state.
v Running in an authorized key with PSW key mask (PKM) between 0 and 7.
v Residing in an APF-authorized library.

General security product authority
A BCPii application needs to have general authority to use BCPii. The profile
HWI.APPLNAME.HWISERV in the FACILITY resource class controls which
applications can use BCPii services. The security administrator must give at least
read authority to this resource, in addition to granting authority to any specific
resource that the application is attempting to access. In addition, BCPii requires
that the FACILITY class to be RACLIST-specified. The RACF syntax is as follows:
RDEFINE FACILITY HWI.APPLNAME.HWISERV UACC(NONE)
PERMIT HWI.APPLNAME.HWISERV CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

This RACF example allows user JOE to use BCPii services in general:
RDEFINE FACILITY HWI.APPLNAME.HWISERV UACC(NONE)
PERMIT HWI.APPLNAME.HWISERV CLASS(FACILITY) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

Generic definitions may be created instead of specific users if the installation does
not have specific definitions for every user.

This RACF example defines user IDs BCPII and HWISTART to the security
product:
ADDUSER BCPII DFLTGRP(SYS1)
RDEFINE STARTED BCPII.** STDATA(USER(BCPII) GROUP(SYS1))
ADDUSER HWISTART DFLTGRP(SYS1)
RDEFINE STARTED HWISTART.** STDATA(USER(BCPII) GROUP(SYS1))
SETROPTS RACLIST(STARTED) REFRESH

Authority to the particular resource
A BCPii application needs to have authority to the particular resource that it is
trying to access. That particular resource can be the CPC itself, an image (LPAR)
on a particular CPC, or a particular capacity record on a particular CPC. BCPii
needs a profile defined in the FACILITY resource class that represents the target of
the particular BCPii request. The profile name required to be defined depends on
the type of the particular resource required.

Request Type FACILITY Class Profile Required

CPC HWI.TARGET.netid.nau where netid.nau represents the 3– to
17–character SNA name of the particular CPC.

Image HWI.TARGET.netid.nau.imagename where netid.nau represents
the 3– to 17–character SNA name of the particular CPC and
imagename represents the 1– to 8-character LPAR name.

Capacity record HWI.CAPREC.netid.nau.caprec where netid.nau represents the
3– to 17–character SNA name of the particular CPC and caprec
represents an 8–character capacity record name.

262 z/OS V2R1.0 MVS Callable Services for HLL

Request Type FACILITY Class Profile Required

Activation profiles HWI.TARGET.netid.nau where netid.nau represents the 3– to
17–character SNA name of the particular CPC the activation
profile is defined.

User-defined image
groups

HWI.TARGET.netid.nau where netid.nau represents the 3– to
17–character SNA name of the particular CPC the user-defined
image group is defined.

Note: For compatibility with security products, BCPii automatically transforms the
following names to all uppercase characters: CPC names (including the local CPC
name represented by '*'), image names, and capacity record names specified on the
HWICONN service.

The access level required for the particular profile depends on the service that the
BCPii application attempts to issue. See the BCPii API documentation in this
chapter for specifics regarding the minimum access level required for each BCPii
API service. The RACF syntax is as follows:
RDEFINE FACILITY HWI.TARGET.netid.nau UACC(NONE) APPLDATA(’uppercasecommunityname')
PERMIT HWI.TARGET.netid.nau CLASS(FACILITY) ID(userid) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

where netid.nau represents the 3 to 17 character SNA name of the CPC.

This RACF example allows user JOE to have Connect, Event, List, and Query
access to CPC NET1.CPC001, using community name XYZ123. See “Community
name defined in the security product for each CPC” for more details.
RDEFINE FACILITY HWI.TARGET.NET1.CPC001 UACC(NONE) APPLDATA('XYZ123')
PERMIT HWI.TARGET.NET1.CPC001 CLASS(FACILITY) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(FACILITY) REFRESH

This RACF example grants user JOE with Command, Connect, Event, List, Query,
and Set access to any image (LPAR) on NET1.CPC001:
RDEFINE FACILITY HWI.TARGET.NET1.CPC001.* UACC(NONE)
PERMIT HWI.TARGET.NET1.CPC001.* CLASS(FACILITY) ID(JOE) ACCESS(ALTER)
SETROPTS RACLIST(FACILITY) REFRESH

Community name defined in the security product for each CPC
BCPii uses an SNMP community name to provide a minimal level of security
between the z/OS image executing the BCPii service and the support element
itself.

An SNMP community name is associated with a particular CPC. The same SNMP
community name that was defined in the support element configuration for a
particular CPC also must be defined in the security product for each CPC to which
communication is required. This community name definition is extracted from the
security product by BCPii and propagated to the support element. The support
element validates that the community name passed by BCPii is correct before
proceeding with the request. See Define the BCPii community name on the Support
Element for information about how to define the community name on the SE or
how to obtain the already-defined name.

To define the BCPii community name in the security product, use the APPLDATA
field with the CPC profile definition to associate a community name with a
particular CPC. The RACF syntax is as follows:

Chapter 19. Base Control Program internal interface (BCPii) 263

RALTER FACILITY HWI.TARGET.netid.nau APPLDATA(’uppercasecommunityname')
SETROPTS RACLIST(FACILITY) REFRESH

where netid.nau represents the 3 to 17 character SNA name of the CPC.

The APPLDATA field for the BCPii community name contains a 1– to 16–character
alphanumeric field. Only uppercase letters and numbers are allowed. Because of
restrictions with the security products on z/OS, the BCPii SNMP community name
must not contain any lowercase characters.

This RACF example assigns a BCPii community name of XYZ123 to an existing
CPC definition for CPC name NET1.CPC001:
RALTER FACILITY HWI.TARGET.NET1.CPC001 APPLDATA('XYZ123')
SETROPTS RACLIST(FACILITY) REFRESH

Note: A community name definition must be defined for at least the local CPC.
Otherwise, BCPii cannot continue with initialization of its address space and BCPii
services are not available. This is accompanied by message HWI022I.

BCPii configuration
The BCPii address space is the bridge between a z/OS application and the support
element. The address space can perform the following steps:
v Manage all application connections.
v Builds and receive all internal communication requests to the SE.
v Provide an infrastructure for storage required by callers and by the transport

communicating with the SE.
v Provide diagnostic capabilities to help with BCPii problem determination.
v Provide security authentication of requests.

The BCPii address space is mandatory for any BCPii API request. The system
attempts to start the HWIBCPii address space during IPL.

BCPii requires the high-level qualifier.SCEERUN2 and high-level qualifier.SCEERUN
data sets to be in the link list concatenation. IBM specifies these data sets in the
default link list members (PROGxx) in z/OS 1.10 and higher. BCPii also requires
the high-level qualifier.SCEERUN2 and high-level qualifier.SCEERUN data sets to be
APF authorized. Failure to have these two data sets in the link list or APF
authorized results in BCPii not being able to be started, accompanied by error
message HWI009I that indicates that BCPii could not load a required Language
Environment part.

BCPii also includes a parmlib member into SYS1.PARMLIB for default CTRACE
settings (CTIHWI00) when BCPii initializes. See z/OS MVS Diagnosis: Tools and
Service Aids for further information regarding CTRACE settings in BCPii.

Setting up event notification for BCPii z/OS UNIX applications
Applications running in a started procedure, batch, TSO or other non z/OS UNIX
environment can use the HWIEVENT service and provide their own ENF exit that
receives control when the application-requested events occur on the target CPC or
image.

Applications running in a z/OS UNIX environment do not have normal ENF exit
processing capabilities available and cannot readily listen for ENF signals. The
Common Event Adapter (CEA) address space allows z/OS UNIX applications to

264 z/OS V2R1.0 MVS Callable Services for HLL

be able to receive such event notifications. BCPii provides several services that use
the CEA functionality to deliver these same events to z/OS UNIX callers. See the
documentation for the z/OS UNIX-only services of BCPii
(“HWIBeginEventDelivery — Begin delivery of BCPii event notifications” on page
396, “HWIEndEventDelivery — End delivery of BCPii event notifications” on page
399, “HWIManageEvents — Manage the list of BCPii events” on page 402, and
“HWIGetEvent — Retrieve outstanding BCPii event notifications” on page 407) for
details about the services a z/OS UNIX application can use to receive event
notification.

The use of the CEA address space by BCPii requires some minor CEA setup before
z/OS UNIX-only services of BCPii can work properly.

CEA address space setup
The Common Event Adapter (CEA) address space must be active to allow the
z/OS UNIX-only services of BCPii to operate. CEA has two modes of operation:
minimum or full-function mode. If the z/OS UNIX-only services of BCPii are
required to be available, CEA must be running in full-function mode. To activate
full-function mode, a set of security product definitions are required. See z/OS
Planning for Installation for more information about how to configure Common
Event Adapter for full-function mode.

CEA, like BCPii, starts as part of a system IPL. It can be stopped and restarted as
well. See z/OS Planning for Installation for more information.

CEA ENF security configuration
A z/OS UNIX BCPii application must be granted authority to listen to ENF68
events. With the CEA ENF controls, it is also possible to fine-tune which BCPii
events a user is allowed to listen to.

This RACF example gives generic authority to the user id associated with a z/OS
UNIX application authority to listen to any BCPii event:
AU user_id OMVS(Uid(n))
SETROPTS GENERIC(SERVAUTH)
RDEFINE SERVAUTH CEA.CONNECT UACC(NONE)
RDEFINE SERVAUTH CEA.SUBSCRIBE.ENF_0068* UACC(NONE)
PERMIT CEA.CONNECT CLASS(SERVAUTH) ID(user_id) ACCESS(READ)
PERMIT CEA.SUBSCRIBE.ENF_0068* CLASS(SERVAUTH) ID(user_id) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

To give specific authority to only certain BCPii events, use the event qualifier as
part of the profile name. The event qualifier maps to the event mask for ENF68 in
the ENFREQ documentation in z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG. Hardware events are in the form ‘03xx00yy’ where xx is
the event source (‘01’x = CPC, and ‘02’x =image) and yy denotes the particular
event.

This RACF example allows user JOE authority to only receive events related to
CPC command responses (CmdResp = ‘01’x):
AU JOE OMVS(Uid(5))
RDEFINE SERVAUTH CEA.CONNECT UACC(NONE)
RDEFINE SERVAUTH CEA.SUBSCRIBE.ENF_006803010001 UACC(NONE)
PERMIT CEA.CONNECT CLASS(SERVAUTH) ID(JOE) ACCESS(READ)
PERMIT CEA.SUBSCRIBE.ENF_006803010001 CLASS(SERVAUTH) ID(JOE) ACCESS(READ)
SETROPTS RACLIST(SERVAUTH) REFRESH

Chapter 19. Base Control Program internal interface (BCPii) 265

Setting up access for BCPii TSO/E REXX execs
The TSO/E environment is an unauthorized program environment. BCPii normally
requires its APIs to be invoked from a program-authorized application. An
installation may choose to allow BCPii APIs to be run under TSO/E REXX by
making a configuration update to the "TSO/E Commands and Programs" parmlib
member (IKJTSOxx). The program HWIC1TRX must be added to the list of
APF-authorized programs that may be called through the TSO Service Facility
(AUTHTSF).

The following example shows the syntax required to add BCPii to this list:
AUTHTSF NAMES(HWIC1TRX)

To activate this change on a live system, issue the SET command: SET IKJTSO=xx;
where xx is the two-character suffix of the IKJTSOxx parmlib member where the
update was made.

Once this change is activated, the TSO/E user still requires SAF authorization to
the correct BCPii profiles in order to successfully perform the desired BCPii
operations.

BCPii startup and shutdown
The BCPii address space normally does not need to be started or shut down. BCPii
initialization occurs during system IPL. If the configuration is correct, no further
action is required. The address space remains active and ready to handle BCPii
requests.

BCPii address space does not start up at IPL
If the HWIBCPii address space is not active after an IPL has been done, look for
HWI* messages in the system log. Most of the time, these messages pinpoint the
reason for the failure of BCPii to become active.

In most cases, the address space did not start for one of two main reasons:
1. The support element that controls the CPC that contains the image of z/OS on

which BCPii is being started has the improper configuration. Make sure all the
steps have been followed in “Setting up connectivity to the support element”
on page 258.

2. The community name of the local CPC is either not defined in the security
product or contains an incorrect value. This is accompanied by message
HWI022I (when the value defined in the security product is incorrect). See
“Community name defined in the security product for each CPC” on page 263
for detailed information.

When these problems have been corrected, restart the BCPii address space. See
“Restarting the HWIBCPii address space” on page 267 for more information.

Ending the HWIBCPii address space
The application of certain kinds of code maintenance or other unusual
circumstances might require that the BCPii address space be stopped. To stop the
BCPii address space, issue the STOP command for the BCPii address space: P
HWIBCPII. In most cases, the address space ends normally. BCPii services are no
longer available until the address space is restarted. See z/OS MVS Initialization and
Tuning Reference for more information about the STOP HWIBCPII command.

If the STOP command fails to completely bring down the BCPii address space, you
can issue the CANCEL command: C HWIBCPII. The address space then ends in a

266 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

similar way to the STOP command. See z/OS MVS Initialization and Tuning Reference
for more information about the CANCEL command.

If the CANCEL command still fails to completely bring down the BCPii, you can
issue the FORCE command as a last resort: FORCE HWIBCPII. See z/OS MVS
Initialization and Tuning Reference for more information about the FORCE command.

BCPii issues an ENF 68 broadcast to notify interested ENF listeners that BCPii
services are no longer available. See z/OS MVS Programming: Authorized Assembler
Services Reference EDT-IXG for more information regarding this ENF signal.

Restarting the HWIBCPii address space
After the BCPii address space has ended, it can be restarted. A procedure supplied
by IBM in SYS1.PROCLIB allows the BCPii address space to be restarted. Issue the
S HWISTART command to restart the HWIBCPii address space. When message
HWI001I appears, BCPii is now active and all BCPii requests may resume.
However, all prior connections are no longer valid, and applications will need to
re-establish these connections in order to resume their current BCPii activity. See
z/OS MVS Initialization and Tuning Reference for more information about the START
HWISTART command.

BCPii issues an ENF 68 broadcast when the address space has completely
initialized to notify interested ENF listeners that BCPii services are now available.
See z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG for
more information regarding this ENF signal.

BCPii callable services
You can use base control program internal interface (BCPii) services to connect an
authorized z/OS application to System z configuration resources (such as CPC,
image, capacity record, or activation profile data) and to allow that application to
potentially modify these resources.

To use base control program internal interface (BCPii) services, issue calls from
high level language programs. Each service requires a set of parameters coded in a
specific order on the CALL statement.

This topic describes the CALL statements that invoke BCPii services. Each
description includes a syntax diagram, parameter descriptions, return and reason
code explanations with recommended actions. Return and reason codes are shown
in hexadecimal and decimal with the associated equate symbols.

This topic contains the following subtopics:
v “Syntax, linkage and programming considerations” on page 268
v “HWICMD — Issue a BCPii hardware management command” on page 278
v “HWICONN — Establish a BCPii connection” on page 297
v “HWIDISC — Release a BCPii connection” on page 308
v “HWIEVENT — Register or unregister for BCPii events” on page 314
v “HWILIST — Retrieve HMC and BCPii configuration-related information” on

page 326
v “HWIQUERY — BCPii retrieval of SE/HMC-managed attributes” on page 338
v “HWISET — BCPii set SE/HMC-managed attributes” on page 366
v “HWIBeginEventDelivery — Begin delivery of BCPii event notifications” on

page 396

Chapter 19. Base Control Program internal interface (BCPii) 267

v “HWIEndEventDelivery — End delivery of BCPii event notifications” on page
399

v “HWIManageEvents — Manage the list of BCPii events” on page 402
v “HWIGetEvent — Retrieve outstanding BCPii event notifications” on page 407

Syntax, linkage and programming considerations
Programming language definitions are provided in the following languages:
v In C (HWICIC) in data set SYS1.SIEAHDRV.H. Miscellaneous C constants are

defined in HWIZHAPI in the same data set.
v In REXX (HWICIREX) in data set SYS1.MACLIB. Miscellaneous REXX constants

are defined in HWIC2REX in the same data set.

Note:

1. If the REXX exec is running under System REXX using the TSO=YES
environment, these include files may be read in at the time of execution by
the REXX exec. A simple programming example that reads the values into
the REXX exec through the use of the EXECIO function is provided in the
IBM-supplied REXX samples. See “Programming Examples” on page 278 for
further information.

2. If the REXX exec is running under System REXX using the TSO=NO
environment, the definitions in these include files may be copied into the
REXX exec.

v In assembler (HWICIASM) in data set SYS1.MACLIB. Miscellaneous assembler
constants are defined in HWIC2ASM in the same data set.

Calling formats
Some specific calling formats for languages that can invoke the BCPii callable
services are:

C BCPii_service_name (return_code,parm1,parm2, ...)

REXX ADDRESS BCPii “BCPii_service_name return_code parm1 parm2 ...”

Assembler Call macro
CALL BCPii_service_name,(return_code,parm1,parm2, ...),VLIST

BCPii connection scope
BCPii limits access to active BCPii connections. BCPii will not allow a program to
use a previously established BCPii connection unless it is running in the proper
environment. BCPii associates a connection with either an address space or a task,
depending on the execution environment of the connector. It then uses this
association (affinity) to determine if the connection is allowed to be used on
subsequent requests.

Connections with address space affinity
The BCPii connections created by a C program, an assembler program, or a System
REXX exec are associated with an address space.
v For C and assembler programs, BCPii creates an affinity between the connection

and the address space that initiated the connection (via the HWICONN service).
v For a System REXX exec, BCPii creates an affinity between the connection and

the address space that initiated the execution of the REXX exec (via the AXREXX
authorized service call).

268 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|

|
|
|
|
|
|

|
|
|

|

||

|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

BCPii allows any task running in the same address space to use these connections
on subsequent BCPii API calls. In addition, the connection remains active until the
address space terminates.

Connections with task affinity
The BCPii connections created by a REXX exec running in either a TSO/E or
ISV-provided REXX environment are associated with the task that initiated the
execution of the REXX exec.

BCPii only allows the task that initiated the connection (via the HWICONN
service) to access this connection on subsequent BCPii API calls. In addition, the
connection only remains active until the task terminates.

Linkage considerations
There are two ways for a compiled BCPii application (non-REXX) to find BCPii
callable services:
v Use the linkable stub routine HWICSS from SYS1.CSSLIB to link-edit your object

code.
v Use the LOAD macro to find the address of the BCPii callable service at run

time and then CALL the service.

REXX programming considerations
BCPii supports REXX execs being executed from the System REXX, TSO/E REXX,
and independent software vendor (ISV) REXX programming environments. Each
REXX environment is unique:
v System REXX supports all BCPii APIs and provides the capability to write

sophisticated BCPii applications by utilizing REXX and other programming
languages as part of a single application.

Note:

– To use the HWIEVENT and HWICMD services, a non-REXX adjunct helper
program is needed to call z/OS system services to prepare for events and to
coordinate with an event exit. See “Programming Examples” on page 278 for
detailed information.

– The System REXX "MODIFY AXR" command is not supported by BCPii. See
“Executing a BCPii REXX exec in the System REXX environment” on page
270.

v TSO/E REXX execs are easy to execute from a TSO user. This environment
supports all the BCPii APIs, except HWIEVENT and HWICMD.

v ISV-provided REXX environments provide different features, depending on
which ISV product is being used. These environments support all the BCPii
APIs, except HWIEVENT and HWICMD.

The following table identifies the z/OS BCPii APIs supported in the three REXX
environments:

Table 55. BCPii APIs supported in the REXX environment

BCPii APIs System REXX environment TSO/E REXX environment
ISV-provided REXX

environment

HWICONN X X X

HWIDISC X X X

HWILIST X X X

Chapter 19. Base Control Program internal interface (BCPii) 269

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

||

|||
|
|

||||

||||

||||

Table 55. BCPii APIs supported in the REXX environment (continued)

BCPii APIs System REXX environment TSO/E REXX environment
ISV-provided REXX

environment

HWIQUERY X X X

HWISET X X X

HWIEVENT X

HWICMD X

The syntax of the BCPii REXX execs are identical in all three REXX environments.
Therefore, a BCPii REXX exec written to be used in one REXX environment can be
run in another REXX environment without change.

Executing a BCPii REXX exec in the System REXX environment
BCPii supports the invocation of its APIs from the System REXX programming
environment. Execs running in this environment are APF-authorized. A user may
choose either of the following methods to have their exec run under System REXX:
v Invoke the authorized HWIREXX helper program for basic requests.
v Use the AXREXX macro from an authorized program for more customized

requests.

The dataset where the REXX exec is to be run must be specified using the
REXXLIB keyword in the AXRxx parmlib member, and users of this program must
have the proper authority to run programs residing in LINKLIB.

BCPii REXX programming restrictions for the System REXX environment: BCPii
does not support being invoked from a REXX exec which has been started via the
MODIFY AXR command. Any attempt to run from this environment results in a
return code of HWI_REXXInvalidExecutionEnv.

Using the HWIREXX interface: For basic REXX execs, BCPii API calls can be run
easily from the System REXX programming environment using the supplied
HWIREXX helper program, without the need to code an assembler program with
an AXREXX macro invocation. IBM provides sample invocation JCL for HWIREXX
in SAMPLIB member HWIXMRJL.

The HWIREXX interface provides some of the most common AXREXX macro
keywords as input parameters. The following keywords are supported:

Table 56. HWIREXX keywords

HWIREXX keyword
Required/
Optional Default value

AXREXX macro parameter
equivalent

NAME=xxx; where xxx is a 1-8 character
exec name to be executed.

Required N/A NAME

DSN=xxx.xxx.xxx; where xxx.xxx.xxx is a
1-44 character PDS data set name where the
REXX exec output is directed.
Note: The data set may be pre-allocated
prior to execution of the exec. If the data set
is not pre-allocated, the data set is allocated
by System REXX. In either case, the output
from the REXX exec is contained in a
member name within the data set that
matches the specified HWIREXX NAME.

Optional NO_ REXXOUTDSN REXXOUTDSN

270 z/OS V2R1.0 MVS Callable Services for HLL

|

|||
|
|

||||

||||

||||

||||
|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

||

|
|
||
|
|

|
|
|||

|
|
|
|
|
|
|
|
|
|

|||

Table 56. HWIREXX keywords (continued)

HWIREXX keyword
Required/
Optional Default value

AXREXX macro parameter
equivalent

TSO=<Y/N>; where 'Y' means to run in the
TSO host command environment, and 'N'
means to run in the standard MVS host
environment.

Optional N TSO

SYNC=<Y/N>; where 'Y' means the request
is synchronous, and 'N' means the request is
asynchronous.

Optional Y SYNC

TIMELIM=<Y/N>; where 'Y' means that a
time limit is applied, and 'N' means that no
time limit is applied.

Optional Y TIMELIMIT

TIME=xxx; where xxx is a number value
between 1 and 21474536 that represents the
number of seconds to allow the exec to run.

Optional System default value TIMEINT

See the JCL example HWIXMRJL shipped in SAMPLIB for more information on
the invocation of the HWIREXX helper program.

If additional AXREXX macro parameters are required (other than the AXREXX
macro parameters listed above) to properly establish the System REXX
environment, an explicit invocation of the AXREXX macro is required. See “Using
the AXREXX macro” on page 272 for detailed information.

Return codes from the HWIREXX service:

Table 57. Return codes from the HWIREXX service

HWIREXX return
code (in decimal) Meaning and action

0 Meaning: BCPii processed the REXX host command successfully.

Action: Consult the BCPii return code on the BCPii service call to
determine the final result of the request.

100 Meaning: Program error. Caller's JCL string has a syntax error.

Action: Check for a probable coding error and correct the problem.
See “Using the HWIREXX interface” on page 270 for detailed
information.

101 Meaning: Program error. A required parameter is not found.

Action: Check for a probable coding error and correct the problem.

102 Meaning: Program error. No input parameters were specified.

Action: Check for a probable coding error and correct the problem.

103 Meaning: Program error. A parameter keyword was provided that
is not supported by HWIREXX.

Action: Check for a probable coding error and correct the problem.
HWIREXX supports these keywords only: NAME, DSN, TSO,
SYNC, TIMELIM, and TIME (which correspond to the AXREXX
macro parameters: NAME, REXXOUTDSN, TSO, SYNC,
TIMELIMIT, and TIMEINT, respectively.)

104 Meaning: Program error. Duplicate parameter keys are specified.

Action: Check for a probable coding error and correct the problem.

Chapter 19. Base Control Program internal interface (BCPii) 271

|

|
|
||
|
|

|
|
|
|

|||

|
|
|

|||

|
|
|

|||

|
|
|

|||

|
|
|

|
|
|
|

|

||

|
||

||

|
|

||

|
|
|

||

|

||

|

||
|

|
|
|
|
|

||

|

Table 57. Return codes from the HWIREXX service (continued)

HWIREXX return
code (in decimal) Meaning and action

105 Meaning: Program error. A keyword may only consist of
alphanumeric characters.

Action: Check for a probable coding error and correct the problem.

106 Meaning: Program error. Parameter values may only consist of
alphanumeric characters and periods (.) .

Action: Check for a probable coding error and correct the problem.

107 Meaning: Program error. The TSO parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

108 Meaning: Program error. The SYNC parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

109 Meaning: Program error. The TIMELIM parameter must be Y or N.

Action: Check for a probable coding error and correct the problem.

110 Meaning: Program error. A parameter value is too long. Name
values are limited to 8 characters; data set names are limited to
forty-four (44) characters; the TSO value is one character; the SYNC
value is one character; the TIMELIM value is one character; and the
TIME value is limited to 8 characters.

Action: Check for a probable coding error. Reduce the length to the
appropriate size based on the specified parameter.

111 Meaning: Program error. Blank character is not allowed in the JCL
string.

Action: Check for a probable coding error and correct the problem.

2049 - 4111 Meaning: Reason code returned from AXREXX.

Action: See the AXREXX macro in z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN.

4095 Meaning: System error. An unexpected error is detected. The
system rejects the service call.

Action: Search the problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center.

Using the AXREXX macro: If HWIREXX does not provide the options for your
REXX exec requires, you can run your REXX exec using the AXREXX macro from
the System REXX programming environment.

For example, an assembler program running in supervisor state, PKM 0-7, or
APF-authorized can invoke the AXREXX macro to execute a REXX exec as follows:
AXREXX REQUEST=EXECUTE,

NAME=execname, <--- 8-character name of REXX exec
TSO=NO, <--- Runs in a standard MVS host command environment
REXXARGS=rexxargs, <--- Input/output parmeters mapped by AXRARGLST
REXXOUTDSN=outdsn, <--- Specify output data set
REXXOUTMEMNAME=memname, <--- Specify output member name
RETCODE=retcode, <--- R15 as a result of REXX exec

272 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||

||
|

|

||
|

|

||

|

||

|

||

|

||
|
|
|
|

|
|

||
|

|

||

|
|

||
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

RSNCODE=rsncode, <--- R10 as a result of REXX exec
TIMELIMIT=[YES,NO], <--- Do you want the REXX exec to timeout?
TIMEINT=numofsecs <--- If TIMELIMIT=YES, how much time to wait?

After the invocation of the above AXREXX macro, the REXX exec gets control and
the input parameters are passed to the REXX exec. If any output is generated from
the exec, it is directed to the specified output data set and member name. Lastly,
the return code and reason code are returned.

For a complete description of the AXREXX macro and its usage, see z/OS MVS
Programming: Authorized Assembler Services Guide and z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN. For a BCPii example showing the
invocation of the AXREXX macro, see SAMPLIB member HWIXMRA1.

Executing a BCPii REXX exec in the TSO/E REXX environment
BCPii supports the invocation of its APIs from the TSO/E REXX programming
environment, as long as the installation has allowed BCPii to be available from the
TSO/E environment. See “Setting up access for BCPii TSO/E REXX execs” on page
266 for information on setting up BCPii to run in a TSO/E REXX environment.

BCPii APIs can be run from REXX execs under TSO/E in the following ways:
v TSO/E foreground:

– Issue the exec from the TSO/E READY mode, or
– ISPF by using the TSO EXECUTE command.

See TSO/E REXX User's Guide for the syntax of the EXECUTE command.
v TSO/E background:

– Issue the exec from JCL, specifying IKJEFT01 as the program name on the JCL
EXEC statement. See TSO/E REXX Reference for more information about
running REXX execs using IKJEFT01.

BCPii REXX programming restrictions for the TSO/E environment: The
following are not supported in BCPii REXX execs running in the TSO/E
environment:
v HWICMD
v HWIEVENT
v HWI_LIST_EVENTS for the BCPii HWILIST service

Executing a BCPii REXX exec in an ISV-provided REXX
environment
BCPii supports the invocation of its APIs from ISV-provided REXX programming
environments, provided that the REXX execs running in this environment are
program-authorized.

Because BCPii support is not native to ISV-provided REXX environments, the BCPii
host command environment must first be enabled. To accomplish this, the BCPii
REXX exec must first invoke the BCPii-provided hwihost function to enable the
BCPii host command environment prior to any BCPii API invocation using "address
bcpii".

Note: It is also recommended (but not required) that you invoke the hwihost
function to disable the BCPii host environment when it is no longer needed by the
BCPii REXX exec.

Chapter 19. Base Control Program internal interface (BCPii) 273

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

To enable the BCPii host command environment, add the following statement to
your BCPii REXX exec:
RC = hwihost("ON")

To disable the BCPii host command environment, add the following statement to
your BCPii REXX exec:
RC = hwihost("OFF")

Invocations of the hwihost function in an exec running in either the System REXX
or TSO/E REXX programming environments are ignored, and the resulting return
code is always zero. This ensures compatibility of REXX execs running in any
REXX programming environment on z/OS.

BCPii REXX programming restrictions for an ISV-provided REXX environment:
The following are not supported in BCPii REXX execs running in an ISV-provided
REXX environment:
v HWICMD
v HWIEVENT
v HWI_LIST_EVENTS for the BCPii HWILIST service

REXX Programming tips
When programming a BCPii application using REXX, see the specific REXX
programming considerations for each individual BCPii callable service for all
necessary interface distinctions. Users of the BCPii REXX interface should be aware
of the following:
v All parameters passed on BCPii REXX service calls must be REXX variables.

Literals are not supported (for example, a variable name which has been
assigned the value of a ListType should be specified on the call instead of the
value itself).

v Variable names specified on BCPii REXX service calls are limited to 40 characters
in length.

v Output variables specified on BCPii REXX service calls may be initialized or
un-initialized. On input, the value of output variables are not verified. Output
variables are initialized and set by BCPii.

v If the value of an input variable is incompatible with the parameter type
required on a particular BCPii REXX service call, an error is flagged. See the
REXX programming considerations for each BCPii callable service for the
specific interface distinctions.

v The DiagArea for each BCPii REXX service call is returned using stem variables
in the form: x.Diag_Index, x.Diag_Key, x.Diag_Actual, x.Diag_Expected,
x.Diag_CommErr and x.Diag_Text (where x is the name of the stem variable
specified on the parameter list). If no DiagArea information is filled in by BCPii,
the value of the DiagArea stem-variable on return is all blanks.

v Stem variables utilized by BCPii have hard-coded stem variable tail values
which usually correspond to the documented parameter name. For example, the
QueryParm. stem must be prepared in REXX with the exact stem variable
"ATTRIBUTEIDENTIFIER".

v The ConnectToken parameter returned on the HWICONN call and passed as
input on all subsequent services contains non-displayable characters. Ensure that
this ConnectToken is untouched by the REXX exec, thereby allowing subsequent
BCPii services to read the value correctly.

v For System REXX execs only: Consider the length of time necessary to run your
BCPii REXX exec. BCPii applications are interacting with the CPC's support

274 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|

|
|

|

|
|
|
|

|
|
|

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

element. Therefore, BCPii REXX execs may take longer to run than other REXX
execs. To avoid having your BCPii REXX application end prematurely, even
when the amount of time calculated is reasonable to complete your BCPii REXX
exec, consider using the TIMELIMIT and TIMEINT keywords on the AXREXX
service call. The default TIMELIMIT=YES, TIMEINT=SYSTEM causes the REXX
exec to stop running after a predetermined amount of time. The TIMEINT value
may be increased to give the REXX exec additional time to complete its
execution before being timed out by the system. In certain circumstances, it may
be necessary to specify TIMELIMIT=NO to prevent the REXX exec from timing
out. This option should be used with caution as System REXX has a finite
number of system-wide regions where the System REXX execs are executed. If
TIMELIMIT=NO is specified unnecessarily, this could eventually lead to a
constrained System REXX environment.

v BCPii connections created under System REXX can be used by any program
running in the address space of the connector (Address space affinity). BCPii
connections created under the TSO/E or ISV-provided REXX environments can
only be used by the same task as the connector (Task affinity). See “BCPii
connection scope” on page 268 for detailed information.

v BCPii requires all callers to be program-authorized. REXX execs in the zFS
cannot run as APF-authorized when invoked from the shell. Therefore, any calls
to BCPii services from REXX execs in this environment will result in a
HWI_AUTH_FAILURE return code.

v The built-in REXX RC variable contains the return code from the REXX BCPii
host command. This return code indicates BCPii's acceptance of the supplied
REXX BCPii host command. The return codes returned in the RC variable are
generally unique to the REXX environment. In contrast, the BCPii service return
code, the variable supplied on the service call itself, is only filled in if the RC
variable has a value of HWI_OK (0) or HWI_REXXParmSyntaxError (1). Possible
return codes returned by BCPii in the RC variable are:

Return codes from a REXX BCPii host command
Table 58. Return codes from a REXX BCPii host command

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

0 HWI_OK Meaning: BCPii processed the REXX host command successfully.

Action: Consult the BCPii return code on the BCPii service call to
determine the final result of the request.

1 HWI_REXXParmSyntaxError Meaning: Program error. The REXX BCPii host command has detected
that the format of the parameters is not in the proper form to be
accepted by BCPii.

Action: Check for a probable coding error. See the BCPii return code on
the BCPii service call to determine the reason for the syntax error. See
the REXX programming considerations of the BCPii service to see the
exact calling specifications. Compare the BCPii REXX service call
attempted with service call examples in the supplied BCPii REXX
programming sample found in SYS1.SAMPLIB. See the DiagArea for
further diagnostic information.

2 HWI_REXXUnsupportedService Meaning: Program error. An unknown BCPii service name was specified
on the BCPii REXX host command.

Action: Check for a probable coding error. Specify a valid BCPii service
name (for example, HWICONN, HWILIST, and so on).

Chapter 19. Base Control Program internal interface (BCPii) 275

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

||

|
||

||

|
|

||
|
|

|
|
|
|
|
|
|

||
|

|
|

Table 58. Return codes from a REXX BCPii host command (continued)

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

3 HWI_REXXInvalidNumofParms Meaning: Program error. The number of parameters specified on the
BCPii REXX host command for the service name specified does not
match the number of parameters expected.

Action: Check for a probable coding error. See the REXX programming
considerations of the BCPii service to see the exact calling specifications.
Compare the BCPii REXX service call attempted with service call
examples found in the supplied BCPii REXX programming sample
found in SYS1.SAMPLIB.

4 HWI_REXXStemVarRequired Meaning: Program error. The BCPii REXX service specified on the BCPii
REXX host command is missing one or more required stem variables in
the positional parameter list.

Action: Check for a probable coding error. See the REXX programming
considerations of the BCPii service to see the exact calling specifications.
A stem variable parameter must specify a “.” following the variable
name (for example, “var.”). Also, compare the BCPii REXX service call
attempted with service call examples found in the supplied BCPii REXX
programming sample found in SYS1.SAMPLIB.

5 HWI_REXXParmNameTooLong Meaning: Program error. One or more variables specified on the BCPii
REXX service call on the BCPii REXX host command is greater than the
BCPii maximum REXX variable length (40).

Action: Check for a probable coding error. Reduce the variable name
lengths on the BCPii REXX service call to be 40 characters or less in
length.

6 HWI_REXXInvalidHostEnv Meaning: System error. BCPii detected an unexpected error. The system
rejects the service call.

Action: Search problem reporting data bases for a fix for the problem. If
no fix exists, contact the IBM Support Center.

7 HWI_REXXInvokerNotFound Meaning: Program error. The address space issuing the AXREXX
invocation is no longer running. No new BCPii connections are allowed.

Action: Determine the reason that the AXREXX-invoking address space
terminated prior to the termination of the REXX exec. Correct the
situation and start again.

8 HWI_REXXInvalidExecutionEnv Meaning: Program error. BCPii does not support the BCPii host
command running in the current execution environment.

If the current execution environment is System REXX, it may mean that
an attempt was made to issue a BCPii host command from an exec that
was started using the MODIFY AXR command.

If the current execution environment is either TSO/E or ISV-provided
REXX, it may mean that the requested service was not supported in this
environment.

Action: Run the BCPii host command from a supported environment.

