
z/OS

MVS Programming: Authorized Assembler
Services Reference, Volume 4 (SET-WTO)
Version 2 Release 1

SA23-1375-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 403.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xi

Tables xiii

About this information xv
Who should use this information xv
How to use this information. xv
z/OS information xv

How to send your comments to IBM xvii
If you have a technical problem xvii

z/OS Version 2 Release 1 summary of
changes xix

Chapter 1. Using the services 1
Compatibility of MVS macros. 1
Addressing mode (AMODE) 2
Address space control (ASC) mode 3

ALET qualification 4
User parameters 4

Telling the system about the execution environment 6
Specifying a macro version number. 7

How to request a macro version using PLISTVER 7
Register use 8
Handling return codes and reason codes 9

Handling program errors 9
Handling environmental and system errors . . . 10

Using X-macros 11
Macro forms 11

Conventional list form macros 12
Alternative list form macros 12

Coding the macros 13
Continuation lines 15

Coding the callable services 16
Including equate (EQU) statements 17
Link-editing linkage-assist routines 17

Service summary 17

Chapter 2. SETFRR — Set up
functional recovery routines 27
Description 27

Environment 27
Programming requirements 27
Restrictions 28
Input register information 28
Output register information 28
Performance implications 28
Syntax 28
Parameters 29
ABEND codes 31
Return and reason codes 31
Example 1 31
Example 2 31

Chapter 3. SETLOCK — Control access
to serially reusable resources 33
Description 33

Environment 33
Programming requirements 33
Restrictions 33
Input register information 34
Output register information 34
Performance implications 35

SETLOCK OBTAIN. 35
Syntax 35
Parameters 35
ABEND codes 37
Return and reason codes 38
Example 1 38
Example 2 38
Example 3 38

SETLOCK RELEASE 39
Syntax 39
Parameters 39
Return and reason codes 41
Example 1 41
Example 2 42

SETLOCK TEST 42
Syntax 42
Parameters 43
Return and reason codes 44
Example 1 44
Example 2 44
Example 3 44

Chapter 4. SETRP — Set return
parameters 45
Description 45

Environment 45
Programming requirements 45
Restrictions 45
Input register information 46
Output register information 46
Performance implications 47
Syntax 47
Parameters 49
ABEND codes 54
Return and reason codes 54
Example 1 54
Example 2 54

Chapter 5. SJFREQ — Call scheduler
JCL facility services 55
Description 55

Environment 55
Programming requirements 56
Restrictions 56
Input register information 56

© Copyright IBM Corp. 1988, 2013 iii

Output register information 56
Performance implications 57
Syntax 57
Parameters 57
Example 58

SJFREQ RETRIEVE service 61
Programming requirements 61
SJFREQ RETRIEVE keyword list 61
SJFREQ RETRIEVE input parameters 62
SJFREQ RETRIEVE output parameters 63
ABEND codes 63
SJFREQ RETRIEVE return and reason codes . . 63

SJFREQ SWBTU_MERGE service 65
Programming requirements 65
SJFREQ SWBTU_MERGE input parameters. . . 65
SJFREQ SWBTU_MERGE output parameters . . 67
SJFREQ SWBTU_MERGE ABEND codes. . . . 67
SJFREQ SWBTU_MERGE Return and reason
codes 67

SJFREQ VERIFY service 74
SJFREQ VERIFY input parameters 74
SJFREQ VERIFY output parameters 78
Operand descriptions 79
ABEND codes 80
Return and reason codes with related message
text 80

SJFREQ TERMINATE service 88
SJFREQ TERMINATE input parameters 88
Return and reason codes 88

Chapter 6. SPIE — Specify program
interruption exit 89
Description 89

Environment 90
Programming requirements 90
Restrictions 90
Input register information 90
Output register information 90
Performance implications 91
Syntax 91
Parameters 91
ABEND codes 92
Return and reason codes 92
Example 92

SPIE - List form 93
Syntax 93
Parameters 93

SPIE - Execute form 93
Syntax 94
Parameters 94

Chapter 7. SPOST — Synchronize
POST 95
Description 95

Environment 95
Programming requirements 95
Restrictions 95
Input register information 95
Output register information 95
Performance implications 96

Syntax 96
ABEND codes 96
Return and reason codes 96
Example 96

Chapter 8. SRBSTAT — Save, restore,
or modify SRB status 97
Description 97

Environment 97
Programming requirements 97
Restrictions 97
Input register information 97
Output register information 97
Performance implications 98
Syntax 98
Parameters 99
ABEND codes 100
Return and reason codes 100

Chapter 9. SRBTIMER — Establish
time limit for system service 101
Description 101

Environment 101
Programming requirements. 101
Restrictions 101
Input register information 101
Output register information 101
Performance implications 102
Syntax. 102
Parameters 102
ABEND codes 102
Return codes 103

Chapter 10. STATUS — Control
dispatchability or process-must-
complete state 105
Description 105

Environment 105
Programming requirements. 106
Restrictions 106
Register information 106
Performance implications 107

START/STOP options 107
Syntax. 107
Parameters 108
Return codes 108

SET/RESET option 109
Syntax. 109
Parameters 109
Return codes 109
Example 110

Chapter 11. STORAGE — Obtain and
release storage 113
Description 113

Environment 113
Programming requirements 114
Restrictions 115
Register information 115

iv z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Performance implications 115
STORAGE OBTAIN 115

Input register information for
LINKAGE=SYSTEM 115
Output register information for
LINKAGE=SYSTEM 115
Input register information for LINKAGE=SVC 116
Output register information for LINKAGE=SVC 116
Input register information for
LINKAGE=BRANCH. 117
Output register information for
LINKAGE=BRANCH. 117
Input register information for
LINKAGE=GLOBALBRANCH 118
Output register information for
LINKAGE=GLOBALBRANCH 118
Syntax 118
Parameters 121
ABEND codes 128
Return and reason codes 129
Examples 130

STORAGE RELEASE 130
Input register information for
LINKAGE=SYSTEM 130
Output register information for
LINKAGE=SYSTEM 130
Input register information for LINKAGE=SVC 131
Output register information for LINKAGE=SVC 131
Input register information for
LINKAGE=BRANCH. 131
Output register information for
LINKAGE=BRANCH. 132
Input register information for
LINKAGE=GLOBALBRANCH 132
Output register information for
LINKAGE=GLOBALBRANCH 132
Syntax. 133
Parameters 134
ABEND codes 136
Return and reason codes 136
Examples of the OBTAIN and RELEASE options 137

Chapter 12. SUSPEND — Suspend
execution of an RB 141
Description 141

Environment 141
Programming requirements. 141
Restrictions 141
Input register information 141
Output register information 141
Performance implications 142
Syntax. 142
Parameters 142
ABEND codes 142
Return and reason codes 142
Example 142

Chapter 13. SUSPEND — Suspend
execution of an SRB 143
Description 143

Environment 143
Programming requirements. 143
Restrictions 143
Input register information 144
Output register information 144
Performance implications 144
Syntax. 144
Parameters 145
ABEND codes 145
Return codes 145
Example 146

SUSPEND (SRB) - List form 146
Syntax. 146
Parameters 147

SUSPEND (SRB) - Execute form 147
Syntax. 147
Parameters 148

Chapter 14. SVCUPDTE — SVC
update 149
Description 149

Environment 149
Programming requirements. 149
Restrictions 149
Input register information 149
Output register information 149
Performance implications 150
Syntax. 150
Parameters 151
ABEND codes 153
Return codes 153
Example 1 155
Example 2 155
Example 3 155
Example 4 155
Example 5 155
Example 6 155

SVCUPDTE - List form 156
Syntax. 156
Parameters 157
Example 1 157
Example 2 157

SVCUPDTE - Execute form 157
Syntax. 157
Parameters 158
Example 158

Chapter 15. SWAREQ — Invoke SWA
manager in locate mode. 159
Description 159

Environment 159
Programming requirements. 159
Restrictions 160
Input register information 160
Output register information 160
Performance implications 160
ABEND codes 160
Return and reason codes 161

SWAREQ - List form 161
Syntax. 161

Contents v

Parameters 162
SWAREQ - Execute form 162

Syntax. 162
Parameters 163

SWAREQ - Modify form. 163
Syntax. 163
Parameters 164

Chapter 16. SWBTUREQ — Call SJF
SWBTU processing services 165
Description 165

Environment 165
Programming requirements. 165
Restrictions 166
Input register information 166
Output register information 166
Performance implications 166
Syntax. 166
Parameters 166
SWBTUREQ RETRIEVE service 167
SWBTUREQ RETRIEVE input parameters . . . 167
SWBTUREQ RETRIEVE output 168
ABEND codes 169
Return and reason codes 169
Example 172

Chapter 17. SYNCH and SYNCHX —
Take a synchronous exit to a
processing program 175
Description 175

Register information 175
Syntax. 176
Parameters 177
Example 1 178
Example 2 178
Example 3 178
Example 4 179

SYNCHX - Take a synchronous exit to a processing
program 179

Syntax. 179
Parameters 180

SYNCH and SYNCHX - List form 180
Syntax. 180
Parameters 181
Example 181

SYNCH and SYNCHX - Execute form 181
Syntax. 181
Parameters 182
Example 182

Chapter 18. SYSEVENT — System
event 183
Description 183

Environment 183
Programming requirements. 184
Restrictions and limitations 184
Input register information 184
Output register information 184
Syntax. 185

Parameters 186
SYSEVENT mnemonics 187
Notify SRM of transaction completion (TRAXRPT,
TRAXFRPT, TRAXERPT) 187

Return and reason codes 189
Example 1 189
Example 2 190
Example 3 190

Control swapping (DONTSWAP, OKSWAP,
TRANSWAP) 191

Example 1 192
Example 2 192

Obtain system measurement information
(STGTEST) 192

Example 193
Obtain address space classification information
(REQASCL) 193

Input register information 193
Return and reason codes 194
Input register information 194

Obtain address space related information
(REQASD and REQFASD) 194

Input register information 195
Return and reason codes 195
Example 1 195
Example 2 196

Obtain workload management mode status
information (REQSRMST) 196

Input register information 196
Return and reason codes 196

Obtain data for defined capacity (REQLPDAT) . . 196
Input register information 197
Return and reason codes 197

Identify holder of a resource (ENQHOLD). . . . 197
Input register information 199
Return and reason codes 199

Identify that a holder has released resource
(ENQRLSE) 199

Input register information 199
Return and reason codes 199

Associate an enclave with an address space
(ENCASSOC) 200

Input register information 201
Return and reason codes 201

Set the state for an enclave (ENCSTATE) 201
Input register information 201

Query amount of free AUX storage (FREEAUX) 201
Output register information 201

Return resource contention information
(QRYCONT). 202

Input register information 202
Return codes 202

Query a virtual server (QVS) 202
Return and reason codes 204

Chapter 19. TCBTOKEN — Request or
translate the TTOKEN 205
Description 205

Environment 205
Programming requirements. 206
Restrictions 206

vi z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Register information 206
Performance implications 206
Syntax. 206
Parameters 207
Abend codes 208
Return codes 208
Example 1 210
Example 2 210
Example 3 210

TCBTOKEN - List form 210
Syntax. 210
Parameters 210

TCBTOKEN - Execute form. 211
Syntax 211
Parameters 211

Chapter 20. TCTL — Transfer control
from an SRB routine 213
Description 213

Environment 213
Programming requirements. 213
Restrictions 213
Input register information 213
Output register information 213
Performance implications 213
Syntax. 213
Parameters 214
ABEND codes 214
Return and reason codes 214
Example 214

Chapter 21. TESTAUTH — Test
authorization of caller. 215
Description 215

Environment 215
Programming requirements. 215
Restrictions 215
Input register information 216
Output register information 216
Performance implications 216
Syntax. 216
Parameters 217
ABEND codes 218
Return codes 218
Example 1 218
Example 2 218

Chapter 22. TIMEUSED — Obtain
accumulated CPU or vector time . . . 219
Description 219

Environment 219
Programming requirements. 219
Restrictions 219
Input register information 220
Output register information 220
Performance implications 221
Syntax. 221
Parameters 222
Return codes 224
Example 1 225

Example 2 225
Example 3 225

Chapter 23. T6EXIT — Type 6 exit. . . 227
Description 227

Environment 227
Programming requirements. 227
Restrictions 227
Input register information 227
Output register information 227
Performance implications 227
Syntax. 227
Parameter 228
ABEND codes 228
Return and reason codes 228
Example 228

Chapter 24. UCBINFO — Return
information from a UCB 229
Description 229

Environment 230
Programming requirements. 230
Restrictions 231
Input register information 231
Output register information 231
Performance implications 231

UCBINFO DEVCOUNT 231
Syntax. 231
Parameters 233
Return and reason codes 235
Example 235

UCBINFO DEVCOUNT—List form 236
Parameters 236

UCBINFO DEVCOUNT—Execute form. 237
Parameters 238

UCBINFO DEVINFO 238
Syntax. 238
Parameters 239
Return and reason codes 241
Example 242

UCBINFO DEVINFO - List form 242
Parameters 243

UCBINFO DEVINFO - Execute form 243
Parameters 244

UCBINFO PATHINFO 245
Syntax. 245
Parameters 246
Return and reason codes 247
Example 248

UCBINFO PATHINFO - List form 249
Parameters 249

UCBINFO PATHINFO - Execute form 250
Parameters 251

UCBINFO PATHMAP 251
Syntax. 251
Parameters 252
Return and reason codes 253
Example 255

UCBINFO PATHMAP - List form. 255
Parameters 256

Contents vii

UCBINFO PATHMAP - Execute form 256
Parameters 257

UCBINFO PAVINFO 257
Syntax. 257
Parameters 259
Return and reason codes 261
Example 263

UCBINFO PAVINFO - List form 263
Parameters 264

UCBINFO PAVINFO - Execute form. 264
Parameters 266

UCBINFO PRFXDATA 266
Syntax. 266
Parameters 267
Return and reason codes 268
Example 269

UCBINFO PRFXDATA - List form 270
Parameters 270

UCBINFO PRFXDATA - Execute form 271
Parameters 272

Chapter 25. UCBLOOK — Obtain
addresses of UCB segments 273
Description 273

Environment 273
Programming requirements. 274
Restrictions 274
Input register information 274
Output register information 274
Performance implications 274
Syntax. 274
Parameters 276
ABEND codes 279
Return and reason codes 279

UCBLOOK - List form 281
Syntax. 281
Parameters 281

UCBLOOK - Execute form 282
Syntax. 282
Parameters 284

Chapter 26. UCBPIN — Pinning or
unpinning a UCB 285
Description 285

Environment 285
Programming requirements. 285
Restrictions 285
Register information 286
Performance implications 286
Syntax. 286
Parameters 288
Return and reason codes 289

UCBPIN - List form 290
Syntax. 290
Parameters 290

UCBPIN - Execute form 290
Syntax. 291
Parameters 292

Chapter 27. UCBSCAN — Scan UCBs 293
Description 293

Environment 294
Programming requirements. 294
Restrictions 294
Input register information 294
Output register information 294
Performance implications 295
Parameters 295
Return and reason codes 299

UCBSCAN COPY 300
Syntax. 300

UCBSCAN COPY - List form 302
Syntax. 303
Parameters 303

UCBSCAN COPY - Execute form. 303
Syntax. 304
Parameters 306

UCBSCAN ADDRESS 306
Syntax. 306
Parameters 308
Return and reason codes 312

UCBSCAN ADDRESS - List form. 313
Syntax. 313
Parameters 314

UCBSCAN ADDRESS - Execute form 314
Syntax. 314
Parameters 316

Chapter 28. VSMLIST — List virtual
storage map 319
Description 319

Environment 319
Programming requirements. 319
Restrictions 320
Input register information 320
Output register information 320
Performance implications 320
Syntax. 320
Parameters 322
ABEND codes 325
Return and reason codes 325
Example 1 326
Example 2 326
Example 3 326
Example 4 326

Chapter 29. VSMLOC — Verify virtual
storage allocation 327
Description 327

Environment 327
Programming requirements. 327
Restrictions 327
Input register information for
LINKAGE=SYSTEM 327
Output register information for
LINKAGE=SYSTEM 328
Input register information for
LINKAGE=BRANCH. 328

viii z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Output register information for
LINKAGE=BRANCH. 328
Performance implications 329
Syntax. 329
Parameters 330
ABEND codes 332
Return and reason codes 332
Example 1 332
Example 2 333
Example 3 333
Example 4 333
Example 5 333

Chapter 30. VSMREGN — Obtain
private area region size 335
Description 335

Environment 335
Programming requirements. 335
Restrictions 335
Input register information 335
Output register information 335
Performance implications 336
Syntax. 336
Parameters 336
ABEND codes 337
Return and reason codes 337
Example 1 337
Example 2 337
Example 3 337
Example 4 337

Chapter 31. WAIT — Wait for one or
more events 339
Description 339

Environment 339
Programming requirements. 339
Restrictions 339
Input register information 340
Output register information 340
Performance implications 340
Syntax. 340
Parameters 341
Example 342
ABEND codes 342
Return and reason codes 343
Example 1 343
Example 2 343
Example 3 343

Chapter 32. WTL — Write to log . . . 345
Description 345

Environment 345
Programming requirements. 345
Restrictions 345
Input register information 346
Output register information 346
Performance implications 346
Syntax. 346
Parameters 347
ABEND codes 347

Return and reason codes 347
Example 1 349
Example 2 350
Example 3 350
Example 4 350

WTL - List form 350
Syntax. 350
Parameters 350

WTL - Execute form 351
Syntax. 351
Parameters 351

Chapter 33. WTO — Write to operator 353
Description 353

Environment 353
Programming requirements. 353
Restrictions 355
Input register information 356
Output register information 356
Performance implications 356
Syntax. 356
Parameters 358
ABEND codes 367
Return and reason codes 367
Example 1 369
Example 2 370
Example 3 370

WTO - List form 371
Syntax. 371
Parameters 373

WTO - Execute form 374
Syntax. 374
Parameters 375
Example 375

Chapter 34. WTOR — Write to
operator with reply 377
Description 377

Environment 377
Programming requirements. 377
Restrictions 378
Input register information 379
Output register information 379
Performance implications 379
Syntax. 379
Parameters 382
ABEND codes 388
Return and reason codes 388
Example 1 390
Example 2 390
Example 3 390
Example 4 390

WTOR - List form 391
Syntax. 391
Parameters 393

WTOR - Execute form 394
Syntax. 394
Parameters 396
Example 397

Contents ix

Appendix. Accessibility 399
Accessibility features 399
Using assistive technologies 399
Keyboard navigation of the user interface 399
Dotted decimal syntax diagrams 399

Notices 403
Policy for unsupported hardware. 404

Minimum supported hardware 405
Programming interface information 405
Trademarks 405

Index 407

x z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Figures

1. Sample User Parameter List for Callers in AR
Mode 5

2. Sample Macro Syntax Diagram 14

3. Continuation Coding 16
4. Relationship of Data and Work Areas

Referenced in IEFSJTRP 169

© Copyright IBM Corp. 1988, 2013 xi

xii z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Tables

1. Passing User Parameters in AR Mode 5
2. Service Summary 18
3. Return Codes for the SETLOCK Macro 38
4. Return Codes for SETLOCK RELEASE . . . 41
5. Return Codes for SETLOCK TEST 44
6. Return and Reason Codes for the SJFREQ

RETRIEVE Service 63
7. Return and Reason Codes for the SJSMREAS

Macro 68
8. Return and Reason Codes for the SJFREQ

Macro SWBTU_MERGE Service 74
9. Required Fields for SJFREQ VERIFY Functions 76

10. SJFREQ VERIFY Output Fields 79
11. SJF Operand and Keyword Operand

Descriptions 79
12. Return and Reason Codes for the SJFREQ

Macro VERIFY Service 81
13. Return Codes from the SJFREQ TERMINATE

Service 88
14. Return Codes for the SRBTIMER Macro 103
15. Return Codes for the STATUS Macro 108
16. Return Codes for the SET/RESET Option 109
17. Return Codes for STORAGE OBTAIN 129
18. Return Codes for STORAGE RELEASE 137
19. Return Codes for the SUSPEND Macro 145
20. Return Codes for the SVCUPDTE Macro 153
21. Return Codes for SWAREQ, UNAUTH=YES 161

22. Return Codes for the SWAREQ Macro 161
23. Parameter Combinations for SWBTUREQ

RETRIEVE Functions 167
24. Return and Reason Codes for SWBTUREQ

RETRIEVE 170
25. Return Codes for the SYSEVENT Macro 189
26. Fields and constants 194
27. Return Codes for REQASCL 194
28. Return Codes for REQASD and REQFASD 195
29. Return Codes for REQSRMST 196
30. Return Codes for REQLPDAT 197
31. Return Codes for ENQHOLD 199
32. Return Codes for ENQRLSE 200
33. Return Codes for ENCASSOC 201
34. Return Codes for REQLPDAT 202
35. Return Codes for QVS 204
36. Return Codes for the TCBTOKEN Macro 209
37. Return Codes for the SAMPLE Macro 218
38. Return Codes for the TIMEUSED Macro 224
39. Return Codes for the UCBPIN Macro 289
40. Return Codes for the VSMLIST Macro 325
41. Return Codes for the VSMLOC Macro 332
42. Return and Reason Codes for the WTL Macro 347
43. MCSFLAG Flag Names 365
44. Return Codes for the WTO Macro 368
45. MCSFLAG Flag Names 386
46. Return Codes for the WTOR Macro 388

© Copyright IBM Corp. 1988, 2013 xiii

xiv z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

About this information

This information describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Running with APF-authorization.

Some of the services included in this information are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
information to invoke the system services that they need. This document includes
the detailed information — such as the function, syntax, and parameters — needed
to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the
macro descriptions in alphabetical order.

Who should use this information
This information is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
runs with PSW key 0-7 or runs with APF authorization.

The information assumes that the reader understands system concepts and writes
programs in assembler language.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

© Copyright IBM Corp. 1988, 2013 xv

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

xvi z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO
SA23-1375-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xix

xx z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“Addressing mode (AMODE)” on page 2 Both
“Address space control (ASC) mode” on page 3 Both

“ALET qualification” on page 4 Both
“User parameters” on page 4 Macros

“Telling the system about the execution environment” on page 6 Macros
“Specifying a macro version number” on page 7 Macros
“Register use” on page 8 Both
“Handling return codes and reason codes” on page 9 Both

“Handling program errors” on page 9 Both
“Handling environmental and system errors” on page 10 Both

“Using X-macros” on page 11 Macros
“Macro forms” on page 11 Macros
“Coding the macros” on page 13 Macros
“Coding the callable services” on page 16 Callable Services

“Including equate (EQU) statements” on page 17 Callable Services
“Link-editing linkage-assist routines” on page 17 Callable Services

“Service summary” on page 17 Both

Compatibility of MVS macros
When IBM® introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2013 1

that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a macro version
number” on page 7.

Addressing mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,
v A program running in 24-bit addressing mode cannot pass parameters or

parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:
– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes

using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER

macro
v A program running in 24-bit or 31-bit addressing mode cannot pass parameter

addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment” on page 6 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

2 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

IARVSERV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Extended Addressability Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See z/OS MVS Programming: Assembler Services Guidefor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the system about the execution environment” on page 6 for
more information. Table 2 on page 18 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

Chapter 1. Using the services 3

ALET qualification
The address space where you can place parameters varies with the individual
service:
v You can place parameters in the primary address space in all service.
v You must place parameters in the primary address space in some services.
v You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:
v Zero (0), which specifies that the parameters are in the caller's primary address

space
v An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass
them to a service:
v One (1), which signifies that the parameters are in the caller's secondary address

space
v An ALET that is on the caller's primary address space access list (PASN-AL) that

does not represent a CADS
v An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR n to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control

program parameters.

The macros shown in Table 1 on page 5 allow a caller in AR mode to pass
information in the form of a parameter list (or parameter lists) to another routine.

4 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

This table identifies the parameter that receives the ALET-qualified address of the
parameter list and tells you where the target routine finds the ALET-qualified
address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

v a 4-bytes-per-entry parameter list or

v an 8-bytes-per-entry parameter list with
PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1
for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX macro, the system builds a list formatted as shown in
Figure 1. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list
has the high-order bit on to indicate the end of the list. For example, Figure 1
shows the format of a list where an AR mode issuer of ATTACHX who is using a
4-bytes-per-entry parameter list has coded the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLIST8ARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Chapter 1. Using the services 5

Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:
v The addressing mode (AMODE) at the time the macro is issued
v The ASC mode of the program at the time the macro is issued
v The Architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a
z/Architecture® instruction or an access register. Table 2 on page 18 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=1, and switch to SYSSTATE ARCHLVL=2 before
issuing macros in sections of code that run in z/Architecture mode. If you do not
issue the SYSSTATE macro, the system assumes the macro is issued:
v In AMODE other than 64-bit
v In primary ASC mode
v In ESA/390 architectural level

The following table describes the relevant characteristics, the parameter on
SYSSTATE, and the global symbol the macro checks.

Characteristic Parameter on SYSSTATE
Global
symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1 or 2 &SYSALVL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where
macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

6 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:
v You can use plistver to code a decimal value corresponding to the version of the

macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.
IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:
v If PLISTVER is omitted, the macro generates a parameter list of the lowest

version that allows all the parameters specified to be processed.
v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the

macro will not assemble.
v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the

macro will generate a version ‘n’ parameter list.
v If you are using the standard form of the macro (MF=S), there is no reason you

need to code the PLISTVER parameter.

Chapter 1. Using the services 7

v Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:
v The register content is preserved and is the same as it was before the service

was issued.
v The register contains a value placed there by the system for the caller's use.

Examples of such values are return codes and tokens.
v The system used the register as a work register. Do not assume that the register

content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following:
v When issuing a macro, the caller should always have program addressability in

effect.
v When establishing addressability, the caller should use only registers 2 through

12.

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

8 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Handling return codes and reason codes
Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:
v Successful completion: you do not need to take any action.
v Successful or partially successful completion, with additional information

supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:
1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid
v Violating one of the environment requirements (addressing mode, locking

requirements, dispatchable unit mode, and so on)
v Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

Chapter 1. Using the services 9

3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide for
information about writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:
v The request being made through the service exceeds some internal system limit.

Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of
recommended actions you can try.

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

10 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET qualification” on page 4. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The authorized X-macros are:
v ATTACHX
v ESTAEX
v SDUMPX
v SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

Chapter 1. Using the services 11

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under “Alternative list
form macros.”

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:
1. Use the list form of the macro, which expands to the parameter list. Place the

list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:

12 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

1. Use the list form of the macro to define an area of storage that the execute form
can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 on page 14 shows a sample macro, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns, A, B,
and C.

Chapter 1. Using the services 13

v Column A and Column B contain those parameters that are allowed for the
macro. Column A contains those parameters that are required; column B
contains those parameters which are optional.

v If a single line appears, as shown in A1 and B1, then that is the only available
choice for the particular parameter.

v If two or more lines appear together, as shown in A2 and B2, the parameters on
those lines are mutually exclusive, that is, you can code any one of those
parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v The third column, C, provides additional information about coding the macro.

When substitution of a variable is required in column C, the following
classifications are used:

Variable
Classification

Symbol Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample Macro Syntax Diagram

14 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Register (2)-(12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write
them according to the following rules:
v If the selected parameter is written in all capital letters (for example, MATH,

HIST, or FMT=HEX), code the parameter exactly as shown.
v If the selected parameter is written in italics (for example, grade), substitute the

indicated value, address, or name.
v If the selected parameter is a combination of capital letters and italics separated

by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italics.

v Read the table from top to bottom.
v Code commas and parentheses exactly as shown.
v Positional parameters (parameters without equal signs) appear first; you must

code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:

Chapter 1. Using the services 15

v Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.

v Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 shows an example of each method.

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:
v You must code all the parameters in the parameter list because parameters are

positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

v You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

16 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

Service summary
Table 2 on page 18 lists services described in the following:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service
v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global macro variables
v Whether the macro can be issued in 64-bit addressing mode

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *

INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

Chapter 1. Using the services 17

Note:

1. A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN¬=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 2. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note 1
on page 25)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note 2
on page 26)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

18 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note 11
on page 26)

Yes (See note 12
on page 26)

Yes No

CSVDYNEX Yes (See note 13
on page 26)

Yes (See note 14
on page 26)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

ESPIE No No No Yes

ESTAE (See note
3 on page 26)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

Chapter 1. Using the services 19

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

FESTAE No No No No

FREEMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note 5
on page 26)

(See note 6 on
page 26)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note 15
on page 26)

Yes No

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

20 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note 7
on page 26)

Yes No

IOSCAPU Yes Yes (See note 7
on page 26)

Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note 7
on page 26)

Yes No

IOSCMXR No Yes (See note 7
on page 26)

Yes No

Chapter 1. Using the services 21

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IOSDCXR No Yes (See note 7
on page 26)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See
note 16 on page
26)

No Yes N/A No

ISGLID (See
note 16 on page
26)

No Yes N/A Yes

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTFMTB No No No No

ITZXFILT No Yes Yes No

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

22 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

Chapter 1. Using the services 23

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note 8
on page 26)

Yes (See note 8
on page 26)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note 1
on page 25)

Yes (See note 9
on page 26)

Yes No

SDUMPX Yes Yes (See note 9
on page 26)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

24 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note 1) No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note 10
on page 26)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:
v ATTACH or ATTACHX
v SDUMP or SDUMPX
v SYNCH or SYNCHX
IBM recommends that programs in AR ASC mode use the X-macros
(ATTACHX, SDUMPX, and SYNCHX). If, however, a program in AR mode
issues ATTACH, SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR,
the system substitutes the corresponding X-macro and issues a message telling
you that it made the substitution.

Chapter 1. Using the services 25

2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For
CALLRTM TYPE=ABTERM, see the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary
mode with (PASN=HASN=SASN).
IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a
branch entry. In these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of
using GETMAIN or FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the
HSPALET parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and

IOSDCXR macros can be issued in cross memory mode only if the UCB is
captured in the primary address space. IOSCAPU CAPTOACT without the
ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU
UCAPTUCB cannot be issued in cross memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y.
PGSER can be issued in cross memory mode only if you specify BRANCH=Y
or BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you
specify BRANCH=YES.

10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode.
TIMEUSED LINKAGE=BRANCH cannot be issued in AR ASC mode.

11. For a QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN =
HASN = SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST
requests, any PASN, any HASN, any SASN.

13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be
issued only in primary mode. For all other requests, CSVDYNEX can be
issued in primary or AR mode.

14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any
HASN, any SASN. For all other requests, PASN=HASN=SASN.

15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any
PASN, any HASN, any SASN; otherwise, PASN=HASN is required.

16. The 64 bit entry names are as follows:
v ISGLCR64
v ISGLID64
v ISGLOB64
v ISGLRE64
v ISGLPB64
v ISGLPR64

26 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 2. SETFRR — Set up functional recovery routines

Description
The SETFRR macro gives authorized programs the ability to define their recovery
in the FRR (functional recovery routine) LIFO stack, which is used during
processing of the system recovery manager. Any program function can use SETFRR
to define its own unique recovery environment.

The SETFRR macro can be used to add, delete, or replace FRRs in the LIFO stack,
or to purge all FRRs in the stack. The macro also optionally returns to the user the
address of a parameter area that is eventually passed to the FRR when an error
occurs. The parameter area can be used to keep information that might be useful to
the FRR. The recovery and retry routines execute in the same addressing mode as
the issuer of the macro.

z/OS MVS Programming: Authorized Assembler Services Guide describes the interface
to an FRR and contains guidelines for writing an FRR.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB (see note below)
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- , 31-bit, or 64-bit
ASC mode: Primary, secondary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts (see

note below)
Locks: The caller may hold locks, but is not required to hold any.

(See note below.)
Control parameters: None.

Note: If the caller does not specify the EUT=YES parameter, the caller must be one
of the following:
v Holding a lock
v Disabled for I/O and external interrupts
v In SRB mode.

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
issuing SETFRR. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

For primary mode callers, the parameter list you specify on the PARMAD
parameter must be in the primary address space. For AR mode callers, this
parameter list can be located in any address space.

The caller must include the following mapping macros:
v IHAFRRS

© Copyright IBM Corp. 1988, 2013 27

v IHAPSA

Restrictions
None.

Input register information
Before issuing the SETFRR macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the contents of the general purpose registers
(GPRs) and access registers (ARs) are unchanged, with the exception of the GPRs
you specify on the WRKREGS parameter, which are used by the system.

Performance implications
None.

Syntax
The SETFRR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETFRR.

SETFRR

� One or more blanks must follow SETFRR.

A,FRRAD=FRR addr FRR addr: A-type address, or register (2) - (12).

R,FRRAD=FRR addr

D

P

,WRKREGS=(reg1,reg2) reg1: Decimal digits 1-15.

reg2: Decimal digits 1-15.

,PARMAD=parm area addr parm area addr: A-type address, or register (2) - (12).

Note: This parameter may only be specified with A or R above.

,CANCEL=YES Default: CANCEL=YES

,CANCEL=NO

SETFRR macro

28 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,EUT=YES

,MODE= Default: MODE=HOME

(

FULLXM

PRIMARY

HOME

,

LOCAL

)

,RELATED=value value: Any valid macro keyword specification.

,SDWALOC31=NO Default: SDWALOC31=NO

,SDWALOC31=YES

Parameters
The parameters are explained as follows:

A,FRRAD=FRRAD addr
R,FRRAD=FRRAD addr
D
P Specifies the operation to be performed on the FRR LIFO stack:

A An FRR address is to be added to the stack.

R The FRR address last added to the stack is to be replaced by another
FRR address.

D The FRR address last added to the stack is to be deleted.

P All entries in the stack are to be purged.

FRRAD specifies the address of a fullword containing the FRR address that is
to be added or replaced. The parameter specifies the FRR address in a register
or specifies the address of a storage location containing the FRR address.

Note: When an FRR wants to deactivate itself, IBM recommends that the FRR
issue SETRP with REMREC=YES rather than issuing SETFRR D. See the
chapter on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide for an explanation.

,WRKREGS=(reg1,reg2)
Specifies two unique general purpose registers to be used as work registers by
the system.

,PARMAD=parm area addr
Specifies the address of a fullword to receive the address of the 24-byte
parameter area initialized to zeros and provided by the system to the issuer of
SETFRR. This 24-byte parameter area is in key 0 storage. If a register is
specified, the address of the 24-byte parameter area is placed in the register.

SETFRR macro

Chapter 2. SETFRR — Set up functional recovery routines 29

This parameter area is associated with the FRR address that has either been
added to or has replaced an FRR address on the stack. This parameter area is
passed to the FRR when an error occurs.

,CANCEL=YES
,CANCEL=NO

Specifies whether you want to allow the recovery routine to be interrupted by
cancel or detach processing.

To allow a recovery routine to be interrupted, specify CANCEL=YES.

To prevent a recovery routine from being interrupted, specify CANCEL=NO. If
a cancel or detach is attempted against a recovery routine for which you have
specified CANCEL=NO, MVS defers cancel and detach processing until the
recovery routine returns control to the system.

Note:

1. If a recovery routine that runs under the CANCEL=NO option can be
called by an unauthorized program running under the same task, IBM
recommends that you specify ASYNCH=NO for each ESTAE(X) macro that
the recovery routine issues. This also includes any ESTAE(X) macros issued
by programs that the recovery routine calls.

2. If a recovery routine running under the CANCEL=NO option calls an
unauthorized program, cancel and detach processing is also deferred for
the called program.

,EUT=YES
Used only with A and R, specifies that the new FRR can be used in any
environment. EUT=YES is used by routines that are not certain of their
environment; for example, a routine that can be called by an SRB or by a task
that is executing enabled and might not hold any locks. While the FRR remains
in effect, no SVCs can be issued, no new asynchronous exits are dispatched,
and no vector instructions can be executed.

,MODE=options
Specifies the environment in which the FRR is to get control and also,
optionally, identifies the FRRs that free critical resources. The normal or
expected addressing environment is identified by FULLXM, PRIMARY, or
HOME. Specify LOCAL to enable the FRR to be entered in a restricted
addressing environment for freeing critical resources. Parentheses are not
needed if only one option is chosen.

FULLXM
Specifies that the FRR must be entered in the same cross memory
environment that existed when the SETFRR was issued.

PRIMARY
Specifies that the FRR must be entered in primary addressing mode with
both the PASID and SASID the same as the PASID that existed when the
SETFRR was issued, the home address space must be unchanged, and the
PSW key mask must be the same as when the SETFRR was issued.

HOME
Specifies that the FRR must be entered in primary addressing mode with
PASID=SASID=HASID, and the PSW key mask either the same as that at
the time of the error for SRB mode, or the task storage protect key for TCB
mode.

If neither FULLXM, PRIMARY, nor HOME is coded, HOME is the default.

SETFRR macro

30 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

LOCAL
Specifies that the FRR frees a critical local resource. If the FRR cannot be
entered in its normal addressing environment then it must be entered in
LOCAL restricted addressing environment to free resources.

For the FRR to be entered in LOCAL restricted addressing environment, a
local lock must be held.

If it cannot be entered either as an FRR or as a resource manager, the FRR
is skipped.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

,SDWALOC31=NO
,SDWALOC31=YES

Used only with A and R, SDWALOC31=YES specifies that an AMODE 31 FRR
can tolerate an SDWA in 31-bit storage. The default of SDWALOC31=NO
specifies that an AMODE 31 FRR is not known to be able to tolerate an SDWA
in 31-bit storage and an SDWA in 24-bit storage will be provided. Because
31-bit storage is generally less likely to be constrained than 24-bit storage and
RTM skips FRRs for which it can not obtain an SDWA, SDWALOC31=YES
should be used whenever possible for AMODE 31 FRRs.

This parameter is ignored for FRRs established in AMODE 64 because they are
assumed to be able to tolerate an SDWA in 31-bit storage. It is also ignored for
FRRs established in AMODE 24.

Note: Programs generated with this parameter can be used on systems before
HBB7770, where the parameter will be ignored.

ABEND codes
SETFRR might abnormally end with abend code X'07D'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and reason codes
None.

Example 1
Add an FRR to the FRR stack and return the address of the parameter list to the
issuer of the SETFRR. The FRR address contained in register (R5) is placed on the
FRR stack in the next available FRR entry. On return, register (R2) contains the
address of the parameter list associated with this FRR entry. Registers R3 and R4
are work registers used by the system.
SETFRR A,FRRAD=(R5),PARMAD=(R2),WRKREGS=(R3,R4)

Example 2
Delete the last FRR added to the FRR stack. Registers 1 and 6 are work registers
used by the system.
SETFRR D,WRKREGS=(1,6)

SETFRR macro

Chapter 2. SETFRR — Set up functional recovery routines 31

SETFRR macro

32 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 3. SETLOCK — Control access to serially reusable
resources

Description
Use the SETLOCK macro to control access to serially reusable resources. Each kind
of serially reusable resource is assigned a separate lock.

SETLOCK can do the following:
v Obtain a specified lock
v Release a specified lock
v Test a specified lock or determine if the lock is held on the caller's processor.

Locks are discussed in the “Serialization” chapter in z/OS MVS Programming:
Authorized Assembler Services Guide.

Note: The OBTAIN, RELEASE, and TEST options of the SETLOCK macro have the
same environmental specifications, programming requirements, restrictions, register
information, and performance implications described below, except where noted in
the explanations of each option.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts. The

caller cannot be disabled when unconditionally requesting a
suspend lock.

Locks: LOCAL or CML lock must be held to obtain the CMS lock;
otherwise, the caller may hold locks, but is not required to
hold any. Only locks lower in the hierarchy than the lock
currently being requested may be held at the time of
invocation.

Control parameters: None.

Programming requirements
v Before you invoke the SETLOCK macro in access register mode, issue SYSSTATE

ASCENV=AR.
v The caller must include the IHAPSA mapping macro.
v Before issuing an OBTAIN request for a CML lock, establish the target ASCB as

either the primary or secondary address space.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 33

Input register information
Before issuing the SETLOCK macro, the caller must ensure that the following
general purpose register (GPR) contains the specified information:

Register
Contents

13 A 5-word save area if REGS=SAVE is specified, or an 18-word save area if
REGS=STDSAVE is specified.

Output register information
For an OBTAIN or RELEASE request, when the REGS parameter is not specified,
the contents of the general purpose registers (GPRs) after control returns to the
caller are as follows:

Register
Contents

0-10 Unchanged

11-12 Used as work registers by the system

13 Return code

14 Used as a work register by the system

15 Unchanged

For an OBTAIN or RELEASE request when the REGS parameter is specified, see
the description of the REGS parameter for information on GPR usage.

For a TEST request, the contents of the GPRs after control returns to the caller are
as follows:

Register
Contents

0-1 Unchanged.

2-12 If one of these registers is specified on the LOCKHLD parameter, that
register is used as a work register by the system; otherwise, registers 2-12
are unchanged.

13-14 Unchanged.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

SETLOCK macro

34 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Performance implications
None.

SETLOCK OBTAIN

Syntax
The OBTAIN option of SETLOCK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

OBTAIN

,TYPE=CPU

,TYPE=CMS

,TYPE=LOCAL

,TYPE=CML,ASCB=(11)

,TYPE=CML,ASCB=addr addr: A-type address

,MODE=COND Note: MODE cannot be specified with TYPE=CPU.

,MODE=UNCOND

,REGS=SAVE

,REGS=USE

,REGS=STDSAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

OBTAIN
Specifies that the lock designated by the TYPE parameter is to be obtained on
the caller's behalf.

,TYPE=CPU
,TYPE=CMS

SETLOCK macro

Chapter 3. SETLOCK — Control access to serially reusable resources 35

,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB=addr

Specifies the type of lock. The types available are:

CPU The processor lock. It is a pseudo spin lock providing MVS-recognized
disablement. There is one CPU lock per processor and no processor can
request another processor's lock. The lock is always available. Users
can obtain the CPU lock to become disabled for I/O and external
interrupts.

CMS The cross memory services lock. It is a global suspend lock used to
serialize functions between address spaces.

LOCAL
The lock that serializes resources in the home address space pointed to
by PSAAOLD. It is a local level suspend lock.

CML The cross memory local lock. It is a local level suspend type lock used
to serialize resources in an address space other than the home address
space.

The requestor of a CML lock must have authority to access the
specified address space before requesting the lock. To establish
authority, the requestor sets the primary or secondary address space to
the one specified by the ASCB=(11) or ASCB=addr parameter. Register
11 or addr must contain the address of the ASCB whose local lock is
requested. This address space must be nonswappable before the
SETLOCK request.

Note: If the requestor specifies OBTAIN,TYPE=CML and the ASCB
parameter points to the home address space, the request is treated as
though the LOCAL lock were being obtained.

,MODE=COND
,MODE=UNCOND

Specifies whether the lock is to be conditionally or unconditionally obtained.

COND
Specifies that the lock is to be conditionally obtained. That is, if the
lock is not owned on another processor, it is acquired on the caller's
behalf. If the lock is already held, control is returned indicating that the
caller holds the lock or that another unit of work on another processor
owns the lock.

UNCOND
Specifies that the lock is to be unconditionally obtained. That is, if the
lock is not owned on another processor, it is acquired on the caller's
behalf. If the lock is already held by the caller, control is returned to
the calling program indicating that it already owns the lock. If the lock
is held on another processor, the system suspends the SETLOCK caller
until the lock is available.

The system does not permit an unconditional OBTAIN request for a
CML lock if the lock is held by a unit of work that is set
nondispatchable.

,REGS=SAVE
,REGS=USE
,REGS=STDSAVE

Specifies the use of general purpose registers by the SETLOCK macro.

SETLOCK macro

36 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SAVE Specifies that the contents of registers 11 through 14 are saved in the
area pointed to by register 13 and are restored upon completion of the
SETLOCK request. This save area must be at least 20 bytes, and must
not be the same area as the standard linkage save area used by the
program.

Upon completion of the SETLOCK macro with REGS=SAVE, the
register contents are as follows:

Register
Contents

0-14 Unchanged

15 Return code

USE Specifies that the contents of registers 11 through 13 are saved in work
registers 0, 1, and 15.

Upon completion of the SETLOCK macro with REGS=USE, the register
contents are as follows:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

STDSAVE
Specifies that the contents of registers 2 through 12 are saved in a
standard 72-byte save area pointed to by register 13.

Upon completion of the SETLOCK macro with REGS=STDSAVE, the
register contents are as follows:

Register
Contents

0-1 Unchanged

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Note: See “Output register information” on page 34 for information on register
usage when the REGS parameter is not specified.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
SETLOCK might abnormally terminate with abend code X'073'. See z/OS MVS
System Codes for an explanation and programmer response for this code.

SETLOCK macro

Chapter 3. SETLOCK — Control access to serially reusable resources 37

Return and reason codes
When control returns to the caller, register 15 (or register 13, if the REGS parameter
is not specified) contains one of the following hexadecimal return codes:

Table 3. Return Codes for the SETLOCK Macro

Return Code Meaning and Action

00 Meaning: The lock was successfully obtained.

Action: None.

04 Meaning: The lock was already held by the caller.

Action: None.

08 Meaning: The conditional obtain process was unsuccessful. The lock is
owned by another processor.

Action: None required. However, you might try to take some action based
upon your application.

When the SETLOCK OBTAIN request is for the CPU lock, the system returns only
return code 0. You do not need to check the return code because once control is
returned to you after the SETLOCK OBTAIN,TYPE=CPU request, you will have
the CPU lock.

Example 1
Obtain the CPU lock, saving registers 2 through 12 in the standard save area
whose address is in register 13.
SETLOCK OBTAIN,TYPE=CPU,REGS=STDSAVE

Example 2
Obtain the CMS lock. Because the caller must hold the LOCAL or CML lock to
obtain the CMS lock, the caller must first obtain the LOCAL lock unconditionally,
saving registers 2 through 12 in the save area pointed to by register 13. The caller
then issues the request to obtain the CMS lock.
SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=STDSAVE
SETLOCK OBTAIN,TYPE=CMS,MODE=UNCOND,REGS=STDSAVE

Example 3
Obtain the LOCAL lock unconditionally, saving registers 11 through 14 in the save
area pointed to by register 13. The save area pointed to by register 13 is not the
same area as the standard linkage save area.

LR 5,13 SAVE STANDARD SAVE AREA POINTER
LA 13,SETLOCK_SAVEAREA
SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=SAVE
LR 13,5 RESTORE STANDARD SAVE AREA POINTER
.
.
.

SETLOCK_SAVEAREA DS 5F SAVE AREA FOR SETLOCK REQUESTS

SETLOCK macro

38 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SETLOCK RELEASE

Syntax
The RELEASE option of the SETLOCK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

RELEASE

,TYPE=CPU

,TYPE=CMS

,TYPE=LOCAL

,TYPE=CML,ASCB=(11)

,TYPE=CML,ASCB=addr addr: A-type address

,REGS=SAVE

,REGS=USE

,REGS=STDSAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

RELEASE
Specifies that the lock designated by the TYPE parameter is to be released.

Note: If you specify RELEASE,TYPE=CML,ASCB=(11) or ASCB=addr, the
ASCB parameter specifies the home address space, and the lock that the caller
holds is home's local lock, then SETLOCK processing treats the CML release
request as a RELEASE, TYPE=LOCAL.

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=CML,ASCB=(11)
,TYPE=CML,ASCB=addr

Specifies the type of lock. The types available are:

SETLOCK macro

Chapter 3. SETLOCK — Control access to serially reusable resources 39

CPU The processor lock. It is a pseudo spin lock providing MVS-recognized
disablement. There is one CPU lock per processor and no processor can
request another processor's lock. The lock is always available. Users
can obtain the CPU lock to become disabled for I/O and external
interrupts.

CMS The cross memory services lock. It is a global suspend lock used to
serialize functions between address spaces.

LOCAL
The lock that serializes resources in the home address space pointed to
by PSAAOLD. It is a local level suspend lock.

CML The cross memory local lock. It is a local level suspend type lock used
to serialize resources in an address space other than the home address
space.

The requestor of a CML lock must have authority to access the
specified address space before requesting the lock. To establish
authority, the requestor sets the primary or secondary address space to
the one specified by the ASCB=(11) or ASCB=addr parameter. Register
11 or addr must contain the address of the ASCB whose local lock is
requested. This address space must be nonswappable before the
SETLOCK request.

Note: If the requestor specifies OBTAIN,TYPE=CML and the ASCB
parameter points to the home address space, the request is treated as
though the LOCAL lock were being obtained.

,REGS=SAVE
,REGS=USE
,REGS=STDSAVE

Specifies the use of general purpose registers by the SETLOCK macro.

SAVE Specifies that the contents of registers 11 through 14 are saved in the
area pointed to by register 13 and are restored upon completion of the
SETLOCK request. This save area must be at least 20 bytes, and must
not be the same area as the standard linkage save area used by the
program.

Upon completion of the SETLOCK macro with REGS=SAVE, the
register contents are as follows:

Register
Contents

0-14 Unchanged

15 Return code

USE Specifies that the contents of registers 11 through 13 are saved in work
registers 0, 1, and 15.

Upon completion of the SETLOCK macro with REGS=USE, the register
contents are as follows:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

SETLOCK macro

40 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

15 Return code

STDSAVE
Specifies that the contents of registers 2 through 12 are saved in a
standard 72-byte save area pointed to by register 13.

Upon completion of the SETLOCK macro with REGS=STDSAVE, the
register contents are as follows:

Register
Contents

0-1 Unchanged

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Note: See “Output register information” on page 34 for information on register
usage when the REGS parameter is not specified.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
When control is returned, register 15 (or register 13, if the REGS parameter is not
specified) contains one of the following hexadecimal return codes:

Table 4. Return Codes for SETLOCK RELEASE

Return Code Meaning and Action

00 Meaning: The lock was successfully released.

Action: None.

04 Meaning: The lock was not owned. The lock was free when the release
request was issued.

Action: None.

08 Meaning: The release process was unsuccessful. The lock was owned by a
different processor.

Action: None required. However, you might try to take some action based
upon your application.

0C Meaning: The release process was unsuccessful. The caller does not own
the specified local or CML lock. This return code applies to LOCAL or
CML release only.

Action: None required. However, you might try to take some action based
upon your application.

Example 1
Release the local lock and check the return code from the SETLOCK request. If the
release was unsuccessful, branch to the code at the RLSEFAIL label.
SETLOCK RELEASE,TYPE=LOCAL
LTR 13,13
BNZ RLSEFAIL

SETLOCK macro

Chapter 3. SETLOCK — Control access to serially reusable resources 41

Example 2
Release the CML lock, saving the contents of registers 2 through 12 in a standard
save area. Check the return code from the SETLOCK request, and branch to the
code at the RLSEFAIL label if the release was unsuccessful.
SETLOCK RELEASE,TYPE=CML,REGS=STDSAVE
LTR 15,15
BNZ RLSEFAIL

SETLOCK TEST

Syntax
The TEST option of the SETLOCK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETLOCK.

SETLOCK

� One or more blanks must follow SETLOCK.

TEST

,TYPE=CPU

,TYPE=CMS

,TYPE=LOCAL

,TYPE=ALOCAL

,TYPE=CML Note: LOCKHLD or ASCB must be specified with TYPE=CML.

,LOCKHLD=(reg) reg: Register (2) - (12)

Note: LOCKHLD is valid only with TYPE=CML, TYPE=ALOCAL, and
TYPE=CPU

,ASCB=(reg) reg: Register (2) - (12)

Note: ASCB is valid only with TYPE=CML.

,BRANCH=(HELD,addr) addr: RX-type address.

,BRANCH=(NOTHELD,addr)

,RELATED=value value: Any valid macro keyword specification.

SETLOCK macro

42 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Parameters
The parameters are explained as follows:

TEST
Specifies that the lock designated by the TYPE parameter is to be checked to
determine if it is currently held on the requesting processor.

,TYPE=CPU
,TYPE=CMS
,TYPE=LOCAL
,TYPE=ALOCAL
,TYPE=CML

Specifies the type of lock. The types available are:

CPU The processor lock. It is a pseudo spin lock providing MVS-recognized
disablement. There is one CPU lock per processor, and no processor
can request another processor's lock. The lock is always available.
Users can obtain the CPU lock to become disabled for I/O and
external interrupts.

CMS The cross memory services lock. It is a global suspend lock used to
serialize functions between address spaces.

LOCAL
The lock that serializes resources in the home address space pointed to
by PSAAOLD. It is a local level suspend lock.

ALOCAL
Determines whether a local lock is held, either home's LOCAL lock or
a CML lock. The LOCKHELD=(reg) parameter can be specified with
TYPE=ALOCAL.

CML The cross memory local lock. It is a local level suspend type lock used
to serialize resources in an address space other than the home address
space. TYPE=CML specifies that the caller wishes to determine
whether a CML lock is held. Either the ASCB=(reg) or the
LOCKHLD=(reg) parameter can be specified with TYPE=CML, but not
both.

,LOCKHLD=(reg)
Specifies that the designated register is to be used as a return register by the
macro. This parameter is valid only for TYPE=CML, TYPE=CPU, and
TYPE=ALOCAL.

If TYPE=CML is specified and a CML lock is held, the system returns the
ASCB address of the CML-locked address space in the specified register.

If TYPE=CPU is specified, the system returns the current CPU lock use count
for this processor in the specified register.

If TYPE=ALOCAL is specified and the LOCAL lock is held, the system returns
a zero in the specified register.

If TYPE=ALOCAL is specified and a CML lock is held, the system returns the
ASCB address of the CML-locked address space in the specified register. If a
local lock is held, the system returns a zero in the specified register.

,ASCB=(reg)
Specifies a register that contains the ASCB address. The system checks the
ASCB to determine whether the requestor's local lock is a CML lock. This
parameter is valid only with TYPE=CML.

SETLOCK macro

Chapter 3. SETLOCK — Control access to serially reusable resources 43

Note: Unlike the OBTAIN and RELEASE options of the SETLOCK macro,
ASCB=addr is not valid.

,BRANCH=(HELD,addr)
,BRANCH=(NOTHELD,addr)

If (HELD,addr) is specified, the specified address is branched to if the specified
lock is held on the requesting processor.

If (NOTHELD,addr) is specified, the specified address is branched to if the
specified lock is not currently held on the requesting processor.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
When control is returned, register 15 contains one of the following hexadecimal
return codes (if the BRANCH= parameter was omitted):

Table 5. Return Codes for SETLOCK TEST

Return Code Meaning and Action

00 Meaning: The lock was held by the requestor, or (if TYPE=CMS was
specified) at least one lock was held.

Action: None.

04 Meaning: The lock was available, or (if TYPE=CMS was specified) no lock
was held.

Action: None.

Note: TYPE=CMS is used to determine if at least one cross memory services lock
is held, but cannot be used to determine which one, or to determine if all are held.

Example 1
If a local lock is not held, branch to DSRLLINT; otherwise, execute the next
sequential instruction.
SETLOCK TEST,TYPE=LOCAL,BRANCH=(NOTHELD,DSRLLINT)

Example 2
Put the current CPU lock use count for this processor into register 3.
SETLOCK TEST,TYPE=CPU,LOCKHLD=(3)

Example 3
Determine whether the local lock of the address space specified in register 11 is
held as a CML lock.
SETLOCK TEST,TYPE=CML,ASCB=(11)

SETLOCK macro

44 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 4. SETRP — Set return parameters

Description
Use the SETRP macro within a recovery routine to indicate the various requests
that the recovery routine can make. SETRP is valid for functional recovery routines
(FRRs) and ESTAE-type recovery routines. For more information about recovery
routines, see the information on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide.

The SETRP macro is also described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP with the exception of the RECORD, FRELOCK, SERIAL,
RETRY, RETRY15, FRLKRTY, and SSRESET parameters.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key. For the FRELOCK, SERIAL,

RETRY, RETRY15, and FRLKRTY parameters, supervisor
state or PSW key 0-7.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- or 64-bit

Note: For the DUMPOPX parameter, AMODE=64 is not
allowed.

ASC mode: Primary, secondary, or access register (AR)
Note: Callers in secondary ASC mode cannot specify the
DUMPOPX keyword.

Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: None.

Programming requirements
v If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before

SETRP. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

v Include the IHASDWA mapping macro to map the system diagnostic work area
(SDWA). The SDWA is addressable when the recovery routine is entered; when
the SETRP macro is issued, the same address space must be addressable. (See
SDWA in z/OS MVS Data Areas in z/OS Internet Library at http://
www.ibm.com/systems/z/os/zos/bkserv/ for the mapping provided by
IHASDWA.)

v If you plan to specify RETREGS=YES,RUB=reg info addr, you must obtain storage
for and initialize the register update block (RUB). See the RETREGS parameter
description for more information about this area.

Restrictions
v You can use SETRP only if the system provided an SDWA.

© Copyright IBM Corp. 1988, 2013 45

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

v Recovery routines established through the STAE macro, or the STAI parameter
on the ATTACH or ATTACHX macro, cannot update registers on retry, so the
RETREGS parameter does not apply.

v For FRRs, RETREGS=YES (or RETREGS=NO) has no effect. For FRRs, the system
always restores GPRs 0-14 from the SDWASRSV field, and ARs 0-14 from the
SDWAARSV field. If you specify RETRY15=YES, the system also restores GPR 15
and AR 15 from the SDWASRSV and SDWAARSV fields, respectively.

Input register information
Before issuing the SETRP macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 If you do not specify the WKAREA parameter, address of the SDWA;
otherwise, the caller does not have to place any information into this
register.

13 If you specify the REGS parameter, address of a standard 72-byte save area
containing the registers to be restored; otherwise, the caller does not have
to place any information into this register.

Before issuing the SETRP macro, the caller must ensure that the following access
registers (ARs) contain the specified information:

Register
Contents

1 If you do not specify the WKAREA parameter, ALET of the SDWA whose
address is in GPR 1; otherwise, the caller does not have to place any
information into this register.

13 If you specify the REGS parameter, ALET of the standard 72-byte save area
whose address is in GPR 13; otherwise, the caller does not have to place
any information into this register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Note: Control does not return to the caller if the caller specifies the REGS
parameter.

SETRP macro

46 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The SETRP macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SETRP.

SETRP

� One or more blanks must follow SETRP.

WKAREA=(reg) reg: Decimal digits 1-12.

Default: WKAREA=(1)

,REGS=(reg1) reg1: Decimal digits 0-12, 14, 15.

,REGS=(reg1,reg2) reg2: Decimal digits 0-12, 14, 15.

Note: If you specify (reg1,reg2), specify the registers in the same order as in
an STM instruction; for example, to restore all registers except register 13,
specify REGS=(14,12).

,DUMP=IGNORE Default: DUMP=IGNORE

,DUMP=YES

,DUMP=NO

,DUMPOPT=parm list addr parm list addr: RX-type address, or register (2) - (12).

,DUMPOPX=parm list addr Note: Specify these parameters only if you specify DUMP=YES.

,RC=0 Default: RC=0

,RC=4

,RC=16

,RETADDR=retry addr retry addr: RX-type address, or register (2) - (12).

Note: This parameter may be specified only if RC=4 is specified above.

,RETREGS=NO info addr: RX-type address, or register (2) - (12).

SETRP macro

Chapter 4. SETRP — Set return parameters 47

Syntax Description

,RETREGS=YES Default: RETREGS=NO

,RETREGS=YES,RUB=info addr Note: This parameter may be specified only if RC=4 is specified above.

,RETREGS=64

,FRESDWA=NO Default: FRESDWA=NO

,FRESDWA=YES Note: This parameter may be specified only if RC=4 is specified above.

,COMPCOD=code1 code1: Symbol or decimal number.

,COMPCOD=(code) code: Symbol, decimal number, or register (2) - (12).

,COMPCOD=(code, USER) Default: COMPCOD=(code,USER)

,COMPCOD=(code,SYSTEM)

,FRELOCK=(locks) locks: Any combination of the following, separated by commas:

CPU CMS

LOCAL
CML(cmlascb)

cmlascb: RX-type address or register (2) - (12).

,REASON=code code: Symbol, decimal or hexadecimal number, or register (2) - (12).

,RECORD=IGNORE Default: RECORD=IGNORE

,RECORD=YES

,RECORD=NO

,RECPARM=record list addr record list addr: RX=type address, or register (2) - (12).

Note: This parameter may be specified only if RECORD=IGNORE or
RECORD=YES is specified above.

,SERIAL=YES

,SERIAL=NO

,RETRY=FRR Default: RETRY=FRR

,RETRY=ERROR

,RETRY15=NO Default: RETRY15=NO

,RETRY15=YES

,REMREC=NO Default: REMREC=NO

,REMREC=YES

SETRP macro

48 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,FRLKRTY=NO Default: FRLKRTY=NO

,FRLKRTY=YES

,SSRESET=YES

,SSRESET=NO

,RETRYAMODE=amode amode: decimal 24, 31, or 64. Only honored for ARR, ESTAE, ESTAI,
ESTAEX, FESTAE, FRR and IEAARR recovery routines.

Parameters
The parameters are explained below:

WKAREA=(reg)
Specifies the address of the SDWA passed to the recovery routine. If this
parameter is omitted, the address of the SDWA must be in register 1.

,REGS=(reg 1)
,REGS=(reg 2)

Specifies the register or range of registers to be restored from the 72-byte
standard save area pointed to by the address in register 13. If you specify
REGS, a branch on register 14 instruction will also be generated to return
control to the system. If you do not specify REGS, you must code your own
branch on whichever register contains the return address.

Note: If you specify reg1,reg2, specify the registers in the same order as in an
STM instruction; for example, to restore all registers except register 13, specify
REGS=(14,12).

,DUMP=IGNORE
,DUMP=YES
,DUMP=NO

Specifies that the dump option fields will not be changed (IGNORE), will be
zeroed (NO), or will be merged with dump options specified in previous
dump requests, if any (YES). If IGNORE is specified, a previous recovery
routine had requested a dump or a dump had been requested through the
ABEND macro, and the previous request will remain intact. If NO is specified,
no dump will be taken.

DUMP=YES does not guarantee that a SYSABEND/SYSUDUMP will be taken.
You may specify this request in an FRR for an SRB but you will get an
abdump only if the SRB abend successfully percolates to a task and none of the
FRRs for that task choose to retry and the final value of the DUMP= remains
the same after every recovery routine has received control.

,DUMPOPT=parm list addr
,DUMPOPX=parm list addr

Specifies the address of a parameter list of dump options. You can create the
parameter list through the list form of the SNAP or SNAPX macro, or you can
create a compatible list. DUMPOPT specifies the address of a parameter list
that the SNAP macro creates. DUMPOPX specifies the address of a parameter
list that the SNAPX macro creates. A program in secondary mode cannot use
the DUMPOPX parameter.

SETRP macro

Chapter 4. SETRP — Set return parameters 49

If the specified dump options include subpools for storage areas to be
dumped, up to seven subpools can be dumped. Subpool areas are accumulated
and wrapped, so that the eighth subpool area specified replaces the first.

If the dump options specified include ranges of storage areas to be dumped,
only the storage areas in the first thirty ranges will be dumped.

The TCB, DCB, ID, and STRHDR options available on SNAP or SNAPX are
ignored if they appear in the parameter list. The TCB used will be the one for
the task that encountered the error. The DCB used will be one created by the
system, and either SYSABEND, SYSMDUMP, or SYSUDUMP will be used as a
DDNAME.

,REASON=code
Specifies the reason code that the user wishes to pass to subsequent recovery
routines. The value range for code is any 32-bit hexadecimal number or 31-bit
decimal number. See z/OS MVS Programming: Assembler Services Reference
ABE-HSP for information about how a user can change this code.

,RC=0
,RC=4
,RC=16

Specifies the return code the recovery routine sends to the system to indicate
what further action is required:

Decimal Code
Meaning

0 Continue with error processing; causes entry into previously-specified
recovery routine, if any.

4 Retry using the retry address specified.

16 Valid only for an ESTAI/STAI recovery routine. The system should not
give control to any further ESTAI/STAI routines, and should
abnormally end the task.

,RETADDR=retry addr
Specifies the address of the retry routine to which control is to be given.

,RETREGS=NO
,RETREGS=YES
,RETREGS=YES ,RUB=reg info addr
,RETREGS=64

Specifies the contents of the registers to be restored on entry to the retry
routine. RETREGS=NO indicates that you do not want the system to restore
any register contents from the SDWA.

If you specify RETREGS=YES, in a recovery routine defined through the
ESTAE, ESTAEX, or FESTAE macro, the ESTAI parameter on the ATTACH or
ATTACHX macro, or an associated recovery routine (ARR), the system does
the following:
v Initializes GPRs 0-15 from the SDWASRSV field of the SDWA
v Initializes ARs 0-15 from the SDWAARSV field of the SDWA.

Specifying RETREGS=64 is the same as specifying RETREGS=YES, except the
registers for retry are the 64-bit general purpose registers in field SDWAG64.