9 HWI_REXXUnSupportedListType Meaning: Program error. BCPii does not support the specified ListType
on the BCPii HWILIST service in the current execution environment.

Action: Correct the specified ListType value or try this request again in
a valid execution environment (for example, the System REXX
environment).

276 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||

||
|
|

|
|
|
|
|

||
|
|

|
|
|
|
|
|

||
|
|

|
|
|

||
|

|
|

||
|

|
|
|

||
|

|
|
|

|
|
|

|

||
|

|
|
|

Table 58. Return codes from a REXX BCPii host command (continued)

REXX RC returned from a BCPii host
command (in decimal) Meaning and action

32 HWI_REXXInternalSystemError Meaning: System error. BCPii detected an unexpected error while
invoking REXX services. The system rejects the service call.

Action: A symptom record has been written to LOGREC to record the
problem. Search problem reporting data bases for a fix for the problem.
If no fix exists, contact the IBM Support Center.

4095 HWI_Unexpected_Error Meaning: System error. BCPii detected an unexpected error. The system
rejects the service call.

Action: A symptom record has been written to LOGREC to record the
problem. Search problem reporting data bases for a fix for the problem.
If no fix exists, contact the IBM Support Center.

REXX return codes from the BCPii hwihost function
Table 59. REXX return codes from the BCPii hwihost function. The following return codes apply only to callers
running their BCPii REXX execs in an ISV-provided REXX environment.

REXX RC returned by the BCPii hwihost function Meaning and action

1 HWI_hwihost_ParmSyntaxError Meaning: Program Error. The specified argument is
not "ON" or "OFF".

Action: Check for a probable coding error. Try this
request again with an argument of "ON" or "OFF".

2 HWI_hwihost_InternalSystemError Meaning: System error. BCPii detected an
unexpected error while invoking TSO/E REXX
services. The system rejects the service call.

Action: A symptom record has been written to
LOGREC to record the problem. Search problem
reporting data bases for a fix for the problem. If no
fix exists, contact the IBM Support Center.

Sample REXX exec
Here is a sample REXX exec using BCPii calls that lists the names of all of the
interconnected CPCs and then attempts to connect to each one of them:
/* REXX */
ListType = HWI_LIST_CPCS;
Address BCPII “HWILIST Retcode ConnectToken ListType AnswerArea.
DiagArea.”

If RC = 0 & retcode = 0 Then
Do

ConnectType = HWI_CPC
Do i = 1 To AnswerArea.0

Say “CPC” i “:” AnswerArea.i

InConnectToken = 0
Address BCPII “HWICONN Retcode InConnectToken OutConnectToken
ConnectType AnswerArea.i DiagArea.”
If RC = 0 & retcode = 0 Then
Say “Connected to CPC “AnswerArea.i”.”

End
End

Chapter 19. Base Control Program internal interface (BCPii) 277

|

|
||

||
|

|
|
|

||
|

|
|
|
|

|

||
|

||

||
|

|
|

||
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

For REXX execs running in an ISV-provided environment, make sure to add the
following line prior to the first address BCPii statement:
RC = hwihost("ON")

Assembler programming considerations
Callers must also use the following linkage conventions:
v Register 1 must contain the address of a parameter list that is a list of

consecutive words, each containing the address of a parameter to be passed. The
last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.
v Register 14 must contain the return address.
v Register 15 must contain the entry point address of the service being called.
v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must

all be set to zero.

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1 and 15 are not restored).

Programming Examples
BCPii provides sample programs to aid in the creation of BCPii applications in
both C and REXX programming languages. The samples are shipped in
SYS1.SAMPLIB.

HWIXMCS1 (Metal C programming language) provides an example of how to use
all of the BCPii APIs and how to construct a simple BCPii application. HWIXMCX1
(Metal C programming language) provides a simple example of how a BCPii Event
Notification Facility (ENF) exit could be coded to field various BCPii-registered
events.

HWIXMRS1 (REXX programming language) provides an example of how to use
the most common BCPii APIs. It can easily be invoked in the System REXX
environment by utilizing the IBM-provided HWIREXX program using the provided
sample JCL HWIXMRJL.

Another REXX sample (HWIXMRS2) is provided to show how a REXX application
can utilize the HWIEVENT and HWICMD APIs. It is invoked using an AXREXX
macro invocation in the sample assembler "helper" program (HWIXMRA1). This
second sample can utilize the Metal C ENF exit HWIXMCX1.

HWICMD — Issue a BCPii hardware management command
Call the HWICMD service to perform a command against an HMC-managed object
that is associated with central processor complexes (CPCs) and CPC images
(LPARs). User-defined image groups can also be utilized to target multiple images
with a single command.

BCPii commands, because of the very nature of what they are attempting to do,
may take a significant amount of time to complete. To prevent applications from
being tied up for an excessive amount of time while waiting for the command to
complete, HWICMD will return to the caller either when the command has been
accepted by the target support element (SE) or when the command was found to
contain errors. The actual completion of the command can be determined by
consulting the final return code returned in the BCPii command response event.

278 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

To receive this BCPii command response event, an application must have
registered for the Hwi_Event_CmdResp event prior to the HWICMD invocation.
Registration for this or any event is accomplished by calling the HWIEVENT
service, or for z/OS UNIX callers, by calling HwiManageEvents. The HWIEVENT
service requires a user-supplied Event Notification Facility (ENF) exit.

When the command completes, BCPii will signal the ENF to notify registered
applications that a command response has been received. For non-z/OS UNIX
callers, the ENF exit specified will receive control and the command response
event returned data will contain the final return code of the request. For z/OS
UNIX callers, the HwiGetEvent service can be used to receive the event notification
and to determine the final return code of the HWICMD service.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

The microcode level that supports the command service call (HWICMD) of BCPii
is required to be installed on the target CPC. See the
HWI_CMD_NOT_SUPPORT_WARNING return code in “HWICONN — Establish
a BCPii connection” on page 297 for more information.

See “HWICMD” on page 428 for the summary table of the BCPii HWICMD types
and the objects that can be targeted for each command.

REXX programming considerations for the HWICMD service
All information for the HWICMD service applies for REXX requests except:
v A stem variable (for example, CmdParm.) replaces CmdParm_ptr.
v The CmdParm structure names in Table 60 on page 284 are used as the

dot-qualified names in the CmdParm stem variable. The following are
exceptions:
– On the HWI_CMD_POWER_CONTROL, HWI_CMD_TEMPCAP, and

HWI_CMD_SYSPLEX_TIME_SET_STP_CONFIG commands, XML replaces
XML_ptr and XML_Size is ignored.

– On the HWI_CMD_SYSRESET_IPLT command, IPL_Token replaces
IPL_Token_Ptr and IPL_Token_Len is ignored.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 279

|
|

|
|

|

|
|
|

|
|
|

|
|

Restrictions
v BCPii does not allow any HWICMD to be targeted to a CPC that is earlier than

a z9 platform.
v BCPii does not allow HWICMD to be issued from within a BCPii ENF exit

routine.
v BCPii does not allow any HWICMD to be issued from a REXX exec running in a

TSO/E or ISV-provided REXX environment.

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

The client application must have at least control access to the following
SAF-protected FACILITY class resource profiles:
v HWI.TARGET.netid.nau for a ConnectToken that represents a CPC connection or

an image group connection.
v HWI.TARGET.netid.nau.imagename for a ConnectToken that represents an image

connection.
v HWI.TARGET.netid.nau.imagename for all individual images within the image

group for a ConnectToken that represents a user-defined image group.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWICMD(
ReturnCode,
ConnectToken,
CmdType,
CmdParm_Ptr,
DiagArea);

address bcpii “hwicmd
ReturnCode
ConnectToken
CmdType
CmdParm.
DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken specifies the connect token that this command is executed
against. A ConnectToken represents a logical connection between the
application and a CPC or an image, and is returned as an output parameter on
the HWICONN service call.

HWICMD

280 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|||

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|
|

A ConnectToken representing a user-defined image group may also be
specified. In this case, the command will be executed on all members in the
group, and not just on a single image.

The ConnectToken specified must have originated from a HWICONN service
call that was issued from the same address space as this service call.

CmdType
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

CmdType specifies the type of the requested command.

See the following publications for more information about how the various
commands operate, what inputs are required, and what outputs are expected:
v System z Application Programming Interfaces (SB10-7030-13)
v System z10 and eServer zSeries Application Programming Interfaces

(SB10-7030-09)
v System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)
v zEnterprise System Support Element Operations Guide (SC28-6896-02)
v System z10 Support Element Operations Guide (SC28-6858-02)
v System z9 Support Element Operations Guide (SC28-6858-01)

Constant in Hexadecimal (Decimal) Equate
Symbol

Description

1

(1)

HWI_CMD_ACTIVATE

Activate request to start target systems with the default activation profile name
(HWI_APROF) associated with a CPC or an image.
Note: The input connection token represents a CPC connection, an image connection,
or an image group connection. This command cannot be issued specifying a connect
token that represents either the local CPC or the local image.

2

(2)

HWI_CMD_DEACTIVATE

Deactivate request to close down target systems.
Note: The input connection token represents a CPC connection, an image connection,
or an image group connection. This command cannot be issued specifying a connect
token that represents either the local CPC or the local image.

3

(3)

HWI_CMD_HWMSG

Hardware messages request.
Note: The input connection token must only represent a CPC connection.

4

(4)

HWI_CMD_CBU

Capacity backup CPC feature operation.
Note: The input connection token must only represent a CPC connection.

5

(5)

HWI_CMD_OOCOD

On/Off capacity on demand request.
Note: The input connection token must only represent a CPC connection.

6

(6)

HWI_CMD_PROFILE

Access CPC activation profiles.
Note: The input connection token must only represent a CPC connection.

7

(7)

HWI_CMD_RESERVE

Set exclusive CPC control.
Note: The input connection token must only represent a CPC connection.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 281

|
|
|

|
|

|
|

|

|

|

|
|

|

|
|

|

|

|

|

||
||

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

Constant in Hexadecimal (Decimal) Equate
Symbol

Description

8

(8)

HWI_CMD_SYSRESET

System reset request for target systems. See Cmdtype HWI_CMD_SYSRESET_IPLT
for the latest version of the Sysreset command.
Note: The input connection token must only represent an image connection or an
image group connection. This command cannot be issued specifying a connect token
that represents the local image.

9

(9)

HWI_CMD_START

Start request for all CPs on target systems.
Note: The input connection token must only represent an image connection or an
image group connection. This command cannot be issued specifying a connect token
that represents the local image.

A

(10)

HWI_CMD_STOP

Stop request for all CPs on target systems.
Note: The input connection token must only represent an image connection or an
image group connection. This command cannot be issued specifying a connect token
that represents the local image.

B

(11)

HWI_CMD_PSWRESTART

Restart request for one CP on target system. The first CP that is found to be in the
correct state is reset.
Note: The input connection token must only represent an image connection or an
image group connection. This command cannot be issued specifying a connect token
that represents the local image.

C

(12)

HWI_CMD_OSCMD

Send operating system command request.
Note: The input connection token must only represent an image connection.

D

(13)

HWI_CMD_LOAD

Load request to IPL target operating systems.
Note: The input connection token must only represent an image connection or an
image group connection. This command cannot be issued specifying a connect token
that represents the local image.

E

(14)

HWI_CMD_TEMPCAP

Addition or removal of temporary capacity.
Note: The input connection token must only represent a CPC connection.

F

(15)

HWI_CMD_SYSRESET_IPLT

System reset request for target systems with IPL token correlation. This is an
enhanced version of HWI_CMD_SYSRESET.
Note: The input connection token must only represent an image connection.

10

(16)

HWI_CMD_ACTIVATE _WITH_ACTPROF

Activate request to start target systems using a supplied activation profile name.
This is an enhanced version of the HWI_CMD_ACTIVATE command.
Note: The input connection token must only represent a CPC connection or an image
connection.

11

(17)

HWI_CMD_POWER_CONTROL

Control the power usage characteristics.
Note: The input connection token must only represent a CPC connection.

12

(18)

HWI_CMD_SCSI_LOAD

SCSI Load from FCP (Fibre Channel Protocol for SCSI) attached SCSI (Small
Computer System Interface) disks.
Note: The input connection token must only represent an image connection or an
image group connection.

13

(19)

HWI_CMD_SCSI_DUMP

SCSI Dump to FCP (Fibre Channel Protocol for SCSI) attached SCSI (Small
Computer System Interface) disks.
Note: The input connection token must only represent an image connection.

HWICMD

282 z/OS V2R1.0 MVS Callable Services for HLL

|
||

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

Constant in Hexadecimal (Decimal) Equate
Symbol

Description

14

(20)

HWI_CMD_SYSPLEX_TIME _SWAP_CTS

In a configured STP-only coordinated timing network (CTN), one CPC has the role
of current time server (CTS). If the CTN has both a preferred time server and a
backup time server configured, either one can be the CTS. This command swaps the
role of CTS from preferred time server to backup time server or vice versa. The
target system must be the system that will become the CTS.
Note: The input connection token must only represent a CPC connection.

15

(21)

HWI_CMD_SYSPLEX_TIME
_SET_STP_CONFIG

This command sets the configuration for an STP-only coordinated timing network
(CTN). The target system must be the system that will become the current time
server (CTS).
Note: The input connection token must only represent a CPC connection.

16

(22)

HWI_CMD_SYSPLEX_TIME
_CHANGE_STP_ONLY_CTN

This command, sent to the defined CPC with the role of current time server (CTS)
in an STP-only coordinated timing network (CTN), changes the STP_ID portion of
the CTN ID for the entire STP-only CTN.
Note: The input connection token must only represent a CPC connection.

17

(23)

HWI_CMD_SYSPLEX_TIME
_JOIN_STP_ONLY_CTN

This command allows a CPC to join an STP-only coordinated timing network
(CTN). The target system cannot be the current time server. If the CPC is already
participating in an STP-only CTN, it will be removed from that CTN and joined to
the specified one. If the CPC has an ETR ID, it will be removed.
Note: The input connection token must only represent a CPC connection.

Attention: Use extreme caution when issuing this command. Joining the STP-only
CTN may result in a disabled wait state for all images that are in a parallel sysplex
on the target CPC.

18

(24)

HWI_CMD_SYSPLEX_TIME
_LEAVE_STP_ONLY_CTN

This command removes a CPC from an STP-only coordinated timing network
(CTN). The target system cannot be the current time server.
Note: The input connection token must only represent a CPC connection.

Attention: Use extreme caution when issuing this command. Leaving the STP-only
CTN may result in a disabled wait state for all images that are in a parallel sysplex
on the target CPC.

CmdParm_Ptr (non-REXX)
CmdParm. (REXX)

Supplied parameter
v Type: Pointer (non-REXX), stem variable (REXX)
v Length: 4 bytes (non-REXX)

Non-REXX:
CmdParm_Ptr specifies the address of the command parameter that
contains a structure of the input parameters for the requested command.

Take the following action according to the different conditions:
v For all optional parameters, callers are required to initialize the

parameters to zero for BCPii to interpret them as null parameters unless
otherwise specified.

v For commands with one or more required parameters and also with one
or more optional parameters, callers are required to initialize each
optional parameters to zero if they require BCPii to take the default
action for that parameter.

v For commands that have only optional parameters, callers can initialize
the CmdParm_Ptr to zero if they require BCPii to take the default action
for all parameters.

v For commands that have no parameters, the CmdParm_Ptr is ignored.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 283

|
||

|

|

|

|
|
|
|
|
|

|

|

|
|

|
|
|
|

|

|

|
|

|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|

|

|

|
|

|
|
|

|
|
|
|

|
|
|

|

|

|
|
|

|

|
|
|

|
|
|
|

|
|
|

|

v All string type parameters are required to be padded with trailing
blanks unless otherwise specified.

v For commands that target image groups, the parameters specified in the
CmdParm must be appropriate for all the images in the image group.

REXX:
CmdParm stem contains compound (stem) variables which represent input
parameters for the requested command. The tail names of the stem
variable are constants which must match the parameter names in the table
below.

For optional parameters that are not initialized, BCPii interprets them as
null parameters.

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

ACTIVATE HWI_CMD_ACT_PARM ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful activation of the target CPC or
image if the target CPC or image is
already active.

DEACTIVATE HWI_CMD_DEACT_PARM ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

HWMSG HWI_CMD_HWMSG_PARM HWMSGType A 4-byte integer (required):

v 1 – means REFRESH
(HWI_CMD_HWMSG_REFRESH)

v 2 – means DELETE
(HWI_CMD_HWMSG_DELETE)

HWMSGTimestamp A null-terminated character string, up to
32 characters long. Required only for
HWMSGType =
HWI_CMD_HWMSG_DELETE.

The timestamp specified must be an exact
match of a timestamp returned on a
HWMSGType =
HWI_CMD_HWMSG_REFRESH request.
An example of a timestamp: '08-20-2010
11:01: 23:145'.

To delete a message, first run an
HWI_CMD_HWMSG_REFRESH request to
obtain the full timestamp and then issue
the HWI_CMD_HWMSG_DELETE request,
specifying the timestamp.

HWICMD

284 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|
|

|
|
|
|
|

|
|

||

|
||

|
|
|
||

||||
|
|
|
|
|

|
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|
|

||||
|
|
|

|
|
|
|
|
|

|
|
|
|
|

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

CBU HWI_CMD_CBU_PARM CBUType A 4-byte integer (required):

v 1 – means ACTIVATE (HWI_CMD_ACT)

v 2 – means UNDO (HWI_CMD_UNDO)

ActivateType A 4-byte integer (required only for
CBUType = HWI_CMD_ACT):

v 1 – means REAL CBU
(HWI_CMD_REAL)

v 2 – means TEST CBU
(HWI_CMD_TEST)

OOCOD HWI_CMD_OOCOD_PARM OOCODType A 4-byte integer (required):

v 1 – means ACTIVATE (HWI_CMD_ACT)

v 2 – means UNDO (HWI_CMD_UNDO)

OrderNumber Required for OOCODType =
HWI_CMD_ACT

PROFILE HWI_CMD_PROFILE_PARM ProfileType A 4-byte integer (required):

v 1 – means IMPORT
(HWI_CMD_PROFILE_ IMPORT)

v 2 – means EXPORT
(HWI_CMD_PROFILE_EXPORT)

AreaNumber A 2-byte integer area number is required
and must be in the range of 1 to 4.

RESERVE HWI_CMD_RESERVE_PARM ReserveType A 4-byte integer (required):

v 1 – means ADD (HWI_CMD_RESERVE_
ADD)

v 2 – means DELETE
(HWI_CMD_RESERVE_DELETE)

ApplName An 8-character application name (required)
padded with trailing blanks.

SYSRESET HWI_CMD_SYSRESET_PARM ResetType A 4-byte integer (required):

v 1 – means NORMAL
(HWI_CMD_RESET_NORMAL)

v 2 – means CLEAR
(HWI_CMD_RESET_CLEAR)

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful sysreset of the target CPC or
image if the target CPC or image is
already active.

START 0 N/A N/A

STOP 0 N/A N/A

PSWRESTART 0 N/A N/A

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 285

|

|
||

|
|
|
||

||||
|
|

||||
|
|
|
|
|

||||
|
|

||||
|

||||
|
|
|
|

||||
|

||||
|
|
|
|

||||
|

||||
|
|
|
|

||||
|
|
|
|
|

|
|
|
|
|

||||

||||

||||

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

OSCMD HWI_CMD_OSCMD_PARM PriorityType A 4-byte integer (required):

v 1 – means Priority
(HWI_CMD_PRIORITY)

v 2 – means Non-Priority
(HWI_CMD_NONPRIORITY)
Note: For WTOR replies targeting a
z/OS image, a PriorityType of
Non-Priority may need to be specified to
allow z/OS to receive the reply
command.

OSCMDString A 126-null-terminated character operating
system command string (required).

LOAD HWI_CMD_LOAD_PARM LoadAddr A 4-character string consisting only of
hexadecimal characters identifying the
device address to be used when
performing the load (optional).

LoadParm An 8-character string as determined by the
operating system being loaded (optional).

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful load of the target CPC or image
if the target CPC or image is already
active.

TEMPCAP HWI_CMD_TEMPCAP_Parm TEMPCAPType A 4-byte integer (required):

v 1 – means Add
(HWI_CMD_TEMPCAP_ADD)

v 2 – means Remove
(HWI_CMD_TEMPCAP_REMOVE)

XML_Ptr (non-REXX) A character string pointer that points to
the address of the XML information that
illustrates the markup used to perform
activation of the temporary capacity
(required).

XML (REXX) XML information that illustrates the
markup used to perform activation of the
temporary capacity (required).

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the
XML_Ptr points to.

SYSRESET

_IPLT

HWI_CMD_SYSRESET

_IPLT_PARM

ResetType A 4–byte integer (required):

v 1 – means NORMAL
(HWI_CMD_RESET_NORMAL)

v 2 – means CLEAR
(HWI_CMD_RESET_CLEAR)

HWICMD

286 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||

|
|
|
||

||||
|
|
|
|
|
|
|
|
|

||||
|

||||
|
|
|

||||
|

||||
|
|
|
|
|

|
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|

||||

|
|

|

|

|

|

||
|
|
|
|

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful sysreset of the target CPC or
image if the target CPC or image is
already active.

IPL_Token_Ptr (non-REXX) A character string pointer that specifies the
address of the IPL token used to correlate
a SYSRESET with other outstanding
HMC-related activities. This ensures that
this SYSRESET is operating with the same
IPL instance as when the IPL_Token was
retrieved (required).

IPL_Token (REXX) IPL token used to correlate a SYSRESET
with other outstanding HMC-related
activities. This ensures that this SYSRESET
is operating with the same IPL instance as
when the IPL_Token was retrieved
(required).

IPL_Token_Len (non-REXX) A 4-byte integer (required).

Length in bytes of the IPL token to which
the IPL_Token_Ptr points.

ACTIVATE_
WITH

_ACTPROF

HWI_CMD_ACT_WITH_
ACTPROF_PARM

ActProfName A 16–character activation profile name
padded with trailing blanks (required).

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful activation of the target CPC or
image if the target CPC or image is
already active.

POWER

_CONTROL

HWI_CMD_POWER

_CONTROL_PARM

XML_Ptr (non-REXX) A character string pointer that points to
the address of the XML fragment
describing the power characteristics to be
applied to the CPC specified by the
connect token (required).

XML (REXX) XML fragment describing the power
characteristics to be applied to the CPC
specified by the connection token
(required).

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the
XML_Ptr points to.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 287

|

|
||

|
|
|
||

||||
|
|
|
|
|

|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|

||||

|
|

|
|

|

|
|
||
|

||||
|
|
|
|
|

|
|
|
|
|

|

|

|

|

||
|
|
|
|

||||
|
|
|

||||

|
|

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

SCSI_LOAD HWI_CMD_SCSI_LOAD_PARM LoadAddr A 4-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI load. Defaults
to value last used when previous SCSI
Load was performed.

LoadParm An 8-character string (optional) as
determined by the operating system being
loaded. Defaults to value last used when
previous SCSI Load was performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used
when performing a SCSI Load. Defaults to
value last used when previous SCSI Load
was performed. The character string must
be comprised of hexadecimal values only
(0-9, A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Load. Defaults
to value last used when previous SCSI
Load was performed. The character string
must be comprised of hexadecimal values
only (0-9, A-F).

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Load. Defaults to value last used
when previous SCSI Load was performed.

Opsys_Loadparm A 256-character string (optional)
representing the operating system-specific
load parameters to be used for the SCSI
Load. Defaults to value last used when
previous SCSI Load was performed.

Bootrec_Blk_Addr A 16-character string (optional)
representing the boot record logical block
address to be used for the SCSI Load.
Defaults to value last used when previous
SCSI Load was performed. The character
string must be comprised of hexadecimal
values only (0-9, A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Note: Only a ForceType of
HWI_CMD_FORCE will result in a
successful load of the target CPC or image
if the target CPC or image is already
active.

SCSI_DUMP HWI_CMD_SCSI_DUMP_PARM LoadAddr A 4-character string (optional) consisting
only of hexadecimal characters (0-9, A-F)
identifying the device address to be used
when performing the SCSI Dump. Defaults
to value last used when previous SCSI
Dump was performed.

HWICMD

288 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||

|
|
|
||

||||
|
|
|
|
|

||||
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|

|
|
|
|
|

||||
|
|
|
|
|

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

LoadParm An 8-character string (optional) used when
performing the SCSI dump. Defaults to
value last used when previous SCSI Dump
was performed.

WW_Portname A 16-character string (optional) identifying
the World Wide Port Name to be used
when performing a SCSI Dump. Defaults
to value last used when previous SCSI
Dump was performed. The character string
must be comprised of hexadecimal values
only (0-9, A-F).

LU_Num A 16-character string (optional) identifying
the logical unit number (LUN) to be used
when performing the SCSI Dump. Defaults
to value last used when previous SCSI
Load was performed. The character string
must be comprised of hexadecimal values
only (0-9, A-F).

Boot_Pgm_Selector A 4-byte integer (optional) identifying the
boot program selector to be used for the
SCSI Dump. Defaults to value last used
when previous SCSI Load was performed.

Opsys_Loadparm A 256-character string (optional)
representing the operating system-specific
load parameters to be used for the SCSI
Dump. Defaults to value last used when
previous SCSI Dump was performed.
Note: If less than 256 bytes, a null
terminator signifies the end of the string.

Bootrec_Blk_Addr A 16-character string (optional)
representing the boot record logical block
address to be used for the SCSI Dump.
Defaults to value last used when previous
SCSI Dump was performed. The character
string must be comprised of hexadecimal
values only (0-9, A-F).

ForceType A 4-byte integer (optional, the default is
FORCE):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

Currently, either ForceType value listed
above will cause the same result. The
target image will be dumped in either
case. IBM recommends that an application
omit this parameter.

SYSPLEX_TIME
_SWAP_CTS

HWI_CMD_SYSPLXTIME_SWAP
_CTS_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier associated with this CPC.

SYSPLEX_TIME
_SET_STP
_CONFIG

HWI_CMD_SYSPLXTIME_SET
_STP_CONFIG_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier associated with this CPC.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 289

|

|
||

|
|
|
||

||||
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|
|

||||
|
|
|
|
|

|
|
|
|
|

|
|
|
|
||
|
|

|
|
|

|
|
||
|
|

Table 60. Structure pointed to by CmdParm_Ptr (non-REXX); CmdParm stem variable (REXX) (continued)

CmdType :
HWI_CMD_ CmdParm (non-REXX)

Parameters in Structure
(non-REXX) / Tail name
constant of the user-defined
CmdParm stem (REXX) Parameter Values

ForceType A 4-byte integer (required):

v 1 – means Force YES
(HWI_CMD_FORCE)

v 2 – means Force NO
(HWI_CMD_NOFORCE)

XML_Ptr (non-REXX) A character string pointer (required) points
to the address of the XML fragment
describing the configuration for the
STP-only CTN.

XML (REXX) XML fragment describing the configuration
for the STP-only CTN. (required)

XML_Size (non-REXX) A 4-byte integer (required).

Length in bytes of the XML that the
XML_Ptr points to.

SYSPLEX_TIME
_CHANGE_STP
_ONLY_CTN

HWI_CMD_SYSPLXTIME_CHG
_STPONLYCTN_PARM

STP_ID An 8-character non-terminated string
(required) representing the desired STP
identifier for the CPC and all CPCs that
are members of the same STP-only CTN.

SYSPLEX_TIME
_JOIN_STP
_ONLY_CTN

HWI_CMD_SYSPLXTIME_JOIN
_STPONLYCTN_PARM

STP_ID An 8-character non-terminated string
(required) representing the current STP
identifier for the CPC.

SYSPLEX_TIME
_LEAVE_STP
_ONLY_CTN

0 N/A N/A

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value that is specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application
API or the BCPii transport layer.

HWICMD

290 z/OS V2R1.0 MVS Callable Services for HLL

|

|
||

|
|
|
||

||||
|
|
|
|

||||
|
|
|

||||
|

||||

|
|

|
|
|

|
|
||
|
|
|

|
|
|

|
|
||
|
|

|
|
|

|||

|

|
|
|

|

|

|
|
|
|

|
|
|

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0001yyyy' because of one
of the following reasons:

Table 61. Reasons for abend X'042', RC X'0001yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service returns control to the caller, GPR 15 and the ReturnCode contain
a hexadecimal return code.

0 HWI_OK Meaning: The command has been accepted by the
support element.

Action: Determine the final command completion
result by consulting the return code value found in
the data returned by the command response event.
This ENF event is signaled if the application has
already registered to receive this event (HWIEVENT
or HwiManageEvents service).

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 291

|
|
|
|
|
|||

|||
|

|
|
|

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified connect token
is not valid. This return code indicates that one of the
following conditions has occurred:

v The connect token does not exist. A previous
HWICONN service call has never returned the
value specified on OutConnectToken.

v The connect token does not represent an active
connection. The connection specified might have
already been disconnected using the HWIDISC
service call.

v The connect token is not associated with the caller’s
address space. The ConnectToken specified is
associated with a different address space than the
caller of this service call.

Action: Check for probable coding error.

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is detected. The
hardware management console application API
(HWMCA) or the BCPii transport layer has returned
with a failing return code.

Action: See the DiagArea for further diagnostic
information. The Diag_CommErr indicates the return
code that is returned from HWMCA APIs or the BCPii
transport layer.

HWMCA API and BCPii transport return codes are
provided in Appendix A, “BCPii communication error
reason codes,” on page 415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is not
accessible.

Action: Check for probable coding error. Verify that
the specified DiagArea is defined as a 32-byte
character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no longer
valid. The connection has been disconnected or it is in
the progress of being disconnected.

Action: Check for probable coding error. Verify that
the specified connect token is still active. If
connectivity to the targeted CPC connection no longer
exists, all connections associated with that CPC will
no longer have a connect token that can be used.

HWICMD

292 z/OS V2R1.0 MVS Callable Services for HLL

602 HWI_CMDTYPE_INV Meaning: Program error. The requested CMDTYPE
specified in the call is not valid. The system rejects the
service call. This return code indicates that one of the
following conditions has occurred:

v The CmdType specified is not in the acceptable
value range of possible command types. The
Diag_Text indicates this error with the text of
'Invalid Cmd'.

v The CmdType specified applies only to CPC
connections, but the ConnectToken specified
represents an image connection. The Diag_Text
indicate this error with the text of 'Mismatch'.

v The CmdType specified applies only to image
connections, but the ConnectToken specified
represents a CPC connection. The Diag_Text
indicates this error with the text of 'Mismatch'.

v The CmdType specified applies only to image
connections, but the ConnectToken specified
represents an image group connection. The
Diag_Text will indicate this error with the text of
‘Mismatch'.

Action: Check for probable coding error. Verify that
the specified CmdType is in the acceptable value
range. See the CmdType parameter section to verify
that the specified connect token is applied for the
requested command. See the DiagArea for further
diagnostic information.

603 HWI_CMDPARM_INV Meaning: Program error. This return code indicates
that one of the following conditions has occurred:

v Required parameters are missing.

v One or more parameters specified are not valid.

Action: Check for probable coding error. See the
DiagArea for additional diagnostic information. The
Diag_Index specifies the value of the CmdType
parameter. The Diag_Text specifies the name of the
parameter in the CmdParm structure. Note that the
name might be abbreviated because of the limited size
of the Diag_Text field.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 293

604 HWI_CMD_TARGET_DEST_NOT_ALLOWED Meaning: Program error. Certain commands are not
allowed to be targeted to the same CPC and image on
which the BCPii application is currently running. Such
commands can cause the local system to be
inoperable. Commands that cannot target the local
CPC are:

v Hwi_Cmd_Activate

v Hwi_Cmd_Activate_With_Actprof

v Hwi_Cmd_Deactivate

Commands that cannot target the local image include:

v Hwi_Cmd_Activate_With_Actprof

v Hwi_Cmd_Sysreset_IPLT

Commands that cannot target the local image (by
itself or as a member of a user-defined image group)
are:

v Hwi_Cmd_Activate

v Hwi_Cmd_Deactivate

v Hwi_Cmd_Load

v Hwi_Cmd_PswRestart

v Hwi_Cmd_Start

v Hwi_Cmd_Stop

v Hwi_Cmd_Sysreset

v Hwi_Cmd_SCSI_Load

v Hwi_Cmd_SCSI_Dump

Action: BCPii does not allow this command to be
executed against the local CPC or local image.
Validate the name of the target represented by the
input connection token. If the target is correct, the
command can only be issued from another CPC for a
CPC-related command, or from another image for an
image-related command.

If the ConnectToken represents a user-defined image
group, verify that the group does not contain the local
image where this command is executing.

605 HWI_CMDPARM_INACCESSIBLE Meaning: Program error. The CmdParm data area
cannot be accessed. This return code indicates that
one of the following conditions has occurred:

v The CmdParm data area is either partially or
completely not accessible by the application, or
BCPii, or both.

v The CmdParm data area can be too small.

Action: Check for probable coding error. Validate that
the CmdParm_Ptr points to a data area where the
CmdParm is and that the data area is accessible.

606 HWI_CMDTYPE_NOT_SUPPORTED Meaning: The targeted hardware of the HWICMD
request does not recognize the type of command
being requested.

Action: Verify that the targeted hardware is at a level
that supports the type of command being issued.

HWICMD

294 z/OS V2R1.0 MVS Callable Services for HLL

607 HWI_CMD_NOT_SUPPORTED Meaning: HWICMD is not supported with the current
microcode level (MCL) installed on the target CPC, or
the target CPC is at a lower hardware level than
HWICMD supports (BCPii requires the target of an
HWICMD to be at least at the z9 hardware level). The
warning return code,
HWI_CMD_NOT_SUPPORTED_WARNING, should
have been returned on the previous HWICONN
service call when the requested connect token was
created to establish a connection to the CPC. See the
return code section in “HWICONN — Establish a
BCPii connection” on page 297 for more information.

Action: Install the MCL that supports HWICMD on
the target CPC or refrain from issuing HWICMD with
a target older than the z9 hardware level. See the
HWI_CMD_NOT_SUPPORTED_WARNING return
code in the HWICONN section for the microcode
level/engineering change (MCL/EC) that is required
for HWICMD service call.

608 HWI_CMD_IMAGE_GROUP_IS_EMPTY Meaning: Command did not execute because the
connect token represents an image group that contains
no images.

Action: Ensure that the correct connect token was
specified on the HWICMD request. If so, check with
the SE/HMC engineer to determine the members that
are in the group.

F00 HWI_NOT_AVAILABLE Meaning: BCPii services are not available, and the
system rejects the service request.

Action: Notify the system programmer to start the
BCPii address space and try the request again. See
“Restarting the HWIBCPii address space” on page 267
about how to start the BCPii address space.

Programs can also listen to ENF68 to determine when
BCPii services are available. See z/OS MVS
Programming: Authorized Assembler Services Reference
EDT-IXG for how to listen for BCPii activation
messages.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem state and
the program does not reside in an APF-authorized
library.

Action: Check the calling program for a probable
coding error.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 295

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct SAF
authorization for the request.

Action: Check for probable error. Consider one or
more of the following possible actions:

v Define read access authorization to the FACILITY
class resource profile HWI.APPLNAME.HWISERV.

v Define control access authorization to the FACILITY
class resource profile HWI.TARGET.netid.nau for a
CPC or image group connection.

v Define control access authorization to the FACILITY
class resource profile
HWI.TARGET.netid.nau.imagename for an image
connection.

v Define CONTROL access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for each image
within the target image group for an image group
connection. Note: It is possible that an application
may have the proper authority to all images in a
user-defined image group returned on a prior
HWILIST invocation, yet still receive this error
return code. This could be because HWILIST will
only return image names that the user has the
proper authority to view. In this case, it will be
necessary to contact the HMC/SE administrator to
find out if there are other image names contained in
the user-defined image group that were not
returned on the HWILIST invocation. Once these
names have been acquired, the security
administrator may be contacted to give CONTROL
or higher access to these additional image names.

v Ensure that the referenced Facility Class Profile is
RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled. The system
rejects this service request.

Action: Check the calling program for a probable
coding error.

F04 HWI_MODE_INV Meaning: The calling program is not in task mode.
The system rejects this service request.

Action: Check the calling program for a probable
error.

F05 HWI_LOCKS_HELD Meaning: The calling program is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a probable
coding error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support this
service. The system rejects this service request.

Action: Remove the calling program from the system,
and install it on a system that supports BCPii services.
Then run the calling program again.

HWICMD

296 z/OS V2R1.0 MVS Callable Services for HLL

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support execution of
the service from the current environment (for
example, calling a BCPii service from within a BCPii
ENF exit routine).

Action: Issue the BCPii service from a different
execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was called
encountered an unexpected error. The system rejects
the service call.

Action: In many cases, BCPii has taken an abend to
gather further diagnostic information. Search problem
reporting data bases for a fix for the problem. If no fix
exists, contact the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to activate an activation profile.
.
.
CmdType = HWI_CMD_ACTIVATE;
HWI_CmdTypeParm.ForceType = HWI_CMD_Force;
CmdParm_Ptr = addr(HWI_CmdTypeParm);
CALL HWICMD (ReturnCode, ConnectToken, CmdType,

CmdParm_Ptr, DiagArea)
.
.

A REXX programming example for the HWICMD service:

Note: The command parm field names must exactly match the field names in the
command parm structure declarations.
myCmdType = HWI_CMD_OSCMD /* oscmd */
myCmdParm.PriorityType = Hwi_CMD_Priority
myCmdParm.OSCMDString = ’d a,l’
address bcpii

"hwicmd RetCode myImgConnectToken myCmdType myCmdParm. myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
End

HWICONN — Establish a BCPii connection
Call the HWICONN service to establish a logical connection between the
application and a central processor complex (CPC), a CPC image (LPAR), a
capacity record, different types of activation profiles, or a user-defined image
group. This facilitates subsequent services to perform operations related to that
CPC, image, capacity record, activation profile, or a user-defined image group.

HWICMD

Chapter 19. Base Control Program internal interface (BCPii) 297

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

BCPii limits the total number of system-wide connections from all BCPii users to
be no more than 4096 simultaneous connections.

Note: A connection remains active until one of the following occurs:
v A Disconnect service call (HWIDISC) has been invoked.
v A parent connection has been disconnected.
v A loss of connectivity to the associated CPC has been detected by BCPii.
v The address space of the caller has terminated.
v The current task of the caller has terminated if the connection has task affinity

(TSO/E REXX or ISV-provided REXX execution environments).
v The BCPii address space has terminated.

Under normal circumstances, a connection remains active indefinitely. Since there
are a finite number of total BCPii connections available in the entire system, a
BCPii application should disconnect any BCPii connection it no longer needs.

Note: BCPii requires the FACILITY class to be RACLIST-specified. BCPii also
automatically transforms the following to all uppercase characters when building
the profile names passed to the security product: CPC, image, and caprec values
pointed to by the ConnectTypeValue_Ptr.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

REXX programming considerations for the HWICONN service
All information for the HWICONN service applies for REXX requests except:
v ConnectTypeValue replaces ConnectTypeValue_Ptr.

Restrictions
BCPii does not allow HWICONN to be issued from within a BCPii ENF exit
routine.

HWICONN

298 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|
|
|

|
|

|

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

The client application must also have at least one of the following access:
v Read access to the SAF-protected FACILITY class resource

HWI.TARGET.netid.nau for HWI_CPC, HWI_RESET_ACTPROF,
HWI_IMAGE_ACTPROF, HWI_LOAD_ACTPROF, or HWI_IMAGE_GROUP
connections.

v Read access to the SAF-protected FACILITY class resource
HWI.TARGET.netid.nau.imagename for HWI_IMAGE connections.

v Read access to the SAF-protected FACILITY class resource
HWI.CAPREC.netid.nau.caprecid for HWI_CAPREC connections.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWICONN(
ReturnCode,
InConnectToken,
OutConnectToken,
ConnectType,
ConnectTypeValue_Ptr,
DiagArea);

address bcpii “hwiconn
ReturnCode
InConnectToken
OutConnectToken
ConnectType
ConnectTypeValue
DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

InConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

InConnectToken represents a connect token that was returned by a previous
HWICONN HWI_CPC invocation. For image, capacity record, activation
profile, and user-defined image group connections, the input connection token
must represent an active CPC connection.

In most cases, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same address space as this
service call. For BCPii REXX execs running under TSO/E or ISV-provided
REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task as this service call.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 299

|||

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|

InConnectToken is not relevant to a connect type of HWI_CPC, and it is
ignored.

OutConnectToken
Returned parameter
v Type: Character string
v Length: 16 bytes

OutConnectToken returns a connect token that uniquely represents a
connection to BCPii. This parameter can be used as input on subsequent BCPii
invocations to identify which connection the service wants to communicate.

A connect token returned for an HWI_CPC connection can be specified on
subsequent services to perform operations against this particular CPC, or on a
subsequent HWICONN as the InConnectToken parameter when attempting a
connection to a particular image (LPAR), capacity record (CAPREC), or
activation profile.

Likewise, a connect token returned for an HWI_IMAGE or HWI_CAPREC
connection can be specified on subsequent services to perform operations
against this particular image (LPAR) or capacity record (CAPREC) respectively.

A connect token returned for an HWI_RESET_ACTPROF,
HWI_IMAGE_ACTPROF, or HWI_LOAD_ACTPROF connection can be
specified on subsequent HWIQUERY or HWISET service calls to query or set
specific values associated with the specified Reset, image, or Load activation
profile respectively.

A connection token returned for an HWI_IMAGE_GROUP can be specified on
a subsequent HWIQUERY service call to query values associated with the
group profile, on a subsequent HWICMD service call to issue commands to all
members in the image group, or on a subsequent HWILIST service call to list
the images in the image group.

ConnectType
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ConnectType specifies the type of connection to be established.

Constant in Hexadecimal (Decimal)
Equate Symbol

Description

1

(1)

HWI_CPC

Requests to establish a connection to a target CPC that the application is to
communicate with.

2

(2)

HWI_IMAGE

Requests to establish a connection to an image of a CPC that the application is to
communicate with. The input connection token must represent an active CPC
connection.

3

(3)

HWI_CAPREC

Requests to establish a connection to a capacity record of a CPC that the application is
to communicate with. The input connection token must represent an active CPC
connection.

HWICONN

300 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

||
||

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in Hexadecimal (Decimal)
Equate Symbol

Description

4

(4)

HWI_RESET_ACTPROF

Requests to establish a connection to a reset activation profile associated with a
particular CPC. The input connection token must represent an active CPC connection.

5

(5)

HWI_IMAGE_ACTPROF

Requests to establish a connection to an image activation profile associated with a
particular CPC. The input connection token must represent an active CPC connection.

6

(6)

HWI_LOAD_ACTPROF

Requests to establish a connection to a load activation profile associated with a
particular CPC. The input connection token must represent an active CPC connection.

7

(7)

HWI_IMAGE_GROUP

Requests to establish a connection to a user-defined image group on a particular CPC.
The input connection token must represent an active CPC connection.
Note: This ConnectType is only available when targeting a z10 or higher CPC.

ConnectTypeValue_Ptr (non-REXX)
ConnectTypeValue (REXX)

Supplied parameter
v Type: Pointer (non-REXX), character (REXX)
v Length: 4 bytes (non-REXX)

Non-REXX:
ConnectTypeValue_Ptr specifies the address of the name of the requested
target to be connected to. The type of connection determines the value
required.

REXX:
ConnectTypeValue is the name of the requested target to be connected to.
The type of connection determines the value required.

Connect Types Values to be specified

HWI_CPC
v A 17-character network address (sometimes referred to as the SNA address) that

uniquely represents a CPC in the attached process control network. The network
address should be in the form of a 1- through 8-character network identifier (netid),
followed by a period, and then followed by a 1- through 8-character network
addressable unit (NAU) name. The network address should be padded with trailing
blanks if the total string length of the network address is less than 17 characters.
Example: net1.cpc01
Note: netid.nau is 1- to 17- character symbolic NAU name. The network ID and name
of a resource must both begin with a letter (A-Z), @, #, or $. The remaining characters
can be letters (A-Z), numbers (0-9), @, #, or $.

v An ‘*’ is a special value that can also be specified with this ConnectType. If specified,
this allows the application to connect to the local host CPC without having to know
the network address of the local host CPC (netid.nau).

Note: An HWILIST HWI_LIST_CPCS operation returns a list of CPCs available to be
connected to in the form of netid.nau.

HWI_IMAGE An 8-character image name padded with trailing blanks.
Note: The LPAR name is a 1- through 8-alphanumeric (0-9, A-Z) character name that
must have an alphabetic first character. Special characters ($, #, @), although currently
allowed, are being reserved for future use. See PR/SM Planning Guide for details.

HWI_CAPREC An 8-character capacity record (CAPREC) name padded with trailing blanks.
Note: The CAPREC name is a 1- through 8-alphanumeric (0-9, A-Z) character name.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 301

|
||

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|
|
|

|

|

|
|
|
|

|
|
|

|||

||
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||
|
|
|

||
|

Connect Types Values to be specified

HWI_RESET_ACTPROF A 16–character alphanumeric (0-9, A-Z) reset activation profile name padded with
trailing blanks.

HWI_IMAGE_ACTPROF A 16–character alphanumeric (0-9, A-Z) image activation profile name padded with
trailing blanks.

HWI_LOAD_ACTPROF A 16–character alphanumeric (0-9, A-Z) load activation profile name padded with
trailing blanks.

HWI_IMAGE_GROUP A 30 character null-terminated image group name.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value that is specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application
API or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0002yyyy' because of one
of the following reasons:

Table 62. Reasons for abend X'042', RC X'0002yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a

HWICONN

302 z/OS V2R1.0 MVS Callable Services for HLL

||

||
|

||
|

||
|

||
|

|
|
|

|

|

|
|
|
|

|
|
|

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

|||
|

|
|
|

different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes

Return Code in Hexadecimal Equate
Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

4
HWI_CMD_NOT_SUPPORTED_WARNING

Meaning: Successful completion. This
warning return code is informational.

The target CPC being connected to has a
microcode level (MCL) that does not
support HWICMD, or the target CPC is at a
lower hardware level than HWICMD
supports (BCPii requires the target of an
HWICMD to be at least at the z9 hardware
level). If a subsequent HWICMD is issued
with this returned connect token, the call
will be rejected with a return code of
HWI_CMD_NOT_SUPPORTED.

Action: Install the MCL/EC that supports
HWICMD for the target CPC. The required
MCL/EC are G40965.133 for a z9 CPC, and
F85906.116 for a z10 CPC.

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified input
connection token is not valid. This return
code indicates that one of the following
conditions has occurred:

v The input connection token does not exist.
A previous HWICONN service call has
never returned the value specified on
OutConnectToken.

v The input connection token does not
represent an active connection. The
connection specified might have already
been disconnected by the HWIDISC
service call, or have been implicitly
disconnected by BCPii because of loss of
connectivity with the target CPC.

v The input connection token is not
associated with the address space of the
caller. The InConnectToken specified is
associated with a different address space
than the caller of this service call.

Action: Check for probable coding error.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 303

Return Code in Hexadecimal Equate
Symbol Meaning and Action

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is
detected. The hardware management console
application API (HWMCA) or the BCPii
transport layer has returned with a failing
return code.

Action: See the DiagArea for further
diagnostic information. The Diag_CommErr
indicates the return code that is returned
from HWMCA APIs or the BCPii transport
layer.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is
not accessible.

Action: Check for probable coding error.
Verify that the specified DiagArea is defined
as a 32-byte character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no
longer valid. The connection has been
disconnected or it is in the progress of being
disconnected.

Action: Check for probable coding error.
Verify that the specified connect token is still
active. If connectivity to the targeted CPC
connection no longer exists, all connections
associated with that CPC will no longer
have a connect token that can be used.

201 HWI_CONNTYPE_INV Meaning: Program error. The connection
type specified in the call is not valid. The
system rejects the service call.

Action: Check for probable coding error.
Validate that the conntype value passed to
the service is one of the accepted values.

202 HWI_CONNTYPE_VALUE_INV Meaning: Program error. The connection
name specified in the call is not valid. The
specified connection name is not
syntactically valid, it does not exist, or it is
currently not available. The system rejects
the service call.

Action: Check for probable coding error.
Verify that the connection name is
syntactically correct, valid in the current
HMC configuration, and currently available.

HWICONN

304 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

203 HWI_CONNTYPE_VALUE_
INACCESSIBLE

Meaning: Program error. The connection
type value data area is either partially or
completely inaccessible by the application,
or the Base Control Program internal
interface (BCPii) address space, or both.

Action: Check for probable coding error.
Verify that the ConnectTypeValue_Ptr points
to a data area where the connect type value
is, and make sure that the data area is
accessible.

204
HWI_MAX_CONNECTIONS_REACHED

Meaning: The number of connections has
reached the maximum number of
system-wide connections (4096) that BCPii
permits, or BCPii has run out of system
resources to satisfy the HWICONN request,
or both.

Action: Disconnect connections that are no
longer needed, and try the request again.

205 HWI_CONNTYPE_NOT_SUPPORTED Meaning: The targeted hardware of the
HWICONN request does not support the
connect type specified.

Action: Verify that the targeted hardware
supports the type of request being made.

F00 HWI_NOT_AVAILABLE Meaning: BCPii services are not available,
and the system rejects the service request.

Action: Notify the system programmer to
start the BCPii address space and try the
request again. See “Restarting the HWIBCPii
address space” on page 267 about how to
start the BCPii address space.

Programs can also listen to ENF68 to
determine when BCPii services are available.
See z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for how
to listen for BCPii activation messages.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem
state and the program does not reside in an
APF-authorized library.

Action: Check the calling program for a
probable coding error.

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 305

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct
SAF authorization for the request.

Action: Check for probable error. Consider
one or more of the following possible
actions:

v Define read access authorization to the
FACILITY class resource profile
HWI.APPLNAME.HWISERV.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau for a CPC,
activation profile, or image group
connection.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for an
image connection.

v Define read access authorization to the
FACILITY class resource profile
HWI.CAPREC.netid.nau.caprecid for a
capacity record connection.

v Ensure that the referenced Facility Class
Profiles are RACLIST-specified.

v For CPC connections only: The SNMP
community name specified in the security
product (SAF) for a particular target CPC
does not match the SNMP community
name defined in the support element of
the target CPC. See “Community name
defined in the security product for each
CPC” on page 263 for further information
regarding community name setup.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled.
The system rejects this service request.

Action: Check the calling program for a
probable coding error.

F04 HWI_MODE_INV Meaning: The calling program is not in task
mode. The system rejects this service
request.

Action: Check the calling program for a
probable error.

F05 HWI_LOCKS_HELD Meaning: The calling program is holding
one or more locks. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

HWICONN

306 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports BCPii services. Then run the calling
program again.

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii
service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a
different execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the pseudocode example, the application attempts to establish a connection
between the application and the target CPC.
.
.
InConnectToken = 16blanks;
ConnectType = HWI_CPC;
ConnectTypeValue_Ptr = Addr(ConnectTypeValue);
ConnectTypeValue = 'CPCPLEX1.CPC01';
CALL HWICONN (ReturnCode, InConnectToken, OutConnectToken,

ConnectType, ConnectTypeValue_Ptr, DiagArea)
(After the call, OutConnectToken contains a token that can be used on all
subsequent calls to perform CPC functions against the 'CPCPLEX1.CPC01' CPC
including connecting to images, capacity records, and activation profiles
residing on the CPC.)
.
.

A REXX programming example for the HWICONN service:
myConnectType = HWI_CPC /* CPC connect type */
myConnectTypeValue = ’IBM390xx.H123 ’ /* 17-char CPC name */

address bcpii
"hwiconn Retcode myInConnectToken myOutConnectToken myConnectType

myConnectTypeValue myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL

HWICONN

Chapter 19. Base Control Program internal interface (BCPii) 307

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
End

HWIDISC — Release a BCPii connection
Call the HWIDISC service to release the logical connection between the application
and the identified CPC, image, capacity record, different types of activation
profiles, or user-defined image groups. If the connect token represents a CPC, any
subordinate image, capacity record, activation profile, or user-defined image group
connection associated with the same CPC connection is also released.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

REXX programming considerations for the HWIDISC service
All information for the HWIDISC service applies for REXX requests except:
v In the System REXX environment, BCPii connections are associated with the

address space that issued the AXREXX macro service call. When this address
space terminates, BCPii will implicitly disconnect the connection.

v In the TSO/E and ISV-provided REXX environments, BCPii connections are
associated with the current running task. When this task terminates, BCPii will
implicitly disconnect the connection.

Restrictions
BCPii does not allow HWIDISC to be issued from within a BCPii ENF exit routine.

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

The client application must also have at least read access to the following class
resources:

HWICONN

308 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|
|

|
|

|
|
|

|
|
|

v The SAF-protected FACILITY class resource HWI.TARGET.netid.nau for
HWI_CPC, HWI_RESET_ACTPROF, HWI_IMAGE_ACTPROF,
HWI_LOAD_ACTPROF, or HWI_IMAGE_GROUP connections.

v The SAF-protected FACILITY class resource HWI.TARGET.netid.nau.imagename
for HWI_IMAGE connections.

v The SAF-protected FACILITY class resource HWI.CAPREC.netid.nau.caprecid for
HWI_CAPREC connections.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWIDISC(
ReturnCode,
ConnectToken,
DiagArea);

address bcpii “hwidisc
ReturnCode
ConnectToken
DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken specifies the logical connection to be released. A ConnectToken
represents a logical connection between the application and a CPC, image,
capacity record, activation profile, or user-defined image group and is returned
as an output parameter on the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same address space as this
service call. For BCPii REXX execs running under the TSO/E or ISV-provided
REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 309

|||

|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|
|

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application
API or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0003yyyy' because of one
of the following reasons:

Table 63. Reasons for abend X'042', RC X'0003yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a
hexadecimal return code.

Return Code in Hexadecimal Equate
Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

HWIDISC

310 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

|||
|

|
|
|

Return Code in Hexadecimal Equate
Symbol Meaning and Action

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified
connect token is not valid. This return code
indicates that one of the following
conditions has occurred:

v The input connection token does not exist.
A previous HWICONN service call has
never returned the value specified on
OutConnectToken.

v The connect token does not represent an
active connection. The connection
specified might have already been
disconnected using the HWIDISC service
call.

v The connect token is not associated with
the address space of the caller. The
ConnectToken specified is associated with
a different address space than the caller of
this service call.

Action: Check for probable coding error.

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is
detected. The hardware management console
application API (HWMCA) or the BCPii
transport layer has returned with a failing
return code.

Action: See the DiagArea for further
diagnostic information. The Diag_CommErr
indicates the return code that is returned
from HWMCA APIs or the BCPii transport
layer.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is
not accessible.

Action: Check for probable coding error.
Verify that the specified DiagArea is defined
as a 32-byte character field.

901 HWI_DISC_INPROGRESS Meaning: Another Disconnect request is
already in progress. This request is
redundant.

Action: None.

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 311

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F00 HWI_NOT_AVAILABLE Meaning: BCPii services are not available,
and the system rejects the service request.

Action: Notify the system programmer to
start the BCPii address space and try the
request again. See “Restarting the HWIBCPii
address space” on page 267 about how to
start the BCPii address space.

Programs can also listen to ENF68 to
determine when BCPii services are available.
See z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for how
to listen for BCPii activation messages.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem
state and the program does not reside in an
APF-authorized library.

Action: Check the calling program for a
probable coding error.

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct
SAF authorization for the request.

Action: Check for probable error. Consider
one or more of the following possible
actions:

v Define read access authorization to the
FACILITY class resource profile
HWI.APPLNAME.HWISERV.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau for a CPC,
activation profile, or image group
connection.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for an
image connection.

v Define read access authorization to the
FACILITY class resource profile
HWI.CAPREC.netid.nau.caprecid for a
capacity record connection.

v Ensure that the referenced Facility Class
Profiles are RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled.
The system rejects this service request.

Action: Check the calling program for a
probable coding error.

F04 HWI_MODE_INV Meaning: The calling program is not in task
mode. The system rejects this service
request.

Action: Check the calling program for a
probable error.

HWIDISC

312 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F05 HWI_LOCKS_HELD Meaning: The calling program is holding
one or more locks. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports BCPii services. Then run the calling
program again.

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii
service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a
different execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to release a connection between
the application and a CPC.
.
.
CALL HWIDISC (ReturnCode, ConnectToken, DiagArea)
.
.

A REXX programming example for the HWIDISC service:
address bcpii

"hwidisc Retcode myConnectToken myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
End

HWIDISC

Chapter 19. Base Control Program internal interface (BCPii) 313

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HWIEVENT — Register or unregister for BCPii events
Call the HWIEVENT service for the following purposes:
1. Register an application and its connection to receive notification of:

v One or more hardware or software events occurring on the connected CPC
or image.

v Communication errors between BCPii and the connected CPC or image.
2. Delete the registration for one or more previously registered events.

Monitoring events occurring on a particular CPC or image
For hardware and software events, an application can register with BCPii to be
notified when an event occurs for the targeted CPC or image. Under the covers,
BCPii communicates the registration request with the support element (SE) of the
targeted CPC or image if necessary and also registers the user-provided exit with
the Event Notification Facility (ENF). When the event occurs on the targeted CPC
or image, BCPii receives notification and signals the appropriate ENF68. The user's
exit receives control with data unique for the event that just occurred. The data
mapping for these different events can be found in the public interface files
shipped with BCPii (HWICIC for the C programming language, HWICIREX for the
REXX programming language, and HWICIASM for the assembler programming
language). BCPii also provides a sample of an ENF event exit in SYS1.SAMPLIB
(HWIXMCX1) that can be a good starting point for coding a BCPii ENF exit.

Note: BCPii user-defined image groups are a powerful way to issue commands to
all members of a group simultaneously. Commands targeted to a user-defined
image group will result in one image command response event being generated for
each image in the image group. If event notification is desired for an image in an
image group, register the image for the command response event to enable
delivery of the event to the BCPii ENF exit.

Monitoring operating system message events
(Hwi_Event_OpSysMsg)

Your application can monitor all operating system messages appearing on a z/OS
console by using the HWIEVENT service to register for the EventIDs parameter
value Hwi_Event_OpSysMsg.

For the majority of messages issued on the image being monitored, a single BCPii
operating system message event will contain the entire message in the returned
event data (HWIENF68 data mapping).

For messages that are larger than approximately 3000 bytes, it is possible that the
operating system message is longer than the architected maximum buffer size
allowed by the communications protocol used by both the z/OS consoles
component and BCPii to communicate with the support element. As a result, BCPii
delivers these single large messages in multiple operating system message events.
Each of these operating system message events representing a single large message
will have the same values in the HWIENF68 data mapping for the msgId,
msgDate, and msgTime fields. An application can determine that all of the
operating system message events have been delivered for the single large message
by consulting the msgId of a subsequent message event. If it has changed from the
previous msgId, the operating system message event represents a new operating
system message.

HWIEVENT

314 z/OS V2R1.0 MVS Callable Services for HLL

|
|

Monitoring communication availability between BCPii and the
CPC

While not common, BCPii may occasionally experience communication delays or
interruptions of service between itself and the targeted CPC and its associated
support element. BCPii provides a mechanism through its BCPii communication
error class of events to detect these interruptions and to allow an application to
know when these interruptions of service have been resolved.

BCPii keeps a heartbeat between itself and each CPC where its applications desire
connectivity. If BCPii fails to receive its regular heartbeat from an SE associated
with a CPC, BCPii attempts a communication flow to this SE. If the SE responds
successfully to this communication attempt by BCPii, BCPii signals a temporary
communication error, (ENF QUAL value 02010001), meaning that the reason for the
heartbeat not being received is not known, but the communication path between
BCPii and the SE seems to be operational at this time. During the past few
minutes, one or more events may have been lost.

If the SE does not respond to the BCPii communication attempt, BCPii assumes
that there is a serious communication problem and signals a permanent
communication error, (ENF QUAL value 02010002). At this point, no HWIEVENT or
HWICMD API requests to this CPC are processed by BCPii and no event delivery
take place for events registered on this CPC and its images. BCPii closes its
internal connections with the CPC and cleans up resources associated with
command processing and event delivery to and from this CPC.

BCPii then regularly attempts to restart its command processing and event delivery
connections to this CPC. When this connection to the CPC has been re-established,
BCPii signals a communication available event, (ENF QUAL value 02010003). At this
point, applications currently having valid connections to this CPC and its images
are allowed to use the HWIEVENT and HWICMD APIs to the CPC and its images.
Receipt of events originating from the CPC and its images commence once again.

An application may choose to register for these communication availability events
via the HWIEVENT ADD service (EventIDs parameter value
Hwi_Event_HwCommError), or it may choose to use the ENFREQ LISTEN macro
to listen for these events apart from any specific BCPii connection.

Monitoring the status of the BCPii address space
An application can monitor the status of the BCPii address space itself by using
the ENFREQ LISTEN service and specifying the appropriate QUAL values to
monitor when the BCPii address space becomes active and when it terminates:
v BCPii signals an ENF68 with a QUAL value of 01000002 when the BCPii address

space becomes active.
v BCPii signals an ENF68 with a QUAL value of 01000001 when the BCPii address

space becomes unavailable.

While it is possible to use the HWIEVENT service to allow an application to
register for the Hwi_Event_BCPiiStatus event, this is not a recommended way to
monitor initialization or termination of the BCPii address space. When the BCPii
address space terminates, BCPii asynchronously asks the system to delete all ENF
registrations made on behalf of applications that have issued HWIEVENT Add
requests. If the deletion of the ENF registration occurs prior to the BCPii address
space termination, the ENF exit will no longer receive control when BCPii signals
that it is down.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 315

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages. For
programming language C, see restrictions below.

See “HWIEVENT” on page 430 for the summary table of the BCPii HWIEVENT
types and the objects that can be registered or unregistered for each event.

REXX programming considerations for the HWIEVENT service
All information for the HWIEVENT service applies for REXX requests except:
v EventIDs is a 32-element stem-variable representing all of the event bits as

defined in the HWICIREX include file.
v Because the Event Notification Facility (ENF) does not support REXX exits, the

caller must provide the address of a non-REXX ENF exit routine.
v The EventExitAddr must be specified as the 8-character representation of a

4-byte hexadecimal value.

Restrictions
v This service is not used by C language callers running in a z/OS UNIX System

Services environment. See “HWIManageEvents — Manage the list of BCPii
events” on page 402.

v BCPii does not allow HWIEVENT to be issued from within a BCPii ENF exit
routine.

v BCPii does not allow HWIEVENT to be issued from a REXX exec running in the
TSO/E or ISV-provided REXX environments.

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

The client application must have at least read access to the SAF-protected
FACILITY class resource HWI.TARGET.netid.nau for a ConnectToken representing a
CPC connection, or HWI.TARGET.netid.nau.imagename for ConnectToken
representing an image connection.

HWIEVENT

316 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|
|

|
|

|
|

|
|

|
|

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWIEVENT(
ReturnCode,
ConnectToken,
EventAction,
EventIDs,
EventExitMode,
EventExitAddr,
EventExitParm,
DiagArea);

address bcpii “hwievent
ReturnCode
ConnectToken
EventAction
EventIDs.
EventExitMode
EventExitAddr
EventExitParm
DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken represents a logical connection between the application and a
CPC or image. The ConnectToken is an output parameter on the HWICONN
service call.

The ConnectToken specified must have originated from a HWICONN service
call that was issued from the same address space as this service call.

EventAction
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

EventAction specifies the type of action for the service.

Constant in Hexadecimal (Decimal)
Equate Symbol

Description

1

(1)

HWI_EVENT_ADD

Registers to be notified when the requested events occur.

2

(2)

HWI_EVENT_DELETE

Deletes the registration for notification.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 317

|||

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|

|
|

|
|

|

|

|

||
||

|

|

|

|

|

|

|

|

|

EventIDs (non-REXX)
EventIDs. (REXX)

Supplied parameter
v Type: Integer (non-REXX), stem variable (REXX)
v Length: 128 bits (16 bytes) (non-REXX)

EventIDs specifies the events to be added or deleted.

Non-REXX:
Each event is a 1-bit field from bit position 97 to 128 in this data area. If
the bit is on, the service performs the EventAction operation for the event
on the requested connection.

REXX:
Each event is represented by an IBM-supplied EventIDs tail label or tail
value constant. If the value is on, the service performs the EventAction
operation for the event on the requested connection.

It is recommended to use the IBM-supplied EventIDs tail labels defined in
HWICIREX.

Note: A single connection may not register for a particular event more than
once.

The following event IDs or tail labels can be specified:

EventIDs (non-REXX) / tail
label for EventIDs stem
(REXX)

Bit position in
structure specified on
EventIDs (non-REXX)

Tail value constant of
the user-defined
EventIDs stem

(REXX)

Description

Hwi_EventID_EyeCatcher 1-96 N/A Control block identifier.
Note: HWI_EVENTID_TEXT can be used to
initialize this field.

Hwi_Event_CmdResp 97 1 Requests to add or delete the registration for
notification of the command response events.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_StatusChg 98 2 Requests to add or delete the registration for
notification of the status change events.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_NameChg 99 3 Requests to add or delete the registration for
notification of the object name change events.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_ActProfChg 100 4 Requests to add or delete the registration for
notification of the change events for the activation
profile name.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_ObjCreate 101 5 Requests to add or delete the registration for
notification of the object created events.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_ObjDestroy 102 6 Requests to add or delete the registration for
notification of the object destroyed (deleted)
events.
Note: The input connection token represents a
CPC connection or an image connection.

HWIEVENT

318 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|

||||
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|
|

EventIDs (non-REXX) / tail
label for EventIDs stem
(REXX)

Bit position in
structure specified on
EventIDs (non-REXX)

Tail value constant of
the user-defined
EventIDs stem

(REXX)

Description

Hwi_Event_ObjException 103 7 Requests to add or delete the registration for
notification of the exception state events.
Note: The input connection token represents a
CPC connection or an image connection.

Hwi_Event_ApplStarted 104 8 Requests to add or delete the registration for
notification of the console application started
events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_ApplEnded 105 9 Requests to add or delete the registration for
notification of the console application ended
events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_HwMsg 106 10 Requests to add or delete the registration for
notification of the hardware message events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_HwMsgDel 107 11 Requests to add or delete the registration for
notification of the hardware message deletion
events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_SecurityEvent 108 12 Requests to add or delete the registration for
notification of the support element (SE) console
security events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_CapacityChg 109 13 Requests to add or delete the registration for
notification of the capacity change events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_CapacityRecord 110 14 Requests to add or delete the registration for
notification of the capacity record change events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_OpSysMsg 111 15 Requests to add or delete the registration for
notification of the operating system message
events.
Note: The input connection token must only
represent an image connection.

Hwi_Event_HwCommError 112 16 Requests to add or delete the registration for
notification of the hardware communication error
events.
Note: The input connection token must only
represent a CPC connection.

Hwi_Event_BCPIIStatus 113 17 Requests to add or delete the registration for
notification of BCPii status change events.
Note: This method is not recommended for
determining if the BCPii address space becomes
available or unavailable. See the description of the
HWIEVENT service for more information.

Hwi_Event_DisabledWait 114 18 Requests to add or delete the registration for
notification of disabled wait events.
Note: The input connection token must only
represent an image connection.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 319

|
|
|

|
|
|

|
|
|
|

|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|

||||
|
|
|

||||
|
|
|
|

||||
|
|
|
|

||||
|
|
|
|
|

||||
|
|
|

EventIDs (non-REXX) / tail
label for EventIDs stem
(REXX)

Bit position in
structure specified on
EventIDs (non-REXX)

Tail value constant of
the user-defined
EventIDs stem

(REXX)

Description

Hwi_Event_PowerChange 115 19 Requests to add or delete the registration for
notification of any power characteristics change
events.
Note: The input connection token must represent
a CPC connection.

Hwi_Event_Reserved 116-128 N/A Reserved, must be initialized to binary zeros.

EventExitMode
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

EventExitMode specifies the type of the exit mode for the service.

Constant in Hexadecimal (Decimal)
Equate Symbol

Description

1

(1)

HWI_EVENT_TASK

The base control program internal interface gives control in task mode to an ENF
listen-exit routine as specified on the EventExitAddr parameter. Task mode ENF exits
must reside in common storage.

At present, only one value is allowed for this parameter. In the future, IBM
might choose to allow additional values to be specified.

EventExitAddr
Supplied parameter
v Type: Pointer (non-REXX), character representation of a pointer (REXX)
v Length: 4 bytes (non-REXX), 8 characters (REXX)

EventExitAddr specifies the address of an ENF listen-exit routine that receives
control when the requested event occurs. The application is responsible for
writing this ENF exit routine, as described in the ENFREQ documentation for
ENF 68 found in z/OS MVS Programming: Authorized Assembler Services Reference
EDT-IXG. For further information regarding the coding of ENF exits, see the
"Listening for System Events" chapter in the z/OS MVS Programming: Authorized
Assembler Services Guide.

EventExitParm
Supplied parameter
v Type: Pointer or integer (non-REXX), character representation of a pointer or

integer (REXX)
v Length: 4 bytes (non-REXX), up to 8 numeric characters (REXX)

EventExitParm specifies an optional value to be passed to the ENF listen-exit
when invoked, as described in the ENFREQ documentation for ENF 68 found
in z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further

HWIEVENT

320 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|

|
|
|

|
|
|
|

|

||||
|
|
|
|

||||
|

|
|

|

|

|

||
||

|

|

|

|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|

|
|

|
|

|

|
|
|

|
|
|

|

|

|
|

information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The return code that is returned from the console application
API or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0004yyyy' because of one
of the following reasons:

Table 64. Reasons for abend X'042', RC X'0004yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a
hexadecimal return code.

Return Code in Hexadecimal Equate
Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 321

|
|

|
|
|

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

|||
|

|
|
|

Return Code in Hexadecimal Equate
Symbol Meaning and Action

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified
connect token is not valid. This return code
indicates that one of the following
conditions has occurred:

v The connect token does not exist. A
previous HWICONN service call has
never returned the value specified on
OutConnectToken.

v The connect token does not represent an
active connection. The connection
specified might have already been
disconnected by the HWIDISC service
call.

v The connect token is not associated with
the address space of the caller. The
ConnectToken specified is associated with
a different address space than the caller of
this service call.

Action: Check for probable coding error.

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is
detected. The hardware management console
application API (HWMCA) or the BCPii
transport layer has returned with a failing
return code.

Action: See the DiagArea for further
diagnostic information. The Diag_CommErr
indicates the return code that is returned
from HWMCA APIs or the BCPii transport
layer. BCPiis CTRACE might provide further
diagnostic information if the problem can
not easily be resolved. See z/OS MVS System
Commands for further information about
starting and stopping CTRACE.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is
not accessible.

Action: Check for probable coding error.
Verify that the specified DiagArea is defined
as a 32-byte character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no
longer valid. The connection has been
disconnected, or it is in the progress of being
disconnected.

Action: Check for probable coding error.
Verify that the specified connect token is still
active. If connectivity to the targeted CPC
connection no longer exists, all connections
associated with that CPC will no longer
have a connect token that can be used.

HWIEVENT

322 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

701 HWI_EVENT_EXITMODE_INV Meaning: Program error. The requested
EventExitMode on the call is not valid. The
system rejects the service call.

Action: Check for probable coding error.

702 HWI_EVENT_EXITADDR_INV Meaning: Program error. The requested
EventExitAddr on the call is not valid. The
system rejects the service call.

Action: Check for probable coding error.

703 HWI_EVENT_ACTION_INV Meaning: Program error. The requested
EventAction on the call is not valid. The
system rejects the service call.

Action: Check for probable coding error.

704 HWI_EVENT_IDS_INV Meaning: Program error. The requested
EventIDs on the call is not valid. The system
rejects the service call. This return code
indicates one of the following conditions has
occurred:

v The first 12 bytes of the EventIDs
parameter is not equal to the expected
Eyecatcher of HWIEVENTBLCK
(non-REXX only).

v The reserved area of the EventIDs
parameter contains a non-zero value.

v The EventIDs specified applies only to a
CPC connection, but the ConnectToken
specified represents an image or capacity
record connection.

v The EventIDs specified applies only to
image connections, but the ConnectToken
specified represents a CPC or capacity
record connection.

v A request which specified an EventAction
of HWI_EVENT_DELETE also specified
EventIDs of one or more events that were
not registered on a previous HWIEVENT
EventAction = HWI_EVENT_ADD request
for the connection.

Action: Check for probable coding error.

F00 HWI_NOT_AVAILABLE Meaning: BCPii is not available, and the
system rejects the service request.

Action: Notify the system programmer to
start the BCPii address space and try the
request again. See “Restarting the HWIBCPii
address space” on page 267 about how to
start the BCPii address space.

Programs can also listen to ENF68 to
determine when BCPii services are available.
See z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for how
to listen for BCPii activation messages.

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 323

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem
state and the program does not reside in an
APF-authorized library.

Action: Check the calling program for a
probable coding error.

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct
SAF authorization for the request.

Action: Check for probable error. Consider
one or more of the following possible
actions:

v Define read access authorization to the
FACILITY class resource profile
HWI.APPLNAME.HWISERV.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau for CPC
connection.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for an
image connection.

v Ensure that the referenced FACILITY class
profiles are RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled.
The system rejects this service request.

Action: Check the calling program for a
probable coding error.

F04 HWI_MODE_INV Meaning: The calling program is not in task
mode. The system rejects this service
request.