RUB (register update block) specifies the address of an area that contains
register update information for the GPRs. The data you specify in this area will
be moved into the SDWASRSV field of the SDWA and will be loaded into the
GPRs on entry to the retry routine. You cannot use the RUB to specify data to

SETRP macro

50 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

be moved into the SDWAARSV field for loading the ARs. You can use the RUB
for both ESTAE-type recovery routines and FRRs. The maximum length of the
RUB is 66 bytes. You must acquire storage for and initialize this area as
follows:
v The first two bytes represent the registers to be updated, register 0

corresponding to bit 0, register 1 corresponding to bit 1, and so on. The user
indicates which of the registers are to be stored in the SDWA by setting the
corresponding bits in these two bytes.

v The remaining 64 bytes contain the update information for the registers, in
the order 0-15. If all 16 registers are being updated, this field consists of 64
bytes. If only one register is being updated, this field consists of only 4 bytes
for that one register.

For example, if only registers 4, 6, and 9 are being updated:
v Bits 4, 6, and 9 of the first two bytes are set.
v The remaining field consists of 12 bytes for registers 4, 6, and 9; the first 4

bytes are for register 4, followed by 4 bytes for register 6, and 4 final bytes
for register 9.

,FRESDWA=NO
,FRESDWA=YES

Specifies that the entire SDWA be freed (YES) or not be freed (NO) before entry
into the retry routine.

,COMPCOD=code1
,COMPCOD=(code)
,COMPCOD=(code,USER)
,COMPCOD=(code,SYSTEM)

Specifies the user or system completion code that the user wants to pass to
subsequent recovery routines.

,FRELOCK=(locks)
Specifies the locks to be freed and the corresponding lockwords that are placed
in the SDWA:

CPU Processor lock

CMS Cross memory services lock

LOCAL
Storage lock of the storage the caller is executing in

CML(cmlascb)
Cross memory local lock, where cmlascb indicates the ASCB address of
the address space for which the local lock is to be freed

Note: If FRLKRTY=NO is specified or taken as a default, the specified locks
are freed only on percolation, not on retry. Specifying FRLKRTY=YES allows
the locks listed in FRELOCK to be freed on retry.

,RECORD=IGNORE
,RECORD=YES
,RECORD=NO

Specifies whether the SDWA is to be recorded in SYS1.LOGREC
(RECORD=YES/NO), or whether the system should honor previous
instructions about recording the SDWA in SYS1.LOGREC (RECORD=IGNORE).

If you specify RECORD=YES, the system records the entire SDWA (including
the fixed length base, the variable length recording area, and the recordable

SETRP macro

Chapter 4. SETRP — Set return parameters 51

extensions) in SYS1.LOGREC when the ESTAE recovery routine returns control,
even if the mainline program issued the ESTAE or ESTAEX macro with
RECORD=NO.

If you specify RECORD=NO, the system does not record the SDWA in
SYS1.LOGREC, even if the mainline program issued ESTAE or ESTAEX with
RECORD=YES.

If you specify RECORD=IGNORE, the system honors the request as specified
by the RECORD parameter on the ESTAE or ESTAEX macro.

,RECPARM=record list addr
Specifies the address of a user-supplied record parameter list used to update
the SDWA with recording information. The parameter list consists of three
8-byte fields:
v The first field contains the load module name.
v The second field contains the CSECT name (assembly module name).
v The third field contains the recovery routine name (assembly module name).

If the recovery routine label is not the same as the assembly module name,
the label can be used.

The three fields are left-justified, and padded with blanks.

,SERIAL=YES
,SERIAL=NO

Specifies whether the percolation from an SRB mode FRR to a related task
recovery routine (ESTAE or FRR) is to be serialized (YES) or not serialized
(NO) with respect to unlocked task recovery. See 'SRB to Task Percolation' in
z/OS MVS Programming: Authorized Assembler Services Guide.

If the task is already in recovery for another error when SERIAL=YES is
specified, the percolation request is deferred pending a requested task retry
from any recovery routine covering mainline code. If such a retry is not
requested, the task is terminated and all deferred percolations are purged.
Only the last FRR to receive control when an error occurs can specify
SERIAL=YES.

,RETRY=FRR
,RETRY=ERROR

Specifies the cross memory environment in which the retry routine gets
control.

RETRY=FRR, the default, specifies that the retry routine gets control in the
cross memory environment that exists at the time of entry to the FRR.

RETRY=ERROR specifies that the retry routine gets control in the cross
memory environment that existed at the time of the error. Do not specify
RETRY=ERROR if the cross memory status at the time of the error is not
available, that is, if SDWARPIV is set to one. (Be careful not to create a loop by
retrying to an erroneous cross memory state with RETRY=ERROR.)

,RETRY15=YES
,RETRY15=NO

In an FRR environment only, specifies that GPR 15 is restored from
SDWASRSV and AR 15 is restored from SDWAARSV if RETRY15=YES.
Otherwise, it contains the entry point address of the retry routine.

This parameter may be specified only when RC=4 is specified. If
RETRY15=YES is not coded on any SETRP invocation prior to returning to the
system, the effect is that of specifying RETRY15=NO.

SETRP macro

52 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,REMREC=YES
,REMREC=NO

In an FRR or ESTAE environment, specifies that the FRR/ESTAE entry for the
currently running FRR/ESTAE routine be removed (REMREC=YES) or not
removed (REMREC=NO). This parameter may be specified only when RC=4 is
specified, indicating a retry request.

The entry is removed before control returns to the retry point. If REMREC=YES
is not coded on any SETRP invocation before the system receives control, the
effect is that of specifying REMREC=NO. The REMREC parameter may be
used to remove a recovery routine that has been defined with a token,
although the token cannot be specified when you code the SETRP macro.

,FRLKRTY=YES
,FRLKRTY=NO

In an FRR environment only, specifies that the locks specified on FRELOCK be
freed (FRLKRTY=YES) or not be freed (FRLKRTY=NO) on retry.

This parameter may be specified only when RC=4 is specified. If
FRLKRTY=YES is not coded on any SETRP invocation prior to returning to the
system, the effect is that of specifying FRLKRTY=NO.

SSRESET=YES
SSRESET=NO

SSRESET=YES specifies that, if the current recovery routine abnormally ends,
the next recovery routine is to get control in the subspace environment that
existed when the current recovery routine was entered. Specify SSRESET=YES
when the current recovery routine has temporarily modified the subspace
environment, and when it is appropriate for the next recovery routine to
receive control in the subspace environment in which the current recovery
routine received control.

SSRESET=NO negates an earlier specification of SSRESET=YES. Specify
SSRESET=NO when SSRESET=YES protection is no longer needed. If the
current recovery routine abnormally ends after specifying SSRESET=NO, the
next recovery routine will get control in the subspace in which the current
routine was running when the error occurred.

If you do not specify SSRESET and the current recovery routine abnormally
ends, the next recovery routine will get control in the subspace in which the
current recovery routine was running when the error occurred.

See the chapter on subspaces in z/OS MVS Programming: Extended Addressability
Guide for more information about subspaces and recovery.

,RETRYAMODE=amode
Specifies an explicit AMODE in which a retry routine receives control. This
parameter is only honored for ARR, ESTAE, ESTAI, ESTAEX, FESTAE, FRR
and IEAARR recovery routines. If you do not specify this parameter, RTM
selects an AMODE described in "providing recovery" in z/OS MVS
Programming: Authorized Assembler Services Guide.

Note:

1. The FRESDWA parameter cannot be specified or defaulted for a functional
recovery routine (FRR). The SDWA is always released before an FRR's retry
routine gets control.

2. The SERIAL parameter is relevant only for FRRs defined for SRBs that have a
related task.

3. The SERIAL and RETRY parameters are mutually exclusive.

SETRP macro

Chapter 4. SETRP — Set return parameters 53

The following table indicates which parameters are available to functional recovery
routines (FRRs) and which parameters are available to ESTAE-type recovery
routines.

Parameter FRR ESTAE-type recovery routines
WKAREA x x
REGS x x
DUMP x x
REASON x x
RC=0 x x
RC=4 x x
RC=16 x
RETADDR x x
RETREGS x except for STAE and STAI
RUB x x
FRESDWA x
COMPCOD x x
FRELOCK x
RECORD x x
RECPARM x x
SERIAL x
RETRY x
RETRY15 x
REMREC x x
FRLKRTY x
DUMPOPT x x
DUMPOPX x x
SSRESET x
RETRYAMODE x except for STAE and STAI

ABEND codes
None.

Return and reason codes
None.

Example 1
The first FRR established for an SRB routine requests percolation, freeing of the
CML lock (the ASCB address is in register 2), and serialization of percolation to the
related task.
SETRP RC=0,FRELOCK=(CML(2)),SERIAL=YES

Example 2
An FRR requests retry with the retry routine getting control in the same cross
memory mode as the time of FRR entry. The retry address is in register 3.
SETRP RC=4,RETADDR=(3),RETRY=FRR

SETRP macro

54 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 5. SJFREQ — Call scheduler JCL facility services

Description
The SJFREQ macro services can be used to manipulate text unit data that
represents processing options for system output (sysout) data sets. The SJFREQ
services described in this information include the following:
v The SJFREQ RETRIEVE service retrieves keyword subparameter information in

text unit format from output descriptors. These output descriptors can be
specified either on an OUTPUT JCL statement or through dynamic output.

v The SJFREQ SWBTU_MERGE service merges lists of scheduler work block text
units (SWBTUs) and allows applications to indicate keys to be removed from a
list of SWBTUs.

v The SJFREQ VERIFY service verifies OUTDES statements, operands, and
subparameters and builds text units to represent them. Your application can use
these text units to dynamically define processing options for a sysout data set.

v The SJFREQ TERMINATE service cleans up SJF's recovery and working storage
environment.

z/OS MVS Programming: Authorized Assembler Services Guide describes the OUTDES
statement and its operands, as well as the individual SJF services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The requirements vary, depending on the service.

v SJFREQ RETRIEVE and SJFREQ SWBTU_MERGE:

Supervisor state, with a PSW key that matches the key of
the caller's storage.

v SJFREQ VERIFY:

Problem state or supervisor state. For supervisor state, the
caller must run in PSW key 1 and the caller's storage
must be in PSW key 1. For problem state, the caller must
have a PSW key that matches the key of the caller's
storage.

v SJFREQ TERMINATE:

Problem state or supervisor state, with a PSW key that
matches the key of the caller's storage.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

© Copyright IBM Corp. 1988, 2013 55

Programming requirements
The application must include the CVT and IEFJESCT mapping macros. If the
application codes the PARM parameter on the SJFREQ macro, the caller must also
declare a 4-byte pointer, SJFPTR.

For each SJFREQ invocation, the application must initialize certain fields in an
input parameter list. Fields are discussed within each service description. The
following lists the parameter list name for each service.

Service Parameter List Name

RETRIEVE IEFSJREP

SWBTU_MERGE IEFSJSMP

VERIFY IEFSJVEP

TERMINATE Any of the three parameter list names
above.

Restrictions
None.

Input register information
Before issuing the SJFREQ macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

1 If PARM is not specified, the address of a word that contains the address
of the input parameter list

13 The address of an 18-word save area

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

SJFREQ macro

56 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the SJFREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SJFREQ

SJFREQ

� One or more blanks must follow SJFREQ

REQUEST=RETRIEVE

REQUEST=SWBTU_MERGE

REQUEST=VERIFY

REQUEST=TERMINATE

,PARM=addr addr: RX-type address, or registers (1) - (12).

Parameters
The parameters are explained as follows:

REQUEST=RETRIEVE
REQUEST=SWBTU_MERGE
REQUEST=VERIFY
REQUEST=TERMINATE

Specifies the SJF service to be called. SJF services that you can request through
the SJFREQ macro are:

RETRIEVE
The SJFREQ RETRIEVE service retrieves keyword subparameter
information in text unit format from output descriptors. These output
descriptors can be specified either on an OUTPUT JCL statement or
through dynamic output. See “SJFREQ RETRIEVE service” on page 61
for more detailed information on using this service.

SWBTU_MERGE
Use SJFREQ SWBTU_MERGE to create a single list of SWBTUs from a
base SWBTU list and a merge SWBTU list. The resulting list of
SWBTUs contains all the text units in the base and merge lists. If

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 57

duplicate text units exist, only one appears in the final SWBTU list.
The SWBTU_MERGE service also allows an application to indicate
keys to be removed from a list of SWBTUs. See “SJFREQ
SWBTU_MERGE service” on page 65 for more detailed information on
using this service.

VERIFY
Use SJFREQ VERIFY to validate OUTDES statements and build text
units to be used as input to dynamic output. See “SJFREQ VERIFY
service” on page 74 for more detailed information on using this
service.

TERMINATE
Use SJFREQ TERMINATE after previously issuing a RETRIEVE,
SWBTU_MERGE, or VERIFY request that specified the no cleanup
option (SJxxNOCU). TERMINATE cleans up SJF's recovery and
working storage environment. See “SJFREQ TERMINATE service” on
page 88 for more detailed information on using this service.

,PARM=addr
Specifies the address of the parameter list for the service requested. You must
initialize certain parameter list fields for each service. The following list
indicates where the parameter lists are described.
v “SJFREQ RETRIEVE input parameters” on page 62 describes the RETRIEVE

parameter list.
v “SJFREQ SWBTU_MERGE input parameters” on page 65 describes the

SWBTU_MERGE parameter list.
v “SJFREQ VERIFY input parameters” on page 74 describes the VERIFY

parameter list.
v You may only use IEFSJREP, IEFSJSMP, or IEFSJVEP (use the same one you

used on a prior request) for the TERMINATE service.

If you omit PARM, register 1 must contain the address of a word that contains
the address of the input parameter list.

Example
Invoke the VERIFY service to:
v Validate the syntax of the statement OUTDES, the keyword operand CHARS,

and the subparameter (GT10)
v Build text units for the valid keyword operand and subparameter.

OUTDES out1 CHARS(GT10)

Use the label out1 for the OUTDES statement in this example. The statement is to
be converted into text units and used as input to OUTADD, the dynamic output
macro.

* This program segment has attributes that allow the defined *
* storage to be altered. *

* *
* Set up SJVEP, VERIFY parameter list area. *
* *

*

XC SJVEP(SJVELGTH),SJVEP Clear the parameter list
MVC SJVEID,=A(SJVEPEYE) Parameter list ID
MVI SJVEVERS,SJVECVER Parameter list version
OI SJVEFLAG,SJVENOCU Indicate no cleanup to SJF on this

SJFREQ macro

58 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

* call, another call to SJF is
* expected.

LA R4,SJVELGTH Get parameter list length
STH R4,SJVELEN Set parameter list length

*
* SJVESTOR and SJVEJDVT are properly
* set at zero from XC instruction.
*

* *
* Set up statement and operand information. *
* *

*

MVC SJVECMND,STATMNT Set statement name field to OUTDES
ST R2,SJVEOPEP Set the operand pointer
LR R15,R3 Get pointer to last operand

* character
SR R15,R2 Get difference from first operand

* character
LA R15,1(R15) Add 1 to get proper operand length
STH R15,SJVEOPEL Set operand length

*

* *
* Set up subparameter information. *
* *

*

LA R15,1 Set up for first subparameter
STC R15,SJVEPARM Set subparameter number to 1
ST R4,SJVEPRMP Set the subparameter pointer
LR R15,R5 Get pointer to last subparameter

* character
SR R15,R4 Get difference from first

* subparameter character
LA R15,1(R15) Add 1 to get proper subparameter

* length
STH R15,SJVEPRML Set the subparameter pointer

*

* *
* Set up output area information. *
* *

*

LA R15,AREASIZE Get output work area length
STH R15,SJVETUBL Set text unit output area length
LA R15,OUTAREA Get address of output work area
ST R15,SJVETUBP Set text unit output area size

*

* *
* Set up Register 1 to point to a word of storage that *
* contains the address of SJVEP. *
* *

*

LA R4,SJVEP Address of
ST R4,SJVEPPTR the SJFREQ VERIFY
LA R1,SJVEPPTR parameter list

*

* *
* Invoke SJFREQ VERIFY service. *
* *

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 59

*
SJFREQ REQUEST=VERIFY Issue the SJF macro.

*

* *
* Check for a zero return code. *
* *

*

LTR R15,R15 Check service return code
BNZ SJFERR Go to nonzero return processing

*
*
*

* *
* In this portion of the example, a zero return and reason *
* code are received. The output fields from the service *
* contain the following information: *
* *
* Register 15 - contains zero. *
* *
* SJVEREAS - contains zero. *
* *
* SJVEOPD - this field contains the operand description *
* for CHARS: *
* "CHARACTER ARRANGEMENT TABLE" *
* *
* SJVEOPDL - this field contains the operand description *
* length - decimal 27. *
* *
* SJVETUPL - this field contains an address into OUTAREA *
* that is the start of the text unit pointer *
* list. *
* *
* OUTAREA - this area contains the text unit pointer *
* and the text unit that were built by VERIFY *
* for the CHARS(GT10) specification. *

*
* *
SJFERR DS 0H Label used for branch when SJFREQ
* VERIFY returns with a nonzero
* return code.
*
* Code to handle SJFREQ errors
*

* *
* Storage definitions *
* *

*

IEFSJVEP DSECT=NO SJFREQ VERIFY parameter list area
*
SJVEPPTR DS A Field used to contain SJVEP address
*
*
OUTAREA DS XL1024 Area used by SJFREQ VERIFY to build
* text units for valid operands and
* subparameters.
*
AREASIZE EQU *-OUTAREA Size of AREA
*

* *
* Equates and Constants *

SJFREQ macro

60 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

* *

*
R0 EQU 0 Register 0
R1 EQU 1 Register 1
R2 EQU 2 Register 2
R3 EQU 3 Register 3
R4 EQU 4 Register 4
R5 EQU 5 Register 5
R6 EQU 6 Register 6
R7 EQU 7 Register 7
R8 EQU 8 Register 8
R9 EQU 9 Register 9
R15 EQU 15 Register 15
*
SJVEPEYE EQU C’SJVE’ VERIFY parameter list identifier
STATMNT DC CL8’OUTDES ’ Statement name
*

SJFREQ RETRIEVE service
The SJFREQ RETRIEVE service retrieves keyword subparameter information in text
unit format from output descriptors. These output descriptors can be specified
either on an OUTPUT JCL statement or through dynamic output. Your application
can invoke this service to retrieve output descriptor information in a functional
subsystem environment.

Programming requirements
An application must complete the following steps to issue a RETRIEVE request:
1. Obtain storage for the RETRIEVE parameter list (IEFSJREP) and initialize the

fields. Place the address of IEFSJREP in the PARM parameter.
2. Provide a keyword list (SJRELIST). The keyword list contains the keywords for

which the application wants information retrieved. “SJFREQ RETRIEVE
keyword list” describes the list.

3. Issue SJFREQ RETRIEVE.

SJFREQ RETRIEVE keyword list
The keyword list contains paired fields; each pair consists of a keyword field and a
pointer field. In the list, the application specifies the JCL keywords for which
information is to be retrieved. For each keyword specified, the RETRIEVE service
returns in SJRETPAD a pointer to the text unit pointer list associated with the
keyword.

The following table shows the SJRELIST paired fields and their offsets and lengths.
The fields that the application initializes are indicated.

Field Name Offset (bytes) Value
Length
(bytes)

Value to be assigned

SJRELIST

SJREKEYW 0 (X'0') 8 keyword 1 (initialized by application)

SJRETPAD 8 (X'8') 4 pointer (returned by the system)

SJREKEYW 12 (X'C') 8 keyword 2 (initialized by application)

SJRETPAD 20 (X'14') 4 pointer (returned by the system)

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 61

Field Name Offset (bytes) Value
Length
(bytes)

Value to be assigned

. . . .

. . . .

In addition to JCL keywords, SJFREQ can also return a text unit for the keyword
providing special TCP/IP support. This text unit has the following characteristics
in the Output Descriptor.

Characteristic:
Keyword Parameter: IPADDR
Key in Hex: 8005
Maximum number of Value
Fields: 1
Length of Value Field: 0 - 124
Value Field: EBCDIC text '40'X - 'FE'X
Function: IP address extracted from the DEST='IP:ip-address' format of

the DEST=keyword

SJFREQ RETRIEVE input parameters
In addition to providing a keyword list, for each SJFREQ invocation, you need to
initialize certain fields of parameter list IEFSJREP. The list of parameters and
descriptions of their values are below.

SJREID
The identifier ‘SJRE’ of the RETRIEVE parameter list. Assign the symbolic
equate SJRECID to this field.

SJREVERS
The current version number of the RETRIEVE parameter list. Assign the
symbolic equate SJRECVER to this field.

SJREFLAG
The environment control flag.

SJRENOCU
Indicates whether the SJF environment is preserved from call to
call or obtained for each call. Set to one to preserve the
environment from call to call. Set to zero to obtain a new
environment for a call.

SJRELEN
The length of the RETRIEVE parameter list (IEFSJREP). Assign the
symbolic equate SJRELGTH to this field.

SJRESTOR
The local working storage pointer or zero. This field must contain zero on
the first RETRIEVE call. On subsequent calls, the field contains the value
returned from the most recent RETRIEVE call. Use the returned value for
subsequent calls.

SJREJDVT
Enter zero for this field on input. This field must contain zero on the first
RETRIEVE call. On subsequent calls, the field contains the value returned
from the most recent RETRIEVE call. Use the returned value for
subsequent calls.

SJFREQ macro

62 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SJRETOKN
Enter the output descriptor token in this field. If you are coding a Print
Service Facility (PSF) exit, refer to PSF/MVS System Programming Guide for
information on obtaining the output descriptor token. The token can be
obtained from the GDSOUTK field in data area IAZFSIP.

SJREAREA
The address of the storage area in which RETRIEVE is to return the
keyword subparameter information in text unit format from output
descriptors.

SJRESIZE
The amount of the storage allocated for the output descriptor information.

SJRENKWD
The number of keywords passed in the keyword list (SJRELIST).

SJREKWDL
The address of the keyword list (SJRELIST).

SJFREQ RETRIEVE output parameters
In addition to the output provided in the keyword list, the RETRIEVE service
returns data in several fields of the IEFSJREP parameter list. The list of output
parameters and their descriptions are below.

SJREREAS
Contains a reason code returned from the RETRIEVE service. This field
contains a value when register 15 contains a return code other than zero.

SJREKERR
Contains the address of the first keyword in the keyword list that caused
the error.

SJRETPAD
Contains the address of the list of text unit pointers. Each text unit pointer
points to a returned text unit. The last text unit has the high-order bit set
to one.

ABEND codes
None.

SJFREQ RETRIEVE return and reason codes
SJFREQ RETRIEVE return codes appear in register 15. When SJFREQ returns
control to your program, SJREREAS contains a reason code when register 15
contains a nonzero value. Return and reason codes are defined in macro IEFSJRC.
The following table identifies the hexadecimal return and reason code
combinations, tells what each means, and recommends an action you should take.

Table 6. Return and Reason Codes for the SJFREQ RETRIEVE Service

Return Code Reason Code Meaning and Action

0 000 Meaning: RETRIEVE processing completed
successfully.

Action: None.

4 002 Meaning: Program error. The token specified in
SJRETOKN is not valid.

Action: Specify a valid token in SJRETOKN.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 63

Table 6. Return and Reason Codes for the SJFREQ RETRIEVE Service (continued)

Return Code Reason Code Meaning and Action

4 004 Meaning: Program error. The RETRIEVE request
was not processed. The value specified in
SJREJDVT is not valid.

Action: Set SJREJDVT to hexadecimal zeros or to
the value returned on the previous call.

4 005 Meaning: System error. The information
referenced by parameter field SJREJDVT does not
exist.

Action: SJF did not initialize properly. Contact
the appropriate IBM support personnel.

4 0C8 Meaning: Program error. SJRETOKN refers to a
JCL statement that is not valid.

Action: Supply a value in SJRETOKN that refers
to a valid JCL statement.

4 0C9 Meaning: Program error. A keyword in the
keyword list is not defined to the JCL statement
referred to by SJRETOKN.

Action: SJREKERR contains the address of the
keyword in error. Correct or delete the keyword
in error.

4 258 Meaning: Program error. The area specified by
SJRESIZE is less than the minimum allowed.

Action: Define SJRESIZE to a size that can
contain at least one text unit.

4 25B Meaning: Program error. No storage area address
was specified.

Action: Specify a storage area address in
SJREAREA.

4 25C Meaning: Program error. The value in
SJRENKWD indicates that no keywords were
specified.

Action: Specify a value of one or greater for
SJRENKWD.

4 25D Meaning: Program error. No keyword list
address was specified.

Action: Specify a keyword list address in
SJREKWDL.

4 25F Meaning: Program error. Zero is given as the
value for a keyword in the keyword list.

Action: SJREKERR contains the address of the
keyword. Change the zero to a valid value.

0C 000 Meaning: System error. The system could not
obtain storage for this request.

Action: Inform your system programmer of this
problem.

10 000 Meaning: System error. The ESTAE-type recovery
routine failed.

Action: Inform your system programmer of this
problem.

SJFREQ macro

64 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 6. Return and Reason Codes for the SJFREQ RETRIEVE Service (continued)

Return Code Reason Code Meaning and Action

14 000 Meaning: System error. SJF encountered a
condition that caused an abnormal termination.

Action: Check the input parameters, particularly
any pointer fields, to determine if the input
values are correct.

18 000 Meaning: System error. The service routines for
SJFREQ are not available.

Action: SJF did not initialize properly. Contact
the appropriate IBM support personnel.

SJFREQ SWBTU_MERGE service
Use the SWBTU_MERGE service to merge a list of base SWBTUs with a list of
merge SWBTUs that contain modifications. An application can also use the
SWBTU_MERGE service to indicate keys to be removed from a list of SWBTUs.

Programming requirements
You must provide input information in the SWBTU_MERGE parameter list
(IEFSJSMP).

In addition to the IEFSJSMP parameter list, you can provide an erase list. An erase
list is a contiguous set of text units that you request to be erased from a base
SWBTU. An erase list is required when you set SJSMETUP and SJSMETUS. If only
a merge SWBTU and erase list are provided on input, SWBTU_MERGE validates
the erase list, but does not apply it to the resulting SWBTU.

SJFREQ SWBTU_MERGE input parameters
For each SJFREQ invocation, you need to initialize certain fields of parameter list
IEFSJSMP. The list of parameters and descriptions of their values are below.

SJSMID
The identifier ‘SJSM’ of the SWBTU_MERGE parameter list. Assign the
symbolic equate SJSMCID to this field.

SJSMVERS
The current version number of the SWBTU_MERGE parameter list. Assign
the symbolic equate SJSMCVER to this field.

SJSMFLAG
The environment control flag.

SJSMNOCU
Indicates whether the SJF environment is preserved from call to
call or obtained for each call. Set to one to preserve the
environment from call to call. Set to zero to obtain a new
environment for a call.

SJSMLEN
The length of the SWBTU_MERGE parameter list (IEFSJSMP). Assign the
symbolic equate SJSMLGTH to this field.

SJSMSTOR
The local working storage pointer or zero. This field must contain zero on

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 65

the first SWBTU_MERGE call. On subsequent calls, the field contains the
value returned from the most recent SWBTU_MERGE call. Use the value
returned for subsequent calls.

SJSMAREA
The address of the area to which a single SWBTU is returned after
SWBTU_MERGE processing. SJSMSIZE contains the size of this area.

SJSMSIZE
The length of the area to which a single SWBTU is returned after
SWBTU_MERGE processing. Specify the size of SJSMAREA in this field.

SJSMSWBN
The number of SWBTU pointers in the base SWBTU pointer list. This field
can be zero if the address of the base SWBTU pointer list (SJSMSWBA) is
also zero and you specify a merge SWBTU pointer list.

SJSMSWBA
The address of the base SWBTU pointer list. You can specify zero for this
value if the number of SWBTU pointers in the base SWBTU pointer list
(SJSMSWBN) is zero and you specify a merge SWBTU pointer list.

SJSMMTUP
The address of the merge SWBTU pointer list. You can specify zero for this
value if the number of SWBTU pointers in the merge SWBTU pointer list
(SJSMMTUN) is zero and you specify a base SWBTU pointer list.

SJSMMTUN
The number of SWBTU pointers in the merge SWBTU pointer list. You can
specify zero for this value if the address of the merge SWBTU pointer list
(SJSMMTUP) is zero and you specify a base SWBTU pointer list.

SJSMETUS
The number of elements contained on input in the erase text unit list area.
You can specify zero for this value if the address of the erase text unit list
area (SJSMETUP) is zero.

SJSMETUP
The address of the erase text unit list area. You can specify zero for this
value if the address of the erase text unit list area (SJSMETUS) is zero.

SJSMJDVT
Enter zero for this field on input. This field must contain zero on the first
SWBTU_MERGE call. On subsequent calls, the field contains the value
returned from the most recent SWBTU_MERGE call. Use the value
returned for subsequent calls.

SJSMWARN
Set on to indicate that processing should continue after allowable errors.
Clear this field so that processing does not continue after allowable errors.
Allowable errors are described “Merging SWBTUs” in z/OS MVS
Programming: Authorized Assembler Services Guide.

SJSMBYMV
Set on to indicate whether the merge SWBTU text units should be
validated.

SJSMBYEV
Set on to indicate whether the erase text units' keys should be validated.

SJSMSBTL
When SJSMSWBA and SJSMSWBN contain values, this field must contain

SJFREQ macro

66 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

the mapping of the base SWBTU pointer list. When SJSMMTUP and
SJSMMTUN contain values, this field must contain the mapping of the
merge SWBTU pointer list.

SJFREQ SWBTU_MERGE output parameters
Data for an SJFREQ SWBTU_MERGE function is returned in several fields of the
IEFSJSMP parameter list. The list of output parameters and their descriptions are
below.

SJSMREAS
Contains a reason code returned from the SWBTU_MERGE service. This
field contains a value when register 15 contains a return code other than
zero.

SJSMAREA
Contains a pointer to the output SWBTU.

SJSMTULN
Contains the size of the output SWBTU. The size is the total size of the
prefix and all the text units.

SJSMMKER
If a validation error occurred, this field contains the key from the first
merge SWBTU text unit in the merge SWBTU list where SWBTU_MERGE
encountered an error. Otherwise, this field contains zero.

SJSMEKER
If a validation error occurred, this field contains the key from the first
erase SWBTU in the erase SWBTU list where SWBTU_MERGE encountered
the error. Otherwise, this field contains zero.

SJSMJDVT
If a value is returned in this field, use the returned value in this field for
subsequent uses of the service.

SJSMRETC
The return code from the service in which the error was encountered.

SJSMERRS
This field contains a value when certain errors occur. See Table 8 on page
74 for descriptions of the errors.

SJSMERRP
The point in the base or merge SWBTU pointer list entry at which an error
was encountered.

SJFREQ SWBTU_MERGE ABEND codes
SJFREQ SWBTU_MERGE might abnormally terminate with abend code X'054'. See
z/OS MVS System Codes for an explanation and programmer response for this code.

SJFREQ SWBTU_MERGE Return and reason codes
SJFREQ SWBTU_MERGE return codes appear in register 15. When SJFREQ returns
control to your program, SJSMREAS contains a reason code if register 15 contains a
nonzero value. Return and reason codes are defined in macro IEFSJRC. The
following table identifies the hexadecimal return and reason code combinations,
tells what each means, and recommends an action you should take. Table 8 on
page 74 lists and describes additional reason codes that appear in output field
SJSMERRS when certain errors occur.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 67

Table 7. Return and Reason Codes for the SJSMREAS Macro

Return Code Reason Code Meaning and Action

0 000 Meaning: SWBTU_MERGE processing completed
successfully.

Action: None.

0 0CA Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, the
value in SJSMMKER or SJSMEKER was ignored.
SJSMMKER or SJSMEKER contains a key in error.

Action: Determine if it is acceptable for the
information in SJSMMKER or SJSMEKER to be
ignored.

0 0CB Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, the
text unit count for the key that appears in
SJSMMKER is not valid. All data for this text unit
is ignored.

Action: Determine if it is acceptable for the text
unit data to be ignored.

0 1F4 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit length in a length-value pair for the key
that appears in SJSMMKER is not valid. All data
for this text unit is ignored.

Action: Check the length specified for the key
that appears in SJSMMKER. Determine if it is
acceptable for the text unit to be ignored.

0 1F5 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit value in a length-value pair for the key
that appears in SJSMMKER is not valid. All data
for this text unit is ignored.

Action: Check the value specified for the key that
appears in SJSMMKER. Determine if it is
acceptable for the text unit to be ignored.

0 1F6 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
numeric value of a length-value pair in a text
unit exceeds the maximum allowable value.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 1F7 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
numeric value of a length-value pair in a text
unit is less than the minimum allowable value.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

SJFREQ macro

68 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

0 1FE Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
character value level length in a text unit exceeds
the maximum allowed for character data.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 1FF Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, the
number of levels for a character value in a text
unit exceeds the maximum allowed. SJSMMKER
contains the key from the text unit that is in
error. All data for this text unit is ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 200 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, the
first character of the level in the character value
in a text unit is not valid for character data.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 201 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
character is not valid for character data. The
incorrect value is not the first character of the
level in the character value in a text unit.
SJSMMKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 226 Meaning: Program error. SWBTU_MERGE
processing completed successfully; however, a
text unit contained a text character that is outside
the range X'40' - X'FE'. SJSMMKER contains the
key from the text unit that is in error. All data for
this text unit is ignored.

Action: Check the value specified in the text unit
and determine if it is acceptable for the text unit
to be ignored.

0 227 Meaning: SWBTU_MERGE processing completed
successfully; however, the sequence of characters
in a text unit is not valid. SJSMMKER contains
the key from the text unit that is in error. All data
for this text unit is ignored.

Action: Check the value specified in the text unit
parameter and determine if it is acceptable for
the text unit to be ignored.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 69

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

0 228 Meaning: SWBTU_MERGE processing completed
successfully; however, there are bits on in the text
unit parameter that the system does not
recognize. SJSMMKER contains the key from the
text unit that is in error. All data for this text unit
is ignored.

Action: Check the value specified in the text unit
parameter and determine if it is acceptable for
the text unit to be ignored.

0 76C Meaning: SWBTU_MERGE processing completed
successfully. The resulting SWBTU (pointed to by
SJSMAREA) has a prefix and no text units.

Action: None required. However, you might take
some action based on your application.

4 0C8 Meaning: Program error. The specified verb is
not defined to the system.

Action: Specify a valid verb.

4 0CA Meaning: Program error. The system does not
recognize the text unit key. SJSMMKER or
SJSMEKER contains the key from the text unit
that is in error. All data for this text unit is
ignored.

Action: Check the text unit key. Correct the key
and issue the SJFREQ macro again.

4 0CB Meaning: Program error. The count in a text unit
is not valid. SJSMMKER contains the key for the
text unit that is not valid.

Action: Check the text unit count. Correct the
count and issue the SJFREQ macro again.

4 1F4 Meaning: Program error. A length in a
length-value pair in a text unit is not valid.
SJSMMKER contains the key for the text unit that
is not valid.

Action: Check the length. Correct the length and
issue the SJFREQ macro again.

4 1F5 Meaning: Program error. A text unit value in a
length-value pair is not valid. SJSMMKER
contains the key for the text unit that is not valid.

Action: Check the value. Correct the value and
issue the SJFREQ macro again.

4 1F6 Meaning: Program error. A numeric value of a
length-value pair in a text unit exceeds the
maximum allowable value. SJSMMKER contains
the key from the text unit that is in error.

Action: Check the value. Correct the value and
issue the SJFREQ macro again.

4 1F7 Meaning: Program error. A numeric value of a
length-value pair in a text unit is less than the
minimum allowable value. SJSMMKER contains
the key from the text unit that is in error.

Action: Check the value. Correct the value and
issue the SJFREQ macro again.

SJFREQ macro

70 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 1FE Meaning: Program error. A character value level
length in a text unit exceeds the maximum
allowed for character data. SJSMMKER contains
the key from the text unit that is in error.

Action: Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 1FF Meaning: Program error. The number of levels
for a character value in a text unit exceeds the
maximum allowed. SJSMMKER contains the key
from the text unit that is in error.

Action: Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 200 Meaning: Program error. A character in a text
unit is not valid for character data. The character
is the first character in the level in the text unit.
SJSMMKER contains the key from the text unit
that is in error.

Action: Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 201 Meaning: Program error. A character is not valid
for character data. The character is not the first
character of the level in the character value in a
text unit. SJSMMKER contains the key from the
text unit that is in error.

Action: Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 206 Meaning: A text unit key contained hex zeros.

Action: Check the text unit key value specified in
the text unit. Correct the value and issue the
SJFREQ macro again.

4 226 Meaning: Program error. A text unit contained a
text character that is outside the range X'40' -
X'FE'. SJSMMKER contains the key from the text
unit that is in error.

Action: Check the value specified in the text unit.
Correct the value and issue the SJFREQ macro
again.

4 227 Meaning: The sequence of characters in a text
unit is not valid. SJSMMKER contains the key
from the text unit that is in error.

Action: Check the value specified in the text unit
parameter. Correct the value and issue the
SJFREQ macro again.

4 228 Meaning: There are bits on in the parameter that
the system does not recognize. SJSMMKER
contains the key from the text unit that is in
error.

Action: Check the value specified in the text unit
parameter. Correct the value and issue the
SJFREQ macro again.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 71

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 76D Meaning: Program error. The output area
(identified by SJSMAREA and SJSMSIZE) is not
large enough for the resulting SWBTU.

Action: Increase the size of the output area and
issue the SJFREQ macro again.

4 76E Meaning: Program error. One of the following
occurred:

v The base SWBTU pointer list address
(SJSMSWBA) is zero and the number of
SWBTU pointers (SJSMSWBN) in the base
pointer list is not zero

v The SWBTU pointer list address is not zero
and the number of SWBTU pointers in the
base pointer list is zero.

Action: Supply the correct values for SJSMSWBA
and SJSMSWBN and issue the SJFREQ macro
again.

4 76F Meaning: Program error. One of the following
occurred:

v The merge SWBTU pointer list address
(SJSMMTUP) is zero and the number of
SWBTU pointers (SJSMMTUN) in the merge
pointer list is not zero

v The merge SWBTU pointer list address is not
zero and the number of SWBTU pointers in the
merge pointer list is zero.

Action: Supply the correct values for SJSMMTUP
and SJSMMTUN and issue the SJFREQ macro
again.

4 770 Meaning: Program error. One of the following
occurred:

v The erase text unit address (SJSMETUP) is zero
and the size of the erase text unit list area
(SJSMETUS) is not zero

v The erase text unit address (SJSMETUP) is not
zero and the size of the erase text unit list area
(SJSMETUS) is zero.

Action: Supply the correct values for SJSMETUP
and SJSMETUS and issue the SJFREQ macro
again.

4 771 Meaning: Program error. Either the output area
address (SJSMAREA) is zero or the output area
size (SJSMSIZE) is not greater than zero.

Action: Check the values in SJSMAREA and
SJSMSIZE and determine which is incorrect.
Specify valid values and issue the SJFREQ macro
again.

SJFREQ macro

72 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

4 772 Meaning: Program error. One of the following
happened:

v Neither a base SWBTU nor a modify SWBTU
were specified (SJSMSWBA and SJSMMTUP
are both zero).

v A base SWBTU was provided, but no modify
SWBTU and no erase list were provided
(SJSMMTUP and SJSMETUP are zero).

Action: Do one of the following:

v Specify a base or modify SWBTU.

v If a base SWBTU was provided, specify either
a modify SWBTU or an erase list.

4 773 Meaning: Program error. The verb name in the
merge SWBTU list does not match the verb name
in the base SWBTU list.

Action: Supply input for the same verb in both
the base SWBTU list and the merge SWBTU list.

4 774 Meaning: Program error. One of the following
occurred:

v The version number (SJSMVERS) supplied in
the parameter list does not match the version
defined in macro IEFSJSMP

v The length (SJSMLEN) supplied in the
parameter list does not match the actual
length.

Action: Ensure that the constant SJSMCVER is
used in field SJSMVERS of the input parameter
list and that the constant SJSMLGTH is used in
field SJSMLEN of the input parameter list.

4 7A1 Meaning: Program error. The base SWBTU list
contains an error.

Action: Check output fields SJSMERRP and
SJSMERRS. SJSMERRP contains the address of a
SWBTU that is in error. SJSMERRS may contain a
reason code that indicates an error in the base or
merge SWBTU list. See Table 8 on page 74 for the
reason code descriptions.

0C 000 Meaning: System error. The system could not
obtain storage for this request.

Action: Inform your system programmer of this
problem.

10 000 Meaning: System error. The ESTAE-type recovery
routine failed.

Action: Inform your system programmer of this
problem.

14 000 Meaning: System error. SJF encountered a
condition that caused an abnormal termination.

Action: Check the input parameters, particularly
any pointer fields, to determine if the input
values are correct.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 73

Table 7. Return and Reason Codes for the SJSMREAS Macro (continued)

Return Code Reason Code Meaning and Action

18 000 Meaning: System error. The service routines for
SJFREQ are not available.

Action: SJF did not initialize properly. Contact
the appropriate IBM support personnel.

Output field SJSMERRS contains a reason code when certain errors occur. Table 8
lists the reason codes and their meanings.

Table 8. Return and Reason Codes for the SJFREQ Macro SWBTU_MERGE Service

Return Code Reason Code Meaning and Action

4 018 Meaning: Program error. The application did not
supply either the base SWBTU list or the merge
SWBTU list.

Action: Determine which list is missing. Supply
the missing list and issue the SJFREQ macro
again.

4 019 Meaning: Program error. The prefix for either the
base SWBTU list or merge SWBTU list is not
valid.

Action: Determine which prefix is not valid.
Supply the correct prefix and issue the SJFREQ
macro again.

4 028 Meaning: Program error. The verb and label
values in either the base SWBTU list or the
merge SWBTU list do not match.

Action: Determine which pair does not match.
Correct the information and issue the SJFREQ
macro again.

SJFREQ VERIFY service
Use VERIFY to validate and build text units to represent an OUTDES statement, its
operands, subparameters and sublist elements. The OUTDES information
corresponds to SJF-defined information on the OUTPUT JCL statement. If you do
not specify correctly the input subparameter data, VERIFY returns an error
message.

SJFREQ VERIFY input parameters
For each SJFREQ invocation, you need to initialize certain fields of parameter list
IEFSJVEP. See SJVEP in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/ for the mapping provided by
the IEFSJVEP mapping macro. The list of parameters and descriptions of their
values are below, followed by Table 9 on page 76 that summarizes the required
parameter fields for the three SJFREQ VERIFY functions.

VERIFY performs three functions. Use Table 9 on page 76 to determine the
required parameters for the SJFREQ VERIFY function you want to request. The
table gives details about the required values.

SJVEID
The identifier ‘SJVE’ of the VERIFY parameter list. Assign the symbolic
equate SJVECID to this field.

SJFREQ macro

74 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/

SJVEVERS
The current version number of the SJFREQ VERIFY parameter list. Assign
the symbolic equate SJVECVER to this field.

SJVEFLAG
The environment control flag.

SJVENOCU
Indicates whether the SJF environment is preserved from call to
call or obtained for each call. Parameter SJVESTOR references the
environment. When set to 0, the environment is obtained for each
call. When set to 1, the environment is preserved.

SJVEUNAU
Indicates whether the caller is unauthorized. If an application
makes repetitive service calls using the same SJF environment, the
authorization must be same for each call.

SJVELEN
The length of the VERIFY parameter list (IEFSJVEP). Assign the symbolic
equate SJVELGTH to this field.

SJVESTOR
The local working storage pointer or zero. This field must contain zero on
the first VERIFY call. On subsequent calls, the field contains the value
returned from the most recent VERIFY call.

SJVEJDVT
Enter zero for this field on input. If a value is returned in the field, use the
returned value for subsequent uses of the service.

SJVECMND
The name of the statement that contains the output descriptor information.
Specify the statement name OUTDES in an 8-character field, left-justified,
and padded with blanks.

SJVEOPEP
The pointer to the operand or keyword operand to be validated. This field
should contain an address of the first byte of the operand or keyword
operand. Set the length of the operand in SJVEOPEL. Zero is a valid value
when specifying just the statement name as specified in SJVECMND.

SJVEOPEL
The length of the operand or keyword operand to be validated. This field
should contain the actual length of the operand or keyword operand
pointed to by SJVEOPEP.

SJVEPARM
The subparameter number representing the subparameter to be validated.
Set this value to one whenever validating an operand. When validating a
keyword operand, set this to the correct subparameter number.

SJVESUBL
The sublist element number representing the sublist element to be
validated. This field should be set to zero if the subparameter is not a
sublist.

SJVEPRMP
The pointer to the subparameter or sublist element to be validated. Set the
length of the subparameter or sublist element in SJVEPRML.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 75

SJVEPRML
The length of the subparameter or sublist element pointed to by
SJVEPRMP. This field should contain the actual length of the subparameter
or sublist element pointed to by SJVEPRMP.

SJVETUBL
The length of the text unit output area. The field should contain the length
of the output area pointed to by SJVETUBP. The minimum you should
specify for the output area is 256 bytes plus sufficient storage to
accommodate the text units that will be built as a result of your VERIFY
request. A work area of 1K is large enough for any set of text units to be
built.

SJVETUBP
The pointer to the text unit output area. The output area will contain the
text unit pointer list and text units upon return from the VERIFY service
call. If the output area is not large enough to hold all the text units and the
text unit pointer list, you can point to and use an additional output area.
When using additional output areas, the original output area must be
accessible to SJF; it cannot be freed or changed. Set the length of the output
area in SJVETUBL.

SJVEFLG1
The VERIFY option flag.

SJVELSTC
Indicates last call for the text units being built. Set this indicator to
one for the last VERIFY call. Setting this indicator on makes the
text units available for use.

SJVERSBS
Indicates that the same text unit output area is to be used for
multiple calls. SJVETUBS contains the returned length of the area
the service used to build the text units and text unit pointer list.
When this indicator is on, SJVETUBP must be the same for each
VERIFY call.

SJVEQUOT
Indicates that a subparameter was specified in quotation marks. To
allow quotation marks on all subparameters, the caller can set this
bit to zero. Note that some subparameters do not allow quotation
marks. For any value specified in quotation marks, the caller
should have:
v Removed the delimiting quotation marks
v Converted two consecutive single quotation marks to one single

quotation mark.

SJVEPRFX
The prefix to be concatenated to a subparameter that is a data set name.
This field is not used if SJVEQUOT is on or if the subparameter is not
defined as allowing unqualified data set names. If no prefix is specified,
this field must be set to zero.

Table 9. Required Fields for SJFREQ VERIFY Functions

IEFSJVEP
parameter list
field

Validate a subparameter or sublist
element and build a text unit

Validate an operand or keyword
operand

Validate a
statement name

SJVEID Symbolic equate SJVECID Symbolic equate SJVECID Symbolic equate
SJVECID

SJFREQ macro

76 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 9. Required Fields for SJFREQ VERIFY Functions (continued)

IEFSJVEP
parameter list
field

Validate a subparameter or sublist
element and build a text unit

Validate an operand or keyword
operand

Validate a
statement name

SJVEVERS Symbolic equate SJVECVER Symbolic equate SJVECVER Symbolic equate
SJVECVER

SJVENOCU Set to indicate if the SJF environment
should be reused.

Set to indicate if the SJF environment
should be reused.

Set to indicate if
the SJF
environment
should be reused.

SJVEUNAU Set to indicate if the caller is
authorized.

Set to indicate if the caller is
authorized.

Set to indicate if
the caller is
authorized.

SJVELEN Symbolic equate SJVELGTH Symbolic equate SJVELGTH Symbolic equate
SJVELGTH

SJVESTOR Local working storage pointer or
zero

Local working storage pointer or
zero

Local working
storage pointer or
zero

SJVECMND Statement name associated with the
operand for which the subparameter
or sublist is to be validated.

Statement name associated with the
operand to be validated.

Statement name to
be validated.

SJVEOPEP Address of the field that contains the
subparameter or sublist element to
be validated.

Address of the field that contains the
operand or keyword operand to be
validated.

zeros

SJVEOPEL Length of the field that contains the
subparameter or sublist element
(SJVEOPEP).

Length of the field that contains the
operand or keyword operand to be
validated (SJVEOPEP).

not used

SJVEPARM Number of the subparameter to be
verified (1 for the first, 2 for the
second, . . .)

zeros zeros

SJVESUBL If the subparameter to be verified is
a sublist, specify the number of the
sublist element (1 for the first, 2 for
the second,. . .). If the subparameter
is not a sublist, specify zero.

not used not used

SJVEPRMP Address of the field with the
subparameter or sublist to be
verified.

not used not used

SJVEPRML Length of the subparameter or
sublist to be verified.

not used not used

SJVETUBL Length of the SJFREQ VERIFY
workarea.

not used not used

SJVETUBP Pointer to the SJFREQ VERIFY
workarea.

not used not used

SJVELSTC Last call bit not used not used

SJVEQUOT Subparameters can be specified in
quotation marks.

not used not used

SJVERSBS Text unit buffer is to be used for
multiple calls.

not used not used

SJVEPRFX Prefix to be concatenated to a
subparameter.

not used not used

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 77

SJFREQ VERIFY output parameters
Data for an SJFREQ VERIFY function is returned in several fields of the IEFSJVEP
parameter list. The list of output parameters and their descriptions are below,
followed by Table 10 on page 79 that summarizes the output parameters returned
for each of the three SJFREQ VERIFY functions.

SJVEREAS
The reason code returned from VERIFY processing. See “Return and reason
codes with related message text” on page 80 for information about specific
reason codes.

SJVEJDVT
If the caller specified zero on input, this field contains the default JDVT
name. Otherwise, the value in this field will be the same as it was on
input.

SJVETUBS
The length of the storage used in the text unit output area to build the text
unit pointer list and text units. This field is filled in only when SJVERSBS
is set on. The text unit output area is referenced by fields SJVETUBL and
SJVETUBP.

SJVETUPL
The pointer to the beginning of the text unit pointer list in the text unit
output area.

SJVEOPD
The SJF description of the operand or keyword operand that was
referenced on input by the fields SJVEOPEP and SJVEOPEL. Applications
can use information in this field in messages to their application users in
place of the operand or keyword operand. Refer to “Operand descriptions”
on page 79 for the operands and their descriptions. VERIFY returns a value
in this field for return code 0 and reason codes with return code 4.

SJVEOPDL
The length of the operand or keyword operand description returned in
field SJVEOPD.

SJVEMSGL
The length of the message information returned in SJVEMSG.

SJVEMSG
This field contains a message that indicates the correct syntax for the
subparameter or sublist element that is in error. The subparameter or
sublist element is referenced by the input fields SJVEPRMP and
SJVEPRML. VERIFY returns a value in this field for return code 4 with
some reason codes. Refer to “Return and reason codes with related
message text” on page 80 for the actual message text VERIFY returns.

When an application receives a return code of 0 or 4, VERIFY returns values in the
parameter list fields indicated below. The table is organized by function and return
code. VERIFY does not fill in any output parameter list fields when it returns a
return code 8 or above.

SJFREQ macro

78 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 10. SJFREQ VERIFY Output Fields

IEFSJVEP
parameter list
field

Validate a
subparameter
or sublist
element and
build a text
unit Return
Code 0

Validate a
subparameter
or sublist
element and
build a text
unit Return
Code 4

Validate an
operand or
keyword
operand
Return Code 0

Validate an
operand or
keyword
operand
Return Code 4

Validate a
statement
name Return
Code 0

Validate a
statement
name Return
Code 4

SJVEREAS Value returned Value returned Value returned Value returned Value returned Value returned

SJVEJDVT Value returned Value returned Value returned Value returned Value returned Value returned

SJVETUBS Value returned
only when
SJVERSBS is
set to 1.

— — — — —

SJVETUPL Value returned Value returned
for some
reason codes.

— — — —

SJVEOPD Value returned Value returned
for some
reason codes.

Value returned — — —

SJVEOPDL Value returned Value returned
for some
reason codes.

Value returned — — —

SJVEMSGL — Value returned
for some
reason codes.

— — — —

SJVEMSG — Value returned
for some
reason codes.

— — — —

Operand descriptions
Operand descriptions appear in parameter list field SJVEOPD as indicated in
Table 10. The table that follows lists the operands, keyword operands and their
descriptions.

Table 11. SJF Operand and Keyword Operand Descriptions. These descriptions appear in
parameter field SJVEOPD.

Operand or
Keyword Operand

Description

ADDRESS ADDRESS FOR SEPARATOR PAGE

BUILDING BUILDING ID

BURST BURSTER TRIMMER STACKER

NOBURST BURSTER TRIMMER STACKER

CHARS CHARACTER ARRANGEMENT TABLE

CKPTLINE CHECKPOINT LINES

CKPTPAGE CHECKPOINT PAGES

CKPTSEC CHECKPOINT SECONDS

CLASS OUTPUT CLASS

COMPACT COMPACTION TABLE NAME

CONTROL CARRIAGE CONTROL

COPIES NUMBER OF COPIES

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 79

Table 11. SJF Operand and Keyword Operand Descriptions (continued). These descriptions
appear in parameter field SJVEOPD.

Operand or
Keyword Operand

Description

COPYCNT NUMBER OF COPIES

DATACK DATA CHECK

DEFAULT DEFAULT OUTPUT DESCRIPTOR

NODEFAULT DEFAULT OUTPUT DESCRIPTOR

DEPT DEPARTMENT ID

DEST OUTPUT DESTINATION

DPAGELBL DATA PAGE LABEL

NODPAGELBL DATA PAGE LABEL

FCB FORMS CONTROL IMAGE

FLASH FORMS OVERLAY

FORMDEF FORM DEFINITION MEMBER NAME

FORMS PRINT FORMS

GROUPID OUTPUT GROUP IDENTIFIER

INDEX RIGHT PRINT POSITION INDEX

LINDEX LEFT PRINT POSITION INDEX

LINECT LINE COUNT

MODIFY COPY MODIFICATION MODULE

NAME NAME OF SYSOUT OWNER

NOTIFY DESTINATION FOR PRINT COMPLETE MESSAGES

OUTBIN PRINTER OUTPUT BIN ID

OUTDISP SYSOUT DISPOSITION

PAGEDEF PAGE DEFINITION MEMBER NAME

PIMSG PRINTER INFORMATION MESSAGES

PRMODE PROCESS MODE

PRTY OUTPUT PRIORITY

ROOM ROOM IDENTIFICATION

SYSAREA SYSTEM PRINTABLE AREA

NOSYSAREA SYSTEM PRINTABLE AREA

THRESHLD MAXIMUM LINES OF OUTPUT

TITLE NAME FOR SEPARATOR PAGE

TRC TABLE REFERENCE CHARACTER

NOTRC TABLE REFERENCE CHARACTER

UCS UNIVERSAL CHARACTER SET

USERLIB USER SPECIFIED AFP RESOURCE LIBRARIES

WRITER EXTERNAL WRITER NAME

ABEND codes
SJFREQ VERIFY might abnormally terminate with abend code X'054'. See z/OS
MVS System Codes for an explanation and programmer response.

Return and reason codes with related message text
SJFREQ VERIFY return codes appear in register 15. When SJFREQ returns control
to your program, SJVEREAS contains a reason code. Return and reason codes are
defined in macro IEFSJRC. The following table identifies the hexadecimal return

SJFREQ macro

80 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

and reason code combinations, tells what each means, and recommends an action
you should take. Message text returned in field SJVEMSG appears with the
meanings and actions for the related reason codes. Italics indicates variable parts of
the message. Words in bold print indicate that VERIFY selects among those choices
before returning the message.

For return code 4, reason codes 1F4 - 204, 226, and 4B3, the subparameter or
sublist element referenced in SJVEPRMP and SJVEPRML is not correct. For each of
these conditions, a description of the correct specification of the field is returned in
SJVEMSG. The related message text appears with the appropriate reason codes that
follow. SJVEOPD contains a description of the operand or keyword operand.
Table 11 on page 79 lists the operands and keyword operands and their
descriptions.

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service

Return Code Reason Code Meaning and Action

0 000 Meaning: VERIFY processing completed
successfully.

Action: None.

04 004 Meaning: Program error. The VERIFY request
was not processed. The value specified in
SJVEJDVT is not valid.

Action: Set SJVEJDVT to hexadecimal zeros or to
the value returned on the previous call.

04 005 Meaning: System error. The information
referenced by parameter field SJVEJDVT does not
exist.

Action: SJF did not initialize properly. Contact
the appropriate IBM support personnel.

04 0CB Meaning: Program error. SJF does not recognize
the subparameter specified in SJVEPARM.

Action: Check the number of subparameters
allowed and the value specified in SJVEPARM.

04 0CF Meaning: Program error. The command specified
in SJVECMND is not recognized by SJF.

Action: Check the spelling and specification
(left-justified, padded with blanks) of the value
specified in SJVECMND.

04 0D0 Meaning: Program error. The operand or
keyword operand indicated by fields SJVEOPEP
and SJVEOPEL is not recognized by SJF.

Action: Check the specified length and the
spelling of the operand or keyword operand.
Make sure SJVEOPEP is a pointer value.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 81

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 1F4 Meaning: Program error. The length of a
specified subparameter or sublist element as
specified in SJVEPRML is not valid.

Action: Check the subparameter or sublist
element length specified in SJVEPRML and the
allowable subparameter or sublist element length.

Message text:

VALUE MUST BE 1 CHARACTER

VALUE MUST BE n CHARACTERS

VALUE MUST BE minimum length TO maximum
length CHARACTERS

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 1F5 Meaning: Program error. A subparameter that
was specified is not a valid choice.

Action: Specify one of the allowable
subparameters for the keyword operand.

Message text:

VALUE MUST BE choice1. . .OR choice n

04 1F6 Meaning: Program error. A numeric
subparameter or sublist element exceeds the
maximum allowable value.

Action: Check the values specified in SJVEPRMP
and SJVEPRML and the allowable value for this
subparameter or sublist element.

Message text:

VALUE MUST BE IN THE RANGE OF minimum
value TO maximum value

04 1F7 Meaning: Program error. A numeric
subparameter or sublist element is less than the
minimum allowable value.

Action: Check the values specified in SJVEPRMP
and SJVEPRML and the allowable value for this
subparameter or sublist element.

Message text:

VALUE MUST BE IN THE RANGE OF minimum
value TO maximum value

SJFREQ macro

82 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 1FA Meaning: Program error. No subparameter or
sublist element was specified for the keyword
operand.

Action: Specify a value in SJVEPRML.

Message text:

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of levels
LEVELS

VALUE MUST BE 1 TO maximum number of levels
LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

VALUE MUST BE 1 CHARACTER

VALUE MUST BE n CHARACTERS

VALUE MUST BE minimum length TO maximum
length CHARACTERS

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

VALUE MUST BE choice1. . .OR choice n

VALUE MUST BE HEXADECIMAL
CHARACTER, CHARACTERS

VALUE MUST BE NUMERIC CHARACTER

VALUE MUST BE NUMERIC CHARACTERS

PRINTABLE CHARACTER, CHARACTERS

VALUE MUST BE SPECIFIED WITH THE
keyword KEYWORD

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 83

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 1FE Meaning: Program error. The subparameter or
sublist element level length exceeds the
maximum allowed for character data.

Action: Check the value in SJVEPRML.

Message text:

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of levels
LEVELS

VALUE MUST BE 1 TO maximum number of levels
LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 1FF Meaning: Program error. The number of levels
for a subparameter or sublist element exceeds the
maximum allowed.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of levels
LEVELS

VALUE MUST BE 1 TO maximum number of levels
LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

SJFREQ macro

84 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 200 Meaning: Program error. The first character of
the level in the subparameter or sublist element
is not valid for character data.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL, OR list of special characters FIRST
CHARACTER

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL, OR list of special characters
CHARACTER

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL, OR list of special characters
CHARACTERS

VALUE CONTAINS INVALID FIRST
CHARACTER

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 201 Meaning: Program error. A character other than
the first character of the level in the
subparameter or sublist element is not valid for
character data.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL OR, list of special characters
CHARACTERS OTHER THAN THE FIRST

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL, OR list of special characters
CHARACTER

VALUE MUST BE ALPHABETIC, NUMERIC,
NATIONAL, OR list of special characters
CHARACTERS

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 85

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 202 Meaning: Program error. The level specification
is not valid.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE 1 LEVEL

VALUE MUST BE 1 TO maximum number of levels
LEVELS

VALUE MUST BE 1 TO maximum number of levels
LEVELS WITH 1 TO maximum level length
CHARACTERS IN EACH LEVEL

If an error occurs involving a subparameter that
is a data set name and the application specified a
prefix, and SJVEQUOT is off (0), the following
message might be added to the above message
text.

VALUE NOT ENCLOSED IN QUOTES IS
CONCATENATED TO PREFIX value in
SJVEPRFX.

04 203 Meaning: Program error. Nonhexadecimal
characters were specified for a subparameter or
sublist element.

Action: Check the value pointed to by
SJVEPRMP.

04 204 Meaning: Program error. Nonnumeric characters
were specified for a subparameter or sublist
element.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE NUMERIC CHARACTER,
CHARACTERS

04 226 Meaning: Program error. A text character that
was specified for a subparameter or sublist
element is not valid.

Action: Check the value pointed to by
SJVEPRMP.

Message text:

VALUE MUST BE PRINTABLE CHARACTER,
CHARACTERS

04 229 Meaning: A keyword operand specified was not
a valid choice.

Action: Specify one of the allowable keyword
operands.

Message text:

VALUE IS NOT AN ALLOWABLE KEYWORD
OPERAND

SJFREQ macro

86 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

04 4B0 Meaning: Program error. No statement was
specified. The value specified for SJVECMND is
zero.

Action: Specify a statement in SJVECMND.

04 4B1 Meaning: Program error. No address was
specified in SJVETUBP for the text unit output
area.

Action: Specify a value in SJVETUBP.

04 4B2 Meaning: Program error. There is not enough
storage in the text unit output area to construct
the text unit for the current value.

Action: Increase the size of the output area,
adjust SJVETUBP and SJVETUBL, and call
VERIFY again with the same input.

04 4B3 Meaning: Program error. A subparameter or
sublist element cannot be specified in quotation
marks. SJVEQUOT is set on, but quotation marks
are not allowed for the specified subparameter or
sublist element.

Action: Either set SJVEQUOT off or specify a
value for which quotation marks are allowed.

Message text:

VALUE CANNOT BE SPECIFIED IN QUOTES

04 4B4 Meaning: Program error. The text unit output
area is different than the text unit output area
passed on the first call. SJVETUBP has a different
value than on the first call, and SJVERSBS is set
on. SJF cannot obtain the amount of contiguous
storage necessary for the text unit pointer list and
text units when more than one buffer is
provided.

Action: Check the value in SJVETUBP.

08 000 Meaning: Program error. The input parameter
list, IEFSJVEP, is not valid.

Action: Check to see if SJVEID, SJVEVERS, or
SJVELEN is incorrect and not recognized by SJF.

0C 000 Meaning: System error. The system could not
obtain storage for this request.

Action: Inform your system programmer of this
problem.

10 000 Meaning: System error. The ESTAE-type recovery
routine failed.

Action: Inform your system programmer of this
problem.

14 000 Meaning: System error. SJF encountered a
condition that caused an abnormal termination.

Action: Check the input parameters, particularly
any pointer fields, to determine if the input
values are correct.

SJFREQ macro

Chapter 5. SJFREQ — Call scheduler JCL facility services 87

Table 12. Return and Reason Codes for the SJFREQ Macro VERIFY Service (continued)

Return Code Reason Code Meaning and Action

18 000 Meaning: System error. The service routines for
SJFREQ are not available.

Action: SJF did not initialize properly. Contact
the appropriate IBM support personnel.

SJFREQ TERMINATE service
TERMINATE frees the environment established by an SJF service. TERMINATE
performs no other function.

SJFREQ TERMINATE input parameters
IEFSJREP, IEFSJSMP, or IEFSJVEP. The field SJVESTOR must contain a pointer to
the SJF environment to be freed.

Return and reason codes
Return codes appear in register 15. The hexadecimal return codes from the SJFREQ
TERMINATE service are as follows.

Table 13. Return Codes from the SJFREQ TERMINATE Service

Return Code Meaning and Action

00 Meaning: TERMINATE processing completed successfully.

Action: None

08 Meaning: Program error. The parameter list is not valid.

Action: Check to see if SJVEID, SJVEVERS, or SJVELEN is incorrect and not
recognized by SJF.

14 Meaning: Program or system error. An abnormal termination occurred.

Action: Check the input parameters, particularly any pointer fields, to
determine if the input values are correct.

18 Meaning: System error. The service routines for SJFREQ are not available.

Action: SJF did not initialize properly. Contact the appropriate IBM support
personnel.

SJFREQ macro

88 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 6. SPIE — Specify program interruption exit

Description

Note: IBM recommends that you use the ESPIE macro rather than SPIE. Callers in
31-bit addressing mode must use the ESPIE macro, which performs the same
function as the SPIE macro for callers in both 24-bit and 31-bit addressing mode.

The SPIE macro specifies the address of an interruption exit routine and the
program interruption types that are to cause the exit routine to get control.