Action: Check the calling program for a
probable error.

F05 HWI_LOCKS_HELD Meaning: The calling program is holding
one or more locks. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports BCPii services. Then run the calling
program again.

HWIEVENT

324 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii
service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a
different execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to register to be notified when
the command response events and status change events occur.
Declare (ReturnCode, EventAction, EventExitMode) Fixed(31);
Declare ConnectToken Isa(HWI_CONNTOKEN_TYPE):
Declare EventIDs Isa(HWI_EVENTIDS_TYPE):
Declare (EventExitAddr, EventExitParm) Ptr(31);
Declare DiagArea Isa(HWI_DIAGAREA_TYPE);
Declare EventExit Entry External;

EventAction = HWI_EVENT_ADD;
Hwi_EventID_EyeCatcher = HWI_EVENTID_TEXT;
Hwi_Event_CmdResp = on;
Hwi_Event_StatusChg = on;
Hwi_Event_Reserved = 0;
EventExitMode = HWI_EVENT_TASK;
EventExitAddr = ADDR(EventExit);
EventExitParm = 0;

CALL HWIEVENT (ReturnCode, ConnectToken, EventAction, EventIDs,
EventExitMode, EventExitAddr, EventExitParm, DiagArea);

A REXX programming example for the HWIEVENT service:
myAction = HWI_EVENT_ADD
myEventIDs. = 0 /*Initialize all EventIds to 0 */
myEventIDs.Hwi_Event_CmdResp = 1
myEventIDs.Hwi_Event_StatusChg = 1
myEventIDs.Hwi_Event_ActProfChg = 1

myMode = HWI_EVENT_TASK
myEventExitAddr = 0F123456 /* char rep of 4 byte hex address */
myEventExitParm = 0

address bcpii
"hwievent RetCode myConnectToken myEventAction myEventIDs. myEventExitMode

myEventExitAddr myEventExitParm myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY

HWIEVENT

Chapter 19. Base Control Program internal interface (BCPii) 325

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
End

HWILIST — Retrieve HMC and BCPii configuration-related information
Call the HWILIST service to retrieve hardware management console (HMC) and
BCPii configuration-related information. Depending on which information is
requested, the data returned by this service can be used on subsequent BCPii
service calls to take the following actions:
v Connect to a central processor complex (CPC), image (LPAR), capacity record

(CAPREC), reset activation profile, image activation profile, or load activation
profile using the HWICONN API.

v Register for the proper events (HWIEVENT) using the HWIEVENT API.
v Connect to the local CPC or image.
v Connect to a user-defined image group.

Note: A returned CPC name does not guarantee that an application will be able to
connect to that particular resource using the HWICONN API. Connecting to a CPC
involves setup issues such as setting up connectivity to a support element and
defining the necessary BCPii community name on both the support element and
the security product. For more information about the steps that need to be
completed before connectivity to a particular CPC is complete, see “Setting up
connectivity to the support element” on page 258 and “Community name defined
in the security product for each CPC” on page 263.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

REXX programming considerations for the HWILIST service
All information for the HWILIST service applies for REXX requests except:
v An answer area stem variable (for example, AnswerArea) replaces

AnswerArea_Ptr.

HWIEVENT

326 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|
|
|

|
|

|
|

v AnswerArea.0 replaces NumOfDataItemsReturned.
v AnswerArea.i will contain the i-th list value on return. For a list type of

HWI_LIST_EVENTS, AnswerArea.i will contain the i-th event bit value on
return.

v AnswerAreaLen is not returned.

Restrictions
BCPii does not allow HWILIST to be issued from within a BCPii ENF exit routine.

BCPii does not allow HWILIST with a ListType of HWI_LIST_EVENTS to be
issued by a REXX exec running in the TSO/E REXX or ISV-provided REXX
environments.

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

For a ListType of HWI_LIST_CPCS, when BCPii is creating the list of CPC network
addresses, only those CPC network addresses that the application has at least read
access to are listed. The HWI.TARGET.netid.nau FACILITY class resource is
consulted to determine this.

For a ListType of HWI_LIST_IMAGES, when BCPii is creating the list of image
(LPAR) names, only those image names that the application has at least read access
to are listed. The HWI.TARGET.netid.nau.imagename FACILITY class resource is
consulted to determine this.

For a ListType of HWI_LIST_CAPRECS, when BCPii is creating the list of capacity
records, only those capacity records that the application has at least read access to
are listed. The HWI.CAPREC.netid.nau.caprecid FACILITY class resource is
consulted to determine this.

For a ListType of HWI_LIST_EVENTS, an application must have at least read
access to the SAF-protected FACILITY class resource HWI.TARGET.netid.nau for a
CPC connection; or at least read access to the SAF-protected FACILITY class
resource HWI.TARGET.netid.nau.imagename for an image connection.

For a ListType of HWI_LIST_LOCALCPC, an application must have at least read
access to the HWI.TARGET.netid.nau FACILITY class resource profile where
netid.nau represents the local CPC network address.

For a ListType of HWI_LIST_LOCALIMAGE, an application must have at least
read access to the HWI.TARGET.netid.nau.imagename FACILITY class resource
profile where netid.nau represents the local CPC network address and imagename
represents the local image (LPAR) name.

For a ListType of HWI_LIST_RESET_ACTPROF, HWI_LIST_IMAGE_ACTPROF, or
HWI_LIST_LOAD_ACTPROF, when BCPii is creating the list of activation profiles
names, an application needs to have at least read access to the
HWI.TARGET.netid.nau FACILITY class resource for the CPC to which the
activation profiles apply.

For a ListType of HWI_LIST_IMAGEGROUPS, an application must have at least
read access to the HWI.TARGET.netid.nau FACILITY class resource for the CPC on
which image groups may be defined.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 327

|

|
|
|

|

|
|
|

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWILIST(
ReturnCode,
ConnectToken,
ListType,
NumOfDataItemsReturned,
AnswerArea_Ptr,
AnswerAreaLen,
DiagArea);

address bcpii “hwilist
ReturnCode
ConnectToken
ListType

AnswerArea.

DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken represents a logical connection between the application and a
CPC, image, or other entity. The ConnectToken is an output parameter on the
HWICONN service call.

In most cases, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same address space as this
service call. For BCPii REXX execs running under TSO/E or ISV-provided
REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

If the ListType is HWI_LIST_CPCS, HWI_LIST_LOCALCPC, or
HWI_LIST_LOCALIMAGE, this parameter is not relevant and is ignored.

If the ListType is HWI_LIST_IMAGES, this request must either be directed to a
specific CPC or to a specific user-defined image group. Therefore, a connect
token that represents an already active HWI CPC connection or user-defined
image group must be specified.

If the ListType is HWI_LIST_CAPRECS, any of the activation profile (APROF)
list types, or HWI_LIST_IMAGEGROUPS, this request must be directed to a
specific CPC. Therefore, a connect token that represents an already active HWI
CPC connection must be specified.

For a ListType of HWI_LIST_EVENTS, the connect token must represent an
already active HWI CPC or image connection, depending on which events are
to be listed. If a list of CPC events is required, the connect token must
represent an active CPC connection. Likewise, if a list of image events is
required, the connect token must represent an active image connection.

HWILIST

328 z/OS V2R1.0 MVS Callable Services for HLL

|||

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

ListType
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ListType specifies the type of request for the service.

Constant in Hexadecimal (Decimal) Equate
Symbol

Description

1

(1)

HWI_LIST_CPCS

Requests a list of CPCs that can be accessed.

2

(2)

HWI_LIST_IMAGES

Requests a list of image names that can be accessed on the CPC or within the
user-defined image group specified.

3

(3)

HWI_LIST_EVENTS

Requests a list of previously subscribed events.
Note: This ListType is not supported for REXX execs running in the TSO/E or
ISV-provided REXX environments.

4

(4)

HWI_LIST_CAPRECS

Requests a list of capacity record ID names that can be accessed.

5

(5)

HWI_LIST_LOCALCPC

Requests the name of the local CPC on which the caller is currently executing.

6

(6)

HWI_LIST_LOCALIMAGE

Requests the name of the local image (LPAR) on which the HWILIST caller is
currently executing.

7

(7)

HWI_LIST_RESET_ACTPROF

Requests a list of the currently defined reset activation profiles.

8

(8)

HWI_LIST_IMAGE_ACTPROF

Requests a list of the currently defined image activation profiles.

9

(9)

HWI_LIST_LOAD_ACTPROF

Requests a list of the currently defined load activation profiles.

A

(10)

HWI_LIST_IMAGEGROUPS

Requests a list of the currently defined user-defined image groups.
Note: This ListType is only available when targeting a z10 or higher CPC.

NumofDataItemsReturned (non-REXX)
Returned parameter
v Type: Integer

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 329

|
|

|

|

|

||
||

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

v Length: 4 bytes

NumofDataItemsReturned contains the number of data items returned in the
answer area.

AnswerArea_Ptr (non-REXX)
AnswerArea. (REXX)

Supplied parameter
v Type: Pointer (non-REXX), stem variable (REXX)
v Length: 4 bytes (non-REXX)

Non-REXX:
AnswerArea_Ptr specifies the address of the answer area where the
requested data is returned.

REXX:
A list of the requested objects is returned in an array form of x.n; where x
is the user-defined AnswerArea stem variable and n is the n-th element in
the stem array.

The AnswerArea.0 stem variable counter holds the number of items
returned.

The ListType specified determines the format of the returned data.

ListType Data to be returned (non-REXX) Data to be returned (REXX)

HWI_LIST_CPCS A string comprised of a list of
blank-separated concatenated 17-character
CPC network addresses. Each network
address is in the form of a 1- through
8-character netid, followed by a period, and
followed by a 1- through 8-character network
addressable unit (NAU) name. The network
address is padded with trailing blanks if the
total string length of the network address is
less than 17 characters.

Example: net1.cpc01.

A stem array list of CPC network addresses.

Each network address is in the form of a 1-
through 8-character netid, followed by a
period, and followed by a 1- through
8-character network addressable unit (NAU)
name.

Example: net1.cpc01.

HWI_LIST_IMAGES A string comprised of a list of
blank-separated concatenated 8-character
image names padded with trailing blanks.

A stem array list of image names.

HWI_LIST_EVENTS A 128-bit string. The first 96 bits (12 bytes) is
an eye-catcher value of HWIEVENTBLCK.
The last 32 bits represents events already
registered for notification. These events were
registered by previous HWIEVENT ADD
service calls. The returned event indicators
are specific to the ConnectToken specified.
These indicators are mapped by the type
structure HWI_EVENTIDS_TYPE from the
BCPii services interface declaration file. If a
particular indicator is on, that event is active
for this connection.

A stem array list of Boolean values of the
EventIDs, which are represented by the
EventIDs tail labels defined in HWICIREX.

For example, if x is the answerarea stem
variable, the returned Boolean data indicates
the event registration status.

x.Hwi_Event_CmdResp = 1 (on)
x.Hwi_Event_StatusChg = 0 (off)

:
:

x.Hwi_Event_PowerChange = 0 (off)
Note: This ListType is not supported for
REXX execs running in the TSO/E or
ISV-provided REXX environments.

HWI_LIST_CAPRECS A string comprised of a list of
blank-separated concatenated 8-character
CAPREC names padded with trailing blanks.

A stem array list of CAPREC names.

HWILIST

330 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|

|
|
|

|

|

|
|
|

|
|
|
|

|
|

|

||||

||
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

||
|
|

|

||
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

||
|
|

|

ListType Data to be returned (non-REXX) Data to be returned (REXX)

HWI_LIST_LOCALCPC A 17–character string representing the CPC
network address of the local CPC. The
network address is in the form of a 1- to
8-character netid, followed by a period,
followed by a 1- to 8-character network
addressable unit (NAU) name. The network
address is padded with trailing blanks.

The CPC network address of the local CPC is
returned in the first and only element in the
stem array.

The network address is in the form of a 1-
through 8-character netid, followed by a
period, and followed by a 1- through
8-character network addressable unit (NAU)
name.

HWI_LIST_LOCALIMAGE An 8–character string representing the image
name of the local image (LPAR) padded with
trailing blanks.

The image name of the local image (LPAR) is
returned in the first and only element in the
stem array.

HWI_LIST_RESET_ACTPROF A string comprised of a list of concatenated
16–character reset activation profile names
padded with trailing blanks.

A stem array list of reset activation profile
names.

HWI_LIST_IMAGE_ACTPROF A string comprised of a list of concatenated
16–character image activation profile names
padded with trailing blanks.

A stem array list of image activation profile
names.

HWI_LIST_LOAD_ACTPROF A string comprised of a list of concatenated
16–character load activation profile names
padded with trailing blanks.

A stem array list of load activation profile
names.

HWI_LIST_IMAGEGROUPS A null-terminated string of null-separated
user-defined image group names.

A stem array list of user-defined image
group names.

AnswerAreaLen (non-REXX)
Supplied parameter
v Type: Integer
v Length: 4 bytes

AnswerAreaLen specifies the length in bytes of the AnswerArea pointed to by
the AnswerArea_Ptr. The amount of storage required by the application at the
AnswerArea_Ptr location depends primarily on two factors:
1. The ListType specified
2. The number of data items expected to be returned

For example, if a ListType of HWI_LIST_CPCS is specified and the current
HMC LAN has 7 CPCs connected to it, at least 17 bytes x 7 CPCs + the
number of blank spaces among the CPCs = 119 + 6 = 125 bytes of data are
required for the AnswerArea.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 331

|||

||
|
|
|
|
|
|

|
|
|

|
|
|
|
|

||
|
|

|
|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|
|

|
|

|

|

|
|
|

|

|

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application
API or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0005yyyy' because of one
of the following reasons:

Table 65. Reasons for abend X'042', RC X'0005yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a
hexadecimal return code.

Return Code in Hexadecimal Equate
Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

HWILIST

332 z/OS V2R1.0 MVS Callable Services for HLL

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

|||
|

|
|
|

Return Code in Hexadecimal Equate
Symbol Meaning and Action

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified
connect token is not valid. This return code
indicates one of the following conditions has
occurred:

v The connect token does not exist. A
previous HWICONN service call has
never returned the value specified on
OutConnectToken.

v The connect token does not represent an
active connection. The connection
specified might have already been
disconnected using the HWIDISC service
call.

v The connect token is not associated with
the address space of the caller. The
ConnectToken specified is associated with
a different address space than the caller of
this service call.

Action: Check for probable coding error.

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is
detected. The hardware management console
application API (HWMCA) or the BCPii
transport layer has returned with a failing
return code.

Action: See the DiagArea for further
diagnostic information. The Diag_CommErr
indicates the return code that is returned
from HWMCA APIs or the BCPii transport
layer.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is
not accessible.

Action: Check for probable coding error.
Verify the specified DiagArea is defined as a
32-byte character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no
longer valid. The connection has been
disconnected, or it is in the progress of being
disconnected.

Action: Check for probable coding error.
Verify that the specified connect token is still
active. If connectivity to the targeted CPC
connection no longer exists, all connections
associated with that CPC will no longer
have a connect token that can be used.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 333

Return Code in Hexadecimal Equate
Symbol Meaning and Action

301 HWI_LISTTYPE_INV Meaning: Program error. The requested
LISTTYPE specified in the call is not valid.
The system rejects the service call. This
return code indicates one of the following
conditions has occurred:

v The ListType specified is not in the
acceptable value range of possible list
types.

v The ListType specified is incompatible
with the InConnectToken specified. For
example:

– The ListType specified applies only to
CPC connections, but the
ConnectToken specified represents an
image connection.

– The ListType specified applies only to
image connections, but the
ConnectToken specified represents a
CPC connection.

v For ListType HWI_LIST_EVENTS, the
ConnectToken must not represent a
capacity record because capacity record
events do not have events directly
associated with capacity records
connections. Capacity-related events are
associated with a CPC connection.

Action: Check for probable coding error.
Validate that the ListType specified is in the
valid range of possible values, and that the
ListType specified is permitted for the
specified connection type.

302 HWI_DATA_EXCEEDED Meaning: Program error. The amount of
returned data exceeded the size of the
answer area. No data or only partial data is
returned.

Action: Check for probable coding error. See
the DiagArea for further diagnostic
information. The Diag_Actual indicates the
application-specified length. The
Diag_Expected indicates the size required
for the AnswerArea.

303 HWI_ANSWERAREA_INACCESSIBLE Meaning: Program error. The answer area
data area is either partially or completely
inaccessible by the application and the Base
Control Program internal interface (BCPii)
address space.

Action: Check for probable coding error.
Verify that the AnswerArea_Ptr points to a
data area where the answer area is and
make sure the data area is accessible.

HWILIST

334 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

304 HWI_LIST_NODATA_RETURNED Meaning: There is no data to be returned or
the caller does not have enough access to
display the listed values.

Action: Check for probable coding error.
Verify that proper access is granted for the
request.

305 HWI_LISTTYPE_NOT_SUPPORTED Meaning: The targeted hardware of the
HWILIST request does not support the
request attempted by the program.

Action: Verify that the targeted hardware
supports the type of request being made.

F00 HWI_NOT_AVAILABLE Meaning: BCPii services are not available,
and the system rejects the service request.

Action: Notify the system programmer to
start the BCPii address space and try the
request again. See “Restarting the HWIBCPii
address space” on page 267 about how to
start the BCPii address space.

Programs can also listen to ENF68 to
determine when BCPii services are available.
See z/OS MVS Programming: Authorized
Assembler Services Reference EDT-IXG for how
to listen for BCPii activation messages.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem
state and the program does not reside in an
APF-authorized library.

Action: Check the calling program for a
probable coding error.

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 335

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct
SAF authorization for the request.

Action: Check for probable error. Consider
one or more of the following possible
actions:

v Define read access authorization to the
FACILITY class resource profile
HWI.APPLNAME.HWISERV.

v Define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for
HWI_LIST_IMAGES ListType.

v Define read access authorization to the
FACILITY class resource profile
HWI.CAPREC.netid.nau.caprec for
HWI_LIST_CAPRECS ListType.

v For a ListType of HWI_LIST_EVENTS,
define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau for a CPC
connection, and
HWI.TARGET.netid.nau.imagename for an
image connection.

v For a ListType of HWI_LIST_LOCALCPC,
define read access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau where netid.nau
represents the local CPC network address.

v For a ListType of
HWI_LIST_LOCALIMAGE, define read
access authorization to the FACILITY class
resource profile
HWI.TARGET.netid.nau.imagename where
netid.nau represents the local CPC network
address and imagename represents the
local image (LPAR) name.

v For the ListType of
HWI_LIST_RESET_ACTPROF,
HWI_LIST_IMAGE_ACTPROF,
HWI_LIST_LOAD_ACTPROF, or
HWI_LIST_IMAGEGROUPS, define read
access authorization to the FACILITY class
resource profile HWI.TARGET.netid.nau
for the CPC where the activation profiles
or image groups to be listed are defined.

v Ensure that the referenced facility class
profiles are RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled.
The system rejects this service request.

Action: Check the calling program for a
probable coding error.

HWILIST

336 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

F04 HWI_MODE_INV Meaning: The calling program is not in task
mode. The system rejects this service
request.

Action: Check the calling program for a
probable error.

F05 HWI_LOCKS_HELD Meaning: The calling program is holding
one or more locks. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports BCPii services. Then run the calling
program again.

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii
service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a
different execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the pseudocode example, the caller issues a call to retrieve a list CPCs that can
be accessed.
.
.
ListType = HWI_LIST_CPCS;
AnswerArea_Ptr = addr(AnswerArea);
AnswerAreaLen = 125;
CALL HWILIST (ReturnCode, ConnectToken, ListType, NumofDataItemsReturned.

AnswerArea_Ptr, AnswerAreaLen, DiagArea)
.
.

A REXX programming example for the HWILIST service:
myListType = HWI_LIST_IMAGES

address bcpii
"hwilist RetCode myConnectToken myListType myAnswerArea. myDiag."

If (RC <> 0) | (Retcode <> 0) Then

HWILIST

Chapter 19. Base Control Program internal interface (BCPii) 337

|

|
|
|
|
|
|
|

Do
Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
Else

Do
Say ’Number of items returned = ’myAnswerArea.0 /* Count of items returned */

If myAnswerArea.0 > 0 Then
Do n=1 to myAnswerArea.0

Say ’Image #’n’ = ’myAnswerArea.n
End

End

HWIQUERY — BCPii retrieval of SE/HMC-managed attributes
Call the HWIQUERY service to retrieve information about objects managed by the
support element (SE) or hardware management console (HMC) related with central
processor complexes (CPCs), CPC images (LPARs), capacity records, different types
of activation profiles, or user-defined image groups.

For some connection types (HWI_CPC and HWI_IMAGE in particular), grouping
multiple attributes together into a single HWIQUERY service call may result in
significantly reduced waiting times rather than querying the same number of
attributes one at a time. Whenever possible, an application should consolidate its
HWIQUERY service calls to query multiple attributes using the same query
request.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

HWILIST

338 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

See “HWIQUERY and HWISET” on page 417 for the summary table of the BCPii
HWIQUERY and HWISET attributes and the objects that can be targeted for each
function.

REXX programming considerations for the HWIQUERY service
All information for the HWIQUERY service applies for REXX requests except:
v A query parameter stem variable (for example, QueryParm) replaces

QueryParm_Ptr.
– QueryParm.0 replaces NumOfAttributes. QueryParm.0 is required to specify

the number of attributes to be queried. The maximum number of attributes
allowed is 64.

– QueryParm.n.ATTRIBUTEIDENTIFIER must contain the n-th attribute
identifier to be returned.

– QueryParm.n.ATTRIBUTEVALUE will contain the n-th attribute value on
return.

v AttributeValue_Ptr is replaced with AttributeValue.
v AttributeValueLen is not used.
v AttributeValueLenReturned is not used.
v For the PSW (HWI_PSWS) attribute:

– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of PSWs returned
(j).

– QueryParm.n.ATTRIBUTEVALUE.m.CPUID will contain the m-th CPU
identifier.

– QueryParm.n.ATTRIBUTEVALUE.m.PSW will contain the m-th PSW.
v For the supported processor power savings mode (HWI_SUPPPPOWERMODE)

attribute:
– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of supported

power savings modes returned (m).
– QueryParm.n.ATTRIBUTEVALUE.m.PSMODE will contain the m-th supported

power savings mode.
v For the list of IP addresses (HWI_LIST_IP_ADDRESSES) attribute:

– QueryParm.n.ATTRIBUTEVALUE.0 will contain the number of IP addresses
returned (j).

– QueryParm.n.ATTRIBUTEVALUE.m.IPADDR will contain the m-th IP address.

Restrictions
BCPii does not allow HWIQUERY to be issued from within a BCPii ENF exit
routine.

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

Client application must have at least read access to the SAF-protected FACILITY
class HWI.TARGET.netid.nau for any CPC, activation profile, or user-defined image
group queries, or HWI.TARGET.netid.nau.imagename for image queries, or
HWI.CAPREC.netid.nau.caprecid for capacity record queries.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 339

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|

|

|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWIQUERY(
ReturnCode,
ConnectToken,
QueryParm_Ptr,
NumOfAttributes,
DiagArea);

address bcpii “hwiquery
ReturnCode
ConnectToken
QueryParm.

DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken represents a logical connection between the application and a
CPC, image, capacity record, activation profile, or user-defined image group.
The ConnectToken is an output parameter on the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same address space as this
service call. For BCPii REXX execs running under the TSO/E or ISV-provided
REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

QueryParm_Ptr (non-REXX)
QueryParm. (REXX)

Supplied parameter
v Type: Pointer (non-REXX), stem variable (REXX)
v Length: 4 bytes (non-REXX)

Non-REXX:
QueryParm_Ptr specifies the address of a user-defined query structure that
contains a list of one or more requested attributes to be queried, in the
following form: attribute that is required, address of where returned value
is to be stored, the length of the storage available to HWIQUERY to store
the returned value, and the actual length of the data that will be returned
in the data area.

The size of the data area pointed to by this parameter must be 16 bytes
multiplied by the NumOfAttributes parameter. For example, if
NumofAttributes is 4, the data area pointed to by this parameter must be
at least 64 bytes long (16 x 4).

The storage area that contains each attribute in the QueryParm is shown
below:

HWIQUERY

340 z/OS V2R1.0 MVS Callable Services for HLL

|||

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|

Field Name Field Type

AttributeIdentifier 32-bit unsigned integer

AttributeValue_Ptr Pointer

AttributeValueLen 32-bit unsigned integer

AttributeValueLenReturned 32-bit unsigned integer

This table is mapped by the data structure Hwi_QueryParm_Type in the
data mappings provided for the various programming languages
supported. See “Syntax, linkage and programming considerations” on page
268 for more information.

If all of the data can be written into the data area (the AttributeValueLen is
greater than or equal to the actual data returned), the
AttributeValueLenReturned field contains the actual length of the data
written in the storage specified at address AttributeValue_Ptr.

The AttributeValueLenReturned is only used as an output parameter. Any
value contained in the field when HWIQUERY is called is ignored.

REXX:
QueryParm is a compound (stem) variable which contains one or more
requested attributes to be queried and returned.

The compound (stem) variable is specified as follows (where x is the
user-defined QueryParm stem variable and n is the n-th attribute for the
request):
v x.0 specifies the number of attributes to be queried. The maximum

number of attributes allowed is 64. (Supplied parameter)
v x.n.ATTRIBUTEIDENTIFIER specifies the requested attribute. Set this

variable to one of the query attribute constants defined in HWICIREX.
(Supplied parameter)

v x.n.ATTRIBUTEVALUE is the data value to be returned for most
attributes. (Returned parameter)

v Some single attributes can return multiple objects in a formatted
structure. For those attributes, x.n.ATTRIBUTEVALUE.0 (Returned
parameter) is the total number of returned objects. See the query
attribute table below for the following attributes that are in a different
format. These attributes include: HWI_SUPPPPOWERMODE,
HWI_LIST_IP_ADDRESSES and HWI_PSWS.

The following is the list of valid query attributes identifiers. For more
information about these attributes, see the following publications:
v System z Application Programming Interfaces (SB10-7030-13)
v System z10 and eServer zSeries Application Programming Interfaces

(SB10-7030-09)
v System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)
v Publication appropriate to the level of hardware that the HWIQUERY is

targeted

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 341

|||

||

||

||

||
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

1

(1)

HWI_NAME

Requests to retrieve the name that represents the connect token.
Note: The input connection token must represent a CPC connection, an image
connection, a reset activation profile connection, an image activation profile connection, a
load activation profile connection, or an image group connection.

2

(2)

HWI_ERRSTAT

Requests to retrieve whether the status is acceptable.
Note: The input connection token must represent a CPC connection an image
connection, or an image group connection.

3

(3)

HWI_BUSYSTAT

Requests to retrieve whether the status is busy.
Note: The input connection token must represent a CPC connection an image
connection, or an image group connection.

4

(4)

HWI_MSGSTAT

Requests to retrieve whether hardware messages are present.
Note: The input connection token must represent a CPC connection or an image
connection.

5

(5)

HWI_OPERSTAT

Requests to retrieve the current status.
Note: The input connection token represents a CPC connection or an image connection.

6

(6)

HWI_ACCSTAT

Requests to retrieve the acceptable status values.
Note: The input connection token represents a CPC connection or an image connection.

7

(7)

HWI_APROF

Requests to retrieve the next activation reset profile name.
Note: The input connection token must represent a CPC connection or an image
connection.

8

(8)

HWI_LUAPROF

Requests to retrieve the last used activation profile.
Note: The input connection token must represent a CPC connection or an image
connection.

9

(9)

HWI_OBJTYPE

Requests to retrieve the object type.

Input connection
token represents Returns
CPC HWMCA_CPC_OBJECT
CPC image HWMCA_CPC_IMAGE_OBJECT
Capacity record HWMCA_CAPACITY_RECORD
Reset activation profile HWMCA_ACT_PROFILE_RESET
Image activation profile HWMCA_ACT_PROFILE_IMAGE
Load activation profile HWMCA_ACT_PROFILE_LOAD
Image Group HWMCA_CPC_IMAGE_USER_GROUP

Note: The input connection token must represent a CPC connection, an image
connection, a capacity record connection, a reset activation profile connection, an image
activation profile connection, a load activation profile connection, or an image group
connection.

A

(10)

HWI_IMLMODE

Requests to retrieve the initial machine load (IML) mode (LPAR).
Note: The input connection token must only represent a CPC connection or an image
connection.

HWIQUERY

342 z/OS V2R1.0 MVS Callable Services for HLL

||
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

B-16

(11–22)

RESERVED

Reserved for attributes that are common to CPC and image connections unless
otherwise noted.

17

(23)

HWI_IPADDR

Requests to retrieve the internet address (IPv4 format).
Note: The input connection token must only represent a CPC connection.

18

(24)

HWI_SNAADDR

Requests to retrieve the SNA address (netid.nau).
Note: The input connection token must only represent a CPC connection.

19

(25)

HWI_MMODEL

Requests to retrieve the machine model.
Note: The input connection token must only represent a CPC connection.

1A

(26)

HWI_MTYPE

Requests to retrieve the machine type.
Note: The input connection token must only represent a CPC connection.

1B

(27)

HWI_MSERIAL

Requests to retrieve the machine serial.
Note: The input connection token must only represent a CPC connection.

1C

(28)

HWI_CPCSERIAL

Requests to retrieve the CPC serial number.
Note: The input connection token must only represent a CPC connection.

1D

(29)

HWI_CPCID

Requests to retrieve the CPC identifier.
Note: The input connection token must only represent a CPC connection.

1E

(30)

HWI_RESERVEID

Requests to retrieve the name of the application that is holding the reserve (if any).
Note: The input connection token must only represent a CPC connection.

1F

(31)

HWI_SVCEREQD

Requests to retrieve the service required.
Note: The input connection token must only represent a CPC connection.

20

(32)

HWI_CBUINSTD

Requests to retrieve the CBU installed.
Note: The input connection token must only represent a CPC connection.

21

(33)

HWI_CBUENABLD

Requests to retrieve the CBU enabled.
Note: The input connection token must only represent a CPC connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 343

|
|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

22

(34)

HWI_CBUACTIVE

Requests to retrieve the CBU activated.
Note: The input connection token must only represent a CPC connection.

23

(35)

HWI_CBUACTDT

Requests to retrieve the CBU activation date.
Note: The input connection token must only represent a CPC connection.

24

(36)

HWI_CBUEXPDT

Requests to retrieve the CBU expiration date.
Note: The input connection token must only represent a CPC connection.

25

(37)

HWI_CBUTESTAR

Requests to retrieve the CBU tests left (test activations remaining).
Note: The input connection token must only represent a CPC connection.

26

(38)

HWI_CBUREALAV

Requests to retrieve the CBU real activation available.
Note: The input connection token must only represent a CPC connection.

27

(39)

HWI_PRUNTYPE

Requests to retrieve the processor running time type.
Note: The input connection token must only represent a CPC connection or a reset
activation profile connection.

28

(40)

HWI_PRUNTIME

Requests to retrieve the processor running time.
Note: The input connection token must only represent a CPC connection or a reset
activation profile connection.

29

(41)

HWI_PRUNTSEW

Requests to retrieve the processor running time slice end wait processing.
Note: The input connection token must only represent a CPC connection or a reset
activation profile connection.

2A

(42)

HWI_OOCINST

Requests to retrieve the on and off capacity on demand installed.
Note: The input connection token must only represent a CPC connection.

2B

(43)

HWI_OOCACT

Requests to retrieve the on and off capacity on demand currently activated.
Note: The input connection token must only represent a CPC connection.

2C

(44)

HWI_OOCENAB

Requests to retrieve the on and off capacity on demand enabled.
Note: The input connection token must only represent a CPC connection.

2D

(45)

HWI_OOCADT

Requests to retrieve the on and off capacity on demand activation date.
Note: The input connection token must only represent a CPC connection.

HWIQUERY

344 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

2E

(46)

HWI_PCPCSWM

Requests to retrieve the permanent CPC software model. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

2F

(47)

HWI_PPBPSWM

Requests to retrieve the permanent plus billable processor software model. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

30

(48)

HWI_PPTPSWM

Requests to retrieve the permanent plus (all) temporary processor software model.
This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

31

(49)

HWI_PCPCMSU

Requests to retrieve the permanent CPC millions of service units (MSU) value. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

32

(50)

HWI_PPBPMSU

Requests to retrieve the permanent plus billable processor MSU value. This attribute
is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

33

(51)

HWI_PPTPMSU

Requests to retrieve the permanent plus (all) temporary processor MSU value. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

34

(52)

HWI_NUMGPP

Requests to retrieve the number of general purpose processors. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

35

(53)

HWI_NUMSAP

Requests to retrieve the number of service assist processors. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

36

(54)

HWI_NUMIFAP

Requests to retrieve the number of the integrated facility for applications (IFA)
processors. This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

37

(55)

HWI_NUMIFLP

Requests to retrieve the number of the integrated facility for Linux (IFL) processors.
This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

38

(56)

HWI_NUMICFP

Requests to retrieve the number of the internal coupling facility (ICF) processors.
This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

39

(57)

HWI_NUMIIPP

Requests to retrieve the number of integrated information processors (IIP). This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 345

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

3A

(58)

HWI_NUMFLTYP

Requests to retrieve the number of defective (faulty) processors. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

3B

(59)

HWI_NUMSPARE

Requests to retrieve the number of spare processors. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

3C

(60)

HWI_NUMPENDP

Requests to retrieve the number of pending (activation) processors. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

3D

(61)

HWI_CAPCHGALLWD

Requests to determine if activate/deactivate of capacity are permitted. This attribute
is only available when targeting a z10 or higher CPC.
Note: The input connection token must only represent a CPC connection.

3E

(62)

HWI_DGRSTAT

Requests to retrieve degraded status.
Note: The input connection token must only represent a CPC connection.

3F

(63)

HWI_CURRPPOWERMODE

Requests to retrieve the current processor power savings mode active on the targeted
CPC. This attribute is only available when targeting a zEnterprise or higher CPC.
Note: The input connection token must only represent a CPC connection.

40

(64)

HWI_SUPPPPOWERMODE

Requests to retrieve the supported processor power savings modes available on the
targeted CPC. This attribute is only available when targeting a zEnterprise or higher
CPC.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
--------------- -----------
Number of 32-bit integer
supported
powersave modes

For each supported powersave mode, the following is returned:

Powersave mode 32-bit integer value
Note: The query parameter for this attribute must specify a data area large
enough to contain all of the above structure (that is, 32 bits + 32 bits per
supported powersave mode returned). For example, if there are 2 supported
powersave modes on the targeted CPC, then the structure must be at least 32 +
(32 x 2) = 96 bits (12 bytes).

REXX:
The returned data is mapped as follows (where x is the user-defined
QueryParm stem, n is the n-th requested attribute and m is the m-th returned
powersave mode value):

v x.n.ATTRIBUTEVALUE.0 is the number of supported powersave modes (m).

v x.n.ATTRIBUTEVALUE.m.PSMODE is the m-th powersave mode value.

Note: The input connection token must only represent a CPC connection.

HWIQUERY

346 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

41

(65)

HWI_STPCONFIG

Requests to retrieve the Server Timer Protocol (STP) configuration data.
Note: The input connect token must only represent a CPC connection.

42

(66)

HWI_NUMPGPP

Requests to retrieve the number of pending general purpose processors.
Note: The input connect token must only represent a CPC connection.

43

(67)

HWI_NUMPSAP

Requests to retrieve the number of pending service assist processors.
Note: The input connect token must only represent a CPC connection.

44

(68)

HWI_NUMPAAP

Requests to retrieve the number of pending Application Assist Processor (AAP)
processors.
Note: The input connect token must only represent a CPC connection.

45

(69)

HWI_NUMPIFLP

Requests to retrieve the number of pending Integrated Facility for Linux (IFL)
processors.
Note: The input connect token must only represent a CPC connection.

46

(70)

HWI_NUMPICFP

Requests to retrieve the number of pending Internal Coupling Facility (ICF)
processors.
Note: The input connect token must only represent a CPC connection.

47

(71)

HWI_NUMPIIPP

Requests to retrieve the number of pending Integrated Information (IIP) processors.
Note: The input connect token must only represent a CPC connection.

48

(72)

HWI_POWERMODEALLOWED

Requests to retrieve the processor power savings mode allowed. This attribute is
only available when targeting a zEnterprise or higher CPC.

HWMCA_TRUE
The processor currently allows switching to power savings mode.

HWMCA_FALSE
The processor currently does not allow switching to power savings mode.

Note: The input connection token must only represent a CPC connection.

49

(73)

HWI_VERSION

Requests to retrieve the CPC version number.
Note: The input connection token must only represent a CPC connection.

4A

(74)

HWI_EC_MCL_INFO

Requests to retrieve an XML string that describes the Engineering Change (EC) and
Microcode Level (MCL) levels.
Note: The input connection token must only represent a CPC connection.