Note: In MVS/370 the SPIE environment existed for the life of the task. In later
versions of MVS, the SPIE environment is deleted when the request block that
created it is deleted. That is, when a program running under a later version of
MVS completes, any SPIE environments created by the program are deleted. This
might create an incompatibility with MVS/SP Version 1 for programs that depend
on the SPIE environment remaining in effect for the life of the task rather than the
request block.

Each succeeding SPIE macro invocation completely overrides any previous SPIE
macro specifications for the task. The specified exit routine is given control in the
key of the TCB when one of the specified program interruptions occurs in any
problem program of the task. When a SPIE exit routine issues the SPIE macro, the
system resets (zeros) the program interruption element (PIE). Thus, a SPIE exit
routine should save any required PIE data before issuing a SPIE. If a caller issues
an ESPIE macro from within a SPIE exit routine, it has no effect on the contents of
the PIE. However, if an ESPIE macro deletes the last SPIE/ESPIE environment, the
PIE is freed and the SPIE exit cannot retry.

If the current SPIE environment is canceled during SPIE exit routine processing,
the control program will not return to the interrupted program when the SPIE
program terminates. Therefore, if the SPIE exit routine wishes to retry within the
interrupted program, a SPIE cancel should not be issued within the SPIE exit
routine.

The SPIE macro can be issued by any problem program being executed in the
performance of the task. The control program automatically deletes the SPIE exit
routine when the request block (RB) that issued the SPIE macro terminates.

A PICA (program interruption control area) is created as part of the expansion of
SPIE. The PICA contains the exit routine's address and a code indicating the
interruption types specified in SPIE.

For more information on the SPIE macro, see the information on program
interruption services in z/OS MVS Programming: Assembler Services Guide and z/OS
MVS Programming: Authorized Assembler Services Guide.

The following description of the SPIE macro also appears in z/OS MVS
Programming: Assembler Services Reference ABE-HSP, with the exception of
interruption type 17. This interruption type designates page faults and its use is
restricted to an authorized program.

© Copyright IBM Corp. 1988, 2013 89

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To issue SPIE without encountering an abnormal end, callers

must be in problem state, with a PSW key value that is
equal to the TCB assigned key. To specify page fault
processing, the caller must be APF-authorized.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
The caller must include the following mapping macros:
v IHAPIE
v IHAPICA

Restrictions
None.

Input register information
Before issuing the SPIE macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain the
following information:

Register
Contents

0 Used as a work register by the system.

1 If a SPIE environment is already active when you issue the SPIE macro, the
SPIE service routine returns the address of the previous PICA in register 1.
You can use this PICA to restore the previously active SPIE environment.
However, if an ESPIE environment is active when you issue the SPIE
macro, the SPIE service returns the address, in register 1, of a PICA in
which the first word contains binary zeros. You cannot modify the contents
of this PICA, and it contains no useful information except to restore the
previous SPIE or ESPIE environment. If no previous SPIE/ESPIE
environment is active, the service routine returns a zero in register 1.

2-13 Unchanged.

14-15 Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

SPIE macro

90 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the SPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

� One or more blanks must follow SPIE.

exit addr exit addr: A-type address, or register (2) - (12).

,(interrupts) interrupts: Decimal numbers 1-15, or 17 expressed as

single values: (2,3,4,7,8,9,10)

ranges of values: ((2,4),(7,10))

combinations: (2,3,4,(7,10))

Parameters
The parameters are explained as follows:

exit addr
Specifies the address of the exit routine to be given control when a specific
program interruption occurs. The exit routine receives control in 24-bit
addressing mode.

,(interrupts)
Indicates the type of interruption for which the exit routine is to be given
control. The interruption types are as follows:

Number
Interruption Type

1 Operation

2 Privileged operation

SPIE macro

Chapter 6. SPIE — Specify program interruption exit 91

3 Execute

4 Protection

5 Addressing

6 Specification

7 Data

8 Fixed-point overflow (maskable)

9 Fixed-point divide

10 Decimal overflow (maskable)

11 Decimal divide

12 Exponent overflow

13 Exponent underflow (maskable)

14 Significance (maskable)

15 Floating-point divide

17 Page fault

Note:

1. If an exit address is zero or no parameters are specified, the current SPIE
and any previously active ESPIE environments are canceled.

2. If a program interruption type is maskable, the corresponding program
mask bit in the PSW (program status word) is set to 1 when specified and
to 0 when not specified. Interruption types that are not maskable and not
specified above are handled by the system, which forces an abend with the
program check as the completion code. If an ESTAE-type recovery routine
is also active, the SDWA indicates a system-forced abnormal termination.
The registers at the time of the error are those of the system.

3. If you are using vector instructions and an interruption of 8, 12, 13, 14, or
15 occurs, your recovery routine can check the exception extension code
(the first byte of the two-byte interruption code in the EPIE or PIE) to
determine whether the exception was a vector or scalar type of exception.

ABEND codes
The SPIE macro might return the following abend codes:
v X'10E'
v X'30E'
v X'46D'.

See z/OS MVS System Codes for explanations and programmer responses.

Return and reason codes
None.

Example
Give control to an exit routine for interruption 17. DOITSPIE is the address of the
SPIE exit routine.
SPIE DOITSPIE,(17)

SPIE macro

92 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SPIE - List form
Use the list form of the SPIE macro to construct a control program parameter list
in the form of a program interruption control area.

Syntax
The list form of the SPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

� One or more blanks must follow SPIE.

exit addr exit addr: A-type address.

,(interrupts) interrupts: Decimal numbers 1-15, or 17, expressed as

: single values: (2,3,4,7,8,9,10)

: ranges of values: ((2,4),(7,10))

: combinations: (2,3,4,(7,10))

,MF=L

Parameters
The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF=L
Specifies the list form of the SPIE macro.

SPIE - Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the SPIE macro. The PICA (program interruptions control area) can
be generated by the list form of SPIE, or you can use the address of the PICA
returned in register 1 following a previous SPIE macro. If this macro is being
issued to reestablish a previous SPIE environment, code only the MF parameter.

The address of the remote control program parameter list associated with any
previous SPIE environment is returned by the SPIE macro.

SPIE macro

Chapter 6. SPIE — Specify program interruption exit 93

Syntax
The execute form of the SPIE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPIE.

SPIE

� One or more blanks must follow SPIE.

exit addr exit addr: RX-type address, or register (2) - (12).

,(interrupts) interrupts: Decimal numbers 1-15, or 17, expressed as

single values: (2,3,4,7,8,9,10)

ranges of values: ((2,4),(7,10))

combinations: (2,3,4,(7,10))

,MF=(E,ctrl addr) ctrl addr: RX-type address, or register (1) or (2) - (12).

Parameters
The parameters are explained under the standard form of the SPIE macro, with the
following exception:

,MF=(E,ctrl,addr)
Specifies the execute form of the SPIE macro using a remote control program
parameter list.

Note: If SPIE is coded with a zero as the control address, the SPIE environment is
canceled.

SPIE macro

94 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 7. SPOST — Synchronize POST

Description
The SPOST macro is used in a cross memory post environment to ensure that all
outstanding cross memory post requests to the current address space have
completed. SPOST resolves a synchronization problem that arises when it becomes
necessary to free an ECB that is a potential target for a cross memory post request.
Before issuing SPOST, you must stop any new posts from being initiated.

For explanation of the parameters in a cross memory post request, see the POST
macro.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0-7 or APF authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
The caller must include the CVT mapping macro.

Restrictions
None.

Input register information
Before issuing the SPOST macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2013 95

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The SPOST macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SPOST.

SPOST

� One or more blanks must follow SPOST.

Note: SPOST contains no optional or required parameters.

ABEND codes
v 17B
v 27B
v 47B

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

Example
Execute the SPOST macro with a comment.
SPOST ,ISSUE SPOST

SPOST macro

96 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 8. SRBSTAT — Save, restore, or modify SRB status

Description

Note: IBM recommends that you use the following macros rather than SRBSTAT:
v SUSPEND - Suspend Execution of an SRB
v RESUME - Resume or Purge a Suspended SRB

The SRBSTAT macro allows the caller to save, restore, and modify the status of an
SRB in a caller-supplied savearea. Control returns from the SRBSTAT macro in
primary ASC mode.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state, key 0
Dispatchable unit mode: SRB for SAVE or RESTORE options.

SRB or TASK for MODIFY option.
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
The caller of SRBSTAT RESTORE must not change PASID before the request; the
RESTORE will restore the PASID saved by the earlier SAVE request.

Input register information
Before issuing the SRBSTAT macro, the caller must ensure that general purpose
register 13 points to a standard 72-byte save area addressable in primary mode.

Output register information
When control returns to the caller, the GPRs contain the following.

When SAVE is specified:

Register
Contents

0 Unchanged

1 Used as a work register by the system

2-14 Unchanged

© Copyright IBM Corp. 1988, 2013 97

15 Return code

When RESTORE is specified:

Register
Contents

0-13 Restored

14 Unchanged

15 Return code

When MODIFY is specified:

Register
Contents

0-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The SRBSTAT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SRBSTAT.

SRBSTAT

� One or more blanks must follow SRBSTAT.

SAVE

RESTORE

MODIFY

,STSV=stsv addr stsv addr: RX-type address or register (1) - (12), register (1) preferred.

SRBSTAT macro

98 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,STSV=0

,NEWFRR=addr addr: RX-type address or register (0) or (2) - (12), register (0) preferred.

,PRGAT=pat addr pat addr: RX-type address or register (2) - (12), register (2) preferred.

Parameters
The parameters are explained as follows:

SAVE
RESTORE
MODIFY

Specifies whether a save, restore, or modify operation is requested. For SAVE
or RESTORE, only the following status is saved or restored:
v General and floating point registers
v Control registers 3 and 4
v CPU affinity mask
v Related ASID/TCB
v Timing information
v FRR stack
v PCLINK stack header

If SAVE is specified, only caller's registers 1 and 15 are destroyed. Register 1 is
used to hold an FRR parameter area address if NEWFRR is also specified and
register 15 is used for a return code. The PCLINK stack header is saved and
zeroed.

If RESTORE is specified, registers 0-13 are restored. The contents of register 14
are the same as when RESTORE was entered. The current PCLINK stack
header must be zero; the saved one is restored.

If MODIFY is specified, registers 0-14 are unchanged and register 15 contains a
return code.

Note:

1. On entry to RESTORE, the PCLINK stack header must be zero.
2. RESTORE cannot be used in an FRR.
3. RESTORE returns to its caller and not to the caller of SAVE.
4. SRBSTAT does not save and restore access registers, extended authorization

index (EAX) value, and linkage stack and access list status.

,STSV=stsv addr
Specifies the address of the savearea to be used for the SAVE, RESTORE, or
MODIFY operation. The size of this savearea is contained in field SVTSSTSV of
the SVT control block. The savearea can be in private pageable storage, but it
must be addressable from the home address space and it must begin on a
doubleword boundary. For RESTORE or MODIFY, the savearea must contain
valid status.

SRBSTAT macro

Chapter 8. SRBSTAT — Save, restore, or modify SRB status 99

,STSV=0
Specifies that the current status is to be modified. This parameter is valid only
with MODIFY.

For MODIFY, an existing SRB status savearea or the current status is modified.
Only the purge ASID/TCB information can be modified. All registers are saved
and restored except register 15, which contains a return code.

Hexadecimal
Code

Meaning

00 The modify function was successfully completed.

,NEWFRR=addr
Specifies the address of an FRR established with MODE=FULLXM. For SAVE,
the address of the FRR parameter area is returned to the caller in register 1.
The first word of the parameter area contains the address of the SRB status
savearea being used.

For RESTORE, the FRR address is used only if the saved status cannot be
reinstated on the current processor. An SRB with the FRR option is scheduled
specifying this FRR.

For MODIFY, this parameter is invalid.

,PRGAT=pat addr
Specifies the address of a 6-byte area of storage, currently addressable in the
primary address space, that contains the new purge ASID/TCB. Bytes 1 and 2
contain the ASID; bytes 3-6 contain the TCB address. This parameter is
required with MODIFY but is invalid with SAVE or RESTORE.

ABEND codes
v 05E

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

SRBSTAT macro

100 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 9. SRBTIMER — Establish time limit for system
service

Description
The SRBTIMER macro is used to establish a time limit for a system service running
in SRB mode. Time accumulates while the service is running; when the time limit
expires, the service abends with a system completion code of X'05B'. The service
can retry following the 05B ABEND.

The caller can cancel an established time limit by reissuing the macro and
specifying a time limit of zero. The caller can also override the established time
limit with a subsequent SRBTIMER macro.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the SRBTIMER macro, the caller must ensure that general purpose
register 13 points to a standard 72-byte save area addressable in primary mode.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

© Copyright IBM Corp. 1988, 2013 101

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The SRBTIMER macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SRBTIMER.

SRBTIMER

� One or more blanks must follow SRBTIMER.

LIMIT=stor addr stor addr: RX-type address or register (0) or (2) - (12).

,ERRET=err rtn addr err rtn addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

LIMIT=stor addr
Specifies the virtual storage address of a doubleword field on a doubleword
boundary that contains the time limit. The time limit is in the form of a signed
64-bit binary number and must be positive in order for time to elapse. A
negative number causes immediate expiration of the time limit. Bit 51 of the
binary number is approximately equivalent to one microsecond. If you specify
a value greater than 208 days, the control program changes the value to 208
days. The resolution of the timer is model dependent. See Principles of
Operation for details concerning the timer facility.

,ERRET=err rtn addr
Specifies the address of the routine to be given control when the SRBTIMER
function encounters damaged clocks.

ABEND codes
None.

SRBTIMER macro

102 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Return codes
When SRBTIMER macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 14. Return Codes for the SRBTIMER Macro

Return Code Meaning and Action

00 Meaning: The time limit was successfully established.

Action: None.

10 Meaning: The issuer is not in SRB mode. No timing is performed.

Action: Ensure that the requesting program is running in SRB mode, or use
STIMER or STIMERM instead.

SRBTIMER macro

Chapter 9. SRBTIMER — Establish time limit for system service 103

SRBTIMER macro

104 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 10. STATUS — Control dispatchability or
process-must-complete state

Description
The STATUS macro with the START or STOP option starts or stops a unit or units
of work. The STATUS macro with the SET or RESET option places a program in
process-must-complete mode or ends process-must-complete mode.
Process-must-complete mode postpones delays from the following:
v Asynchronous exits
v Asynchronous abends (CALLRTM TYPE=ABTERM for tasks or CALLRTM

TYPE=SRBTERM for preemptable SRBs)
v Status stops (by issuing the STATUS macro with the STOP option)
v Timer exits
v Dumping
v Swapping
v Attention exits

Process-must-complete mode prevents a CANCEL command from stopping a
program already running but it does not postpone external interrupts or interrupts
from I/O.

The description of the STATUS macro has two parts: the START/STOP option and
the SET/RESET option. z/OS MVS Programming: Assembler Services Reference
IAR-XCT describes the STATUS macro START and STOP options with the
exception of the SRB and ASID parameters. These parameters, which are available
only to supervisor state and key 0 callers, allow the caller to manipulate the
dispatchability status or SRBs.

See z/OS MVS Programming: Authorized Assembler Services Guide for more
information on how to use the STATUS macro SET and RESET options and z/OS
MVS Programming: Assembler Services Guide for more information on how to use the
STATUS macro START and STOP options.

Environment
The requirements for the caller issuing STATUS with the START or STOP
parameters are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, with any PSW key. For

SRB and ASID parameters, supervisor state and PSW key 0.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: No requirements

© Copyright IBM Corp. 1988, 2013 105

The requirements for the caller issuing STATUS with the SET or RESET parameters
are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0.
Dispatchable unit mode: Task or preemptable SRB.
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit
ASC mode: v For task mode: Primary or access register (AR).

v For SRB mode: Primary.
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks required. The Local, CMS, and/or CPU locks may

be held.
Control parameters: No requirements

Programming requirements
None.

Restrictions
Except for the TCB, all input parameters to this macro can reside in storage above
16 megabytes.

While in process-must-complete mode, a task must not:
v Issue STATUS STOP,SRB or STATUS START,SRB
v Request the LOCAL lock unconditionally
v Issue an SVC or invoke services that issue SVCs
v Issue the WAIT macro or invoke services that issue WAITs

While in process-must-complete mode, a preemptable SRB must not:
v Request the LOCAL lock unconditionally
v Pause
v Suspend

These restrictions also apply to any routine invoked by a program in
process-must-complete mode.

Process-must-complete mode is not preserved across a retry from an ESTAE-type
routine. However, it is preserved across a retry from an FRR, unless the FRR is an
EUT FRR and the environment at the time of the abend was Enabled, Unlocked,
and in Task mode.

For the START or STOP parameters, the caller cannot have an EUT FRR
established.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

STATUS macro

106 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
Using STATUS will degrade performance of the calling program's address space
while STATUS runs.

Remaining in process-must-complete mode for an extended period of time will
degrade the performance of other programs waiting to use global resources that
the program in this mode holds.

START/STOP options

Syntax
The START/STOP options of the STATUS macro are written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STATUS.

STATUS

� One or more blanks must follow STATUS.

START

STOP

,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12), or 0.

,SRB ASID addr: RX-type address or address in register (2) - (12).

,SRB, ASID=ASID addr Note: ASID may only be specified with START.

STATUS macro

Chapter 10. STATUS — Control dispatchability or process-must-complete state 107

Syntax Description

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are described as follows:

START
STOP

Specifies that the task identified in the TCB parameter is to be stopped (STOP)
or started (START). If you omit the TCB parameter, all subtasks of the
originating task are stopped or started.

Note: The STOP parameter does not ensure that the subtask is stopped when
control returns to the issuer. A subtask can have a “stop deferred” condition
that would cause that particular subtask to remain dispatchable until stops are
no longer deferred. In an MP environment, it would be possible to have a task
issue the STATUS macro with the STOP parameter and resume processing
while the subtask (for which the STOP was issued) is redispatched to another
processor.

,TCB=tcb addr
,SRB
,SRB,ASID=ASID addr

Specifies the status of the stop/start function:

TCB Specifies the address of a fullword on a fullword boundary containing
the address of the TCB that is to have its START/STOP count adjusted.

Note: The TCB resides in storage below 16 megabytes.

SRB Specifies that the STOP and START functions affect the dispatchability
of system-level SRBs; all tasks in the address space except the caller's
are also set or reset nondispatchable. For START, the ASID addr
specifies the address of a halfword containing the address space
identifier. If ASID is not specified, the action is taken against the
caller's address space.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

Return codes
When control returns to the caller, register 15 contains one of the following
hexadecimal return codes:

Table 15. Return Codes for the STATUS Macro

Return Code Meaning and Action

00 Meaning: Processing completed successfully.

Action: None required.

STATUS macro

108 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 15. Return Codes for the STATUS Macro (continued)

Return Code Meaning and Action

04 Meaning: Program error. START/STOP request failed. The task you
specified is not a subtask of the calling program's task.

Action: Ensure that the task you specify on the TCB parameter is a subtask
of the calling program.

SET/RESET option

Syntax
The SET/RESET option of the STATUS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STATUS.

STATUS

� One or more blanks must follow STATUS.

SET,MC,PROCESS

RESET,MC,PROCESS

Parameters
The parameters are explained as follows:

SET,MC,PROCESS
RESET,MC,PROCESS

SET,MC,PROCESS places the program that invokes the macro in
process-must-complete mode.

RESET,MC,PROCESS ends process-must-complete mode.

Return codes
When control returns to the caller, register 15 contains one of the following
hexadecimal return codes:

Table 16. Return Codes for the SET/RESET Option

Return Code Meaning and Action

00 Meaning: Processing completed successfully.

Action: None required.

STATUS macro

Chapter 10. STATUS — Control dispatchability or process-must-complete state 109

Table 16. Return Codes for the SET/RESET Option (continued)

Return Code Meaning and Action

04 Meaning: Program error. You issued STATUS SET,MC,PROCESS but it had
already been issued.

Action: Do not issue STATUS SET,MC,PROCESS again until you have
issued STATUS RESET,MC,PROCESS.

08 Meaning: Program error. You issued STATUS RESET,MC,PROCESS but had
never issued STATUS SET,MC,PROCESS.

Action: Issue STATUS SET,MC,PROCESS before issuing STATUS
RESET,MC,PROCESS.

0C Meaning: Program error. You issued STATUS SET,MC,PROCESS while
running under a non-preemptable SRB.

Action: Avoid issuing STATUS SET,MC,PROCESS from a non-preemptable
SRB.

10 Meaning: Program error. You issued STATUS RESET,MC,PROCESS while
running under a non-preemptable SRB.

Action: Avoid issuing STATUS SET,MC,PROCESS from a non-preemptable
SRB.

Example
Cause a program process to enter, then end, process-must-complete mode.
* Chaining for a nonreenterable program, but note that STATUS SET,MC,
* PROCESS and STATUS RESET,MC,PROCESS do not require that a savearea
* be provided.

SETPMC CSECT
SETPMC AMODE 31
SETPMC RMODE ANY

STM 14,12,12(13) SAVE REGISTERS
LR 12,15 GET ENTRY POINT ADDRESS
USING SETPMC,12 ESTABLISH ADDRESSABILITY
ST 13,SAVEAREA+4 SAVE REGISTER 13
LR 2,13 GET CALLER SAVEAREA ADDRESS
LA 13,SAVEAREA SET UP OUR SAVEAREA ADDRESS
ST 13,8(2) SAVE SAVEAREA ADDRESS IN CALLER

SAVEAREA
MODESET MODE=SUP,KEY=ZERO GET INTO SUPERVISOR STATE, KEY 0
STATUS SET,MC,PROCESS SET PMC MODE
LTR 15,15 CHECK RETURN CODE
BNZ BADSET NOT SUCCESSFUL, GO HANDLE...

*
* Perform processing that requires process-must-complete mode...
* Note: This processing must not request the local lock and
* must not issue any SVCs or issue a WAIT.
*
*
RESET STATUS RESET,MC,PROCESS RESET PMC MODE

LTR 15,15 PMC MODE HAD ALREADY BEEN RESET,
ALREADY OUT OF PMC MODE

BNZ BADRESET NOT SUCCESSFUL, GO HANDLE...
*
EXIT DS 0H

MODESET MODE=PROB,KEY=NZERO GET OUT OF SUPERVISOR STATE, KEY 0
L 13,4(13) RESTORE REGISTER 13
L 14,12(13) RESTORE REGISTER 14
LM 0,12,20(13) RESTORE REGISTERS 0 THRU 12
SLR 15,15 SET RETURN CODE 0 IN REGISTER 15
BR 14 RETURN TO THE CALLER

BADSET DS 0H

STATUS macro

110 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

*
* Perform appropriate processing for nonzero return code from
* STATUS SET,MC,PROCESS.
*

B EXIT
BADRESET DS 0H
*
* Perform appropriate processing for nonzero return code from
* STATUS RESET,MC,PROCESS.
*

B EXIT
SAVEAREA DC 18F’0’ 18-WORD SAVEAREA

END SETPMC

STATUS macro

Chapter 10. STATUS — Control dispatchability or process-must-complete state 111

STATUS macro

112 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 11. STORAGE — Obtain and release storage

Description
The STORAGE macro requests that the system obtain or release an area of virtual
storage in the primary address space (by default), or in the address space defined
through the ALET parameter. The two functions of the macro are:
v STORAGE OBTAIN, which requests an area of virtual storage.
v STORAGE RELEASE, which releases an area of virtual storage.

The STORAGE macro is also described in z/OS MVS Programming: Assembler
Services Reference IAR-XCT, with the exception of the ALET, TCBADDR, and
OWNER parameters.

If you use STORAGE OBTAIN to request real storage backing above 2 gigabytes,
but your system does not support 64-bit storage, your request will be treated as a
request for backing above 16 megabytes, even on earlier releases of z/OS that do
not support backing above 2 gigabytes. However, boundary requirements indicated
by the CONTBDY and STARTBDY parameters will be ignored by earlier releases of
z/OS.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For subpools 0-127: problem state and PSW key 8-15.

For subpools 131 and 132, one or more of the following:

v Supervisor state

v PSW key 0-7

v PSW key mask (PKM) that allows the calling program to
switch its PSW key to match the key of the storage to be
obtained or released.

v APF-authorization.

For the ALET parameter and the TCBADDR parameter,
either of the following:

v Supervisor state

v PSW key 0-7

For LINKAGE=SYSTEM or LINKAGE=SVC: for all other
subpools, one or more of the following:

v Supervisor state

v PSW key 0-7

v APF-authorization.

For LINKAGE=BRANCH or LINKAGE=GLOBALBRANCH:
Supervisor state and PSW key 0.

To issue a subpool release for subpool 0: PSW key 0.

© Copyright IBM Corp. 1988, 2013 113

Environmental factor Requirement
Dispatchable unit mode: For LINKAGE=SVC: Task

For LINKAGE=SYSTEM, LINKAGE=BRANCH, or
LINKAGE=GLOBALBRANCH: Task or SRB

Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM, LINKAGE=BRANCH, or
LINKAGE=GLOBALBRANCH: Any PASN, any HASN, any
SASN

AMODE: For LINKAGE=SYSTEM or LINKAGE=SVC: 24- or 31- or
64-bit

For LINKAGE=BRANCH or LINKAGE=GLOBALBRANCH:
24- or 31-bit.

If in AMODE 64, code SYSSTATE AMODE64=YES before
invoking this macro.

ASC mode: For LINKAGE=SYSTEM, LINKAGE=BRANCH, or
LINKAGE=GLOBALBRANCH: Primary or access register
(AR).

For LINKAGE=SVC: Primary

If in AR mode, code SYSSTATE ASCENV=AR before
invoking this macro.

Interrupt status: For LINKAGE=SYSTEM: Enabled for I/O and external
interrupts if obtaining or releasing private storage. Enabled
or disabled for I/O and external interrupts if obtaining or
releasing common storage.

For LINKAGE=SVC or LINKAGE=BRANCH: Enabled for
I/O and external interrupts.

For LINKAGE=GLOBALBRANCH: Disabled for I/O and
external interrupts.

Locks: v For LINKAGE=SYSTEM:

– No requirement.

– You may hold the local lock for the target address
space.

– If you hold the local lock, you may also hold the CMS
lock.

– You may hold the CPU lock when obtaining or
releasing common storage.

v For LINKAGE=SVC: No locks may be held.

v For LINKAGE=BRANCH: Your program must hold the
local lock for the currently addressable address space.
When running in cross-memory mode, this is the CML
lock for that address space. The currently addressable
address space must be the address space from which the
storage is to be obtained.

v For LINKAGE=GLOBALBRANCH: Your program must
be in an MVS-recognized state of disablement, which can
be attained by obtaining the CPU lock.

Control parameters: No requirement.

Programming requirements
None.

STORAGE macro

114 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Restrictions
None.

Register information
Register usage varies depending on the type of STORAGE request. For specific
information, see the descriptions of STORAGE OBTAIN and STORAGE RELEASE.

Performance implications
None.

STORAGE OBTAIN
The STORAGE macro with the OBTAIN parameter requests that the system
allocate an area of virtual storage to the specified task. The length you specify
must not exceed the length available. The length available depends on how much
storage has already been allocated and, for subpools 0 - 127, 129-132, 240, and
250-252, the region size. For some subpools, the system releases the storage when
the owning task terminates. For other subpools, you must issue STORAGE
RELEASE or FREEMAIN to release them. Before obtaining storage, be sure to read
“Selecting the Right Subpool for Your Virtual Storage Request” in z/OS MVS
Programming: Authorized Assembler Services Guide.

Note:

1. When you obtain storage, the system clears the requested storage to zeros if
you obtain either:
v 8192 bytes or more from a pageable, private storage subpool.
v 4096 bytes or more from a pageable, private storage subpool, with

BNDRY=PAGE specified.
In all other cases, you must not assume that the storage is cleared to zeros.
The caller can specify CHECKZERO=YES to detect these and other cases
where the system clears the requested storage to zeros.

2. Do not allocate key 8 or key 9 storage in the common area because it can be
read or written by any program in any address space.

Input register information for LINKAGE=SYSTEM
Before issuing the STORAGE macro with the OBTAIN parameter, the caller does
not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information for LINKAGE=SYSTEM
When control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request in which maximum and minimum lengths were
specified, contains the length of the storage obtained. Otherwise, used as a
work register by the system.

1 The address of the allocated storage when STORAGE OBTAIN is
successful; otherwise, used as a work register by the system.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 115

Note: A successful STORAGE OBTAIN will return a 64-bit pointer to the
obtained area (bits 0-32 will be zero).

2-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system.

1 The ALET value if you specified the ALET parameter and the STORAGE
OBTAIN is successful.

0 if you did not specify the ALET parameter and the STORAGE OBTAIN is
successful.

Otherwise, used as a work register by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Input register information for LINKAGE=SVC
Before issuing the STORAGE macro with LINKAGE=SVC, the caller does not have
to place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information for LINKAGE=SVC
When control returns to the caller the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when STORAGE is successful;
otherwise, used as a work register by the system.

Note: A successful STORAGE OBTAIN will return a 64-bit pointer to the
obtained area (bits 0-32 will be zero).

2-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

STORAGE macro

116 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Input register information for LINKAGE=BRANCH
Before issuing the STORAGE macro with LINKAGE=BRANCH, the caller must
ensure that the following GPRs contain the specified information:

Register
Contents

4 The address of the input TCB, if you are obtaining private storage.

If your program is not running in cross-memory mode, setting GPR 4 to 0
identifies the input TCB as the TCB of the current task.

If your program is running in cross-memory mode, set GPR 4 to 0 or the
address of a TCB in the currently addressable address space.

Setting the GPR 4 to 0 identifies the input TCB as the TCB that owns the
cross-memory resources for the currently addressable address space (task
whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the information
about selecting the right subpool for virtual storage requests in z/OS MVS
Programming: Authorized Assembler Services Guide.

7 The address of the ASCB for the currently addressable address space.

Output register information for LINKAGE=BRANCH
When control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system. Storage obtained.

1 The address of the allocated storage when STORAGE is successful;
otherwise, used as a work register by the system.

Note: A successful STORAGE OBTAIN will return a 64-bit pointer to the
obtained area (bits 0-32 will be zero).

2 Unchanged.

3 Used as a work register by the system.

4-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 117

14-15 Used as work registers by the system.

Input register information for LINKAGE=GLOBALBRANCH
Before issuing the STORAGE macro with LINKAGE=GLOBALBRANCH, the caller
does not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information for LINKAGE=GLOBALBRANCH
When control returns to the caller, the GPRs contain:

Register
Contents

0 For a successful request, contains the length of the storage obtained.
Otherwise, used as a work register by the system.

1 The address of the allocated storage when STORAGE is successful;
otherwise, used as a work register by the system.

Note: A successful STORAGE OBTAIN will return a 64-bit pointer to the
obtained area (bits 0-32 will be zero).

2 Unchanged.

3-4 Used as work registers by the system.

5-13 Unchanged.

14 Used as a work register by the system.

15 Contains the return code.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Syntax
The OBTAIN option of the STORAGE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STORAGE.

STORAGE

STORAGE macro

118 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

� One or more blanks must follow STORAGE.

OBTAIN

,LENGTH=length value length value: Symbol, decimal number, or register (0),
(2)-(12).

,LENGTH=(max length,min length) max length: Symbol, decimal number, or register (0), (2) -
(12).

min length: Symbol, decimal number, or register (1) - (12).

,ADDR=stor addr stor addr: RX-type address or register (1) - (12).

Default: ADDR=(1).

,INADDR=stor addr stor addr: RX-type address or register (1) - (12).

Note: This parameter can only be specified with
LOC=EXPLICIT.

,SP=subpool number subpool number: Symbol, decimal number, or register
(2)-(12), (15).

Default: SP=0.

,ALET=alet-value alet-value: Decimal number, RX-type address, or access
register(1)-(12)

Default: ALET=0.

,BNDRY=DBLWD Default: BNDRY=DBLWD

,BNDRY=PAGE

,CONTBDY=containing_bdy containing_bdy: Decimal number 3-31 or register (2) - (12).

,STARTBDY=starting_bdy starting_bdy: Decimal number 3-31 or register (2) - (12).

,KEY=key number key number: Decimal number 0-15 or register (2) - (12).

Note 1: KEY is valid only when SP is specified.

Note 2: You cannot specify both KEY and
CALLRKY=YES.

,CALLRKY=NO Default: CALLRKY=NO

,CALLRKY=YES Note: You cannot specify both CALLRKY=YES and KEY.

,LOC=24

,LOC=(24,31)

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 119

Syntax Description

,LOC=(24,64)

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES Default: LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,LOC=EXPLICIT Note: You must specify the INADDR parameter with

,LOC=(EXPLICIT,24) EXPLICIT.

,LOC=(EXPLICIT,31)

,LOC=(EXPLICIT,64)

,LOC=(EXPLICIT,PAGEFRAMESIZE1MB)

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=SVC

,LINKAGE=BRANCH

,LINKAGE=GLOBALBRANCH

,OWNER=HOME Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SECONDARY

,OWNER=SYSTEM

,OWNERASID=decimal number

,OWNERASID=register(2)-(12)

,OWNERASID=RS-type address

,CAUB=CURRENT Default: CAUB=CURRENT

,CAUB=ADDRSPACE

,RTCD=rtcd addr rtcd addr: RX-type address or register (2) - (12) or (15).

Default: RTCD=(15).

,COND=YES Default: COND=NO

,COND=NO

,CHECKZERO=YES Default: CHECKZERO=NO

,CHECKZERO=NO

,BACK=BYSPT Default: BACK=BYSPT

STORAGE macro

120 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,BACK=NONE

,BACK=ALL

,FIX=NONE Default: FIX=NONE

,FIX=SHORT

,FIX=LONG

,TCBADDR=tcbaddress tcbaddress: RS-type address or register (2) - (12).

Default: See “Selecting the Right Subpool for Your
Virtual Storage Request” in z/OS MVS Programming:
Authorized Assembler Services Guide for the possible
default values.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

OBTAIN
Requests that the system obtain virtual storage.

,LENGTH=length value
,LENGTH=(max length,min length)

Specifies the amount of storage the system is to obtain. length value specifies
the length, in bytes, of the requested virtual storage. max length and min length
specify the maximum and minimum amounts of storage. These numbers
should be a multiple of 8; if they are not, the system uses the next higher
multiple of 8.

,ADDR=stor addr
Specifies the location where the system is to return the address of the storage it
allocates.

,INADDR=stor addr
Specifies the desired virtual address for the storage to be obtained. When you
specify INADDR, you must specify EXPLICIT on the LOC parameter.

Note:

1. The address specified on INADDR must be on a doubleword boundary.
2. Make sure that the virtual storage address specified on INADDR and the

central storage backing specified on the LOC=EXPLICIT parameter are a
valid combination. For example, if the address specified on INADDR is for
storage above 16 megabytes, specify LOC=EXPLICIT or
LOC=(EXPLICIT,ANY). Valid combinations include:
v virtual above, central any
v virtual any, central any
v virtual below, central below
v virtual below, central any

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 121

,SP=subpool number
Specifies the subpool number for the storage. (See z/OS MVS Programming:
Authorized Assembler Services Guide for a list of valid subpools.) If you specify a
register, the subpool number must be in bits 24-31 of the register, with bits 0-23
set to zero. If you omit this parameter, the system uses the default, which is
subpool 0.

Note:

1. Callers executing in supervisor state and key 0, who specify subpool 0, will
obtain storage from subpool 252. Therefore, when requesting a dump of
this storage through the SDUMP or SDUMPX macro, they must specify
subpool 252 rather than zero.

2. Storage requested from subpools 240 and 250 are translated to subpool 0
requests.

,ALET=alet-value
Specifies the ALET of the target address space — the address space in which
the storage is to be obtained. The ALET must be on the caller's primary
address space access list (PASN-AL) or dispatchable unit access list (DU-AL)
and, if the ALET identifies a private entry, the caller must be authorized to the
target address space through the extended authorization index (EAX). For
more information, see z/OS MVS Programming: Extended Addressability Guide. If
you omit this parameter, the system assumes the target address space is in the
primary address space.

The ALET parameter is valid only with LINKAGE=SYSTEM.

,BNDRY=DBLWD
,BNDRY=PAGE

Specifies that alignment on a doubleword boundary (DBLWD) or alignment
with the start of a virtual page on a 4K boundary (PAGE) is required for the
start of a requested area.

If the request specifies one of the LSQA or SQA subpools, the system ignores
the BNDRY=PAGE keyword. Requests for storage from these subpools are then
fulfilled from a single page, unless the request is greater than a page. See z/OS
MVS Programming: Authorized Assembler Services Guide for a list of the LSQA
and SQA subpools.

The default is BNDRY=DBLWD.

,CONTBDY=containing_bdy
Specifies the boundary the obtained storage must be contained within. Specify
a power of 2 that represents the containing boundary. Supported values are
3-31. For example, CONTBDY=10 means the containing boundary is 2**10, or
1024 bytes. The containing boundary must be at least as large as the maximum
requested boundary. The obtained storage will not cross an address that is a
multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register. Do not
specify CONTBDY on a variable-length request.

CONTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

CONTBDY applies to all subpools.

If you omit this parameter, there is no containing boundary.

,STARTBDY=starting_bdy
Specifies the boundary the obtained storage must start on. Specify a power of 2
that represents the start boundary. Supported values are 3 - 31. For example,

STORAGE macro

122 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

STARTBDY=10 means the start boundary is 2**10, or 1024 bytes. The obtained
storage will begin on an address that is a multiple of the requested boundary.

If a register is specified, the value must be in bits 24-31 of the register. Do not
specify STARTBDY on a variable-length request.

STARTBDY is not valid with LOC=EXPLICIT or BNDRY=PAGE.

STARTBDY applies to all subpools.

If you omit this parameter, the start boundary is 8 bytes (equivalent to
specifying STARTBDY=3).

,KEY=key-number
Indicates the storage key of the storage to be obtained. The valid storage keys
are 0 - 15. If you pass the storage key in a register, it must be in bits 56-59 in
that register. KEY is valid only when SP is specified, and applies only to
subpools 129 - 132, 227 - 231, 241, and 249. The system ignores the KEY
parameter if KEY is used for any other subpools.

For LINKAGE=SVC, KEY is honored only for subpools 129 - 132. For detailed
information about how the system determines which storage key to assign to
your storage request, see “Selecting the Right Subpool for Your Virtual Storage
Request” in the z/OS MVS Programming: Authorized Assembler Services Guide.

,CALLRKY=NO
,CALLRKY=YES

Specifies how the system assigns the key for the storage to be obtained:

CALLRKY=NO
The system assigns the value according to the specified subpool:
v For subpools 129-132, 227-231, 241, and 249, the system assigns the

value specified on the KEY parameter (or zero, if the KEY parameter
is omitted) as the storage key

v For all other subpools, the system ignores the CALLRKY parameter.

CALLRKY=YES
The system assigns the caller's current PSW key as the storage key.
When you specify CALLRKY=YES, do not also specify KEY. Specify
CALLRKY only when obtaining storage from subpools 129-132,
227-231, 241, and 249. For all other subpools, the system ignores the
CALLRKY parameter.

The default is CALLRKY=NO. For detailed information about how the system
determines what storage key to assign to your storage request, see “Selecting
the Right Subpool for Your Virtual Storage Request” in the z/OS MVS
Programming: Authorized Assembler Services Guide.

,LOC=24
,LOC=(24,31)
,LOC=(24,64)
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=(31,PAGEFRAMESIZE1MB)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)
,LOC=EXPLICIT
,LOC=(EXPLICIT,24)
,LOC=(EXPLICIT,31)

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 123

,LOC=(EXPLICIT,64)
,LOC=(EXPLICIT,PAGEFRAMESIZE1MB)

Specifies the location of virtual storage and central (also called real) storage.
This is especially helpful for callers with 24-bit dependencies. When LOC is
specified, central storage is allocated anywhere until the storage is fixed (for
example, using the PGSER macro). You can specify the location of central
storage (after the storage is fixed) and virtual storage (whether or not the
storage is fixed) using the following LOC parameter values:

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes. LOC=24 must not be used to allocate disabled reference (DREF)
storage.

Note: Specifying LOC=BELOW is the same as specifying LOC=24.
LOC=BELOW is still supported, but IBM recommends using LOC=24 instead.

LOC=(24,31) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(BELOW,ANY) is the same as specifying LOC=(24,31).
LOC=(BELOW,ANY) is still supported, but IBM recommends using
LOC=(24,31) instead.

LOC=(24,64) indicates that virtual storage is to be located below 16 megabytes
and central storage can be located anywhere in 64-bit storage.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

LOC=(31,PAGEFRAMESIZE1MB) indicates that virtual storage is to be located
below 2 gigabytes and central storage can be backed anywhere in 64-bit
storage, preferably by 1 megabyte page frames.

When you use LOC=RES to allocate storage that can reside either above or
below 16 megabytes, LOC=RES indicates that the location of virtual and
central storage depends on the location of the caller. If the caller resides below
16 megabytes, virtual and central storage are to be located below 16
megabytes. If the caller resides above 16 megabytes, virtual and central storage
are to be located either above or below 16 megabytes.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,

STORAGE macro

124 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

virtual storage can be located anywhere in 31-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: If your program resides below 16 megabytes but runs with 31-bit
addressing mode, you can specify LOC=RES (as a default or explicitly) or
LOC=(RES,31) to obtain storage from a subpool supported only above 16
megabytes. Do not specify subpools supported only above 16 megabytes on
requests using LOC=RES or LOC=(RES,31) if your program resides below 16
megabytes and runs with 24-bit addressing.

LOC=EXPLICIT, LOC=(EXPLICIT,24), LOC=(EXPLICIT,31), or
LOC=(EXPLICIT,64) specify that the requested virtual storage is to be located
at the address specified with the INADDR parameter, which is required with
EXPLICIT. EXPLICIT is valid only for subpools 0-127, 129-132, 240, 244, 250,
251, and 252. You cannot specify the BNDRY, OWNER, or LENGTH=(max
length,min length) parameters with EXPLICIT.

Note: Specifying LOC=(EXPLICIT,BELOW) is the same as specifying
LOC=(EXPLICIT,24). Specifying LOC=(EXPLICIT,ANY is the same as
specifying LOC=(EXPLICIT,31). The older specifications are still supported, but
IBM recommends using the newer specifications instead.

LOC=(EXPLICIT,31) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage can be
located anywhere below 2 gigabytes.

LOC=(EXPLICIT,24) indicates that virtual storage is to be located at the
address specified on the INADDR parameter, and central storage is to be
located below 16 megabytes. The virtual storage address specified on the
INADDR parameter must be below 16 megabytes.

LOC=EXPLICIT and LOC=(EXPLICIT,64) indicate that virtual storage is to be
located at the address specified on the INADDR parameter, and central storage
can be located anywhere in 64-bit storage.

When you specify EXPLICIT on a request for storage from the same virtual
page as previously requested storage, you must request it in the same key,
subpool, and central storage area as on the previous storage request. For
example, if you request virtual storage backed with central storage below 16
megabytes, any subsequent requests for storage from that virtual page must be
specified as LOC=(EXPLICIT,24).

LOC=(EXPLICIT,PAGEFRAMESIZE1MB) locates virtual storage at the address
specified on the INADDR parameter, and backs central storage anywhere in
64-bit storage, preferably by 1 megabyte page frames.

Note:

1. A caller cannot specify LOC=24 or LOC=(24,31) from subpools: 203-205,
213-215, 223-225, 247, and 248 because they are supported only above 16
MB.

2. When you specify LOC=31, the actual location of the virtual storage (that
is, whether it is above or below 16 MB) depends on the subpool you
specify on the SP parameter:
v Some subpools (for example, 203-204) are supported only above 16 MB.

For these subpools, STORAGE OBTAIN locates virtual storage above 16
MB. If you specify LOC=24 for one of these subpools, the system abends
your program.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 125

v All other subpools are supported both above and below 16 MB. For these
subpools, specifying LOC=31 causes STORAGE OBTAIN to try to
allocate virtual storage above 16 MB, but below 2 GB. If the attempt fails,
it tries to allocate virtual storage below 16 MB. If this attempt also fails,
it does not allocate any storage.

3. A caller residing below 16 MB but running in 31-bit addressing mode can
specify LOC=RES (as a default or explicitly) or LOC=(RES,31) to obtain
storage from a subpool supported only above 16 MB.

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SECONDARY
,OWNER=SYSTEM

Specifies the entity to which the system will assign ownership of requested
CSA, ECSA, SQA, and ESQA storage. The system uses this ownership
information to track the use of CSA, ECSA, SQA and ESQA storage. This
parameter can have one of the following values:

HOME
The home address space

PRIMARY
The primary address space

SECONDARY
The secondary address space

SYSTEM
The system (the storage is not associated with an address space);
specify this value if you expect the requested storage to remain
allocated after termination of the job that obtained the storage.

The default value is OWNER=HOME. The system ignores the OWNER
keyword unless you specify a CSA, ECSA, SQA, or ESQA subpool on the SP
parameter.

Storage tracking is available as of MVS/SP release 4.3. However, programs that
issue the STORAGE OBTAIN macro with the OWNER parameter can run on
any MVS system from MVS/SP 3.1 to the current release.

,OWNERASID=decimal number
,OWNERASID=register(2)-(12)
,OWNERASID=RS-type address

Specifies the ASID to be used for common storage tracking. You must also
specify OWNER to designate the ASID to be used on z/OS 1.8 systems or
below. If the OWNERASID value is not valid, you must specify the keyword
OWNER.

OWNERASID=decimal number
Specifies the decimal ASID number.

OWNERASID=register(2)-(12)
Specifies the register, (2) - (12), containing the OWNERASID.

OWNERASID=RS-type address
Specifies the RS-type address of the OWNERASID.

,CAUB=CURRENT
,CAUB=ADDRSPACE

Specifies that common storage tracking is requested. When not running under
an initiated job, there is no difference between CAUB=CURRENT and
CAUB=ADDRSPACE.

STORAGE macro

126 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

CAUB=CURRENT
Use when running in a job's address space.

CAUB=ADDRSPACE
Use when running under a job in an initiator and the storage is
intended to be associated with the initiator address space, not the job.

,BACK=BYSPT
,BACK=NONE
,BACK=ALL

Specifies a preference for how much storage should be backed by real storage
at the time the storage is obtained.

BACK=BYSPT
Storage should be backed by pageable storage subpools.

BACK=NONE
No storage should be backed.

BACK=ALL
All storage should be backed.

,FIX=NONE
,FIX=SHORT
,FIX=LONG

Indicates to the system how long you expect the storage backed by this
STORAGE OBTAIN will take to be fixed.

FIX=NONE
The storage will not be fixed.

FIX=SHORT
The relative real time anticipated for the FIX is short.

FIX=LONG
The relative real time anticipated for the FIX is long. (In general, the
duration of a fix is long if it can be measured in seconds.)

,LINKAGE= SYSTEM
,LINKAGE=SVC
,LINKAGE=BRANCH
,LINKAGE=GLOBALBRANCH

Specifies the type of entry linkage to be used.

LINKAGE=SYSTEM
The STORAGE OBTAIN macro receives control though the PC entry.

LINKAGE=SVC
The STORAGE OBTAIN macro receives control through the SVC entry.

LINKAGE=BRANCH
The STORAGE OBTAIN macro receives control through branch entry.
Both local (private) and global (common) storage can be allocated.

LINKAGE=GLOBALBRANCH
The STORAGE OBTAIN macro receives control through branch entry.
Only global (common) storage can be allocated.

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. This parameter is valid only if you specify
COND=YES.

,COND=YES

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 127

,COND=NO
Specifies whether the request is unconditional or conditional.

COND=YES specifies that the active unit of work should not be abnormally
terminated if there is insufficient contiguous virtual storage to satisfy the
request, and instead should return to the caller with a non-zero return code.
Use of COND=YES does not prevent all abnormal terminations. For example, if
the request has incorrect or inconsistent parameters, the system abnormally
terminates the active unit of work. If you specify COND=YES, you may also
specify the RTCD parameter to define the location where the system is to store
the return code.

COND=NO indicates that the request is unconditional. The system abnormally
terminates the active unit of work if the STORAGE OBTAIN request cannot
complete successfully. This situation occurs if the parameters passed on the
request are incorrect or inconsistent, if the system encounters internal errors, or
if there is not enough contiguous virtual storage to satisfy the request.
COND=NO is the default.

,CHECKZERO=YES
,CHECKZERO=NO

Specifies whether or not the return code for a successful completion should
indicate if the system has cleared the requested storage to zeros. When
CHECKZERO=NO is specified or defaulted, the return code for a successful
completion is 0. When CHECKZERO=YES is specified, the return code for a
successful completion is X'14' if the system has cleared the requested storage to
zeros, and 0 if the system has not cleared the requested storage to zeroes.

There is no performance cost to specifying CHECKZERO=YES.

Programs that issue the STORAGE macro with the CHECKZERO parameter
can run on any MVS system from MVS/SP 2.1 to the current release. On a
down-level system, CHECKZERO will be ignored, and the return code for a
successful completion (conditional or unconditional) will be 0.

,TCBADDR=tcbaddress
Specifies the address of a word that contains the address of the input task
control block (TCB), or a register that contains the address of the input TCB.
The system assumes that the input TCB resides in the address space where the
storage is to be obtained.

For an explanation of the term input TCB, and to determine the
system-assigned defaults for private storage ownership, see “Selecting the
Right Subpool for Your Virtual Storage Request” in z/OS MVS Programming:
Authorized Assembler Services Guide.

The system ignores the TCBADDR keyword if the STORAGE OBTAIN request
is for a common storage subpool.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

ABEND codes
Abend codes that STORAGE OBTAIN might issue are listed below. For detailed
abend code information, see z/OS MVS System Codes.
v 178

STORAGE macro

128 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v 278
v 378
v 478
v 778
v 878
v 978
v A78
v B78
v D78

Return and reason codes
When control returns from the STORAGE OBTAIN request and you specified a
conditional request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of the
following hexadecimal return codes. When running in an AMODE64 environment,
only the low half of GPR15 contains a return code. There is no guarantee for the
contents of the high half of GPR15.

Table 17. Return Codes for STORAGE OBTAIN

Return Code Meaning and Action

0 Meaning: Successful completion. CHECKZERO=YES was not specified, or
the system has not cleared the requested storage to zeroes.

Action: None.

4 If you did not specify EXPLICIT on the LOC parameter:

v Meaning: Environmental or system error. Virtual storage was not
obtained because insufficient storage is available.

v Action: If the request was for private (local) storage, consult the system
programmer to see if you have exceeded an installation-determined
private storage limit.

If the request is for common (global) storage, your system is probably
experiencing a common storage shortage and your request cannot be
satisfied until the shortage is corrected.

If you specified EXPLICIT on the LOC parameter:

v Meaning: Program error. Virtual storage was not obtained because part
of the requested storage area is outside the bounds of the user region.

v Action: Determine why your program is mistakenly requesting storage
outside the user region. If your region size is too small, consult the
system programmer about increasing the region size.

8 Meaning: System error. Virtual storage was not obtained because the
system has insufficient central storage to back the request.

Action: Report the problem to the system programmer so the cause of the
problem can be determined and corrected.

0C Meaning: System error. Virtual storage was not obtained because the
system cannot page in the page table associated with the storage to be
allocated.

Action: Report the problem to the system programmer so the cause of the
problem can be determined and corrected.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 129

Table 17. Return Codes for STORAGE OBTAIN (continued)

Return Code Meaning and Action

10 Meaning: Program error. Virtual storage was not obtained due to one of
the reasons listed below. This return code applies only to STORAGE
requests with LOC=EXPLICIT specified.

v Part of the requested area is allocated already.

v Virtual storage was already allocated in the same page as this request,
but one of the following characteristics of the storage was different:

– The subpool

– The key

– Central storage backing

Action: Determine why your program is attempting to obtain allocated
storage or why your program is attempting to obtain virtual storage with
different attributes from the same page of storage. Correct the coding error.

14 Meaning: Successful completion. The system has cleared the requested
storage to zeroes.

This return code occurs only when CHECKZERO=YES is specified.

Action: None.

18 Meaning: PAGEFRAMESIZE1MB was specified on the LOC=parameter on
a STORAGE OBTAIN request for a subpool other than 0-127, 129-132, 240,
244 or 250-252.

Action: None.

Examples
For examples of how to use the STORAGE macro with the OBTAIN option, see
“Examples of the OBTAIN and RELEASE options” on page 137.

STORAGE RELEASE
The STORAGE macro with the RELEASE parameter requests that the system
release an area of virtual storage or an entire virtual storage subpool, previously
allocated through the STORAGE or GETMAIN macro. The system abends the
active task if the specified virtual storage does not start on a doubleword
boundary or, for an unconditional request, if the specified area or subpool is not
allocated to the current task. The current task is determined from the input task
specified on the TCBADDR parameter (see “Selecting the Right Subpool for Your
Virtual Storage Request” in z/OS MVS Programming: Authorized Assembler Services
Guide for more information about the input task).

Input register information for LINKAGE=SYSTEM
Before issuing the STORAGE macro with LINKAGE=SYSTEM, the caller does not
have to place any information into any register unless using it in register notation
for a particular parameter, or using it as a base register.

Output register information for LINKAGE=SYSTEM
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

STORAGE macro

130 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

14 Used as a work register by the system.

15 Return code if you specified COND=YES; otherwise, used as a work
register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Input register information for LINKAGE=SVC
Before issuing the STORAGE macro with LINKAGE=SVC, the caller does not have
to place any information into any register unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information for LINKAGE=SVC
When control returns to the caller the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code if you specified COND=YES; otherwise, used as a work
register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Input register information for LINKAGE=BRANCH
Before issuing the STORAGE macro with LINKAGE=BRANCH, the caller must
ensure that the following GPRs contain the specified information:

Register
Contents

4 The address of the input TCB, if you are obtaining private storage.

If your program is not running in cross-memory mode, setting GPR 4 to 0
identifies the input TCB as the TCB of the current task.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 131

If your program is running in cross-memory mode, set GPR 4 to 0 or the
address of a TCB in the currently addressable address space.

Setting the GPR 4 to 0 identifies the input TCB as the TCB that owns the
cross-memory resources for the currently addressable address space (task
whose TCB address is in ASCBXTCB).

For an explanation of the term input TCB, and to determine
system-assigned defaults for private storage ownership, see the information
about selecting the right subpool for virtual storage requests in z/OS MVS
Programming: Authorized Assembler Services Guide.

7 The address of the ASCB for the currently addressable address space.

Output register information for LINKAGE=BRANCH
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2 Unchanged.

3 Used as a work register by the system.

4-13 Unchanged.

14 Used as a work register by the system.

15 Return code if you specified COND=YES; otherwise, used as a work
register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Input register information for LINKAGE=GLOBALBRANCH
Before issuing the STORAGE macro with LINKAGE=GLOBALBRANCH, the caller
does not have to place any information into any register unless using it in register
notation for a particular parameter, or using it as a base register.

Output register information for LINKAGE=GLOBALBRANCH
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2 Unchanged.

STORAGE macro

132 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

3-4 Used as work registers by the system.

5-13 Unchanged.

14 Used as a work register by the system.

15 Return code if you specified COND=YES; otherwise, used as a work
register by the system.

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Syntax
The RELEASE option of the STORAGE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede STORAGE.

STORAGE

� One or more blanks must follow STORAGE.

RELEASE

,LENGTH=length value length value: Symbol, decimal number, or register (0), (2) - (12).

,ADDR=stor addr stor addr: RX-type address or register (1) - (12).

,LENGTH=length value

,SP=subpool number subpool number: Symbol, decimal number, or register (2) - (12), (15).

Default: SP=0.

,ALET=alet-value alet-value: Decimal number, RX-type address, access register (1) - (12).

Default: ALET=0.

,KEY=key number key number: Decimal number 0-15 or register (2) - (12).

Note: KEY is valid only when SP is specified.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 133

Syntax Description

,CALLRKY=NO Default: CALLRKY=NO

,CALLRKY=YES Note: You cannot specify both CALLRKY=YES and KEY.

,RTCD=rtcd addr rtcd addr: RX-type address or registers (2) - (12), (15).

Default: RTCD=(15)

,COND=YES Default: COND=NO

,COND=NO

,TCBADDR=tcbaddress tcbaddress: RS-type address or register (2) - (12).

Default: See “Selecting the Right Subpool for Your Virtual Storage Request”
in z/OS MVS Programming: Authorized Assembler Services Guide for the
possible default values.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

RELEASE
Requests that the system release virtual storage.

,LENGTH=length value
Specifies the number of bytes of storage that the system is to release. If you
specify LENGTH, you must also specify ADDR. To free an entire subpool, use
SP instead of LENGTH and ADDR. Do not specify a length value of zero with
an address of zero. This will cause STORAGE RELEASE to free the subpool
specified with the SP parameter, or subpool 0, if the SP parameter is omitted.

,ADDR=stor addr
Specifies the address of the storage to be released. If you specify ADDR, you
must also specify LENGTH. To free an entire subpool, use SP instead of
LENGTH and ADDR.

,SP=subpool number
Specifies the subpool number for the storage to be released. The subpool
number must be a valid subpool number between 0 and 255. If you specify the
subpool in a register, the subpool number must be in bits 24-31 of the register,
with bits 0-23 set to zero. If you omit this parameter, the system uses subpool
0.

A request to release all the storage in a subpool is known as a subpool release.
To issue a subpool release, use SP to indicate the subpool and do not specify
either LENGTH or ADDR. Issue subpool releases only for the following
subpools: 0-127, 129-132, 203, 204, 213, 214, 223, 224, 229, 230, 233, 236, 237,
240, 249, and 250-253. If you try to issue a subpool release for any other
subpool, an abend X'478' or X'40A' occurs. See the list of subpool
characteristics in z/OS MVS Programming: Authorized Assembler Services Guide
for information and requirements pertaining to specific subpools.

STORAGE macro

134 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Note:

1. The system translates subpool 0 storage requests to subpool 252 storage
requests when you are running in supervisor state and key 0. If you are not
running in supervisor state and key 0, you will receive storage from
subpool 0 when you request it.

2. The system translates subpool 240 and 250 storage requests to subpool 0
storage requests. Bearing this in mind, you must be careful to specify the
correct subpool when obtaining and releasing storage. For instance, if you
obtain subpool 0 storage while running in problem state, you will receive
subpool 0 storage. If you attempt to release it after switching to supervisor
state and PSW key 0, you cannot specify subpool 0 because the system will
try to free subpool 252 storage. Instead, you must release the storage
specifying subpools 240 or 250, which are translated by the system to
subpool 0.

,ALET=alet-value
Specifies the ALET of the address space in which the storage is to be released.
The ALET must be on the caller's primary address space access list (PASN-AL)
or dispatchable unit access list (DU-AL) and, if the ALET identifies a private
entry, the caller must be authorized to the target address space through the
extended authorization index (EAX). For additional information, see z/OS MVS
Programming: Extended Addressability Guide. If you omit this parameter, the
system assumes storage is in the primary address space.

The ALET parameter is valid only with LINKAGE=SYSTEM.

,KEY=key-number
Indicates the storage key of the storage to be released. The valid storage keys
are 0-15. If you pass the storage key in a register, it must be in bits 56-59 in
that register. KEY is valid only with SP and applies only to subpools 129-132,
227-231, 241, and 249. The system ignores the KEY parameter if KEY is used
for any other subpools. KEY allows you to release storage in the specified
storage protection key. See list of subpool characteristics in z/OS MVS
Programming: Authorized Assembler Services Guide for information on
authorization requirements pertaining to specific subpools.

,CALLRKEY=NO
,CALLRKEY=YES

Specifies what key the system will use for the storage release.

CALLRKY=NO
The system assigns the value according to the specified subpool:
v For subpools 129-132, 227-231, 241, and 249, the system assigns the

value specified on the KEY parameter (or zero, if the KEY parameter
is omitted) as the storage key

v For all other subpools, the system ignores the CALLRKY parameter.

CALLRKY=YES
The system assigns the caller's current PSW key as the storage key.
When you specify CALLRKY=YES, do not also specify KEY. Specify
CALLRKY only when obtaining storage from subpools 129-132,
227-231, 241, and 249. For all other subpools, the system ignores the
CALLRKY parameter.

The default is CALLRKY=NO. For detailed information about how the system
determines what storage key to assign to your storage request, see “Selecting
the Right Subpool for Your Virtual Storage Request” in the z/OS MVS
Programming: Authorized Assembler Services Guide.

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 135

,RTCD=rtcd addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. This parameter is only valid if you specify
COND=YES.

,COND=YES
,COND=NO

Specifies whether the request is unconditional or conditional.

COND=YES specifies that the task should not abend if the system cannot
release the storage. However, the system cannot prevent some abends. The
RTCD parameter specifies the location where the system is to store a return
code. COND=NO specifies that the system abend the active task if it cannot
release the storage.

COND=NO is the default.

,TCBADDR=tcbaddress
Specifies the address of a word that contains the address of the input task
control block (TCB), or a register that contains the address of the input TCB.

For an explanation of the term input TCB, and to determine the
system-assigned defaults for private storage ownership, see “Selecting the
Right Subpool for Your Virtual Storage Request” in z/OS MVS Programming:
Authorized Assembler Services Guide.

The system ignores the TCBADDR keyword if the STORAGE RELEASE
request is for a common storage subpool. If you specified TCBADDR on
STORAGE OBTAIN, you should also specify TCBADDR on STORAGE
RELEASE.

,RELATED=value
Specifies information used to self-document macro by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

ABEND codes
Abend codes that STORAGE RELEASE might issue are listed below. For detailed
abend code information, see z/OS MVS System Codes.
v 178
v 278
v 378
v 478
v 778
v 878
v 978
v A78
v B78
v D78

Return and reason codes
When the STORAGE macro returns control to your program and you specified a
conditional request, GPR 15 (and rtcd addr, if you coded RTCD) contains one of the
following hexadecimal return codes:

STORAGE macro

136 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 18. Return Codes for STORAGE RELEASE

Return Code Meaning and Action

0 Meaning: Successful completion.

Action: None.

4 Meaning: Program error. Not all requested virtual storage was freed.

Action: Check your program for the following kinds of errors:

v The address of the storage area to be freed is not correct.

v The subpool you have specified does not match the subpool of the
storage to be freed.

v The key you have specified does not match the key of the storage to be
freed.

v For private storage: the owning task identified by the input TCB is not
correct for the storage to be freed.

8 Meaning: Program error. No virtual storage was freed because part of the
storage area to be freed is fixed.

Action: Check your program for the following kinds of errors:

v You passed an incorrect storage area address to the STORAGE macro.

v You attempted to free storage that is fixed.

Examples of the OBTAIN and RELEASE options

Example 1
Code the instructions to obtain 1000 bytes of virtual storage from subpool 223. The
system returns the address of the storage in register 3. If the request fails, the
system abends the caller.
LA 2,1000
STORAGE OBTAIN,LENGTH=(2),ADDR=(3),SP=223,COND=NO,LOC=ANY

Release the 1000 bytes obtained above from subpool 223 and abend the caller if the
request fails. Assume that the length of the storage is still in register 2 and the
address of the storage is in register 3.
STORAGE RELEASE,LENGTH=(2),ADDR=(3),SP=223,COND=NO
.
.

Example 2
Code the instructions to obtain 4096 bytes of virtual storage from subpool 227 —
above 16 megabytes, if possible. The address is returned at location STRGA. The
protection key is the caller's PSW key. The system is to assign the storage to be
obtained to the primary address space. The system is to store the return code at
location MY_RC.
STORAGE OBTAIN,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL,

CALLRKY=YES,LOC=ANY,COND=YES,OWNER=PRIMARY,RTCD=MY_RC

To release the 4096 bytes obtained above from subpool 227, issue:
L 2,KEY_5
STORAGE RELEASE,LENGTH=ONE_PAGE,ADDR=STRGA,SP=MY_SUBPOOL,

KEY=(2),COND=YES,RTCD=MY_RC
.
.
MY_RC DS F

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 137

STRGA DS F
KEY_5 DC X’00000050’
ONE_PAGE EQU 4096
MY_SUBPOOL EQU 227

Note that, when the caller passes the key in a register, the key must be in bits
24-27. Note also, that KEY=KEY_5 is not valid, as KEY_5 is neither a register nor a
decimal number.

Example 3
Code the instructions to obtain 4096 bytes of virtual storage from subpool 227.
Indicate that, if the system cannot obtain 4096 bytes, the caller can settle for as
little as 1024 bytes. The system returns the address of the storage obtained at
location STRGA. The protection key is 5. The system is to store the return code at
location MY_RC.
STORAGE OBTAIN,LENGTH=(ONE_PAGE,ONE_K),ADDR=STRGA, X

SP=MY_SUBPOOL,KEY=5,LOC=ANY,COND=YES,RTCD=MY_RC
ST 0,STRG_LEN

Release the storage from subpool 227, obtained above. Note that you cannot
specify LENGTH=STRG_LEN.
L 2,KEY_5
L 3,STRG_LEN
STORAGE RELEASE,LENGTH=(3),ADDR=STRGA,SP=MY_SUBPOOL, X

KEY=(2),COND=YES,RTCD=MY_RC
.
.
STRG_LEN DS F
MY_RC DS F
STRGA DS F
KEY_5 DC X’00000050’
ONE_K EQU 1024
ONE_PAGE EQU 4096
MY_SUBPOOL EQU 227

Example 4
Code the instructions to set up an 18-word save area, such as one that a program
in AR address space control (ASC) mode would obtain to call a program in
primary mode. The program issuing the STORAGE macro is in 31-bit addressing
mode, and the code is reentrant.
PGM CSECT
PGM AMODE 31
PGM RMODE ANY

BAKR 14,0 SAVE CALLER’S ARS, GPRS AND RETURN
* ADDRESS ON LINKAGE STACK

SAC 512 SWITCH TO AR ASC MODE
LAE 12,0(15,0) SET UP PROGRAM BASE REGISTER AND AR
USING PGM,12
STORAGE OBTAIN,LENGTH=72 GET REENTRANT SAVEAREA
LAE 13,0(1,0) PUT SAVEAREA ADDRESS IN AR/GPR 13
MVC 4(4,13),=C’F1SA’ PUT ACRONYM INTO SAVEAREA TO

* INDICATE STATUS SAVED ON LINKAGE STACK
.

* BEGIN PROGRAM CODE HERE

To release this save area, issue the following instructions:
.
LAE 1,0(0,13) COPY SAVEAREA ADDRESS
STORAGE RELEASE,ADDR=(1),LENGTH=72 FREE SAVEAREA

STORAGE macro

138 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

.
SLR 15,15 SET RETURN CODE OF ZERO
PR RETURN TO CALLER, RESTORE CALLERS STATUS

STORAGE macro

Chapter 11. STORAGE — Obtain and release storage 139

STORAGE macro

140 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 12. SUSPEND — Suspend execution of an RB

Description

Note: To suspend an SRB, use the variation of the SUSPEND macro described
under Chapter 13, “SUSPEND — Suspend execution of an SRB,” on page 143.

To suspend execution of a request block (RB), use this variation of the SUSPEND
macro. The RB remains suspended until a subsequent RESUME macro causes the
RB to resume execution.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0
Dispatchable unit mode: Task
Cross memory mode: Any
AMODE: 24- or 31-bit
ASC mode: Primary or secondary
Interrupt status: Can be either enabled or disabled
Locks: Can hold the CPU or local lock
Control parameters: Must be in the caller's primary address space

Programming requirements
The caller must include the IHAPSA mapping macro and the CVT mapping macro
specifying DSECT=YES.

Restrictions
The list and execute forms of the SUSPEND macro are not valid for suspending
execution of an RB.

Input register information
Before issuing the SUSPEND macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 141

0 Address of the suspended TCB

1 Address of the suspended RB

2-10 Unchanged

11-15 Used as work registers by the system

Performance implications
None.

Syntax
The SUSPEND macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

RB=PREVIOUS Default: RB=PREVIOUS

RB=CURRENT

Parameters
The parameters are explained as follows:

RB=PREVIOUS
RB=CURRENT

Specifies which RB on the TCB to suspend. The current RB is the one that is
executing; it is the first RB on the RB chain. The previous RB is the one that
follows the current RB on the RB chain.

ABEND codes
070

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
None.

Example
Suspend the execution of the most recently chained request block of the current
task.
SUSPEND RB=CURRENT

SUSPEND macro for RBs

142 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 13. SUSPEND — Suspend execution of an SRB

Description

Note: To suspend an RB, use the variation of the SUSPEND macro described
under Chapter 12, “SUSPEND — Suspend execution of an RB,” on page 141.

To request suspension of a supervisor request block (SRB), use this variation of the
SUSPEND macro.

When a caller issues the SUSPEND macro for an SRB, the system passes control to
an exit routine identified on the SUSPEND macro and passes the suspend token to
the routine. The exit routine decides whether to suspend the SRB or allow the SRB
to continue execution and informs the system of its decision. If the SRB is to be
suspended, the exit routine must store the suspend token so that the token can
later be used to resume the SRB. The system takes the action requested by the exit
routine. If the SRB is suspended, the SRB remains suspended until a subsequent
RESUME macro either causes the SRB to resume execution or purges the SRB. If
the exit routine allows the SRB to continue execution, control returns to the
program that issued the SUSPEND macro.

Note: If the suspend completes successfully, the system will release any local lock
that the caller might have held.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0 - 7
Dispatchable unit mode: SRB
Cross memory mode: Any
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold the local or CML lock but is not

required to hold any
Control parameters: Must be in the caller's primary address space or addressable

through the caller's dispatchable unit access list (DU-AL)

Programming requirements
Programming requirements for the calling program are:
v Before issuing the SUSPEND macro, ensure that the global symbol &SYSASCE is

correctly set to indicate the ASC mode of your program. To test or set this global
symbol, use the SYSSTATE macro.

v Programs in AR ASC mode must ensure that parameter addresses are
ALET-qualified.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 143

Input register information
Before issuing the SUSPEND macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the SUSPEND macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

SUSPEND macro for SRBs

144 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,EXIT=exit addr exit addr: RX-type address or register (2) - (12).

,EXITPARM=exitparm addr exitparm addr: RX-type address.

,RSCODE=rscode addr rscode addr: RX-type address.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

SPTOKEN=sptoken addr
Specifies the address of an 8-byte location where the system is to place the
suspend token that identifies the SRB that is to be suspended.

,EXIT=exit addr
The 31-bit address of the suspend exit routine. The suspend exit routine must
be addressable in the caller's primary address space.

,EXITPARM=exitparm addr
The 31-bit address of the parameters to be passed to the suspend exit routine.

,RSCODE=rscode addr
Specifies the address of the fullword where the system is to place the resume
code optionally returned by the suspend exit routine or by the program that
issued the RESUME macro.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and content of the
information provided is at the discretion of the user and may be any valid
coding values.

ABEND codes
017

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return codes
When the SUSPEND macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 19. Return Codes for the SUSPEND Macro

Return Code Meaning and Action

00 Meaning: The SRB was successfully suspended and resumed. If you code
the RSCODE parameter, the program that issues the RESUME macro might
have stored a value into RSCODE.

Action: None.

SUSPEND macro for SRBs

Chapter 13. SUSPEND — Suspend execution of an SRB 145

Table 19. Return Codes for the SUSPEND Macro (continued)

Return Code Meaning and Action

04 Meaning: The exit routine elected to allow the SRB to continue execution. If
you coded the RSCODE parameter, the exit routine might have stored a
value into RSCODE.

Action: None.

08 Meaning: Environmental error. A program tried to issue the SUSPEND
macro from an SRB after the SRB abended with code X'47B'. This SRB
cannot be suspended because it is in the process of being abended.

Action: None required. However, you might take some action based upon
your application.

0C Meaning: Program error. A program tried to issue the SUSPEND macro
from within the suspend exit. The suspend exit tried to resuspend the SRB.

Action: Change your suspend exit program so it does not issue a
SUSPEND request.

20 Meaning: Program error. An error occurred in the exit routine.

Action: Correct your suspend exit program to remove program errors.

24 Meaning: A system error occurred.

Action: Retry the request.

Example
Suspend the execution of an SRB.
...

SUSPEND SPTOKEN=TOKEN,EXIT=EXITRTN,RSCODE=RCODE...
EXITRTN DS 0H...

XR 15,15 Indicate to suspend the SRB
BR 14...

RCODE DS F’0’
TOKEN DS CL8...

SUSPEND (SRB) - List form
For programs that require reentrant code, use the list form of the SUSPEND macro
together with the execute form of the macro. The list form of the macro defines an
area of storage that the execute form of the macro uses to store parameter values.

Syntax
The list form of the SUSPEND macro is valid only for suspending an SRB. It is
written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND macro for SRBs

146 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

SUSPEND

� One or more blanks must follow SUSPEND.

MF=L

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the SUSPEND macro
with the following exception:

MF=L
Requests the list form of SUSPEND.

SUSPEND (SRB) - Execute form
For programs that require reentrant code, use the execute form of the SUSPEND
macro together with the list form. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the SUSPEND macro is valid only for suspending an SRB. It is
written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SUSPEND.

SUSPEND

� One or more blanks must follow SUSPEND.

SPTOKEN=sptoken addr sptoken addr: RX-type address.

,EXIT=exit addr exit addr: RX-type address or register (2) - (12).

,MF=(E,cntl addr) cntl addr: RX-type address or register (2) - (12).

,EXITPARM=exitparm addr exitparm addr: RX-type address.

SUSPEND macro for SRBs

Chapter 13. SUSPEND — Suspend execution of an SRB 147

Syntax Description

,RSCODE=rscode addr rscode addr: RX-type address.

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained under the standard form of the SUSPEND macro
with the following exception:

,MF=(E,cntl addr)
Requests the execute form of SUSPEND. cntl addr must be the address of the
parameter list provided by the list form of the macro.

SUSPEND macro for SRBs

148 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 14. SVCUPDTE — SVC update

Description
Use the SVCUPDTE macro to dynamically replace or delete SVC table entries, or
return the SVC number of a routine at a specified entry point. Callers who use this
service are responsible for providing recovery. Improper deletion or replacement of
system-provided SVC routines causes unpredictable results and might terminate
the system.

The resource name, SYSZSVC TABLE, is available as the operand of an ENQ or
DEQ macro, to be used when you must serialize the execution of a program that
uses the SVCUPDTE macro.

See z/OS MVS Programming: Authorized Assembler Services Guide for additional
information about the SVCUPDTE macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
Ensure that the code for the SVC routine added to the SVC table has the correct
attributes for the type of SVC specified.

The caller must include the CVT mapping macro.

Restrictions
None.

Input register information
Before issuing the SVCUPDTE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2013 149

containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

On input, register 13 must contain the address of a 72-byte save area.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 One of the following:
v If EXTRACT is specified: The SVC number
v If REPLACE or DELETE is specified: Unchanged

1-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The SVCUPDTE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

� One or more blanks must follow SVCUPDTE.

num num: Symbol, decimal number, hexadecimal number (for example, X‘02’), or
register (2) - (12). Do not specify num with EXTRACT.
Note: num cannot be 109, 116, 122, or 137 unless the ESR specification is
also used.

,REPLACE

,DELETE

,EXTRACT

,EXTRACTANY

,TYPE=1 Note: TYPE is only valid with REPLACE.

,TYPE=2

,TYPE=3

SVCUPDTE macro

150 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,TYPE=4

,TYPE=6

,EP=addr addr: A-type address, decimal number, hexadecimal number, or register (2) -
(12). addr should be a full 31-bit value with AMODE in bit 0.

,EPNAME=entry-name entry-name: Symbol

Note: EP and EPNAME are not needed with the DELETE option.

,LOCKS=(lname, lname,...) lname: CMS or LOCAL.

Note: LOCKS is invalid with DELETE and EXTRACT, and cannot be
specified with TYPE=6.

,APF=NO Default: APF=NO

,APF=YES Note: APF is only valid with REPLACE.

,AR=NO Default: AR=NO

,AR=YES Note: AR is valid only with REPLACE.

,NPRMPT=NO Default: NPRMPT=NO

,NPRMPT=YES Note: NPRMPT is only valid with REPLACE.

,RELATED=value value: Any valid macro keyword specification.

,ESR=esr esr: decimal number, or register (2) - (12).

,USEECVT=NO Default: USEECVT=NO

,USEECVT=YES

Parameters
The parameters are explained as follows:

num
Specifies the number of the SVC that is being inserted or deleted.

,REPLACE
,DELETE

Specifies the function to be performed. REPLACE indicates that an SVC table
entry is to be inserted in the SVC table. This could be a new SVC or a
replacement for an existing SVC. DELETE indicates that the specified SVC
number is to be deleted from the SVC table.

If you issue an SVC instruction with a deleted or undefined SVC number, the
program abnormally ends with a system completion code of X'Fnn' (nn is the
operand of the SVC instruction, in hexadecimal). However, if you issue an

SVCUPDTE macro

Chapter 14. SVCUPDTE — SVC update 151

SVCUPDTE macro using the DELETE parameter and specify a previously
deleted SVC number, no abnormal end results.

,EXTRACT
Indicates that the user has supplied an EP or EPNAME and wishes to have the
SVC number of that routine returned in register 0. The num parameter is not
valid with this option.

,EXTRACTANY
Indicates that the user has supplied an EP or EPNAME and wishes to have the
SVC or extended SVC number of that routine returned in register 0.

For a non-extended SVC
Bit 0 of register 0 has a value of 0. Bits 24–31 contain the SVC number.

For an extended SVC
Bit 0 of register 0 has a value of 1. Bits 16–23 contain the ESR number.
Bits 24–31 contain the SVC number.

The num parameter is not valid with this option.

,TYPE=1
,TYPE=2
,TYPE=3
,TYPE=4
,TYPE=6

Specifies the SVC type for a REPLACE request. See the topic “Programming
Conventions for SVC Routines” in z/OS MVS Programming: Authorized
Assembler Services Guide for information concerning the characteristics and
restrictions for each type of SVC.

,EP=addr
Specifies the entry point address of the SVC routine. The addressing mode of
the entry point is defined by bit 0 of the entry point address of the SVC
routine. If bit 0=1, the SVC routine will be entered in 31-bit addressing mode;
if bit 0=0, the SVC routine will be entered in 24-bit addressing mode.

,EPNAME=entry-name
Specifies the entry name of the SVC routine. The entry name must be the load
module name or alias of a module in LPA or the entry name of a module link
edited into the nucleus. The AMODE of the SVC routine is determined when
the SVC is link edited.

When entry-name is IGCERROR:
v When ESR=esr is not specified, the SVC routine results in a Fxx abend when

SVC xx is issued, where xx matches num.
v When ESR=esr is specified, the SVC routine results in abend 16D-8 when

SVC num with routing code esr is issued.

,LOCKS=(lname,lname,...)
Specifies the lock(s) required when the SVC routine executes. The lock(s)
specified can be CMS or LOCAL. This parameter is valid only with REPLACE.

Note:

1. TYPE=1 must not specify LOCAL.
2. TYPE=6 cannot specify any locks.
3. TYPE=2, 3, or 4 must specify LOCAL if CMS is specified.

,APF=YES

SVCUPDTE macro

152 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,APF=NO
Specifies whether or not the invocation of the SVC is to be restricted to
authorized programs. This parameter is valid only with REPLACE.

,AR=YES
,AR=NO

Specifies whether or not the SVC can be issued by a program in access register
mode. If you specify NO, a program that issues the SVC while in access
register mode abends with a completion code of X‘0F8’. This parameter is valid
only with REPLACE.

,NPRMPT=YES
,NPRMPT=NO

Indicates whether or not the SVC can be preempted for I/O interruptions.

,RELATED=value
Provides information to document the macro by relating the function
performed to another service or function. The format can be any valid coding
value that the user chooses.

,ESR=esr
Specifies the extended SVC routing number of an extended SVC. You may
supply a decimal number or a value in register (2) - (12). When you supply an
explicit SVC number, the ESR parameter is only allowed with SVC numbers
109, 116, 122, and 137. When you provide the SVC number in a register, the
ESR specification is ignored if the SVC number is not 109, 116, 122, or 137. This
parameter is not valid with EXTRACT. When ESR is specified, the TYPE
parameter is only used to validate other parameters, because each extended
SVC has a predefined type that cannot be changed.

Note: When using SVC screening with the ESR parameter, the system ignores
the screening information associated with the ESR number itself (for example,
109). The system only uses screening information associated with the routing
code.

,USEECVT=YES
,USEECVT=NO

You may use this optional parameter to avoid some system processing.
Specifying YES allows the system to locate the SVCUPDTE service with a
pointer in the ECVT instead of using the NUCLKUP service. You must be
running in AMODE 31 to use this parameter. This parameter also requires the
IHAECVT mapping macro.

ABEND codes
None.

Return codes
When the SVCUPDTE macro returns control to your program, GPR 15 contains a
hexadecimal return code.

Table 20. Return Codes for the SVCUPDTE Macro

Return Code Meaning and Action

00 Meaning: The macro completed successfully.

Action: None.

SVCUPDTE macro

Chapter 14. SVCUPDTE — SVC update 153

Table 20. Return Codes for the SVCUPDTE Macro (continued)

Return Code Meaning and Action

04 Meaning: The macro was coded incorrectly. For example, the user
requested REPLACE without specifying an SVC number.

Action: Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

08 Meaning: Program error. The DELETE parameter was not specified
correctly.

Action: Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

0C Meaning: Program error. A REPLACE request contained incorrect
information. For example, the user specified an SVC type that was not 1
through 6, or the specified entry point address was not on a halfword
boundary.

Action: Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

10 Meaning: Program error. A REPLACE request contained illogical
information. For example:

v A type 6 SVC specified a lock.

v Neither an entry point nor an EPNAME was provided for a REPLACE
request.

v Both an entry point and an EPNAME are provided.

v The entry point provided is zero.

v The CMS lock was requested without the LOCAL lock.

Action: Correct the error in the program that issued the request. Verify that
the execute form of the macro correctly references the list form.

14 Meaning: Program error. The function specified was not REPLACE,
DELETE, or EXTRACT.

Action: Verify that the function specified is REPLACE, DELETE, or
EXTRACT.

18 Meaning: Program error. The user has attempted to update an extended
SVC router entry in the SVC table (num was specified as 109, 116, 122, or
137).

Action: Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

1C Meaning: Environmental error. Unable to locate the entry point address for
an EPNAME specification.

Action: Verify that all parts of the product or application are currently
installed.

20 Meaning: Program error. An EXTRACT request contains illogical
information. For example:

v Neither an entry point address nor an EPNAME is specified.

v Both an entry point address and an EPNAME are specified.

v An SVC number is specified.

v The entry point address specified is zero.

Action: Correct the error in the program that issued the macro. Verify that
the execute form of the macro correctly references the list form.

24 Meaning: Environmental error. Unable to locate the SVC routine for the
EXTRACT request.

Action: Verify that all parts of the product or application are currently
installed.

SVCUPDTE macro

154 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 20. Return Codes for the SVCUPDTE Macro (continued)

Return Code Meaning and Action

28 Meaning: System error. An error occurred while updating the SVC table.

Action: Retry the request.

44 Meaning: Program error. A request was made to update an extended SVC,
but no extended SVC routing code was provided.

Action: When updating an extended SVC, use the ESR parameter to specify
the extended SVC routing code.

48 Meaning: Program error. A request was made to update a non-extended
SVC, but an extended SVC routing code was provided.

Action: When updating an non-extended SVC, do not use the ESR
parameter.

52 Meaning: Program error. A request was made to update an extended SVC,
but the supplied SVC type did not match the system-defined type for that
extended SVC.

Action: When updating an non-extended SVC, use the TYPE parameter to
specify the system-defined type for that particular extended SVC.

Example 1
Delete SVC 200 from the SVC table.
SVCUPDTE 200,DELETE

Example 2
Insert SVC 201 in the SVC table. This is a type 2 SVC, with entry point at location
SVCADDR. The SVC cannot be preempted for I/O interruptions.
SVCUPDTE 201,REPLACE,NPRMPT=NO,TYPE=2,EP=SVCADDR

Example 3
Replace SVC 202 in the SVC table. This is a type 1 SVC with entry point at the
location in register 2.
SVCUPDTE 202,REPLACE,TYPE=1,EP=(2)

Example 4
Replace SVC 203 in the SVC table. SVC 203 is a type 4 SVC requiring the LOCAL
lock. The routine has been loaded into LPA with the name MYSVC.
SVCUPDTE 203,REPLACE,TYPE=4,LOCKS=LOCAL,EPNAME=MYSVC

Example 5
Determine the SVC number associated with the name IGC062. The SVC number is
to be returned in register 0.
SVCUPDTE ,EXTRACT,EPNAME=IGC062

Example 6
Replace SVC 202 in the SVC table. This is a type 3 SVC with entry point at explicit
location X‘FFEC00’. Note that this example uses a symbol as the SVC number.
SVCUPDTE SVCNUM,REPLACE,TYPE=3,EP=X’FFEC00’

.

.

.
SVCNUM EQU 202

SVCUPDTE macro

Chapter 14. SVCUPDTE — SVC update 155

SVCUPDTE - List form
The list form of the SVCUPDTE macro builds a nonexecutable parameter list that
can be referred to by the execute form of the SVCUPDTE macro.

Syntax
The list form of the SVCUPDTE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

� One or more blanks must follow SVCUPDTE.

num num: Symbol, decimal number, hexadecimal number (for example X‘02’).

Note: This parameter must be specified on the execute and the list form of
the macro. Do not specify num with EXTRACT.

,REPLACE

,DELETE

,EXTRACT

,EXTRACTANY

,TYPE=1 Note: TYPE is not valid with DELETE.

,TYPE=2

,TYPE=3

,TYPE=4

,TYPE=6

,EP=addr addr: A-type address, decimal number, or hexadecimal number.

,EPNAME=entry-name entry-name: Symbol

Note: EP and EPNAME are not needed with the DELETE option. This
parameter must be supplied on either the execute or the list form.

,LOCKS=(lname, lname,...) lname: CMS or LOCAL.

Note: This option is only valid with REPLACE and must not be specified
with TYPE=6.

,APF=NO Default: APF=NO

SVCUPDTE macro

156 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,APF=YES Note: APF is only valid with REPLACE.

,AR=NO Default: AR=NO

,AR=YES Note: AR is valid only with REPLACE.

,NPRMPT=NO Default: NPRMPT=NO

,NPRMPT=YES Note: NPRMPT is only valid with REPLACE.

,RELATED=value value: Any valid macro keyword specification.

,ESR=esr esr: decimal number, or register (2) - (12).

,MF=L

Parameters
The parameters are explained under the standard form of the SVCUPDTE macro
with the following exception:

,MF=L
Specifies the list form of the SVCUPDTE macro.

Example 1
Use the list form of the macro to replace SVC 202 in the SVC table. It is a type 2
SVC with entry point at location SVCADDR. The SVC routine needs the local lock.
SVCUPDTE 202,REPLACE,TYPE=2,LOCKS=LOCAL,MF=L,EP=SVCADDR

Example 2
Use the list form of the macro to replace SVC 201 in the SVC table. The routine is a
type 2 SVC.
SVCUPDTE 201,REPLACE,TYPE=2,MF=L

SVCUPDTE - Execute form

Syntax
The execute form of the SVCUPDTE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SVCUPDTE.

SVCUPDTE

SVCUPDTE macro

Chapter 14. SVCUPDTE — SVC update 157

Syntax Description

� One or more blanks must follow SVCUPDTE.

num num: Register (2) - (12).

Note: This parameter must be supplied on either the execute or the list form
of the macro with REPLACE or DELETE, and it must not be specified with
EXTRACT.

,EP=addr addr: Register (2) - (12).

Note: This parameter must be supplied on either the execute or the list form
of the macro. This parameter is not needed with the DELETE option.

,EPNAME=entry-name entry-name: Symbol

Note: EP and EPNAME are not needed with the DELETE option. This
parameter must be supplied on either the execute or the list form.

,RELATED=value value: Any valid macro keyword specification.

,USEECVT=NO Default: USEECVT=NO

,USEECVT=YES

,MF=(E,addr) addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the SVCUPDTE macro
with the following exception:

,MF=(E,addr)
Specifies the execute form of the SVCUPDTE macro.

Example
Use the execute form of the SVCUPDTE macro to perform the function specified
by the parameter list whose address is given in register 2.
SVCUPDTE MF=(E,(2))

SVCUPDTE macro

158 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 15. SWAREQ — Invoke SWA manager in locate mode

Description
The SWAREQ macro has no standard form. It only has a list, an execute, and a
modify form. The MF parameter, which indicates the form of the macro, is
required.

When you invoke this macro in execute form, it uses the two parameters, FCODE
and EPA, to modify the parameter list, which is at the location you specify by the
addr value in the MF=(E,addr) parameter. After ensuring the validity of the
parameters, it invokes the SWA manager in locate mode. The SWA manager
obtains its input from the parameter list, and performs the function associated with
the specified FCODE. If you do not specify any parameters, the macro assumes the
parameter list already exists, and it simply invokes the SWA manager.

The modify form of SWAREQ is functionally the same as the execute form, except
that the macro only modifies the parameter list without invoking the SWA
manager. The list form of SWAREQ generates the parameter list that is modified
by the other two forms of the macro, and it does not invoke the SWA manager.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key; see the UNAUTH=NO

parameter description for an exception.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN; see the UNAUTH parameter

description for an exception.
AMODE: 24- or 31-bit; UNAUTH=YES requires 31-bit addressing

mode.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held; see the UNAUTH parameter description for

an exception.
Control parameters: Must be in the caller's primary address space

Programming requirements
The caller must include the following mapping macros:
v IEFZB505
v IEFJESCT
v CVT
v IEFQMIDS

If you have specified through JES parameters that SWA is to be located above 16
megabytes, you must be in 31-bit addressing mode to access SWA. See z/OS JES2
Initialization and Tuning Guide or z/OS JES3 Initialization and Tuning Guide for
information about locating SWA above 16 megabytes.

© Copyright IBM Corp. 1988, 2013 159

Restrictions
None.

Input register information
On input to the macro, register 13 must contain the address of a standard 18-word
save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 When control returns from SWAREQ, used as a work register by the
system.

When control does not return from SWAREQ, the address of a 16-byte area
containing:

Bytes 1-4
Address of the QMPA

Bytes 5-12
Not an intended programming interface; record this information
and provide it to the appropriate IBM support personnel.

Bytes 13-16
Address of the failing EPA

1 When control returns from SWAREQ, used as a work register by the
system.

When control does not return from SWAREQ, abend code 0B0.

2-12 Unchanged

13 If AMODE 31, then high bit will be cleared. If AMODE 24, then high byte
will be cleared.

14 Unchanged

15 Return code

Performance implications
None.

ABEND codes
The caller of the SWAREQ macro might receive abend code X'0B0' with one of the
following reason codes:
v X'04'
v X'08'
v X'0C'
v X'1C'
v X'20'
v X'24'
v X'28'
v X'34'

SWAREQ macro

160 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
The hexadecimal return code is in register 15. When you specify UNAUTH=YES,
the return codes have the following meanings:

Table 21. Return Codes for SWAREQ, UNAUTH=YES

Return Code Meaning

0 The SWAREQ service was successful.

8 The SVA in the SWA prefix was not valid.

24 The SVA does not correspond to any virtual address.

28 The pointer to the EPAL was not valid.

When you do not specify UNAUTH=YES, the return codes have the following
meanings:

Table 22. Return Codes for the SWAREQ Macro

Return Code Meaning

0 The SWAREQ service was successful.

8 The SVA in the SWA prefix was not valid.

0C You attempted to read a block that was not yet written.

10 The length for a SWA block was not valid.

1C The block id was not valid.

20 The block pointer was not valid.

24 The SVA does not correspond to any virtual address.

SWAREQ - List form

Syntax
The list form of the SWAREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: Address of the pointer to the EPA.

In the list form, this address may only be specified symbolically.

SWAREQ macro

Chapter 15. SWAREQ — Invoke SWA manager in locate mode 161

Syntax Description

,MF=L

Parameters
The parameters are explained as follows:

,FCODE=fncde
Specifies the function code for the locate mode request. Valid codes are:

RL Read/Locate

WL Write/Locate

For more information about the meaning of each code, see z/OS MVS
Programming: Authorized Assembler Services Guide.

,EPA=addr
Specifies the address of the pointer to the extended parameter area (EPA). Do
not specify the EPA itself on the EPA parameter.

,MF=L
Specifies the list form of the SWAREQ macro.

SWAREQ - Execute form

Syntax
The execute form of the SWAREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: External parameter area pointer address.

It may be specified symbolically, as a register enclosed in parentheses, or as
a symbol equated to a register enclosed in parentheses.

,UNAUTH=YES Default: UNAUTH=NO.

,UNAUTH=NO

,MF=(E,addr) addr: RX-type address or register (1) - (12).

SWAREQ macro

162 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

Parameters
The parameters are explained under the list form of the SWAREQ macro, with the
following exceptions:

,UNAUTH=YES
,UNAUTH=NO

UNAUTH=YES specifies that the system is to invoke the unauthorized form of
the SWA manager. The unauthorized form of the SWA manager provides the
output of the RL function of the authorized SWA manager. If you also specify
the FCODE parameter, the SWAREQ macro checks the syntax of the FCODE
parameter but does not use the function code. To use SWAREQ with
UNAUTH=YES you must:
v Be in 31–bit addressing mode
v Issue the macro IEFZB505 specifying LOCEPAX=YES, which generates a

longer, 28–byte, EPA

To use SWAREQ with the default of UNAUTH=NO, you must be in supervisor
state, holding no locks, in task mode, and not in cross memory mode.
However, when you are using SWAREQ to perform a Read Locate, you can
override these restrictions by specifying UNAUTH=YES, in which case you
must follow the requirements for UNAUTH=YES, above.

,MF=(E,addr)
E specifies the execute form of the SWAREQ macro, and addr specifies the
address of the parameter list.

SWAREQ - Modify form

Syntax
The modify form of the SWAREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWAREQ.

SWAREQ

� One or more blanks must follow SWAREQ.

,FCODE=fncde fncde: Function code

,EPA=addr addr: External parameter area pointer address.

It may be specified symbolically, as a register enclosed in parentheses, or as
a symbol equated to a register enclosed in parentheses.

SWAREQ macro

Chapter 15. SWAREQ — Invoke SWA manager in locate mode 163

Syntax Description

,MF=(M,addr) addr: RX-type address or register (1) - (12).

Parameters
The parameters are explained under the list form of the SWAREQ macro, with the
following exceptions:

,MF=(M,addr)
M specifies the modify form of the SWAREQ macro, and addr specifies the
address of the parameter list.

SWAREQ macro

164 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 16. SWBTUREQ — Call SJF SWBTU processing
services

Description
SWBTUREQ requests services for processing scheduler work block text units
(SWBTUs). The RETRIEVE service can be requested on the SWBTUREQ macro.
RETRIEVE obtains text unit information from SWBTUs for a specified set of keys
and places the information in the output area defined by the caller.

An SWBTU is made up of JCL statement or dynamically created JCL information
in contiguous text unit format. More than one SWBTU may be used to represent a
single JCL statement.

Examples of the use of SWBTUREQ RETRIEVE are the JES sysout separator page
installation exits. See the HASX15A member of SYS1.SAMPLIB for a sample exit.

For the RETRIEVE service, there are three calls that you can make:
v A call to determine the local working storage size needed for the service
v A call to determine the output area size needed to accommodate all the matched

text units
v A call to obtain the text units that match the requested keys.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, and any PSW key. For SWBTUREQ

RETRIEVE, the caller must have a PSW key that matches the
key of the caller's storage.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
The caller must set up recovery for SWBTUREQ RETRIEVE. The caller must
include the CVT and IEFJESCT mapping macros. IEFSJTRP maps the storage for
the required RETRIEVE service parameter list. “SWBTUREQ RETRIEVE input
parameters” on page 167 describes the parameter list's input fields. “SWBTUREQ
RETRIEVE output” on page 168 describes the fields that contain output on return
from the SWBTUREQ RETRIEVE service.

The caller is responsible for supplying all storage for SWBTUREQ RETRIEVE
processing. You can use SWBTUREQ RETRIEVE with different combinations of
parameters to determine the local working storage size needed, and to determine
and obtain the output area size needed for a particular request. A third
combination of parameters allows you to invoke SWBTUREQ RETRIEVE to obtain

© Copyright IBM Corp. 1988, 2013 165

text unit information. Table 23 on page 167 lists the required combination of
parameters to use based on the type of service call you are making.

Restrictions
None.

Input register information
On input to the SWBTUREQ macro, the caller must insure that general purpose
register (GPR) 13 points to a standard, 72-byte save area.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 If GPR 15 contains a zero, GPR 0 is used as a work register by the system.
If GPR 15 contains return code 12, GPR 0 contains a reason code;
otherwise, GPR 0 contains zero.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

Performance implications
None.

Syntax
The standard form of the SWBTUREQ macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SWBTUREQ

SWBTUREQ

� One or more blanks must follow SWBTUREQ

REQUEST=service service: Service name

,PARM=addr addr: RX-type address, or registers (2) - (12). Register 1 is the default.

Parameters
The parameters are explained as follows:

SWBTUREQ macro

166 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

REQUEST=service
Specifies the SJF SWBTU service to be called. RETRIEVE is the valid service
name.

,PARM=addr
Specifies the address of the parameter list for the service requested. The
parameter list for the RETRIEVE service is IEFSJTRP. “SWBTUREQ RETRIEVE
input parameters” lists the parameter fields you must initialize.

SWBTUREQ RETRIEVE service
Use RETRIEVE to obtain text unit information for a specified set of JCL or output
descriptor keys. The retrieved information is placed in a caller-defined output area.

Table 23. Parameter Combinations for SWBTUREQ RETRIEVE Functions

Function Required Parameters

Obtain local
working storage
size

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRAREA, and
SJTRSIZE. SJTRSTOR, SJTRSTSZ, SJTRAREA, and SJTRSIZE should be
zero on this invocation.

Obtain output
area size

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRSWBN,
SJTRSWBA, SJTRKIDN, SJTRKIDL. Fill in SJTRSTOR and SJTRSTSZ
with the values returned when you invoked the macro to determine the
local working storage size. SJTRAREA and SJTRSIZE should be zero on
this invocation.

Retrieve
requested keys

SJTRID, SJTRVERS, SJTRLEN, SJTRSTOR, SJTRSTSZ, SJTRSWBN,
SJTRSWBA, SJTRKIDN, SJTRKIDL. Fill in SJTRSTOR, SJTRSTSZ,
SJTRAREA, and SJTRSIZE with the values returned when you invoked
the macro to determine the local working storage size and the output
buffer size.

SWBTUREQ RETRIEVE input parameters
For each SWBTUREQ invocation, you need to initialize certain fields of parameter
list IEFSJTRP. Figure 4 on page 169 illustrates some of the parameter fields and
their relationships to other fields. The list below describes the valid value
assignments for all input parameters in IEFSJTRP.

SJTRID
The identifier ‘SJTR’ of the SWBTUREQ RETRIEVE parameter list. Assign the
symbolic equate SJTRCID to this field.

SJTRVERS
The current version number of the SWBTUREQ RETRIEVE service. Assign the
symbolic equate SJTRCVER to this field.

SJTRLEN
The length of the SWBTUREQ RETRIEVE parameter list (IEFSJTRP). Assign the
symbolic equate SJTRLGTH to this field.

SJTRSTOR
The local working storage pointer or zero.

SJTRSTSZ
The size of the local working storage area required by the service.

SJTRSWBN
The number of SWBTUs in the SWBTU address list table. The table is mapped
by SJTRSBTL.

SWBTUREQ macro

Chapter 16. SWBTUREQ — Call SJF SWBTU processing services 167

SJTRSWBA
The address of the SWBTU address list table from which text units are
retrieved. The address list is mapped by SJTRSBTL.

SJTRAREA
The address of the text unit output area.

SJTRSIZE
The size of the text unit output area.

SJTRKIDN
The number of entries in the key list. The key list is mapped by SJTRKEYL.

SJTRKIDL
The address of the list of keys that are to be retrieved. The key list is mapped
by SJTRKEYL.

SJTRSBTL
SWBTU address list from which text units are returned. The list contains one
entry per SWBTU. Parameter SJTRSWBN specifies the number of entries in the
list; SJTRSWBA specifies the address of the list. More than one SWBTU may be
used to represent a single JCL statement.

SJTRSTUP
An SWBTU address entry.

SJTRKEYL
The requested list of keys to be retrieved. Parameter SJTRKIDN specifies the
number of entries in the list; SJTRKIDL specifies the address of this list.

SJTRKYID
The key to be used for the retrieve. If you are using the RETRIEVE service
to obtain information about output descriptors, the key values for the
attributes are defined in mapping macro IEFDOKEY. See z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/
zos/bkserv/ for the mapping provided by IEFDOKEY. z/OS MVS
Programming: Authorized Assembler Services Guide lists the dynamic output
keys and their JCL equivalents.

SWBTUREQ RETRIEVE output
These parameters are returned with values on completion of RETRIEVE service
processing.

SJTRREAS
The reason code returned. The reason codes are defined in “Return and reason
codes” on page 169.

SJTRWKSZ
The local working storage size required by the SWBTUREQ service.

SJTRTULN
The size of the area needed to contain all matched requested text units.

SJTRERRP
This field contains a zero unless a parameter list error (key list or SWBTU
address entry error) occurs. In the case of a key list error (return code 8 with a
reason code of 65), the address of the key list entry in error appears in the
field. In the case of a SWBTU address entry error (return code 8 with a reason
code of 19 or 28), the address of the SWBTU address entry in error appears in
the field.

SWBTUREQ macro

168 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

SJTRAREA
The address of the text unit output area. The text unit output area contains the
matched text unit strings organized by key in the order they were requested.
Matched text unit strings are contiguous in the text unit output area. For the
mapping of each text unit see the IEFDOTUM mapping macro in z/OS MVS
Data Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/
zos/bkserv/.

SJTRKEYL
The requested key list. Parameter SJTRKIDN specifies the number of entries in
the list; SJTRKIDL specifies the address of this list.

SJTRTPAD
The address of a text unit for this key in the output area. Values are
returned in this field only if the key and text unit match. If the address is
not found, this field is zero.

ABEND codes
None.

Return and reason codes
Return codes appear in register 15. If you receive return code 12, the reason code
appears in register 0. If you receive return codes 0, 4, or 8, the reason code appears
in output field SJTRREAS. Return and reason codes are defined in macro
IEFSJTRC. The hexadecimal return and reason codes from the SWBTUREQ
RETRIEVE service are as follows:

SJTRSTOR
SJTRSTSZ

SJTRSWBN
SJTRSWBA

SJTRAREA
SJTRSIZE

SJTRKIDL
SJTRKIDN

IEFSJTRP

The SWBUT address
list. Each entry in
this table addresses
an input SWBTU.

@ input SWBTU

On input, contains
a list of requested
keys (SJTRKYID).

On output:

SJTRTPAD

SJTRKEYL

Local working
storage area

Working Storage

On return from
SWBTUREQ RETRIEVE
processing, it contains
matched text units.

Text Unit Output Area

Contains input
text units

Input SWBTU

SJTRSBTL

on output

Figure 4. Relationship of Data and Work Areas Referenced in IEFSJTRP

SWBTUREQ macro

Chapter 16. SWBTUREQ — Call SJF SWBTU processing services 169

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 24. Return and Reason Codes for SWBTUREQ RETRIEVE

Return Code Reason Code Meaning and Action

00 None Meaning: RETRIEVE processing completed
successfully. At least one text unit and key match
was found. For any unmatched text units, the
corresponding SJTRTPAD values are zero.

Action: None.

04 None Meaning: Either the caller did not provide
enough storage for the service or none of the
requested items was found. This is the expected
return code if you issue the RETRIEVE request to
obtain the working storage size or output area
size.

004 Meaning: RETRIEVE requires more local
working storage. The size of the local working
storage, as specified in input parameter
SJTRSTSZ, is not large enough for the service.
The amount of local working storage needed
appears in output parameter SJTRWKSZ.

Action: Repeat the request and supply the
amount of storage returned in SJTRWKSZ in
SJTRSTSZ.

008 Meaning: RETRIEVE requires more text unit
output area storage. The size needed for the
output storage area appears in output parameter
SJTRTULN.

Action: Repeat the request and supply the
amount of storage returned in SJTRTULN in
SJTRAREA.

064 Meaning: Successful completion. None of the
keys in the input key list were found in the
SWBTUs. All corresponding SJTRTPAD values
are zero. There are no returned text units in the
output area.

Action: None required.

08 None Meaning: The parameter list is not valid.

015 Meaning: The parameter length specified in
SJTRLEN is not valid for the specified version.

016 Meaning: The version number specified is not
correct for this service.

018 Meaning: The caller must provide at least one
SWBTU. Input parameter SJTRSWBN must be
greater than zero, and SJTRSWBA must reference
the SWBTU address list.

Action: Set SJTRSWBN to a value greater than
zero; set SJTRSWBA to the address of the SWBTV
address list.

019 Meaning: The specified SWBTU is not valid.
Either one of the entries is zero, or the SWBTU
address entry is not valid. Output parameter
SJTRERRP contains the address of the SWBTU
address entry.

Action: Specify a valid SWBTU referenced by the
SWBTU address is in SJTRERRP.

SWBTUREQ macro

170 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 24. Return and Reason Codes for SWBTUREQ RETRIEVE (continued)

Return Code Reason Code Meaning and Action

01A Meaning: Program error. The text length shown
in the DOCNTLEN field in the IEFDOTUM
mapping macro is not valid. SWBTUREQ
RETRIEVE processing stops. One possible cause
of the problem is a storage overlay.

Action: If your program has overlaid storage,
correct the error and rerun the program.
Otherwise, contact the appropriate IBM support
personnel.

028 Meaning: Either all of the verbs for the SWBTUs
or all of the labels for the SWBTUs do not match.
Output parameter SJTRERRP contains the
address of the SWBTU address entry where the
inconsistency was found.

Action: Correct the SWBTU in the SWBTU
address table entry whose address is in
SJTRERRP.

029 Meaning: The output area size, defined by the
combination of the input parameters SJTRAREA
and SJTRSIZE, is not valid. One of the
parameters is zero and the other is not zero.

Action: Set SJTRAREA and SJTRSIZE to values
greater than 0. (See “SWBTUREQ RETRIEVE
input parameters” on page 167.)

065 Meaning: The key entry is not valid. Input
parameter SJTRKYID is zero. Output parameter
SJTRERRP contains the address of the error key
entry, SJTRKYID.

Action: Correct the key in error (the key pointed
to by SJTRKYID).

066 Meaning: At least one key must be requested.
Input parameter SJTRKIDN must be greater than
zero and SJTRKIDL must reference the key entry
list.

Action: Set SJTRKIDN and SJTRKIDL to values
greater than zero. (See input parameter
description.)

0C None Meaning: A severe parameter list error occurred.
The reason code appears in register 0.

014 Meaning: An incorrect parameter ID was
specified. SJTRID is not ‘SJTR’.

Action: See “SWBTUREQ RETRIEVE input
parameters” on page 167 for SJTRID.

015 Meaning: An incorrect parameter length was
specified. SJTRLEN is not at least as large as the
common parameter list size, 36 bytes.

Action: See “SWBTUREQ RETRIEVE input
parameters” on page 167 for SJTRLEN.

016 Meaning: The version number is not correct.
SJTRVERS is less than one.

Action: See “SWBTUREQ RETRIEVE input
parameters” on page 167 for SJTRVERS.

SWBTUREQ macro

Chapter 16. SWBTUREQ — Call SJF SWBTU processing services 171

Table 24. Return and Reason Codes for SWBTUREQ RETRIEVE (continued)

Return Code Reason Code Meaning and Action

017 Meaning: The service specified by SWBTUREQ
REQUEST=service, is not known.

Action: Specify a valid request for 'service'.

14 None Meaning: SJF encountered a condition that
would have caused an abend. If processing had
continued, an abend would have occurred.

18 None Meaning: The service routines for SWBTUREQ
are not available.

Example
Invoke the SWBTUREQ RETRIEVE service to obtain text unit information for three
output descriptor attributes (title, name, and room). Represent the output
descriptor with SWBTU1 and SWBTU2. Use register 6 to contain the address of
SWBTU1, and register 7 to contain the address of SWBTU2. Use AREA to define
the text unit output area. Define the service's local working storage in LCLSTOR.
Establish an ESTAE for a recovery environment.

On return, register 15 contains return code 0, register 0 contains reason code 0, and
SJTRREAS contains reason code 0. The output areas from the service contain the
following information:
v SJTRAREA contains two contiguous text units that were in the SWBTUs and

were requested in the key list.
v SJTRWKSZ contains the size of local working storage required for the

SWBTUREQ RETRIEVE service.
v SJTRTULN contains the size of the area used to return the two matched text

units.
v SJTRKEYL contains unchanged SJTRKYIDs.

– SJTRTPAD contains the pointers for the matched text units and zero for
unmatched text units. For this example, SJTRTPAD's first entry points to the
first text unit returned in the text unit output area. The second entry contains
zero, and the third entry points to the second text unit returned in the text
unit output area.

* *
* Fill in 3 requested keys in the key list, SJTRKEYL. *
* *

*

XC KEYLIST,KEYLIST Initialize KEYLIST area
LA R2,KEYLIST Point to start of key list
USING SJTRKEYL,R2 Establish addressability

*
MVC SJTRKYID+0*SJTRKLEN,=Y(DOTITLE) Title Key
MVC SJTRKYID+1*SJTRKLEN,=Y(DONAME) Name Key
MVC SJTRKYID+2*SJTRKLEN,=Y(DOROOM) Room Key

*

* *
* Fill in 2 SWBTU pointers in SWBTU address list, SJTRSBTL. *
* *

*

XC SWBTULST,SWBTULST Initialize SWBTU pointer list area
*

SWBTUREQ macro

172 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

LA R3,SWBTULST Point to start of SWBTU pointer list
USING SJTRSBTL,R3 Establish addressability

*
ST R6,SJTRSTUP Set address of first SWBTU in 1st

* entry of SWBTU address list
LA R3,SJTRSLEN(,R3) Point to second entry in SWBTU
ST R7,SJTRSTUP Set address of second SWBTU in 2nd

* entry of SWBTU address list
*

* *
* Fill in the SWBTUREQ RETRIEVE parameter list, IEFSJTRP. *
* *

*

XC SJTRP(SJTRLGTH),SJTRP Clear the parameter list
MVC SJTRID,=A(SJTRCID) Parameter list ID
MVI SJTRVERS,SJTRCVER Parameter list version
LA R4,SJTRLGTH Get parameter list length
STH R4,SJTRLEN Set parameter list length

*
LA R4,LCLSTOR Get local working storage address
ST R4,SJTRSTOR Set local working storage address
LA R4,STORLGTH Get local working storage size
STH R4,SJTRSTSZ Set local working storage size

*
LA R4,AREA Get text unit output area address
ST R4,SJTRAREA Set text unit output area address
LA R4,AREALGTH Get text unit output area size
STH R4,SJTRSIZE Set text unit output area size

*
ST R2,SJTRKIDL Set key list address
LA R4,KEYNUM Get number of requested keys
STH R4,SJTRKIDN Set number of request keys

*
LA R3,SWBTULST Point to start of SWBTU pointer list
ST R3,SJTRSWBA Set address of SWBTU address list
LA R4,SWBTUNUM Get number of SWBTUs
STH R4,SJTRSWBN Set number of SWBTUs

*

* *
* Set up Register 1 to point to a word of storage that *
* contains the address of the parameter list, IEFSJTRP. *
* *

*

LA R4,SJTRP Address of
ST R4,SJTRPPTR the SWBTUREQ RETRIEVE
LA R1,SJTRPPTR parameter list

*

* *
* Invoke the SWBTUREQ macro to retrieve the matched text units *
* for items in the requested key list. *
* *

*

SWBTUREQ REQUEST=RETRIEVE Issue the SJF macro
*

* *
* Check for a zero return code. *
* *

*

LTR R15,R15 Check service return code

SWBTUREQ macro

Chapter 16. SWBTUREQ — Call SJF SWBTU processing services 173

BNZ NODATA Go to nonzero return processing
*
* Code to process zero return code from SWBTUREQ ...
* .
* .
* .
*
NODATA DS 0H Label used for branch when SWBTUREQ
* service returns with a nonzero
* return code.
*
* Code to process nonzero return code from SWBTUREQ...
* .
* .
* .
*

* *
* Storage definitions *
* *

*

IEFSJTRP DSECT=NO SWBTUREQ Retrieve parameter list
*
SJTRPPTR DS A Field used to contain SJTRP address
*
KEYLIST DS CL24 Area mapped by SJTRKEYL:
* enough storage for 3 entries
*
SWBTULST DS CL16 Area mapped by SJTRSBTL:
* enough storage for 2 entries
*
AREA DS CL600 Area used by SWBTUREQ service to move
* matched text units for output.
* 600 bytes is large enough and was
* chosen at random.
AREALGTH EQU *-AREA Size of AREA
*
LCLSTOR DS CL1000 Area used by SWBTUREQ service as
* local working storage.
STORLGTH EQU *-LCLSTOR Size of LCLSTOR
*

* *
* Equates and Constants *
* *

*
R0 EQU 0 Register 0
R1 EQU 1 Register 1
R2 EQU 2 Register 2
R3 EQU 3 Register 3
R4 EQU 4 Register 4
R15 EQU 15 Register 15
*
SWBTUNUM EQU 2 Indicates number of SWBTUs
KEYNUM EQU 3 Indicates number of requested keys
*

IEFDOKEY Dynamic Output keys
CVT DSECT=YES CVT mapping macro
IEFJESCT IEFJESCT mapping macro

SWBTUREQ macro

174 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 17. SYNCH and SYNCHX — Take a synchronous exit
to a processing program

Description
The SYNCH macro takes a synchronous exit to a processing program. After the
processing program has been executed, the program that issued the SYNCH macro
regains control. The SYNCH macro is also described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP with the exception of the KEYADDR, STATE,
KEYMASK, and XMENV parameters. These parameters are restricted to programs
in supervisor state, key 0-7, or APF-authorized.

If you are executing in 31-bit addressing mode, you must use the MVS/SP Version
2 of this macro, or a later version.

The SYNCH macro is intended for use by primary mode programs only. If your
program runs in access register (AR) mode, use SYNCHX, which provides the
same function as SYNCH. Descriptions of SYNCH and SYNCHX are:
v The standard form of the SYNCH macro, which includes general information

about the SYNCH and SYNCHX macros and some specific information about
the SYNCH macro. The syntax of the SYNCH macro is presented, and all
SYNCH parameters are explained.

v The standard form of the SYNCHX macro, which presents information specific
to the SYNCHX macro and callers in AR mode.

v The list form of the SYNCH and SYNCHX macros.
v The execute form of the SYNCH and SYNCHX macros.

If the caller is in AR mode, the system passes the following values, unchanged, to
the processing program:
v ARs 0-13
v Bits 16 and 17 of the current PSW indicating the ASC mode (primary or AR

mode, where primary=secondary=home)
v Extended authorization index (EAX)

Parameters for SYNCH and SYNCHX must be in the caller's primary address
space. Callers in AR mode must initialize AR 1 to zero before issuing SYNCHX.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 175

0-1 Values the processing program placed there before it returned to the caller

2-13 If RESTORE=YES, unchanged

If RESTORE=NO, values the processing program placed there before it
returned to the caller

14 Used as a work register by the system

15 Value the processing program placed there before it returned to the caller

Syntax
The SYNCH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCH.

SYNCH

� One or more blanks must follow SYNCH.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

,RESTORE=NO Default: RESTORE=NO

,RESTORE=YES

,KEYADDR=addr addr: RS-type address, or register (2) - (12).

,KEYADDR=NOKEYADDR Default: KEYADDR=NOKEYADDR

(The key in the TCB is used.)

,STATE=PROB Default: STATE=PROB

,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).

,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Default: AMODE=CALLER

,AMODE=31 Note: AMODE=DEFINED can only be specified if the entry point is
provided in a register.

,AMODE=DEFINED

,AMODE=CALLER

SYNCH and SYNCHX macros

176 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Parameters
The parameters are explained as follows:

entry point addr
Specifies the address of the entry point of the processing program to receive
control.

,RESTORE=NO
,RESTORE=YES

Specifies whether registers 2-13 are to be restored when control is returned to
the issuer of SYNCH.

,KEYADDR=addr
,KEYADDR=NOKEYADDR

addr specifies the address of a one-byte area that contains the key in which the
exit is to receive control. The key must be in bits 0-3; bits 4-7 must be zero. If
KEYADDR=addr is not specified, the key in the TCB is used as the default.

,STATE=PROB
,STATE=SUPV

Specifies the state in which the requested program receives control. PROB
specifies problem state and SUPV specifies supervisor state.

,KEYMASK=addr
Specifies the address of a halfword, which along with the protect key of the
currently active TCB, will be an operand in an OR instruction. The results of
that instruction produce the PKM of the routine to which your program will
take a synchronous exit.

If you specify KEYMASK, do not specify XMENV.

,XMENV=addr
Specifies the address of a parameter list that the caller passes to the SYNCH
macro service. The parameter list contains values that set up a cross memory
environment for the new PRB. The parameter list consists of either a 10-byte or
20-byte list of values that determine some of the characteristics the PRB will
have when it receives control. The parameter list must reside in the primary
address space and the AR that qualifies the address must be set be set to zero.
The format of the parameter list is indicated by the length field in the first two
bytes.
v If the length field in the first two bytes indicates a 10 (X'0A') byte parameter

list, the format is as follows (mapped by DSECT XMENV in data area
CSVXMENV):

Bytes Content of field

0-1 The value X‘0A’

2-3 PKM value, which along with the protect key of the currently active
TCB, will be an operand in an OR instruction. The results of that
instruction produce the PKM of the routine to which the synchronous is
to be taken.

4-5 SASN - defining the secondary address space for the exit routine

6-7 Extended authorization index (EAX) for the exit routine

8-9 PASN - defining the primary address space for the exit routine

v If the length field in the first two bytes indicates a 20 (X'14') byte parameter
list, the format is as follows (mapped by DSECT XMENV1 in data area
CSVXMENV):

SYNCH and SYNCHX macros

Chapter 17. SYNCH and SYNCHX — Take a synchronous exit to a processing program 177

Bytes Content of field

0-1 The value X'14'

2-3 PKM value, which along with the protect key of the currently active
TCB, will be an operand in an OR instruction. The results of that
instruction produce the PKM of the routine to which the synchronous is
to be taken.

4-5 SASN - defining the secondary address space for the exit routine

6-7 Extended authorization index (EAX) for the exit routine

8-9 PASN - defining the primary address space for the exit routine

10–11 Reserved for IBM use

12–15 The primary ASTE instance number

16–19 The secondary ASTE instance number

If you specify XMENV, do not specify KEYMASK.

,AMODE=24
,AMODE=31
,AMODE=DEFINED
,AMODE=CALLER

Specifies the addressing mode in which the requested program is to receive
control.

If AMODE=24 is specified, the requested program will receive control in 24-bit
addressing mode.

If AMODE=31 is specified, the requested program will receive control in 31-bit
addressing mode.

If AMODE=DEFINED is specified, the user must provide the entry point using
a register, not an RX-type address. The requested program will receive control
in the addressing mode indicated by the high-order bit of the entry point
address. If the bit is off, the requested program will receive control in 24-bit
addressing mode; if the bit is set, the requested program will receive control in
31-bit addressing mode.

If AMODE=CALLER is specified, the requested program will receive control in
the addressing mode of the caller.

Example 1
Take a synchronous exit to a processing program whose entry point address is
specified in register 8.
SYNCH (8)

Example 2
Take a synchronous exit to a processing program labeled SUBRTN and restore
registers 2-13 when control is returned.
SYNCH SUBRTN,RESTORE=YES

Example 3
Take a synchronous exit to a processing program whose entry point address is
specified in register 5, modify the program's protect key by the KEYADDR and
KEYMASK values, and restore registers 2-13 when control returns.

SYNCH and SYNCHX macros

178 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SYNCH (5),RESTORE=YES,KEYADDR=KEYBYTE,KEYMASK=MSKADDR
.
.
.

KEYBYTE DC X’80’
MSKADDR DC X’0080’

Example 4
Take a synchronous exit to the program located at the address given in register 8
and restore registers 2-13 when control returns. Indicate that this program is to
execute in 24-bit addressing mode.
SYNCH (8),RESTORE=YES,AMODE=24

SYNCHX - Take a synchronous exit to a processing program
The SYNCHX macro allows a program running in primary or AR mode to take a
synchronous exit to a processing program. This macro is the same as the SYNCH
macro, except that, for callers in AR mode, it generates code and addresses that are
appropriate in AR mode. All parameters on the SYNCH macro are valid for the
SYNCHX macro.

You can issue the SYNCHX macro in 64-bit addressing mode. However,
AMODE=DEFINED can only be used to SYNCHX to amode 24 or amode 31
programs.

Before you issue the SYNCHX macro, issue the SYSSTATE ASCENV=AR macro to
tell the SYNCHX macro to generate code appropriate for AR mode.

Syntax
The SYNCHX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCHX.

SYNCHX

� One or more blanks must follow SYNCHX.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

,RESTORE=NO Default: RESTORE=NO

,RESTORE=YES

,KEYADDR=addr addr: RX-type address, or register (2) - (12).

,KEYADDR=NOKEYADDR Default: KEYADDR=NOKEYADDR (The key in the TCB is used.)

SYNCH and SYNCHX macros

Chapter 17. SYNCH and SYNCHX — Take a synchronous exit to a processing program 179

Syntax Description

,STATE=PROB Default: STATE=PROB

,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).

,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Default: AMODE=CALLER

,AMODE=31

,AMODE=64

,AMODE=DEFINED Note: AMODE=DEFINED can only be specified if the entry point is
provided in a register. AMODE=DEFINED can only be used to SYNCHX to
amode 24 and amode 31 programs.

,AMODE=CALLER

Parameters
The parameters are described under the syntax of the standard form of the SYNCH
macro. If AMODE=64 is specified, the requested program will receive control in
64-bit addressing mode.

SYNCH and SYNCHX - List form
The list form of the SYNCH or SYNCHX macro is used to construct a control
program parameter list.

Syntax
The list form of the SYNCH or SYNCHX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCH or SYNCHX.

SYNCH or SYNCHX

� One or more blanks must follow SYNCH or SYNCHX.

,RESTORE=NO Default: RESTORE=NO

,RESTORE=YES

,STATE=PROB Default: STATE=PROB

,STATE=SUPV

SYNCH and SYNCHX macros

180 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,KEYMASK=addr addr: A-type address.

,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Default: AMODE=CALLER

,AMODE=31

,AMODE=DEFINED

,AMODE=CALLER

,MF=L

Parameters
The parameters are explained under the standard form of the SYNCH macro with
the following exception:

,MF=L
Specifies the list form of the SYNCH macros.

Example
Use the list form of the SYNCH macro to specify that registers 2-13 are to be
restored when control returns from executing the SYNCH macro and that the
addressing mode of the program is to be defined by the high-order bit of the entry
point address. Assume that the execute form of the macro specifies the program
address.
SYNCH ,RESTORE=YES,AMODE=DEFINED,MF=L

SYNCH and SYNCHX - Execute form
The execute form of the SYNCH or SYNCHX macro uses a remote program
parameter list that can be generated by the list form of SYNCH or SYNCHX.

Syntax
The execute form of the macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede SYNCH or SYNCHX.

SYNCH

� One or more blanks must follow SYNCH or SYNCHX.

entry point addr entry point addr: RX-type address, or register (2) - (12) or (15).

SYNCH and SYNCHX macros

Chapter 17. SYNCH and SYNCHX — Take a synchronous exit to a processing program 181

Syntax Description

,RESTORE=NO

,RESTORE=YES

,KEYADDR=addr addr: RX-type address, or register (2) - (12).

,KEYADDR=NOKEYADDR

,STATE=PROB

,STATE=SUPV

,KEYMASK=addr addr: RX-type address, or register (0) - (12).

,XMENV=addr addr: RX-type address or register (0) - (12).

,AMODE=24 Note: AMODE=DEFINED can only be specified if the entry point is
provided in a register.

,AMODE=31

,AMODE=DEFINED

,AMODE=CALLER

,MF=(E,ctrl addr) ctrl addr: RX-type address or register (1), (2) - (12).

Parameters
The parameters are explained under the standard form of the SYNCH macro with
the following exceptions:

,KEYADDR=NOKEYADDR
Indicates that the default(the key in the TCB) should be used instead of the
key in the parameter list defined by a list form of the macro.

,MF=(E,ctrl addr)
Specifies the execute form of the SYNCH macro using a list generated by the
list form of SYNCH.

Example
Use the execute form of the SYNCH macro to take a synchronous exit to the
program located at the address given in register 8 and restore registers 2-13 when
control returns. Indicate that the program is to receive control in the same
addressing mode as the caller and that the parameter list is located at SYNCHL2.
SYNCH (8),RESTORE=YES,AMODE=CALLER,MF=(E,SYNCHL2)

SYNCH and SYNCHX macros

182 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 18. SYSEVENT — System event

Description
The SYSEVENT macro provides the interface to the system resource manager
(SRM). Using SYSEVENT mnemonics, you can:
v Notify SRM of an event
v Ask SRM to perform a specific function

Environment
The requirements for the ENTRY=BRANCH caller are:

Environmental factor Requirement
Authorization: Supervisor state and PSW key 0 - 7
Dispatchable unit mode: Task or SRB.
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: Callers that specify ENTRY=BRANCH must hold the

LOCAL lock for TRAXRPT, TRAXFRPT and TRAXERPT.
There are no locking requirements for the other SYSEVENTs.

The requirements for the ENTRY=SVC caller are:

Environmental factor Requirement
Authorization: APF authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locking requirements

The requirements for the ENTRY=UNAUTHPC caller are:

Environmental factor Requirement
Authorization: Problem state and PSW key 8 - 15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

The following SYSEVENTs are unauthorized:
v FREEAUX
v QVS
v REQFASD

© Copyright IBM Corp. 1988, 2013 183

v REQLPDAT with ENTRY=UNAUTHPC
v QRYCONT with ENTRY=UNAUTHPC

The requirements are:

Environmental factor Requirement
Authorization: Problem state or key 8-15
AMODE: 31- or 64-bit

All other requirements are as noted above for ENTRY=BRANCH, ENTRY=SVC.

Programming requirements
When you specify ENTRY=BRANCH, include the CVT mapping macro as a
DSECT in the calling program. If a specific SYSEVENT requires a parameter list in
addition to the information specified on the macro invocation, load register 1 with
the address of that parameter list before issuing the macro.

Restrictions and limitations
For restrictions on the use of each SYSEVENT, including input and output
requirements, refer to the descriptions of the parameters.

Input register information
When you specify ENTRY=BRANCH, register 13 must contain the address of a
72-byte save area on input. For specific input register requirements, see the
description of the specific SYSEVENT.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1 One of the following:
v Unchanged (for ENCASSOC, STGTEST, TRAXRPT, TRAXFRPT,

TRAXERPT, REQASCL, REQASD, REQFASD, REQSRMST, ENQHOLD,
ENQRLSE, QRYCONT, and QVS SYSEVENTs)

v Status code (for DONTSWAP, OKSWAP, and TRANSWAP SYSEVENTs)

2-13 Unchanged

14 Used as a work register by the system

15 One of the following:
v Return code (for ENCASSOC, TRAXRPT, TRAXFRPT, TRAXERPT,

REQASCL, REQASD, REQFASD, REQSRMST, ENQHOLD, ENQRLSE,
QRYCONT, and QVS SYSEVENTs)

SYSEVENT macro

184 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v Used as a work register by the system (for DONTSWAP, OKSWAP,
STGTEST, and TRANSWAP SYSEVENTs)

Syntax
The SYSEVENT macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede SYSEVENT.

SYSEVENT

� One or more blanks must follow SYSEVENT.

sysevent mnemonic sysevent mnemonic: symbol.

Note: See the description of the parameters for the valid options.

,ENTRY=SVC

,ENTRY=BRANCH

,ENTRY=UNAU THPC

Defaults:

DONTSWAP SVC (BRANCH possible)

ENCASSOC BRANCH

ENCSTATE BRANCH (SVC possible)

ENQHOLD BRANCH (SVC possible)

ENQRLSE BRANCH (SVC possible)

FREEAUX BRANCH

OKSWAP SVC (BRANCH possible)

QVS BRANCH

REQASCL BRANCH (SVC possible)

REQASD SVC (BRANCH possible)

REQFASD BRANCH

REQLPDAT BRANCH (SVC and UNAUTHPC possible)

REQSRMST SVC (BRANCH possible)

STGTEST SVC (BRANCH possible)

TRANSWAP SVC (BRANCH possible)

TRAXERPT BRANCH

TRAXFRPT BRANCH

TRAXRPT BRANCH

QRYCONT SVC (BRANCH and UNAUTHPC possible)

Note: The FREEAUX, QVS, REQFASD, TRAXERPT, TRAXFRPT, and
TRAXRPT SYSEVENTS use an unauthorized BRANCH.

SYSEVENT macro

Chapter 18. SYSEVENT — System event 185

Syntax Description

,TYPE=type value Note:

1. The ENCASSOC, ENQHOLD, ENQRLSE, and REQFASD SYSEVENTs
support the TYPE parameter.

2. For valid type values refer to the descriptions of the specific SYSEVENT:

v For ENCASSOC, see “Associate an enclave with an address space
(ENCASSOC)” on page 200.

v For ENQHOLD, see “Identify holder of a resource (ENQHOLD)” on
page 197.

v For ENQRLSE, see “Identify that a holder has released resource
(ENQRLSE)” on page 199.

v For REQFASD, see “Obtain address space related information
(REQASD and REQFASD)” on page 194.