Attention: The data returned by the support element can be quite large. Consider
using a larger data area when requesting this attribute.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 347

|
|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|
|

|
|
|

|

|

|

|
|

|

|

|

|
|
|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

4B

(75)

HWI_LIST_IP_ADDRESSES

Requests to retrieve all the IP addresses (in either IPv4 or IPv6 format, or both) used
for the targeted CPC.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
---------- -----------
Number of IP addresses 32-bit unsigned integer
IP address value 39-character value padded

with blanks

Note: The query parameter for this attribute must specify a data area large
enough to contain all of the above structure (that is, a 4-byte length field plus a
39-byte field for each IP address returned). For example, if there are 3 IP
addresses returned, the AttributeValueLen specified for this attribute must be at
least (4 + (39 x 3)) = 121 bytes.

REXX:
The returned data is mapped as follows (where x is the user-defined
QueryParm stem, n is the n-th requested attribute and m is the m-th returned IP
address value):

v x.n.ATTRIBUTEVALUE.0 is the number of IP addresses (m).

v x.n.ATTRIBUTEVALUE.m.IPADDR is the m-th IP address value.

Note: The input connection token must only represent a CPC connection.

4C

(76)

HWI_AUTO_SWITCH_ENABLED

Requests to retrieve a value used to determine if automatic switching between
primary and alternate support elements is enabled.

A 4-byte integer type value is returned:

HWMCA_TRUE
Automatic switching is enabled.

HWMCA_FALSE
Automatic switching is disabled.

Note: The input connection token must only represent a CPC connection.

4D-68

(77-104)

RESERVED

Reserved for CPC attributes unless otherwise noted.

69

(105)

HWI_CPCNAME

Requests to retrieve the parent (CPC) name.
Note: The input connection token must only represent an image connection.

HWIQUERY

348 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|

|
|

|
|
|

|

|

|

|

|

|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6A

(106)

HWI_OSNAME

Requests to retrieve the SW operating system name.

The values returned on the HWI_OSNAME attribute are not owned by z/OS BCPii
and are subject to change. The possible values returned by the various operating
systems at the time of this publication include:

HWI_OSTYPE value: MVS
The HWI_OSNAME value returned is the SYSNAME parameter as defined in
IEASYSxx parmlib member for the targeted image.

HWI_OSTYPE value: VM
The HWI_OSNAME value returned is the system identifier or system name as
defined in the SYSTMID field in the SYSCM (System Common Area) control
block.

HWI_OSTYPE value: LINUX
The HWI_OSNAME value returned is N/A.

HWI_OSTYPE value: VSE
The HWI_OSNAME value returned is the VSE system name.

HWI_OSTYPE value: Z TPF EE
The HWI_OSNAME value returned is the id value representing the targeted
image's CPU designation in the z/TPF complex.

Note: The input connection token must only represent an image connection.

6B

(107)

HWI_OSTYPE

Requests to retrieve the SW operating system type.

The values returned on the HWI_OSTYPE attribute are not owned by z/OS BCPii
and are subject to change. Possible values include MVS, VM, LINUX, VSE, and Z
TPF EE.
Note: The input connection token must only represent an image connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 349

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

|

|

|

|

|
|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6C

(108)

HWI_OSLEVEL

Requests to retrieve the SW operating system level.

The values returned on the HWI_OSLEVEL attribute are not owned by z/OS BCPii
and are subject to change. The possible values returned by the various operating
systems at the time of this publication include:

HWI_OSTYPE value: MVS
The HWI_OSLEVEL value is mapped by the CVTOSLVL field of the CVT
control block.

HWI_OSTYPE value: VM
The HWI_OSLEVEL value is mapped as follows:

v 4-bit release #

v 4-bit modification level

v 8-bit version #

v 16-bit service level

v 8-bit MVS guest count

v 8-bit LINUX guest count

v 8-bit VSE guest count

v 8-bit Solaris guest count

HWI_OSTYPE value: LINUX
The HWI_OSLEVEL value is mapped as follows, in hexadecimal:

v 40 bits N/A

v 8-bit major kernel revision

v 8-bit major release

v 8-bit minor release

HWI_OSTYPE value: VSE
The HWI_OSLEVEL value is mapped as follows:

v 32-bit VSE/AF release level

v 32-bit latest service level (if available)

HWI_OSTYPE value: Z TPF EE
The HWI_OSLEVEL value is mapped as follows:

v 16-bit version #

v 8-bit PUT level

Examples:

For MVS, FFFFFFFFEF7F0000 implies that the target is running z/OS V1R13 because
the CVTZOS_V1R13 bit is the last supported release flag that is on.

For VM, 4005100200320000 implies that the target is running z/VM Release 4,
Modification Level 0, Version 5, Service Level 1002, MVS guest count 0, Linux guest
count 32, VSE guest count 0, and Solaris guest count 0.

For LINUX, 0000000000020620 implies that the target is running z/LINUX major
kernel revision 2, major release 6, and minor release 32.

For VSE, 0830000000000000 implies that the target is running at the VSE/AF 8.3
release level and no service level is available.

For Z TPF EE, 0101070000000000 implies that the target is running z/TPF version
1.1, PUT level 7.
Note: The input connection token must represent an image connection.

6D

(109)

HWI_SYSPLEX

Requests to retrieve the SW sysplex name (z/OS only).
Note: The input connection token must only represent an image connection.

HWIQUERY

350 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|

|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

6E

(110)

HWI_CLUSTER

Requests to retrieve the LPAR cluster name.
Note: The input connection token must only represent an image connection.

6F

(111)

HWI_PARTITIONID

Requests to retrieve the partition ID. If the connection token represents an image
connection, the image partition ID is returned; if the connection token represents an
image activation profile connection, the image activation profile partition ID is returned.
The image partition ID is only retrievable when the partition has been activated.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

70

(112)

HWI_DEFCAP

Requests to retrieve the current defined capacity.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

71

(113)

HWI_SGPIPW

Requests to retrieve the shared general processor initial processing weight (SGPIPW).
Note: The input connection token must only represent an image connection or an
image activation profile connection.

72

(114)

HWI_SGPIPWCAP

Requests to retrieve the SGPIPW to be capped or not capped.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

73

(115)

HWI_SGPPWMIN

Requests to retrieve the minimum SGPPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

74

(116)

HWI_SGPPWMAX

Requests to retrieve the maximum SGPPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

75

(117)

HWI_SGPPW

Requests to retrieve the current SGPPW value.
Note: The input connection token must only represent an image connection.

76

(118)

HWI_SGPPWCAP

Requests to retrieve the SGPPW to be capped or not capped.
Note: The input connection token must only represent an image connection.

77

(119)

HWI_WLM

Requests to retrieve whether WLM is allowed to change processing weight-related
attributes.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

78

(120)

HWI_IFAIPW

Requests to retrieve the integrated facility for applications initial processing weight
(IFAIPW).
Note: The input connection token must only represent an image connection or an
image activation profile connection.

79

(121)

HWI_IFAIPWCAP

Requests to retrieve the IFAIPW to be capped or not capped.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 351

|
|
|
|

|

|

|

|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

7A

(122)

HWI_IFAPWMIN

Requests to retrieve the minimum IFAPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

7B

(123)

HWI_IFAPWMAX

Requests to retrieve the maximum IFAPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

7C

(124)

HWI_IFAPW

Requests to retrieve the current IFAPW value.
Note: The input connection token must only represent an image connection.

7D

(125)

HWI_IFAPWCAP

Requests to retrieve the IFAPW to be currently capped or not capped.
Note: The input connection token must only represent an image connection.

7E

(126)

HWI_IFLIPW

Requests to retrieve the integrated facility for Linux initial processing weight.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

7F

(127)

HWI_IFLIPWCAP

Requests to retrieve the IFLIPW to be capped or not capped.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

80

(128)

HWI_IFLPWMIN

Requests to retrieve the minimum IFLPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

81

(129)

HWI_IFLPWMAX

Requests to retrieve the maximum IFLPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

82

(130)

HWI_IFLPW

Requests to retrieve current IFLPW value.
Note: The input connection token must only represent an image connection.

83

(131)

HWI_IFLPWCAP

Requests to retrieve the IFLPW to be capped or not capped.
Note: The input connection token must only represent an image connection.

84

(132)

HWI_ICFIPW

Requests to retrieve the internal coupling facility initial processing weight (ICFIPW).
Note: The input connection token must only represent an image connection (Coupling
Facility images only) or an image activation profile connection.

85

(133)

HWI_ICFIPWCAP

Requests to retrieve the ICFIPW be capped or not capped.
Note: The input connection token must only represent an image connection (Coupling
Facility images only) or an image activation profile connection.

HWIQUERY

352 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

86

(134)

HWI_ICFPWMIN

Requests to retrieve the minimum ICFPW value.
Note: The input connection token must only represent an image connection (Coupling
Facility images only) or an image activation profile connection.

87

(135)

HWI_ICFPWMAX

Requests to retrieve the maximum ICFPW value.
Note: The input connection token must only represent an image connection (Coupling
Facility images only) or an image activation profile connection.

88

(136)

HWI_ICFPW

Requests to retrieve the current ICFPW value.
Note: The input connection token must only represent an image connection (Coupling
Facility images only).

89

(137)

HWI_ICFPWCAP

Requests to retrieve the ICFPW to be capped or not capped.
Note: The input connection token must only represent an image connection (Coupling
Facility images only).

8A

(138)

HWI_IIPIPW

Requests to retrieve the integrated information processors initial processing weight
(IIPIPW).
Note: The input connection token must only represent an image connection or an
image activation profile connection.

8B

(139)

HWI_IIPIPWCAP

Requests to retrieve the IIPIPW be capped or not capped.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

8C

(140)

HWI_IIPPWMIN

Requests to retrieve the minimum IIPPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

8D

(141)

HWI_IIPPWMAX

Requests to retrieve the maximum IIPPW value.
Note: The input connection token must only represent an image connection or an
image activation profile connection.

8E

(142)

HWI_IIPPW

Requests to retrieve the current IIPPW value.
Note: The input connection token must only represent an image connection.

8F

(143)

HWI_IIPPWCAP

Requests to retrieve the IIPPW to be capped or not capped.
Note: The input connection token must only represent an image connection.

90

(144)

HWI_IPLTOKEN

Requests to retrieve the IPL token associated with the current IPL of the image
targeted.
Note: The input connection token must only represent an image connection.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 353

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

91

(145)

HWI_PSWS

Requests to retrieve the program status word (PSW) for each of the central
processors (CP) associated with this image.

Non-REXX:
The returned data is mapped as follows:

Field Name Field Type
--------------- -----------
Number of CPs 32-bit unsigned integer

For each CP, the following is returned:
CPUID 32-bit unsigned integer
PSW 128-bit unsigned integer

Note: The query parameter for this attribute must specify a data area large
enough to contain all of the above structure (that is 32 bits + 160 bits per CP).
For example, if there are 4 CPs on the targeted image, the AttributeValueLen
specified for this attribute must be 32 + (160 x 4) = 672 bits (84 bytes).

REXX:
The returned data is mapped as follows (where x is the user-defined
QueryParm stem, n is the n-th requested attribute and m is the m-th returned
CPUID or PSW value):

v x.n.ATTRIBUTEVALUE.0 is the number of CPs (m).

v x.n.ATTRIBUTEVALUE.m.CPUID is the m-th CPUID value.

v x.n.ATTRIBUTEVALUE.m.PSW is the m-th PSW value.

Note: The input connection token must represent an image connection.

92

(146)

HWI_GROUP_PROFILE _CAPACITY

Requests to change or set the workload unit capacity for the group profile associated
with an image.
Note:

1. The input connection token must only represent an image connection.

2. This attribute requires that the target image be:

v On a z196 (zEnterprise) or higher CPC.

v A member of a LPAR (defined capacity) group.

If both the above requirements are not met, the HWIQUERY fails with RC=X'406'
(HWI_QUERY_ATTRIBUTE_NOT_SUPPORTED).

93-B6

(147-182)

RESERVED

Additional attributes and reserved numbers for attributes that are for image
connections only.

B7

(183)

HWI_RECID

Requests to retrieve the record ID.
Note: The input connection token must only represent a capacity record connection.

B8

(184)

HWI_RECTYPE

Requests to retrieve the record type.
Note: The input connection token must only represent a capacity record connection.

B9

(185)

HWI_ACTSTAT

Requests to retrieve the record activation status.
Note: The input connection token must only represent a capacity record connection.

HWIQUERY

354 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

BA

(186)

HWI_ACTDATE

Requests to retrieve the record activation date.
Note: The input connection token must only represent a capacity record connection.

BB

(187)

HWI_EXPDATE

Requests to retrieve the record expiration date.
Note: The input connection token must only represent a capacity record connection.

BC

(188)

HWI_ACTEXP

Requests to retrieve the record activation expiration date.
Note: The input connection token must only represent a capacity record connection.

BD

(189)

HWI_MAXRADS

Requests to retrieve the maximum real activation days.
Note: The input connection token must only represent a capacity record connection.

BE

(190)

HWI_MAXTADS

Requests to retrieve the maximum test activation days.
Note: The input connection token must only represent a capacity record connection.

BF

(191)

HWI_REMRADS

Requests to retrieve the remaining real activation days.
Note: The input connection token must only represent a capacity record connection.

C0

(192)

HWI_REMTADS

Requests to retrieve the remaining test activation days.
Note: The input connection token must only represent a capacity record connection.

C1

(193)

HWI_OOCODREC

Request to retrieve all aspects of a capacity record in XML format.
Note: The input connection token must only represent a capacity record connection.

C3-C8

(195-200)

RESERVED

Reserved for capacity record attributes.

C9

(201)

HWI_IOCDS

Requests to retrieve the IOCDS.
Note: The input connection token must represent a reset activation profile.

CA

(202)

HWI_IPL_ADDRESS

Requests to retrieve the IPL address.
Note: The input connection token must represent an image activation profile or a load
activation profile.

CB

(203)

HWI_IPL_PARM

Requests to retrieve the IPL parameter.
Note: The input connection token must represent an image activation profile or a load
activation profile.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 355

|
|
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

CC

(204)

HWI_IPL_TYPE

Requests to retrieve the IPL type for the activation profile.
Note: The input connection token must represent an image activation profile or a load
activation profile.

CD

(205)

HWI_WW_PORTNAME

Requests to retrieve the worldwide port name for the activation profile.
Note: The input connection token must represent an image activation profile or a load
activation profile.

CE

(206)

HWI_BOOT_PGM_SELECTOR

Requests to retrieve the boot program selector for the activation profile.
Note: The input connection token must represent an image activation profile or a load
activation profile.

CF

(207)

HWI_LU_NUM

Requests to retrieve the logical unit number value for the activation profile.
Note: The input connection token must represent an image activation profile or a load
activation profile.

D0

(208)

HWI_BOOTREC_BLK_ADDR

Requests to retrieve the boot record logical block address for the activation profile.
Note: The input connection token must represent an image activation profile or a load
activation profile.

D1

(209)

HWI_OPSYS_LOADPARM

Requests to retrieve the operating system specific load parameter.
Note: The input connection token must represent an image activation profile or a load
activation profile.

D2

(210)

HWI_GROUP_PROF_NAME

Requests to retrieve the name of the group capacity profile that is to be used for the
CPC image or image object activated with this profile.
Note: The input connection token must represent an image activation profile.

D3

(211)

HWI_LOAD_AT_ACTIVATION

Requests to retrieve the indicator if the CPC image object activated with this profile
should be loaded (IPLed) at the end of the activation.
Note: The input connection token must represent an image activation profile.

D4

(212)

HWI_CENTRAL_STOR

Requests to retrieve the initial amount of central storage (in megabytes) to be used
for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

D5

(213)

HWI_RES_CENTRAL_STOR

Requests to retrieve the reserved amount of central storage (in megabytes) to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

D6

(214)

HWI_EXPANDED_STOR

Requests to retrieve the initial amount of expanded storage (in megabytes) to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

D7

(215)

HWI_RES_EXPANDED_STOR

Requests to retrieve the reserved amount of expanded storage (in megabytes) to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

HWIQUERY

356 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

D8

(216)

HWI_NUM_GPP

Requests to retrieve the number of dedicated general purpose processors to be used
for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

D9

(217)

HWI_NUM_RESGPP

Requests to retrieve the number of reserved dedicated general purpose processors to
be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

DA

(218)

HWI_NUM_IFA

Requests to retrieve the number of dedicated integrated facility for applications (IFA)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

DB

(219)

HWI_NUM_RESIFA

Requests to retrieve the number of reserved dedicated integrated facility for
applications (IFA) processors to be used for the CPC image object activated with this
profile.
Note: The input connection token must represent an image activation profile.

DC

(220)

HWI_NUM_IFL

Requests to retrieve the number of dedicated integrated facility for Linux (IFL)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

DD

(221)

HWI_NUM_RESIFL

Requests to retrieve the number of reserved dedicated integrated facility for Linux
(IFL) processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

DE

(222)

HWI_NUM_ICF

Requests to retrieve the number of dedicated internal coupling facility (ICF)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

DF

(223)

HWI_NUM_RESICF

Requests to retrieve the number of reserved dedicated internal coupling facility (ICF)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E0

(224)

HWI_NUM_ZIIP

Requests to retrieve the number of dedicated System z Integrated Information
Processors (zIIPs) to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E1

(225)

HWI_NUM_RESZIIP

Requests to retrieve the number of reserved dedicated System z Integrated
Information Processors (zIIPs) to be used for the CPC image object activated with
this profile.
Note: The input connection token must represent an image activation profile.

E2

(226)

HWI_NUM_SHARED_GPP

Requests to retrieve the number of shared general purpose processors to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E3

(227)

HWI_NUM_RES_SHARED_GPP

Requests to retrieve the number of reserved shared general purpose processors to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 357

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

E4

(228)

HWI_NUM_SHARED_IFA

Requests to retrieve the number of shared integrated facility for applications (IFA)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E5

(229)

HWI_NUM_RES_SHARED_IFA

Requests to retrieve the number of reserved shared integrated facility for
applications (IFA) processors to be used for the CPC image object activated with this
profile.
Note: The input connection token must represent an image activation profile.

E6

(230)

HWI_NUM_SHARED_IFL

Requests to retrieve the number of shared integrated facility for Linux (IFL)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E7

(231)

HWI_NUM_RES_SHARED_IFL

Requests to retrieve the number of reserved shared integrated facility for Linux (IFL)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E8

(232)

HWI_NUM_SHARED_ICF

Requests to retrieve the number of shared internal coupling facility (ICF) processors
to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

E9

(233)

HWI_NUM_RES_SHARED_ICF

Requests to retrieve the number of reserved shared internal coupling facility (ICF)
processors to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

EA

(234)

HWI_NUM_SHARED_ZIIP

Requests to retrieve the number of shared System z Integrated Information
Processors (zIIPs) to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

EB

(235)

HWI_NUM_RES_SHARED_ZIIP

Requests to retrieve the number of reserved shared System z Integrated Information
Processors (zIIPs) to be used for the CPC image object activated with this profile.
Note: The input connection token must represent an image activation profile.

EC

(236)

HWI_BASIC_CPU_AUTH

_COUNT_CNTL

Requests to retrieve the enablement value of the Basic CPU counter facility for the
CPC image. This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

ED

(237)

HWI_PROBSTATE_CPU_AUTH

_COUNT_CNTL

Requests to retrieve the enablement value of the Problem state CPU counter facility
for the CPC image. This attribute is only available when targeting a z10 or higher
CPC.
Note: The input connection token must represent an image activation profile.

EE

(238)

HWI_CRYPTOACTIVITY_CPU

_AUTH_COUNT_CNTL

Requests to retrieve the enablement value of the crypto activity CPU counter facility
for the CPC image. This attribute is only available when targeting a z10 or higher
CPC.
Note: The input connection token must represent an image activation profile.

HWIQUERY

358 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

EF

(239)

HWI_EXTENDED_CPU_AUTH

_COUNT_CNTL

Requests to retrieve the enablement value of the extended CPU counter facility for
the CPC image. This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F0

(240)

HWI_COPROCESSOR_CPU

_AUTH_COUNT_CNTL

Requests to retrieve the enablement value of the coprocessor group CPU counter
facility for the CPC image. This attribute is only available when targeting a z10 or
higher CPC.
Note: The input connection token must represent an image activation profile.

F1

(241)

HWI_BASIC_CPU_SAMPLING

_AUTH_CNTL

Requests to retrieve the enablement value of the basic CP CPU sampling facility for
the CPC image. This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F2

(242)

HWI_APROF_STORE_STATUS

Requests to retrieve the store status function value. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent a load activation profile.

F3

(243)

HWI_APROF_LOADTYPE

Requests to retrieve the type of load being requested. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent a load activation profile.

F4

(244)

HWI_PROFILE_DESCRIPTION

Requests to retrieve the activation profile description. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F5

(245)

HWI_PROFILE_PARTITION

_ID

Requests to retrieve the partition identifier for the activation profile. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F6

(246)

HWI_OPERATING_MODE

Requests to retrieve the operating mode value for the activation profile. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F7

(247)

HWI_CLOCK_TYPE

Requests to retrieve the clock type assignment (time source setting) for the activation
profile. This attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

F8

(248)

HWI_TIME_OFFSET_DAYS

Requests to retrieve the time offset days (the number of days currently set as the
offset from the external time source's time of day) for the activation profile. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 359

|
|
|
|

|

|

|

|

|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

Constant in hexadecimal
(Decimal)
Equate symbol

Description

F9

(249)

HWI_TIME_OFFSET_HOURS

Requests to retrieve the time offset hours (the number of hours currently set as the
offset from the external time source's time of day) for the activation profile. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

FA

(250)

HWI_TIME_OFFSET

_MINUTES

Requests to retrieve the time offset minutes (the number of minutes currently set as
the offset from the external time source's time of day) for the activation profile. This
attribute is only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

FB

(251)

HWI_TIME_OFFSET

_INCREASE

Requests to retrieve the time offset increase or decrease value for the activation
profile. The time offset, as specified in days, hours, and minutes, is increased or
decreased from GMT. TRUE means that the time offset is east of GMT. FALSE means
that the time offset is west of GMT. This attribute is only available when targeting a
z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

FC

(252)

HWI_LICCC_VALIDATION

_ENABLED

Requests to retrieve whether the activation profile must conform to the current
Licensed Internal Code Configuration Control (LICCC) configuration. This attribute
is only available when targeting a zEnterprise or higher CPC.
Note: The input connection token must represent an image activation profile.

FD

(253)

HWI_GLOBAL

_PERFORMANCE

_DATA_CONTROL

Requests to retrieve whether the logical partition can be used to view the processing
unit activity data for all other LPARs activated on the same CPC. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

Requests to retrieve whether the logical partition can be used to read and write any
Input/Output Configuration Data Set (IOCDS) in the configuration. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

FF

(255)

HWI_CROSS_PARTITION

_AUTHORITY

Requests to retrieve whether the logical partition can be used to issue control
program instructions that reset or deactivate other LPARs. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

Requests to retrieve whether reconfigurable channel paths assigned to the logical
partition are reserved for its exclusive use. This attribute is only available when
targeting a z10 or higher CPC.
Note: The input connection token must represent an image activation profile.

101-109

(257–265)

RESERVED

Reserved for activation profile attributes.

HWIQUERY

360 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|

|

|

|

|

NumOfAttributes (non-REXX)
Supplied parameter
v Type: Integer
v Length: 4 bytes

NumOfAttributes specifies the number of attributes to be queried. The
maximum number of attributes allowed is 64.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) / Tail
name constant of
the user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the error.

Diag_Key 32-bit integer The constant value represents the field that causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the console application
API or the BCPii transport layer.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0006yyyy' because of one
of the following reasons:

Table 66. Reasons for abend X'042', RC X'0006yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 361

|
|

|

|

|
|

|
|
|

|

|

|
|
|
|

|
|
|

||
|
|
|
|
|||

|||

|||

|||

|||

|||
|

|||
|

|
|
|

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a
hexadecimal return code.

Return Code in Hexadecimal Equate Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified connect token is
not valid. This return code indicates that one of the
following conditions has occurred:

v The connect token does not exist. A previous
HWICONN service call has never returned the value
specified on OutConnectToken.

v The connect token does not represent an active
connection. The connection specified might have
already been disconnected using the HWIDISC service
call.

v The connect token is not associated with the address
space of the caller. The ConnectToken specified is
associated with a different address space than the
caller of this service call.

Action: Check for probable coding error.

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is detected. The
hardware management console application API
(HWMCA) or the BCPii transport layer has returned
with a failing return code.

Action: See the DiagArea for further diagnostic
information. The Diag_CommErr indicates the return
code that is returned from HWMCA APIs or the BCPii
transport layer. In some cases, the Diag_Index and
Diag_Key may contain additional details.

HWMCA API and BCPii transport return codes are
provided in Appendix A, “BCPii communication error
reason codes,” on page 415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is not accessible.

Action: Check for probable coding error. Verify that the
specified DiagArea is defined as a 32-byte character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no longer valid.
The connection has been disconnected or it is in the
progress of being disconnected.

Action: Check for probable coding error. Verify that the
specified connect token is still active. If connectivity to
the targeted CPC connection no longer exists, all
connections associated with that CPC will no longer have
a connect token that can be used.

HWIQUERY

362 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate Symbol Meaning and Action

401 HWI_QUERYPARM_ATTRIB_INV Meaning: Program error. One of the requested attribute
identifiers in the QueryParm is not valid. The system
rejects the service call. This return code indicates that one
of the following conditions has occurred:

v The Query attribute identifier specified is not in the
acceptable value range of possible attributes.

v The specified Query attribute identifier has been
provided with an incompatible connection type. For
example, the attribute identifier applies only to CPC
connections, but the ConnectToken specified represents
an image connection, a capacity record connection, or
any of the activation profile connections.

Action: Check for probable coding error. Validate that the
Query attribute specified is in the valid range of possible
values. Validate that the Query attribute specified is
permitted for the specified connection type.

See the DiagArea for further diagnostic information:

v The Diag_Index field specifies the index of the element
in the attribute array that is in error.

v The Diag_Key contains the attribute identifier
specified.

v The Diag_Text contains “Invalid Attr” if the attribute
is one whose value cannot be queried. If the attribute
cannot be queried for the specified connection type,
the Diag_Text contains “Mismatch.”

402 HWI_QUERYPARM_INACCESSIBLE Meaning: Program error. The QueryParm data area is
either partially or completely inaccessible by the
application, the Base Control Program internal interface
(BCPii) address space, or both.

Action: Check for probable coding error. Consider the
following possibilities:

v The QueryParm length could be too small. The size of
QueryParm must be at least the product of the
NumofAttributes parameter and the length of the data
area mapping for each attribute (16 bytes).

v The NumofAttributes value can be larger than the
number of parameters actually passed.

403

HWI_QUERYPARM_ATTRIBRETADDR

_INACCESSIBLE

Meaning: Program error. Storage that is pointed to by
one or more of the attribute value pointers in the
QueryParm is not accessible by the application. The
system is not able to return data for this attribute
identifier. Partial data might have already been returned.

Action: Check for probable coding error. See the
DiagArea for further diagnostic information. The
Diag_Index field specifies the array index that contained
the inaccessible AttributeValuePtr. The Diag_Key contains
the erroneous attribute identifier.

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 363

Return Code in Hexadecimal Equate Symbol Meaning and Action

404

HWI_QUERYPARM_ATTRIB_LENGTH_

INV

Meaning: Program error. One of the attribute lengths
specified is too small. There is not enough space to
contain all of the returned data for this particular
attribute. The system returns partial data, filling in the
attribute data area for the length specified.

Action: Check for probable coding error. See the
DiagArea for further diagnostic information. The
Diag_Index field specifies the array index which
contained the partially filled-in value. The Diag_Key is
the attribute identifier constant that causes the error. The
Diag_Actual indicates the application-specified length.
The Diag_Expected indicates the size required for the
returned data.

405 HWI_QUERY_NUMOFATTRIB_INV Meaning: Program error. The NumOfAttributes specified
on the call is not valid. The NumOfAttributes value must
be in the range of 1 to 64.

Action: Check for probable error. Verify that the
NumOfAttributes specified is greater than zero and less
than or equal to 64.

406 HWI_QUERY_ATTRIBUTE_NOT SUPPORTED Meaning: The targeted hardware of the HWIQUERY
request does not recognize the attribute attempted to be
retrieved.

Action: Verify that the targeted hardware is at a level
that supports the type of attribute being queried.

407 HWI_QUERY_TARGET_DEACTIVATED Meaning: A query attribute could not be retrieved
because the targeted object is deactivated.

Action: Verify that the targeted object is activated.
Activate the object before attempting to retrieve this
same attribute again.

408 HWI_QUERY_ATTRIB_TEMP_NOT_AVAILABLE Meaning: One or more query attributes could not be
retrieved because the support element (SE) is temporarily
unavailable.

Action: Try this request again at a later time. If the
problem persists, contact the IBM Support Center.

F00 HWI_NOT_AVAILABLE Meaning: BCPii services are not available, and the
system rejects the service request.

Action: Notify the system programmer to start the BCPii
address space and try the request again. See “Restarting
the HWIBCPii address space” on page 267 about how to
start the BCPii address space.

Programs can also listen to ENF68 to determine when
BCPii services are available. See z/OS MVS Programming:
Authorized Assembler Services Reference EDT-IXG for how
to listen for BCPii activation messages.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem state and the
program does not reside in an APF-authorized library.

Action: Check the calling program for a probable coding
error.

HWIQUERY

364 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate Symbol Meaning and Action

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct SAF
authorization for the request.

Action: Check for probable error. Consider one or more
of the following possible actions:

v Define read access authorization to the FACILITY class
resource profile HWI.TARGET.netid.nau for CPC,
activation profile, or user-defined image group
connections.

v Define read access authorization to the FACILITY class
resource profile HWI.TARGET.netid.nau.imagename for
an image connections.

v Define read access authorization to the FACILITY class
resource profile HWI.CAPREC.netid.nau.caprecid for a
capacity record connection.

v Ensure that the referenced facility class profile is
RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled. The system
rejects this service request.

Action: Check the calling program for a probable coding
error.

F04 HWI_MODE_INV Meaning: The calling program is not in task mode. The
system rejects this service request.

Action: Check the calling program for a probable error.

F05 HWI_LOCKS_HELD Meaning: The calling program is holding one or more
locks. The system rejects this service request.

Action: Check the calling program for a probable coding
error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support this service.
The system rejects this service request.

Action: Remove the calling program from the system,
and install it on a system that supports BCPii services.
Then run the calling program again.

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support execution of the
service from the current environment (for example,
calling a BCPii service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a different execution
environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was called
encountered an unexpected error. The system rejects the
service call.

Action: Search problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM Support
Center.

Example
In the pseudocode example, the caller issues a call to retrieve the CPC name and
the Current CPC status of a CPC:

HWIQUERY

Chapter 19. Base Control Program internal interface (BCPii) 365

.
QueryParm_Ptr = ADDR(QueryParm);
NumberOfAttributes = 2;
QueryParm(1).AttributeIdentifier = HWI_NAME;
QueryParm(1).AttributeValue_Ptr = Addr(Value1);
QueryParm(1).AttributeValueLen = length of value1;
QueryParm(2).AttributeIdentifier = HWI_OPERSTAT;
QueryParm(2).AttributeValue_Ptr = Addr(Value2);
QueryParm(2).AttributeValueLen = 4;
CALL HWIQUERY (ReturnCode, ConnectToken, QueryParm_Ptr,

NumOfAttributes, DiagArea)
.
.

A REXX programming example for the HWIQUERY service:
myQueryParm.0 = 4 /* Set number of attributes */
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_NAME
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_LUAPROF
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_MSERIAL
myQueryParm.n.ATTRIBUTEIDENTIFIER = HWI_IPADDR

address bcpii "hwiquery RetCode myConnectToken myQueryParm. myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
Else

Do n=1 to myQueryParm.0
Say ’ myQueryParm.’n’.ATTRIBUTEVALUE = ’myQueryParm.n.ATTRIBUTEVALUE

End

HWISET — BCPii set SE/HMC-managed attributes
Call the HWISET service to change or set data for Hardware Management Console
(HMC)-managed objects associated with Central Processor Complexes (CPCs), CPC
images (LPARs), or activation profiles.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: PKM allowing key 0-7, or supervisor state
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller

HWIQUERY

366 z/OS V2R1.0 MVS Callable Services for HLL

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Requirement Details
Linkage: Standard MVS linkage conventions are used

Programming requirements
See “Syntax, linkage and programming considerations” on page 268 for details
about how to call BCPii services in the various programming languages.

See “HWIQUERY and HWISET” on page 417 for the summary table of the BCPii
HWIQUERY and HWISET attributes and the objects that can be targeted for each
function.

REXX programming considerations for the HWISET service
All information for the HWISET service applies for REXX requests except:
v SetTypeValue replaces SetTypeValue_Ptr. The actual value to be set, represented

in character form, is passed instead of a pointer.
v The SetTypeValueLen input parm is not used.

Restrictions
BCPii does not allow HWISET to be issued from within a BCPii ENF exit routine.

Authorization
The client application must have at least read access to the SAF-protected
FACILITY class resource HWI.APPLNAME.HWISERV. This class resource grants
the application access to consult to the local CPC.

In addition, the client application must have at least update access to the
SAF-protected FACILITY class resource profile HWI.TARGET.netid.nau for setting
CPC-related or activation profile-related values, or
HWI.TARGET.netid.nau.imagename for setting image-related values.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown in the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Non-REXX parameters REXX parameters

CALL HWISET(
ReturnCode,
ConnectToken,
SetType,
SetTypeValue_Ptr
SetTypeValueLen,
DiagArea);

address bcpii “hwiset
ReturnCode
ConnectToken
SetType
SetTypeValue

DiagArea.”

Parameters
The parameters are explained as follows:

ReturnCode
Returned parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

ReturnCode contains the return code from the service.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 367

|
|
|

|
|

|
|

|

|||

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|

|

|

ConnectToken
Supplied parameter
v Type: Character string
v Length: 16 bytes

ConnectToken represents a logical connection between the application and a
CPC, image, or activation profile. The ConnectToken is an output parameter on
the HWICONN service call.

In most cases, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same address space as this
service call. For BCPii REXX execs running under the TSO/E or ISV-provided
REXX environments, the ConnectToken specified must have originated from a
HWICONN service call that was issued from the same task.

SetType
Supplied parameter
v Type: Integer (non-REXX), character representation of an integer (REXX)
v Length: 4 bytes (non-REXX)

SetType specifies the type of set request.

The following table is the list of valid set types. See the following
documentation for more information:
v System z Application Programming Interfaces (SB10-7030-13)
v System z10 and eServer zSeries Application Programming Interfaces

(SB10-7030-09)
v System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)
v Publication appropriate to the level of hardware that the HWISET is

targeted.

Constant in: Hexadecimal (Decimal) Equate Symbol Description

6

(6)

HWI_ACCSTAT

Requests to change or set the acceptable CPC status
values.
Note: The input connection token represents a CPC
connection or an image connection.

7

(7)

HWI_APROF

Requests to change or set the next activation reset profile
name.
Note: The input connection token represents a CPC
connection or an image connection.

27

(39)

HWI_PRUNTYPE

Requests to change or set the processor running time type.
Note: The input connection token represents a CPC
connection or a reset activation profile connection.

28

(40)

HWI_PRUNTIME

Requests to change or set the processor running time type.
Note: The input connection token must only represent a
CPC connection or a reset activation profile connection.

29

(41)

HWI_PRUNTSEW

Requests to change or set the processor running time slice
end wait processing.
Note: The input connection token must only represent a
CPC connection or a reset activation profile connection.

HWISET

368 z/OS V2R1.0 MVS Callable Services for HLL

|
|

|

|

|
|
|

|
|
|
|
|

|
|

|

|

|

|
|

|

|
|

|

|
|

|||

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

70

(112)

HWI_DEFCAP

Requests to change or set the current defined capacity.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

71

(113)

HWI_SGPIPW

Requests to change or set the shared general processor
initial processing weight (SGPIPW).
Note: The input connection token must only represent an
image connection or an image activation profile connection.

72

(114)

HWI_SGPIPWCAP

Requests to change or set the SGPIPW to be capped or not
capped.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

73

(115)

HWI_SGPPWMIN

Requests to change or set the minimum SGPPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

74

(116)

HWI_SGPPWMAX

Requests to change or set the maximum SGPPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

77

(119)

HWI_WLM

Requests to change or set whether WLM is allowed to
change SGPPW values.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

78

(120)

HWI_IFAIPW

Requests to change or set the integrated facility for
applications initial processing weight (IFAIPW).
Note: The input connection token must only represent an
image connection or an image activation profile connection.