,ASID=asid Address space ID

,ASIDL=asidl

Parameters
The parameters are explained as follows:

sysevent mnemonic
Identifies the SYSEVENT being requested. The valid options are:
v DONTSWAP,
v ENCASSOC
v ENCSTATE
v ENQHOLD
v ENQRLSE
v FREEAUX
v OKSWAP
v QRYCONT
v QVS
v REQASCL
v REQASD
v REQFASD
v REQLPDAT
v REQSRMST
v STGTEST
v TRAXERPT
v TRAXFRPT
v TRAXRPT
v TRANSWAP

See “SYSEVENT mnemonics” on page 187 for a description of these options.

,ENTRY=SVC
,ENTRY=BRANCH
,ENTRY=UNAUTHPC

Specifies the instruction used to pass control to SRM.

SYSEVENT macro

186 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Only users who do not hold a lock can specify ENTRY=SVC.

Branch entry is required when the caller holds a lock. It is also the only
supported entry for FREEAUX, REQFASD, QVS, TRAXERPT, TRAXFRPT,
TRAXRPT, and ENCASSOC.

Use the UNAUTHPC entry to call SYSEVENTs from an unauthorized
environment. If your application is performance critical or issues the
SYSEVENT many times a second, use ENTRY=SVC or ENTRY=BRANCH.

,TYPE=type value

Note:

1. The ENCASSOC, ENQHOLD, ENQRLSE, and REQFASD SYSEVENTs
support the TYPE parameter.

2. For valid type values refer to the descriptions of the specific SYSEVENT:
v For ENCASSOC, see “Associate an enclave with an address space

(ENCASSOC)” on page 200.
v For ENQHOLD, see “Identify holder of a resource (ENQHOLD)” on

page 197.
v For ENQRLSE, see “Identify that a holder has released resource

(ENQRLSE)” on page 199.
v For REQFASD, see “Obtain address space related information (REQASD

and REQFASD)” on page 194.

,ASID=register
,ASIDL=asid

Specifies the address space identifier in ASIDL=asid, or the register containing
the address space identifier in ASID=register. Either ASIDL or ASID is required
for REQASD and REQFASD.

SYSEVENT mnemonics
The following sections describe all SYSEVENT mnemonics that are supported. The
mnemonics are grouped according to the function that they perform.

Notify SRM of transaction completion (TRAXRPT, TRAXFRPT,
TRAXERPT)

The SYSEVENTs TRAXRPT, TRAXFRPT, and TRAXERPT notify SRM that a
subsystem transaction has completed and provide the transaction's starting time or
elapsed time and, optionally, its resource utilization. This performance data can be
reported using the resource management facility (RMF™).

You should use the workload management services to notify SRM of transaction
start and completion times, as well as notifying SRM of transaction delays
encountered. For more information, see z/OS MVS Programming: Workload
Management Services.

In addition to the general requirements for SYSEVENTs, TRAXRPT, TRAXFRPT,
and TRAXERPT require the user to:
v Provide a parameter list
v If the issuing program is disabled, ensure that the parameter list and save area

are fixed
v Provide error recovery

SYSEVENT macro

Chapter 18. SYSEVENT — System event 187

The mnemonics are explained as follows:

TRAXRPT
Notifies SRM that a transaction has completed and provides its start time.
Register 1 must point to a serialized parameter list with the following format:

Offset in Hex Length Field Description
00 8 Transaction start time in store clock

instruction (STCK) format
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks
20 8 Transaction class or blanks

The names must be in EBCDIC format, left-justified, and padded with blanks.
Note that the subsystem name is restricted to four characters in length even
though the parameter list provides an eight-character field. Use the first four
characters of the field for the subsystem name.

TRAXFRPT
Notifies SRM that a transaction has completed and provides the elapsed time.
Because the issuer calculates the elapsed time before issuing the macro, this
path is shorter than the path for TRAXRPT. Register 1 must point to a
serialized parameter list with the following format:

Offset in Hex Length Field Description
00 4 Transaction elapsed time (1.024

milliseconds units)
04 4 Zero
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks
20 8 Transaction class or blanks

Note: To map the parameter list, use the IHATRBPL mapping macro described
in z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

The names must be in EBCDIC format, left-justified, and padded with blanks.
Note that the subsystem name is restricted to four characters in length.

TRAXERPT
Notifies SRM that a transaction has completed, provides its start time, and
includes resource utilization data for determining service consumption.
Register 1 must point to a serialized parameter list in the following format:

Offset in Hex Length Field Description
00 8 Transaction start time in STCK format
08 8 Subsystem name
10 8 Transaction name or blanks
18 8 User identification (USERID) or blanks
20 8 Transaction class or blanks
28 8 Task (TCB) time in STCK format or zeros
30 8 SRB time in STCK format or zeros
38 8 Main storage occupancy in page seconds

(pages times msec, where msec is task
(TCB) time in 1.024 millisecond units)

SYSEVENT macro

188 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Offset in Hex Length Field Description
40 4 Logical I/O count or zeros
44 1 X'00' if the previous field contains the

logical I/O count, X'80' if the previous
field contains the device connect time
interval (DCTI)

45 3 Reserved must be zero

Note: To map the parameter list, use the IHATREPL mapping macro described
in z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

The names must be in EBCDIC format, left-justified, and padded with blanks.
Note that the subsystem name is restricted to four characters in length.

Return and reason codes
When processing is completed for TRAXRPT, TRAXFRPT, and TRAXERPT
SYSEVENTs, the subsystem regains control at the instruction following the
SYSEVENT macro. The last byte of register 15 contains one of the following
hexadecimal return codes:

Table 25. Return Codes for the SYSEVENT Macro

Return Code Meaning

00 Data for the transaction has been reported successfully to the SRM.

08 Processing could not be completed at this time. No queue elements are
available for recording the data. No data is reported to the SRM, but an
immediate reissue could be successful.

0C Reporting is temporarily suspended for one of the following reasons:

v RMF workload activity reporting is not active.

v The TOD clock is stopped.

No data is reported, but a later reissue could be successful.

10 Reporting is inoperative. The TOD clock is in error or the reporting
interface is not installed. No data is reported.

Example 1
Use the SYSEVENT TRAXRPT to report transaction data providing transaction
identifiers and the transaction start time. In the following example, TRAXDESC is
the name of a storage area that is initialized with the subsystem name, transaction
name, user ID and class information needed to pass to SRM:
.
.
.
Transaction begins Initialize transaction identifiers

(TRAXDESC)
STCK INITTIME Save start time
.
Process transaction
Transaction completes
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(8,R1),INITTIME Move in start time
MVC 8(32,R1),TRAXDESC Get subsystem name, transaction

name, user ID, and class
SYSEVENT TRAXRPT
.

SYSEVENT macro

Chapter 18. SYSEVENT — System event 189

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

.
INITTIME DS D
PARMS DS 5D
SVAREA DS 18F
TRAXDESC DS CL40

Example 2
Use the SYSEVENT TRAXERPT to report transaction data, providing transaction
identifiers, start time and resource utilization data. In the following example,
TRAXDESC is the name of a storage area that is initialized with the subsystem
name, transaction name, user ID and class information needed to pass to SRM:
.
.
Transaction begins Initialize transaction identifiers

(TRAXDESC)
STCK INITTIME Save start time
.
Process transaction Accumulate resource utilization data

(TRAXDESC)
.
Transaction completes
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(8,R1),INITTIME Move in start time
MVC 8(64,R1),TRAXDESC Get subsystem name, transaction

name, user ID, class, and
resource utilization data

SYSEVENT TRAXERPT
.
.
.
INITTIME DS D
PARMS DS 9D
SVAREA DS 18F
TRAXDESC DS CL72

Example 3
Use the SYSEVENT TRAXFRPT to report transaction data, providing transaction
identifiers and calculating the elapsed time. In the following example, TRAXDESC
is the name of a storage area that is initialized with the subsystem name,
transaction name, user ID and class information needed to pass to SRM:
.
.
Transaction begins Initialize transaction identifiers (TRAXDESC)
.
.
Process transaction Calculate elapsed time (TOTLTIME)
.
Transaction completes Calculate elapsed time (TOTLTIME)
LA R13,SVAREA Provide 72-byte save area
LA R1,PARMS Point to parameter area
MVC 0(4,R1),TOTLTIME Move in elapsed time
XC 4(4,R1),4(R1) Clear reserved field
MVC 8(32,R1),TRAXDESC Get subsystem name, transaction name,

user ID, and class
SYSEVENT TRAXFRPT
.
.
.
TOTLTIME DS F
PARMS DS 5D
SVAREA DS 18F
TRAXDESC DS CL40

SYSEVENT macro

190 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Control swapping (DONTSWAP, OKSWAP, TRANSWAP)
The SYSEVENTs DONTSWAP, OKSWAP, and TRANSWAP control swapping. The
choice of mnemonic depends on the period of time for which the address space is
to be non-swappable.

For a short period of time (less than one minute), use DONTSWAP to make it
non-swappable and OKSWAP to make it swappable.

For an extended period of time (more than one minute), use TRANSWAP to make
the address space non-swappable and OKSWAP to make it swappable.

Note: If you specify an ASID with DONTSWAP, OKSWAP, or TRANSWAP, that
ASID must specify the home address space. This means, you can only control
swapping in the address space in which the SYSEVENT is issued. If you specify
another address space the request cannot be carried out.

The mnemonics are explained as follows:

DONTSWAP
Notifies SRM that the address space from which this SYSEVENT is issued
cannot be swapped out until the system receives a matching OKSWAP for each
DONTSWAP issued or until the jobstep ends.

No input parameters are required. One of the following codes will be returned
in register 1, byte 3:

Hexadecimal Code Meaning

00 The request was honored.

04 The request was not honored because it was not for the current address
space.

08 The request was not honored because the issuer was not authorized or the
outstanding count of DONTSWAP requests had reached its maximum.

OKSWAP
Notifies SRM that the address space from which the SYSEVENT was issued
can be considered for swapping.

No input parameters are required. One of the following codes will be returned
in register 1, byte 3:

Hexadecimal Code Meaning

00 The request was honored.

04 The request was not honored because it was not for the current address
space.

08 The request was not honored because the issuer was not authorized.

TRANSWAP
Forces a swap out. After the subsequent swap-in, frames are allocated from
preferred storage and the address space is non-swappable. TRANSWAP
prevents programs from allocating frames in reconfigurable storage. If the
program issuing SYSEVENT depends on the transition to complete, you should
ensure that register 1 contains the address of an ECB. SYSEVENT will then
post this ECB when it swaps out the address space. If no dependency exists,
set register 1 to 0 (zero).

One of the following codes will be returned in register 1, byte 3:

SYSEVENT macro

Chapter 18. SYSEVENT — System event 191

Hexadecimal Code Meaning

00 The request was honored. If an ECB was specified, your program should
issue a WAIT macro specifying the same ECB.

04 The transition was previously done or the address space is permanently
non-swappable. If an ECB was specified it will not be posted.

If an ECB was specified, the following POST codes may occur in the last three
bytes of the ECB:

Hexadecimal Code Meaning

000000 The transition is complete.

000004 The address space became non-swappable before it could be swapped out.

Example 1
To make the current address space non-swappable for a time period of less than
one minute, specify the following:
SYSEVENT DONTSWAP

.

.

.
SYSEVENT OKSWAP

Example 2
To make the current address space non-swappable for an indefinite period of time,
specify the following:

SYSEVENT TRANSWAP
ST 1,RETCODE
CLI TSWP_RC,0
BNE FAILED
WTO ’TSWP SUCCESSFUL’
...
B DONE

FAILED EQU *
WTO ’TSWP UNSUCCESSFUL (BAD RC)’

DONE EQU *
...

RETCODE DS 0F
DS CL3

TSWP_RC DS FL1

Obtain system measurement information (STGTEST)
The STGTEST SYSEVENT provides information about the current physical use of
resources. This is not an indication of how much virtual storage your installation
will allow you to obtain. For more information on obtaining virtual storage for
hiperspaces or data spaces, see DSPSERV.

The user must supply the address of a storage area large enough to store the
requested data.

STGTEST
Returns information about the amount of storage available in the system. The
purpose of SYSEVENT STGTEST is to help an application decide whether to
use an additional virtual storage area, such as a hiperspace.

SYSEVENT macro

192 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

When you use this information, be aware of the dynamic nature of storage.
Note that the output of the SYSEVENT STGTEST only reflects the current state
of storage and does not reserve this storage for the caller, or guarantee that it
will be available for use.

Register 1 must contain the address of a three-word output area where SRM is to
return the information. After SRM returns, each word contains a storage amount
that represents a specific number of frames. Before you choose a number to use as
the basis for decision, be aware of how your decision affects the performance of
the system. The meaning of the returned values is:
v Use of the first number will affect system performance very little, if at all.
v Use of the second number might affect system performance to some degree.
v Use of the third number might substantially affect system performance.

If you base decisions on the value in the second or third word, SRM may have to
take processor storage away from other programs and replace it with auxiliary
storage.

Note: Currently, the value returned in the third word will always be the same as
the value returned in the second word.

Example
An application needs a standard hiperspace. Before it makes the request, the
application uses SYSEVENT STGTEST to find out how much storage is available.
The values that SRM returns determine how large a hiperspace the application will
create.

To obtain a report on the storage available in the system, specify the following:
LA 1,ESPARM
SYSEVENT STGTEST

.

.
ESPARM DS 3F

The application will base its decision on the numbers in the first and second words
of the output area.

Obtain address space classification information (REQASCL)
The REQASCL SYSEVENT provides information about an address space's
classification information. You must specify the address space id (ASID) with either
the ASID=register or the ASIDL=asid parameter.

The user must supply the address of a storage area large enough to hold the
requested data.

REQASCL
Returns classification information about an address space.

The name is in EBCDIC format, left-justified, and padded with blanks.

Input register information
Register 1 must point to a parameter list. The parameter list for REQASCL must be
non-pageable and addressable via the caller's primary address space. To map the
parameter list for REQASCL, use the IRARASC mapping macro described in z/OS

SYSEVENT macro

Chapter 18. SYSEVENT — System event 193

MVS Data Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/
zos/bkserv/. The caller must set the RASC_ACRO, RASC_VERSION, and
RASC_LENGTH fields. The IRARASC macro defines constants for this purpose.
The following table lists the constants which contain the correct values for each
field:

Table 26. Fields and constants

Field Constant

RASC_ACRO RASC_ID_CONSTANT

RASC_VERSION RASC_CURRENTVERSION

RASC_LENGTH RASC_CURRENTVERSION_LEN

Return and reason codes
When processing is complete for the REQASCL, the last byte of register 15 contains
one of the following hexadecimal return codes:

Table 27. Return Codes for REQASCL

Return Code Meaning

00 Successful completion.

04 Classification information returned may not reflect how the address space
is being managed.

08 Input parameter list is not properly initialized (eyecatcher, version or size
specified is too small).

12 Classification information is not available.

Input register information
Register 1 must point to a parameter list, as mapped by the IRARASC macro.

Obtain address space related information (REQASD and REQFASD)
The SYSEVENTs REQASD and REQFASD provide information about an address
space's workload activity. You must specify the address space id (ASID) with either
the ASID=register or the ASIDL=asid parameter.

Both return the same kind of information. REQFASD is quicker; it does not
serialize data collection, and does not provide recovery of its own. The user must
provide the recovery for REQFASD.

The user must supply the address of a storage area large enough to hold the
requested data.

REQASD
Returns workload activity information about an address space.

REQFASD
Returns the same information as REQASD, but is a fast path SYSEVENT, with
no recovery of its own.

TYPE=SIZECHECK
Required parameter which activates work area size checking and should
always be specified.

SYSEVENT macro

194 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Input register information

REQASD
For REQASD, register 1 must point to a parameter list. The parameter list must be
non-pageable and addressable via the caller's primary address space. To map the
parameter list, use the IRARASD mapping macro described in z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/.

The RASDLEN field must be filled in with the length of the RASD parameter list
area that is to be used by the SYSEVENT. The constant RASDSIZE can be used to
fill in the RASDLEN field.

REQFASD
For REQFASD, register 1 must point to a parameter list. The parameter list must be
addressable via the caller's primary address space. To map the parameter list, use
the IRARASD mapping macro described in z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

The RASDLEN field must be filled in with the length of the RASD parameter list
area that is to be used by the SYSEVENT. The constant RASDSIZE can be used to
fill in the RASDLEN field.

SYSEVENT REQFASD requires a workarea for the processing. The size of the
workarea can be found in the constant RQFASDWA, which is defined in the
IRARASD mapping. Additionally, it is necessary to fill the RASDWALEN with the
provided workarea length. Prior to executing REQFASD, register 13 must point to
a workarea. The workarea must be addressable via the caller's primary address
space.

Return and reason codes
When processing is complete for the REQASD and REQFASD SYSEVENTS, the last
byte of register 15 contains one of the following hexadecimal return codes:

Table 28. Return Codes for REQASD and REQFASD

Return Code Meaning

00 Successful completion.

04 Processing could not be completed at this time. A mode switch or policy
activation is in progress. A later reissue could be successful.

08 The parameter list is too small.

12 The ASID is not valid.

16 Work area is too small (only issued by REQFASD).

Example 1
Use the SYSEVENT REQASD to extract address space information:

LA R1,Parmlist Load parameter list address
USING RASD,R1 Map parameter list with RASD
MVC RASDACRO,=C’RASD’ Set eyecatcher

MVC RASDLEN,=AL2(L’Parmlist) Set parameter list length
SYSEVENT REQASD,TYPE=SIZECHECK,ENTRY=BRANCH,ASID=(0)
...

Parmlist DS CL(RASDSIZE)

SYSEVENT macro

Chapter 18. SYSEVENT — System event 195

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Example 2
Use the SYSEVENT REQFASD to extract address space information:

LA R1,Parmlist Load parameter list address
USING RASD,R1 Map parameter list with RASD
MVC RASDACRO,=C’RASD’ Set eyecatcher

MVC RASDLEN,=AL2(L’Parmlist) Set parameter list length
MVC RASDWALEN,=AL2(L’Workarea) and Workarea length in RASD
LR R2,R13 Save R13 prior Sysevent invocation
LA R13,Workarea Address the workarea with R13
SYSEVENT REQFASD,TYPE=SIZECHECK,ENTRY=BRANCH,ASID=(0)
LR R13,R2 Restore R13
...

Parmlist DS CL(RASDSIZE)
Workarea DS CL(RQFASDWA)

Obtain workload management mode status information (REQSRMST)
The REQSRMST SYSEVENT allows to obtain information about the state of
workload management. It returns a parameter list that includes, for example:
v Active service policy information
v When and where the policy was activated
v Active service definition information
v When and where the service definition was installed

Note: The SRMSTCAP flag is provided to prospective callers of the REQLPDAT
SYSEVENT, to test if that SYSEVENT is available on the system. On systems prior
to z/OS V1R3, callers should first invoke the REQSRMST SYSEVENT and check
the SRMSTCAP flag before invoking the REQLPDAT SYSEVENT. See “Obtain data
for defined capacity (REQLPDAT)” for more information.

Input register information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller's primary address space. To map the parameter list,
use the IRASRMST mapping macro described in z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/. The
SRMSTLEN field must be filled in with the length of this parameter list. The
constant SRMSTSIZ can be used to set this length.

Return and reason codes
When processing is complete for the REQSRMST SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 29. Return Codes for REQSRMST

Return Code Meaning

00 Successful completion.

08 The parameter list is too small.

Obtain data for defined capacity (REQLPDAT)
The REQLPDAT SYSEVENT allows to obtain performance data related to a defined
capacity. For example, defined capacity and group capping can be used with
Sub-Capacity pricing models.

SYSEVENT macro

196 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/

This performance data is used on monitoring products such as RMF to better
analyze the following:
v The average CPU consumption of the partition
v The frequency of WLM capping the partition to enforce the defined capacity
v The average weight of the partition

Note:

1. The parameter area for REQLPDAT is mapped by macro IRALPDAT.
The only input to REQLPDAT is field LPDATLEN in the parameter area. You
must set LPDATLEN to the length of the provided parameter area before
invoking the REQLPDAT SYSEVENT. Take one of the following actions:
v Set LPDATLEN to 0
v Set LPDATLEN using equate LPDATPARMLENGTH and provide a

parameter area that is at least LPDATPARMLENGTH bytes
v Obtain a sufficiently large parameter area of more than

LPDATPARMLENGTH bytes and set LPDATLEN accordingly
2. The parameter area contains variable data and the parameter area length can

change at any time, not just with a new release of z/OS. Therefore, you must
check the return code from REQLPDAT. If the input LPDATLEN value is
smaller than the needed size of the parameter area, the SYSEVENT returns with
return code 04. In this case, the system sets the LPDATLEN field to the actual
needed length of the parameter area. You must call REQLPDAT again with a
parameter area that is at least LPDATLEN bytes long. Make sure that the
LPDATLEN field indicates the length of the provided area.

3. An unauthorized caller can call the REQLPDAT SYSEVENT with the
ENTRY=UNAUTHPC option.

Input register information
Register 1 must point to a parameter list. For ENTRY=BRANCH and ENTRY=SVC
the parameter list must be non-pageable. It must be addressable by the caller’s
primary address space. To map the parameter list, use the IRALPDAT mapping
macro described in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/.

Return and reason codes
When processing is complete for the REQLPDAT SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 30. Return Codes for REQLPDAT

Return Code Meaning

00 Successful completion.

04 The parameter list is too small.

Identify holder of a resource (ENQHOLD)
Use the ENQHOLD SYSEVENT to identify a holder of a resource causing
contention. SRM may boost the service to the resource holder to help resolve the
contention more quickly. A holder can be either an address space or an enclave.
You must specify the address space or enclave in the parameter list pointed to by
register 1. Use the IRAEVPL mapping macro described in z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

SYSEVENT macro

Chapter 18. SYSEVENT — System event 197

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Specify either the ASID or STOKEN value for the address space or the enclave
token for the enclave. The enclave token must have been obtained from the
IWMECREA macro or IWMESQRY macro.

Specify parameter TYPE=3 for SYSEVENT ENQHOLD and ENQRLSE to pass the
following data to SRM:

Subsystem information
Specify subsystem information that will be kept by SRM for RAS purposes
and is formatted in IPCS.

Enqueue promotion function request
Choose either the standard enqueue management promotion, or the short
time/high frequency enqueue promotion:
1. Standard enqueue promotion:

Use the SYSEVENT ENQHOLD to signal a resource contention to SRM
and use the SYSEVENT ENQRLSE when the resource contention ends.
This function causes SRM to boost the service to the resource holder for
the number of service units defined by the ERV parameter in the
IEAOPTXX member.

2. Short time/high frequency enqueue promotion:
Use the SYSEVENT ENQHOLD to signal a short time resource
contention to SRM. This function causes SRM to boost the service to the
holder of the resource for a small number of service units and after
that, terminates this enqueue promotion process. For this reason, no
SYSEVENT ENQRLSE is required nor should one be issued. No
enqueue hold token is provided by SRM for this function in the
parameter list.

Note: The number of service units used by SRM to boost the resource
holder for a short time/high frequency enqueue promotion is a fixed
value and cannot be modified. It has no relation to the ERV parameter
in the IEAOPTxx member.

You can select the enqueue promotion functions with the FUNCTION
parameter in the parameter list pointed to by register 1.

Enqueue hold token
Receive an output token from the ENQHOLD request and use the same
token on the matching ENQRLSE request. The enqueue hold token is only
valid for the standard enqueue management promotion.

When using enclaves for tasks that serialize on resources using the ENQ macro or
the latch manager callable services, note that a task cannot change its transaction
status. That is, it cannot join or leave an enclave, while holding a resource using
ENQ or the latch manager. Otherwise, enqueue promotion processing might not
work properly. The recommended sequence is:
1. Join an enclave (through IWMEJOIN, IWMSTBGN, or SYSEVENT ENCASSOC).
2. Obtain resource with ENQ or latch manager.
3. Process using serialized resource.
4. Release resource.
5. Leave an enclave (through IWMELEAV, IWMSTEND, or SYSEVENT

ENCASSOC).

In addition, to ensure correct enqueue promotion processing, a task executing in an
enclave should not make the following types of ENQ requests:

SYSEVENT macro

198 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v Directed enqueues, that is, issuing the ENQ macro with the TCB= parameter
v Matching task enqueues, that is, issuing the ENQ macro with the MTCB or

MASID parameter.

Input register information
If this SYSEVENT is invoked with the TYPE=3 keyword, then register 1 must point
to a parameter list. The parameter list must be non-pageable and addressable via
the caller's primary address space. To map the parameter list, use the IRAEVPL
mapping macro described in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/.

Return and reason codes
When processing is complete for the ENQHOLD SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 31. Return Codes for ENQHOLD

Return Code (Decimal) Meaning

00 Successful completion.

08 Invalid enclave token specified.

10 The ASID specified did not map to a valid, active address space. This may
occur because the address space it represents is no longer active or was
never active.
Note: Only valid if parameter IraEnqHR_FLAGS_RhTerm=1 was specified
in the parameter list.

12 The STOKEN specified did not map to a valid, active address space. This
may occur because the address space it represents is no longer active or
was never active.
Note: Only valid if parameter IraEnqHR_FLAGS_RhTerm=1 was specified
in the parameter list.

14 The TCB address specified did not map to a valid, active TCB. This may
occur because the TCB address is no longer active or was never active.

16 Invalid combination of ASID, STOKEN, or enclave token was specified in
the parameter list. Specify either ASID, or STOKEN, or enclave token.

Identify that a holder has released resource (ENQRLSE)
Use the ENQRLSE SYSEVENT to notify SRM that the holder of a resource causing
contention has released the resource. The inputs must be the same as those for the
ENQHOLD SYSEVENT previously issued for the holder including the specification
of parameter TYPE=3. See the description of ENQHOLD for considerations related
to using enclaves for tasks that serialize resources. Do not issue SYSEVENT
ENQRLSE if you have selected the short time/high frequency enqueue promotion.

Input register information
If this SYSEVENT is invoked with the TYPE=3 keyword, then register 1 must point
to a parameter list. The parameter list must be non-pageable and addressable via
the caller's primary address space. To map the parameter list, use the IRAEVPL
mapping macro described in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/.

Return and reason codes
When processing is complete for the ENQRLSE SYSEVENT, the last byte of register
15 contains one of the following hexadecimal return codes:

SYSEVENT macro

Chapter 18. SYSEVENT — System event 199

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Table 32. Return Codes for ENQRLSE

Return Code Meaning

00 Successful completion.

08 Enclave token is invalid.

10 The ASID specified did not map to a valid, active address space. This may
occur because the address space it represents is no longer active or was
never active.
Note: Only valid if parameter IraEnqHR_FLAGS_RhTerm=1 was specified
in the parameter list.

12 The STOKEN specified did not map to a valid, active address space. This
may occur because the address space it represents is no longer active or
was never active.
Note: Only valid if parameter IraEnqHR_FLAGS_RhTerm=1 was specified
in the parameter list.

16 Invalid combination of ASID, STOKEN, or enclave token was specified in
the parameter list. Specify either ASID, or STOKEN, or enclave token.

Associate an enclave with an address space (ENCASSOC)
Use the ENCASSOC SYSEVENT to associate an enclave and a server address space
for SRBs that were scheduled to run in this enclave. This association allows SRM to
manage the server address space’s storage related resources towards the enclave’s
performance goal.

Note:

1. It is not required to use SYSEVENT ENCASSOC when you run SRBs in
enclaves. It is an improvement for storage management but it is not
recommended when the address space into which the SRB is scheduled runs
other significant work because the association may change the goal
management for the target address space.

2. The ENCASSOC SYSEVENT is necessary only for SRBs that were scheduled to
run in this enclave. A task that joins an enclave automatically associates the
home address space with the enclave.

You must specify X'8000' in the ASID parameter and access registers (AR) 0 and 1
must contain the enclave token. The enclave token must have been obtained from
the IWMECREA macro.

The ENCASSOC SYSEVENT supports the following functions, which have to be
specified with the TYPE parameter as well as in the parameter list IRAEVPL. Valid
values are ‘1’ and ‘2’. Note that the value can be specified either as a decimal
number or as a symbol.

TYPE=1
Allows the SRB to associate this enclave with the address space for the
purpose of managing the storage related resources towards the enclave’s
performance goal.

TYPE=2
Allows the SRB to disassociate this enclave with the address space.

For more information about SRBs and how to use them, see z/OS MVS
Programming: Authorized Assembler Services Guide.

The recommended coding sequence of the ENCASSOC SYSEVENT is as follows:
1. Subsystem:

SYSEVENT macro

200 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v The subsystem creates the enclave by using the IWMECREA service.
v The subsystem schedules an SRB to run in the enclave.

2. SRB:
v The SRB associates the address space with the enclave by using the

ENCASSOC SYSEVENT function Associate.
v SRB process logic.
v The SRB disassociates the address space with the enclave by using the

ENCASSOC SYSEVENT function Disassociate.

Input register information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller's primary address space. To map the parameter list,
use the IRAEVPL mapping macro described in z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Return and reason codes
When processing is complete for the ENCASSOC SYSEVENT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 33. Return Codes for ENCASSOC

Return Code Meaning

00 Successful completion.

04 Invalid function code specified.

10 Invalid enclave token specified.

Set the state for an enclave (ENCSTATE)
Use the ENCSTATE SYSEVENT to set the state of an enclave to either idle or
non-idle. Specify X'8000' in the ASID parameter. Access registers (AR) 0 and 1 must
contain the enclave token. The enclave token must have been obtained from the
IWMECREA macro. An independent enclave must not be set idle as long as there
are non-idle work-dependent enclaves associated with it.

Input register information
Register 1 must point to a parameter list. The parameter list must be non-pageable
and addressable via the caller's primary address space. To map the parameter list,
use the IRAEVPL mapping macro described in z/OS MVS Data Areas in z/OS
Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Access register (AR) 0 and 1 must contain the enclave token whose state you are
setting.

Query amount of free AUX storage (FREEAUX)
Use the FREEAUX SYSEVENT to receive the number of free AUX storage slots that
can safely be used without causing an AUX shortage.

Output register information
Register 0 will contain the recommended number of free AUX storage slots.

SYSEVENT macro

Chapter 18. SYSEVENT — System event 201

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return resource contention information (QRYCONT)
Use SYSEVENT QRYCONT to return the resource contention information for either
an address space or an enclave. You must specify the address space or enclave in
the parameter list pointed to by register 1. Use the IRAEVPL mapping macro
described in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/. Specify either the ASID or
STOKEN value for the address space or the enclave token for the enclave. The
enclave token must have been obtained from the IWMECREA macro or the
IWMESQRY macro.

Input register information
Register 1 must point to a parameter list. The parameter list must be non-pageable
for authorized SYSEVENT calls (ENTRY=SVC, ENTRY=BRANCH) and must be
addressable via the caller's primary address space. To map the parameter list, use
the IRAEVPL mapping macro described in z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

Return codes
When processing is complete for the SYSEVENT QRYCONT, the last byte of
register 15 contains one of the following hexadecimal return codes:

Table 34. Return Codes for REQLPDAT

Return Code (decimal) Meaning

00 Successful completion.

04 No contention information available.

08 Invalid enclave token specified.

10 The ASID specified did not map to a valid, active address space. This may
occur because the address space it represents is no longer active or was
never active.

12 The STOKEN specified did not map to a valid, active address space. This
may occur because the address space it represents is no longer active or
was never active.

14 Invalid combination of ASID, STOKEN, or enclave token was specified in
the parameter list. Specify either ASID, STOKEN, or enclave token.

16 There is additional resource contention information available.

18 Invalid version, length, or eye catcher was specified in the parameter list.

20 Invalid request type was specified in the parameter list.

Query a virtual server (QVS)
Products can use the query virtual server (QVS) interface to obtain a virtual
server's ID and capacity. A virtual server is the “logical hardware” environment in
which an image runs. In the case of an image running in a logical partition, the
virtual server is the logical partition. In the case of an image running as a first
level VM guest, the virtual server is the first level guest. Note that the virtual
server concept is not extended to second or higher level VM guests. In those cases,
the virtual server is still considered to be the first level VM guest. For an image
running in basic mode, the virtual server is the whole machine. In other words, for
a CPC in basic mode, the logical hardware environment equals the physical
hardware environment.

SYSEVENT macro

202 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Customers can define a capacity limit for each logical partition. This limit is
enforced by Workload Manager based on the average CPU usage of the logical
partition. Peaks of CPU usage are allowed above the limit as long as the average
CPU usage stays below the limit.

This service gives software vendors or software providers the option of licensing
their software to a virtual server.

One way a software product can use the virtual server ID and capacity query
service is to call the service when it starts. Based on the information returned, the
product can verify that it is licensed to run on the specific virtual server and that
the virtual server does not have more capacity than the product is licensed for.
Note that this service does not make any of these licensing checks — it simply
returns the information to enable a software product to make the appropriate
checks based on the conditions of its license.

Along with this SYSEVENT, there is also a C interface, IWMQVS (located in
SYS1.CSSLIB). Both forms of this query return a QVS structure which maps the
returned identification and capacity information. The assembler mapping is
provided by the macro IRAQVS, and the C/C++ mapping is provided in
IWMQVS.H (located in SYS1.SIEAHDR.H). Before calling this service, the caller
must provide storage for the QVS structure and set the field QvsLen to the length
of the structure. On return, the caller can look at fields QvsVer and QvsFlags to
determine which fields have been filled in. QvsFlags contains the following flags:

QvsCecValid
The physical hardware level information is valid.

QvsImgValid
The logical partition level information is valid. This flag will be off if not
running in logical partition mode.

QvsVmValid
The virtual machine information is valid. This flag will be off if not
running in a virtual machine.

The physical hardware level information is provided in the following fields:
v QvsCecManufacturerName
v QvsCecPlantofManufacture
v QvsCecMachineType
v QvsCecModelId
v QvsCecSequenceCode
v QvsCecCapacity
v QvsCecCapacityStatus

The logical partition level information is provided in the following fields:
v QvsImgLogicalPartitionId
v QvsImgLogicalPartitionName
v QvsImgCapacity

The virtual machine information is provided in the following fields:
v QvsVmName
v QvsVmCapacity

SYSEVENT macro

Chapter 18. SYSEVENT — System event 203

QvsCecCapacity, QvsImgCapacity, and QvsVmCapacity contain the maximum
service rate that theoretically could be achieved at each level. The value is in
millions of service units per hour (MSU).

QvsCecCapacity is equal to the individual CPU speed multiplied by the number of
online and offline physical CPUs.

QvsCecCapacityStatus indicates if the machine is running at nominal capacity or at
reduced capacity.

If QvsImgValid is on, the image is in ESAME mode, and QvsVmValid is off, then
QvsImgCapacity is equal to one of the following:
v The partition's defined capacity set via the Hardware Management Console, if

any
v The individual CPU speed multiplied by the number of online and offline

logical CPUs, if the partition is uncapped and has no defined capacity
v The capacity at the partition's weight, if the partition is capped via the

Hardware Management Console.

If QvsImgValid is on, and either the image is in ESA/390 mode or QvsVmValid is
on, then QvsImgCapacity is equal to the individual CPU speed multiplied by the
number of online and offline logical CPUs.

QvsVmCapacity is the individual CPU speed multiplied by the number of online
and offline virtual CPUs.

In all cases, the individual CPU speed in based on the MP factor for the number of
online and offline physical CPUs.

Note that the capacity of a virtual server can change dynamically. One example of
a dynamic capacity change is a CPU upgrade on demand of the underlying
hardware. A second example is a dynamic change of the defined capacity limit for
a logical partition. If an unauthorized program is interested in knowing about
dynamic capacity changes, it must poll the virtual server ID and capacity query
service. Given dynamic capacity changes are rare, a low polling rate should be
sufficient.

Authorized programs interested in knowing about dynamic capacity changes can
also listen for ENF signal 61. This ENF is signaled when a change in dynamic
capacity occurs and provides the listener exit the new capacity at each level in the
hierarchy.

Return and reason codes
When processing is complete for the QVS SYSEVENT, the last byte of register 15
contains one of the following hexadecimal return codes:

Table 35. Return Codes for QVS

Return Code Meaning

00 Successful completion.

04 The parameter list is too small.

SYSEVENT macro

204 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 19. TCBTOKEN — Request or translate the TTOKEN

Description
The TTOKEN is the 16-byte identifier of a task. Unlike a TCB address, each
TTOKEN is unique within the IPL; the system does not reassign this same
identifier to any other TCB.

The TCBTOKEN macro provides five mutually exclusive services depending on
how you specify the TYPE parameter:
v TYPE=TOTTOKEN gives you the TTOKEN for the task associated with a

specified TCB address.
v TYPE=TOTCB gives you the TCB address for a specified TTOKEN.
v TYPE=CURRENT gives you the TTOKEN for the current task.
v TYPE=PARENT gives you the TTOKEN for the task that attached the current

task.
v TYPE=JOBSTEP gives you the TTOKEN for the job step task.

Typical situations when you would use TYPE=TOTTOKEN are:
v When you create a data space and want to assign ownership of the data space to

a second task.
In this case, you know the TCB address for the second task, but you don't know
its TTOKEN (for input to the DSPSERV CREATE macro). Use
TYPE=TOTTOKEN to obtain the TTOKEN.

v When you want to delete a data space you do not own.
In this case, you know the TCB address for the other task, but you don't know
its TTOKEN (for input to the DSPSERV DELETE macro). Use TYPE=TOTTOKEN
to obtain the TTOKEN.

v When you want to know whether the owner of a data space still exists.
In this case, you know the TTOKEN for the owning task. If the system returns
the TCB address in response to the TYPE=TOTCB parameter, the task still exists.

z/OS MVS Programming: Extended Addressability Guide describes STOKENs and
TTOKENs.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem or supervisor state, any PSW key
Dispatchable unit mode: For TOTTOKEN or TOTCB requests, the caller can be in

task or SRB mode. For CURRENT, PARENT, and JOBSTEP
requests, the caller must be in task mode.

Cross memory mode: Any
AMODE: 31-bit
ASC mode: Primary or AR
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: For TOTTOKEN and TOTCB requests, the caller must hold

the local lock or CML lock of the specified address space.
For CURRENT, PARENT, and JOBSTEP requests, there is no
requirement.

© Copyright IBM Corp. 1988, 2013 205

Environmental factor Requirement
Control parameters: Can reside in the primary address space or in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
None.

Restrictions
None.

Register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14-15 Used as work registers by the macro

Performance implications
None.

Syntax
The standard form of the TCBTOKEN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCBTOKEN.

TCBTOKEN macro

206 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

TYPE=TOTTOKEN Note: See the table following this diagram for information on parameter
usage with TYPE.

TYPE=TOTCB

TYPE=CURRENT

TYPE=PARENT

TYPE=JOBSTEP

,TCB=tcb addr tcb addr: RX-type address or register (2) - (12).

,TTOKEN=ttoken addr ttoken addr: RX-type address.

,ASCB=ascb addr ascb addr: RX-type address or register (2) - (12).

,STOKEN=stoken addr stoken addr: RX-type address.

Default: Home address space.

,RELATED=value value: Any valid macro parameter specification.

The following table shows how the parameters may be specified with the TYPE
keywords.

Parameters TYPE=
TOTTOKEN

TYPE=
TOTCB

TYPE=
CURRENT

TYPE=
PARENT

TYPE=
JOBSTEP

TCB required required not valid not valid not valid

TTOKEN required required required required required

ASCB optional optional not valid not valid not valid

STOKEN optional not valid not valid not valid not valid

RELATED optional optional optional optional optional

Parameters
The parameters are explained as follows:

TYPE=TOTTOKEN
TYPE=TOTCB
TYPE=CURRENT
TYPE=PARENT
TYPE=JOBSTEP

Specifies the type of TCB information requested, as follows:

TCBTOKEN macro

Chapter 19. TCBTOKEN — Request or translate the TTOKEN 207

TOTTOKEN
The system returns the TTOKEN of the task whose TCB address is
specified in the TCB parameter. The TTOKEN is returned at the
address specified by the TTOKEN parameter.

TOTCB
The system returns the TCB address for the task whose TTOKEN is
specified in the TTOKEN parameter. The TCB address is returned at
the address specified by the TCB parameter.

CURRENT
The system returns the TTOKEN of the currently active task. The
TTOKEN is returned at the address specified by the TTOKEN
parameter.

PARENT
The system returns the TTOKEN of the task that attached the currently
active task. The TTOKEN is returned at the address specified by the
TTOKEN parameter.

JOBSTEP
The system returns the TTOKEN of the job step task for the address
space in which the currently active task is running. The TTOKEN is
returned at the address specified by the TTOKEN parameter.

,TCB=tcb addr
Specifies the TCB address. For TYPE=TOTTOKEN, tcb addr contains the TCB
address that is to be translated to a TTOKEN. For TYPE=TOTCB, tcb addr
points to a fullword where the system returns the TCB address for the task
whose TTOKEN is specified by the TTOKEN parameter.

,TTOKEN=ttoken addr
Specifies the address of the 16-byte TTOKEN. For TYPE=TOTTOKEN,
TYPE=CURRENT, TYPE=PARENT, and TYPE=JOBSTEP, ttoken addr is the
address at which the TTOKEN associated with the specified TCB is returned.
For TYPE=TOTCB, ttoken addr is the address of the TTOKEN for the task
whose TCB address is to be obtained.

,ASCB=ascb addr
,STOKEN=stoken addr

Identifies the address space of the TCB. ASCB specifies the address of the
fullword containing the ASCB address. STOKEN specifies the address of the
8-byte STOKEN that identifies the address space in which the TCB resides. If
you do not specify either ASCB or STOKEN, TCBTOKEN uses the home
address space by default.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

Abend codes
None.

Return codes
When TCBTOKEN returns control, register 15 contains one of the following
hexadecimal return codes:

TCBTOKEN macro

208 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 36. Return Codes for the TCBTOKEN Macro

Return Code Meaning and Action

00 Meaning: TCBTOKEN services completed successfully.

Action: None.

04 Meaning: The input STOKEN or TTOKEN does not represent a valid
address space.

Action: Ensure that you specify a valid token on the STOKEN or TTOKEN
keywords.

08 Meaning: No local lock was held.

Action: Obtain the local lock before issuing TCBTOKEN.

0C Meaning: A local lock was held, but not the local lock of the associated
address space.

Action: Obtain the correct local lock before issuing TCBTOKEN.

10 Meaning: The TCB could not be referenced.

Action: Ensure that the input TCB address specified on the TCB keyword is
valid.

14 Meaning: The TCB did not pass the acronym check.

Action: Ensure that the input TCB address specified on the TCB keyword is
valid.

18 Meaning: The TCB has ended. The TCB control block has not been deleted
yet.

Action: None required.

1C Meaning: The TCB associated with the TTOKEN represents a different task
than when the TTOKEN was obtained.

Action: None required.

20 Meaning: An unexpected error occurred.

Action: Reissue the TCBTOKEN macro.

24 Meaning: The contents of access register 1, used to address the parameter
list, were not valid.

Action: Either change your program to run in primary mode or set access
register 1 to zero.

28 Meaning: The parameter list is not valid.

Action: Ensure that the parameter list address is valid and addressable in
the calling program's key.

2C Meaning: The ASCB address is the address of the wait ASCB. The system
cannot obtain the TTOKEN.

Action: Specify an ASCB address which is not the wait ASCB.

30 Meaning: The task is scheduled for termination, but has not yet terminated.
The TCB control block has not been deleted yet.

Action: None required.

34 Meaning: The caller is not running in task mode. This return code is valid
only for TYPE=CURRENT, TYPE=PARENT, or TYPE=JOBSTEP.

Action: Change your program to run in task mode.

Note: Return codes 04, 08, 0C, 1C, and 2C are valid only with TYPE=TOTTOKEN
and TYPE=TOTCB.

TCBTOKEN macro

Chapter 19. TCBTOKEN — Request or translate the TTOKEN 209

Example 1
Obtain the TTOKEN for the task whose TCB address is specified in THEIR_TCB.
The task resides in the address space whose ASCB address is specified in register
4. Store the returned TTOKEN in THEIR_TOKEN.
TCBTOKEN TYPE=TOTTOKEN,TCB=THEIR_TCB,TTOKEN=THEIR_TTOKEN,ASCB=(4)

Example 2
Obtain the TTOKEN for the currently active task and store it in
CURRENT_TTOKEN.
TCBTOKEN TYPE=CURRENT,TTOKEN=CURRENT_TTOKEN

Example 3
Obtain the TCB address of the job step TCB and store it in JOBSTEP_TCB_ADDR.
TCBTOKEN TYPE=JOBSTEP,TTOKEN=JOBSTEP_TTOKEN
TCBTOKEN TYPE=TOTCB,TTOKEN=JOBSTEP_TTOKEN,TCB=JOBSTEP_TCB_ADDR

TCBTOKEN - List form
Use the list form of the TCBTOKEN macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage that the execute form of the macro uses to store the
parameters.

Syntax
The list form of the TCBTOKEN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCBTOKEN.

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

,RELATED=value value: Any valid macro parameter specification.

,MF=L

Parameters
The parameters are explained below:

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

TCBTOKEN macro

210 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,MF=L
Specifies the list form of the TCBTOKEN macro.

TCBTOKEN - Execute form
Use the execute form of the TCBTOKEN macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the TCBTOKEN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCBTOKEN.

TCBTOKEN

� One or more blanks must follow TCBTOKEN.

TYPE=TOTTOKEN Note: See the table following this diagram for information on parameter
usage with TYPE.

TYPE=TOTCB

TYPE=CURRENT

TYPE=PARENT

TYPE=JOBSTEP

,TCB=tcb addr tcb addr: RX-type address or register (2) - (12).

,TTOKEN=ttoken addr ttoken addr: RX-type address.

,ASCB=ascb addr ascb addr: RX-type address or register (2) - (12).

,STOKEN=stoken addr stoken addr: RX-type address.

Default: Home address space.

,RELATED=value value: Any valid macro parameter specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (1) - (12).

Parameters
The parameters are the same as those for the standard form of the TCBTOKEN
macro with the following addition:

TCBTOKEN macro

Chapter 19. TCBTOKEN — Request or translate the TTOKEN 211

,MF=(E,cntl addr)
Specifies the execute form of the TCBTOKEN macro. This form uses a remote
parameter list. The cntl addr specifies the address of the remote parameter list
that the list form of the macro generates.

TCBTOKEN macro

212 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 20. TCTL — Transfer control from an SRB routine

Description
The TCTL (transfer control) macro allows an SRB routine to exit from its
processing and to pass control directly to a task.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and any PSW key
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O or external interrupts
Locks: None held
Control parameters: Must be in the caller's primary address space

Programming requirements
The caller must include the following mapping macros:
v IHAPSA
v CVT with DSECT=YES

Restrictions
None.

Input register information
If you are using the default for the TCB parameter, on input to the TCTL macro,
general purpose register (GPR) 4 must contain the address of the TCB.

Output register information
The system does not return to the caller after invoking this macro, so register
contents on exit from the macro are not applicable.

Performance implications
None.

Syntax
The TCTL macro is coded as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TCTL.

© Copyright IBM Corp. 1988, 2013 213

Syntax Description

TCTL

� One or more blanks must follow TCTL.

TCB=(4) Default: Register 4 contains TCB address.

TCB=tcbaddr tcbaddr: A-type address or registers (2) - (12).

Parameters
The parameters are explained as follows:

TCB=(4)
TCB=tcbaddr

Specifies the task designated for dispatching. Register 4 is the default; if you
use the default, you must ensure that register 4 contains the appropriate TCB
address.

Note: The TCB resides in storage below 16 megabytes.

ABEND codes
070

See z/OS MVS System Codes for an explanation and programmer responses for this
code.

Return and reason codes
The system does not return to the caller after this macro has been invoked, so
return codes from the macro are not applicable.

Example
From SRB mode processing, terminate the SRB and give control to the task
specified in register 4.
TCTL TCB=(4)

TCTL macro

214 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 21. TESTAUTH — Test authorization of caller

Description
The TESTAUTH macro is used on behalf of a privileged or sensitive function to
verify that its caller is appropriately authorized.

TESTAUTH supports the authorized program facility (APF) - a facility that permits
the identification of programs that are authorized to use restricted functions. In
addition, TESTAUTH provides the capability for testing for system key 0-7 and
supervisor state. An EUT FRR may not be in force for a caller using
BRANCH=NO.

Environment
The requirements for the caller are:
v When BRANCH=NO

Environmental factor Requirement
Minimum authorization: Problem or supervisor state, any key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
Asc mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control Parameters: Must be in primary address space

v When BRANCH=YES

Note: When BRANCH=YES, the caller must include the CVT mapping macro.

Environmental factor Requirement
Minimum authorization: Supervisor state, any key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
Asc mode: Primary
Interrupt status: No requirement
Locks: Local lock held
Control Parameters: Must be in primary address space

Programming requirements
None.

Restrictions
When using BRANCH=NO, the caller cannot have an EUT FRR established.

© Copyright IBM Corp. 1988, 2013 215

Input register information
Before issuing the TESTAUTH macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The TESTAUTH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TESTAUTH.

TESTAUTH

� One or more blanks must follow TESTAUTH.

FCTN=fctn fctn: Decimal digit 0 or 1 or register (2) - (12).

Default: FCTN=0 if STATE or KEY is specified. Otherwise, the default is
FCTN=1.

,STATE=NO Default: STATE=NO

,STATE=YES

TESTAUTH macro

216 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,KEY=NO Default: KEY=NO

,KEY=YES

,RBLEVEL=2 Default: RBLEVEL=2

,RBLEVEL=1 RBLEVEL is used only if KEY and/or STATE are specified; otherwise
RBLEVEL is ignored.

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES

Parameters
The parameters are explained as follows:

FCTN=fctn
Specifies the authorization of a program to be checked through APF.

FCTN=0 specifies that APF-authorization is not checked.

FCTN=1 specifies that APF-authorization is checked.

,STATE=NO
,STATE=YES

Specifies whether or not (YES or NO) a check is to be made for
supervisor/problem program state. (Supervisor state is authorized, problem
program state is not authorized.)

,KEY=NO
,KEY=YES

Specifies whether or not (YES or NO) a check is to be made of the protection
keys. (Protection keys 0-7 are authorized, protection keys 8-15 are not
authorized.)

Note: TESTAUTH is used to test one or more of three conditions: FCTN, STATE,
or KEY. If any of the requested conditions are tested favorably, a return code of
zero is returned in register 15. If all of the requested conditions are tested
unfavorably, the return code is set to 4.

,RBLEVEL=2
,RBLEVEL=1

Specifies whether the TESTAUTH caller is a type 2, 3, or 4 SVC (RBLEVEL=2)
or a type 1 SVC (RBLEVEL=1). If the TESTAUTH caller is not an SVC, specify
RBLEVEL=1. Specify RBLEVEL only if you also specify KEY and/or STATE;
otherwise RBLEVEL is ignored.

,BRANCH=NO
,BRANCH=YES

Specifies a branch entry (YES) or an SVC entry (NO). If BRANCH=YES is
specified, registers 2 and 3 are modified by the TESTAUTH routine. Only SVC
routines can use BRANCH=YES.

TESTAUTH macro

Chapter 21. TESTAUTH — Test authorization of caller 217

ABEND codes
None.

Return codes
When control is returned, register 15 contains one of the following hexadecimal
return codes:

Table 37. Return Codes for the SAMPLE Macro

Return Code Meaning and Action

00 Meaning: Task is authorized.

Action: None.

04 Meaning: Task is not authorized.

Action: None.

Example 1
Test jobstep for APF authorization.
TESTAUTH FCTN=1

Example 2
Test for APF authorization and supervisor state and do not check protection keys.
TESTAUTH STATE=YES,KEY=NO,FCTN=1

TESTAUTH macro

218 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 22. TIMEUSED — Obtain accumulated CPU or vector
time

Description
The TIMEUSED macro returns an 8-byte hexadecimal number in a doubleword
storage area that you specify. The number is the total CPU or vector time used by
the current TCB or SRB up until you issue the macro. The format of the number is
time-of-day (TOD) clock or microseconds time format.

If you use the SRBSTAT save and restore services, the number includes the interval
between dispatch and save and between restore and TIMEUSED. It does not
include the interval between save and restore. If you have not yet issued restore,
the number includes only the interval between save and TIMEUSED.

TIMEUSED is also documented in z/OS MVS Programming: Assembler Services
Reference ABE-HSP, but without the LINKAGE=BRANCH and ENCLAVE
parameters. Those parameters are only available to authorized callers.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0 when you specify

LINKAGE=BRANCH. Supervisor or problem state and any
PSW key when you specify LINKAGE=SYSTEM.

Dispatchable unit mode: Task or SRB when LINKAGE=BRANCH. Task when
LINKAGE=SYSTEM.

Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31- or 64-bit
ASC mode: When LINKAGE=BRANCH without ECT, ENCLAVE, and

TIME_ON_CP, primary or secondary

When LINKAGE=BRANCH with ECT, ENCLAVE, or
TIME_ON_CP, primary

When LINKAGE=SYSTEM, primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
For information about programs in 64-bit addressing mode (AMODE 64), see z/OS
MVS Programming: Extended Addressability Guide.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 219

Input register information
When you specify LINKAGE=BRANCH:
v For ENCLAVE=SUP, register 13 must contain the address of a 36-word save area.
v For TIME_ON_CP=YES, register 13 must contain the address of a 36-word save

area.
v Otherwise, register 13 must contain the address of an 18-word save area.

You can provide the address through the use of standard linkage conventions.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:
v For ENCLAVE=SUP

64-bit Register Contents

0 Time on standard CP, adjusted for current
dispatch.

1 Time on IBM System z9® Integrated Information
Processor and IBM System z10® Integrated
Information Processor (zIIP), adjusted for current
dispatch

2 Time zIIP on standard CP, adjusted for current
dispatch

3-13 Unchanged

14 Used as a work register by the macro

15 Return code in low 32 bits

v For TIME_ON_CP=YES

64-bit Register Contents

0 The total CPU time used up until you issue the
macro, in TOD clock format, whether running on
a standard CP, System z Application Assist
Processor (zAAP), or System z Integrated
Information Processor (zIIP)

1 The total CPU time on a standard CP used up
until you issue the macro, in TOD clock format

TIMEUSED macro

220 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

64-bit Register Contents

2 v Unchanged if OFFLOAD_ON_CP is not
specified.

v If OFFLOAD_ON_CP is specified, the total
CPU time on a standard CP that was eligible
for offload, up until the time you issue the
macro, in TOD clock format.

3-13 Unchanged

14 Used as a work register by the macro

15 Return code in low 32 bits

v Otherwise

Register Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
When your application uses TIMEUSED LINKAGE=SYSTEM without the CPU and
VECTOR parameters (or can change to do so), consider use of the ECT parameter
that gives access to the Extract-CPU-Time (ECT) facility that is available on IBM
System z9 or later hardware.
v If your application might run on some systems that support the ECT facility and

on some systems that do not, you can use the ECT=COND parameter to check
for availability of this facility. The ECT=COND parameter will add a small
additional overhead when running on a system that does not support the ECT
facility, but will result in a much faster path when running on a system which
does support the facility.

v If your application will always run on a system that supports the ECT facility,
use ECT=YES without specifying the LINKAGE parameter. This will provide
better performance than using LINKAGE=SYSTEM,ECT=COND.

The TIMEUSED support to exploit the Extract-CPU-Time facility is available on
z/OS V1R8 or later systems.

Note: When you use TIMEUSED with LINKAGE=BRANCH without the CPU
parameter, the system automatically uses the ECT facility when it is available,
without needing a run-time check.

Syntax
The TIMEUSED macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede TIMEUSED.

TIMEUSED macro

Chapter 22. TIMEUSED — Obtain accumulated CPU or vector time 221

Syntax Description

TIMEUSED

� One or more blanks must follow TIMEUSED.

STORADR=addr addr: RX-type address or register (2)-(12).

,LINKAGE=SYSTEM Default: LINKAGE=BRANCH

,LINKAGE=BRANCH

,RELATED=value value: Any valid macro parameter specification

,CPU=TOD Default: CPU=TOD

,CPU=MIC

,VECTOR=TOD

,VECTOR=MIC

,ECT=SYSTEM Default: ECT=SYSTEM

,ECT=COND

,ECT=YES

,ENCLAVE=SUP

,TIME_ON_CP=YES

,OFFLOAD_TIME=YES

,OFFLOAD_ON_CP=YES

Parameters
The parameters are explained as follows:

STORADR=addr
When TIME_ON_CP, OFFLOAD_TIME, and OFFLOAD_ON_CP are not
specified, STORADR=addr specifies the address of a doubleword area where
the accumulated CPU or vector time is returned. When in AMODE 64 and
invoking TIMEUSED with LINKAGE=SYSTEM or ECT=YES, the area may be
in 64-bit storage; otherwise, it must be in 31-bit storage. The time interval is
represented as an unsigned 64-bit binary number. If you specify CPU=TOD or
VECTOR=TOD, bit 51 is the low-order bit of the interval value and equivalent
to 1 microsecond. If you specify CPU=MIC or VECTOR=MIC, bit 63 is the
low-order bit of the interval value and equivalent to 1 microsecond. STORADR
is required except when ENCLAVE is specified. If ENCLAVE is specified,
STORADR is not allowed.

When ECT=YES and one or more of TIME_ON_CP, OFFLOAD_TIME, and
OFFLOAD_ON_CP are specified, STORADR=addr is required and specifies the
address of an 8-word area in 31-bit storage of the primary address space where

TIMEUSED macro

222 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

the accumulated time value(s) are returned. It is recommended that the area be
on a doubleword boundary. Each time interval is represented as an unsigned
64-bit binary number. Bit 51 is the low-order bit of the interval value and
equivalent to 1 microsecond.

On output where the return code is 0:
v Words 0-1 = Total time.
v Words 2-3 = Time on CP when TIME_ON_CP=YES.
v Words 4-5 = Offload time (unnormalized) when OFFLOAD_TIME=YES.
v Words 6-7 = Offload on CP when OFFLOAD_ON_CP=YES. Any subfield

that is not requested to be returned is unpredictable.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of linkage used in TIMEUSED processing.
LINKAGE=BRANCH indicates branch entry. You may specify or default to
LINKAGE=BRANCH if you are a key zero supervisor state program running
under a TCB or SRB. LINKAGE=SYSTEM indicates the linkage is by
nonbranch entry.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and may be any valid
coding values.

,CPU=TOD
,CPU=MIC
,VECTOR=TOD
,VECTOR=MIC

Specifies that TIMEUSED should return the total CPU or vector time in either
TOD clock format (CPU=TOD or VECTOR=TOD) or in microseconds
(CPU=MIC or VECTOR=MIC). You may specify CPU=MIC or VECTOR only if
LINKAGE=SYSTEM.

,ECT=SYSTEM
,ECT=COND
,ECT=YES

Specifies which instruction service the system is to use.

SYSTEM
Specifies that the system determines which instruction service to use.
For LINKAGE=BRANCH, the system will use the Extract CPU Time
instruction service when that service is available. For
LINKAGE=SYSTEM, it will not use the Extract CPU Time instruction
service.

COND
Specifies that the system is conditionally to use the Extract CPU Time
instruction service. If the service and instruction are available, the
system will use that service. Otherwise, the system will use the regular
TIMEUSED service. Output is in TOD format. Use only with
LINKAGE=SYSTEM. Do not specify the CPU or VECTOR parameters.
You must include the CVT, IHAECVT, and IHAPSA mapping macros.

YES Specifies that the system is unconditionally to use the Extract CPU
Time instruction service. You must verify that the service and
instruction are available (running on z/OS V1R8 or later, with bit
FLCECT in byte FLCFACL3 in macro IHAPSA). Output is in TOD

TIMEUSED macro

Chapter 22. TIMEUSED — Obtain accumulated CPU or vector time 223

format. Do not specify the CPU, VECTOR, or LINKAGE parameters.
You must include the CVT, IHAECVT, and IHAPSA mapping macros.

,ENCLAVE=SUP
Specifies that the system is to return ENCLAVE time pertaining to System z9
Integrated Information Processor (zIIP) usage, adjusted for the time spent
within the current dispatch. Requires LINKAGE=BRANCH.

,TIME_ON_CP=YES
Returns CPU time on standard CP, in TOD clock format, for the current work
unit.
v When TIME_ON_CP=YES is specified without the ECT=YES parameter,

LINKAGE=BRANCH is required and ENCLAVE or ECT must not be
specified.

v When TIME_ON_CP=YES is specified with the ECT=YES parameter, the
invocation must be in task mode, requires STORADR, and may be specified
along with either OFFLOAD_TIME=YES or OFFLOAD_ON_CP=YES, or
both. You must include DSECTs CVT and IHAECVT. The function is
available only if bit CVTECT1 in byte CVTOSLV8 of the CVT data area is
on.

,OFFLOAD_TIME=YES
Returns CPU time on offload engines, in TOD clock format, for the current
task. This time is unnormalized (it is in the units that apply to the offload
processors). Requires the ECT=YES and STORADR parameters and may be
specified along with TIME_ON_CP=YES or OFFLOAD_ON_CP=YES, or both.
You must include DSECTs CVT and IHAECVT. The function is available only if
bit CVTECT1 in byte CVTOSLV8 of the CVT data area is on.

,OFFLOAD_ON_CP=YES
Returns CPU time on a standard CP that was eligible for offload, in TOD clock
format, for the current task.
v When OFFLOAD_ON_CP=YES is specified without the ECT=YES parameter,

LINKAGE=BRANCH is required and STORADR, ENCLAVE, or ECT must
not be specified. If the invocation is in SRB mode, no data is returned. The
function is available only if bit CVTOOCP in byte CVTOSLV8 of the CVT
data area is on.

v When OFFLOAD_ON_CP=YES is specified with the ECT=YES parameter,
the invocation must be in task mode, requires STORADR and may be
specified along with either TIME_ON_CP=YES or OFFLOAD_ON_CP=YES,
or both. You must include DSECTs CVT and IHAECVT. The function is
available only if bit CVTECT1 in byte CVTOSLV8 of the CVT data area is
on.

Return codes
When control returns to the caller, GPR 15 contains one of the following
hexadecimal return codes.

Table 38. Return Codes for the TIMEUSED Macro

Return Code Meaning and Action

00 Meaning: The service completed successfully.

Action: None.

08 Meaning: Unexpected error

Action: Retry the request.

TIMEUSED macro

224 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 38. Return Codes for the TIMEUSED Macro (continued)

Return Code Meaning and Action

0C Meaning: The ENCLAVE=SUP or TIME_ON_CP=YES function is not
available. No data is returned.

Action: Avoid requesting ENCLAVE=SUP when bit CVTSUP in byte
CVTOSLV4 is off. Avoid requesting TIME_ON_CP=YES when bit
CVTTOCP in byte CVTOSLV4 is off.

Example 1
Using the unauthorized TIMEUSED service, request the total CPU time in TOD
clock format to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=SYSTEM,CPU=TOD

Example 2
Using the unauthorized TIMEUSED service in task mode, request the total vector
time in microseconds to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=SYSTEM,VECTOR=MIC

Example 3
Using the authorized TIMEUSED service, request the total CPU time in TOD clock
format to be stored at the address in register 2.
TIMEUSED STORADR=(2),LINKAGE=BRANCH

TIMEUSED macro

Chapter 22. TIMEUSED — Obtain accumulated CPU or vector time 225

TIMEUSED macro

226 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 23. T6EXIT — Type 6 exit

Description
The T6EXIT macro returns control from a type 6 SVC. This exit macro can only be
used in a type 6 SVC routine.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Disabled for I/O and external interrupts
Locks: No locks held
Control parameters: None

Programming requirements
The caller must include the CVT mapping macro with DSECT=YES specified.

Restrictions
None.

Input register information
On input, general purpose register (GPR) 1 must point to a service request block
(SRB) if RETURN=SRB is specified.

Output register information
For RETURN=CALLER, registers 0, 1, and 15 are returned from the type 6 SVC
routine to the calling program (the issuer of the SVC). For RETURN=DISPATCH
and RETURN=SRB, no registers are returned to the calling program.

Performance implications
None.

Syntax
The T6EXIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede T6EXIT.

© Copyright IBM Corp. 1988, 2013 227

Syntax Description

T6EXIT

� One or more blanks must follow T6EXIT.

RETURN=CALLER Default: RETURN=CALLER

RETURN=DISPATCH

RETURN=SRB

Parameter
The explanation of the RETURN parameter is as follows:

RETURN
Specifies how the type 6 SVC has chosen to exit, which is one of the following:
v CALLER specifies that the return is directly to the caller or issuer of the

SVC. The contents of GPRs 0, 1, and 15 at the time of the T6EXIT are
returned to the issuer of the SVC. CALLER is the default return option.

v DISPATCH specifies that the return should be to the system to dispatch
other work. This function is for the use of routines that have suspended the
current task. When the task resumes, the issuer of the type 6 SVC receives
control at the instruction after the SVC.

v SRB specifies that the system should immediately dispatch an SRB. This SRB
must:
– Be initialized by the type 6 SVC.
– Be pointed to by register 1.
– Run in the same address space as the SVC. The SRB has the same format

as an SRB dispatched through the SCHEDULE macro.

ABEND codes
None.

Return and reason codes
None.

Example
Terminate type 6 SVC processing and return control from the type 6 SVC to the
caller of the SVC.
T6EXIT RETURN=CALLER

T6EXIT macro

228 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 24. UCBINFO — Return information from a UCB

Description
Use the UCBINFO macro to obtain information from a unit control block (UCB) for
a specified device. The UCBINFO macro provides the following options:

DEVCOUNT
Returns a count of the UCBs for a device class or device group.

DEVINFO
Returns information about a device, particularly, why the device is offline.
For the base UCB of a Parallel Access Volume (PAV), DEVINFO returns the
number of alias UCBs that are defined, and the number that are usable.
Also, the DEVINFO can return an indicator in the IOSDDEVI mapping
macro reflecting whether the device is a Hyper Parallel Access Volume
(HyperPAV) device.

HYPERPAVALIASES
Returns information for HyperPAV aliases that are configured in the same
logical subsystem as the input device. The HYPERPAVALIASES function
allows you to obtain selected information for each alias exposure of a
Parallel Access Volume (PAV) device in HyperPAV mode. All alias
exposures contained in the logical subsystem are returned in the output
PAVAREA. The data returned by this function is mapped by the mapping
macro IOSDPAVA and consists of a header and one or more entries.

PATHINFO
Returns information about the device path and type of channel path
associated with the device.

PATHMAP
Returns information about the device path.

PRFXDATA
Obtains a copy of the UCB prefix extension segment.

PAVINFO
Returns information about the alias UCBs for a Parallel Access Volume
(PAV) or a Hyper Parallel Access Volume (HyperPAV).

The options of the UCBINFO macro have the same environmental specifications,
programming requirements, restrictions, register information, and performance
implications described below, except where noted in the explanations of each
option.

© Copyright IBM Corp. 1988, 2013 229

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.

For LINKAGE=BRANCH, all of the following:

v Supervisor state with key 0

v 31-bit addressing mode

v Primary ASC mode

v Parameter list and any data areas it points to must be in
fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
Before issuing the UCBINFO macro, you can issue the UCBSCAN macro to obtain
either the UCBPTR or the device number, which you must provide as input to
UCBINFO. z/OS MVS Programming: Assembler Services Guide Authorized callers
must serialize (such as through pinning) the device against dynamic deletions
when specifying any of the following:
v DEVINFO with the UCBPTR parameter
v HYPERPAVALIASES with the UCBPTR parameter
v PATHINFO with the UCBPTR parameter
v PATHMAP with the UCB pointer in the MAPAREA field.
v PRFXDATA with the UCBPTR parameter
v PAVINFO with the UCBPTR parameter

See z/OS MVS Programming: Authorized Assembler Services Guide for information
about accessing and pinning UCBs.

The caller must include the appropriate mapping macro for the UCBINFO option
being used:

Option Mapping Macro

DEVCOUNT
None

DEVINFO
IOSDDEVI mapping macro

HYPERPAVALIASES
IOSDPAVA mapping macro

UCBINFO macro

230 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

PATHINFO
IOSDPATH mapping macro

PATHMAP
IOSDMAP mapping macro

PAVINFO
IOSDPAVA mapping macro

PRFXDATA
IOSDUPI mapping macro

Restrictions
None.

Input register information
Before issuing the UCBINFO macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 A reason code; otherwise, used as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 A return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

UCBINFO DEVCOUNT
Use the UCBINFO DEVCOUNT macro to obtain a count of the UCBs for a device
class.

Syntax
The standard form of the DEVCOUNT option of the UCBINFO macro is written as
follows:

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 231

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

,GROUP=DEVICELASS

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,GROUP=OTHER

,DEVGROUP=PAVBASE Default: PAVBASE

,DEVGROUP=PAVALIAS

,SUBCHANNELSET=ID

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

UCBINFO macro

232 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

DEVCOUNT
Specifies that the system is to return a count of the UCBs.

,COUNT=count addr
Specifies the address of the fullword field that is to receive the count.

,GROUP=DEVICECLASS
GROUP specifies the grouping upon which the UCB count is based.

DEVICECLASS indicates that the UCB count is based on device classes.

,DEVICECLASS=ALL|CHAR|COMM|CTC|DASD|DISP|TAPE|UREC
Specifies the device class for which the corresponding UCBs are to be
counted:

ALL Counts UCBs for all device classes

CHAR
Counts UCBs for character reader device class

COMM
Counts UCBs for communications device class

CTC Counts UCBs for channel to channel device class

DASD
Counts UCBs for direct access device class

DISP Counts UCBs for display device class

TAPE Counts UCBs for tape device class

UREC Counts UCBs for unit record device class

,GROUP=OTHER
GROUP specifies the grouping upon which the UCB count is based.

OTHER indicates that the UCB count is not based on device classes.

,DEVGROUP=PAVBASE
,DEVGROUP=PAVALIAS

Specifies the device group for which the corresponding UCBs are to be
counted.
v PAVBASE, counts UCBs for Parallel Access Volume (PAV) base UCBs.
v PAVALIAS, counts UCBs for Parallel Access Volume (PAV) alias UCBs.

,SUBCHANNELSET=ID
,SUBCHANNELSET=ALL

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 233

,SUBCHANNELSET=ID
Indicates the UCB count is based on one subchannel set. DEFAULT: ID

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional
byte input that specifies a subchannel set for which the UCBINFO request
is to be performed. DEFAULT: 0.

,SUBCHANNELSET=ALL
Indicates the UCB count is based on all subchannel sets. DEFAULT: ID

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2.

UCBINFO macro

234 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO DEVCOUNT macro returns control to your program, GPR 15
(or retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal
Return Code

Hexadecimal
Reason Code Meaning and Action

00 None Meaning: The DEVCOUNT function completed
successfully.

Action: None.

08 01 Meaning: Program error. A caller in AR mode specified an
ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. The system could not access the
caller's parameter list.

Action: Check to see if your program inadvertently
overlaid the parameter list generated by the macro.

08 03 Meaning: Program error. The UCB address provided by the
caller does not represent a valid UCB.

Action: Correct the UCB address and reissue the macro.

08 05 Meaning: Program error. An error occurred when the
system referenced the caller-supplied area specified in the
IOCTOKEN parameter. This reason code is valid only for
callers using the IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 0B Meaning: The value specified on the SCHSET keyword is
not valid.

Action: Enter the correct value on the SCHSET keyword.

0C None Meaning: Environmental error. The I/O configuration
token supplied through the IOCTOKEN parameter is not
current. This return code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration token by
issuing an IOCINFO macro or by setting the input
IOCTOKEN parameter in the UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error occurred.

Action: Supply the return code to the appropriate IBM
support personnel.

Example
To invoke UCBINFO to return a count of all DASD devices, code:

UCBINFO DEVCOUNT,COUNT=CTAREA,DEVCLASS=DASD, X
RETCODE=INFORTCD,RSNCODE=RSNCD
.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 235

.

.

DS 0D
CTAREA DS F
INFORTCD DS F
RSNCD DS F

UCBINFO DEVCOUNT—List form
Use the list form of the DEVCOUNT option of the UCBINFO macro together with
the execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the DEVCOUNT option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO DEVCOUNT macro.

list addr is the name of a storage area to contain the parameters.

UCBINFO macro

236 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBINFO DEVCOUNT—Execute form
Use the execute form of the DEVCOUNT option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the DEVCOUNT option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVCOUNT

,COUNT=count addr count addr: RS-type address or register (2) - (12).

,GROUP=DEVICELASS

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,GROUP=OTHER

,DEVGROUP=PAVBASE Default: PAVBASE

,SUBCHANNELSET=ID

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 237

Syntax Description

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO DEVCOUNT
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVCOUNT macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO DEVINFO
Use the UCBINFO DEVINFO macro to obtain information about a device,
specifically, reasons why the device is offline.

Syntax
The standard form of the DEVINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

UCBINFO macro

238 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

DEVINFO
Specifies that the system is to return information about the specified UCB.

,DEVIAREA=deviarea addr
Specifies the address of a required 256-byte output field into which the system
is to return information about the specified UCB. This field is mapped by the
mapping macro IOSDDEVI.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 239

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device. The DEVN and UCBPTR parameters are mutually
exclusive.

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for which the device information is to be
obtained. DEFAULT: 0.

,UCBPTR=ucbptr
Specifies that address of a fullword that contains the address of the UCB
common segment. The DEVN and UCBPTR parameters are mutually exclusive.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX

UCBINFO macro

240 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO DEVINFO macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode
addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The DEVINFO function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 09 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the DEVIAREA parameter.

Action: Correct the address specified on the
DEVIAREA parameter and reissue the macro.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 241

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

28 None Meaning: Program error. The device number or
UCB address provided by the caller represents an
alias UCB of a parallel access volume. For
information about a parallel access volume, the
caller must specify the base device number or
base UCB.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

Example
To invoke UCBINFO to return device information, code:

UCBINFO DEVINFO,DEVIAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO DEVINFO - List form
Use the list form of the DEVINFO option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the DEVINFO option of the UCBINFO macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO macro

242 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO DEVINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBINFO DEVINFO - Execute form
Use the execute form of the DEVINFO option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the DEVINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 243

Syntax Description

� One or more blanks must follow UCBINFO.

DEVINFO

,DEVIAREA=deviarea addr deviarea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO DEVINFO
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO DEVINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO macro

244 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

UCBINFO PATHINFO
Use the UCBINFO PATHINFO macro to obtain information about the device path
and type of channel path associated with the device.

Syntax
The standard form of the PATHINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 245

Parameters
The parameters are explained as follows:

PATHINFO
Specifies that the system is to return information about the device path and
type of channel path for the specified UCB.

,PATHAREA=patharea addr
Specifies the address of the required 256-byte output field into which the
system is to return information about the device path and type of channel path
for the specified UCB. This field is mapped by the mapping macro IOSDPATH.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device.

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for which the system is to return
information about the device path and type of channel path. DEFAULT: 0.

,UCBPTR=ucbptr
Specifies the address of a fullword that contains the address of the UCB
common segment. The caller can obtain the address of the UCB common
segment by a UCBPTR parameter on a UCBLOOK macro.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

UCBINFO macro

246 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO PATHINFO macro returns control to your program, GPR 15
(or retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: The PATHINFO function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 247

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the PATHAREA parameter.

Action: Correct the address specified on the
PATHAREA parameter and reissue the macro.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

18 04 Meaning: System error. The subchannel is in
permanent error and cannot be accessed.

Action: Supply the return and reason codes to
the appropriate IBM support personnel.

18 08 Meaning: Environmental error. The UCB is not
connected to a subchannel.

Action: Verify that there is a device at the device
number associated with the subchannel, and
reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to return device path and type of channel path information,
code:

UCBINFO PATHINFO,PATHAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO macro

248 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

UCBINFO PATHINFO - List form
Use the list form of the PATHINFO option of the UCBINFO macro together with
the execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the PATHINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 249

UCBINFO PATHINFO - Execute form
Use the execute form of the PATHINFO option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the PATHINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHINFO

,PATHAREA=patharea addr patharea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RS-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

UCBINFO macro

250 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PATHINFO
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PATHINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PATHMAP
Use the UCBINFO PATHMAP macro to obtain information about the device path.

Syntax
The standard form of the PATHMAP option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,DEVN=NONE Default: NONE

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 251

Syntax Description

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PATHMAP
Specifies that the system is to return information about the device path for the
specified UCB.

,MAPAREA=maparea addr
Specifies a required 40-byte field into which the system is to return information
about the device path for the specified UCB. This field is mapped by the
mapping macro IOSDMAP.

,DEVN=devn addr
,DEVN=NONE

Specifies the address of a halfword that contains, in binary form, the device
number of the device.

If the caller does not specify an address on the DEVN parameter, or specifies
DEVN=NONE, the caller must place the address of the UCB common segment
into the fullword field within the MAPAREA DSECT that is assigned the name
MAPUCB by mapping macro IOSDMAP. See z/OS MVS Programming:
Authorized Assembler Services Guide for information about using UCBSCAN to
obtain the address of the UCB.

If the caller codes the DEVN parameter, the MAPUCB field contains
hexadecimal zeros when control returns to the caller.

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for which the information about the
device path is to be returned. DEFAULT: 0.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when

UCBINFO macro

252 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO PATHMAP macro returns control to your program, GPR 15
(or retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 253

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

00 None Meaning: The PATHMAP function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 06 Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the MAPAREA parameter.

Action: Correct the address specified for
MAPAREA and reissue the macro.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

10 04 Meaning: System error. The subchannel is in
permanent error and cannot be accessed.

Action: Supply the return and reason code to the
appropriate IBM support personnel.

UCBINFO macro

254 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

10 08 Meaning: Environmental error. The UCB is not
connected to a subchannel.

Action: Correct the UCB address supplied, and
reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to return device path information, code:

UCBINFO PATHMAP,MAPAREA=INFOAREA,DEVN=DEVNUM, X
RETCODE=INFORTCD
.
.
.

DS 0D
INFOAREA DS CL256
INFORTCD DS F
DEVNUM DS H

UCBINFO PATHMAP - List form
Use the list form of the PATHMAP option of the UCBINFO macro together with
the execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the PATHMAP option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 255

Syntax Description

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PATHMAP
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PATHMAP macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBINFO PATHMAP - Execute form
Use the execute form of the PATHMAP option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the PATHMAP option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PATHMAP

,MAPAREA=maparea addr maparea addr: RX-type address or register (2) - (12).

,DEVN=devn addr devn addr: RX-type address or register (2) - (12).

UCBINFO macro

256 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,DEVN=NONE Default: NONE

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the UCBINFO
PATHMAP macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PATHMAP macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PAVINFO
Use the UCBINFO PAVINFO macro to obtain selected information applicable to
each exposure (base and alias) of a Parallel Access Volume (PAV).

Syntax
The standard form of the PAVINFO option of the UCBINFO macro is written as
follows:

Syntax Description

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 257

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PAVINFO

PAVINFOSUM=NO Default: NO

PAVINFOSUM=YES

,PAVAREA=pavarea addr pavarea addr: RX-type address or register (2) - (12).

,PAVLEN=pavarea length addr pavarea lenth addr: RX-type address or register (2) - (12).

,SCHINFO=NO Default: NO

,SCHINFO=YES

,EXTFORMAT=NO Default: NO

,EXTFORMAT=YES

,OUTVERSION=outver Default: 3

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RX-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

UCBINFO macro

258 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PAVINFO
Obtain selected information that applies to each exposure of a Parallel Access
Volume (PAV) device. The data returned by this function is mapped by the
mapping macro IOSDPAVA and consists of a header and one or more entries.
Depending on the input device, the following is returned:
v When the input device is a PAV-base, the first entry represents the base and

each subsequent entry represents each of the bound PAV-alias devices
associated with the base. Note that if the base has no bound PAV-aliases,
then only the first entry is filled in.

v When the input is a non-PAV DASD device, only the first entry is filled in.
v When the input device is a PAV-alias or a non-DASD, a non-zero return code

is returned.

PAVINFOSUM=NO
PAVINFOSUM=YES

Specifies whether to retrieve only a sum of channel measurement data and
model dependent subchannel data for the base device and all of its aliases.

Note: The model dependent subchannel data is only retrieved if
SCHINFO=YES.

NO Do not just retrieve a total of channel measurement data and model
dependent subchannel data for the base device and all of its aliases.
This option causes a PAVA entry to be created for the base device and
each of its aliases.

YES Retrieve only a sum of channel measurement data and model
dependent subchannel data for the base device and all of its aliases.
This option causes the first PAVA entry to contain information on the
base device, however, the measurement-related fields (such as
PAVACMB, PAVASMDB, and PAVAECMB) will contain totals for the
base and all of its aliases.

,PAVAREA=pavarea addr
Specifies the address of a required output field into which the system will
return information about the alias UCBs for the specified base device number
or base UCB address. This field is mapped by the mapping macro IOSDPAVA.

,PAVLEN=pavarea lengthaddr
Specifies the address or a register containing the length of the area
specified by the PAVAREA parameter.

,SCHINFO=NO
,SCHINFO=YES

This parameter specifies whether or not to retrieve model-dependent

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 259

subchannel data (control unit busy time, switch busy time, and device
busy time) for the device. If you issue this request from a system running
on a z990 or higher processor, the system ignores the SCHINFO parameter,
but still returns the device busy time.

NO Do not retrieve model-dependent subchannel data for the device.
Note that even if you specify NO on a z990 or higher processor,
the service will still return the device busy time.

YES Retrieve model-dependent subchannel data for the device, which
includes control unit busy time, switch busy time, and device busy
time. If you specify YES on a z990 or higher processor, the service
will still return the device busy time.

,EXTFORMAT=NO
,EXTFORMAT=YES

This parameter specifies whether an extended format PAV area should be
created. An extended format PAV area contains a length field in each entry
that defines the actual length of the entry. This allows the PAV entry to be
extended compatibly to add new information. A non-extended format PAV
area contains entries which are fixed in size (60 bytes) and cannot be
extended to contain new data. See the mapping macro IOSDPAVA for more
information.

Note: The value specified for the EXTFORMAT keyword on the UCBINFO
PAVINFO macro must match the value specified on the IOSDPAVA macro.
Otherwise, your program may not work correctly.

NO Create the non-extended format PAV area.

YES Create the extended format PAV area.

,OUTVERSION=outver
Specifies the output version to be used when creating an extended
format PAV area. The output version controls the size of the PAV
entries that are returned. This parameter is used only if
EXTFORMAT(YES) is specified; it is ignored for EXTFORMAT(NO)
requests. If an output version that is less than 3 is specified, version 3
is used. If an output version that is higher than the currently
supported version is specified, the highest supported version is used.

Note: Currently, version 3 is the only supported value.

,DEVN=devn addr
Specifies the address of a halfword that contains the base device number in
binary form. The DEVN and UCBPTR parameters are mutually exclusive.

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for which the information that applies to
each exposure of a Parallel Access Volume (PAV) device is to be obtained.
DEFAULT: 0.

,UCBPTR=ucbptr
Specifies the address of a fullword that contains the address of the UCB
common segment. The DEVN and UCBPTR parameters are mutually exclusive.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO

UCBINFO macro

260 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a program call (PC)
v BRANCH: Specifies a branch entry

LINKAGE=BRANCH is intended for performance sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value in the range of 1 - 3.

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO PAVINFO macro returns control to your program, GPR 15 (or
retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or rsncode
addr, if you coded RSNCODE) contains a reason code.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 261

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

00 None Meaning: The PAVINFO function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter and
reissue the macro.

08 0A Meaning: Program error. An error occurred when
the system attempted to reference the area
specified by the PAVAREA parameter.

Action: Correct the address specified on the
PAVAREA parameter and reissue the macro.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

1C 01 Meaning: Program error. The device number or
UCB address provided by the caller specifies a
device that is not a DASD or is a PAV alias
device.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

UCBINFO macro

262 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

1C 02 Meaning: Program error. The work area specified
with the PAVAREA parameter is not large
enough to contain the minimum amount of data.
No data is returned.

Action: Increase the size of the specified work
area and reissue the macro.

1C 03 Meaning: Program error. The work area specified
with the PAVAREA parameter is not large
enough to contain an entry for each alias device.

Action: Increase the size of the specified work
area and reissue the macro.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

28 None Meaning: Program error. The device number or
UCB address provided by the caller represents an
alias UCB of a parallel access volume. The caller
must specify the base device number or base
UCB.

Action: Correct the DEVN or UCBPTR parameter
and reissue the macro.

Example
To invoke UCBINFO to return information about alias UCBs for a base device
number, code:

UCBINFO PAVINFO,DEVN=DEVNUM,PAVAREA=INFOAREA,PAVLEN=AREALEN, X
RETCODE=INFORTCD

.

.

.
DS 0D

DEVNUM DS H
INFOAREA DS CL256
AREALEN DS F
INFORTCD DS F

To invoke UCBINFO to return information about alias UCBs for a base UCB, code:
UCBINFO PAVINFO,UCBPTR=UCBP,PAVAREA=INFOAREA,PAVLEN=AREALEN, X

RETCODE=INFORTCD
.
.
.
DS 0D

UCBP DS A
INFOAREA DS CL256
AREALEN DS F
INFORTCD DS F

UCBINFO PAVINFO - List form
Use the list form of the PAVINFO option of the UCBINFO macro together with the
execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 263

The list form of the PAVINFO option of the UCBINFO macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PAVINFO
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PAVINFO macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of X'0D', which forces the parameter list to a
doubleword boundary.

UCBINFO PAVINFO - Execute form
Use the execute form of the PAVINFO option of the UCBINFO macro together with
the list form of the macro for applications that require reentrant code. The execute
form of the macro stores the parameters into the storage area defined by the list
form.

The execute form of the PAVINFO option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

UCBINFO macro

264 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PAVINFO

PAVINFOSUM=NO Default: NO

PAVINFOSUM=YES

,PAVAREA=pavarea addr pavarea addr: RX-type address or register (2) - (12).

,PAVLEN=pavarea length addr pavarea lenth addr: RX-type address or register (2) - (12).

,SCHINFO=NO Default: NO

,SCHINFO=YES

,EXTFORMAT=NO Default: NO

,EXTFORMAT=YES

,OUTVERSION=outver Default: 3

,DEVN=devn addr devn addr: RX-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr ucbptr: RX-type address.

Note: Specify either DEVN or UCBPTR, but not both.

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 265

Syntax Description

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PAVINFO
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PAVINFO macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO PRFXDATA
Use the UCBINFO PRFXDATA macro to obtain a copy of the UCB prefix extension
segment.

Syntax
The standard form of the PRFXDATA option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

UCBINFO macro

266 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

Note: Specify either DEVN or UCBPTR, but not both.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

PRFXDATA
Specifies that the system is to obtain information from the UCB prefix
extension segment.

,DEVN=devn addr
Specifies the address of a halfword that contains, in binary form, the device
number of the device.

,SCHSET=schset
,SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for which the information from the UCB
prefix extension segment is to be obtained. DEFAULT: 0.

,UCBPTR=ucbptr addr
Specifies the address of a fullword that contains the address of the UCB
common segment. The caller can obtain the address of the UCB common
segment by a UCBPTR parameter on a UCBLOOK macro.

,UCBPAREA=ucbparea addr
Specifies the address of a 48-character storage area into which the system
copies the UCB prefix extension segment. The IOSDUPI mapping macro maps
the area.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 267

Reference ABE-HSP. If the I/O configuration token that is current when
UCBINFO is invoked does not match the token whose address is supplied
here, the system issues a return code to the caller.

If you set the input IOCTOKEN (specified by ioctoken addr) to binary zeros,
UCBINFO sets IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the address of a fullword field into which the system copies the
return code from GPR 15.

,RSNCODE=rsncode addr
Specifies the address of a fullword field into which the system copies the
reason code from GPR 0.

Return and reason codes
When the UCBINFO PRFXDATA macro returns control to your program, GPR 15
(or retcode addr, if you coded RETCODE) contains a return code, and GPR 0 (or
rsncode addr, if you coded RSNCODE) contains a reason code.

UCBINFO macro

268 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

00 None Meaning: The PRFXDATA function completed
successfully.

Action: None.

04 None Meaning: Program error. No UCB exists for the
device number specified in the DEVN parameter.

Action: Correct the device number and reissue
the macro.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error.

The UCB address provided by the caller does not
represent a valid UCB.

Action: Correct the UCB address and reissue the
macro.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

0C None Meaning: Environmental error. The I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

Example
To invoke UCBINFO to obtain a copy of the UCB prefix extension segment, code:

UCBINFO PRFXDATA,DEVN=DEVNUM,UCBPAREA=UAREA, X
RETCODE=INFORTCD
.
.

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 269

.

DS 0D
DEVNUM DS H
UAREA DS CL48
INFORTCD DS F

UCBINFO PRFXDATA - List form
Use the list form of the PRFXDATA option of the UCBINFO macro together with
the execute form for applications that require reentrant code. The list form of the
macro defines an area of storage that the execute form uses to contain the
parameters.

This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the PRFXDATA option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: RX-type address

MF=(L,list addr, attr) attr: 1- to 60-character input string

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBINFO PRFXDATA macro.

list addr is the name of a storage area to contain the parameters.

UCBINFO macro

270 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBINFO PRFXDATA - Execute form
Use the execute form of the PRFXDATA option of the UCBINFO macro together
with the list form of the macro for applications that require reentrant code. The
execute form of the macro stores the parameters into the storage area defined by
the list form.

The execute form of the PRFXDATA option of the UCBINFO macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede UCBINFO.

UCBINFO

� One or more blanks must follow UCBINFO.

PRFXDATA

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=schset schset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

Note: Specify either DEVN or UCBPTR, but not both.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

UCBINFO macro

Chapter 24. UCBINFO — Return information from a UCB 271

Syntax Description

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of UCBINFO PRFXDATA
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBINFO PRFXDATA macro.

list addr specifies the area that the system uses to contain the parameters.

COMPLETE, which is the default, specifies that the macro is to check for
required parameters and supply defaults for omitted optional parameters.

UCBINFO macro

272 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 25. UCBLOOK — Obtain addresses of UCB segments

Description
The UCBLOOK macro obtains the address of the following for a given device
number or volume serial number:
v The UCB common segment
v The UCB common extension segment
v The UCB prefix extension segment

The input device number may be specified as binary or EBCDIC, and may be a
3-digit or 4-digit number.

You can use UCBLOOK to locate any UCB segment, including a segment for a
dynamic UCB. The caller must pin the UCB by means of the PIN parameter unless
one of the following is true:
v The caller is running in an environment where dynamic I/O configuration

changes cannot occur.
v The caller can otherwise guarantee that the UCB will not be deleted.

After the system returns the address of the UCB segment, and the caller is done
processing the UCB, the caller must unpin the UCB. The caller can unpin the UCB
by using the UCBPIN macro with the UNPIN parameter.

Note: The caller can optionally restrict the search to UCBs that are static and
installation-static, have 3 digit device numbers, or are below 16 megabytes.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM keys 0-7

For LINKAGE=BRANCH, all of the following:

v Supervisor state with PSW key 0

v 31-bit addressing mode

v Primary ASC mode

v Parameter list and any data areas it points to must be in
fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

© Copyright IBM Corp. 1988, 2013 273

Programming requirements
If in AR mode, specify SYSSTATE ASCENV=AR before invoking the macro.

Restrictions
None.

Input register information
Before issuing the UCBLOOK macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains a return code of 08; otherwise, used as a
work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the UCBLOOK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

UCBLOOK macro

274 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

LDEVNCHAR=xldevnchar xldevnchar: RS-type address or register (2) - (12).

DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RS-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr addr: RS-type address or register (2) - (12).

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,LOC=BELOW Default: BELOW

,LOC=ANY

SPECIAL=NO Default: NO

SPECIAL=YES

,PIN

,NOPIN Note: TEXT and PTOKEN are required with PIN and are not valid with
NOPIN.

,TEXT=text addr text addr: RX-type address

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,LASTING Note: Optional with PIN; not valid with NOPIN.

,UNBOUND_ALIAS=NO Default: NO

,UNBOUND_ALIAS=YES

,DEVCLASS=DASD Note: DEVCLASS is valid only with VOLSER=volser addr

,DEVCLASS=DASDTAPE Default: DASDTAPE

,DEVCLASS=TAPE

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

UCBLOOK macro

Chapter 25. UCBLOOK — Obtain addresses of UCB segments 275

Syntax Description

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

DEVN=devn addr
DEVNCHAR=devnchar addr
VOLSER=volser addr
LDEVNCHAR=xldevnchar

Specifies the address of an input field that identifies the device whose UCB
address is to be obtained.

DEVN specifies the address of a halfword that contains, in binary form, the
device number of the device whose UCB address is to be obtained.

DEVNCHAR specifies the address of a 4-character field that contains, in
EBCDIC, the device number of the device whose UCB address is to be
obtained.

VOLSER specifies the address of a 6-character field that contains, in EBCDIC,
the volume serial number of the device whose UCB address is to be obtained.

LDEVNCHAR specifies the name (RS-type), or address in register (2)-(12), of a
5 character input that specifies the logical device number, in EBCDIC, of the
device whose UCB address is to be obtained.

Note: A logical device number is represented by a 1-digit subchannel set id
followed by the 4-digit device number, sdddd.

,SCHSET=xschset

UCBLOOK macro

276 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

SCHSET=0
Specifies the name (RS-type), or address in register (2)-(12), of an optional byte
input that specifies a subchannel set for the device whose UCB address is to be
obtained. DEFAULT: 0.

,UCBPTR=ucbptr addr
Specifies the address of a fullword field in which the address of the UCB
common segment associated with the requested device (DEVN, DEVNCHAR,
or VOLSER) will be returned.

Use the UCBOB structure in the IEFUCBOB mapping macro to map the UCB
common segment.

,UCBCXPTR=ucbcxptr addr
Specifies the address of a fullword field in which the system returns the
address of the UCB common extension segment associated with the specified
device (DEVN, DEVNCHAR, LDEVNCHAR, or VOLSER). Use the IEFUCBOB
mapping macro to map the UCB common extension segment.

,UCBPXPTR=ucbpxptr addr
Specifies the address of a fullword field in which the system returns the
address of the UCB prefix extension segment associated with the specified
device (DEVN, DEVNCHAR, LDEVNCHAR, or VOLSER). Use the IOSDUPFX
mapping macro to map the UCB prefix extension segment.

,UCBPAREA=ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. The copy of the UCB prefix extension
segment is mapped by the IOSDUPI mapping macro.

,LOC=BELOW
,LOC=ANY

Specifies whether the search should be restricted to below 16 megabyte UCB
(LOC=BELOW) or should also include above 16 megabyte UCBs (LOC=ANY).

SPECIAL=NO
SPECIAL=YES

Specifies whether the UCB is findable (SPECIAL=YES) or not (SPECIAL=NO).
Special devices are those UCBs that represent devices that are not PAV-alias
devices in the alternate subchannel set. The 3390S and 3390D device types are
special devices.

,PIN
,NOPIN

Specifies whether the UCB is to be pinned to make it ineligible for deletion
through dynamic I/O configuration changes. Pinning the UCB ensures that it
cannot be deleted while the look-up process is taking place. The PIN
parameter specifies that the UCB should be pinned, and NOPIN specifies that
it should not. Programs that pin a UCB are also responsible for unpinning it
once the UCB is no longer subject to processing. Use the UCBPIN macro with
the UNPIN option to unpin the UCB.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

UCBLOOK macro

Chapter 25. UCBLOOK — Obtain addresses of UCB segments 277

,PTOKEN=ptoken addr
Specifies the address of an 8-character area that is to receive the pin token for
the UCB. The caller must use the pin token when unpinning the UCB through
the UCBPIN service.

,LASTING
Specifies that the UCB will not be unpinned automatically by the system at the
time of termination of the task or address space with which the pin is
associated.

When you code LASTING, the system cannot dynamically delete the UCB until
your program issues UCBPIN with the UNPIN parameter.

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES

Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=DASD
,DEVCLASS=DASDTAPE
,DEVCLASS=TAPE

Specifies the device class that is to be searched for the VOLSER look-up.

DASD
Searches UCBs for direct access device class

DASDTAPE
Searches UCBs for DASD and tape classes

TAPE Searches UCBs for tape class

,DYNAMIC=NO
,DYNAMIC=YES

Specifies if static or dynamic UCBs are to be looked at:

NO Only static and installation-static UCBs

YES Static, installation-static, and dynamic UCBs

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the look-up should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should include all UCBs (ALL).

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character area that contains the MVS I/O
configuration token that the caller supplies to UCBLOOK. Obtain this token by
issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBLOOK is invoked does not match the token whose address
is supplied as input by ioctoken addr, the caller will be notified through a return
code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBLOOK will set IOCTOKEN to the current I/O configuration token.

,LINKAGE=SYSTEM

UCBLOOK macro

278 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,LINKAGE=BRANCH
Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 2, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 2

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

ABEND codes
None.

Return and reason codes
When control returns from UCBLOOK, GPR 15 (and retcode addr, if you coded
RETCODE) contains a return code and, for return code X'08', GPR 0 (and rsncode
addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: Completed successfully.

Action: None.

UCBLOOK macro

Chapter 25. UCBLOOK — Obtain addresses of UCB segments 279

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

04 None Meaning: Program error. No UCB exists for the
device number or VOLSER specified as input.
The contents of UCBPTR remain unchanged.

Action: Correct the DEVN, DEVNCHAR, or
VOLSER parameter. Also, make sure the
parameter list was not overlaid.

08 01 Meaning: Program error. An ALET in the
parameter list is not valid.

Action: Make sure the parameter list was not
overlaid.

08 02 Meaning: Program error. An error occurred in
accessing the caller's parameter list.

Action: Make sure the parameter list was not
overlaid.

08 04 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment. This reason code is
valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

08 05 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the
IOCTOKEN. This reason code is valid only for
callers using the IOCTOKEN keyword.

Action: Correct the IOCTOKEN parameter.

08 0A Meaning: Program error. An error occurred in
referencing the caller-supplied area for the pin
reason text. This reason code is valid only for
callers using the TEXT parameter.

Action: Correct the TEXT parameter.

08 0B Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Enter a valid value.

0C None Meaning: Program error. The UCB definition for
the device specified in DEVN, DEVNCHAR, or
VOLSER is not longer consistent with the UCB
definition represented by the input I/O
configuration token, or a DDR has occurred. This
return code is valid only for callers using the
IOCTOKEN parameter.

Action: Change the IOCTOKEN parameter or
change the program so that the token is correct.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

UCBLOOK macro

280 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

UCBLOOK - List form
Use the list form of the UCBLOOK macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

The list form of the UCBLOOK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the UCBLOOK macro
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBLOOK macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBLOOK macro

Chapter 25. UCBLOOK — Obtain addresses of UCB segments 281

UCBLOOK - Execute form
Use the execute form of the UCBLOOK macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the UCBLOOK macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBLOOK

UCBLOOK

� One or more blanks must follow UCBLOOK

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

DEVN=devn addr devn addr: RS-type address or register (2) - (12).

DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

LDEVNCHAR=xldevnchar xldevnchar RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr addr: RS-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr addr: RS-type address or register (2) - (12).

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,LOC=BELOW Default: BELOW

,LOC=ANY

,PIN

,NOPIN Note: TEXT and PTOKEN are required with PIN and are not valid with
NOPIN.

,TEXT=text addr text addr: RX-type address

UCBLOOK macro

282 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,LASTING Note: Optional with PIN; not valid with NOPIN.

,UNBOUND_ALIAS=NO Default: NO

,UNBOUND_ALIAS=YES

,DEVCLASS=DASD Note: DEVCLASS is valid only with VOLSER=volser addr

,DEVCLASS=DASDTAPE Default: DASDTAPE

,DEVCLASS=TAPE

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

SPECIAL=NO Default: NO

SPECIAL=YES

UCBLOOK macro

Chapter 25. UCBLOOK — Obtain addresses of UCB segments 283

Parameters
The parameters are explained under the standard form of the UCBLOOK macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBLOOK macro.

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not
specified.

UCBLOOK macro

284 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 26. UCBPIN — Pinning or unpinning a UCB

Description
Pinning a UCB ensures that the UCB cannot be deleted while a program is in the
process of looking at a UCB. Programs that pin a UCB are also responsible for
unpinning it once the UCB is no longer subject to processing.

Authorized programs that obtain UCB addresses, either through UCB services or
other means, can use the UCBPIN macro to pin and unpin UCBs. Pinning and
unpinning should be done any time a UCB is used, unless one of the following is
true:
v The caller is running in an environment where dynamic configuration changes

cannot occur.
v The caller can otherwise guarantee that the UCB will not be deleted. (The device

is allocated.)

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM keys 0-7.

For LINKAGE=BRANCH, all of the following:

v Supervisor state with key 0

v 31-bit addressing mode

v Primary ASC mode

v Parameter list and any data areas it points to must be in
fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage.

Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
If the program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
UCBPIN. SYSSTATE ASCENV=AR tells the system to generate code appropriate
for AR mode.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 285

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains a return code of 08; otherwise, used as a
work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The standard form of the UCBPIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

PIN

UNPIN Note: See the table following this diagram for valid parameter
combinations.

UCBPIN macro

286 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,TEXT=text addr text addr: RX-type address

,LASTING

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,TO=xto xto: RS-type address or register (2) - (12).

,FROM=xfrom xfrom: RS-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

The following table shows how other parameters may be used with PIN and
UNPIN.

Parameters PIN UNPIN

PTOKEN required required

UCBPTR required not valid

TEXT required not valid

LASTING optional not valid

IOCTOKEN optional not valid

LINKAGE optional optional

RETCODE optional optional

UCBPIN macro

Chapter 26. UCBPIN — Pinning or unpinning a UCB 287

Parameters PIN UNPIN

RSNCODE optional optional

Parameters PIN UNPIN

PTOKEN required required

UCBPTR required not valid

TEXT required not valid

LASTING optional not valid

IOCTOKEN optional not valid

LINKAGE optional optional

RETCODE optional optional

RSNCODE optional optional

TO not valid not valid

FROM not valid not valid

Parameters
The parameters are explained as follows:

PIN
UNPIN

Specifies whether the UCB is to be pinned or unpinned.

,PTOKEN=ptoken addr
Specifies the address of an 8-character field used to contain the pin token. For
PIN requests, PTOKEN specifies an output field that receives the pin token for
the UCB that is to be pinned. For UNPIN requests, PTOKEN specifies an input
field that contains the pin token for the UCB that is to be unpinned; this token
must match the one that was returned on the corresponding PIN request.
UCBPIN will reset PTOKEN to binary zeros if the UNPIN function is
successful.

,UCBPTR=ucbptr addr
Specifies the address of a pointer containing the address of the UCB common
segment for the UCB that is to be pinned.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

,LASTING
Specifies that the UCB will not be unpinned automatically by the system at the
time of termination of the task or address space with which the pin is
associated.

When you code LASTING, the system cannot dynamically delete the UCB until
your program issues UCBPIN with the UNPIN parameter.

,IOCTOKEN=ioctoken addr
Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to UCBPIN. You can obtain this token by

UCBPIN macro

288 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBPIN is invoked does not match the token specified as input
by ioctoken addr, the caller will be notified through a return code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBPIN will set IOCTOKEN to the current I/O configuration token.

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0 if the return code is X'08'.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that the system is to generate:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

Return and reason codes
When control returns from UCBPIN, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following return codes:

Table 39. Return Codes for the UCBPIN Macro

Hexadecimal Return
Code

Meaning

00 Meaning: UCBPIN completed successfully. For PIN requests, the UCB has
been pinned and the pin token has been returned in PTOKEN. For UNPIN
requests, the UCB has been unpinned and PTOKEN has been reset to
binary zeros.

08 Meaning: There is an error in the caller's parameters, as explained by the
hexadecimal reason code that accompanies this return code. The reason
code is in GPR 0 (and in rsncode addr, if you coded RSNCODE).

Reason Code
Meaning

01 An ALET in the parameter list is not valid; the caller might have
inadvertently written over an area in the parameter list.

02 An error occurred in accessing the caller's parameter list.

03 The UCB address provided by the caller does not represent a
valid UCB.

04 The PTOKEN supplied as input on an UNPIN request does not
represent a valid pin token.

05 An error occurred in referencing the user-supplied work area for
the IOCTOKEN. This reason code is valid only for callers using
the IOCTOKEN keyword.

0A An error occurred in referencing the user-supplied work area for
the pin reason text. This reason code is valid only for callers
using the TEXT keyword.

0C Meaning: The UCB definition is not consistent with the input configuration
token, or a DDR has occurred. This return code is valid only for callers
using the IOCTOKEN keyword.

20 Meaning: An unexpected error occurred.

UCBPIN macro

Chapter 26. UCBPIN — Pinning or unpinning a UCB 289

UCBPIN - List form
Use the list form of the UCBPIN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

The list form of the UCBPIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBPIN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBPIN - Execute form
Use the execute form of the UCBPIN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

UCBPIN macro

290 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax
The execute form of the UCBPIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBPIN

UCBPIN

� One or more blanks must follow UCBPIN

PIN

UNPIN Note: See the table following this diagram for valid parameter
combinations.

,PTOKEN=ptoken addr ptoken addr: RS-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,TEXT=text addr text addr: RX-type address

,LASTING

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,TO=xto xto: RS-type address or register (2) - (12).

,FROM=xfrom xfrom: RS-type address or register (2) - (12).

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

,LINKAGE=BRANCH

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,LINKAGE=SYSTEM Default: SYSTEM

UCBPIN macro

Chapter 26. UCBPIN — Pinning or unpinning a UCB 291

Syntax Description

,LINKAGE=BRANCH

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

The following table shows how other parameters may be used with PIN and
UNPIN.

Parameters PIN UNPIN

PTOKEN required required

UCBPTR required not valid

TEXT required not valid

LASTING optional not valid

IOCTOKEN optional not valid

LINKAGE optional optional

RETCODE optional optional

RSNCODE optional optional

MF required required

TO not valid not valid

FROM not valid not valid

Parameters
The parameters are explained under the standard form of the UCBPIN macro with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBPIN macro.

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not
specified.

UCBPIN macro

292 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 27. UCBSCAN — Scan UCBs

Description
Use the UCBSCAN macro to scan unit control blocks (UCBs) and return a copy of
a UCB or a UCB address on each invocation.

Two types of scans are available with UCBSCAN: A scan of all UCBs, and a scan
of all UCBs within a particular device class. For each type of scan, the caller may
optionally:
v Restrict the scan to UCBs defined as static or installation-static.
v Restrict the scan to UCBs with 3-digit device numbers.
v Restrict the scan to addresses of below 16 megabyte UCBs
v Request alias UCBs for a parallel access volume.
v Specify the device number with which the scan should begin.

UCBSCAN presents the UCBs in ascending device number order. UCBSCAN
provides two options as follows:

COPY On each invocation, UCBSCAN returns a copy of requested UCB segments
and data in caller-supplied areas.

Address
On each invocation, UCBSCAN returns the address of the UCB, the
address of requested UCB segments, and, optionally, a copy of the UCB
prefix extension segment. The caller can specify whether the scan includes
above 16 megabyte UCBs or only below 16 megabyte UCBs. The caller
must pin and unpin the UCB unless one of the following is true:
v The caller is running in an environment where dynamic configuration

changes cannot occur
v The caller can otherwise guarantee that the UCB will not be deleted.

See z/OS MVS Programming: Authorized Assembler Services Guide for
information on pinning UCBs.

LINKAGE=BRANCH is intended for performance-sensitive programs.

© Copyright IBM Corp. 1988, 2013 293

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For the COPY parameter: Problem state with any PSW key

For the ADDRESS parameter: Supervisor state or PKM
allowing key 0-7

For the LINKAGE=BRANCH parameter, all of the following:

v Supervisor state with key 0

v 31-bit addressing mode

v Primary ASC mode

v Parameter list and any data areas it points to must be in
fixed storage or, if the caller is disabled, in disabled
reference (DREF) storage.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit.
ASC mode: Primary or access register (AR).
Interrupt status: Enabled or disabled for I/O and external interrupts

Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space or, for AR-mode

callers, must be in an address/data space that is addressable
through a public entry on the caller's dispatchable unit
access list (DU-AL).

Programming requirements
If in AR mode, issue SYSSTATE ASCENV=AR before issuing UCBSCAN.

Restrictions
None.

Input register information
Before issuing the UCBSCAN macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if GPR 15 contains a return code of 04 or 08; otherwise, used
as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

UCBSCAN macro

294 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Parameters
The parameters are explained as follows:

COPY
Specifies that a copy of the UCB is to be obtained. See z/OS HCD Planning for
a list of the MVS services that accept a UCB copy.

Note: When you issue UCBSCAN to obtain a UCB copy, the UCBID field in
the copy is set to x‘CC’.

,WORKAREA=workarea addr
Specifies the address of a 100-character work area used by the UCBSCAN
service. The caller must initialize this work area to binary zeros before starting
a UCB scan. On subsequent invocations of UCBSCAN within the same scan,
the caller must leave the contents of this work area unchanged.

,UCBAREA=ucbarea addr
Specifies the address of a 48-character storage area that will receive a copy of
the UCB common segment and the UCB device-dependent segment. See z/OS
HCD Planning for a list of the MVS services that accept a UCB copy.

The caller does not need to initialize this area. Use the IEFUCBOB mapping
macro to map the area. The contents of certain fields in the copy are:
v The UCBEXTP field contains either:

– The address of the CMXTAREA, if CMXTAREA is below 16 MB
– 0, if CMXTAREA is above 16 MB or if the CMXTAREA parameter is not

specified
v The UCBNXUCB field is 0, because this field is not valid in the UCB copy.
v Address fields in the copy might not contain valid addresses, so do not use

these addresses to reference the data areas they point to.

,CMXTAREA=cmxtarea addr
,CMXTAREA=NONE

Specifies the address of a 32-character storage area that will receive a copy of
the UCB common extension segment. See z/OS HCD Planning for a list of the
MVS services that accept a UCB copy and require this segment as part of a
UCB copy.

Use the UCBCMEXT DSECT in the IEFUCBOB mapping macro to map the
area. If the CMXTAREA area is below 16 MB, the UCBEXTP field in the
UCBAREA area contains the address of the CMXTAREA area, If the
CMXTAREA area is above 16 MB, the caller must explicitly supply the address
of the CMXTAREA area because the UCBEXTP field will contain 0.

The UCBIEXT field contains 0 because this field is not valid in the UCB copy.

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 295

The UCBCLEXT field contains the address of the DCEAREA if the UCB has a
device class extension and the caller specified the DCEAREA parameter.
Otherwise, the field contains 0.

,UCBPAREA=ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. This keyword is required if
SUBCHANNELSET=ALL is specified. The area can be mapped by the
IOSDUPI mapping macro.

,DCEAREA=dcearea addr
,DCEAREA=NONE

Specifies the address of a storage area that will receive a copy of the UCB
device class extension segment. See z/OS HCD Planning for a list of the MVS
services that accept a UCB copy and require this segment as part of a UCB
copy.

Note: If DCEAREA=NONE is coded, then DCELEN=0 must be coded. If
DCEAREA=NONE is defaulted, then DCELEN does not have to be coded.

,DCELEN=length addr
Specifies the address of a 2-byte field that contains the length of the area
specified by DCEAREA. The length specified must be 1 through 256 bytes.
DCELEN is required with DCEAREA.

,VOLSER=volser addr
,VOLSER=NONE

Specifies the address of a 6-character field that indicates, in EBCDIC, the
volume serial number of the device for which a UCB copy is to be obtained.

,DEVNCHAR=devnchar addr
Specifies the address of a 4-character field that is to receive the EBCDIC device
number associated with the UCB copy.

,DEVN=devn addr
,DEVN=0

Specifies (DEVN=devn addr) an input halfword that contains, in binary form,
the device number with which the scan is to begin. The default, DEVN=0,
starts the scan with the first UCB.

,SUBCHANNELSET=ID
,SUBCHANNELSET=ALL

,SUBCHANNELSET=ID
Indicates the UCB scan is based on one subchannel set. DEFAULT: ID

,SCHSET=xschset
SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional
byte input that specifies a subchannel set for which the UCB scan is to be
performed. DEFAULT: 0.

,SUBCHANNELSET=ALL
Indicates the UCB scan is based on all subchannel sets. DEFAULT: ID

,LDEVNCHAR=xldevnchar
Indicates the name (RS-type), or address in register (2)-(12), of an optional 5
character output which is to contain the EBCDIC logical device number
associated with the UCB copy.

UCBSCAN macro

296 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Note: A logical device number is represented by the 1-digit subchannel set id
followed by a 4-digit device number, sdddd.

,DYNAMIC=NO
,DYNAMIC=YES

Specifies whether the scan should be restricted to static and installation-static
UCBs (DYNAMIC=NO) or should also include dynamic UCBs
(DYNAMIC=YES).

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the scan should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should also include UCBs with 4-digit device numbers
(ALL).

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES
,UNBOUND_ALIAS=ONLY

Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

ONLY Include only unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

SPECIAL=NO
SPECIAL=YES
SPECIAL=ONLY

Specifies whether the UCB is findable (SPECIAL=YES) or not (SPECIAL=NO).
SPECIAL=ONLY should be used to scan for only special devices. Special
devices are those UCBs that represent devices that are not PAV-alias devices in
the alternate subchannel set. The 3390S and 3390D device types are special
devices.

,DEVCLASS=ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

Specifies the device class that is to be scanned:

ALL Scans UCBs for all device classes

CHAR
Scans UCBs for character reader device class

COMM
Scans UCBs for communications device class

CTC Scans UCBs for channel to channel device class

DASD
Scans UCBs for direct access device class

DISP Scans UCBs for display device class

TAPE Scans UCBs for tape device class

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 297

UREC Scans UCBs for unit record device class

,DEVCID=devcid addr
Specifies the address of an 8-bit input field that contains the device class ID of
the device class to be scanned. The value in this byte represents the third byte
in the UCBTYP field of each device in the class.

If you specify DEVCID, only UCBs of the particular device class specified will
be presented, and the DEVCLASS parameter is ignored.

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character storage area that contains the MVS I/O
configuration token. The caller can obtain this token by issuing the IOCINFO
macro, which is described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP. If the I/O configuration token that is current when
UCBSCAN is invoked does not match the token whose address is supplied as
input by ioctoken addr, the caller will be notified through a return code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBSCAN will set IOCTOKEN to the current I/O configuration token at the
start of the scan.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:
v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 1, if you use the currently available parameters.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 1

UCBSCAN macro

298 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and reason codes
When control returns from USBSCAN, GPR 15 (and retcode addr, if you coded
RETCODE) contains a return code and, for some return codes, GPR 0 (or rsncode
addr, if you coded RSNCODE) contains a reason code.

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

00 None Meaning: UCBSCAN completed successfully.

Action: None.

04 01 Meaning: UCBSCAN processing ended. All UCBs
that met the search criteria have been presented
to the caller. The contents of UCBAREA are
unchanged, and WORKAREA has been reset to
binary zeros.

Action: None.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.
Possibly the caller wrote over an area in the
parameter list; look for this error.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 03 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
copy; the area was specified in the UCBAREA
parameter.

Action: Correct the UCBAREA parameter.

08 04 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment data. This reason code
is valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 299

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

08 08 Meaning: Program error. An error occurred in
referencing the caller-supplied work area
specified in the WORKAREA parameter.

Action: Correct the WORKAREA parameter.

08 09 Meaning: Program error. An error occurred in
referencing the caller-supplied CMXTAREA area.
This reason code is valid only for callers using
the CMXTAREA parameter.

Action: Correct the CMXTAREA parameter.

08 0B Meaning: Program error. An error occurred in
referencing the caller-supplied DCEAREA area.
This reason code is valid only for callers using
the DCEAREA parameter.

Action: Correct the DCEAREA parameter.

08 0C Meaning: Program error. The caller specified a
volume serial number that is not valid. (Note that
binary zeros are not considered valid.) This
reason code is valid only for callers using the
VOLSER parameter.

Action: Correct the VOLSER parameter.

08 0D Meaning: Program error. For the DCEAREA
token, the caller specified a length that is
negative, is zero, or exceeds 256 bytes. This
reason code is valid only for callers using the
DCELEN parameter.

Action: Correct the DCELEN parameter.

08 0E Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Correct the SCHSET value.

0C None Meaning: Environmental error. The I/O
configuration has changed, so that the I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero. Start the scan from the
beginning.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

UCBSCAN COPY

Syntax
The standard form of the COPY function of the UCBSCAN macro is written as
follows:

UCBSCAN macro

300 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

COPY Default: COPY

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

,CMXTAREA=cmxtarea addr cmxtarea addr: RX-type address or register (2) - (12).

,CMXTAREA=NONE Default: NONE

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,DCEAREA=dcearea addr dcearea addr: RX-type address or register (2) - (12).

,DCEAREA=NONE Default: NONE

,DCELEN=length addr length addr: RS-type address or register (2) - (12).

Note: DCELEN is valid only with DCEAREA and is required with
DCEAREA.

,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

,VOLSER=NONE Default: NONE

,DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

,LDEVNCHAR=xldevnchar xldevnchar: RS-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,DEVN=0 Default: 0

,SUBCHANNELSET=ID

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 301

Syntax Description

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,UNBOUND_ALIAS=NO Default: NO

,UNOUND_ALIAS=YES

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

,DEVCID=0 Default: 0

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

UCBSCAN COPY - List form
Use the list form of the UCBSCAN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

UCBSCAN macro

302 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the COPY function of the UCBSCAN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under that standard form of the UCBSCAN macro
with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBSCAN COPY - Execute form
Use the execute form of the UCBSCAN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 303

Syntax
The execute form of the COPY function of the UCBSCAN macro is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

COPY Default: COPY

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBAREA=ucbarea addr ucbarea addr: RX-type address or register (2) - (12).

,CMXTAREA= cmxtarea addr cmxtarea addr: RX-type address or register (2) - (12).

,CMXTAREA=NONE Default: NONE

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,DCEAREA= dcearea addr dcearea addr: RX-type address or register (2) - (12).

,DCEAREA=NONE Default: NONE

,DCELEN=length addr length addr: RS-type address or register (2) - (12).

Note: DCELEN is valid only with DCEAREA and is required with
DCEAREA.

,VOLSER=volser addr volser addr: RS-type address or register (2) - (12).

,VOLSER=NONE Default: NONE

,DEVNCHAR=devnchar addr devnchar addr: RS-type address or register (2) - (12).

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,DEVN=0 Default: 0

,SUBCHANNELSET=ID

UCBSCAN macro

304 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,UNBOUND_ALIAS=NO Default: NO

,UNBOUND_ALIAS=YES

,UNBOUND_ALIAS=ONLY

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

,DEVCID=0 Default: 0

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 305

Syntax Description

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the COPY function of
the UCBSCAN macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply defaults for optional parameters that were not specified.

UCBSCAN ADDRESS

Syntax
The standard form of the ADDRESS function of the UCBSCAN macro is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

ADDRESS Note: COPY is the default.

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr: RX-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr: RX-type address or register (2) - (12).

,LOC=BELOW Default: BELOW

,LOC=ANY

UCBSCAN macro

306 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,PIN Note: TEXT and PTOKEN are required with PIN

,NOPIN

,TEXT=text addr: text addr: RX-type address

Note: Required with PIN, not valid with NOPIN.

,PTOKEN=ptoken addr: ptoken addr: RS-type address or register (2) - (12).

Note: Required with PIN, not valid with NOPIN.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,DEVN=0 Default: 0

,SUBCHANNELSET=ID

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,UNBOUND_ALIAS=NO Default: NO

,UNBOUND_ALIAS=YES

,UNBOUND_ALIAS=ONLY

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 307

Syntax Description

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1 - 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

ADDRESS
Specifies that a UCB address is to be obtained.

,WORKAREA=workarea addr
Specifies the address of a 100-character work area that will be used by the
UCBSCAN service. The caller must initialize this work area to binary zeros
before starting a UCB scan. On subsequent invocations of UCBSCAN within
the same scan, the caller must leave the contents of this work area unchanged.

,UCBPTR=ucbptr addr
Specifies the address of a pointer in which the address of the UCB common
segment for the next UCB that meets the search criteria will be returned.

Use the UCBOB structure in the IEFUCBOB mapping macro to map the UCB
common segment.

,UCBCXPTR=ucbcxptr addr
Specifies the address of a fullword field in which the system will return the
address of the UCB common extension. Use the IEFUCBOB mapping macro to
map the UCB common extension segment.

,UCBPXPTR=ucbpxptr addr
Specifies the address of a fullword field in which the system will return the
address of the UCB prefix extension. Use the IOSDUPFX mapping macro to
map the UCB prefix extension segment.

,LOC=BELOW
,LOC=ANY

Specifies whether the scan should be restricted to below 16 megabyte UCBs
(LOC=BELOW) or should also include above 16 megabyte UCBs (LOC=ANY).

,PIN

UCBSCAN macro

308 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,NOPIN
Specifies whether the UCB is to be pinned to make it ineligible for deletion
through the dynamic UCB process. Pinning the UCB ensures that it will not be
deleted while the scan process is taking place. The PIN parameter specifies that
the UCB should be pinned, and NOPIN specifies that it should not. Programs
that pin a UCB are also responsible for unpinning it once the UCB is no longer
subject to processing. Use the UCBPIN macro with the UNPIN option to unpin
the UCB.

,TEXT=text addr
Specifies the address of a 58-character input field containing text that
documents the reason for the PIN request. If the pin request remains
outstanding during a request for a configuration change that would delete this
UCB, the text specified by the TEXT parameter will be displayed in a message
identifying the reason for a configuration change failure.

,PTOKEN=ptoken addr
Specifies the address of an 8-character area that is to receive the pin token for
the UCB. The caller must use the pin token when unpinning the UCB.

,UCBPAREA=ucbparea addr
,UCBPAREA=NONE

Specifies the address of a 48-character storage area that will receive a copy of
the UCB prefix extension segment. The area can be mapped by the IOSDUPI
mapping macro.

,DEVN=devn addr
,DEVN=0

Specifies (DEVN=devn addr) an input halfword that contains, in binary form,
the device number with which the scan is to begin. The default, DEVN=0,
starts the scan with the first UCB.

,SUBCHANNELSET=ID
,SUBCHANNELSET=ALL

,SUBCHANNELSET=ID
Indicates the UCB scan is based on one subchannel set. DEFAULT: ID

,SCHSET=xschset
SCHSET=0

Specifies the name (RS-type), or address in register (2)-(12), of an optional
byte input that specifies a subchannel set for which the UCB scan is to be
performed. DEFAULT: 0.

,SUBCHANNELSET=ALL
Indicates the UCB scan includes all subchannel sets. DEFAULT: ID

,DYNAMIC=NO
,DYNAMIC=YES

Specifies whether the scan should be restricted to static and installation-static
UCBs (DYNAMIC=NO) or should also include dynamic UCBs
(DYNAMIC=YES).

,RANGE=3DIGIT
,RANGE=ALL

Specifies whether the scan should be restricted to UCBs with 3-digit device
numbers (3DIGIT) or should also include UCBs with 4-digit device numbers
(ALL).

,UNBOUND_ALIAS=NO
,UNBOUND_ALIAS=YES

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 309

,UNBOUND_ALIAS=ONLY
Specifies whether the scan should include unbound alias UCBs.

YES Include unbound alias UCBs

NO Do not include unbound alias UCBs

ONLY Include only unbound alias UCBs

Note: The UNBOUND_ALIAS function is intended for IOS use only.

,DEVCLASS=ALL
,DEVCLASS=CHAR
,DEVCLASS=COMM
,DEVCLASS=CTC
,DEVCLASS=DASD
,DEVCLASS=DISP
,DEVCLASS=TAPE
,DEVCLASS=UREC

Specifies the device class that is to be scanned:

ALL Scans UCBs for all device classes

CHAR
Scans UCBs for character reader device class

COMM
Scans UCBs for communications device class

CTC Scans UCBs for channel to channel device class

DASD
Scans UCBs for direct access device class

DISP Scans UCBs for display device class

TAPE Scans UCBs for TAPE device class

UREC Scans UCBs for unit record device class

,DEVCID=devcid addr
Specifies an 8-bit input field used to supply the hexadecimal device class ID of
the device class to be scanned. devcid addr specifies the address of the field.

If you specify DEVCID, only UCBs of the particular device class specified will
be presented, and the DEVCLASS parameter is ignored.

,IOCTOKEN=ioctoken addr
,IOCTOKEN=NONE

Specifies the address of a 48-character area that contains the MVS I/O
configuration token that you supply to UCBSCAN. You can obtain this token
by issuing the IOCINFO macro, which is described in z/OS MVS Programming:
Assembler Services Reference ABE-HSP. If the I/O configuration token that is
current when UCBSCAN is invoked does not match the token whose address
is supplied as input by ioctoken addr, the caller will be notified through a return
code.

If the input IOCTOKEN (specified by ioctoken addr) is set to binary zeros,
UCBSCAN will set IOCTOKEN to the current I/O configuration token at the
start of the scan.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of call that should be generated:

UCBSCAN macro

310 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v SYSTEM: Specifies a Program Call (PC)
v BRANCH: Specifies a Branch entry

LINKAGE=BRANCH is intended for performance-sensitive programs.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 1, if you use only the following parameters:
– ADDRESS
– DEVCID
– DEVCLASS
– DEVN
– DYNAMIC
– IOCTOKEN
– LINKAGE
– LOC
– MF
– NOPIN
– PIN
– PLISTVER
– PTOKEN
– RANGE
– RETCODE
– RSNCODE
– TEXT
– UCBPAREA
– UCBPTR
– WORKAREA

v 2, if you use any of the following parameters and parameters from plistver 1.
– UCBCXPTR
– UCBPXPTR

To code, specify in this input parameter one of the following:

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 311

v IMPLIED_VERSION
v MAX
v A decimal value of 1 or 2

,RETCODE=retcode addr
Specifies the fullword location where the system is to store the return code.
The return code is also in GPR 15.

,RSNCODE=rsncode addr
Specifies the fullword location where the system is to store the reason code.
The reason code is also in GPR 0.

Return and reason codes
When control returns from UCBSCAN, GPR 15 (and retcode addr, if you coded
RETCODE) contains one of the following return codes:

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

00 None Meaning: UCBSCAN completed successfully.

Action: None.

04 01 Meaning: UCBSCAN processing ended. All UCBs
that met the search criteria have been presented
to the caller. The value stored into the pointer for
UCBPTR is unchanged, and the caller-supplied
area specified in the WORKAREA parameter has
been reset to binary zeros.

Action: None.

08 01 Meaning: Program error. A caller in AR mode
specified an ALET that was not valid.

Action: Correct the ALET and reissue the macro.
Possibly the caller wrote over an area in the
parameter list; look for this error.

08 02 Meaning: Program error. An error occurred when
the system tried to access the caller's parameter
list.

Action: Ensure that you have met the
environmental requirements for the macro, and
reissue the macro.

08 04 Meaning: Program error. An error occurred in
referencing the caller-supplied area for the UCB
prefix extension segment data. This reason code
is valid only for callers using the UCBPAREA
parameter.

Action: Correct the UCBPAREA parameter.

08 05 Meaning: Program error. An error occurred when
the system referenced the caller-supplied area
specified in the IOCTOKEN parameter. This
reason code is valid only for callers using the
IOCTOKEN parameter.

Action: Correct the IOCTOKEN parameter.

08 08 Meaning: Program error. An error occurred in
referencing the caller-supplied work area
specified in the WORKAREA parameter.

Action: Correct the WORKAREA parameter.

UCBSCAN macro

312 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Hexadecimal Return
Code

Hexadecimal Reason
Code Meaning and Action

08 0A Meaning: Program error. An error occurred in
referencing the caller-supplied area for the pin
reason text (TEXT). This reason code is valid only
for callers using the TEXT parameter.

Action: Correct the TEXT parameter.

08 0D Meaning: The value specified on the SCHSET
keyword is not valid.

Action: Correct the SCHSET value.

0C None Meaning: Environmental error. The I/O
configuration has changed, so that the I/O
configuration token supplied through the
IOCTOKEN parameter is not current. This return
code is valid only for callers using the
IOCTOKEN parameter.

Action: Obtain the current I/O configuration
token by issuing an IOCINFO macro or by
setting the input IOCTOKEN parameter in the
UCBINFO macro to zero. Start the scan from the
beginning.

20 None Meaning: System error. An unexpected error
occurred.

Action: Supply the return code to the appropriate
IBM support personnel.

UCBSCAN ADDRESS - List form
Use the list form of the UCBSCAN macro together with the execute form for
applications that require reentrant code. The list form of the macro defines an area
of storage that the execute form uses for storing the parameters.

Syntax
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros. See
“Alternative list form macros” on page 12 for further information.

The list form of the ADDRESS function of the UCBSCAN macro is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

,PLISTVER=IMPLIED_VERSION

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 313

Syntax Description

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1 - 2

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the ADDRESS function
of the UCBSCAN macro with the following exceptions:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the UCBSCAN macro.

The list addr parameter specifies the address of the storage area for the
parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

UCBSCAN ADDRESS - Execute form
Use the execute form of the UCBSCAN macro together with the list form for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the ADDRESS function of the UCBSCAN macro is written as
follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede UCBSCAN.

UCBSCAN

� One or more blanks must follow UCBSCAN.

ADDRESS Note: COPY is the default.

UCBSCAN macro

314 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,WORKAREA=workarea addr workarea addr: RX-type address or register (2) - (12).

,UCBPTR=ucbptr addr ucbptr addr: RS-type address or register (2) - (12).

,UCBCXPTR=ucbcxptr addr ucbcxptr: RX-type address or register (2) - (12).