79

(121)

HWI_IFAIPWCAP

Requests to change or set the IFAIPW to be capped or not
capped.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

7A

(122)

HWI_IFAPWMIN

Requests to change or set the minimum IFAPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

7B

(123)

HWI_IFAPWMAX

Requests to change or set the maximum IFAPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

7E

(126)

HWI_IFLIPW

Requests to change or set the integrated facility for Linux
initial processing weight (IFLIPW).
Note: The input connection token must only represent an
image connection or an image activation profile connection.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 369

||

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

7F

(127)

HWI_IFLIPWCAP

Requests to change or set the IFLIPW to be capped or not
capped.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

80

(128)

HWI_IFLPWMIN

Requests to change or set the minimum IFLPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

81

(129)

HWI_IFLPWMAX

Requests to change or set the maximum IFLPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

84

(132)

HWI_ICFIPW

Requests to change or set the internal coupling facility
initial processing weight (ICFIPW).
Note: The input connection token must only represent an
image connection or an image activation profile connection.

85

(133)

HWI_ICFIPWCAP

Requests to change or set the ICFIPW be capped or not
capped.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

86

(134)

HWI_ICFPWMIN

Requests to change or set the minimum ICFPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

87

(135)

HWI_ICFPWMAX

Requests to change or set the maximum ICFPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

8A

(138)

HWI_IIPIPW

Requests to change or set the integrated information
processors initial processing weight (IIPIPW).
Note: The input connection token must only represent an
image connection or an image activation profile connection.

8B

(139)

HWI_IIPIPWCAP

Requests to change or set the IIPIPW be capped or not
capped.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

8C

(140)

HWI_IIPPWMIN

Requests to change or set the minimum IIPPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

8D

(141)

HWI_IIPPWMAX

Requests to change or set the maximum IIPPW value.
Note: The input connection token must only represent an
image connection or an image activation profile connection.

HWISET

370 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

92

(146)

HWI_GROUP_PROFILE_CAPACITY

Requests to change or set the workload unit capacity for
the group profile associated with an image.
Note:

1. The input connection token must only represent an
image connection.

2. This attribute requires the target image be:

v On a z196 (zEnterprise) or higher CPC.

v A member of a LPAR (defined capacity) group.

If both the above requirements are not met, the
HWISET fails with RC=X'101'
(HWI_COMMUNICATON_ERROR), with the
DiagCommErr value set to X'15' (21)
(HWMCA_DE_SNMP_ERROR).

C9

(201)

HWI_IOCDS

Requests to change or set the IOCDS.
Note: The input connection token must represent a reset
activation profile.

CA

(202)

HWI_IPL_ADDRESS

Requests to change or set the IPL address.
Note: The input connection token must represent an image
activation profile or a load activation profile.

CB

(203)

HWI_IPL_PARM

Requests to change or set the IPL parameter.
Note: The input connection token must represent an image
activation profile or a load activation profile.

CC

(204)

HWI_IPL_TYPE

Requests to change or set the IPL type for the activation
profile.
Note: The input connection token must represent an image
activation profile or a load activation profile.

CD

(205)

HWI_WW_PORTNAME

Requests to change or set the worldwide port name for
the activation profile.
Note: The input connection token must represent an image
activation profile or a load activation profile.

CE

(206)

HWI_BOOT_PGM_SELECTOR

Requests to change or set the boot program selector for
the activation profile.
Note: The input connection token must represent an image
activation profile or a load activation profile.

CF

(207)

HWI_LU_NUM

Requests to change or set the logical unit number value
for the activation profile.
Note: The input connection token must represent an image
activation profile or a load activation profile.

D0

(208)

HWI_BOOTREC_BLK_ADDR

Requests to change or set the boot record logical block
address for the activation profile.
Note: The input connection token must represent an image
activation profile or a load activation profile.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 371

||

|

|

|

|
|
|

|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

D1

(209)

HWI_OPSYS_LOADPARM

Requests to change or set the operating system specific
load parameter.
Note: The input connection token must represent an image
activation profile or a load activation profile.

D2

(210)

HWI_GROUP_PROF_NAME

Requests to change or set the name of the group capacity
profile that is to be used for the CPC image or image
object activated with this profile.
Note: The input connection token must represent an image
activation profile.

D3

(211)

HWI_LOAD_AT_ACTIVATION

Requests to change or set the indicator if the CPC image
object activated with this profile should be loaded (IPLed)
at the end of the activation.
Note: The input connection token must represent an image
activation profile.

D4

(212)

HWI_CENTRAL_STOR

Requests to change or set the initial amount of central
storage (in megabytes) to be used for the CPC image
object activated with this profile.
Note: The input connection token must represent an image
activation profile.

D5

(213)

HWI_RES_CENTRAL_STOR

Requests to change or set the reserved amount of central
storage (in megabytes) to be used for the CPC image
object activated with this profile.
Note: The input connection token must represent an image
activation profile.

D6

(214)

HWI_EXPANDED_STOR

Requests to change or set the initial amount of expanded
storage (in megabytes) to be used for the CPC image
object activated with this profile.
Note: The input connection token must represent an image
activation profile.

D7

(215)

HWI_RES_EXPANDED_STOR

Requests to change or set the reserved amount of
expanded storage (in megabytes) to be used for the CPC
image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

D8

(216)

HWI_NUM_GPP

Requests to change or set the number of dedicated general
purpose processors to be used for the CPC image object
activated with this profile.
Note: The input connection token must represent an image
activation profile.

D9

(217)

HWI_NUM_RESGPP

Requests to change or set the number of reserved
dedicated general purpose processors to be used for the
CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

DA

(218)

HWI_NUM_IFA

Requests to change or set the number of dedicated
integrated facility for applications (IFA) processors to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

HWISET

372 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

DB

(219)

HWI_NUM_RESIFA

Requests to change or set the number of reserved
dedicated integrated facility for applications (IFA)
processors to be used for the CPC image object activated
with this profile.
Note: The input connection token must represent an image
activation profile.

DC

(220)

HWI_NUM_IFL

Requests to change or set the number of dedicated
integrated facility for Linux (IFL) processors to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

DD

(221)

HWI_NUM_RESIFL

Requests to change or set the number of reserved
dedicated integrated facility for Linux (IFL) processors to
be used for the CPC image object activated with this
profile.
Note: The input connection token must represent an image
activation profile.

DE

(222)

HWI_NUM_ICF

Requests to change or set the number of dedicated
internal coupling facility (ICF) processors to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

DF

(223)

HWI_NUM_RESICF

Requests to change or set the number of reserved
dedicated internal coupling facility (ICF) processors to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E0

(224)

HWI_NUM_ZIIP

Requests to change or set the number of dedicated System
z Integrated Information Processors (zIIPs) to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E1

(225)

HWI_NUM_RESZIIP

Requests to change or set the number of reserved
dedicated System z Integrated Information Processors
(zIIPs) to be used for the CPC image object activated with
this profile.
Note: The input connection token must represent an image
activation profile.

E2

(226)

HWI_NUM_SHARED_GPP

Requests to change or set the number of shared general
purpose processors to be used for the CPC image object
activated with this profile.
Note: The input connection token must represent an image
activation profile.

E3

(227)

HWI_NUM_RES_SHARED

_GPP

Requests to change or set the number of reserved shared
general purpose processors to be used for the CPC image
object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E4

(228)

HWI_NUM_SHARED_IFA

Requests to change or set the number of shared integrated
facility for applications (IFA) processors to be used for the
CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 373

||

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

E5

(229)

HWI_NUM_RES_SHARED_IFA

Requests to change or set the number of reserved shared
integrated facility for applications (IFA) processors to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E6

(230)

HWI_NUM_SHARED_IFL

Requests to change or set the number of shared integrated
facility for Linux (IFL) processors to be used for the CPC
image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E7

(231)

HWI_NUM_RES_SHARED_IFL

Requests to change or set the number of reserved shared
integrated facility for Linux (IFL) processors to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E8

(232)

HWI_NUM_SHARED_ICF

Requests to change or set the number of shared internal
coupling facility (ICF) processors to be used for the CPC
image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

E9

(233)

HWI_NUM_RES_SHARED

_ICF

Requests to change or set the number of reserved shared
internal coupling facility (ICF) processors to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

EA

(234)

HWI_NUM_SHARED_ZIIP

Requests to change or set the number of shared System z
Integrated Information Processors (zIIPs) to be used for
the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

EB

(235)

HWI_NUM_RES_SHARED

_ZIIP

Requests to change or set the number of reserved shared
System z Integrated Information Processors (zIIPs) to be
used for the CPC image object activated with this profile.
Note: The input connection token must represent an image
activation profile.

EC

(236)

HWI_BASIC_CPU_AUTH

_COUNT_CNTL

Requests to change or set the enablement value of the
basic CPU counter facility for the CPC image object
activated with this profile. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

ED

(237)

HWI_PROBSTATE_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of the
Problem state CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

HWISET

374 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

EE

(238)

HWI_CRYPTOACTIVITY_CPU

_AUTH_COUNT_CNTL

Requests to change of set the enablement value of the
crypto activity CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

EF

(239)

HWI_EXTENDED_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of the
extended CPU counter facility for the CPC image object
activated with this profile. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F0

(240)

HWI_COPROCESSOR_CPU

_AUTH_COUNT_CNTL

Requests to change or set the enablement value of the
coprocessor group CPU counter facility for the CPC image
object activated with this profile. This attribute is only
available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F1

(241)

HWI_BASIC_CPU_SAMPLING

_AUTH_CNTL

Requests to change or set the enablement value of the
basic CP CPU sampling facility for the CPC image object
activated with this profile. This attribute is only available
when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F2

(242)

HWI_APROF_STORE_STATUS

Requests to change or set the store status function value.
This value is only valid if HWI_APROF_LOADTYPE is set
to normal. This attribute is only available when targeting a
z10 or higher CPC.
Note: The input connection token must represent a load
activation profile.

F3

(243)

HWI_APROF_LOADTYPE

Requests to change or set the type of load being
requested. This attribute is only available when targeting a
z10 or higher CPC.
Note: The input connection token must represent a load
activation profile.

F4

(244)

HWI_PROFILE_DESCRIPTION

Requests to change or set the activation profile
description. This attribute is only available when targeting
a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F5

(245)

HWI_PROFILE_PARTITION_ID

Requests to change or set the partition identifier for the
activation profile. This attribute is only available when
targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F6

(246)

HWI_OPERATING_MODE

Requests to change or set the operating mode value for
the activation profile. This attribute is only available when
targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 375

||

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

F7

(247)

HWI_CLOCK_TYPE

Requests to change or set the clock type assignment (time
source setting) for the activation profile. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

F8

(248)

HWI_TIME_OFFSET_DAYS

Requests to change or set the time offset days (the number
of days currently set as the offset from the external time
source's time of day) for the activation profile. This
attribute is only available when targeting a z10 or higher
CPC.
Note: The input connection token must represent an image
activation profile.

F9

(249)

HWI_TIME_OFFSET_HOURS

Requests to change or set the time offset hours (the
number of hours currently set as the offset from the
external time source's time of day) for the activation
profile. This attribute is only available when targeting a
z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

FA

(250)

HWI_TIME_OFFSET_MINUTES

Requests to change or set the time offset minutes (the
number of minutes currently set as the offset from the
external time source's time of day) for the activation
profile. This attribute is only available when targeting a
z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

FB

(251)

HWI_TIME_OFFSET_INCREASE

Requests to change or set the time offset increase or
decrease value for the activation profile. The time offset, as
specified in days, hours, and minutes, is increased or
decreased from GMT. TRUE means that the time offset is
east of GMT. FALSE means that the time offset is west of
GMT. This attribute is only available when targeting a z10
or higher CPC.
Note: The input connection token must represent an image
activation profile.

FC

(252)

HWI_LICCC_VALIDATION

_ENABLED

Requests to change or set whether the activation profile
must conform to the current Licensed Internal Code
Configuration Control (LICCC) configuration. This
attribute is only available when targeting a zEnterprise or
higher CPC.
Note: The input connection token must represent an image
activation profile.

FD

(253)

HWI_GLOBAL_PERFORMANCE

_DATA_CONTROL

Requests to change or set whether the logical partition can
be used to view the processing unit activity data for all
other LPARs activated on the same CPC. This attribute is
only available when targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

Requests to change or set whether the logical partition can
be used to read and write any Input/Output
Configuration Data Set (IOCDS) in the configuration. This
attribute is only available when targeting a z10 or higher
CPC.
Note: The input connection token must represent an image
activation profile.

HWISET

376 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|

Constant in: Hexadecimal (Decimal) Equate Symbol Description

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

Requests to change or set whether reconfigurable channel
paths assigned to the logical partition are reserved for its
exclusive use. This attribute is only available when
targeting a z10 or higher CPC.
Note: The input connection token must represent an image
activation profile.

101-109

(257–264)

RESERVED

Reserved for activation profile attributes.

SetTypeValue_Ptr (non-REXX)
SetTypeValue (REXX)

Supplied parameter
v Type: Pointer (non-REXX), character or character representation of an integer

(REXX)
v Length: 4 bytes (non-REXX)

Non-REXX:
SetTypeValue_Ptr specifies address of the value to be set or changed.

REXX:
SetTypeValue specifies the value to be set or changed.

The particular SetType determines what data value must be specified. See the
chart below as well as the following documentation for more information:
v System z Application Programming Interfaces (SB10-7030-13)
v System z10 and eServer zSeries Application Programming Interfaces

(SB10-7030-09)
v System z9 and eServer zSeries Application Programming Interfaces (SB10-7030-08)

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 377

||

|

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|
|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

SetTypes Values to be specified

6

(6)

HWI_ACCSTAT

A 4-byte integer type value.

For CPC connections, bit values can be set to:

v HWMCA_STATUS_OPERATING

v HWMCA_STATUS_NOT_OPERATING

v HWMCA_STATUS_NO_POWER

v HWMCA_STATUS_EXCEPTIONS

v HWMCA_STATUS_STATUS_CHECK

v HWMCA_STATUS_SERVICE

v HWMCA_STATUS_LINKNOTACTIVE

v HWMCA_STATUS_POWERSAVE

v HWMCA_STATUS_SERVICE_REQ

v HWMCA_STATUS_DEGRADED

For image connections, bit values can be set to:

v HWMCA_STATUS_OPERATING

v HWMCA_STATUS_NOT_OPERATING

v HWMCA_STATUS_NOT_ACTIVATED

v HWMCA_STATUS_EXCEPTIONS

v HWMCA_STATUS_STATUS_CHECK

v HWMCA_STATUS POWERSAVE

7

(7)

HWI_APROF

A 16-character activation profile name padded with
trailing blanks.

27

(39)

HWI_PRUNTYPE

A 4-byte integer type value.

HWMCA_DETERMINED_SYSTEM
The processor running is dynamically
determined by the system.

HWMCA_DETERMINED_USER
The processor running time is set to a constant
value.

28

(40)

HWI_PRUNTIME

A 4-byte integer type value.

A value between 1 to 100 for the user defined processor
running time.
Note: This value can only be set if the processor running
time type (HWI_PRUNTYPE) is set to
HWMCA_DETERMINED_USER.

29

(41)

HWI_PRUNTSEW

A 4-byte integer type value.

HWMCA_TRUE
Indicates that an image should lose its share of
running time when it enters a wait state.

HWMCA_FALSE
Indicates that an image should not lose its share
of running time when it enters a wait state.

Note: This value can only be set if the processor running
time type (HWI_PRUNTYPE) is set to
HWMCA_DETERMINED_USER.

HWISET

378 z/OS V2R1.0 MVS Callable Services for HLL

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|
|

|
|
|

|

|

|

|

|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|

SetTypes Values to be specified

70

(112)

HWI_DEFCAP

A 4-byte integer type value.

A value represents the amount of defined capacity
specified for the logical partition. A value of 0 indicates
that no defined capacity is specified for the logical
partition.

71

(113)

HWI_SGPIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared general purpose processor resources allocated to
the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated general
purpose processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

72

(114)

HWI_SGPIPWCAP

A 4-byte integer type value. This indicates that the initial
general purpose processor processing weight for the CPC
image object is capped or not capped.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

73

(115)

HWI_SGPPWMIN

A 4-byte integer type value.

A value from 1 - 999 and less than or equal to the initial
processing weight defines the minimum relative amount
of shared general purpose processor resources allocated
to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated general
purpose processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

74

(116)

HWI_SGPPWMAX

A 4-byte integer type value.

A value from 1 - 999 and greater than or equal to the
initial processing weight defines the maximum relative
amount of shared general purpose processor resources
allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated general
purpose processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated general purpose processor.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 379

||

|

|

|

|

|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|

SetTypes Values to be specified

77

(119)

HWI_WLM

A 4-byte integer type value.

This indicates whether the Workload Manager is allowed
to change processor weight-related attributes.

v HWMCA_TRUE

v HWMCA_FALSE

HWI_WLM must be set to HWMCA_TRUE before any of
the settings for the specialized IFA, IFL, ICF, or IIP
engines can be modified.

78

(120)

HWI_IFAIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared integrated facility for applications (IFA) processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for applications (IFA) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for applications
(IFA) processor.

79

(121)

HWI_IFAIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for integrated facility for
applications (IFA) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

7A

(122)

HWI_IFAPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated facility for applications
(IFA) processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for applications (IFA) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for applications
(IFA) processor.

HWISET

380 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|

|
|

|

|

|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

SetTypes Values to be specified

7B

(123)

HWI_IFAPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated facility for applications
(IFA) processor resources allocated to the CPC image
object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for applications (IFA) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for applications
(IFA) processor.

7E

(126)

HWI_IFLIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared integrated facility for Linux (IFL) processor
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for Linux (IFL) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for Linux (IFL)
processor.

7F

(127)

HWI_IFLIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for integrated facility for Linux
(IFL) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

80

(128)

HWI_IFLPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated facility for Linux (IFL)
processor resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for Linux (IFL) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for Linux (IFL)
processor.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 381

||

|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

SetTypes Values to be specified

81

(129)

HWI_IFLPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated facility for Linux (IFL)
processor resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated facility for Linux (IFL) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated facility for Linux (IFL)
processor.

84

(132)

HWI_ICFIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared internal coupling facility (ICF) processor resources
allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated internal
coupling facility (ICF) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

85

(133)

HWI_ICFIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for internal coupling facility
(ICF) processors is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

86

(134)

HWI_ICFPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared internal coupling facility (ICF)
processor resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated internal
coupling facility (ICF) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

HWISET

382 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

SetTypes Values to be specified

87

(135)

HWI_ICFPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared internal coupling facility (ICF)
processor resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated internal
coupling facility (ICF) processor.
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated internal coupling facility (ICF)
processor.

8A

(138)

HWI_IIPIPW

A 4-byte integer type value.

A value from 1 - 999 defines the relative amount of
shared integrated information processors (IIP) resources
allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated information processor (IIP).
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated information processor
(IIP).

8B

(139)

HWI_IIPIPWCAP

A 4-byte integer type value. This indicates whether the
initial processing weight for integrated information
processors (IIP) is a limit or a target.

HWMCA_TRUE
Capped

HWMCA_FALSE
Not capped

8C

(140)

HWI_IIPPWMIN

A 4-byte integer type value.

A value from 1 - 999 defines the minimum relative
amount of shared integrated information processors (IIP)
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated information processor (IIP).
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated information processor
(IIP).

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 383

||

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

SetTypes Values to be specified

8D

(141)

HWI_IIPPWMAX

A 4-byte integer type value.

A value from 1 - 999 defines the maximum relative
amount of shared integrated information processors (IIP)
resources allocated to the CPC image object.

A value of 0 indicates that CPC image does not represent
a logical partition or the CPC image does not represent a
logical partition with at least one not dedicated
integrated information processor (IIP).
Note: The setting of this attribute is only valid for CPC
image objects that represent a logical partition with at
least one not dedicated integrated information processor
(IIP).

92

(146)

HWI_GROUP_PROFILE_CAPACITY

A 4-byte integer value to represent the workload unit
capacity for the group profile associated with an image.

C9

(201)

HWI_IOCDS

A character string representing the IOCDS.

A value of an empty string indicates that the reset
activation profile will use the currently active IOCDS.

CA

(202)

HWI_IPL_ADDRESS

A character string representing the IPL address.
Note: A value of an empty string indicates that the
image activation profile uses the next IPL address set by
HCD.

CB

(203)

HWI_IPL_PARM

A character string representing the IPL parameter.
Note: A value of an empty string indicates that the
image activation profile uses the next IPL parameter set
by HCD.

CC

(204)

HWI_IPL_TYPE

A 4-byte integer type value.

HWMCA_IPLTYPE_STANDARD
Indicates that the image activation profile is
used to perform a standard load.

HWMCA_IPLTYPE_SCSI
Indicates that the image activation profile is
used to perform a SCSI load.

HWMCA_IPLTYPE_SCSIDUMP
Indicates that the image activation profile is
used to perform a SCSI dump.

CD

(205)

HWI_WW_PORTNAME

A character string representing the worldwide port
name.

CE

(206)

HWI_BOOT_PGM_SELECTOR

A 4-byte integer type value representing the boot
program selector value.

HWISET

384 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

|

|
|

SetTypes Values to be specified

CF

(207)

HWI_LU_NUM

A character string representing the logical unit number.

D0

(208)

HWI_BOOTREC_BLK_ADDR

A character string representing the boot record logical
block address.

D1

(209)

HWI_OPSYS_LOADPARM

A character string representing the operating system
specific load parameters.

D2

(210)

HWI_GROUP_PROF_NAME

A character string that represents the name of a group
capacity profile.

D3

(211)

HWI_LOAD_AT_ACTIVATION

A 4-byte integer type value.

This indicates whether a load should be done at the end
of activation.

v HWMCA_TRUE

v HWMCA_FALSE

D4

(212)

HWI_CENTRAL_STOR

A 4-byte integer type value to represent the initial
amount of central storage (in megabytes) to be used for
the CPC image.

D5

(213)

HWI_RES_CENTRAL_STOR

A 4-byte integer type value to represent the reserved
amount of central storage (in megabytes) to be used for
the CPC image.

D6

(214)

HWI_EXPANDED_STOR

A 4-byte integer type value to represent the initial
amount of expanded storage (in megabytes) to be used
for the CPC image.

D7

(215)

HWI_RES_EXPANDED_STOR

A 4-byte integer type value to represent the reserved
amount of expanded storage (in megabytes) to be used
for the CPC image.

D8

(216)

HWI_NUM_GPP

A 4-byte integer type value to represent the number of
dedicated general purpose processors to be used for the
CPC image.

D9

(217)

HWI_NUM_RESGPP

A 4-byte integer type value to represent the number of
reserved dedicated general purpose processors to be
used for the CPC image.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 385

||

|

|

|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

SetTypes Values to be specified

DA

(218)

HWI_NUM_IFA

A 4-byte integer value to represent the number of
dedicated integrated facility for applications (IFA)
processors to be used for the CPC image.

DB

(219)

HWI_NUM_RESIFA

A 4-byte integer value to represent the number of
reserved dedicated integrated facility for applications
(IFA) processors to be used for the CPC image.

DC

(220)

HWI_NUM_IFL

A 4-byte integer value to represent the number of
dedicated integrated facility for Linux (IFL) processors to
be used for the CPC image.

DD

(221)

HWI_NUM_RESIFL

A 4-byte integer value to represent the number of
reserved dedicated integrated facility for Linux (IFL)
processors to be used for the CPC image.

DE

(222)

HWI_NUM_ICF

A 4-byte integer value to represent the number of
dedicated internal coupling facility (ICF) processors to be
used for the CPC image.

DF

(223)

HWI_NUM_RESICF

A 4-byte integer value to represent the number of
reserved dedicated internal coupling facility (ICF)
processors to be used for the CPC image.

E0

(224)

HWI_NUM_ZIIP

A 4-byte integer value to represent the number of
dedicated System z Integrated Information Processors
(zIIPs) to be used for the CPC image.

E1

(225)

HWI_NUM_RESZIIP

A 4-byte integer value to represent the number of
reserved dedicated System z Integrated Information
Processors (zIIPs) to be used for the CPC image.

E2

(226)

HWI_NUM_SHARED_GPP

A 4-byte integer type value to represent the number of
shared general purpose processors to be used for the
CPC image.

E3

(227)

HWI_NUM_RES_SHARED_GPP

A 4-byte integer type value to represent the number of
reserved shared general purpose processors to be used
for the CPC image.

E4

(228)

HWI_NUM_SHARED_IFA

A 4-byte integer value to represent the number of shared
integrated facility for applications (IFA) processors to be
used for the CPC image.

HWISET

386 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

SetTypes Values to be specified

E5

(229)

HWI_NUM_RES_SHARED_IFA

A 4-byte integer value to represent the number of
reserved shared integrated facility for applications (IFA)
processors to be used for the CPC image.

E6

(230)

HWI_NUM_SHARED_IFL

A 4-byte integer value to represent the number of shared
integrated facility for Linux (IFL) processors to be used
for the CPC image.

E7

(231)

HWI_NUM_RES_SHARED_IFL

A 4-byte integer value to represent the number of
reserved shared integrated facility for Linux (IFL)
processors to be used for the CPC image.

E8

(232)

HWI_NUM_SHARED_ICF

A 4-byte integer value to represent the number of shared
internal coupling facility (ICF) processors to be used for
the CPC image.

E9

(233)

HWI_NUM_RES_SHARED_ICF

A 4-byte integer value to represent the number of
reserved shared internal coupling facility (ICF)
processors to be used for the CPC image.

EA

(234)

HWI_NUM_SHARED_ZIIP

A 4-byte integer value to represent the number of shared
System z Integrated Information Processors (zIIPs) to be
used for the CPC image.

EB

(235)

HWI_NUM_RES_SHARED_ZIIP

A 4-byte integer value to represent the number of
reserved shared System z Integrated Information
Processors (zIIPs) to be used for the CPC image.

EC

(236)

HWI_BASIC_CPU_AUTH_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

ED

(237)

HWI_PROBSTATE_CPU_AUTH_COUNT

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

EE

(238)

HWI_CRYPTOACTIVITY_CPU_AUTH

_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 387

||

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

SetTypes Values to be specified

EF

(239)

HWI_EXTENDED_CPU_AUTH_COUNT

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

F0

(240)

HWI_COPROCESSOR_CPU_AUTH

_COUNT_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

F1

(241)

HWI_BASIC_CPU_SAMPLING_AUTH

_CNTL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The authorization control is enabled.

HWMCA_FALSE
The authorization control is disabled.

F2

(242)

HWI_APROF_STORE_STATUS

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
Store status is selected. Only allowed if
HWI_APROF_LOADTYPE is set to
HWMCA_LOADTYPE_NORMAL.

HWMCA_FALSE
Store status is not selected.

F3

(243)

HWI_APROF_LOADTYPE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_LOADTYPE_NORMAL
The Loadtype is set to normal.

HWMCA_LOADTYPE_CLEAR
The Loadtype is set to clear.

F4

(244)

HWI_PROFILE_DESCRIPTION

A 50-character activation profile description. This
attribute is only available when targeting a z10 or higher
CPC.

F5

(245)

HWI_PROFILE_PARTITION_ID

A 4-byte integer type decimal value ranging from 0 to 63.
This attribute is only available when targeting a z10 or
higher CPC.

HWISET

388 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|
|

|
|

|

|

|

|
|

|
|

|
|

|

|

|

|
|
|

|

|

|

|
|
|

SetTypes Values to be specified

F6

(246)

HWI_OPERATING_MODE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

v HWMCA_ESA390_OPERATING_MODE

v HWMCA_ESA390TPF_OPERATING_MODE

v HWMCA_CF_OPERATING_MODE

v HWMCA_LINUX_OPERATING_MODE

v HWMCA_FMEX_OPERATING_MODE

v HWMCA_HMEX_OPERATING_MODE

v HWMCA_HMAS_OPERATING_MODE

v HWMCA_ZVM_OPERATING_MODE

F7

(247)

HWI_CLOCK_TYPE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

v HWMCA_CLOCK_TYPE_STANDARD

v HWMCA_CLOCK_TYPE_LPAR

F8

(248)

HWI_TIME_OFFSET_DAYS

A 4-byte integer type decimal value ranging from 0 - 999.
This attribute is only available when targeting a z10 or
higher CPC.

F9

(249)

HWI_TIME_OFFSET_HOURS

A 4-byte integer type decimal value ranging from 0 - 23.
This attribute is only available when targeting a z10 or
higher CPC.

FA

(250)

HWI_TIME_OFFSET_MINUTES

A 4-byte integer type decimal value. Possible values are
0, 15, 30 or 45. This attribute is only available when
targeting a z10 or higher CPC.

FB

(251)

HWI_TIME_OFFSET_INCREASE

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
The local time zone is east of GMT.

HWMCA_FALSE
The local time zone is west of GMT.

FC

(252)

HWI_LICCC_VALIDATION_ENABLED

A 4-byte integer type value. This attribute is only
available when targeting a zEnterprise or higher CPC.

HWMCA_TRUE
Activation profile must conform to the current
LICCC configuration.

HWMCA_FALSE
Activation profile is not required to conform to
the current LICCC configuration.

FD

(253)

HWI_GLOBAL_PERFORMANCE

_DATA_CONTROL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
Global performance data control is enabled.

HWMCA_FALSE
Global performance data control is disabled.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 389

||

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|
|

|

|

|

|
|

|
|

|
|

|

|

|

|
|

|
|
|

|
|
|

|

|

|

|

|
|

|
|

|
|

SetTypes Values to be specified

FE

(254)

HWI_IO_CONFIGURATION

_CONTROL

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
I/O configuration control is enabled.

HWMCA_FALSE
I/O configuration control is disabled.

100

(256)

HWI_LOGICAL_PARTITION

_ISOLATION

A 4-byte integer type value. This attribute is only
available when targeting a z10 or higher CPC.

HWMCA_TRUE
Logical partition isolation control is enabled.

HWMCA_FALSE
Logical partition isolation control is disabled.

SetTypeValueLen (non-REXX)
Supplied parameter
v Type: Integer
v Length: 4 bytes

SetTypeValueLen specifies the length in bytes of the SetTypeValue pointed to
by the SetTypeValue_Ptr parameter.

DiagArea (non-REXX)
DiagArea. (REXX)

Returned parameter
v Type: Character string (non-REXX), stem variable (REXX)
v Length: 32 bytes (non-REXX)

DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name
(non-REXX) /
Tail name
constant of the
user-defined
DiagArea stem
(REXX) Field Type (non-REXX) Description

Diag_Index 32-bit integer The array index to the parameter field that causes the
error.

Diag_Key 32-bit integer The constant value represents the field that causes the
error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code that is returned from the Console
Application API or the BCPii transport layer.

Diag_Text Character (12) Reserved.

HWISET

390 z/OS V2R1.0 MVS Callable Services for HLL

||

|

|

|

|

|
|

|
|

|
|

|

|

|

|

|
|

|
|

|
|
|

|
|

|

|

|
|

|
|
|

|

|

|
|
|
|

|
|
|

||
|
|
|
|
|
|||

|||
|

|||
|

|||

|||

|||
|

|||

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0007yyyy' because of one
of the following reasons:

Table 67. Reasons for abend X'042', RC X'0007yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service returns control to the caller, GPR 15 and ReturnCode contain a
hexadecimal return code.

Return Code in: Hexadecimal Equate
Symbol Meaning and Action

0 HWI_OK Meaning: Successful completion.

Action: None.

100 HWI_CONNECT_TOKEN_INV Meaning: Program error. The specified
connect token is not valid. This return code
indicates one of the following conditions has
occurred:

v The connect token does not exist. A
previous HWICONN service call has
never returned the value specified on
OutConnectToken.

v The connect token does not represent an
active connection. The connection
specified might have already been
disconnected using the HWIDISC service
call.

v The connect token is not associated with
the address space of the caller. The
ConnectToken specified is associated with
a different address space than the caller of
this service call.

Action: Check for probable coding error.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 391

|

|
|
|

Return Code in: Hexadecimal Equate
Symbol Meaning and Action

101 HWI_COMMUNICATION_ERROR Meaning: A communication error is
detected. The hardware management console
application API (HWMCA) or the BCPii
Transport layer has returned with a failing
return code.

Action: Check for probable coding error. See
the DiagArea for further diagnostic
information. The Diag_CommErr indicates
the return code that is returned from
HWMCA APIs or the BCPii Transport layer.

HWMCA API and BCPii transport return
codes are provided in Appendix A, “BCPii
communication error reason codes,” on page
415.

102 HWI_DIAGAREA_INV Meaning: Program error. The DiagArea is
not accessible.

Action: Check for probable coding error.
Verify the specified DiagArea is defined as a
32-byte character field.

103 HWI_CONNECT_TOKEN_INACTIVE Meaning: The specified connect token is no
longer valid. The connection has been
disconnected or it is in the progress of being
disconnected.

Action: Check for probable coding error.
Verify that the specified connect token is still
active. If connectivity to the targeted CPC
connection no longer exists, all connections
associated with that CPC will no longer
have a connect token that can be used.

HWISET

392 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in: Hexadecimal Equate
Symbol Meaning and Action

501 HWI_SETTYPE_INV Meaning: Program error. The requested
SetType specified in the call is not valid for
the ConnectToken specified. The system
rejects the service call. This return code
indicates one of the following conditions has
occurred:

v The SetType specified is not in the
acceptable value range of attributes that
can be set.

v The specified SetType has been provided
with an incompatible connection type. For
example, the attribute identifier applies
only to CPC connections, but the
ConnectToken specified represents an
image connection, or any of the activation
profile connections.

Action: Check for probable coding error.
Validate that the SetType specified is in the
valid range of possible values. Validate that
the SetType specified is permitted for the
specified connection type.

See the DiagArea for further diagnostic
information.

v The Diag_Key contains the value of the
attribute in question.

v The Diag_Text contain “Bad Set Attr” if
the value of the attribute cannot be set;
the Diag_Text contains “Mismatch” if the
attribute cannot be set for the specified
connection type.

502 HWI_SETTYPE_VALUE_INV Meaning: Program error. The requested
SetTypeValue to be set or changed is not
valid. The system rejects the service call.

Action: Check for probable coding error.
Validate that the value to which an attribute
is being set is appropriate for that attribute.

503 HWI_SETTYPE_VALUE_LEN_INV Meaning: Program error. The
SetTypeValueLen specified is not valid. The
SetTypeValueLen must be equal to or greater
than the minimum required length for the
set type value.

Action: Check for probable coding error.
Validate that the SetTypeValueLen specified
is equal to or greater than the minimum
required length for the set type value.

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 393

Return Code in: Hexadecimal Equate
Symbol Meaning and Action

504 HWI_SETTYPE_VALUE

_INACCESSIBLE

Meaning: Program error. The set type value
data area is either partially or completely
inaccessible by the application, or BCPii, or
both.

Action: Check for probable coding error.
Verify the SetTypeValue_Ptr points to a data
area where the set type value is, and make
sure that the data area is accessible.

506 HWI_SET_ATTRIBUTE_NOT

_SUPPORTED

Meaning: The targeted hardware of the
HWISET request does not recognize the
attribute that the user is attempting to set.

Action: Verify that the targeted hardware is
at a level that supports the type of attribute
being set.

F00 HWI_NOT_AVAILABLE Meaning: HWI is not available, and the
system rejects the service request.

Action: Start HWI and try the request again.

F01 HWI_AUTH_FAILURE Meaning: The caller is PKM8-15 problem
state.

Action: Check the calling program for a
probable coding error.

F02 HWI_NO_SAF_AUTH Meaning: The user does not have correct
SAF authorization for the request.

Action: Check for probable error. Consider
one or more of the following possible
actions:

v Define read access authorization to the
FACILITY class resource profile
HWI.APPLNAME.HWISERV.

v Define update access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau for a CPC
connection.

v Define update access authorization to the
FACILITY class resource profile
HWI.TARGET.netid.nau.imagename for an
image connection.

v Ensure that the referenced Facility Class
Profile is RACLIST-specified.

F03 HWI_INTERRUPT_STATUS_INV Meaning: The calling program is disabled.
The system rejects this service request.

Action: Check the calling program for a
probable coding error.

F04 HWI_MODE_INV Meaning: The calling program is not in Task
mode, which is the required mode. The
system rejects this service request.

Action: Check the calling program for a
probable error.

HWISET

394 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in: Hexadecimal Equate
Symbol Meaning and Action

F05 HWI_LOCKS_HELD Meaning: The calling program is holding
one or more locks. The system rejects this
service request.

Action: Check the calling program for a
probable coding error.

F06 HWI_UNSUPPORTED_RELEASE Meaning: The system level does not support
this service. The system rejects this service
request.

Action: Remove the calling program from
the system, and install it on a system that
supports HWI. Then rerun the calling
program.

F07 HWI_UNSUPPORTED_ENVIRONMENT Meaning: The system does not support
execution of the service from the current
environment (for example, calling a BCPii
service from within a BCPii ENF exit
routine).