,UCBPXPTR=ucbpxptr addr ucbpxptr: RX-type address or register (2) - (12).

,LOC=BELOW Default: BELOW

,LOC=ANY

,PIN Note: TEXT and PTOKEN are required with PIN

,NOPIN

,TEXT=text addr: text addr: RX-type address

Note: Required with PIN, not valid with NOPIN.

,PTOKEN=ptoken addr: ptoken addr: RS-type address or register (2) - (12).

Note: Required with PIN, not valid with NOPIN.

,UCBPAREA=ucbparea addr ucbparea addr: RX-type address or register (2) - (12).

,UCBPAREA=NONE Default: NONE

,DEVN=devn addr devn addr: RS-type address or register (2) - (12).

,DEVN=0 Default: 0

,SUBCHANNELSET=ID

,SCHSET=xschset xschset RS-type address or register (2) - (12).

,SCHSET=0 Default: 0

,SUBCHANNELSET=ALL

,DYNAMIC=NO Default: NO

,DYNAMIC=YES

,RANGE=3DIGIT Default: 3DIGIT

,RANGE=ALL

,UNBOUND_ALIAS=NO Default: NO

,UNBOUND_ALIAS=YES

,UNBOUND_ALIAS=ONLY

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 315

Syntax Description

,DEVCLASS=ALL Default: ALL

,DEVCLASS=CHAR

,DEVCLASS=COMM

,DEVCLASS=CTC

,DEVCLASS=DASD

,DEVCLASS=DISP

,DEVCLASS=TAPE

,DEVCLASS=UREC

,DEVCID=devcid addr devcid addr: RS-type address

,IOCTOKEN=ioctoken addr ioctoken addr: RX-type address or register (2) - (12).

,IOCTOKEN=NONE Default: NONE

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX Default: IMPLIED_VERSION

,PLISTVER=plistver plistver: 1 - 2

,RETCODE=retcode addr retcode addr: RX-type address or register (2) - (12).

,RSNCODE=rsncode addr rsncode addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

SPECIAL=NO Default: NO

SPECIAL=YES

SPECIAL=ONLY

Parameters
The parameters are explained under the standard form of the ADDRESS function
of the UCBSCAN macro with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the UCBSCAN macro.

UCBSCAN macro

316 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

The list addr parameter specifies the address of the storage area for the
parameter list. COMPLETE specifies that the system is to check for required
parameters and supply defaults for optional parameters that were not
specified.

UCBSCAN macro

Chapter 27. UCBSCAN — Scan UCBs 317

UCBSCAN macro

318 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 28. VSMLIST — List virtual storage map

Description
The VSMLIST macro provides information about the allocation of virtual storage.
The information is returned in a work area that you specify. The format of the
work area is described under “Virtual Storage Management” in z/OS MVS
Programming: Authorized Assembler Services Guide.

The following information can be requested:
v The ranges of virtual storage allocated to the SQA, by subpool, and the free

space within those ranges
v The ranges of virtual storage allocated to the CSA, by subpool, and the free

space within those ranges
v The ranges of CSA space that are unallocated
v The ranges of virtual storage allocated to the LSQA in the current address space,

by subpool, and the free space within those ranges
v The ranges of virtual storage allocated to private area subpools, by TCB, and the

free space within those ranges
v The ranges of private area that are unallocated.

For detailed information about virtual storage subpools, see “Virtual Storage
Management” in z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For LINKAGE=SYSTEM, problem state and PSW key 8-15.

For LINKAGE=BRANCH, supervisor state and PSW key 0.
Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit. All addresses must be 31-bit addresses.
ASC mode: Primary.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: v For LINKAGE=SYSTEM, the caller may not hold a lock

higher than the local lock.

v For LINKAGE=BRANCH, see the LINKAGE parameter
description for locking requirements.

Control parameters: Must be in the primary address space. All input parameters,
except for the TCB, can reside above 16 megabytes if the
caller is running in 31-bit addressing mode. The TCB resides
below 16 megabytes.

Programming requirements
All addresses are associated with the current address space.

You must set bytes 0-3 of the work area to zero before the first invocation of the
macro for a given request.

© Copyright IBM Corp. 1988, 2013 319

Restrictions
None.

Input register information
The VSMLIST macro is sensitive to the SYSSTATE macro with the OSREL
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the VSMLIST
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The VSMLIST macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

VSMLIST macro

320 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

� One or more blanks must precede VSMLIST.

VSMLIST

� One or more blanks must follow VSMLIST.

SP=SQA

SP=CSA

SP=LSQA

SP=PVT

SP=sp list addr sp list addr: RX-type address or register (0), (2) - (12)

,WKAREA=(addr,length) addr: RX-type address or register (1) - (12)

length: Symbol, decimal digit, or register (0), (2) - (12).

,TCB=(tcb addr) Default: TCB address in PSATOLD.

,TCB=(tcb addr,ALL) tcb addr: RX-type address or register (0), (2) - (12).

,TCB=(, ALL) Note: The TCB parameter is required only for SRB routines, if SP=PVT or
SP=sp list addr and the list contains private area subpools.

,SPACE=ALLOC Default: SPACE=ALLOC

,SPACE=FREE Note: SPACE=UNALLOC can be specified only for SP=CSA or SP=PVT.

,SPACE=UNALLOC

,LOC=24 Default: LOC=31

,LOC=31

,REAL31 Default: REAL31

,REAL64

,REALPGFMSZ

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,PVTSP=ALL Default: PVTSP=ALL

,PVTSP=OWNED

VSMLIST macro

Chapter 28. VSMLIST — List virtual storage map 321

Parameters
The parameters are explained as follows:

SP=SQA
SP=CSA
SP=LSQA
SP=PVT
SP=sp list addr

Specifies the storage areas for which information is requested. The following
subpools are listed for the specified storage areas:
v SQA: 226, 239, 245, 247, 248
v CSA: 227, 228, 231, 241
v LSQA: 205, 215, 225, 255
v PVT: 0-127, 129–132, 229, 230, 236, 237, 244, 249, 251, 252

GETMAIN/FREEMAIN/STORAGE processing translates the original subpool
numbers that were specified on the GETMAIN, FREEMAIN, or STORAGE
macros to different subpool numbers as shown below:

Original Subpool Number Translated Subpool Number
203-205 205
213-215 215
223-225 225
233-235, 253-255 255
0, 240, 250 0

VSMLIST reports the translated subpool numbers, not the original subpool
numbers. In addition, VSMLIST does not report incorrect subpool numbers
(subpool numbers greater than 255) or undefined subpool numbers.

If SP=sp list addr is specified, the user must supply the address of a subpool
list. The first halfword of the list contains the number of entries in the list.
Each of the following halfwords in the list contains a subpool number. If a
valid subpool number appears more than once in the subpool list, it is
reported only once.

,WKAREA=(addr,length)
Indicates the address and length of a user-supplied work area. The system uses
this work area to hold the parameter list, control information, and data that is
to be returned to the caller. The work area should begin on a word boundary
and be a minimum of 4K bytes in length.

You must set bytes 0-3 of this work area to zero before the first invocation of
VSMLIST for a specific request. See “Virtual Storage Management” in z/OS
MVS Programming: Authorized Assembler Services Guide for a description of the
work area.

,TCB=(tcb addr)
,TCB=(tcb addr,ALL)
,TCB=(,ALL)

Specifies the TCB associated with the virtual storage allocated to the private
area subpools. The TCB must be located in the currently addressable address
space. If ALL is specified, the storage associated with the TCB and all of its
subtasks is reported.

Note:

VSMLIST macro

322 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

1. If ALL is specified and the TCB is high in the task structure (for example,
the TCB for RCT), more than one region could be listed. The regions in the
private area are the RCT region, the V=V region, and the V=R region (for
V=R jobs).

2. The TCB resides in storage below 16 megabytes.

,SPACE=ALLOC
,SPACE=FREE
,SPACE=UNALLOC

Specifies whether allocated, allocated and free, or unallocated storage is to be
reported.

ALLOC indicates that the virtual addresses and lengths of blocks of storage
allocated to the specific area are to be listed.

FREE indicates that in addition to the information supplied by ALLOC, the
virtual addresses and lengths of free space within the allocated blocks are to be
listed.

UNALLOC indicates that the virtual addresses and lengths of unallocated
blocks of storage are to be listed. Both TCB and REAL are ignored when
UNALLOC is specified.

Note: An allocated block of storage is a block that is a multiple of 4K in size
and contains some storage that has been allocated via a GETMAIN or
STORAGE macro. The free storage is the storage within an allocated block that
has not been allocated via a GETMAIN or STORAGE macro. An unallocated
block of storage is a block that is a multiple of 4K in size and contains no
allocated storage.

,LOC=24
,LOC=31

Indicates whether information should be returned about virtual storage areas
residing above and below 16 megabytes or only those residing below 16
megabytes. If LOC=31 is specified, information is returned for all storage areas
below 2 gigabytes. If LOC=24 is specified, information is returned only for
storage areas below 16 megabytes.

Note: Specifying LOC=BELOW is the same as specifying LOC=24. Specifying
LOC=ANY is the same as specifying LOC=31. The old values are still
supported, but IBM recommends using the newer values instead.

,REAL31
,REAL64
,REALPGFMSZ

Indicates that the high order bit and the 2 lower order bits of the address field
of the allocated block descriptor should be set to show the value specified on
the LOC parameter of the GETMAIN, STORAGE, or CPOOL macro invocation
used to obtain that storage area. If the storage block was allocated using any
LOC specification of GETMAIN or STORAGE, except for LOC=(*,24), one or
more of these indicators are turned on. If the storage block was allocated using
the LOC=(*,24) specification of GETMAIN or STORAGE, the indicators are
turned off.

Note: The asterisk character (*) indicates that any of the allowable values for
the first suboperand of the LOC keyword.

REAL31
If the storage block is backed in real 31-bit or 64-bit storage, the high

VSMLIST macro

Chapter 28. VSMLIST — List virtual storage map 323

bit indicator is on (one). If the storage block is backed in real 24-bit
storage, the high bit indicator is off (zero). The low bit and second
lowest bit indicators are always off.

REAL64
If the storage block is backed in real 64-bit storage, the low bit
indicator is on (one) and the high bit indicator is off (zero). If the
storage block is backed in real 31-bit storage, the high bit indicator is
on (one) and the low bit indicator is off (zero). If the storage block is
backed in real 24-bit storage, the high bit indicators are off (zero). The
2nd lowest bit indicator is always off (zero).

REALPGFMSZ
Specifies the following indicators:
v If the storage block was obtained with the PAGEFRAMESIZE1MB

parameter, the second lowest bit indicator is on (one), the low bit
indicator is on (one) and the high bit indicator is off (zero).

v If the storage block is backed in real 64-bit storage but was not
obtained with the PAGEFRAMESIZE1MB parameter, the low bit
indicator is on (one), the 2nd lowest bit indicator is off (zero) and
the high bit indicator is off (zero).

v If the storage block is backed in real 31-bit storage, the high bit
indicator is on (one), the low bit indicator is off (zero) and the 2nd
lowest bit indicator is off (zero).

v If the storage block is backed in real 24-bit storage, the high bit
indicator, the low bit indicator and the second lowest bit indicators
are off (zero).

Note:

1. If REAL31, REAL64 and REALPGFMSZ are not specified, then none of
these indicators are turned on.

2. The REAL31 parameter provides the same function as the deprecated REAL
parameter, which is still supported by VSMLIST.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Indicates whether the VSMLIST routine uses a PC instruction
(LINKAGE=SYSTEM) or branch entry (LINKAGE=BRANCH) for linkage and
whether the VSMLIST routine provides serialization and recovery.

If LINKAGE=SYSTEM is specified, the VSMLIST routine provides linkage
using a PC instruction and also provides recovery and serialization.

The caller's secondary ASID is preserved when a PC is issued.

Note: Serialization is not provided across calls to VSMLIST.

If LINKAGE=BRANCH is specified, the VSMLIST routine uses branch entry
for linkage and does not provide recovery or serialization. Before issuing
VSMLIST, provide serialization as follows:
v For LSQA or PVT requests, obtain the LOCAL lock.
v For SQA or CSA requests, issue the SETLOCK macro right before and right

after the VSMLIST request, as follows:
SETLOCK OBTAIN,TYPE=VSMFIX,MODE=UNCOND
VSMLIST request
SETLOCK RELEASE,TYPE=VSMFIX

VSMLIST macro

324 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue SETLOCK
RELEASE,TYPE=VSMFIX or must issue the SETLOCK and SETRP macros as
follows:

SETLOCK TEST,TYPE=VSMFIX,BRANCH=(NOTHELD,NOVSMFIX)
SETRP FRELOCK=VSMFIX

NOVSMFIX DS 0H

Note:

1. Your program will be disabled for I/O and external interrupts from the
time the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMFIX:
– GETMAIN
– FREEMAIN
– STORAGE

,PVTSP=ALL
,PVTSP=OWNED

Indicates for each task, which subpool information will be returned.

ALL indicates that information is returned for subpools which are owned or
shared by the task.

OWNED indicates that information is returned only for the subpools which are
owned by the task.

ABEND codes
The VSMLIST macro might issue abend code X'C78'. For detailed abend code
information, see z/OS MVS System Codes.

Return and reason codes
When the VSMLIST macro returns control to your program, GPR 15 contains one
of the following hexadecimal return codes:

Table 40. Return Codes for the VSMLIST Macro

Return Code Meaning and Action

0 Meaning: Successful completion.

Action: None.

4 Meaning: Partially successful completion. More information remains to be
returned in the work area.

Action: Reissue the macro to obtain additional information until a return
code of 0 is returned in register 15. Do not change the value of bytes 0-3 of
the work area before reissuing the macro.

VSMLIST macro

Chapter 28. VSMLIST — List virtual storage map 325

Table 40. Return Codes for the VSMLIST Macro (continued)

Return Code Meaning and Action

8 Meaning: System error. The system encountered an error while scanning
virtual storage management data areas. The information in the data area is
valid, but incomplete. This return code is obtained only by users who
specify LINKAGE=SYSTEM.

Action: Notify system support personnel that there might be an error in
virtual storage management's control structure. If there is a problem with
VSM's control structure, the entire system will be adversely affected and
you might need to wait until the problem is identified and resolved by
support personnel. Support personnel should take a dump of the virtual
storage management control structure to help identify the cause of the
problem. If the problem appears to involve common storage, the contents
of common storage should be dumped to view the VSM control structure.
If the problem appears to involve private storage, private storage should be
dumped.

C Meaning: Program error. The system detected one of the following errors:

v The work area was too small.

v An incorrect parameter was specified.

v Incorrect control information was in the work area.

This return code is obtained only by users who specify
LINKAGE=BRANCH. Users who specify LINKAGE=SYSTEM receive a
X'C78' abend for these errors.

Action: Ensure that the work area is at least 4096 bytes long. Verify that the
work area is correctly defined and initialized and that parameters are
specified properly. Verify that your program has not inadvertently modified
the VSMLIST work area.

Example 1
List the ranges of the allocated and free storage in the SQA. Specify the address of
the VSM work area in register 2 and the length of the work area in register 3.
VSMLIST SP=SQA,SPACE=FREE,WKAREA=((2),(3))

Example 2
List the ranges of the allocated storage in the CSA. Specify the address of the work
area in register 2 and the length of the work area in register 3. Provide branch
entry linkage.
VSMLIST SP=CSA,SPACE=ALLOC,WKAREA=((2),(3)),LINKAGE=BRANCH

Example 3
List the ranges of unallocated storage in the private area. The variable X contains
the address of the work area, which has a length of 4096 bytes.
VSMLIST SP=PVT,SPACE=UNALLOC,WKAREA=(X,4096)

Example 4
List the ranges of allocated storage, below 16 megabytes, in each of the subpools
specified in the subpool list at location Y. The variable X contains the address of
the work area, which has a length of 4096 bytes.
VSMLIST SP=Y,SPACE=ALLOC,WKAREA=(X,4096),LOC=BELOW

VSMLIST macro

326 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 29. VSMLOC — Verify virtual storage allocation

Description
The VSMLOC macro verifies that a given storage area has been allocated using the
GETMAIN or STORAGE macros.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For LINKAGE=SYSTEM, problem state and PSW key 8-15.

For LINKAGE=BRANCH, supervisor state and PSW key 0.
Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit. All addresses passed to VSMLOC must be

31-bit addresses.
ASC mode: Primary.
Interrupt status: For LINKAGE=SYSTEM, enabled or disabled for I/O and

external interrupts. For LINKAGE=BRANCH, interrupt
status depends on the area of storage for which information
is requested. See the LINKAGE=BRANCH parameter for
complete information.

Locks: v For LINKAGE=SYSTEM with LSQA, PVT, or CPOOLLCL
specified, you may hold only the local lock.

v For LINKAGE=BRANCH, see the LINKAGE=BRANCH
parameter for locking requirements.

Control parameters: Must be in the primary address space

Programming requirements
v All addresses are associated with the current address space.
v The VSMLOC service does not provide serialization or recovery for callers

specifying LINKAGE=BRANCH. Callers must provide serialization and recovery
as described under the LINKAGE parameter description.

v The VSMLOC service provides serialization and recovery for callers specifying
LINKAGE=SYSTEM.

Restrictions
None.

Input register information for LINKAGE=SYSTEM
The VSMLOC macro is sensitive to the SYSSTATE macro with the
OSREL=ZOSV1R6 parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the VSMLOC
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

© Copyright IBM Corp. 1988, 2013 327

Register
Contents

13 The address of an 18-word save area

Output register information for LINKAGE=SYSTEM
When control returns to the caller, the GPRs contain:

Register
Contents

0 If GPR15 contains a value of zero, byte 3 contains the number of the
subpool from which the specified storage area was obtained. Bytes 0-2 do
not contain any relevant information.

If GPR15 contains a nonzero value, contains zero.

1 Used as a work register by the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Input register information for LINKAGE=BRANCH
The caller must ensure that the following general purpose register (GPR) contains
the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information for LINKAGE=BRANCH
When control returns to the caller, the GPRs contain:

Register
Contents

0 If GPR15 contains a value of 0, byte 3 contains the number of the subpool
from which the specified storage area was obtained. Bytes 0-2 do not
contain any relevant information.

If GPR15 contains a nonzero value, contains zero.

1-2 Used as work registers by the system

3-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

VSMLOC macro

328 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The VSMLOC macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede VSMLOC.

VSMLOC

� One or more blanks must follow VSMLOC.

SQA

CSA

LSQA

PVT

CPOOLFIX

CPOOLPAG

CPOOLLCL

,AREA=(addr,length) addr: RX-type address or register (0) - (12).

length: Symbol, decimal digit or register (0), (2) - (12). Use only with SQA,
CSA, LSQA, and PVT.

,AREA=(addr) addr: RX-type address or register (0) - (12). Use only with CPOOLFIX,
CPOOLPAG, and CPOOLLCL.

,TCB=addr

addr: RX-type address or register (0) - (12). Can only be specified with PVT.

VSMLOC macro

Chapter 29. VSMLOC — Verify virtual storage allocation 329

Syntax Description

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

Parameters
The parameters are explained as follows:

SQA
CSA
LSQA
PVT
CPOOLFIX
CPOOLPAG
CPOOLLCL

Used to verify that storage has been allocated.

SQA, CSA, LSQA, and PVT are used to verify that storage for SQA, CSA,
LSQA, or PVT (private area storage) has been allocated in the current address
space.

CPOOLFIX is used to verify that storage for a global fixed cell pool has been
allocated. Users who obtain their storage from subpool 226, 227, 228, 239, or
245 should specify this keyword.

CPOOLPAG is used to verify that storage for a global pageable cell pool has
been allocated. Users who obtain storage from subpool 231, 241, 247, or 248
should specify this keyword.

CPOOLLCL is used to verify that storage for a local cell pool has been
allocated. Users who obtain storage from subpool 0-127, 129-132, 203-205,
213-215, 223-225, 229, 230, 233-237, 240, 249, or 250-255 should specify this
keyword.

,AREA=(addr,length)
Indicates the start of the virtual storage area (addr) and the length of the virtual
storage area (length) to be verified.

,AREA=(addr)
Indicates the start of the virtual storage area (addr) to be verified.

,TCB=addr
Indicates that VSMLOC is to place the address of the TCB associated with the
verified storage in the register or storage area specified by the TCB parameter.
If the return code from VSMLOC is not zero, the register or storage area
specified by the TCB parameter is set to zero. The TCB parameter can be
specified only with PVT.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Indicates the type of linkage that VSMLOC is to use.

If LINKAGE=SYSTEM is specified, the VSMLOC routine uses a basic PC
instruction for linkage.

The caller's secondary ASID is preserved when a basic PC is issued.

VSMLOC macro

330 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

If LINKAGE=BRANCH is specified, the VSMLOC routine uses branch entry
linkage. Before issuing VSMLOC, provide serialization as follows:
v For LSQA, CPOOLLCL, and PVT requests, obtain the LOCAL lock.
v For CSA, SQA, and CPOOLFIX requests, issue the SETLOCK macro right

before and right after the VSMLOC request, as follows:
SETLOCK OBTAIN,TYPE=VSMFIX,MODE=UNCOND
VSMLOC request
SETLOCK RELEASE,TYPE=VSMFIX

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue SETLOCK
RELEASE,TYPE=VSMFIX or must issue the SETLOCK and SETRP macros as
follows:

SETLOCK TEST,TYPE=VSMFIX,BRANCH=(NOTHELD,NOVSMFIX)
SETRP FRELOCK=VSMFIX

NOVSMFIX DS 0H

Note:

1. Your program will be disabled for I/O and external interrupts from the
time the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMFIX:
– GETMAIN
– FREEMAIN
– STORAGE

v For CPOOLPAG requests, issue the SETLOCK macro right before and right
after the VSMLOC request, as follows:
SETLOCK OBTAIN,TYPE=VSMPAG,MODE=UNCOND
VSMLOC request
SETLOCK RELEASE,TYPE=VSMPAG

If your program is covered by a functional recovery routine (FRR) and the
FRR receives control after SETLOCK OBTAIN has been issued and before
SETLOCK RELEASE has been issued, your FRR must either issue SETLOCK
RELEASE,TYPE=VSMPAG or must issue SETLOCK and SETRP macros as
follows:

SETLOCK TEST,TYPE=VSMPAG,BRANCH=(NOTHELD,NOVSMPAG)
SETRP FRELOCK=VSMPAG

NOVSMPAG DS 0H

Note:

1. Your program will be disabled for I/O and external interrupts from the
time the SETLOCK OBTAIN completes until the SETLOCK RELEASE
completes. See the descriptions of the SETLOCK and SETRP macros for
additional usage information.

2. Your program and your FRR must not issue any of the following macros
before issuing SETLOCK RELEASE,TYPE=VSMPAG:
– GETMAIN
– FREEMAIN
– STORAGE

VSMLOC macro

Chapter 29. VSMLOC — Verify virtual storage allocation 331

ABEND codes
The VSMLOC macro might issue abend code X'C78'. For detailed abend code
information, see z/OS MVS System Codes.

Return and reason codes
When the VSMLOC macro returns control to your program, GPR 15 contains one
of the following hexadecimal return codes:

Table 41. Return Codes for the VSMLOC Macro

Return Code Meaning and Action

0 Meaning: Successful completion. The specified virtual storage area is
allocated.

Action: None.

4 Meaning: Possible program error. The specified virtual storage area is:

v Not allocated.

v Overlaps free space.

v Overlaps other subpools.

Action: This return code is not a program error if you have issued
VSMLOC to determine whether the storage at the specified address is
currently allocated and the system indicates that it is not. This return code
signifies a program error if you expected the specified storage area to be
allocated and the system reports one of the conditions listed above. If this
is an error, you need to determine why the storage area is in the indicated
state. Possible reasons include:

v The storage area address or length is not valid.

v The storage has been freed by another program.

v The storage was in a subpool that is automatically freed by the system
and the system has freed the storage.

8 Meaning: System error. The system encountered an error while scanning
virtual storage management data areas. This return code is obtained only
by users who specify LINKAGE=SYSTEM.

Action: Notify system support personnel that there might be an error in
virtual storage management's control structure. If there is a problem with
VSM's control structure, the entire system will be adversely affected and
you might have to wait until the problem is identified and resolved. System
support personnel should request a dump of the virtual storage
management control structure and contact IBM support. If the problem
appears to involve common storage, the contents of common storage
should be dumped to view the VSM control structure. If the problem
appears to involve private storage, private storage should be dumped.

C Meaning: Program error. You have specified a parameter incorrectly. This
return code is obtained only by users who specify LINKAGE=BRANCH.
Users who specify LINKAGE=SYSTEM receive a X'C78' abend for this
error.

Action: Ensure that the virtual storage area you have specified does not
exceed 2 gigabytes. Verify that you have coded the parameters as required.

10 Meaning: System error. Internal system error.

Action: Record the return code and notify IBM support personnel.

Example 1
Verify that the virtual storage, starting at the address given in register 2 and
having a length specified in register 3, has been allocated in the SQA.
VSMLOC SQA,AREA=((2),(3))

VSMLOC macro

332 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Example 2
Verify that the 8-bytes of virtual storage starting at X have been allocated in the
CSA. Use a PC instruction for linkage and let VSMLOC provide recovery and
serialization.
VSMLOC CSA,AREA=(X,8),LINKAGE=SYSTEM

Example 3
Verify that the 8-bytes of virtual storage starting at the address specified in register
2 have been allocated in the LSQA. Use branch entry for linkage.
VSMLOC LSQA,AREA=((2),8),LINKAGE=BRANCH

Example 4
Verify that the virtual storage, starting at X and having a length specified in
register 3, has been allocated in private area storage. Use branch entry for linkage.
VSMLOC PVT,AREA=(X,(3)),LINKAGE=BRANCH

Example 5
Verify that the 100 bytes of virtual storage starting at the address specified in
register 1 have been allocated in private area storage. The address of the TCB
associated with the storage verified is returned in register 4.
VSMLOC PVT,AREA=((1),100),TCB=(4),LINKAGE=BRANCH

VSMLOC macro

Chapter 29. VSMLOC — Verify virtual storage allocation 333

VSMLOC macro

334 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 30. VSMREGN — Obtain private area region size

Description
The VSMREGN macro provides the virtual starting address and sizes of the private
area user regions associated with a given TCB in the current address space. For
more information about the user region, see z/OS MVS Initialization and Tuning
Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15.
Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: 24- or 31-bit.

All addresses passed to VSMREGN must be 31-bit
addresses.

ASC mode: Primary.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: v If obtaining user region information for the currently

active task by specifying its TCB address or by taking the
default value for the TCB keyword, the caller is not
required to hold any locks.

v Otherwise, the caller must hold the local lock of the
currently addressable address space.

Control parameters: Must be in the primary address space. All input parameters
except for the TCB address can reside above 16 megabytes if
the caller is running in 31-bit addressing mode. The TCB
resides below 16 megabytes.

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the VSMREGN macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a standard 72-byte save area

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2013 335

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The VSMREGN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede VSMREGN.

VSMREGN

� One or more blanks must follow VSMREGN.

WKAREA=addr addr: RX-type address or register (0) - (12).

,TCB=tcb addr tcb addr: RX-type address or register (0), (2) - (12).

Default: (except for SRB routines) TCB address in PSATOLD.

Parameters
The parameters are explained as follows:

VSMREGN macro

336 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

WKAREA=addr
Indicates the virtual address of a 16-byte work area, which is used by
VSMREGN to return the requested information. The format of the work area
is:

Bytes Meaning

0-3 Virtual address of the region below 16 megabytes

4-7 Length of the region below 16 megabytes

8-11 Virtual address of the region above 16 megabytes

12-15 Length of the region above 16 megabytes

,TCB=tcb addr
Indicates the virtual address of the TCB to be used to identify the region (the
region control task (RCT) region, the V=V region, or the V=R region). SRB
routines and routines whose currently addressable address space is not the
home address space must specify the TCB operand. They cannot use the
default value.

ABEND codes
None.

Return and reason codes
When control returns from VSMREGN, GPR 15 always contains a return code of
zero, indicating successful completion.

Example 1
Find the virtual address and length of the private area of the TCB whose address
is in PSATOLD. Return the information in the work area whose address is given in
register 2.
VSMREGN WKAREA=(2)

Example 2
Find the virtual address and length of the private area of the TCB specified in
register 3. Return this information in the work area whose address is given in
register 2.
VSMREGN WKAREA=(2),TCB=(3)

Example 3
Find the virtual address and length of the private area of the TCB whose address
is X. Return this information in the work area whose address is given in register 2.
VSMREGN WKAREA=(2),TCB=X

Example 4
Find the virtual address and length of the private area of the TCB whose address
is given in register 3. Return this information in the work area whose address is X.
VSMREGN WKAREA=X,TCB=(3)

VSMREGN macro

Chapter 30. VSMREGN — Obtain private area region size 337

VSMREGN macro

338 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 31. WAIT — Wait for one or more events

Description
The WAIT macro is used to tell the system that performance of the active task
cannot continue until one or more specific events, each represented by a different
event control block (ECB), have occurred. Bit 0 and bit 1 of each ECB must be set
to zero before it is used.

The system takes the following action:
v For each event that has already occurred (each ECB is already posted), the count

of the number of events is decreased by one.
v If the number of events is zero by the time the last event control block is

checked, control is returned to the instruction following the WAIT macro.
v If the number of events is not zero by the time the last ECB is checked, control

is not returned to the issuing program until sufficient ECBs are posted to bring
the number to zero. Control is then returned to the instruction following the
WAIT macro.

See z/OS MVS Programming: Authorized Assembler Services Guide for information on
how to use the WAIT macro to serialize resources.

Environment
The requirements for callers of WAIT are:

Environmental factor Requirement
Minimum authorization: Supervisor state or problem state, with any PSW key
Dispatchable unit mode: Task
Cross memory mode: One of the following:

v For LINKAGE=SVC: PASN=HASN=SASN

v For LINKAGE=SYSTEM: PASN=HASN=SASN or
PASN¬=HASN¬=SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interruptions
Locks: v For LINKAGE=SYSTEM: No locks held

v For LINKAGE=SVC: No locks held, and no enabled
unlocked task (EUT) functional recovery routines (FRR)
established

Control parameters: ECB and ECBLIST must be in the home address space.

Programming requirements
None.

Restrictions
When using LINKAGE=SVC (the default), the caller cannot have an EUT FRR
established.

© Copyright IBM Corp. 1988, 2013 339

Input register information
Before issuing the WAIT macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the access registers (AR) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The WAIT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WAIT.

WAIT

� One or more blanks must follow WAIT.

event nmbr, event nmbr: Symbol, decimal digit, or register (0) or (2) - (12).

Default: 1

WAIT macro

340 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

Value range: 0-255

ECB=ecb addr ecb addr: RX-type address, or register (1) or (2) - (12).

ECBLIST=ecb list addr ecb list addr: RX-type address, or register (1) or (2) - (12).

,LONG=NO Default: LONG=NO

,LONG=YES

,LINKAGE=SVC Default: LINKAGE=SVC

,LINKAGE=SYSTEM

,EUT=NOSAVE Default: EUT=NOSAVE

,EUT=SAVE

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

event nmbr,
Specifies the number of events waiting to occur.

ECB=ecb addr
ECBLIST=ecb list addr

Specifies the address of an ECB on a fullword boundary or the address of a
virtual storage area containing one or more consecutive fullwords on a
fullword boundary. Each fullword contains the address of an ECB; the high
order bit in the last fullword must be set to one to indicate the end of the list.

The ECB parameter is valid only if the number of events is specified as one or
is omitted. The number of ECBs in the list specified by the ECBLIST form must
be equal to or greater than the specified number of events.

If you specify ECBLIST, ecb list addr and all ECBs on the list must be in the
home address space.

,LONG=NO
,LONG=YES

Specifies whether the task is entering a long wait (YES) or a regular wait (NO).

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies whether the caller is in cross memory mode (LINKAGE=SYSTEM) or
not (LINKAGE=SVC).

When the caller is not in cross memory mode (the primary, secondary, and
home address spaces are the same), use LINKAGE=SVC. With this parameter,
linkage is through an SVC instruction.

WAIT macro

Chapter 31. WAIT — Wait for one or more events 341

When the caller is in cross memory mode (the primary, secondary, and home
address spaces are not the same), use LINKAGE=SYSTEM. With this
parameter, linkage is through a PC instruction. Note that the ECB must be in
the home address space.

,EUT=NOSAVE
,EUT=SAVE

Specifies whether enabled unlocked task (EUT) FRRs, if present, should be
preserved around the WAIT processing. Specify this keyword only if you
specify LINKAGE=SYSTEM.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

The RELATED parameter is available on macros that provide opposite services
(for example, ATTACH/DETACH, GETMAIN/FREEMAIN, and
LOAD/DELETE), and on macros that relate to previous occurrences of the
same macros (for example, CHAP and ESTAE).

The RELATED parameter may be used, for example, as follows:
WAIT1 WAIT 1,ECB=ECB,RELATED=(RESUME1,

’WAIT FOR EVENT’)
.
.
.

RESUME1 POST ECB,0,RELATED=(WAIT1,
’RESUME WAITER’)

Note: Each of these macros will fit on one line when coded, so there is no
need for a continuation indicator.

CAUTION:
A job step with all of its tasks in a WAIT condition is terminated upon
expiration of the time limits that apply to it.

Example
You have previously initiated one or more activities to be completed
asynchronously to your processing. As each activity was initiated, you set up an
ECB in which bits 0 and 1 were set to zero. You now wish to suspend your task
via the WAIT macro until a specified number of these activities have been
completed.

Completion of each activity must be made known to the system via the POST
macro. POST causes an addressed ECB to be marked complete. If completion of
the event satisfies the requirements of an outstanding WAIT, the waiting task is
marked ready and will be executed when its priority allows.

ABEND codes
The caller of WAIT might encounter one of the following abend codes:
v 101
v 201
v 301
v 401

WAIT macro

342 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

See z/OS MVS System Codes for explanations and responses for these codes.

Return and reason codes
None.

Example 1
Wait for one event to occur (with a default count).

WAIT ECB=WAITECB
.
.

WAITECB DC F’0’

Example 2
Wait for two events to occur.

WAIT 2,ECBLIST=LISTECBS
.
.

LISTECBS DC A(ECB1)
DC A(ECB2)
DC X’80’
DC AL3(ECB3)

Example 3
Enter a long wait for a task.

WAIT 1,ECBLIST=LISTECBS,LONG=YES
.
.
.

LISTECBS DC A(ECB1)
DC A(ECB2)
DC X’80’
DC AL3(ECB3)

WAIT macro

Chapter 31. WAIT — Wait for one or more events 343

WAIT macro

344 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 32. WTL — Write to log

Description

Note: IBM recommends that you use the WTO macro with the
MCSFLAG=HRDCPY parameter instead of WTL, because WTO supplies more data
than WTL.

The WTL macro causes a message to be written to the system log (SYSLOG) or the
operations log (OPERLOG) log stream depending on which one of these logs, or
both, is active. The message can include any character that can be used in a C-type
(character) DC statement, and is assembled as a variable-length record.

Note: When a message is recorded in SYSLOG, the exact format of the output of
the WTL macro varies depending on the job entry subsystem (JES2 or JES3) that is
being used, the output class that is assigned to the log at system initialization, and
whether DLOG is in effect for JES3. See the z/OS MVS System Messages manuals for
information on the format of logged messages.

z/OS JES3 Commands also contains information about the format of logged
messages.

The description of the WTL macro follows. The WTL macro is also described in
z/OS MVS Programming: Assembler Services Reference IAR-XCT (with the exception of
the OPTION parameter).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key. For OPTION,

APF-authorized with PSW key 0-7, or supervisor state
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
Message text cannot exceed 126 characters. If the message text exceeds 126
characters, truncation occurs after the 126th character.

© Copyright IBM Corp. 1988, 2013 345

Input register information
Before issuing the WTL macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the WTL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters if OPTION=NOPREFIX is specified. Up to 128
characters if OPTION=PREFIX is specified.

,OPTION=PREFIX Default: OPTION=NOPREFIX

,OPTION=NOPREFIX

WTL macro

346 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

Parameters
The parameters are explained as follows:

‘msg’
Specifies the message to be written to the system log and/or the operations
log. The message must be enclosed in apostrophes, which will not appear in
the log. The message can include any character that can be used in a C-type
(character) DC statement, and is assembled as a variable-length record. See
“Timing and Communication” in z/OS MVS Programming: Assembler Services
Guide for a list of the printable EBCDIC characters passed to display devices or
printers.

,OPTION=PREFIX
,OPTION=NOPREFIX

Specifies whether the WTL text contains a prefix identifying the system log
record. If PREFIX is specified, the text already contains a prefix. If NOPREFIX
is specified or if this parameter is omitted, a two-character prefix will be added
by the system. The OPTION keyword is ignored by any program running in
the JES3 primary address space.

ABEND codes
None.

Return and reason codes
When the WTL macro returns control to your program, GPR 15 contains a
hexadecimal return code and GPR 0 contains a hexadecimal reason code. WTL
issues a return code (either 00 or 04), with multiple reason codes for each. The
return codes indicate the following:
v 00 - WTL wrote the message to the system log, the operations log, or both.
v 04 - WTL could not write the message to either the system log or the operations

log.

Table 42. Return and Reason Codes for the WTL Macro

Return Code Reason Code Meaning and Action

00 00 Meaning: WTL processing completed successfully. The
system logged the message in SYSLOG, and if OPERLOG
was requested, the system logged the message in
OPERLOG.

Action: None.

00 04 Meaning: WTL processing completed successfully. The
message was logged in the operations log (OPERLOG
logstream). The system log was not active.

Action: If you want the message logged in the system log,
start the system log and rerun the program.

WTL macro

Chapter 32. WTL — Write to log 347

Table 42. Return and Reason Codes for the WTL Macro (continued)

Return Code Reason Code Meaning and Action

00 08 Meaning: WTL processing completed, but the message was
only logged in the operations log because the WTL system
log buffers are full.

Action: Do one of the following, if you want subsequent
messages logged in the system log:

v Enter a CONTROL M,LOGLIM command to change the
allocated number of WTL system log buffers
dynamically.

v Change the LOGLIM value specifying the number of
WTL system log buffers on the INIT statement in the
CONSOLxx parmlib member. This value will take effect
at the next IPL.

00 0C Meaning: WTL processing completed, but the message was
only logged in the system log because the operations log
was not active.

Action: If you want the message logged in the operations
log, start the operations log and rerun the program. This
will also place the message in the system log.

00 10 Meaning: WTL processing completed, but the message was
only logged in the system log. The message was not logged
in the operations log stream because of a storage problem.

Action: If you want the message logged in the operations
log, retry the request. This will also place the message in
the system log. If the problem persists, contact the IBM
Support Center. Provide the return and reason code.

04 04 Meaning: System error. WTL processing was not
successful. Recovery could not be established.

Action: Retry the request. If the problem persists, record
the return and reason code and supply it to the appropriate
IBM support personnel.

04 08 Meaning: Environmental error. The system log and the
operations log are not active.

Action: Start the logs and rerun your program.

04 0C Meaning: Environmental error. The WTL limit has been
reached.

Action: Do one of the following:

1. Retry the request when the shortage is relieved.

2. Issue a CONTROL M,LOGLIM command to change the
allocated number of WTL SYSLOG buffers.

3. Change the LOGLIM value on the INIT statement in
the CONSOLxx member of SYS1.PARMLIB. This new
value will take effect at the next IPL.

Note: If the problem is persistent, you might want to
perform step 2 first and step 3 at the next IPL.

04 10 Meaning: System error. An internal error occurred. The
system issues message IEE390I.

Action: Contact the IBM Support Center. Provide the return
and reason code.

04 14 Meaning: System error. The system encountered a (VSM)
error. The system issues message IEE390I.

Action: Contact the IBM Support Center. Provide the return
and reason code.

WTL macro

348 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 42. Return and Reason Codes for the WTL Macro (continued)

Return Code Reason Code Meaning and Action

04 18 Meaning: Environmental error. The message was not
logged in either the system log or the operations log,
because neither log is active.

Action: Do one of the following:

v If you want to log the message in the operations log,
start the operations log with the VARY
OPERLOG,HARDCPY command and rerun the program.

v If you want the message logged in the system log, start
the system log (SYSLOG) with the VARY
SYSLOG,HARDCPY command and rerun the program.

04 1C Meaning: Environmental error. The message was not
logged in the system log, as requested, because the WTL
limit has been reached. The operation log was not active at
the time, so the message was not logged there either.

Action: To log the message in the system log, do the
following:

v Retry the request when the storage shortage has been
relieved.

v Issue a CONTROL M,LOGLIM command to change the
allocated number of WTL SYSLOG buffers.

v Change the LOGLIM value on the INIT statement in the
CONSOLxx member of SYS1.PARMLIB. This new value
will take effect at initialization.

If the problem persists, issue the CONTROL M,LOGLIM
command first, and change the LOGLIM value in
CONSOLxx at your next IPL.

To log the message in the operations log, start the
operations log and rerun the program.

04 20 Meaning: Environment error. The message was not logged
in the operations log, as requested, because of storage
problems. The system log was not active.

Action: To log the message in the operations log, retry the
request. If the problem persists, contact the IBM Support
Center, providing the return and reason codes.

To log the message in the system log also, start the system
log and rerun the program.

04 24 Meaning: Environment error. The message was not logged
in the system log because the WTL limit has been reached,
and was not logged in the operation log because of storage
problems.

Action: To log the message in the operations log, retry the
request. If the problem persists, contact the IBM Support
Center, providing the return and reason codes.

To log the message in the system log also, start the system
log and rerun the program.

Example 1
Write a message to the system log.
WTL ’THIS IS THE STANDARD FORMAT FOR THE WTL MACRO’

WTL macro

Chapter 32. WTL — Write to log 349

Example 2
Write a message to the system log specifying a prefix to identify the system log
record.
WTL ’QL THIS FORMAT OF THE WTL USES THE OPTION KEYWORD’,OPTION=PREFIX

Example 3
Build a parameter list for a message to be written to the system log.
LOGMSG WTL ’FUNCTION XXX COMPLETE’,MF=L

Example 4
Write a message constructed in the list form of WTL.
WTL MF=(E,LOGMSG)

WTL - List form
The list form of the WTL macro is used to construct a control program parameter
list. The message parameter must be provided in the list form of the macro. The
OPTION keyword is not permitted on the list form of the WTL macro.

Syntax
The list form of the WTL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

‘msg’ msg: Up to 126 characters.

,MF=L

Parameters
The parameters are explained under the standard form of the WTL macro with the
following exception:

,MF=L
Specifies the list form of the WTL macro.

WTL macro

350 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

WTL - Execute form
The execute form of the WTL macro uses a remote control program parameter list.
The parameter list can be generated by the list form of WTL. You cannot modify
the message in the execute form.

Syntax
The execute form of the WTL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTL.

WTL

� One or more blanks must follow WTL.

MF=(E,list addr) list addr: RX-type address, or register (1) or (2) - (12).

,OPTION=PREFIX Default: OPTION=NOPREFIX

,OPTION=NOPREFIX

Parameters
The parameters are explained under the standard form of the WTL macro with the
following exception:

MF=(E,list addr)
Specifies the execute form of the WTL macro.

list addr is the name of a storage area to contain the parameters.

WTL macro

Chapter 32. WTL — Write to log 351

WTL macro

352 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 33. WTO — Write to operator

Description
Use the WTO macro to write a message to one or more operator consoles. See the
information on communication in z/OS MVS Programming: Authorized Assembler
Services Guide for more information on using WTO. z/OS MVS Programming:
Assembler Services Reference IAR-XCT also contains information on WTO, with the
exception of the AREAID, MSGTYP, CONNECT, SYSNAME, JOBID, JOBNAME,
LINKAGE, SYNCH, and WSPARM parameters.

Environment
If you code LINKAGE=SVC, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v If you specify routing codes in the range 41-128, or

specify more than 10 lines of text, or code the CONNECT,
SYSNAME, JOBID, and JOBNAME parameters, you need
a minimum authorization of either supervisor state with
PSW key 0-7 or APF-authorized.

v For all other cases, you need a minimum authorization of
problem state and any key.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space.

If you code LINKAGE=BRANCH, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following, depending on the parameters you

code:

v Supervisor state and PSW key 0 - 7.

v If you code the WSPARM parameter, supervisor state with
PSW key 0.

Dispatchable unit mode: Task or SRB.
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space.

Programming requirements
Be aware of the following when coding the WTO macro:

© Copyright IBM Corp. 1988, 2013 353

v For a multiple-line message, you must clear register 0 on the first WTO issuance
if the WTO is being issued from an authorized program. For WTOs issued from
problem programs, any data in register 0 is ignored.

v You must clear register 0 before issuing a multiple-line WTO. The only exception
is when you are using register 0 to pass a message identifier to connect
multiple-line messages. However, in this case, IBM suggests you use the
CONNECT parameter rather than register 0.

v If the caller is disabled or issues WTO with the WSPARM parameter, the WTO
and LOADWAIT parameter lists must be in fixed storage.

v When using any parameter with an address, the data being referenced must be
accessible by the caller issuing the WTO.

v If the list and execute forms of the WTO macro are in separate modules, both
modules must be assembled or compiled with the same level of WTO.

v When you're coding a reentrant program, make sure the WTO parameter list is
generated correctly. To ensure this, you must code the same parameters on both
forms, only when you code one or more of the following parameters:
– TEXT=(text addr)

– CONNECT
– CONSID
– CONSNAME
– SYSNAME
– CART
– KEY
– TOKEN
– JOBNAME
– JOBID
– LINKAGE
– WSPARM
On the list form, code only the parameter and the equal sign; do not code a
parameter value as well. For example:
WTO ’text’,CONSID=,MF=L

If you specify parameter values on the list form, the system issues an MNOTE
and ignores the data.

v For any WTO parameters that allow a register specification, the value must be
right-justified in the register.

v If WSPARM is not equal to zero, the wait state is loaded whether or not the
message could be displayed or queued for hardcopy.

v If you specify the TEXT keyword for a multi-line WTO on the list form, you
must omit text addr for each line, but include line type. If you specify text addr,
the system ignores the data and issues an MNOTE. On the execute form, omit
line type for each line, but include text addr.

v As of z/OS 1.4.2, to prevent parameter lists that are not valid from causing
system errors, the WTO service records the errors as symptom records in
LOGREC. One example of an invalid parameter list is an invalid combination of
WTO parameters. The system may also issue a D23 abend for diagnostic
purposes only; the program issuing the WTO will not be abended. Message
processing will continue as far as possible using the invalid parameter list.
These invalid parameter list errors means that some messages you once were
able to process can no longer be processed; your program might also receive
different return codes. However, in these cases, the symptom record will always

WTO macro

354 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

be issued, and the diagnostic D23 abend will be issued if possible. IBM
recommends that you correct all WTO errors, regardless of whether or not the
message is actually displayed. For an example LOGREC symptom record, see
“Example 3” on page 370.
If a dump is needed along with the diagnostic D23 abend to debug the problem,
the following SLIP can be set to cause dumps to be taken:
SLIP SET,ENABLE,COMP=D23,ACTION=SVCD,END

Restrictions
v If an SRB-mode or cross-memory mode caller issues WTO without the JOBID or

JOBNAME parameter, the resulting message may not contain a job ID or
jobname.

v You should issue a synchronous message only in serious system emergencies.
v There are two ways for authorized callers (supervisor state with PSW key 0-7) to

issue multiple-line messages:
1. You can issue a multiple-line WTO message of up to 255 lines with one WTO

macro. If you are coding more than one multiple-line message, and you want
to connect the messages (and you are not using the recommended
CONNECT keyword on the WTO macro), you must ensure that the left-most
three bytes of register 0 are set correctly:
– For the first request (of up to 255 lines), these three bytes must be zero.
– For subsequent requests, register 0 can contain the message identifier that

the WTO service routine returns in register 1 after the first request. Note
that you must left-justify the 24-bit identifier when you load it into
register 0.

2. The CONNECT parameter provides a way to connect multiple-line WTO
messages. Therefore, an authorized caller actually can issue connect messages
that total more than 255 lines.

v A WTO message with ROUTCDE=11 is sent to the JES2 or JES3 system message
data set (SYSMSG) unless LINKAGE=BRANCH is specified. In this case, the
message is not sent. If you want the WTO to go to SYSMSG, use
LINKAGE=SVC with ROUTCDE=11. Whether you issue LINKAGE=BRANCH or
LINKAGE=SVC with ROUTCDE=11, the message appears in the JES2 or JES3
joblog.

v The caller cannot have an EUT FRR established with LINKAGE=SVC. The caller
can have an EUT FRR established with LINKAGE=BRANCH.

v When using the LINKAGE=BRANCH parameter, the system does not
automatically delete a WTO issued by a caller in SRB mode. A caller in SRB
mode must issue the DOM macro to explicitly delete any action message when
the calling program ends.

v If you specify LINKAGE=BRANCH, WTO ignores any data in register 0.
Therefore, if you are connecting lines of a multi-line WTO, and you specified
LINKAGE=BRANCH, you cannot put the CONNECT ID in register 0. You must
use the CONNECT keyword.

v If you are connecting lines of a multi-line WTO, and the end line is not received
within a certain time interval from the most recent connect request (the default
set by IBM is 30 seconds), the message will be truncated and displayed. Further
attempts to connect to the message will be rejected.

v If you are connecting lines of a multi-line WTO, there is a limit of 65533 total
lines allowed in the multi-line message. If you attempt to send more than 65533
total lines, an ABEND X'D23', reason code X'0051' occurs.

WTO macro

Chapter 33. WTO — Write to operator 355

Input register information
Before issuing the WTO macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system.

1 Message identification number if the macro completed normally. You can
use this number to delete the message when it is no longer needed. If you
are using the CONNECT parameter to connect WTO messages, store this
value in the 4-byte CONNECT field and set register 0 to zero before
issuing the next WTO. Otherwise, register 1 is used as a work register by
the system.

2-13 Unchanged.

14 Used as a work register by the system.

15 Return code.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
SYNCH=YES causes the calling program to display the message, become disabled,
and receive the reply synchronously.

Syntax
The standard form of the WTO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

WTO macro

356 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

� One or more blanks must follow WTO.

‘msg’ msg: Up to 126 characters.

(‘text’) text: Up to 126 characters.

(‘text’,line type) text addr: RX-type address or register (2) - (12).

(‘text’,line type) ..., (‘text’,line type) If you code ‘msg’ or (‘text’...), it must be the first parameter you code.

TEXT=text addr

TEXT=(text addr,line type)

TEXT=((text addr,line type),...(text
addr,line type))

The permissible line types, text lengths, and maximum numbers of each line
type are shown below:

line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

or
E None 1 E type

The maximum total number of lines that can be coded in one instruction is
255.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal digit from 1 to 13. The descriptor code is one or more
codes, separated by commas.

,AREAID=id char id char: Alphabetic character A - K, Z.

,MSGTYP=(msg type) msg type: Any of the following

N SESS,JOBNAMES

Y SESS,STATUS

SESS JOBNAMES,STATUS

JOBNAMES
SESS,JOBNAMES,STATUS

STATUS

Note: IBM recommends that you do not use MSGTYP=Y. See the MSGTYP
explanation on page 364 for more information.

WTO macro

Chapter 33. WTO — Write to operator 357

Syntax Description

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:

CMD HRDCPY

RESP NOCPY

REPLY NOTIME

BRDCST

,CONNECT=connect field connect field: RX-type address or register (2) - (12).
Note: CONNECT is mutually exclusive with the CONSID, CONSNAME,
SYSNAME, and SYNCH=YES parameters.

,CONSID=console id console id: RX-type address or register (2) - (12).

,CONSNAME=console name console name: RX-type address or register (2) - (12).

,SYSNAME=system name system name: RX-type address or register (2) - (12).

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

,KEY=key key: RX-type address or register (2) - (12).

,TOKEN=token token: RX-type address or register (2) - (12).

,JOBID=job id job id: RX-type address or register (2) - (12).

,JOBNAME=jobname jobname: RX-type address or register (2) - (12).

,LINKAGE=SVC Default: SVC

,LINKAGE=BRANCH

,SYNCH=NO Default: NO

,SYNCH=YES

,WSPARM=0 Default: 0

,WSPARM=wait state addr wait state addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

‘msg’
(‘text’)
(‘text’,line type)
(‘text’,line type)...,(‘text’,line type)

WTO macro

358 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

TEXT=(text addr)
TEXT=(text addr,line type)
TEXT=((text addr,line type),...(text addr,line type))

Specifies the message or multiple-line message to be written to one or more
operator consoles.

The parameter ‘msg’ is used to write a single-line message to the operator. In
the format, the message must be enclosed in apostrophes, which do not appear
on the console. It can include any character that can be used in a character
(C-type) DC instruction.

To have apostrophes appear in the message text, use two apostrophes to get
one to appear. For example, ''Message Off'' would appear on a display as
'Message Off'. When a program issues a WTO macro, the system translates the
text; only standard printable EBCDIC characters are passed to MCS-managed
display devices. The EBCDIC characters that can be displayed are listed in
z/OS MVS Programming: Assembler Services Guide. All other characters are
replaced by blanks. Unless the console has dual-case capability, lowercase
characters are displayed or printed as uppercase characters.

The message is assembled as a variable-length record. The parameters
TEXT=(text addr) and TEXT=(text addr,line type) represent a 4-byte address of a
message to be displayed that consists of a 2-byte message length followed by
the message text. The 2-byte message length describes the length of the
message text only. There are no boundary requirements.

The parameters (‘text’) and (text addr,line type) are used to write a multiple-line
message to the operator. For a problem-state program, the message can be up
to ten lines long; the system truncates the message at the end of the tenth line.
The ten-line limit does not include the control line (message IEE932I), as
explained under line type C below. The ten-line limit only applies to
unauthorized users; for authorized users, the message can be up to 255 lines
each time WTO is issued.

Note:

1. If the parameter (‘text’) is coded without repetition, the message appears as
a single-line message.

2. Specify all lines of a multiple-line WTO consistently with the message text
or the TEXT keyword.

3. When coding the TEXT keyword for a multiple-line message:
v Do not exceed the 71-character limit for the macro parameter value.
v You can use the CONNECT parameter to connect subsequent lines of a

multiple-line message if you cannot fit them into one macro invocation.
4. For a multiple-line message, you must clear register 0 on the first WTO

issuance.

The line type defines the type of information contained in the ‘text’ field of
each line of the message:

C Indicates that the ‘text’ parameter is the text to be contained in the
control line of the message. The control line normally contains a
message title. C may only be coded for the first line of a multiple-line
message. If this parameter is omitted and descriptor code 9 is coded,
the system generates a control line (message IEE932I) containing only a
message identification number. The control line remains static while
you scroll through all the lines of a multi-line message displayed on an

WTO macro

Chapter 33. WTO — Write to operator 359

MCS console (provided that the message is displayed in an out-of-line
display area). Control lines are optional.

L Indicates that the ‘text’ parameter is a label line. Label lines contain
message heading information; they remain static while you scroll
through all the lines of a multi-line message displayed on an MCS
console (provided that the message is displayed in an out-of-line
display area). Label lines are optional. If coded, lines must either
immediately follow the control line or another label line, or be the first
line of the multiple-line message if there is no control line. Only two
label lines may be coded per message. See “Embedding Label Lines in
a Multi-line Message” in z/OS MVS Programming: Authorized Assembler
Services Guide for additional information about how to include multiple
label lines within a message.

D Indicates that the ‘text’ parameter contains the information to be
conveyed to the operator by the multiple-line message. The data lines
are paged while you scroll through all the lines of a multi-line message
displayed on an MCS console (provided that the message is displayed
in an out-of-line display area).

DE Indicates that the ‘text’ parameter contains the last line of information
to be passed to the operator. Specify DE on the last line of text of the
WTO. If there is no text on the last line, specify E.

E Indicates that the previous line of text was the last line of text to be
passed to the operator. The ‘text’ parameter, if any, coded with a line
type of E is ignored. Specify E on the last line of the WTO if that line
has no text. If the last line has text, specify DE.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

The routing codes are:

Code Meaning

1 Operator Action

The message indicates a change in the system status. It demands action
by the primary operator.

2 Operator Information

The message indicates a change in system status. It does not demand
action; rather, it alerts the primary operator to a condition that might
require action.

This routing code is used for any message that indicates job status
when the status is not requested specifically by an operator inquiry. It
is also used to route processor and problem program messages to the
system operator.

3 Tape Pool

The message gives information about tape devices, such as the status
of a tape unit or reel, the disposition of a tape reel, or a request to
mount a tape.

4 Direct Access Pool

The message gives information about direct access storage devices
(DASD), such as the status of a direct access unit or volume, the
disposition of a volume, or a request to mount a volume.

WTO macro

360 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

5 Tape Library

The message gives tape library information, such as a request by
volume serial numbers for tapes for system or problem program use.

6 Disk Library

The message gives disk library information, such as a request by
volume serial numbers for volumes for system or problem program
use.

7 Unit Record Pool

The message gives information about unit record equipment, such as a
request to mount a printer train.

8 Teleprocessing Control

The message gives the status or disposition of teleprocessing
equipment, such as a message that describes line errors.

9 System Security

The message gives information about security checking, such as a
request for a password.

10 System/Error Maintenance

The message gives problem information for the system programmer,
such as a system error, an uncorrectable I/O error, or information
about system maintenance.

11 Programmer Information

This is commonly referred to as write to programmer (WTP). The
message is intended for the problem programmer. This routing code is
used when the program issuing the message cannot route the message
to the programmer through a system output (SYSOUT) data set. The
message appears in the JESYSMSG data set. If the message is issued by
a TSO user, the message is also sent to the TSO user's screen.

12 Emulation

The message gives information about emulation. (These message
identifiers are not included in this publication.)

13-20 For customer use only.

21-28 For subsystem use only.

29 Disaster recovery.

30-40 For IBM use only.

41 The message gives information about JES3 job status.

42 The message gives general information about JES2 or JES3.

43-64 For JES use only.

65-96 Messages associated with particular processors.

97-128 Messages associated with particular devices.

If you omit the ROUTCDE, DESC, and CONSID or CONSNAME keywords,
the system uses the routing code specified on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx member of SYS1.PARMLIB.

WTO macro

Chapter 33. WTO — Write to operator 361

Note: Routing codes 1, 2, 3, 4, 7, 8, 10, and 42 cause hard copy of the message
when display consoles are used, or more than one console is active. All other
routing codes may go to hard copy as a PARMLIB option or as a result of a
VARY HARDCPY command.

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the message.
Descriptor codes 1 through 6, 11 and descriptor code 12 are mutually exclusive.
Codes 7 through 10, and 13, can be assigned in combination with any other
code.

The descriptor codes are:

Code Meaning

1 System Failure

The message indicates an error that disrupts system operations. To
continue, the operator must reIPL the system or restart a major
subsystem. This causes the audible alarm to be issued.

2 Immediate Action Required

The message indicates that the operator must perform an action
immediately. The message issuer could be in a wait state until the
action is performed or the system needs the action as soon as possible
to improve performance. The task waits for the operator to complete
the action. This causes the audible alarm to be issued.

Note: When an authorized program issues a message with descriptor
code 2, a DOM macro must be issued to delete the message after the
requested action is performed.

3 Eventual Action Required

The message indicates that the operator must perform an action
eventually. The task does not wait for the operator to complete the
action.

If the task can determine when the operator has performed the action,
the task should issue a DOM macro to delete the message when the
action is complete.

4 System Status

The message indicates the status of a system task or of a hardware
unit.

5 Immediate Command Response

The message is issued as an immediate response to a system
command. The response does not depend on another system action or
task.

6 Job Status

The message indicates the status of a job or job step.

7 Task-Related

The message is issued by an application or system program. Messages
with this descriptor code are deleted when the job step that issued
them ends.

8 Out-of-Line

WTO macro

362 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

The message, which is one line of a group of one or more lines, is to be
displayed out-of-line. If a message cannot be displayed out-of-line
because of the device being used, descriptor code 8 is ignored, and the
message is displayed in-line with the other messages.

Note: Multiline messages directed at an OOL area and routed by either
the UNKNIDS or INTIDS attributes will be forced "inline".

9 Operator's Request

The message is written in response to an operator's request for
information by a DEVSERV, DISPLAY, or MONITOR command.

10 Not defined

Descriptor code 10 is not currently in use.

11 Critical Eventual Action Required

The message indicates that the operator must perform an action
eventually, and the action is important enough for the message to
remain on the display screen until the action is completed. The task
does not wait for the operator to complete the action. This causes the
audible alarm to be issued.

Avoid using this descriptor code for non-critical messages because the
display screen could become filled.

If the task can determine when the operator has performed the action,
the task should issue a DOM macro to delete the message when the
action is complete.

12 Important Information

The message contains important information that must be displayed at
a console, but does not require any action in response.

13 Automation Information

Indicates that this message was previously automated.

Action messages many have an * sign or @ sign displayed before the first character
of the message. The * sign indicates that the WTO was issued by an authorized
program. The @ sign indicates that the WTO was issued by an unauthorized
program.

All WTO messages with descriptor codes 1, 2, or 11 are action messages that have
an asterisk (*) sign displayed before the first character of the message. This
indicates a need for operator action. These action messages will cause the audible
alarm to sound on operator consoles so-equipped. On operator consoles that
support color, descriptor codes determine the color in which a message should be
displayed. Colors can indicate the type of action you need to take depending on
your installation setup. The colors used for different descriptor codes are described
in z/OS MVS System Commands.

The system holds messages with descriptor codes 1, 2, 3, or 11 until you delete
them. When you no longer need messages with descriptor codes 1, 2, 3, or 11, you
should delete those messages using the DOM macro. If messages with descriptor
codes 1, 2, 3, or 11 also have descriptor code 7, the system deletes them
automatically at task termination. For unauthorized issuers of WTOs, the system
adds descriptor code 7 to all messages with descriptor code 1 or 2. The system also
adds descriptor code 7 to all WTORs.

WTO macro

Chapter 33. WTO — Write to operator 363

If descriptor code 7 is specified, the system deletes the message automatically
when the job step that issued it ends.

The message processing facility (MPF) can suppress messages. For MPF to
suppress messages, the hardcopy log must be active. The suppressed messages do
not appear on any console; they do appear on the hardcopy log.

,AREAID=id char
Specifies a display area of the console screen on which a multiple-line message
is to be written.

Valid area IDs are A through K and Z. A through K refer to out-of-line areas
defined on an MCS console by the CONTROL A command. The character Z
designates the message area (the screen's general message area, rather than a
defined display area); it is assumed if nothing is specified. The areas are
explained in z/OS MVS System Commands.

Note:

1. WTO ignores this keyword on single-line invocations.
2. When you specify AREAID, you must specify descriptor codes 8 and 9.
3. If you specify this parameter, the area could be overlaid by a currently

running dynamic display. Support for queuing messages with descriptor
code 8 is by console ID only. You must specify a console explicitly using the
CONSID or CONSNAME parameters on WTO.

4. You can use the CONVCON macro to syntactically validate an area ID.

,MSGTYP=(msg type)
Specifies how the message is to be routed to consoles on which the MONITOR
command is active. If you specify anything other than MSGTYP=N, which is
the default, your message will be routed according to your specification on
MSGTYP.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console
that issued the MONITOR SESS, MONITOR JOBNAMES, or MONITOR
STATUS command, respectively. When the message type is identified by the
operating system, the message is routed to those consoles that requested the
information.

For Y, the message type describes what functions (MONITOR SESS, MONITOR
JOBNAMES, and MONITOR STATUS) are desired. N, or omission of the
MSGTYP parameter, indicates that the message is to be routed as specified in
the ROUTCDE parameter. Y creates an area in the WTO parameter list in
which you can set message type information if you are coding a WTO without
any of the following parameters:
v KEY
v TOKEN
v CONSID
v CONSNAME
v TEXT
v CART
v LINKAGE
v SYNCH

IBM recommends that you do not use MSGTYP=Y.

WTO macro

364 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

,MCSFLAG=(flag name)
Specifies one or more flags whose meanings are shown below:

Table 43. MCSFLAG Flag Names

Flag Name Meaning

RESP The WTO is an immediate command response.

REPLY This WTO is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

NOTIME Do not append time to the message.

NOCPY Do not queue the message for hard copy.

CMD The WTO is a recording of a system command issued for hardcopy log
purposes.

Note:

1. MCSFLAG=HRDCPY and SYNCH=YES are mutually exclusive.
2. Use DESC=5 rather than specifying MCSFLAG=RESP for WTO messages that

are immediate command response.

Note:

,CONNECT=connect field
Specifies a field containing the 4-byte message ID of the previous WTO to
which this WTO is to be connected. This message ID is obtained as an output
parameter (returned in register 1) from the previous WTO. If a register is used,
it contains the address of the message ID.

CONNECT is valid only for continuation of multiple-line messages. When you
specify this parameter in the list form, code it as CONNECT= with nothing
after the equal sign.

This parameter is mutually exclusive with the CONSID, CONSNAME, and
SYSNAME parameters.

Note: If you specify LINKAGE=SVC, you can still use register 0, as mentioned
at the beginning of the WTO macro description, to connect WTO messages. If
you specify both register 0 and CONNECT, however, the system uses the
CONNECT parameter. IBM suggests that you use the CONNECT parameter.

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message.

Note:

1. If you code the CONSID parameter using a register, the register must
contain the console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTO, code it as CONSID=
with nothing after the equal sign.

3. CONSID is mutually exclusive with the CONNECT, CONSNAME, and
SYSNAME parameters.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8-character name, left-justified

WTO macro

Chapter 33. WTO — Write to operator 365

and padded with blanks, of the console to receive a message. When you
specify this parameter in the list form, code it as CONSNAME= with nothing
after the equal sign.

This parameter is mutually exclusive with the CONSID, CONNECT, and
SYSNAME parameters.

,SYSNAME=system name
Specifies an 8-byte input field containing a system name to be associated with
this message. You should left-justify SYSNAME and pad with blanks.

The system name is that of the system from which the caller issues the WTO.
When you specify this parameter in the list form, code it as SYSNAME= with
nothing after the equal sign. If SYSNAME is omitted, the system uses the name
of the system where the WTO is issued. IBM suggests that you avoid using the
SYSNAME parameter.

This parameter is mutually exclusive with the CONNECT parameter.

,CART=cmd/resp token
Specifies an 8-character input field containing a command and response token
to be associated with this message. The command and response token is used
to associate user information with a command and its command response. You
can supply any value as a command and response token. When you specify
this parameter in the list form, code it as CART= with nothing after the equal
sign.

,KEY=key
Specifies an input field containing an 8-byte key to be associated with this
message. The key must be EBCDIC if used with the MVS DISPLAY R
command for retrieval purposes, but it must not be ‘*’. The key must be
left-justified, and padded on the right with blanks. If a register is used, it
contains the address of the key. When you specify this parameter in the list
form, code it as KEY= with nothing after the equal sign.

,TOKEN=token
Specifies an input field containing a 4-byte token to be associated with this
message. This field is used to identify a group of messages that can be deleted
by a DOM macro that includes TOKEN. The token must be unique within an
address space and can be any value. When you specify this parameter in the
list form, code it as TOKEN= with nothing after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must
contain the token itself, rather than the address of the token.

,JOBID=job id
Specifies an 8-byte input field containing an ID that identifies the issuer of the
WTO message. When you specify this parameter in the list form, code it as
JOBID= with nothing after the equal sign.

,JOBNAME=jobname
Specifies an 8-byte input field containing a name that identifies the issuer of
the WTO message. You should left-justify JOBNAME and pad with blanks.
When you specify this parameter in the list form, code it as JOBNAME= with
nothing after the equal sign.

,LINKAGE=SVC
,LINKAGE=BRANCH

Specifies how control is to pass to the WTO service.

WTO macro

366 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

LINKAGE=SVC indicates that the linkage is by a supervisor call. If LINKAGE
is not specified, this is the default.

LINKAGE=BRANCH indicates that the linkage is by a branch-and-link. This
parameter is used by programs that run at times when an SVC cannot be
issued, and by programs that require the WTO request to be handled
synchronously.

When you specify this parameter in the list form, code it as LINKAGE= with
nothing after the equal sign.

If you specify LINKAGE=BRANCH, you cannot put the CONNECT value in
register 0. You must use the CONNECT keyword.

,SYNCH=NO
,SYNCH=YES

Specifies whether the WTO request processes synchronously with the caller.

SYNCH=NO, the default, indicates that the request is not processed
synchronously.

SYNCH=YES indicates that the request is to be processed synchronously. This
parameter is used in error and recovery environments, when normal message
processing cannot be used. The message is sent to a console, where it is held
on the screen for up to ten seconds, before control is returned to the caller. A
copy of the message is queued for transcription to the hardcopy log.

If you specify SYNCH=YES:
v You must specify the parameter LINKAGE=BRANCH.
v The message text must be 14 lines or less.
v The following parameters are mutually exclusive: CONNECT, AREAID, and

MCSFLAG=HRDCPY.

Your installation can determine which consoles can receive synchronous
messages by using the SYNCHDEST parameter in the CONSOLxx member of
SYS1.PARMLIB. For additional information on the SYNCHDEST parameter, see
z/OS MVS Initialization and Tuning Reference.

,WSPARM=0
,WSPARM=wait state addr

Specifies whether a wait state is associated with this message.

A value of zero indicates that there is no wait state associated with this
message. If you do not specify WSPARM, this is the default.

A nonzero value indicates either the address of a LOADWAIT parameter list or
a register containing a pointer to the parameter list. The LOADWAIT macro
generates the LOADWAIT parameter list. When you specify this parameter in
the list form, code it as WSPARM= with nothing after the equal sign.

This parameter requires the SYNCH=YES and LINKAGE=BRANCH
parameters.

ABEND codes
WTO might abnormally terminate with abend code X'D23'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and reason codes
When the WTO macro returns control to your program, GPR 15 contains one of the
following hexadecimal return codes.

WTO macro

Chapter 33. WTO — Write to operator 367

Table 44. Return Codes for the WTO Macro

Return Code Meaning and Action

00 Meaning: Processing completed successfully.

Action: None.

02 Meaning: Processing was not completely successful. This could be due to
inconsistent parameters given to WTO, or it could be an environmental problem.

Action: A D23 abend has been issued for diagnostic purposes only. No dump
has been taken; if a dump is needed, you must set a SLIP trap. Correct any
inconsistencies in the WTO invocation.

04 Meaning: Program error. The length of text for a message line was not correct.

Action:

v Make sure your text is properly referenced. If you are using the TEXT
parameter, make sure it is pointing to valid data.

v Make sure your message text is defined correctly. If you are using the TEXT
parameter, make sure the first two bytes of data in the area pointed to by the
TEXT parameter value contain the length of the message text.

In all cases, correct the problem and retry the request.

08 Meaning: Program error. The connecting message ID (passed in register 0 or as
specified by the CONNECT parameter value) does not match any on the queue.
The request was ignored.

Action: Verify the connect ID value, correct the problem, and retry the request.

18 Meaning: Program error. The WPL was invalid and a symptom record was
written to LOGREC to describe the error. The message was not processed.

Action: Correct the WPL.

30 Meaning: Environmental error. For routing code 11, the required resource was
not available and the request was ignored. For any other routing code, the
request was processed.

Action: Retry the request when the resource you need is available.

40 Meaning: Environmental error. WTO was issued with LINKAGE=BRANCH;
insufficient storage was available to queue the message for delayed issue. If
SYNCH=NO was specified, the message was not queued for delayed issue. If
SYNCH=YES was specified, the message was delivered for display, but not
queued for hardcopy.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

44 Meaning: Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available. The message was queued for
hardcopy, but not delivered for display.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

48 Meaning: Environmental error. WTO was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available and insufficient storage was
available to queue the message for delayed issue. The message was not
delivered for display, nor queued for hardcopy.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

WTO macro

368 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 44. Return Codes for the WTO Macro (continued)

Return Code Meaning and Action

4C Meaning: Environmental error. WTO was issued with LINKAGE=BRANCH; no
storage was available for the use of WTO processing. If WSPARM=0, no
processing was done. If WSPARM does not equal zero, WTO loaded the wait
state, but performed no other processing.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was an action message that was
not displayed, a DOM request is not required.

50 Meaning: Environmental error. The message could not be fully processed
because of insufficient space. The message might not appear in the hardcopy log
and it might not be displayed on any consoles.

Action: Retry the request.

54 Meaning: Environmental error. The message could not be fully processed
because of a hardcopy failure. The message might not appear in the hardcopy
log.

Action: Issue a D C,HC to display any active hardcopy mediums. Verify that
SYSLOG and OPERLOG are active and functioning correctly and then retry the
request.

58 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while sending it. The message might not
appear in the hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

5C Meaning: Environmental error. The message could not be fully processed
because of a failure freeing storage. The message might not appear in the
hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

60 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while calculating its size. The message might
not appear in the hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

64 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while building the message. The message
might not appear in the hardcopy log and it might not be displayed on any
consoles.

Action: Retry the request.

68 Meaning: The WTO environment is not yet available. The message was not
delivered for display, nor was it queued for hardcopy.

Action: Issue the request again when WTO processing is available.

Example 1
Issue an important information message to a console whose name is defined in
field MYCONS. This message is issued using the branch-entry option.

WTO ’USR123I DO NOT SUBMIT JOBS REQUESTING THREE OR MORE TAPX
ES DURING FIRST SHIFT’,
DESC=(12),CONSNAME=MYCONS,LINKAGE=BRANCH,SYNCH=NO

.

.

.
MYCONS DC CL8’SCHDCONS’

WTO macro

Chapter 33. WTO — Write to operator 369

Example 2
Issue a multi-line message using the TEXT parameter. This is an important
information message which does not have a time stamp and is not sent to the
hardcopy log.

WTO TEXT=((REMIND1,D),(REMIND2,D),(REMIND3,DE)), X
DESC=(12),MCSFLAG=(NOTIME,NOCPY)

.

.

.
REMIND1 DC AL2(L’RMD1TXT)
RMD1TXT DC C’USR003I REMINDER: THE SYSTEM IS NOT AVAILABLE FOR USEX

ON THIRD SHIFT’
REMIND2 DC AL2(L’RMD2TXT)
RMD2TXT DC C’FOR SPECIAL REQUESTS CONTACT SYSTEM SUPPORT’
REMIND3 DC AL2(L’RMD3TXT)
RMD3TXT DC C’CALL THE STATUS DESK FOR FURTHER INFORMATION’

Example 3
To prevent parameter lists that are not valid from causing system errors, the WTO
service records the errors as symptom records in LOGREC. Here is a sample
symptom record:
THE SYMPTOM RECORD DOES NOT CONTAIN A SECONDARY SYMPTOM STRING.
FREE FORMAT COMPONENT INFORMATION:

KEY = F000 LENGTH = 000024 (0018)
+000 C9D5C3D6 D9D9C5C3 E340E6E3 D640C9D5 |INCORRECT WTO IN|
+010 E5D6C3C1 E3C9D6D5 |VOCATION |
KEY = F000 LENGTH = 000010 (000A)
+000 C1E4E3C8 D6D9C9E9 C5C4 |AUTHORIZED |
KEY = F000 LENGTH = 000009 (0009)
+000 C1E2C9C4 61F0F0F0 F1 |ASID/0001 |
KEY = F000 LENGTH = 000016 (0010)
+000 D1D6C2D5 C1D4C561 5CD4C1E2 E3C5D95C |JOBNAME/*MASTER*|
KEY = F000 LENGTH = 000025 (0019)
+000 C9D5E5D6 D2C5D961 C9C5C5C3 C2F9F9F9 |INVOKER/IEECB999|
+010 4EF0F0F0 F0F4C5C4 F2 |+00004ED2 |
KEY = F000 LENGTH = 000032 (0020)
+000 C5D5C4D3 C9D5C540 C4C5E3C5 C3E3C5C4 |ENDLINE DETECTED|
+010 40C2C5C6 D6D9C540 E6D7D3D3 C9D5C5E2 | BEFORE WPLLINES|
KEY = F000 LENGTH = 000017 (0011)
+000 C3E4D9D9 C5D5E340 D3C9D5C5 61F0F0F0 |CURRENT LINE/000|
+010 F2 |2 |
KEY = F000 LENGTH = 000003 (0003)
+000 E6D7D3 |WPL |
KEY = FF00 LENGTH = 000216 (00D8)
+000 00480050 F0F0F2F2 40C5D5C1 C2D3C5C4 |...&0022 ENABLED|
+010 4040F0F0 F2F340C5 D5C1C2D3 C5C44040 | 0023 ENABLED |
+020 F0F0F2F4 40C5D5C1 C2D3C5C4 4040F0F0 |0024 ENABLED 00|
+030 F2F540C5 D5C1C2D3 C5C44040 F0F0F2F6 |25 ENABLED 0026|
+040 40C5D5C1 C2D3C5C4 0400007C 10000000 | ENABLED...@....|
+050 00000000 00000000 000004D2 00000000 |...........K....|
+060 LENGTH(0048) ==> ALL BYTES CONTAIN X’00’.
+090 00000000 40404040 40404040 00000000 |....|
+0A0 LENGTH(0032) ==> ALL BYTES CONTAIN X’00’.
+0C0 00000000 2000C103 00103000 F0F0F2F7 |......A.....0027|
+0D0 40C5D5C1 C2D3C5C4 | ENABLED |
KEY = F000 LENGTH = 000010 (000A)
+000 D4C1D1D6 D940E3C5 E7E3 |MAJOR TEXT |
KEY = F000 LENGTH = 000034 (0022)
+000 40C9C5C5 F7F3F5C9 40F1F74B F2F74BF3 | IEE000I 17.27.3|
+010 F940C4E4 D4D4E840 C4C9E2D7 D3C1E840 |9 DUMMY DISPLAY |
+020 F2F3F4 |234 |

WTO macro

370 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

This symptom record indicates that this is a WTO error. It also indicates whether
the WTO issuer was authorized. The symptom record also contains the following
information:
v The ASID, job name, program name, and an offset into the program that issued

the WTO. You can use this information to help identify the issuer
v A description of the error
v The message line number where the error was detected
v The text of the first line, if the message is a multi-line WTO

Once you diagnose the reason for the error, correct the WTO invocation to issue
the message properly, or contact the owner of the application that is issuing the
WTO to have it corrected.

WTO - List form
Use the list form of the WTO macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an
area of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the WTO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

� One or more blanks must follow WTO.

‘msg’ msg: Up to 126 characters.

(‘text’) text: Up to 126 characters.

(‘text’,line type) Note:

1. If you code ‘msg’ or (‘text’...), it must be the first parameter you code.

2. For a single-line WTO, the parameter value is not required on TEXT for
the list form. Code only TEXT=. Then code TEXT=(text addr) on the
execute form.

TEXT=

TEXT=((,line type),(,line type),...(,line
type))

WTO macro

Chapter 33. WTO — Write to operator 371

Syntax Description

The permissible line types, text lengths, and maximum numbers of each line
type are shown below:

line type text maximum number
C 35 char 1 C type
L 71 char 2 L type
D 71 char 255 D type
DE 71 char 1 DE type

or
E None 1 E type

The maximum total number of lines that can be coded in one instruction is
255.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code is one or more
codes, separated by commas, or a hyphen to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal digit from 1 to 13. The desc code is one or more
codes, separated by commas.

,AREAID=id char id char: Alphabetic character A - K, Z.

,MSGTYP=(msg type) msg type: Any of the following

N SESS,JOBNAMES

Y SESS,STATUS

SESS JOBNAMES,STATUS

JOBNAMES
SESS,JOBNAMES,STATUS

STATUS

Note: IBM recommends that you do not use MSGTYP=Y. See the MSGTYP
explanation on page 364 for more information.

,MCSFLAG=(flag name) flag name: Any combination of the following, separated by commas:

CMD HRDCPY

RESP NOCPY

REPLY NOTIME

BRDCST

,CONNECT= Parameter value not required for list form. Code only ,CONNECT=. If you
code CONNECT on the execute form of WTO, you must code the same
parameter on the list form.

,CONSID= Parameter value not required for list form. Code only ,CONSID= (or
,CONSNAME=). If you code CONSID (or CONSNAME) on the execute
form of WTO, you must code the same parameter on the list form.

WTO macro

372 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,CONSNAME=

,SYSNAME= Parameter value not required for list form. Code only ,SYSNAME=. If you
code SYSNAME on the execute form of WTO, you must code the same
parameter on the list form.

,CART= Parameter value not required for list form. Code only ,CART=. If you code
CART on the list form of WTO, you must code CART on the execute form.

,KEY= Parameter value not required for list form. Code only ,KEY=. If you code
KEY on the list form of WTO, you must code KEY on the execute form.

,TOKEN= Parameter value not required for list form. Code only ,TOKEN=. If you code
TOKEN on the list form of WTO, you must code TOKEN on the execute
form.

,JOBID= Parameter value not required for list form. Code only ,JOBID=. If you code
JOBID on the list form of WTO, you must code JOBID on the execute form.

,JOBNAME= Parameter value not required for list form. Code only ,JOBNAME=. If you
code JOBNAME on the list form of WTO, you must code JOBNAME on the
execute form.

,LINKAGE= Parameter value not required for list form. Code only ,LINKAGE=. If you
code LINKAGE on the list form of WTO, you must code LINKAGE on the
execute form.

,SYNCH=NO Default: NO

,SYNCH=YES

,WSPARM= Parameter value not required for list form. Code only ,WSPARM=. If you
code WSPARM on the list form of WTO, you must code WSPARM on the
execute form.

,MF=L

Parameters
The parameters are explained under the standard form of the WTO macro with the
following exception:

,MF=L
Specifies the list form of the WTO macro.

WTO macro

Chapter 33. WTO — Write to operator 373

WTO - Execute form
Use the execute form of the WTO macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code
inline text (‘msg’ or (‘text’...)) on the list form.

Syntax
The execute form of the WTO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTO.

WTO

� One or more blanks must follow WTO.

TEXT=(text addr)

TEXT=((text addr,),(text addr,),...(text addr,))

text addr: RX-type address or register (2) - (12).
Note:

1. If you code TEXT=(text addr) on the execute form of
WTO, you must code TEXT= on the list form.

2. If you specify inline text on the list form (‘msg’ or
(‘text’...)), do not code the TEXT keyword on the
execute form.

,CONNECT=connect field connect field: RX-type address or register (2) - (12). If you
code CONNECT on the execute form of WTO, you must
code the same parameter on the list form.

,CONSID=console id console id: RX-type address or register (2) - (12).

,CONSNAME=console name console name: RX-type address or register (2) - (12).

If you code CONSID (or CONSNAME) on the execute
form of WTO, you must code the same parameter on the
list form.

,SYSNAME=system name system name: RX-type address or register (2) - (12). If you
code SYSNAME on the execute form of WTO, you must
code the same parameter on the list form.

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12). If
you code CART on the execute form of WTO, you must
code CART on the list form.

WTO macro

374 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,KEY=key key: RX-type address or register (2) - (12). If you code
KEY on the execute form of WTO, you must code KEY
on the list form.

,TOKEN=token token: RX-type address or register (2) - (12). If you code
TOKEN on the execute form of WTO, you must code
TOKEN on the list form.

,JOBID=job id job id: RX-type address or register (2) - (12). If you code
JOBID on the execute form of WTO, you must code
JOBID on the list form.

,JOBNAME=jobname jobname: RX-type address or register (2) - (12). If you
code JOBNAME on the execute form of WTO, you must
code JOBNAME on the list form.

,LINKAGE=SVC Default: SVC

,LINKAGE=BRANCH If you code LINKAGE on the execute form of WTO, you
must code LINKAGE on the list form.

,SYNCH=NO Default: NO

,SYNCH=YES

,WSPARM=0 Default: 0

,WSPARM=wait state addr wait state addr: RX-type address or register (2) - (12).

If you code WSPARM on the execute form of WTO, you
must code WSPARM on the list form.

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

Parameters
The parameters are explained under the standard form of the WTO macro, with
the following exception:

,MF=(E, list addr)
Specifies the execute form of the WTO macro.

list addr specifies the area that the system uses to store the parameters.

Example
Write a message with a prebuilt parameter list pointed to by register 1.
WTO MF=(E,(1))

WTO macro

Chapter 33. WTO — Write to operator 375

WTO macro

376 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Chapter 34. WTOR — Write to operator with reply

Description
The WTOR macro causes a message requiring a reply to be written to one or more
operator consoles and the hardcopy log. The macro also provides the information
required by the system to return the reply to the issuing program. See z/OS MVS
Programming: Authorized Assembler Services Guide for more information on using the
WTOR macro.

The description of the WTOR macro follows. The WTOR macro is also described in
z/OS MVS Programming: Assembler Services Reference IAR-XCT, with the exception of
the MSGTYP, SYSNAME, JOBID, JOBNAME, LINKAGE, and SYNCH parameters.

Environment
If you code LINKAGE=SVC, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following, depending on the parameters you

code:

v Problem state and PSW key 0-7.

v If you code the MSGTYP, SYSNAME, JOBID, JOBNAME,
and SYNCH parameters, one of the following:

– Supervisor state with PSW key 0-7

– APF-authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts.
Locks: No locks held
Control parameters: Must be in the primary address space

If you code LINKAGE=BRANCH, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space.

Programming requirements
Be aware of the following when coding the WTOR macro:
v IBM recommends that you begin the parameter list for WTOR on a fullword

boundary.

© Copyright IBM Corp. 1988, 2013 377

v If the caller is disabled, the WTOR parameter list, reply area, and reply ECB
must be in fixed storage. In this case, LINKAGE=BRANCH and SYNCH=YES
must be specified.

v If the list and execute forms of the WTOR macro are in separate modules, both
modules must be assembled or compiled with the same level of WTOR.

v When you're coding a reentrant program, make sure the WTOR parameter list is
generated correctly. To ensure this, you must code the same parameters on both
forms, only when you code one or more of the following parameters:
– RPLYISUR
– CONSID
– CONSNAME
– SYSNAME
– CART
– KEY
– TOKEN
– JOBNAME
– JOBID
– LINKAGE
On the list form, code only the parameter and the equal sign; do not code a
parameter value as well. If you specify parameter values on the list form, the
system issues an MNOTE and ignores the data.

v For any WTOR keywords that allow a register specification, the value must be
right-justified in the register.

v If you specify the TEXT keyword for a multi-line WTOR, you must code its
parameters in the following way:
– On the list form, omit text addr for each line, but include line type. If you

specify text addr, the system ignores the data and issues an MNOTE.
– On the execute form, omit line type for each line, but include text addr.

v As of z/OS 1.4.2, to prevent parameter lists that are not valid from causing
system errors, the WTOR service records the errors as symptom records in
LOGREC. One example of an invalid parameter list is an invalid combination of
WTOR parameters. The system may also issue a D23 abend for diagnostic
purposes only; the program issuing the WTOR will not be abended. Message
processing will continue as far as possible using the invalid parameter list.
Because of these invalid parameter list errors, you might notice that some
messages that you once were able to process can no longer be processed; your
program may also receive different return codes. However, in these cases, the
symptom record will always be issued, and the diagnostic D23 abend will be
issued if possible. IBM suggests that you correct all WTOR errors, regardless of
whether or not the message is actually displayed. For an example LOGREC
symptom record, see “Example 3” on page 370 in the WTO description.
If a dump is needed along with the diagnostic D23 abend to debug the problem,
the following SLIP can be set to cause dumps to be taken:
SLIP SET,ENABLE,COMP=D23,ACTION=SVCD,END

Restrictions
If the LINKAGE=BRANCH parameter is specified, the SYNCH=YES parameter is
required.

WTOR macro

378 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

You can issue a multi-line WTOR only if you specify LINKAGE=BRANCH,
SYNCH=YES.

Issue a synchronous message only if your program is in a state in which it cannot
issue an ordinary WTOR (LINKAGE=SVC), and you must receive operator input
before continuing.

The caller cannot have an EUT FRR established.

Input register information
Before issuing the WTOR macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the system

1 Message identification number if the macro completed normally (you can
use this number to delete the message when it is no longer needed);
otherwise, used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
SYNCH=YES causes the calling program to display the message, become disabled,
and receive the reply synchronously.

Syntax
The standard form of the WTOR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 379

Syntax Description

� One or more blanks must precede WTOR.

WTOR

� One or more blanks must follow WTOR.

‘msg’,reply addr,reply length,ecb addr

(‘text’,reply addr,reply length,ecb addr)

((‘text’,line type),...(‘text’,line type)),reply addr, reply
length,ecb addr

TEXT=(text addr,reply addr,reply length,ecb addr)

TEXT=((text addr,line type),reply addr, reply length,ecb addr)

TEXT=(((text addr,line type),...(text addr, line type)), reply
addr,reply length,ecb addr)

Note: If you code ‘msg’... or (‘text’...), it must be the first
parameter you code.

msg: Up to 122 characters.

text: Up to 122 characters.

text addr: RX-type address or register (2) - (12).

reply addr: A-type address, or register (2) - (12).

reply length: Symbol, decimal digit, or register (2) - (12).
The minimum length is 1; the maximum length is 119.

ecb addr: A-type address, or register (2) - (12).

The permissible line types, text lengths, and maximum
numbers are shown below:

line type text maximum number
C 31 char 1 C type
L 66 char 2 L type
D 66 char 14 D type
DE 66 char 1 DE type

or
E None 1 E type

The maximum total of lines that can be coded in one
instruction is 14.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code
is one or more codes, separated by commas, or a hyphen
to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both
7 and 13, separate them with commas.

WTOR macro

380 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,MSGTYP=(msg type) msg type: Any of the following:

N SESS,JOBNAMES

Y SESS,STATUS

SESS JOBNAMES,STATUS

JOBNAMES
SESS,JOBNAMES,STATUS

STATUS

Note: IBM recommends that you do not use MSGTYP=Y.
See the MSGTYP explanation on page 385 for more
information.

,MCSFLAG=(flag name) flag name: Any combination of the following, separated
by commas:

NOCPY
HRDCPY

RESP BRDCST

REPLY NOTIME

,RPLYISUR=reply console reply console: RX-type address or register (2) - (12).

,CONSID=console id console id: RX-type address or register (2) - (12).

,CONSNAME=console name console name: RX-type address or register (2) - (12).

,SYSNAME=system name system name: RX-type address or register (2) - (12).

,CART=cmd/resp token cmd/resp token: RX-type address or register (2) - (12).

,KEY=key key: RX-type address or register (2) - (12).

,TOKEN=token token: RX-type address or register (2) - (12).

,JOBID=job id job id: RX-type address or register (2) - (12).

,JOBNAME=jobname jobname: RX-type address or register (2) - (12).

,LINKAGE=SVC Default: SVC

,LINKAGE=BRANCH

,SYNCH=NO Default: NO

,SYNCH=YES

WTOR macro

Chapter 34. WTOR — Write to operator with reply 381

Parameters
The parameters are explained as follows:

‘msg’,reply addr,reply length,ecb addr
(‘text’,reply addr,reply length,ecb addr)
((‘text’,line type,...‘text’,line type),reply addr,reply length,ecb addr)
TEXT=(text addr,reply addr,reply length,ecb addr)
TEXT=((text addr,line type),reply addr,reply length,ecb addr)
TEXT=(((text addr,line type),...(text addr, line type)),reply addr,reply
length,ecb addr)

Specifies the message or multiple-line message to be written to one or more
operator consoles.

Use the ‘msg’ parameter to write a single-line message to the operator. Enclose
the message in apostrophes. The apostrophes do not appear on the console.
You can include any character that can be used in a character (C-type) DC
instruction.

To have apostrophes appear in the message text, use two apostrophes to get
one to appear. For example, ''Message Off'' would appear on a display as
'Message Off'. When a program issues a WTOR macro, the system translates
the text; only standard printable EBCDIC characters are passed to
MCS-managed display devices. The EBCDIC characters that can be displayed
are listed in “Timing and Communication” in z/OS MVS Programming:
Assembler Services Guide. All other characters are replaced by blanks. Unless the
console has dual-case capability, lowercase characters are displayed or printed
as uppercase characters.

The message is assembled as a variable-length record. text addr represents a
4-byte address of a message to be displayed that consists of a 2-byte message
length followed by the message text. The 2-byte message length describes the
length of the message text only. There are no boundary requirements.

Use the parameters (‘text’) and (text addr,line type) to write a multiple-line
message to the operator. For an authorized program, the message can be up to
fourteen lines long; the system truncates the message at the end of the
fourteenth line. The fourteen-line limit does not include the control line
(message IEE932I), as explained under line type C below.

Note:

1. You can issue a multi-line WTOR only if you specify SYNCH=YES. See the
SYNCH parameter description for information about its use.

2. If you code the parameter (‘text’) without repetition, the message appears
as a single-line message.

3. Specify all lines of a multiple-line WTOR consistently with the message text
or the TEXT keyword. When coding the TEXT keyword for a multiple-line
message, do not exceed the 66-character limit for the macro parameter
value.

The line type defines the type of information contained in the ‘text’ field of
each line of the message:

C Indicates that the ‘text’ parameter is the text to be contained in the
control line of the message. The control line normally contains a
message title. C may be coded only for the first line of a multiple-line
message. Control lines are optional.

L Indicates that the 'text' parameter is a label line. Label lines contain
message heading information. Label lines are optional. If coded, lines

WTOR macro

382 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

must either immediately follow the control line or another label line or
be the first line of the multiple-line message if there is no control line.
Only two label lines may be coded per message.

D Indicates that the ‘text’ parameter contains the information to be
conveyed to the operator by the multiple-line message.

DE Indicates that the ‘text’ parameter contains the last line of information
to be passed to the operator. Specify DE on the last line of text of the
WTOR. If there is no text on the last line, specify E.

E Indicates that the previous line of text was the last line of text to be
passed to the operator. The ‘text’ parameter, if any, coded with a line
type of E is ignored. Specify E on the last line of the WTOR if that line
has no text. If the last line has text, specify DE.

Note: All WTOR messages are action messages. An indicator (* for authorized
issuers or @ for unauthorized issuers) appears before the first character of an
action message to indicate a need for operator action. Action messages will
cause the audible alarm to sound on operator consoles so-equipped.

reply addr specifies the address in virtual storage of the area into which the
system is to place the reply. The reply is left-justified at this address.

reply length specifies the maximum length, in bytes, of the reply message.

ecb addr specifies the address of the event control block (ECB) to be used by the
system to indicate the completion of the reply. The ECB address must point to
a fullword boundary. After the system receives the reply, the ECB appears as
follows:
Offset Length(bytes) Contents
0 1 Completion code

Note: Use RPLYISUR to obtain the 4-byte console ID and console name of the
console issuing the reply.

,ROUTCDE=(routing code)
Specifies the routing code or codes to be assigned to the message.

The routing codes are:

Code Meaning

1 Operator Action

The message indicates a change in the system status. It demands action
by the primary operator.

2 Operator Information

The message indicates a change in system status. It does not demand
action; rather, it alerts the primary operator to a condition that might
require action.

This routing code is used for any message that indicates job status
when the status is not requested specifically by an operator inquiry. It
is also used to route processor and problem program messages to the
system operator.

3 Tape Pool

The message gives information about tape devices, such as the status
of a tape unit or reel, the disposition of a tape reel, or a request to
mount a tape.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 383

4 Direct Access Pool

The message gives information about direct access storage devices
(DASD), such as the status of a direct access unit or volume, the
disposition of a volume, or a request to mount a volume.

5 Tape Library

The message gives tape library information, such as a request by
volume serial numbers for tapes for system or problem program use.

6 Disk Library

The message gives disk library information, such as a request by
volume serial numbers for volumes for system or problem program
use.

7 Unit Record Pool

The message gives information about unit record equipment, such as a
request to mount a printer train.

8 Teleprocessing Control

The message gives the status or disposition of teleprocessing
equipment, such as a message that describes line errors.

9 System Security

The message gives information about security checking, such as a
request for a password.

10 System/Error Maintenance

The message gives problem information for the system programmer,
such as a system error, an uncorrectable I/O error, or information
about system maintenance.

11 Programmer Information

This is commonly referred to as write to programmer (WTP). The
message is intended for the problem programmer. This routing code is
used when the program issuing the message cannot route the message
to the programmer through a system output (SYSOUT) data set. The
message appears in the JESYSMSG data set. If the message issuer is a
TSO user, the message is also displayed on the TSO user's screen.

12 Emulation

The message gives information about emulation. (These message
identifiers are not included in this publication.)

13-20 For customer use only.

21-28 For subsystem use only.

29 Disaster recovery.

30-40 For IBM use only.

41 The message gives information about JES3 job status.

42 The message gives general information about JES2 or JES3.

43-64 For JES use only.

65-96 Messages associated with particular processors.

97-128 Messages associated with particular devices.

WTOR macro

384 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

If you omit the ROUTCDE, and CONSID or CONSNAME keywords, the
system uses the routing code specified on the ROUTCODE keyword on the
DEFAULT statement in the CONSOLxx member of SYS1.PARMLIB. See z/OS
MVS Initialization and Tuning Reference for information about CONSOLxx.

,DESC=(descriptor code)
Specifies the message descriptor code or codes to be assigned to the message.
Valid descriptor codes for the WTOR macro are:

7 Retain action message for life-of-task

13 Message previously automated

All WTOR messages are action messages that have an asterisk (*) sign
displayed before the first character (WTORs for unauthorized users have an
"@" sign displayed before the first character). This indicates a need for operator
action.

The system adds descriptor code 7 to all WTOR messages. The system holds
all WTOR messages until one of the following events occurs:
v The system deletes the WTOR message when the reply is received.
v You delete the WTOR message using the DOM macro. You should delete

any unanswered WTOR messages that are no longer current.
v The system deletes the WTOR message at task termination.

The message processing facility (MPF) can suppress messages. For MPF to
suppress messages, the hardcopy log must be active. The suppressed messages
do not appear on any console; they do appear on the hardcopy log.

,MSGTYP=(msg type)
Specifies how the message is to be routed to consoles on which the MONITOR
command is active. If you specify anything other than MSGTYP=N, which is
the default, your message is routed according to your specification on
MSGTYP.

For SESS, JOBNAMES, or STATUS, the message is to be routed to the console
that issued the MONITOR SESS, MONITOR JOBNAMES, or MONITOR
STATUS command, respectively. When the message type is identified by the
operating system, the message is routed to only those consoles that requested
the information.

For Y or N, the message type describes what functions (MONITOR SESS,
MONITOR JOBNAMES, and MONITOR STATUS) are desired. N, or omission
of the MSGTYP parameter, indicates that the message is to be routed as
specified in the ROUTCDE parameter. Y creates an area in the WTO parameter
list in which you can set message type information if you are coding a WTOR
without any of the following parameters:
v KEY
v TOKEN
v CONSID
v CONSNAME
v TEXT
v RPLYISUR
v CART
v LINKAGE
v SYNCH

IBM recommends that you do not use MSGTYP=Y.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 385

,MCSFLAG=(flag name)
Specifies one or more flag names whose meanings are shown below:

Table 45. MCSFLAG Flag Names

Flag Name Meaning

RESP The WTOR is an immediate command response.

REPLY This is a reply to a WTOR.

BRDCST Broadcast the message to all active consoles.

HRDCPY Queue the message for hard copy only.

NOTIME Do not append time to the message.

NOCPY Do not queue the message for hard copy.

,RPLYISUR=reply console
Specifies a 12-byte field where the system will place the 8-byte console name
and the 4-byte console ID of the console through which the operator replies to
this message. When you specify this keyword in the list form, code it as
RPLYISUR= with nothing after the equal sign.

,CONSID=console id
Specifies a 4-byte field containing the ID of the console to receive a message.

Note:

1. If you code the CONSID parameter using a register, the register must
contain the console ID itself, rather than the address of the console ID.

2. When you code CONSID on the list form of WTOR, code it as CONSID=
with nothing after the equal sign.

3. CONSID is mutually exclusive with the CONSNAME parameter.

,CONSNAME=console name
Specifies an 8-byte field containing a 2- through 8-character name, left-justified
and padded with blanks, of the console to receive a message. This parameter is
mutually exclusive with the CONSID parameter. When you specify this
keyword in the list form, code it as CONSNAME= with nothing after the equal
sign.

,SYSNAME=system name
Specifies an 8-byte input field containing a system name to be associated with
this message. You should left-justify SYSNAME and pad with blanks.

The system name is that of the system from which the caller issues the WTOR
message. When you specify this parameter in the list form, code it as
SYSNAME= with nothing after the equal sign. The system will, by default, set
the system name to the system where the message is issued. IBM suggests that
you avoid specifying SYSNAME.

,CART=cmd/resp token
Specifies an 8-byte field containing a command and response token to be
associated with this message. You can specify any value as a command and
response token. The command and response token is used to associate user
information with a command and its command response. When you specify
this keyword in the list form, code it as CART= with nothing after the equal
sign.

,KEY=key
Specifies a field containing an 8-byte key to be associated with this message.
The key must be EBCDIC if used with the MVS DISPLAY R command for

WTOR macro

386 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

retrieval purposes, but it must not be ‘*’. The key must be left-justified and
padded on the right with blanks. If a register is used, it contains the address of
the key. When this keyword is specified in the list form, it must be coded as
KEY= with nothing after the equal sign.

,TOKEN=token
Specifies a field containing a 4-byte token to be associated with this message.
This field is used to identify a group of messages that can be deleted by a
DOM macro that includes TOKEN. The token must be unique within an
address space, and can be any value. When you specify this keyword on the
list form, code it as TOKEN= with nothing after the equal sign.

Note: When you code the TOKEN parameter using a register, the register must
contain the token itself, rather than the address of the token.

,JOBID=job id
Specifies an 8-byte input field containing an ID that specifies the issuer of the
WTOR message. When you specify this parameter in the list form, code it as
JOBID= with nothing after the equal sign.

,JOBNAME=jobname
Specifies an 8-byte input field containing a name that specifies the issuer of the
WTOR message. You should left-justify JOBNAME and pad with blanks. When
you specify this parameter in the list form, code it as JOBNAME= with nothing
after the equal sign.

,LINKAGE=SVC
,LINKAGE=BRANCH

Specifies how control is to pass to the WTOR service.

LINKAGE=SVC indicates the linkage is by a supervisor call. If LINKAGE is
not specified, this is the default.

LINKAGE=BRANCH indicates the linkage is by a branch-and-link. You must
use SYNCH=YES with this parameter. This parameter is used by programs that
require the WTOR request to be handled synchronously.

When you specify this keyword in the list form, code it as LINKAGE= with
nothing after the equal sign.

,SYNCH=NO
,SYNCH=YES

Specifies whether the WTOR request processes synchronously with the caller.

SYNCH=NO, the default, indicates that the request is not processed
synchronously.

SYNCH=YES indicates the request is to be processed synchronously. This
parameter is used in error and recovery environments, when normal message
processing cannot be used. The message is sent to the console, and the reply is
obtained immediately, before control is returned to the caller. Before return, the
reply and reply length are moved to the areas specified by the caller, and the ecb
marked “complete.” Copies of the message and reply are queued for
transcription to the hardcopy log.

If you specify SYNCH=YES:
v You must specify the parameter LINKAGE=BRANCH.
v Do not specify MCSFLAG=HRDCPY.
v Do not specify RPLYISUR

WTOR macro

Chapter 34. WTOR — Write to operator with reply 387

Your installation can determine which consoles can receive synchronous
messages by using the SYNCHDEST parameter in the CONSOLxx member of
SYS1.PARMLIB. For additional information on the SYNCHDEST parameter, see
z/OS MVS Initialization and Tuning Reference.

ABEND codes
WTOR might abnormally terminate with abend code X'D23'. See z/OS MVS System
Codes for an explanation and programmer response for this code.

Return and reason codes
When the WTOR macro returns control to your program, GPR 15 contains one of
the following hexadecimal return codes.

Table 46. Return Codes for the WTOR Macro

Return Code Meaning and Action

00 Meaning: Processing completed successfully.

Action: None. Be sure to delete the message by issuing the DOM macro (if this
is an action message or a WTOR).

02 Meaning: Processing was not completely successful. This might be caused by
inconsistent parameters given to WTOR, or it could be an environmental
problem.

Action: A D23 abend has been issued for diagnostic purposes only. No dump
has been taken; if a dump is needed, you must set a SLIP trap. Correct any
inconsistencies in the WTOR invocation.

04 Meaning: Program error. The length of text for a message line was not correct.

Action:

v Make sure your text is properly referenced. If you are using the TEXT
parameter, make sure it is pointing to valid data.

v Make sure your message text is defined correctly. If you are using the TEXT
parameter, make sure the first two bytes of data in the area pointed to by the
TEXT parameter value contain the length of the message text.

In all cases, correct the problem and retry the request.

08 Meaning: Program error. The connecting message ID (passed in register 0 or
specified in the CONNECT parameter) does not match any on the queue. The
request was ignored.

Action: Verify the CONNECT ID value, correct the problem, and retry.

18 Meaning: Program error. The WPL was invalid and a symptom record was
written to LOGREC to describe the error. The message was not processed.

Action: Correct the WPL.

30 Meaning: Environmental error. For routing code 11, the required resource was
not available; the request was ignored. For any other routing code, the request
was processed.

Action: Retry the request when the resource you need is available.

40 Meaning: Environmental error. WTOR was issued with LINKAGE=BRANCH;
insufficient storage was available to queue the message for delayed issue. If
SYNCH=NO was specified, the message was not queued for delayed issue. If
SYNCH=YES was specified, the message was delivered for display, but not
queued for hardcopy.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was not displayed, a DOM request
is not required.

WTOR macro

388 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Table 46. Return Codes for the WTOR Macro (continued)

Return Code Meaning and Action

44 Meaning: Environmental error. WTOR was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available. The message was queued for
hardcopy, but not delivered for display.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was not displayed, a DOM request
is not required.

48 Meaning: Environmental error. WTOR was issued with LINKAGE=BRANCH,
SYNCH=YES; no usable console was available and insufficient storage was
available to queue the message for delayed issue. The message was not
delivered for display, nor queued for hardcopy.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was not displayed, a DOM request
is not required.

4C Meaning: Environmental error. WTOR was issued with LINKAGE=BRANCH;
no storage was available for the use of WTOR processing.

Action: If you want the message to be delivered to the destination you
requested, reissue the request. If the message was not displayed, a DOM request
is not required.

50 Meaning: Environmental error. The message could not be fully processed
because of insufficient space. The message might not appear in the hardcopy log
and it might not be displayed on any consoles.

Action: Retry the request.

54 Meaning: Environmental error. The message could not be fully processed
because of a hardcopy failure. The message might not appear in the hardcopy
log.

Action: Issue a D C,HC to display any active hardcopy mediums. Verify that
SYSLOG and OPERLOG are active and functioning correctly and then retry the
request.

58 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while sending it. The message might not
appear in the hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

5C Meaning: Environmental error. The message could not be fully processed
because of a failure freeing storage. The message might not appear in the
hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

60 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while calculating its size. The message might
not appear in the hardcopy log and it might not be displayed on any consoles.

Action: Retry the request.

64 Meaning: Environmental error. The message could not be fully processed
because of an error that occurred while building the message. The message
might not appear in the hardcopy log and it might not be displayed on any
consoles.

Action: Retry the request.

68 Meaning: The WTO environment is not yet available. The message was not
delivered for display, nor was it queued for hardcopy.

Action: Issue the request again when WTO processing is available.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 389

Example 1
Issue a WTOR to the primary operator.
L8 EQU 8

.

.

.
WTOR ’USR902A REPLY YES OR NO TO CONTINUE.’,REPLY,L8,REPECB, X

ROUTCDE=(1),RPLYISUR=CONINFO
.
.
.

REPLY DS CL8
REPECB DS F
CONINFO DS CL12

Example 2
Issue a WTOR with the TEXT parameter. The message is to go to a specific console
whose name is in field TOCON.
R4 EQU 4
R5 EQU 5
LENG12 EQU 12

.

.

.
LA R4,CATMSG
LA R5,TAPEAREA
WTOR TEXT=((R4),REPAREA,LENG12,TAPEECB), X

CONSNAME=TOCON, X
RPLYISUR=(R5)

.

.

.
CATMSG DC AL2(L’REP64) 00011800
REP64 DC C’USR922A INDICATE NUMBER OF TAPE DRIVES REQUIRED.’
TOCON DC CL8’TAPECON ’
REPAREA DS CL12
TAPEECB DS F
TAPEAREA DS CL12

Example 3
Issue a branch-entry WTOR.
C80 EQU 80

.

.

.
WTOR ’USR940I ENTER THE NAMES OF AFFECTED JOBS:’,REPAR6,C80,JX

OBSECB,RPLYISUR=JOBCONS, X
ROUTCDE=(1),LINKAGE=BRANCH,SYNCH=YES

.

.

.
REPAR6 DS CL80
JOBSECB DS F
JOBCONS DS CL12

Example 4
Issue a WTOR using the TEXT parameter with the list and execute forms of the
macro. The console ID to which the message is to be queued is assumed to be in

WTOR macro

390 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

field MYCONID. On the TEXT parameter for the execute form, commas mark the
positions of reply addr and ecb addr; for the list form, a comma marks the position
of reply length.
R12 EQU 12
C50 EQU 50 LENGTH OF REPLY AREA

USING *,R12
.
.
.
WTOR MF=(E,M2,EXTENDED),TEXT=(MESSAGE,,C50,),CONSID=MYCONID, X

RPLYISUR=MYCONAR
.
.
.

M2 DS 0F
WTOR TEXT=(,RAREA,,MYECB),CONSID=,ROUTCDE=(2),RPLYISUR=,MF=L

MYCONID DS F
RAREA DS CL50
MYECB DS F
MYCONAR DS CL12
MESSAGE DC AL2(L’MTEXT)
MTEXT DC C’USR930A REQUEST IS AMBIGUOUS. RESPECIFY DEVICE.’

END

WTOR - List form
Use the list form of the WTOR macro together with the execute form of the macro
for applications that require reentrant code. The list form of the macro defines an
area of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the WTOR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede WTOR.

WTOR

� One or more blanks must follow WTOR.

‘msg’,reply addr,reply length,ecb addr

(‘text’,reply addr,reply length,ecb addr)

((‘text’,line type,...,‘text’,line type),reply addr, reply length,ecb
addr)

TEXT=(,reply addr,reply length,ecb addr)

TEXT=(((,line type),(,line type),...,(,line type)), reply
addr,reply length,ecb addr)

msg: Up to 122 characters.

text: Up to 122 characters.

reply addr: A-type address.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 391

Syntax Description

reply length: Symbol, decimal digit. The minimum length
is 1; the maximum length is 119.

ecb addr: A-type address.

The permissible line types, text lengths, and maximum
numbers are shown below:

line type text maximum number
C 31 char 1 C type
L 66 char 2 L type
D 66 char 14 D type
DE 66 char 1 DE type

or
E None 1 E type

The maximum total of lines that can be coded in one
instruction is 14.

Note:

1. If you code ‘msg’... or (‘text’...), it must be the first
parameter you code.

2. If you do not code reply addr on the list form of
WTOR, mark its position with a comma, and code
reply addr on the execute form. The same is true for
reply length and ecb addr.

,ROUTCDE=(routing code) routing code: Decimal digit from 1 to 128. The routing code
is one or more codes, separated by commas, or a hyphen
to indicate a range.

,DESC=(descriptor code) descriptor code: Decimal number 7 or 13. If you code both
7 and 13, separate them with commas.

,MSGTYP=(msg type) msg type: Any of the following:

N SESS,JOBNAMES

Y SESS,STATUS

SESS JOBNAMES,STATUS

JOBNAMES
SESS,JOBNAMES,STATUS

STATUS

Note: IBM recommends that you do not use MSGTYP=Y.
See the MSGTYP explanation on page 364 for more
information.

,MCSFLAG=(flag name) flag name: Any combination of the following, separated
by commas:

NOCPY
HRDCPY

RESP BRDCST

REPLY NOTIME

WTOR macro

392 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

,RPLYISUR= Parameter value not required for list form. Code only
,RPLYISUR=. If you code RPLYISUR on the list form of
WTOR, you must code RPLYISUR on the execute form.

,CONSID= Parameter value not required for list form. Code only
,CONSID= (or ,CONSNAME=). If you code CONSID (or
CONSNAME) on the list form of WTOR, you must code
CONSID (or CONSNAME) on the execute form.

,CONSNAME=

,SYSNAME= Parameter value not required for list form. Code only
,SYSNAME=. If you code SYSNAME on the list form of
WTOR, you must code SYSNAME on the execute form.

,CART= Parameter value not required for list form. Code only
,CART=. If you code CART on the list form of WTOR,
you must code CART on the execute form.

,KEY= Parameter value not required for list form. Code only
,KEY=. If you code KEY on the list form of WTOR, you
must code KEY on the execute form.

,TOKEN= Parameter value not required for list form. Code only
,TOKEN=. If you code TOKEN on the list form of
WTOR, you must code TOKEN on the execute form.

,JOBID= Parameter value not required for list form. Code only
,JOBID=. If you code JOBID on the list form of WTOR,
you must code JOBID on the execute form.

,JOBNAME= Parameter value not required for list form. Code only
,JOBNAME=. If you code JOBNAME on the list form of
WTOR, you must code JOBNAME on the execute form.

,LINKAGE= Parameter value not required for list form. Code only
,LINKAGE=. If you code LINKAGE on the list form of
WTOR, you must code LINKAGE on the execute form.

,SYNCH=NO Default: NO

,SYNCH=YES

,MF=L

Parameters
The parameters are explained under the standard form of the WTOR macro with
the following exception:

WTOR macro

Chapter 34. WTOR — Write to operator with reply 393

,MF=L
Specifies the list form of the WTOR macro.

WTOR - Execute form
Use the execute form of the WTOR macro together with the list form of the macro
for applications that require reentrant code. The execute form of the macro stores
the parameters into the storage area defined by the list form.

The message cannot be modified on the execute form of the macro if you code
inline text (‘msg’... or (‘text’...)) on the list form.

Syntax
The execute form of the WTOR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column
1.

� One or more blanks must precede
WTOR.

WTOR

� One or more blanks must follow
WTOR.

,reply addr,reply length,ecb addr

TEXT=(text addr,reply addr,reply length,ecb addr)

TEXT=(((text addr,),(text addr,),...(text addr,)),reply addr,reply length,ecb addr)

reply addr: RX-type address, or register
(2) - (12).

reply length: Symbol, decimal digit, or
register (2) - (12).

The minimum length is 1; the
maximum length is 119.

ecb addr: RX-type address, or register
(2) - (12).

text addr: RX-type address or register
(2) - (12).

WTOR macro

394 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Syntax Description

Note:

1. If you code reply addr,reply
length,ecb addr, it must be the first
parameter you code and must be
preceded by a comma.

2. If you specify inline text on the
list form (‘msg’... or (‘text’...)), do
not code the TEXT keyword on
the execute form.

3. If you do not code reply addr on
the execute form of WTOR, mark
its position with a comma, and
code reply addr on the list form.
The same is true for reply length
and ecb addr.

,RPLYISUR=reply console reply console: RX-type address or
register (2) - (12). If you code
RPLYISUR on the execute form of
WTOR, you must code RPLYISUR on
the list form.

,CONSID=console id console id: RX-type address or register
(2) - (12).

,CONSNAME=console name console name: RX-type address or
register (2) - (12).

If you code CONSID (or
CONSNAME) on the execute form of
WTOR, you must code the same
parameter on the list form.

,SYSNAME=system name system name: RX-type address or
register (2) - (12).

If you code SYSNAME on the execute
form of WTOR, you must code the
same parameter on the list form.

,CART=cmd/resp token cmd/resp token: RX-type address or
register (2) - (12).

If you code CART on the execute
form of WTOR, you must code CART
on the list form.

,KEY=key addr key addr: RX-type address or register
(2) - (12).

If you code KEY on the execute form
of WTOR, you must code KEY on the
list form.

WTOR macro

Chapter 34. WTOR — Write to operator with reply 395

Syntax Description

,TOKEN=token addr token addr: RX-type address or register
(2) - (12).

If you code TOKEN on the execute
form of WTOR, you must code
TOKEN on the list form.

,JOBID=job id job id: RX-type address or register (2) -
(12).

If you code JOBID on the execute
form of WTOR, you must code JOBID
on the list form.

,JOBNAME=jobname jobname: RX-type address or register
(2) - (12).

If you code JOBNAME on the execute
form of WTOR, you must code
JOBNAME on the list form.

,LINKAGE=SVC Default: SVC

,LINKAGE=BRANCH If you code LINKAGE on the execute
form of WTOR, you must code
LINKAGE on the list form.

,SYNCH=NO Default: NO

,SYNCH=YES

,MF=(E,list addr) list addr: RX-type address, or register
(1) - (12).

,MF=(E,list addr,EXTENDED)

Parameters
These parameters are explained under the standard form of the WTOR macro, with
the following exceptions:

,reply addr,reply length,ecb addr
If you code reply addr,reply length,ecb addr, it must be the first parameter you
code and must be preceded by a comma.

,MF=(E,list addr)
,MF=(E,list addr,EXTENDED)

Specifies the execute form of the WTOR macro.

list addr specifies the area that the system uses to store the parameters.

If you specify reply addr, reply length, or ecb addr on the execute form of WTOR,
and any of the following parameters are also specified on the list and/or
execute form, you must specify EXTENDED for the system to generate the
parameter list correctly:
v KEY

WTOR macro

396 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

v TOKEN
v CONSID
v CONSNAME
v TEXT
v RPLYISUR
v CART
v Any value of ROUTCDE higher than 16

Example
Write a message with a prebuilt parameter list pointed to by register 1.
WTOR MF=(E,(1))

WTOR macro

Chapter 34. WTOR — Write to operator with reply 397

398 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 399

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

400 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 401

402 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 403

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

404 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to authorized assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 405

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

406 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

Index

A
accessibility 399

contact IBM 399
features 399

addressing mode and the services 2
ALET qualification

of parameters 4
AR () mode

description 3
ASC (address space control) mode

defining 3
assistive technologies 399
authorization

testing caller 215

C
callable service

coding 16
caller

testing authorization 215
coding the callable services 16
coding the macros 13
continuation line 15
control access to a serially reusable

resource 33
CPU time

obtaining accumulated 219

E
event

waiting for one or more 339

F
functional recovery routine

setting up 27

I
IHATRBPL mapping macro 188
IHATREPL mapping macro 189

K
keyboard

navigation 399
PF keys 399
shortcut keys 399

L
log

writing 345

M
macro

coding 13
forms 11
level

selecting 1
sample 14
selecting level 1
user parameter, passing 4
X-macros

using 11

N
navigation

keyboard 399
Notices 403

P
parameter

setting return 45
process

putting in process-must-complete
mode 105

process-must-complete mode 105

Q
query virtual server 202
QVS 202

R
RETRIEVE service

reason codes 169
return codes 169

S
sending comments to IBM xvii
service

ALET qualification 4
summary 17

services
addressing mode 2
ASC mode

defining 3
using 1

SETFRR macro 27
SETLOCK macro 33
SETRP macro 45
shortcut keys 399
SJFREQ macro 55

RETRIEVE service 57, 61
SWBTU_MERGE service 57, 65, 67
TERMINATE service 58, 88
VERIFY service 58, 74

SPIE macro 89
SPOST macro 95
SRB (service request block)

transferring control 213
SRB status 97
SRBSTAT macro 97
SRBTIMER macro 101
STATUS macro 105
storage

obtaining and releasing 113
STORAGE macro 113
subtask

starting and stopping 105
Summary of changes xix
SUSPEND macro for RBs 141, 143
SUSPEND macro for SRBs 143
SVC exit

type 6 227
SVCUPDTE macro 149
SWA manager

invoking in locate mode 159
SWAREQ macro 159
SWBTUREQ macro 165
SYNCH and SYNCHX macros 175, 183
synchronous exit

to a processing program 175
SYSEVENT macro 183

T
T6EXIT macro 227
TCBTOKEN macro 205

description 205
TCTL macro 213
TESTAUTH macro 215
time limit

establishing for system service 101
TIMEUSED macro 219

U
UCB (unit control block)

obtaining address 273
pinning 285
scanning 293
unpinning 285

UCBINFO macro 229
UCBLOOK macro 273
UCBPIN macro 285
UCBSCAN macro 293
user interface

ISPF 399
TSO/E 399

user parameter
passing 4

V
vector time

obtaining accumulated 219

© Copyright IBM Corp. 1988, 2013 407

virtual storage
map 319
obtaining private area region

size 335
verifying allocation 327

VSMLIST macro 319
VSMLOC macro 327
VSMREGN macro 335

W
WAIT macro 339
WTL macro 345
WTO macro 353
WTOR macro 377

X
X-macros

using 11

408 z/OS V2R1.0 MVS Authorized Assembler Services Reference SET-WTO

����

Product Number: 5650-ZOS

Printed in USA

SA23-1375-00

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER

	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. SETFRR — Set up functional recovery routines
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 3. SETLOCK — Control access to serially reusable resources
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	SETLOCK OBTAIN
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	SETLOCK RELEASE
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2

	SETLOCK TEST
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 4. SETRP — Set return parameters
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 5. SJFREQ — Call scheduler JCL facility services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Example

	SJFREQ RETRIEVE service
	Programming requirements
	SJFREQ RETRIEVE keyword list
	SJFREQ RETRIEVE input parameters
	SJFREQ RETRIEVE output parameters
	ABEND codes
	SJFREQ RETRIEVE return and reason codes

	SJFREQ SWBTU_MERGE service
	Programming requirements
	SJFREQ SWBTU_MERGE input parameters
	SJFREQ SWBTU_MERGE output parameters
	SJFREQ SWBTU_MERGE ABEND codes
	SJFREQ SWBTU_MERGE Return and reason codes

	SJFREQ VERIFY service
	SJFREQ VERIFY input parameters
	SJFREQ VERIFY output parameters
	Operand descriptions
	ABEND codes
	Return and reason codes with related message text

	SJFREQ TERMINATE service
	SJFREQ TERMINATE input parameters
	Return and reason codes

	Chapter 6. SPIE — Specify program interruption exit
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	SPIE - List form
	Syntax
	Parameters

	SPIE - Execute form
	Syntax
	Parameters

	Chapter 7. SPOST — Synchronize POST
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	ABEND codes
	Return and reason codes
	Example

	Chapter 8. SRBSTAT — Save, restore, or modify SRB status
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	Chapter 9. SRBTIMER — Establish time limit for system service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes

	Chapter 10. STATUS — Control dispatchability or process-must-complete state
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications

	START/STOP options
	Syntax
	Parameters
	Return codes

	SET/RESET option
	Syntax
	Parameters
	Return codes
	Example

	Chapter 11. STORAGE — Obtain and release storage
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications

	STORAGE OBTAIN
	Input register information for LINKAGE=SYSTEM
	Output register information for LINKAGE=SYSTEM
	Input register information for LINKAGE=SVC
	Output register information for LINKAGE=SVC
	Input register information for LINKAGE=BRANCH
	Output register information for LINKAGE=BRANCH
	Input register information for LINKAGE=GLOBALBRANCH
	Output register information for LINKAGE=GLOBALBRANCH
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	STORAGE RELEASE
	Input register information for LINKAGE=SYSTEM
	Output register information for LINKAGE=SYSTEM
	Input register information for LINKAGE=SVC
	Output register information for LINKAGE=SVC
	Input register information for LINKAGE=BRANCH
	Output register information for LINKAGE=BRANCH
	Input register information for LINKAGE=GLOBALBRANCH
	Output register information for LINKAGE=GLOBALBRANCH
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples of the OBTAIN and RELEASE options
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 12. SUSPEND — Suspend execution of an RB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 13. SUSPEND — Suspend execution of an SRB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	SUSPEND (SRB) - List form
	Syntax
	Parameters

	SUSPEND (SRB) - Execute form
	Syntax
	Parameters

	Chapter 14. SVCUPDTE — SVC update
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	SVCUPDTE - List form
	Syntax
	Parameters
	Example 1
	Example 2

	SVCUPDTE - Execute form
	Syntax
	Parameters
	Example

	Chapter 15. SWAREQ — Invoke SWA manager in locate mode
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	ABEND codes
	Return and reason codes

	SWAREQ - List form
	Syntax
	Parameters

	SWAREQ - Execute form
	Syntax
	Parameters

	SWAREQ - Modify form
	Syntax
	Parameters

	Chapter 16. SWBTUREQ — Call SJF SWBTU processing services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	SWBTUREQ RETRIEVE service
	SWBTUREQ RETRIEVE input parameters
	SWBTUREQ RETRIEVE output
	ABEND codes
	Return and reason codes
	Example

	Chapter 17. SYNCH and SYNCHX — Take a synchronous exit to a processing program
	Description
	Register information
	Syntax
	Parameters
	Example 1
	Example 2
	Example 3
	Example 4

	SYNCHX - Take a synchronous exit to a processing program
	Syntax
	Parameters

	SYNCH and SYNCHX - List form
	Syntax
	Parameters
	Example

	SYNCH and SYNCHX - Execute form
	Syntax
	Parameters
	Example

	Chapter 18. SYSEVENT — System event
	Description
	Environment
	Programming requirements
	Restrictions and limitations
	Input register information
	Output register information
	Syntax
	Parameters

	SYSEVENT mnemonics
	Notify SRM of transaction completion (TRAXRPT, TRAXFRPT, TRAXERPT)
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Control swapping (DONTSWAP, OKSWAP, TRANSWAP)
	Example 1
	Example 2

	Obtain system measurement information (STGTEST)
	Example

	Obtain address space classification information (REQASCL)
	Input register information
	Return and reason codes
	Input register information

	Obtain address space related information (REQASD and REQFASD)
	Input register information
	REQASD
	REQFASD

	Return and reason codes
	Example 1
	Example 2

	Obtain workload management mode status information (REQSRMST)
	Input register information
	Return and reason codes

	Obtain data for defined capacity (REQLPDAT)
	Input register information
	Return and reason codes

	Identify holder of a resource (ENQHOLD)
	Input register information
	Return and reason codes

	Identify that a holder has released resource (ENQRLSE)
	Input register information
	Return and reason codes

	Associate an enclave with an address space (ENCASSOC)
	Input register information
	Return and reason codes

	Set the state for an enclave (ENCSTATE)
	Input register information

	Query amount of free AUX storage (FREEAUX)
	Output register information

	Return resource contention information (QRYCONT)
	Input register information
	Return codes

	Query a virtual server (QVS)
	Return and reason codes

	Chapter 19. TCBTOKEN — Request or translate the TTOKEN
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Abend codes
	Return codes
	Example 1
	Example 2
	Example 3

	TCBTOKEN - List form
	Syntax
	Parameters

	TCBTOKEN - Execute form
	Syntax
	Parameters

	Chapter 20. TCTL — Transfer control from an SRB routine
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 21. TESTAUTH — Test authorization of caller
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2

	Chapter 22. TIMEUSED — Obtain accumulated CPU or vector time
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes
	Example 1
	Example 2
	Example 3

	Chapter 23. T6EXIT — Type 6 exit
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameter
	ABEND codes
	Return and reason codes
	Example

	Chapter 24. UCBINFO — Return information from a UCB
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	UCBINFO DEVCOUNT
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO DEVCOUNT—List form
	Parameters

	UCBINFO DEVCOUNT—Execute form
	Parameters

	UCBINFO DEVINFO
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO DEVINFO - List form
	Parameters

	UCBINFO DEVINFO - Execute form
	Parameters

	UCBINFO PATHINFO
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO PATHINFO - List form
	Parameters

	UCBINFO PATHINFO - Execute form
	Parameters

	UCBINFO PATHMAP
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO PATHMAP - List form
	Parameters

	UCBINFO PATHMAP - Execute form
	Parameters

	UCBINFO PAVINFO
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO PAVINFO - List form
	Parameters

	UCBINFO PAVINFO - Execute form
	Parameters

	UCBINFO PRFXDATA
	Syntax
	Parameters
	Return and reason codes
	Example

	UCBINFO PRFXDATA - List form
	Parameters

	UCBINFO PRFXDATA - Execute form
	Parameters

	Chapter 25. UCBLOOK — Obtain addresses of UCB segments
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	UCBLOOK - List form
	Syntax
	Parameters

	UCBLOOK - Execute form
	Syntax
	Parameters

	Chapter 26. UCBPIN — Pinning or unpinning a UCB
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes

	UCBPIN - List form
	Syntax
	Parameters

	UCBPIN - Execute form
	Syntax
	Parameters

	Chapter 27. UCBSCAN — Scan UCBs
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Parameters
	Return and reason codes

	UCBSCAN COPY
	Syntax

	UCBSCAN COPY - List form
	Syntax
	Parameters

	UCBSCAN COPY - Execute form
	Syntax
	Parameters

	UCBSCAN ADDRESS
	Syntax
	Parameters
	Return and reason codes

	UCBSCAN ADDRESS - List form
	Syntax
	Parameters

	UCBSCAN ADDRESS - Execute form
	Syntax
	Parameters

	Chapter 28. VSMLIST — List virtual storage map
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 29. VSMLOC — Verify virtual storage allocation
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information for LINKAGE=SYSTEM
	Output register information for LINKAGE=SYSTEM
	Input register information for LINKAGE=BRANCH
	Output register information for LINKAGE=BRANCH
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 30. VSMREGN — Obtain private area region size
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 31. WAIT — Wait for one or more events
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Example
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 32. WTL — Write to log
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	WTL - List form
	Syntax
	Parameters

	WTL - Execute form
	Syntax
	Parameters

	Chapter 33. WTO — Write to operator
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3

	WTO - List form
	Syntax
	Parameters

	WTO - Execute form
	Syntax
	Parameters
	Example

	Chapter 34. WTOR — Write to operator with reply
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	WTOR - List form
	Syntax
	Parameters

	WTOR - Execute form
	Syntax
	Parameters
	Example

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	C
	E
	F
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X