Action: Issue the BCPii service from a
different execution environment.

FFF HWI_UNEXPECTED_ERROR Meaning: System error. The service that was
called encountered an unexpected error. The
system rejects the service call.

Action: Search problem reporting databases
for a fix for the problem. If no fix exists,
contact the IBM Support Center. In many
cases, a dump has been taken by BCPii to
attempt the collection of the necessary
information to diagnose the error. If so,
provide this dump to the IBM support team.

Example
In the pseudocode example, the caller issues a call to change or set the CPC status
for a CPC.
.
.
SetType = HWI_ACCSTAT;
SetTypeValue = HWMCA_STATUS_OPERATING;
SetTypeValue_Ptr = addr(SetTypeValue);
SetTypeValueLen = Length(SetTypeValue);
CALL HWISET (ReturnCode, ConnectToken, SetType, SetTypeValue_Ptr,

SetTypeValueLen, DiagArea)
.
.

A REXX programming example for the HWISET service:
mySetType = HWI_ACCSTAT /* AccStat attribute */
mySetTypeValue = HWMCA_STATUS_EXCEPTIONS

address bcpii
"hwiset RetCode myConnectToken mySetType mySetTypeValue myDiag."

If (RC <> 0) | (Retcode <> 0) Then
Do

HWISET

Chapter 19. Base Control Program internal interface (BCPii) 395

|

|
|
|
|
|
|
|
|

Say ’Service failed with REXX RC = ’RC’ and API Retcode = ’Retcode’.’
If (RC=Hwi_REXXParmSyntaxError | Retcode<>0) Then

Do
Say ' Diag_index=' myDiag.DIAG_INDEX
Say ' Diag_key=' myDiag.DIAG_KEY
Say ' Diag_actual=' myDiag.DIAG_ACTUAL
Say ' Diag_expected=' myDiag.DIAG_EXPECTED
Say ' Diag_commerr=' myDiag.DIAG_COMMERR
Say ' Diag_text=' myDiag.DIAG_TEXT

End
End

HWIBeginEventDelivery — Begin delivery of BCPii event notifications
Call the HWIBeginEventDelivery service to allow a C application running in the
z/OS UNIX System Services environment to begin delivery of event notifications.
This service must be issued before the HWIManageEvents service.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
Read access to the SAF profile CEA.CONNECT in the SERVAUTH class is
required.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in
the order shown.

HWISET

396 z/OS V2R1.0 MVS Callable Services for HLL

|
|
|
|
|
|
|
|
|
|
|

CALL statement Parameters

int HWIBeginEventDelivery (
*DiagArea

,ConnectToken

,**DeliveryToken
)

Parameters
The parameters are explained as follows:

*DiagArea
Returned parameter
v Type: character string
v Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the *DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
*DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes
the error.

Diag_Key 32-bit integer The constant value represents the field that
causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

ConnectToken
Supplied parameter
v Type: character string
v Length: 16 bytes

ConnectToken specifies the value returned from an HWICONN service call.

**DeliveryToken
Returned parameter
v Type: character string
v Length: 8 bytes

**DeliveryToken specifies the variable to contain the address of the token that
represents the event notification connection on future service calls.

HWIBeginEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 397

ABEND codes
None.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00000000 HWIUSS_RC_OK Meaning: Successful completion.

Action: None.

00001001 HWIUSS_RC_UNAVAILABLE Meaning: This error is returned for one of
the following reasons, which is written to
the diag_commerr field of the DiagArea:

v CEA (Common Event Adapter)
communication is unavailable. (reason
x'100')

v Write access to a socket is denied. (reason
x'103')

v Services are failing in the CEA Server.
(reason x'111')

Action: The request is rejected. Confirm that
the CEA address space has been started and
try the request again.

00001002 HWIUSS_RC_NO_AUTH Meaning: The program is not authorized to
access CEA services.

Action: The request is rejected. Determine if
the program needs access to CEA services. If
so, grant the required access to the proper
resources and try this request again. See
“Setting up event notification for BCPii
z/OS UNIX applications” on page 264 for
further information.

00001003 HWIUSS_RC_MAX_CLIENTS Meaning: The maximum number of CEA
clients has been reached.

Action: The request is rejected. Determine if
other CEA clients can be stopped. If so, try
this request again.

00001007
HWIUSS_RC_SAF_NOTDEF_CONNECT

Meaning: The SAF profile CEA.CONNECT
is not defined.

Action: The request is rejected. Add the
CEA.CONNECT profile to the SERVAUTH
class and try this request again.

00001008 HWIUSS_RC_COMM_FAILURE Meaning: An error occurred in z/OS UNIX
socket processing.

Action: The request is rejected. Verify that
the file system is properly configured for
z/OS UNIX sockets and try this request
again.

HWIBeginEventDelivery

398 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00001009
HWIUSS_RC_CEA_INTERNAL_ERROR

Meaning: An internal CEA processing error
has occurred.

Action: The request is rejected. Consult the
DiagArea for the details about this error. If
the error persists, contact the IBM Support
Center.

0000100A
HWIUSS_RC_INPUT_PTR_IS_NULL

Meaning: A null input pointer was found.

Action: The request is rejected. Pass a valid
pointer to the API and try this request again.

0FFFFFFF
HWIUSS_RC_UNEXPECTED_ERROR

Meaning: An unexpected error has occurred.

Action: The request is rejected. Consult the
DiagArea for more specifics regarding the
error. Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the C code example, the caller issues a call to register for event delivery.
HWI_CONNTOKEN_TYPE hwitoken;
HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
int localRC;

localRC = HWIBeginEventDelivery(&DiagArea, hwitoken, DeliveryToken)

HWIEndEventDelivery — End delivery of BCPii event notifications
Call the HWIEndEventDelivery service to allow a C application running in the
z/OS UNIX System Services environment to end delivery of event notifications.
This service unregisters the registration made by the HWIBeginEventDelivery
service.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard C linkage conventions are used

HWIBeginEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 399

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
Read access to the SAF profile CEA.CONNECT in the SERVAUTH class is
required.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in
the order shown.

CALL statement Parameters

int HWIEndEventDelivery (
*DiagArea

,*DeliveryToken
)

Parameters
The parameters are explained as follows:

*DiagArea
Returned parameter
v Type: character string
v Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the *DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
*DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes
the error.

Diag_Key 32-bit integer The constant value represents the field that
causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

*DeliveryToken
Supplied parameter

HWIEndEventDelivery

400 z/OS V2R1.0 MVS Callable Services for HLL

v Type: character string
v Length: 8 bytes

DeliveryToken specifies the event notification connection created by a previous
HWIBeginEventDelivery call.

ABEND codes
None.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00000000 HWIUSS_RC_OK Meaning: Successful completion.

Action: None.

00001001 HWIUSS_RC_UNAVAILABLE Meaning: This error is returned for one of
the following reasons, which is written to
the diag_commerr field of the DiagArea:

v CEA (Common Event Adapter)
communication is unavailable. (reason
x'100')

v Write access to a socket is denied. (reason
x'103')

v Services are failing in the CEA Server.
(reason x'111')

Action: The request is rejected. Confirm that
the CEA address space has been started and
try the request again.

00001004
HWIUSS_RC_BAD_DELIVERYTOKEN

Meaning: The provided delivery token is
not valid.

Action: The request is rejected. This is a
probable coding error.

00001008 HWIUSS_RC_COMM_FAILURE Meaning: An error occurred in z/OS UNIX
socket processing.

Action: The request is rejected. Verify that
the file system is properly configured for
z/OS UNIX sockets and try this request
again.

00001009
HWIUSS_RC_CEA_INTERNAL_ERROR

Meaning: An internal CEA processing error
has occurred.

Action: The request is rejected. Consult the
DiagArea for the details about this error. If
the error persists, contact the IBM Support
Center.

0000100A
HWIUSS_RC_INPUT_PTR_IS_NULL

Meaning: A null input pointer was found.

Action: The request is rejected. Pass a valid
pointer to the API and try this request again.

HWIEndEventDelivery

Chapter 19. Base Control Program internal interface (BCPii) 401

Return Code in Hexadecimal Equate
Symbol Meaning and Action

0FFFFFFF
HWIUSS_RC_UNEXPECTED_ERROR

Meaning: An unexpected error has occurred.

Action: The request is rejected. Consult the
DiagArea for more specifics regarding the
error. Search problem reporting data bases
for a fix for the problem. If no fix exists,
contact the IBM Support Center.

Example
In the C code example, the caller issues a call to unregister for event delivery.
HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
int localRC;

localRC = HWIEndEventDelivery(&DiagArea, DeliveryToken)

HWIManageEvents — Manage the list of BCPii events
Call the HWIManageEvents service to allow a C application running in the z/OS
UNIX System Services environment to manage the list of events for which the
application is to be notified. The HWIBeginEventDelivery service must have been
called before the HWIManageEvents service being called because the appropriate
delivery token returned from the HWIBeginEventDelivery service is required as
input.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: One of the following: PKM allowing key 0-7, supervisor

state, or APF-Authorized
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

HWIEndEventDelivery

402 z/OS V2R1.0 MVS Callable Services for HLL

Authorization
The client application must have access to consult the local CPC. This is granted by
allowing the application at least read access to the SAF-protected FACILITY class
resource HWI.APPLNAME.HWISERV.

Read access is required to the profile CEA.SUBSCRIBE.ENF_0068qqqqqqqq in the
SERVAUTH class, where qqqqqqqq is the specific hexadecimal event qualifier
pattern. See the ENF 68 documentation contained in the ENFREQ chapter of z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG for further
information about how to specify this event qualifier.

The client application must have at least read access to the SAF-protected
FACILITY class resource HWI.TARGET.netid.nau for a ConnectToken representing a
CPC connection, or HWI.TARGET.netid.nau.imagename for a ConnectToken
representing an image connection.

Note: BCPii requires the FACILITY class to be RACLIST-specified.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in
the order shown.

CALL statement Parameters

int HWIManageEvents (
*DiagArea

,*DeliveryToken

,ConnectToken

,EventAction

,EventIDs
)

Parameters
The parameters are explained as follows:

*DiagArea
Returned parameter
v Type: character string
v Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the *DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
*DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes
the error.

HWIManageEvents

Chapter 19. Base Control Program internal interface (BCPii) 403

Field Name Field Type Description

Diag_Key 32-bit integer The constant value represents the field that
causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

*DeliveryToken
Supplied parameter
v Type: character string
v Length: 8 bytes

*DeliveryToken specifies the event notification connection, as returned by a
previous HWIBeginEventDelivery call.

ConnectToken
Supplied parameter
v Type: character string
v Length: 16 bytes

ConnectToken specifies a logical connection between the application and a CPC
or an image. The ConnectToken is an output parameter on the HWICONN
service call.

The ConnectToken specified must have originated from a HWICONN service
call that was issued from the same address space as this service call.

EventAction
Supplied parameter
v Type: integer
v Length: 4 bytes

EventAction specifies the type of action for the service. See the EventAction
parameter of “HWIEVENT — Register or unregister for BCPii events” on page
314 for the exact syntax.

EventIDs
Supplied parameter
v Type: integer
v Length: 128 bit (16 bytes)

EventIDs specifies the events to be added or deleted. See the EventIDs
parameter of “HWIEVENT — Register or unregister for BCPii events” on page
314 for the exact syntax.

IBM recommends that an application should at least add the
Hwi_Event_BCPIIStatus event if other events are going to be added by the
application. The only way to listen for BCPii events in the z/OS UNIX System
Services environment is to issue a blocking call to the HwiGetEvent service. If
BCPii stops and the Hwi_Event_BCPIIStatus has not been added, the
application has no way of knowing of this termination and may hang
indefinitely. By at least listening to this event, an application can be aware of
BCPii terminations and take the appropriate action.

HWIManageEvents

404 z/OS V2R1.0 MVS Callable Services for HLL

ABEND codes
If BCPii is unable to properly access the user-supplied parameter list, the call
might result in an abend X'042' with a reason code of X'0004yyyy' because of one
of the following reasons:

Table 68. Reasons for abend X'042', RC X'0004yyyy'

yyyy Reason

0000 The parameters passed by the caller are not in the primary address
space.

0001 The parameters passed by the caller are not accessible.

0002 The number of parameters passed by the caller is not correct.

For other severe BCPii errors encountered during the call, an abend X'042' with a
different reason code may result. See z/OS MVS System Codes for additional
information.

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00000000 HWIUSS_RC_OK Meaning: Successful completion.

Action: None.

00001000
HWIUSS_RC_HWIEVENT_FAILURE

Meaning: The resultant HWIEVENT service
call failed.

Action: The request is rejected. The
DiagArea contains the failure data. Search
problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM
Support Center.

00001001 HWIUSS_RC_UNAVAILABLE Meaning: This error is returned for one of
the following reasons, which is written to
the diag_commerr field of the DiagArea:

v CEA (Common Event Adapter)
communication is unavailable. (reason
x'100')

v Write access to a socket is denied. (reason
x'103')

v Services are failing in the CEA Server.
(reason x'111')

Action: The request is rejected. Confirm that
the CEA address space has been started and
try the request again.

HWIManageEvents

Chapter 19. Base Control Program internal interface (BCPii) 405

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00001002 HWIUSS_RC_NO_AUTH Meaning: This error is returned for one of
the following reasons, which is written to
the diag_commerr field of the DiagArea:

v The program is not authorized to access
CEA services. (reason x'102')

v The program is not authorized to monitor
the requested event. (reason x'10E')

Action: The request is rejected. Determine
whether the program needs access to CEA
services. If so, grant the required access to
the proper resources and try this request
again. See “Setting up event notification for
BCPii z/OS UNIX applications” on page 264
for further information.

00001004
HWIUSS_RC_BAD_DELIVERYTOKEN

Meaning: The provided delivery token is
not valid.

Action: The request is rejected. This is a
probable coding error.

00001006
HWIUSS_RC_SAF_NOTDEF_EVENT

Meaning: The SAF profile
CEA.SUBSCRIBE.ENF_0068* is not defined.

Action: The request is rejected. Add the
proper CEA.SUBSCRIBE.ENF_0068* profile
to the SERVAUTH class and try this request
again.

00001008 HWIUSS_RC_COMM_FAILURE Meaning: An error occurred in z/OS UNIX
socket processing.

Action: The request is rejected. Verify that
the file system is properly configured for
z/OS UNIX sockets and try this request
again.

00001009
HWIUSS_RC_CEA_INTERNAL_ERROR

Meaning: An internal CEA processing error
has occurred.

Action: The request is rejected. Consult the
DiagArea for the details about this error. If
the error persists, contact the IBM Support
Center.

0000100A
HWIUSS_RC_INPUT_PTR_IS_NULL

Meaning: A null input pointer was found.

Action: The request is rejected. Pass a valid
pointer to the API and try this request again.

0FFFFFFF
HWIUSS_RC_UNEXPECTED_ERROR

Meaning: An unexpected error has occurred.

Action: The request is rejected. Search
problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to register to be notified when the
command response events and status change events occur.

HWIManageEvents

406 z/OS V2R1.0 MVS Callable Services for HLL

HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE *DeliveryToken;
HWI_CONNTOKEN_TYPE ConnectToken;
HWI_EVENTIDS_TYPE EventIDs;
int localRC;

memset ((void*)&eventIDs, 0x00, sizeof (eventIDs));
memcpy (eventIDs.Hwi_EventID_EyeCatcher

,HWI_EVENTID_TEXT
,sizeof (eventIDs.Hwi_EventID_EyeCatcher));

EventIDs.Hwi_Event_CmdResp = 1;
EventIDs.Hwi_Event_StatusChg = 1;
localRC = HWIManageEvents(&DiagArea, DeliveryToken, ConnectToken,

HWI_EVENT_ADD, EventIDs)

HWIGetEvent — Retrieve outstanding BCPii event notifications
Call the HWIGetEvent service to allow a C application running in the z/OS UNIX
System Services environment to retrieve outstanding BCPii event notifications.

Description

Environment
The requirements for the callers are:

Requirement Details
Minimum authorization: None
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller
Linkage: Standard C linkage conventions are used

Programming requirements
The file hwicmuss.x contains the sidedeck needed to link the program to the DLL.

z/OS UNIX C language callers must include the header file HWICIC.

Restrictions
None.

Authorization
None.

Syntax
Write the call as shown on the syntax diagram. You must code all parameters in
the order shown.

HWIManageEvents

Chapter 19. Base Control Program internal interface (BCPii) 407

CALL statement Parameters

int HWIGetEvent (
*DiagArea

,*DeliveryToken

,*Buffer

,BufferSize

,Timeout

,*BytesNeeded
)

Parameters
The parameters are explained as follows:

*DiagArea
Returned parameter
v Type: character string
v Length: 32 bytes

*DiagArea contains diagnostic data to help determine the cause of a failure
from the service. For many return codes, the *DiagArea can contain further
information to help determine the cause of the failure. See the descriptions of
different return codes for a partial list of data returned in this area.

Note: For all environmental errors (with return code X'F00' and higher), the
*DiagArea might not be filled in, and the data returned in the area should be
ignored.

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that causes
the error.

Diag_Key 32-bit integer The constant value represents the field that
causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The returned code from the failing operation.

Diag_Text Character (12) Additional diagnostic information in text format.

See Appendix A, “BCPii communication error reason codes,” on page 415 for a
partial list of the descriptive communication transport error return codes and
suggested actions.

*DeliveryToken
Supplied parameter
v Type: character string
v Length: 8 bytes

*DeliveryToken specifies the event notification connection, as returned by a
previous HWIBeginEventDelivery call.

*Buffer
Supplied parameter

HWIGetEvent

408 z/OS V2R1.0 MVS Callable Services for HLL

v Type: character string
v Length: up to 4096 bytes

*Buffer specifies the address of the storage where the ENF68 event data is to be
returned. This data is mapped by the HWIENF68 structure in the HWICIC
header file.

BufferSize
Supplied parameter
v Type: integer
v Length: 4 bytes

BufferSize specifies the size of the *Buffer storage area.

Constant HWIUSS_MAX_GETBUFFER_SIZE can be used to allocate a buffer
large enough to hold the maximum size of ENF68 data returned.

Timeout
Supplied parameter
v Type: integer
v Length: 4 bytes

Timeout specifies the amount of time, in seconds, for which the service should
wait for an event to occur.

Constant in Hexadecimal Equate Symbol Description

0 HWIUSS_TIMEOUT_NOWAIT Do not wait for an event to occur if one is
not ready for delivery.

FFFFFFFF HWIUSS_TIMEOUT_INFINITE Do not return until an event has occurred.

Any other non-negative number Wait for the specified number of seconds.

Note: If the Hwi_Event_BCPIIStatus event is not registered by the application
and the BCPii address space goes down, this service will not be completed if
HWIUSS_TIMEOUT_INFINITE was specified. If a numeric value was specified,
the service will wake up but neither event data nor indicator that BCPii is not
available will be returned. IBM recommends that an application specifies the
Hwi_Event_BCPIIStatus event on the HwiManageEvents service call if the
HwiGetEvent service is used. When the HwiGetEvent service returns control to
the application, an inspection of which event was received will allow the
application to react appropriately when BCPii stops.

*BytesNeeded
Returned parameter
v Type: integer
v Length: 4 bytes

*BytesNeeded specifies the variable to contain the number of bytes used in the
output buffer to contain the returned event data. If the buffer is not large
enough to contain all the event data, this variable contains the amount of
storage required to receive all the event data.

ABEND codes
None.

HWIGetEvent

Chapter 19. Base Control Program internal interface (BCPii) 409

Return codes
When the service completes, one of the following values is returned to the caller:

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00000000 HWIUSS_RC_OK Meaning: Successful completion.

Action: None.

00000001 HWIUSS_RC_PARTIAL_DATA Meaning: The provided buffer was not large
enough to contain all the event data.

Action: The request is successful. To receive
all the event data, buffer the size of which is
at least BytesNeeded must be provided.

00000002 HWIUSS_RC_EVENTS_LOST Meaning: At least one event was not
returned because the program has not been
retrieving events timely.

Action: The request is successful. To receive
all events, the program must make this
service call more often or reduce the number
of events requested.

00000003 HWIUSS_RC_TIMEOUT Meaning: No events have occurred in the
requested time interval.

Action: The request is successful.

00001001 HWIUSS_RC_UNAVAILABLE Meaning: This error is returned for one of
the following reasons, which is written to
the diag_commerr field of the DiagArea:

v CEA (Common Event Adapter)
communication is unavailable. (reason
x'100')

v Write access to a socket is denied. (reason
x'103')

v Services are failing in the CEA Server.
(reason x'111')

Action: The request is rejected. Confirm that
the CEA address space has been started and
try the request again.

00001004
HWIUSS_RC_BAD_DELIVERYTOKEN

Meaning: The provided delivery token is
not valid.

Action: The request is rejected. This is a
probable coding error.

00001005 HWIUSS_RC_SMALL_BUFFER Meaning: The provided buffer is not large
enough to contain the event data.

Action: The request is rejected. This is a
probable coding error. Provide a larger
buffer and try the request again.

HWIGetEvent

410 z/OS V2R1.0 MVS Callable Services for HLL

Return Code in Hexadecimal Equate
Symbol Meaning and Action

00001008 HWIUSS_RC_COMM_FAILURE Meaning: An error occurred in z/OS UNIX
socket processing.

Action: The request is rejected. Verify that
the file system is properly configured for
z/OS UNIX sockets and try this request
again.

00001009
HWIUSS_RC_CEA_INTERNAL_ERROR

Meaning: An internal CEA processing error
has occurred.

Action: The request is rejected. Consult the
DiagArea for the details about this error. If
the error persists, contact the IBM Support
Center.

0000100A
HWIUSS_RC_INPUT_PTR_IS_NULL

Meaning: A null input pointer was found.

Action: The request is rejected. Pass a valid
pointer to the API and try this request again.

0FFFFFFF
HWIUSS_RC_UNEXPECTED_ERROR

Meaning: An unexpected error has occurred.

Action: The request is rejected. Search
problem reporting data bases for a fix for
the problem. If no fix exists, contact the IBM
Support Center.

Example
In the C code example, the caller issues a call to retrieve any outstanding event
data, waiting forever until an event occurs.
HWI_DIAGAREA_TYPE DiagArea;
HWI_DELIVERYTOKEN_TYPE DeliveryToken;
char *Buffer[HWIUSS_MAX_GETBUFFER_SIZE];
int BufSize = HWIUSS_MAX_GETBUFFER_SIZE;
int Timeout = HWIUSS_TIMEOUT_INFINITE;
int BytesReturned;
int localRC;

localRC = HWIGetEvent(&DiagArea, DeliveryToken, &Buffer, BufSize,
Timeout, &BytesReturned)

HWIGetEvent

Chapter 19. Base Control Program internal interface (BCPii) 411

HWIGetEvent

412 z/OS V2R1.0 MVS Callable Services for HLL

Part 9. Appendixes

© Copyright IBM Corp. 1994, 2014 413

414 z/OS V2R1.0 MVS Callable Services for HLL

Appendix A. BCPii communication error reason codes

All BCPii API invocations can experience a communication failure when
communicating between the BCPii address space and the support element of the
targeted Central Processor Complex (CPC). The calling program receives the
HWI_COMMUNICATION_ERROR (101 hexadecimal, 257 decimal) return code
when this occurs. One of the output parameters from each service is a Diagnostic
Area (referred to as the DiagArea). For the HWI_COMMUNICATION_ERROR
return code, a field in this DiagArea that is called Diag_Commerr contains a more
descriptive return code from the BCPii communications transport to help pinpoint
the cause of the failure.

Below is a partial list of the descriptive communication transport error return
codes, along with a suggested action to take.

Return Code in
Hexadecimal (in decimal) Description / Suggested Action

0-63 (0-99) These return codes are documented in Appendix C (API
Return Codes) in the System z Application Programming
Interfaces publication (SB10-7030).

64-76 (100-118) An internal error has likely occurred inside the BCPii
transport code. Contact the IBM Support Center.

77 (119) The BCPii transport rejected the particular request. Activate
CTRACE with CTRACE option “ALL” and reissue the
request. If the request failed again, turn off CTRACE, collect
the SVCDUMP, and contact the IBM Support Center.

78-CF (120-207) An internal error has likely occurred inside the BCPii
transport code. Contact the IBM Support Center.

D0 (208) The support element rejected the particular request. Activate
CTRACE with CTRACE option “ALL” and reissue the
request. If the request failed again, turn off CTRACE, collect
the SVCDUMP, and contact the IBM Support Center.

D1-D3 (209-211) An internal error has likely occurred inside the BCPii
transport code. Contact the IBM Support Center.

D4 (212) The support element rejected communication from BCPii,
likely because the Cross partition authority was not granted
on this support element.

E0 (224) No response was received from the support element, after
waiting for a considerable amount of time. BCPii times out
the request. Check if connectivity to the support element is
still there.

Greater than E0 (>224) An internal error has likely occurred inside the BCPii
transport code. Contact the IBM Support Center.

© Copyright IBM Corp. 1994, 2014 415

BCPii Communication Error Reason Codes

416 z/OS V2R1.0 MVS Callable Services for HLL

Appendix B. BCPii summary tables

The following summary tables show the objects that can be targeted for the BCPii
functions:
v “HWIQUERY and HWISET”
v “HWICMD” on page 428
v “HWIEVENT” on page 430

For complete details of the BCPii APIs, see Chapter 19, “Base Control Program
internal interface (BCPii),” on page 257.

HWIQUERY and HWISET
This table shows the BCPii HWIQUERY and HWISET attributes and the objects
that can be targeted for each function. Note: The HWMCA attribute suffix refers to
the 'HWMCA Object Attribute ID suffix' documented in System z Application
Programming Interfaces (SB10-7030-13).

Table 69. HWIQUERY and HWISET attributes
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_NAME

1 (1)

Name V1R10 X X X X X X 1.0

HWI_ERRSTAT

2 (2)

Status error
(Y/N)

V1R10 X X X 7.0

HWI_BUSYSTAT

3 (3)

Busy status
(Y/N)

V1R10 X X X 8.0

HWI_MSGSTAT

4 (4)

Messages present
(Y/N)

V1R10 X X 9.0

HWI_OPERSTAT

5 (5)

Current status V1R10 X X 10.0

HWI_ACCSTAT

6 (6)

Acceptable status
values

V1R10 X X X 11.0

HWI_APROF

7 (7)

Next reset
activation profile
name

V1R10 X X X 13.0

HWI_LUAPROF

8 (8)

Last used
activation profile
name

V1R10 X X 14.0

HWI_OBJTYPE

9 (9)

Object type V1R10 X X X X X X X 22.0

HWI_IMLMODE

A (10)

IML mode V1R10 X X 12.0

HWI_IPADDR

17 (23)

Internet address
(IPv4 format)

V1R10 X 15.0

© Copyright IBM Corp. 1994, 2014 417

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_SNAADDR

18 (24)

SNA address
(netid.nau)

V1R10 X 16.0

HWI_MMODEL

19 (25)

Machine model V1R10 X 17.0

HWI_MTYPE

1A (26)

Machine type V1R10 X 18.0

HWI_MSERIAL

1B (27)

Machine serial V1R10 X 19.0

HWI_CPCSERIAL

1C (28)

CPC serial
number

V1R10 X 20.0

HWI_CPCID

1D (29)

CPC identifier V1R10 X 21.0

HWI_RESERVEID

1E (30)

Name of
application
holding reserve

V1R10 X 44.0

HWI_SVCEREQD

1F (31)

Service required
(Y/N)

V1R10 X 46.0

HWI_CBUINSTD

20 (32)

CBU installed
(Y/N)

V1R10 X 32.0

HWI_CBUENABLD

21 (33)

CBU enabled
(Y/N)

V1R10 X 48.0

HWI_CBUACTIVE

22 (34)

CBU activated
(Y/N)

V1R10 X 33.0

HWI_CBUACTDT

23 (35)

CBU activation
date

V1R10 X 34.0

HWI_CBUEXPDT

24 (36)

CBU expiration
date

V1R10 X 35.0

HWI_CBUTESTAR

25 (37)

CBU test
activations
remaining

V1R10 X 36.0

HWI_CBUREALAV

26 (38)

Real CBU
activation
available (Y/N)

V1R10 X 37.0

HWI_PRUNTYPE

27 (39)

Processor
running time
type

V1R10 X X X 78.0

HWI_PRUNTIME

28 (40)

Processor
running time

V1R10 X X X 79.0

HWI_PRUNTSEW

29 (41)

Processor loses
its running time
slice when in
wait state (Y/N)

V1R10 X X X 80.0

HWI_OOCINST

2A (42)

On/Off on
Demand
installed (Y/N)

V1R10 X 87.0

HWI_OOCACT

2B (43)

On/Off on
Demand
activated (Y/N)

V1R10 X 88.0

HWIQUERY and HWISET attributes

418 z/OS V2R1.0 MVS Callable Services for HLL

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_OOCENAB

2C (44)

On/Off on
Demand enabled
(Y/N)

V1R10 X 89.0

HWI_OOCADT

2D (45)

On/Off on
Demand
activation date

V1R10 X 90.0

HWI_PCPCSWM

2E (46)

Permanent CPC
software model

V1R10 X 120.0

HWI_PPBPSWM

2F (47)

Permanent plus
billable processor
software model

V1R10 X 121.0

HWI_PPTPSWM

30 (48)

Permanent plus
(all) temporary
processor
software model

V1R10 X 122.0

HWI_PCPCMSU

31 (49)

CPC millions of
service units
(MSU) value

V1R10 X 123.0

HWI_PPBPMSU

32 (50)

Permanent plus
billable processor
MSU value

V1R10 X 124.0

HWI_PPTPMSU

33 (51)

Permanent plus
(all) temporary
processor MSU
value

V1R10 X 125.0

HWI_NUMGPP

34 (52)

Number of
general purpose
processors

V1R10 X 126.0

HWI_NUMSAP

35 (53)

Number of
service assist
processors

V1R10 X 127.0

HWI_NUMIFAP

36 (54)

Number of
integrated
facility for
applications
(IFA) processors

V1R10 X 128.0

HWI_NUMIFLP

37 (55)

Number of
integrated
facility for Linux
(IFL) processors

V1R10 X 129.0

HWI_NUMICFP

38 (56)

Number of
internal coupling
facility (ICF)
processors

V1R10 X 130.0

HWI_NUMIIPP

39 (57)

Number of
integrated
information (IIP)
processors

V1R10 X 131.0

HWI_NUMFLTYP

3A (58)

Number of
defective (faulty)
processors

V1R10 X 132.0

HWI_NUMSPARE

3B (59)

Number of spare
processors

V1R10 X 133.0

HWI_NUMPENDP

3C (60)

Number of
pending
(activation)
processors

V1R10 X 134.0

HWI_
CAPCHGALLWD

3D (61)

Allow temporary
capacity change
(Y/N)

V1R10 X 149.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 419

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_DGRSTAT

3E (62)

Degraded status V1R10 X 47.0

HWI_
CURRPPOWERMODE

3F (63)

Current
processor power
savings mode
activated

V1R10 X 190.0

HWI_
SUPPPPOWERMODE

40 (64)

Supported
processor power
savings modes
available

V1R10 X 191.0

HWI_STPCONFIG

41 (65)

Server Timer
Protocol (STP)
configuration
data

V1R12 X 165.0

HWI_NUMPGPP

42 (66)

Number of
pending general
purpose
processors

V1R12 X 175.0

HWI_NUMPSAP

43 (67)

Number of
pending service
assist processors

V1R12 X 176.0

HWI_NUMPAAP

44 (68)

Number of
pending
Application
Assist (AAP)
processors

V1R12 X 177.0

HWI_NUMPIFLP

45 (69)

Number of
pending
Integrated
Facility for Linux
(IFL) processors

V1R12 X 178.0

HWI_NUMPICFP

46 (70)

Number of
pending Internal
Coupling Facility
(ICF) processors

V1R12 X 179.0

HWI_NUMPIIPP

47 (71)

Number of
pending
Integrated
Information (IIP)
processors

V1R12 X 180.0

HWI_ POWERMODE
ALLOWED

48 (72)

Processor power
savings mode
allowed (Y/N)

V1R10 X 193.0

HWI_VERSION

49 (73)

CPC version
number

V1R13 X 151.0

HWI_EC_MCL_INFO

4A (74)

XML string that
describes the
Engineering
Change (EC) and
Microcode Level
(MCL) levels

V1R13 X 162.0

HWI_LIST_
IP_ADDRESSES

4B (75)

All the IP
addresses (in
IPv4 and/or
IPv6 format)

V1R13 X 161.0

HWI_AUTO_SWITCH_
ENABLED

4C (76)

Automatic
switching
between primary
and alternate
support elements
enabled (Y/N)

V1R13 X 163.0

HWIQUERY and HWISET attributes

420 z/OS V2R1.0 MVS Callable Services for HLL

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_CPCNAME

69 (105)

Parent (CPC)
name

V1R10 X 2.0

HWI_OSNAME

6A (106)

Operating
system name

V1R10 X 3.0

HWI_OSTYPE

6B (107)

SW operating
system type
(MVS, VM,
LINUX, VSE, Z
TPF EE)

V1R10 X 4.0

HWI_OSLEVEL

6C (108)

SW operating
system level

V1R10 X 5.0

HWI_SYSPLEX

6D (109)

SW sysplex
name

V1R10 X 6.0

HWI_CLUSTER

6E (110)

LPAR cluster
name

V1R10 X 49.0

HWI_PARTITIONID

6F (111)

Partition ID V1R10 X X 51.0

HWI_DEFCAP

70 (112)

Current defined V1R10 X X X 43.0

HWI_SGPIPW

71 (113)

Shared general
processor initial
processing
weight

V1R10 X X X 30.0

HWI_SGPIPWCAP

72 (114)

SGPIPW capped
(Y/N)

V1R10 X X X 31.0

HWI_SGPPWMIN

73 (115)

Minimum
SGPPW value

V1R10 X X X 38.0

HWI_SGPPWMAX

74 (116)

Maximum
SGPPW value

V1R10 X X X 39.0

HWI_SGPPW

75 (117)

Current SGPPW
value

V1R10 X 41.0

HWI_SGPPWCAP

76 (118)

SGPPW capped
(Y/N)

V1R10 X 42.0

HWI_WLM

77 (119)

WLM allowed to
change
processing
weight related
attributes (Y/N)

V1R10 X X X 40.0

HWI_IFAIPW

78 (120)

Integrated
facility for
applications
initial processing
weight

V1R10 X X X 60.0

HWI_IFAIPWCAP

79 (121)

IFAIPW capped
(Y/N)

V1R10 X X X 61.0

HWI_IFAPWMIN

7A (122)

Minimum
IFAPW value

V1R10 X X X 62.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 421

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_IFAPWMAX

7B (123)

Maximum
IFAPW value

V1R10 X X X 63.0

HWI_IFAPW

7C (124)

Current IFAPW
value

V1R10 X 64.0

HWI_IFAPWCAP

7D (125)

IFAPW capped
(Y/N)

V1R10 X 65.0

HWI_IFLIPW

7E (126)

Integrated
facility for Linux
initial processing
weight

V1R10 X X X 66.0

HWI_IFLIPWCAP

7F (127)

IFLIPW capped
(Y/N)

V1R10 X X X 67.0

HWI_IFLPWMIN

80 (128)

Minimum
IFLPW value

V1R10 X X X 68.0

HWI_IFLPWMAX

81 (129)

Maximum
IFLPW value

V1R10 X X X 69.0

HWI_IFLPW

82 (130)

Current IFLPW
value

V1R10 X 70.0

HWI_IFLPWCAP

83 (131)

IFLPW capped
(Y/N)

V1R10 X 71.0

HWI_ICFIPW

84 (132)

Internal coupling
facility initial
processing
weight

V1R10 X X X 72.0

HWI_ICFIPWCAP

85 (133)

ICFIPW capped
(Y/N)

V1R10 X X X 73.0

HWI_ICFPWMIN

86 (134)

Minimum
ICFPW value

V1R10 X X X 74.0

HWI_ICFPWMAX

87 (135)

Maximum
ICFPW value

V1R10 X X X 75.0

HWI_ICFPW

88 (136)

Current ICFPW
value

V1R10 X 76.0

HWI_ICFPWCAP

89 (137)

ICFPW capped
(Y/N)

V1R10 X 77.0

HWI_IIPIPW

8A (138)

Integrated
information
processors initial
processing
weight

V1R10 X X X 81.0

HWI_IIPIPWCAP

8B (139)

IIPIPW capped
(Y/N)

V1R10 X X X 82.0

HWI_IIPPWMIN

8C (140)

Minimum IIPPW
value

V1R10 X X X 83.0

HWI_IIPPWMAX

8D (141)

Maximum
IIPPW value

V1R10 X X X 84.0

HWIQUERY and HWISET attributes

422 z/OS V2R1.0 MVS Callable Services for HLL

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_IIPPW

8E (142)

Current IIPPW
value

V1R10 X 85.0

HWI_IIPPWCAP

8F (143)

IIPPW capped
(Y/N)

V1R10 X 86.0

HWI_IPLTOKEN

90 (144)

IPL token
associated with
the current IPL
of the image

V1R11 X 164.0

HWI_PSWS

91 (145)

PSW for each CP
associated with
the image

V1R11 X 150.0

HWI_GROUP_
PROFILE_ CAPACITY

92 (146)

Workload unit
for the group
profile associated
with an image

V1R13 X X 192.0

HWI_RECID

B7 (183)

Record ID V1R10 X 135.0

HWI_RECTYPE

B8 (184)

Record type V1R10 X 136.0

HWI_ACTSTAT

B9 (185)

Record activation
status

V1R10 X 137.0

HWI_ACTDATE

BA (186)

Record activation
date

V1R10 X 138.0

HWI_EXPDATE

BB (187)

Record
expiration date

V1R10 X 139.0

HWI_ACTEXP

BC (188)

Record activation
expiration date

V1R10 X 140.0

HWI_MAXRADS

BD (189)

Maximum real
activation days

V1R10 X 141.0

HWI_MAXTADS

BE (190)

Maximum test
activation days

V1R10 X 142.0

HWI_REMRADS

BF (191)

Remaining real
activation days

V1R10 X 143.0

HWI_REMTADS

C0 (192)

Remaining test
activation days

V1R10 X 144.0

HWI_OOCODREC

C1 (193)

Capacity record
in XML format

V1R10 X N/A

HWI_IOCDS

C9 (201)

IOCDS V1R11 X X 27.0

HWI_IPL_ADDRESS

CA (202)

IPL address V1R11 X X X 28.0

HWI_IPL_PARM

CB (203)

IPL parameter V1R11 X X X 29.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 423

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_IPL_TYPE

CC (204)

IPL type V1R11 X X X 52.0

HWI_WW_
PORTNAME

CD (205)

Worldwide port
name

V1R11 X X X 53.0

HWI_BOOT_PGM_
SELECTOR

CE (206)

Boot program
selector

V1R11 X X X 54.0

HWI_LU_NUM

CF (207)

Logical unit
number value

V1R11 X X X 55.0

HWI_BOOTREC_
BLK_ADDR

D0 (208)

Boot record
logical block
address

V1R11 X X X 56.0

HWI_OPSYS_
LOADPARM

D1 (209)

Operating
system specific
load parameter

V1R11 X X X 57.0

HWI_GROUP_PROF_
NAME

D2 (210)

Name of group
profile to be
used for image

V1R11 X X X 93.0

HWI_LOAD_AT_
ACTIVATION

D3 (211)

Image loaded
(IPLed) after
activation (Y/N)

V1R11 X X 94.0

HWI_CENTRAL_
STOR

D4 (212)

Initial amount of
central storage
(in MB) for
image

V1R11 X X 95.0

HWI_RES_CENTRAL_
STOR

D5 (213)

Reserved
amount of
central storage
(in MB) for
image

V1R11 X X 96.0

HWI_EXPANDED_
STOR

D6 (214)

Initial amount of
expanded
storage (in MB)
for image

V1R11 X X 97.0

HWI_RES_
EXPANDED_STOR

D7 (215)

Reserved
amount of
expanded
storage (in MB)
for image

V1R11 X X 98.0

HWI_NUM_GPP

D8 (216)

Number of
dedicated
general purpose
processors for
image

V1R11 X X 99.0

HWI_NUM_RESGPP

D9 (217)

Number of
reserved
dedicated
general purpose
processors for
image

V1R11 X X 100.0

HWIQUERY and HWISET attributes

424 z/OS V2R1.0 MVS Callable Services for HLL

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_NUM_IFA

DA (218)

Number of
dedicated
integrated
facility for
applications
(IFA) processors
for image

V1R11 X X 101.0

HWI_NUM_RESIFA

DB (219)

Number of
reserved
dedicated
integrated
facility for
applications
(IFA) processors
for image

V1R11 X X 102.0

HWI_NUM_IFL

DC (220)

Number of
dedicated
integrated
facility for Linux
(IFL) processors
for image

V1R11 X X 103.0

HWI_NUM_RESIFL

DD (221)

Number of
reserved
dedicated
integrated
facility for Linux
(IFL) processors
for image

V1R11 X X 104.0

HWI_NUM_ICF

DE (222)

Number of
dedicated
internal coupling
facility (ICF)
processors for
image

V1R11 X X 105.0

HWI_NUM_RESICF

DF (223)

Number of
reserved
dedicated
internal coupling
facility (ICF)
processors for
image

V1R11 X X 106.0

HWI_NUM_ZIIP

E0 (224)

Number of
dedicated
System z
integration
information
processors
(zIIPs) for image

V1R11 X X 107.0

HWI_NUM_RESZIIP

E1 (225)

Number of
reserved
dedicated
System z
integration
information
processors
(zIIPs) for image

V1R11 X X 108.0

HWI_NUM_SHARED_
GPP

E2 (226)

Number of
shared general
purpose
processors for
image

V1R11 X X 109.0

HWI_NUM_RES_
SHARED_GPP

E3 (227)

Number of
reserved shared
general purpose
processors for
image

V1R11 X X 110.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 425

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_NUM_
SHARED_IFA

E4 (228)

Number of
shared
integrated
facility for
applications
(IFA) processors
for image

V1R11 X X 111.0

HWI_NUM_RES_
SHARED_IFA

E5 (229)

Number of
reserved shared
integrated
facility for
applications
(IFA) processors
for image

V1R11 X X 112.0

HWI_NUM_
SHARED_IFL

E6 (230)

Number of
shared
integrated
facility for Linux
(IFL) processors
for image

V1R11 X X 113.0

HWI_NUM_RES_
SHARED_IFL

E7 (231)

Number of
reserved shared
integrated
facility for Linux
(IFL) processors
for image

V1R11 X X 114.0

HWI_NUM_
SHARED_ICF

E8 (232)

Number of
shared internal
coupling facility
(ICF) processors
for image

V1R11 X X 115.0

HWI_NUM_RES_
SHARED_ICF

E9 (233)

Number of
reserved shared
internal coupling
facility (ICF)
processors for
image

V1R11 X X 116.0

HWI_NUM_
SHARED_ZIIP

EA (234)

Number of
shared System z
integrated
information
processors
(zIIPs) for image

V1R11 X X 117.0

HWI_NUM_RES_
SHARED_ZIIP

EB (235)

Number of
reserved shared
System z
integrated
information
processors
(zIIPs) for image

V1R11 X X 118.0

HWI_BASIC_CPU_
AUTH_COUNT_CNTL

EC (236)

Basic CPU
counter facility
for the image
enabled (Y/N)

V1R12 X X 168.0

HWI_PROBSTATE_
CPU_ AUTH_
COUNT_CNTL

ED (237)

Problem state
CPU counter
facility for the
image enabled
(Y/N)

V1R12 X X 169.0

HWI_
CRYPTOACTIVITY_
CPU_ AUTH_COUNT_
CNTL

EE (238)

Crypto activity
CPU counter
facility for the
image enabled
(Y/N)

V1R12 X X 170.0

HWIQUERY and HWISET attributes

426 z/OS V2R1.0 MVS Callable Services for HLL

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_EXTENDED_
CPU_AUTH_COUNT_
CNTL

EF (239)

Extended CPU
counter facility
for the image
enabled (Y/N)

V1R12 X X 171.0

HWI_COPROCESSOR_
CPU_AUTH_ COUNT_
CNTL

F0 (240)

Coprocessor
group CPU
counter facility
for the image
enabled (Y/N)

V1R12 X X 172.0

HWI_BASIC_CPU_
SAMPLING_
AUTH_CNTL

F1 (241)

Basic CP CPU
sampling facility
for the image
enabled (Y/N)

V1R12 X X 173.0

HWI_APROF_STORE_
STATUS

F2 (242)

Store status
selected (Y/N)

V1R11 X X 166.0

HWI_APROF_
LOADTYPE

F3 (243)

Type of load
requested

V1R11 X X 167.0

HWI_PROFILE_
DESCRIPTION

F4 (244)

Activation
profile
description

V1R13 X X 203.0

HWI_PROFILE_
PARTITION_ID

F5 (245)

Partition
identifier for
AProf

V1R13 X X 51.0

HWI_OPERATING_
MODE

F6 (246)

Operating mode
value for AProf

V1R13 X X 204.0

HWI_CLOCK_TYPE

F7 (247)

Clock type
assignment (time
source setting)

V1R13 X X 205.0

HWI_TIME_OFFSET_
DAYS

F8 (248)

Number of days
currently set as
offset from
external time
source's TOD

V1R13 X X 206.0

HWI_TIME_OFFSET_
HOURS

F9 (249)

Number of
hours currently
set as offset from
external time
source's TOD

V1R13 X X 207.0

HWI_TIME_OFFSET_
MINUTES

FA (250)

Number of
minutes
currently set as
offset from
external time
source's TOD

V1R13 X X 208.0

HWI_TIME_OFFSET_
INCREASE

FB (251)

Local time zone:
TRUE means
east of GMT;
FALSE means
west of GMT

V1R13 X X 209.0

HWI_LICCC_
VALIDATION_
ENABLED

FC (252)

Activation
profile must
conform to the
current LICCC
configuration
(Y/N)

V1R13 X X 210.0

HWIQUERY and HWISET attributes

Appendix B. BCPii summary tables 427

Table 69. HWIQUERY and HWISET attributes (continued)
Attribute constant
equate symbol with
hexadecimal and
(decimal) values Description

Starting
z/OS

release

Settable
using

HWISET CPC Image CapRec
Reset
AProf

Image
AProf

Load
AProf

User-
defined
Image
Group

HWMCA
attribute

suffix

HWI_GLOBAL_
PERFORMANCE_
DATA_CONTROL

FD (253)

LPAR can be
used to view
processing unit
activity data for
all other LPARs
on the same CPC
(Y/N)

V1R13 X X 211.0

HWI_IO_
CONFIGURATION_
CONTROL

FE (254)

LPAR can be
used to read and
write any IOCDS
(Y/N)

V1R13 X X 212.0

HWI_CROSS_
PARTITION_
AUTHORITY

FF (255)

LPAR can be
used to issue
instructions that
reset or
deactivate other
LPARs (Y/N)

V1R13 X 213.0

HWI_LOGICAL_
PARTITION_
ISOLATION

100 (256)

Re-configurable
channel paths
assigned to
LPAR are
reserved for its
exclusive use
(Y/N)

V1R13 X X 214.0

HWICMD
This table shows the BCPii HWICMD types and the objects that can be targeted for
each command.

Table 70. HWICMD types

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_ACTIVATE

1 (1)

Activate target object
v CPC and image: V1R10

v User-defined image
group: V1R13

X X X

HWI_CMD_DEACTIVATE

2 (2)

Deactivate target object
v CPC and image: V1R10

v User-defined image
group: V1R13

X X X

HWI_CMD_HWMSG

3 (3)

Resend all hardware messages
or delete one hardware
message

V1R10 X

HWI_CMD_CBU

4 (4)

Activate or deactivate capacity
backup

V1R10 X

HWI_CMD_OOCOD

5 (5)

Activate or deactivate On/Off
Capacity on Demand

V1R10 X

HWI_CMD_PROFILE

6 (6)

Import or export activation
profiles

V1R10 X

HWI_CMD_RESERVE

7 (7)

Add or delete a reserve for an
application

V1R10 X

HWIQUERY and HWISET attributes

428 z/OS V2R1.0 MVS Callable Services for HLL

Table 70. HWICMD types (continued)

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_SYSRESET

8 (8)

Reset target object
v Image: V1R10

v User-defined image
group: V1R13

X X

HWI_CMD_START

9 (9)

Start all CPs on target object
v Image: V1R10

v User-defined image
group: V1R13

X X

HWI_CMD_STOP

A (10)

Stop all CPs on target object
v Image: V1R10

v User-defined image
group: V1R13

X X

HWI_CMD_PSWRESTART

B (11)

Restart one CP
v Image: V1R10

v User-defined image
group: V1R13

X X

HWI_CMD_OSCMD

C (12)

Issue an operating system
command

V1R10 X

HWI_CMD_LOAD

D (13)

IPL operating system or
systems

v Image: V1R10

v User-defined image
group: V1R13

X X

HWI_CMD_TEMPCAP

E (14)

Add or remove temporary
capacity

V1R10 X

HWI_CMD_SYSRESET_IPLT

F (15)

Reset an image if the IPL token
matches the specified IPLT

V1R11 X

HWI_CMD_ACTIVATE
_WITH_ACTPROF

10 (16)

Activate using the specified
activation profile

V1R11 X X

HWI_CMD_POWER_CONTROL

11 (17)

Specify power control
characteristics

V1R10 X

HWI_CMD_SCSI_LOAD

12 (18)

IPL Linux operating system or
systems

v Image: V1R12

v User-defined image
group: V1R13

X X

HWI_CMD_SCSI_DUMP

13 (19)

Dump a Linux operating
system

V1R12 X

HWI_CMD_SYSPLEX_TIME
_SWAP_CTS

14 (20)

Swap the role of current time
server (CTS) in a configured
STP-only coordinated timing
network (CTN) from preferred
time server to backup time
server or vice versa

V1R13 X

HWI_CMD_SYSPLEX_TIME
_SET_STP_CONFIG

15 (21)

Set the configuration for an
STP-only coordinated timing
network (CTN)

V1R13 X

HWI_CMD_SYSPLEX_TIME
_CHANGE_STP_ONLY_CTN

16 (22)

Change the STP_ID portion of
the CTN ID for an entire
STP-only coordinated timing
network (CTN)

V1R13 X

HWICMD attributes

Appendix B. BCPii summary tables 429

Table 70. HWICMD types (continued)

Command type / Constant with
hexadecimal and (decimal) values Description Starting z/OS release CPC Image

User-
defined
Image
Group

HWI_CMD_SYSPLEX_TIME
_JOIN_STP_ONLY_CTN

17 (23)

Allow a CPC to join an
STP-only coordinated timing
network (CTN)

V1R13 X

HWI_CMD_SYSPLEX_TIME
_LEAVE_STP_ONLY_CTN

18 (24)

Remove a CPC from an
STP-only coordinated timing
network (CTN)

V1R13 X

HWIEVENT
This table shows the BCPii HWIEVENT types and the objects that can be
registered or unregistered for each event.

Table 71. HWIEVENT types

Event ID / Bit position in structure
specified (non-REXX) Description

Starting z/OS
release CPC Image

Hwi_Event_CmdResp

97

Notice of command completion
from the SE

V1R10 X X

Hwi_Event_StatusChg

98

Object status change V1R10 X X

Hwi_Event_NameChg

99

Object name change V1R10 X X

Hwi_Event_ActProfChg

100

Object has changed associated
activation profile

V1R10 X X

Hwi_Event_ObjCreate

101

New object has been defined V1R10 X X

Hwi_Event_ObjDestroy

102

Object has been undefined V1R10 X X

Hwi_Event_ObjException

103

Object has entered into or out of
an exception state

V1R10 X X

Hwi_Event_ApplStarted

104

Console application has started V1R10 X

Hwi_Event_ApplEnded

105

Console application is ending V1R10 X

Hwi_Event_HwMsg

106

Hardware message associated has
been issued

V1R10 X

Hwi_Event_HwMsgDel

107

Hardware message has been
deleted

V1R10 X

Hwi_Event_SecurityEvent

108

Security event has been logged V1R10 X

HWICMD attributes

430 z/OS V2R1.0 MVS Callable Services for HLL

Table 71. HWIEVENT types (continued)

Event ID / Bit position in structure
specified (non-REXX) Description

Starting z/OS
release CPC Image

Hwi_Event_CapacityChg

109

Processing capacity has changed in
some manner

V1R10 X

Hwi_Event_CapacityRecord

110

A change has occurred to a
temporary capacity record

V1R10 X

Hwi_Event_OpSysMsg

111

Operating system message has
been issued

V1R10 X

Hwi_Event_HwCommError

112

Hardware communication error
received

V1R10 X

Hwi_Event_BCPIIStatus

113

BCPii address space has stopped or
started

V1R10 X

Hwi_Event_DisabledWait

114

An image has entered a disabled
wait state

V1R10 X

Hwi_Event_PowerChange

115

Power characteristic or
characteristics have changed

V1R10 X

HWIEVENT attributes

Appendix B. BCPii summary tables 431

HWIEVENT attributes

432 z/OS V2R1.0 MVS Callable Services for HLL

Appendix C. General use C/C++ header files

Programming interface information

C/C++ header files are shipped in z/OS V1R4 SYS1.SAMPLIB. These header files
are analogous to traditional z/OS MVS mapping macros and are provided for
general use. The following table lists the members and describes the interface.
Descriptions of the data areas referenced can be found in z/OS MVS Data Areas in
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

Member Description

BLSCADPL Describes same dara areas as assembler macro BLSABDPL. Depends on
BLSCDESC.

BLSCADSY Describes same data areas as assembler macro BLSADSY.

BLSCCBSP Describes same data areas as assembler macro BLSACBSP. Depends on
BLSCDESC.

BLSCDESC Describes same data areas as assembler macros BLSRDATC,
BLSRDATS, BLSRDATT, BLSRESSY, and BLSRSASY. Many of the other
members require that this header file be included before they are
included.

BLSCDRPX Describes same data areas as assembler macro BLSRDRPX. Depends on
BLSCDESC.

BLSCNAMP Describes same data areas as assembler macro BLSRNAMP. Depends
on BLSCDESC.

BLSCPCQE Describes same data areas as assembler macro BLSRPCQE. Depends on
BLSCDESC.

BLSCPPR2 Describes same data areas as assembler macro BLSUPPR2.

BLSCPWHS Describes same data areas as assembler macro BLSRPWHS. Depends on
BLSCDESC.

BLSCXMSP Describes same data areas as assembler macro BLSRXMSP. Depends on
BLSCDESC.

BLSCXSSP Describes same data areas as assembler macro BLSRXSSP. Depends on
BLSCDESC.

End of programming interface information

© Copyright IBM Corp. 1994, 2014 433

http://www.ibm.com/systems/z/os/zos/bkserv/

C/C++ header files

434 z/OS V2R1.0 MVS Callable Services for HLL

Appendix D. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1994, 2014 435

http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

436 z/OS V2R1.0 MVS Callable Services for HLL

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix D. Accessibility 437

438 z/OS V2R1.0 MVS Callable Services for HLL

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1994, 2014 439

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

440 z/OS V2R1.0 MVS Callable Services for HLL

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Additional notices
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Permission Notice

This book includes information about certain callable service stub and
linkage-assist (stub) routines contained in specific data sets that are intended to be
bound or link-edited with code and run on z/OS systems. In connection with your
authorized use of z/OS, you may bind or link-edit these stubs into your modules
and distribute your modules with the included stubs for the purposes of
developing, using, marketing and distributing programs conforming to the
documented programming interfaces for z/OS, provided that each stub is included
in its entirety, including any IBM copyright statements. These stubs have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
the reliability, serviceability, or function of these stub programs. The stub referred
to in this book is contained in the following data set:
v SYS1.CSSLIB

Notices 441

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/

Programming interface information
This information is intended to help the customer to write applications that use
operating system services. This information documents general-use programming
interface and associated guidance information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
Trademark information (http://www.ibm.com/legal/copytrade.shtml).

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

442 z/OS V2R1.0 MVS Callable Services for HLL

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines technical terms and
abbreviations used in z/OS MVS documentation.
If you do not find the term you are looking for,
view IBM Glossary of Computing Terms, located
at: http://www.ibm.com/ibm/terminology

data object
A VSAM linear data set.

A storage area, outside the user’s storage,
that window services defines as a
temporary object.

data-in-virtual
An MVS facility that enables a user to
access a data object as though that data
object resided in the user’s storage.

gap The grouping of consecutive bytes that
the program repeatedly skips over. When
a reference pattern has a gap, gaps and
reference units alternate throughout the
data area. See also reference pattern and
reference unit.

hiperspace
A range of up to two gigabytes of virtual
storage that a program can use like a
buffer.

linear data set
A type of VSAM data set where data is
stored as a linear string of bytes.

mapping
A process where window services makes
a data object or part of a data object
accessible to a user program through a
scroll area or through a window.

object See data object.

permanent data object
A virtual storage access method (VSAM)

linear data set that resides on DASD (also
called a data-in-virtual object).

reference pattern
The order in which a program’s
instructions process a data structure, such
as an array. A reference pattern can be
sequential or random and can contain
gaps.

reference unit
A grouping of consecutive bytes that the
program references. If the reference
pattern has a gap, the reference unit is the
grouping of bytes between gaps; gaps and
reference units alternate throughout the
data area. If the reference pattern does not
have gaps, the reference unit is a logical
grouping according to the structure of the
data.

scroll area
An area of expanded storage that window
services obtains. For a permanent object,
window services maps a window to the
scroll area and maps the scroll area to the
permanent data object. You can use the
scroll area to make interim changes to a
permanent data object. For a temporary
data object, the scroll area is the data
object. Window services maps the
window to the scroll area.

scrolling
A process where window services saves
changes that a user has made in a
window. For a permanent data object,
window services saves the changes in the
scroll area, without updating the
permanent object. For a temporary object,
window services updates the temporary
object.

temporary data object
An area of expanded storage that window
services provides for use by your
program. You can use this storage to hold
temporary data instead of using a DASD

© Copyright IBM Corp. 1994, 2014 443

http://www.ibm.com/software/globalization/terminology/

workfile. Window services provides no
means for you to save a temporary data
object.

VSAM
Virtual storage access method.

window
An area in the user’s storage where the
user can view or change data in a data
object that window services has made
available.

444 z/OS V2R1.0 MVS Callable Services for HLL

Index

A
access to a data object

temporary object 9
access to an object

terminating 22
accessibility 435

contact IBM 435
features 435

ADA programming language
example using window services 45

application
in resource recovery 127

application_backout_UR call 132
return and reason codes 135
syntax 134

application_commit_UR call 136
return and reason codes 139
syntax 138

assistive technologies 435
authorized interfaces for zEDC 200, 207,

208, 220

B
back out changes to protected

resources 132
BCPii REXX restrictions 270
BCPii REXX support 269, 270, 273, 274
blocks of an object

definition 3
size 3

C
C programming language

call syntax for latch manager
services 109

example of reference pattern
services 91

example using window services 50
call statements for latch manager

services 109
call statements for reference pattern

services 87
call syntax

for latch manager service 109
CEA TSO/E address space services

CEATsoRequest API 151
components 143
diagnostic codes 167
invoking 151
overview 143
prerequisites 143
reason codes 163
request types 157

CeaTsoAttn 158
CeaTsoEnd 159
CeaTsoPing 160
CeaTsoQuery 160
CeaTsoQueryApp 161

CEA TSO/E address space services
(continued)

request types (continued)
CeaTsoStart 157

requirements for callers 157
return codes 163
TSO/E address spaces 143

changed data in an object
refreshing 19

COBOL programming language
call syntax for latch manager

services 109
example using reference pattern

services 94
example using window services 53

commit changes to protected
resources 136

commit protocol, two-phase 128
compression service

memory registration 212
Rendezvous 208, 211
single compression request 215
unregister memory 214
unrendezvous 219

CSRIDAC callable service 27
CSRIRP callable service 87

example 83
CSRL16J callable service

entry characteristics for the target
routine 231

freeing dynamic storage for the target
routine 232

parameter description 231
programming requirements 232
return codes 235
syntax 231

CSRREFR callable service 31
CSRRRP callable service 89
CSRSAVE callable service 34
CSRSCOT callable service 36
CSRSIC include file 243
CSRVIEW callable service 39

D
data compression 199, 200
data object 14

mapping 3
obtaining access 12
structure 3

data to be viewed
identifying 16

data-in-virtual object 3
DFP requirement for window

services 13

E
examples

data object mapped to a window 4

examples (continued)
structure of a data object 4

F
FORTRAN programming language

call syntax for latch manager
services 109

example using reference pattern
services 98

example using window services 57
FPZ4ABC 215
FPZ4DMR 214
FPZ4PRB 211
FPZ4RMR 212
FPZ4RZV 208
FPZ4URZ 219

G
gap in reference pattern services

defining 76
definition 76

glossary of terms 443

I
identifying data object 12
IEAAFFN callable service

parameter descriptions 227
purpose 227
requirements 228
restrictions and limitations 228
return codes 228
syntax 227

interim changes to a permanent object
saving 18

ISGLCRT callable service
syntax 110

ISGLOBT callable service
syntax 114

ISGLPBA callable service
syntax 122

ISGLPRG callable service
syntax 120

ISGLREL callable service
syntax 117

ISV-provided REXX programming
restrictions 274

ISV-provided REXX support 273

K
keyboard

navigation 435
PF keys 435
shortcut keys 435

© Copyright IBM Corp. 1994, 2014 445

L
latch manager services

ISGLCRT callable service
syntax 110

ISGLOBT callable service
syntax 114

ISGLPBA callable service
syntax 122

ISGLPRG callable service
syntax 120

ISGLREL callable service
syntax 117

M
multiple views of an object

defining 17

N
navigation

keyboard 435
Notices 439

P
Pascal programming language

example using window services 61,
101

permanent object
definition 3
maximum size 3
relationship to a data-in-virtual

object 3
structure 3

PL/I programming language
call syntax for latch manager

services 109
example using window services 65

processor affinity 227
protected

resource 127

R
reference information 87, 109
reference pattern services

coding examples 91
C programming language 91
COBOL programming

language 94
FORTRAN programming

language 98
Pascal programming

language 101
overview 73
use with data window services 15
using 79

reference unit in reference pattern
services

choosing 76
definition 76

REPLACE option for a window 15
resource

process for protecting 128

resource (continued)
protecting 127
protection on multiple systems 131
requesting protection 131

resource manager
in resource recovery 127

resource recovery
distributed 131
process 128
programs 127
requesting 131
service 132, 136

RETAIN option for a window 15
REXX programming language

call syntax for latch manager
services 109

REXX restrictions 270
REXX support 269, 270
RRS

application_backout_UR call 132
application_commit_UR call 136
as sync-point manager 127

S
sending comments to IBM xiii
shortcut keys 435
size of an object

extending 17
SMS requirement for window

services 13
structure of a data object 3
summary of changes

as updated March 2014 xv
as updated September 2014 xv

Summary of changes xv
sync-point manager

in resource recovery 127

T
temporary object

definition 3
functions supported 9
maximum size 3
overview of supported functions 9
structure 3

terminology 443
transferring control to another routine

CSRL16J 231
TSO/E REXX programming

restrictions 273
TSO/E REXX support 273
two-phase commit protocol 128

U
UR (unit of recovery)

backing out 132
committing 136

user interface
ISPF 435
TSO/E 435

using protected resources 127

V
view of an object

terminating 20

W
ways that window services can map an

object 5
what window services provides 4
window

definition 3
use 3

window services 11
call statements 23
COBOL programming language 53
coding examples 45, 53

ADA programming language 45
C programming language 50
FORTRAN programming

language 57
Pascal programming language 61
PL/I programming language 65

functions provided 4
handling abends 22
handling return codes 22
reference information 23
services provided 4
ways to map an object 5

window services overview 3

Z
zEDC 199, 200, 223
zEDC Express 199, 200
zEnterprise Data Compression

(zEDC) 199, 200, 223
zlib for zEDC 200, 203, 204, 205, 206

446 z/OS V2R1.0 MVS Callable Services for HLL

����

Product Number: 5650-ZOS

Printed in USA

SA23-1377-02

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated September 2014
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated March 2014
	z/OS Version 2 Release 1 summary of changes

	Part 1. Window services
	Chapter 1. Introduction to window services
	Permanent data objects
	Temporary data objects
	Structure of a data object
	What does window services provide?
	The ways that window services can map an object
	Example 1 — Mapping a permanent object that has no scroll area
	Example 2 — Mapping a permanent object that has a scroll area
	Example 3 — Mapping a temporary object
	Example 4 — Mapping multiple Windows to an object
	Example 5 — Mapping multiple objects

	Access to permanent data objects
	Access to temporary data objects

	Chapter 2. Using window services
	Obtaining access to a data object
	Identifying the object
	Permanent object
	Temporary object

	Specifying the object’s size
	Specifying the type of access
	Obtaining a scroll area

	Defining a view of a data object
	Identifying the data object
	Identifying a window
	Defining the disposition of a window’s contents
	Replace option
	Retain option

	Defining the expected reference pattern
	Identifying the blocks you want to view
	Extending the size of a data object

	Defining multiple views of an object
	Non-overlapping views
	Overlapping views

	Saving interim changes to a permanent data object
	Updating a temporary data object
	Refreshing changed data
	Updating a permanent object on DASD
	When there is a scroll area
	When there is no scroll area

	Changing a view in a window
	Terminating access to a data object
	Handling return codes and abnormal terminations

	Chapter 3. Window services
	CSREVW — View an object and sequentially access it
	Abend codes
	Return codes and reason codes

	CSRIDAC — Request or terminate access to a data object
	Abend codes
	Return codes and reason codes

	CSRREFR — Refresh an object
	Abend codes
	Return codes and reason codes

	CSRSAVE — Save changes made to a permanent object
	Abend codes
	Return codes and reason codes

	CSRSCOT — Save object changes in a scroll area
	Abend codes
	Return codes and reason codes

	CSRVIEW — View an object
	Abend codes
	Return codes and reason codes

	Chapter 4. Window services coding examples
	ADA example
	C/370 example
	COBOL example
	FORTRAN example
	Pascal example
	PL/I example

	Part 2. Reference pattern services
	Chapter 5. Introduction to reference pattern services
	How does the system manage data?
	An example of how the system manages data in an array
	What pages does the system bring in when a gap exists?
	Example 1
	Example 2
	Example 3

	Chapter 6. Using reference pattern services
	Defining the reference pattern for a data area
	Defining the range of the area
	Identifying the direction of the reference
	Defining the reference pattern
	Using CSRIRP when a gap exists

	Choosing the number of bytes on a page fault

	Examples of using CSRIRP to define a reference pattern
	Removing the definition of the reference pattern
	Handling return codes

	Chapter 7. Reference pattern services
	CSRIRP — Define a reference pattern
	Return codes and reason codes

	CSRRRP — Remove a reference pattern
	Return codes and reason codes

	Chapter 8. Reference pattern services coding examples
	C/370 example
	COBOL example
	FORTRAN example
	Pascal example
	PL/I example

	Part 3. Global resource serialization latch manager services
	Chapter 9. Using the latch manager services
	Syntax and linkage conventions for latch manager callable services
	ISGLCRT — Create a latch set
	ABEND codes
	Return codes
	Examples of calls to latch manager services

	ISGLOBT — Obtain a latch
	ABEND codes
	Return codes
	Example

	ISGLREL — Release a latch
	ABEND codes
	Return codes
	Example

	ISGLPRG — Purge a requestor from a latch set
	ABEND codes
	Return codes
	Example

	ISGLPBA — Purge a group of requestors from a group of latch sets
	ABEND codes
	Return codes

	Part 4. Resource recovery services (RRS)
	Chapter 10. Using protected resources
	Resource recovery programs
	Two-phase commit protocol
	Resource recovery process
	Requesting resource protection and recovery
	Using distributed resource recovery
	Application_Backout_UR (SRRBACK)
	Description
	Environment
	Programming requirements

	Application_Commit_UR (SRRCMIT)
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Additional callable services

	Part 5. CEA TSO/E address space services
	Chapter 11. Introduction to CEA TSO/E address space services
	CEA TSO/E address space manager components
	System prerequisites for the CEA TSO/E address space services
	Working with TSO/E address spaces started by CEA
	Communicating with programs running in the TSO/E address spaces
	JSON format for TSO/E messages
	Sample TSO/E messages written to the z/OS UNIX message queue

	Reconnecting to CEA TSO/E address spaces
	Idle time versus RECONTIME
	TSO/E LOGON RECONNECT operand versus CEA reconnect

	Chapter 12. Using CEA TSO/E address space services
	Invoking the CEATsoRequest API
	Parameters
	Requirements for callers

	Understanding the request types
	CeaTsoStart - Starting a new TSO/E session
	CeaTsoAttn - Sending an attention interrupt to a TSO/E session
	CeaTsoEnd - Ending a TSO/E session
	CeaTsoPing - Sending a ping on behalf of an application
	CeaTsoQuery - Querying the TSO/E address spaces
	CeaTsoQueryApp - Querying TSO/E sessions by application

	Return, reason, and diagnostic codes
	Return codes
	Reason codes
	Diagnostic codes

	CEAYTSOR header file
	CEAXRDEF header file
	Programming example
	Sample compile job

	Part 6. zEnterprise Data Compression (zEDC)
	Chapter 13. Overview and planning of zEnterprise Data Compression (zEDC)
	Requirements for zEnterprise Data Compression
	Planning for zEnterprise Data Compression

	Chapter 14. Application interfaces for zEnterprise Data Compression
	Invoking unauthorized interfaces for zEnterprise Data Compression
	zlib for zEnterprise Data Compression
	Standard zlib functions
	IBM-provided zlib compatible C library
	Running zlib

	Invoking System z authorized interfaces for zEnterprise Data Compression
	System z authorized compression services
	FPZ4RZV — Rendezvous compression service
	FPZ4PRB — Probe device availability compression service
	FPZ4RMR — Memory registration compression service
	FPZ4DMR — Deregister memory compression service
	FPZ4ABC — Submit compression request
	FPZ4URZ — Unrendezvous compression request
	Usage example of a System z authorized service

	Chapter 15. Troubleshooting for zEnterprise Data Compression
	Part 7. Other callable services
	Chapter 16. IEAAFFN — Assign processor affinity for encryption or decryption
	Restrictions and limitations
	Requirements
	Return codes

	Chapter 17. CSRL16J — Transfer control to another routine
	Defining the entry characteristics of the target routine
	Freeing dynamic storage associated with the caller
	Programming requirements
	Restrictions
	Performance implications
	Syntax diagram
	C/370 syntax
	PL/I syntax

	Parameters
	Return codes
	Example
	C/370 example program
	Assembler program for use with the C/370 example

	Chapter 18. CSRSI — System information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	Return codes

	CSRSIC C/370 header file

	Part 8. Base Control Program internal interface (BCPii) services
	Chapter 19. Base Control Program internal interface (BCPii)
	BCPii setup and installation
	Setting up connectivity to the support element
	Levels of hardware that BCPii supports
	Enable BCPii communications on the support element
	Define the BCPii community name on the support element

	Setting up authority to use BCPii
	Program authority
	General security product authority
	Authority to the particular resource
	Community name defined in the security product for each CPC

	BCPii configuration
	Setting up event notification for BCPii z/OS UNIX applications
	CEA address space setup
	CEA ENF security configuration

	Setting up access for BCPii TSO/E REXX execs
	BCPii startup and shutdown
	BCPii address space does not start up at IPL
	Ending the HWIBCPii address space
	Restarting the HWIBCPii address space

	BCPii callable services
	Syntax, linkage and programming considerations
	Calling formats
	BCPii connection scope
	Connections with address space affinity
	Connections with task affinity

	Linkage considerations
	REXX programming considerations
	Executing a BCPii REXX exec in the System REXX environment
	Executing a BCPii REXX exec in the TSO/E REXX environment
	Executing a BCPii REXX exec in an ISV-provided REXX environment
	REXX Programming tips
	Return codes from a REXX BCPii host command
	REXX return codes from the BCPii hwihost function
	Sample REXX exec

	Assembler programming considerations
	Programming Examples

	HWICMD — Issue a BCPii hardware management command
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWICMD service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWICONN — Establish a BCPii connection
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWICONN service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIDISC — Release a BCPii connection
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIDISC service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIEVENT — Register or unregister for BCPii events
	Monitoring events occurring on a particular CPC or image
	Monitoring operating system message events (Hwi_Event_OpSysMsg)
	Monitoring communication availability between BCPii and the CPC
	Monitoring the status of the BCPii address space
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIEVENT service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWILIST — Retrieve HMC and BCPii configuration-related information
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWILIST service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIQUERY — BCPii retrieval of SE/HMC-managed attributes
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWIQUERY service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWISET — BCPii set SE/HMC-managed attributes
	Description
	Environment
	Programming requirements
	REXX programming considerations for the HWISET service
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIBeginEventDelivery — Begin delivery of BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIEndEventDelivery — End delivery of BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIManageEvents — Manage the list of BCPii events
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	HWIGetEvent — Retrieve outstanding BCPii event notifications
	Description
	Environment
	Programming requirements
	Restrictions
	Authorization
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	Part 9. Appendixes
	Appendix A. BCPii communication error reason codes
	Appendix B. BCPii summary tables
	HWIQUERY and HWISET
	HWICMD
	HWIEVENT

	Appendix C. General use C/C++ header files
	Appendix D. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Additional notices
	Programming interface information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W
	Z

